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at its middle point A, and having a common radius

Rn = Knsp(n). OAR,

K being a conveniently chosen number. We assume that all the zeros
of f(z) are outside these circles.

E. There are no zeros of f(z) in the circle (C").
Then there is one, and only one zero off'(z) in the circle (C.) for n > no,

no being a sufficiently large number.
The proof follows again from theorem I, by showing that in the circle

( , YI < 1/Xwhenn >no.
It must be noted in this case that there is a necessary geometrical rela-

tion between a. and Rn; it is easy to see that

1
sin aI<

1

S lCxnl <Knsp(n)-
For the functions of order zero such that a < x"/2p(x) < b, where a and
b are fixed numbers, neither of the above methods applies; it is then
necessary to make further hypotheses on the zeros.
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In some recent papers' I have introduced the relative cycles for point
sets and the associated relative boundary relations and homologies which
may be of four types: absolute, modular, relative, relative modular.
Various considerations lead one also to introduce a couple of invariants
analogous to the Betti-numbers and for all these I have given loc. cit.
proofs of some very general relations, in particular of duality which
include all those previously known.

In going over the whole question I have recently had occasion to revise
the proofs and extend the results somewhat. The extensions are along
the line of much information concerning the relative torsion coefficients
which occur, however, only when the subset G of the carrying complex is
polyhedral. I do not wish to dwell on these here. The modified proofs
are noteworthy and the changes shall now be indicated in outline. Their
object was to extend as far as possible Poincar6's own proof for the duality
relations of an M. without boundary and to avoid wherever possible
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Kronecker indices as in the original proofs. The two basic elements
in Poincar6's proof are the incidence matrices of the cells and the con-
struction of a dual complex.

Let C, be a complex of Veblen's type which defines an M, and let Cn
be its dual. The cells of C. can be so oriented with respect to those
of C,, that the incidence matrix of the h and (h - 1)-cells of C,, is the
transverse of the similar matrix for the dimensions n - h + 1 and n-h
of C". From this Poincar6's duality theorems follow and likewise
Veblen's and Alexander's extensions to the modular cases. This is mani-
festly as straightforward and direct a procedure as could be desired, and
now for its generalization.

Let us call regular a cell of C. which fulfills the same requirements as
if C., defined an M,, without boundary. Let G be a subset of C,. If
every cell of C,, not on G is regular we shall say that C,, is a manifold
relatively to G, or more briefly, that C,, - G is a manifold.
Take first the case where G is a subcomplex of C,. Let C' be the

first derived complex of C. (regular subdivision of C.). The sum of the
cells of C' that have a vertex on the regular cell Eh of C. but do not
meet Eh, is an (n - h)-cell En - h, the transverse of Eh. The sum of
these transverses is a complex C*, the dual of C, relative G. Among
its properties the following are of particular interest: (a) C - C* = N
neighborhood of G on C sum of the cells of C' with a vertex on G. (b)
The cells of C * whose sum is the boundary of N are the transverses of
those of C. -G with a vertex on G.

The comparison between the incidence matrices of C,, - G and C* yields
all the duality relations corresponding to G, a subcomplex of C,,. More
generally of course G may be assumed merely to be a polyhedral complex
on C,.
Suppose now that G is an arbitrary closed set on C, with C,, - G a

manifold. Consider a subdivision C"' of C, and let N be the sum of
all its cells whose closure meets G. It is a neighborhood of G of the same
type as above. Subdivide further the cells of N alone as far as desired
and let N' be the analogous neighborhood constructed by means of the
new subdivision, and so on. The totality of all the cells of C,, - N,
N - N', etc., is a denumerable set of regular cells which constitutes
what may be described as an infinite complex K,, defining an infinite
manifold. The transverses of the cells of K, constitute another infinite
complex K*, the dual of the first. The incidence matrices for these
complexes are exactly as for ordinary (finite) complexes with a finite number
of non-zero elements in each row or column, but the number of rows or
columns is infinite (denumerable).

The machinery is thus at hand for extending Poincar6's scheme of things
with few modifications relatively. In particular we can avoid the seem-
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ingly involved and unnatural Vietoris cycles whose place is now taken by
the infinite cycles (eventually fractionary) composed of cells of K or K*.

Infinite complexes are susceptible of other applications. They are
notably convenient in proving the invariance of the relative Betti and
torsion numbers. They have already been considered for n = 2 by
Kerekjarto,2 but there is no hint of the above applications in his work.

1 These PROCUDINGS, 13 (1927), 614-622, 805-87; Ann. of Math., (2) 29, (1928),
232-254.

2 Vorlesungen uber Topologie.
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A group G is said to admit three-fourths automorphisms if it is possible
to establish at least one (1,1) correspondence between its operators in
which exactly three-fourths of these operators correspond to their inverses.
This is the only condition imposed on G in the present article. It is easy
to prove that whenever G admits at least one such automorphism it must
admit exactly three distinct ones, and it must contain exactly three
abelian subgroups of index 2. In each of these three automorphisms all
the operators of two of these subgroups correspond to their inverses while
the remaining operators correspond to their inverses multiplied by the
commutator of order 2 contained in G. The continued product of these
three automorphisms is an automorphism of G in which each of the opera-
tors of the central corresponds to its inverse while every other operator
corresponds to its inverse multiplied by the commutator of order 2 con-
tained in G. Hence G must also admit such an automorphism whenever
it admits a three-fourths automorphism, and this automorphism is in-
variant under the group of automorphisms of G while a three-fourths auto-
morphism is not necessarily invariant under this group.
A necessary and sufficient condition that a group admits a three-fourths

automorphism is that its central is of index 4, and hence its order must
be divisible by 8. If its order is not a power of 2 then G must be the
direct product of an abelian group of odd order and a non-abelian group
of order 2m, and every such direct product admits three-fourths auto-
morphisms whenever its Sylow subgroup of order 2m has this property.
At most three-fourths of the operators of a non-abelian group can corre-
spond to their inverses in an automorphism of the group, and hence the
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