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PREFACE TO THE GERMAN EDITION

THE title
"
Atomic Mechanics,"

l
given to these lectures which I

delivered in Gottingen during the session 1923-24, was chosen to

correspond to the designation
"
Celestial Mechanics." As the latter

term covers that branch of theoretical astronomy which deals with

the calculation of the orbits of celestial bodies accordingto mechanical

laws, so the phrase
"
Atomic Mechanics

"
is chosen to signify that the

facts of atomic physics are to be treated here with special reference

to the underlying mechanical principles ;
an attempt is made, in

other words, at a deductive treatment of atomic theory. It may
be argued that the theory is not yet sufficiently developed to justify

such a procedure ;
to this I reply that the work is deliberately con-

ceived as an attempt, an experiment, the object of which is to ascer-

tain the limits within which the present principles of atomic and

quantum theory are valid and, at the same time, to explore the ways

by which we may hope to proceed beyond these boundaries. In

order to make this programme clear in the title, I have called the

present book
"
Vol. I

"
;
the second volume is to contain a closer

approximation to the
"

final
"
mechanics of the atom. I know that

the promise of such a second volume is bold, for at present we have

only a few hazy indications as to the departures which must be made

from the classical mechanics to explain atomic phenomena. Chief

among these indications I include Heisenberg's conception of the

laws of multiplets and the anomalous Zeeman effect
;
some features

of the new radiation theory of Bohr, Kramers, and Slater, such as

the notion of " virtual oscillators
"

;
the subsequent advances of

Kramers towards a quantum theory of dispersion phenomena ;
as

well as some general considerations, which I have recently published,

relating to the application of the theory of perturbations to the

quantum theory. This mass of material, however, in spite of its

1 The German title
"
Atommechanik

"
corresponds to the title "Himinels-

mechanik" (celestial mechanics); the title "Mechanics of the Atom" appeared,
however, preferable for this book, although, in the text, the clumsier expression
atomic mechanics has often been employed.
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extensive range, is not nearly enough for the foundation of a

deductive theory. The second volume may, in Consequence, remain

for many years unwritten. In the meantime let its virtual ex-

istence serve to make clear the aim and spirit of this work.

This book is not intended for those who are taking up atomic prob-
lems for the first time, or who desire merely to obtain a survey of the

theoretical problems which it involves. The short introduction, in

which the most important physical foundations of the new mechanics

are given, will be of little service to those who have not previously
studied these questions ;

the object of this summary is not an intro-

duction to this field of knowledge, but a statement of the empirical

results which are to serve as a logical foundation for our deductive

theory. Those who wish to obtain a knowledge of atomic physics,

without laborious consultation of original literature, should read

Sommerfeld's Atombau und Spektrallinien.
1 When they have mas-

tered this work they will meet with no difficulties in the present

volume, indeed a great deal of it will be already familiar. The fact

that many portions of this book overlap in subject-matter with

sections of Sommerfeld's is of course unavoidable, but, even in these

portions, a certain difference will be discernible. In our treatment

prominence is always given to the mechanical point of view
;

details

of empirical facts are given only where they are essential for the

elucidation, confirmation, or refutation of theoretical deductions.

Again, with regard to the foundations of the quantum theory, there

is a difference in the relative emphasis laid on certain points ; this,

however, I leave for the reader to discover by direct comparison. My
views are essentially the same as those of Bohr and his school ; in

particular I share the opinion of the Copenhagen investigators, that

we are still a long way from a
"

final
"
quantum theory.

For the fact that it has been possible to publish these lectureq in

book form I am indebted in the first place to the co-operation of my
assistant, Dr. Friedrich Hund. Considerable portions of the text have

been prepared by him and only slightly revised by me. Many points,

which I have only briefly touched on in the lectures, have been

worked out in detail by him and expounded in the text. In this con-

nection I must mention, in the first place, the principle of the unique-
ness of the action variables which, in my opinion, constitutes the basis

of the present-day quantum theory ;
the proof worked out by Hund

plays an important part in the second chapter ( 15). Further, the

account of Bohr's theory of the periodic system, given in the third

1
English translation of third edition, 1923, by H. L. Brose, Methuen & Co., Ltd.,

London.
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chapter, has, for the most part, been put together by Hund. 1 also

wish to thank oth$r collaborators and helpers. Dr. W. Heisenberg
has constantly helped us with his advice and has himself contributed

certain sections (as, for example, the last on the helium atom) ;
Dr.

L. Nordheim has assisted in the presentation of the theory of per-

turbations, and Dr. H. Kornfeld has verified numerous calculations.

MAX BORN.
G6TTINGEN, November 1924.





AUTHOR'S PREFACE TO THE
ENGLISH EDITION

SINCE the original appearance of this book in German, the mechanics

of the atom has developed with a vehemence that could scarcely

be foreseen. The new type of theory which I was looking for as

the subject-matter of the projected second volume has already

appeared in the new quantum mechanics, which has been developed

from two quite different points of view. I refer on the one hand

to the quantum mechanics which was initiated by Heisenberg, and

developed by him in collaboration with Jordan and myself in Ger-

many, and by Dirac in England, and on the other hand to the wave

mechanics suggested by de Broglie, and brilliantly worked out by

Schrodinger. There are not two different theories, but simply two

different modes of exposition. Many of the theoretical difficulties

discussed in this book are solved by the new theory. Some may
be found to ask if, in these circumstances, the appearance of an

English translation is justified. I believe that it is, for it seems to

me that the time is not yet arrived when the new mechanics can

be built up on its own foundations, without any connection with

classical theory. It would be giving a wrong view of the historical

development, and doing injustice to the genius of Niels Bohr, to

represent matters as if the latest ideas were inherent in the nature

of the problem, and to ignore the struggle for clear conceptions

which has been going on for twenty-five years. Further, I can

state with a certain satisfaction that there is practically nothing in

the book which I wish to withdraw. The difficulties are always

openly acknowledged, and the applications of the theory to empirical

details are so carefully formulated that no objections can l)e made

from the point of view of the newest theory. Lastly, I believe that

this book itself has contributed in some small measure to the

promotion of the new theories, particularly those parts which have

been worked out here in Gottingen. The discussions with my
collaborators Heisenberg, Jordan and Hund which attended the
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writing of this book have prepared the way for the critical step

which we owe to Heisenberg. *

It is, therefore, with a clear conscience that I authorise the English

translation. It does not seem superfluous to remark that this book

is not elementary, but supposes the reader to have some knowledge
of the experimental facts and their explanation. There exist excel-

lent books from which such knowledge can easily be acquired. In

Germany Sommerfeld's Atombau und SpeJctrallinien is much used :

an English translation has appeared under the title Atomic Structure

and Spectral Lines. I should like also to direct attention to Andrade's

book, The Structure of the Atom, in which not only the theories but

also the experimental methods are explained.

I desire to offer my warmest thanks to Professor Andrade for

suggesting an English edition of my book. I also owe my thanks

to Mr. Fisher, who prepared the translation in the first place ;

Professor Andrade, Professor Appleton and Dr. Curtis, who read it

over
;
and finally to Dr. Hartree, who revised the translation, read

the proof-sheets, and made many helpful suggestions for elucidating

certain points. I also offer my sincere thanks to the publishers for

the excellent manner in which they have produced the book.

MAX BORN.
GETTINGEN, January 1927.



NOTE

THE chief departures from the German text which have been made

by Professor Born or with his approval are (1) some modifications in

1,2 concerning the mechanism of radiation, in view of the experi-

ments of Geiger and Bothe, and of Compton and Simon, (2) a modi-

fication of the derivation, on the lines suggested by Bohr, of the

Rydberg-Ritz series formula in 26, and (3) various alterations in

24 and 30-32, made in view of the development of ideas and the

additional experimental data acquired since the German edition was

written.

D. R. H.
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THE MECHANICS OF
THE ATOM

INTRODUCTION

PHYSICAL FOUNDATIONS

1. Development of the Quantum Theory of the Oscillator

from the Theory of Radiation

BEFORE dealing with the mathematical theory of atomic mechanics

we shall give a brief account of its physical foundations. There are

two sources to be considered : on the one hand the theory of thermal

radiation, which led to the discovery of the quantum laws
;
on the

other, investigations of the structure of atoms and molecules.

Among all the characteristics of the atom which can be inferred

from the physical and chemical properties of bodies, the radiation

phenomena are distinguished by the fact that they provide us with

the most direct information regarding the laws and structure of the

ultimate constituents of matter. The most universal laws of matter

are those manifested in such phenomena as are independent of the

nature of the particular substance with which we are dealing. This

constitutes the importance of KirchhoiFs discovery that the thermal

radiation in an enclosure is independent of the nature of the material

forming the walls of the enclosure, or contained in its interior. In an

enclosure uniformly filled with radiation in equilibrium with the

surroundings, the energy density, for a range of frequency dv, is

equal to pjdv, where pv
is a universal function of v and the tempera-

ture T. From the standpoint of the wave theory the macroscopic

homogeneous radiation is to be regarded as a mixture of waves of

every possible direction, intensity, frequency, and phase, which is

in statistical equilibrium with the particles existing in matter which

emit or absorb light.

For the theoretical treatment of the mutual interaction between

radiation and matter it is permissible, by Kirchhoffs principle, to re-

place the actual atoms of the substances by simple models, so long
as these do not contradict any of the known laws of nature. The

1
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harmonic oscillator has been used as the simplest model of an atom

emitting or absorbing light ;
the moving partible is considered to be

an electron, which is bound by the action of quasi-elastic forces to a

position of equilibrium at which a positive charge of equal magnitude
is situated. We thus have a doublet, whose moment (charge X

displacement) varies with time. H. Hertz showed, when investigat-

ing the propagation of electric waves, how the radiation from such a

doublet may be calculated on the basis of Maxwell's equations. It

is an even simpler matter to calculate the excitation of such an

oscillator by an external electromagnetic wave, a process which is

utilised to explain refraction and absorption in the classical theory of

dispersion. On the basis of these two results the mutual interaction

between such resonators and a field of radiation may be determined.

M. Planck has carried out the statistical calculation of this inter-

action. He found that the mean energy W of a system of resonators

of frequency v is proportional to the mean density of radiation pv ,

the proportionality factor depending on v but not on the tem-

perature T :

The complete determination of pv(T) is thus reduced to the determina-

tion of the mean energy of the resonators, and this can be found from

the laws of the ordinary statistical mechanics.

Let q be the displacement of a linear oscillator and %q the restoring

force for this displacement ;
then p=mij is the momentum, and the

energy is

The force-coefficient x is connected with the angular frequency u and

the true frequency v I
by the relation

^ ==a)2=
(
27rv)

2
.

m

According to the rules of statistical mechanics, in order to calculate

the mean value of a quantity depending on p and q the quantity
must be multiplied by the weighting factor e-*w

,
where /J=1/T, and

then averaged over the whole of the
"
phase space

"
(p, q) corre-

sponding to possible motions. Thus the mean energy becomes

1 In the following co will always be used to denote the number of oscillations or

rotations of a system in 2n sees, (the angular frequency), v will be used to denote the
number in 1 sec. (the true frequency).
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This can clearly also be written

where
W^logZ,

is the so-called partition function (Zustandsintegral). The evalua-

tion of Z gives

f* - f* -*- 6 s '
P cM 6 *'dgi

J tt> J -f>

and since

we get

Hence

(%} W -T(2) W_rM.

This leads to the following formula for the density of radiation :

/q\ _ T,rv\

(3) P t
. jf"^

1
'

the so-called Rayleigh-Jeans formula. It is at variance not only with

the simple empirical fact that the intensity does not increase con-

tinually with the frequency, but also leads to the impossible con-

sequence that the total density of radiation

is infinite.

The formula (3) is valid only in the limiting case of small v (long

waves). W. Wien put forward a formula which represents correctly

the observed decrease in intensity for high frequencies. A forriiula

which includes both of these others as limiting cases was found by
Planck, first by an ingenious interpolation, and shortly afterwards

derived theoretically. It is

87T1/
2

llV

where A is a new constant, the so-called Planck's Constant. Since
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it is the fundamental constant of the whole quantum theory, its

numerical value will be given without delay, viz. :

h =6-54. 10-27 erg sec.

Comparison of (4) with (1) shows that this radiation formula corre-

sponds to the following expression for the energy of the resonators :

(5) W=^-.

To derive this formula theoretically, a complete departure from

the principles of classical mechanics is necessary. Planck discovered

that the following assumption led to the required result : the energy

ofan oscillator can take not all values, but only those which are multiples

of a unit of energy W .

According to this hypothesis of Planck, the integral formula for Z
is to be replaced by the sum

oo __f/W

(6) Z=2* .

n=0

The summation of this geometric series gives

*
7L

1 e

From this it follows that

thus

(7) W=-^L.
6*T 1

This agrees with Planck's formula (5) if we put Vf =hv. This last

relation can be established with the help of Wien's displacement law,

which can be deduced from thermo-dynamical considerations com-

bined with the Doppler principle. Wien's law states that the density

of radiation must depend on the temperature and frequency in the

following way :

the energy of the resonator has therefore the form

W-rffg).

Comparison with (7) shows that W must be proportional to v.
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Einstein showed that the behaviour of the specific heat of solid

bodies furnished valuable support for Planck's bold hypothesis of

energy quanta. The crudest model of a solid consisting of N atoms

is a system of 3N linear oscillators, each of which more or less repre-

sents the vibration of an atom in one of the three directions of space.

If the energy content of such a system be calculated on the assump-
tion of a continuous energy distribution, we get from (2)

If we consider one gram molecule, then NA;=K, the absolute gas

constant, and we have the law of Dulong and Petit in the form

dK
cv --=3R=5-9 calories per degree C.

rfj_

Experiment shows, however, that this is the case at high tempera-
tures only, while, for low temperatures, c

v
tends to zero. Einstein

took Planck's value (5) for the mean energy instead of the classical

one and obtained for one gram molecule :

fo

JfeT

E=31lT-r .
hv

ekr 1

This represents, with fair accuracy, the decrease in c
v
at low tem-

peratures for monatomic substances (e.g. diamond). The further

development of the theory, taking into account the coupling of the

atoms with one another, has confirmed Einstein's fundamental

hypothesis.
Whereas Planck's assumption of energy quanta for resonators is

well substantiated by this result, a serious objection may be brought

against his deduction of his radiation formula, namely, that the re-

lation (1) between the density of radiation pv
and the mean energyW

of the resonators is derived from classical mechanics and electro-

dynamics, whereas the statistical calculation of W is based on the

quantum principle, which cannot be reconciled with classical con-

siderations. Planck has endeavoured to remove this contradiction

by the introduction of modified quantum restrictions ; but further

developments have shown that the classical theory is inadequate to

explain numerous phenomena, and plays rather the role of a limiting

case (see below), whereas the real laws of the atomic world are pure

quantum laws.

s/Let us recapitulate clearly the points in which the quantum

principles are absolutely irreconcilable with the classical theory.
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According to the classical theory, when a resonator oscillates, it

emits an electromagnetic wave, which carries aWay energy ;
in conse-

quence the energy ofthe oscillation steadily decreases. But according
to the quantum theory, the energy of the resonator remains constant

during the oscillation and equal to n . Uv
;
a change in the energy of the

resonator can occur only as the result of a process in which n changes

by a whole number, a
"
quantum jump."

A radically new connection between radiation and the oscillation

of the resonator must therefore be devised. This may be accom-

plished in two ways. We may either assume that the resonator does

not radiate at all during the oscillation, and that it gives out radia-

tion of frequency v only when a quantum jump takes place, there

being some yet unexplained process by which energy lost or gained by
the resonator is given to or taken away from the ether. The energy

principle is then satisfied in each elementary process. Or we may
assume that the resonator radiates during the oscillation, but retains

its energy in spite of this. The energy principle is then no longer

obeyed by the individual processes ;
it can only be maintained on an

average provided that a suitable relation exists between the radia-

tion and the probabilities of transitions between the states of constant

energy.
The first conception was long the prevailing one

; the second

hypothesis was put forward by Bohr, Kramers, and Slater,
1 but new

experiments by Bothe and Geiger,
2 and by Compton and Simon,

3

have provided strong evidence against it. The investigations of this

book will, in general, be independent of a decision in favour of either

of these two assumptions. The existence of states of motion with

constant energy (Bohr's
"
stationary states ") is the root of the

problems with which we are concerned in the following pages.

2. General Conception ot the Quantum Theory

By consideration of Planck's formula WQ =hv, Einstein was led to

interpret phenomena of another type in terms of the quantum theory,

thus giving rise to a new conception of this equation which has proved

very fruitful. The phenomenon in question is the photoelectric

effect. If light of frequency v falls on a metallic surface,
4 electrons

are set free and it is found that the intensity of the light influences

1 Zeitschr. f. Physik, vol. xxiv, p. 69, 1924; Phil. Mag., vol. xlvii, p. 785, 1924.
* W. Bothe and H. Geiger, Zeitschr. f. Physik, vol. xxxii, p. 639, 1925.
3 A. H. Compton and W. Simon, Phys. Rev., vol. xxv, p. 306, 1925.
4 When the symbols v and v are employed concurrently, v always refers to the

frequency of the radiation, the symbol r to a frequency within the atom. (Trans-
lator's note.)
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the number of electrons emitted but not their velocity. The latter

depends entirely or- the frequency of the incident light. Einstein

suggested that the velocity v of the emitted electrons should be given

by the formula

which has been verified for high frequencies (X-rays), while for low

frequencies the work done in escaping from the surface must be taken

into consideration.

We have then an electron, loosely bound in the metal, ejected by
the incident light of frequency v and receiving the kinetic energy hv ;

the atomic process is thus entirely different from that in the case of

the resonator, and does not contain a frequency at all. The essential

point appears to be, that the alteration in the energy of an atomic

system is connected with the frequency of a light-wave by the

equation

(1) *P=W 1-W fc

no matter whether the atomic system possesses the same frequency
v or some other frequency, or indeed has any frequency at all.

Planck's equation
W=n.W ; W =Ai/

gives a relation between the frequency of oscillation v of a resonator

and its energy in the stationary states, the Einstein equation (1)

gives a relation between the change in the energy of an atomic

system for a transition from one state to another and the frequency
v of the monochromatic light with the emission or absorption of

which the transition is connected.

Whereas Einstein applied this relation solely to the case of the

liberation of electrons by incident light and to the converse process,

viz. the production of light (or rather X-rays) by electronic bom-

bardment, Bohr recognised the general significance of this quantum

principle for all processes in which systems with stationary states

interact with radiation. In fact the meaning of the equation is in-

dependent of any special assumptions regarding the atomic system.

Since Bohr demonstrated its great fertility in connection with the

hydrogen atom, equation (1) has been called Bohr's Frequency
condition.

Taking into account the new experiments by Bothe and Geiger,

and by Compton and Simon, which have been mentioned above,

we have to assume that the frequency v is radiated during the

transition and the waves carry with them precisely the energy hv
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(light quantum) ; there is at present no theoretical indication of

the detailed nature of the transition process.
*

If Bohr's frequency relation (1) be applied to the resonator we are

faced by alternatives which will now be considered. The change of

energy which takes place when the resonator passes from the state

with the energy njiv to that with the energy n 2kv, viz. :

is, in general, a multiple of the energy quantum, hv, of the resonator.

According now to Bohr and Einstein, this change in energy must be

connected with the frequency ? of the emitted monochromatic radia-

tion by the equation

hv=(n 1 n 2)hv.

This admits of two possibilities only : either we may require that, as

in the classical theory, the radiated frequency shall correspond with

that of the radiator, in which case only transitions between neigh-

bouring states, for which

i w a=l

are possible, or we may assume that the frequency of the radiation

differs from that of the resonator, being a multiple of it. In the latter

case the emitted light will not be monochromatic, on account of the

possibility of different transitions. The decision between these two

possibilities has been attained in the course of the further develop-
ment of Bohr's atomic theory, the conclusion being that the emitted

radiation is strictly monochromatic, with the frequency given by the

condition (1), but that the agreement between the frequency of the

radiation and the frequency of oscillation of the resonator (i.e.

n l n 2=l) is brought about by an additional principle, which pro-

vides a criterion for the occurrence of transitions between the

different states, and is called the Correspondence Principle.

A fundamental difference between the quantum theory and the

classical theory is that, in the present stage of our knowledge of the

elementary processes, we cannot assign a
"
cause

"
for the individual

quantum jumps. In the classical theory, the transition from one

state to another occurs causally, in accordance with the differential

equations of mechanics or electrodynamics. The only connection in

which probability considerations find a place on the older theory is in

the determination of the probable properties of systems of many
degrees of freedom (e.g. distribution laws in the kinetic theory of

gases). In the quantum theory, the differential equations for the

transitions between stationary states are given up, so that in this

case special rules must be sought. These transitions are analogous
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to the processes of radioactive disintegration. All experiments go
to show that the radioactive transformation processes occur spon-

taneously and are not capable of being influenced in any way.

They appear to obey only statistical laws. It is not possible to

say when a given radioactive atom will disintegrate, but it is pos-

sible to say what percentage of a given number will disintegrate in

a given period ; or, what comes to the same thing, a probability

can be assigned for each radioactive transformation (which is

called a priori since we are not at present in a position to express
it in terms of anything more fundamental). We transfer this

conception to the states of an atomic
system.

We ascribe to each

transition between two stationary states an a priori probability.

The theoretical determination of this a priori probability is one of

the most fundamental problems of the quantum theory. The only
method of attack so far available is to consider processes in which the

energy transformed in the course of a single transition is small in com-

parison to the total energy, in which case the results of the quantum
theory must tend to agree with those of the classical theory. One

theorem based on this idea is the Correspondence Principle of Bohr

mentioned above ;
here the transitions between states with large

quantum numbers (e.g. for large n in the case of a resonator) are

compared with the corresponding classical processes. The rigorous

formulation of this principle will be given later.

Another application of this idea occurs in a new derivation of

Planck's radiation formula
;
this is due to Einstein, and has given

effective support to the ideas of the quantum theory and in particular

to Bohr's frequency condition.

In this case no assumptions are made regarding the radiating sys-

tem except that it possesses different stationary states of constant

energy. From these we select two with the energies W x and W2

(W 1 >W2), and suppose that, when statistical equilibrium exists,

atoms in these states are present in the numbers N x and N 2

respectively. Then, by Boltzmann's Theorem

w
N 2 <r*r w t-w.- -. *T .

1
e kT

According to the classical theory, the mutual interaction between an

atomic system and radiation consists of three kinds of processes :

1 . If the system exists in a state of higher energy, it radiates energy

spontaneously.
2. The field of radiation gives up energy to or takes away energy
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from the system according to the phases and amplitudes of the waves

of which it is composed. We call these processes

(a) positive in-radiation,
1
if the system absorbs energy ;

(6) negative in-radiation (out-radiation), if it gives up energy.

In the cases 2 (a) and 2 (6) the contributions of the processes to the

alteration of the energy are proportional to the energy density of the

radiation.

In an analogous manner we assume for the quantum interaction

between radiation and atomic systems the three corresponding pro-

cesses. Between the two energy levels W x andW 2 there are then the

following transitions :

1. Spontaneous decrease in energy by transition from W l to W 2 .

The frequency with which this process occurs is proportional to the

number N x of the systems at the higher level W 1? but will also depend
on the lower energy state W2 . We write for this frequency of

occurrence

2a. Increase in energy on account of the field of radiation (i.e.

transition from W 2 to Wj). We write in a corresponding way for its

frequency of occurrence

26. Decrease in energy on account of the radiation field (transition

from Wj to W 2) with the frequency of occurrence

We leave open the question whether the energy gained or lost by
the atomic system is subtracted from or given up to the radiation

during each individual process, or whether the energy principle is

satisfied statistically only.

Now the statistical equilibrium of the states Nj_ and N 2 requires

that

This gives

12_____ _
PV

jj
W t-W2

B 21
^?

B 12 B 21e
*T B 12

It is necessary now to make use of the frequency condition

a
Emstrahlung is hero translated in-radjation, as there seems to be no exact

English equivalent. E. A. Milne (Phil. Mag., xlvii, 209, 1924) has already used in

English the terms "
in-radiation

" and "
out-radiation

"
in this connection.
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in order that the formula for pv should be consistent with Wien's

displacement law. Then

__
ft-

At this stage Einstein makes use of the general consideration men-

tioned above, that the quantum laws must reduce to the classical

ones as a limiting case. Clearly in the present problem the limiting

case is that of high temperatures, where liv is small compared to AT.

In this case our formula (2) must become the Rayleigh-Jeans for-

mula (3) of 1, required by the classical theory (and verified by

experiment for high temperatures), namely,

c3

Since, for large values of T, our pv
becomes

A 12

"v L~ >

tt T> , T>
A"

,i>21~i5 12+i>21Tm-T . .

the agreement is possible only if

B 12=B 21

and

Bia c*
V

We arrive in fact at Planck's radiation formula

(3) P
J JL.

Collecting our results together, we see that Planck's original formu-

lation of the quantum principles for the resonator embodies two

essentially different postulates :

1. The determination of the stationary states (constant energy) :

this is done in the case of the resonator by the equation

We shall generalise this equation later for any periodic system.
2. The Bohr Frequency condition

Av=W 1-W1 ,

which determines the frequency of the light emitted or absorbed in

the transition between two stationary states. The frequency v so

defined is positive for emission and negative for absorption.
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In addition to this there are certain statistical principles bearing

on the frequency of occurrence of the stationary states and of the

transitions between them, chief among which is the Correspondence

Principle already referred to.

3. -The Conceptions of Atomic and Molecular Structure

Having now considered the development of the special principles

underlying the quantum mechanics of the atom, we shall indicate

briefly the development of our knowledge regarding the material

substratum to which they apply.

The phenomena of electrolysis first led to the hypothesis of the

atomic structure of electricity. Subsequently the carriers of negative

electricity were detected in the free state as the cathode rays and

the j8-rays of radioactive substances. From the deviation of these

rays in electromagnetic fields, the ratio e/m, of charge to mass of

the particles, could be determined. It was found that

e/m =5-31 . 10 17 E.S.U. per gram.

On the assumption that the same elementary quantum of elec-

tricity is concerned both here and in electrolysis (which can be

verified approximately by experiment), we are led to the conclusion

that the mass of these negative particles of electricity is about an

1830th part of that of a hydrogen atom. These carriers of negative

electricity are called electrons and it can be shown, by optical and

electrical experiments, that they exist as structural units in all

matter. By making use of the fact that it is possible to produce
on very small (ultra-microscopic) metal particles, and oil drops, a

charge of only a few electrons, and to measure it, very accurate

values have been found for the charge carried by an electron.

Millikan found

e=4-77. 10-10 E.S.U.

Positive electricity has only been found associated with masses

of atomic magnitude. Positive rays have been produced and studied :

it will suffice to mention a-rays of radioactive substances, anode

rays and canal rays. The determination of e/m from deviation ex-

periments gave the mass of the a-particles to be that of the

helium atom ; for the particles of the anode rays the mass is that

of the atom of the anode material, while for the particles of the

canal rays the mass is that of an atom of the gas in the tube. We
must therefore assume that each atom consists of a positive particle,

at which is concentrated most of its mass, and of a number of

electrons. In the neutral atom the number of the elementary
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charges of the positive particle is equal to the number of electrons ;

positive ions result from loss of electrons, negative ions from capture
of extra electrons.

As regards the size of the electrons we can do nothing but make
doubtful theoretical deductions, which lead to an order of magnitude
of 10~18 cm. Lenard was the first to obtain definite conclusions

regarding the size of the positive particles, which he called dynamids

(Dynamiden). From experiments on the penetration of matter by
cathode rays, he found that only a vanishingly small fraction of the

space occupied by matter is impenetrable to fast cathode rays.

Subsequently Eutherford arrived at analogous conclusions, as the

result of experiments on the penetration of matter by a-rays. From
a study of the range and scattering of these rays he was able to

establish the fact that the linear dimensions of the positive particles,

which he named nuclei, are at least 10,000 times smaller than those

of an atom ; up to this limit the observed deviations can be ascribed

to Coulomb forces between the charged particles. The measure-

ments also provided information regarding the charge of the positive

particles, and gave for the number of the elementary charges about

half the value of the atomic weight ;
the number of electrons in the

neutral atom must be the same. This result was supported by

investigations of the scattering of X-rays ; the amount of the scat-

tering depends principally, at any rate in the case of loosely bound

electrons, on their number only.

When we come to regard all the possible types of atoms we must

turn for guidance to the periodic system, which has been set up as

the result of chemical experience. By this, the elements are

arranged in an absolutely definite order
; the magnitudes of the

atomic weights give in the main the same order, but there are

certain discrepancies (e.g. argon and potassium). The result ob-

tained above, that the nuclear charge is approximately equal to

half the atomic weight, led van den Broek to the hypothesis that the

number of elementary nuclear charges is the same as the ordinal

number of the atom in the periodic system (atomic number or

order number). When, following Laue's discovery, X-ray spectro-

scopy had been begun by Bragg, van den Broek's hypothesis
was confirmed by Moseley's investigations on the characteristic

X-ray spectra of the elements. Moseley found that all elements

possess essentially the same type of X-ray spectrum, but that with

increasing atomic number the lines are displaced in the direction of

higher frequencies and, moreover, that the square root of the fre-

quency always increases by nearly the same amount from one
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element to the next. This established the fundamental character

of the atomic number, as contrasted with the atomic weight.

Further, the similarities of the X-ray spectra suggest the similarity

of certain features of atomic structure. If now we assume that

the structure of the atom, i.e. number and arrangement of its

electrons, is determined essentially by the nuclear charge, we are

led to the conclusion that there must be a close relationship be-

tween the nuclear charge and the atomic number
; in fact, with

the assumption that the two quantities are equal, the more precise

theory of the X-ray spectra, which we shall give later, leads to

Moseley's law.

Collecting together the results bearing on atomic structure, we have

then the following picture of an atom with the order number Z
;

it

consists of a nucleus with the charge Z,
1 with which is associated

practically the whole mass of the atom, and (in the neutral state)

Z electrons. In the model atom imagined by Rutherford it is

supposed that these circulate round the nucleus in much the same

way as the planets round the sun, and that the forces holding them

together are essentially the electrostatic attractions and repulsions

of the charged particles.

But if, on the basis of these conceptions and the classical prin-

ciples, we now attempt to develop a mechanical theory of the atom,
we encounter the following fundamental difficulty : a system of

moving electric charges, such as is pictured in this model, would

continually lose energy owing to electromagnetic radiation and must

therefore gradually collapse. Further, all efforts to deduce the char-

acteristic structure of the series spectra on the basis of the classical

laws have proved fruitless.

Bohr has succeeded in overcoming these difficulties by rejecting the

classical principles in favour of the quantum principles discussed in

1 and 2. He postulates the existence of discrete stationary states,

fixed by quantum conditions, the exchange of energy between these

states and the radiation field being governed by his frequency con-

dition
(
1 ) ,

2 . The existence of a stationary state of minimum energy,

which the atom cannot spontaneously abandon, provides for the

absolute stability of atoms which is required by experience. Further,

1 Later researches, chiefly by J. J. Thomson, Rutherford, Aston, and Dempster,
have shown that the nucleus itself is further built up of electrons and hydrogen
nuclei, called protons. As a consequence of these investigations the old hypothesis
of Prout regains significance, in a somewhat different form. The deviations of

the atomic weights from whole-number values, which previously ruled out this

hypothesis, can be accounted for by the conception of isotopes and energy-mass
variations. Not much is definitely known on the subject of nuclear mechanics,
and it will not be discussed in this book.
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in the case of the hydrogen atom, he succeeded in calculating the

energy levels by a rational generalisation of Planck's hypothesis,

in such a way that the frequency condition leads at once to the ob-

served spectrum (Balmer's formula), He has also given the prin-

ciples whereby the quantum conditions may be formulated in

more complicated cases ; this will be dealt with in the following

pages.

Bohr's fundamental concepts of discrete stationary states and a

quantum frequency condition receive their most direct confirmation

from a class of investigations initiated by Franck and Hertz, and sub-

sequently extended and refined by these and other investigators.

The fundamental idea of these experiments is that definite amounts

of energy can be communicated to atoms by bombarding them with

electrons of known velocity. As the velocity of the bombarding
electrons is increased, the abrupt occurrence of the stationary states

is indicated on the one hand by the sudden appearance of electrons

which have lost some of their incident energy, and on the other by
the sudden production of radiation of those frequencies which are

associated with transitions from the stationary state in question to

other stationary states of lower energy.

Analogous phenomena are observed in the domain of the X-rays,
where the occurrence of emission lines and absorption edges is bound

up with the attainment of definite energy levels, consequent on

electronic bombardment. In both the optical and the X-ray region

values for the constant h can be determined by means ofthe frequency
condition by measuring the energy supplied and the frequency of the

consequent radiation. These values are independent of the atom and
the particular quantum transition used to derive them, and are found

to be in good agreement with the values obtained from heat radiation

measurements.

Not only the structure of atoms but also their combination to form

molecules and extended bodies, and the laws of motion of the latter,

are governed by the same quantum laws. We may mention, for

example, the more precise development of the theory of specific heats

of solid bodies already referred to, and further the theory of the band

spectra of molecules, which we shall deal with in detail in this

book.

We give in conclusion a brief formulation of the ideas which have

led to Bohr's atomic theory. There are two observations which are

fundamental : firstly the stability of atoms, secondly the validity of

the classical mechanics and electrodynamics for macroscopic pro-
cesses. The application of the classical theory to atomic processes
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leads, however, to difficulties in connection with the stability. The

problem arises, therefore, of developing a mechanics of the atom free

from these contradictions. This new mechanics is characterised by
the fact that the classical continuous manifold of states is replaced

by a discrete manifold, defined by quantum numbers.



FIRST CHAPTER

THE THEORY OF HAMILTON AND JACOBI

4. Equations of Motion and Hamilton's Principle

NEWTON'S equations of motion for a system of free particles form the

starting-point for all the following considerations :

l

d
__

where mk denotes the mass of the Ath particle, v fc
its velocity, and Kk

the force acting on it. The product m fcv fr
is called the impulse or

momentum.
In this form the equations (1) still hold if the mass is dependent

on the magnitude of the velocity, as is required by Einstein's rela-

tivity theory.
*

In many cases the system of equations (1) is equivalent to a varia-

tion principle, known as Hamilton's Principle, viz. :

(2) I Ldt =stationary value.

Here L ig a certain function of the co-ordinates and velocities of all

the particles, and, in certain circumstances, also an explicit function

of the time, and equation (2)
as an expression of Hamilton's Principle

is to be interpreted as follows : the configuration (co-ordinates) of the

system of particles is given at the times t t and t2 and the motion is

sought (i.e. the co-ordinates as function of the time) which will take

the system from the first configuration to the second in such a way
that the integral will have a stationary value.2 The chief advantage
of such a variation principle is its independence of the system of co-

ordinates.

1
Heavy type is used to indicate vector quantities. Vector products are indicated

by square brackets, and scalar products by round brackets or by absence of brackets.
9 It does not matter whether it is a maximum or a minimum or a saddle-point

value.

17 2
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Lagrange's equations
1

d SL_aL
(3) dtdF1T'fa lr
can be derived directly from the variation principle (2).

We have

to determine L so that these equations agree with the Newtonian

equations (1).

If the forces K* have a potential U, i.e. if

we determine a function T* of the velocity components so that

0T*

The equations (1) can then be written in the form

d 0T*_8(-U)_
dt dJrk dxk

or

rfd(T*-U)_d(T*-U)_
rf/T d7^ dx~k

'

We put therefore in our variation principle (2)

(4) L=T*-U.

If, taking no account of the theory of relativity, we regard mk as

constant, T* is equal to the kinetic energy T. If we write, in accord-

ance with the special theory of relativity,

c/J
'

where m is the
"
rest mass

"
and c is the velocity of light, we have

(for one particle)

(5) T*=m-eri-(l-(-)

1

!

1

],L \ \
c/ ) J

which, for the limiting case c oo
,
reduces to the expression w v2 .

1 In the following we shall usually write down only the first of the three equations

corresponding to the co-ordinates x, yt z.
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This function differs from the kinetic energy

(6) T=m
c({l-(*)

2

j~

l

-l],

which, of course, also reduces to ^m v2 in the limiting case where

c=oo .

Besides a component K, which can be derived from a potential

U, the forces often contain a component K* depending on the

velocities (as in the case of magnetic forces acting on electric charges).

A function M is then determined so that

-*
and the expression

(8) L=T*-U-M
is substituted in the variation principle (2).

The Lagrangian equations (3) then become

d #T* dU d 8M. 0M_

and our variation principle is, in fact, equivalent to the Newtonian

equations of motion

Hamilton's Principle is also valid when the particles are con-

strained in a manner defined by equations

/*(*!> 2/i> *i *> * - 0=0
between the co-ordinates. 1 In accordance with the rules of the

calculus of variations, additional forces of the form

must be added to the original forces, where the A^'s, which are

functions of the co-ordinates, are the
"
undetermined multipliers

"

of Lagrange. These multipliers, together with the co-ordinates, are

to be regarded as unknowns
;
the number of determining equations,

i.e. differential equations and equations of constraint, is then equal
to the number of unknowns.

As already mentioned, the chief advantage of Hamilton's Principle
is that it represents the laws of motion in a manner independent of

any special choice of co-ordinates. If a number of equations of con-

1 Such conditions, which do not involve the velocity components, are called

holonomous.
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straint be given, an equal number of co-ordinates can be eliminated

with their help. There remains then a certain number of indepen-
dent co-ordinates q^2 . . . qf .

The number/is known as the number of degrees of freedom. The

Lagrangian function will then be a function of the j's and of their

time derivatives ; the time may also appear explicitly :

k=L(?i, </!, y2 , ^ 2 ... qr qf , t) ;

the variation principle (2) then leads to the Lagrangian equations

!!-- *-"/
These are also valid if the co-ordinates qk refer to arbitrarily moving,
or even deformed, systems of reference.

5. The Canonical Equations

Each of Lagrange's equations is a differential equation of the

second order. In many cases, particularly for work of a general

character, it is desirable to replace them by a system of twice as

many differential equations of the first order. The simplest way
of accomplishing this is to put qk=sk > and then to take these addi-

tional equations into account, treating the sk s, as well as the qk's,

as unknown quantities. A much more symmetrical form is obtained

as follows :

In place of the qk's the new variables

(1) ""
known as momenta, are introduced ; the Lagrangian equations (9)

of 4 now become

(2) p^ 9

fyk

where L is still to be regarded as a function of the qk s and qk's.

Equations (] ) can now be expressed in a similar form by introducing

in place of the function L(7 1r/ 1
. . . t) a new function H(^ 1 ;) 1 . . . t),

by means of a Legendre Transformation l

(3) H=
1 A Legendre Transformation transforms, in general, a function f(x, y) into a

function g(x, 2), where z ~* in such a way that the derivative of g with respect to
cy

the new variable z is equal to the old variable y Such transformations play a
considerable part in all branches of physics ; in thermodynamics, for example, the

energy and the free energy are related in the same way as two functions connected

by a Legendre Transformation.
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If now we form the total differential

r\T QT *}T

k k k * k k *

the terms in dqk cancel out on account of (1). For the partial deriva-

tives of H(<npi t) with respect to pk and qk we have therefore

where the indices outside the brackets denote which variable is inde-

pendent. Now with the help of the new variables we can write (2)

and (4) (which is an expression of (1)) as follows :

dR

This is the so-called canonical form of the equations of motion.

H(<7i, Pi, qz > p* t) is called the flamiltonian function. The

variables qk and pk are said -o be canonically conjugated.

The same equations are obtained if the momenta are defined by

(1) in the same way, and the function L in the variation principle (2),

i, is expressed in terms of H by means of equation (3). We have

(6)
J^?iPkQk'R(<IiPi

$) cfe=stationary value,
^L k -1

for the same possible variations as before, i.e. variations for which

the configurations at fixed times tL and t2 are themselves fixed
;

here the qk and pk are to be regarded as the functions required. It

is easily seen that the Lagrangian equations are equivalent to (5),

and it should be noted that the derivatives of the pk & do not occur

explicitly in the integrand ;
for this reason only the values of the

qk s at the times ^ and t2 can be prescribed as limiting conditions,

not those of the pk &.

All of these considerations remain valid if the function L, and

with it the function H, depends explicitly on the time t. The latter

case will occur, for example, either if external influences depending
on the time are present (U depending on t), or if, in the case of a

self-contained system, a system of reference is employed which itself
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performs a prescribed non-uniform motion. If, however, H does not

involve the time explicitly, we have

Substituting for qk andpk from the equations of motion (5), it follows

that

dR n

-*-*
so that

(7) &(PI<!I .) ==cons^an^

is a first integral of the equations of motion (5).

We inquire now as to the mechanical significance of the quantity
H and consider first the case of the classical (non-relativistic)

mechanics. With any co-ordinates, in a stationary system of refer-

ence, the kinetic energy is a homogeneous quadratic function T 2 of

the velocities qk ; in moving co-ordinate systems additional linear

terms, and terms not involving q k> will occur, so that we can write :

Here Tn denotes a homogeneous function of the nth degree of the

r/fc's,
which may, moreover, depend on the qk's. By Euler's Theorem

we have

thus

(8)

If we suppose that an ordinary potential energy U exists, in which

case

L=T-U,
we have

H=T 1+2T 1-(T +T 1+T 1)+U
=-T +T 2+U.

In the case of a co-ordinate system at rest (T=T 2)

(9) H-T+U
is the total energy. If the time does not occur explicitly in H, this

gives, in conjunction with equation (7), the law of the conservation

of energy.
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In the case of moving co-ordinate systems, where T and T x are not

0, it may happen that H is independent of the time, thus

H=const.

is an integral, but not the energy integral.

Example. We consider a system of co-ordinates (|, rj) rotating with the

angular velocity (o round the axis of z. We transform to this from the sta-

tionary system (x, y) by means of the formula

x= f cos cut
ry
sin cut

\j % sin a>t-\- 1]
cos cut

z=.

The kinetic energy then becomes

The momenta corresponding to the co-ordinates f and /?
are then

so that we can also write

For H we obtain

or

If U is symmetrical around the axis of z, H does not contain the time explicitly

and is therefore constant. The integral

H= const.

is called the Jacobian Integral. It is, however, different from the energy

E=T+U= (

which is likewise constant.

From both integrals it follows that

E-H= const.

This gives the law of conservation of angular momentum. We have, in fact,

If we transform back to x, y, we have

E H=o>Sm(^ yx).
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We consider now the case of relativistic mechanics. By (4) and (5),

4, we have for a particle

L=T* U=

thus

(10) p

and

(11) =T+U,
so that in this case also H is the total energy. This result is indepen
dent of the co-ordinate system so long as this is at rest.

6. Cyclic Variables

Before dealing with the general theory of the integration of the

canonical equations, we will, first of all, consider some simple cases

If the Hainiltonian function H does not contain one co-ordinate, e.g

q l9 i.e. if

H^fptfapa . . . 0,

it follows from the canonical equations that

?>i=0

Thus we arrive immediately at one integral of these equations. The

co-ordinate q l is called, after Helmholtz, a cyclic co-ordinate (since il

often corresponds to a rotation about an axis).

Clearly this case always arises if the mechanical system is no1

affected by an alteration of the co-ordinate q l (e.g. by a single trans-

lation or rotation).

If, for example, a system of massive particles (iir 2 rn) moves

under the action of mutual forces only, the potential energy will de-

pend solely on the differences

s 2=r 2 i!, S8=r8 r 1 ,
. . . sn rn r x .

We introduce as co-ordinates the components x^y^ of r x , and the

components 1^^ of these differences s fc
. Since U is independent

of #i2/i2i, it follows that Pxlpvj?zl

are constant. Now the kinetic

energy is

2/*
2+^2

) (t=l, 2 . . . n),
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Since

(&=2, 3 . . . n)

it follows that

(*=1, 2 . . . n).

The three integrals give therefore the principle of the conservation of

momentum.
Another important case is that in which the potential energy re-

mains unaltered by a rotation of the whole system about an axis fixed

in space. If
(f> l9 <f> 2 . . . are the azimuths of the particles of the system

about this axis, we introduce as co-ordinates the magnitudes

and certain others, depending only on the relative positions of the

particles with respect to one another and to the axis (for example,

cylindrical co-ordinates rk ,
zk or polar co-ordinates rk> k). Since the

Hamiltonian function does not depend on Oj, O a is a cyclic variable

(in this case in the true sense of the word) and the momentum p+ con-

jugate to it, is constant. Since

(*=2, 3 . . . n)

and

where rk is the distance from the axis, p^ has the value

3T 5T ,

ancf is therefore the angular momentum about the axis of sym-

metry.
If the massive particles move under the action of mutual forces

only, our considerations are valid for every fixed direction in space.

Since the quantityp^ is the component ofthe totalangularmomentum

in an arbitrary direction, and is always constant, the constancy of the

angular momentum follows.

It may happen that H depends only on the pk s, i.e.

. . .)
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In this case the canonical equations admit of immediate integration.
We have

Here the co
fc
's are constants characteristic of the system and a

fc , fik are

constants of integration. It will be seen from this that a mechanical

problem is solved as soon as we have found co-ordinates for which the

Hamiltonian function depends only on the canonically conjugated
momenta. The methods treated in this book will usually follow

this course. In general, such variables cannot be found by a simple

point transformation of the qk's into new co-ordinates, but rather the

totality (qk,pk) of the co-ordinates and momenta must be transformed

to new conjugated variables.

. We shall, however, first consider some more examples.

1. The Rotator. By this we understand a rigid body which can rotate about

an axis fixed in space. If ^ denotes the angle of rotation and A the moment
of inertia about the axis, then

and the momentum corresponding to < is

p=^A<f>.

For motion under no forces (U~0).

(1) H-T-1*

<f)
is therefore cyclic, and consequently

p= constant,

and

<=co=-, <j>wt\-p.
A.

The motion under no forces is therefore a uniform rotation about the axis.

2. The Symmetrical Top. If A^ denotes the moment of inertia about an axis

perpendicular to the axis of symmetry (z), A z the moment of inertia about the

axis of symmetry, and d^, dv, dz the components of the angular velocity in the

system of reference (x, y, z) rigidly fixed in the body, then

We introduce as co-ordinates the Eulerian angles 0, <f>,
defined as follows :

Rectangular axes x, y, z are taken fixed in space ;
is the angle between the

axis of symmetry (z) and the z-axis, < is the angle between the #-axis and

the nodal line (line of intersection between the (x, y) plane and the plane

(x, y))9 and is the angle between the a:-axis and nodal line. The components
of the angular velocity will then be
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da,= cos <-h^ sin 6 sin #,

(2) dy=0 sin </>$ sin 6 cos ^

and the kinetic energy

T+KAa.(0
2+02 sin2 6)+A n(j+t cos 0)

2
].

The momenta corresponding to 0, <f>,
are

0T .

p ==(Ax sin2
| A, cos2

cty

In order to make the physical significance of these momenta clear, we use (2)

to replace the 0, </>, $ by the components of d : then

sin <

2y=A3(da
sin

<f>
d z cos <^) sin 0+Azd2 cos 0,

in which (d^ cos ^+ d^ sin ^) clearly denotes the angular velocity about the

nodal line and (d^sin^ dycos^) the angular velocity about a perpendicular
direction in the (#, y) plane. We see then from the equations, that

p is the angular momentum about the nodal line,

p , is the angular momentum about the axis of symmetry,

p is the angular momentum about the direction z fixed in space.

For motion under no forces (U=0), a simple calculation gives

JV"*v*'efl

V1i V
sine yJ

+
2A;

In this expression ^ and
/>
do not appear; they are therefore cyclic, and

consequently

p= constant, p.= constant.

Since we have in addition the principle of the conservation of the total angular
momentum at our disposal the integration can be completely carried out. We
can take the hitherto arbitrary axis of z in the direction of the resultant angular
momentum. Since the nodal line is perpendicular to this, the angular
momentum about the nodal line will be

The canonical equations give firstly

0= constant,

and then

an
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which leads to

(P+-P+
cos

0)(JV~*V
cos 0H -

Since p. is essentially greater than or equal to p , , it follows that

jy-fy
cos 0=0,

as can also be seen immediately. The Hamiltoman function now takes the

simple form

i/t
and

(f>
therefore execute uniform rotations with the angular velocities

. 8H 1 1

The motion under no forces of the symmetrical top therefore consists of a

uniform rotation about the axis of symmetry, together with a uniform pre-

cession of this axis about the direction of the resultant angular momentum.

7. Canonical Transformations

As already mentioned, the integration of the equations of motion

can be effected by introducing new co-ordinates having a cyclic char-

acter if such can be found. We shall therefore quite generally seek

a transformation

Pk=Pk(qi<l2

such that the new variables again satisfy the canonical equations of

motion. For this to be the case it is necessary and sufficient that the

variation principle (6) of 5

fa**- ^~ x^'i p=stationary value
k J

shall transform into

(\ 2iP*#*~"~-^(?iPi |d=stationary
value.

This will be the case if, and only if, the difference of the integrands is

the complete derivative of a function of 2f of the old and new
at .

variables and of the time ; for, if V be regarded as a function of the qk

an.d qk, the values of V at the limits of integration will be fixed.

According now as we take V to be a function of qk, qk, t, or of qk, pk9 1,

or of qk, pk> t, or finally of pk, pk, t, we obtain four principal forms for

canonical transformations.
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We choose therefore an arbitrary function V(y1 , q^ . . . t). The

condition

is fulfilled, if the coefficients of qk and qk ,
and of terms independent of

these quantities, are the same on both sides, that is if

o

(1) P*=
#

H=H~
Since in general the y fc

's can be calculated from the equations of the

second line, and then the pk s can be calculated from the equations of

the first line as functions of the q k and p k> the system (1) replaces the

equations of transformation.

Again, in order to obtain a canonical transformation by means of

an arbitrary function V(g
r

1 , p . . . t), we write our condition in the

form :

Pi

or, what comes to the same thing :

2P*7*-H(?i> Pi =~2^*"H(y 1 , P! . . .

A; *

+|v(?1 , p, .

Comparison of the coefficients of q k and pk gives

These equations can also be regarded as equations of transformation.
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The third form we obtain by simply interchanging the old and new

variables, and replacing V by V, in order to obtain the simplest

possible correspondence between the four forms. We obtain :

o

?*=---

(3) J=-

Finally, in order to arrive at the fourth form, we write the condition

in the form :

*-Hfo, ^ . . . t)

k

or :

and obtain :

(4) fc^vto, ft . . . 0,

We can express all four forms at once in the following manner : In

the arbitrary function V(a? 1? x l9 x2 ,
x2 . . . t) let xk be one of the

variables qk and pk ,
xk one of the variables q k> pk ;

then the equations

,

av
yk=t ,

fa*

dV
(5) y fc=T s-ioxk

give a canonical transformation. Here j/fc
is conjugated to xk and yk

to
fc ; the upper sign applies to the case where the differentiation is

taken with respect to a co-ordinate and the lower one to the case of
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differentiation with respect to a momentum. The function V we

shall call the generating function, or shortly, the generator, of the

canonical transformation.

Further, it must be emphasised that the canonical property of a

transformation depends in no way on the special mechanical pro-

blem ;
if a transformation is canonical, it remains so for every form

of the function H. We now give some transformations which we

shall need later :

The function

leads to the identical transformation

The function

gives, after solving (2) for pk and qk9 the transformation

/
6)

21=71 Pl=PlP2
q2=<J2:fqi P2=P2

and the function

V =qii>i

leads to

A transformation for three pairs of variables is provided by

V=9&i+ViP*+9iP*+9&*+9&*+W*

namely

?1='/1 Jl=Pl+P2+P3

In all of these examples the co-ordinates and the momenta are kept

separate in the transformation. The general necessary and sufficient

condition for this is clearly, that V shall be linear in the q's and p's :

i,k

This function gives

(9)

*
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If the constants j8rf
and yt are zero we have a transformation which

transforms the qk's and pk & linearly and homogeneously into the

qk and pk,
viz. :

k M I

The necessary and sufficient condition that the qk s shall transform

among themselves is the linearity of V in the p^'s. In fact

provides the transformation :

_
do)

p*~

?*=/*(?! ?2 '
)

Linearity of V in the # fc
's gives, on the other hand, a transformation

of the momenta between themselves
;

Pa
Ar

leads to

J>*=/*(pi, Pa )

(11) - --

Tt appears if the variables of the one kind transform among them-

selves, the new variables of the second kind will be linear functions

of the old variables of the second kind, the coefficients of which will

be determined functions of the variables of the first kind, and the

free terms arbitrary functions of the variables of the first kind.

Transformations of the co-ordinates among themselves which are

frequently employed are those which transform rectangular co-

ordinates into cylindrical or polar co-ordinates, and also those which

correspond to rotations of the co-ordinate system.
The function

V^^r cos </>+pyr sin <+p/
transforms rectangular co-ordinates into cylindrical co-ordinates.

It gives

x r cos
<f> pr px cos <j>+pv sin <f>

(12) y=r sin
<f> p^

= pxr sin
<f>+pvr cos

<{>

Z=Z P;=PZ
.

The expression

p*
2
+Pt,

2

then becomes
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In transforming to spatial polar co-ordinates we take

V=pxr cos
<f>

sin 0+pyr sin
<f>

sin Q+pf cos 6.

This function leads to the transformation

x=rcoa <sin 8

y=rsin ^sin

(13)
Prpx cos ^ sin 0+y,, sin ^ sin 0+2^ cos 6

p^=^pxr sin < sin 6+jv cos < sin

pe=pxr cos ^ cos 0+pvr sin ^ sin 0pt
r sin

and transforms the expression

into

2 I M 2 I

P

A rotation of the rectangular co-ordinate system (x, y, z) involves

a linear transformation of the co-ordinates with constant coefficients.

The momenta transform then contravariantly. In this case, where

the coefficients aik defining the rotation fulfil the conditions

<<=*)

(+*)
the contravariant transformation is equivalent to the original one.

The momenta transform like the co-ordinates
;
we have

(14)
y^==a

9
z

and

We give two further transformations, for which V depends on qk and

qk . The function

V=M*
k

gives, by (1),

?*=-?*
ft=ft-

It therefore interchanges co-ordinates and momenta.

A transformation frequently employed is given by
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it leads to

(15)
y=V2p cos q

and transforms the expression q*+p
2 into 2p. The somewhat more

general function

m
(16) V= ~o>j

a
cotg

2i

gives

(16')
*

p=V'2nia)p cos q

and transforms

mco2

2

2

into co/J.

We shall illustrate now, by means of an example, how the canonical

substitutions can be used to integrate the equations of motion.

Linear Harmonic Oscdlalor. In this case

where q denotes the displacement, m the mass, and # the elastic constant.

Introducing tho momentum

p=mq
and putting

-.m
we get

-S^T^
The transformation last mentioned (16) applies then to this case. We call the

new variables
</>
and a and write :

(18)
</

j>
-V 2meoa cos ^.

The Hamiltonian function then becomes

H=wa;
and the equations of motion give
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a=constant

The displacement q will therefore be given by

sin (cot+ ft),
nuo

The canonical transformations are characterised by the fact that

they leave invariant the form of the equations of motion, or the sta-

tionary character of the integral [(6) of 5] expressing Hamilton's

principle. This raises the question whether there are still other

invariants in the case of canonical transformations. This is in fact

the case, and we shall give here a series of integral invariants intro-

duced by PoincarS.1

We can show that the integral

(19)

taken over an arbitrary two-dimensional manifold of the 2/-dimen-
sional (p, q) space, is such an invariant. If we represent the two-

dimensional manifold by taking pk and qk as functions of two para-

meters u and v, then

~du ~du
7 7
dudv.

dv dv

We prove the invariant character of J by showing that

du du

~dv !)v

provided that pk and qk are derived from qk) pk by a canonical trans-

formation. We write the transformation in the form (2)

2*=
av(gl ,

1 H. Poincar6, Mtthode* nouvelles de la mtcanique clleste, vol. iii, ch. xxii-xxiv

(Paris, 1899) ; proof of the invariance by E. Brody, Zeitechr. f. Physik, vol. vi,

p. 224, 1921.
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and replace qk, pk by qky pk with the help of the first equation ; then

Z
k

du du

~dv ~dv

-2
G v wpt vqk

~dqkdp t

'

Hu Hu

dv dv

du du

dp t dqk

~dv ~dv

Interchanging the indices k, i, this becomes

dpk dqt

~du du

&Pk &h
dv dv

and we now transform qk , pk into qk , pk by means of the second equa-
tion of transformation ; the integrand becomes equal to

Z
k

T - - 3q,

<Zjfi<n,fin r

'

du =Zdu

&Pk ^ v-v <W
dv ~dpkdqi' dv

proving the invariance of the integral (19).

The invariance of the integral

du du

dv dv

in which every combination of two indices occurs in the integrand,

may be proved in a precisely similar way. The same holds true for

and so on. The last integral of the series is

J/H" -

Jtfp< dpfei . . . dqf.

The volume in the phase space is consequently invariant with respect

to a canonical transformation.

8. The Hamilton-Jacob! Differential Equation

The idea underlying the method of integration which is so par-

ticularly suited to the problems of atomic mechanics (just as it is to

those of celestial mechanics) will be clear from the example of the
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oscillator given in 7. Although it appears very awkward in this

case, yet, on the other hand, it is powerful enough to lead to the

required end even for some quite complicated (particularly periodic)

motions. We shall now give a general formulation for the case in

which the Hamiltonian function does not contain the time explicitly :

We endeavour to transform the variables qkt pk , by means of a

canonical transformation, into new variables
</>k,

ak in such a way
that the Hamiltonian function depends only on the quantities a

fc ,

which correspond to the momenta. For this purpose the most suit-

able form of the canonical transformations is (2), 7. We seek there-

fore to determine a function

such that, by means of the transformation

a

jP*=p-S(gift . . . at, a, . . .)

(1)
**

<*= S(gri>?2 . . . C4, aa . .
.)

cak

H is transformed into a function

depending only on the ak s. The <
fc
's are then cyclic variables and

the equations of motion lead at once to the solution

a^constant

(2) , aw

The determination of the function S can be made to depend on the

solution of a partial differential equation of the first order. A par-
ticular case of some importance is given by takingW equal to 04 ;

OQ
let each pk inH be replaced by the corresponding , then S has to

a?*

satisfy the condition

/ox
(3)

This equation is known as the Hamilton-Jacobi differential equation.
The problem is now to find a complete solution, i.e. a solution which
involves ax and/I other constants of integration a2 ,

a3 . . . a/,

apart from the purely additive constant in S. This function S

provides a transformation (1) of the kind desired ; at the same time
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the following special relations hold,

dW
>!
= =1

J ^2=^3= =Wf=().
C/djL

The solution of the equations of motion will then be given by the

solution of (1) in terms of qk and pk ,
if the substitutions

(4)

are made.

The problem of solving the system of 2/ ordinary differential equa-
tions of the first order, i.e. the canonical equations, is therefore equi-

valent to that of finding a complete solution of the partial differential

equation (3) (/being greater than 1). This is a special case of general

theorems on the relation between ordinary and partial differential

equations.

For many purposes it is more advantageous not to single out one of

the a's, as has just been done. A canonical transformation may be

carried out, in which the a
fc
's transform into a like number of new

variables, which we shall also call 04 . . . a/, in such a way that the

</)k s do not enter into the relations between the old and new a
fc
's.

ax is transformed into

W(a 1} a 2 . . . a,).

According to a theorem proved in 7 (equation (11)), new variables

(f>k can be introduced, which are conjugated with the ak s and are

linear functions of the old
(f>k s with coefficients depending only on the

constants ak . Thus the new
</)k s are likewise linear functions of the

time and the equations of motion hold in the form (2).

The function S may be regarded as a solution of the differential

equation

depending on/ constants 04 . . . a/, between which andW a relation

W=WK . . . a
f)

exists. By (5) the transformation (1) transforms the function H
into the function W(ax . . .

a^),
and we have here also

aw
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An important property of the function S can be derived from (1),

namely, that for a path defined by fixed values of the a
fc
's

i* ^ aS
(io= > - e

k 9k

S is therefore the line integral

(6) S

taken along the path, where Q denotes a fixed and Q a moving

point of the path.

In the case of classical mechanics, and for a system of co-ordinates

at rest, this integral has a simple significance. For in this case we
have (see (8), 5)

k

and thus

(7)

In the case of the theory of relativity, if we take a single particle,

2T must be replaced by

It will be seen that in both cases S is a function continuously in-

creasing with the time, it is called the Principal Function of the

system.
We will now consider the simplest case, namely, that of one degree

of freedom. Then the differential equation (5) becomes an ordinary
one

Solving for p as a function of q and W, and integrating with respect
to q, since

as
y=

%-
we find

This can also be regarded as a special case of the general formula (6).

The function S determined in this way, which contains no constants
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apart from W, provides the general solution of the equations of

motion ; we have

which, on solution, gives 9 as a function of the time with the con-

stants of integration W and t .

For co-ordinate systems at rest T has the form

where
//,

denotes mass, moment of inertia, or some such quantity.

We have then

so the solution for p in terms of q and W is

(8) P

and

-*.- /~tf-f=.V 2J fcV/W-U(fl
(9) I

'

Example 1 . Particle falling freely or projected vertically. Here g denotes the

height of the moving body and
/LI
the mass. The potential energy is

where g is the constant of gravitational acceleration. Then we have

W
where g is taken equal to ; q obviously denotes the maximum height

attained, and t the instant at which it is attained. On solving for q we obtain

the well-known formula

Example 2. The Pendulum. Here q denotes the angular displacement and

/*=A the moment of inertia of the pendulum. The potential energy, reckoned
from g=7r/2 as zero, is

U= Dcosg.
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We find

(10) p= V2AVW-hD cos q,

-j D cos q
2 \/W |D- 20 sin2

and if we put

2'

then

,o
_UA r <*?

2 -DJo / .
a <y

A/ sin 2 sin 2-Sm
2

8m
2

The solution of this equation, which involves an elliptic integral, gives q as

a function periodic in time, and oscillatiag between -\-a and a. For suffi-

ciently small values of a we can write

and obtain the solution in a simple form. We have

Clearly all problems for which every co-ordinate, with the excep-

tion of one, is cyclic, reduce to the case of one degree of freedom. Let

H=H(y 1,y 1,y a . . .pf),

the solution will then be represented by

p 2=a 2 . . . pf=af

and

S=J>i (?i, W, a 2 . . . af)dq l9

where pt is found by solving

(11)

Therefore

, o, . . .

W, o, . . . a/)d?1 (t=2, 3 . .
./).

Example 3. Projectile Motion. Let gx=2 be the vertical co-ordinate,

reckoned positively upwards, and q*=x, qz y the horizontal co-ordinates, then
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and

W=K

Since x and y are cyclic variables, we put

2>a5=2
and obtain

p.= [2m(W- m</z)
- a2

2-

f*
""k _ /

2
/

/~^ ==

J, [2m(W-^)-a2
2-a3^

=
""^

being given by
2wW- a2

2 a3
2=

It follows from this that

The two other equations of motion follow most simply from

mx=px
= aa, my=py

= as .

We find

Elimination of t from the three equations of motion gives the equations of

the path, which is, of course, a parabola :

These results could also have been found from the second of equations (11'),

without making use of relations involving the time.

Example 4. Heavy Symmetrical Top. In 6 we found for the kinetic energy

and now, in addition to this, let there be the potential energy

U=Dcos0,
so that

Since
<f>
and ^ are oych'c variables, we have
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(12)

and

In the equation for t we put cos 0= M, and obtain

(13,
' frf<t

where

this is a cubic in u, so the solution of (13) involves elliptic integrals.

The Eulerian angles <f>
and may be expressed by similar elliptic integrals. If,

for example, we solve the equations (3), 6, for $ and ^, we obtain, taking (12)

into account,

/I 1 \ <V (h c>os

^A z AXJ i

- (Z3 (JL2 COS

Ax sin2

and

(14)

The evaluation the integral type (13) gives t/=iios as a periodic function

of the time. It oscillates backwards and forwards between two zero points

of F, which enclose an interval in which F is positive. If a2 is not precisely

equal to a3 , we have

and

A

both negative. If a motion is to be possible at all it follows that, somewhere in

the interval (1, +1), F must not be

negative ; it has then two zero points u

and wa which may coincide. If the zero

points are different, it means that the

point of intersection of the axis of the top
with a sphere, described about the centre

of the top, oscillates backwards and for-

wards between two parallel circles. It

describes a curve shown in fig. 1. In the

case of the double root our equations (13)

and (14) fail, but the motion can be easily

calculated in an elementary manner : is then a constant, and we have

the case of a regular precession.

FIG. 1.
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A general rule for the rigorous solution of the Hamilton-Jacobi

differential equation (5) cannot be given. In many cases a solution

is obtained on the supposition that S can be represented as the sum
of/functions, each of which depends on only one of the co-ordinates

q (and, of course, on the integration constants a 1 . . . a/) :

(15) 8=8^0 +...+SX?,).

The partial differential equation (5) then resolves into / ordinary

differential equations of the form

or, if we solve for -,
dqk

The differential equation (5) is said in this case to be soluble by

separation of the variables, or, for short, to be separable.

The case dealt with above, where all co-ordinates with the excep-
tion of one (y t )

are cyclic, can be regarded as a special case of this.

We make the hypothesis

and the differential equation becomes

/ as ss\

"("*;*)-
which agrees exactly with (11).



SECOND CHAPTER

PERIODIC AND MULTIPLY PERIODIC MOTIONS

9. Periodic Motions with One Degree of Freedom

WE have seen that, in the case of systems of one degree of freedom,

new variables <, a can be introduced in place of the variables q, p,

such that a is constant and
<f>

is a linear function of the time. The

variables
</>

and a are not, however, determined uniquely in this

way ;
we can in fact replace a by an arbitrary function of a, whilst

</)
is multiplied by a factor dependent on a.

For periodic motions it is an advantage to make a perfectly definite

choice of
<f>
and a. Now there are two kinds of periodicity. Either

different values of q correspond to different positions of the system
and q and p are periodic functions of the time, and also of the

variable ^ which is linearly connected with the time, in which case

there is a quantity o> such that

for all values of q ;
or else the configuration of the system is the

same for any two values of q differing by a constant quantity,

which we shall take to be 2?r. This increase in q of amount 2?r

always takes place during the same time, and then

) =q((/>) +27T.

In the first case we speak of libration, in the second of rotation.

Examples of these are the oscillating pendulum and the rotating

pendulum respectively (see below).

In both cases we shall choose ^ in a particular way, namely, in such

a way that it increases by 1 during one period of the motion, in which

case we shall denote it by w. Let the corresponding conjugated
variable be J. We call w an angle variable and J an action variable.

If we consider S to be a function of q and J, then

w=



46 THE MECHANICS OF THE ATOM

(cf. (1), 8, remembering that w and J are particular examples of

the quantities there written < and a), and the differential quotient

of w along the path is

That the period of w shall be 1 therefore implies that

a fas

where the symbol $ denotes that the integration is to be extended

over one period, i.e. in the case of libration, over one back and forward

motion of q, and in the case of a rotation, over a path of length 27r.

We can clearly satisfy this requirement by putting

(i)

or, in other words, by making J equal to the increase of S during one

period.
1

The variables w, J may therefore be introduced in the following

way. If H is given as a function of some canonical variables q, p, the

action function

S=S(y, a)

is determined by integration of the Hamilton-Jacobi equation, and

the integral

J=(T) dq
J fy

is calculated as a function of a or W. J is then introduced into S in

place of a or W.

By means of the transformation

P=

=sJ + constant would also satisfy the condition. The general transformation

(</>, a)->(w, J)

which satisfies the periodicity conditions postulated contains in fact another arbi-

trary constant in addition to the phases constant for w. Its generator is

The method for determining J given above is equivalent to putting q =0 ; it is

particularly usefu] in the quantum theory.
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p and q will become periodic functions of w with the period 1, and

H will be a functionW of J alone. From the canonical equations it

follows that for any one possible motion of the system

J=constant

and

.

(3)

W

W

Since we have chosen w so that it increases by 1 during each period

of the motion, it follows that W is a function which increases con-

tinuously with J
;

v must be a positive number, it is equal to the

number of periods in unit time, or the frequency of the motion.

If the variable
<f> conjugate to a is already known, J can be found

from the equation

The equations of transformation are then

OJ

A consequence of the above determination of J as the increase in S

during one period, is that the function

(4) S*=S-wJ

is a periodic function of w with the period 1. Conversely this require-

ment may also be used for the unique determination of the magnitude

J, which is fixed except for an additive constant by $dw=l, in which

case equation (1) is obtained. In place of S the function S* can be re-

garded as the generator of the canonical transformation which trans-

forms qand p into wand J . Comparing the transformation equations

(2) with equations (2 )of 7, it will be seen that S satisfies the equation

9

whence

and this implies that S* is the generator of the transformation

8

J



48 THE MECHANICS OF THE ATOM

The calculation of the integral J necessitates study of the connec-

tion between q and p as given by the equation

(6) HfopHW.
Let this relation be represented by a family of curves with the para-

meterW in the (p, q) plane. The cases of libration and rotation are

then represented by two typical figures (figs. 2 and 3).

FIG. 2.

In the case of libration a closed branch of the curve (6) must exist,

and J denotes the enclosed area, which, by (19), 7, is a canonical

invariant.

For rotation, p must be a periodic function of q with period 2?r, and

J denotes the area between the curve, the #-axis, and two ordinates

at a distance 2?r apart.

For the purpose of illustration we shall deal with the case of

classical mechanics on the assumption of a co-ordinate system at rest.

By (8), 8,

In order that libration may occur, the expression under the square

root must have two zeros, q' and q" between which it is positive ; then

p vanishes only at the limits of the interval (q' 9 q"). In order that a

closed loop may be formed from the two branches of the curv$ (6), it

dp
is further necessary that -=- shall be infinite at q' and y". Now

dU
the condition is therefore fulfilled, provided is not at the same

dq

time zero, i.e. provided g', q" are simple roots of the expression under

the root sign. In this case the resulting curve, which is symmetrical
about the q axis, will be traversed completely, and always in the same

sense. Then, by (8), 5,
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and thus pdq is always positive ; therefore on the outward journey

(dq>0) the upper branch (p>0) will be traversed, and in the return

journey (dq<Q) the lower branch (p<Q)
will be followed. The co-ordinate q tra-

verses the whole region between the zero

points q' and q" ;
these zero points form

the limits of libration.

If W be varied, the corresponding
curves lie within one another, without

intersecting. If W be decreased, the

zero points move towards one another
Fia * 4>

and converge to a point, provided no new zero points occur be-

tween them. This point we call the libration centre ; at it

It corresponds to a state of stable equilibrium of the system, since the

movement resulting from slight alteration of the initial conditions re-

mains in its vicinity. If new zero points occur between q' and q", they
coincide at their first appearance as W is decreased, and here too

"-0.
dq

In this case the state of equilibrium is unstable, since, for a small

variation of W, the motion does not remain in the immediate vicinity

of the equilibrium position.

If W be increased it may happen that at q' or q" the derivative

d\J
vanishes, in which case we again have a condition of unstable

dq

equilibrium. For such values of W it may also happen that the

motioi? approaches the state of unstable equilibrium asymptotically
with the time. The motion is then said to be one of limitation.

In order that rotational motion may occur, U must first of all be

periodic in q, and we assume as period 2?r ; further, the quantity
under the root sign must always be positive.

In order to illustrate these ideas we consider the pendulum, for

which all three possibilities rotation, libration, and limitation

occur. We have (see (10), 8)

cos q D>0 ;

the curves (6) have therefore the form shown in fig. 5.

For
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the curves contract on the libration centre =0. For

-D<W<D
we have libration between the limits

For
j*=-coB-

1
(--D/W).

W>D,
on the other hand, we have rotation, the pendulum rotating always
in the same direction. In the limiting case

it approaches asymptotically the position 377.

71

FIG. 5.

In this case the integral

(7) J=(()V2A\/W+D cos qdq

for the libration motion is an elliptic integral. Only in the case when
the libration limits lie close together (on the two sides of the libration

centre) can it be approximated to by a simple integral. The calcula-

tion then corresponds to that for the linear harmonic oscillator, to

which we now turn.

Example. Linear Harmonic Oscillator. In 7 we have already found the

variables
</>
and a, and according to (18), 7, q has the period c5=27i in

</>.
The

variables w and J are introduced in accordance with the formulae.

and

ad</)
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where

The motion will now be represented by

q= -
( )

sin 2nw
2n \mv/

p (2mvJ)* cos 2nw.

The energy becomes

from which the relation

is at once evident.

In order to show how the change to angle and action variables can be made
without a knowledge of < and a, we shall once again carry out the calculations

for the oscillator, starting out from

H=.+?y.2m 2

If we put this expression equal to W, then

where, for shortness, we write

2W_ __. fi

MO)2

From this it will be seen that the libration limits are situated at q=+ and

q a . We calculate the integral

by introducing the auxiliary variable 0, by means of the equation

q=a sin <

</> goes frern to 2n during one period of the motion. We obtain

J=^f%osW=2
-?W

(*> Jo o>

and, consequently, the energy or the Hamiltonian function is given by

(8) W=H=vJ,
where we have put

a)2nv.

To express the co-ordinate q in terms of the new variables w, J, and hence in

terms of the time, we do not need to calculate S itself. We have

in which p is to be considered as a function of q and J :

p= (2mvJ
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We obtain

mvdq I . _1
/2jr2vm\*

or

where

We then have for ^

( 10) #

For the pendulum with small amplitude the corresponding formulae are :

10. The Adiabatic Invariance of the Action Variables and

the Quantum Conditions for One Degree of Freedom

Now that we have considered in detail the mechanics of periodic

systems with one degree of freedom we can pass on to the question

how, and how far, the mechanical principles may be applied to the

mechanics of the atom, the chief characteristic of which is the

existence of discrete stationary states.

We have a typical example of this application in Planck's treat-

ment of the simple linear oscillator (see 1). The stationary states

were defined there by the condition that the energy should have only
the discrete values

(1) W=n.hv (n=fi y 1, 2 . .
.)

The question now occurs whether it is possible to deal in a similar

way with the general case of periodic systems of one degree of

freedom.

In the development of the mechanics of the atom the method of

discovery has been to retain the classical mechanics as far as possible.

Planck's theory of the oscillator, for example, is based on the view

that the motion of the vibrating particle takes place entirely in

accordance with the classical principles. Not all motions, however,

with arbitrary initial conditions, i.e. values of the energy, are equally

permissible ; certain motions, characterised by the energy values (1),

occupy a preferential position in the interaction with radiation, on

account of a certain inherent
"
stability

"
;

these motions con-

stitute the
"
stationary states."

The endeavour to retain the classical mechanics as far as possible
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having proved to be a fertile method, we take as our first require-

ment that the stationary states of an atomic system shall be cal-

culated, as far as possible, in accordance with the laws of classical

mechanics, but the classical theory of radiation is disregarded. For

this requirement to be fulfilled it is essential that the motion shall

be of such a nature that the term
"
state

"
is applicable to it. This

would not be the case, for example, if the path went off to infinity or

if it approached a limiting curve asymptotically. In the case of

periodic motions, however, the system may well be said to be in a

definite state. We shall see later that there is still a further class

of motions, the so-called multiply periodic systems, to which the

same applies. On the other hand, the development of the quantum

theory has shown that these probably exhaust the types of motion

for which classical mechanics gives a valid description of the station-

ary states ;
we shall restrict ourselves in this book essentially to this

domain.

The next question concerns the manner in which the stationary

motions are to be selected from the continuous manifold of those

mechanically possible motions. We shall first try to give an answer

to this in the case of periodic systems with one degree of freedom.

At first sight we might be inclined to apply to the general case the

formula (1) established for the oscillator. Since, in general, v is a

function of W, a transcendental equation would have to be solved to

determine W. This method of procedure must, however, be rejected ;

it leads in certain instances to results which are in contradiction

with observation (e.g. in the case of diatomic molecules, the atoms

of which are coupled non-harmonically with one another) and, further,

it cannot be sustained theoretically.

The quantum conditions by means of which the stationary orbits

are selected can be expressed in the form that a certain mechanically
defined magnitude is an integral multiple of Planck's constant h. In

the case of the oscillator this magnitude is W/i/ ; the question is, what

is to take the place of this quantity in the case of other systems ?

We now examine the conditions to be satisfied by a magnitude in

order that it may be
"
quantised

' '

in this manner. In the first place
it must be uniquely determined and independent of the co-ordinate

system. This, however, would do but little to narrow the choice, and,

if nothing more was known, the results of a comparison of the theory
with observation would be our sole guide. In this connection Ehren-

fest has, however, done much for the development of the quantum

theory by advancing a postulate which makes possible a purely
theoretical determination of the quantum magnitudes.
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The novelty of Ehrenfest's idea lies in regarding the atoms not as

isolated systems, but as subject to external influences. We have pos-

tulated above that classical mechanics shall be valid for isolated sys-

tems in the stationary states ; following Ehrenfest, we now require

that classical mechanics shall also be retained as far as possible in the

presence of external influences.

We must now investigate to what extent this is possible without

coming into conflict with the principles of the quantum theory.

According to these the magnitude to be quantised can change only

by integral multiples of h. If, therefore, an external influence is not

sufficient to cause an alteration of magnitude h, the quantum magni-

tude must remain absolutely unaltered.

It is first necessary to find the conditions which determine whether

the external influence is capable of causing such an alteration (known

as a quantum transition or jump) or not. It is known from experi-

ence that quantum transitions can be caused by light and by mole-

cular impacts. In these cases we have to deal with influences which

vary very rapidly. If we consider, on the other hand, actions which

change very slowly slowly, that is to say, in comparison with the

processes occurring within atomic systems- e.g. the switching on of

electric or magnetic fields, experience teaches us that in this case no

quantum transitions are excited ;
neither emission of light nor other

processes associated with quantum transitions are observed in such

cases.

The quantum transitions certainly take place in a non-mechanical

manner. The maintenance of the classical mechanics, required by
Ehrenfest in the case of external influences, is then possible only if no

quantum transitions are excited by these influences, i.e. only in the

case of processes which vary very slowly.

Ehrenfest calls this postulate, that, in the limiting case of infinitely

slow changes, the principles of classical mechanics remain valid, the

adiabatic hypothesis, by analogy with the terminology of thermo-

dynamics
*

;
Bohr speaks of the principle of mechanical transform-

ability.

This postulate severely restricts the arbitrariness in the choice of

the magnitude to be quantised. For now only those quantities are

to be taken into account which, according to the laws of classical

mechanics, remain invariant for slow variations of external influ-

ences ; following Ehrenfest, we name them "
adiabatic invariants."

1 Proc. Kon. Akad. Amsterdam, vol. xvi, p. 591, 1914, and Ann. d. i'hystk, vol. li,

p. 327, 1916. Ehrenfest found his
"
adiabatic hypothesis

"
in an altogether different

way, namely, by an examination of the statistical foundations of Planck's radiation

formula.
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In order to make clear the conception of adiabatic invariance, we
consider the example of a simple pendulum consisting of a bob of

mass m on a thread whose length I is slowly decreased by drawing
the thread up through the point of suspension. This shortening
causes an alteration of the energy W and the frequency v of the

pendulum ; we can show, however, that for small oscillations the

magnitude W/v remains invariant.

The force which keeps the thread of the pendulum taut consists of a

gravity component mg cos
</>,

and the centrifugal force ml</>*, the

angular displacement being <. The work done then during a shorten-

ing of the thread is

A= $mg cos <l>dl $ml(J>
2dL

If this shortening occurs so that its progress in time has no relation to

the period of oscillation, and sufficiently slowly for us to be able to

ascribe an amplitude to each single period, we can write

dA= mg cos <fxll
v

where the bar denotes an average taken over one period. For small

oscillations we can write

cos<=-

If this is substituted, rfA resolves into an expression mgdl, which

represents the work done in raising the position of equilibrium of

the bob of the pendulum, and a second expression

which denotes the energy communicated to the oscillation . The mean
values of the kinetic and potential energy of the pendulum are the

same, and are thus equal to half the total energy W :

W m T" m
T-2^-2^

1
'

Substituting, we have

i

Since now the frequency v is proportional to , and therefore

dv dl
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it follows that

This differential equation expresses the way in which the energy of

oscillation is connected with the frequency for an adiabatic shorten-

ing, and it follows by integration that

=constant
v

as asserted.

A similar argument applies when v is slowly varied by some other

external influence. Since the harmonic oscillator is mathematically

equivalent to a pendulum with an infinitely small amplitude of oscilla-

tion, W/F is constant in that case also
;
Planck's quantum condition

(1) is consequently in agreement with the adiabatic hypothesis. It

can be shown, on the other hand, that for other periodic systems of

one degree of freedom W/v is not an adiabatic invariant.

We remember that, according to (8), 9, in the case of the harmonic

oscillator the magnitude W/v is also the action variable J. This

suggests

(2) 3=nh

as a general quantum condition for systems of one degree of freedom.

The quantity J fulfils the requirement of uniqueness, since it is inde-

pendent of the co-ordinate system (on account of the invariance of

tfdpdq,
cf . 7), and we shall show now that it is an adiabatic invariant.

The general proof of the theorem of the adiabatic invariance (or,

as Bohr calls it, of the mechanical transformability) of the action

variables was carried out by Burgers
x and Krutkow,

2 who at the

same time treated the case of several degrees of freedom.3

We think of a mechanical system of one degree of freedom subject

to an external influence. This can be expressed by introducing in

the equation of motion, in addition to the variables, a parameter

a(t) depending on the time. We consider now an adiabatic variation

of the system to be such that it has firstly no relation to the period
of the undisturbed system, and secondly, that it takes place suffi-

ciently slowly for a to be regarded as indefinitely small. We assume

further that, for a certain range of values of a, the motion for con-

1 J. M. Burgers, Ann. d. Physik, vol. lii, p. 195, 1917.
2 S. Krutkow, Proc. Kon. Akad. Amsterdam, vol. xxi, p. 1112, comm. 1919.
8 Other proofs on more general assumptions have been given by M. v. Laue, Ann.

d. Physik, vol. Ixxvi, p. 619, 1926, and P. A. M. Dirac, Proc. Roy. Soc., vol. cvii,

p. 725, 1925.
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stant a is periodic, and that we can introduce angle and action vari-

ables w and J. We then have the theorem :

The action variable J is adiabatically invariant, provided the

frequency does not vanish.

The Hamiltonian function

tt(p, q, a(t))

is dependent on the time
;
the energy therefore is not constant,

but the canonical equations

.an .an
*
=
a/

P==
8q

are still valid.

We imagine now the canonical transformation carried out which

transforms, for constant a, the variables q, p into the angle and action

variables w, J. It is useful to write the transformation in the form

(c/. (1), 7, and (5), 9)

as*

_
~
dw

The function S* depends on the parameter a in addition to the vari-

ables q and w
;
S* is therefore dependent on the time and, by (1),

7, H becomes

.

dt

The transformed canonical equations are therefore

an a/as*\

j=_l
1

-^).
Since H depends on the action variables only

___^/as*\ _^>_/as*\

in which the differentiation with respect to t and a is to be carried

out for fixed values of q and w, and the differentiation with respect

to w for fixed J and a. The change of J in a time interval (t l9 2)

will be

a
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Since the variation of a is supposed slow and not connected with

the period of the system, a can be brought outside the integral sign.

We shall carry out the proof of the invariance of J by showing that

is of the order of magnitude d(t 2 t l ) ;
for from this it follows that

in the limit of infinitely slow variation (d->0) and for finite d(t2 t1),

the variation of J becomes zero.

Since (by 9) S* is a periodic function of w, the same is true of

;
this remains true if we introduce the variables w, J, a. The

da

integrand of (3) is therefore a Fourier series

without a constant term (this we signify by the dash on the summa-

tion sign). If we write w as a function of the time, the integral to be

estimated becomes :

The integrand is no longer exactly periodic in t as the AT's, v, and S

depend on #, which varies with t
; however, in the neighbourhood

of a certain instant of time, which we can take as =0, the A
T
's v9

and 8 can be expanded in powers of the alteration in a from its value

at =0 ; this alteration is small, as the expansion is not going to be

used for values of t greater than the periodic time T, and a is to be

taken so small that the variation of a in a period of the undisturbed

motion is small. Indicating differentiation with respect to a by a

dash, and values of the AT's, v, and S for the value of a at t==0 by
suffixes zero, the integrand then becomes

(4)

If we integrate this expression over a period of the first term, we
obtain expressions of the order of magnitude dT and dT2

. We now

imagine the expansion (4) carried out at the beginning of the interval

(t l9 12) and the integral taken over one period of the first term. We
then imagine a new expansion (4) carried out at the beginning of the

remaining interval and the integral taken once more over one period
of the first term. We continue this process until the interval (t^ t2)
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is all used up. The last integral will, in general, not be taken over

a full period ;
it has a finite magnitude even when t^t l is inde-

finitely great. It is seen that if T remains finite over the whole range
of integration, i.e. if v does not vanish, the whole integral will be of

the order of magnitude d(t2 tj).

We have proved by this the adiabatic invariance of J. On the

basis of this invariance, and the special result in the case of the

oscillator, we are led to the choice of J as the quantity to be quantised
in general. This assumption has been confirmed by the further

development of the quantum theory. We state it in the following

way :

Quantum Condition. In the stationary states of a periodic system
with one degree of freedom the action variable is an integral multiple
of h:

The energy steps, as functions of the quantum number n, are also

determined by this quantum condition.1

The experimental method of electron impact, mentioned in the

introduction, enables the energy levels of the atomic systems to be

determined in a purely empirical manner. Comparison of these

determinations with the theoretical values provides a test of the

foundations of the quantum theory as far as they have hitherto been

developed.
As mentioned in the introduction, the interaction of the atomic

systems with the radiation is governed by a further independent

quantum principle, Bohr's frequency condition,

which determines the frequencies of the emitted and absorbed light.

W(1) and W(2) denote here the energies of two stationary states and v

the frequency of the light, the emission or absorption of which is

coupled with the transition of the system from the state 1 to the state

2. In the case of emission (W(1)>W(2)
) our formula gives a positive i>,

in the case of absorption (W(1)<W(2)
)
a negative v.

A much more rigorous test of the quantum rules is made possible by

applying Bohr's frequency condition to the frequencies of spectral

lines.

1 This quantum condition was given first in geometrical form by M. Planck,

Vorlesungen iiber die Theorie der Wdrmestrahlung, first edition, 1906, 160. It is

to be found also in P. Debye, Vortrage uber kinetische Theorie der Materie und, der

(Wolfskehl Congress), p. 27, 1913.
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11. The Correspondence Principle for One Degree

of Freedom

The fundamental postulate of the stability of atoms referred to in

the introduction is satisfied by the two principles of atomic mechanics

given in 10. We now inquire to what extent they are in agreement
with the other fundamental postulate, that the classical theory shall

appear as a limiting case of the quantum theory.

Planck's constant h occurs as a characteristic magnitude in both

quantum principles, and is a measure of the separation of the quan-
tum states. Our requirement signifies that the quantum laws shall

tend into the classical ones as limits as A-^0
;
the discrete energy

steps then converge to the continuum of the classical theory. The

frequency condition requires special examination : we have to see

if the frequencies calculated by it agree in the limit with those to be

expected from the classical theory.

The radiation from a system of electrically charged particles with

charges ek at the points r
fc

is determined, according to the classical

theory, by the electric moment

If the energy radiated in the course of one period is small, the damp-
ing may for the present be neglected. For a system of one degree of

freedom, such as we consider here, the rectangular co-ordinates of the

charged particles will be periodic functions of

with the period 1. Since the same will hold for p, each component of

the electric moment may be developed in a Fourier series of the type

The CT
's are complex numbers ; since, however, the electric moment is

real, the CT's and C_T
's must be conjugate complex quantities.

On this basis the time variation of the electric moment can be con-

sidered as a superposition of harmonic oscillations with the frequency
TV ; the amplitudes of the corresponding partial oscillations of the

moment are given by the values of
|

CT
|

and their energies are pro-

portional to the values of
|

CT
|

2
. According to the classical theory

the r-th oscillation component would give rise to a radiation of

frequency
*

0W_dW
(1)

* =TV-T
-8J ~djTr_

1 Since T as well as i always occurs in the Fourier expansion, the sign of the

expression for the classical radiation frequency has no significance,
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We compare with this the quantum frequency
1

If the quantum number n decreases by r in the quantum transition

under consideration, then

AJ=J 2~J 1=(^ 2 n^h, rh,

so that we can write

~ AW
( ' "*W

If we proceed to the limit A->0, or AJ/r->0, then (2) and (1) become

identical.

For the case of a finite h we can state the relation between the two

frequencies (1) and (2) as follows :

The quantum theory replaces the classical differential coefficient by
a difference quotient. We do not proceed to the limit of infinitely

small variations of the independent variables, but stop at finite in-

tervals of magnitude h.

The transition between two neighbouring quantum states for which

r=l is associated with, or
"
corresponds

"
to, the classical funda-

mental vibration ;
a transition in which n changes by r corresponds

to the classical rth overtone VTV.
This relation between classical and quantum frequencies forms the

substance of Bohr's correspondence principle.

According to this correspondence the quantum frequency v is, in

general, different from the classical frequency TV. If, instead of pro-

ceeding to the limit #->0, we go to the limiting case of large quantum
numbers n, and consider only such changes of n as are small com-

pared with the value of n itself, then, on account of the monotonic

character 2
( 9) of the function W(J), the difference quotient will

very nearly coincide with the differential coefficient and we obtain

the approximately correct equation

v=^rv=(n l n 2)v, (n l large, n 1 w 2 small compared to n t ).

If n 1 n 2 is no longer small in comparison witt n l9 then the agree-

ment between the classical and quantum frequencies will not be so

good. For a given n t the correspondence between the frequencies in

the case of emission (n^>n^ has a limit, inasmuch as r=n l w2 can-

not be greater than nv
1 Positive v in the expression for the frequency given by the quantum theory

denotes emission, negative v absorption.
8 A function of one variable is said to be monotonic when its differential coeffi-

cient has the same sign for all relevant values of the independent variable.
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The two quantum principles hitherto given do not, however, pro-

vide a complete description of the radiation processes. A light wave

is characterised not only by a frequency, but also by intensity, phase,

and state of polarisation. The quantum theory is at present unable

to give exact information with regard to these features. Bohr has,

however, shown that it is possible, by extending the correspondence

principle from frequencies to amplitudes, to make at any rate ap-

proximate estimates regarding the intensity and polarisation.

In order that, in spite of the totally different mechanism of radia-

tion, quantum theory and classical theory may give, in the limit-

ing case of large quantum numbers (or in limit A->0), radiations

with the same distribution of intensity among the component

oscillations, it must be assumed that in this limiting case the Fourier

coefficients CT represent the amplitudes of the emission governed by
the quantum theory. Thus the values of C

T
must be related to the

probabilities of the transitions necessary in order that the energy

principle may remain valid. By considering the different components
of the electric moment p a determination of the polarisation proper-

ties can be made at the same time as that of the intensities.

The case CT=0 is of especial importance, for here in the classical

case there is no emission of the corresponding frequency, so the corre-

sponding quantum transition should not occur. Since, however, the

correspondence principle only gives a relation between radiation

phenomena on the classical and quantum theories the results de-

duced from it concerning the possibility of quantum transitions hold

only in those cases where the atomic system is interacting with radia-

tion. They need not hold for impacts between atomic systems.

On the basis of the correspondence principle we can deal effectively with the

difficulties which we have met with in the introduction
( 1, 2) in the case of the

resonator. The expression for the displacement q as a function of tho angle
variables is by (9), 9 :

J \*
sm xnw ;=(2

__
this is clearly a Fourier series with only the one term T= 1, according as we
take the positive or negative root. According to the correspondence principle,

therefore, the quantum number can, in the case of the resonator, change by 1

only, giving

v=v.

The correspondence principle leads then to the result that a resonator behaves

on the quantum theory, as far as the frequency of its radiation is concerned,

exactly as it would do according to the classical theory. In the case of other

atomic systems, however, we shall see that this is by no means the case.
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12. Application to the Rotator and to the Non-harmonic

Oscillator

]. THE ROTATOR. By (1), 6, the Hamiltonian function is

where p is the momentum conjugated to the angle of rotation 0, and

signifies angular momentum. In this case

J =^>pd(f>=

since the system assumes the same aspect each time < increases by
27T. The energy, as a function of the action variable, and then of

the quantum number m, becomes

(1) W=Hv '

and the angle variable is

where

This calculation can be applied to the motion of diatomic molecules

and concerns two classes of phenomena : the theory of the rotation

band spectra of polar molecules and the theory of the specific heats

of gases. The simplest model of a diatomic molecule is that known

as the dumb-bell model ;
the two atoms are regarded as massive par-

ticles at a fixed distance I apart, and it is assumed that the structure

rotates^ with moment of inertia A, about an axis perpendicular to the

line joining the atoms. A rigorous foundation for these assumptions

(i.e. the neglect of the rotation about the axis joining the atoms and

the assumption of a rigid separation) and their replacement by more

general assumptions will be given later.

(a) THEORY OF ROTATION BAND SPECTRA. We assume that the

molecule has an electric moment (e.g. we regard HC1 as a combina-

tion of the H+ and Cl~ ions), in which case it would, according to the

classical theory, radiate light of frequency

0J 47T2A

Overtones do not occur. If the particles have the charges e and e,
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the components of the electric moment p in the plane of the rotation

are :

P*=(a?a xl)=el cos 2irw

P=2 /i
=el sin

in which the two signs correspond to the two possible directions of

rotation. The expressions for the components of p in terms of w con-

tain therefore only one Fourier term each, r=I or T= 1.

We should expect that such a molecule, possessing an electric mo-

ment, would radiate according to the quantum theory ;
the quantum

frequencies will, however, differ from the classical ones. The energies

of the stationary states are given by (
1
)

. Since only one Fourier term

occurs, in the motion the quantum number can change by +1 or 1

only, and the Bohr frequency condition gives therefore for the emis-

sion (m+l)->m :

If this formula be compared with that for the classical frequency

it will be seen from the relation

1

2m

that the relative difference between the two frequencies will be the

smaller the greater the value of m.

Except for a small additive constant difference in the frequencies,

the classical theory and the quantum theory both lead to essentially

the same results in this case
;
each gives a system of equidistant lines

in the emission and absorption spectrum. This is the simplesfccase of

the empirical band formula first found by Deslandres. It is easy to

see that these lines are to be sought for in the infra-red. In the case of

HC1, for instance, the lightH atom of mass 1*65 X lO^24
gm. essentially

rotates about the much heavier 01 atom at a distance of the order of

magnitude of all molecular separations, say a Angstrom units or

a . 10"8 cm., a being of the order of 1. The moment of inertia will

then be

A=a2
. 1-65 X 10-40 gm. cm.2

,

the frequency of the first line

5X1011

v sec-i
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and the wave-length
f

A=-=0-06a2 cm.
v

Since a is of the order 1, we have to deal with lines on the farther side

of the optically attainable infra-red. These pure rotation bands have

been observed in the case of water vapour (for example). In the case

of a large number of gases, bands have been found which are due to

the combined action of the nuclear oscillations and rotation
; these

exhibit the same type of equidistant lines, but are situated in the

region of much shorter wave-lengths. We shall deal with the theory
of them further on ( 19, 20).

(b) HEATS OF ROTATION OF DIATOMIC GASES. The dumb-bell

molecular model leads also, as is well known, to the correct result

in the theory of specific heats at high temperatures. Three trans-

lational and two rotational degrees of freedom are ascribed to such

a model ; the rotation about the line joining the atoms is not

counted. According to the theorem of equipartition of energy,
which is deduced by applying statistical mechanics to classical

systems, the mean energy |AT is associated with every degree
of freedom without potential energy, and consequently the total

energy -|T would be associated with the five degrees of freedom

mentioned
; the molecular heat is therefore !>R. Now Eucken l has

shown experimentally that the molecular heat of hydrogen decreases

with decreasing temperature ; for T=40 abs. it reaches the value

|R and subsequently remains constant. Hydrogen changes then,

in a sense, from a diatomic to a monatomic gas ; its rotational

energy disappears with decreasing temperature. Ehrenfest 2 has

given the elementary theory of this phenomenon. The mean energy
of a rotator, which can exist only in the quantum states (1), is

w,=^r
2
m=i

where

If the values (1) be substituted for Wm we shall have

1 A Eucken, Sitzungsber. d. Prtusa. Akad. d. Ww., p. 141, 1912; see also K.
Scheel and W. Heuse, Ibid., p. 44, 1913 ; Ann. d. Phytiik, vol. xl, p. 473, 1913.

2 P. Ehrenfest, Verhandl d, Deutsch. Physical. Get., vol. xv, p. 451, 1913.

5
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m=0
where

*'

Ehrenfest calculates the heats of rotation by assuming for the mean

energy of a molecule twice the mean energy of one of our rotators,

because the molecule has two perpendicular axes about which it can

rotate. The heat of rotation per gram molecule is then

*-f
We examine the behaviour of this expression for low and high tem-

peratures.

For small values of T we have large a ;
thus er* is very small, and

the series for Z may therefore be broken off after the first two terms :

Z-l-Hr*
log 7=0-*,

consequently

c^RaV-*,
and this expression tends to zero with decreasing T (increasing cr).

For large values of T, o is small, and then the sum in the expression

for Z may be replaced by an integral

Z=J
e-*m\lm=-lj-

log Z= % log or+coristant,

consequently t

cr=R.

The heat of rotation gives rise therefore, with increasing tempera-

ture, to an increase of the total molecular heat from 211 to R.

Ehrenfest's theory can, of course, give only a rough approximation
to the actual state of affairs, since the two rotational degrees of

freedom are not independent of one another. A more rigorous in-

vestigation must take account of the motion of the molecules in

space.
1

2. THE NON-HARMONIC OSCILLATOR. We shall consider the case

of a linear oscillator of slightly non-harmonic character, i.e. with a

1 See the detailed treatment by F. Eeiche, Ann. d. Physik, vol. Iviii, p. 657, 1919,
or see C. G. Darwin and R. H. FoVler, Phil. Mag., vol. xliv, p. 472, 1922.
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system of one degree of freedom for which the Hamiltonian function

is given by

(3) H=
ri

+- to

where a is small.

Our first object will be to find the relation between the action vari-

able J and the energy \V in the form of an expansion in powers of a.

We have

where

We write this in the form

For small values of a, two roots, which we take as el and e 2 ,
lie in the

I~2W
neighbourhood of ib . /

-
-, and the motion takes place between

/V mo) 2

them
;
the third root, e

3 ,
is large compared to e

l?
e
2 ,
and has the

opposite sign from a (af(q) must be positive for values of q lying

between e^ and e2).
We write therefore

(5)

and obtain the following expansion for J :

y=*i^J.~3 l~Jn +...};

where

We transform these integrals by means of the substitution
(cf.

Appendix II)

(6)

If g oscillates from one the libration limits e to the other e2 , and
77

.
77

2
back, increases from ~ to +27r. We then find :
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e 2_e 2p2ff
/e _e \ 2/27r

"|

+ --- sin ^ cos2^+( -^T
-

)
sin2 iA cos

2^
2 J \ 2 1 J J

or, on inserting the values of the integrals,

e i)
a-*cia]

' J o-

To determine the roots e^ and e 2 we write q as a power series in a

and then find for what values of the coefficients the polynomial/ (q)

vanishes. We thus find

where

_5
2

To obtain the third root we find for what values of the coefficients in

the function/(g) vanishes. We thus find

If W . \
(8) es=-a+-a2+ . . . , a. . . , .

If we now introduce these expressions into the equations for J
,

and J 2 ,
we obtain, after a somewhat lengthy calculation,

W/ 15 W

If we further substitute the first approximation

W W(>T TW=-J=VoJ
for W within the brackets, we get finally
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.

It will thus be seen that the frequency v= - is not VQ , but, to this
uJ

degree of approximation,
15

In the case of radiation from an atomic system which may be repre-

sented approximately by a non-harmonic oscillator it becomes of

importance to determine which transitions between the energy steps

given by (9) are permissible according to the correspondence principle.

In order to find this, we calculate q as a function of the angle variable

w. The latter is given by

_aS rdp _ fm dWc dqw~w jan v 2^ rfjj

and thus, from the expansion (5), we have, to the order required,

/ m d\V r dq /

V *2ae3 dJ J V(e 1 q)(q e 2)\

__ /~~
m
~

(AV
/K

l " ^

V '2ae^ dJ\ "2c.

The integrals

.= f
t
= __l

J V^-qKq-
may also be calculated by means of the substitution (6), their values

being

If now we substitute the values (7) and (8) found above for e
l9 e2 ,

we get

a 1
...

]

If we now neglect the terms in a2
,
we can put

and obtain

(10) w=J-L+a /
2l/ J

cos;
27r V 2w 6m3
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It follows from (6) and (7) that, neglecting terms in a2
,

q=aq 1+q () smifj)

where sin
iff may be calculated from (10). To the same order we get

?o
2

q=qQ sin %TTW a---(3+*

and finally

(
1 1

)
(L
=^

in 2nw <ir (3+2

The deviation of the co-ordinate q from its value in the case of the

harmonic oscillator (# 0) is of the order a, whereas the energy
difference is of the order a2

. The mean value of the co-ordinate will

not be zero, but to our degree of approximation will be given by

w

Jn the case of the non-harmonic oscillator, therefore, the co-ordinate

oscillates about a mean position differing from the position of equi-

librium. The oscillation is not harmonic, for overtones occur, the

first of which has an amplitude of the order a.

On the basis of the correspondence principle, the appearance of

overtones in the motion of the system implies that quantum transi-

tions are possible for which the quantum number alters by more

than one unit. The probability of an alteration in the quantum
number of 2 is of the order a2

(i.e. the square of the amplitude of the

corresponding oscillation).

The fact that the mean value of the displacement does not vanish,

but increases in proportion to the energy, has been used by Boguslaw-
ski 1 in explaining the phenomena of pyroelectricity. He imagines
the (charged) atoms of a polar crystal bound non-harmonically in

equilibrium positions, so that with increasing temperature (i.e.

energy) a mean electric moment will arise. In his first calculation

Boguslawski took for the mean energy the classical value JfeT but later

introduced the quantum theoryby using for the mean energy Planck's

resonator formula ((5), 1).

1 S. Boguslawski, Physikal. Zeitschr., vol. xv, pp. 283, 569, 805, 1914. The problem
of the non-harmonic oscillator was first considered by Boguslawski, in an attempt to

explain pyroelectricity by means of the quantum theory. The phase integral is

actually a period of the elliptic function belonging to f(q) and may be represented

exactly by means of hypergeometric functions. In the physical application,

Boguslawski restricts himself to small values of a, and arrives at the same final

formula as that given in the text.
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The theory of the non-harmonic oscillator finds a further applica-

tion in the explanation of the increase in the specific heat of solid

bodies at high temperatures above Dulong and Petit's value,
1 and

also in the explanation of band spectra (see 20).

13. Multiply Periodic Functions

Before we can proceed to apply our results to systems of several

degrees of freedom we must introduce the conception of multiply

periodic functions, and examine some of their properties.

Definition 1.- A function F(x x . . . xf , y 1 . .
.)

is periodic in the

variables x . . . xf ,
with the period a> having the components

>!, 0> 2 . . . 0)f ,

if

(1) F^J+O)!, x2 +oj 2 . . . x/+a /)=F(a 1>
x2 . . . xf)

identically in xt . . . xf .

If x l9
x2 ... xf be considered as co-ordinates in/-dimensional space,

each period corresponds to a vector in this space.

If in (1) (x l9 x2 . . . xf)
be replaced by (XiS> l9

x2 & 2 . . . xf a)f),

and this operation be repeated indefinitely, the truth of the following

theorem will be found to hold.

Theorem 1. A function which has the period o> has also the

period TO), i.e. the period with the components TO^, To> 2 . . . TO)/,

where r is an arbitrary integer (positive or negative).
If the function F has the period a/, in addition to o>, it will be seen,

by replacing (x l9 x 2 . . . xf)
in (1) by (Xi+tii, x 2+& 2 . . . xf +a>/),

that the following also holds.

Theorem 2. The vectorial sum o>+o/ of two periods o> and a/, i.e.

the vector having the components

is likewise a period.

By combining the theorems 1 and 2 we have the general

Theorem 3. If a function has several periods

then every integral linear combination of these periods

1 M. Born and E. Brody, Zeitechr. /. Physik, vol. vi, p. 132, 1921 ; for detailed

list of literature, see M. Born, Atomtheorie des fcsten Znstandes, Leipzig, 1923,

p. 698.
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(2)
* k

is likewise a period.

Definition 2. Two points (Xj . . . #/) and (x,' . . . x/) are said to

be equivalent if the vector joining them is of the form Z T*^W '

A;

In order to eliminate trivial exceptional cases we add the con-

dition :

Condition. The function F shall possess no infinitely small

periods, i.e. none, for which the length of the representative vector is

smaller than any arbitrary number.

We shall consider now two periods o> and Ao>, represented by

parallel vectors, in which case A must be a rational number, other-

wise the period (r-fr'A) . & could, by a suitable choice of the in-

tegers r and r', be made arbitrarily small.1

If now q is the smallest denominator by means of which A may be

expressed in the form p/q, p and q being integers, then &lq is likewise

a period, for by a theorem in the theory of numbers we can always
find two integers r and r', so that

and so

We see now that we can express each period whose vector has a

certain direction as an integral multiple of a certain minimum one.

From this theorem may be deduced a generalisation which is

valid for all periods of a function F. In order to derive it we shall

suppose all the periods arranged in order according to the magnitude
of their vectors :

(3)
|

o>
|
<;

|

a>'
|

<L
|

o>" <L .

We select the first period of this series together with the next one

having a vector in another direction. These two periods, which we
now call a)W and a><

2
>, define a parallelogram mesh in the plane of

the corresponding vectors, with this property, that each vector

which joins two points of intersection of the net also represents a

period.

In this way we can account for all periods whose vectors lie in

this plane, for if there were a vector <, the end point of which did

not coincide with a mesh point (see fig. 6), then there would be a

mesh point at a distance less than
|

o>(2)

|

from that end point. If w

1 See Appendix I.
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were a period, then the vector represented by this separation would

likewise be a period ;
its magnitude would, however, be smaller than

|

oV2
)

|,
which is contrary to supposition.

To a>W and o><
2
> we now add the immediately succeeding period in

the series (3), whose vector does not lie in the plane defined by
and o><

2
), and call it dV3). .

These three periods deter- ^/ ^/ /

mine in this way a three-

dimensional lattice, pos-

sessing the property that /?;

each vector joining two #/^
lattice points corresponds /

to a period. In this way / / / >

all periods are accounted /
/ ~T

for, whose vectors lie /

in the three-dimensional

space defined by ait
1
), aV

2
), aV

3
). If we continue this procedure until

all the periods are exhausted, which must happen when the co-space

becomes /-dimensional, if not before, we shall have proved the

following theorem.

Theorem 4. For each periodic function V(x 1 .../, y l . .
.)

of

x1 . . . xf there is a system of periods co^, oV 2
)

. . . oW with the

property that every period a> of the function F can be expressed in

the form

k

The highest possible value of g, the number of the periods, is equal
to the number of variables/.

Definition 3. A system of periods, possessing the property men-
tioned in theorem 4, is called a fundamental period system.
We have represented all periods of F by means of a ^-dimensional

lattice. For this, of course, only the lattice points are essential, and
not the vectors joining them. If the system wW, &W . . . a>W were

replaced by another system, with the same number (g) of periods

giving the same points of intersection, the new system of periods
oV1

)', oV
2
)'. . . coW would be equally suitable for the representation
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of the periods of F. The coincidence of the lattice points in the two

systems is achieved if, and only if, the determinant of the rik s has the

value 1. This determinant represents the ratio of the cell volumes

of the two lattices. Thus we have :

Theorem 5. All fundamental period systems of a function are

connected by integral linear transformations with determinants 1.

In the following we only consider functions for which the number

of periods in the fundamental system is equal to the number/of the

variables in which the periodicity holds. We consider therefore only
functions of periodicity/.

In place of the co-ordinate system x t . . . xf , we introduce in our

/-dimensional space a new co-ordinate system^ . . . wf,
whose axes

are parallel to the vectors corresponding to a fundamental period

system for which these vectors form the units
;
then the function F,

expressed as a function of the w's, has the fundamental period system

(1, 0, ... 0)

(0, 1,0... 0)

(5) (0, 0, 1 ... 0)

(0, 0, ... 1).

In this case, F is said to have the
"
fundamental period 1." This

leads us then to

Theorem 6.- By means of a linear transformation of the variables

in which a function is periodic, it may be made to have the funda-

mental period 1.

We shall now see to what extent this co-ordinate system w l9 w 2 . . .

is still arbitrary. First it is clear that by means of a transformation

WzWz+ifj^w^Wz . . . wf , y lt?/ 2 . . .)

(6)

Wf^Wf+l/ljiWjWs . . . Wf , UHJz . . .),

in which each is periodic in all the wk s with the period 1 in each,

the periodic properties of V(xl . . . xf) y t . .
.)
will not be altered. The

lattice points of the w-co-ordinate system pass to the lattice points
of the w-co-ordinate system by means of a simple displacement.

Further, it is evident that the given transformation is the only one

for which this transference from one set of intersections to the other

is the result of a simple displacement. On passing, for example, from

a point in the w-space to an equivalent one, each wk increases by a

whole number. The wk must increase by the same whole number
when we carry out the similar transition in the w

fc-space. The differ-
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ences wk wk must therefore have the same value for all equivalent

points, i.e. they are periodic in the wk and in the wk .

Now there are still other transformations for which the correlation

of the lattice points with values of the wk s will be varied, but for which

lattice point will still coincide with lattice point. To each of the fun-

damental period systems in the xk ,
referred to in theorem 5, there

corresponds, for example, such a transformation
;
these are the integ-

ral homogeneous linear transformations with the determinant 1-

Let us suppose that the most general transformation, which trans-

forms the periodicity lattice into itself, be resolved into such a linear

one and also another transformation. This second transformation

must be of the form (6). The most general transformation is therefore

Theorem 7. All systems of variables, in which a function of

periodicity/ has the fundamental period 1
,
are connected by trans-

formations of the form (7), where the rik are whole numbers, the

system of which has the determinant 1 and the
t/jt

are periodic in

the wk with the period I.
1

The function F may be written very simply with the help of the

variables w l . . . wf . It may be expressed as a Fourier series

(8) V(w l . . . wf)= 2 Cv. r
e'
2n '(TlWl f T w

'' f '
T
f
w
f\

'.-v *>
TlT*'" f

1 This theorem may be proved analytically as follows : we seek a transformation

fc=4K^2 "jiVi ' ' ')

for which the periodicity of the function

Vfawi . . . w
f , yl . . .)

=FKwa . . . iv
ff $! . . .)

is preserved in the first / variables. If we put

4K+1, w>2 ">/ 2/i ) =wk',

then

F(w1V2
/

. . . w
f

'

9 yi . . .)=-#(#! + 1, w2 . . . wr yv . . .)

= y(wlt w^. . ,w
f1 y1 . . .)-=F(?/'1 w>2 . . . wr yl . . .).

This means, however, that wk
' and w

k
differ by a whole number :

4(^i + 1 wt ...wf9 yl .. .)=fk(u>i, 3>9

We likewise conclude that

4(^i i
+ l w

/f 2/i . . .)=-/fc(Wi,

This, however, is possible only iffk js Of the form :

4(u>i . . . w
f , fr . . .)=^rkl

where $k is periodic in the w with the period 1.
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which, for conciseness, we write

(8') F(w)

If the function F be multiplied by ?-^W
w) and integrated over a

unit cube of the w-space, we get

The coefficients of the Fourier expansion may therefore be obtained

in the form

(9) (\^(w)e~
>M^dw

from the function F.

If the function F(w) is real, CTl .

T/
and C- r

,
. . .

-
T/

are conjugate

complex quantities.

14. Separable Multiply Periodic Systems

Our next problem is to extend the results found for a system with

one degree of freedom to systems with several degrees of freedom.

In the case of absolutely general systems there is no object in

introducing angle and action variables, since these are associated

with the existence of periodic properties.

We consider first the simple case in which the Hamiltonian func-

tion of the system resolves into a sum of terms, each of which con-

tains only one pair of variables qk , pk :

(1) R=R l(q 1,p 1)+...+Rf(qf, Pf).

The Hamilton-Jacob! equation is solved by separation of the vari-

ables on putting

where the relation

Wl+ . .

holds between the W
fc

. It is seen that the motion corresponds com-

pletely with that of / independent systems, each of which has one

degree of freedom. We consider now the case where the variation

of each of the co-ordinates qk is periodic in time. The correct

generalisation of the earlier considerations is to define the action

variables by

to express the function S*. in terms of qk and J^, and to put

(2) .-S.
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Example : Spatial Oscittator. A massive particle is restrained by any set of

forces in a position of stable equilibrium (e.g. a light atom in a molecule other-

wise consisting of heavy, and therefore relatively immovable atoms). The

potential energy is then, for small displacement, a positive definite quadratic
function of the displacement components. The axes of the co-ordinate system
(x9 y, z) can always be chosen to lie along the principal axes of the ellipsoid

corresponding to this quadratic form. The Hamiltonian function is then

(3) H= (px 4V+P*2

)+J^2+~vy+>,2zi).

It has therefore the form of (1) above, so the motion may be considered as the

resultant of the vibrations of three linear oscillators along the co-ordinate axes.

We have then, by (9) and (JO),
(
.) :

(4)

sin 2nwz P z
=

where

The energy has the value

(5 ) W^JoH-VVl vz.] z .

The motion is of an altogether different type according to whether integral
linear relations

Txvx I Vv 1-V=
exist between the v or not. We assume first that such relations do not exist.

We can prove quite generally (see Appendix 1) that in such cases the path
traverses a region of as many dimensions as there are degrees of freedom ; it

approaches indefinitely close to every point in this region. In the case of the

spatial oscillator this region is a rectangular prism parallel to the axes having
sides of lengths

- Vj*> A-- . vj;,
--

. vrzx V * v * z

(spatial Lissajous-figure).

In order to see what special cases may arise when the v's are commensurable
with one another, we consider the simple case where vx vy . This occurs when
the ellipsoid corresponding to the potential energy possesses rotational sym-
metry about the z-axis. The curve representing the path is situated then on
an elliptic cylinder enclosing the z-axis. Corresponding to a given motion we
no longer have uniquely determined values of J^ and Jv . for we can rotate

the co-ordinate system arbitrarily about the z-axis, whereby the sides perpen-
dicular to the z-axis of the rectangular prism touching the path will be varied.

Jz, on the other hand, remains uniquely determined as the height of the

elliptic cylinder on which the path is situated (if no other fresh commensura-

bility exists). Since the energy is
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(6) W=(J.+
only the sum Jx -}-Jy is determined by the motion.

If, finally, all three frequencies are equal, the motion is confined to an ellipse

and none of the three J's are now uniquely determined, since the co-ordinate

system may still be arbitrarily rotated. The energy is

(7) W=v(Jx+Jv !-.!,),

the sum of the .J's will therefore remain unaltered by such a rotation.

If now we ask what are the quantum conditions for such a system of several

degrees of freedom, the obvious suggestion is to put

(8) J*=**A.

In the ease of the oscillator with two equal frequencies vx~vy the conditions

Jx nxhj Jv= nyh

are clearly meaningless. Lf, for instance, we have a motion, for which Jx and

Jy are integral multiples of h for any position of the x- and //-axes, we can

always rotate the co-ordinate system so that this property is destroyed. The
sum ,]x -fFy , on the other hand, remains integral, so that the condition

(i>) .] x+Jv^nh

would still be significant. Since in the expression for the energy Ja and Jv occur
in this combination only, this quantum condition would not define the path

uniquely, but would fix the energy. The condition

(10) J Z=,A
retains its significance. The example shows, therefore, that only so many
quantum conditions may be prescribed as there are different periods.

If all three frequencies coincide there remains only the one condition

(11) J.+J^+J^nA
left. This again fixes the energy uniquely.

We shall now examine more closely the manner in which the action variables

alter when, in the case of vx vy , the co-ordinate system is rotated. Let the

action variables Jxt J y correspond to the rectangular co-ordinates x, y, and the

action variables J 7 , J^ to the co-ordinates

x~x cos a y sin a

yxsin a -\-y cos a.

If we express the barred co-ordinates and momenta occurring in

m _

in terms of those not barred (the momenta transform just like the co-

ordinates) we get

+ cos2 a+ 2+v sin8 a

( pxpy-\-mca
2
xy

J
sin a cos a,
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-|-
( pxpy

-
1 maAcy

j

sin a cos a.
\w /

The coefficients of cos2 a and sin2 a are clearly the magnitudes v,lx and vJ
tf

.

The coefficients of sin a cos a we determine from the transformation equations

(4) and obtain

Jj= Jjc cos2 Ct 1~ Jy sm2 a ~~ ^ ^3x')y cos (WV~~wy)
s*n a eos a

>

J-= J^ sin2
a-f Jtf

cos2 a
j

- 2 V/J^J^ cos
( M^ t0y ) sin a cos a ;

where, in our case wx~wy is a constant since ?'
a

.
= J'v . The constants J^, Jy are

thus transformed into Jj, Jy, which are also constants.

The transformation which transforms the angle and action variables, corre-

sponding to a rectangular co-ordinate system, into those associated with another

rectangular co-ordinate system, is not one which transforms the angle and

action variables among themselves. In fact, the constant difference of the

angle variables appears in the transformation eq nations for the J. We shall

meet with a similar state of affairs in the case of a second example, and later

quite generally in the case of degeneration.

It may happen that the Hamiltonian function does not consist of

a sum of terms depending on only one pair of variables qkpk >
but

that the Hamilton-Jacob! equation may be solved by separation of

the variables, i.e. on the assumption that

(11') S=S 1 (

Then

is a function of qk alone. We now suppose that each of the co-

ordinates qk behaves in the same way as we assumed above
( 9) in

the case of systems of one degree of freedom, i.e. either that qk

oscillates to and fro periodically in time, between two fixed limits

(case of libration), or that the corresponding pk is a periodic function

of qk (case of rotation). Since each integral

(12) J*=#>*#fc

taken over a period qk is constant, we can introduce the J^ here as

constant momenta in place of a ta 2 .... The function H depends
then only on the J

fc
's ;

S may be expressed as a function of the yfc
's

and of the J
fc
's. Instead of the qk s, the quantities wk , conjugate to

the J
fc's, will now be introduced

; they are related to the qk s by
means of the equations

as ^ as,
(13)

'
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We will now prove that the variables wk> Jk ,
introduced in this way,

have similar properties to w and J for one degree of freedom, namely,
that the qk n are multiply periodic functions of the wk s with the

fundamental period system

(1, 0, ... 0)

(0, 1, ... 0)

(0, 0, 1 ... 0)

(0, 0, ... 1).

We wish to find the change in wk during a to-and-fro motion, or

in the course of one revolution, of the co-ordinate qh ,
when the other

co-ordinates remain unaltered. This change will be :

Now, by partial differentiation of equation (13)

so by integration

If we fix our attention on the functions qi(w . . . wf ), and increase

wk by 1, while the other w's remain unaltered, yfc goes through one

period ;
the remaining y's may also depend on wk,

but they return

to the initial values without going through a complete period (if, for

example, qi went through a complete period Wi would increase by 1).

This proves the theorem stated above, concerning the periodic pro-

perties of the qk $ in the wk s.

It may happen that a particular q does not depend on all the wk s,

that is, it may not have the full periodicity/, but the system of all

the j's taken together depends of course on all the WA'S.

In our treatment of the spatial oscillator, for example, each co-ordinate

depended on one w only.

In every case qk may be expressed as a Fourier series in the form

(U) ?Jfc=2C
r
W ^2jrl(TW)

T

(see (8) and (8'), 13, for the abbreviated notation adopted). We
obtain the w's as functions of the time from the canonical equations

OTT

(16) tf*
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Written as a function of t :

qk=y\CW . e
2T'Ky i

(rf)^

where

0"')=T 1V 1+T 2 l> 2+ . . . +TfVf

(
T8)=T 18 1+T 28 2+

so that qk is not in general periodic ;
it Ls only periodic when, and

only when, (/I) rational relations exist between the v's (for example
when all the i/'s are equal). Periodicity of the motion signifies, there-

fore, that all individual periods (l/vk)
have a common multiple (l/i>,

say), i.e. that a relation

with integral T>"S, exists. This is equivalent, however, to (/I)
rational relations between the vk &. Conversely (/I) independent
linear homogeneous equations with integral coefficients

TIZV* I

-
- -

determine the ratios of the i/
fc
's

;
these ratios are rational, it is there-

fore possible to choose v so that

Vk=frk'v,

the TJ/'S being integers. The Fourier representation of the co-ordin-

ates qk assumes in this case the form

qh
= y\Cw e2lTl[(T >

T *' hT'Ti/ h ' T
/
T/)lV ' (T5)1

.

Here again the periodicity will at once be recognised.

In the non-periodic case the motion is analogous to that which in

two dimensions is called a Lissajous-motion, the path being closed

only in the event of a rational relation between the vk a. We consider

the path in the w-space, confined to a standard unit cell of the period
lattice (see 13) by replacing every point on the actual path by the

equivalent point in the standard cell. If there are no linear integral

relations between the vk n
9
this path in the w-space approaches in-

definitely near to each point in the standard cell (as proved in

Appendix I). The representation of the g-space in the w-space is

continuous
;

so in this case the path in the ^-space approaches in-

definitely close to every point of an/-dimensional region.

Astronomers call such motions conditionally periodic.
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Since the function S increases by Jfc
each time the co-ordinate qk

traverses a period while the other gr's remain unaltered, it follows that

the function

(16) S*=S-2>*J*
k

is a multiply periodic function of the w's with the fundamental period

1. For, if wk alters by 1, and the other w's remain the same, qk tra-

verses one period and the remaining </'s
return to their original values,

without having completed a period, i.e. S increases by J
ft
and S*

remains unaltered.

S* may be regarded as the generator of a canonical transforma-

tion instead of S. The equation

is in fact equivalent to

-" *" (H

and this gives the transformation

3

(17)

*

?,
Pk~

fyk

From this wo can deduce a simple expression for the mean kinetic

energy in the case of iion-rektivistic mechanics. We have
(cf. (8), 5)

If we choose the time interval (t l9 t 2) suSiciently long, it follows

that

- 1
2T=

(18) tz-

The integrals Jk (12) introduced here appear to be suitable for the

formulation of quantum conditions in the form Jk=nkh. By defini-

tion, however, they are associated with a co-ordinate system (g, p)
in which the Hamilton-Jacobi equation is separable ;

it is therefore

essential that we should next examine the conditions under which

this co-ordinate system is uniquely determined by the condition of
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separability. We shall therefore see if there are point transforma-

tions (i.e. transformations of the co-ordinates among themselves)

which transform the set of variables in which the Hamilton-Jacobi

equation is separable into another such set.

Let us suppose that there is a co-ordinate system, in which the

Hamilton-Jacobi equation of the motion under consideration is

separable. We suppose further, that no commensurabilities inde-

pendent of the initial conditions, or, as we say,
"
identical

"
com-

mensurabilities, exist between the periods. We can then choose the

initial conditions so that the path does not close. If one variable

qk performs a libration, the motion is confined between two (/!)-
dimensional planes g^const., which are touched successively. If,

however, qk performs a rotation, it may be confined to the region

to a>k ,
where wk is the corrc-

spending period, by displacing

the parts of the path in the

intervals

back to the interval (0, a>k ).

The whole path is confined

then to the interior of

/

\ IW w v
Fio. 7.

an

/-dimensional
"
parallelepiped

"
orientated in the direction of the

co-ordinate axes. The (/ l)-dimensional planes bounding the

parallelepiped have a significance independent of the co-ordinate

system.

By varying the initial conditions we can alter the dimensions of

the parallelepiped and so displace the invariable planes. It follows

that in this case (i.e. no identical commensurabilities) the directions

in the/-dimensional y-spacc which arc the axes of the co-ordinates in

which the Hamilton-Jacobi equation is separable have an absolute

significance, and that only the scale of each individual variable can

be altered.

Hence in the absence of identical commensurabilities all systems

of co-ordinates, in which separation of the variables is possible, are

connected by a transformation of the form

?*=/*(?*)

The associated momenta transform, by (10), 7, according to the

equation

dfk

We thus have
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=fopk~dqk +ft)gkdqk .

J dqk J'

The second integral on the right-hand side vanishes (on account of

the closed path of integration), and the first integral becomes

$pkdqk .

Thus the integrals J fc
are really uniquely determined.

In the case of the spatial oscillator the path fills, in the general case, a

parallelepiped. In the absence, then, of identical commensurabilities, the rect-

angular co-ordinates, or functions of them, are the only separation variables,

and the integrals Jx , Jy9
and .7 z have an absolute significance.

If identical commensurabilities exist, the path does not occupy all

the space of the parallelepiped and the co-ordinate directions need

no longer possess an absolute significance. The J
fc
also need not be

uniquely determined.

In the ease of the spatial oscillator with vx=vy9
we could rotate the co-

ordinate system arbitrarily about the z-axis without destroying the property
of separation in x, y, z co-ordinates. We obtained, in the various co-ordinate

systems, different J^'s and Jv's. Further, rectangular co-ordinates are not the

only ones for which the oscillator may be treated by the separation method.

In order to show this and at the same time to give an example of the solution

of the Hamilton-Jacobi equation by separation, in a case where it does not

resolve additively (i.e. is not of the form (1)), we shall use cylindrical co-

ordinates in treating the spatial oscillator for which vx vy v. The canonical

transformation (12), 7 :

x r cos
<j> pr=px cos (/> | py sin

<f>

y= r sin
<f> p^=

- pxr sin <f> f py
r cos

<f>

Z=Z Pz=Pz
transforms the Hamiltonian function into

Wo try to solve the Hamilton-Jacobi equation

on the assumption that

S=S
Since

<f>
is a cyclic co-ordinate,

s,=V-
If now we collect together the terms dependent on z and put them equal to a

constant, which we denote by m2
a> z

2az
z
, we get :
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and, for the terms depending on r there remains

.drl
'

r

Two of the three action integrals may be evaluated at once (Jz by introducing

the auxiliary variable y^sin"
1 as in 9) ;

we lind :

/ln .

r

jl mco2 m2
(t)

2J r

( *")

Jz
= mu) z<j>(d z

2 z2}ldz nmo) za z
2
.

On substituting r2 jc, the first integral takes the form

Jr= (h[ \-2bx

where

m2co2 ma>z

This integral may be evaluated by the method given in the Appendix. We get

(cf. (5) in Appendix II)

J
"'

,. , , . / . / *
"

r-
2

By expressing a and a z here in terms of
J^

and J z , we get for the energy

(O (i)~

(20) W=v(2Jr l-J^)
^vt3t, ==-, vt^.

It will bo seen from the equations (J9) that Jr and J, have a completely

different meaning from the quantities Jx and J v , derived by separation in

rectangular co-ordinates ; J,, for example, is now 2jE times the angular

momentum about the z-axis. J z , however, has the same meaning as before ;

also, the factor of v, namely 2.J r -f-'J,, has the same significance as the

former .1^+ Jy (it is l/v times the energy of an oscillator for which J z is

zero). In this case, therefore, a meaning could be attached to the quantum
conditions

2Jr -fJ =wA
7

4>

,] z n zh.

The restriction of Jr and J
, individually by such conditions would, on the

other hand, lead to quantum motions altogether different from those arising

from the corresponding restriction of 3X and Jy in the case of a certain rect-

angular co-ordinate system.
We now consider more closely the connection between the wx , wy , Jx , Jv

and the wr , w^ Jr ,
J ..

We have

where
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is the component of angular momentum about the z-axis. If x and y are ex-

pressed here in terms of the angle and action variables by (!)), 9, we find

2
(21 )

J == - ^JxJ y sin 2ji(ivx-wy ).

Here wx tcy
()x b

y
is a constant. On the other hand

'>* i <\

is equal to the variable M;.--~, conjugated with J . '1 he value of J r is found
<p 277 v

from the equation
2.)r+J^J*-hV

and is given by

Finally, the equation for wr may be obtained by calculating wr from Jr and

J ^ with the hel]> of the equations of motion and substituting for these quantities

the values found above.

The transformation which connects the system ot variables wr ' /;
</> 'rf^ with

the system wxwy J^Jy i >s no* ono which transforms the w's and the J's among
themselves. In fact, the constant difference wx w

y enters into tin* relations

between il^Jr
and Jg'I y . Wo shall see that this is a characteristic of every

degenerate system (see 15 for definition of degenerate system).

15. General Multiply Periodic Systems. Uniqueness of

the Action Variables

Hitherto we have applied the quantum theory only to mechanical

systems whoso motion may be calculated by separation of the

variables. We proceed now to deal in a general manner with the

question of when it is possible to introduce the angle and action

variables wk and J
7c
so admirably suited to the application of the

quantum theory. For this purpose it is necessary, in the first place,

to fix the J's by suitable postulates so that only integral linear trans-

formations with the determinant 1 are possible ;
for it is only

in such cases that the quantum conditions

(1) J*=%A
can have a meaning attached to them.

Generalising our former considerations, we fix our attention on

mechanical systems
x whose Hamiltonian functions H(j 1? p1 . . .

)

do not involve the time explicitly. We assume further that it is

possible to find new variables wk ,
3k derived from the qk , pk by means

1 The following conditions according to J. M Burgers, Hel Atoowmodel van

Rutherford-Bohr (Diss. Leyden), Haarlem, 1918, 10.
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of a canonical transformation with the generator S (q l9 Jj . . . qfy J f)

so that

=
o\

k

^?*
(2) as

in such a way as to fulfil the following conditions :

(A) The configuration of the system shall be periodic in the wk s

with the fundamental period 1. The qk s, which are uniquely deter-

mined by the configuration state of the system, shall be periodic

functions of the wk s with the fundamental period 1
;

if for u, given

configuration of the system qk is indeterminate to the extent of an

integral multiple of some constant (27r, say), it is only the residue

of qk to the modulus of this constant whi^h is periodic. In the

latter case there are also functions (e.g. sin qk )
which are periodic in

the wh9 in the strict sense of the word
( 13).

(B) The Hamiltonian function transforms into a function W,

depending only on the J
fc
's.

It follows from this that the wk s are linear functions of the time,

and that the J
fc
's are constant. The functions qk(w l . . . wf) possess

a periodicity lattice in the w-space, the cells of the lattice being cubes

with sides 1.

Now it may be easily shown that the quantities J
fc (apart from

being indeterminate to the extent of a linear integral transforma-

tion with the determinant 1) are not yet uniquely determined by
the two conditions (A) and (B).

A simple canonical transformation, which does not violate the

conditions (A) and (B), is as follows :

! J/)

where the ck s are constants. The arbitrariness in the choice of the

Cfc's prevents the application of the quantum conditions (1) for, if the

Jfc's are determined as integral multiples of h, this will not in general

be the case for the J
fc
's. We must therefore do away with this remain-

ing arbitrariness in the choice of the variables. This may be accom-

plished by postulating generally a property of the w's and J's found

previously to hold in the case of separable systems,

(C) The function

s*=s-2>*J*
k

which is the generator of our transformation (qjcPk-+u>k3k) in the form
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(5)

shall be a periodic function of the w^'s with the period 1.

It is all the same here whether we regard S* as a function of qk and

wk or of J/, and wk9 since the g^'s are also periodic in the wk s.

If it be required in (C) that 1 shall be a fundamental period, (A)

will be superfluous. For, if the qk n are calculated as functions of the

wk & and JYs from the second system of equations, they will be periodic

in the wk s with the period 1 . Apart from this, it will be seen from the

first system of equations that the same is true of the pk'a.

We must now prove that the conditions (A), (B), and (C) really

suffice for the logical applications of quantum conditions in the form

(1) ;
we carry out the proof by finding the most general canonical

transformation

which satisfies the conditions (A), (B), and (C).

We seek the iirst group of the transformation equations, viz. those

for wk s in terms of the w's and J's. According to (A) the trans-

formation must transform into itself the system of lattice points

corresponding to the fundamental period 1. By (7), 13, the wk s

must transform as follows :

(6) Wfc

Here the system of integers r
fcz
has the determinant 1- The ^'s are

periodic in the wk s with the period 1, and, written as functions of the

w^s, periodic in these also
; they may therefore be expressed in the

form

The condition (B) introduces a fresh restriction. Considered as func-

tions of the time, the wk s, as well as the wk 's, must be linear
; from

(6) it follows that <^ fc
's are likewise linear functions of the time, but if

they vary at all with the time they must be multiply periodic, as has

just be shown ; they must therefore be constant. This means, how-

ever, that, in the exponent of the Fourier series, the only combina-

tions of the wk which can occur are such as make

.+(7,8,)

independent of t and therefore
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aw
(identically in the Jk). vk denotes here the derivative -

.

&Jfc

The case where identical relations

exist between the frequencies will enter largely into our considera-

tions
; systems for which such relations exist

wejjshall
call degenerate

systems, while the others we shall refer to as non-degenerate.

We shall deal also with the case i?i which such relations exist only for certain

values of the JA, ; the mechanical system is then non-degenerate ; the particu-
lar motions in question, for which (TJ>)=(), we shall call accidentally degenerate,
whilst the motions of a degenerate system [(rv)=Q identically] are spoken of as

intrinsically degenerate.

We consider first non-degenerate systems. For these the trans-

formation (6) takes the form

(7) W
Je
=

/

In order now to find the second group of transformation equations

of a non-degenerate system (i.e. those for the J's in terms of the w'a

and J's), we write down the generator of the transformation (7), viz. :

V(w l9 J l . . . wf , J/)
=2 T J*^+^(J i J/)+W w,),

kl

where XF has the partial derivatives
i/jk .

1 The second group of the

transformation equations now becomes

(8) J
fc
=
-^

-= 2TJ,+/( ?! . . . Wf).

In order to see if the transformation

(9)

actually leaves the conditions (A), (B), and (C) unaltered, or whether

we must still further restrict the number of permissible transforma-

tions, we resolve them into the three transformations

(10) w^toi+hdi . . . J/), J
fc=I*

(12) &*=wto J*= *+/*(^i . . wf).

1 It will be seen from this, that the
1/1%

's in (7) must fulfil certain differential

relations in order that the transformation may be canonical.
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All three are canonical ; to each may be assigned a generator in the

sense of 7.

The first transformation (10) does not conflict with (A) and (B).

That (C) likewise remains satisfied can be seen as follows : If S(#, J)

and %(q, $) are the generators of transformations of the form (2),

transforming the q, p into w, J and into to, 3f respectively, then

since the same variables are maintained constant during the differen-

tiation, it follows that S .$ is independent of qk . For S* j$* we
have then

k k

from which it is seen that (C) is fulfilled.

It will be seen at once that (11) leaves (A) and (B) unviolated
;

we test as follows for the condition (C). For $*(j, in) and J$*(g, 5)
we have on the one hand

since the same variables are kept constant during the differentiation

(the to's are transformed into the to's by a linear transformation

with a non-zero determinant) it follows that &* ^* docs not

depend on q. On the other hand

al*^_ _ = ^* =v~~~ ~

and it follows from this that $* jj* is also independent of ffi and to.

In order that the complete transformation (9) may fulfil all three

conditions it is necessary and sufficient that this shall be the case

for (12).

For $*(<?, to) and S*((/, w) we have :

al* as*_ - _
~T)if

8qk 8qk

thus

^*-S*=R(W! . . . ibf).

Further, from (12)

thus
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If (C) is to remain valid for the transformation (12), R must be

periodic in the wk , fk may therefore be represented by a Fourier

series without a constant term. If (B) is to remain valid,/*, must not

depend on the time. From these two conditions it follows that fk
must vanish. Hence if/fc=0, (A), (B), and (C) remain unviolated.

We have proved by this that the most general transformation for

the action variables is

(13) J*=2T IfcJ,.
i

If thejys arenow determined as integral multiples of A, the same will

be true of the Jk s and conversely.

Although we have been guided in our considerations by the idea

that Jfc/A must take integral values, we can state the mechanical

theorem proved in a form independent of any quantum theory :

Uniqueness theorem for non-degenerate systems : If we can intro-

duce in a mechanical system variableswkand J
fc
so that the conditions

(A), (B), and (C) are satisfied, and if between the quantities

no commensurability exists, then the J
fc
's are determined uniquely,

apart from a homogeneous linear integral transformation with the

determinant 1.

We proceed now to the treatment of degenerate systems.

If between the vk s there exist (/ s) commensurability relations

(U) 2>*"*=0
k

we can arrange, by means of a canonical transformation satisfying

. 0W
the conditions (A), (B), and (C), that/ s of the frequencies i>k

=
0J*

shall vanish and that between the remaining s no relation of the

type (14) shall exist. If we call the new variables wk and Jk once

more, we have

e > a=l, 2 ... s,

and the Hamiltonian function has the form

W(JJ.
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The wa's and Ja's we call proper angle and action variables, the w
p
's

and J
p
's improper or degenerate variables ; the

//;/
remain constant

during the motion. The number s of the independent frequencies va

is called the degree of periodicity of the system.

In the rase of accidental degeneration, the number of independent fre-

quencies is less for certain motions than for the number of the whole system.
We call the former number the degree of periodicity of the motion under con-

sideration.

We must now seek the most general transformation which violates

neither this division of the variables nor the conditions (A), (B), and

(C). The first group of transformation equations (i.e. that for the

w
fc'H)

is now :

w
fc=2 T*i'^+^*K+i '

f>
J i J/)'

i

The generator is therefore

t .. J,)

'*/> J i

hi

where 1F is periodic in the tf
p

. The second group of transformation

equations then becomes :

the derivative of XF is non-zero only if k is one of the numbers

*+ l - ./
In order that the division into non-degenerate and degenerate vari-

ables may persist, the w
p
's must not depend on the w

a 's or the w
p
's on

the w
ft
's. This means, however, that the r

pfl
's vanish. The transfor-

mation equations can then be written as follows :

w',=2' a, j8=l...

.p 9
(7=5+ 1 /
I =!...

where is put equal to
<f>p

. Since the rkl are whole numbers and

the r
pa vanish, it follows, from the value of the determinant, that

also
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We now divide the transformation (16) in two parts :

.>
J

>

(7 /

and

(18) te
fc
=

fcf J*-3 fc+/fc(),

and show that the first satisfies the condition (C) and that the second

does this only for/a 0.

As before, let S(g, J) and ^(q, 3) be the generators of the trans-

formations q, p-+w, J and q, ^->itr, 31. We consider the function S ^
from tho point of view of its dependence on iu and J, i.e. we write

S=%(ta, J), J), 9 -= %(ut, J), 3(to, J))

and form

2*r ^"*

from (17), the first two terms cancelling. We have therefore

(19)

8
_(S-$)^0, A(S_)^_V U, ^.

' ' v ' '

(B-9)-V - a?i
-J

-T^ ^'-T 8
?i

We derive further :

(20)

-*-?-.i-*-?>.
It follows from (19) and (20) that

S-*=T(to^ J)-Z toA.
(T

where T has the same meaning as in (15). We shall have therefore

k I

this denotes, however, that (0) remains valid.

The condition that (C) should be satisfied by the transformation

(18) is found as in the non-degenerate case, viz, :
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If (C) and (B) are satisfied,fk(w) is a periodic function of the form

in which only exponents containing w
p
alone may occur

;
conse-

quently ra always. It follows from this, however, that

The most general permissible transformation of the non-degenerate
action variables is therefore

(21) J.=ZvV
ft

The J 's, on the other hand, need not transform integrally. Since the

condition (C) does not forbid the occurrence here of w
l
in the trans-

formation equations of the J
p's,

it follows that from a system J
p , in

which all the J
p
's are integral multiples of A, a system J

p may always
be derived which does not possess this property (cf. examples of

14).

We can state the result of our investigations independently of the

quantum theory as follows :

If we can introduce in a mechanical system variables wkjk which

satisfy the conditions (A), (B), and (C), we can always arrange so

that certain of the partial derivatives

aw

namely, the i>a
's (a=l . . . s), are incommensurable while the remain-

ing ones i/
p(p=s+l . . ./) vanish. The J

t
\s are then uniquely deter-

mined, apart from a homogeneous integral linear transformation

with the determinant ii. 1

We deduce still another consequence from the periodicity of S* as

a function of q and w or J and w
;
the function

increases by Jk when wk increases by 1 and the other w's and J's re-

main constant. We can write this in the form :

Jfc I dwk [ ) =1 dwk y*- -,

Jo \Wj Jo I fyi 3k
or :

1 J. M. Burgers, who refers to this theorem in his dissertation, does not give a

complete proof.
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(22)

This integral may be employed to ascertain if a given motion fulfils

the quantum conditions or not, since all that is necessary is a know-

ledge of the p and q as functions of the wu's.

16. The Adiabatic Invariance of the Action Variables and the

Quantum Conditions for Several Degrees of Freedom

As in the case of one degree of freedom, the uniqueness of the

action variables is only one of the conditions necessary if the quan-
tum conditions in the form

Ja
=nah

are to have a definite meaning attached to them.

As a second condition wemust require that the Ja's shall be constant

not only for an isolated system but also in the case of a system subject

to slowly varying influences, in accordance with the principles of

classical mechanics.

In fact the following principle applies in this case also :

The action variables Ja are adiabatically invariant so long as they
remain in a region free from new degenerations.

We carry out the proof (after J. M. Burgers) exactly as we did

in the case of one degree of freedom. 1 We imagine the canonical

transformation

as*

applied to the variables qk, p k, satisfying the canonical equations

. an . 8H

"-iff
p*^;

so that, for constant a, the variables qk , pk are transformed into the

angle and action variables wk , Jk . By (1), 7, H is transformed to

as*
H=H+ir

Thus the transformed canonical equations can be written

1 The proof of the adiabatic invariance of the J's given here is not altogether
free from objection on account of difficulties due to the appearance of accidentally

degenerate motions in the course of the adiabatic change. A strict proof has been

given by M. v. Laue, Ann. d. Physik, vol. Ixxi, p. 619, 1925.
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8R 8 /8S*\W= ~

___ s a
k~~8wh ~dwk\df/'

Since H depends only on the Jk'$, it follows that

T =_ -- i
k

8wk\ dt ) 8wk \ da I
'

In the differentiation with respect to t and a, S* is to be regarded as

a function of qk ,
wk ,

and t or a. Now the variation of J
fc
in the time

interval (t^ t2) is

and on account of the supposed slow alteration of a, independently of

the period of the system, a can be put before the integral sign. We
will now show that

a tk
is of the order of magnitude d(t2 a ) (cf. 10).

f'S*
S* is a periodic function of the wk ,

so also is --
,
and the inte-

da

grand of (1) is a Fourier series

without a constant term, so that the integral to be evaluated takes

the form

where AT , v, and S are functions of the J's and of a. We develop the

integrand in the neighbourhood of a certain value of t, which we

denote by =0 as in 10, and obtain

2 'A e'-'TiKT^M (r )]
TO

(2)

the notation being similar to that used in (4), 10. Consider

this expansion carried out at the beginning of the interval (^, t2)

arid the integral taken from t
l
to such a point that the integral
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of the first term vanishes. This is always possible, since the indefinite

integral of the first term is a multiply periodic function, and in

intervals of the order of magnitude 1 /(TVO) passes continually through
zero. The integral of the second term is of the order of magni-
tude dT or aT 2

. We imagine now a new expansion (2) carried out at

the beginning of the remaining interval and the integral again taken

so far that the first term vanishes. This process we suppose con-

tinued until finally there remains an interval over which the integral

of the first term has a non-zero value. It will be seen that, if none

of the (rv)'s vanish on the path of integration, the complete integral

is of the order of magnitude d(t 2 t t).

In the case where an identical relation
(i.e.

a relation valid for all

J's) (VT)^0 exists for a certain value of
,
the w's and J\s may be chosen

so that the i/
a
's are incommensurable and the v

p
's equal to

(cf. (14),

15). Constant exponents ((rv)=0) then appear in S*, but they in-

volve the w
p
's only ;

the terms in question disappear, therefore, on

differentiating with respect to wa , consequently the Ja's remain in-

variant at such places of degeneration ;
this cannot be said generally

to hold for the J
p
's.

In addition to those cases where (TV) is identically zero, it may
happen that (TV) is zero only for the particular values of 3k under

consideration ; in the latter case we speak of
"
accidental degenera-

tion," and under such circumstances the J's need not be invariant

unless, in the expansion (2) of the integrand of (1) for the different

J
fc's, the term A

r0
with the corresponding exponent (TW) occurs in S

with zero amplitude.
It follows then that if the J^'s are to be adiabatically invariant we

must exclude all cases for which an accidental commensurability
exists (i.e. one which holds only for the values of J under considera-

tion) between frequencies which occur conjointly in the form (TV) in

the exponent of a term of the Fourier series for S*.

As an example of the adiabatic invariance of an action variable we consider

the case where the mechanical system is invariant with respect to a rotation

about an axis fixed in space. If
(/*, <, z) are cylindrical co-ordinates, the angle

of rotation <^ and the differences ^j. <
x may be introduced as co-ordinates

instead of the individual
<f> ; fa is then a cyclic variable, and (cf. 6) the

momentum conjugated with it is the angular momentum of the system about

the z-axis. The principle of the conservation of angular momentum about an

axis is also valid when the expression for the potential energy contains the time

explicitly, provided only that the invariance with respect to a rotation about

the axis persists identically in time. If the field of force of rotational symmetry
be strengthened or weakened, the angular momentum about the z-axis remains

invariant, and we have a special case of the principle of the adiabatic invariance

of the action variables,

7
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In order to see what may happen in the case of a passage of the system

through a degenerate state, we consider once again the spatial oscillator. We
suppose that the directions of the principal axes of the potential energy ellipsoid

as well as the magnitudes of the three frequencies are functions of a para-

meter a, which can be varied arbitrarily in time. If now for a certain value

of a no commensurability exists between the freq uencies, the J's will be adiabatic

invariants. If, however, for a certain value of a we have degeneration, e.g.

vv v
y i this will no longer be the case, though certainly there are special varia-

tions for which the J's do remain invariant. If, for instance, the directions of

the principal axes are left unaltered and only the frequencies varied, the co-

ordinates behave as independent linear oscillators, and the J's are adiabatic

invariants for each individually. As an example of an adiabatic variation in

which the J's do not remain invariant in the ca>se of degeneration, we consider

the following. We allow the original potential energy ellipsoid with three

unequal axes to pass over into an ellipsoid of rotation, keeping the axes fixed ;

without varying the axis of rotation we now allow the axes of the ellipsoid

again to become all unequal, but with the other two axes turned through a

finite angle with respect to the original ones. In the instant of degeneration
the projection of the motion in a plane perpendicular to the axis of rotation is

an ellipse. The limiting values of the J's which are correlated with the J values

before and after the degeneration are determined by the amplitudes of this

elliptic motion in the directions of the principal axes of the potential energy

ellipsoid ;
it will be seen at once that these values are different for different

directions of the axes.

The uniqueness of the Ja's (in the sense of 15), together with their

adiabatic invariance, strongly suggests the following generalisation

of the quantum condition for one degree of freedom :

In a mechanical system which satisfies the conditions (A), (B), and

(C)of 15,lettheit;A.'sandJ A:

>sbechosensothattheya

J

s(a=:l,2 . . .s)

are incommensurable and the v
p
's (p^s+1 . . . /) are zero (it may be

that s=f). The stationary states of this system will be defined by
the conditions *

T , . n rt x
J a=na/i. (tt=l, 2 . . . s).

Since the Hamiltonian function depends only on the Ja's its value

is determined uniquely by the quantum numbers na .

To this is added, as the second quantum principle, Bohr's frequency
condition W=sW -W.

1 The first generalisation of the quantum conditions for systems of more than
one degree of freedom was given by M. Planck ( Verh. d. Dtsch. Phys. Ges., vol. xvii,

pp. 407 and 438, 1915), W. Wilson (Phil. Mag., vol. xxix, p. 795, 1915), and A.
Sommerfeld (Sitzungsber. d. K. Bay. Akad. t p. 425, 1915). All three start out

by equating the action variables to integral multiples of h. The general case
of multiply periodic systems was dealt with by K. Schwarzschild (Sitzungsber. d.

Preuss. Akad., p. 548, 1916), and tho conception of degeneration together with
the restriction of the quantum conditions to the non-degenerate J's was first made
clear by him. The unique determination of the J's through our conditions ( 15)
is given by J. M. Burgers, Het Atoommodel ran Rutherford- Bohr (Diss. Leyden,
1918).
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We will now collect together once more the fundamental ideas

underlying the quantum mechanics as hitherto developed : the totality

of the motions (supposed multiply periodic) of a given model are to be

calculated according to the principles of classical mechanics (neglect-

ing the radiation damping) ;
a discrete number of motions will be

selected from this continuum by means of the quantum conditions.

The energies of these selected states of motion will be the actual energy
values of the system, measurable by electron impact, and the energy
differences will be connected with the actual light frequencies emitted

by Bohr's frequency condition. Apart from the frequency the ob-

servable qualities of the emitted light comprise the intensity, phase,
and state of polarisation ;

with regard to these the theory gives

approximate results only ( 17). This completes the properties of

the motion of atomic systems which are capable of observation. Our

calculation prescribes still other properties, however, namely, fre-

quencies of rotation and distances of separation ;
in short, the progress

of the motion in time. It appears that these quantities are not in

general amenable to observation. 1 This leads us, then, to the con-

clusion that our method is, for the time being, only a formal scheme

of calculation, enabling us, in certain cases, to replace true quantum

principles, which are as yet unknown, by calculations on a classical

basis. We must require of these true principles that they shall

contain relations between observable quantities only, i.e. energies,

light frequencies, intensities, and phases.
2 So long as these principles

are unknown we must always be prepared for the failure of our

present quantum rules
;
one of our main problems will be to deter-

mine, by comparison with observation, the limits within which these

rules are valid.

17. The Correspondence Principle for Several Degrees

of Freedom

As in 11, we must now investigate to what extent the classical

theory may be regarded as a limiting case of the quantum theory.

In this limiting case the discrete energy steps run together into the

continuum of the classical theory. We show further that a relation

similar to that holding in the case of one degree of freedom exists

between the classical and quantum frequencies.

When the classical radiation damping is neglected, the electric

1 Measurements of the radii of atoms and the like do not give a closer approxima-
tion to reality than, say, the agreement between rotation frequencies and light

frequencies.
2 This idea forms the starting-point of the new quantum mechanics. See W.

Heisenberg, Zeit. f. Phya., vol. xxxiii, p. 879, 1925.
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moment of the atomic system may be represented by a Fourier series

of the form

(i) D^^^^ZO^K"* KT5)j -

T T

The components of the vectors CT are complex quantities ;
since the

components of p are real, the components of CT
turn into the conju-

gate complex quantities when the signs of all the T
fc
's are reversed.

By including in the constant the terms in w
pj

it may be arranged
that only the non-vanishing (and incommensurable) frequencies va

occur in the exponent (see (14'), 15, for significance of suffixes a

and p).

Now the quantum frequency associated with a transition in which

the quantum numbers alter by r l . . . rs corresponds, in an analogous

way to the case of one degree of freedom, to the overtone of frequency

The relation between this classical frequency and the quantum fre-

quency is in this case also that between a differential coefficient and

a difference quotient.

We consider a fixed point Ja in the Ja-space and all the straight

lines

J.=J.-TaA,

going out from this point, the directions of which may be pictured

as lines joining Ja with the angular points of a cubic lattice (of arbi-

trary mesh magnitude) surrounding this point. The classical fre-

quency may then be written in the form x

The quantum frequency may be written in the form

(3)
--

In order to describe the relation between (2) and (3) we imagine the

above-defined grating chosen so that the side of the cube is equal to

h, v is then the decrease in the energy in going from the grating

point Ja to the grating'point Ja rji, expressed as a multiple of the

mesh magnitude h. The classical frequency is obtained when the mesh

magnitude h is made infinitely small.

The quantum frequency may also be looked upon as a mean value

of the classical frequency between the grating points Ja and Ja rji

1 The signs arc chosen so that emission occurs when all the r
a's are positive.
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for a finite h, i.e. as a certain mean value between the initial and final

orbits of the quantum transition, associated with radiation of that

frequency. We have in fact *

If the alterations rk of the quantum numbers are small in com-

parison with the numbers themselves, the expressions (3) and (2)

differ very little from one another.

As in the case of one degree of freedom, the correspondence prin-

ciple may be employed for the approximate determination of the

intensities and states of polarisation.

If the alterations rk of the quantum numbers are small in compari-
son with the numbers themselves, the Fourier coefficients CT

for

the initial and final states differ by a relatively small amount. On
the basis of the correspondence principle we must now lay down the

following requirement : For large values and small variations of the

quantum numbers, the light wave corresponding to the quantum
transition TI . . . ra

is approximately the same as that which would

be sent out by a classical radiator with electric moment

C^fr-o

This determines approximately the intensity and state of polarisa-

tion of the wave. The same quantities Cr
determine also the proba-

bilities of transitions between the stationary states.

If the alterations of the quantum numbers are of the same order

of magnitude as the numbers themselves, it seems likely that the

amplitudes arc determined by a mean value of CT between the initial

and final states. How this mean value is to be determined is still

an open question.
2 It can be answered only when certain components

of the classical CT
are identically zero

;
it may be assumed that the

corresponding oscillation is also absent in the quantum theory.

These considerations can be applied in practice to the determina-

tion of the polarisation only if, during the process, at least one

direction in space is kept fixed for all atoms by external conditions,

e.g. an external field. In other cases the orientations of the atoms

would be irregular and no polarisation could be established. If, for

example, a certain CT
had the same direction for all atoms, then

to this would correspond a linearly polarised light wave with the

1
Comp. H. A. Kramers, Intensities of Spectral Lines (Diss. Leyden), Copenhagen,

1919.
2 This question is now answered by the new quantum mechanics founded by

Heisenberg (loc. cit.) and developed by Born, Jordan, Dirac, Schrodinger, and others.
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distribution of intensity given by the classical theory for different

directions in space.

Of special importance for the application of the quantum con-

ditions and of the correspondence principle is the case in which the

Hamiltonian function is not changed by the rotation as a whole of

an atomic system about a fixed direction in space. If we introduce

as co-ordinates the azimuth <f>=qf of one of the particles of the

system together with the differences of the azimuths of the other

particles from
<j>,

and other magnitudes depending only on the rela-

tive position of the particles of the system with respect to the fixed

direction in space, </>
will be a cyclic variable and the momentum p^

conjugated to it is, by 6, the angular momentum of the system
flS

parallel to the fixed direction. On account of the constancy of
,

U</)

the function S, which transforms the qk and their momentum pk into

angle and action variables, has the form

It follows from this that

1 8F 0S

0s

1 0F 88

If now qtfz . . . gy_ a be kept fixed and
<f>

allowed to increase by
2ir (i.e. if the whole system be rotated through 2-rr), the wk a must

change by whole numbers (for the qk s are periodic in the wk s with

the period 1) ; for this to be the case the derivatives of F must be

whole numbers and F has the form

F=r1J1+ . . . +T/J/+C.

By means of a suitable integral transformation with the deter-

minant 1 this may always be brought to the form

so that
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It follows from this that

"*=<&*(li - - - ?/-i> Ji - - J/-i J,) (*=1 - -/-I)

and by solving for the qk

f ?& TA^W! wf-ii Ji J/-i> Jj (& I . . ./I)
(
6

) JL_^
-

so that we can write also

S=v(J,+c)+p(J,+c)+<FK . . . v_!, Ji . . . J/-L J,).
47T

Since S w^J must be periodic in w^ it follows that c=0 and so

(7) S=1ty+Sfo . . . 7/-i, Ji . . . J,_i, J,)-

The angular momentum in the direction of our fixed axis is conse-

quently

_as_ i

P
*~^~~2i'

*'

If there is no degeneration then we must put

In words : In every system for which the potential energy is in-

variant with respect to a rotation about an axis fixed in space, the

component of the angular momentum about the axis multiplied by
2rr is an action variable. If the energy depends essentially on this

quantity, it is to be quantised.

Since the functions <D/C in (5) depend only on the relative positions

of the particles of the system with respect to one another and to

the fixed axis, these relative positions will be determined also by
wl . . . w/_i, while Wf fixes the absolute position of the system.

According to (6), 27rw/ can be regarded as the mean value of the

azimuth
<f>

of the arbitrarily selected particle of the system over the

motions of the
"
relative

"
angle variables w t . . . M/-I. The motions

can therefore be considered as a multiply periodic relative one on

which is superposed a uniform precession about the fixed axis. If

H, regarded as a function of the J^., does not depend on J
,
this pre-

cession is zero
; the system is then degenerate.

We consider first the case where the system moves under the action
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of internal forces only. Every fixed direction in space can then be

regarded as the axis of a cyclic azimuth. The energy does not depend
on the individual components of the resultant angular momentum,
but only on the sum of their squares, i.e. on the magnitude of the

resultant angular momentum. If the direction of the angular mo-

mentum be chosen as axis, the corresponding azimuth
iff

is cyclic

and w^ non-degenerate. The resultant angular momentum p is there-

fore determined by a quantum condition of the form

(8) 27rp=J^jA.

If we fix our attention on a second arbitrary axis fixed in space,

there will be a cyclic azimuth
<j>

about this
;
the associated action

variable J =27rp^ does not occur, however, in the energy function in

addition to
J^,

because the energy of the system cannot depend on a

component of momentum in an arbitrary direction. The angle vari-

able w^ conjugated to J is therefore degenerate, and J may riot be

quantised. The significance of w^ will be recognised from the general

property of a cyclic angle variable, that it is equal to the mean value

of the azimuth of an arbitrary point of the system taken over the

motions relative to the axis, w^ is thus a constant angle which can

be chosen equal to the azimuth of the axis of the resultant angular
momentum about a plane through the fixed ^-axis.

We now consider the case where the mechanical system is sub-

jected to a homogeneous external (electric or magnetic) field. The

azimuth
</>

of a particle of the system about an axis parallel to the

field is then a cyclic variable
;
in general H will depend on

J^,
and we

have the quantum condition

(9) 27rp,=J,=wA.

For an arbitrary external field, on the other hand, the resultant

angular momentum p is not in general an integral of the equations
of motion and cannot therefore be quantised, but it may happen,
in special cases, that p is constant and is an action variable. The

relations (8) and (9) will then be true at the same time
;
but p^ is

the projection of p in the direction of the field and, if a denotes the

angle between the angular momentum and the direction of the field,

we have

(10) cosa= ^.
P J

* 3

This angle is therefore not only constant (regular precession of the

resultant angular momentum about the direction of the field), but

is also restricted by the quantum condition to discrete values. One
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speaks, in this case, of
"
spatial quantisation."

l Since by (10) m can

take only the values j, j+l,...j, it follows that for everyj there

are in all 2j+1 possible orientations of the angular momentum. This

describes a cone of constant angle a about the direction of the field

with the processional velocity

This regular precession is, in general, possible only for certain

initial conditions. We shall show later (by the method of secular

perturbations, 18) that, for weak fields, the spatial quantisation
holds in general for every motion

;
the only exceptions to this are

certain cases of double degeneration (e.g. hydrogen atom in an

electric field, cf. 35).

Certain predictions regarding the polarisation of the emitted light

and the transition possibilities may now be made with the help of

the correspondence principle.

If z is an axis of symmetry fixed in space, we combine the com-

ponents of the electric moment $x , $y , perpendicular to this, in the

form of a complex quantity and write :

*
(4=1, 2, ... n).

Pi=2- e***
k

If rk s are the distances from the axis and <
fc
's the azimuths (one of

them being <f>),
then

Now the bracketed expression (rke
l

^-^) 9
like the zk , depends only

on the #!,... y/_i ; substituting for these the values (6) we have

. . T/ i

The integer r can therefore assume only the value 1 in the x- and y-

components of the electric moment and the value in the case of the

z-component.
2

According to the correspondence principle, the corre-

sponding quantum number can alter only by 1 or 0. (This holds, of

course, only if J is to be quantised at all, i.e. provided there is no

degeneration.) The change of 1 corresponds to a right- or left-

1 A. fcommerfeld, Phys. Zeitschr., vol. xvii, p. 491, 1916 ; Ann. d. Physik, vol. li,

p. 1, 1916.
2 The sign of ris meaningless, since in the Fourier expansion T always occurs

as well as T.
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handed rotation of the electric moment about the axis of symmetry,

and, therefore, to right- or left-handed circularly polarised light.

Since the angular momentum of the system increases when the quan-
tum number changes by +1, that of the light therefore decreases, so

that for this transition of +1 in J^ the light is negatively circularly

polarised for emission and positively circularly polarised for absorp-

tion ;
for the transition 1 in J

(/>

the reverse holds. 1
Corresponding

to the transition without change of angular momentum, we have

light polarised parallel to the axis of symmetry.
2 If the motion of

each point of the system is confined to a plane perpendicular to the

axis of symmetry then (except ioi rl
=

. . . rf_ 1=0)

V -,-=

a transition without change of angular momentum does not then

occur.

We consider now the case of a system which is subject to internal

forces only. The above considerations are then applicable to the

axis of the resultant angular momentum, where, in place of <, the

angle denoted above by ifj appears and the quantum condition (8)

applies. The polarisation of the light cannot be observed, however,

since the atoms or molecules of a gas have all possible orientations.

The case mentioned above, where all the particles of the system move

in planes perpendicular to the axis, is of frequent occurrence, e.g. in

the case of the two-body problem (atom with one electron) and in

that of the rigid rotator (dumb-bell model of the molecule) ;
the

transition j->j is then impossible.

We consider further the case in which the system is subject to the

action of an external homogeneous field and spatial quantisation

exists (which is approximately true for weak fields). The alterations

of m and the polarisation of the light are then subject to the rules

derived above. It is easy to see that the transition possibilities

Aj 1, 0, +1, which are valid for a free system, remain true for j.

We imagine a co-ordinate system f , 77,
introduced so that the

-axis is in the direction of the angular momentum, and the ij-axis

perpendicular to the direction of the field. In this system of co-

ordinates the electric moment may be expressed in the form

1 Hubinowicz (Phyaikal. Zeitechr., vol. xix, pp. 441 and 456, 1918) used the

relation between polarisation and angular momentum (about the same time as the

general correspondence principle was given by Bohr) in order to arrive at the

selection principle for the alteration of quantum numbers.
2 In optics, such light would be said to be polarised perpendicular to the z-

direction, since the plane of polarisation is taken conventionally as the plane of

oscillation of the magnetic vector.
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in which only the angle variables of the relative motion w t . . . w/-i

(not w^ and w^) occur in the summations. The co-ordinates f , rj,

are connected with those of the fixed system x, y y z by the relations

x+iy=e2irlw
<l>(g cos a sin a+i^)

z= sin a-f cos a
;

which express the fact that the -axis makes a constant angle a with

the z-axis, and describes a regular precession w^=vj about it. The

same transformation formulae hold also for the components of the

vector p in the two co-ordinate systems. If the Fourier series (11) be

substituted for p
f , p o , p^,

it will be seen at once that the angle vari-

ables WQ and w^ occur only with the factors T =l
; r^ 0, J^l, in

the exponents of the Fourier series for PJ,. and pv ,
and in p z with the

factors r =0 ; r^=0, 1 only. The quantum numberj can therefore

change only by or 1.

18. Method of Secular Perturbations

A multiply periodic degenerate system may frequently be changed
into a non-degenerate one by means of slight influences or variation

of the conditions. We shall consider, in particular, the simple case

where the Hamiltonian function involves a parameter A and the

system is degenerate for A=0. We imagine the energy function H
expanded in powers of A

;
for sufficiently small values of A we can

break off this series after the term linear in A and write

(1) H^Ho+AH!.
To this approximation then each perturbation of the unperturbed

system, whose Hamiltonian function is H
, may be taken account of

by the addition of an appropriate
"
perturbation function

"
AHj.

The effect of the perturbation function on the motion, when the

system whose Hamiltonian function is H is not degenerate, will be

examined later
;
here we shall consider only the case where H is

degenerate. We suppose the problem of the unperturbed system
solved and angle and action variables wk

Q
,
3k

Q introduced by a canon-

ical substitution
;
on account of the degeneration, H will depend

only on the proper action variables Ja (a=l, 2 . . . s) (see (14'), 15,

for the significance of suffixes a, p).
H x will be a function of all the

wk*'a and J
fc 's, thus :

(2) H
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We obtain an approximate solution of the
"
perturbation problem

"

by a method which will here be based on an intuitive line of argu-
ment

;
it will be established mathematically later in a more general

context (Ch. 4, 43).

In the undisturbed motion thew
p

's are constant and the wa 's vari-

able with the time. The effect of a small perturbation will be that

the w
()

's will also be variable in time, but in such a manner that their

rates of change will be small, i.e. that they vanish with A. Since now
the co-ordinates qk , pk are periodic functions of all the wk 's with the

period 1, it follows that, during the time in which the w
p

's vary by
a given amount, the system will have traversed a large number of

periods (rotations or libratioiis) of thewa 's. The coupling between the

motions of the wa's and the w
p
's may therefore be represented approxi-

mately by taking the mean value of the energy function over the

unperturbed motion of the w
a ; (2) then becomes

(3) H-HO^+AH^ ; %<>,
J
P ).

In this expression the wa's do not appear ; the Ja 's are therefore

constant during the perturbed motion, and appear as parameters

only ;
the only variables are the w

p
's and J

p
's. These satisfy the

canonical equations :

The only solutions which are of importance from the point of view of

the qiiantum theory are those of a multiply periodic nature. We
assume, therefore, that the perturbed motion has a principal function

of the form

(5)

whereF is a periodic function of the w
p

's with the fundamental period

1, and such that the canonical transformation with the generator S,

viz.

W.=. J =Ja
(6) c)F 8V

W+*r J/^+aT,
P P

transforms the function H x into a function of the J
fc
's alone :

(7) H^o; ^-VHW^J,,).
The portion of S depending on w>

p , Jp, viz.
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a=l

satisfies the Hamilton-Jacobi partial differential equation

The variations of w
p
J
p

are determined, therefore, from the mean of

the perturbation function just as the original co-ordinates of a system
are from the total energy function.

To this approximation the solution takes the form

J
fi

= -const. Wa
J

p
=const. w

p
=

where

_sn"
tt

~

We see, therefore, that the rates of variation of the w
p
\s arc in fact small

compared with those of the wa
's and vanish for A=0. In celestial

mechanics the name "
secular perturbations

"
has been introduced

for such slow motions.

It will be seen from (6) that the original co-ordinates q and p of

the system are now periodic functions of the new angle variables w
p
as

well as of the old angle variables wa .

For the motions represented by equation (8) also, cases of libra-

tion. rotation, or limitation may occur. This problem is soluble

practically only if the differential equation (8) is separable in the

variables w? 9
or if it is possible to find other separation variables.

That is the case, for example, if all the variables w
p ,

or all with the

exception of one, are cyclic ;
the simplest case is that in which only

one variable w
p appears, i.e. when the unperturbed system is simply

degenerate.

Further, it may happen that the problem defined by H is also

degenerate in respect to certain w
p '&,

in which case these w
p
s remain

constant during the motion. By the addition of a further perturba-
tion function these w

p

9
s can, of course, become secularly variable.

The calculation of the mean value of the perturbation function H!
is frequently simplified by employing the original variables q, p in-

stead of the angle variables, and averaging with respect to the time.

The orbital constants of the unperturbed motion, which occur in the
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mean value H 19 have then to be replaced subsequently by the de-

generate angle variables w
p
and by the action variables J^. .

In the case of a system subject to internal forces only, the azimuth,

about any straight line fixed in space, of a plane passing through the

axis of the resultant angular momentum and this straight line is a

degenerate co-ordinate and is constant. If now a weak external

homogeneous field, having the direction of this straight line, acts on

this system, the mean value of the perturbation function AH^ cannot

depend on this azimuth. If now there is no other degenerate vari-

able of the unperturbed system which could be secularly varied by
means of the perturbation function (as is, for example, the case for a

hydrogen atom in an electric field, cf. 37), then the only secular

motion induced by the external field is a precession of the resultant

angular momentum about the direction of the field with the frequency

We have then an approximate realisation of the case of spatial quan-

tisation, dealt with in the foregoing paragraph. The exact motion

differs from that described by small superimposed oscillations ;
it

is a
"
pseudo-regular precession."

19. Quantum Theory of the Top and Application

to Molecular Models

We have already examined (in 12) the motion of diatomic mole-

cules, which we considered as
u
rotators." We shall deal now with

the general case of molecules containing several atoms, regarded, to a

first approximation, as rigid bodies. The case of diatomic molecules,

mentioned above (and generally of molecules for which all the atoms

lie on a straight line), will then appear as a limiting case, and we shall

obtain, at the same time, a more rigorous foundation for our previous
results.

The conception of molecules as rigid bodies must, of course, be

founded on the electron theory ; for, actually, the molecule is a

complicated system made up of several nuclei and a large number
of electrons. It can in fact be shown * that the nuclei move, to a

close approximation, like a rigid system, but the resultant angular
momentum of the molecules will not be identical with the angular
momentum of the nuclear motion, because the electron system itself

possesses, relatively to the nuclei, an angular momentum of the same

1 M. Born and W. Heisenberg, Ann. d. Physik, vol. Ixxiv, p. 1, 1924.
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order of magnitude. We arrive, therefore, following Kramers and

Pauli,
1 at the conclusion that the adequate molecular model is not

simply a top, but a rigid body, in which is situated a fly-wheel with

fixed bearings. We shall consider then, in this paragraph, the theory
of this top provided with a fly-wheel.

Let the top, including the mass of the fly-wheel (which we take as

symmetrical about an axis, so that the mass distribution is not

altered by its rotation), have the principal moments of inertia A,, A tf ,

Aa ,
the axes of which shall be, at the same time, the axes of a co-

ordinate system (x, ?/, z) fixed in the top ;
let A be the moment of

inertia of the fly-wheel. Let a be the unit vector in the direction of

the axis of the fly-wheel, the angle of rotation of the fly-wheel

about its axis, and ^o> its angular velocity. As before, we note

by d the vector of the angular velocity of the whole top, and to

define the position of the top relative to axes fixed in space, we

again employ the Eulerian angles 6, ^, i/j (0 and i/t pole distance and

azimuth of the As-axis, (f>
the angle between nodal line and the A^-

axis). The relations between the derivatives of 0, <, iff
and the com-

ponents of d have been given previously (in (2), 6). Let D be the

vector of the resultant angular momentum of the body.
The components of the total angular momentum are made up of

the components due to the top alone and those of the fly-wheel :

(1) D
lf
=A

ir
d

lf+A .

The angular momentum of the fly-wheel about its axis is

(2) Q=A(oH-(da)).

The four equations of motion are obtained by applying the principle

of the conservation of angular momentum. In the first place, the

total angular momentum must remain constant in magnitude, and

in a direction fixed in space ;
this gives the Eulerian equations

D=[D, d].

Secondly, the angular momentum of the fly-wheel can be changed

only through interaction with the body of the top resulting in a

change in direction of the axis ;
its alteration is therefore perpen-

dicular to the axis, so that its component in the direction of the axis

is constant
;

i.e.

1 H. A. Kramers, Zeitschr. f. Physik, vol. xiii, p. 343, 1923 ; H. A. Kramers and
W. Pauli, jr., Zeitschr. f. Physik, vol. xiii, p. 351, 1923.
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(3) S3=const.

The kinetic energy is

(4) T=H(dD)+coQ];
on substituting the expressions (1) this becomes

(5) T-|[AA2+AA2+AA2
+Ao>(ad)+a>i}].

In order to obtain the energy as a function of the components of the

angular momentum we substitute in (5) the values of d*, dv , d z cal-

culated from (1) :

We calculate w by deducing a relation between aj and (da) by multi-

a*

'A,

O O Q

plying the equations (1) by ~, -^, -^respectively, and adding; from

this and (2) we get

2 aJD, _
Ax. A v A~

and obtain therefore

U, r+S ni M^ W-v^,^
2

"

1

~~~

W T
2

A ,

A A 1 a 2 a 2 Q 2
k.,2 **-]/ -**-S

J
<*JR C*|/ <*2

x\.
-^-a* ~^^y ~^z

Besides this integral, we have the principle of the conservation of

the angular momentum which gives :

(7 )
D2

=J)X
2+Dy

2+D,2 -const.

The general character of the motion can be summarised as follows :

The components of D are the co-ordinates (relative to the axes (#, y, z)

fixed in the top) of the point in which the invariable axis of the

system (i.e. the axis of resultant angular momentum, which is fixed in

space) penetrates the sphere (7). This point traverses the curve of

intersection of the sphere with the ellipsoid (6), which is rigidly

connected to the top. In the fixed co-ordinate system, therefore,

the x, y, z system of axes, fixed in the top, executes a periodic nuta-

tion superposed on a precession about the axis of resultant angular
momentum. In the case where the sphere touches the ellipsoid the

motion becomes a rotation about a permanent axis.

In order to formulate the quantum conditions for the motion we
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must return to the co-ordinates 9, ^, $ and calculate the correspond-

ing momenta. If we suppose the kinetic energy T expressed as a

function of 0, </), t/j
and their derivatives, by means of the relations

(2), 6,

d
>r
-=0 cos

(f)~\~i(f
sin 6 sin <

&y -=9 sin
(/) t/j

sin 9 cos <

Az =--(j)-[-ifj
cos 0,

we obtain :

_ar_aT ad. aT d&v aT ad2

p
'~dd~~d&t lrt ttiylri a< a

aT aT ad^ aT d&y aT ad,
<n T_ _

-__ ____ I __ .. I ___7

a< ad, a</>
ady a</>

ad2 a<

ai aT adx aT ad aT ad,
rn -

;_-_ __. I __ J _ _*

*
a</r adx ai/r ady dj> ad, a^
aT

Since, by (5), the derivatives of T with respect to d.r, d
tf , d, are the

components Dx , D^, Dz of the angular momentum (1), it follows that

e x cos <

=rDa; sin sin
<^ D y sin cos +-D~ cos

Since the constant angular momentum can have an arbitrary direc-

tion in space, the motion is degenerate and we can reduce the number

of degrees of freedom by I. We can, for example, without loss of

generality, choose the fixed polar axis00 of the Kulerian co-ordinate

system in the direction of the resultant angular momentum D, in

which case we get :

D^Dsin 0sin0
(8) Dv=-Dsin0cos</>

D,=D cos

(D= |

D
|),

and the momenta become :

P^= cos

p.=Q.

Cos is determined as a single valued function of 0, owing to the

fact that a curve on the ellipsoid (6) is prescribed for the end point
8
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of D, and that this curve will be traversed just once during one

revolution of
<f).

It will be seen then that the motion is separable

in the co-ordinates 9, $, <f>, ,
and leads to the action integrals

$p diff=-27rT) ; $jyfy=D$ cos

and to the quantum conditions :
l

(10) D$ cos ed<f>=n*h

The second quantum condition admits of a simple interpretation.

The surface on the sphere (7), which the point of the vector D
passes round in a negative direction of rotation, is given by

F=-Da

JJsin ed0d<f>=D*tfd(cos 0)<fy.

If we carry out the integration with respect to 0, we obtain, if the

boundary of the surface does not enclose the polar axis :

n*FD2
! cos 0dJ>=27rD2-

;T m

if it encloses the positive polar axis :

m
if it encloses the negative polar axis :

m
and if it encloses both ends of the polar axis :

,

F=D2
$(2-cos 0)<ty=27rD

2---
.

m

In all cases the ratio to the hemisphere is

n

where n is a whole number, and the second quantum condition can

be formulated as follows : the ratio of the surface cut out from the

sphere (7) by the vector D to the hemisphere is equal to n/m ;

n can take the values 0, 1 ... 2m.

1 In the case of the top we do not denote the quantum number of the resultant

angular momentum by j, as in the general theory, but by w, because this letter is

used to denote the terms of a molecular rotation spectrum (see Rotator, 12).
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We shall now apply our considerations to the case of an ordinary

top without an enclosed fly-wheel.
1 For the components of the angu-

lar momentum we obtain, in place of (1) :

the equation (5) for the energy becomes

T=HAA2+AA2

On introducing the components of angular momentum,

m ,_a-w+v+vi
21 Ax Ay Kz }

If in this case also we take the fixed polar axis in the direction of the

resultant angular momentum, the relations (8) are again valid and

we have

(13, T=

We get two quantum conditions :

(U\
v '

Dj> cos i

In the second condition we have to write cos 9 as a function of
<f>

with the help of the energy W, which is equal to T since there are no

external forces. It follows from (13) that

OA\7 ' *

2 JL 2

^_ / L j 1

C080=~ ^ A* AV
1

(/)
COS2

A, \ A,
'

A,

and the second quantum condition becomes

(15)

It leads to an elliptic integral, containing the energy W as para-

meter. The calculation of W as a function of the quantum numbers

m and n cannot be carried out explicitly, except in the case of rota-

tional symmetry (A^ A v )
which we have already dealt with ( 6).

1 See F. Reiche, Physikal. Zeitechr., vol. xix, p. 394, 1918; P. S. Epstein, Verh.

d. Dtsch. phys. Ge*\, vol. xviii, p. 398, 1916 ; Physikal. Zeitechr., vol. xx, p. 289,

1919.
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In this case, A^A^, the energy (13) becomes

tj>
will likewise be a cyclic variable and 6 is constant. From (14), the

quantum conditions are :

mh

27T

therefore

nh
Dcos0= ;

n
cos#=

,m

i.e. we have a kind of space quantisation, for which the angular

momentum precesses not about an axis fixed in space but, relative

to axes fixed in the top, about the axis of figure. As a function of

the quantum numbers the energy becomes

If one considers how the co-ordinates of a point of the top are ex-

pressed in terms of the cyclic co-ordinates and
(f> (by finite Fourier

series), it will be seen that, in the series for the electric moment,
the frequencies v^

and
v^

occur in general with the coefficients and

1. The quantum numbers n and m can therefore change by and

1. When the electric moment has no component parallel to the

axis of figure the transition Aw is excluded.

An application of the energy equation (16) to multiply atomic

molecules would give several systems of rotation bands, displaced
from one another by fixed amounts, with the arrangement of

lines in any one band satisfying a formula of the simple Deslandres

type (c/. 12).

At this stage we raise the question how it is possible to derive

from the top formula (16), by a limiting process, the formula (1), 12,

for the rotator, and we shall show to what extent the application of

the rotator formula to a diatomic molecule is justified. If we have

the ideal case of a system consisting of two rigidly connected par-

ticles, then we have to put Aa=0 in the top formula (16), and, in

order that the energy may remain finite, n can take the value only.

We obtain then for the energy the previous rotator formula (1), 12 :
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Actually, however, in the case of diatomic molecules, we have to

deal with systems where, in addition to the nuclei which are practi-

cally points of large mass, a number of electrons are present, which

move around the nuclei and may, under certain circumstances,

possess angular momentum about the line joining the nuclei. This

system may be roughly compared to a top, whose moment of inertia

Az about the nuclear axis is small in comparison with the moment of

inertia A^ about a perpendicular direction. For an invariable electron

configuration, the quantum number n, and consequently the second

term in the energy (16), is a constant. For the dependence of the

energy on the state of rotation we have therefore

A2

(17) W=We

In general, in a quantum transition n, and consequently the contri-

butionWe to the energy from the motion of the electrons, varies, and

apart from this m varies by or 1. If we leave undetermined the

dependence of W, on the quantum numbers, since the conception of

the electrons as a rigid top is naturally very doubtful, we obtain for

the frequency radiated in a transition (neglecting the frequency v=ve

corresponding to Am 0)

W
r ,
and so ve ,

is very large in comparison with the term originat-

ing from the rotation, on account of the smallness of Az in (16).

Since the rotation term alone gives rise, as already shown, to lines

hi the infra-red, the spectrum represented by (18) is displaced towards

higher frequencies, and so may lie in the visible or ultra-violet regions.

We have in this the simplest band formula which represents to the

roughest approximation the observed bands. From the observed

separation of the lines the moment of inertia A,,, of the molecule

may be calculated.

In passing from the energy equation (17) to the frequency equation

(18), the assumption is made that the moment of inertia A^ does not

vary with a change in the electron configuration. If this assumption
be dropped and we assume that A,,, changes from AaW to AB(

8
), we

get, for Am=l, the frequencies
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(19)
V=Ve

where

=?+
h

(20) b=-

h I 1 1
n I 1

87r*\A,0) AXW/'

The frequencies (19) constitute the
"
positive and negative branches

"

of the band. For Aw=0, the
"
null branch

"
is obtained :

1 1

It is absent if the electric moment of the molecule is perpendicular

to the axis of rotation.

We obtain the distribution of the lines in the three branches by

drawing the three parabolas (J9) (with + and signs) and (21), and

dropping perpendiculars on the i>-axis 1 from the points corresponding
to positive integral values of m (see fig. 8). One of the two branches

(19) covers part of the v-scale twice, the lines are concentrated (with

finite density) at the reversal point, the
"
band-head." The line in

which the positive and negative branch intersect (m 0) is called the
"
null line." To calculate the moment of inertia from an observed

band, the constant b must be known, and for this one must know the

position of the null line of the band. If a null branch is present its

position serves to indicate the null line. If, however, the null branch

is absent, the properties of the band given here do not suffice. It

appears, however, that the intensities on the two sides of the null line

are symmetrically distributed, and the null line itself has the inten-

sity ;
we shall return to this point again shortly.

Kramers and Pauli have endeavoured to treat the band spectra of

molecules whose electronic angular momentum has a direction fixed

in the molecule but is otherwise unrestricted, and to explain the

absence of the null line, by applying to molecules the model of the

top with an enclosed fly-wheel.

The top represents here the nuclear system (considered rigid) and

the fly-wheel represents the angular momentum of the electrons.

Since the dimensions of the electron orbits in a molecule are of the

1
Comp. A. Sommerfeld, Atomic Structure and Spectral Lines (Methuen), p. 427.
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same order of magnitude as the nuclear separations, and the mass of

the electron is small in comparison with that of the nucleus, A is a

magnitude small in comparison with A^, Av ,
Az ; the quantum

conditions require, moreover, that the angular momentum 13 of the

rn

O12 3 5 6

Band

FIG. 8.

electrons shall be of the same order of magnitude as the resultant

angular momentum D.

We now develop T in powers of A and break ofE the series after the

second term :

The first term of this expression is a constant (the energy of the

electron motion), the second term
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(22) E=

is the energy of the gyroscopic motion of the molecule.

The stationary motions are obtained when mlift-n is put for the

resultant angular momentum |D| and the values of E so chosen that

the ellipsoid represented by (22), whose centre is at the point 12a, cuts

from the sphere |D|=const. a surface whose ratio to that of the

hemisphere is n/m ;
we shall return later to the consideration of the

significance of Q and the question whether this quantity is to be sub-

jected to a quantum condition.

In the case of diatomic molecules we take the z-axis in the line

joining the nuclei, and the #-axis in the plane determined by the

axis of the angular momentum of the electrons and the line joining

the nuclei. We then have aw =0, Az small in comparison with A^ and

Ay (in the ratio of electron mass to nuclear mass), and (to the same

approximation) Aa.=Ay . The ellipsoid represented by (22) degener-

ates into a flat circular disc, parallel to the (x, y)-plane, having Uax,

0, 2a 2 as the co-ordinates of its central point.

The curve of intersection of this degenerate ellipsoid with the

sphere encloses a surface the ratio of whose extension in the z direc-

tion to the radius of the sphere is VAZ/AX . For values of the result-

ant angular momentum D which are not too great, only the quantum
number n=0 is permissible. This signifies that the flat ellipsoid

touches the sphere. If E be allowed to increase from to oo
, such a

contact occurs twice, irrespective of whether the centre point of the

ellipsoid lies inside or outside the sphere. Of the two corresponding

types of motion only that corresponding to the smaller value of E
is stable, since only in this case will the curve cut out from the sphere
for a small increase of E be closely confined to the region surround-

ing the point of contact, i.e. the motion remains in the immediate

proximity of the stationary motion.

The point of contact must lie in the plane passing through the

middle point of the ellipsoid and the nuclear axis
;
from this it follows

that Dv=0. We conclude from the relation

which implies that the normal to the sphere coincides with that of

the ellipsoid at the point of contact, that

Da-a^
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is of the order of magnitude A^/Aa.. We can therefore neglect the

third term in the energy formula (22) and write

It will be seen from fig. 9 that for this we can write also

E=

If the quantum number m be

introduced together with the

quantities and
,
defined by

ZTT

Oa,

-,

it ollows that

(23)

Dx
FIG. 9.

This is a generalisation of the formula for the energy of a simple

rotator, which is obtained by putting
==0.

If the angular momentum of the electrons is directed along the

nuclear axis (0), then

This formula agrees with that for the symmetrical top (16), if the

term there proportional to -
(as electron energy) be removed and

put equal to n.

The general formula (23) has been used in different ways by
Kratzer,

1 and Kramers and Pauli,
2 to explain the observed

phenomena, that, in a system of equidistant band lines, one line

is missing.

Kratzer uses the formula (23) for the case where =0, i.e. the angu-
lar momentum of the electrons is perpendicular to the nuclear axis.

From 7 9

1 A. Kratzer, Sitz.-Ber. Bayr. Akad. Math.-phys. KL, p. 107, 3, 1922.
2 H. A. Kramers and W. Pauli, jr., Zeitschr.f. PhyM, vol. xiii, p. 351, 1923.
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he obtains for the frequency radiated in the transition

(keeping the electron configuration constant)

(24) ^+_*_(m_ +t),

and for the frequency radiated in the transition m->m+l

(25) p=?.__.(m

The positive and negative branches consist therefore of equidistant

lines, which begin in general at different places ;
the positive branch

begins at \ ,
the negative at (). By forbidding the state

w=0 and putting ~\ Kratzer thus deduces a gap, of twice the

width of the ordinary separation of the lines, between the two

branches.

Kramers and Pauli show that this remains essentially valid if

does not vanish. In this case m must be > and the expansion of

E in terms of 1/m,

remains approximately valid even for small values of m (except for

2
f

m=0, which cannot occur if =)= 0)- If we neglect the term
,
we

m
obtain the same frequencies (24) and (25) as above, thus also the

correct size of the gap in the case f=J.
The value =% can arise by the angular momentum of the electrons

being h/fa and making an angle of 30 with the nuclear axis. This

assumption leads, however, to difficulties in connection with the

intensities given by the correspondence principle.
1 For this reason

Kramers and Pauli return to the assumption =, =0, in other

words to an electron momentum (with a
"
half

"
quantum number)

perpendicular to the nuclear axis.

20. Coupling of Rotation and Oscillation in the

Case of Diatomic Molecules

The bonds between the atoms which are combined to form a mole-

cule have hitherto been regarded as rigid ; this is only approximately

1 There are other difficulties, inasmuch as an electron angular momentum which
is not parallel to the nuclear axis is only possible for certain degenerations of the
electron motion (M. Born and W. Heisenberg, Ann. d. Physik, vol. Ixxiv, p. 1, 1924).
Prof. W. Pauli informs us that the rigorous treatment of these degenerations leads

to parallel and perpendicular orientations only for the angular momentum of the
electrons.
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true, however, for the atoms will in fact execute small oscilla-

tions with respect to one another. The problem now is to find what

influence these oscillations have on the energy and on the frequency
of the radiated or absorbed light.

The actual nature of the forces which bind the molecule together

will be determined in an extremely complicated manner by their

electronic and nuclear structure. Here we shall make the simplest

possible assumption, viz. that the atoms may be regarded as centres

of force which act on one another with a force depending only on the

distance ;
it can be shown that the results so obtained represent a

correct approximation to the actual behaviour. 1

As regards the angular momentum of the electrons in diatomic

molecules, we have seen in the previous paragraph that it has no

influence on the rotational motion of the nuclei, and gives rise only
to an additive term in the energy if its axis is parallel to the line

joining the nuclei. The same must be true when the nuclei perform
oscillations in this direction ;

we shall therefore restrict ourselves

here to this case.

We consider, therefore, a diatomic molecule, consisting of two

massive particlesmi andw2 , separated by a distance r, between which

there exists a potential energy U(r).

It may be shown quite generally, that such a two-body problem

may be reduced to a one-body problem. We choose the centre of

gravity of the two particles as the origin of co-ordinates and deter-

mine the direction of the line joining m 2 and m l by the polar co-

ordinates 0, (f>.
If then 7

1

! and r z are the distances of the particles

from 0, their polar co-ordinates will be r
l9 0, <f>

and r 2 , TT 0,

and further, r 1+r2=r. The Hamiltonian function becomes

sin2 9)+('t^+r+r^ sin2 0)+ U(r)
A A

sin2 0)+U(r).

Since r x and ra are measured from the centre of gravity,

and therefore

If this be substituted in H, we get

1 M. Born and W. Heisenberg, Ann. d. Physik, vol. Ixxiv, p. 1, 1924.
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(1) H= (*
2
+r*fc +r*<f>* sin2 6)+ U(r),

4

on writing

Now the expression (1) is the Hamiltonian function of the motion

of a particle of mass /x under the action of a centre of force from

which it is separated by the distance r.

In the following chapter we shall investigate this problem quite

generally ;
here we shall consider only the case where a position of

stable equilibrium exists, this being the only case of importance in

connection with molecules. 1 There will then be a distance r
,
for

which U(r) is a minimum, i.e.

(3) O '=0, U ">0,

where the index denotes here, and in what follows, the value of a

quantity at r r .

A possible state of motion of the system is a rotation with a con-

stant nuclear separation r and a uniform angular velocity < about

a fixed axis, passing through the centre of gravity of the masses

and perpendicular to the line joining them (nuclear axis). We take

the axis of rotation as the line 0=0, and have :

(4)

where the bar denotes here, and in the following, the value of a quality

We take this motion as the starting-point for an approximate
method of dealing with small oscillations. We suppose the separa-

tion /" increased by a small amount x so that r=r -\-x, and develop the

Hamiltonian function, regarded as a function of x, (f>
and the corre-

sponding momenta, in powers of x. The Hamiltonian function is

The momentum

associated with
(/>

is constant, because
<f>

is cyclic ; moreover, p is the

angular momentum ;
for x=Q, therefore

(5) P=/"Vo-
The momentum corresponding to x is

1 M. Born and E. Huckel, Phyaikal. Zeitechr., vol. xxiv, p. 1, 1923 ; see also A.

Kratzer, Zeitschr. /. Physik, vol. iii, pp. 289 and 460, 1920.
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px =t*x.

Consequently

On expanding in powers of x we get

The coefficient of x vanishes since by (4) and (5)

^,2 _
(7>

^=u';
the Hamiltonian function has therefore the following form :

(8) H=W +^+|
where

(9)

This reduces the problem to that of the non-harmonic oscillator,

which we have discussed in 12.

If we now introduce angle and action variables we have to put

and then to introduce wx and 3X in place of x and px,
in the manner

explained for the non-harmonic oscillator. If we take into considera-

tion the terms in x* in (8), we find
(cf. (9), 12)

(10) H=W
(J)+JXJ)+J>(J),

where for shortness we write

Similarly, if we take into account the term 6x4
,
H assumes to the same

approximation the same form, only a depends^also
on b. The func-

tions W (J) and v(3) are found by calculating r as a function of p
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or J from (7) and substituting in (9). Actually in order to calculate

them the function U(r) must be known exactly. If we restrict our-

selves, however, to such small velocities of rotation that the deviation

r r =r1 ,
caused by the centrifugal force, is small in comparison

with TQ, our objective may be attained by means of an expansion in

terms of rr Since U '=0, equation (7) may be written, to a first

approximation

from this we obtain

J2 1

1

47rV
Further

therefore

a also can be expanded in the form

We have omitted here all terms of order higher than the first in J2
.

The energy as a function of the action variables now becomes

where A=/u,r
2 is the moment of inertia in the rotationless state, and

v and a have the meaning assigned above.

If we neglect the terms in Jx
2 and J^J

2
,
and consequently the non-

harmonic character and the dependence of the v's on J, the energy is

resolved into a rotational component and an oscillation component
of the well-known form. As a nearer approximation we have a de-

pendence of the oscillation frequency on the rotation quantum
number and also the non-harmonic character of the oscillation.

Naturally our method admits of more accurate calculations of the

energy, involving higher powers of J and Jc .
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We shall apply the results obtained to the spectrum of diatomic

molecules. In the stationary states they have the energy

(12) W=U

where m is the rotation and n the oscillation quantum number.

The frequency corresponding to the transition

s

For fixed values of the initial and final oscillation quantum numbers

n 1 and n 2 and varying values of the rotational quantum number m,
this gives a band with the branches (to which a null branch may be

added) :

(14) v=abm+cm2
,

where a, 6, and c have a somewhat different meaning from that in

(20), 19.

The frequencies

(15) V^VQ^ n 2)+haQ(ni* n 2
2
),

which can be ascribed to the change of oscillation quantum number
alone and so may be called " oscilktion frequencies," are displaced
from the null line of this band by

Thus we obtain a band system which is made up of individual bands

corresponding to the series of values of % and n 2 . The positions of

the individual bands in the system are given by (15), while (14) gives
the law of arrangement of the lines in the individual bands.

The infra-red spectra of the halogen hydrides are of the type de-

scribed here but without null branches.1 These spectra consist of

individual
"
double bands," i.e. an approximately equidistant succes-

sion of lines, which are symmetrically situated with respect to a gap.
In this gap we have to imagine the null line mentioned in 19. A
doubling-back of the one branch is not observed in this case.

1
Measurements, especially by E. S. Imes, Astropkys. Journ., vol. 1, p. 251, 1919.

For the theory of A. Kratzer given hore, sec Zeitschr.f. Physik, vol. iii, p. 289, 1920.
See also H. BeU, Phil. Mag., vol. xlvii, p. 549, 1924.
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The oscillation frequencies in the case of HC1 are at v=2877 and

v=:5657 (in
" wave numbers," i.e. number of waves per cm.). The

corresponding bands appear in the case of absorption at the ordinary

temperature. They correspond, therefore, to a change in the oscilla-

tion quantum number for which the initial state has so little energy
that it is present to a considerable degree at the ordinary tempera-
ture

; that, however, can only he the oscillation state n2 --0. We
assign, therefore, to the two bands observed the two transitions

for absorption, or the values% 1 and n 1=2 respectively, and n 2=0
for emission. In accordance with the theoretical formula (15)

the second band is not situated exactly at twice the frequency of the

first.

An alteration of the rotation and oscillation quantum numbers

may be accompanied by a simultaneous alteration in the electron

configuration of the molecule. A frequency

corresponds to a transition between two stationary states with the

energies

where

(18) v
l(tt

---

Altogether we obtain a band system whose individual bands exhibit

the structure described in 19, and are arranged according to the

formula (17). Written somewhat differently, it is

Since, in general, i>01 and v02 are of the same order of magnitude and

their difference is small compared with the values themselves, the

first term is the most important. It defines the position of a
" band

group
"

in the band system ;
a group contains, therefore, all bands

for which n changes by the same amount. The next term defines

the individual bands, inside the band group, in terms of their final

quantum numbers,



PERIODIC AND MULTIPLY PERIODIC MOTIONS 129

A beautiful example of a band system is provided by the violet

cyanogen bands. 1
Fig. 10 gives the positions of the null lines and

Offit
123VS

FIG. 10.

OiZ

their wave-lengths : the first row underneath the oscillation quantum
number in the initial state, the second row that in the final state. 2

1
Explained theoretically by A. Kratzer, Physikal. Zeitechr., vol. xxii, p. 552, 1921 ;

Ann. d. Physik, vol. Ixvii, p/127, 1922.
2
According to A. Kratzer, loc. cit.



THIRD CHAPTEK

SYSTEMS WITH ONE RADIATING ELECTRON

21. Motion in a Central Field of Force

THE applications of the principles of quantum mechanics, developed
in the second chapter, are at present considerably restricted, owing
to the fact that these principles are concerned only with multiply

periodic systems. The first example dealt with by Bohr, namely,

systems consisting of a nucleus and a single electron (the hydrogen
atom and the similar ions He+

,
Li++

, etc.), satisfies this condition of

periodicity. In the case of other atoms the same difficulties underlie

an examination of the periodic properties as in the case of the many-

body problem of astronomy, and we can proceed only by a method

of approximation. Bohr realised that a large number of atomic

properties, especially those which exhibit themselves in the series

spectra, may be explained on the hypothesis that one electron, the
"
radiating electron

"
or

"
series electron/' plays a special role in

the stationary states under consideration. The essential feature of

these states is that this one electron is in an orbit, which, at any
rate in part, is far removed from the rest of the atom, or

"
core,"

x

and exerts only a small reaction on the latter. We shall always

speak, therefore, of the stationary orbits of the radiating electron,

since we neglect the changes taking place in the core. The spectrum
of the atom corresponds then to transitions of the radiating electron

from one orbit to another.

This assumption implies that the motion of the outer electron is

multiply periodic, and that, in traversing the core, the electron

neither gives up energy to nor receives energy from it. Motions of

this kind are quite special cases according to classical mechanics, for

the motions of the core electrons must be such that their energy is

the same after every period of the outer electron, a condition which

1 German, Rumpf. The English equivalent of this word is not completely
standardised: the alternatives "body," "trunk," "kernel" have been used by
different writers.

130
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is evidently fulfilled only by strictly periodic solutions of the com-

plex many-body problem. Since, however, a large number of obser-

vations may be explained in a surprisingly simple way by such

stationary orbits of the radiating electron, it appears that we are

here dealing with some general process, which cannot easily be ex-

plained by such singular types of motion. We have here the same

failure of the classical mechanics as was brought to light by Franck's

researches on electron impact ;
the exchange of energy between

electron and atom, or atom core, is restricted in a manner similar

to that familiar to us in the energy interchange between an atom
and radiation.

At present we cannot express this non-mechanical behaviour in

formulae. We endeavour to substitute for the atom a model which

possesses, in common with the actual atom, this characteristic pro-

perty of the absence of energy exchange between core and electron,

and to which the principles of the quantum theory, developed in the

second chapter, are applicable. The simplest assumption is that the

action of the core on the radiating electron can be represented by
a spherically symmetrical field of force. Further development has

shown that this simple hypothesis suffices to provide an explanation
of the main characteristics of the spectra of the first three divisions

of the periodic table and their sub-groups. The conception of a

single
"
radiating electron

"
is, however, no longer adequate to

explain the spectra of the remaining elements, but these considera-

tions are beyond the scope of this book.1

For this reason we shall now deal with the motion of a particle in

a central field of force. The motion in a Coulomb field of force (such

as we have in the case of the hydrogen atom) will be found from this

as a special case.

So far as the calculation is concerned it is immaterial whether we
consider our problem as a one-body or as a two-body problem. In

the first case we have a fixed centre of force, and the potential of the

field of force is a function U(r) of the distance from the centre. In the

second case we have two masses, whose mutual potential energy U(r)

depends only on their distance apart ; they move about the common
centre of gravity. As we have shown generally in 20, the Hamil-

tonian function in polar co-ordinates is precisely the same for the

two cases, if, in the one-body problem, the mass p of the moving

1 For the development of the theory of complex spectra, see H. N. Russel and
F. A. Saunders, Astroph. Journ. t vol. Ixi, p. 38, 1925 ; W. Pauli, jr., Zeitsch. f.

Phys., vol. xxxi, p. 765, 1925 ; W. Heisenberg, Zeitschr. f. Phys., vol. xxxii, p. 841,

1925; F. Hund, Zeitsch. f. Phys., vol. xxxiii, p. 346; vol. xxxiv, p. 296, 1925.
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body and its distance r from the centre are used, and if in the two-

body problem /*
is defined by the equation (2), 20,

-=-+-,
/LC

m1 m2

'

and r is the distance between the two masses. The following equa-
tions admit then of both interpretations.

We work with polar co-ordinates r, 6, and <f>. Making use of the

canonical transformation (13), 7, which transforms rectangular into

polar co-ordinates, we obtain for the kinetic energy,

22*5
where pr , pe , p^ are the momenta conjugate with r, 0, ^ respectively.

We arrive, of course, at the same expression when we calculate from

sn2

2

the momenta :

and use them to replace r, 9, <f>.
The structure of the Hamiltonian

function

shows that r, 0, <f>
are separation variables. If one puts

(2) S=Sr(r)+Se(0)+S/<),

the Hamilton-Jacobi differential equation

splits up into three ordinary differential equations :

which can be solved for the derivatives of S :



SYSTEMS WITH ONE RADIATING ELECTRON 133

d$r

Of the three integration constants W denotes the energy ;

==xr2 sn2

is the angular momentum about the polar axis (i.e. the line 6=0), and

is the magnitude of the resultant angular momentum. Since also

the direction of the angular momentum is constant (as in every

system subject to internal forces only), the orbit is plane and the

normal to the plane of the orbit is parallel to the vector representing
the angular momentum. The inclination i of the orbital plane to the

(r, <)-plane is given therefore by

a>4=a, cosi.

We consider next the general character of the motion and then

determine the energy as a function of the action variables for the

case of a periodic motion and, finally, we consider the progress of the

motion in time.

The co-ordinate
(f>

is cyclic and performs a rotational motion
(cf.

9). The co-ordinate 6 performs a libration or limitation motion in

an interval, symmetrical about w/2, whose limits are given by the

zero points of the radicand in the expression of pe, i.e. by

sin 0=-_*= cos i, 0=--j-i.
a 2

Further, the character of the motion depends essentially on the be-

haviour of the radicand in the expression for pr ,

We investigate the various possible cases on the supposition that

U(r) is a monotonic function of r and that the zero of potential

energy is so chosen that it vanishes for r= oo .
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Case 1. In a repulsive central field of force U(r) is positive. In

order that positive values of F(r) shall occur at all, W must be posi-

tive. F(r) will then be positive for large values of r, decreasing con-

tinually with continuously decreasing r ;
for small values of r, F(r)

is certainly negative ; F(r) has therefore exactly one root. The

motion takes place therefore between r=oo and a minimum value

of r.

Case 2. In an attractive central field, U(r) is negative, and W
may be positive or negative. The sign F(r) for large values of r is

determined by W. For positive W, F(r) is positive there, and there

are motions which extend to infinity. There are no such orbits for a

negative W. In the case of W=0 the variation of U with r, and, in

certain cases, the magnitude of a
e ,

is the deciding factor. The sign

of F(r) for small values of r depends on the rate at which
j U(r) |

be-

comes infinite. If, for small r, it increases more rapidly than 1/r
2
,

1

F(r) will be positive there, and there will be orbits which approach

indefinitely close to the centre of force
;

if
| U(r) |

becomes infinite

more slowly than J /r
2 there will be no such orbits

;
if

| U(r) j ap-

proaches infinity as 1/r
2

,
the magnitude of a

e
is the deciding factor.

Further, there are cases where, in addition to paths extending to the

centre and to infinity, orbits exist which extend between two finite

and non-zero values of r, rmm and rmax ;
this is the case when rmin

and r
raax

are consecutive zero points of F(r), between which F is

positive. In the case where
| U(r) |

becomes infinite more slowly than

1/r
2 it is certain that there are values of W for which such a libra-

tion sets in ;
for negative W there are in fact, in this case, no other

motions but librations.

In many applications to atomic physics we are only concerned

with those motions in which the electron remains at a finite distance

from the centre and which are periodic. We consider therefore in the

following only the case of attraction and take forW values such that

F(r) is positive between two consecutive roots rmm and rmax.

In this case we can apply the methods developed for periodic

motions. We obtain the action integrals

1
Mathematically expressed, this has the following significance : the order of

magnitude of
| U(r) |

is larger than that of 1/r
2 for small values of r. The order

of magnitude of a function f(x) (>0) is greater than the order of magnitude of the
function g(x) (>0), for small values of x, if

/(*) and g(x) have the same order of magnitude if the limiting value of
-j-r-

r is a
J\^f

finite constant.
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(4)
JJ/)=

With the help of the substitution

a
1i

a
e

the second integral takes the form

Jn=

The evaluation of this integral (cf. (3) and (8), Appendix II) gives

J^M** %)

We can now express a
e
and a in terms of the action variables

In order to find the energy as a function of the J's we should have

to solve the equation

(6)

for W. This is impossible without a detailed knowledge of U(r) ; it

is seen, however, that W depends only on Jr and the combination

J0+J . The two frequencies

aw

are therefore equal and the system is degenerate. In accordance with

the fundamental principles developed in 15, we introduce new

variables w
l9
w 2 , w& and J 1? J 2 ,

J3,
so that w.3 is constant. We

arrange at the same time that, in the case of the Coulomb field of

force, where vr=v& v^ that the variable w 2 shall also be constant.

We write, therefore, in accordance with (8), 7
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Wl=Wr Jl=Jr+J0+J
(7) W2=We

-Wr J2=J0+J,
W3=w*We J3=J,-

The equation (6) contains then only Jx and J 2 ,
and we derive the

energy W in the form

(8) W=W(J,, J 2).

For the stationary motions we have, provided there is no further

degeneration (e.g. no Coulomb field), the two quantum conditions :

n is called the principal quantum number and k the subsidiary quan-
tum number.1

The action variables have the following physical significance : J 2

is 1/27T times the total angular momentum, J3 is l/2ir times its com-

ponent in the direction of the polar axis.

It is obvious that J a cannot be zero. Also J 2=0 would signify a

motion on a straight line through the centre of force, a
"
pendulum

motion
"

;
in physical applications, where the centre of force is the

atomic nucleus, this case must of course be excluded.

In order to find the physical significance of the angle variables,

we calculate them with the help of the transformation equations

as

If we introduce the J^'s in the equation (3) we obtain

47rV2

T 2

v ' - 3

JrO o .
*

sin2 6

1

and for the angle variables I putting vl
= =-

]
:

1 k is also called the azimuthal quantum number. This term arises from the
fact that it can also be put in the form

where is the azimuth of the moving point in the orbital plane.
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r c*-
-7

(10)

r
1

2

"J

J-a sin2 fl

The two integrals in dO may be evaluated. We have

(10/)

dO
. cos 6

;_~ = sin"1 r+const.
'

T 2 .Jo
sin2 (9

sm^

and

(10")

sin2 6
V'-.

= r :

Jsin
2

cos i dO

/
cos2!

V ""sin2!J2
2 sin2 J V *

sin2

= sin*1 (cot i cot 0) +const.

It will be seen from fig. 11 that, apart from the arbitrary constant

of integration, the integral (10') is

the angular distance
if/

of the moving

point from the line of nodes,

measured on the orbital plane, and

the integral (10") is the projection

of this angular separation on the

(r, <)-plane. By subtraction of this

projection from
<f>
we get the longi-

tude of the line of nodes. The third

of our equations (10) states, there-

fore, that, apart from an arbitrary

additive constant, the longitude of the node is 27rt03 . According to

the second of the equations (10), 2irwz is the angular distance of

FIG. 11.
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the moving point from the node, measured on the orbital plane, in-

creased by a function of r :

,
J 1? J 2)

For given Jj and J 2 ,
F2 is a single-valued function of r, for, during

a libration of r, Jprrfr increases by Jj ;
the partial derivative with

respect to J 2 assumes, therefore, its old value once more. Apart from

an additive constant, 27rw 2 is consequently the angular distance of a

point of the path with a given r from the line of nodes, measured on

the orbital plane, and therefore, apart from a constant, the angular
distance of the perihelion (rmm)

from the line of nodes. Finally, again

apart from an additive constant, 277^ is what astronomers call the
" mean anomaly," namely, the angular distance from perihelion of a

point imagined to rotate uniformly and to pass through perihelion

simultaneously with the actual moving point.

Since we have a system subjected only to internal forces, and the

motion takes place in a plane, the angle variable w 2 ,
associated with

the total angular momentum, occurs in the Fourier representation of

the electric moment with the factor 1 only (as was shown gener-

ally in 17). We can see this also directly, from the nature of the

expressions for the angle variables. These are :

^1= fi(r, Ji, J2 )

w2
- <A+/2(r, J lf

J 2)

w3=const.,

or, if we solve for r, i/r,

r= ^(w l9 Ji, J 2 )

lfj
=2TTW2 +(l> 2(Wv J 1? J 2).

If we transform to the rectangular co-ordinates
, r], ,

where is

perpendicular to the orbital plane, we find for the components of the

electric moment p expressions of the form

(11')

P^=.

According, then, to the correspondence principle, the number k, of

the quantum numbers n and k introduced by (9), can alter by 1

only, while n can in general change by arbitrary amounts.

The orbit is best expressed in terms of the co-ordinates r and
*//.

From the first equation (10) we get



SYSTEMS WITH ONE RADIATING ELECTRON 139

dw UL

-,dr.

Also since the angular momentum is J z/27r

we eliminate dt and derive the differential equation of the orbit

(12)

27T

dr~

477V2

Since the motion consists of a

libration of r, combined with a

uniform rotation of the perihelion,

the form of the orbit is that of a

rosette (cf. fig. 12).

FIG. 12.

22. The Kepler Motion

The simplest application of the results of 21 is to atoms consist-

ing of a nucleus with a charge Ze and only one electron. In this case

the motion concerned is that of two bodies under the influence of a

mutual attraction giving rise to the potential energy

(1) V(r)=~-
This motion we shall now consider.

The action integral Jr (6), 21, takes the form

(2)

where

(2')

A=2/*(-W)

27T J \2w.
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It will be seen that only when W is negative can the radicand have

two roots between r=0 and r=oo enclosing a region within which it

is positive ; consequently A, B, and C are all positive numbers. By
the method of complex integration we obtain

(cf. (5), Appendix II) :

2n J JATT- - -______ J
fl

J ..

V-2W ' *

We can now express the energy W in terms of the action variables,

the value we find being :

a\ w-

The motion is therefore doubly degenerate, since for a given value

of J the energy is independent of J 2 (the total angular momentum)
as well as of

J^.
Not only the longitude of the node, but also the

angular distance of the perihelion from the line of nodes, remains

unaltered. We have only one quantum condition,

and expressed in terms of this the energy is

(4) W -.
v '

h* n*

The motion has only one frequency different from zero ;
from (3)

we find for this

_aW_477V4i

the period of revolution is therefore

1

We again express the orbit in terms of the co-ordinates r, ifj
in the

orbital plane. As differential equation of the path, we get, by (12),

21:

d$ VC
dr~ I B C'

r\/-A+2 fV r r2

where A, B, and C have the meanings (2'). Integration gives
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. . - C-Br

and, if we solve for r :

_ C

If, for shortness, we write

g

we obtain the well-known form for the equation of an ellipse, whoso

focal point coincides with the origin of the co-ordinates :

I

is the eccentricity and I the semi-latus rectum or parameter. If we

express these in terms of the angle variables we have

(8) --!-

These two quantities fix the form of the orbital ellipse. Since an

ellipse is usually determined by the semi-major axis a and the eccen-

tricity e or by means of the two semi-axes a and 6, let us express a

and b in terms of the action variables. We have

/ T'2

(10) 1-e2 47T*

(11) 6=aVl^

Of these two quantities a alone is fixed by the quantum condition ;

e, and with it I and 6, can assume all values consistent with the corre-

sponding a. The relation between a and the quantities W and vlf

likewise fixed by the quantum condition, can be expressed as follows :

(12) -,
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The equation (13) expresses Kepler's third law. For the case of the

circular orbit, equation (12) states that the orbital energy is equal to

half the potential energy. As we shall see in a moment, it is in

general equal to half the time average of the potential energy.

We now consider the progress of the motion in time. By 10, 21,

we get for wl :

w 1=vlt+8 1
=

If we resolve the radicand into its linear factors, we obtain

r prvidrw 1=\ ,

jVA.V[a(l+)-r][r-a(l-e)]
for a(l +e) and a(l e) are the libration limits of r. The substitution

(14) r=a(l cos u)

transforms the integral to

(15)
Wl

In order to make clear the geometrical significance of u, we introduce

rectangular co-ordinates
, 77

such that the -axis is the major axis

of the orbit and the origin is the centre of force, Z (fig. 13), thus :

We obtain then from (7) and (14)

(16)
qr aq= - a cos u =a (cos u e)

fy
/ b <" V

A c A A wo W
J

77
=aVl e2 sin u.

In
fig.

13 ON-a, ZQ-f=a [cos (ZON)-e] and QM=>q=Vl- 2
.

QN=aVl 2 sin (ZON). The angleZON is there-

fore just the auxiliary quantity u. On account of

fl its significance u is called the eccentric anomaly.
Now that we have found expressions for all the

principal magnitudes of the Kepler motion we
shall write them down once more in collected

forjtn. The energy of the motion is

FIG. 13.

(3) W=
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the motion is confined to an ellipse with the semi-axes

(10) =;
T '

2

(11) b=^
the parameter of this ellipse is

(9) Z=

the eccentricity

(8a)

and the inclination i of the normal to the plane of the orbit to the

polar axis of the r, 6, $ co-ordinate system is given by

The progress of the motion is given by

(14) r=a(l ecosu)

(16) | a(cosu e)

(17) i^aVl-c88"^.

Here w is defined by

(150) 27Tvlt=u sin w,

where

i being reckoned from the instant at which the perihelion is traversed.

A knowledge of the progress of the motion in time enables us to

calculate certain mean values. Later we shall often require the mean
values of certain powers of 1/r which we now proceed to evaluate.

We have

f-n= l-= =
9

yn l/yn-2

Now the areal velocity r^ifi
is equal to 2vx times the area of the ellipse,

from which it follows that

Vldt dj

1
if

n ==

and
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For n~2 we can quickly find, in this way, the mean value sought ;
if

we take 1/r from the ellipse-equation (7)

1= 1

Til
we find

__
1

T
~ri

1

(19)

a4
(l-e

2
)'

a5(l-e

The mean values r~l
, r, r2 . . . are more easily calculated by means

of the eccentric anomaly. Using (14) and (15)

- If
rn ~fr

nvidtan I (1 cos u)
n+ldu

;

2tTTj

and we find

(20)

Mean values of the form r" cosm 0(m>0) are best calculated for

n^ 2 by the ellipse equation (7'), for n^m 1 by the eccentric

anomaly ;
with the help of (18) we obtain

/* cosm

and from (14), (15), and (16)_ 1 p
r" cosw 0=ain I (1 cos w)

n~m+1
(cos u c)

mdu
9

&7TJ

so that
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COS =

r~2 cos iff=(

(22)
r-*cos0=-

Mean values of the form r" cosw
i/j

sin'
iff
vanish for odd values of /.

For even values of J, sin
2

may be replaced by 1 cos2 and the mean
value reduced to the form just considered. In particular

i

/OO\ 1 " 9 I

(23) r-3 sln2^,
2o3

We can now find the time average of the potential energy, it is

a

and is thus twice the orbital energy. The mean kinetic energy
becomes

This theorem that the mean kinetic energy is equal to half the mean

potential energy is valid generally for a system of electric charges
which act on one another with forces obeying Coulomb's law.

Further, the co-ordinates of the electrical centre of gravity for a

charge revolving in a Kepler ellipse are the time averages of the

actual co-ordinates and
77,

thus

(23') f=-30
and, by symmetry,

f,=0.

The electrical centre of gravity is therefore situated on the major
axis half-way between the middle point of the ellipse and that focus

not occupied by the centre of force.

In the case of the Kepler motions the Fourier .series for the rect-

angular co-ordinates
, rj

and for the distance r are comparatively

easy to find. Noting that r/a and g/a are even functions, and rj/a an

uneven function of u, and therefore also of w l9 we can put
10
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(24)
-=JCo+ZCr

cos
a *

sn >i

For the coefficients we obtain the integrals :

ri r
B

T
=4 - cos (27TW 1r)dw 1

J a

(25) C
T
=4

1

- cos (2rrw 1r)dw1

JQ

D
T
=4 I
-J= sin (27TW lr)dw 1

.

JoaVl e2

By partial integration we get from these

2 f* /V\
BT
=-- sin (27TW lr)d(

-
7TTj W

C -- (*si

2 r* r)

D
T-+ COS (Zrrwrfdl

'__ I.

^rJ

Now by (16) and (17) we have

d(
- =sin?/ du

\a

= cos u du.

If now we introduce u as an integration variable from (15), we
obtain

2 f
7r

BT
= 1 sin [r(u sin u)] sin u du

7TTJ

2 f
*

CT
= I sin [r(u sin w)] sin w rfw

7TTJ

1 2 f
"

DT
= I cos [r(u sin w)l cos u du,

7rrJ

A simple trigonometrical transformation leads to :
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elf" (" }B
T
= {I cos [(r+l)u resin u]du\ cos [(r l)u resin u}du\

1 f f

"
- 7 f

*
1CT

=
i

~
1 cos[(r+l)w TSinw|w+ 1 cos[(r 1)?^ rSinw]d!w}

TTTl J Q J J

D
T
=

I
I cos [(r-\-l)u re sin w"]dM+ I cos [(rl)uresinu]du\.

7TTlJ J J

The integrals appearing here are Bessel functions x defined by

JT(X)
= - 1 cos (TH x sin u)du.

7T JQ

We have therefore

Since these formute fail for. r=0 we must calculate B
,
C

,
D from

(25). We find:

f*r 2 f
7"

B -4 -^=- (l-
J a 7rJ

f*l 2
C =4l -^ 1

=-
Ja 7r

D =0.

If, finally, we substitute the calculated values of the coefficients in

(24) we derive :

j
= l+^+2^iW-JI^Tc)]

COS (27^)

(26)

sn

28. Spectra of the Hydrogen Type

The calculations given in 22 provide us now with a basis for the

explanation of certain line spectra. According to the conception of

1 The Bessel functions are here indicated by Gothic J'st to avoid confusion with
the action variables.
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atomic structure described in the Introduction, the hydrogen atom

in the uncharged (neutral) state consists of a nucleus of charge +e
and considerable mass M and an electron of charge e and small

mass m. Of similar structure are the singly ionised helium atom

(He+) and the doubly ionised lithium atom (Li+
+
), only the nuclear

charge is 2e and 3e respectively in the two cases. In all of these

atoms, therefore, we have a Z-fold charged nucleus and one electron ;

their mechanics is consequently included in the theory given in 22.

The energy in the stationary states is, by (4), 22,

(1) W=
7fr~

where

(2) R=_^!!.

R is known as the Rydberg Constant, because Rydberg was the

first to notice that it occurred in the representations of numerous

spectra. Since

_ wM _ 1

(3) **~m+M.~
m ~

m 9

R depends on the ratio of the electron mass m to the nuclear mass

M. The limiting value for infinitely heavy nuclei is

For other atoms

(5) m
1+M

The correction factor is here very nearly 1, since even for hydrogen

w/M=l/1830 ; in the majority of cases, therefore, R may, to a suffi-

cient approximation, be replaced by R^.

Spectroscopists prefer to specify spectral lines not in frequencies
but in wave numbers, i.e. number of waves per cm. We will follow

the usual notation and write v for the wave number of a line or term

in 23-29. This should not be confused with the earlier use of v

for the mechanical frequency in an orbit.

The wave numbers of the spectral lines corresponding to the terms

(l)are
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(6) v= I (WW-WW)=RZ2
/ -L- -I

Ac
v '

\n a
* 2

According to the correspondence principle all transitions between

the stationary states occur, since in the Fourier series for the motion

(26), 22, the coefficients of all the harmonics differ from zero.

For Z=l the spectrum of the hydrogen atom is obtained from

equation (6), and, for n2
=

2, in particular, the long-familiar Balmer

series :

The strongest support of the Bohr theory consists in the agreement
of the quantity Rn ,

determined from the spectroscopic measure-

ments of this series, with that expressed by (4) and (5), in terms of

atomic constants (the difference between RH and Rx is smaller than

the relative errors of measurement of the atomic constants).

According to deviation experiments on cathode rays

m gm.

by Millikan's measurement of the smallest charge on a drop

e-4-77 . 10-10
E.S.U.,

according to heat radiation measurements and determinations of the

limit of the continuous X-ray spectrum (see later)

h ==6-54 . 10~27
erg sec

;

with these numerical values one finds from (4)

cR=3-28 . 1015 sec-1
,

R^l-Og.lOScm-1
;

the value deduced directly from the observed spectrum is

RH=109678 cm-1
.

The agreement of the two numbers lies within the limits of accuracy
in the value calculated from (4) using the observed values of e, e/m,
and h.

This gives for the work done in separating the electron when in

the one-quantum orbit

W1=-cRA=2-15 . 10-11 erg.

This value can also be expressed in kilocalories per gram molecule

by multiplying by Avogadro's number N=6-0^ . 1023 and dividing

by the mechanical equivalent of heat 4-18 X 1010 ergs per kcal. The

result is 312 kcal. Finally, as a measure of the energy, use is often.
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made of the potential V in volts through which an electron must pass
in order to gain the energy under consideration

;
we have

w- eV

300'

The value 13-53 volts is found for the energy of the hydrogen electron.

The general transformation formula is

kcal.

(7) 1 volt=23-0--- =-1-59 . 10-12
erg=8-ll . 103 cm-1

.

gm. mol.

It is the potential V which is directly measured in the method of

electron impact (see Introduction, 3).

The formula (6) contains, in addition to the Balmer series, the

following hydrogen series :

1. The ultra-violet Lyman series,

Since the constant term in this series formula corresponds to the

normal state of the atom, the series occurs in
"
non-excited

"
atomic

hydrogen as an absorption series.

2. The infra-red Paschen series,

For Z 2 we obtain the spectrum of ionised helium (the
"
spark

spectrum
"
of helium). In this spectrum the lines which correspond

to even quantum numbers (w=2N),

2

~
N?/'

are situated in close proximity to the hydrogen lines,

This similarity between the spark spectrum of helium and the spec-

trum of hydrogen was responsible for the fact that the former used

to be written in the form

.. 2,

and the lines, observed in certain stars and nebulae, which fitted

this formula were ascribed to hydrogen. Bohr made the situation
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clear and showed that the difference between the two Rydberg con-

stants Ru and RHo was due to the differences in the nuclear masses

M in (3).

The hitherto unobserved spectrum of doubly ionised lithium

(Li
++

) is given by putting Z=3.
In addition to the quantitative agreement of the spectra the

orders of magnitude are also in favour of Bohr's model of the atom.

For the radius of the normal orbit of the hydrogen atom, considered

as a circle, we have by (10), 22, for fj,=m

(8) aH= -4 =0-532 . 10~8 cm ;* ' ** A 2//i/ ,o2

this falls within the order of magnitude of estimates deduced from

the kinetic theory of gases and other atomic theories. For the semi-

major axis of the excited hydrogen ellipses we have by (10), 22,

(9) a=aH .n2
;

the radii of the corresponding orbits of He+ and Li++ are smaller

in the ratio 1 : 2 and 1 : 3 respectively.

24. The Series Arrangement of Lines in Spectra not of

the Hydrogen Type

We proceed now to those spectra not of the hydrogen type. As

we have already mentioned in 21 we endeavour, following Bohr,

to ascribe the production of these spectra to transitions between

stationary states of the atom, each of these stationary states being
characterised essentially by the motion of a single

"
radiating

"
or

"
series

"
electron in an orbit under the influence of the core, which

is represented approximately by a central field of force. This con-

ception explains some of the most important regularities of the

series of spectra, namely, the existence of several series, each of

which is more or less similar to the hydrogen type, and the possi-

bility of combinations between these.

In a (non-Coulomb) central field of force the motion depends,

according to 21, on the subsidiary quantum number k in addition

to the principal quantum number n. k has a simple mechanical

significance, being in fact the total angular momentum of the electron

measured in units of A/27T.

The Bohr relation between frequencies of radiation and energy
differences of the radiating system,

h
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corresponds to the general observation that the regularities which
occur in observed spectra can be expressed by writing the wave
number of a line as the difference of two terms, the number of terms

being less than the number of lines ordered by means of them. In

our simple atomic model the terms depend on two integers n and k
and can therefore be denoted by the symbol n k . We found, by
applying the correspondence principle, that only such terms may
combine with one another as have values of k differing by 1

(sec (11'), 21).

With this theoretically predicted spectrum we compare that

actually observed. The empirical set of terms of any one spectrum
is arranged by spectroscopists in a number of term series

;

l an indi-

vidual term is denoted by its number in the term series and by the

name of this series. The usual designation of these term series is

derived from the historical designation of the corresponding line

series : s (sharp or second subordinate series), p (principal series),

d (diffuse or first subordinate series), / (fundamental series, often

called also 6, Bcrgmann series), g (called sometimes /' or /*), etc.

There is therefore a series of s-terms, one ol p- 9
d-

9 f- . . . terms
;

further, each of these may be multiple, but this possibility we shall

disregard for the time being.
2

With the usual spectroscopic numbering of the terms in the series

we derive the following scheme :

Is 25 3s 4s 5s 6s ...

3d 4d 5d 60! ...

4/ 5/ 6/ . . .

In each of these series the terms with increasing order number de-

crease towards zero.

In order to see how our numbers n and k are related to these letters,

we refer to the following observations respecting the combination
of the terms. Under normal conditions (i.e. when the atoms are in

direct interaction with the radiation without being disturbed by
external influences) the following rules hold :

3

1

Thc^
word "

sequence
"

is sometimes used for a term series, and the word
"series

"
is then restricted to mean a scries of lines in the spectrum.

2 The multiplicity of the terms cannot be explained on the assumption of a point
electron and a central field of force. It was first ascribed to a space quantisation
of the orbit of the radiating electron with respect to an axis in the core, and later to
a spin of the electron itself (</. p. 155).

3
Thoy are obeyed strictly in the more simply constructed types of spectra, e.g.

those of the alkalies and of Cu and Ag. In the other spectra also they are for the
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1. Two terms of the same term series never combine.

2. The only combinations are s- with y-terms, p- with s- and d-

terms, d- with p- and/-terms, etc.

From this it is clear that the separate term series differ in the quan-
tum number k and that taking the term series in the order s, p, d,

/ . . . the number k increases or decreases by 1 from one to the

next. Since s represents the end of the series of combinations, pre-

sumably in the term series s-, p-, d-,f- . . ., k is to be put equal to

1, 2, 3, 4 respectively.
1

We shall now see what can be said regarding the magnitudes of

the terms.

The field of force of the core of an atom is, at a sufficiently great

distance, a Coulomb, field of force. In the case of the neutral atom
it corresponds to the

"
effective

"
nuclear charge Z=l, in the case

of the 1-, 2- ... fold ionised atom Z=2, 3 ... respectively. The
orbits of the radiating electron at a large distance are therefore

similar to those in the case of hydrogen. They differ from the Kepler

ellipses only by the fact that the perihelion executes a slow rotation

in the plane of the orbit. The semi-axes and parameter of the

ellipses are, by (9), (10), and (11) of 22,

The perihelion radius vector is :

for a fixed value of k this distance lies between 1/2 and I, the exact

value depending on the value of n. The larger the value of k the

more of the orbit is situated in the Coulomb part of the field of

force
;

for large values of k the terms are consequently similar to

those of hydrogen. This confirms the adopted numbering of the

series by the values of k, for observation shows that the terms

most part valid ; the exceptions point to a deficiency of our model (they may depend
on quantum transitions of the core electrons, or to interactions of the scries electron
with the core which cannot bo represented by a central field).

1 A. Sommcrfeld, tiitz.-Ber. d. Bay. Akad. d. Wiss., Math. Phys. C7., p. 131, 1916,
and A. Sommerfeld and W. Kossel, Verh. d. Dtsch. Phys. Ges. 9 vol. xxi, p. 240, 1919.
This co-ordination is possible only in those spectra where one electron can be
singled out as the radiating electron. In the case of more complicated spectra
the designations s- t p- t d-terms must be associated with the resultant angular
momentum of all the external electrons.
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approximate more and more nearly to those of hydrogen the further

we proceed in the order s, p,d,f....
From the term series the line series are obtained by keeping one

term fixed and allowing the other to traverse a term series. The

most commonly observed series by far, and those which have given

their names to the terms, are the following :

Principal series (H.-S.) .... v=ls mp
Diffuse (1st subordinate) series (I. N.-S.) . v=2p md

Sharp (2nd subordinate) series (II. N.-S.) . v2pms
Fundamental (Bergmann) series (F.-S.) . . v=3dmf.

In addition to these the following combinations occur :

Second principal series .... v=2s mp
Second diffuse series ..... v=Sp md

v=Sdmp
v4fmd.

Not only these term differences, but also the terms themselves,

have a physical significance. Thanks to our hypothesis regarding

the potential energy, which we have supposed to vanish at infinity,

the magnitude |

W
|

of the energy constant denotes the work which

is necessary to remove an electron from its stationary orbit to infinity

and to bring it to rest there (relatively to the nucleus). If the station-

ary orbit of the electron is that of the normal state, then this work is

the work of ionisation.

Also the energiesW converge to zero, with increasing n,
1 as in the

case of hydrogen, and further the empirical terms of a single term

series likewise converge to zero, so the energy values ascribed theoreti-

cally are in agreement with the empirical terms ; the wave number of

a term multiplied by he is therefore a measure of the work required
to remove the electron from the orbit to a state of rest at infinity.

The largest existing term corresponds to the orbit of the electron

in the normal state and gives a measure of the ionisation potential.

If this term is an s-term, as is the case for several of the simpler

spectra, the ionisation potential is the frequency of the limit (w=oo )

of the principal series multiplied by h
;

if the largest term is a p-teim,
the ionisation potential is the frequency of the common limit of the

two subordinate series multiplied by h. Simple spectra are also

known for which a d-term corresponds to the normal state (e.g. Sc++).

All that we can expect of our simple atomic model, by means of
t .

1 This result arises from the behaviour of the integral (6), 21, for negative values
of W tending to zero, when U(r) 1/r for r large.
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which we replace the non-mechanical motion of the radiating electron

by a mechanical one based on the assumption of a spherically sym-
metrical field of force for the core, is that it shall give a rough indica-

tion of the general characteristics of the line spectra. As a matter of

fact it makes comprehensible the series arrangement of the lines and

terms as well as the increasing similarity of the higher series to those

of hydrogen. Of the most important remaining unexplained facts we

mention once more the multiplicity of the terms. In all of the alkali

spectra the p-, d- . . . terms are double, in the alkaline earths there

are also triple p-, d- . . . terms. Other elements, e.g. Sc, Ti, Va, Cr,

Mn, Fe exhibit still higher multiplicities. We mention further the

fact that many elements have term systems of the structure described

here, e.g. the alkaline earths have a complete system of single terms

as well as a system with single s-terms and triple p-, d- . . . terms.

Finally, exceptions occur to the above-mentioned rule for the change
of k in quantum transitions.

The multiplicity may be accounted for in principle by assuming
deviations from the central symmetry of the core. If these deviations

are small, they produce a secular precession of the angular momen-
tum vector of the radiating electron and core about the axis of the

resultant angular momentum of the system. Space quantisation

occurs, a somewhat different energy value becoming associated with

each orientation. But this argument leads to multiplicities which

do not correspond exactly to those observed.1 Pauli 2 has shown

that these could be explained by ascribing four quantum numbers to

each electron instead of three ;
and to account for the fourth quan-

tum number Uhlenbeck and Goudsmit 3
suggested that the electron

had a quantised spin about an axis. This hypothesis has been very
fruitful for the understanding of spectra with multiple terms, but it

will not be considered in this volume.

25. Estimation of the Energy Values of Outer Orbits in

Spectra not of the Hydrogen Type

We found that the orbit of the radiating electron was hydrogen-
like for large values of k, since it is situated in an approximately
Coulomb field of force. For smaller values of k the orbit approaches

1 For multiplicities and Zeeman effects cf. E. Back and A. Lande, Zeetrtanejfekt
und MuUipkttetruktur der Spektrallinien, Berlin, Julius Springer, 1925, vol. i of

the German series, Rtruktur der Matene ;
and K Hurid, Linienspektrat vol. iv of the

same series.
2 W. Pauli, Zeitschr. f. Physik, vol. xxxi, p. 765, 1925.

'

3 G. E. Uhlenbeck and S. Goudsmit, Natunvissenschaften, vol. xiii, p. 953, 1925;
Nature, vol. cxvii, p. 264, 1926.
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the region of the core electrons. As long as it does not penetrate
this region it will be permissible, to a first approximation, to expand
the potential energy of the central field of force in powers of 1/r when

calculating the value of a term. 1 We write

where a denotes a length which may conveniently be put equal to

an (see (8), 23). The radial action integral is then, by (4), 21 :

B C D -11

where

-

D- +-2we
2Za

I[

2c 2 .

We assume now that in the, expansion for U(r )
the term quadratic in

ajr is small in comparison with the linear term, and calculate as a

first approximation the influence of the subsidiary term c xa/r in the

potential energy on the value of the term. This calculation may be

carried out rigorously for all values of cv The phase integral has the

same form as in 22, and we obtain by complex integration (cf. (5),

Appendix II) :

B

and from this

A

If we substitute for B and C their values and introduce the Rydberg
constant R from (2), 23, we get

(2)(2)

where

(using (8), 23). If the deviation from the Coulomb field is small

only, we can write *

1 See A. Sommerfeld, Atomic Structure and Spectral Lines (Methuen), p. 596.
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(3,

The influence of the additional term in the potential energy on the

value of the term may be expressed as follows : If the energy be
-pr ^2

written in the form ---
,
the

"
effective quantum number " w*

w*2

differs from the integral value n, which it has for hydrogen, by a

small amount 8. The difference depends on k, but not on n, and its

amount will be smaller the larger the value of k. The deviation

from the Coulomb field, caused by the core electrons, will consist

mainly of a more rapid variation of the potential with r, since as

r decreases the attractive action of the highly charged nucleus will

be less and less weakened by the core electrons. Assuming that the

first term of the expansion is the determining factor, this means that

in our expansion (1) c t is positive. 8 is then negative, so that we
should expect the magnitude n*, the effective quantum number, to

be smaller than n.

The form of the orbit is, as in every multiply-periodic central

motion, a rosette. Its equation is easily found. In order to derive

it we again introduce the co-ordinates r, if;
in the orbital plane.

By (12), 21, we obtain then for the differential equation of the orbit :

_

or

w
dr y I 2B C

A2 / A
_j

^y if ^2

The equation has almost the same form as in the case of the Kepler
motion

;
A and B have the same meaning as there :

A=2M(-W), B
C is somewhat different :

and y has the value

r

The integration of the equation (4) is carried out in precisely the
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same way as in the case of the Kepler motion, and leads to
(cf. 22)

C
9*= -

B+VfiS-

If we introduce here the abbreviations (cf. (6), 22)

we get

(6) r= .

l+ COS y(*A ^o)

The equation of the path differs from that of an ellipse with the

parameter I and eccentricity e by the factor y. While r goes through
one libration, the true anomaly increases by 2?r/y. The path ap-

proaches more nearly to an ellipse the smaller the coefficient cx of

the additional term in the potential energy, and for c1=0 it becomes

an ellipse. For small values of cl we can regard the path as an

ellipse, whose perihelion slowly rotates with the angular velocity

\y

co 1 is here the mean motion of the point on the ellipse.

We now take into account the term c 2(a/r)
2 in (1), but only in the

case where its influence is small. We find then by complex integra-

tion
(cf. (10), Appendix II) :

and from this

_
A=-2mW

BD

and

where this time

(7) S=-



SYSTEMS WITH ONE RADIATING ELECTRON 159

The following term c3(a/r)
8 may be taken into account in a similar

way and would lead to a dependence of the quantity 8 on n in the

form

However, we shall not carry out the calculation in this way ;

instead, we will again calculate the influence of the additional terms

in the potential energy, this time with the help of the method of

secular perturbations, 18. The result will be of less generality

only inasmuch as we must suppose the quantity ct to be small as

well as c a ,
c3 . We write

where H is the Hamiltonian function of the Kepler motion, con-

sequently

H-W-HO o-

and we regard

as the perturbation function. The unperturbed motion is doubly de-

generate ;
the perturbation makes it singly degenerate. We obtain

the secular motion of the angle variables now no longer degenerate,

and the influence of the perturbation on the energy, by averaging H l

over the unperturbed motion. In this way we find

The mean values are by (19), 22 :

_ 1 _ Z*

""06"

I Z*

_

V>

4-
2oH

5n3
ife
7
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On introducing the Rydberg constant

we get

2aHhc

W=- l+f!+Ll +
nk* nlc?

-
)c4

i
2
/

nF

Writing W in the form

(9) W=-~~,v } n*2

we find, on neglecting products of the c/s,

or

(11) "*=n+8 1+??+

where

_ Zcj Z2c 2 3Z3c3 5Z4c4
1= ""^"""

We now compare these theoretical formulae with observation.

The terms derived from observations of spectra of the non-hydrogen

type may in fact be written in the form

RZ2

where, in general, 8 depends very little on n. Rydberg
1 was the

first to suggest this form and verified it by measurements of numerous

spectra. We shall therefore denote the quantity 8 as the Rydberg
correction. The remaining deviations have been represented by-<-

1 J. R. Rydberg, K. Svenska Akad. HandL, vol. xxiii, 1889 : an expansion in

1/w
2
equivalent to the Rydberg formula has been given independently by H. Kayser

and C. Runge (Berlin. Akad., 1889 to 1892).
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Ritz,
1 who gave a series expansion for the difference between n* and

the whole number

(12) S=S 1+8 8I+...

Eitz used also the implicit formula

(13) = -??L
.

26. The Rydberg-Ritz Formula

The Rydbcrg-Ritz formula can be established empirically not

only for the terms of the outer orbits, but also for orbits which pene-
trate the core and which we shall call

"
penetrating orbits." It may

in fact be derived theoretically for very general cases.

We show next that for an arbitrary central field the formula

m RX2
(1)

= _ .

(n l-^+S^)
2

corresponds to a reasonable series expansion.
2

The connection between the quantum numbers and the wave

number v of tho term is given by the equation (cf. (4), 21
)

(U(r) is negative, sec 21.) We compare this with the expression

-2|
hv-

e~

which, for the same v, corresponds to a Coulomb field of force.

For this n* is of course not an integer, but has the value given by

_RZ
2

n*2

The difference of the two integrals is a function of v and k alone. If

we imagine it expanded in terms of v and put equal to

we obtain

1 W. Ritz, Ann. d. Physik, vol. xii, p. 264, 1903 ; Physikal. Zeitschr., vol. ix,

p. 621, 1908 ; see also Ges. Werke, Paris, 1911.
8 G. Wentzel, Zeitechr. /. Physik, vol. xix, p. 53, 1923.
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and

RZ2

Since for larger values of n the term v rapidly approaches zero,

we can conclude from this consideration that the correction Sj+Sg^

rapidly converges to a fixed limiting value for increasing n.

The following argument due to Bohr,
1
goes much further towards

providing a theoretical basis for the Rydberg-Ritz formula (1), and

gives this formula greater physical significance.

The real object of the introduction of the central field was to

describe, by means of a simple model, the (certainly non-mechanical)

interaction between core and radiating electron, for which no ex-

change of energy between core and electron occurs. Now this

assumption regarding the constancy of the energy of the radiating

electron is alone enough to enable us to deduce the series formula,

without special assumptions regarding the field of force
;

this

derivation is, in consequence, not only valid for any atom whose

spectrum can be ascribed to a single series electron, but even for

molecules. Certainly molecules do not emit line but band spectra ;

these, however, are also produced chiefly by transitions of a radiating

electron, on which are superimposed the quantum transitions of the

molecule as a whole from one state of rotational or oscillatory

motion to another.

Further, this derivation is altogether independent of whether an

exchange of angular momentum between core and electron takes

place or not, i.e. whether or not an azimuthal quantum number k

can be defined in a manner analogous to that in the case of central

motion.

The only assumption which we make is that the core (which

includes one nucleus in the case of one atom and several in the case

of a molecule) is small in comparison with the dimensions of the

path of the radiating electron. The field will then closely resemble

a Coulomb field over most of the path outside the core
;
the distance

of the aphelion from the centre point of the core will be determined

only by the potential energy in the aphelion, it is therefore equal
for all loops of the path independently of whether these loops are

similar to one another (as for a central field) or not. Accordingly
an effective quantum number n* may be so defined that the relation

1 We are indebted to Professor Bohr for kindly communicating the ideas on
which the following paragraphs are based.
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holds which is valid in the Coulomb field, between n* and aphelion
distance and energy respectively :

dRAZ2

We assume, on account of the periodicity of the electron motion,

that it has a principal quantum number n
; W is then a function of

J=wA, and for the radial period r of the motion (i.e. the time from

aphelion to aphelion) we have

==
( '

r dJ h 8n'

The radial period T* of the motion in the Kepler ellipse with the

same energy (2) is

(4)v '

In a single term series we consider the variation of energy with

the principal action integral J or principal quantum number n, for

constant values of the other quantum numbers
;
for such a variation

we may invert the derivatives (3) and (4), and find for a term series

h
'

Now the Rydberg correction 8 is equal to n* n (compare (2) with

(2), 25), andW is he times the wave number v of the corresponding
term in the spectrum, so that for a term series

(5) =**->

The radial motion in the two orbits is only different over that

part of the actual orbit where the field of the core is appreciable ;

the proportion of a radial period spent in this part of the orbit is

small, if the core is small compared to the dimensions of the orbit

of the series electron as assumed, so r* T is small compared to r.

If it can be taken to have a constant value

T*_T= 8 2/c

over the range of v covered by the term series, (5) integrates directly

to

8=81+ 8 2v,

whence the Ritz formula (1) follows at once.
t

If T* T cannot be taken as constant, it seems probable that it

will be expansible in a power series inW or v (this can certainly be
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done if the field is central) ; integration of (5) then gives 8 as a

power series in v the
"
extended Kitz formula."

In order to provide a survey of the validity of this formula we

give the values of the effective quantum number n* for the terms

of two typical spectra, those of Na and Al :

Na.

P
d

f

1-63 2-64 3-65 4-65

2-12 3-13 4-14

2-99 3-99 4-99

4-00 5-00

Al

P
d

f

219 3-22 4-23 5-23 6-23

1-51 2-67 3-70 4-71 5-72

2-63 3-42 4-26 5-16 6-11 7-08 8-07

3-97 4-96 5-96

The Na-spectrum and the s-
9 p-, and /-scries of the Al-spectrum

show the behaviour which we find for almost all term series, namely,

very little dependence of the Kydberg correction n*n on the term

number n. The d-series of aluminium and a few other known series

form the exception, inasmuch as the limiting value of the correction

is reached only for comparatively high term number.

Since, for the time being, we do not know the quantum number
n only the fractional part of 8 can yet be found, the integer is un-

determined. If we choose the integers here so that the magnitudes
of 8 decrease with increasing k and at the same time are as small as

possible, we obtain as limiting values for large n :

N.a

Al
1-35 -0-80 -0-01 0-00
1-77 -1-28 - 0-93 -004

Now if the analysis of 25 were applicable, |S| would increase as

l/k or 1/F or I/A:
5

(cf. (JO), 25), as k decreased and the orbit at

perihelion came closer to the nucleus
;

it will be seen from these

examples, and from all other series spectra, that there comes a stage
at which the increase of |8| with decreasing k is very much more

rapid than that given by any of these inverse powers. The large
values of 8 show us, moreover, that we can no longer regard it as a

small correction of n.

The large deviations of the term values from the hydrogen terms

may be explained if we consider that the orbit of the series electron

is not always situated entirely outside the core, even in the excited
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states, but penetrates into it. Such a penetrating orbit (Tauchbahn)
is in its innermost parts much more strongly subject to the influence

of the nucleus
;

it traverses, therefore, a field of force similar to a

Coulomb field of force with a higher nuclear charge. Under such

conditions use of (1), 25, for the potential energy will not be

justified.

In the case of Na a noticeable irregularity is present in the course

of the 8-values between the d- and y-terms ;
this suggests that the

d-orbits are situated entirely outside the core and that the s- and

y-orbits penetrate into the core.

27. The Rydberg Corrections of the Outer Orbits and the

Polarisation of the Atomic Core

We now consider in greater detail the physical influences which
cause a departure of the field of force outside the core from a Coulomb
field of force. 1 First we can determine approximately which power
of a/r is especially important in the potential. We write the orbital

energy in the form

w_ cRAZ2

'^+5
2*7

An additional term . c l in the potential energy gives by

(10), 25, a
"
Rydberg correction

"

and a
"
Ritz correction

e2Z a 2

An additional term -- . c gives
r r2

~\ S 2=0;

e2Z a 3

an additional term -- . c3-^- gives

1 M. Born and W. Heisenberg, Zeitschr. f Physik, vol. xxiii, p. 388, 1924 ; the
numerical values of the following tables are taken from this work. For further
work on this subject, see D. R. Hartree, Proc. Roy. ti<9b. t vol. cvi, p. 552, 1924;
E. Schrodinger, Ann. d. Physik, vol. Ixxvii, p. 43, 1925 ; A. Unsold, Zeitschr. f.

Phyaik, vol. xxxvi, p. 92, 1926 ; B. Swirles, Proc. Camb. Phil Soc., vol. xxiii, p. 403,
1926*
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a %
s _ Z3c3 S 2__P

-, o 2 ;rr^>
~

i?9

and an additional term . CA gives
r *r4

5 Z4c4
5J

*
1-

2 A;
7

' 8 2=
3Zc4

5

The following table gives the values of the Rydberg and Ritz

corrections and their ratio, determined from the spectra of the alkali

metals, whose structure is especially simple.

The letter T in the table denotes that the Rydberg correction is too

large so that an expansion of the potential in powers of l/r does not

appear justifiable.

The large value of Sg/Sj^ shows that the higher powers of l/r are

present in the potential to an appreciable extent. For the terms with

c3/r
4 and cjr

5 we obtain theoretically the values

From this it appears that the term containing c3/r
4 is the essential

additional term.

Now such an additional term in the potential energy has in fact a

theoretical significance. For if the core of the atom, instead of being

regarded as absolutely rigid, is considered to be capable of deforma-

tion, it will acquire an electric moment in the field of the series elec-

tron. If the electron is at a sufficient distance from the core, the

field
|
E

| =e/r
2
produced by it in the vicinity of the core may be con-

sidered as homogeneous. The induced moment of the core is pro-
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portional to this field: p= aefr
2

. The moment of such a doublet

produces an electric field in its neighbourhood ;
if it be considered

to arise from the approach of two charges p/l at a distance I apart it

will be seen that the force exerted on the radiating electron, in the

direction of its axis, will be

pel 1 "_ At 1\ 2pe_2ae*

Its potential is ae2
/2r

4
. If the other deviations from the Coulomb

field be neglected, we have

and

3 Z2a

2Za
[t

3

Our assumption, that the departure of the field of force from a

Coulomb field is due essentially to the induced doublet in the core,

may be tested by calculating the
"
polarisability

"
a, from the

empirical values of 8 l and 8 2 . It must be assumed that the cores of

the alkalies Li, Na, K, Kb, Cs are vsimilar in structure to the neiitral

atoms of the inert gases (containing the same number of electrons)

He, Ne, A, Kr, X (see further, 30). The values of a for these atoms

may be determined from the dielectric constants
;
between them and

the a-values of the alkali cores a simple relation should exist.

From the empirical 8^values of the alkalies we get

I

Li+ Na+ K+ Rb+ O+

a-1024-
|

0-314 0-405 1-68 .. 6-48

For this the/-terms are used with the exception of Li, the j9-term of

which serves for the calculations
;
Rb is omitted on account of its

somewhat anomalous Rydberg and Ritz correction. The polaris-

abilities of the inert gases are related to the dielectric constants

or with the refractive indices n for infinitely long waves by the

Lorentz-Lorenz formula

3 -l 3 n2-!

where N is the number of atoms per unit volume. If the optically

measured refractive indices be extrapolated for infinitely long waves,

one finds .

|

He Ne A Kr X

a-1024=
I 0-20 0-39 1-63 2-46 4-00



168 THE MECHANICS OF THE ATOM

The a-values of the alkali ions must be somewhat smaller since the

volumes of the ions must be less than those of the preceding inert

gas atoms on account of the higher nuclear charge.

We find consequently that the a-values calculated from the spec-

trum have the right order of magnitude, but that they are all rather

too large. One might be inclined to account for the difference by

assuming that, in addition to the induced moment, still another

deviation from the Coulomb law of force is present, likewise corre-

sponding to an auxiliary term of the approximate form c3/r
4

. We
cannot at this point prove whether such an assumption is admissible.

It should, however, be mentioned that our knowledge of the structure

of the ions of the inert gas type hardly admits of such a possibility.

If the explanation given here of the Rydberg correction as being

due to polarisation of the core be retained, then a contradiction re-

mains which, from the standpoint of our quantum rules, cannot be

removed. We have, however, already referred to the fact that the

explanation of the finer details of the spectra (the multiplets and the

closely allied anomalous Zeeinan effect) does not appear possible

within the range of a quantum theory of multiply-periodic systems.
One is led by the theory of these phenomena to the formal remedy of

giving to the quantum number k half integral values, i.e. to give it

the values J, , fj,
etc. It is to be expected that in the further

development of the theory the real quantum numbers will remain

integral as before and that the quantity k, occurring in our approxi-
mate theory, is not itself such a quantum magnitude, but is built

up indirectly out of them. We shall not go into these questions in

the present book ;
we shall content ourselves with seeing what values

are obtained for a when we choose half values for k in our formula.

We find, then, from the spectroscopic values of S, the following
a-values :

|

Li+ Na< K+ Rb+ Cs+

a -1C24 -
|

0-075 0-21 0-87 .. 3-36

These numbers are related in the right sense to the a-values of the

inert gases. This connection can be traced still further by considering
the a-values of other (multiple-valued) ions of inert gas type, which

may be determined partly from the Rydberg corrections of spectra
of the ionised element (spark spectra), partly from the refractive

indices of solid salts, (ionic lattice). In this way further support is

obtained for the view that the Rydberg correction of the terms of

the outer orbits in the spectra under consideration is due to the
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polarisation of the atomic core and that the quantum number Jc is

to be given half values. 1

The investigations dealt with in this volume are otherwise inde-

pendent of a decision for whole or half values for k.

28. The Penetrating Orbits

In 26 we have ascribed the large values of the Rydberg correc-

tions to the fact that the electron penetrates deeply into the atomic

core, and is thus subjected to an increased nuclear influence.

An estimate of the orders of magnitude to be expected for the 8-

values for such
"
penetrating orbits

"
may be obtained by a procedure

due to E. Schrodinger.
2 He considers the core of the atom replaced by

a spherical shell uniformly charged with negative electricity, external

to which there is then a Coulomb

field of force, corresponding to the

nuclear charge Z(a)
(1 for a neutral,

2 for a singly ionised atom), and in

the interior of which there is like

wise a Coulomb field, but corre-

sponding to a higher nuclear charge
Z(l)

. As soon as the perihelion

distance of a quantum orbit, cal-

culated as an ellipse in the field of force with the nuclear charge
Z(rt)

,
becomes smaller than the radius of this spherical shell, the orbit

penetrates into the interior
;

it consists then of two elliptic arcs which

join smoothly at the intersection with the spherical shell (fig. 14).

For given quantum numbers n and fc, given shell radius, and given

charges of the shell and nucleus, the effective quantum number n*

or the correction 8 may be calculated.

We shall not repeat Schrodinger's calculations here
;
we shall

show only that by means of such an atomic model, which may even

consist of several concentric shells with surface charges, the relation

between quantum numbers and energy may be expressed in terms of

1 This evidence is by no moans conclusive, since values of the polarisability a
deduced from terms of spectra corresponding to external orbits depend to a con-

sideiable extent on the term series from which they are deduced, so conclusions

drawn from comparison of values of a deduced from a single series with values
deduced from other phenomena must be regarded with caution. We may also

mention here that the polarising field on the core due to an electron in an orbit

radius 9 H (the radius of the 3-quantum circular orbit of hydrogen) is about 108

times the field in strong sunlight, and the displacement of the electrons in the core

polarised by this field may be an appreciable fraction of the core radius.
2 E. Schrodinger, Zeitschr. f. Physik, vol. iv, p. 347, 1921.
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elementary functions. 1 Let the shell radii be p l9 p2 > arranged in

decreasing order of magnitude, and their charges ztf, z2e ....

The potential energy in the space between the shells ps
and ps+1 is

where

and c
8
is determined by the condition that at the shells the potential

varies continuously. It follows from this that

^iPcr

Since we now know the potential energy as a function of r, we can

calculate the perihelion distance rmin and state within which shells

p l9 p 2 . . p p it lies. The radial action integral has, according to

(4), 21, the form

Bn C

where

All the integrals may be expressed in terms of elementary functions
;

in this way we obtain Jr and hence (w k) as a function of W and k,

and finally W as a function of n and k.

Following van Urk
2 we shall make use of Schrodinger's conception

of the charged shells to estimate the 8-values for the penetrating
orbits. It will be seen that the larger the radius of the spherical

shell the larger will be the radial action integral, for a given external

ellipse ; for the larger this radius, the longer will the electron move

1
Cf. also G. Wentzel, Zeitschr. f. Physik, vol. xix, p. 53, 1923, especially p. 55.

2 A. Th. van Urk, Zeitechr. f. Physik, vol. xiii, p. 268, 1923.
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under the influence of the full nuclear charge. One obtains, there-

fore, from the Schrodinger model, on the assumption that an orbit

is of the penetrating kind, a lower limit for the magnitude of 8

by choosing the radius of the shell so that it touches the external

ellipse. If we wish to find the value to which 8 tends for large values

of n (the dependence on n is extremely small in the case of the

Schrodinger model), we can take as the perihelion distance of the

external ellipse that of the parabola ;
in the case of the s-orbit, there-

fore, 5^7-)%,
we shall write generally ^f\i-

Since we choose the

radius of the sphere equally large, the total orbit of the radiating

electron will be given to a close approximation by the two complete

ellipses.

We get for the radial action integral

J __j ()_|_J (0u r r \
u r >

affix (a) indicating the contribution from the part of the orbit

outside the core, and affix (i) the contribution from the part inside.

Now the spectrum term is proportional to the work of separation
of the outer electron, and consequently equal to the energy of the

outer ellipse

where J^ is 2?r times the common angular momentum for the two

ellipses. If we compare this with the form

W=-
n*2

for the energy, we find for the effective quantum number

But

Jr+J t=n
so that

T <l)

(1) 8=M*-n=-^ =-
n \ n

where J(t) is the sum of the action integrals for the inner ellipse.

J(0 is determined by the semi-major axis a of the inner ellipse :
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a is further related to the radius of the shell

where

If a and e be eliminated from these three equations we find

J(f)

and from this, by solving for and substituting in (1) :

h

(2) 8=
,

+k.
'

J

7-2
) T~m~f \ '^

The equation (1) is also approximately valid if the outer ellipse

cuts the shell at a small angle instead of touching it, so long as the

shell radius is small in comparison with the major axis of the outer

ellipse (which is certainly the case for large values of the principal

quantum number) and if TP^ is considerably greater than Z(a)
. The

error which is then made in replacing the action integral over the

outer portion of the orbit by that over the complete outer ellipse is

then small ; likewise the error made in replacing the inner portion

by the complete inner ellipse ;
the aphelion of the inner ellipse is

situated only slightly outside the shell (on account of the rapid
decrease of the potential energy in the field with the nuclear charge
Z(l)

).
The sum J(t) of the action integrals of the inner ellipse is

determined uniquely by the major axis of this ellipse, and is con-

sequently almost independent of n.

In the approximation given by formula (1) 8 is not dependent on

n. This approximation is better the larger the major axis of the outer

ellipse ; since that is rapidly attained by increasing n, we see how 8

very soon assumes a constant value with increasing n.

If there are quantum paths which are contained completely in

the interior of the shell, and if n is the principal quantum number of

the largest of them, then

J<
n(0<_

h

and
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(3) S= -(w(t)+e-fc) 0<<1.

This formula is essentially independent of the Schrodinger model

of the charged spherical shells, and depends only on the fact that the

aphelion distance of the outer orbit is large in comparison with the

core radius, and that the electron penetrating the core soon comes

into the region of higher effective nuclear charges. Bohr * derived

it, before v. Urk, in the following way :

The radial action integral Jr=h(n k) of the orbit is composed of

the outer portion of the orbit and of the inner loop :

J/a) is only slightly smaller than the radial action integral A(n* k)

of the complete external ellipse :

J^^n*-*--*!),
and Jr

(t) differs but little from the radial action integral h(n^k) of

the largest orbit completely contained in the core :

It is not necessary here that n^ should be integral, but it is the sum
of the action integrals of the largest possible mechanical (not quan-

tum) orbit divided by h. One obtains consequently

(4) 8=n*-n=-(nW-/j- 1+,)
and the result may be formulated as follows :

The Rydberg correction for penetrating orbits is not very different 2

from the radial action integral of the largest orbit, completely con-

tained in the core, divided by h.

The question as to the accuracy with which all optical (and X-ray)
terms may be consistently represented by a suitable central field

has been examined by E. Fues
;

3 he arrived at eminently satis-

factory results in the case of the arc spectrum of Na and the analogous

spark spectra of Mg+ and Al++ .

29. The X-ray Spectra

The optical series spectra of the elements provide one of the

principal means of obtaining information regarding the structure of

1
Bohr, N., Lectures at Gottingen, June 1922 (unpublished).

2 In practice, el ea is no* always small compared to 1 ; comparison with observed

spectra shows it may be greater than J.
3 E. Fues, Zeitschr. f. Physik, vol. xi, p. 364 ; vol. xii, pp. 1, 314 ; vol. xiii, p. 211,

1923 ; vol. xxi, p. 265, 1924. See also W. Thomas, Zeitschr. f. Physik, vol. xxiv,

p. 169, 1924. For further work on penetrating orbits, especially the relations

between corresponding terms of different atoms of the same electronic structure,
see E. Fues, Ann. d. Physik, vol. Ixxvi, p. 299, 1924 ; D. R. Hartree, toe. cit.,

and Proc. Camb. Phil. Soc., vol. xxiii, p. 304, 1926.
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atoms. In as far as they can be comprehended on the basis of our

theoretical conceptions we can draw conclusions regarding the pro-

cesses taking place in the exterior portions of atoms only ; they
afford us little or no information about those occurring in the

inner regions. The most important means of investigating the

internal structure of the atom is the study of the X-ray spectra.

Our theory of the motion of an electron in a central field of force is

applicable also to these, since it may be inferred from the observa-

tions that we are here concerned with quantum transitions of the

atom in which one electron (corresponding to the series electron

in the optical spectra) changes its position in the interior of the

atom while the rest of the atom remains approximately a structure

possessing central symmetry.
Before we follow out these ideas in detail, we shall give a brief

summary of some of the results of observations on X-ray spectra.

Since the discovery of v. Laue, the natural gratings of crystals have

been available for the analysis of these spectra. Each X-ray spec-

trum consists of a continuous band and a series of lines.

The continuous spectrum has a short-wave limit, whose frequency

^inax *s rp 'ated to the kinetic energy of the generating cathode rays

by the equation

._ m*"=
2
V -

This result can be looked upon as a kind of converse to the photo-
electric effect, on the assumption that the incident cathode rays are

retarded in the anti-cathode and that their energy is transformed

into radiation according to the Einstein law
( 2) ;

the highest fre-

quency emitted corresponds then to the total loss of kinetic energy
of the incident electrons.

The line spectrum is characteristic of the radiating matter, and is

called, therefore,
"
characteristic radiation." The most important

fact relating to it is that every element exhibits the same arrange-

ment of lines, and that with increasing atomic number the lines

shift towards the shorter wave-lengths. This line spectrum contains

various groups of lines : a short-wave group (called K-radiation) has

already been found in the case of the light elements (from elements

in the neighbourhood Na and onwards). These become continually
shorter for the heavier elements, and are followed by a group of

longer waves (L-radiation) ;
behind this group follows, in the case

of still heavier elements, a group of still longer wave-lengths (M-

radiation).
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If these spectral lines are to be related to the motions of the

electrons in the atom in accordance with the principles of the quan-
tum theory, the X-ray frequencies must be given in terms of the

energies of two stationary electron configurations by the equation

The large values of v (about 1000 times as great as in the visible

spectrum) indicate that we have to do with variations in the orbits

of the inner electrons where, on account of the high nuclear charge, a

large amount of work must be expended in the displacement of an

electron.

The fact that the X-ray lines are arranged in simple series, and

may be characterised by small integers, forms the ground for the

assumption that, as in the case of the simpler optical spectra, we
are here concerned principally with the motion of a single

"
radiating

electron." Although we arc compelled to assume that this electron

moves in the interior of the atom we shall replace the action of the

nucleus and remaining electrons, for reasons analogous to those

holding in the case of the visible spectra, by a central symmetrical
field of force. By so doing we express once again the fact that no

exchange of energy takes place between the radiating electron and

the remainder of the atom
; the existence of quantum numbers

for the radiating electron points to its motion being periodic, and

assuming, therefore, the same energy after each revolution.

There is, however, a fundamental difference between the optical

spectra and the X-ray spectra. Whereas the lines of the optical

spectra can occur also in absorp-

tion, the X-ray lines are never

observed as absorption lines.

The absorption coefficient for

Rontgen rays exhibits, in fact,

no maxima of the kind which

produces absorption lines ;
it

shows rather a continuous vari-

ation, broken only at certain Fia. 15.

places by the so-called
"
ab-

sorption edges," at which a sudden increase in absorption coefficient

occurs if the frequency is increased through them (fig. 15).

An explanation of this phenomenon has been given by Kossel.1

According to him, the absorption spectra are concerned with the

j

1 W. Kossel, Verhandl d. Ditch, physikal. Ges., vol. xvi, pp. 899 and 953, 1914,
and vol. xviii, p. 339, 1916.
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ionisation of the atom in such a way that an inner electron is removed.

The frequency condition gives for this process

where v is the velocity of the electron after separation and W is

the work of separation. It follows then that all frequencies will

be absorbed which are greater than the limiting frequency

which will thus be the frequency of the absorption edge. The hy-

pothesis that in the atom there are electrons with various different

binding energies W leads then to a variation of the absorption
with frequency in qualitative agreement with observation.

According to Kossel the emission lines are caused by an electron

falling in from a higher quantum orbit to replace the ejected electron,

whereby the energy of the atom decreases. Further, an electron from

a still higher quantum orbit can fall into the vacated place until

finally the last gap will be filled by a free electron.

The emission spectra of the X-rays arise then from the re-establish-

ment of a stable state of the atom after its disturbance through the

ejection of an inner electron.

We can express this hypothesis of KossePs, which has been com-

pletely verified, as follows : For every system of quantum numbers,

corresponding to inner orbits, there corresponds a maximum number
of electrons. This is reached in the stable state. An exchange of

place occurs, however, when an electron is removed from its inner

orbit. All electrons which possess the same quantum numbers are

considered as together forming a shell
;
we shall be led subsequently,

by altogether different considerations, principally from the domain

of chemistry, to the same conception of a shell-like structure of atoms

( 30). We shall now endeavour to establish the truth of these con-

ceptions from the quantitative standpoint.

Our model, in which the electron under consideration moves in a

central field, gives rosettes for the electron paths, and these are

determined by two quantum numbers n and k. Orbits with different

values of n must in fact occur in the interior of the atom. The

behaviour of the Rydberg corrections shows that, for almost all

elements, the p-orbit^ penetrate ;
in order that this may be possible

the core must at least contain orbits with n=2. Of the orbits in

the core those with n\ (&=1) are nearest to the nucleus, then
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follow those with n=2 (k=l 9 2), and then perhaps come orbits with

n=3 (k=l, 2, 3).

In the elements of high atomic number the innermost orbits are

subject mainly to the attractive force of the nucleus, while the influ-

ence of the remaining electrons is comparatively small. The energy
of the innermost electron orbit is then given approximately by

with n 1 and Z equal to the atomic number
;

as we proceed out-

wards the energy decreases rapidly, partly on account of the decrease

of n and also on account of the shielding of the nuclear charge by
the remaining electrons. The wave number of the first line to be

expected is

(1) ,=

approximately. The formula requires that Vv shall increase

linearly with the nuclear charge. Moseley,
1 who was the first to

study the X-ray spectra systematically, found that for the K-series

Vv is actually very nearly a linear function of the atomic number
;

by atomic number is understood the number expressing the position
of an atom in the series order of the periodic system (1 H, 2 He,
3 Li . . .), thus practically in the order of the atomic weights ;

the

gaps required by chemistry (e.g. that of the element 43 homologous
to manganese) are to be taken into account as well as the reversals

required by chemical behaviour [e.g. 18 A (at. wt. 39-88), and 19 K
(39-10)].

This provides an excellent verification of the already long-inferred

principle first put forward by van den Brock
(cf. 3, p. 13), that

the atomic number is equal to the number of the nuclear charges.
2

This enables us also to determine uniquely the atomic numbers of

elements with veryhigh atomic weights, among which occur long series

of elements differing very little chemically from one another (e.g.

the rare earths), and also to determine accurately the existing gaps.
In order to show the accuracy with which the law (1) holds, we

give the values of . / - for some elements.
o ri

1 H. 0. J. Mofleley, Phil Mag., vol. xxvi, p. 1024, 1913 ; vol. xxvii, p. 703, 1914.
2

Strictly speaking, Moseley's law only confirms tha*; the difference between
the atomic number and nuclear charge is the same for all elements whose X-ray
spectrum has been observed ; it does not show that this constant difference is

necessarily zero.

12
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For Na(Z=ll) the value is 10-1, for Rb(Z=37) it is 36-3, and for

W(Z=74) it is 76-5. We associate therefore the first K-line with

the transition of an electron from a two-quantum to a one-quantum
orbit. This suggests associating the remaining K-lines with transi-

tions from higher quantiim orbits to a one-quantum orbit. The
K-lines have actually the theoretically required limit

RZ2

T2
'

Situated at the same place is one of the above-mentioned absorption

edges.

The principle of linear increase of Vv is valid also for the L-lines.

We attempt to identify these lines as transitions to a two-quantum
orbit (ft =2), and obtain for one of the L-lines the approximate
wave number

This formula does not hold so well as it does for the K-series
;

this

we can understand since here we are at a greater distance from the

nucleus. We can take account of this quantitatively,
1
by writing

(3)

the empirical values are then in agreement with a value for s which,
for medium values of Z, lies approximately between 6 or 7.

Here again the series limit coincides with an absorption edge. The
M-lines correspond finally to transitions to a three-quantum orbit.

We obtain a clearer survey of the stationary orbits of the electrons in

the atom if from the system of the X-ray lines we proceed to that of

the X-ray terms. The end term of the K-lines we call the K-term,
it corresponds to the K absorption edge, and corresponding to it

(in our model) are the quantum numbers w 1, it 1. In order to

account for the multiplicity of the L-lines we must assume three

end terms (L-terms) for which w=2 and Jc=l or 2. The fact that

three terms exist instead of two implies that the quantum numbers
n and k are not sufficient to define them

; we are confronted here

by a phenomenon very closely allied to that of the multiplicity of

the optical terms. On the basis of our model we cannot give an

explanation of this phenomenon.
2

Again, investigations of the

1 A. Sommerfeld, Anil. d. Physik, vol. li, p. 125, 1916.
2 A satisfactory interpretation in terms of the

"
spinning electron

"
can be given,

as for the multiplets of optical spectra (cf. p. 155 and footnote 2, p. 152).
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FIG. 16.
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X-ray lines give M-terms with w=3 (fc=l, 2, 3), and seven N-terms

with n=4 ; some 0-terms have also been established.

To provide a survey of the occurrence of these different terms

we reproduce here a graphical representation of the terms, taken

from the work of Bohr and Coster *
(fig. 16). We find there the K-

and one L-term (w=l, n=2) even for the lightest elements
;

2 an M-

tenn (n=3) appears about the atomic number 21, an N-term (n=4)
about 39, and an 0-term (n=5) at about 51. With regard to the

number of the terms corresponding to each principal quantum num-

ber, the resolution into 3, 5, and 7 terms mentioned above is readily

noticeable ; this resolution occurs in two stages ; we find first

two L-, three M-, and four N-terms, all of which, with the exception
of the first of each, again split up into two terms. If we disregard this

further splitting up, which occurs only for higher atomic numbers,
we have just as many terms as there are values which the subsidiary

quantum number can assume. The rule in accordance with which

the terms combine corresponds exactly to the selection principle for

We refer finally to the departures of the square roots of the term

values from a linear variation with the atomic number. These

are clearly shown in fig. 1 6, given by Bohr and Coster. The general

curvature of the graphs (especially of that for the K-term) is attri-

buted by Sommerfeld 3 to the
"
relativity correction

"
( 33, p. 201).

The small kinks, e.g. at Z=56 and Z 74, are connected, according
to Bohr and Coster, with the building up of the inner electron groups,
to a consideration of which we shall shortly return ( 32, p. 191).

30. Atomic Structure and Chemical Properties

The final aim of a theory of atomic structure must be to construct

the whole periodic system of the elements from an atom model. Bohr

had already made attempts in this direction in his earlier works.

He made use of
"
ring models," in which the individual electrons were

situated at the corners of concentric regular polygons (the
"
rings ").

A considerable amount of work has been expended on the calcula-

tions of such ring systems by Bohr,
4 Sommerfeld,6

Debye,
8
Kroo,7

1 N. Bohr and D. Coster, Zeitschr. f. Physik, vol. xii, p. 342, 1923.
* A state of the atom giving another L-term presumably exists for the lighter

elements, but has not been experimentally determined as it is not involved in any
line in the K spectrum, which is the only one of their X-ray spectra yet observed.

3 A. Sommerfeld, Ann. d. Physik, vol. li, p. 125, 1916.
4 N. Bohr, Phil Mcttj., vol. xxvi, p. 476, 1913.
c A. Sommerfeld, Physical. Zeitschr., vol. xix, p. 297, 1918.
6 P. Debye, ibid., vol. xviii, p. 276, 1917.
7 J. Kroo, ibid., vol. xix, p. 307, 1918.
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Smekal,1 and others, particularly with reference to the explanation
of the X-ray spectra ; the results were, however, altogether unsatis-

factory. The most important mechanical result arising out of this

was Sommerfeld's observation that such
an^electron polygon can not

only rotate about the nucleus, but that it can^execute a motion in

which the electrons traverse congruent Kepler ellipses (family of

ellipses). Sommerfeld dealt also with the mutual perturbations of

such rings for the case in which they are coplanar as well as for that

in which they lie in different planes. Models of this kind have

indeed a spatial structure just like the real atoms, but they do not

show the symmetry of the latter as exhibited chemically (e.g. carbon

tetrahedra) as well as crystallographically. Lande 2 therefore en-

deavoured to construct models with spatial symmetry such that,

in common with Sommerfeld's family of ellipses, the electrons tra-

verse congruent paths in exact phase relations (e.g. simultaneous

passage through the perihelion). But these models also failed when
it came to quantitative investigations.

Bohr realised that, by purely theoretical considerations and the

construction of models, the desired object of explaining the regu-

larities in the structures of atoms (periodic system of the elements)

would be very difficult to attain ;
he therefore adopted a procedure

by means of which, half theoretically and half empirically, making
use of all the evidence provided by physics and chemistry, and,

especially, by a thorough application of the data derived from the

series spectra, there was evolved a picture of the building up of

atoms.

The chemical results which are to be taken into account in such

an investigation have been expressed in a suitable form by Kossel.3

He takes as a starting-point the fact that the periods of the system
of elements begin with an inert gas, the atoms of which are char-

acterised by the fact that they enter into no combinations and can

be ionised only with extreme difficulty. The atoms of the inert gases

are, therefore, particularly stable configurations which, perhaps as

a result of the high degree of symmetry, are surrounded only by
small fields of force and, on account of this great stability, neither

take up electrons easily nor part with them. The atoms preceding
the inert gases are the halogens (F, 01, Br, I) which occur readily

1 A. Smekal, Zeitschr. f. Physik, vol. v, p. 91, 1921.
2 A. Lande, Verhandl. d. Dtsch, physikal. Ges., vol. xxi, pp. 2, 644, 653, 1919 ;

Zeitschr. f. Physik, vol. ii, pp. 83, 380, 1920. *
8 W, Kossel, Ann. d. Physik, vol. xlix, p. 229, 1916; see also G. N. Lewis,

Journ. Amer. Chem. Soc. t vol. xxxviii, p. 762, 1919, and J. Langmuir, ibid., vol. xli,

p. 868, 1919.
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as singly charged negative ions ; this, according to Kossel, is due

to the fact that their electron systems lack one electron to make up
the stable inert gas configurations and that they endeavour, with

loss of energy, to take up the missing electron. Conversely the

atoms following the inert gases, the alkalies (Li, Na, K, Rb, Cs),

occur always as singly charged positive ions, and so must easily give

up an electron ;
in their case consequently it may be assumed that

an easily removable electron revolves outside a stable core of the

inert gas type. The positive or negative electrovalency of the remain-

ing atoms may be accounted for in a similar manner
;
the former is

due to the presence of easily separable electrons, after the removal of

which the inert gas-like core remains
;
the latter is due to the en-

deavour on the part of
"
incomplete

"
electron structures to form

complete inert gas configurations by taking up electrons.

The application of this principle to the periodic system leads to

the conception of the shell structure of atoms (see also 29, p. 176).

The first period, consisting of the elements H and He, represents the

structure of the innermost shells. The system of two electrons of

the inert gas He must therefore be a very stable arrangement.
The second period commences with Li. This element will have a

core of the character of the He atom, external to which a third

electron is loosely bound. In the next element, Be, a further outer

electron is added, and so on, until at the tenth element, Ne, the

second shell has become a stable inert gas configuration with 8

electrons. This completes the second shell.

The first element of the third period, Na, has again the loosely

bound outer electron, which represents the commencement of the

third shell ;
this closes with the inert gas A, and, since this has the

atomic number 18, the complete third shell is again made up of

8 electrons.

The process is continued in a similar way, the periods, however,

becoming longer (they contain first 18, afterwards 32 elements).

Among them occur the elements Cu, Ag, Au, which have a certain

resemblance to the alkalies ; they will thus be characterised by an

easily separable electron and a relatively stable core.

By means of these qualitative considerations, Kossel was able to

make a considerable part of inorganic chemistry comprehensible
from the physical standpoint ;

this theory proved particularly fruit-

ful in the domain of the so-called complex combinations, i.e. com-

binations in which ipolecules arise by the superposition of atomic

complexes, which, from the standpoint of the simple valency

theory, are completely saturated.
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Langmuir and Lewis * have (independently of Kossel) added to

the theory by imagining that the stable configuration of 8 electrons,

which we met with in the case of Ne, A, and the ions of the neigh-

bouring elements, is a cube (octet theory), at the corners of which

these 8 electrons remain in equilibrium. According, then, to these

American investigators, we have to do with static models, a hypothesis
which does not agree with our ideas of atomic mechanics, and which

will therefore not be considered any further here.

The manner in which Bohr arrives at the building up of the atoms

step by step in the order of their atomic number is as follows.

He considers the capture of the most loosely bound electron by
the remainder of the atom. This process takes place by transitions

of this electron between the stationary orbits, regarding which

information is obtained from the arc spectrum of the element.

During this process the atom can be thought of as resolved into a

core and a radiating electron. The core has the same number of

electrons as that of the foregoing atom and a nuclear charge one

unit greater. The first question arising is whether the electrons

in the core have the same arrangement as in the foregoing neutral

atom ? Information is obtained on this point in many cases from

the spark spectrum. The second question is, in what orbit does

the newly captured electron finally move ? It either takes a place

as one of a group of outer electrons already existing in the core, or

it traverses an orbit not yet occurring in the core. In the former

case it adds further to an already existing shell, in the latter case

it commences a new shell. In order to answer these questions

we must know the quantum numbers of the orbits in the atom.

The answer to the first question is sometimes Yes and sometimes

No
;

in the latter case the same two questions have to be asked

about the last electron but one captured, and so on.

The idea underlying this procedure is called by Bohr the
"
Aufbau-

prinzip
"
(atom building).

31. The Actual Quantum Numbers of the Optical Terms

Our next problem will be the more exact determination of the

number of electrons occupying the individual electron orbits and

the values of n and k associated with them. Two methods are avail-

able for the solution : the examination of the optical spectra and of

the X-ray spectra.

If one goes through the series of the elements, and considers in

1 Loc. cit. t see p. 181.
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each case the scheme of the spectral terms, the great similarity

between the spectra of homologous elements will be recognised.

Each alkali spectrum exhibits the same characteristics, likewise each

spectrum of the alkaline earths. We attribute this to the equal

numbers of outer electrons (cf. Kossel, 30).

We turn to the term values themselves. We imagine them written

in the form

wvv *r*n*2

The spectrum of an element can then be expressed by the system
of n*-values. In order to give a survey of the dependence of the

spectrum on the atomic number, we give here the effective quantum
numbers n* of the lowest term of each series, for the arc spectra so

far analysed, together with the decimal places of the absolute magni-
tude of the Rydberg correction taken as the limiting value for large

values of n. 1

The table shows that for neutral atoms of almost all elements the

/-terms are still of hydrogen type. The Rydberg corrections are

smallest here for Cu and Ag, apart from the light elements
; they

are largest for the alkaline earths, and in this case increase in the

order of the atomic numbers. The rf-tcrms arc of hydrogen type
in the case of the lightest elements (i.e. not heavier than Na) ;

it

seems probable also that for Cu, Ag, and perhaps for Or, Mn, the

correction is nearly zero (not approximately equal to another whole

number). The Rydberg correction is still relatively small for the

alkalies, but increases definitely with the atomic number
;

in the

case of the alkaline earths it is considerably larger. Finally the

p- and s-terms depart considerably from the values in the case of

hydrogen. It appears, consequently, that /-orbits are in general

situated outside the core, that the d-orbits in many neutral atoms

approach the core too closely to remain hydrogen-like, and in several

cases many actually penetrate into the core, and that the p- and

1 The numbers arc mostly calculated from the data in Paschen-Gotze (Serien-

gesetze der Linicnspektren, 1922). In the case of doublets or triplets the mean
value of n* is given ; for the alkaline earths the values in the first and second row

correspond to the singlet and triplet terms respectively, for O, S they correspond
to the triplet and quintet terms, and for He to the singlet and "

doublet
"
(which

are possibly really triplet) terms ; the figures for Cr, Mo refer to septet terms and
those for Mn to octet terms. Except for those of the alkali metals and He, most
of these spectra, especially those of Cr, Mn, Mo, include terms which cannot be

explained on the assumption of a single radiating electron ; only those terms are
included in the table which can be so explained. From O onwards only the decimal

places of d are given i the columns for the Rydberg corrections. In those

places where the known terms permit of no extrapolation for n=oo, the Rydberg
correction of the last known is given in brackets.
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1 The neon spectrum is known to have two systems of terms which converge to
different limits. In calculating n* the term under consideration has to be counted
from the limit of the system to which it belongs. The |)-term given is the lowest
which can be assigned to a definite series. A deep-lying term (n*=0-79) is known
from measurements on electron impact (G. Hertz, Zeitschr. f. Physik, vol. xviii,

p. 307, 1923), and from the spectrum in the extreme ultra-violet (G. Hertz, Zeitschr. f.

Physik, vol. xxxii, p. 933, 1925 ; T. Lyman and F. A. Sauniers, Proc. Nat. Acad. Sci.,

vol. xii, p. 192, 1926) ; it corresponds to the normal state, but cannot be explained
on the assumption of a single radiating electron.
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$-orbits are always penetrating orbits, except in the case of the

very lightest elements. (These conclusions, as far as they are based

on this table, refer to neutral atoms only ;
it is not necessarily true

that the orbits of the series electron of an ionised atom will be of

the same character as those with the same Jc in a neutral atom of

the same atomic structure.)

In order to substantiate this view we consider the radii of the

atomic cores. The sizes of the cores in the case of the arc spectra

of the alkaline earths, or, what comes to the same thing, the sizes

of the singly charged ions of the alkaline earths, can be derived

from the spark spectra. These ions possess only one external

electron
;

the aphelion of its orbit is situated in a region where

the field of force of the atom has approximately the character of a

Coulomb field, and the aphelion distance depends in the same way
on the energy, and consequently on n*, as in the case of hydrogen :

Since the first s-orbit is the normal orbit of the series electron

of the ions of the alkaline earths, we take from the spark spectra

of the alkaline earths the n* values corresponding to the first s-terms,

and regard the aphelion distances calculated from them as the core

radii of the alkaline earths. In the same way we may draw con-

clusions regarding the cores of the elements Zn and Cd, which are

similar to the alkaline earths, since we must assume also of their

ions that they have only one external electron. We obtain an

upper limit for the radii of the alkali ions and the ions of Cu and Ag
from their distances of separation in the crystal gratings of their

salts ; the separation of the Na+ and Cl~ ions in the rock-salt grating

must, for example, be larger than the sum of the ionic radii. By
means of such considerations all radii of all monovalent ions are

determined, apart from an additive constant which is additive for

positive and subtractive for negative ions. This constant can be

determined approximately by putting the two ions K> and Cl~,

both of which are similar to the A-atom, equal to one another ;
this

gives upper limits for the radii of the positive ions, since K+ must

be smaller than Cl~ on account of the difference of nuclear charge.
1

A second upper limit for the ionic radii of the alkali metals is given

by the known radii of the atoms of the preceding inert gases, deduced

from the kinetic theory of gases ;
the alkali ions we must regard

as being similar in structure to the inert gases their dimensions,

1
Cf. W. L. Bragg, Phil. Mag., ser. 7, vol. ii, p. 258, 1926.
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however, must be somewhat smaller on account of the higher nuclear

charge.

The ionic radii calculated in this way are collected in the following
table. They are expressed in terms of the hydrogen radius a

1L
as

unit. 1

The table shows the growth in the core radii of homologous ele-

ments with atomic number as well as the fact that the radii of the

alkaline earth cores are relatively large, while those of Cu and Ag
are smaller.

An /-orbit has, in a strict Coulomb field, a perihelion distance

which is larger than 8an (cf. 24). Owing to the departures from a

Coulomb field of force in the neighbourhood of the atomic cores it

will be decreased. We shall not carry out this calculation, how-

ever,
2 since for our purpose (the determination of the real quantum

numbers) a qualitative consideration suffices. We see that an /-orbit
can most easily approach the core in the case of the heavy alkaline

earths ;
we understand the large Rydberg correction in the case

of Ba and the relatively large ones in the case of Sr and Ca
; we

find generally a complete correspondence between the core radii

1 There are still other methods of determining the radii of the alkali cores, which
we shall not enter into here. The results are in agreement with the upper limits

given here. Cf. the summary by K. F. Herzfeld, Jahrb. d. Radioakt. u. Ekk-
tronik, vol. xix, p. 259, 1922. j

2 The calculations have been carried out by F. Hund, Zeitschr. f. Physik, vol. xxii,

p. 405, 1924.
8 The values obtained from different Ag salts are widely different.
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and the Bydberg corrections. This connection enables us to draw

conclusions regarding the ionic radius also in the case of the few

other elements the Rydberg corrections of which are known ;
we

conclude in this way that it is rather smaller for Al than for Mg, and

that in the case of Hg and Tl it is of the same order of magnitude
as for Zn and Cd.

The d-orbits in the hydrogen atom have a perihelion distance of

more than 4r-5a, r (the circular orbit n= 3 has radius 9aH ) ;
in the field

exterior to the cores, which deviates appreciably from a Coulomb

field, they are smaller. The very small Rydberg corrections in

the case of Cu and Ag we ascribe to the fact that in these cases

the d-orbits are situated at a considerable distance from the core.

The small values for the alkalies and for Zn, Cd, and Hg show that

in these cases also the d-orbits are still external paths ;
in the case

of Rb and Cs, they must approach very close to the boundary of

the core. In the case of the heavier alkaline earths, Ca, Sr, Ba,

we must assume that penetration occurs. In this connection it is

striking, that in spite of the increase in the core radius from Ca

to Ba, the n* values (for large n) increase
;
this leads to the assump-

tion that the Rydberg corrections in the table are to be altered by
whole numbers and are, for Ca, 0-95, 0-92 respectively ;

for Sr,

1-75, 1-80 respectively ;
for Ba, 245, 2-77 respectively. In

the case of Ca the lowest d-teim would still correspond to a 33-orbit,

in the case of Sr to a 43-, and in the case of Ba to a 53-orbit. The

cases are worthy of note in which the Rydberg corrections of the

/- and d-orbits do not go hand in hand. Thus in the case of Zn the

magnitude of the /-correction is larger, that of the ^-correction

smaller than for K
;
Cd and Hg have considerably smaller d-correc-

tions than Rb and Cs, whereas the /-corrections are about the same.

The explanation of this is the high degree of symmetry of the alkali

ions ;
this causes the potential in the vicinity of their boundaries to

vary in accordance with a high power of r
} while, in the case of the less

symmetrical cores of Zn, Cd, and Hg, it varies more slowly with r.

In the case of the very light elements, the j?-orbits are still external ;

the smallness of the Rydberg corrections, and small core radii,

suggest that this may also be the case for Cu, Ag, and Au, but the

magnitude of the doublet separations and the variation of the value

of the correction for different atoms of the same atomic structure

(Cu, Zn+, Ga++, Ge+++
,

etc. 1
) seem to show conclusively that the

p-orbits penetrate. tThe apparently small Rydberg corrections for

1 See J. A. Carroll, Phil. Trans. Roy. Soc., vol. ccxxv, p. 357 (1926).
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Mg (-0-04 and -0-12), Zn (-0-09 and -0-20), Cd (-0-05 and

0-14), as well as Hg (0-00 and 0-10), have certainly to be in-

creased by a whole number
;

their magnitudes would otherwise be

no larger than those of the ^-corrections. If we again note that the

n*-values in the series of the alkalies increase with increasing core

radius, we must assume that the real n-values are 3 for Na, 4 for K,
5 for Rb, 6 for Cs, and that the Rydberg corrections are 0-85,

1-70, 2-66, and 3-57 respectively. Their magnitudes for the

alkaline earths must be somewhat larger ;
we assume, therefore,

1-04, 1-12 respectively for Mg; 1-93, 1-95 respectively forCa;

2-59, 2-85 respectively for Sr
; 3-73, 3-67 respectively for Ba.

The s-orbits penetrate from Li onward. In order that the magni-
tudes of the Rydberg corrections may increase with increasing atomic

radius, we must take 8= 1-34 for Na (0-34 would be smaller in

amount than the ^-correction) ;
2-17 for K

;
3-13 for Rb, and

4-05 for Cs. The somewhat larger values for the alkaline earths

may likewise be found uniquely from the table. For Al we assume

1-76
;

for Cr to Ga values ranging from 2 to 3
;

for Ag, Cd
from 3 to 4

;
for Hg and Tl values between 4 to 5 are very

probable. According to the estimate (4), 28, of the Rydberg cor-

rection, the essential factor is the principal quantum number of the

largest s-orbit confined to the interior of the core, and this is clearly,

in the case of Cu, Zn, Ga, the same as for Rb, and in the case of Ag,

Cd, In, the same as for Cs
;

the values in the sixth period can be

inferred by analogy.
We supplement this consideration by another rough estimation

of the 8-values for the s-terms, namely, that given by van Urk.

We replace the electron structure of the atomic cores by charged

spherical shells, the radii of which are somewhat larger than ^aH

(they must be as large as this for the s-orbits to be penetrating

orbits), and imagine the full charge of the nuclei (equal to the order

in the periodic system) to be operative in thfe interior of the shells.

Since the ^-orbits under consideration have the same angular
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momentum as the innermost orbits of the core but smaller amounts

of energy, and since the field of the core again resembles a Coulomb

one in the vicinity of the nucleus, it follows that the inner loops of

these s-orbits have the same parameter as the core orbits next to

the nucleus
; they are therefore subjected to the undiminished

nuclear charge. Application of the equation (2), 28, leads to the

8-values (8cal ) given in the following table. Together with these the

only S-values (Scorr ) which can be in agreement with these lower

limits and the empirical terms are given.

As a consequence of this we can regard the actual principal

1 Normal orbit of last electron added. See footnote, p. 185.
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quantum numbers and the actual Kydberg corrections of the empiri-

cally known terms as determined, with a few exceptions. To sum-

marise these results we now give a table (p. 190) of the negative

values 8 of the true Kydberg corrections (for large n) and the

quantum numbers of the first terms of each series. The normal state

is denoted by heavy type ;
it is distinguished by the fact that the

lines for which it is the initial state occur in absorption at ordinary

temperatures. It must be emphasised that this table only refers

to neutral atoms, and it must not be assumed that the relative

magnitudes of the terms, or the quantum numbers of the first term

in each term series, are necessarily the same for all ions containing

the same number of electrons.

32. The Building Up of the Periodic System of the

Elements

We are now in a position to deal with the building up of the

periodic system step by step, for which purpose we have now at

our disposal all of the data hitherto collected, namely, the properties

of the X-ray spectra ( 29), the chemical behaviour ( 30), and the

characteristics of the optical spectra collected in the table on p. 190

and similar data for many ions.

As a reminder of the order of the elements in the periodic system

we give the scheme (fig. 17) often used by Bohr and dating back to

J. Thomsen.

In the normal state, hydrogen (1 H) has an electron in an orbit

with the principal quantum number 1. As long as the orbit is re-

garded as an exact Kepler ellipse the subsidiary quantum number

is undetermined. We shall see, however, on taking into account the

relativity theory in 33, that the total angular momentum is also

to be fixed by a quantum condition, without thereby appreciably

altering the energy. The normal orbit of the electron is thus a

lrorbit.

For helium (2 He) in the excited states the core will correspond,

according to Bohr's principle, with that of the hydrogen atom in

the normal state, the only difference being the higher nuclear charge.

Now the orbit of maximum energy, or normal orbit, of the series

electron is likewise a li-orbit, so that helium in the normal state

would have two (presumably equivalent) ^-electron orbits. This

system will be considered in greater detail later ( 48). According

to Kossel, a special stability must be ascribed to such a system of

two lrorbits, such as is the case with all inert gases ; in X-ray

terminology this structure comprises the K-shell.
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The question why there are two systems of terms a singlet system

(parhelium), to which belongs the normal state, and a doublet system

(orthohelium) and why these cannot combine with one another,

cannot be dealt with from the standpoint of our book.

The configuration of two Ij-orbits occurs again in the core of the

excited lithium atom (3 Li). According to the spectroscopic evidence,

the normal state in this case is not a l x
- but a 2rorbit. We must

conclude from this that, according to the principles which limit the

^Hc

Fio. 17.

number of electrons in orbits with the same nk ,

1 a system of three

li-orbits under the influence of a nuclear charge 3 is not possible.

The ions Be+, B++, C+++ . . . have a structure similar to that of

the lithium atom. Millikan and Bowen 2 were able to confirm experi-

mentally the fact that the spectra of the
"
stripped atoms

" Be+ to
+5 are similar to that of the Li-atom.

The spectra of the two following elements, beryllium (4 Be) and

boron (5 B), are not sufficiently well known for us to be able to draw
conclusions regarding the electronic orbits. We can conclude only,

1 These principles have been formulated by W. Pauli (Zeitschr. f. Physik, vol.

xxxi, p. 765, 1925) but will not be explained in this book.
2 R. A. Millikan and I. S. Bowen, Proc. Nat. Acad. Sci., vol. x, p. 199, 1924

(B++) ; Nature, vol. exiv, p. 380, 1925 (Be+ and C+++) ; Phys. Pev., vol. xxviii, p. 256,
1920 (Be+); Phys. Rev., vol. xxvii, p. 144, 1926 (O+

5
).
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from the bivalent character of beryllium and trivalent character

of boron, that the newly added electron occupies orbits with the

principal quantum number 2, and that the number of l^orbits

remains equal to two
;

the K-shell is therefore closed with the He

configuration. The spectra of B+ and C++ are known,
1 at least

in part ; they are presumably similar to the spectrum of neutral

Be, and their lowest terms indicate that the normal orbit of the

series electron is a 2 1-orbit. Also the spark spectrum of carbon

is known
;

2 the lowest term occurring in it is the 2 2-term. Since

the boron atom is most probably similar in structure to the single-

charged carbon ion, we may assume that, in addition to the K-shell,

one 2 2
- and two 2 1-orbits exist in boron. We arrive here at the

same result as for lithium, that not more than two equivalent
electrons with Jc=l exist.

A further electron is added in carbon (6 C) and occupies, in all

probability, a 2 2-orbit. Such a system of two 2r and two 2 2-orbits

does not necessarily possess the tetrahedral symmetry with which one

is familiar from the chemical and physical properties (e.g. diamond

lattice) of the carbon atom. Since, however, nothing is known

regarding the complicated motions in the atom, this does not neces-

sarily imply a contradiction.

Too little is known spectroscopically regarding the next elements

(7 N, 8 0, 9 F). The chemical evidence affirms that N, 0, F have

an affinity for three, two, and one electrons, and the spectrum of

shows that the normal orbit of the last electron is a 2 2-orbit. The

eight-shell required by Kossel's theory must be reached in the case

of the inert gas neon (10 Ne) ;
we can assume, therefore, that the

eight electrons added since Li are bound in orbits with the principal

quantum number 2. The question as to how they are distributed

among the 2r and 2 2-orbits we leave unanswered.3

The conception of the fully occupied eight-shell is confirmed by
the well-known spectrum of sodium (11 Na). The normal orbit of

the series electron is a 3 1-orbit, the p-oibit of maximum energy

being a 3 2-orbit. Outside the core, then, no more orbits occur with

w=2. We conclude from this, that the series of electrons for which

n=2 is completed by the number 8 reached in the case of neon.

Using the terminology of the X-ray spectra we call this structure

1 R. A. Millikan and I. S. Bowen, Phys. Rev., vol. xxvi, p. 310, 1925.
2 A. Fowler, Proc. Roy. Soc. (A), vol. cv, p. 299, 1924.
8 Later investigations by E. C. Stoner (Phil. Mag., voL^xlviii, p. 719, 1924) and

W. Pauli, jr. (loc. cit.), have shown that two of the electrons traverse 2rorbits and
six 2a-orbits. Here and in the following, however, we shall not enter further into

these details.

13



194 THE MECHANICS OF THE ATOM

the L-shell. The construction of this L-shell is therefore completed
in the second period of the system of elements, while the K-shell is

built up in the first period.

Since in the case of magnesium (12 Mg) the normal orbit of the

series electron is again a Sj-orbit, we assume, in accordance with the

double valency, that the magnesium atom in the normal state has

two equivalent Sj-electrons in addition to the K- and L-shells.

In aluminium (13 Al), a 3 2-orbit appears as the normal orbit. We
see, therefore, that a system of three S^orbits cannot be formed as

the outside shell. In the case of Li and O we arrived at a similar

conclusion, namely, the impossibility of the existence of three lr or

2rorbits.

In the case of silicon (14 Si) we meet with an instance in which

the spectrum can no longer be accounted for with the help of one
"
radiating electron." 1 We conclude from the tetravalent character

that the L-ring is surrounded by four orbits with n=3.
With regard to the following elements (15 P, 16 S, 17 Cl) the only

relevant evidence at present available is the affinities for one, two,

and three electrons and the spectrum of S which indicates that the

normal orbit of the last bound electron is a 3 2-orbit. The final

element of the period is the inert gas argon (18 A), in which, again,

a closed shell of 8 electrons must exist. The detailed construction

of this shell is best considered from the standpoint of the follow-

ing element potassium (19 K), the core of which must have this

structure.

The potassium spectrum indicates a 4rorbit as the normal orbit

of the radiating electron, and a 4 2-orbit as the p-oibit with maximum

energy ;
the series of 3 X

- and 3 2-orbits is therefore completed on the

attainment of the eight-shell of argon. The 33-orbit of potassium is

more loosely bound than the 4r and even the 4 2-orbits ;
it has, in

fact, a larger effective quantum number (2-85 in comparison with

2'23 for the 4 2
- and 1-77 for the 4 1-orbit). The closed shells in argon

do not therefore contain all orbits with the principal quantum
number 3, but only the 3r and 32-orbits.

In the case of the divalent calcium (20 Ca), chemical and

spectroscopic results both point to a second electron occupying a

^-orbit.

The elements now following exhibit very complicated spectra, for

1
Experimental determinations by J. C. McLennan and W. W. Shaver, Trans.

Roy. Soc. Canada, vol. xviii, p. 1, 1924, and A. Fowler, Phil. Trans. Roy. Soc.

London (A), vol. ccxxv, p. 1, 1925. Theoretical interpretation by F. Hund, Zeitschr.

f. Physik, vol. xxxiii, p. 345, 1925 ; vol. xxxiv, p. 296, 1925.
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whose resolution into series very few data are at present available. 1

Their terms have a very high multiplicity, e.g. the terms of Mn and

others are octets
; further, the elements have each several systems

of terms, so that, for example, an element can have several p- or rf-

terms of the same multiplicity, which do not belong to a series
;

the normal state is not always, as hitherto, an s- or y-state ;
d- and

/-terms also occur as normal terms, but the spectroscopic character

20 30 40 50

Atomic number

FIG. 18.

60 70 80

paramagnetic
coloured ions

incomplete inter-

mediate shells with

90 loosely bound
electrons.

of these terms is not determined by one electron only. Here too for

the first time we meet ions having electron arrangements different

from those of the neutral atoms with the same number of electrons
;

for some of these ions the normal orbit of the series electron is a

rf-orbit (see p. 200).

The elements from scandium to nickel also form, chemically,

a special group. With regard to their chemical valency, they do

not form a continuation of the series K, Ca
;
rather they exhibit

multiple valencies which vary irregularly though their maximum

1 For the connection between these spectra and the periodic system, see F. Hund,
ZeitscJir. f. Physik, kc. cit.
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values correspond in general to their position in the general scheme

of the periodic system (Ti 4-, V 5-, Cr 6-, M 7-valent) ;
the minimum

valency may be as low as 2. At this juncture the well-known curve

(fig. 18) of atomic volumes, after Lothar Meyer, can be used as an

example of the relations between different elements (atomic weights
and densities in the solid state). The alkali elements form sharply
defined maxima on this curve, which, according to our ideas, arises

from the fact that they have one outer electron in an elliptic orbit.

The fact which concerns us here is that the elements Ti to Ni are

all situated in the neighbourhood of the third minimum of the

curve, and have only slightly different atomic volumes. A further

difference between these elements and the preceding ones arises

from their magnetic behaviour and the colouration of the heteropolar

compounds in which the elements occur as ions.

According to Ladenburg,
1 these compounds are paramagnetic for

the group Ti to Cu (the latter only in divalent form) and exhibit

characteristic colouration (cf. fig. 18), i.e. electron jumps exist with

such a small energy difference that they absorb visible light. Pre-

vious to Bohr's system of quantum numbers Ladenburg attributed

this behaviour to the formation of an
"
intermediate shell

"
in the

group of elements from Sc to Ni. The newly added electrons are not

to take up positions externally but internally, while the two outer

electrons of Ca remain.

Bohr has made this conception more precise by assuming that,

in the group Sc to Ni, the series of the 3^ and 3 2-orbits are com-

pleted by 3.rorbits. We shall consider later how such a completion
of inner groups can occur ; for the present it may be mentioned that

the interpretation of the complex spectra of Sc to Ni 2
fully confirm

this assumption. The appearance of the last M-term in the X-ray

spectra of Cu
(cf. fig. 16, p. 179) shows that 33-orbits are actually

present in the interior of the atoms of the following elements. The

33-orbits in the core do not prevent the existence of excited 33-orbits

in the exterior, as the table on p. 190 shows for Cu, Zn, Ga, Rb.

The elements copper (29 Cu) and zinc (30 Zn) resemble the alkalies

and alkaline earths respectively in some series of their spectra. In

Cu we have to assume an outer electron confined to a 4rorbit, and in

Zn two such ^-electrons. Corresponding to Al, the radiating electron

in gallium (31 Ga) is situated on a 4 2-orbit. In the eighth place

after Ni we have the inert gas krypton (36 Kr), so that the group

1 R. Ladonburg, Zeitschr. /. Elektrochem., vol. xxvi, p. 262, 1920. Fig. 18 is

taken from this paper.
F. Hund, loc. cit.
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Cu to Kr resembles very closely the second and third periods. We
assume, therefore, that in this group the eight four-quantum electron

orbits (4X
- and 4 2-orbits) are added to the complete three-quantum

shell completed in the case of Ni.

The fact that in Kr the N-ring (w=4) is closed is shown by the

spectra of rubidium (37 Kb) and strontium (38 Sr) ; they prove, in

conjunction with the chemical behaviour of these elements, that, in

the normal state, we have one and two outer electrons respectively

in S^orbits. The following elements, yttrium (39 Y) to palladium

(46 Pd) (like the group Sc to Ni), do not form a simple continuation

of the series, but exhibit multiple and rapidly changing valency.
This suggests that in these elements the 43-orbits, hitherto absent,

appear for the first time ; in the case of silver (47 Ag) we actually

observe a corresponding X-ray term. The occurrence of 43-orbits

in the core, again, does not prohibit electrons in an excited state

from moving in a 33-orbit outside the core, as is the case in Ag, Od,

and In.

The elements silver (47 Ag), cadmium (48 Cd), and indium (49 In)

correspond in their spectra and chemical behaviour to the elements

Cu, Zn, Ga. In their case one 5 2
- and two 5 x-orbits are superposed

on the four-quantum shell (4 t-, 4 2-, 43-orbits). In xenon (54 X) we

must, for the time being, regard the 5^ and 5 2-groups as closed.

The sixth period begins with caesium (55 Cs) and barium (56 Ba)
in analogy with the fifth

;
the normal orbits of the radiating electrons

are 61-orbits. Lanthanum (57 La) and the elements immediately

preceding platinum (78 Pt) resemble the group Y to Pd. We may
assume there the building up of the 53-group ; a 53-X-ray term oc-

curs, in fact, soon after platinum. In this group is included a further

group of elements which all have very much the same chemical be-

haviour, the rare earths
; we may ascribe them to the formation of

the 44-orbits, which have not occurred hitherto
;
a 44-X-ray term

occurs in the case of tantalum (73 Ta). The elements gold (79 Au) to

niton (86 Nt) correspond to the elements Ag to X, and involve the

initial formation of the 6 X
- and 6 2-orbits. The last period involves

the superposition of 71-orbits.

We would expect that in the seventh period the addition of

54-orbits would give a group of elements of very similar chemical

properties, analogous to the rare earths. The heaviest known
elements do not appear to belong to such a group, so the addition of

54-orbits must begin later in the seventh period than the addition

of 44-orbits in the sixth period ; this different is probably to be

ascribed to the greater eccentricity and consequent looser binding
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of the 54-orbits of an element of the seventh period, as compared
with the 44-orbits of the corresponding element of the sixth period.

1

If we again cast a glance over the periodic system and omit for

the moment those groups (framed in fig. 17) having special chemical

and spectroscopic behaviour, we see that, in the first period, two

Ij-electrons are added and in each following period altogether eight

nt
- and w 2-electrons. The iron group (Sc to Ni) introduces ten

further electrons in three-quantum orbits, so that altogether we
obtain 18 three-quantum orbits. The palladium group (Y to Pd)
introduces 10, and the group of the rare earths 14 further four-

quantum orbits, the number of which is thereby raised to 32.

A corroboration of this conception of the building up of inner

electron groups is found (according to Bohr and Coster) in the dia-

gram of the X-ray terms (fig. 16, p. 179), where marked kinks occur

in the curves for the values of Z concerned in this process.

For convenience we give a table of the numbers of electrons occupy-

ing the various shells.2

In order to be able to derive deductively the construction of the

periodic table, one must be able to deduce theoretically themaximum
number of electrons which can occupy orbits of the same nk . This

can now be done
;
consideration of physical

3 and chemical 4
experi-

mental evidence first suggested the rule that the maximum number
of electrons which can occupy equivalent %-orbits in a single atom
is 2(2& 1) ;

a theoretical explanation of this rule can now be given,
5

but it lies outside the scope of this book.

If these maximum numbers of occupation be regarded simply as

given, then the order of addition of the quantum orbits becomes, to

a certain degree, comprehensible. We must suppose that the addi-

tion of a fresh electron to an already existing configuration takes

place in such a way that the electron finally enters that quantum
orbit in which it has the least energy (in which it is most firmly

bound), and that it remains in this orbit during the capture of sub-

sequent electrons. And here it must be borne in mind that an atom

1 Calculations by Y. ISugiura and H. C. Urey (Det. Kongel. Danske Vidensk.

tielskab., vol. vii, No. 13, 192(5) suggest that in the seventh period the group
analogous to the rare earths should begin with the element atomic number 95.

2 The table gives the numbers of occupying electrons only in as far as they are

determined to a fair degree of certainty trom our considerations. Later investiga-
tions permit of these numbers being given with a fair degree of probability also

in the case of the remaining elements. See Jb\ Hund, Zeitschr. f. Physik, loc. cit.
1 E. C. Stoner, Phil. Mag., vol. xlviii, p. 719, 1924.
* J. I). Main Smith, Journ. Soc. Chem. Ind., vol. xliii, p. 323, 1924; vol. xliv, p, 944,

1925 ; H. G. Grimm anS A. Sommerfeid, Zeitschr. f. Phys., vol. xxxvi, p. 36, 1926.
6 This explanation depends on the work of Pauli (loc. cit.) and the concept of the

spinning electron.
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is not produced from the preceding one by the addition of an electron,

but from its own positive ion
;
this certainly has the same number

of electrons as the preceding atom, but a somewhat higher nuclear

charge. That this nuclear, charge may on occasion be an important
factor in deciding which orbit of the added electron is most firmly
bound is shown by the following arguments.
We assume that an ion contains a number of fully occupied quan-

tum orbits, and we inquire now which of those not occupied is the

most strongly bound. We can give an answer to this in two limiting

cases. If the nuclear charge is much greater than the number of

electrons, the field of force in the ion and its surroundings is nearly
a Coulomb field and the energies of the orbits are in the same order

as in the case of hydrogen, only the p-, rf-, etc., orbits with a given
n are slightly less firmly bound than the s-orbits with the same n ;

the order is, therefore : l x ,
2

lf
2 2 ,

3 lf 3 2 ,
33 ,

4 X . . . .

If now we imagine, say, the uranium atom to be produced by a

nucleus of charge 92 collecting 92 electrons in turn, it will first capture
two lrelcctrons, then altogether eight 2r and 2 2-electrons, eighteen

3r, 3 2-, 33-electrons, etc. Since now the number of electrons gradually
becomes comparable with the nuclear charge, the order of capture is

no longer quite certain. The Bohr-Coster diagram of the X-ray terms

(fig. 16, p. 179) shows us, however, that the energies of the orbits,

at any rate in completed atoms, are in the order 4
1?
4 2 ,

43 ,
44 ,

5 X . . . .

If the number of electrons is only one less than the nuclear charge,
that is, if we have to do with the addition of the last electron and the

consequent formation of the neutral atom, we can fall back on the

rough estimation of the effective quantum number given by (4),

28, as soon as we have to do with orbits of the penetrating type.
For s-orbits we have

n*=n-(n>-l -!+,).
Since the aphelia of the s-orbits of the core determine its magnitude,
it follows that n is the real quantum number of the largest s-orbit

in the core, and therefore ww=w 1. We shall then have approxi-

mately w*=2.

In the case of the p-orbits n will be somewhat larger than the

quantum number of the p-orbit completely contained in the core,

so that we get 2<n*< 3.

These values agree in a certain measure with the empirical values

(first table of 31).
1 In general, the dimensions of the d-orbits of

1 For half integral values of k one finds n*= l-5 for s-terms, n*==l-6 to 2-6 for

p-texim.
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neutral atoms are such that they do not penetrate into the core, or

penetrate to such a small extent that the equation (4), 28, does not

seem to be applicable ;
the 33-orbit is then the most firmly bound

d-orbit and its n* will be somewhat less than 3. Only in the case of

Sr and Ba do the d-orbits appear to penetrate more deeply. The

estimate would lead to

the empirical value is approximately 2, but is still higher than for

the s-orbits. In either case, then, the first s-term of a neutral atom

(whatever the value of n) is likely to be more firmly bound than the

first rf-orbit.

This estimation affords an explanation of the fact that after the

completion of an n x
- and n 2-group, an outer electron of a neutral

atom will become bound in an (n+l^-orbit, and that, in conse-

quence, after the closing of the 3 X
- and 3 2-groups in A or K+

,
the next

electron in K traverses a 4r (not a 33-) orbit, or after completion of

the 4r and 4 2-groups in Kr or Rb+, Rb begins a 5r (not a 43
- or 4

4-)

group. Whilst in the successive capture of electrons by a slightly

ionised atom the 3 2-orbit is followed by a 4 1-orbit, for atoms of high
atomic number with the same number of electrons, which are highly

ionised, the 3 2-orbit is succeeded by a 33-orbit. Consequently, if we

traverse the series of potassium-like ions K, Ca+
,
Sc++

,
Ti+++

,
V<4)

. . .

TJ(73 ) we must, sooner or later, arrive at a point where the outermost

electron is confined to a 33-orbit. Actually, in the spectrum of K, the

33-orbit (n* 2-85) is less strongly bound than the 4rorbit (w*=l-77),
for Ca+ the difference is much less (n*=2-31 ; 2-14) ;

in Sc++ the n*

of the s-term will be still larger than in the case of Ca+ (in accordance

with the general behaviour of the penetrating orbits), so that the

d-orbit could be more strongly bound than the s-orbit. 1 It has

recently been confirmed by experiment
2 that for Sc++, Ti+++, V+4

the lowest rf-term (33-orbit) is lower than the lowest s-term (ij-orbit),

and similarly
3 in the next row of the periodic table the lowest rf-term

for Yt++, Zr+++ is lower than the lowest s-term. It may therefore be

assumed that, in the building up of the Sc-atom from the argon-like

configuration of Sc+++
,
a 33-orbit is added and subsequently two 4 X

-

orbits, and in the case of Ti from Ti++++
,
two 33

- and then two 4 X
-

orbits.4

1
ISce N. Bohr, Zcibchr. f. Physik, vol. ix, p. ], 1922.

2 R. E. Gibbs and H. E. White, Proc. Nat. Acad. Sri., vol. xii, p. 598, 192(5.
3 R. A. Millikan and T. S. Bowen, Phys. Rev., vol. xxviii, p. 923, 1926.
4 This hypothesis is siif)poitcd by the investigations of these spectra and their

theoretical significance (F. Kund, loc. cit.), even though the conception of a single
**

radiating electron
"

is no longer adequate.
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In order to represent the numbers of electrons occupying the

quantum orbits with different n, a two-dimensional diagram must be

employed, for in order to include all the elements together with all

their ions down to the bare nucleus the values of n must be shown as a

function of both the atomic number Z and of the numbers of electrons

z. An illustration of the ideas in question is provided by fig. 19, in

Pt-Group

Fe-Gioup

50

FIG. 19.

60 70 80

10

90Z

which only the group is represented (by shading) which is in process

of completion, i.e. the quantum orbit of the last electron added. The

regions where this quantum orbit is not uniquely determined are

doubly shaded.

33. The Relativistic Kepler Motion

In our investigations of the periodic system we found the non-

relativistic mechanics adequate. The more rigorous treatment of
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the orbits in the case of hydrogen requires, however, that the rela-

tivity theory should be taken into account.

A simple calculation shows in fact that already in the one-quantum
circular orbit of the hydrogen atom the velocity of the electron attains

a value whose ratio to the velocity of light c is not negligible for all

purposes. This velocity is

p h
vu= =

;

man 27rwa
1[

if for % we substitute the value (8), 23,

A2

a n

we find for the ratio a

(1) a=^=-^=7-29.10-3.

For observations which attain this order of accuracy, the ordinary
mechanics will therefore no longer suffice. Consequently we must in-

vestigate the motion of an electron in a Coulomb field of force arising

from a nucleus of charge Z, taking the relativity theory into considera-

tion
;
in this investigation we follow Sommerfeld. 1

Here also the Hamiltonian function is identical with the total

energy (cf. (11), 5). We have

where fiv/c. The components of the momentum are by (10), 5,

which, on squaring and adding, gives

/ 1

- - *- --
1 p

"

yi__p2
and

vT=/
Therefore, by (2),

(4) H

1 A. Sommerfeld, Ann. d. Phynik, vol. li, p. 1, 1916.
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If we calculate from this the sum of the squares of the momenta, we
find:

(5)
L

(p..+ft
.
+ft-)

This equation differs from the corresponding one in the non-relativ-

istic Kepler motion by the term

only. Since this term depends on r only, the present problem is like-

wise separable in polar co-ordinates.

Now, however, we have single degeneration only. Following the

notation introduced in 21 for the central motion, we write

The action integrals J and J
e
are the same as before, in particular

is 27T times the angular momentum. Jr takes the same form (2), 22,

as before

but here A, B, and C have a somewhat different meaning :

WW2
I

=2ro (-W)---=>Vc2
1

c* L

B=

I-V+
We2Z ../ W

m c2

a2Z2

a being given by (1). The evaluation of the integral gives as before

(c/. (5), Appendix II),

,

VA/
therefore

/
-^

(
. Y- A aZ

v ' V i W
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W
If the equation be solved for 1 -\

-- we find
2

(6)
/

V +^
2Z2

We have here the exact expression for the energy. As in the case

of every multiply-periodic central motion, we know that the orbit is

a rosette.

Only the case in which a is very small is of interest to us. The
first few terms of the expansion in a are therefore sufficient. We find

W a2Z 2 a4

If the value (1) be substituted for a and the Rydberg constant R
be introduced, in accordance with (2), 23, we obtain

(7) w=( }

Before we enter into a fuller discussion of this equation, we shall

give another deduction of it, this time using the theory of secular

perturbations.

We take as our starting-point the expression (4) for the Hamil-

tonian function. In this the second term under the root is of the

order of magnitude /J
2

;
if we expand in terms of this we get

If we put

H = (PS+PS+P.
'

/

H is the Hamiltonian function of the non-relativistic Kepler motion,
which we regard as the unperturbed motion, and H! is a perturba-
tion function. In order to find the influence of this perturbation on

the Kepler motion, we have to average H! over the unperturbed
motion. If we express the sum of the squares of the momenta occur-

ring in Hj with the help of the equation for W
,
we obtain

This additional term in the energy corresponds to the additional
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term in (5), only in this case W is replaced byW ,
in accordance with

our degree of approximation. We have already calculated the mean

values of 1/r and 1/r
2 for the Kepler motion in (19) and (20), 22 :

_ l ~~
2__

l

a ab

so that

Remembering that

a n

b k
9

we get for the relativity contribution to the energy

or, if we again introduce a and R,

(8) W^ n 3

l~~l

in agreement with (7).

The smaller the principal quantum number the larger is the

relativity correction (8), and it is therefore greatest for the l^orbit.

For the same value of n it is greater the greater the eccentricity of

the orbit. The frequency of rotation of the perihelion will be

8W 1 dWi cRZ2 a2Z2 a2Z2

Ut) 2 fl ufa W /C ifC

where v is the frequency of revolution of the electron in its ellipse.

The terms of the spectrum (H, He+, Li++
) represented by (7) do

not form a singly ordered set, as do the terms obtained by the non-

relativistic calculation, but a doubly ordered one.

Since the influence of k on the magnitude of the term is small in

comparison with that of n, we can regard the modification brought
about by the relativity correction as a splitting up of the non-

relativistic terms. The arrangement of the terms (with considerable

magnification of the relativistic
"

fine structure ") is as follows :

Jt-f 1 2
FIG. 20.

3 f
123 123*
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In the absence of external disturbances, only those terms combine,

according to the correspondence principle ( 17), for which the sub-

sidiary quantum number k differs by 1. The line series whose

limiting term is n=l (in H the Lyman series) consists of single lines
;

the line series having the limiting term n=
<

2 (in H the Balmer series)

consists of triplets, the lines of the remaining series show a still

more complex character.

As a measure of the relativistic fine structure we take, following

Sommerfeld, that of the limiting term (n=2) of the Balmer series

of hydrogen. This has the theoretical value

Ea2

Ayir
= - =0-365 cm-1

.

16

The vahie for the corresponding term in the case of a general value

of Zis

e.g. for He+ it is 16A^H . The quantity Avu will be the approximate
amount by which all terms of the Balmer series are split up, for the

separations of the variable terms (n=3, 4 . . .)
will be very small.

With regard to the verification of this theory by observation,

measurements on hydrogen and helium have actually disclosed' the

expected components. Regarding the magnitude of the effect, how-

ever, the experimental results are not in agreement with one another,

measurements on H
rt , H^ . .

.,
for instance, for which theoretically

Ai>IT must be 0-365 cm-1
, vary between 0*29 and 0-39. 1 In the

case of He+ the fine structure may be observed in the series

Paschen has made measurements with direct currents as well as with

alternating currents
;

in the latter case many more lines appear,

since, on account of the rapidly changing field strengths, disturbances

arise as a result of which the selection rule based on the correspond-

ence principle breaks down. The numbers of components, as well as

the relative magnitudes of the separations, are in agreement with

the theory.
2

1
Compare the comprehensive report by E. Lau in Physikal. Zeitechr., vol. xxv,

p. 60, 1924 ; Lau considers the value 0-29 to 0-30 as the most probable. The new
measurements by J. C. McLennan and (I. M. Shrum (Proc. Roy. Soc., vol. cv,

p. 259, 1924) give, however, again 0-33 to 0-37. Measurements by G. Hansen

(Dis8. t Jena, 1924) also support the theory.
2 In the report by Lau, referred to above, matters are represented as if in the

case of He also the measurements by Paschen gave values smaller than those
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Sommerfeld 1 has used the relativity correction to explain the

multiplicity of the X-ray terms and the departures from Mosley's

law, (1), (2), and (3), 29. The numerical agreement is surprisingly

good throughout the whole periodic system ; the foundations of the

theory are, however, too uncertain to justify its treatment in this

volume.

-84. The Zeeman Effect

Hitherto we have considered atoms as isolated systems ;
we now

proceed to investigate the action of constant external influences on

them, commencing with that of a constant external magnetic field,

the Zeeman effect.

We can start out from a very general atomic model with a station-

ary nucleus and any number of revolving electrons. We assume

that the energy of the undisturbed system (without magnetic field) is

a function of certain action variables J l9 J2 . . . .

Wo^, J2 . . .)

If now a homogeneous magnetic field exists, the potential energy
of the system is invariant with respect to a rotation about the

direction of the field. The azimuth
<f>

of an arbitrary point of the

system is then a cyclic variable, as proved in 6 and 17, and the

corresponding conjugated momentum p^ is the angular momentum
of the system about the direction of the field.

The principal function

defines angle variables wtwz . . . w^ ; w^ is the mean azimuth about

the direction of the field.

In the absence of a magnetic field
J^

does not appear in the

Hamiltonian function, the motion is degenerate and w, is constant.

If now we wish to find the influence of the magnetic field on the

energy, we meet with the case, mentioned in 4, where the forces

which act on the various particles of the system depend on the

velocities. Owing to the magnetic field H (supposed for the moment

required by the theory. This is due to the fact that Lau bases his observations

only on the direct current measurements of Paschen, whereas Paschen includes also
the alternating current measurements.

1 A. Sommerfeld, Ann. d. Physik, vol. li, p. 126, 1916. A. Land6 (Zeitschr. f.

Physik, vol. xxv, p. 46, 1924) has shown that even certain optical doublets, in the
case of terms not of the hydrogen type, follow the appropriate relativity formula.
Millikan and Bowen (Phys. Rev., vol. xxiii, p. 1, 1924, and vol. xxv, p. 295, 1925)
have brought forward much empirical evidence in support of this. These effects

are now ascribed in part to a spin of the electron (cf. footnote, p. 152).
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to depend arbitrarily on x, y, z), an electron of charge e is subjected
to the so-called Lorentz force l

(1) K=-%H].
c

According to 4 we have to determine a function M such that

d dM M__
dt~8x~~dx~

x '

The function

has this property ;
A is the vector potential of the magnetic field,

defined by
H --curl A.

We have :

d d

y 8A,r

c[ \ 'Ox tiy
i \ tiz

e,.

C

The Lagrangian function is by (8), 4 :

(2)

where the sum is to be taken over all the electrons. From this we
calculate the momenta. For one electron they are :

dL e

p^r^WJ'-^
d.f c

dL e

(S) ^_,^-.Av

dL e

Pz=-zr=*M AZ -

dz c

The Hamiltonian function becomes, by (3), 5 :

+ypv +*PZ) L
m

1
See, for example, M. Abraham, Theorie der Ehktrizitat, vol. ii, third edition,

Leipzig, 1914, 4, p. 20, or H. A. Lorentz, Theory of Electrons, p. 15.
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It is, therefore, equal to the total energy in this case also. No addi-

tional term occurs in the energy, corresponding to the magnetic field,

since the magnetic forces do no work ; the force [vH] is always
c

perpendicular to v. If in H we express the velocity components
in terms of the momenta we get

We restrict ourselves in the following to the case where the field is

so weak that we can neglect the squares of A^, Ay , Az . We can then

write

(5) H=

so that the Hamiltonian function differs only by the term

from its value for no field.

We now examine the effect of a homogeneous magnetic field H
on the motion of the electrons. The vector potential of such a field is

where r is the position vector from an arbitrary origin, which we take

as the nucleus. In the additional term we have therefore

where p is the resultant angular momentum of the system of elec-

trons, and PQ, as above, its component in the direction of the field.

Apart from terms proportional to H, p^ is the momentum conjugate
to an absolute azimuth. If we pass over to the angle and action

variables w lt w2 . . . w^ J t , J2 . . . J^ of the motion in the absence

of a field, (5) takes the form l

(6) H

From this we can deduce at once the influence of the magnetic

i
1 The double sign is due to the fact that p. can be positive or negative, whereas,

by definition, J^ is only positive.
1/1
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field H on the motion of the electrons. The angle and action vari-

ables of the motion in the absence of a field remain angle and action

variables in the presence of a magnetic field, since the total energy

depends only on the J
fc
's. The angle variable w^ is, however, no

longer constant, but has the frequency ^=vw ,
where

-
corresponding to a wave number

=l e_El
27T 2mc'

while the frequencies of all the remaining angle variables are ex-

pressed in terms of the J
fc ,

in just the same way as with no field

acting. The sole effect of the magnetic field H is then to superpose
on the motion occurring in the absence of a field a uniform precession

of the whole system with the frequency vm (the Larmor precession).

The motion of an electron may then be resolved into oscillations

parallel to the field with frequencies (vr)=^ 1T 1+^2T2+- inde-

pendent of the field, and into oscillations perpendicular to the field

with the frequencies (vr)+vm and (vr) vm . This, on the classical

theory, would give rise to radiation of frequency (TV) polarised parallel

to the field and to radiation with the frequencies (vr) vm circularly

polarised about the direction of the field.

We shall see that the quantum theory leads to the same resolution

of a line into three components.
Since J

1? J2 . . . are adiabatic invariants
(cf. 16) they remain con-

stant in a magnetic field slowly generated, so on switching on the

field the only change in the motion of the electrons is the super-

position on the already existing motion of a uniform precession of

frequency v^
To the quantum conditions of the unperturbed system

Jk=nkh

there is now added a new condition

(8) J,=mA;
it states that the angular momentum of the electron system in the

direction of the magnetic field can have only certain values. For

a weak magnetic field we have here an example of spatial quantisa-

tion, which we have dealt with generally in 17. If the angular
momentum J/27T, where J is one of the quantities J lf J2 . .

., is fixed

by the quantum number j,
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the angle a between the directions of the angular momentum and

the magnetic field is given by

(9)

HI
cos a= ;

3

The axis of the angular momentum can therefore be orientated

only in 2j+l different directions (m=j, j 1 . . . j) with respect to

the axis of the field.

The additional magnetic energy is, by (6), (7), and (8),

(10) Wm=hvm .m;
each term will, in consequence, be split up into 2j+l equidistant
terms separated by a distance vm .

According to the correspondence principle, the quantum number
m can change by 1, 0, 1 where, for the transition m-+m, the light

radiated is polarised parallel to the direction of the field and for

transition m^\-*m it is circularly polarised about the direction

the field. A decrease in m corresponds to a Larmor precessiodnl
the positive sense in the classical theory, and therefore to positive

circularly polarised radiation
;
an increase of m corresponds to

negative circularly polarised radiation.

The frequency radiated in the transition m-+m is the same as

the frequency VQ radiated in the absence of a magnetic field for the

same variations of the remaining quantum numbers. The frequency
radiated in the transition m-^l^m is

One finds consequently for longitudinal observation, as in the

classical theory, a doublet of circularly polarised spectral lines,

situated symmetrically with ^-^ ^--^
respect to v . The line with (

j ( )
the greater frequency cor-

^ >

responds to the transition

m+I-*m ;
it is therefore

positively circularly polarised

with respect to the field, i.e.

left-handed to an observer

looking in the opposite direc-

tion to that of the field.
~"

For transverse observation

a triplet is observed, the

centre line of which is situated at V Q and is polarised parallel to the

lines of force, the outer lines being separated*from VQ by vm and

polarised in a perpendicular direction (fig. 21).

longitudinal (axis of
lieid directed to front )

transversal

FIG. 21.
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This result is the same as in the classical theory of H. A. Lorentz.

It is verified experimentally for such lines of the other elements as

are simple (singlets). This simple theory (which is analogous to the

classical theory of Lorentz), does not suffice for the explanation of

the complicated Zeeman effects which occur in the case of multi-

plets. The theory of these
"
anomalous Zeeman effects

"
lies outside

the scope of this book. 1

36. The Stark Effect for the Hydrogen Atom

The next example of the action of an external field which we shall

consider is that of the Stark effect for the hydrogen atom, i.e. the

influence of a homogeneous electric field E on the motion in the

hydrogen atom (more generally in an atom with only one electron).

We shall treat this problem in considerable detail, in order to illus-

trate the various methods employed for its solution.

The first method to which we resort is that of the introduction of

separation variables ;

2 afterwards we shall calculate the secular

perturbations by two different methods. The result will, of course,

be the same in every case.

If we choose the z-axis of a rectangular co-ordinate system as the

direction of the field, the energy function becomes

m ez7i

(1) H=-(x2
+2/

2+z2)- +Ez, E=|B|.

It is easy to see that the Hamilton-Jacobi differential equation is

separable neither in rectangular nor in polar co-ordinates. It may,
however, be made separable by introducing parabolic co-ordinates.

We put

x=grj cos
<f>

(2) y=r?sin<

The surfaces =const. and ry=const. are then paraboloids of rota-

tion about the z-axis
; they intersect the (x, z)-plane in the curves

X*=2*(--Z

1
Cf. E. Back and A. Land6, Zeemaneffekt und MuUiplettstruktur der Spek-

trallinien, vol. i of the German series, Struktur der Materie (Springer).
1 First worked out by P. S. Epstein, Ann. d. Physik, vol. 1, p. 489, 1916 ; vol. Iviii,

p. 553, 1919; and K. Schwarzschild, Sitzungsber. d. Berl Akad., 1916, p.
548t
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i.e. in parabolas with their focus at the origin, and having the para-
meters 2 and

rj

2
; </>

is the azimuth about the direction of the field.

In the new co-ordinates the kinetic energy is

(3) T=

which gives for the momenta conjugated to , 77, <f>
:

(4)

If we substitute these in T and add the potential energy

we get

If this be equated to W and the resulting equation multiplied by
it becomes separable. We have first :

88
^=^

since
<f>

is a cyclic co-ordinate, and

J*=#lVfy

Since p^d^ is never negative, J^.^.0 always. We find further :

where

(6) \
/2(,)=2mWr?H2a a

--

and

(7) a1+a,=2me2Z.
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The action integrals J^ and
J^

are consequently :

(8)

where

A=2w(-W),

In order that the integrals (8) shall remain real also for zero external

field, a i and a 2 must be positive. If the field strength is small, the

terms involving D x and 1) 2 arc small in comparison with the remain-

ing ones and the integrals may be evaluated approximately by com-

plex integration. We find
(cf. (11), in Appendix II), if we take the

roots in (8) so that the integrals are positive :

j i*"2m 2(-2mW) 3

3a_= ~

a x and a a are to be eliminated from the three equations (7) and (9)

and W evaluated. To a first approximation the term proportional

to E in (9) can be omitted and, afterwards, the values of a and a 2 ,

calculated to this first approximation, can be substituted in this

correction term. In this way one finds

tt 2J +J meti

*

V-2mW 2ir 87rV(-2mW)
3

and then, iising (7),

This gives to a first approximation (omitting the term proportional
to E) the energy of the motion in the absence of a field



SYSTEMS WITH ONE RADIATING ELECTRON 215

and, if we substitute this value of W in the correction term, to a

second approximation :

'> T-
To our approximation, then, the energy depends only on two linear

combinations of the action variables, i.e. we have to do with a case

of single degeneration. This would no longer be the case if we cal-

culated higher terms in E in the expression for the energy. In

accordance with our general considerations
( 15) we now introduce,

in place of
J^, J^, J^,

new action variables, derived from these by an

integral transformation with the determinant 1, and so chosen

that the energy (11) depends on only two of the new action vari-

ables, and the energy (10) of the unperturbed motion (corresponding
to the double degeneration) on only one of the action variables.

We write therefore

(12)

and obtain

J ,
=:J

<P

The motion has two frequencies :

(14) v

and

3E

We have two quantum conditions :

If we introduce them into the expression (13) for the energy, we have

SEA*

where R is again the Rydberg constant (see (2), 23). A more

accurate calculation gives higher terms which depend also on a

third quantum number ri.

J, has the same meaning as the correspondingly denoted magni-
tude of the Kepler ellipse in the absence of a

t
field

;
it can assume

values between and J only. The sum of the positive quantities
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Jj and J^
lies by (12) similarly between and J and their difference

Je between J and +J. The quantum number ne can therefore

have only the values n, (w 1) . . .+n. As will be seen from a

study of the orbits, the values n are also to be excluded.

The parabolic co-ordinates and
rj
execute librations between the

zero points of /^f) and/2(ry) in (6). We will consider the character

of the motion first for the case in which J , and consequently C,

does not vanish. Here the region in which/i() and/2(^) are positive

does not extend to the positions f=0 and 77=0; the zero points

fmm an(l ^min arc different from 0. The third co-ordinate in this

case performs a rotation. The path is confined to the interior of a

ring having the direction of the field as axis of symmetry and the

Fia. 22.

cross-section bounded by the parabolas f=fmln>
=

max , ^
and

7?=^ax (cf. fig. 22). In particular, if J^==Jn =0, min and max
and likewise

rjmm and
7ymax coincide and the path is a circle. Since

fmm 4s

^imu ^s pboi& does not pass through the nucleus ; it is displaced
in the opposite direction to that of the external field B, as will be seen

by a consideration of the equilibrium between the positive nucleus and
the orbit of the electron in the field, or by calculating the double

roots. If J^=0 and J,>0, the orbit lies on the paraboloid 1=^,^
=

max , between the circles of intersection with the paraboloids TJ^^
and ^=i7max . Finally, in the general case, for J

f
>0 and J,,>0, it

lies in a three-dimensional ring. If we disregard the motion of
<f>,

the (, 77) co-ordinates in general fill completely the curvilinear

quadrilateral contained between the parabolas for the extreme

values of f and 77,
since the frequencies associated with

J^
and

J^
are

different and their ratio is rational only for certain values of E.

Proceeding to the case J^=0, <f>
remains constant, the motion
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takes place in a meridional plane parallel to the direction of the field.

The region in which/x(f) and/a(ry) are positive comprises the values

f=0 and ^=fO, since in this case/^) and /2(^) remain positive

there
(cf. (6)), i.e. the path completely fills the two-dimensional

region bounded by |=fmax and i?=i7max . The orbit approaches
therefore indefinitely close to the nucleus.

The case in which the electron approaches infinitely close to the

nucleus is to be excluded on principle, just as in the case of central

motions (21). This excludes at the same time the case ne
= n,

since in this case J^ or
J^ would be equal to nh=J and J^=0.

The stationary state represented by the quantum number n in

the absence of a field splits up, on application of the field, into

2w 1 states of different energy with the quantum numbers

n,=-(-l). -(-2) . . . +(n-l).

We now consider the radiation from such an atom. The radiated

frequencies and the possible changes of n and ne depend on the terms

of the Fourier expansion of the electric moment or of the co-ordinates

of the electron. To the action variables J
f , J^, J^ correspond angle

variables w^ w^ w^.
With the help of these the Fourier expansion

of the co-ordinates may be written in the form

Since w^ and
<f>

are proportional to one another and
<f> performs a

uniform rotation about the direction of the field, the values of
r^

for

the components of the electric moment perpendicular to the field

are 1 only, and for the component in the direction of the field

the value is 0. The co-efficients r
f
and r^ on the other hand, do

not appear to be restricted (see 36).

Passing over now to the angle variables which correspond to the

action variables J, Je , J', we have to write (by 7) :

and since only J and Je appear in the energy (see (13)), w* is con-

stant. The Fourier series becomes

where

,
T
f

.

w is the angle variable for the motion in the Absence of a field and

corresponds to the revolution of the electron in the elliptic orbit,
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r may therefore be any integer ; re is also unrestricted, since r^
and

Ty
are so. This means that w and ne can change by any amount

consistent with their values, and that frequencies corresponding to

all these transitions will be radiated.

The polarisation is derived as follows : If r+re ,
which is equal to

2^+r^, is an even number, r^
can only be zero. Such a Fourier

term represents consequently a motion in the direction of the field
;

a light-wave polarised parallel to the field corresponds then to a

transition for which Aw+Ane is even. If An+Ane
is odd, r^

= l
;

the wave corresponding to such a transition is polarised perpen-

dicularly to the field.

We illustrate the above remarks by considering the resolution of

the Balmer lines Ha, H^ ... of hydrogen. The terms which combine

to give these lines are split up in the following way (the numbers

. , , . , ,.

give the energy change as a multiple of

-202

-6 -3 03 6

-12 -0 - O 8 12

-20 -1
MINI h

-/<? -5 O 5 fO f5 2O

FIG. 23.

We obtain from this for the line Ha(n=3->n=2) the lines ;

1
01234 56 8

ForH,,:

02 V 6 8101211

Fio. 25.
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For H
y

:

I I i i I I i I II I

O2 35 78 10 1Z 73 75 7778 20 22

FIG. 26.

The calculation of the Stark effect by parabolic co-ordinates

allows us to illustrate by an example some previous considera-

tions regarding the restriction of the quantum conditions to non-

degenerate action variables.

For
|
E

|

=0 the motion of the Stark effect passes over into the

simple Kepler motion. This is separable in polar co-ordinates as

well as in parabolic co-ordinates. From the separation in polar

co-ordinates ( 22) we obtain the action variables Jr , Je , J^,
and the

quantum condition

Jf+J0+J^=ni.

J0+J^ is now 2?r times the total angular momentum, and J^ is 2?r

times its component in the direction of the polar axis. The motion

remains separable in these co-ordinates if the field is no longer a

Coulomb field, but is still spherically symmetrical ;
in the latter

case, however, a second quantum condition,

J*+J*=**,
is to be added. To make J^ an integral multiple of h would have no

significance, since the direction of the polar axis of the co-ordinate

system is altogether arbitrary and the integral value of
J^/h would

be destroyed by a rotation of the co-ordinate system. The restric-

tion J +3^=kh 9
on the other hand, would lead to no impossibility in

the case of the simple Kepler motion.

If now we calculate the Kepler motion in parabolic co-ordinates,

we have only to put E=0 in the above calculations. We obtain the

action variables
J^,

J
n , and J^ (the last has the same significance as

in polar co-ordinates) and the quantum condition

The second quantum condition

Jf-J^A
which we had in the electric field, must now be dropped, since this

combination of the J's no longer appears in the energy. It has a

meaning only if an electric field is present (though this need only be

a weak one).
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The stationary motions in a weak electric field are, however,

essentially different from those in a spherically symmetrical field

differing only slightly from a Coulomb field. In the latter (for which

the separation variables are polar co-ordinates) the path is plane ;
it

is an ellipse with a slow rotation of the perihelion. In the former

(separable in parabolic co-ordinates) it is likewise approximately an

ellipse, but this ellipse performs a complicated motion in space. If

then, in the limiting case of a pure Coulomb field, k or ne be intro-

duced as second quantum number, altogether different motions would

be obtained in the two cases. The degenerate action variable has

therefore no significance for the quantisation.

Our considerations lead to yet another result
;
the calculation of

the Stark effect and the quantising of Je can have a meaning only
if the influence of the relativity theory, or of a departure of the atomic

field of force from a Coulomb field, is small in comparison with that

of the electric field. Further, our former calculation of the relativ-

istic fine structure is valid only if the influence of the electric fields,

which are always present, is small compared with the relativity

perturbation.
1

36. The Intensity of the Lines in the Stark Effect

of Hydrogen 2

The correspondence principle, which, by its nature, allows of only

approximate calculations of intensities, leads to relatively accurate

results when we are concerned with ratios of intensities of the lines

within a fine structure, e.g. in the Stark effect.

Following Kramers,3 we shall deduce in the following the Fourier

expansion for the orbit of an electron which moves round the nucleus

under the action of an external field E and compare the classical

intensity ratios with those observed. In the Fourier coefficients we
shall omit all terms proportional to E, E2

, etc., since they lead only
to unimportant corrections.

From 35 we obtain for the principal function S :

1 Kramers has succeeded in dealing with the simultaneous action of the relativity
variation of mass and a homogeneous field for the case in which the corresponding
changes in the energy are of the same order of magnitude (H. A. Kramers, Zeitechr.

/. Physik, vol. iii, p. 199, 1920).
* In this section we have given the calculations more shortly than previously in

this book.
* H. A. Kramers, Intensities ofSpectral Lines, Copenhagen, 1919.
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If the values of a x and a a be taken from (9), 35, and the value of

W from (10), 35, both of them for E=0, we find :

(1)

where for shortness we write :

For the angle variables w^, w , w^ conjugate to J
f , J^, J^

we find

from (1) the equations :

as

1

V-
1 rdr,

(3)
*J J V-

jcJ
2
J 17 \/

as

2^=2.

__
/cJ

2
J I V

I fdr,

Since the calculation of the w'a as functions of and
77

from

the above formulae would obviously be very laborious, it is advisable

to write the squares of the variables,
2 and

-q
2

,
which oscillate between

two fixed limits (cf. 35), in the form
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(4) ^
2=a1+6 1 cos^, r)*=a2+b 2 coa x ,

just as before ( 22) we found it convenient to introduce the mean
and eccentric anomalies. In order that the new variables

if/
and ^

may increase by 2?r during one libration of or
77,

we must put :

This gives :

and for ^, wn , w^ we find :

sin ij+b 2 sin

sn + 2 sn +

+
2 \ J o^l+^l COS ^ J0^2+^2 COS

In these expressions we have chosen the still arbitrary constants

of integration in such a way that the final result takes the simplest

possible form.

Introducing the abbreviations

we get
27TW=or 1 sn i

^ '

27^=0"! sin 0+^2 sin X+X+77 -

The similarity between these equations and (15), 22, shows clearly

the analogy between
iff, #, and the eccentric anomaly.

We can now write down without difficulty the Fourier series for

the co-ordinates z and x-\-iy. By (2), 35, z=(f2
rj

2
).

Since

z does not depend on
<f>,

it is also independent of w .
; we write

therefore :

(8) Z

where
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a'

i nL> e
-

i) 2

Now by (7) :

COS

Again since, by (4) and (5),

a l a 2 &! cos 6 2 cos

2

^ J,,)+/<:J
2
(C71 COS /f

(72 COS x),

we have :

1 J-STT^TT

(11) A00
=

J J^
<tydx [*J(Jf-J,)+*JVi COB </r-(72 cos x)]

. (l+CTj. COS ^+<72 COS X)=(icJ(j J^).

For the remaining values A
T T ,

for which not both the T'S are zero,

the constant term /cJ(Jf
J
n )

in z can be omitted at once, since by

(9) it will disappear on averaging. In this way we find (T+T
I)
=T)

K3*(iyr2
"(

2

(12) A =
1 4:7T JO JO

COS xe
--r<r

l
-r

1tK
-r<rt mnx

t

If in this equation cos
^r and cos^ be replaced by ^(e^+er^) and

\(e
ix +e~lx

) respectively, it will be seen that the integral on the right

may be split up into a sum of products, each factor of which is of the

form

this is the well-known expression for the Bessel function x Jn(/o).

Using the relations 2

and

1 E. Jahnko and F. Emde, Funktionentafeln (Leipzig, 1909), p. 169; or see, for

example,. G. N. Watson, Theory of Bessel Functions (Cambridge, 1923), p. 20. The
Bessel functions are here indicated by Gothic letters to avoid confusion with the

action integrals.
2 Jahnke-Emde, op. cit. t p. 165, or Watson, op. cit. t p. 17.
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we find in this way from (12) :

(13) \,
=^{

Finally we get for z :

(U) ^(J^

(The dash on the summation sign signifies that ^=^=0 is to

be excluded from the summation.) For r=0 the expression (13) is

indeterminate. It follows, however, directly from (12), that the

corresponding AT r (^+^=0, r^ + O) vanish.

In order to calculate the Fourier expansion for x+iy we take from

(2), 35:

(15) x+iy^fye*.
We can conclude at once from (15) and (3) or (6), that

(x-\-iy) . e~"
2lrtl4 depends only on w^ and w

n
. The most convenient

method of procedure is to expand (x+iy)e
2iri

(
wn"w^ in a Fourier

series :

(16) (x+iy)W>i-
w
4t=Z,Br T^M^+(

Tn+ 1KL

In order to write the left side of (16) as a function Ox and x we
deduce from (6)

\

On putting

we have :

2 \oa1 +fe 1 cos0^oa 2+6 2 cosx/

cos cos

dx ~ g
(a2+6 2)(a2+6 2 cos x )

and consequently, substituting for (x+iy) from (15) and (4),

(18)
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From this we can deduce at once the B (we now write :

Y*

TT- -
* 4:77 O JO

[ Jf
. C . 0\/ y . C y

.cos - +*- sm cos-4^-- sin
\ 2^ a^ 2A 2 a 2+6 2 2

We can express the quantities cos
^r,

cos ^, cos -, etc., in terms of
2

exponential functions exactly as in equation (12) and so represent
B

T T
as a sum of products of Bessel functions. We obtain finally,

in the same way as in the case of the magnitudes AT T (r=l +rf+r) 9

(20) B
T =-V(Jf+^

For r=0 we can calculate B
T T directly from (19). It is found

that BT T
=0 for r=0, with the exception of the values

(21) B_ 1>0
=

Finally, as the Fourier series for x+iy, we find

(22)

Now that we have calculated the Fourier coefficients we can pro-

ceed to an approximate estimation of the intensities on the basis

of the correspondence principle. We assume that the simple degen-
eration of the variables

J^, J^,
J ,

which still existed in (11), 35,

has now been removed, either by including in the energy terms

quadratic in E, or by taking account of relativity.
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In accordance with the fundamental principles of the quantum

theory we must then write

J^=nji ; J^=n^ ;
J ==

nji.

According to the correspondence principle we find the approximate

intensity of a line corresponding to a transition in which n^ changes

by An
f , n^ by An^, and n^ by An^,

if we examine the intensity of

the harmonic r
(=An^, r^An^, r^==An^ in the classical spectrum

represented by (14) or (22). This leaves open the question whether

the classical spectrum shall be taken to correspond with the initial

orbit, the final orbit, or an intermediate one. In the following we
shall investigate only the relative intensities within a fine struc-

A B
ture. Consequently we shall introduce the magnitudes - --

as
"
relative amplitudes

"
R, and then compare the simple arithmetic

mean of the relative intensities R2
corresponding to the initial and

final orbits with the observed relative intensities. One result of intro-

ducing the
"
relative amplitudes

"
is that in forming the average the

initial and final orbits have the same weight attached to them as

regards the intensity relations. Itmay be conjectured that this latter

assumption involves a fundamental aspect of the quantum calculation

of the intensities
;

in the case of the Zeeman effect, for example, it

implies that the relative intensities in the Zeeman fine structures

shall be independent of the principal quantum number, a result that

must certainly be expected to hold from analogy with the classical

theory and which has always been verified empirically.

From (13) and (20) we find for the z components of the relative

amplitudes (r^=0, T^+T)?
=T) :

(23)

for the (z+iy)-components (r^=

(24) R
i
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The amplitudes of the ^-components correspond to the lines

polarised parallel to the field ; those of the (+iy)-components to

the lines polarised perpendicular to the field.

Ha 6562-8 A

The table gives a comparison between theory and observation for

Ha(n=3->n=2) 6562-8 A. The transitions, characterised by the quan-
tum numbers in the initial and final states (nf, nf, nf- ,

n

are given in the first column. The second column gives the dis-

placement A of the corresponding lines from their positions for

3EA
E=0 in multiples of the smallest displacement

--
(in waver 2 v

numbers), as calculated by (11), 35. The third column contains the

values of r^ r
, r^ corresponding to these transitions

;
in the fourth

and fifth columns the quantities R 2 and R,,
2

,
for the initial and final

orbits respectively, are given as a measure of the relative intensities.

The sixth column contains the intensities observed by Stark. The

seventh gives the values of (Ra
2+R/) ;

in order to make a com-

parison with Stark's values possible a constant factor is introduced,

so that the total intensity of the theoretical and observed groups

of lines are the same.

We see from the table that the sum of the calculated intensities

of the parallel components (1*9), differs considerably from the sum

of the intensities of the perpendicular components (5-0), while ob-

servation gives for each sum nearly the same value (3'3 and 3*6).

The figs. 27 to 30 x
represent the comparison between theory and

observation in the case of Ha and the other hydrogen lines examined

by Stark. An essential point for the agreement between theory and

observation is the absence, required by 35, of the case J^=n^=0.
To sum up, we can conclude, from the calculations of the previous

After H. A. Kramers, foe. ctf., figs. 1 to 4.
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paragraphs, that the correspondence principle, combined with the

method of averaging applied here (taking the arithmetic average of

. I J .
"

Ha calculated

HQ calculated

1

FIG. 27.

FIG. 28.

Hn observed

it it Mli

? I I ?

. 1 1 III in

tip
observed

? I I I . . If I . I I I ?

.lit,

y~, calculated

1 ,1 1,11,,

H^ observed

Fid. 29.

.

"
! I , I I M , I I I , I J

..II ,,,

//* calculated

FIG. 30.

; .1 1, ii , , h , i hi
A/5 observed

the relative intensities of initial and final orbits) approximates

closely to the quantum law of intensities. Among other things, the
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fact that these calculations do not give exactly the true quantum
intensities is to be expected, since, according to the above calcula-

tions, the resolved lines should exhibit a polarisation as a whole

(mentioned above for H a), the existence of which seems highly im-

probable both for theoretical reasons and on account of the experi-

mental results.

37. The Secular Motions of the Hydrogen Atom in

an Electric Field

The method so far employed for the treatment of the Stark effect

depends on the special circumstance, which might almost be con-

sidered accidental, that separation co-ordinates exist having a

simple geometrical significance. We shall now show how we may
attain our object, without making use of this peculiarity, by a

systematic application of the theory of secular perturbations. We
shall adopt two different methods of procedure, beginning with one

which investigates the secular motions of those angle and action

variables which occur as degenerate variables in the investigation

of the Kepler motion by polar co-ordinates
;

the second method,

which is more suited to the geometrical aspects of the perturba-

tion, has the advantage of being capable of extension to a more

general case (crossed electric and magnetic fields).

We write the Hamiltonian function in the form

(i) H=HO+AHI .

Here

(2) H =

is the energy of the Kepler motion in the absence of a field, and

denotes the perturbation function. (The field strength E may be

considered as the small parameter A.) According to the rules given
in 18, we have to express the mean value over a period of the un-

perturbed motion,

(3) AH^eEz
in terms of the degenerate angle variables and the action variables

of the unperturbed motion (see 22), which we now denote by
w 2

Q
,
w3 ,

and JfJfJj*.
If in the unperturbed motion and

rj
are the rectangular co-

ordinates of the electron in the plane of the orbit referred to the
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nucleus as origin and the major axis as the -axis, we have (fig. 31)

2= cos

since apart from a constant of integration which can be taken

as zero, 27rw 2 is the angular dis-

tance of the perihelion from the

nodal line, measured in the plane
of the orbit

( 21, p. 137) ;
and

averaging over a period of the un-

perturbed motion

FIG. 31.

z=sn sn 7rw 2 +rj cos

In 22 we found for the mean
values (see (21), (23'), 22)

they are the co-ordinates of the

electrical
"
centre of gravity

"
of the

moving electron. If we express sin i and in terms of J 1 J a J3 we

get

and

(4) W^-AH^-sin 2^ 2 . . etil-

The angle variables w 2 and w3 vary ; w3
Q varies in a cyclic

manner and J3 remains an action variable of the perturbed motion.

w 2 is consequently the only non-cyclic co-ordinate in the averaged

perturbation function, and we obtain as the only new action variable

It may be found as a function of W^ 3 1 Jj , and J3=J3 from equa-
tion (4). On evaluating the integral, W: and hence W is found as a

function of the action variables.

We write for brevity :

and

we have then
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-

dx

where

2=m
J

'-lA
1
-;

If we calculate r-
2- from the last relation we find

dx

/ r RL =dl~-
A

dw 2 sin3 27TW 2 /B 1

da? 47rC cos 2nw 2
Q\x2 Ay

^ 2 \/AC.(o;
2-AB)

thus our integral becomes

Since the integrand is a rational function of x and the root of an

expression quadratic in x, the integral may be evaluated by the

method of complex integration. We find (c/. (9), Appendix II) :

thus

T / T TO TOU o 1 1/1 t/ o tl 1
O \

^ "

Wx may be calculated from this
;
we find (on putting J 1 =J 1 ,

and, if we express a in terms of JA by (10), 22,

2 3EA2 _ _

This equation becomes equation (13), 35, if we put
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We show subsequently that our present considerations lead to the

same range of values for Je as found previously. Once again we have

the quantum conditions (15), 35, and the energy equation (16),

35.

We now examine the secular motions caused by the electric field.

The perihelion of the orbital ellipse alters its position relatively to

the line of nodes, and the latter itself moves uniformly about the

axis of the field. It follows from (5) that two periods of the peri-

helion motion occur during one revolution of the line of nodes.

This motion of the perihelion, together with its accompanying

phenomena, can best be studied by referring to the curve representing

the motion in the (w2 ,
J 2 )-plane (fig. 32). Its equation is, by (4),

(7) sn

v 1

(j>

for shortness, we write here

3eEa
ll(J 1 )

2

(using (9), 23, on(Ji)
a
/A

2 has been substituted for a in
(4)).

It is

symmetrical with respect to the straight lines w 2
Q=% or w2 =f . If

W x 0, either w 2
Q is or J, or J 2 has one of the values J^ or J3 .

For W 1 <0, w 2 can no longer have

the values or ^, or J 2 the values

Ji or J3 ;
the curve is confined to

the interior of a rectangle bounded

When
|
Wj

|

is sufficiently small, w 2

can only depart from the immediate

vicinity of or when J 2 lies close

to J^ or J3 . The representative

w/ curve lies close to the rectangle
mentioned and passes over into the

circumference of the rectangle for

Wi0. The curve becomes less extended for larger values of
|

Wx |,

until w 2
Q can assume only such values as lie in the neighbourhood

of J (sin 27rw 2
Q
=l) 9 and, finally, only this value itself; the curve

contracts in this case to a point (cf. fig. 32). The same holds for

W!>G, only the limiting point is at w2 =f . For a given value of

W 1? the reversal points for w2 are situated at those places where

sin 27TW2 is a minimum, or where

FIG. 32.
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is a maximum, J^ and J3 ,
and thus

Ji

being constant. Now the function

(1-sXl-y),
where

xy const.,

will be a maximum if x=y. Thus w 2
Q reverses when

(8) (J 2 )

2
-JiJ3 ,

or when J 2 is the geometric mean of J^ and J3 .

The secular motions of the orbit under the influence of the electric

field are thus as follows : while the line of nodes revolves once, the

perihelion of the orbital ellipse performs two oscillations about the

meridian plane perpendicular to the line of nodes. For a transit

through this meridian plane in one direction, the total momentum
J2 /27r is a maximum and consequently the eccentricity is a mini-

mum
;

for a transit in the other direction the eccentricity is a

maximum. Since the component J3 /27r of the angular momentum
in the direction of the field remains constant, the inclination of the

orbital plane oscillates with the same frequency as the eccentri-

city. It has its maximum or minimum value when the perihelion

passes through the equilibrium position, and it assumes both its

maximum and minimum value twice during one revolution of the

line of nodes. The major axis remains constant during this oscilla-

tion of orbital plane and perihelion (since J^ remains constant) ;

the eccentricity varies in such a way that the electrical centre of

gravity always remains in the plane

In this plane it describes a curve about the direction of the field ;

since the inclination and rotation of the line of nodes have the

frequency ratio 2:1, the curve is closed and, in the course of one

revolution, the electrical centre of gravity attains its maximum
distance from the axis twice and also its minimum distance twice.

We shall show later ( 38) that the electric centre of gravity executes

an harmonic oscillation about the axis of the field.

We still have the two limiting cases of the perihelion motion to
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consider. If the representative curve in the (w2 , J2 )-plane has con-

tracted to a point (the libration centre), then J2=0 and J3=Ji+J
is an integral multiple of h. The orbital ellipse has a constant eccen-

tricity, and constant inclination, and is spatially quantised. The

major axis is perpendicular to the line of nodes (since w 2
=

J), and

the latter revolves uniformly about the direction of the field. To our

approximation it is not a special state of motion singled out by the

quantum theory, since J 2 is not fixed by a quantum condition. The

necessity for fixing J2 would be arrived at only by a closer approxi-
mation in calculating the energy.

In the other limiting case, W^O or J2=J(Ji J3), where the

curve in the (J 2 ,
w 2 )-plane coincides with the perimeter of the

rectangle, the motion is rather complicated. The line of nodes

revolves uniformly. In a certain phase of the motion the orbit is

a circle (J2 =Ji), whose configuration is determined by J3 and Jx .

This circle changes gradually into an ellipse, whose perihelion lies in

the line of nodes ; the orbital plane is orientated perpendicular to

the field during this process. Certainly in this configuration the

direction of the line of nodes is indeterminate
;
but if we define it

by continuing the uniform motion which it had previously, the

perihelion lags behind the line of nodes until the separation is TT.

At this stage the orbital plane changes its orientation once more

and the orbit gradually becomes a circle again. When it is a circle,

the position of the perihelion is indeterminate. We can deduce,

however, from the representative curve that it lies once again in the

line of nodes when the eccentricity again increases and the path
once more becomes orientated. During one revolution of the line

of nodes the orbit twice becomes a circle.

The range of values of Je or ne
is found by the following considera-

tion. J3 =J3 is positive and at the most equal to J x . J3 can never

become zero, for otherwise J 2 would execute a libration between

J! and Ji, as can be seen from (4) ;
this would give a limiting

case in which the orbital ellipse would have to traverse a straight

line (Pendelbahn, cf. 21 and 35) and, on account of the incommen-

surability of the periods of revolution in the ellipse and of the

libration, would approach indefinitely close to the nucleus. From

and the relation

evident from fig. 3^, since 3 2=$3 2 dw 2 by (4'), which is at most

equal to the area of the rectangle in the figure, we find for Je
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J 1<Je<J 1

and

In place of the single quantum state characterised by a single n,

as in the case of the Kepler motion in the absence of a field, we have

the 2n 1 states already mentioned in 35.

38. The Motion of a Hydrogen Atom in Crossed

Electric and Magnetic Fields

Bohr has given another and more illuminating method of cal-

culating the secular motions of the hydrogen atom in an electric

field.
1

Using a similar method, Lenz and Klein 2 succeeded in de-

ducing the effect of the simultaneous influence of a magnetic field

and of an electric field arbitrarily orientated with respect to it.

We reproduce the calculation for the case of an electric field E
and a magnetic field H. The unperturbed motion (E=H=0) has

six independent integration constants
;
as such constants we first

choose the components of the angular momentum vector P and of

the position vector f of the electric centre of gravity of the orbit.

Since P and f are always perpendicular to one another, this provides

only five independent quantities ;
as the sixth we can choose a

magnitude which determines the phase of the motion ; for this

problem, however, it is unimportant. P and f suffer variations under

the influence of the fields E and H, and we commence by writing

down the differential equations for P and f .

Both the electric field and the magnetic field exert couples on the

electron orbit, and these determine the time-rate of variation of

the angular momentum P. On multiplying the equation of motion

of the electron, viz. :

(1) mi=Ze2
grad

-L -eE+
Jffi]

vectorially by r we get the time-rate of variation of the angular
momentum

p=m[rr] =e[Er]+ >[Hr

1 N. Bohr, Quantum Theory of Line Spectra (Copenhagen, 1918), p. 72.
2 The problem was first solved by P. Epstein, Physical. Rev., vol. xxii, p. 202,

1923 ; O. Halpern gave another solution, Zeitschr. /. fhysik, vol. xviii, p. 287,
1923. The method given here was originally given by W. Lenz (Lecture in

Brunswick, 1924, and in more detailed form, Zeitschr. f. Physik, vol. xxiv, p. 197,

1924), and 0. Klein, ibid., vol. xxii, p. 109, 1924.
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The secular component of this motion is found by taking the mean
value over a period of the undisturbed motion ; the electric contri-

bution is

e[Ef].

The magnetic contribution can likewise be simply expressed, if we

introduce the angular momentum P by means of the well-known

vector relation

[r[Hf]]=[H[rr]]+[f[Hr]J

=i[HP]+[rtHr]],

and remember that the time average of

[r[Hr]]+[r[Hr]J=|[r[Hr]j

is zero. We find in this way

2[r[Hr]J
= -[HP]

and

(2) P^[ES]+[HP].

The first term represents the couple due to the electric field acting

on an electron situated at the centre of gravity of the orbit
;
the

second term corresponds to Larmor's theorem, and signifies an

additional rotation of the vector P about H with the angular velocity

e|H[

2mc'

In addition to the three equations included in (2), we will now
find three others. In the first place the mean value of the per-

turbation energy, taken over a period of the undisturbed motion, is

a constant

Secondly, P and f are perpendicular, so that

(4) Pf=0,

and, thirdly, P and f are connected through the eccentricity. We
have from (23'),

22 (p. 145)

||=fac
and from (8), 22 (p. 141),
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where J is the non-degenerate action variable of the motion in the

absence of a field. Elimination of leads to

(5)

where

From (3), (4), and (5) it is possible, with the help of (2), to derive

an equation for r of the same form as (2). If (3), (4), and (5) be

differentiated with respect to the time and the value of P substituted

from (2), we obtain

0=ff+eK2
P[Ef]=f(f+eK

2
[PE]).

This implies, however, that the scalar products of the vector

(7) f+eK'CPEH^CrH]

with E, P, and f vanish. Since in general these three vectors do

not all vanish nor do they all lie in one plane, the vector (7) must

itself be zero. Consequently

(8) f=eK'[EP]+
^-[Hf].

Our problem is solved when we can solve the system of equations

(2), (8). This is best accomplished by introducing the new vectors

m fx=r+KP
(9) f,=i-KP,

instead of the unknowns P and f. Since f and KP are perpendicular

to one another, the two vectors (9) have the same magnitude which,

by (5), is _
(10) |f1 |=|f2 l-V^+K^"==|a.

Further, in terms of f and P the variables fx and f2 are given by
the equations
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(2) and (8) now become

(12)

Writing for shortness

(13)

^cE^'
the system of equations becomes

ra=[-w,+wm , fJ.

This denotes simply that the vectors f x and f 2 rotate uniformly
about the axes defined by we+wm=(H/2mc)+KE and we+ wm

(H/2wc) KE respectively with the respective angular velocities

|
wm+we |

and
|

wm W6 1.
At each instant the separation of the end

points of the two vectors is proportional (by (11)) to the angular
momentum of the motion, and half their sum gives the radius vector

of the electrical centre of gravity.

We consider first the case in which only an electric field E acts.

f i and f 2 both rotate with the same velocity about the direction of

the field, but in opposite directions. In the course of a complete
rotation of each of the vectors they come twice into a configuration

in which E is coplanar with them and they both lie on the same side

of E. In this position their difference, and therefore the resultant

angular momentum P, is a minimum, the eccentricity attains its

maximum and the plane of the orbit deviates least from the equa-
torial plane of the field. Between these positions there are two

others where f^ f 2 ,
and E likewise lie in a plane, but with f l and

f 2 on opposite sides of E. P is then a maximum and the eccentricity

a minimum, while the plane of the orbit has its greatest inclination

with the equatorial plane. While the magnitude of P goes through
two librations during such a revolution, the direction P completes

only one rotation, i.e. the line of nodes of the orbital plane completes
one revolution.

If the motion of the electrical centre of gravity be alone considered,

it may be found directly from the equations (2) and (8) (for H=0).
If (8) be differentiated with respect to the time and P substituted

from (2), we get .

if=e2K*[E[Ef]].
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This expresses the fact that f is directed perpendicularly to the

direction of the field and that
|

r
|

is proportional to the distance of

the electric centre of gravity from the axis of the field,
| [fE]| / |E|.

The electric centre of gravity performs, in other words, an harmonic

oscillation about the axis of the field (cf. 37, p. 233).

If only a magnetic field is acting, f a and r 2 rotate in the same sense

about the axis of the field with the same velocity

i.e. the whole system performs a uniform precession (the Larmor

precession) about the axis of the field.

When both fields are acting, the rotations of f x and f 2 occur about

different axes. Thus the simple phase relation, which we had in the

case of an electric field only, between the rotation of the line of

nodes on the one hand and the orbital eccentricity and inclination

on the other, will be destroyed and a much more complex motion

sets in. Special difficulties arise when the two cones described by
the vectors i l and f 2 intersect. If the rotation frequencies are

incommensurable,the vectors TI and f 2 will then approach indefinitely

close to one another, and, therefore, the angular momentum becomes

indefinitely small. If now the frequency of rotation in the ellipse

is incommensurable with the other two frequencies, the electron

approaches indefinitely close to the nucleus. On the basis of the

fundamental principles we have previously used, we should have to

exclude such motions. We shall see later, however, when fixing the

quantum conditions, that such orbits may be transformed adia-

batically into those of the pure Stark or Zeeman effect which we

must allow.

We turn now to the energy of the perturbed motion and the

fixing of the stationary states.

Under the influence of the two fields E and H, an additional

term Wx is added to the energy W of the unperturbed motion,

where
(cf. (3))

(15) W
2mc

If we express here r and P in terms of f x and f2 by (11), we get

>

and, introducing the vectors w and wm from (13),
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(16) W

If we define the frequencies v' and v" by

"/=5-|w.+wm
(17)

2

;
I/' _ Im \n IV

O I
e W

l

the energy can be expressed in the form

(18) W^i/J'+i/'J",

where

1 2?r
J/==

2' K' fl l COs(flj

1 2?r
J"=

2
'

1;
'

f 2 '

COS (f 2 ' w ~w )'

By (6) and (10) we can write this

J'=iJ COS (f 1} We+Wm )

J^iJcoBft.w.-wJ.
Since i/ and i^" in equation (18) are constant, it follows from the form

of this equation that J' and J" are the action variables conjugated
to the angle variables

The periodicity conditions of 15 are all satisfied. The quantities

J' and J" are therefore to be determined by the quantum conditions

J'-rc'A

J'W'A.

This implies a somewhat modified type of space quantisation, since

by (19) :

n'

cos(fi, we+ww)=2-
n

n"
cosfc, we-wm)=2-.

n

The quantum numbers n' and n" are thus restricted in this case to

I n n\
the range (-5,5).

\ ^ z/

If the magnetic field H vanishes we have a case of degeneration,

for then f
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The old action variable 3e =3'+J" is then to be introduced in place
of J' and J" and we get

in agreement with the previous results. In a similar way we have,
for a pure magnetic field,

Jm=J' J"

and

If we have only a weak magnetic field in addition to a finite

electric field, the axes of rotation of the vectors f x and f 2 have almost

opposite directions. Since the cones generated by these vectors

may not coincide in the case of a vanishing magnetic field (for

this would give P=0 in the Stark effect), they do not intersect in

the case of a weak magnetic field. If, however, we allow H to in-

crease adiabatically, the angles of the cones remain constant and,

finally, a point is reached where the cones meet. A similar thing
takes place when we start with a weak electric field and a finite

magnetic field. The axes of rotation have then very nearly the same

direction, and the cones do not intersect. Nevertheless, by an adia-

batic increase of E, a point is again reached when the cones meet,

It is possible, therefore, to transform orbits which we have hitherto

permitted, and which have been confirmed empirically, into orbits

in which the electron approaches indefinitely close to the nucleus.

At present no explanation of this difficulty can be given. There is a

possibility that the J's need not be strictly invariant for the adiabatic

changes considered in this connection, since states are continually
traversed where (non-identical) commensurabilities exist between

the frequencies (" accidental degeneration," see 15, p. 89, and 16,

p. 97).

39. Problem of Two Centres

The parabolic co-ordinates used in the separation method to

determine the motion of an electron in the hydrogen atom under the

influence of an electric field are a special case of elliptic co-ordinates.

The latter are the appropriate separation variables for the more

general problem of the motion of a particle attracted to two fixed

centres of force by forces obeying Coulomb's law. If one centre of

force be displaced to an infinite distance, with an appropriate simul-

taneous increase in the intensity of its field, we get the case of the

Stark effect
;

at the same time the elliptic co-ordinates become

parabolic.
16
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If the distance apart of the fixed points F x and F a is 2c, the

elliptic co-ordinates of a point f , 77,
distant r l and r2 from the fixed

points, are given by the equations

It is evident from these equations that

(2) >1,

and, moreover, that the surfaces const, are ellipsoids of revolution

with semi-major axis c and foci Pj and F 2 ,
whilst the surfaces

77=const. are hyperboloids of revolution of two sheets with a dis-

tance 2crj between their vertices, and the same focal points. To
determine a point uniquely a third co-ordinate is required, e.g. the

azimuth
<f>
about the line FjF 2 .

Taking cylindrical co-ordinates (r, <, z) with F^Fg as z-axis, and

its mid-point as origin, we can write the equations of these surfaces

of revolution

*
,

^ _2+ ~c

If l-7f

These give the equations of transformation

We shall show that the
"
problem of two centres

"
referred to above

is separable in the co-ordinates
, 77, <f>.

The potential energy of an

electric charge e attracted by two positively charged points is

u=-^+fn1 V

or, in elliptic co-ordinates :

w u=
"o(^

The kinetic energy is
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and by the relations (cf. (3))

r=rf

this takes the form

(5) T=

This gives for the momenta conjugate to
, 77, <,

. 2
-n
2

P(=mc*t-j^
(6) , . ?n*^ }

If we express T in terms of the co-ordinates and momenta, and add

the potential energy, we obtain the Hamiltonian function

It will be seen at once that our problem may be solved by separa-

tion of the variables. The three momenta are found to be

where C is an arbitrary constant and

A-C+1=--

We may now proceed to investigate the possible types of orbit,

leaving out of consideration individual limiting cases, and restricting

ourselves to the case of a negative W. We shall A*ot give the method

of proof in detail.
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I. ORBITS WHICH ARE COPLANAR WITH THE CENTRES. 1

In this case p(\ therefore A C-|-l=0 and f=l, r)
= l are

roots of the expressions

under the square root sign

(radicand) in (8). We
distinguish the following

cases :

1. The radicand of p$ is

positive for f>1 ;
then

performs a libration be-

tween =1 and a value

max*

(a) The radicand of p
FIG. 34.

*s positive throughout the

whole interval ~1<^<1.
The orbit lies within the ellipse =~fmax (fig. 33).

(b) The radicand of p n
has a root in the interval l<rj<l in ad-

dition to the roots
77

1. The orbit is then

contained within a region bounded by the ellipse

~
max an(l a hyperbola 7?^const. (fig. 34). The

case in which two roots occur in the interval

I<rj<l does not arise.

2. The radicand of p^ is negative for > 1 and later

assumes positive values in the interval (fnun , flnox ) ;

then performs a libration in this interval. In this

case, the radicand of p^ must be positive throughout
the whole interval 1<^<1. The curve is then

confined between the two ellipses
=

min and f= fmaac

(fig. 35).

FIG. 33.

Fio. 35.

II. ORBITS WHICH ARE NOT COPLANAR WITH THE CENTRES. 2

The radicand of p^ is at most positive in an interval
( min , inax ),

which does not extend to 1 : the radicand of p^ is likewise

negative for
17
= 1 and can have two or four roots in the interval

1<^<1. Finally, p^ is not zero and < performs a rotation about

the line of centres. In all cases where motions are possible at all, they
are confined to a ring bounded by two hyperboloids of rotation and

1 For a detailed discussion of these orbits, see C. L. Charlier, Die Mechanik des

Himmels, vol. i, Leipzig, 1902, iii, 1 (p. 122).
* Detailed discussion by W. Pauli, jr., Ann. d. Physik, vol. Ixviii, p. 177, 1922,

ii, 6, and K. F. Niessen, Zur Quantentheorie des Wasserstoffmolokul-Iona (Diss.,

Utrecht, 1922), section 1.
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two ellipsoids of rotation, whose axes pass through the centres (figs.

36 and 37). In the case of double roots two of the ellipsoids or

hyperboloids can coincide
;
limitation motions can also occur.

The regions mentioned here will be completely filled if the motion

is not strictly periodic. In the two cases I, 1 (a) and (6), this would

involve an infinitely close approach of the moving point to the centres

of force.

Pauli l and Niessen 2 have endeavoured to treat the quantum

theory of the problem of two centres, and to apply it to the hydrogen
molecule positive ion, which consists of two nuclei with charges +e

(i.e. Z l
=Z2=l) y

and one electron. To a first approximation, the

motion of the nuclei can be neglected on account of their large mass.

The first step is to calculate the motion of the electrons when the

FIG. 36. FIG. 37.

nuclei are an arbitrary distance apart ;
the nuclear separation has

then to be determined so that the nuclei are in stable equilibrium for

definite values of the action variables of the electron motion. It has

been found in this way that a configuration of minimum energy (the

normal state) is uniquely determined by these conditions (it is of

the type in fig. 36, the figure being symmetrical for nuclei with equal

charges). Not only can the value of the energy be found in this case,

but the small oscillations of the nuclei, which are brought about by
small perturbations, can also be calculated.

It has been found, however, that the numbers obtained in this

way do not agree with experimental determinations of the ionisation

and excitation potentials. On this account we shall refrain from

discussing more fully this model for H 2
+

. At present the reason for

the failure of the theory is by no means clear. We shall see later that

the treatment of atomic problems with the help of classical mechanics

1 W. Pauli, toe. tit. 2 K. F. Niessen, toe. ctt.
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leads to false results immediately several electrons arc present ; in

other words, whenever we have to deal with a problem involving three

or more bodies. The artificial reduction of a multiple-body problem
to a one-body problem, on the basis of the small ratio of electron to

nuclear mass, is, perhaps, not permissible.



FOURTH CHAPTER

THEORY OF PERTURBATIONS

40. The Significance of the Theory of Perturbations

for the Mechanics of the Atom

IF we glance back at the atomic models dealt with in the previous

chapter, we see that they are all characterised by the fact that the

motion of only one electron is taken into consideration. The results

tend to show that, in such cases, our method of procedure is legiti-

mate or, in other words, that we are justified in first calculating

the motions in accordance with classical mechanics, and subse-

quently singling out certain stationary states by means of quantum
conditions. The problem now arises of how to treat atoms with

several electrons.

At first glance a similar method would appear applicable to this

case, the mechanical many-body problem being first solved, and

the quantum conditions introduced subsequently. It is well known,

however, what difficulties arise even in the three-body problem of

astronomy ;
and in the present case things are still more unfavour-

able, the reason being that whereas the perturbing forces which two

planets exert on one another in the problems of celestial mechanics

are extremely small in comparison with the attraction of the sun for

either of them, the repulsive force between two electrons in an atom

is of the same order of magnitude as the force of attraction between

each and the nucleus. Moreover, in astronomical problems it suffices

to calculate the motions in advance for periods of a few hundred

or thousand years ;
in atomic theory, on the other hand, only those

multiply-periodic motions can be employed whose course can be repre-

sented for all time by one and the same Fourier series. It appears,

then, that all progress in this direction is barred by insurmountable

analytical difficulties, and so it might be concluded that it is im-

possible from a purely theoretical basis to arrive at an explanation of

the structures of the atoms right up to uranium.

The object of the investigations of this chapter is to show that this

247
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is not the decisive difficulty. It would, indeed, be remarkable if

Nature fortified herself against further advance in knowledge behind

the analytical difficulties of the many-body problem. Atomic

mechanics overcomes the above-mentioned difficulties arising from

the like order of magnitude of all the forces acting, by precisely those

characteristics which distinguish it from celestial mechanics, namely,
the quantum restrictions on the possible types of motion. We shall

show, by a systematic development of the perturbation theory, that

it is only the simplest types of orbits which are of importance in the

quantum theory, and in astronomy these occur only as exceptional

cases and so receive no attention. These quantum orbits admit of

relatively simple analytical description. One might, therefore, pro-

ceed in this way to compute the atoms of the periodic system one

after another.

An attempt has actually been made to subject to the theory of

perturbations the second simplest atom, that of helium, with its one

nucleus and two electrons. The result, however, was entirely nega-
tive

;
the discrepancies between theory and observation were much

too large to be accounted for by the inaccuracy of the calculations.

This indicates that there is some basic error in the principles of our

atomic mechanics.

When we set forth these fundamental principles ( 16) we called

attention to their provisional nature
;

this is shown in particular

by the fact that the theory introduces magnitudes such as frequen-
cies of rotation, distances of separation, etc., which, in all probability,

are by nature incapable of being observed. Again, the phenomena of

dispersion show that the system is not in resonance with an external

alternating electric field of the frequency (TV) calculated by classical

mechanics, but of the quantum frequencies v which are associated

with the quantum transitions. Finally, in the course of our investi-

gations we have come across several cases where the failure of our

hypothesis has been indubitably established by experiment, e.g.

the appearance of
"
half

"
quantum numbers, the multiplets and

anomalous Zeeman effects, etc. The presentation of atomic me-

chanics given here must therefore be regarded as only a first step

towards a final theory, which can be approached only by gradually

eliminating all false trails.

In order to set about this thoroughly, it is necessary to follow

through the method suggested, and to examine the consequences
to which we are led by the application of classical mechanics in con-

junction with the quantum restrictions. We shall therefore give in

this chapter a detailed account of the theory of perturbations, in-
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eluding all cases permitted by the quantum theory ; finally, we shall

demonstrate the failure of this theory in the case of helium.

We are of opinion that this will not be labour spent in vain, but

that this broad development of the theory of perturbations will,

together with the negative results, form the foundation for the true

quantum theory of the interaction of several electrons.1

41. Perturbations of a Non-degenerate System

Even the throe-body problem, to say nothing of those involving
more bodies, belongs to that class of mechanical problems which have

not been solved by the method of separation of the variables, and,

indeed, are hardly likely to be. In all such cases one is compelled to

fall back on methods which give the motion to successive degrees

of approximation. These methods are applicable if a parameter A

can be introduced into the Hamiltonian function in such a way that

for A=0 it degenerates into the Hamiltonian functionH of a problem
soluble by the method of separation, provided also that it may be

expanded in a series

(1) H=H +AH 1+A2H 2+ . . .,

which converges for a sufficiently large range of values of the co-

ordinates and momenta.

Problems of this kind are dealt with in celestial mechanics, and

the various methods adopted for their solution are referred to under

the heading
"
Theory of Perturbations." The additional terms

AH 1+A2H 2+ ... are in fact regarded as a
"
perturbation

"
of the

"
unperturbed

"
motion characterised by H .

It is only the multiply-periodic solutions which are of importance
for the quantum theory. The methods which we shall employ for

their deduction in what follows are essentially the same as those

which Poincare has treated in detail in his M&thodes nouvelles de la

Mecanique celeste.
2 By a solution we mean, as usual, the discovery

of a principal function S which generates a canonical transformation,

as as

Pk=^r> "^ST"'
v<lk <Mk

as a result of which the original co-ordinates and momenta are trans-

formed into angle and action variables.

1 The first applications of the theory of perturbations to atomic mechanics will

be found in the following works : N. Bohr, Quantum Theory of Line Spectra, parts i,

ii, iii, Copenhagen, 1918 and 1922 ; M. Born and E. Brody, Zcitschr. f. Physik,
vol. vi, p. 140, 1921 ; P. S. Epstein, Zeitschr. f. Physiky voJ, viii, pp. 211, 305, 1922 j

vol. ix, p. 92, 1922.
2 Three vols., Paris, 1892-99.
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Let us suppose that the unperturbed motion is already known and

assume, for the time being, that this motion is non-degenerate. In

other words, we suppose that there exists no integral relation of the

form

(2) (r^)=r1V+... +r,iv =0

between the frequencies vk of the unperturbed motion, either identi-

cally in the action variables J
fc

or for the special values of the

J
fc

's which characterise the initial state of motion.

We now introduce the angle and action variables wk 9
Jk of the

undisturbed motion, and consider the Hamiltonian function of the

perturbed motion defined in terms of them. They are still canonical

co-ordinates, but, in general, they are no longer angle and action

variables
;
in fact, it is evident from the canonical equations

an an

that J
fc depends on time and that wk is no longer a linear function

of time. For A=0, H becomes the Hamiltonian function H of the

unperturbed system, which depends only on the J
fc

's :

H (J1 , J2 . . .)

Similarly, the angle and action variables of the perturbed system
become those of the unperturbed system for A=0.

To find them, we have to look for the generator S(w, J) of a

canonical transformation

as dS
<
3>

J
*%v. "'-af?

which transforms the variables WQ
,
J into fresh variables w, J, in

such a way as to satisfy the following three conditions
(c/. 15) :

(A) The position co-ordinates of the system are periodic functions

of the wk s with the fundamental period 1.

(B) H is transformed into a function W depending only on the

J*'s.

(0) S*=S^wkJk is periodic in the wk s with the period 1.

k

The rectangular co-ordinates of the system are thus periodic func-

tions of the wk
Q
'8, as well as of the wk s : in other words, a periodi-

city parallelepiped in the wA -space will be transformed into another

in the w^-space. Apart from an arbitrary integral linear transforma-

tion of the wk s among themselves with the determinant 1, we

have, therefore,
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(4) wk=wk*+ a periodic function of the wk
Q
's (period 1).

From this and from (C) we conclude that S ^wk
QJk is also peri-

k

odic in the wk 's with period 1 . Or conversely, taking S 2wk*Jfc to
k

be periodic in the wk
Q
's with the fundamental period 1, equation

(4), and with it the periodicity of S*, follows from the relation

0s

"nsr;
and further, since from the beginning we have assumed that the

position co-ordinates are periodic functions of the wk 's, they must

also be periodic functions of the wk'&. The conditions (A) and (C)

are thus satisfied.

The function S which we require is now supposed to be capable of

expansion as a power series in A, of the form

(5) S=S +AS 1+A2S 2+ .-..

S is here the generator of the identical transformation and has

therefore
(cf. 7, p. 31) the form

(6) S

and Sx, S 2 . . . are periodic in the w
fc

's. Conversely, every function

S possessing these properties leads to variables which satisfy the

conditions (A) and (C).

We now substitute the series (5) for S in the Hamiltonian-Jacobi

equation for the perturbed motion

and expand W in turn in powers of A :

W-W (J)+AW 1(J)+A
2W 2(J)+- .

A number of differential equations then result on equating the co-

efficients of like powers of A.

First of all we have

(8) H (JHW (J),

i.e. W is found by replacing J*. by Jk in the energy of the unper-

turbed motion. We shall refer to W as the zero approximation to

the energy.

We find the equation for the first approximation by equating the

coefficients of A, viz. :
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in which H (J) and H^w , J) mean that in H (J) and H^w , J)
the J's are simply replaced by the J's, the form of the function

remaining unaltered. The two unknown functions W x and S x may
be determined by means of this equation. Since S x is to be periodic

in the wk
Q
's, the mean value of the sum in (9), taken over the unit

cube of the w-space, or over the time variation of the unperturbed

motion, is zero. It follows, then, from (9) that

(10) W 1(J)=H^T),
where Hj is likewise to be averaged over the time variation of the

unperturbed motion. Hence we obtain for AV^ the same expression

as in the calculation of the secular perturbations, although in this

case we have started out from the totally different hypothesis that

the unperturbed motion is not degenerate. Here again we have the

theorem :

The energy of the perturbed motion is, to a first approximation,

equal to the energy of the unperturbed motion increased by the time

average of the first term of the perturbation function taken over the

unperturbed motion. Apart, then, from the determination of the

unperturbed motion, no new integration is involved in the calculation

of the energy to this degree of approximation.
After calculation of W^J), we have for S x the equation

_
"

where the sign
~ over H! denotes the difference of the function

from its mean value :

We may conveniently refer to H
x as the

"
periodic component

"
of

Hj. It may be represented as a Fourier series

without a constant term (this being denoted by the accent on the

summation sign). If we imagine S x expressed as a Fourier series

the unknown coefficients B
r(J) may be expressed in terms of the

known A
T(J) with the* help of (11). It is found that

2V)BT(J)=AT(J),
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if we write

(12) Ir^WdJ k

so that i>fc(J) can be derived from the frequencies vk (J) of the un-

perturbed motion by replacing J
fc by J

fc
. In this way we find as

a solution of (11)

In addition to this there can occur an arbitrary function which de-

pends only on the J
fc
's. We are now in a position to calculate the

influence of the perturbation on the motion to a first approximation.
To this degree of approximation we have for the angle variables

of the motion

from which the wk 's are given as functions of the time. Superposed
on the unperturbed motion are small periodic oscillations, the ampli-
tudes of which are of the order of magnitude A, and are therefore

proportional to the perturbing forces, while the frequencies

8R,
(15) ^=^o+A

i

vJk

deviate but slightly from those of the unperturbed motion.

For the J
fc

's we have

,,_.

which implies that the J^'s, which in the unperturbed motion are

constant, are likewise subject to small oscillations with amplitudes
of the order of A. So-called secular perturbations do not occur, i.e.

quantities constant in the unperturbed motion do not undergo

changes of their own order of magnitude, such as occur in the case

of a degenerate unperturbed motion
(cf. 18).

The necessity for the hypothesis of the non-degenerate character

of the unperturbed motion is evident from (13), since, if this were

not the case, the expression (13) would be meaningless, owing to

certain of the denominators vanishing. We see further, however,

that, even if such degeneration be absent, the denominators can be

made arbitrarily small by a suitable choice of the numbers r l . . . rf,

and, moreover, this may happen for an infinite-ciumber of terms if the

vary from oo to +00 . In view of this, the convergence of the
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Fourier series (13) appears questionable. We shall return to this

at the end of the paragraph and meanwhile continue the formal

development of the method of approximation.

By comparison of the coefficients, more differential equations may
be deduced from (7), the second (coefficients of A2

)
and nih

(co-

efficients of An
)
of which we give below :

gH gs 2 i a*H as, aSt

_,Hi 8S X+
ft
"a

2L^ + yJ.
J d3k dwk

Q
7^2!

oo QC!,_ C?O (7O

Qgv
*.-*

aH
x asn_!

All the equations have the form

where On is a function, involving only the results of previous stages

of approximation, and so known at the stage to which (19) refers,

and periodic in the w's, and Sn and Wn are the required functions.

By forming the time average over the unperturbed motion we find,

in exactly the same manner as in the first stage of the process,

(20)

and

where On again denotes the
"
periodic component

"
of the function
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If now we again express the right-hand side in the form of a

Fourier series

in which no constant term appears, integration of (21) gives

(22) Sn=y AT
e**W).1 ' n

^2ni(^f
This is a formal solution of the proposed problem.
As an illustration of the method of procedure, we shall carry out

the calculation as far as the expression forW 2 in terms of the Fourier

coefficients of the perturbation function. By (13)

where the AT
's are the Fourier coefficients of H 19 and the term for

which T 1=r2
=

. . . =T/=0 is absent. The equation (17) for W2 we

now rewrite as

V 0^1+V I^V ' V '

-

a,.')

/
2!

'

Wz is obtained by averaging

T
, T *_T

-
*

~ + *

This can be written

or (what comes to the same thing, the case (TI>)=() being excluded)

We shall now consider briefly the question of the convergence of

the series so obtained. The point to be decided is whether the small

values of the denominators (TI>) which must continually recur in

the higher terms of the series, will prevent the series being con-

vergent, or whether the convergence can be maintained by cor-

respondingly small values of the numerators. Bruns l has shown

1 H. Bruns, Aatr. Nachr., vol. cix, p. 215, 1884 ; C. . Charlier, Mechanik dea

Himmda, vol. ii, p. 307, Leipzig, 1907.
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that this depends entirely on the character of the frequency ratios

VI
Q

: J>2
' "

*v. He deduced the following theorem : Those values

of the periods vk
Q for which the series are absolutely convergent

and those for which even the individual terms of the series do not

converge to zero, lie indefinitely close to one another. Since the

i>fc

J

s are functions of the J^'s, it follows that the function S, de-

rived according to the above procedure, is not a continuous func-

tion of the jys. Since, on the other hand, this continuity must be

presumed, in order that the Hamiltonian equations should be satis-

fied on the basis of (3) and the equations

an
Ja=const., wk=t+ const.,

dJk

it follows that our series do not necessarily represent the motion to

any required degree of accuracy, even when they happen to converge.

These results of Bruns have been supplemented by PoincarS's

investigations ;

l these lead to the following conditions : Apart from

special cases, it is not possible to represent strictly the motion of

the perturbed system by means of convergent /-fold Fourier series in

the time and magnitudes Jk constant in time, which could serve

for the fixation of the quantum states. For this reason it has

hitherto been impossible to carry out the long-sought-for proof of

the stability of the planetary system, i.e. to prove that the distances

of the planets from one another and from the sun remain always
within definite finite limits, even in the course of infinitely long

periods of time.

Although the method of approximation under consideration is not,

in the strict sense of the word, convergent, it has proved very useful

in celestial mechanics. It may in fact be shown that the series

possess a kind of semi-convergence.
2 If they are discontinued at

certain points they give a very accurate representation of the motion

of the perturbed system, not indeed for arbitrarily long periods of

time, but still over what are for practical purposes long intervals.

This shows that the absolute stability of atoms cannot be estab-

lished purely theoretically in- this way. We may, however, ignore

these fundamental difficulties for the time being and carry out the

calculation of the energy, in order to see if our results are in agree-

ment with observation, as is the case in celestial mechanics.

1 H. PoincarS, Method^ nouvelles de la Mecanique celeste, Paris, 1892-99, vol. i,

chap. v.
8 H. Poincare, Joe. cit., vol. ii, chap. viii.
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42. Application to the Non-harmonic Oscillator

In the case of one degree of freedom the motion may always be

found by a quadrature (cf. 9) ;
the desired result, however, is

often obtained more simply by adopting the method of approxima-
tion described in 41.

Let us take as an example a linear oscillator whose motion is

slightly non-harmonic, a case already treated by a simple method

(12). Here we will consider an oscillator for which the potential

energy contains a small term proportional to the cube of the dis-

placement y, and a term in j
4 which is of the second order of small

quantities. The Hamiltonian function has the form (cf. (3), 12) :

(1) H=H,+AH 1+A2H 2+ . . .,

where
"I

fry*

Ho=^
2

+^K)Y
(2)

2m 2
( '

The angle and action variables of the unperturbed motion, in this

case that of the harmonic oscillator, are given by the canonical trans-

formation with the generator (cf. (16), 7)

)
=cDQ

q
2 cot

or by

sin
/~J~~

q= * I ^ si* V 77o>m

^ cos 27rt0.
7T

If we express H in terms of WQ and J we obtain

H =vJ,
/ J \l

H!=a( ) sin3

(3) / TO \ 2

H,=6(-i-)sin:
\7ra>m/

as,We now findWX(J) and - from equation (9), 41 ; this gives

(4) W^H^O,
17
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From (4) it follows that in this case the deviation from a linear

restoring force does not give rise to terms in the energy which are

proportional to the deviation. On the other hand, to this approxi-

mation, the motion does contain an additional term, which arises

from S x .

In order to find an additional term in the expression for energy,

we must make a second approximation. From equation (17), 41,

we deduce

and

The calculation gives

15 J 2 3 J2

(6) Wl
4 (27r)

6
(i/)

4m3

The term proportional to a2
is in agreement with our previous result

(9), 12.

Finally, we can deduce from (5) the effect on the oscillation of the

deviation from a linear restoring force. We find that

W
and

\a 1 2J \t
(sin

3 2<Trw
Q cos 27rt0-f2 cos

/

By solving the first equation for w and substituting the values of

w, J in

the result (11) of 12 is arrived at by a simple calculation :

(3+C 8 4WW) "
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As an example of a more complicated case, we may indicate the

method of calculation applicable to a spatial non-harmonic oscillator

consisting of any number / of coupled linear non-harmonic oscil-

lators.1 Its Hamiltonian function is

(9) H=H +AH1+A2H 2+...,

where

/ v

(10)

kjl kjlm

here we make the convention that different suffixes j, k, I . . . in the

same product always signify different numbers of the set 1, 2, . . ./.

The coefficients have, of course, the same symmetrical properties as

the products of the q's which they multiply.

We shall assume that the vk 's are incommensurable. Introducing
the angle and action variables w, J of the unperturbed motion, we
have

and in TL 19
H 2 we have to substitute

^ .
, (* rw~ , \

qk=Qk sm <fc I Qfc= /v / 5-, 0*=27r?V ).

\ V Trco^m
^

/

Since H x is a polynomial of odd degree in the qk s
9
it follows at once

that

(11) W^H^O.
To calculateW 2 we have only to find the Fourier coefficients A

T of Hj.
In order to obtain Hx in the form of a Fourier series we make use

of the identity

4 sin a sin ]8 sin y= sin (a+j3+y)+sin ( a+]8+y)
+sin (a j8+y)+sin (a+j8 y),

1 M. Born and E. Brody, Zeitachr. /. Physik, vol. vi, p. 140, 1921.
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we find :

(12) H 1
==

sn

sn

If this be arranged as a Fourier series

(13) H1=2X sin (^)=
where

(14) A
T=I(BT-B_r)

the following values are found for the coefficients :

W* fo=i all othcr T
'

8 zcr ).

B_=.

(Tfc"3, all other T'S zero),

(^^2, Tj-^1, all other r's zero),

(T*=2, Tj= l, all other T'S zero),

(T*=T^=T,=!, all other T'S zero),

(T*=^f=ljT|= 1, all other T'S zero),

(in all other cases).

The terms with like combinations of the T'S (e.g. ^=^=^=1 for

(k, j, J)=(l, 2, 3) and (1, 3, 2) and (2, 1, 3), etc.), are already grouped

together here.

From |AT |

2=A
TA_T=4(BT B_T)

2
it follows that :

(15)

all other T'S zero),

(|T*|=Sf

all other T'S zero),

all other T'S zero),

,Q l (|Tt|=|T,|=|T,|=l,
all other T'S zero),

(in all other cases).

By (23), 41, \rohave :
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aj,
'

33,

+v?

**w-*i '

The quantities Q fc

2 are of the first order in the J's, the quantities A
are of the third order, and so W2 is quadratic in the J

fc
's. The total

energy may therefore be written

(17) W=2 **J*+i 2 **JJ*
k kj

The vk,

Q may be calculated from (16).

It will be seen that the method fails even to this degree of approxi-
mation if one of the following commensurabilities occur :

that is, if one frequency of the unperturbed system is twice one of

the others, or is equal to the sum of two others.

The formula (17) finds an application in the theory of the thermal

expansion of solid bodies x and in the theory of the band spectra
of polyatomic molecules. 2

43. Perturbations of an Intrinsically Degenerate System

As we have seen, certain denominators in the terms of the series

of 41 will be zero if an integral linear relation exists between the

frequencies VQ of the unperturbed system, and so the method is not

applicable.

We consider next the case of
"

intrinsic
"

degeneration, i.e. we
assume that a relation

between frequencies v of the unperturbed motion is true identically

in the J's. In this case the angle and action variables wk
Q

, Jk
Q can

be transformed in such a way that they can be separated into non-

degenerate w 's and Ja 's, and degenerate wp
's and J

p
's (v

/) =0)

1 For literature on this subject, see M. Born, Atomtheorie des fasten Zustandes,

Leipzig, 1923 ; also Encykl d. math. Wiss., v, 25, 29f.
a M. Born and E. Huckel, Physikal Zeitschr., vol. xxiv, p. 1, 1923; M. Born and

W. Heisenberg, Ann. d. Physik, vol. Ixxiv, p. 1, 1924.
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(a=l, 2 ... s i p=s+l . . . /). H depends then only on the Ja 's

(15, p. 91).

We might now try

On substituting in the Hamilton-Jacobi equation (7), 41, equation

(9) would again result
; but in averaging subsequently over the

unperturbed motion, H 1(^, J) would remain dependent on w*.

We cannot therefore apply the method without further considera-

tion. The deeper physical reason for this is that the variables WQ
,

J, with which the angle and action variables w
9
J of the perturbed

motion are correlated, are not determined by the unperturbed
motion

;
on account of its degenerate character, other degenerate

action variables, connected with the J
p

's by linear non-integral

relations, could be introduced in place of the J
p
0>

s, by a suitable

choice of co-ordinates.

Our first problem will therefore be to find the proper variables

w
p ,

J
p

in place of the w
p 's, Jp 's, to serve as the limiting values in

an approximation to w
p ,
J
p

. For this purpose we make use of the

method of secular perturbations already discussed
(cf. 18). It

consists in finding a transformation w J ->wJ such that the first

term of the perturbation function, when averaged over the unper-

turbed motion, depends only on the J's. We assume at the start

that Hj is not identically zero
;
we shall return later to the case

where it vanishes identically. We have now, as before, to solve a

Hamiltonian-Jacobi equation

(1) H^j.o; V,Jp )=W1(JO).

We have considered this problem in detail in 18. If the equation

(1) is soluble by separation of the variables, we obtain new angle and

action variables wk
g

,
J

7c
. If the generator of the transformation is

we have

,.=}.;

We now introduce' wk Jk into the Hamiltonian function of the

motion :
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(2) H=H (J )+AH 1(wA! ) J^+A'H^', j.)+. . .

and, as in 41, try to find the generator S(wk
Q

, 3k)

S=S +AS 1+A2S 2+. . .

of a canonical transformation, which transforms the w
fc

's and J
fc

's

into angle and action variables wk ,
3k of the perturbed motion.

This again leads to the equations (9), (17), and generally (18) of

41, if, instead of wk
Q

, J fc
we again write wk ,

J
fc

.

The solution takes a somewhat different form, since the quantities

dK
- vanish. If we solve equation (11) of 41 :

0J,

where H 1=H 1 Hj is the periodic component of H l5 there remains

in Sj an indeterminate additive function Rj which depends on the

jys and also on the w
p

's but not on the wa 's. We shall determine

this in the course of the next approximation. Sj now takes the form

where 8^ can be found by solving (3).

If this be substituted in equation (17), 41, for the next approxi-
mation

y a y
( '

*dJa 8w
tt

+~2 dJkdJi 8wk
<>

+H2=W2(J)

all the terms containing Sx can be taken as known
;
the terms in

Kj are not yet known, so that (17), 41, takes the form

O being a known function. It should be noticed that the coefficients

of the quadratic terms in the differential equation differ

from zero only if both J
fc
and J, belong to the Ja's.

From equation (6), W2(J), I^and a part S 2 of S 2 may be deter-

mined. Indicating mean values over a unit cube of the wa -space

by a single bar as before, and mean values over a unit cube of the

whole w^-space by a double bar, we have

further
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_ P f

where O = O O. This equation is of the same type as (3) and may
be solved in an analogous manner. Finally we have also

(9)( }

We can now write

(10)

and determine S 2 as a function of wk
Q
,
J

fc
from (9) ;

R 2 is a function

of w
p , Jfc, which so far remains undetermined.

The process may be continued
;
the next step determines W3(J),

R^Wp , Jfc) and a part S3 of S3 , etc. The final result is again a

series for the energy

(11) W=W (Ja)+AW 1(J /c)+A2W 2(J fc)+' .

These considerations provide a justification for our previous
method of determining the secular perturbations ( 18) by regarding
them as first approximations in a method of successive approxima-
tions. The higher approximations lead to periodic variations of the

wk
Q
's and J

fc 's, whose amplitudes are at most of the order of magni-
tude of A. Secular motions of wa

Q
,
Ja do not occur

;
also in addition

to the secular motions of w
p , Jp

which we recalculated in the first

stage of the process, only periodic variations occur having frequencies

of the same order of magnitude and amplitudes proportional to A.

We see further that the terms fL 1=H 1 H1 merely contribute to

the energy an amount of the second order in A, although they pro-
duce effects of the first order in the motion of the system.
The method hitherto discussed fails if

H^O
identically (in the w

p 's, Jjfc
0>

s), a case which very frequently occurs.

A more rigorous investigation shows that the secular motion of

w
p , Jp

and the additional energy W 2 follow from the Hamilton-

Jacobi equation, if we substitute in (5) the expression for Sj given

by (3), and average the equation over the unperturbed motion.

The procedure can be continued, the main object being to eliminate

H! altogether from the perturbation function by means of a suitable

canonical substitution. 1

Further special cases can occur, e.g. when the secular motion de-

t

1 See M. Born and W. Heisenberg, Ann. d. Physik, vol. Ixxiv, p. 1, 1924.
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termined by (1) is itself degenerate, inasmuch as commensurabilities

exist between the quantities -=1. The secular motions of the vari-

'

ables which are still degenerate to a first approximation would then

have to be found from the second approximation.

44. An Example of Accidental Degeneration

The method of approximation described in 41 can also fail

when the unperturbed system is not intrinsically degenerate, if there

exist relations of the form

(i) 2>*vfc

o=o

for the unperturbed motion with those values of the J fc
's which

are fixed by quantum conditions. In such cases we speak of acci-

dental degeneration. The w 7.'s may then be chosen so that for those

particular values of J*. the frequencies v
p

vanish (ps+l . . . f)

and the frequencies i>a(a--l, 2 ... s) are incommensurable. In the

unperturbed motion, however, the J
p
's are also to be determined by

quantum conditions, as already mentioned. Accidentally degenerate

degrees of freedom are therefore subject to quantum conditions,

intrinsically degenerate are not.

Accidental degeneration is a rare and remarkable exception in

astronomy ; the odds against (1) being exactly fulfilled are infinite.

A close approach to it is found in the case of perturbations of some

minor planets (Achilles, Patroclus, Hector, Nestor) which have very

nearly the same period of revolution as Jupiter. In atomic theory,

on the other hand, where the J
/{;

's can only have discrete values,

accidental degeneration is very common.
We may illustrate the most important properties of accidentally

degenerate systems by a simple example.
1

Consider two similar rotating bodies of moment of inertia A, with

a common axis, their positions being defined by the angles fa and

<f> 2 . As long as they do not interact they rotate uniformly. The

angle and action variables are given by

1 M. Born and W. Hcisenborg, Zcitschr. f. Physik, vol. xiv, p. 44, 1923.
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where pl9 p% are the angular momenta. The energy is

If we fix J^ and J2 by means of quantum conditions, the two fre-

quencies of rotation are always commensurable ; in particular, they
are equal when J^^J 2 .

Let us now suppose the motion to be perturbed by an interaction

between the two rotators, consisting of a couple proportional to

sin (<i ^ 2 ) > ^e energy is then

(3) H^
where

(4) H^l-cos
and A measures the strength of coupling. In this case we can give

a rigorous solution of the problem of the perturbed motion. If we

carry out the canonical transformation

=< J^ fJ, =J,

then

(J0)2_|_/J'0\2

and this expression involves only one co-ordinate w'. w is cyclic,

and consequently J is constant ; suppose its value is J. Since the

determinant of the transformation (5) of the J
fc

's is not 1, it follows

that J and J' are not action variables of the unperturbed system.
J can therefore only be fixed by quantum conditions in such a way
that, in passing over to the unperturbed system, J+J' is an integral

multiple of h. Instead of J' we have, in the case of the perturbed

motion, the action integral

(7)

where

167T2A
If we put

'(I)Vl-V si
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then

(9) J'

In order to obtain the energy as a function of the action variables,

the equation (9) must be solved for k and the solution substituted in

the equation

derived from (8). For k>I, w' executes a motion of libration

within the libration limits

T,
k

and the integral E(&) has to be evaluated over a complete period
between limits sin $=l/k. For k<l, w'Q performs a rotational

motion
;
the limits of the integral are and 2?r, and K(k) denotes

the complete elliptic integral of the second kind.

For the purposes of further calculation we have to distinguish

between two different cases :

I. J1 4S J 2 ; J' + 0; the unperturbed motion has two unequal

frequencies. W is not zero, and k vanishes with A. For
lOTT A

sufficiently small values of A, the motion of w'Q
is clearly a rotation,

and for E(&) we can make use of the expansion

(11)

We find then from (9) :

Jf 1677
ZA

and from (10) :

II. Jf=3f, J'=0, i.e. the frequencies of the unperturbed
J2

motion are equal. We shall then have W =0, the denomi-
2

nator in equation (8) will be of the same order as A, and for finite

values of Wj, k2 is of the order of magnitude 1. Both libration and

rotation of w' can occur, and the expansion 11) is no longer valid.

For the larger values of Wlf we have k<l, and therefore a rotation ;
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for the smaller values of Wx we have i>l, and hence libration

(cf. fig. 38). The libration limits approach one another as W x

diminishes
; for W 1=0 the curve representing the motion in the

(w' y J')-plane contracts to the libration centre w'=0, J'=0, or

w'=, J'=0; negative values of W x do not occur since, by (7),

J' would then be imaginary. Disregarding the limitations imposed

FIG. 38.

by quantum conditions, all these motions are possible, sinceW x can

assume a continuous set of values.

The quantum theory requires, however, that J' should be an

integral multiple of h ; moreover, J' is proportional to V\ (by (7))

and must, therefore, be capable of becoming arbitrarily small for

small values of A. These two conditions are fulfilled only by the

value

In the case of a rotation of w'Q this is not possible, and for a libration

it can hold only in the limiting cases w'=0, J'=0, and w'=,
J'=0. Hence in the perturbed motion the two rotating bodies are

exactly in phase. We have only one frequency, but two quantum
conditions.

If all that is required is that the equations of motions shall be

satisfied without the state necessarily being stable, the cases M>' =,
J'-0, and w'=f ,

J'=0 are also possible.

In any neighbourhood of each of the motions defined by w'=J
and f there are, however, motions of rotation and libration for

which w' takes values widely different from J or
|-.

For w'=%
or f the motion with a definite phase relation is therefore unstable,

in the mechanical sense of the word. In this case the motions w'=J
and f are also energetically unstable, inasmuch as H is then a maxi-

mum. We shall also meet with cases, however, where the mechani-

cally stable motion is energetically unstable.

These special motions can be very simply characterised by the fact
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that they are the only solutions of the equations of motion

du/_8HL ^___ 2H
( '

~dt W* ~dt ~~^7

for which w'Q
is constant and hence for which the bodies rotate with

a constant difference of phase. It then follows from the conserva-

tion of energy

H(J, J',w')=W,

that since J is constant, J' must likewise be constant
; consequently

According to (6) this equation has the solutions

w'=0, 1 i f,

Putting (6) into the first of equations (13) it then follows that

J'=0.

This is our first example of a case in which the selection of a

particularly simple motion as a stationary state, from the mass of

complex mechanical motions, is due entirely to the quantum condi-

tions. We shall see quite generally that the simple motions with

phase relations have a special significance.

45. Phase Relations in the Case of Bohr Atoms and

Molecules

As already mentioned, the accidental degeneration of the un-

perturbed system is a very exceptional case in astronomy. In

atomic physics, on the other hand, it plays an important role,

for firstly, according to Bohr's ideas, a whole set of equivalent orbits

occur in the higher atoms
;
and again according to the quantum

theory the periods of rotation of the Kepler motions with different

principal quantum numbers are always commensurable, since they

vary as the cubes of whole numbers.

After the discussion of the example in the foregoing paragraph,
we should expect quite generally, in such cases of accidental de-

generation, that the quantum conditions would enforce exact phase

relations, and consequently particularly simple types of motion.

Since the proof of this for any degree of approximation is somewhat

complicated, and since the necessary mathematical method can only
be given later, we shall indicate here a simpler method by means of

which the phase relations can be found to a first approximation only.

In this section we shall therefore neglect all expressions involving

higher power of A than the first, even, for example, A*.
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If for the moment we disregard the presence of intrinsic degenera-

tions, but assume the existence of several accidental degenerations,

we can choose the angle and action variables wk ,
Jk (i=l, 2 . . ./)

of the unperturbed system so that the j>a 's (a=l, 2 . . . s) differ

from zero and are incommensurable, while v
p (p=s+l . . ./) vanish

for the particular values which the J
fc

's have in the case of the un-

perturbed motion. We assume therefore that an (/ s)-fold acci-

dental degeneration exists.

We may write (with an alteration of suffixes from those used

previously) the Hamiltonian function in the form

(1) H=H (Jfc )+AH2K ,J. )

and endeavour to represent the energy constant as a series of the

form

(2) W=W (J*)+AW 2(J fc).

If, as before, we made the assumption

we should obtain for S 2 expressions in which denominators occur

which vanish for A 0, i.e. S is no longer an analytic function of

A at A=0. Now Bohlin 1 has shown that a series in increasing

powers of A/A of the form

(3) 8=S +VAJS 1+A8 a+ . . .

is what is required. Here again (cf. 41)

k

as
and Sj, S 2 are periodic in the wk 's (period 1). If-- be substituted

vWk

for J
fc

in the Hamiltonian function (1), we obtain an expression of

the form (2) if the equations

(4o) H (J)=W (J)

u\
(4l)

<*) 2.

are satisfied.

aS2 1

1 K. Bohlin, "t)ber eine neue Annaherungsmethode in der Storungstheorie/*
Bihang till K. Svenska Vet. Akad. Handl., vol. xiv, Afd. i, Nr. 5, 1888 ; see also,
for example, H. Poincare, Methodes nouvelles, vol. ii, chap, xix, and C. L. Charlier,
Mechanik des Himmels, voj. ii, p. 446. The application to the quantum theory is

due to L. Nordheim, Zeitschr. f. Physik, vol. xvii, p. 316, 1923 ; vol. xxi, p. 242,
1924.
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W is found from (4 ).
Since Sj is to be a periodic function of

the wk
Q
's, it follows from (4^ that

as,
the quantities

-- remain, however, indeterminate. By averagingQ

over the unperturbed motion (that is, over the wa
Q9s only) we obtain

from (4) :

(5) M-*. fc .-,+....A
(Suffixes p and a both refer to accidentally degenerate variables.)

This is a partial differential equation of the Hamilton-Jacobi type.

It does not admit of integration in all cases, and the method fails,

therefore, for the determination of the motion for arbitrary values

of the JVs. We can show, however, as in the example of 44, that

the motions for which the w
p

's are constant to zero approximation,
and remain constant also to a first approximation, are stationary
motions in the sense of quantum theory.

We shall now demonstrate this for one accidentally degenerate

degree of freedom, the last (/). In this case equation (5) has the

form

This differential equation of the Hamilton-Jacobi type for one degree
of freedom can always be solved by the method of quadratures and

we find

*
2! 8J/

The constant of integration must satisfy the condition that

is an integral multiple of h. From this it follows, according to

whether wf performs a rotation (fdwf*=l) or a libration (fdwf*=0) 9



272 THE MECHANICS OF THE ATOM

or

The integrand ^ is never negative along the path of integra-
OWf

tion. Hence in the case of rotation we must have

for all values of wf 9
i.e. H2 is totally independent of wf . It follows,

of course, that with this approximation, nothing is known about

t0/. In the case of libration, J/ must decrease to zero with VX,
but since on the quantum theory J/ must be an integral multiple of

h, it follows that J/=0, i.e. the integral is to be taken over an

infinitely short section of the (wf , J/J-plane ;
the libration con-

tracts therefore to a point. Since wf
Q

is now constant during the

motion, the perturbed motion has only/ 1 frequencies, and has

therefore no higher degree of periodicity than the unperturbed
motion.

The value which wf has for the motion must be a double root of

W 2 H 2(w/) ;
it must therefore satisfy the equations

(9)

'

W2=H 2 )

and _
(io) m,

3wf
Q

The fact that wf can only have certain definite values, namely,
the roots of (10), signifies a phase relation in the motion of the

system.
If the motion determined in this way is to be actually the limiting

case of a libration and only if this is the case will it be stable the

radicand of (6) must be negative in the neighbourhood of the root

wf , i.e.

2! 0J/
must have a minimum. If the latter condition is not fulfilled the

equations of motion

will still be satisfied, but in any immediate neighbourhood of the
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solution with constant values of wf
Q and Jr there will be solutions

of the equations of motion for which the co-ordinates differ widely
from these constant values. The motions determined by (9) and

(10) are thus mechanically unstable.

In the case where - is positive (as in the example of the two
dJf

rotators, 44), the mechanically stable motion has the smallest value

of H 2 . If, however, is negative (this case occurs in atomic
U<J f

mechanics), the mechanically stable motion has the largest value

of H 2 ,
and the mechanically unstable the smallest. As yet we

are unable to decide whether only the mechanically stable motions

are permissible for stationary states. If only the stable motions

are permitted it can so happen that the perturbation energy H 2 is a

maximum, as opposed to static models where the energy is always
a minimum. If mechanically unstable motions be also allowed

(on the quantum theory their neighbouring motions are not allowed

as they do not satisfy quantum conditions) it may happen that the

normal state (state of minimum energy) is included among them.

In order to illustrate this behaviour, consider two electrons re-

volving in circular Kepler orbits (it is immaterial whether they
revolve about the same nucleus or about different nuclei) and at

the same time exercising small perturbations on one another. Sup-

pose the position and form of the orbits are fixed, and let us consider

only the variation of the phase of the motion under the influence of

the perturbing forces. The energy of the unperturbed motion is

the unperturbed frequencies are

_ 2A _ 2A

They are therefore commensurable for each quantum state

(J 1=w 1A; J 2 H 2/i), since T 1^ 1 -fr2v2=0 if r l=n 1? 9
r2
= n 2

3
, and

these T 1? r 2 are both integral. If now, by means of a canonical sub-

stitution, we separate the angle and action variables into those which

are degenerate and those which are not, we have to put

_ _1
*"l rtV'!""! ''&""&!* ~ 1 o

_ 1

18
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we find

J 2 is the degenerate action variable. If we now evaluate

it will be seen that this expression is negative for all values of J.

Hence in this case the minimum of the perturbation energy H 2

corresponds to the unstable motion.

It will be seen that this result is due to the fact that

where H denotes the energy of the unperturbed Kepler motion. It

will therefore be true generally when electronic orbits in atoms or

molecules exert a mutual influence on one another.

Our considerations show that in the case of one degree of freedom

the motions for which phase relations hold are the only ones possible

according to the quantum theory. The same is true if the equation

(5) is soluble by separation of the variables or can be made so by a

transformation of the w
p

's. Equations of the form (6) are then

obtained for the individual terms of S l3 and all conclusions which

follow from this equation can be arrived at in the same manner.

In the general case, it is true, the necessity for phase relations

cannot be proved ;
it can, however, be shown that there are per-

turbed motions with the same degree of periodicity s as the unper-

turbed, for which phase relations exist and which are of significance

from the point of view of the quantum theory.

The differential equation (5) is equivalent to a system of canonical

equations

in which K is the expression obtained by replacing the w
p

's in the

38
left-hand side of (5) by

"
co-ordinates

"
qp ,

and the - 's by the con-

GWp

jugate
" momenta "

pp ,
i.e. :

(11) K
P*

the quantities v
pff
= -> -

being treated as constants. The mechani-
p ff
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cal system defined by (11) has, in general, several equilibrium

configurations : for if the values of qp=qp
Q be determined from

qp=qp , pp=Q will be solutions of the canonical equations. Also

(12)

H)
=o

'
si=c nst -

is a particular integral of the differential equation (5), if the constant

value of w Q be calculated from the equations

(13)
-

Q
=0

and

This method fails only if the system of equations (13) is not soluble

for the Wp
Q
'&

9
i.e. if the

"
Hessian determinant

"

3*5,

vanishes.

The motion of the perturbed system found in this way has the

same degree of periodicity s as the unperturbed motion. The fact

that the constants w
p
Q can have only certain definite values indicates

the existence of phase relations in the perturbed motion.

The motion is stable only if the auxiliary variables qp of equation

(11) have a stable equilibrium for qp=qp
. The neighbouring motions

then consist of small oscillations about the particular motion under

consideration.

The fact that the motions found here satisfy the quantum condi-

tions can be seen as follows. J
p

is constant and equal to the value

which it has in the case of the unperturbed motion ; in addition,

and so, by (12),

so that J
p

is also quantised.

V-J, ;

46. Limiting Degeneration

A common characteristic of the two cases of Regeneration which

have been considered is the fact that the trajectory occupies a region
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of less than / dimensions in the co-ordinate space. A third possi-

bility, characterised by the same property, occurs in the case of

multiply periodic systems ;
it arises in a number of atomic pro-

blems and leads to typical difficulties in the application of the quan-
tum theory. It is therefore advisable to generalise somewhat the

conception of degeneration and to regard a multiply periodic

motion as degenerate whenever the trajectory occupies a region of

less dimensions than the number of degrees of freedom.

Generalising our previous terminology ( 15, p. 92), we shall refer

to the number of dimensions of the region of the y-space filled by
the trajectory of the motion as the degree of periodicity of the

motion. A motion is thus always degenerate when its degree of

periodicity is less than/.
We shall consider a system whose motion may be found by the

method of separation of the variables when unperturbed. As we
have seen ( 14), in separable systems the trajectory in the j-space

is bounded by a series of surfaces, each of the separation co-ordinates

oscillating backwards and forwards between two surfaces of such a

series. In certain cases these surfaces may coincide. The number of

dimensions of the region filled by the path is then decreased by 1.

This coincidence of two libration limits characterises the third

and, it appears, last possibility of a degeneration.

An example will at once make clear what is meant. Let us take the

relativistic Kepler motion, or, in other words, motion in an ellipse with

a perihelion rotation. In general, the path fills a circular ring and,

therefore, a two-dimensional region, densely everywhere. The bound-

aries for the libration of the radius vector are here concentric circles.

If now we suppose the eccentricity of the initial orbit to decrease,

the two limiting circles approach one another until finally they
coalesce and the orbit becomes a one-dimensional circular orbit.

This does not involve any degeneration in the previous sense of the

word. Actually, however, one angle variable (in this case the longi-

tude of the perihelion) will be indeterminate owing to its geometrical

definition, whilst one of the action variables assumes a limiting value

consistent with being real. For the relativistic Kepler motion, for

instance, we always have J 2^Jl9 while here J2
=Jx . We may there-

fore call this appropriately
"
limiting degeneration."

Other examples are provided by an orbit perpendicular to the

direction of the field in the case of the Zeeman effect and, in the case

of the problem of two centres ( 39), by one which is confined to the

surface of an ellipsoid of rotation, etc. For the purpose of illustra-

tion we shall continue to speak of circular orbits, eccentricities,
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etc., although our considerations will have a much more general

significance.

Let the degree of freedom subject to limiting degeneration be

denoted by the separation co-ordinate qf,
whose libration limits

coincide. The action variable corresponding to it,

has, obviously, the value 0. If we allow perturbing forces to act

on such a motion with J/=0, the degree of freedom qf will in

general be excited (quite apart from the quantum theory) and the

phase integral Jf will differ from zero (in our example the path would

not remain circular).

According to the principles of the quantum theory, Jf must be an

integral multiple of h ;
since it must be equivalent to J/ for a vanish-

ingly small perturbation, it can have only the value zero. We shall

see that the only solution which satisfies this condition is that for

which Jf also remains zero during the perturbed motion. The per-

turbed motion has therefore (as in the case of accidental degeneration)

the same degree of periodicity as the unperturbed motion.

The problem of finding this solution involves a mathematical

difficulty. Eeturning to our example, the perturbation function

contains in general terms which are linear in the eccentricity, that

is in terms in A/J/.
1 Now this can occur quite generally if the un-

perturbed system has limiting degeneration. Terms in l/Vjf then

occur in

dt 0J/'

i.e. in passing over in the limit to the unperturbed motion, the co-

ordinate wf (perihelion longitude) will vary very rapidly and will

have no finite limiting value. The expansions of 41 are now no

longer applicable.

The behaviour of the variables 3f
Qwf

Q resembles that of polar co-

ordinates : wf is indeterminate when J/^0. We can, as a matter

of fact, overcome the difficulty which has been mentioned by re-

placing them by the Poincar6
"
rectangular

"
canonical co-ordinates :

a

In our previous notation the eccentricity is

V-S
the degree ot treedom subject to limiting degeneration corresponds to the radial

action integral

Jr=Ji Jj.

It is seen at once that, for small J/-, the eccentricity is proportional to VJr.

2
Cf. H. Poincare, Mithodes nouvelles, vol. ii, chap. xii.
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(1)

(the generator of the transformation is %(r)
Q
)
2 tan 27rwf ).

wf
Q can

then be varied in the neighbourhood of J/^0 without and
77

being at the same time subject to rapid variations.

Since in the perturbed motion J/ can deviate but slightly from

the corresponding action variable J/=0, we can consider and
77

to be small. If we substitute the new variables in the Hamiltonian

function, we can expand this in terms of and
77

in such a way that

each coefficient of the powers of A will itself be a series in increasing

powers of and 77.

On account of (1) the expansion of H
,
and therefore of the energy

function of the unperturbed motion, proceeds in even powers of and

77 only, since it depends only on Jf and not on wf . In the perturba-
tion function, on the other hand, linear terms will also occur. The

difficulty previously mentioned may now be formulated analytically.

The circular orbit =0, 77
=0 is indeed an exact solution of the

equations of motion for the unperturbed system, since

d_dH __ ^77 H
~di~~drf =o,v^-o~~

'

~dt~~~~d^

but it is no longer so in the case of the perturbed motion, since the

perturbation function contains in general terms which are linear in

the 's and r7's.

This consideration indicates a method of solution. If, by a suit-

able transformation, variables
, 77

can be introduced, such that all

linear terms in the development of the Hamiltonian function are

absent, we have in f=0, 77=0 a rigorous solution of the equations of

motion for the perturbed system as well. This transformation may
be found by means of a recurrence method, the integration of the

remaining equations of motion being accomplished at the same time.

We postulate then a mechanical problem with the Hamiltonian

function

(2) H=H1+AH1+AH a+...

WV+ -

WV+ ' ' '

The HWO ,
an ,

bn . . .'s (w=l, 2 . . .)
are here periodic functions of the
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wa
Q
'a (period 1). When transformed, the expression (2) must take the

form

(3) H=W +AW1+AW,+ . . .,

where

(4) WB=Vn(Ja)+EB

and the Rn's denote power series in
, 77 commencing with quadratic

terms.

We assume for the generating function of the transformation

(5) S=2Ja^+T+^+B^-A77 ,

i

where

T=AT 1 +A2T 2 +. . .

(6) A.=XA1+X*A 2+ . . .

B=AB 1+A2B 2+...

are to be power series in A, whose coefficients Tn ,
An ,

Bn are periodic

functions of the quantities w^ . . . w/-i-
We find in this way for the transformation formulae for and

77 :

(7)

1

?=5
and employing these in turn :

The new variables difEer therefore from the old only by terms of the

order of A, so that for A^O we have once again the unperturbed
circular orbits g

Q
=r)=Q.

If now we carry out the transformation and expand everything
in powers of A, then, to each approximation, there are three, and

only three, functions available Tn ,
An ,

Bn which are so far unde-

termined and can be chosen so as to satisfy our conditions. Com-

parison of the coefficients of A in (2) and (3) gives

. . . =V1+R1 .
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On making the coefficients of and 77 zero, equations for AJ and 'B l

are obtained, viz. :

Equations of the same type occur very frequently in the theory of

perturbations. To integrate them, A and B are each separated into

a constant part, depending only on the J's, and a purely periodic

component :

The former is found from the equations which result on averaging

(10), viz :

and the latter is then found directly from (10), as in the case of equa-
tion (11), 41. As usual, Vj. and Tj may be calculated as functions

of the Ja's and wa 's, from the terms in (9) independent of and
rj.

The higher approximations can be obtained in exactly the same

way. Since in the case of even the second approximation the for-

mula) are already very involved, we shall not write them down.

Finally, it should be noticed that to the first approximation no new
terms occur in the energy W1? but that this is again obtained by

simply averaging H 10 over wl . . . wf^ t ;
in the second approxima-

tion, however, a whole series of new terms appears.

The final result is an expression for the Hamiltonian function in

the form

(12) H=V(Ja)+c(Ja)f +d(Ja)^+e(J )^+ .

It is the Hamiltonian function of a system in which all co-ordinates

but one are cyclic. The motion may be found in the usual way by

solving a Hamilton-Jacobi differential equation for one degree of

freedom. Since and ^ (like and ^) must vanish with A, we
need only consider small motions, that is, those belonging to a

system whose Hamiltonian function is

(13) cp+jhf+efr.

By means of a suitable homogeneous linear transformation from f, v\

to new variables X, Y it takes the form

(14) CX2+DY2
.
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If the quadratic form (13) is
"
definite," i.e. C andD have the same

sign in (14), the motions in the neighbourhood of X=Y=0 or

f=77=0 are small oscillations of X and Y about this point. The

only motion compatible with the quantum condition

is one in which and
T?
remain zero. The energy of this particular

state is a minimum, if the quadratic form is positive definite ; it is

a maximum if the form is negative definite.

If the quadratic form (13) is indefinite there are motions in each

neighbourhood of f==^=0, for which and
rj
do not remain small.

The only values which satisfy the equations of motion and the

quantum condition are again rj=Q: the motion is, however,

mechanically unstable.

In every case the perturbed motion has the same degree of periodi-

city/!, whilst its energy is

(15) W=V(Ja ).

The restriction to simple limiting degeneration is not necessary.

The corresponding considerations and calculations are also valid for

limiting degeneration of arbitrary multiplicity. The appropriate

expression for the generator S is

(16) S=iX'
The result of the transformation is an expression for H in the form

(17) H=v(ja

to which must be added terms of the third and higher orders in ,,

T?P
. The Hamilton-Jacobi equation to which this function leads is

not, in general, separable for finite values of fp , 7jp
. We need ex-

amine, however, only those motions for which gp
and

t]p
remain

small. By means of a suitable homogeneous linear transformation,

the quadratic terms in (17) may be written in the form

(18) H=V(J.)+2(C,X,+D,Y,).
P

H is now separable. The only motions compatible with the

quantum conditions are those for which X
p ,
Y

p
and consequently

p , rjp
are always zero.

The conditions for stability are analogous to those in the case of

one degree of freedom. The particular motion ^p=^p
=0 is stable

when, and only when, the quadratic form i (17) is definite. The

energy is a minimum if it is positive definite.
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To summarise, we may state : For an initial motion possessing

limiting degeneration, the perturbed motion, selected in accordance

with the quantum theory, has the same degree of periodicity 8 as

the unperturbed motion. Its energy is

(19) W=V(JJ.

47. Phase Relations to any Degree of Approximation

In 45 we had to leave unanswered the question whether, in the

case of an accidentally degenerate initial motion, the motions singled

out by the quantum theory have the same degree of periodicity as

the initial one, when the work is carried to any degree of approxima-
tion. The method developed for limiting degeneration now enables

us to answer this question. At the same time the restriction on the

w
p
Q
's given in 45 will be established by an independent method.

Let us again state the problem : we wish to study those motions

of the mechanical system with the Hamiltonian function

(1) H=H (J jfco)+AH 1(J^ ^)+. . . (*=1 . . ./)

which are connected with the accidentally degenerate motions of the

unperturbed system (A=0), i.e. those for which, as a result of the

choice of integration constants, certain frequencies vanish :

OTT

(2) V=aj^= (/>=+!.../).

The path fills a region of only s dimensions (s<f) in the case of

the unperturbed system, since the w
p

's are constant.

Let us assume that the perturbed motion is connected with a

certain unperturbed motion for which

It follows from the assumption of accidental degeneration that the

J
p

's must have perfectly definite values in the initial motion. The
J
p
*'s may be determined if equation (2) be solved for the J

p
0>s

; they

appear as functions of the Ja 's. That w
p

must necessarily have

definite discrete values in the initial motion is certainly an assump-
tion

;
it is also conceivable that the perturbed motion could be

associated with every system of values w
p

Q of a continuum, but our

argument cannot be applied to this case.

If we assume, therefore, that only certain initial motions are

possible, the J
p
*'s and w

p
*'s are perfectly definite functions of the

Ja 's
;

so far we do net know w
p*(Ja), but this will be found in the

course of the investigations. We now introduce new variables
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(3) f/Wp'-W. )' V=V-V(J.')-

This may be accomplished by means of a canonical transformation

with the generator

(4) 2. J.'+2[VJp*+fp (V-/)] 5

a p

the transformation equations are

The new Ja 's will be equal to the original Ja 's, while the wa 's will

differ from the wa 's only by quantities which are constant in the

unperturbed motion
; they retain their character of action and angle

variables respectively. The
p

's and
7yp

's tend to zero with vanish-

ing perturbation.

We can now develop the Hamiltonian function with respect to

p> ^p ?
thus obtaining

(6) H=H '+AH 1'+A
2H2'+

where (omitting the bar in wa )

H '=H00(Ja ,
J

(7) H/=H 10(wa >
w

p*,
J

(

From (5)

C P

^2!

8w

while the expressions H00 ,
H10 . . . are obtained from H

, H! ... in

(1) simply by writing Jp*,
w

p
* instead of Jp, wp

Q
. (6) has now a form

analogous to that of (2) in 46, and may in consequence be dealt

with, to any degree of approximation, by >he method employed
there.
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There is the one difference, that the ^'s do not appear at all in

H '. If, therefore, we make the transformation given by (16), 46,

the equations for determining the A/'s and B/'s (</. (10), 46)

become :

It follows from the second of these equations that the mean value

bjf vanishes.

Finally, the Hamiltonian function is obtained in the form

(9) H=V(JB)+R(J., ,, ,,),

where the expansion of K in terms of
p , rjp

commences with quad-
ratic terms. For small values of gp , TJP ,

which are all that we need

consider, H is separable and gives, as the only solution satisfying the

quantum conditions,

The perturbed motion has therefore the same degree of periodicity

as the unperturbed motion. It is stable (in the ordinary mechanical

sense) when, and only when, the quadratic form in
p , rjp

in (9) is

definite.

The condition

(10) &7^<>

implies a determination of the w
p
*'s. For since the mean values of

the
3

%, which are pure periodic functions without a constant
VWgf

term, vanish, it follows from (8) that

This equation implies, however, phase relations for the w
p
*'s.

It is, in fact, equation (13), 45, since H10 in the present notation

is identical with H 2 in 45.

In 45 we considered in great detail the case of one accidentally

degenerate degree of freedom
;
we may show finally how it fits in

with our general considerations of stability. Equation (5'), 45 (H 2

there is equivalent to H10 here),

2!
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is, to a first approximation, equivalent to

2! dJ,
2

for motions in the neighbourhood of solutions of the equation

, _~~

If -? is positive, we have in the neighbourhood of the stable
dJf

2

solution (H2 is a minimum) a positive definite quadratic form,

whilst in the neighbourhood of the unstable solution (H 2 a maxi-

#2H
mum) the form is indefinite. If ? is negative, the form is negative

dJf

definite (H 2 is a maximum) in the neighbourhood of the stable

solution, indefinite (H 2 a minimum) in the neighbourhood of the

unstable solution.

It remains to consider the cases of combinations of different kinds

of degeneration. It has been shown that accidental degeneration and

limiting degeneration can be treated in the same way, and so it is

obvious that they do not interfere with one another. In this case

the number of the , 77
variables is simply increased. In addition

the sole remaining possibility, a combination of intrinsic degenera-
tion with limiting degeneration, does not, as a rule, involve any

difficulty. In such a case the secular motions of the intrinsically

degenerate variables are first of all calculated and then the procedure
of 46 adopted.

1

Special cases, in which, for example, by averaging over the non-

degenerate variables, their dependence on the degenerate variables

disappear (e.g. H 1 =0), must of course be examined separately.

We have now justified the statement made in 40, that the

stationary states are to be found chiefly among the particularly

simple types of motion, which can be calculated by comparatively

easy approximate methods.

With this mathematical tool at hand we shall now proceed to the

calculation of the next simplest atom to hydrogen, that of helium.

We shall show (as mentioned in 40) that the results are not in

agreement with observation ; but quite apart from this, we consider

1 The case in which the degrees of freedom exhibiting limiting degeneration
are at the same time intrinsically degenerate is cfealt with by L. Nordheim,
Zeitechr.f. Physik, vol. xvii, p. 316, 1923.
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that working out this example is a necessary preliminary to any

attempt to discover the true principles of quantum mechanics.

48. The Normal State of the Helium Atom

According to 32, two one-quantum electron orbits are present in

helium in its normal state. Our problem is to investigate their

possible arrangements in the atom.

We shall take the unperturbed motion to be one in which the

electrons are only subject to the action of the nucleus, of charge
Ze. Let the angle and action variables of the first electron be w l9

w 2 ,
w3 , Jj, J2 ,

J3 ,
and let us distinguish by a dash the correspond-

ing quantities for the second electron. The energy of the unper-
turbed motion is then

where

The perturbation function is the mutual potential energy of the

electrons

(2) AH1= =: =
,

ft
V(x-x')*+(y-y')*+(z-sf)*

where R denotes the distance between the electrons and (x, y, z),

(x
f

, y', z'), their respective cartesian co-ordinates in any co-ordinate

system with the nucleus as origin.

The expansions of the cartesian co-ordinates as functions of the

angle variables (to be calculated from (26), 22) must now be intro-

duced, to provide a starting-point for the calculation of the perturba-
tions. In this connection, however, there is one point to be borne

in mind. In the unperturbed Kepler motion (without taking account

of the variation in mass) only Jj is fixed by the quantum theory,

whilst J 2 ,
i.e. the eccentricity, remains arbitrary ;

in the relativistic

Kepler motion, J 2 is also to be quantised and, for a one-quantum
orbit, J2=J 1

=h. We shall not take account quantitatively of the

relativistic variation of mass, but we shall assume that the initial

orbit of each electron is circular with limiting degeneration Ji=A,
J 2=h.

The unperturbed system consists therefore of two circular orbits

of the same size. In addition to the double limiting degeneration
due to the circular orbfys, we have also a double intrinsic degenera-

tion, arising from the fact that the planes of the two orbits are
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fixed, and in addition we have an accidental degeneration, since the

rotation frequencies of the two electrons are equal.

By the principle of conservation of angular momentum, the inter-

action of the two electrons must leave still one intrinsic degeneration

(the difference of the longitudes of the nodes of the two orbits on

the invariable plane remains zero). The line of nodes, however,

processes uniformly about the axis of the resultant angular momen-
tum

;
as long as we confine our attention to secular perturbations,

the latter makes the same angle with the angular momentum
vectors of the two electron orbits. Limiting degeneration also per-

sists in the perturbed motion (by the argument of 46). The

same is true
( 47) of the accidental degeneration. The per-

turbed motion will, however, only be related to those unperturbed
motions for which the two electrons have some quite definite phase
relations.

In this special state the mutual energy of the electrons will have

a stationary value. It is evident, on visualising the motion, that this

will be the case only if the electrons are as far apart as possible at

every instant, that is, if they are always in the same meridional

plane passing through the axis of the angular momentum.
This almost self-evident result may be arrived at analytically.

In this connection we must first of all choose the variables of the

unperturbed motion, so that they can be separated into those which

are degenerate and those which are non-degenerate.
The limiting degeneration

j.-j^o, jY--j 2'=o

necessitates the transformation (which we shall only give for the

first electron)

COS

In what follows we shall again omit the bars over w and Jx :

is then the angular distance of the electron in its orbit from the

line of nodes ;
and 77

are zero in the unperturbed motion.

The accidental degeneration requires the following canonical

transformation :

t^tax-toi', Ji'=i(Ii-3Ii'),

or, solved for the new variables,
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Ii=Ji+J/,

The geometrical significance of w39
w3

'

9
J3 ,

and J3

'

depends on the

position of the co-ordinate system. If we take the (x9 y)- and (x' 9 y')-

planes in the invariable plane of the system (elimination of the lines

of nodes), J3+J3

'
is the total angular momentum and w3 w3'=$.

Since the energy of the perturbed motion can depend only on the

combination J3+J3', we may write

(4)

so that his' J.

In order to calculate the phase
relations in the initial motion we

have to express the perturbation

function (2) in terms of the vari-

ables toi, to/, iti3 , <t lt |/, |3 .

A simple geometrical treatment

gives (fig. 39)FIG. 39.

(5)

X~XQ cos

?/=^ sin

sn
cos

cos

cos i

where XQ and y are the rectangular co-ordinates of the electron in

its orbit (the nodal line is the # -axis) and i is the inclination of the

orbital plane to the (z^)-plane. We have

X =a COS 277^!

y =a sin 27710!,

(6)

For x , y9,
we have

(7)

The perturbation function is now

(8) AH1=

where

II
2
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(9)
= COS 277(111!+W) COS !

-f-sin 27r(itr 1+ii
/

)
sin !

= (1p2
)
cos 477^1^ cos

faj8 does not appear ;
it is a cyclic variable, and Jf3,

the resultant

angular momentum, is constant.

We must now average the perturbation function over the unper-
turbed motion :

(10) XfL 1
= -^ f

1
tol

and determine the constant value which to/ has in the case of the

unperturbed motion from W
This equation takes the form

and is satisfied only ifp0, or if for/ =|(^i w^) has one of the values

or | (0 and are equivalent, as they give the same configuration).

p~Q would lead to J3=0 ;
the two electrons would revolve in the

same circle in opposite directions, and this case must be excluded.

In the case taj'^J the electrons will collide on the nodal line each

period. The only remaining possibility is iti/rr^O, for which the two

electrons pass simultaneously through their ascending nodes. They
then lie at each instant in the same meridian

plane through the axis of angular momentum.
Let us now introduce the quantum conditions.

In the perturbed motion J' remains zero
; f^

is to be put equal to 2A, and for J[3 we have

the values 2A, A, or
; correspondingly, p will

be equal to 1, J, or 0. As already mentioned,

the case y=0 can be rejected ; ^=1 gives a

plane model of the helium atom
; p=% gives

a spatial model, in which the normals to the

electron orbits are inclined to one another at

an angle of 120 (fig. 40 shows this case). FIG. 40.

The plane model is the He-model first proposed by Bohr. 1 The

1 K. Bohr, Phil Mag., vol. xxvi, p. 476, 1913.

19
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two electrons are situated at the extremities of a diameter of the

orbit. The problem reduces to a one-body problem ;
each electron

moves in a field of force with potential

r 4r r

It describes a Kepler motion of energy

so that the energy of the whole atom becomes

(11) W=-2cKA(Z-i)2
.

In the special case of helium (Z=2)

(12) W=-VdM.
This enables the energy to be calculated which is necessary for re-

moval of the first electron, since after its separation the atom must

have the normal state of ionised helium with energy

The energy difference

(13) WtaL
=

gives the work done in separating the first electron, or the ionisation

energy of the neutral helium atom.

To calculate the ionisation potential 13-53 volts has to be sub-

stituted for the energy cRh of the hydrogen atom
;

it follows that

V
ton>

=28-75 volts.

This value is not in agreement with observation, the method of

electron impact giving the value

(14)
V

lon>
=24-6 volts. 1

Although the motion so found satisfies the equations of motion

and the quantum conditions, yet it is not the limiting case of a

libration and is therefore not stable. Applying the result obtained

in 45 for an accidentally degenerate degree of freedom, the motion

with phase relations is only stable if

has a maximum for it. Here Hj has obviously a minimum and

hence the numerator a maximum, whilst the denominator (as we
have shown in 45) is negative.
__c_____________

1 J. Franck, Zeitachr. f. Phyaik, vol. xi, p. 155, 1922.
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This last difficulty alone would not definitely point to the in-

correctness of our model, since it is not known if the ordinary

stability conditions are valid in the quantum theory. The dis-

crepancy between the calculated and observed values of the ionisa-

tion potential shows, however, that the model is not correct.

The spatial model was likewise proposed by Bohr and investigated

in detail by Kramers.1 Here we shall merely calculate the energy to

a first approximation. The energy of the unperturbed motion is

where R is the Rydberg frequency. The first approximation to the

perturbation energy is, by (10),

l=AH1=
^ *

fa V2Jo
,

JoV(l+;>
2
) +(l-

or

a 47rJ VI sin2 i sin2
\jj

a *

where K is the complete elliptic integral of the first kind :

/
o V 1 sin2 i sin2

iff

In our case i=- and K=2-157.2 It follows that
o

W^O-687 - -=l-373cR/*Z.
a

and to this approximation the total energy is given by

W cR/K2Z
2
-l-373Z) :

for Z=2,

(15) W=-5-254cRA.

We cannot expect this first approximation to be very accurate,

since at times the perturbing force attains half the value of the force

due to the nucleus. Kramers has carried out the calculation with

greater accuracy and finds

(16) W=-5-525cRA.

Energy equivalent to l525cRA must therefore be expended to liberate

the electron, and the ionisation potential is 2O63 volts. This is

almost 4 volts too small.

1 H. A. Kramers, Zeitachr. /. Physik, vol. xiii, p. 312, 1923 ; also J. H. van Vleck,

Phys. Rev., vol. xxi, p. 372, 1923.
8 Jahnke-Emde, Funktionentafeln, p. 57, Leipzig and Berlin, 1909.
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In addition, the motion of this molecule is unstable, as may be

shown in the same way as for the plane model.

We find, then, that a systematic application of the theory of per-

turbations does not lead to a satisfactory model of the normal

helium atom. It might be supposed that the failure of our method

was due to the fact that we are dealing here with the normal state,

where several electrons move in equivalent orbits, and that a better

result would be anticipated in the case of the excited states, where

the main characteristics of the spectra are reproduced by the quan-
tum theory in the form used here. We shall now show that this

again is not the case.

49. The Excited Helium Atom

Before proceeding to calculate the excited states of the helium

atom we may mention a few facts about the helium spectrum.
The terms consist of two partial systems which do not combine with

one another. Both are approximately hydrogen-like ; one consists

of singlets, and gives rise to the so-called parhelium spectrum ;

this also includes the normal state. The other component system

yields the orthohelium spectrum, and consists (apart from the simple

s-terms) of very close doublets. The lowest orthohelium term is

(according to its effective quantum number) a 2 1-term. Since the

corresponding state cannot pass into the normal state with emission

of radiation, it has a particularly long life, or, to use Pranck's expres-

sion, it is metastable. The transition from the normal atom to this

metastable state can be brought about by electron impact.
1

We shall now investigate the highly excited orbits of the helium

atom on the basis of the theory of perturbations, by which we mean
the external orbits which can be occupied by an electron when
added to a helium ion. We shall assume that the orbit of the

first electron in the ion is circular. Our problem is to investigate

those types of orbits for which the inner electron, if unperturbed,
would move in a one-quantum circle.

In this connection it is convenient to choose the reciprocal radius

of the outer electron, or some quantity connected with it, as the

1 J. Franck and F. Reiche, Zeitschr. f. Physik, vol. i, p. 154, 1920. According
to measurements of H. Schuler, Natururissenschaflen, vol. xii, p. 579, 1924, the

spectrum of Li+ likewise shows the two corresponding systems of terms (see further

Y. Sugiura, Jour, de Physique, Ser. 6, vol. vi, p. 323, 1925; S. Werner, Nature,
vol. cxv, p. 191; vol. cxvi, f. 574, 1925; vol. cxviii, p. 154, 1926; H. Schuler,
Zeitschr. f. Physik, vol. xxxvii, p. 568, 1926). Moreover, M. Morand (Comptes
Rendus, vol. clxxviii, p. 1897, 1925) has found a new spectrum of neutral Li which
he ascribes to the metastable state of the Li+ core (corresponding to the lowest

level of orthohelium).
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small
"
parameter

" A in calculating the perturbation, for the farther

away the
"
outer

"
electron, the more will the motion of the inner

electron resemble the
"
unperturbed motion.'* We shall take into

account the relativistic variation of mass.

If we denote the polar co-ordinates of the outer electron by r, 6, <f>,

those of the inner electron by r', 0', <', and the conjugated momenta

by Pr JV> the Hamiltonian function of the three-body problem
of the helium type has the form

-
^r* sin2 02m\ r '

r'
2

r'
2 sin2 0'

62Z62Z

e*

VV2
+r'

2
2rr'[cos cos 0'+sin sin 6' cos

(< 0'

+relativity terms.

Let us resolve this function into H and H 1} where H is the

Hamiltonian function of the (non-relativistic) Kepler motion of the

inner electron and H! the remaining part of the above expression.

After calculating the unperturbed motion of the inner electron,

we can find the secular motions of the remaining variables by intro-

ducing a new Hamiltonian function, the mean value of H x taken over

the unperturbed motion of the inner electron. The integration of

the corresponding Hamilton-Jacobi equation is again performed by
the methods of the theory of perturbations.

We can decrease the number of degrees of freedom in the problem

by an application of the theorem of the conservation of angular
momentum (elimination of the nodes).

If the p-jlar axis of the co-ordinate system be taken
jui

the direc-

tion of the resultant angular momentum P=3f3/27r, the angular

separation of the line of nodes from a fixed line in the invariable

plane is a cyclic variable conjugate to P. For the other co-ordinates

let us take the radius vector r of the outer electron and the conju-

gate momentum pr , together with the angular separation t/r
of the

outer electron from the line of nodes and the conjugate momentum

finally we also require the variables w^, wz', J x', J2

'

of the inner

electron, where (as before) w^, J/ correspond to the principal quan-
tum number, w2', Ja

'

to the subsidiary quantum number.
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Since the initial motion of the inner electron exhibits limiting

degeneration, it is convenient to replace the variables tu/, w2', J/,

J2

'

by other variables. We therefore perform the canonical trans-

formation

(2)

/

)
= /

j
/_j

f

cos 2nw 2

'

9

and then omit the bars once again.

We shall now calculate the mean value ofHx in these new variables.

At the same time we shall develop H! in terms of spherical har-

monics, i.e. in powers of 1/r, and powers of and
77.

We shall stop

after terms in 1/r
3

: it appears that this approximation is equivalent

to taking into account terms linear in and
77.

We have now

(3) W =

and

W,=H

+relativity terms,

where aH stands for the hydrogen radius, and evaluation gives for

and A 2 :

We have neglected terms of degree higher than the first in and
77.

The partial differential equation H^const. is not separable.

Since, however, it may be resolved into terms of different orders of

magnitude, it can be /iealt with by the methods of the theory of

perturbations. Let us put
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(6) H^
where

H2
=A 2

~-
+relativity terms.

r3

It is easy to see that the relativistic terms are small compared with

1^2, so that our expansion is legitimate.

We must now introduce into H! the angle and action variables

wl9 w2, J l9 J2 of the unperturbed Kepler motion of the outer electron,

represented by the term U . We shall, however, replace w^ by the

true anomaly ^ which is connected with w l by the equation

J (XCD-i
XQV x7/O \ 2 i I

^ ' * l'"~~" T a 7i ^x-v~ j \a*

(cf. (18), (7'), and (8)-(ll), 22 ; fr here=7r+^ of (18), 22) ;
let us

also put ^2=27rM>2. If we take Ji=h, which is the only case of

interest, we obtain :

ti-

cos(+-f sin

(Z-l)cEA

a is the Sommerfeld fine structure constant a= -r (c/. 33) ; the
he

terms proportional to a
2 contain the relativitjr correction for the inner

and outer electrons.
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In order to solve our problem we have to apply the method dis-

cussed in 46.

Let us therefore try to find a function

(10) S^J^+fY+Brf-AxY,
which introduces variables fo^, $ 19 X, Y, such that H! has no linear

terms in X and Y, and is quite independent of tox . The terms T 1?

T| . . .
;
A 8 , A, . . .

;
B 8 , B, . . . of (10) are omitted, since we do

not require them to this degree of approximation. The transforma-

tion generated by (10) is

The reason why we do not need the function T1 is that J^l has no

term independent of and
77.

Writing for shortness

the method leads to the following equations :

(12) o=W

(14) A.+.A-W
We have neglected the terms in (14) which involve and

77.
It

follows from (13) that

1 A '

991**
*'' W,^ 1

and from this and from (14) by averaging over wa for =?j=0,

(16) &~
Hence we do not need to calculate Aj. The mean values may easily

be found with the help of (8) (cf. 22). We obtain from (9) and (15) :
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whence

l

3 V^AVAIA |,a-J t
t- At

1-. cos , srn

It follows that

and finally

__.
2

4Z2J 1
8

We notice that in averaging over w 1
in ^ 2 and ^2 the dependence

on w 2 has of itself vanished : w 2 is cyclic to this approximation and

J 2 remains an action variable.

The quantum conditions are therefore

t =nh, J 2=| 2=M, J,=jA.

The relativistic terms are of no practical importance (we have

taken them into consideration throughout only to show that they

give rise to no difficulties). If we omit them, the energy W 1=H 1

may be expressed as a Kydberg series formula. It is found that

(20) W-(20) Wl

where

2k

Writing j~k+p, and expanding in powers of -, the result is

fc
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The total energy of the excited helium atom becomes :

(23) W=
(+8)2

with Z=2. This solves our problem.
1

The formula (20) must lead to the spectrum of helium. Since p
can have the values 1,0, 1, it must give three systems of terms.

Their Rydberg corrections would be (for Z=2) :

(24) P=0: 8=S7IS'

p=-l: S=

The following table gives the values of 8 for k=2, 3, 4, and below

them the empirical values of 8 :

Comparison of the two shows clearly that the theoretical values

do not agree with the empirical values.

We may therefore conclude that the systematic application of the

principles of the quantum theory proposed in the second chapter,

namely, the calculation of the motion according to the principles

of classical mechanics, and the selection of the stationary states

from these by determining the action variables as integral multiples

of Planck's constant, gives results in agreement with experiment

only in those cases where the motion of a single electron is con-

sidered
;

it fails even in the treatment of the motion of the two

electrons in the helium atom.

This is not surprising, for the principles used are not really con-

sistent
;
on the one hand the classical differential relation is replaced

by a difference relation, in the shape of the Bohr frequency condition,

1 The general solution pi this problem without restriction to circular orbits

of the inner electron has Seen obtained by M. Born and W. Heisenberg, Zeitschr.

/. Physik, vol. xvi, p. 229, 1923.
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in describing the interaction of an atom with radiation, while on

the other hand the classical differential relations have hitherto been

employed in dealing with the interaction of several electrons. A
complete systematic transformation of the classical mechanics into

a discontinuous mechanics of the atom is the goal towards which

the quantum theory strives.



APPENDIX
I. Two Theorems in the Theory of Numbers

(a) THEOREM. If A is an irrational number, two integers r and r'

differing from zero can be chosen so that (r+r'X) is arbitrarily small.

Proof. On the unit distance OE, imagine the distances OT?l9

OP 2 . . . measured out from 0, their lengths being A [A], 2A

[2A] ...([#] denotes here the greatest integer which is not greater

than x). It follows from the irrationality of A that none of the points

0, P 1? P 2 . . . coincide. Further, since they are all situated on the

unit length they must have a point of concentration P, in the neigh-
bourhood of which there are points Pa and P^ T

f of the series, be-

tween which the distance is smaller than a given quantity 8. This

separation, however, is given by

and is smaller than an integer by r'A. Let this whole number be

r ; then

|T+r'A|<S.

(6) The trajectory in the space of the angle variables w is a

straight line. Without loss of generality we can choose a point on

the trajectory as origin ;
it will then be seen that the direction

cosines of the trajectory are proportional to the frequencies vl9

v% . . . vf . We have then the

THEOREM. If no degeneration is present, then for any given

point in the w-space it is always possible to find an equivalent

point to which the trajectory approaches indefinitely close.

If we confine the trajectory to a single cube, by replacing each

point of the trajectory by the equivalent point in the unit cube, we

can state the theorem in the following form :

THEOREM. The trajectory approaches infinitely close to every

point of the unit cube.

This corresponds ^o the following theorem in the theory of

numbers :

300
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If n irrational numbers a l . . . an and any number b are given, n

integers rl . . . rn can always be found so that

()-6=r1a1+ . +rnan-b

differs from an integer by an arbitrarily small amount.

We can prove the theorem for the trajectory in the following

way :
1

Let be the origin and OE^ OE 2 . . . OE, unit lengths along the

axes of the (w l9 w2 . . . ^-co-ordinate system. Let P
, PI, Pa -

be the points of intersection of the

path, confined to the unit cube, with

the (/ l)-dimensional surfaces bound-

ing the unit cube, which intersect in

OE 1?
OE 2 . . . OE f . Let P and be

identical. Since the direction cosines

are incommensurable none of these

points Pw coincide
; they have at least

one limit point in each of the bounding
surfaces perpendicular to the axes. In

each of these (/ l)-dimensional sur-

faces, there is therefore an infinite number of vectors PmPm+n ,

whose magnitudes are less than a given number S.

We must be quite clear as to the distribution of the points of

intersection on the bounding surfaces, each of which is perpendicular
to one of the axes OEj .... For this purpose, let us consider any
one of the surfaces, say that which is perpendicular to OE/. Of the

series of points of intersection Pj, P 2 . . ., let P^. be the first which

falls in this bounding surface (a is a finite number, since otherwise

we should have degeneration). We may suppose that the vectors

PwPw+n *n fche bounding surface are drawn from f
ff)
and so we arrive

at new points of our series, Qi, Q 2

We have now to show that these do not all lie in one (/ 2)-

dimensional space passing through P^. We shall prove this in-

directly, by first assuming it to be true, and showing that this leads

to a contradiction.

The point P^ has the co-ordinates

FIG. 41.

(*=1 ./-I)

in the bounding surface under consideration. For/ 1 other points

1
Appended to the proof by F. Lettenmeyer (Proc. London Math. Soc. (2), vol.

xxi, p. 306, 1923) of this theorem in the theory of numbers.
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P^, Pa. . . . P9M of the Q-series we have, if P, and the (/I) other

points all lie on a surface of/ 2 dimensions,

L vf

vi_r vi~|""

Vf L
~

Vfj
"

or, after a simple rearrangement,

r v/-i"i- ^!-^
L ^/ J

=0.

Vf __Vf

=0.

Since no integral relation

Tl~+T2-+ . . . +T/_ 1'^+T/-0
Vf Vf Vf

may exist, apart from the case when all the r's are zero, the co-

efficient of -i must vanish :

If we divide the first row by
we obtain

! 1 and proceed to the limit

=0.
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J/

The coefficient of in this expression must vanish. If we divide

"/

first row by x% 1
,
and allow x2 to tend to oo ,

it will be seen that we

must have

Vf Vf

=0.

we may continue this process until we arrive at the relation

r~ i

=0.

1
This contradicts, however, the irrationality of- .

^
If the points of the Q-series do not all lie in one linear (/ 2)-

dimensional space passing through P^, we can pick out/ 1 of the

vectors F^Q, which form an (/ l)-dimensional (/ l)-edge. If

we again attach all the/ 1 vectors to the end point of each of these

vectors, and continue this process, we can cover the whole (/!)-
dimensional surface of the unit cube perpendicular to OE, with a

net of cells, the sides of which are smaller than 8. Evidently the

same is true for those boundaries perpendicular to the other OE,-.

This shows, however, that the points of intersection of the trajec-

tory fill the bounding surfaces completely, and hence the trajectory

approaches infinitely close to every point of the unit cube.

n. Elementary and Complex Integration

Integrals of the form

,
V

where R is a rational function of the given argument, are of frequent
occurrence in our problems. We have to deal with the definite

integral, taken over a libration of x, in calculating the energy as a

function of the J's, and with the indefinite form in calculating, for

example, the angle variables.

The indefinite integration may be performed by elementary
means : if el and ea(ei>e2) denote the roots of the expression under
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the square root sign, this expression takes the form (neglecting the

factor A)

2

on making the substitution

p f
dx

1 2
cos

2

The integral then becomes

sm "" cos -~ cos

which is the integral of a rational function of sin
i/t
and cos

if/,
which

in every case may be reduced to the integral of a rational function of

u by the substitution w=tan |0, or alternatively, if the integrand is

an even function of its argument, by the substitution w=tan
iff.

Let

us consider the following examples :

1. jVa
2 x*dx.

The substitution xa sin
i// gives

(1) a2

j
Icos2 fidtft= |(l+cos 2iff)d2iff==a

2 -H sin !

4J [_2 4

If x 1= - a2 sin-1 -+va2 x2
.

2L a J

The definite integral taken over one libration of x is

(2) $Va2 x2dx=a2
\ cos2 if/diff=7ra

2
.

r

-dx.

By the substitutions #=sin 0, w=tan 0, we obtain

f JL ^0=1
J
1 a sin2 $ J 1 +w2

(l a) 1 +u2
'

The integrand can be resolved into partial fractions

11 1 1

a 1+u* a 1

,

1 a



AI

Hence the indefinite integral is

fl
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- tan"1
uqp tan"1

(
uVl a) for a <: 1,

a a

1
x. i ,

Va 1 luVa 1
- tan"1 w log ,

for aj> 1,

1
x. i ,

Va 1 littVa 1
- tan"1 w-t log r= for a^l,
^ a l^puVal

~~

where, if Vl x2 be positive, the value H == is to be substituted
Vlx*

j?__. ..

case when a<l the integral over a libration of x is :

JT Vl x2 f
2tr cos2

t/r 2?r /
fc di/j= (1 VI a).

1 axz
J o 1 a sin2

/f

for u.

In the

- C *

,,
7T ,-

<Pl
-r*= i

-rY-d0= (1-Vl-a).
j laxz Jo 1 a sin2

iff
a

If it is only necessary to find the values of the definite integral

J=#R(z, V-Ax*+2Rx-C)dx,
the method of complex integration is usually the most convenient.

If x be represented in the complex plane, the function R can be

pictured on a Riemann surface of two sheets with branch points at

the roots e l and e 2(e 1>e2) of the radicand. The path of integration

encloses the line joining the two roots. If it goes from e 2 to e x

(dx>0) in that sheet of the surface where the root is positive, it goes

from 6 X to e2(dx<0) in the sheet with the negative root (see, for

example, fig. 42).

The simplest way of evaluating the integral is to distort the path
of integration and separate it into individual contours, each of which

encloses one pole of the function. With the direction of rotation

indicated in fig. 42, J is then equal to the negative sum of the

residues of the integrand in these poles (the residue is 2ni times the

coefficient of l/(xa) in the Laurent expansion in the neighbourhood
of the pole a

;
we will use the symbol Res for the residue at the

pole a) :

Let us consider a few types of integrals.

Group 1.

J=

The constants A, B, C are supposed positive. If real roots exist

tive
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real axis. The only possible poles of the integrand are at x=0 and

3=00 . We have therefore

J=-

The diagrams of the original and deformed paths of integration in

this instance are clearly shown in fig. 42, in which the pole 05=00 is

represented as if it were at a finite distance. Outside the range e ly

e2 on the real axis, the root is purely imaginary, and has the sign

+i from e l to oo , and i from oo to e 2 .

FIG. 42.

We calculate Res> as the Res of the integrand of the integral

arising from the substitution y=l/x ; since in the representation of

the x-surface on the y-surface, the direction in which the path of

integration is traversed remains unaltered, we have

Resoo [x*(V-Ax*+2Bx-Cy]

= -Res
|

The root has sign i from l/e2 to y=oo , and +i from oo to l/er

(a) a=-l, =+1:

Taking account of the above determination of sign, the expansions
of the integrand necessary for the calculation of the residues at o?=0

and y=0 are

V5
and

y

respectively. It follows therefore that

Resao
= 27T =

VA
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Ji=
(j>-
V-

(6)

For aj=oo the integral is regular. For 35=0, the expansion of the

integrand is

I/ 1 B~

that is

T>

=
CVC

and

xy.2

(6) B C\- B

CVC

(c) a=-

The integral is regular at #=0. The expansion of the correspond-

ing integrand for y=l/x=0 is

1 T 1 B 1 / B2 C \ 1
-o =H =VH .(3 = n)v2+ . ,

y*LiVA. iAVA 2t\ A2VA AVA/ J

that is

B2 C

consequently

T
*~~

V-Ax*+2Ex-CJ I B

(7)

-
VA\A2 A/

Group 2 :

(

r Vla;2

a) CD -r ~dx. We can distinguish two'possible cases.
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1. a<l. The poles of the integrand given by the roots of 1 ax2

lie outside the path of integration surrounding the zero points 1

of the roots (branch points of the integrand) ; they lie on the real

axis for 0<a<l, and on the imaginary axis for a<0. The integral

is composed of the residues at

x=. I and #=oo .V a

The root is positive and imaginary on the positive real axis, and

negative and imaginary on the negative real axis
;

it is positive and

real on the negative imaginary axis, and negative and real on the

positive imaginary axis. Taking these signs into account, the expan-

sion of the integrand at its poles . commences with. /
\l &

The residues in both poles are the same, viz. :

77

The contribution of the contour about x=00 works out to be

Since the root is positive and imaginary for positive real values in

the neighbourhood of zero, the expansion of the function starts with

ay
277

This gives for the required contribution and finally
a

277., ,- v

2. a>l. The poles ./ -fall in the interval ( 1, +1) of the real

axis and lie therefore inside the path of integration. The integrand
does not remain integrable at them, so that this case must be

excluded.
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(&)

with /(s)=(A-*)(s-B), F(aO=/(aO-ACte.

Let A, B, C be positive and real, A>B, and C chosen so that F(x) can

assume positive values. The roots a, j8 of F(x) are then real and lie

between A and B.

The integrand possesses simple branch points at a and ]8 : it

becomes infinite there, but remains integrable. Simple poles lie

FIG. 43.

at A and B. Again, a circulation about x=00 will contribute to the

integral. The signs of the roots are given in fig. 43. In the neigh-

bourhood of A the expansion of the integrand commences with

*Vc
X

in the vicinity of B with

The residues axe therefore

"
ResA=--,

Using the substitution yl/xwQ find

__ p 1-ABy2

OB* es ~__ p 1-ABy2 _1_ "I

OB* es

o|_~ (A2/
_

1)(1
_
By)

'

v^-l)(l-By)-ACtJ'

where the root for positive real values of y in the neighbourhood of

zero has the sign +i. The expansion commences therefore with

, and
y

Hence

(9)

f(x)V$(x)
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In conclusion we will consider one or two other integrals of the

form

V-Ax*+2Bz-C +Xf(x))dx,

where \f(x) represents a correction term. Under these circumstances

the positions of the branch points are not essentially different from

those in the integrals of group 1, and the previous figures and deter-

minations of sign and paths of integration remain the same.

In order to carry out the integration we have to expand the

integrand in powers of the factor A of the correction term, and in this

connection it should be noticed that the expansion must be valid

for the whole path of integration, so that in this case the path of

integration must first of all be suitably deformed. Should new
branch points be added on account of the correction term, they must

be avoided by the deformed path of integration.

The integration may then be carried out by the same process as

before, since for the individual terms only the branch points e l and

e 2 ,
and the poles ce 0, #=oo occur.

(a) Jt

For sufficiently small values of D the expansion for D=0 holds for

the whole path of integration. Let us restrict ourselves to terms of

the first order in D :

Hence
D

or

B 1 BD

(6) J7
=

=(L /-A+2?- 2.+Dx dx.
JV * *
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The expansion of the square root in powers of D yields

Confining ourselves to terms of the first order in D, this leads to

or

/ E ,-\

(11) J7
-5
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Theory of numbers, theorems,
300.

Titanium atom, 196, 200.

Top (free symmetrical), 26 et seq. ;
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