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CRESCENT-SHAPED MINIMAL SURFACES

By Jesse DoucLas
DEPARTMENT OF MATHEMATICS, MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Communicated December 8, 1932

1. The Problem of Plateau for Crescent-Shaped Minimal Surfaces.—
The problem of Plateau is to prove the existence of a minimal surface
with a given boundary. A minimal surface is one definable by the Weier-
strass formulas

5= REW), L R @ =0 G=12...,7. (L)

The author has given a solution of the Plateau problem for two con-
tours,! by methods which are a natural generalization of those previously
used by him to give the first complete solution of the Plateau problem for
a single contour.?

It was assumed, in the treatment of the two-contour case, that the con-
tours did not .intersect one another. If, on the contrary, the contours
have a single point in common, then we may obtain a minimal surface of
the topological type of the region between two internally tangent circles;
indeed, the minimal surface will be representable conformally on this
region. Such a region we call a crescent, and the minimal surface repre-
sentable conformally upon it crescent-shaped.

The purpose of the present note is to adapt the methods of the previous
papers of the writer, cited above, to solve the Plateau problem for crescent-
shaped minimal surfaces: given two Jordan curves T, and Ts, with one
and only one point P in common, to prove—under appropriate sufficient
conditions—the existence of a crescent-shaped minimal surface bounded by
Pl and l‘z. .

That some sort of restriction on the contours is necessary is evident
from considering, for instance, two externally tangent circles in the same
plane; obviously they determine no proper crescent-shaped minimal
surface, giving rather the sum of the two circular discs. The sufficient
condition established in this paper is that if m(T,, T';) denote the minimum
of crescent-shaped areas bounded by T and T, and m(Ty), m(T'2) the
minimum of simply connected areas bounded by T, I'; separately, then

m(Ty, To) < m(T1) + m(Ty) (1.2)
(the relation < holds in any case). We also suppose that all three quan-

tities m are finife, an assumption certainly verified if the contours are
rectifiable. )

2. The Functional A(g, g.).—If the crescent is subjected to an in-
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version with the point of tangency of its bounding circles as pole, we
obtain a strip bounded by two parallel straight lines; without loss of
generality, we can assume this strip to be that bounded by the lines

(L)) 2z = real, and (L;) 2z = real + =i,

in the complex plane of z. The inversion, being a conformal transforma-
tion, will convert a conformal representation of the required minimal
surface on the crescent into a conformal representation on the strip, and
vice versa.

The next step is to adapt to crescent-shaped surfaces the functional
employed in the author’s treatment of the one- and two-contour cases of
the problem of Plateau.

Let

%= gu@), %=gu@® (G=12..,n) @.1)

denote arbitrary parametric representations of I'; and I';, where z de-
scribes L; and L,, respectively, the common point P of the two contours
being always required to correspond to the point at infinity on each line.
I -

X; = ERF,(w) (w =y 4+ 17))
denote the harmonic functions determined in the parallel strip S by the
boundary values (2.1), these functions define a crescent-shaped harmonic

surface bounded by I';, T';. Let the first fundamental form of this surface
be

ds? = Edu? + 2Fdudv + Gdv?,

then the fundamental functional is

Alg, 2) = S S 3 (E + G)dudv. (2.2)

This integral must be defined accurately as a limit; we construct the
strip S, by removing a band of width e from each edge of .S, and define

Alg, &) = S, § (E + G)dudy, (2.2
then
A(gh g2) = lim Ac(gh g2)-
e—> 0

It is not hard to prove that the integrand of A, stays uniformly bounded
for all gy, g if € is fixed > 0.

It is desirable to have a direct expression for 4 in terms of g; and g;
this can be obtained by means of formulas established in Two Contours
(§ 2). Let G(x, ¥; u, v) denote the Green’s function for the region S;
then G can always be given the form
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: S(z, w
Glx, y; u,v) = R log ﬁ (2.3)
where
s=x4+1y, w=u4+1w, w=u—1i.
If
Z(z, w) = % log S(z, w), (2.4)
and
Le) o?
Pz, w) = > Z(z, w) = 20w log S(z, w), (2.5)

then, with the help of Green’s theorem, the explicit form for 4 is:

AGug) = 32 & oy Sy 3 [8al®) — uOF P, Ds s, (26)

Here and elsewhere in this paper, integration on L, is to the right, on L,
to the left. :
It is to be observed that, although complex elements enter into this
formula, the value of 4 (g, g2), according to (2.2), is always positive real.
The next step is to obtain explicitly the Green'’s function for the strip S.
We state the result immediately:

sinh § (z — w)

sinh 1 (z — wg) @7

G(x, y; u,v) = R log

It will be an easy exercise for the reader to verify that this has all the

requisite properties: regular harmonic in the strip S except at the one

point w where there is a logarithmic singularity, reducing to zero on

L]_ and Lz. )
By comparison with (2.3),

S(z, w) = sinh } (z — w), (2.8)

and therefore, by (2.4) and (2.5),
Z(z,w) = $coth} (z — w), (2.9)
Pz, w) = 1 (2.10)

4sinh?} (z — w)

Hence, by substitution in (2.6),

: dadg
Alg, &) = 4—1W % Sio Jip 2 [8ile) — gm(s“)l"m(i_n (2.11)
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The integral is improper, on account of the singularity of the integrand
for z = {, but always exists either as a finite positive quantity or + «;
its value is to be found by integrating first with Iz - §'| = ¢, furnishing
A.(g1, g2), and then defining

A(g, g2) = lim A.(g, g).
e—>0 -

By a formula of Two Contours [2.13, loc. cit.] and (2.9) above, the
harmonic surface determined by g, g is

x; = RF;(w)
with

Fi@) = 573 % i 8a(e) coth } (e — wds + 6 (212)

where ¢, is a constant whose exact value is unnecessary.
We shall need too the formula, easily derived from the last one [cf.
Two Contours, 2.16]:

TE @ =5 T S iy 3 8l — P
dadt
16 sinh? } (z — w)sinh? § ¢ — w)’

3. Attainment of the Minimum of A(gi, g:).—Each of the sets [gi],
[g2] of parametric representations of Ty, I's, respectively, is compact. There-
fore the composite elements [gi, g.] form a compact set.

The integrand of 4, in (2.2’) is uniformly bounded, and, under this
circumstance, a theorem of Lebesgue permits us to pass to the limit under
the integral sign. This is to say that A, is a continuous functional of
g, g if g —> & g2 —> g, then A.(g1, g2) —> A.(g1, ).

The integrand 3 (E + G) being positive, the approach of 4, to 4 when
¢ —> 0 is monotonic increasing; under this condition, the following
lemma? enables us to affirm the lower semi-continuity of A(g, g3): if
a functional A on a Fréchet L-set can be expressed as the limit of a continuous
Sunctional A, which tends to A in increasing, then A is lower semi-continuous.

From the compactness of the range [g, g:] and the lower semi-con-
tinuity of A4 (g, g2), it follows, as in the author’s previous papers, that the
minimum of A (g, g) is attained for a certain (g%, g.*); the proof is
essentially the same as the Weierstrass proof of the attainment of the

‘minimum of a (lower semi-) continuous function of a real variable on a
closed interval, depending on the Bolzano-Weierstrass theorem expressing
compactness: every infinite sequence of values of the argument (g, gs)

(2.13)
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contains a convergent sub-sequence, and on the definition of lower semi-
continuity:

A(gi, g2) < lim inf A (gi, go) when g —> g1, g2 —> 2.

4. Exclusion of Improper Represemtations—We have next to show
that the minimizing representation (g;*, g.*) is proper.

In the author’s previous papers, the improper representations of a
contour I' have been classified as follows:

(@) A partial arc of T' (T, or T;) corresponds to a single point of L
(Ly or Ly).

(b) A partial segment of L corresponds to a single point of T'.

() All of T' corresponds to a single point of L and all of L to a single
point of T. ‘

Type (a) is excluded by the fact that then:

A(gl, gz) = 4+ o,

for the integrand of (2.11) becomes infinite to the second order in the
vicinity of the point of discontinuity, being asymptotically
l2
(z —9)?

where [ is the length of the chord of the arc of discontinuity of '. I >0
because this arc is only a partial arc of T', and, by hypothesis, I' has no
double points.

Type (b) can be excluded by the mode of reasoning used in One Contour,

§ 18, based on a certain theorem of Fatou and Schwarzian symmetry—
after it has been proved, as will be done in the next section, that

> F* (w) = 0.
{=1

It is in order to exclude type (¢) that we need the condition (4.6) below,
restricting the two contours.
Besides the functional 4 (g, g2), let us consider

" dzd,
A(g) = 4_]‘;!'. ‘le ,/[',1 igl [gu'(z) - gu(©]? (Z_— i,)p

n dzd
A@) = 5o £, £, 3 l0ae) — 8 ©F G

these are the functionals appropriate to the construction of a simply
connected minimal surface bounded by TI'; or Iy, respectively. Define the
three positive numbers

m(Ty, Ty) = min A (g, g), 4.1)
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m(rl) = minA(gl)’ M(I‘z) = minA(gg),

the minima being relative to all possible parametric representations of
Ty, T2, Concretely, m(T'y, Ty) is the lower bound of the areas of all crescent-
shaped surfaces bounded by Ty, I, and m(T;), m(T") the lower bounds of
the areas of all simply connected surfaces bounded, respectively, by Iy, I's;
but we shall be concerned only with the definitions (4.1).
As stated in § 1, we assume that all three quantities (4.1) are finite.
If g, degenerates into a point p, on Iy, and g is not degenerate, we can
_prove by reasoning similar to that of Two Contours, p. 342 (which we
shall not repeat here), that

A(gy, g) > m(T) + A(g),

whence

A(gi, go) > m(Ty) + m(Ts). (4.2)

If both g and g, are degenerate, in points p, and ps, respectively, not
both coincident with the unique point P common to I'; and T, then '

Agn g) = + . 4.3)
If p1 and ps are both coincident with the point P, then
A(gi, g2) = m(T1) + m(Ty). (44)
This formula shoWs that always
m(Ty, Tg) < m(Tr) + m(Te). (4.5)
Let us now introduce the assumption that we have the strict inequality:
m(Ty, T2) < m(T1) + m(T), (4.6)

then it will be seen by the formulas (4.2, 3, 4) that the possibility of a
minimizing representation of type (c) is excluded.

5. Vanishing of the First Variation of A (g, gs).—The functional 4 (g, g»)
attairiing its minimum for (g.*, g.*), its first variation must then vanish—
a condition which will lead to

”
Y Fl@) =0, (5.1)
i=1 : v S
proving that the harmonic surface determined by (g1*, g% accorcijng to

the formulas (2.12) is minimal.
We employ the following variation of the independent variables:

2 =2+ 3Acoth} (z — w), (5.2)

and the same in ¢, on L, and L,, with w an arbitrary point of the strip S,
and \ a real parameter. Although the only admissible variations are
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those which convert L; and L, into themselves in a monotonic continuous
way, with preservation of the point at infinity, and the transformation
(5.2) does not do this; still this variation is allowable, for l A I sufficiently
small, as a combination of admissible variations [cf. Two Contours, pp.
332-334]. ,
It is readily calculated that by (5.2) and the analogue in {, we have
dz'd¢’ _ dzd¢
4sinh?} (2 — ¢)  4sinh?}(z — )
A = dzd¢
16 sinh? } (z — w)sinh” } (¢ — w)

+ ..., (5.3)

the dots denoting terms in higher powers of \.
The prinecipal feature of the calculation is the use of the identity

sinh?} (z — w) + sinh?} (f — w) — 2sinh } (z — )
sinh} (¢ —w) cosh} (z — ¢) = sinh?’3 (z — {),  (5.4)

which can be obtained by squaring the subtraction formula for sinh:
sinh3(z — w) cosh 3 (¢ — w) — cosh § (z — w) sinh § (t — w) = sinh }
(2 — ¢), and making certain simple transformations, including the subtrac-
tion formula for cosh:
“cosh} (z — w) cosh § (¢ — w) — sinh} (z — w) sinh } (¢ — w) = coshi (z — {).

Multiplying (5.3) by ‘

Y lgail®) — ‘g = z [255) — a2,

=1
and integrating, we get
1 ”
ACg, ') =A@y g) — N - X So, Sip 2 [8ai(3) — gai(0) 2
41!' af f=1
dzdy n '
16 sinh? } (z — w)sinh? } (¢ — w) U
If (g1, g2) = (g1*, g2*), this function of X\ has a minimum for X = 0, and
therefore the coefficient of the first power of A vanishes:
L ' dzdg
(3) — g0:(8) ]2
% ‘/I:a ‘/I:ﬂ ;;1 [8i(2) — £ai(5)] 16 sinh?} (z — w) sinh?} (¢ — w)
=0. (5.6)
- But, according to the formula (2.13), this is the same as

3 F @) = 0. G.7)

i=1

(5.5)
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6. Conformal Mapping.—Analogous to the author’s previous work,
the preceding theory gives for » = 2 the conformal mapping of any crescent-
shaped plane region—i.e., one bounded by two Jordan curves with a
unique point in common, one curve .enclosing the other—on a circular
crescent, including the continuous attachment of the conformal map to
a topological correspondence between the boundaries.

1 “The Problem of Plateau for Two Contours,” Jour. Math. Phys., 10, 315-359
(1931). This paper will be cited as ‘“Two Contours.”

2 ““‘Solution of the Problem of Plateau,” Trans. Amer. Math. Soc., 33, 263-321 (1931).
This paper will be cited as ‘“One Contour.”

3 One Contour, p. 282.

GROUPS GENERATED BY fWO OPERATORS OF ORDER 3 WHOSE
COMMUTATOR IS OF ORDER 2

By G. A. MILLER
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Let s and ¢ represent two operators of order 3 such that their commutator
s#2st is of order 2. It is known that then each of the four commutators
whose elements are powers of s and ¢

S22t s2st? siis?%  sis?
is of order 2 and hence there result the following identities
St = f2s%s, s¥st? = IsUs, si2s = fists?, sts¥P = Lsiist.

Since #2s2%s.s%st2 = 252212 and (2s%2st2. 135225t = sUlstsUAE = 1352,
tst2s2.st2 = 1, it follows that the first and the second of these four commuta-
tors are commutative. Similarly it follows from the identities s%2st.
t2sts? = s22s2%s? and s22s2s2. s22sUs? = sUsUsiisUs? = 5252 sis%? 45t =
that the first of these four commutators is also commutative with the third.

It seems desirable to employ a different method to prove that the first
and fourth of these commutators are commutative but a similar method
will be employed to prove that the fourth of these commutators is also
commutative with the second and third, as follows: From the identities
s:st?. tst2s2 = ss2%s?, and s¥s2s?.s%s?2s? = sUsUisisU? = sU.t%sUs.
s%2s? = 1, it results that the second and the fourth are commutative.
Similarly, the fact that the third and the fourth are commutative results
from the identities £2s¢s2. sts22 = (2st25%2 and 252522, 25125242 = ¢3s1252st2s3¢?
= f2%.5%%t.t%5U2 = 1. o

It has not yet been proved that the first and last of these four commu-



