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1. The Problem of Plteau for Crescent-Shaped Minimal Surfaces.
The problem of Plateau is to prove the existence of a minimal surface
with a given boundary. A minimal surface is one definable by the Weier-
strass formulas

xi i= F(W) 2(W) = O (i = 1, 2, ...,n). (1.1)
i_1

The author has given a solution of the Plateau problem for two con-
tours,' by methods which are a natural generalization of those previously
used by him to give the first complete solution of the Plateau problem for
a single contour.2

It was assumed, in the treatment of the two-contour case, that the con-
tours did not intersect one another. If, on the contrary, the contours
have a single point in common, then we may obtain a minimal surface of
the topological type of the region between two internally tangent circles;
indeed, the minimal surface will be representable conformally on this
region. Such a region we call a crescent, and the minimal surface repre-
sentable conformally upon it crescent-shaped.
The purpose of the present note is to adapt the methods of the previous

papers of the writer, cited above, to solve the Plateau problem for crescent-
shaped minimal surfaces: given two Jordan curves ri and r2, with one
and only one point P in common, to prove-under appropriate sufficient
conditions-the existence of a crescent-shaped minimal surface bounded by
ri and r22.
That some sort of restriction on the contours is necessary is evident

from considering, for instance, two externally tangent circles in the same
plane; obviously they determine no proper crescent-shaped minimal
surface, giving rather the sum of the two circular discs. The sufficient
condition established in this paper is that if m(rL, r2) denote the minimum
of crescent-shaped areas bounded by ri and r2, and m(rJ), m(r2) the
minimum of simply connected areas bounded by ri, r2 separately, then

m(r1, r2) < m(r1) + m(r2) (1.2)

(the relation _ holds in any case). We also suppose that all three quan-
tities m are finite, an assumption certainly verified if the contours are
rectifiable.

2. The Functional A(gi, g2).-If the crescent is subjected to an in-
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version with the point of tangency of its bounding circles as pole, we
obtain a strip bounded by two parallel straight lines; without loss of
generality, we can assume this strip to be that bounded by the lines

(L1) z = real, and (L2) z = real + 7ri,

in the complex plane of z. The inversion, being a conformal transforma-
tion, will convert a conformal representation of the required minimal
surface on the crescent into a conformal representation on the strip, and
vice versa.
The next step is to adapt to crescent-shaped surfaces the functional

employed in the author's treatment of the one- and two-contour cases of
the problem of Plateau.
Let

xi= gli(z), xi = g2f(z) (i = 1, 2, ..., n) (2.1)
denote arbitrary parametric representations of ri and r2, where z de-
scribes Li and L2, respectively, the common point P of the two contours
being always required to correspond to the point at infinity on each line.
If

xi = F(w) (w=u+iv)

denote the harmonic functions determined in the parallel strip S by the
boundary values (2.1), these functions define a crescent-shaped harmonic
surface bounded by ri, r2. Let the first fundamental form of this surface
be

ds2 = Edu2 + 2Fdudv + Gdv2,

then the fundamental functional is

A(g1, g2) = fs 2 (E + G)dudv. (2.2)

This integral must be defined accurately as a limit; we construct the
strip S. by removing a band of width e from each edge of S, and define

A4(gl, g2) = ff § (E + G)dudv, (2.2')
then

A (gi, g2) = lim A.(g1, g2).
e o0* 0

It is not hard to prove that the integrand of Ae stays uniformly bounded
for all gl, g2 if e is fixed > 0.

It is desirable to have a direct expression for A in terms of gi and g2;
this can be obtained by means of formulas established in Two Contours
(§ 2). Let G(x, y; u, v) denote the Green's function for the region S;
then G can always be given the form
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G(x, y; u, v) = 9? log, Si(x, wo) (2.3)

where

z=x+iy, w=u+iv, wo=u-iv.

If

Z(z, w) = a log S(z, W), (2.4)

and

a~~~2
P(z, w) = 6 Z(z, w) = aZu log S(z, w), (2.5)

then, with the help of Green's theorem, the explicit form for A is:
1 n

A (ga, g2) = E ajf fiq E [g,,(Z) - gp,(r) ]2 P(z, r)dz dr. (2.6)

Here and elsewhere in this paper, integration on L1 is to the right, on L2
to the left.

It is to be observed that, although complex elements enter into this
formula, the value of A (gi, g2), according to (2.2), is always positive real.
The next step is to obtain explicitly the Green's function for the strip S.

We state the result immediately:

G(x, y; u, v) = 9? log sinh 2 (z-w) (2.7)sinh (z - wo)
It will be an easy exercise for the reader to verify that this has all the
requisite properties: regular harmonic in the strip S except at the one
point w where there is a logarithmic singularity, reducing to zero on
L1 and L2.
By comparison with (2.3),

S(z, w) = sinh 2 (z - w), (2.8)
and therefore, by (2.4) and (2.5),

Z(z, w) = coth (z - w), (2.9)

P(z, w) = 4 sinh2 g (z -w) (2.10)

Hence, by substitution in (2.6),
1 d4Zd_(

A(g1, g2) = [g-(z]2 ~(2.11)fLex,, fL13 4 snh (z
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The integral is improper, on account of the singularity of the integrand
for z = ¢, but always exists either as a finite positive quantity or + co;
its value is to be found by integrating first with I z - c, furnishing
A.(gi, g2), and then defining

A(gl, g2) = lrn A.(gl, g2).
e -* 0

By a formula of Two Contours [2.13, loc. cit.] and (2.9) above, the
harmonic surface determined by gi, g2 is

xi = Fi (w)

with

Fi(w) = 1r E g,(z) coth 1 (z - w)dz + ci, (2.12)

where c, is a constant whose exact value is unnecessary.
We shall need too the formula, easily derived from the last one [cf.

Two Contours, 2.16]:

n 12 1nF2 (w) = 2 E L i [gaE(z) -f
i=l 2r ajlff il

Idzd4
16 sinh2 2 (Z -w)sinh2 2 ( -W) (2.13)

3. Attainment of the Minimum of A (gi, g2).-Each of the sets [g,l,
[g2] of parametric representations of ri, r2, respectively, is compact. There-
fore the composite elements [gi, g2] form a compact set.
The integrand of A. in (2.2') is uniformly bounded, and, under this

circumstance, a theorem of Lebesgue permits us to pass to the limit under
the integral sign. This is to say that A4 is a continuous functional of
gl, g2: if g1 -' gl, g2 ) g2, then Aj(gi, g2) )- Ae(gi, g2)-
The integrand g (E + G) being positive, the approach of A, to A when

e - 0 is monotonic increasing; under this condition, the following
lemma3 enables us to affirm the lower semi-continuity of A (gi, ga): if
a functional A on a Frechet L-set can be expressed as the limit of a continuous
functional A4 which tends to A in increasing, then A is lower semi-continuous.
From the compactness of the range [gi, g2] and the lower semi-con-

tinuity of A (gi, g2), it follows, as in the author's previous papers, that the
minimum of A (gi, g2) is attained for a certain (gl*, g2*); the proof is
essentially the same as the Weierstrass proof of the attainment of the
minimum of a (lower semi-) continuous function of a real variable on a
closed interval, depending on the Bolzano-Weierstrass theorem expressing
compactness: every infinite sequence of values of the argument (ga, g2)
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contains a convergent sub-sequence, and on the definition of lower semi-
continuity:

A (gl, g2) < lim inf A (gi, g2) when gi - gl, g2 9g2.

4. Exclusion of Improper Representations.-We have next to show
that the minimizing representation (gi*, g2*) is proper.

In the author's previous papers, the improper representations of a
contour r have been classified as follows:

(a) A partial arc of r (ri or r2) corresponds to a single point of L
(L1 or L2).

(b) A partial segment of L corresponds to a single point of r.
(c) All of r corresponds to a single point of L and all of L to a single

point of r.
Type (a) is excluded by the fact that then:

A(g1, g2) = + co,

for the integrand of (2.11) becomes infinite to the second order in the
vicinity of the point of discontinuity, being asymptotically

12
(Z 2

where 1 is the length of the chord of the arc of discontinuity of r. I > o
because this arc is only a partial arc of r, and, by hypothesis, r has no
double points.
Type (b) can be excluded by the mode of reasoning used in One Contour,

§ 18, based on a certain theorem of Fatou and Schwarzian symmetry-
after it has been proved, as wvill be done in the next section, that

E F12 (w) 0.
f= i

It is in order to exclude type (c) that we need the condition (4.6) below,
restricting the two contours.

Besides the functional A (gi, g2), let us consider

~~~~~~~dzdr
A(9) - 4frL1 1L .E gl,(Z) glt(t)]2 ([-1j2(

1 " ~~~~~~dzdlrA(g2) = L2 L2 E [g2j(z) - g2()]2 (z - 247r js=1

these are the functionals appropriate to the construction of a simply
connected minimal surface bounded by rP or r2, respectively. Define the
three positive numbers

m(r1, r2) = min A (gl, g2),
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m(rT) = minA(gi), m(T2) = minA(g2),

the minima being relative to all possible parametric representations of
ri, r2. Concretely, mCri', r2) is the lower bound of the areas of all crescent-
shaped surfaces bounded by ri, r2, and m(ri), m(r) the lower bounds of
the areas of all simply connected surfaces bounded, respectively, by rT, rT;
but we shall be concerned only with the definitions (4.1).
As stated in § 1, we assume that all three quantities (4.1) are finite.
If gi degenerates into a point Pi on ri, and g2 is not degenerate, we can

prove by reasoning similar to that of Two Contours, p. 342 (which we
shall not repeat here), that

A (g1, g2) > m(rT) + A (g2),
whence

A (gi, g2) > m(rT) + m(r2). (4.2)
If both gi and g2 are degenerate, in points Pi and p2, respectively, not

both coincident with the unique point P common to rT and r2, then

A (gi, g2) = + co. (4.3)
If pi and p2 are both coincident with the point P, then

A (ga, g2) = m(ri) + m(r2). (4.4)
This formala shows that always

m(ri, r2) _ m(ri) + m(r2). (4.5)

Let us now introduce the assumption that we have the strict inequality:

m(ri, r2) < m(ri) + m(r2), (4.6)
then it will be seen by the formulas (4.2, 3, 4) that the possibility of a
minimizing representation of type (c) is excluded.

5. Vanishing of the First Variation ofA (gi, g2).-The functional A (gi, g2)
attaining its minimum for (gl*, g2*), its first variation must then vanish-
a condition which will lead to

EF2(w) =0, (5.1)
i=l

proving that the harmonic surface determined by (gi*, g2*) according to
the formulas (2.12) is minimal.
We employ the following variation of the independent variables:

z= z+ Xcoth2 (z - w), (5.2)
and the same in r, on L1 and L2, with w an arbitrary point of the strip S,
and X a real parameter. Although the only admissible variations are
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those which convert L1 and L2 into themselves in a monotonic continuous
way, with preservation of the point at infinity, and the transformation
(5.2) does not do this; still this variation is allowable, for I X I sufficiently
small, as a combination of admissible variations [cf. Two Contours, pp.
332-334].

It is readily calculated that by (5.2) and the analogue in ¢, we have

dz'dt' dzd4
4 sinh2 I (Z'-')= 4 sinh2 2 (Z-

dzdt
16 sinh2 (z - w)sinh' 2 (t-w) + (53)

the dots denoting terms in higher powers of X.
The principal feature of the calculation is the use of the identity

sinh22 (Z-W) + sinh 2 (2-w)-2sinh ( -W)
sinh1(2 -W) cosh (z- ) = sinh2 2 (Z- ), (5.4)

which can be obtained by squaring the subtraction formula for sinh:

sinh (z - w) cosh 2 (t - w) - cosh 2 (z - w) sinh 2 (¢- w) = sinh 2

(z -t), and making certain simple transformations, including the subtrac-
tion formula for cosh:

cosh2 (z - w) cosh2 (r - w) - sinh2 (z - w) sinh ( w) = cosh ( -

Multiplying (5.3) by
ng h

E [ ga,i(Z ) - 'gAi(t)] =2 [ga,i(Z) g- ,
2

i=l S=1

and integrating, we get

A ('gi, /g2) = A (gi, g2) - X* 1 Z a.fJ E [ga,(Z) -go( 2

dzdt
16 sinh2 (z - w)sinh2 a -w) + (5)

If (gl, g2) = (gl*, g2*), this function of X has a minimum for X = 0, and
therefore the coefficient of the first power of X vanishes:

X dzdt
E L L. [g., (Z) -gAi(;) ]2 16 sinh2 1 (z - w) sinh2 ( -W)

- 0. (5.6)
But, according to the formula (2.13), this is the same as

X

E F2 (w)= 0. (5.7)
-i=l
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6. Conformal Mapping.-Analogous to the author's previous work,
the preceding theory gives for n = 2 the conformal mapping of any crescent-
shaped plane region-i.e., one bounded by two Jordan curves with a
unique point in common, one curve enclosing the other-on a circular
crescent, including the continuous attachment of the conformal map to
a topological correspondence between the boundaries.
1"The Problem of Plateau for Two Contours," Jour. Math. Phys., 10, 315-359

(1931). This paper will be cited as "Two Contours."
2 "Solution of the Problem of Plateau," Trans. Amer. Math. Soc., 33, 263-321 (1931).

This paper will be cited as "One Contour."
8 One Contour, p. 282.
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Let s and t represent two operators of order 3 such that their commutator
s2t2st is of order 2. It is known that then each of the four commutators
whose elements are powers of s and t

S2t2St S2tSt2 st2s2t StS2t2

is of order 2 and hence there result the following identities

s2t2st = t2s2ts, s2tst2 = ts2t2s, st2s2t = t2stS2, StS2t2 = tSt2S2.

Since t2s2ts.s2tst2 = t2s2t2st2 and t2S2t2St2.t2S2t2St2 = t2S2t2StS2t2St2 = t2S2t2.
tst2s2. st2 = 1, it follows that the first and the second of these four commuta-
tors are commutative. Similarly it follows from the identities s2t2st.
t2StS2 = S2t2S2tS2 and S2t2S21S2.S2t2S2tS2 = S2t2s2tsl2s2ts2 = S2t2S2.sts2t2.ts2 = 1,
that the first of these four commutators is also commutative with the third.

It seems desirable to employ a different method to prove that the first
and fourth of these commutators are commutative but a similar method
wiU be employed to prove that the fourth of these commutators is also
commutative with the second and third, as follows: From the identities
s2tSt2. tSt2S2 = S2tS2t2S2, and s2ts2t2S2.S2tS2t2S2 = s2ts2t2sts2t2s2 = s2t. t2s2ts.
s2t2s2 = 1, it results that the second and the fourth are commutative.
Similarly, the fact that the third and the fourth are commutative results
from the identities t2StS2 . stS2t2 = 12St2s2t2 and t2St2S2t2.t2St2S2t2 = t2St2S2tSt2S2t2
= t2s.S2t2St.t2S2t2 = l

It has not yet been proved that the first and last of these four commu-
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