CRESCENT-SHAPED MINIMAL SURFACES

By Jesse Douglas

Department of Mathematics, Massachusetts Institute of Technology
Communicated December 8, 1932

1. The Problem of Plateau for Crescent-Shaped Minimal Surfaces.The problem of Plateau is to prove the existence of a minimal surface with a given boundary. A minimal surface is one definable by the Weierstrass formulas

$$
\begin{equation*}
x_{i}=\Re F_{i}(w), \sum_{i=1}^{n}{F_{i}^{\prime 2}}^{\prime 2}(w)=0 \quad(i=1,2, \ldots, n) \tag{1.1}
\end{equation*}
$$

The author has given a solution of the Plateau problem for two contours, ${ }^{1}$ by methods which are a natural generalization of those previously used by him to give the first complete solution of the Plateau problem for a single contour. ${ }^{2}$

It was assumed, in the treatment of the two-contour case, that the contours did not intersect one another. If, on the contrary, the contours have a single point in common, then we may obtain a minimal surface of the topological type of the region between two internally tangent circles; indeed, the minimal surface will be representable conformally on this region. Such a region we call a crescent, and the minimal surface representable conformally upon it crescent-shaped.

The purpose of the present note is to adapt the methods of the previous papers of the writer, cited above, to solve the Plateau problem for crescentshaped minimal surfaces: given two Jordan curves Γ_{1} and Γ_{2}, with one and only one point P in common, to prove-under appropriate sufficient conditions-the existence of a crescent-shaped minimal surface bounded by Γ_{1} and Γ_{2}.

That some sort of restriction on the contours is necessary is evident from considering, for instance, two externally tangent circles in the same plane; obviously they determine no proper crescent-shaped minimal surface, giving rather the sum of the two circular discs. The sufficient condition established in this paper is that if $m\left(\Gamma_{1}, \Gamma_{2}\right)$ denote the minimum of crescent-shaped areas bounded by Γ_{1} and Γ_{2}, and $m\left(\Gamma_{1}\right), m\left(\Gamma_{2}\right)$ the minimum of simply connected areas bounded by Γ_{1}, Γ_{2} separately, then

$$
\begin{equation*}
m\left(\Gamma_{1}, \Gamma_{2}\right)<m\left(\Gamma_{1}\right)+m\left(\Gamma_{2}\right) \tag{1.2}
\end{equation*}
$$

(the relation \leqq holds in any case). We also suppose that all three quantities m are finite, an assumption certainly verified if the contours are rectifiable.
2. The Functional $A\left(g_{1}, g_{2}\right)$.-If the crescent is subjected to an in-
version with the point of tangency of its bounding circles as pole, we obtain a strip bounded by two parallel straight lines; without loss of generality, we can assume this strip to be that bounded by the lines

$$
\left(L_{1}\right) \quad z=\text { real, and }\left(L_{2}\right) \quad z=\text { real }+\pi i,
$$

in the complex plane of z. The inversion, being a conformal transformation, will convert a conformal representation of the required minimal surface on the crescent into a conformal representation on the strip, and vice versa.

The next step is to adapt to crescent-shaped surfaces the functional employed in the author's treatment of the one- and two-contour cases of the problem of Plateau.

Let

$$
\begin{equation*}
x_{i}=g_{1 i}(z), \quad x_{i}=g_{2 i}(z) \quad(i=1,2, \ldots, n) \tag{2.1}
\end{equation*}
$$

denote arbitrary parametric representations of Γ_{1} and Γ_{2}, where z describes L_{1} and L_{2}, respectively, the common point P of the two contours being always required to correspond to the point at infinity on each line. If

$$
x_{i}=\Re F_{i}(w) \quad(w=u+i v)
$$

denote the harmonic functions determined in the parallel strip S by the boundary values (2.1), these functions define a crescent-shaped harmonic surface bounded by Γ_{1}, Γ_{2}. Let the first fundamental form of this surface be

$$
d s^{2}=E d u^{2}+2 F d u d v+G d v^{2}
$$

then the fundamental functional is

$$
\begin{equation*}
A\left(g_{1}, g_{2}\right)=\iint_{s} \frac{1}{2}(E+G) d u d v \tag{2.2}
\end{equation*}
$$

This integral must be defined accurately as a limit; we construct the strip S_{ϵ} by removing a band of width ϵ from each edge of S, and define

$$
A_{\epsilon}\left(g_{1}, g_{2}\right)=\iint_{s_{e}} \frac{1}{2}(E+G) d u d v
$$

then

$$
A\left(g_{1}, g_{2}\right)=\lim _{\epsilon \rightarrow 0} A_{e}\left(g_{1}, g_{2}\right) .
$$

It is not hard to prove that the integrand of A_{ϵ} stays uniformly bounded for all g_{1}, g_{2} if ϵ is fixed >0.

It is desirable to have a direct expression for A in terms of g_{1} and g_{2}; this can be obtained by means of formulas established in Two Contours (§ 2). Let $G(x, y ; u, v)$ denote the Green's function for the region S; then G can always be given the form

$$
\begin{equation*}
G(x, y ; u, v)=\Re \log \frac{S(z, w)}{S_{1}\left(z, w_{0}\right)} \tag{2.3}
\end{equation*}
$$

where

$$
z=x+i y, \quad w=u+i v, \quad w_{0}=u-i v .
$$

If

$$
\begin{equation*}
Z(z, w)=\frac{\partial}{\partial z} \log S(z, w) \tag{2.4}
\end{equation*}
$$

and

$$
\begin{equation*}
P(z, w)=\frac{\partial}{\partial w} Z(z, w)=\frac{\partial^{2}}{\partial z \partial w} \log S(z, w), \tag{2.5}
\end{equation*}
$$

then, with the help of Green's theorem, the explicit form for A is:

$$
\begin{equation*}
A\left(g_{1}, g_{2}\right)=\frac{1}{4 \pi} \sum_{\alpha \beta} \int_{L_{\alpha}} \mathcal{S}_{L_{\beta}} \sum_{i=1}^{n}\left[g_{\alpha i}(z)-g_{\beta i}(\zeta)\right]^{2} P(z, \zeta) d z d \zeta \tag{2.6}
\end{equation*}
$$

Here and elsewhere in this paper, integration on L_{1} is to the right, on L_{2} to the left.

It is to be observed that, although complex elements enter into this formula, the value of $A\left(g_{1}, g_{2}\right)$, according to (2.2), is always positive real.

The next step is to obtain explicitly the Green's function for the strip S. We state the result immediately:

$$
\begin{equation*}
G(x, y ; u, v)=\Re \log \frac{\sinh \frac{1}{2}(z-w)}{\sinh \frac{1}{2}\left(z-w_{0}\right)} . \tag{2.7}
\end{equation*}
$$

It will be an easy exercise for the reader to verify that this has all the requisite properties: regular harmonic in the strip S except at the one point w where there is a logarithmic singularity, reducing to zero on L_{1} and L_{2}.

By comparison with (2.3),

$$
\begin{equation*}
S(z, w)=\sinh \frac{1}{2}(z-w), \tag{2.8}
\end{equation*}
$$

and therefore, by (2.4) and (2.5),

$$
\begin{gather*}
Z(z, w)=\frac{1}{2} \operatorname{coth} \frac{1}{2}(z-w), \tag{2.9}\\
P(z, w)=\frac{1}{4 \sinh ^{2} \frac{1}{2}(z-w)} . \tag{2.10}
\end{gather*}
$$

Hence, by substitution in (2.6),

$$
\begin{equation*}
A\left(g_{1}, g_{2}\right)=\frac{1}{4 \pi} \sum_{\alpha \beta} \int_{L_{\alpha}} \int_{L_{\beta}} \sum_{i=1}^{n}\left[g_{\alpha i}(z)-g_{\beta i}(\zeta)\right]^{2} \frac{d z d \zeta}{4 \sinh ^{2} \frac{1}{2}(z-\zeta)} \tag{2.11}
\end{equation*}
$$

The integral is improper, on account of the singularity of the integrand for $z=\zeta$, but always exists either as a finite positive quantity or $+\infty$; its value is to be found by integrating first with $|z-\zeta| \geqq \epsilon$, furnishing $\bar{A}_{\epsilon}\left(g_{1}, g_{2}\right)$, and then defining

$$
A\left(g_{1}, g_{2}\right)=\lim _{\epsilon \rightarrow 0} \bar{A}_{\epsilon}\left(g_{1}, g_{2}\right)
$$

By a formula of Two Contours [2.13, loc. cit.] and (2.9) above, the harmonic surface determined by g_{1}, g_{2} is

$$
x_{i}=\Re F_{i}(w)
$$

with

$$
\begin{equation*}
F_{i}(w)=\frac{1}{2 \pi i} \sum_{\alpha} \int_{L_{\alpha}} g_{\alpha i}(z) \operatorname{coth} \frac{1}{2}(z-w) d z+c_{i} \tag{2.12}
\end{equation*}
$$

where c_{\imath} is a constant whose exact value is unnecessary.
We shall need too the formula, easily derived from the last one [cf. Two Contours, 2.16]:

$$
\begin{align*}
\sum_{i=1}^{n}{F_{i}^{\prime}}^{\prime 2}(w)=\frac{1}{2 \pi^{2}} \sum_{\alpha \beta} \int_{L_{\alpha}} & \int_{L_{\beta}} \sum_{i=1}^{n}\left[g_{\alpha i}(z)-g_{\beta i}(\zeta)\right]^{2} \\
& \frac{d z d \zeta}{16 \sinh ^{2} \frac{1}{2}(z-w) \sinh ^{2} \frac{1}{2}(\zeta-w)} \tag{2.13}
\end{align*}
$$

3. Attainment of the Minimum of $A\left(g_{1}, g_{2}\right)$.-Each of the sets [$\left.g_{1}\right]$, [g_{2}] of parametric representations of Γ_{1}, Γ_{2}, respectively, is compact. Therefore the composite elements $\left[g_{1}, g_{2}\right.$] form a compact set.

The integrand of A_{ϵ} in (2.2^{\prime}) is uniformly bounded, and, under this circumstance, a theorem of Lebesgue permits us to pass to the limit under the integral sign. This is to say that A_{ϵ} is a continuous functional of $g_{1}, g_{2}:$ if $\bar{g}_{1} \longrightarrow g_{1}, \bar{g}_{2} \longrightarrow g_{2}$, then $A_{\epsilon}\left(\bar{g}_{1}, \bar{g}_{2}\right) \longrightarrow A_{\epsilon}\left(g_{1}, g_{2}\right)$.

The integrand $\frac{1}{2}(E+G)$ being positive, the approach of A_{e} to A when $\epsilon \longrightarrow 0$ is monotonic increasing; under this condition, the following lemma ${ }^{3}$ enables us to affirm the lower semi-continuity of $A\left(g_{1}, g_{2}\right)$: if a functional A on a Fréchet L-set can be expressed as the limit of a continuous functional A_{ϵ} which tends to A in increasing, then A is lower semi-continuous.

From the compactness of the range $\left[g_{1}, g_{2}\right]$ and the lower semi-continuity of $A\left(g_{1}, g_{2}\right)$, it follows, as in the author's previous papers, that the minimum of $A\left(g_{1}, g_{2}\right)$ is attained for a certain $\left(g_{1}{ }^{*}, g_{2}{ }^{*}\right)$; the proof is essentially the same as the Weierstrass proof of the attainment of the minimum of a (lower semi-) continuous function of a real variable on a closed interval, depending on the Bolzano-Weierstrass theorem expressing compactness: every infinite sequence of values of the argument (g_{1}, g_{2})
contains a convergent sub-sequence, and on the definition of lower semicontinuity:

$$
A\left(g_{1}, g_{2}\right) \leqq \lim \inf A\left(\bar{g}_{1}, \bar{g}_{2}\right) \text { when } \bar{g}_{1} \longrightarrow g_{1}, \bar{g}_{2} \longrightarrow g_{2}
$$

4. Exclusion of Improper Representations.-We have next to show that the minimizing representation ($g_{1}{ }^{*}, g_{2}{ }^{*}$) is proper.

In the author's previous papers, the improper representations of a contour Γ have been classified as follows:
(a) A partial arc of Γ (Γ_{1} or Γ_{2}) corresponds to a single point of L (L_{1} or L_{2}).
(b) A partial segment of L corresponds to a single point of Γ.
(c) All of Γ corresponds to a single point of L and all of L to a single point of Γ.

Type (a) is excluded by the fact that then:

$$
A\left(g_{1}, g_{2}\right)=+\infty
$$

for the integrand of (2.11) becomes infinite to the second order in the vicinity of the point of discontinuity, being asymptotically

$$
\frac{l^{2}}{(z-\zeta)^{2}}
$$

where l is the length of the chord of the arc of discontinuity of $\Gamma . l>0$ because this arc is only a partial arc of Γ, and, by hypothesis, Γ has no double points.

Type (b) can be excluded by the mode of reasoning used in One Contour, § 18, based on a certain theorem of Fatou and Schwarzian symmetryafter it has been proved, as will be done in the next section, that

$$
\sum_{i=1}^{n} F_{i}^{\prime 2}(w)=0
$$

It is in order to exclude type (c) that we need the condition (4.6) below, restricting the two contours.

Besides the functional $A\left(g_{1}, g_{2}\right)$, let us consider

$$
\begin{aligned}
& A\left(g_{1}\right)=\frac{1}{4 \pi} \int_{L_{1}} \int_{L_{1}} \sum_{i=1}^{n}\left[g_{1 i}(z)-g_{1 i}(\zeta)\right]^{2} \frac{d z d \zeta}{(z-\zeta)^{2}} \\
& A\left(g_{2}\right)=\frac{1}{4 \pi} \int_{L_{2}} \int_{L_{2}} \sum_{i=1}^{n}\left[g_{2 i}(z)-g_{2 i}(\zeta)\right]^{2} \frac{d z d \zeta}{(z-\zeta)^{2}}
\end{aligned}
$$

these are the functionals appropriate to the construction of a simply connected minimal surface bounded by Γ_{1} or Γ_{2}, respectively. Define the three positive numbers

$$
\begin{equation*}
m\left(\Gamma_{1}, \Gamma_{2}\right)=\min A\left(g_{1}, g_{2}\right) \tag{4.1}
\end{equation*}
$$

$$
m\left(\Gamma_{1}\right)=\min A\left(g_{1}\right), \quad m\left(\Gamma_{2}\right)=\min A\left(g_{2}\right),
$$

the minima being relative to all possible parametric representations of Γ_{1}, Γ_{2}. Concretely, $m\left(\Gamma_{1}, \Gamma_{2}\right)$ is the lower bound of the areas of all crescentshaped surfaces bounded by Γ_{1}, Γ_{2}, and $m\left(\Gamma_{1}\right), m(\Gamma)$ the lower bounds of the areas of all simply connected surfaces bounded, respectively, by $\Gamma_{1}, \Gamma_{\mathbf{2}}$; but we shall be concerned only with the definitions (4.1).

As stated in § 1, we assume that all three quantities (4.1) are finite.
If g_{1} degenerates into a point p_{1} on Γ_{1}, and g_{2} is not degenerate, we can prove by reasoning similar to that of Two Contours, p. 342 (which we shall not repeat here), that

$$
A\left(g_{1}, g_{2}\right)>m\left(\Gamma_{1}\right)+A\left(g_{2}\right)
$$

whence

$$
\begin{equation*}
A\left(g_{1}, g_{2}\right)>m\left(\Gamma_{1}\right)+m\left(\Gamma_{2}\right) \tag{4.2}
\end{equation*}
$$

If both g_{1} and g_{2} are degenerate, in points p_{1} and p_{2}, respectively, not both coincident with the unique point P common to Γ_{1} and Γ_{2}, then

$$
\begin{equation*}
A\left(g_{1}, g_{2}\right)=+\infty . \tag{4.3}
\end{equation*}
$$

If p_{1} and p_{2} are both coincident with the point P, then

$$
\begin{equation*}
A\left(g_{1}, g_{2}\right)=m\left(\Gamma_{1}\right)+m\left(\Gamma_{2}\right) \tag{4.4}
\end{equation*}
$$

This formula shows that always

$$
\begin{equation*}
m\left(\Gamma_{1}, \Gamma_{2}\right) \leqq m\left(\Gamma_{1}\right)+m\left(\Gamma_{2}\right) . \tag{4.5}
\end{equation*}
$$

Let us now introduce the assumption that we have the strict inequality:

$$
\begin{equation*}
m\left(\Gamma_{1}, \Gamma_{2}\right)<m\left(\Gamma_{1}\right)+m\left(\Gamma_{2}\right) \tag{4.6}
\end{equation*}
$$

then it will be seen by the formulas $(4.2,3,4)$ that the possibility of a minimizing representation of type (c) is excluded.
5. Vanishing of the First Variation of $A\left(g_{1}, g_{2}\right)$.-The functional $A\left(g_{1}, g_{2}\right)$ attaining its minimum for ($g_{1}{ }^{*}, g_{2}{ }^{*}$), its first variation must then vanisha condition which will lead to

$$
\begin{equation*}
\sum_{i=1}^{n}{F_{i}^{\prime 2}}^{2}(w)=0, \tag{5.1}
\end{equation*}
$$

proving that the harmonic surface determined by ($g_{1}{ }^{*}, g_{2}{ }^{*}$) according to the formulas (2.12) is minimal.
We employ the following variation of the independent variables:

$$
\begin{equation*}
z^{\prime}=z+\frac{1}{2} \lambda \operatorname{coth} \frac{1}{2}(z-w), \tag{5.2}
\end{equation*}
$$

and the same in ζ, on L_{1} and L_{2}, with w an arbitrary point of the strip S, and λ a real parameter. Although the only admissible variations are
those which convert L_{1} and L_{2} into themselves in a monotonic continuous way, with preservation of the point at infinity, and the transformation (5.2) does not do this; still this variation is allowable, for $|\lambda|$ sufficiently small, as a combination of admissible variations [cf. Two Contours, pp. 332-334].

It is readily calculated that by (5.2) and the analogue in ζ, we have

$$
\begin{align*}
\frac{d z^{\prime} d \zeta^{\prime}}{4 \sinh ^{2} \frac{1}{2}\left(z^{\prime}-\zeta^{\prime}\right)} & =\frac{d z d \zeta}{4 \sinh ^{2} \frac{1}{2}(z-\zeta)} \\
& -\lambda \frac{d z d \zeta}{16 \sinh ^{2} \frac{1}{2}(z-w) \sinh ^{2} \frac{1}{2}(\zeta-w)}+\ldots, \tag{5.3}
\end{align*}
$$

the dots denoting terms in higher powers of λ.
The principal feature of the calculation is the use of the identity

$$
\begin{align*}
& \sinh ^{2} \frac{1}{2}(z-w)+\sinh ^{2} \frac{1}{2}(\zeta-w)-2 \sinh \frac{1}{2}(z-w) \\
& \sinh \frac{1}{2}(\zeta-w) \cosh \frac{1}{2}(z-\zeta)=\sinh ^{2} \frac{1}{2}(z-\zeta), \tag{5.4}
\end{align*}
$$

which can be obtained by squaring the subtraction formula for sinh:
$\sinh \frac{1}{2}(z-w) \cosh \frac{1}{2}(\zeta-w)-\cosh \frac{1}{2}(z-w) \sinh \frac{1}{2}(\zeta-w)=\sinh \frac{1}{2}$ $(z-\zeta)$, and making certain simple transformations, including the subtraction formula for cosh:
$\cosh \frac{1}{2}(z-w) \cosh \frac{1}{2}(\zeta-w)-\sinh \frac{1}{2}(z-w) \sinh \frac{1}{2}(\zeta-w)=\cosh \frac{1}{2}(z-\zeta)$.
Multiplying (5.3) by

$$
\sum_{i=1}^{n}\left[g_{\alpha i}\left(z^{\prime}\right)-' g_{\beta i}\left(\zeta^{\prime}\right)\right]^{2}=\sum_{s=1}^{n}\left[g_{\alpha i}(z)-g_{\beta i}(\xi)\right]^{2},
$$

and integrating, we get

$$
\begin{array}{r}
A\left({ }^{\prime} g_{1}, g_{2}\right)=A\left(g_{1}, g_{2}\right)-\lambda \cdot \frac{1}{4 \pi} \sum_{\alpha \beta} \int_{L_{\alpha}} \int_{L_{\beta}} \sum_{i=1}^{n}\left[g_{\alpha i}(z)-g_{\beta i}(\zeta)\right]^{2} \\
\frac{d z d \zeta}{16 \sinh ^{2} \frac{1}{2}(z-w) \sinh ^{2} \frac{1}{2}(\zeta-w)}+\ldots \tag{5.5}
\end{array}
$$

If $\left(g_{1}, g_{2}\right)=\left(g_{1}{ }^{*}, g_{2}{ }^{*}\right)$, this function of λ has a minimum for $\lambda=0$, and therefore the coefficient of the first power of λ vanishes:

$$
\begin{align*}
& \sum_{\alpha \beta} \int_{L_{\alpha}} \int_{L_{\beta}} \sum_{i=1}^{n}\left[g_{\alpha i}(z)-g_{\beta i}(\zeta)\right]^{2} \frac{d z d \zeta}{16 \sinh ^{2} \frac{1}{2}(z-w) \sinh ^{2} \frac{1}{2}(\zeta-w)} \\
&=0 . \tag{5.6}
\end{align*}
$$

But, according to the formula (2.13), this is the same as

$$
\begin{equation*}
\sum_{i=1}^{n}{F_{i}^{\prime 2}}^{\prime 2}(w)=0 \tag{5.7}
\end{equation*}
$$

6. Conformal Mapping.-Analogous to the author's previous work, the preceding theory gives for $n=2$ the conformal mapping of any crescentshaped plane region-i.e., one bounded by two Jordan curves with a unique point in common, one curve enclosing the other-on a circular crescent, including the continuous attachment of the conformal map to a topological correspondence between the boundaries.

1 "The Problem of Plateau for Two Contours," Jour. Math. Phys., 10, 315-359 (1931). This paper will be cited as "Two Contours."

2 "Solution of the Problem of Plateau," Trans. Amer. Math. Soc., 33, 263-321 (1931). This paper will be cited as "One Contour."
${ }^{3}$ One Contour, p. 282.

GROUPS GENERATED BY TWO OPERA TORS OF ORDER 3 WHOSE COMMUTATOR IS OF ORDER 2

By G. A. Miller
Department of Mathematics, University of Illinois

Communicated December 12, 1932
Let s and t represent two operators of order 3 such that their commutator $s^{2} t^{2} s t$ is of order 2. It is known that then each of the four commutators whose elements are powers of s and t

$$
s^{2} t^{2} s t \quad s^{2} t s t^{2} \quad s t^{2} s^{2} t \quad s t s^{2} t^{2}
$$

is of order 2 and hence there result the following identities

$$
s^{2} t^{2} s t=t^{2} s^{2} t s, s^{2} t s t^{2}=t s^{2} t^{2} s, s t^{2} s^{2} t=t^{2} s t s^{2}, s t s^{2} t^{2}=t s t^{2} s^{2}
$$

Since $t^{2} s^{2} t s . s^{2} t s t^{2}=t^{2} s^{2} t^{2} s t^{2}$ and $t^{2} s^{2} t^{2} s t^{2} . t^{2} s^{2} t^{2} s t^{2}=t^{2} s^{2} t^{2} s t s^{2} t^{2} s t^{2}=t^{2} s^{2} t^{2}$. $t s t^{2} s^{2} . s t^{2}=1$, it follows that the first and the second of these four commutators are commutative. Similarly it follows from the identities $s^{2} t^{2} s t$. $t^{2} s t s^{2}=s^{2} t^{2} s^{2} t s^{2}$ and $s^{2} t^{2} s^{2} t s^{2} . s^{2} t^{2} s^{2} t s^{2}=s^{2} t^{2} s^{2} t s t^{2} s^{2} t s^{2}=s^{2} t^{2} s^{2} . s t s^{2} t^{2} . t s^{2}=1$, that the first of these four commutators is also commutative with the third.

It seems desirable to employ a different method to prove that the first and fourth of these commutators are commutative but a similar method will be employed to prove that the fourth of these commutators is also commutative with the second and third, as follows: From the identities $s^{2} t s t^{2} . t s t^{2} s^{2}=s^{2} t s^{2} t^{2} s^{2}$, and $s^{2} t s^{2} t^{2} s^{2} . s^{2} t s^{2} t^{2} s^{2}=s^{2} t s^{2} t^{2} s t s^{2} t^{2} s^{2}=s^{2} t . t^{2} s^{2} t s$. $s^{2} t^{2} s^{2}=1$, it results that the second and the fourth are commutative. Similarly, the fact that the third and the fourth are commutative results from the identities $t^{2} s t s^{2} . s t s^{2} t^{2}=t^{2} s t^{2} s^{2} t^{2}$ and $t^{2} s t^{2} s^{2} t^{2} . t^{2} s t^{2} s^{2} t^{2}=t^{2} s t^{2} s^{2} t s t^{2} s^{2} t^{2}$ $=t^{2} s . s^{2} t^{2} s t . t^{2} s^{2} t^{2}=1$.

It has not yet been proved that the first and last of these four commu-

