### Berichte des Ausschusses für Versuche im Eisenbau

Herausgegeben vom Deutschen Eisenbau-Verband (D. E. V.), früher Verein Deutscher Brücken- und Eisenbau-Fabriken

Nachdem der Ausschuß für Versuche im Eisenbau infolge des Krieges eine mehrjährige Unterbrechung seiner für die Kriegführung nur mittelbar nutzbaren Arbeiten eintreten lassen mußte, wird mit dem vorliegenden Berichte die Fortsetzung seiner Veröffentlichungen wieder aufgenommen.

Die Veröffentlichungen erfolgen im Namen des "Ausschusses für Versuche im Eisenbau", der auch die Versuche selbst beschließt und überwacht. Es erscheinen zwei Arten von Berichten, die je in sich fortlaufend numeriert werden:

> 1. Hefte A, in denen die Anordnung, die Durchführung und die unmittelbaren zahlenmäßigen Ergebnisse der Versuche besprochen und mitgeteilt werden.

> 2. Hefte B, welche die weitere Bearbeitung und Auswertung der Versuchsergebnisse sowie die daraus zu ziehenden Folgerungen und etwaige Bauregeln für die Praxis enthalten.

Dem verschiedenen Inhalte der beiden Arten von Heften wird auch ein verschiedenes Format entsprechen, das für die Hefte B eine besondere Handlichkeit anstrebt.

#### Bisher sind erschienen:

#### Ausgabe A, Heft 1:

### Der Einfluß der Nietlöcher auf die Längenänderung von Zugstäben und die Spannungsverteilung in ihnen

Nach Versuchen im Materialprüfungsamt zu Berlin-Lichterfelde Berichterstatter: Geh. Regierungsrat Professor Max Rudeloff Mit 30 Textabbildungen. IV und 65 Seiten, 4°. Preis M. 3.60\*)

#### Ausgabe B, Heft 1:

#### Zur Einführung — Bisherige Versuche

Berichterstatter: Reg.-Baumeister a. D. Dr.-Ing. F. Kögler Mit 26 Abbildungen. IV und 56 Seiten, 8°. Preis M. 1.60\*)

#### Ausgabe A, Heft 2:

Versuche zur Prüfung und Abnahme der 3000 t-Maschine Berichterstatter: Geh. Regierungsrat Prof. Dr.-Ing. Max Rudeloff Mit 73 Textabbildungen. IV und 82 Seiten, 4°. Preis M. 10.-

\*) Hierzu Teuerungszuschläge

(früher Verein deutscher Brücken- und Eisenbau-Fabriken)

# Berichte des Ausschusses

für

# Versuche im Eisenbau

Ausgabe A

# Heft 2

# Versuche zur Prüfung und Abnahme der 3000 t-Maschine

Berichterstatter:

Geheimer Regierungsrat Professor Dr.-Ing. Max Rudeloff Direktor des Staatlichen Materialprüfungsamtes zu Berlin-Dahlem

Mit 73 Textfiguren



Berlin Verlag von Julius Springer 1920

ISBN-13:978-3-642-93771-2 e-ISBN-13:978-3-642-94171-9 DOI: 10.1007/978-3-642-94171-9

#### Ausschuß für Versuche im Eisenbau:

Staatsrat Prof. Dr.-Ing. C. von Bach in Stuttgart.

Baurat Dr.-Ing. Bohny, Direktor in Sterkrade i. Rhld.

Geh. Baurat Dr.-Ing. Carstanjen, Direktor in Gustavsburg bei Mainz.

Dr.-Ing. Fischmann, Direktor in Berlin.

Geh. Re.ierungsrat Prof. Dr.-Ing. Müller-Breslau in Berlin.

Kommerzienrat Dr.-Ing. Reusch, Generaldirektor in Oberhausen i. Rhld.

Geh. Regierungsrat Prof. Dr.-Ing. Rudeloff, Direktor in Berlin-Lichterfelde.

Geh. Baurat Schaper, Vortragender Rat in Berlin.

Wirkl. Geh. Oberbaurat a. D. Dr.-Ing. Dr. Zimmermann in Berlin.

#### Frühere Mitglieder:

† Böllinger, Direktor in Gustavsburg bei Mainz.

Marineschiffsbaumeister Burkhardt in Wilhelmshaven.

Geh. Marine-Oberbaurat Dr.-Ing. Hüllmann in Berlin.

Prof. Dr.-Ing. Kögler in Freiberg i. Sa.

† Geh. Baurat Labes, Vortragender Rat in Berlin.

† Geh. Oberregierungsrat Prof. Dr.-Ing. Martens, Direktor in Berlin-Lichterfelde.

+ Geh. Baurat Schnapp in Berlin.

† Baurat Dr.-Ing. Seifert, Direktor in Duisburg, ehem. Vorsitzender.

† Dipl.-Ing. Seidel in Duisburg.

# Inhaltsangabe.

|          | 0                                                                                                           | doit.           |
|----------|-------------------------------------------------------------------------------------------------------------|-----------------|
| т        | ia Masahina                                                                                                 | Seite<br>1      |
| 10<br>TT | ne masumme                                                                                                  | . <u>1</u><br>9 |
| 11.      | egenstand der Untersuchung.                                                                                 | . J<br>         |
| ш.       | rufung von Druckstäben                                                                                      | . 5             |
|          | A. Prüfung des Stabes 68                                                                                    | . 5             |
|          | 1. Das seitliche Ausbiegen des Stabes                                                                       | . 8             |
|          | 2. Das Neigen der Druckplatten                                                                              | . 10            |
|          | 3. Die Verkürzung des Stabes                                                                                | . 10            |
|          | 4. Längenänderungen der Stützfedern                                                                         | . 12            |
|          | 5. Zerstörungserscheinungen                                                                                 | . 12            |
|          | <ul> <li>Zugversuche mit Materialproben aus Stab 08</li></ul>                                               | . 14            |
|          | 7. vergleich der beobachteten Knickkrait mit der berechneten                                                | . 14            |
|          | B. Prüfung des Stabes 69                                                                                    | . 16            |
|          | I. Die Bestimmung der Einspannmomente                                                                       | . 18            |
|          | 2. Das seitliche Ausbiegen des Stabes                                                                       | . 22            |
|          | 3. Das Neigen der Druckplätten                                                                              | . 20<br>90      |
|          | 4. Langenanderungen der Stutziedern                                                                         | . 48            |
|          | 5. Durchbiegungen und verkurzungen der Stabhanten                                                           | . 29            |
|          | 7. Verstorungseischennungen                                                                                 | . JI<br>22      |
| ***      | 7. Vergreich der beobachteten und berechneten Festigkeit                                                    | . 00<br>        |
| 1.       | rufung von Zugstaben                                                                                        | . 33            |
|          | A. Prüfung des Stabes 76                                                                                    | . 33            |
|          | 1. Die Dehnungsmessungen                                                                                    | . 34            |
|          | 2. Das Gleiten der Laschen gegen den Stab                                                                   | . 35            |
|          | B. Prüfung von zwei geschmiedeten Stäben 80 und 81                                                          | . 36            |
|          | 1. Erprobung des Materials der Stäbe                                                                        | . 37            |
|          | 2. Prüfung des Stabes 80 auf der 100-t-Werder-Maschine                                                      | . 38            |
|          | 3. Versuche auf der 500-t-Maschine                                                                          | . 39            |
|          | a) Prüfung des Stabes 80                                                                                    | . 39            |
|          | b) Prüfung des Stabes 81                                                                                    | . 41            |
|          | 4. Versuche auf der 3000-t-Maschine                                                                         | . 41            |
|          | a) Versuche mit dem Stabe $80 \ldots \ldots$ | . 42            |
|          | b) Versuche mit dem Stabe 81                                                                                | . 44            |
|          | c) Vergleich der Stabfestigkeiten mit den Materialfestigkeiten                                              | . 45            |
|          | d) Das Verhalten der Druckwasserbremsen                                                                     | . 40            |
|          | C. Prüfung des Zugstabes 70                                                                                 | . 48            |
|          | I. Der Aufbau des Stabes                                                                                    | . 48            |
|          | 2. Gegenstand der Beobachtung                                                                               | . 49            |
|          | 3. Versuchsergebnisse                                                                                       | . 50            |
|          | a) Bestimmung der Zugkräfte                                                                                 | . 50            |
|          | b) Bestimmung der Formanderungen                                                                            | . 01<br>E0      |
|          | c) Brucherscheinungen                                                                                       | . 00            |

# Versuche zur Prüfung und Abnahme der 3000-t-Maschine.

Von Professor Dr.-Ing. M. Rudeloff.

### I. Die Maschine.

Die für den Verein deutscher Brücken- und Eisenbau-Fabriken nach den Plänen eines besonderen Versuchsausschusses im Staatlichen Materialprüfungsamte zu Berlin-Dahlem angestellten Untersuchungen an Eisenkonstruktionen, über die bisher berichtet ist<sup>1</sup>), konnten mit den Einrichtungen des Amtes ausgeführt werden. Zu den weiter geplanten Versuchen mit großen Konstruktionsteilen, als Druckstreben und Zuggliedern aus eisernen Brücken und sonstigen Konstruktionen in natürlicher Größe, reichten die Maschinen des Amtes nicht hin. Der Verein entschloß sich daher, für diese Versuche eine neue Maschine mit 3000 t Druckkraft und 1500 t Zugkraft auf dem Gelände des Amtes aufzustellen, deren konstruktive Anordnung aus Fig. 1—3 zu ersehen ist<sup>2</sup>). Die Maschine, erbaut von der Firma Haniel & Lueg in Düsseldorf, ruht auf der oberen, sauber bearbeiteten Bahn eines starren, genieteten, schmiedeeisernen Grundrahmens und besteht im wesentlichen aus dem hydraulischen Krafterzeuger (Zylinder d, Kolben e und mit letzterem verbundenes Querhaupt f) am linken Ende, dem Widerlager oder Gegenhalter b am rechten Ende und den beiden Verbindungsstangen a, deren Achsen nach Fig. 3 in einer geneigten Ebene liegen.

Beim Druckversuch ist der Zylinder d mit den Stangen a gekuppelt, der Kolben e bewegt sich nach rechts und drückt auf die zwischen den Platten h eingebaute Probe; beim Zugversuch ist der Kolben e mit den Stangen a gekuppelt, der Zylinder d bewegt sich nach links und zieht an dem mit ihm und dem Widerlager b verbundenen Stabe.

Die Kupplung der Stangen a mit dem Krafterzeuger und dem Widerlager erfolgt durch die geteilten Muttern c. Das Widerlager b ist der Länge des Versuchsstückes entsprechend auf der wagerechten ebenen Bahn des Grundrahmens verfahrbar mit Hilfe des Motors m und des Vorgeleges n, von dem aus ein Ritzel in die Zahnstange o eingreift. Von den Böcken g zur Unterstützung der Stangen a wird der rechtsstehende gleichzeitig mit verschoben.

- <sup>1</sup>) a) Z. Ver. deutsch. Ing. 1909, S. 1019.
  - b) Rudeloff: "Versuche mit Nietverbindungen und Brückenteilen". Verhandlungen des Ver. z. Beförderung des Gewerbfleißes 1911, Beiheft.
  - c) Rudeloff: "Untersuchung von Druckstäben auf Knickfestigkeit." Desgl. 1912, Heft IX und 1914, Heft III.

Versuche im Eisenbau A 2.

<sup>&</sup>lt;sup>2</sup>) Seydel: "Prüfmaschine von 3000 t Druckkraft für Eisenkonstruktionsteile." Z. Ver. deutsch. Ing. 1912, S. 479.



Der Zylinder d und das mit dem Kolben e verbundene Querhaupt f ruhen beide mit Rollen und Gleitflächen auf der Bahn des Grundrahmens.

Die Übertragung der Kraft auf das Probestück erfolgt beim Druckversuch über die Kugellager h, beim Zugversuch durch die Zugstangen i und k, die dann abweichend von der Darstellung Fig. 1-3 nach rechts bzw. links so verschoben werden, daß ihre Köpfe sich gegen den Zylinder d und das Querhaupt b legen, während die Gewindeenden der Stangen zur Aufnahme der besonderen Einspannteile durch die Druckplatten h hervorragen.

Um bei Längenänderungen der Stangen a möglichst reibungsfreie Verschiebung der letzteren gegen die Stützböcke g zu ermöglichen, ruhen die Stangen in den Böcken auf Rollen.

Zum Zurückführen des Kolbens in den Zylinder nach beendetem Versuch dienen zwei im Querhaupt f angeordnete Rückzugzylinder lund zum Vernichten der beim plötzlichen Bruch der Probe freiwerdenden Reaktionskräfte zwei Druckwasserbremsen p, deren Scheibenkolben mit den Stangen a verbunden sind.

Das Druckwasser zum Betrieb der Maschine wird der letzteren aus einem Gewichtsakkumulator zugeführt, den eine dreifachwirkende Pumpe speist; sie ist elektrisch betrieben und wird je nach Bedarf selbsttätig ein- und ausgerückt. Der erzeugte Wasserdruck beträgt 400 at.

Die Belastung (Zug- oder Druckkraft) wird aus dem Wasserdruck im Arbeitszylinder d und der Kolbenfläche F(F = 7918 qcm) berechnet und hierbei der durch Reibung verursachte Leergangswiderstand in Abzug gebracht.

### II. Gegenstand der Untersuchung.

Die Versuche, über die nachstehend berichtet wird, bezweckten die Prüfung der 3000-t-Maschine auf:

1. ihre Betriebssicherheit und

2. Richtigkeit der Kraftbestimmung.

Zugleich sollten die Versuchsstücke, soweit sie ausgeführten Baugliedern nachgebildet waren, erprobt werden.

Die Betriebssicherheit der Maschine ist bedingt sowohl durch die Beherrschung der Zuführung des Druckwassers aus dem Gewichtsakkumulator zum Arbeitszylinder bei Einstellung der gewünschten Belastung, als auch durch die Widerstandsfähigkeit der einzelnen Maschinenteile gegen die beim Versuch auftretenden Beanspruchungen.

Die Einstellung der Belastung erfolgt mit Hilfe von Ventilen q, Fig. 2, unter Beobachtung des jeweils im Zylinder erzielten Wasserdruckes an Manometern. Die Handhabung der Ventile hat sich als durchaus zuverlässig erwiesen, so daß in dieser Beziehung keine Ausstellungen zu machen waren.

Die Genauigkeit der Druckmessung war anfänglich dadurch beeinträchtigt, daß die Manometer an die Zuleitung r des Druckwassers zum Arbeitszylinder angeschlossen waren. Hiermit war der Mangel verbunden, daß beim schnellen Durchfluß des Druckwassers durch die Leitung die Höhe des Druckes infolge Druckgefälles in der langen engen Rohrleitung zwischen der Anschlußstelle des Manometer und dem Zylinder von den Manometern zu hoch angezeigt wurde. Richtige Druckanzeigen erhält man bei dieser Rohranordnung erst dann, wenn die Kraftäußerung der Maschine mit der Belastung des Probestabes im Gleichgewichtszustande ist, der Kolben des Arbeitszylinders also zum Stillstande gekommen ist. Bei den Versuchen kommt es aber darauf an, den Druck auch nach Überschreitung der Streckgrenze der Probe also auch bei Bewegung des Kolbens gegen den Zylinder und somit bei dauernd nachfließendem Druckwasser zu beobachten. Daher wurde die Rohrleitung derart geändert, daß die Hauptleitung unmittelbar vom Akkumulator zum Arbeitszylinder der Maschine geführt und von letzterem eine besondere Leitung zu den Manometern abgezweigt wurde. Die Abzweigung erfolgte von einem Stutzen aus, der im Scheitel des liegend angeordneten Zylinders zum Entlüften des Zylinders vorhanden war.

Die Prüfung der einzelnen Maschinenteile auf genügende Widerstandsfähigkeit gegen die beim Versuch auftretenden Beanspruchungen konnte nur durch die Prüfung geeigneter Proben mit hinreichend hoher Bruchfestigkeit erfolgen. Die Ergebnisse solcher Prüfungen bilden im wesentlichen den Gegenstand dieses Berichtes. Zugleich ist bei diesen Prüfungen aber darauf Bedacht genommen, auch die Richtigkeit der Kraftanzeige bzw. deren Fehler festzustellen. Hierzu sind bei Prüfung einiger Probestäbe deren elastische Dehnungen ermittelt, aus ihnen die von der Maschine geäußerten Kräfte, die Belastungen, berechnet und letztere mit den Belastungswerten in Vergleich gestellt, die sich durch Berechnung aus dem Wasserdruck und Kolbenfläche ergaben. Da es nun ohne beträchtlichen Kostenaufwand nicht möglich ist, geeignete Kontrollstäbe dauernd bereit zu halten, so erschien es angebracht auch die Formänderungen einiger Maschinenteile mit zu beobachten, um tunlichst in ihnen ein Mittel zur dauernden Kontrolle der Kraftanzeige zu schaffen. Am geeignetsten erschienen hierzu die beiden Spindel a, die den Kraftschluß zwischen dem festen Widerlager der Maschine und dem hydraulischen Krafterzeuger bilden, sowie die Zugstange i, an die beim Zugversuch das eine Ende der Probe angeschlossen wird. Sofern diese Maschinenteile die dem Probestabe erteilte Belastung voll aufnehmen, bietet ihre elastische Längenänderung einen Maßstab zur Bestimmung der Belastung  $P_1$ , indem dann letztere sich berechnet nach der Gleichung:

$$P_1 = \frac{\lambda}{l} f \cdot E ,$$

wenn  $l = \det$  Meßlänge,

 $\lambda = \det$  Dehnung für l,

f = dem beanspruchten Querschnitt und

E = dem Elastizitätsmodul des Materials

ist.

Zur Ausübung der vorbezeichneten Kraftkontrolle mußte also der Elastizitätsmodul des Materials der Spindeln *a* und der Zugstange *i* bekannt sein. Um ihn zu ermitteln und zugleich Aufschluß über die übrigen Festigkeitseigenschaften des Materials zu erlangen, sind zu den einzelnen Teilen der Spindeln und der Zugstangen Zerreißproben mitgeliefert; ihre Prüfung ergab die in Tabelle 23 zusammengestellten Werte.

Zur Prüfung der Maschinen dienten folgende Stäbe:

- 1. zwei Druckstäbe, Fig. 5 und 21, gez. 68 und 69;
- 2. ein genieteter Zugstab, Fig. 42, gez. 76;
- 3. zwei Stäbe aus geschmiedetem Stahlguß, Fig. 46 und 47, gez. 80 und 81 für 500 und 1000 t und
- 4. ein genieteter Zugstab, Fig. 54, gez. 70.

Bei den Druckversuchen erschien es zulässig sogleich auf hohe Beanspruchungen der Maschine zu gehen, da zu erwarten war, daß die Druckstäbe unter örtlichem Ausbiegen allmählich ohne Stoß zu Bruch gehen würden. Bei den Zugversuchen war dagegen mit plötzlichem Bruch zu rechnen. Dabei mußten aber die mit den Spindeln averbundenen Druckwasserbremsen p mit in Mitleidenschaft gezogen werden. Wenn nun auch die Sicherheit dieser Bremsen gegen Bruch durch die Berechnung nachgewiesen war, so erschien es dennoch ratsam, bei den Zugversuchen nicht sogleich auf die höchste Kraftleistung der Maschine von 1500 t zu gehen, sondern mehrere Zugversuche mit Stäben verschiedener Festigkeit auszuführen und hierbei mit den schwächeren Stäben zu beginnen. Auf diesem Wege war es zugleich möglich zu ermitteln, ob es erforderlich ist, die Ventile der Bremsen für verschiedene Bruchlasten verschieden weit zu öffnen, oder ob es zulässig ist, bei allen Versuchen mit völlig geöffneten Ventilen zu arbeiten.

## III. Prüfung von Druckstäben.

Die Stabenden stützten sich bei der Prüfung gegen die mit Kugellager ausgerüsteten Druckplatten h, Fig. 1, von der in Fig. 4 im einzelnen dargestellten Anordnung. Die Kugelschale a des einen Drucklagers ist mit dem feststehenden Widerlager der Maschine, die des anderen Drucklagers mit dem Kolben des die Druckkraft erzeugenden Arbeitszylinders verbunden; gegen den Kugelabschnitt b liegt die Druckplatte. Das Eigengewicht der Platte ist durch auf Rollen laufende Stütz-

lager c gegen das Maschinengestell abgefangen. Diese Stützlager sind durch Stangen mit den Querhäuptern b und f, Fig. 1, verbunden, so daß sie deren, wagerechten Verschiebungen folgen. Die Stützflächen der Lager c, Fig. 4, sind ebenfalls kugelig ausgebildet; ihr Drehpunkt fällt mit dem Kugelmittelpunkt der Drucklager zusammen.

Um den Bewegungswiderstand in dem Drucklager möglichst gering zu gestalten, ist der Kugelabschnitt bam Umfange durch einen ringförmigen Stulp gegen die Schale a abgedichtet und der so zwischen beiden abgeschlossene Raum wird beim Versuch mit Druckwasser gefüllt gehalten. Hierzu dient der Druckübersetzer dmit dem Verhältnisse der Kolbenflächen von 7 : 4, sein kleiner Kolben wirkt auf die Füllung des Kugellagers,



während sein großer Kolben unter dem gleichen Druck steht, der im Arbeitszylinder herrscht. 7:4 ist das Verhältnis der Flächen des Maschinenkolbens und des Kugellagers.

Um sicher zu sein, daß nicht etwa infolge von Undichtigkeit Entleerung der Kugellager eintrat und nun die Kugelflächen unmittelbar zum Auflager kamen, ist der Flüssigkeitsdruck in den Kugellagern während des Versuches an einem nachträglich angebrachten Manometer dauernd beobachtet und die Füllung des Druckübersetzers nach Bedarf erneuert, wozu der Probestab dann vorher entlastet wurde.

#### A. Prüfung des Stabes 68.

Der Probestab ist dem Gurtungsstück einer bestehenden Brücke nachgebildet, dessen Belastung in der Brücke zu  $P_b = 860$  t berechnet ist. Seine Abmessungen und Konstruktion zeigt Fig. 5.

Hiernach besteht der Stab im wesentlichen aus vier Stegblechen a, vier Saumwinkeln b und dem Deckblech c. Durch zwei Querschotten ist die Stablänge in drei Felder geteilt, das mittlere mit 2520 mm, die beiden Endfelder mit 2358 mm Länge. Die Querschotten bestehen aus einem Blech von 10 mm Dicke, das durch Winkel  $\left(\frac{80 \cdot 100}{10}\right)$  einseitig an die Stegbleche, dem Deckblech und die unteren Saumwinkel angeschlossen ist (s. a. Fig. 17). Auf der unteren offenen Seite des Stabprofils sind Diagonalverstrebungen angebracht, von denen immer die eine aus einem einfachen Flacheisen von  $80 \cdot 10$  mm Querschnitt, die andere aus einem Winkeleisen  $\left(\frac{40 \cdot 80}{8}\right)$  besteht. Diese Winkeleisen sind so angeordnet, daß der eine Schenkel in die Profilöffnung hineinragt. Hierzu sind die Enden dieses Schenkels fortgeschnitten.



Um den Stab mit möglichster Genauigkeit so in die Maschine einbauen zu können, daß seine Schwerpunktsachse mit der Achse der Maschine, d. h. der Verbindegeraden zwischen den Mittelpunkten der beiden Drucklager, zusammenfiel, war auf die beiden Endflächen des Stabes je eine Platte von 25 mm Dicke aufgenietet, die auf der Außenfläche einen zur Stabachse zentrierten, zylindrischen Ansatz trugen. Diese Ansätze paßten in die Bohrungen hinein, die in den Druckplatten angebracht sind (s. Fig. 1 und 4). Zur Schonung der Druckplatten war zwischen ihnen und dem Stabe noch eine 12 mm dicke Stahlplatte eingefügt (s. Fig. 9, rechts).

Die Endflächen des Stabes waren durch Fräsen so bearbeitet (s. Fig. 5 c), daß nur die 4 Stegbleche a, die vier Saumwinkel b und das Deckblech c mit 846,4 cm<sup>2</sup> Gesamtdruckfläche zur Anlage kamen. Die übrigen Endglieder des Stabes traten um einige Millimeter von der Druckfläche zurück, nahmen also an der unmittelbaren Kraftübertragung nicht teil.

Das Eigengewicht des Stabes war nach dem Vorschlage des Herrn Baurat Dr. Ing. Seifert gegen das Maschinengestell durch einen Satz Federn abgefangen, die in der Mitte unter dem Stabe angebracht waren (s. Fig. 9 und 17). Die Anord-

6

nung dieser federnden Stütze zeigt Fig. 6. Sie besteht im wesentlichen aus den 3 Federn A mit zwischengelegten Blechscheiben. Die unterste Feder stützt sich gegen den Balken B, der mit den Enden auf dem Maschinenrahmen aufliegt. Durch das Ganze geht das Rohr C hindurch, das an den Enden mit Außengewinde versehen ist und mit der oberen Endfläche gegen das mit dem Probestabe verbundene Druckstück D wirkt (s. a. Fig. 17). Durch Niederschrauben der Muttern E werden die Federn bis zu der gewünschten Tragkraft angespannt. Mit dem Stabe sind zwei solche Federn geliefert. Vor ihrer Verwendung sind sie mehrfachen Belastungsversuchen unterworfen, bei denen die Beziehungen zwischen Belastung und Zusammendrückung ermittelt sind (s. Tab. 1 und Fig. 7). Nach ihnen ist die Anspannung der Federn entsprechend dem von der einzelnen Feder aufzunehmenden Anteil des Eigengewicht des Stabes vor dessen Prüfung bewirkt.

Zum Messen der Zusammendrückung der Feder wurde ein Zeigerpaar, Fig. 6, angebracht. Es blieb auch bei der späteren Verwendung der Federn an diesen sitzen, um dauernd ersehen und feststellen zu können, um wieviel die Federn je nach der Durchbiegung des Probestabes nach oben oder nach unten ungewollt selbsttätig entlastet oder stärker angespannt wurden. Diese Beobachtungen waren erforderlich, um aus ihnen ableiten zu können, in welchem Maße entweder der durch Entspannen der Federn freiwerdende Anteil des Eigengewichtes der Durchbiegung nach oben entgegenwirkte, oder die Durchbiegung nach unten durch Mehranspannen der Stützfedern behindert wurde. — Zur Unterstützung des Stabes 68 ist Feder 1 verwendet.



Bei Prüfung des Druckstabes 68 wurde die Belastung

- stufenweise um je etwa 100 000 kg gesteigert und hierbei jedesmal beobachtet:
  - 1. das seitliche Ausbiegen des Stabes in senkrechter und wagerechter Richtung,
  - 2. das Neigen der Druckplatten (Bewegung der Kugellager),
  - 3. die Verkürzung des Stabes und
  - 4. die Längenänderungen der Stützfedern.



Fig. 7. Beziehung zwischen Belastung und Zusammendrückung der Stützfedern.

#### 1. Das seitliche Ausbiegen des Stabes.

Zur Ermittlung des seitlichen Ausbiegens sind die räumlichen Bewegungen der in Fig. 8 mit 1-8 bezeichneten Meßpunkte mit Rollenapparaten beobachtet.



Fig. 8. Anordnung der Meßstellen bei Stab 68.

Die Rollenapparate waren an einem unabhängig von der Maschine und erschütterungsfrei aufgestellten Holzgestell (s. Fig. 9) senkrecht über oder wagerecht neben dem zugehörigen Meßpunkt angeordnet und die Bewegungen der Meßpunkte wurden



Fig. 9. Probestab 68 mit den Meßapparaten am Holzgestell.

durch Holzstäbe auf die Rollen übertragen. Die Anordnung der Verbindung zwischen dem einen Ende der beiden zusammengehörigen Stäbe und dem Meßpunkt durch Tastspitzen zeigt Fig. 10; am anderen Ende lagen die wagerechten Stäbe, hinreichend belastet, auf den Rollen auf. Die senkrechten Stäbe waren durch Spiralfedern gegen die Rollen gepreßt.

Die Meßpunkte 1, 4 und 7 sowie 2, 5 und 8 (s. Fig. 8) lagen auf dem oberen Deckblech, und zwar über der Mitte der äußeren Stegbleche. Die Meßpunkte 3 und 6

waren an den aus Fig. 8 ersichtlichen Stellen an den abstehenden Schenkeln der Saumwinkel angebracht, um festzustellen, ob hier infolge örtlicher Formänderungen andere Bewegungen eintraten als an den Stellen 4 bzw. 5.

Die für die Meßstellen 1, 7, 4 und 2, 8, 5 beobachteten Bewegungen sowie die hieraus berechneten wagerechten, senkrechten und Gesamtausbiegungen des Stabes enthält Tab 2. Aus den hiernach in Fig. 11 verzeichneten Schaulinien ist zu ersehen, daß die Gesamtausbiegung des Stabes (Fig. 11 A) bis zu etwa 1641 t Belastung dieser annähernd proportional und nur gering war. Bei

der nächsten Laststufe, d. h. unter 1761 t, bog der Stab dann plötzlich stark durch, und zwar nahm die Durchbiegung unter

dieser Belastung bis zum Einknicken ständig zu. Fig. 11 B läßt in dem Verlauf der voll ausgezogenen Linie ferner erkennen, daß die Durchbiegung auf der Meß-

strecke 1, 4, 7 bis zu 1227 t nach rechts oben gerichtet war, dann aber bei steigender Belastung ihre Richtung änderte, so daß der Stab schließlich nach links oben einknickte, die in der Maschine nach unten gelegene offene Seite des Profils also die größte Druckbelastung erfuhr. Längs der Meßstrecke 2, 5, 8 (gestrichelte Linie Fig. 11 B) war die Durchbiegung nach oben bei den gleichen Belastungen anfänglich etwas größer als längs der Meßstrecke 1, 4, 7; der Stab erlitt hiernach eine geringe Verwindung. Im übrigen war die Durchbiegung längs der beiden Meßstrecken  $\mathbf{im}$ allgemeinen gleich gerichtet; die Umkehr der wagerechten Durchbiegung von rechts nach links trat auch bei der Strecke 2, 5, 8 unter 1227 t Belastung ein.

Fig. 12 zeigt, daß die Bewegungen der Meßpunkte 5 und 6

(s. Fig. 8) in senkrechter Richtung nur wenig voneinander verschieden waren; dagegen war die wagerechte Bewegung von Punkt 6 nach Fig. 13 erheblich größer als die von Punkt 5. Hieraus folgt, daß das Stegblech mit dem unteren





Fig. 10. Anordnung der Tastspitzen.

Saumwinkel b (Fig. 5 c) sich nach außen abbog. Bei Belastungen über 1600 t drehte die Biegungsrichtung um, und nach dem Einknicken des Stabes betrug der größte lichte Abstand zwischen den Stegblechen an der Knickstelle nur 53,0 cm gegen ursprünglich 55,4 cm.

Die senkrechten nach oben gerichteten Bewegungen der beiden Meßpunkte 3 und 4 (s. Fig. 8) weichen nach Fig. 14 wie die der Punkte 5 und 6 (s. Fig. 12) ebenfalls nur wenig voneinander ab.

t Belastung t Belastung 1800 1800 5 60 1600 1600 1400 1400 1200 1200 1000 1000 800 800 600 600 400 400 200 200 n 0.5 2,5 mm 3,0 1.0 2,0 - 0,5 1.0 mm 1,5 -11 0.5 Äusbiegén Ausbiegen Fig. 12. Beobachtungen an den Meßpunkten 5 u. 6. Fig. 13. Beobachtungen an den Meßpunkten 5 u. 6. Senkrechtes Ausbiegen. Wagerechtes Ausbiegen.

Die höchste erreichte Belastung betrug 1862,2 t.

#### 2. Das Neigen der Druckplatten.

Bis zu der Belastung von 1641 t waren keine nennenswerten Schrägstellungen der Druckplatten wahrzunehmen. Dagegen folgten die Druckplatten unter 1760 t Belastung den Schrägstellungen der Endflächen des nach oben ausbiegenden Stabes. Die gegen den Kolben wirkende Platte neigte sich im Bilde Fig. 9 oben nach links, die Platte am festen Widerlager oben nach rechts.

#### 3. Die Verkürzung des Stabes.

Die Verkürzung des Stabes unter der Druckbeanspruchung ist aus der Annäherung der beiden Druckplatten aneinander ermittelt. Hierzu sind an den Seitenflächen der Druckplatten in Höhe der Maschinenachse wagerechte Maßstäbe befestigt (s. Fig. 9) und die Bewegung dieser Maßstäbe gegen Zeiger beobachtet, die an dem Holzgestell, also im Raum feststehend, angebracht waren. Nach den erzielten

Prüfung von Druckstäben.

t Belastung

1800

1600

1400

1200

1000

800

Ergebnissen (s. Tab. 3) ist die Schaulinie Fig. 15 auf-Die Beobachgetragen. tungen schließen sich bis zu etwa 1227 t Belastung an die geradlinige, punktierte Ausgleichslinie gut an; von da ab wächst aber die Längenabnahme des Stabes schneller als die Belastung. Die Druckspannung bei 1227 t Belastung beträgt 1420 kg/qcm, die zugehörige Verkürzung 0,53 cm. Aus diesen Werten und der Meßlänge von 723,6 cm würde der Elastizitätsmodul sich zu



10 mm 12

 $E = \frac{1420 \cdot 723,6}{0,53}$ ≌ 1940000 kg/qcm berechnen. t Belastung 1800 1600 1400 1200 1000 800 600 400



2,0

2,5 mm 3,0

2 .1

**2**00



8

#### 4. Längenänderungen der Stützfeder.

Die Stützfeder, die zum Ausgleich des Eigengewichtes in der Mitte unter dem Stabe angebracht war (s. Fig. 17), war nach dem Antrage ursprünglich mit 2,5 t angespannt. Entsprechend der Durchbiegung des Probestabes nach oben, verlängerte die Feder sich mit fortschreitender Belastung. Den Verlauf ihrer Verlängerung, beobachtet an dem an der Feder angebrachten Zeigerpaar (s. Fig. 6), zeigt Fig. 16.

Bei Erreichung der Belastung von 1760,9 t, unter der die letzten Beobachtungen stattfanden, betrug die Verlängerung der Feder 1,1 mm. Ihre hiermit verbundene Entspannung berechnet sich mit den Werten Tab. 1 nach dem Verhältnis 1:43,3=1,1:x, zu x=48 kg. Mit diesem Betrage wirkte also das Eigengewicht des Stabes seinem Ausbiegen entgegen. Der Betrag wuchs im weiteren Verlauf der Ausbiegung unter gleichbleibender Druckbelastung entsprechend der Federdehnung um 3,4 mm auf 43,3. 3,4=147 kg. Dieser Betrag ist so gering, daß er für den Verlauf des Versuches als belanglos angesehen werden kann.



Fig. 17. Stab nach dem Ausknicken in der Maschine.

#### 5. Zerstörungserscheinungen an dem eingeknickten Stabe.

Lichtbild Fig. 17 zeigt den eingeknickten Stab in der Maschine. Eingeknickt ist der wagerechte Schenkel des unteren Saumwinkels (s. a. Fig. 18) und an derselben Stelle (s. Fig. 19) sind die beiden Stegbleche von dem Winkel abgebogen. Diese Knickstelle liegt nicht in Stabmitte, wohl aber im mittleren Felde, und zwar zwischen den Anschlußstellen der beiden sich kreuzenden, auf der offenen Seite des Stabprofils angebrachten Diagonalverstrebungen. Von letzteren ist die im Bilde Fig. 19 oben gelegene das schon oben erwähnte einfache Flacheisen, die untere das Winkeleisen, dessen einer Schenkel im Bereich der Auflagefläche auf den Saumwinkel fortgeschnitten ist. Durch dieses Entfernen des einen Schenkels ist der Winkel derart geschwächt, daß er der Druckbeanspruchung bei Stauchung des Stabes und dem Einwärtsbiegen des Saumwinkels bei b nicht widerstand, sondern im Bereich des ge-



Fig. 18. Seitenansicht des eingeknickten Saumwinkels.



Fig. 19. Abbiegen der Stegbleche von dem Saumwinkel an der Knickstelle.



Fig. 20. Knickstelle des Winkels der Diagonalverstrebung bei a.

schwächten Teiles hinter den Anschlußnieten bei a einknickte. Fig. 20 zeigt diese Knickstelle in der Seitenansicht.

Seite 9 ist auf Grund der Durchbiegungsmessungen dargelegt, daß der Stab im ganzen nach oben, d. h. nach dem Deckblech hin sich durchbog, so daß die nach unten gelegenen Saumwinkel auf der offenen Profilseite die größten Druckbeanspruchungen erlitten. Letztere waren daher in der Nähe der Meßstellen 6, Fig. 8 besonders groß. Fig. 13 läßt nun erkennen, daß die Meßstelle 6 sich mit wachsender Belastung zunächst immer mehr von der Achse des Stabes entfernte. Leider ist 6 der einzige Beobachtungspunkt auf dem unteren Saumwinkel, so daß der Verlauf der seitlichen Durchbiegung dieses Saumwinkels nicht durch Beobachtungen nachgewiesen ist. Man wird aber nicht fehlgehen, wenn man allein aus der Bewegung von 6 darauf schließt, daß der untere Saumwinkel, wenn nicht in seiner ganzen Länge, so doch innerhalb des mittleren Feldes nach außen sich durchbog. Hierdurch ist dann aber die große Randspannung in diesem Saumwinkel, die mit der Durchbiegung des Stabes nach oben verbunden war, wieder vermindert worden. Nun zeigt Fig. 13 weiter, daß die Bewegung des Punktes 6 nach außen (rechts) bei über 1600 t Belastung in starke Bewegung nach innen (links) überging. Hiermit war aber eine Steigerung der Randdruckspannung im Saumwinkel verbunden und damit erklärt sich zwanglos, daß die Zerstörung des Stabes durch Einknicken dieses am stärksten beanspruchten Saumwinkels erfolgte.

Mit dem örtlichen Einknicken war nun weiter verbunden, daß die elastischen Stauchungen (Verkürzungen infolge Druckspannungen) des Saumwinkels, die vorher vielleicht über dessen ganze Länge gleichmäßig verteilt waren, sich unter mehr oder weniger weitgehender Entlastung des übrigen Teiles der Länge auf die Knickstelle konzentrierten und somit die Stauchung des knickenden Saumwinkels im mittleren Felde noch stark steigerten. Die Stegbleche mußten die gleich starke Stauchung erleiden. Sie hatten aber durch das örtliche Einbiegen des Saumwinkels bereits eine örtliche Ausbiegung nach der Stabachse hier erfahren und damit erklärt sich auch, daß die Stauchung der Stegbleche in starkem örtlichen Ausbiegen, und zwar neben der Knickstelle des Saumwinkels sich kundgab.

Das Niet c Fig. 18 hielt der beim Ausknicken der Stegbleche in ihm auftretenden starken Zugbeanspruchung stand, dehnte sich nicht merklich und hinderte das vollständige Loslösen des Stegbleches von dem Saumwinkel.

#### 6. Zugversuche mit Materialproben aus Stab 68.

Zur Feststellung der Festigkeitseigenschaften des Materials des Stabes 68 sind zehn Zugversuche ausgeführt, zu denen die Proben von dem Werk mit eingeliefert waren, und zwar je vier Proben aus den Saumwinkeln b und den Stegblechen a, sowie je ein Stab aus dem Deckblech c, sowie zu den Querblechen.

Aus den Ergebnissen (Tab. 4) zeigt sich, daß die einzelnen Stabteile aus Material von verschiedenen Festigkeitseigenschaften bestehen. Die Festigkeit der Stegbleche bleibt mit  $\sigma_B = 3420 \text{ kg/qcm}$  hinter der in den "Normalbedingungen" geforderten Mindestfestigkeit von 3700 kg/qcm zurück. Das Material der Saumwinkel genügt mit der mittleren Festigkeit von 3760 kg/qcm den "Normalbedingungen" gerade, während die Zugfestigkeit des Deckbleches und der Querbleche sich mit  $\sigma_B = 4240$ und 4280 kg/qcm dem oberen Grenzwerk der "Normalbedingungen" nähern. Ähnliche Unterschiede zeigen die Werte für die Streckgrenze.

#### 7. Vergleich der beobachteten Knickkraft mit der berechneten.

#### a) Die reine Druckfestigkeit.

Bei den im Abschnitt 6 dargelegten Festigkeitsunterschieden und den verschieden großen Anteilen, die die einzelnen Glieder an dem Gesamtquerschnitt des Stabes haben, erscheint es nicht zulässig, die Tragfähigkeit des Stabes als reine Druckfestigkeit mit der mittleren Materialfestigkeit zu berechnen, vielmehr ist es angebracht, der Berechnung die Einzelquerschnitte der verschiedenartigen Glieder und deren ermittelte wirkliche Festigkeiten zugrunde zu legen. In Frage kämen hierbei strenggenommen die Materialspannungen an der Quetschgrenze (Fließgrenze unter Druckbeanspruchung). Diese sind indessen nicht ermittelt; man wird daher die Werte für die Streckgrenzen  $\sigma_s$  in die Rechnung einzusetzen haben und hierzu um so mehr berechtigt sein, als die Spannungen an der Quetschgrenze und Streckgrenze nicht wesentlich verschieden zu sein pflegen und es auch allgemeiner Gebrauch ist, den Festigkeitsberechnungen der Konstruktionen die Ergebnisse des Zugversuches zugrunde zu legen. Die Berechnung gestaltet sich dann wie folgt:

| 4 Stegbleche: | Querschnitt | f = | $4 \cdot 70 \cdot 1,7 \text{ cm} = 476,0 \text{ qcm}$ | $\sigma_s = 2023$   | kg/qc | m; | Druckfestigkeit = | =   | 962,9 t  |
|---------------|-------------|-----|-------------------------------------------------------|---------------------|-------|----|-------------------|-----|----------|
| 4 Winkel:     | "           | f = | $4 \cdot 51,8 \text{ qcm} = 207,2$ ,                  | $\sigma_s=2608$     | ,,    | ;  | ,, =              | =   | 540,4 t  |
| 1 Deckblech:  | ,,          | f = | $96 \cdot 1,7 \text{ cm} = 163,2 ,,$                  | $\sigma_{s} = 2700$ | ,,    | ;  | ,, =              | =   | 440,6 t  |
| Insgesamt:    | Querschnitt | =   | 846,4 qcm                                             |                     |       |    | Druckfestigkeit = | = ] | 1943,9 t |

Dieser berechneten Druckfestigkeit von 1943,9 t stehen gegenüber die beobachtete Belastung von 1761 t, bei der das starke Ausbiegen des Stabes begann, sowie die erreichte Höchstlast von 1862,2 t. Die erstere beträgt 90,6%, die letztere 95,8% der errechneten reinen Druckfestigkeit, entsprechend dem Verlust an Materialfestigkeit von 9,4% und 4,2% in der Konstruktion.

Mit den aus Tab. 4 ersichtlichen Materialspannungen  $\sigma_P$  an der Proportionalitätsgrenze berechnet sich die Tragfähigkeit:

| $\operatorname{der}$ | 4 | Stegbleche mit | f =        | 476,0 | $\mathbf{qcm}$ | und | $\sigma_P =$ | 1620 | kg/qcm | zu | 771,1 t |
|----------------------|---|----------------|------------|-------|----------------|-----|--------------|------|--------|----|---------|
| $\operatorname{der}$ | 4 | Winkel mit     | f =        | 207,2 | ,,             | ,,  | $\sigma_P =$ | 2345 | ,,     | ,, | 485,9 t |
| ${\rm des}$          | D | eckbleches mit | <i>f</i> = | 163,2 | ,,             | ,,  | $\sigma_P =$ | 1460 | ,,     | ,, | 238,3 t |

und demnach die Tragfähigkeit des Stabes an der Proportionalitätsgrenze zu 1495,3 t

Beobachtet sind nach Fig. 15 für diese Grenze 1227 t. Demnach beträgt der beobachtete Wert 82.1% des berechneten.

Mit dem Gesamtquerschnitt und den Kleinstwerten für  $\sigma_P = 1460$  und  $\sigma_S = 2023$  ergebeu sich 1236 und 1712 t. Diese Werte liegen den beobachteten sehr nahe.

#### b) Die Knickfestigkeit.

Ermittelt man für den untersuchten Stab mit

| dem Querschnitt               |   |  |   | • | • • | <br>$F = 846,4  { m qcm},$            |
|-------------------------------|---|--|---|---|-----|---------------------------------------|
| dem kleinsten Trägheitsmoment |   |  | • |   | •   | <br>$J = 560 \ 100 \ \mathrm{cm}^4$ , |
| der Länge                     | • |  |   |   | •   | <br>$l=788~{ m cm}$ und               |
| dem Verhältnis                |   |  |   |   |     | <br>$\frac{l}{i} = 30,63$             |

die Knickkraft P nach Euler, wie es von der ausführenden Bauanstalt geschehen ist, sowie nach Tetmajer, so ergeben sich solgende Werte für P:

1. nach Euler

 $\alpha$ ) unter der allgemein üblichen Annahme von  $E = 2150\ 000\ \mathrm{kg/qcm}$ 

 $P = \frac{\pi^2 E J}{l^2} = \frac{9,86 \cdot 2150\,000 \cdot 560\,100}{788 \cdot 788} = 19\,122 \text{ t},$ 

Versuche zur Prüfung und Abnahme der 3000-t-Maschine.

 $\beta$ ) mit dem ermittelten Wert (s. Tab. 4)  $E = 2047\ 000\ \text{kg/qcm}$  $P = \frac{9,86 \cdot 2047\ 000 \cdot 560\ 100}{788 \cdot 788} = 18\ 206\ \text{t.}$ 

2. nach Tetmajer ist die Knickspannung

$$\sigma_{\rm K} = \alpha - \beta \, \frac{t}{i} = 3.1 - 0.0114 \cdot 30.63$$
 in t/qcm = 2.751 t/qcm

und demnach:

$$P = \sigma_K \cdot F = 2,751 \cdot 846, 4 = 2330 \text{ t.}$$

Das Verhältnis der beobachteten Knickfestigkeit zur berechneten ist demnach

1. nach Euler 
$$=\frac{1862,2}{19122} = 0,097$$
 oder  $=\frac{1862,2}{18206} = 0,102$ ,  
2. nach Tetmajer  $=\frac{1862,2}{2330} = 0,80$ .

Die rechnungsmäßige Belastung des Stabes 68 in der Brücke beträgt 860 t; die Betriebssicherheit gegen Bruch ist demnach gleich

$$\frac{1862,2}{860} = 2,17$$
.

#### B. Prüfung des Stabes 69.

Der Probestab ist der Endstrebe einer bestehenden Brücke nachgebildet, deren Belastung in der Brücke zu P = 1133 t berechnet ist. Seine Abmessungen und Konstruktion zeigt Fig. 21. Er hat im Querschnitt **H**-Form, die im wesentlichen aus je zwei Stegblechen 1-4, den vier Saumwinkeln *a* und dem Versteifungsblech *b* gebildet wird, das durch die vier Winkel *c* an die nach innen gelegenen Stegbleche angeschlossen ist. Auf die freien Schenkel der Saumwinkel *a* ist je ein Flacheisen aufgenietet, die nicht bis zu den Druckflächen heranreichen. Die beiden Enden des Stabes sind durch Bleche verstärkt, die gegen die Stegbleche gelegt sind und zwar in Fig. 21 am rechten Ende durch je 1 Blech (5 und 6) außen gegengelegt, am linken Ende durch je zwei Bleche (7 u. 8) innen und (9 u. 10) außen gegengelegt.

Die Hauptwerte des Stabes sind:

| Gesamt-Knicklänge             | • | • |   |   | $l=1401,5~{ m cm}$                                                   |
|-------------------------------|---|---|---|---|----------------------------------------------------------------------|
| Brutto-Querschnittsfläche     |   |   |   |   | $F = 1066,4 \; { m qcm}$                                             |
| Kleinstes Trägheitsmoment.    |   |   | • | • | $J=608~657~{ m cm^4}$                                                |
| Kleinster Trägheitshalbmesser | • | • |   | • | $i = \sqrt{rac{J}{F}} = \sqrt{rac{608657}{1066,4}} = 23,2~{ m cm}$ |
| Verhältnis                    | • | • | • | • | $l=rac{l}{i}=60,4$ .                                                |

Zum Einbauen des Stabes in die Maschine derart, daß seine Achse mit der Maschinenachse zusammenfiel, waren wie beim Stabe 68 wieder Platten auf die Stabenden aufgenietet, die mit zylindrischen Ansätzen in die Druckplatten hineinragten.

Die Endflächen des Stabes waren durch Fräsen so bearbeitet, daß die Druckfläche am rechten Ende Fig. 21, nur von den sechs Stegblechen 1-6 und den vier Saumwinkeln a, am linken Ende ausschließlich von den 8 Stegblechen 1-4 und 7 bis 10 gebildet wurde.

Das Eigengewicht des Stabes war gegen das Maschinengestell durch zwei Federsätze (Stützfedern), s. Fig. 6, abgefangen, die in der Mitte unter dem Stabe aufgestellt waren. Hierzu waren unter dem mittleren Versteifungsblech b (Fig. 21) vier Winkel quer zur Stabachse angebracht und zwischen je zwei dieser Winkel mit einem Bolzen die Druckstücke D (Fig. 6) eingefügt; gegen diese Druckstücke wirkte das Gestänge C der Stützfedern.

Die Eichwerte der Federn, nach denen dieselben vor dem Versuch auf je 4 t angespannt sind, (das Eigengewicht des Stabes ist zu 16 t angegeben) enthält Tab. 1.

Bei Prüfung des Stabes wurde die Belastung in Stufen von je etwa 100 t gesteigert und hierbei wurden jedesmal beobachtet:

1. die Längenänderungen an beiden Enden des Stabes zur Bestimmung der Einspannmomente,

2. das seitliche Ausbiegen des Stabes in senkrechter und wagerechter Richtung,

3. das Neigen der Druckplatten (Bewegungen der Kugellager),

4. die Längenänderungen der Stützfedern und

5. die Durchbiegungen und Verkürzungen der beiden Stabhälften, links und rechts von den Stützfedern.

Versuche im Eisenbau A 2.



#### 1. Die Bestimmung der Einspannmomente.

Bei Prüfung des Stabes 68 hatte sich gezeigt, daß die Druckplatten den mit dem seitlichen Ausbiegen des Stabes verbundenen Schrägstellungen seiner Endflächen erst bei Belastungen kurz vor dem Ausknicken gefolgt waren. Es erschien daher notwendig durch besondere Beobachtungen die Einspannmomente festzustellen, die infolge der Bewegungswiderstände der Druckplatten, bezw. der Kugellager auf den Stab einwirkten. Zu diesem Zweck sind die Längenänderungen der Stegbleche an



Fig. 22. Zusammendrückungen an den Enden der Stegbleche. Linkes Stabende.

den beiden Enden und den vier Ecken des Stabes (s. die Meßstellen 12, 14, 16, 18 und 20, 22, 24, 26 in der über Tab. 5 stehenden Figur) mit Martensschen Spiegelapparaten gemessen. Die Enden der Meßstrecken lagen an dem linken Stabende, auf das der Kolben des Arbeitszylinders einwirkte, etwa 12,5 cm und an dem rechten stärkeren, gegen das feste Widerlager sich stützenden Stabende etwa 1,0 cm von den Druckflächen entfernt. Die Meßlängen betrugen links 20 cm und rechts 15 cm. Die Beobachtungen, ausgedrückt in % der Meßlänge, sind in Tab. 5 zusammengestellt und in Fig. 22 und 23 zu Schaulinien aufgetragen.

Zur Berechnung der Einspannmomente aus den beobachteten Zusammendrückungen (Tab. 5) war zunächst festzustellen, auf welche Achse die Momente zu beziehen sind. Zur Erläuterung sind in Fig. 24 als Beispiel die Zusammendrükkungen an den vier Meßstellen 12, 14, 16 und 18 bei 1485 t Belastung als Kantenlängen eines Prismas aufgetragen, dessen Grundfläche die Lage der Meßstellen

zueinander darstellt. Die Neigung der durch Ausgleich oberen erhaltenen Fläche des Prismas stellt hierbei den Verlauf der Spannungsverteilung über die Endfläche des Druckstabes dar. Sind die Zusammendrückungen für die Meßstellen 12 und 14 nahezu gleich groß und ebenso die für 16 und 18, so kann man der Berechnung der Einspannmomente die Annahme zugrunde legen, daß die Druckkräfte von der Kante ab der größten Zusammendrückungen bei 12 und 14 nach der Kante cd gleichabnehmen und der mittlere mäßig Kräfteabfall durch die Linie ef dargestellt wird, die Einspannmomente sind dann auf die Achse m-m zu berechnen, die im vorliegenden Falle mit der Mitte des Versteifungsbleches bFig. 21 zusammenfällt. Die Ordinaten e g und f h berechnen sich in diesem Fall als Mittelwerte aus den beobachteten Ordinaten für a und b bzw. für c und d.

Aus Tab. 5 ersieht man, daß die Längenänderungen der Meßstrecken 12 und 14 sowie 16 und 18 von etwa 800 t Belastung ab bis 1911 t nahezu gleich groß sind. Für das linke, schwächere, am Kolben der Maschine

gelegene Stabende kann also die Mittellinie m-m, Fig. 24, für den Belastungsbereich von 800-1900 t mit hinreichender Genauigkeit als Achse der Einspannmomente angesehen werden.

Wie später im Abschnitt 2 Seite 22 gezeigt ist, begann die bleibende seitliche Ausbiegung des Stabes etwa mit Überschreitung der Druckbelastung von 1134 t. Für diese Belastung berechnet sich das Einspannmoment, bezogen auf die Achse m-m, wie folgt:

Die mittleren Höhenverminderungen e g und f h (Fig. 24) ergeben sich zu





Fig. 23. Zusammendrückungen an den Enden der Stegbleche. Rechtes Stabende.

567=7

+89=C

Fig. 24. Lastverteilung über die Druckfläche.

 $2^*$ 

Versuche zur Prüfung und Abnahme der 3000-t-Maschine.

demnach sind nach Fig. 25 die beobachteten Höhenverminderungen um

$$\Delta \lambda = (\lambda_{bo} - \lambda_{bu}) \frac{1}{2} = (408, 5 - 341, 5) \frac{1}{2} = \pm 33,5\% \cdot 10^{-4}$$

von der mittleren Höhenverminderung verschieden.

Hiernach berechnen sich die beobachteten Materialspannungen bei e und f(Fig. 24) mit dem üblichen Elastizitätsmodul  $E = 2\,150\,000$  zu  $\sigma_b = \frac{\Delta\lambda \cdot E}{l}$  $33\,5 \cdot 2\,150\,000$ 

$$= \pm \frac{33,5 \cdot 2150000}{100 \cdot 10000} = \pm 72 \text{ kg/qcm}$$

größer oder kleiner als die mittlere Spannung.

Die Messungen erfolgten im Abstand c = 37,7 cm von der Mittelebene des Querschnittes (s. Fig. 25), die halbe Höhe des Querschnittes ist h/2 = 40 cm. Demnach berechnen sich die zusätzlichen Randspannungen



Bestimmung des Einspannmomentes.

$$W = \frac{2J}{h} = \frac{2 \cdot 668700}{80} = 16718 \text{ cm}^3;$$

also  $M = W \cdot \sigma_r = 16718 \cdot 76, 4 \cong 13$  mt bei 1134 t Gesamtbelastung.

Führt man die Berechnung in gleicher Weise für 1698 t Belastung aus, so gelangt man mit den Werten der Tab 5 zu dem Einspannmoment  $M \cong 20$  mt.

Bei 2125 t und bei Belastungen unter 800 t sind die beobachteten Zusammendrückungen an den Meßstellen 12 und 14, sowie 16 und 18 erheblich voneinander verschieden, ebenso an dem rechten stärkeren Stabende die beobachteten Zusammendrückungen an den Meßstellen 20 und 22 sowie 24 und 26 bei allen Laststufen. Hieraus ergibt sich, daß für sie keine der beiden Hauptachsen des Querschnittes die Momentenachse ist. Um die Lage der wirklichen Momentenachse angenähert zu ermitteln, ist zunächst diejenige Lage der oberen Endfläche des Prismas (Fig. 24) zu ermitteln, die den vier Werten für die beobachteten Längenabnahmen sich am besten anschließt. Die Schnittlinie dieser oberen mit der unteren Endfläche des Primas gibt dann die Richtung der Momentenachse.

Nachstehend ist als Beispiel die Bestimmung der Momentenachse und des Einspannmomentes für das rechte Stabende und 1698 t Belastung durchgeführt. Hierbei sind zur Vereinfachung der Bezeichnungen die Meßstelle 20 mit a, 24 mit b, 26 mit cund 22 mit d bezeichnet.

Mit den Dehnungswerten der Tab. 5 für die Belastung von 1698 t

$$\lambda_a = -187 \text{ cm } 10^{-5}$$
  
 $\lambda_b = -327 \text{ cm } 10^{-5}$   
 $\lambda_e = -481 \text{ cm } 10^{-5}$   
 $\lambda_d = -249 \text{ cm } 10^{-5}$ 

20

und den Bezeichnungen Fig. 26 a erhält man zur Bestimmung der Lage der oberen ebenen Endfläche des Prismas (Fig. 24) zunächst für die Mittelpunkte  $S_{bd}$  und  $S_{ac}$  der Diagonalen b-d und a-c die Werte

$$\lambda_{bd} = \frac{1}{2}(\lambda_b + \lambda_d) = -288 \text{ cm } 10^{-5}$$
  
 $\lambda_{ac} = \frac{1}{2}(\lambda_a + \lambda_c) = -334 \text{ cm } 10^{-5}$ 

und hieraus für den Schnittpunkt S der Prismenachse mit der oberen Endfläche den Wert

$$\lambda_s = \frac{1}{2} (\lambda_{bd} + \lambda_{ac}) = -311 \text{ cm } 10^{-5}$$

mithin ist die Strecke

und

$$S_{bd}$$
 bis  $S = -23$  cm  $10^{-5}$ 

$$S_{ac}$$
 bis  $S = +23$  cm<sup>-5</sup>.

Die Ausgleichswerte für  $\lambda_a$  bis  $\lambda_d$ zur Erzielung der oberen ebenen Endfläche des Prismas berechnen sich dann wie folgt:

 $\begin{aligned} \lambda'_a &= \lambda_a + 23 = -187 + 23 = -164 \,\mathrm{cm} \, 10^{-5} \\ \lambda'_b &= \lambda_b = 23 = -327 - 23 = -350 \,\mathrm{cm} \, 10^{-5} \\ \lambda'_c &= \lambda_c + 23 = -481 + 23 = -458 \,\mathrm{cm} \, 10^{-5} \\ \lambda'_d &= \lambda_d - 23 = -249 - 23 = -272 \,\mathrm{cm} \, 10^{-5} \end{aligned}$ 

Die Richtung der durch den Punkt S(Fig. 26 a) gehend angenommenen Momentenachse (Nullinie  $\eta$ ), d. h. die Richtung der Schnittlinie der beiden Endflächen des Spannungsprismas ist in Fig. 26a und 26b zeichnerisch ermittelt und ebenso die konjugierte Kraftlinie  $\zeta$ .

Das Trägheitsmoment  $J_{\eta}$  kann hiernach mit genügender Genauigkeit zu  $\frac{1}{2}(J_x + J_y)$  angenommen werden. Hierbei ist der Endquerschnitt des Stabes ohne die Saumwinkel zugrunde gelegt. Die Vernachlässigung der letzteren ist damit



Fig. 26 a u. b. Bestimmung der Momentenachse und der Einspannmomente.

gerechtfertigt, daß sie nicht bis an die Druckfläche heranreichen und innerhalb der Meßstrecke nur mit einem Niet angeschlossen sind.

Die der Berechnung des Momentes zugrunde zu legenden Dehnungswerte  $\lambda_a^m$ ,  $\lambda_b^m$ ,  $\lambda_c^m$  und  $\lambda_d^m$  errechnen sich zu:

$$\lambda_a^m = \lambda_a' - \lambda_s = -164 + 311 = +147 \text{ cm } 10^{-5}$$
  
 $\lambda_b^m = \lambda_b' - \lambda_s = -350 + 311 = -39 \text{ cm } 10^{-5}$   
 $\lambda_c^m = \lambda_c' - \lambda_s = -458 + 311 = -147 \text{ cm } 10^{-5}$   
 $\lambda_d^m = \lambda_d' - \lambda_s = -272 + 311 = +39 \text{ cm } 10^{-5}.$ 

Die im Querschnitt des Versuchsstabes mit den Meßstellen aufgetretenen Randdehnungen sind aus der zeichnerischen Darstellung (Fig. 26b) abgegriffen; sie betragen:

$$\lambda_{\max}^m = +171 \text{ cm } 10^{-5}.$$

Aus diesem Wert berechnet sich

$$\sigma_{\max} = rac{\lambda_{\max}^m \cdot E}{l} = rac{171 \cdot 2150\,000}{100\,000 \cdot 10} = 368 \; \mathrm{kg/qcm}.$$

Mit  $J_x = 3.952500 \text{ cm}^4$ 

$$J_y = 3~784~100~{\rm cm}^4$$

wird  $J_r = \frac{J_x + J_y}{2} = 3\,868\,300 \text{ cm}^4$ 

mit der Länge h' = 166.8 (s. Fig. 26b) ergibt sich:

$$M = \frac{\sigma \cdot 2J_{\eta}}{h'} = \frac{368 \cdot 2 \cdot 3868300}{166,8} \cong 171 \text{ mt.}$$

#### 2. Das seitliche Ausbiegen des Stabes.

Zur Ermittlung des seitlichen Ausbiegens sind die räumlichen Bewegungen der in Fig. 27 mit a-h bezeichneten Meßpunkte mit Rollenapparaten beobachtet, die wie beim Stabe 68 (s. Fig. 9) an erschütterungsfrei aufgestellten Holzgestellen



Fig. 27. Anordnung der Meßstellen zur Bestimmung des seitlichen Ausbiegens beim Stabe 69.

senkrecht über oder wagerecht neben den Meßpunkten angeordnet waren. Die Bewegungen der Meßpunkte wurden wieder durch Holzstäbe auf die Rollen der Apparate übertragen.

Die Meßpunkte a, c, b und d, f, e lagen auf dem oberen Rande der Stegbleche 1 und 3 (Fig. 21),

also auf dem inneren der beiden nebeneinander liegenden durchgehenden Bleche. Die Meßpunkte g und h lagen senkrecht unter c, und zwar g auf der Außenseite des Stegbleches 4 in der Höhe des mittleren Versteifungsbleches b (Fig. 21) und h auf der unteren Fläche des inneren Stegbleches 3.

Für den am linken Ende (Fig. 27 links) neben dem Stabe stehenden Beobachter sind die Bewegungen der Meßpunkte nach oben und nach rechts als + und die Bewegungen nach unten und nach links als - bezeichnet.

Die für die Meßpunkte a, c, b beobachteten Bewegungen sowie die hieraus berechneten wagerechten, senkrechten und Gesamtausbiegungen des Stabes enthält Tab. 6.

Die Bewegungen des Meßpunktes c gegen die Punkte a und b, d. h., den Verlauf des wagerechten und senkrechten Ausbiegens zeigen die nach den Werten der Tab. 6 aufgetragenen Schaulinien (Fig. 28). Neben den Beobachtungspunkten sind die zugehörigen Belastungen niedergeschrieben. Aus dem allgemeinen Verlauf der Linie a für die Gesamtausbiegung unter der Belastung ergibt sich, daß der Stab bei der erstmaligen Belastung mit 2125 t sich um 1,4 mm wagerecht nach rechts und um 0,16 mm nach oben durchgebogen hatte. Unter dieser Belastung schritt die Ausbiegung dann in wagerechter Richtung weiter nach rechts fort, während die senkrechte Ausbiegung umkehrte und sogar negativ wurde, d. h. der Stab sich schließlich nach unten durchbog.

Die bleibenden Durchbiegungen nach dem Entlasten auf etwa 24 t waren nach demVerlauf der Schaulinie b (Fig. 28) schon beim Entlasten nach 1485 t in senkrechter Richtung negativ, d. h. von dieser Belastung ab nach rechts unten gerichtet.

Beim Wiederanheben  $\operatorname{der}$ jeweilig letzten Belastung vor dem Entlasten wurden die erstmalig beobach-Ausbiegungen teten nach oben nicht wieder erreicht, die Schaulinie a (Fig. 28) verläuft daher im Zickzack.

Den Verlauf der den Durchbieaus gungen nach beiden Richtungen resultierenden Gesamtausbiegungen des Stabes mit wachsender Belastung zeigt die vollausgezogene Schaulinie (Fig. 29). Bis zu etwa 1100 t ist die Ausbiegung der Belastung annähernd proportional, bei höherer Inanspruchnahme des



Fig. 28. Ausbiegen des Stabes 69 an der Meßstelle c gegen a und b (Fig. 27).a) Gesamtausbiegung, b) Bleibende Ausbiegung.



Fig. 29. Seitliches Ausbiegen des Stabes 69 zwischen den Meßpunkten *a b c.* • ----- • gesamt, × ---- × bleibend.

Stabes wächst sie in stärkerem Maße als die Belastung und zugleich nimmt auch die bleibende Ausbiegung nach dem Verlauf der gestrichelten Linie (Fig. 29) mit der Belastung allmählich zu. Der Stab unterscheidet sich also in seinem Verhalten gegen seitliches Ausbiegen ganz wesentlich von dem Stabe 68, der fast plötzlich ausbog (s. Fig. 11).

Fig. 30 zeigt das wagerechte Ausbiegen des Stabes zwischen den Meßpunkten a b und d e. Der allgemeine Verlauf ist für beide Schaulinien der gleiche. Innerhalb



beider Meßstrecken erfolgte das Ausbiegen nach rechts; es war aber für die Meßstrecke a b c (s. a. Tab. 6) größer als für die Strecke d e f (s. a. Tab. 7). Hieraus folgt, daß die lichte Weite zwischen den Stegblechen (s. Fig. 21) beim seitlichen Ausbiegen des Stabes zunahm.

Fig. 31 gibt den Vergleich für die wagerechten Bewegungen der drei an demselben Stegblech senkrecht untereinander gelegenen Meßpunkte c, g und h (s. Fig. 27). Bei Belastungen über 1000 t bewegten sich alle drei Meßpunkte, entsprechend dem wagerechten Ausbiegen des Stabes, nach rechts. Punkt c hatte diese Bewegungsrichtung vom Beginn des Belastens an, während die Punkte g und h sich anfänglich nach links bewegten. Für den Punkt g, der in Höhe des mittleren Versteifungsbleches lag, war die seitliche Bewegung bis etwa 1200 t nur sehr gering. Dies dürfte als Beweis dafür angesehen werden können, daß die Achse des Stabes bis 1200 t keine wesentliche wagerechte Ausbiegung erlitt und die seitlichen Ausbiegungen, die vorher innerhalb der Meßstrecken a, b, c und d, e, f beobachtet worden sind (s. Fig. 30), im wesentlichen darauf zurückzuführen sind, daß die Stegbleche sich schief stellten. t Belastung



Fig. 31. Wagerechte Bewegungen der Meßpunkte c, g und h.

Hierbei ging der Meßpunkt c am oberen Rande dauernd nach rechts, also in bezug auf das H-förmige Profil nach außen, Punkt h dagegen anfänglich nach links, also nach innen.

Die wagerechten Bewegungen der in dem mittleren Stabquerschnitt liegenden Punkte c und f (s. Fig. 27) waren nahezu gleich groß (s. Fig. 32). An den Stabenden waren die Bewegungen bei a etwas größere als bei d (s. Fig. 33) und bei e wesentlich größer als bei b (s. Fig. 34).

#### 3. Das Neigen der Druckplatten.

Das Neigen der Druckplatten um die wagerechte Mittellinie der Druckfläche ist mit Wasserwagen beobachtet, die auf die obere Fläche der Platten aufgesetzt waren. Für den vor dem Stab stehenden Beobachter sind die Neigungen nach links als negativ und die Neigungen nach rechts als positiv bezeichnet. Versuche zur Prüfung und Abnahme der 3000-t-Maschine.

Der Verlauf der Neigungen beider Platten ist durch die Schaulinien (Fig. 35) dargestellt (s. a. Skizze über der Fig. 35). Aus dem Verlauf dieser Linien erkennt man, daß die linke gegen den Kolben gestützte Platte sich anfänglich mit wachsender Belastung nach links neigte, zwischen 500 und 1700 t nahezu fest stand und bei höheren Belastungen sich nach rechts neigte. Die rechte, gegen das feste Widerlager gestützte Platte neigte sich von 400 t ab zunächst etwas nach rechts und dann mit Überschreitung von 1700 t nach links.



Fig. 32. Wagerechte Bewegungen der Meßpunkte c und f.

Diese Bewegungen der beiden Druckplatten entsprechen im allgemeinen den mit dem beobachteten Ausbiegen des Stabes in senkrechter Richtung verbundenen Schiefstellungen seiner Endflächen. Nach Fig. 28 fand bis zu etwa 1700 t Belastung Ausbiegen nach oben statt; dem entspricht die nach oben divergierende Einstellung der Platten und mit der Umkehr des Ausbiegens des Stabes fiel auch die Umkehr in der Neigung der Platten zusammen.

Auch die unter Abschnitt 1 besprochenen Stauchungen der Stegbleche an den Stabenden stimmen wenigstens für das linke schwächere Stabende mit den Bewegungen der Druckplatte überein. Solange die Platte hier oben nach links hinübergedrückt wurde, mußte die Druckspannung im oberen Teil des Stabquerschnittes größer sein als im unteren und tatsächlich sind, wie Fig. 22 zeigt, für die oben gelegenen Meßstrecken 12 und 14 größere Zusammendrückungen beobachtet als für die unteren Meßstrecken 16 und 18. Bei Belastungen über 1900 t, d. h. nachdem die Neigung der Druckplatten eine Umkehr erfahren hatte, trat auch Ausgleich in den Stauchungen der Stegbleche oben und unten ein.

An dem rechten, stärkeren Stabende stimmt der Unterschied in den Stauchungen der Stegbleche mit der Neigung der Druckplatten nicht überein. Nach der letzteren und entsprechend der anfänglichen Durchbiegung des Stabes nach oben hätte man für die oben gelegenen Meßstrecken 20 und 22 (s. Fig. über Tab. 5) auch die





größeren Stauchungen erwarten sollen, während gerade das Material innerhalb der unten gelegenen Meßstrecken 24 und 26 stärker gestaucht wurde als oben (s. Fig. 23). Dieser Umstand zusammen mit der Beobachtung, daß auch die linke, mit dem Kolben verbundene Druckplatte ihre Neigung bei Steigerung der Belastung von 500 auf 1700 t nicht wesentlich änderte, obgleich der Stab sich noch weiter nach oben durchbog, läßt die Ansicht aufkommen, daß der Bewegungswiderstand der Kugellager trotz des Wasserpolsters zwischen den Kugelflächen noch zu groß war, als daß die Kugellager während des ganzen Versuches in Wirkung traten. Es erscheint nicht ausgeschlossen, daß hierbei die Reibung in dem Stützlager c (Fig. 4) ausschlaggebend war.



Fig. 34. Wagerechte Bewegungen der Meßpunkte b und e.

4. Die Längenänderungen der Stützfedern.

Den Verlauf der Längenänderungen der beiden Stützfedern mit wachsender Belastung des Stabes zeigen die Schaulinien Fig. 36. Die Längenänderungen stimmen für beide Federn gut überein, und zwar erlitten beide Federn von gleich an Längenabnahmen, während man entsprechend der Durchbiegung des Stabes nach oben bis 1700 t Längenzunahmen der Federn hätte erwarten sollen. Man wird aber dieser Unstimmigkeit keine besondere Bedeutung beizumessen haben, zumal es sich bis 1700 t nur um geringe Formänderung handelt und die durch Fig. 6 erläuterte Meßweise keinen Anspruch auf große Feinheit erheben kann. Zudem macht sich zwischen 700 und 1500 t Belastung eine geringe Abnahme der Verkürzung geltend.

Bei höheren Belastungen stimmt die Verkürzung der Stützfedern mit der Durchbiegung des Stabes nach unten überein.

Mit Erreichung der Belastung von 2125 t, bei der die letzten Beobachtungen erfolgten, war die Verkürzung der Feder 1 = 1,15 mm, die der Feder 2 = 1,40 mm. Hieraus berechnet sich die Mehranspannung der Federn, mit denen diese dem Ausbiegen des Stabes nach unten entgegenwirkten, aus den Werten der Tab. 1 zu 63 und 81 kg.

 $\mathbf{28}$ 

Für den Beginn des Ausknickens können diese Gegenkräfte wohl als belanglos erachtet werden. Dagegen hinderten die Federn den Stab am vollständigen Einknicken, so daß sie vor Beendigung des Versuches entfernt werden mußten. Für



weitere Versuche ist daher die Beschaffung hydraulischer Vorrichtungen zum Abfangen des Eigengewichtes nach dem Vorschlage des Berichterstatters in Aussicht genommen.

# 5. Die Durchbiegungen und Verkürzungen der beiden Stabhälften links und rechts von den Stützfedern.

Im Hinblick darauf, daß die Enden des Stabes verschieden stark ausgebildet waren, erschien es von Interesse die Durchbiegungen der beiden Stabhälften rechts und links von den in der Mitte untergestellten Stützfedern getrennt zu beobachten. Zu diesem Zwecke ist nach Fig. 37 je 40 mm von den Druckflächen und je 90 mm von dem mittelsten Stabquerschnitt entfernt ein Stahlstift in dem einen äußeren Stegblech angebracht und an den beiden Endstiften je ein feiner Draht befestigt, der über den zunächstgelegenen mittleren Stift mit Rolle fortgeführt, an dem herabhängenden Ende belastet und mit einem Zeiger ausgerüstet wurde. Hinter diesen Zeigern wurden die Maßstäbe 36 und 37 und hinter der Mitte der gespannten Drähte



Fig. 37. Anordnung der Meßstellen zur Bestimmung der Durchbiegung und Verkürzung der Stabhälften des Stabes 69.

der beiden Stabhälften. Die Ergebnisse sind in Fig. 38 durch Schaulinien dargestellt. Aus der Lage der Linien zueinander ergibt sich, daß die linke Stabhälfte, die nur



· rechte Hälfte } s. Fig. 37. ×---× linke Hälfte

am Ende wenig verstärkt war, sich weniger durchbog aber größere Verkürzung erlitt, als die rechte, zum Teil erheblich verstärkte Hälfte (s. a. Abschnitt 3).

Bewegungen der Drähte gegen

die Maßstäbe 34 und 35 gaben die Durchbiegungen und die Bewegungen der Zeiger gegen

die Maßstäbe 36 und 37 die

Längenänderungen (s. Tab. 8)

Die

Hingewiesen möge ferner noch auf folgende Erscheinungen sein. Bei der zweiten Belastung mit 700 t hatte besonders die rechte Stabhälfte sich mehr nach oben durchgebogen als bei der erstmaligen Belastung, während die Stützfeder sich gleichzeitig zusammengedrückt hatte (s. Fig. 36) und in Übereinstimmung hiermit (s. Fig. 28) die senkrechte Durchbiegung des ganzen Stabes, die beim erstmaligen Belasten mit 700 t nach oben gerichtet war, nun in eine geringe Durchbiegung nach unten übergegangen war.

Die Durchbiegung der linken Stabhälfte (s. Fig. 38) war unter 1485 t nach voraufgegangenem Entlasten negativ, während sie beim erstmaligen Belasten positiv gewesen war. Die Stabhälfte hatte sich also beim zweiten Belasten nach unten durchgebogen. Hiermit stimmt überein, daß auch die nach oben gerichtete senkrechte Ausbiegung in der Mitte des ganzen Stabes beim zweiten Belasten mit 1485 t (s. Fig. 28) geringer war als beim ersten und

ebenso, daß gleichzeitig die Zusammendrückungen der Stützfedern zugenommen hatten (s. Fig. 36).

#### 6. Zerstörungserscheinungen an dem eingeknickten Stabe.

Fig. 39 zeigt den unter der Höchstlast nach unten durchgebogenen Stab in der Maschine, Fig. 40 die Seitenansicht und Fig. 41 die obere Seite des Stabes an der Stelle größter Formänderung nach der höchsten erreichten Belastung von 2293,8 t.



Fig. 39. Nach unten durchgebogener Stab 69 in der Maschine.



Fig. 40. Seitenansicht des Stabes an der Stelle größter Formänderung.

Diese Bilder sprechen für sich. Hervorgehoben möge aber sein, daß trotz der starken Verbiegungen der vernieteten Teile keines der hierbei stark beanspruchten Niete gerissen ist.
Die in Fig. 41 zutage tretende seitliche Ausbauchung der Stegbleche war erwartet worden und daher waren zur Feststellung ihrer Größe in Mitte der einzelnen durch die Querbleche begrenzten Felder H-A (Fig. 21) auf dem beim Versuch nach oben gelegenen Rande der inneren Stegbleche 1 und 3 diametral gegenüber Marken angebracht worden. Für die Abstände der Marken desselben Feldes voneinander vor und nach dem Versuch sind folgende Werte ermittelt:

| Feld-Zeic     | hen (s          | . Fig                | . 21):  | A     | B     | C     | D      | E     | F     | G     | H        |   |
|---------------|-----------------|----------------------|---------|-------|-------|-------|--------|-------|-------|-------|----------|---|
| Markenabstand | l vor           | $\operatorname{dem}$ | Versuch | 819,2 | 823,1 | 822,0 | 822,8  | 822,6 | 820,2 | 820,0 | 823,4 m  | m |
| ,,            | $\mathbf{nach}$ | ,,                   | ",      | 819,1 | 807,2 | 827,7 | 936,6  | 824,2 | 820,9 | 820,1 | ,, 823,4 | , |
| Änderung des  | Marker          | nabsta               | ndes    | ,1    | -15,9 | +5,7- | ⊢113,8 | +1,6  | +0,7  | +0,1  | +0,0 ,,  | , |



Fig. 41. Obere Seite des Stabes 69 an der Stelle größter Formänderung.

Sie lassen erkennen, daß im kurzen Felde H keine nennenswerte seitliche Verbiegung der Stegbleche eingetreten ist; bei den Feldern A und B erfolgte Verbiegen nach innen, bei allen anderen nach außen. Die Verbiegungen in den Feldern C und Esind gegenüber der Verbiegung in dem dazwischenliegenden eingeknickten Felde Dals gering zu bezeichnen. Dies zeugt von der guten Wirkung der Querbleche und tatsächlich scheint Verschiebung dieser Querbleche auf den Saumwinkeln nicht eingetreten zu sein.

Die Stegbleche 1 und 3 waren an den in Fig. 21 mit J und K bezeichneten Stellen, die Stegbleche 2 und 4 bei L und K gestoßen. Um feststellen zu können, ob Verschiebungen an den Stoßstellen eintraten, sind zu beiden Seiten der Stoßstellen Marken auf den Kanten der Stegbleche angebracht und ihre Abstände vor und nach dem Versuch ausgemessen. Die Ergebnisse enthält nachstehende Gegenüberstellung: Die Prüfung von Zugstäben.

| Stegblech Nr             | 1                   | <b>2</b>            | 3                   | 4                  |
|--------------------------|---------------------|---------------------|---------------------|--------------------|
| Stoßstelle               | $\widetilde{J}$ $K$ | $\widetilde{L}$ $K$ | $\widetilde{J}$ $K$ | $\overline{L}$ $K$ |
| Meßlänge vor dem Versuch | 24,3 25,2           | 25,1 25,4           | 25,2 24,2           | 26,0 24,4          |
| " nach " "               | 24,6 26,0           | 24,8 25,7           | 24,8 23,9           | 26,0 24,8          |
| Längenänderung           | +0,3 +0,8           | -0,3 + 0,3          | -0,4 -0,3           | +0,0 +0,4          |

Hiernach sind zwar im allgemeinen nur geringe aber immerhin wahrnehmbare Verschiebungen an den Stoßstellen eingetreten.

7. Vergleich der beobachteten Knickfestigkeit mit der berechneten.

Für den untersuchten Stab mit:

dem Querschnitt . . . . . . . . . . F = 1066,4 qcm dem kleinsten Trägheitsmoment . . .  $J = 608\ 657\ \mathrm{cm^4}$ der Länge . . . . . . . . . . . . l = 1401,5 cm dem Verhältnis . . . . . . . . . .  $\frac{l}{i} = 60,4$ 

berechnet sich die Knicklast unter Annahme des Elastizitätsmoduls zu

$$E=2\ 150\ 000\ {
m kg/qcm}$$

1. nach Euler zu

$$P = \frac{\pi^2 \cdot E J}{l^2} = \frac{9,86 \cdot 2150\,000 \cdot 608\,657}{1401,5 \cdot 1401,5} = 6569 \text{ t}$$

2. Nach Tetmajer ist die Knickspannung

$$\sigma_k = \alpha - \beta \, \frac{l}{i} = 3.1 - 0.0114 \cdot 60.4 = 2.411 \, \text{t/qcm}$$

und demnach

$$P_k = \sigma_k \cdot F = 2,411 \cdot 1066, 4 = 2571 \text{ t}$$
.

Der Verhältnis der beobachteten Knickfestigkeit zur berechneten ist demnach:

 $=rac{2293,8}{6569}=0,35$  , 1. nach Euler 2. nach Tetmajer =  $\frac{2293,8}{2571} = 0,89$ .

Die rechnungsmäßige Belastung des Stabes in der Brücke beträgt 1133 t; die Betriebssicherheit ist demnach  $=\frac{2293,8}{1133}=2,02$ .

## IV. Die Prüfung von Zugstäben.

## A. Prüfung des Zugstabes 76.

Die Abmessungen des Stabes zeigt Fig. 42. Er besteht aus einem 5220 mm langen Flachstab von 500 mm Breite und 18 mm Dicke, der an beiden Enden mit 13 Nieten an zwei Laschen von 11 mm Dicke angeschlossen ist. Die Niete haben 23 mm Durchmesser und sind in 5 Reihen dreieckförmig angeordnet. Hieraus ergeben sich folgende Größen:

| Gesamtquerschnitt des Stabes       | $= 50,0 \cdot 1,8 = 90,0~{ m qcm}$                 |
|------------------------------------|----------------------------------------------------|
| Nettoquerschnitt des Stabes        | $= (50, 0 - 2, 3) \cdot 1, 8 = 85, 86 \text{ qcm}$ |
| Schubquerschnitt der Anschlußniete | $= 13 \cdot 2 \cdot 4, 15 = 107,9 \; { m qcm}$     |
| Leibungsfläche der Anschlußniete   | $= 13 \cdot 2, 3 \cdot 1, 8 = 53, 82$ qcm.         |
| Versuche im Figenhau A 2           | 3                                                  |

Versuche im Eisenbau A 2.

Versuche zur Prüfung und Abnahme der 3000-t-Maschine.

Die Endlaschen sind mit je einem Bolzen von 320 mm Durchmesser an die Einspannteile der Maschine drehbar angeschlossen. Die Gesamtlänge zwischen den Bolzen beträgt 6280 mm.

Die Erprobung des Materials des Flachstabes und der Laschen lieferte die in Tab. 9 zusammengestellten Ergebnisse. Bei Prüfung in der 3000-t-Maschine stand der Stab 76 hochkant, so daß also Fig. 42 die Seitenansicht darstellt.





Unter stufenweiser Laststeigerung ist beobachtet an den in Fig. 42 mit a bis k bezeichneten Stellen:

- 1. Die Dehnung annähernd in der Mitte der Stablänge an beiden Rändern (Meßstellen e, f, i und k) und in der Mitte (g und h). Die Meßapparate, Martensche Spiegelapparate, wurden auf beiden Breitseiten angebracht. Die Anzeigen der paarweise gegenüberliegenden Apparate sind zu Mittel zusammengefaßt (s. Tab. 10).
- 2. Das Gleiten der Laschen gegen den Stab an den Meßstellen a bis d (s. Fig. 42).

#### 1. Die Dehnungsmessungen.

Die im Kopf der Tab. 10 zu den Dehnungen angegebenen Belastungen P sind aus der Kolbenfläche F der Maschine, dem Wasserdruck p in at. und der Leergangsreibung R der Maschine berechnet nach der Gleichung P = p F - R mit den Werten: F = 7918 qcm und R = 3,94 t. Die Drucke p sind an dem Manometer 211 beobachtet. Das Manometer ist in Grade geteilt. Die Beziehungen zwischen der Gradteilung und dem Druck in at. ergeben sich aus Tab. 11.

Aus den Beobachtungswerten Tab. 10 folgt, daß

a) die Dehnung in Mitte der Stabbreite bis zu 82 t Belastung etwas größer war als die mittlere Dehnung an den Stabrändern; der Unterschied nimmt mit wachsender Belastung ab und von 97 t ab überwiegt die Dehnung an den Stabrändern, und zwar um so mehr, je größer die Belastung ist. Von den beiden Stabrändern zeigt bis zu 21 t der untere und bei höheren Belastungen der obere die größere Dehnung<sup>1</sup>).

Die besprochenen Unterschiede in den Dehnungen sind indessen nicht beträchtlich, so daß man die Verteilung der Belastung über den Stabquerschnitt als hinreichend gleichmäßig erachten kann, um aus der beobachteten mittleren Dehnung des Stabes und der Dehnungszahl des Materials, die nach Tab. 9 zu  $\frac{1}{\alpha} = E = 2079\,000$  ermittelt ist, die tatsächlich auf den Stab übertragenen Belastungen  $P_1$  zu berechnen. Die für  $P_1$  erhaltenen Werte sind in Tab. 10 mit aufgeführt. Ferner sind die Unter-

34

<sup>&</sup>lt;sup>1</sup>) Der Stab lag bei der Prüfung hochkant. Seine Durchbiegung  $\delta$  unter dem Eigengewicht berechnet sich mit l = 628 cm, E = 2 150 000 kg/qcm, J = 18 750,3 cm<sup>4</sup> und q = 0,7065 kg für 1 cm Länge zu  $\delta = 0,355$  mm.

schiede zwischen den Kraftanzeigen P und den Belastungen  $P_1$  sowohl in t als auch in % von  $P_1$  berechnet.

Die Berechnung von  $P_1$  aus der Dehnung und der Dehnungszahl (dem Elastizitätsmodul) des Materials ist natürlich nur für die Belastungen innerhalb der Propor-

tionalitätsgrenze  $\sigma_P$  des Materials gültig. Nach Tab. 9 liegt  $\sigma_P$  bei 1330 kg/qcm, daher sind in Tab. 10 die Werte von  $P_1$ , nur für  $\sigma < 1330$  kg/qcm berechnet.

Aus den prozentuellen Unterschieden zwischen Pund  $P_1$  ergibt sich, daß die Kraftanzeige P bis zu etwa 70 t erheblich größer war als die auf den Probestab übertragene Belastung  $P_1$ . Der Unterschied beträgt 6,5 bis 2,11% und nimmt mit wachsender Belastung ab. Bei 82 t ist  $P_1$  fast gleich P und bei höheren Belastungen bis zu 113 t ist  $P_1 > P$ . Der Unterschied bleibt aber kleiner als 1%.

Den Verlauf der Dehnung des Stabes 76, gemessen auf 1 m Länge, mit wachsender Belastung bis zur Streckgrenze zeigt Fig. 43. Die Streckgrenze ist hiernach bei der Belastung P = 240,56 t erreicht. Dies entspricht der Spannung  $\sigma_s = 2680$  kg/qcm. Nach Tab. 9 hatten



die Materialproben den Mittelwert  $\sigma_s = 2670 \text{ kg/qcm}$  ergeben. Beide Werte stimmen gut überein, so daß hiernach die Kraftanzeige bis zu 240 t hinreichend genau war.

#### 2. Das Gleiten der Laschen gegen den Stab.

Das Gleiten der Stabenden zwischen den Anschlußlaschen mit wachsender Belastung zeigen die Schaulinien Fig. 44. Die Linien a und b gelten für das linke, die

Linien c und d für das rechte Stabende; dabei lagen die Meßstellen aund c auf dem oberen, die Meßstellen b und dauf dem unteren Rande des Stabes (s. Fig. 42). Der Verlauf der Linien läßt erkennen, daß das Gleiten schon bei 20t Belastung wahrnehmbar war und von etwa 50 t Belastung ab, entsprechend einem Lochleibungsdruck von  $50\,000$ = 930 kg/qcm53.82in stärkerem Maße zunahm. An beiden Enden war das Gleiten





auf dem beim Versuch nach oben gelegenen Stabrande, Meßestellen a und c größer als auf dem unteren Rande. Dem entspricht nach Tab. 10 die größere Dehnung in Stab-Mitte am oberen Rande (Meßstellen f und e) gegenüber den Dehnungen für k und i.

Der Bruch des Stabes erfolgte bei 379,6 t Belastung ohne den geringsten Schlag, indem der Bruch bei a (Fig. 45) begann und von Nietloch zu Nietloch sich fortpflanzte. Die Stelle a lag am oberen Rande des Stabes. Die schon bei den vorbesprochenen Dehnungs- und Gleitmessungen hervorgetretene stärkere Zugspannung an diesem Rand hat also bis zum Bruch angehalten. Es erscheint daher nicht ausgeschlossen, daß die erzielte Bruchlast durch die ungleichmäßige Lastverteilung ungünstig beeinflußt worden ist.



Fig. 45. Bruchstelle des Stabes 76.

Auf den Nettoquerschnitt von 85,86 qcm des Stabes bezogen, beträgt die Bruchspannung des Stabes  $\frac{379\,600}{85,86} = 4420$  kg/qcm. Die Bruchfestigkeit des Materials ist nach Tab. 9 zu 4990 kg/qcm ermittelt. Der Nettoquerschnitt ist in der üblichen Weise berechnet, indem von dem Gesamtquerschnitt das vordere Nietloch des Dreiecks Nietbildes in Abzug gebracht ist. Bei dieser Berechnungsweise sind also  $\frac{4420 \cdot 100}{4990} = 89\%$  der Materialfestigkeit in dem Zugstabe 76 ausgenutzt worden.

Der Bruch begann nach Fig. 45 bei *a* in dem Querschnitt mit 3 Nieten. Der Nettoquerschnitt beträgt hier (50,0 – 3 · 2,3) 1,8 = 77,58 qcm. Mit ihm berechnet sich die Materialspannung zu  $\frac{379600}{77,59} = 4890 \text{ kg/qcm}$ . Sie entspricht einer Ausnutzung der Zugfestigkeit des Materials von  $\frac{4890}{4990} \cdot 100 = 98\%$ .

## B. Prüfung von zwei geschmiedeten Stahlstäben.

Die Stäbe, gez. 80 und 81, von denen 80 für 1000 t und 81 für 500 t Bruchbelastung berechnet war, sind von der Gutehoffnungshütte zu Oberhausen geliefert. Ihre Abmessungen sind aus Fig. 46 und 47 zu ersehen. Bei Festsetzung der Abmessungen der Stabköpfe war maßgebend, daß die Versuche zugleich dazu dienen sollten, ebenso wie mit dem Stabe 76, festzustellen, mit welcher Genauigkeit die Kraftäußerung P der Maschine nach der Formel

$$P = p \cdot F - R$$

berechnet werden kann, wenn

p.den am Manometer abgelesenen Wasserdruck im Zylinder,

F die Kolbenfläche und

R die Leergangsreibung

bedeuten. Zu diesem Zweck sollten die Stäbe zunächst auf der 500-t-Maschine des Amtes bis nahe zur Proportionalitätsgrenze geprüft und hierbei die Beziehungen zwischen Belastung und Dehnung, die Dehnungszahl, ermittelt werden, um



Fig. 46. Abmessungen des Stabes 80.

dann später bei Prüfung der Stäbe auf der 3000-t-Maschine umgekehrt die wirklichen Belastungen aus den elastischen Stabdehnungen berechnen und mit den nach obiger Formel ermittelten Kraftäußerungen der Maschine in Vergleich stellen zu können. Insbesondere mußten daher die Abmessungen der Stabköpfe auch den zur 500-t-Maschine vorhandenen Einspannvorrichtungen angepaßt werden.

Die Bohrungen in den Stabköpfen wurden als Langlöcher ausgebildet, damit die Stabköpfe in den Einspannklauen sich verschieben konnten und so mit Sicherheit erreicht wurde, daß die Stäbe beim wiederholten völligen Entlasten nicht auf Druck beansprucht wurden.

Zur Bestimmung der Dehnung mittels Martensscher Spiegelapparate sind die Stäbe je mit Ringmarken 1 und 2, Fig. 46 und 47, versehen, in die die Schneiden der Meßfedern so eingesetzt wurden, daß sie parallel zu Längsmarken lagen, die paarweise bei A, B, Cund D angebracht waren.



Mit den großen Stäben 80 und 81 zugleich waren sechs Zerreißproben an das Amt eingeliefert, und zwar 1-3 zu Stab 80, 4-6 zu Stab 81. Nach Angabe der Gutehoffnungshütte sind diese Stäbe nebeneinander und nahe der Oberfläche (Randzone) aus Probestücken von etwa  $200 \cdot 200$  mm Querschnitt entnommen, die an einem Ende der großen Stäbe angeschmiedet waren. Die Reststücke der Probestücke waren leider vom Werk verworfen, so daß es nicht mehr möglich war, auch aus dem Kern der Schmiedestücke noch Zugstäbe zur Erprobung des Materials zu entnehmen.

#### 1. Erprobung des Materials der Stäbe 80 und 81.

Die Ergebnisse der Zugversuche mit den sechs Materialproben zeigen Tab. 12 und 13.

Die Proportionalitätsgrenze des Materials der Stäbe 80 und 81 ist nach den Dehnungswerten Tab. 13 nicht scharf ausgeprägt; die Dehnungsstufen bei den einzelnen Laststufen von 500 kg schwanken. Nach den Mittelwerten dürfte man indessen nicht sehr fehlgehen, wenn man die Proportionalitätsgrenze bei 4500 kg annimmt, entsprechend der Spannung  $\sigma_P = 1430 \text{ kg/qcm}$ . Bleibende Dehnungen zeigten sich schon nach 1000 kg Belastung. Sie waren hier nur gering, bei 5000 kg dagegen schon recht beträchtlich und zwar nahmen sie beim wiederholten Beanspruchen der Stäbe mit dieser Belastung zu und wurden erst nach mehrmaligem Lastwechsel konstant.

Im übrigen ist das Material nach der guten Übereinstimmung der Einzelwerte für die je drei Proben 1-3 bzw. 4-6 aus demselben Stabe (s. Tab. 12) als außerordentlich gleichmäßig zu bezeichnen und auch die Mittelwerte für beide Stäbe stimmen gut überein.

#### 2. Prüfung des Stabes 80 auf der 100-t-Werder-Maschine.

Die Prüfung auf der Werder-Maschine zur Bestimmung der Dehnungszahl bis 100 t Belastung mußte auf den Stab 80 beschränkt bleiben. Ausgeführt sind fünf Versuchsreihen unter gleichzeitiger Beobachtung der Dehnungen für alle vier Meßstellen A bis D (Fig. 46) auf 250 mm Meßlänge. Die Beobachtungen sind in Tab. 14 für die diametral gegenüberliegenden Meßstellen A und C sowie B und D zunächst getrennt zu Mittelwerten zusammengefaßt und außerdem sind die Gesamtmittel  $\lambda_m$ für alle Beobachtungen bei der gleichen Laststufe gebildet. In der nächstfolgenden Reihe der Tabelle sind die prozentualen Fehler in der Kraftanzeige der Werder-Maschine angegeben, die sich bei deren Eichung mittels der Kontrollstäbe des Amtes ergeben hatten. Dann folgen die um diese Fehlerbeträge richtiggestellten Dehnungswerte  $\lambda'_m$  und die aus letzteren sich ergebenden Werte des Dehnungssolls  $\lambda_s$ für 1 t Belastung ( $\lambda_s = \lambda'_m/P$ ). Diese Werte nehmen mit wachsendem P ab.

Daß diese Abnahme tatsächlich besteht, ist unwahrscheinlich. Ihre Beobachtung dürfte darauf zurückzuführen sein, daß der Fehler der Kraftanzeige bei Eichung der Maschine mit den verfügbaren Hilfsmitteln auch nur auf höchstens 0,5% genau bestimmt werden konnte.

Der Mittelwert für  $\lambda_s$  beträgt  $10,36 \cdot \frac{1}{200000}$  cm, er weicht von den Einzelwerten in keinem Falle um mehr als 0,4% ab. Dies berechtigt zu der Annahme, daß bei Benutzung dieses Wertes für die weiteren Berechnungen deren Fehler höchstens 1 bis 1,5% beträgt. Eine größere Genauigkeit dürfte aber von der Eichung einer 3000-t-Maschine nicht zu fordern sein, so daß der Stab 80 bis 100 t Belastung als Kontrollstab zur Untersuchung der Kraftanzeige der 3000-t-Maschine benutzt werden konnte.

Der Elastizitätsmodul des Materials berechnet sich mit dem Dehnungswert von  $\lambda_s = 10,36 \cdot \frac{1}{200\,000}$  für 1 t Belastung auf 25 cm Meßlänge zu:

$$E = \frac{P \cdot l}{t \cdot \lambda_s} = \frac{1000 \cdot 25 \cdot 200\ 000}{227 \cdot 10.36} = 2126100 \text{ kg/qcm}.$$

An den Zerreißproben (s. Tab. 12) war er zu  $2.091\ 200\ \text{kg/qcm}$  ermittelt. Der Unterschied zwischen beiden Werten beträgt  $2.126\ 100\ -2.091\ 200\ =34\ 900\ \text{kg/qcm}$ oder 1,6%. Also auch hiernach erscheint die Eichung der Maschine mit dem Wert 10,36 bis auf 1,6% genau möglich, zumal wenn man beachtet, daß die Zerreißproben dem geschmiedeten Block außerhalb desjenigen Teiles entnommen sind, den der Querschnitt des Stabes 80 umfaßt. Es erscheint nicht ausgeschlossen, daß die beobachteten Unterschiede der beiden Elastizitätsmodule wenigstens zum Teil auch hierauf zurückzuführen ist. Für den Stab 80 ist der durch direkte Prüfung auf der Werder-Maschine gewonnene Wert als der zuverlässigere erachtet und den späteren Berechnungen zugrunde gelegt.

### 3. Die Versuche auf der 500-t-Maschine.

Bei der 500-t-Maschine erfolgt die Bestimmung der Kraftleistung P wie bei der 3000-t-Maschine durch Berechnung des Produktes aus dem im Arbeitszylinder herrschenden Wasserdruck × Kolbenfläche, vermindert um die Leergangsreibung  $(P = p \cdot F - R)$ .

Die zur Bestimmung des Druckes p benutzten Manometer 104 und 125 sind in Grade geteilt. Die Beziehungen zwischen den Drucken in Atmosphären und den Ablesungen in Graden sind durch Prüfung der Manometer auf der Druckwage von Stückrath in vier Versuchsreihen ermittelt. Die Ergebnisse enthält Tab. 15. Aus ihnen berechnen sich die Drucke in Atmosphären für die bei Prüfung der Stäbe 80 und 81 angewendeten und in Graden abgelesenen Druckstufen wie folgt:

| Druckstufen | ( 80 mit   | ∫in | Graden | 20    | 40         | 60    | 80     | 100    | 120    | 140    | 160    |
|-------------|------------|-----|--------|-------|------------|-------|--------|--------|--------|--------|--------|
| bei Prüfung | Manom. 104 | in  | at     | 26,08 | 51,52      | 76,83 | 102,69 | 128,66 | 154,75 | 181,29 | 208,13 |
| des         | 81 mit     | ∫in | Graden | 20    | <b>4</b> 0 | 60    | 80     | 100    | 120    | 140    | 160    |
| Stabes      | Manom. 125 | lin | at     | 26,04 | $51,\!48$  | 76,79 | 102,50 | 128,62 | 154,71 | 181,34 | 208,09 |

Der Querschnitt F des Arbeitskolbens beträgt 1385 qcm. Die Leergangsreibung R ist vor Beginn der einzelnen Belastungsreihen jedesmal besonders ermittelt und bei Bestimmung von P mit dem jeweilig ermittelten Wert in Rechnung gestellt.

a) Prüfung des Stabes 80 mit Querschnitt f = 227 qcm.

Die Prüfung, deren Ergebnisse nachstehend besprochen sind, erfolgte bei zwei verschiedenen Stellungen des Kolbens im Arbeitszylinder der Maschine und zwar betrug die Länge L des aus dem Zylinder herausragenden Teiles des Kolbens bei Reihe I: 25,5 cm, bei Reihe II: 88,3 cm. Der Gesamthub des Kolbens beträgt 140 cm.

Für die angewendeten Laststufen p (Druckstufen) berechnen sich die Werte von  $P = p \cdot F - R$  wie folgt:

| Druckstufe in Graden                                 | 20               | 40             | 60               | 80               | 100              | 120              | 140              | 160                                           |
|------------------------------------------------------|------------------|----------------|------------------|------------------|------------------|------------------|------------------|-----------------------------------------------|
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $34,91 \\ 34,85$ | 70,14<br>70,08 | 105,19<br>105,13 | 141,00<br>140,94 | 176,98<br>176,92 | 213,11<br>213,05 | 249,86<br>249,80 | $\begin{array}{c} 287,04\\ 286,98\end{array}$ |

Die Dehnungen  $\lambda$  des Stabes 80 sind bei beiden Reihen für alle vier Meßstrecken A bis D (s. Fig. 46) auf 25 cm Meßlänge beobachtet und die Belastung ist bei jeder Reihe fünfmal wiederholt. Die Beobachtungswerte sind in Tab. 16 zusammengestellt. Ihnen sind angefügt:

1. die aus den Dehnungen  $\lambda$  berechneten Zugkräfte  $P_1 = \frac{\lambda}{l} f \cdot E$ , wobei für Eder bei den Versuchen auf der Werder-Maschine ermittelte Wert E = 2 126100 eingesetzt ist unter der Annahme, daß die Proportionalitätsgrenze die nach Tab. 12 für das Material bei 1430 kg/qcm liegt, bei der angewendeten Höchstlast von etwa 290 t = 1280 kg/qcm noch nicht überschritten wurde;

- 2. die Werte von P, wie sie für die einzelnen Druckstufen vorstehend gegeben sind;
- 3. die Unterschiede zwischen P und  $P_1$ :

a) in 
$$t = P - P_1$$
  
b) in  $\% = \frac{P - P_1}{P_1} \cdot 100$ 

Die zu 3 b) gehörigen Werte sind in Fig. 48 zu Schaulinien aufgetragen. Aus ihrem Verlauf ergibt sich, daß die Unterschiede zwischen den aus den Wasserdrucken und den Festwerten<sup>1</sup>) der Maschine berechneten Belastungen P und den aus den Stabdehnungen berechneten Belastungen  $P_1$  mit dem Anwachsen der Belastungen bei beiden Reihen I und II mit verschiedenem Kolbenstand L



Fig. 48. Unterschiede in % zwischen der Kraftanzeige P, berechnet aus dem Wasserdruck, und der Zugkraft P<sub>1</sub>, berechnet aus der Dehnung der Stäbe 80 und 81 auf der 500-t-Maschine.
Länge L des aus dem Zylinder hervorragenden Kolbens.
L I = 25.5 cm<sup>2</sup>, L II = 88.3 cm

L I = 25,5 cm; L II = 88,3 cm. ----- Stab 80; ---- Stab 81.

den gleichen Verlauf nehmen, und zwar derart, daß diese Unterschiede bei 70 t den höchsten positiven Wert erreichen und von da ab stetig abnehmen, um schließlich in negative Werte überzugehen. Dieser Verlauf ist wegen der bereits erwähnten Übereinstimmung in beiden Reihen als gesetzmäßig anzusehen; zu seiner Erklärung sei folgendes angeführt.

Beiden Berechnungen, sowohl der Werte von P als auch derjenigen von  $P_1$ , können Fehler anhaften, deren Größe aus den vorliegenden Beobachtungen nicht zu bestimmen ist. Der Fehler in der Berechnung von P kann darin be-

ruhen, daß der Reibungsverlust R sich mit wachsender Belastung ändert, während er bei der Berechnung als unveränderlich angenommen werden mußte. Das Wahrscheinlichere ist, daß R zunimmt; dann sind aber die Werte für P zu groß ermittelt. Hieraus würde folgen, daß die positiven Werte für  $P - P_1$  bis zu 140 t bei Reihe II und bis zu 176 t bei Reihe I zu groß und die negativen Werte zu klein ermittelt sind und daß daher die beiden Schaulinien nach unten verschoben werden müssen. Der Fehler in der Berechnung von  $P_1$  kann darin beruhen, daß die Dehnung des Stabes nicht, wie bei der Berechnung angenommen ist, bis zu 280 t der Belastung proportional ist, sondern daß der Stab bei höheren Belastungen sich stärker dehnte, als der Dehnungszahl  $\frac{1}{\alpha} = E = 2$  126 100 entspricht, die als Festwert in die Berechnungen von  $P_1$  eingeführt ist. Trifft es aber zu, daß die Proportionalitätsgrenze des Stabes tatsächlich unterhalb 280 t liegt oder die Dehnung der Belastung überhaupt nicht streng proportional ist, so würden die Werte für  $P_1$  zu groß bestimmt sein, und zwar besonders diejenigen bei höheren Belastungen. Die richtigen Werte von  $P_1$  würden dann denen von P näherkommen, d. h. die Neigung der Schaulinien Fig. 48 würde abnehmen.

**4**0

<sup>&</sup>lt;sup>1</sup>) Auch die Größe der Reibungsverluste R ist bei der Berechnung als Festwert angenommen.

Da nun keine bestimmte Grundlage gegeben ist, auf welcher die Bestimmung der erwähnten Fehler aufgebaut werden könnte, so gestattet die Verwendung des Stabes 80 als Kontrollstab bei Prüfung der 3000-t-Maschine auf die Richtigkeit ihrer Kraftanzeige nur, festzustellen, inwieweit diese Kraftanzeige von derjenigen der Werder-Maschine und der 500-t-Maschine abweicht.

# b) Prüfung des Stabes 81 mit Querschnitt f = 113 qcm auf der 500-t-Maschine.

Der Wasserdruck im Arbeitszylinder der Maschine mit dem Kolbenquerschnitt F = 1385 qcm wurde mit dem in Grade geteilten Manometer 125 beobachtet. Für die einzelnen Laststufen (Druckstufen) berechnen sich die Werte für die Zugkräfte  $P = p \cdot F - R$  mit R = 1,29 t wie folgt:

Druckstufe in Graden . . . 160 20 **40** 140 60 80 100 120 Zugkraft P in t . . . . 16,53 34,46 52,15 70.18 88.40 106.88 125,40 143,99

Für die Beobachtung der Dehnung des Stabes gilt das zu Stab 80 Gesagte. Die Ergebnisse sind aus Tab. 17 zu ersehen. Ihnen sind wieder angefügt:

- 1. die aus den Dehnungen berechneten Zugkräfte  $P_1 = \frac{\lambda}{I} f \cdot E$ . Für E ist
  - auch hier der bei Prüfung des Stabes 80 auf der Werder-Maschine ermittelte Wert  $E = 2\,126\,200$  eingesetzt. Da der Stab 81 selbst auf der Werder-Maschine nicht geprüft worden ist, mußte dieser Wert für E als der zuverlässigste angesehen werden. Hierbei ist wieder angenommen, daß die Proportionalitätsgrenze des Stabes, die nach Tab. 13 für das Material bei 1430 kg/qcm ermittelt ist, bei der angewendeten Höchstlast von etwa 144 t = 1270 kg/qcm noch nicht überschritten ist;
- 2. die Werte von P, wie sie vorstehend angegeben sind und

3. die Unterschiede zwischen  $P_1$  und P in t sowie in  $\frac{1}{0}$  von  $P_1$ .

Die letztgenannten Werte sind in Fig. 48 mit eingetragen. Aus dem Verlauf der erhaltenen Schaulinie ersieht man, daß, abgesehen von dem auffallend hohen Wert bei 33,68 t, der Unterschied zwischen P und  $P_1$  mit wachsender Belastung ganz ähnlich verläuft wie bei dem Stabe 80.

Bei beiden Stäben nimmt der Unterschied, also der Fehler der Kraftbestimmung nach der Gleichung  $P = p \cdot F - R$  mit R = 1,29 t, mit wachsender Belastung ab. Bis zu etwa 100 t ist er etwas größer als 1%, bei höheren Belastungen aber kleiner als 1% gefunden. Zu dem gleichen Ergebnis haben auch die Versuche mit anderen Kontrollstäben geführt. Es erscheint daher zulässig, den Festwert E beider Stäbe mit  $E = 2\,126\,100$ in Rechnung zu stellen.

#### 4. Versuche auf der 3000-t-Maschine.

Der Wasserdruck im Zylinder der Maschine ist an den Manometern 211 und 951 beobachtet. Beide sind in Grade geteilt. Die Beziehungen zwischen Graden und Atmosphärendruck sind für das Manometer 211 nach dem Vergleich mit dem Kontrollmanometer 643 des Amtes und für das Manometer 951 nach der Prüfung auf der Druckwage von Stückrath aus Tab. 11 zu ersehen. Nach ihnen sind zunächst die Drucke p in at ermittelt, die den bei Prüfung der Stäbe 80 und 81 angewendeten, in Graden abgelesenen Druckstufen entsprechen, und dann nach der Gleichung  $P = p \cdot F - R$  die Belastungen P berechnet. Der Kolbenquerschnitt F der 3000-t-Maschine ist = 7918 qcm. Die Leergangsreibung R ist wiederholt vor und nach den einzelnen Versuchsreihen beobachtet und im Mittel zu R = 4670 kg festgestellt.

#### a) Versuche mit dem Stabe 80.

Die Dehnungen des Stabes sind auch hier wieder wie auf der 500-t-Maschine (s. S. 39) gleichzeitig für die vier Meßstellen A bis D beobachtet. Die Versuchsergebnisse sind in Tab. 18 zusammengestellt und aus den Gesamt-Mittelwerten sind die Belastungen  $P_1$  berechnet, die der Probestab bei den einzelnen Laststufen erfahren hatte. Die Berechnung erfolgte wieder nach der Formel  $P_1 = E \cdot \frac{\lambda}{l} \cdot f$ , in der E gleich dem bei Prüfung des Stabes 80 auf die Werder-Maschine ermittelten Elastizitätsmodul  $E = 2\,126\,100$  kg/qcm (s. S. 38) gesetzt wurde. Den so erhaltenen



Fig. 49. Unterschiede in % zwischen der Kraftanzeige P, berechnet aus dem Wasserdruck, und der Zugkraft P<sub>1</sub>, berechnet aus der Dehnung des Stabes 80 (s. Tab. 18).

Werten sind die Belastungen P gegenübergestellt, die sich nach der Formel  $P = p \cdot F - R$  ergaben.

Aus den Endwerten der Tab. 18, den prozentuellen Unterschieden zwischen den Werten, berechnet aus Kolbenfläche und Wasserdruck, und den Werten  $P_1$ , berechnet aus den Stabdehnungen, die in Fig. 49 zu Schaulinien aufgetragen sind, folgt, daß die Berechnung von P mit dem Festwert R = 4670 kg bei kleinen Belastungen zu geringe Werte lieferte. Von 70t ab bis hinauf zu 275 t waren die Unterschiede zwischen P und  $P_1$  nach der gestrichelten Ausgleichslinie kleiner als 1%. Hier-

nach hat sich also die Kraftleistung der Maschine bei Prüfung des Stabes 80 aus dem beobachteten Druck im Arbeitszylinder zwischen 70 und 275 t mit hinreichender Genauigkeit berechnen lassen.

Gleichzeitig mit den Dehnungen des Probestabes 80 sind auch die Stauchungen der Maschinenspindeln a, Fig. 1, gemessen, die den Kraftschluß zwischen dem festen Widerlager (Querhaupt) der Maschine und dem Kolben des Arbeitszylinders bilden. Diese Messungen bezweckten, festzustellen, ob etwa die Stauchungen der Spindeln als Kontrolle der Kraftleistung dienen können; sie erstreckten sich bei jeder Spindel auf zwei diametral gegenüberliegende Meßstrecken von 60 cm Länge. Aus den Ergebnissen (s. Tab. 19) folgt:

- 1. Die erste Belastungsreihe lieferte wesentlich größere Stauchungen beider Spindeln als die folgenden;
- 2. auch bei den Reihen 2 bis 5 waren die Stauchungen für gleiche Belastungen sehr schwankend;
- 3. mit einer einzigen Ausnahme (obere Spindel Reihe 2) ergaben sich nach dem Entlasten des Zugstabes an den Spindeln Ablesungsreste im Sinne bleibender Stauchung;

- 4. bei Reihe 1 erfuhr die obere Spindel, bei allen anderen Reihen die untere Spindel die stärkere Stauchung;
- 5. in der Summe der Stauchungen beider Spindeln sind die Unregelmäßigkeiten der Einzelwerte nicht ausgeglichen.

Zum Teil können diese Unregelmäßigkeiten in den Beobachtungen für die Stauchungen der Spindeln durch die Schwankungen der Luftwärme im Versuchsraum und durch die damit verbundenen Wärmedehnungen sowohl der Spindeln selbst als auch der messenden Teile der Spiegelapparate herbeigeführt sein, zumal diese Schwankungen häufig derart groß waren, daß sie sich als Zugluft bemerkbar machten. Die Beobachtungen unter 1. und 4. weisen aber darauf hin, daß auch andere Einflüsse hier mit im Spiel waren.

In erster Linie dürfte folgender Umstand mitgewirkt haben. Beim Zugversuch ist der Kolben K des Arbeitszylinders Z (s. Fig. 50) durch sein Querhaupt Q mit

den beiden Spindeln a durch die Muttern mfest verbunden, während der Zylinder Z in der Richtung der Zugkraft sich gegen die Spindeln nach links verschieben kann. Alle Teile ruhen verschiebbar auf dem Grundrahmen der Maschine. Je nach dem größeren Reibungswiderstand wird also beim Versuch entweder (Fall I): der Kol-



ben K mit seinem Querhaupt Q liegenbleiben und der Zylinder Z entsprechend der Dehnung des Stabes und seiner Einspannteile sowie um die Stauchung der Spindeln a nach links sich bewegen; der Stauchung der Spindeln folgt dann auch das rechte Widerlager W, oder (Fall II): der Zylinder wird in seiner ursprünglichen Lage verharren und nun der Kolben K und die mit ihm verbundenen Teile (Spindeln aund Widerlager W) sich nach rechts bewegen.

Im Falle I erfolgt die Beanspruchung (Stauchung) der beiden Spindeln dadurch, daß das Widerlager W unter der Zugkraft des Probestabes nach dem Kolben hin, d. h. nach links bewegt wird. Der Kraftangriff liegt etwa 1610 mm oberhalb der Stützfläche des Widerlagers auf dem Grundrahmen und daher erzeugt der Reibungswiderstand ein Kippmoment, das Querhaupt neigt sich oben nach links. Dann erfährt aber die obere Spindel a größere Belastung als die untere (s. Fig. 3) und tatsächlich zeigen die Beobachtungen, daß die obere Spindel  $a_1$  (Fig. 50) beim erstmaligen Belasten größere Stauchung erlitt als die untere  $a_2$ . Bei höheren Belastungen war der Unterschied in den Stauchungen beider Spindeln beim Versuch nahezu ausgeglichen, ein Beweis, daß das Querhaupt sich nun um das Maß der Stauchung auf dem Grundrahmen verschoben und sich wieder aufgerichtet hatte. Im Falle II ist die Spindel  $a_1$  ebenfalls mehr gestaucht, indem sie einen größeren Verschiebungswiderstand des Widerlagers W nach rechts zu überwinden hat als die Spindel  $a_2$ .

Beim Entlasten sind folgende Fälle zu unterscheiden. Durch den elastischen Zug des Probestabes wird entweder a) der Zylinder Z nach rechts gezogen oder b) das Widerlager W, die Spindeln a und der Kolben K nach links geschoben, der Kolben in den Zylinder hinein. In beiden Fällen wird aber zugleich durch die Rückwirkung der elastischen Stauchung der Spindeln die Wiederherstellung des ursprünglichen Abstandes zwischen dem Widerlager W und dem Querhaupt Q des Kolbens angestrebt. Hierbei müssen die Spindeln wenigstens einen dieser beiden Teile (W oder Q) auf dem Grundwerk der Maschine verschieben. Bei der Verschiebung des Widerlagers Wkommt in Frage, daß der Verschiebungswiderstand auf der Seite der oberen Spindel  $(a_1)$  wegen der unsymetrischen Form und des größeren Gewichtes des Widerlagers Wauf dieser Seite größer ist als auf der Seite der unteren Spindel  $a_2$ . Infolgedessen besteht die Neigung, daß das Widerlager sich bei  $a_2$  mehr nach links verschiebt als bei  $a_1$ . Hiermit würde sich auch die größere bleibende Stauchung der oberen Spindel nach dem ersten Entlasten erklären lassen. Bei den weiteren Wiederholungen der Belastungen kommen der oberen Spindel  $a_1$  die in ihm zurückgebliebenen Stauchungen gleichsam zugute, so daß diese Spindel nun geringere Stauchungen erleidet als die untere  $a_2$ . Die Änderung der bleibenden elastischen Stauchungen bei dem späteren wiederholten Entlasten dürfte von Zufälligkeiten abhängen besonders auch von der Geschwindigkeit des Entlastens.

Jedenfalls zeigen die Beobachtungen, daß die Messung der Spindelstauchungen nicht geeignet ist, als Kontrolle der Kraftäußerung der Maschine zu dienen.

#### b) Versuche mit dem Stabe 81.

Die an dem Stabe 81 für die vier Meßstellen A bis D (Fig. 47) auf 25 cm Meßlänge beobachteten Dehnungen sind aus Tab. 20 und 21 zu ersehen. Bei den Ver-



Fig. 51. Unterschiede in % zwischen der Kraftanzeige P, berechnet aus dem Wasserdruck p, und der Zugkraft  $P_1$ , berechnet aus der Dehnung des Stabes 81 (s. Tab. 20 u. 21).



suchen zu Tab. 20 ist der jeweilige Druck im Arbeitszylinder mit dem Manometer 211, bei den Versuchen zu Tab. 21 mit dem Manometer 951 beobachtet. Bei Berechnung der von dem Probestab aufgenommenen Zugkräfte  $P_1$ nach der Formel  $P_1 = E \frac{\lambda}{l} f$  ist der Elastizitätsmodul auch hier gleich 2126 100 in Ansatz gebracht.

Die Unterschiede in Prozenten zwischen den Kraftanzeigen P und den vom Stab aufgenommenen Zugkräften  $P_1$  sind in Fig. 51 durch Schaulinien dargestellt. Aus letzteren ergibt sich,

daß diese Unterschiede bei beiden Reihen mit wachsender Belastung abnahmen. Bei der zuerst ausgeführten Reihe, zu der der Wasserdruck im Arbeitszylinder mit dem Manometer 211 beobachtet ist (Tab. 20), betrug der Unterschied bei 21 t: -8%, während er bei der zweiten Reihe (Tab. 21) nur bei 8t Belastung -1% überschritt. Beide Reihen lassen aber in Übereinstimmung mit den Versuchen am Stabe 80 (s. Fig. 49) erkennen, daß die Lastanzeige von etwa 70 t Belastung ab als hinreichend genau angesehen werden kann.

Gleichzeitig mit den Dehnungen des Probestabes 81 sind wieder die Stauchungen der beiden Spindeln der Maschine beobachtet und außerdem auch noch die Dehnungen der Zugstange S (s. Fig. 50), durch welche der Probestab mit dem hydrau-

lischen Zylinder Z verbunden ist, die also die gleiche Belastung aufzunehmen hat wie der Probestab.

Die Ergebnisse der Spindelmessungen enthält Tab. 22. Sie stimmen für die beiden Spindeln hier wesentlich besser überein als bei den Versuchen mit dem Stabe 80. Die aus den mittleren Stauchungen und dem aus Tab. 23 ersichtlichen Elastizitätsmodul des Materials  $E = 2078\ 250$  berechneten Belastungen weichen aber so stark von den Kraftanzeigen der Maschine ab, daß auch aus diesen Versuchen gefolgert werden muß, daß die Formänderungen der Spindeln nicht zur Kontrolle der Kraftanzeige benutzt werden können.

Die Dehnungen der Zugstange S der Maschine sind auf 40 cm Meßlänge ermittelt. Die Meßstelle lag nahe am Ende der Stange gleich hinter der Anschlußklaue für das Versuchsstück. Die erzielten Ergebnisse zeigt Tab. 24. Bei Berechnung

der von der Zugstange aufgenommenen Belastungen  $P_1 = E \frac{\lambda}{l} f$  ist E = 2 090 500

gesetzt nach Maßgabe des an den Materialproben aus dieser Stange ermittelten Wertes (s. Tab. 23) und für den Querschnitt f der aus Umfangmessungen erhaltene Wert f = 1388 qcm. Die erhaltenen Belastungswerte  $P_1$  (Tab. 24) weichen von der Kraftanzeige P bei keiner Laststufe über 2% ab; im allgemeinen sind die Unterschiede vielmehr so gering, daß es Erfolg verspricht, wenn die Dehnungen des Zugstabes S der Maschine zur dauernden Kontrolle der Kraftanzeige der Maschine beobachtet werden. Die vorliegenden Beobachtungen reichen nur bis etwa 139 t; die Unterschiede zwischen P und  $P_1$  scheinen aber über 70 t mit wachsender Belastung zuzunehmen. Daher ist es zunächst erforderlich, die Dehnungsmessungen an der Zugstange auf höhere Belastungen auszudehnen, bevor die erwähnte Art der Kontrolle als maßgebend eingeführt werden kann.

c) Vergleich der Stabfestigkeiten mit den Materialfestigkeiten.

Die Streckgrenze des Stabes 81 wurde bei 287,5 t beobachtet, die Bruchbelastungen der beiden Stäbe 80 und 81 betrugen 1014,6 und 485,2 t. Diesen Belastungen entsprechen bei den Stabquerschnitten von 227 und 113 qcm folgende Spannungen  $\sigma_s$  für die Streckgrenze und  $\sigma_B$  für den Bruch:

> beim Stabe 80:  $\sigma_S = - \text{kg/qcm}$ ,  $\sigma_B = 4470 \text{ kg/qcm}$ beim Stabe 81:  $\sigma_S = 2540 \text{ kg/qcm}$ ,  $\sigma_B = 4300 \text{ kg/qcm}$ .

Diesen Werten stehen gegenüber nach Tab. 12 folgende Werte für das Material der Stäbe:

beim Stabe 80:  $\sigma_S = 2470 \text{ kg/qcm}, \sigma_B = 4370 \text{ kg/qcm}$ beim Stabe 81:  $\sigma_S = 2530 \text{ kg/qcm}, \sigma_B = 4370 \text{ kg/qcm}.$ 

Die zusammengehörigen Werte stimmen also außerordentlich gut, nahezu vollkommen überein.

Beide Stäbe rissen annähernd in der Mitte. Das Bruchaussehen zeigen die Lichtbilder Fig. 52 und 53 a und b. Stab 80 (Fig. 52) brach senkrecht zur Achse; die Bruchfläche ist im Kern mattgrau feinschuppig und im übrigen, bis auf einen schmalen Rand mit dem Aussehen von Schubflächen, feinkörnig mit stark ausgeprägten radialen Bruchlinien. Die Entstehung des matten Kernes führe ich darauf zurück, daß der Bruch unter Erschöpfung der Dehnbarkeit des Materials im Kern begann Versuche zur Prüfung und Abnahme der 3000-t-Maschine.

und von hier aus nach außen fortschritt. Hierauf deuten auch die erwähnten Bruchlinien hin. Die gleiche Erscheinung fand ich bei Zugversuchen mit Stäben verschiedener Länge<sup>1</sup>). Proben aus derselben Stange Flußeisen zeigten, wenn sie ringsum scharf eingekerbt waren, so daß sie keine nennenswerte Dehnung erfuhren, körnigen Bruch mit schmalem matten Rande; schon bei 10 mm Stablänge war die Bruchfläche infolge Streckung des Kornes feinschuppig matt; wurden aber die Stäbe nicht scharf eingekerbt, sondern mit Hohlkehle versehen, so glich das Bruchaussehen dem des Stabes 80 (Fig. 52).



Fig. 52. Bruchfläche des Stabes 80.

Stab 81 brach mit ausgeprägter Trichterbildung, wie besonders die Seitenansicht Fig. 53b deutlich erkennen läßt. Die an dem nahezu ebenen Kern anschließenden Trichterflächen waren durch tiefe Bruchlinien stark zerklüftet.

d) Das Verhalten der Wasserdruckbremsen p, Fig. 1 und 2.

Der Bruch der beiden Stäbe 80 und 81 erfolgte bei 946,1 und 454 t<br/> Belastung<sup>2</sup>) unter heftigem Schlage. Die Ventile an den beiden Bremszylinder<br/>np Fig. 1 und 2 standen tunlichst weit offen.

46

<sup>&</sup>lt;sup>1</sup>) Rudeloff: "Beitrag zum Studium des Bruchaussehens zerrissener Stäbe." Baumaterialienkunde Bd. 4, S. 85.

<sup>&</sup>lt;sup>2</sup>) Zerreißlast im Augenblick des Bruches.

Um die Bewegungen der Spindeln in Richtung ihrer Achsen unter dem Rückstoß beim Bruch der Probestäbe festzustellen, wurden ihre Verschiebungen gegen die drei Stützböcke festgestellt, in denen die Spindeln auf Rollen ruhen. Hierzu waren an den Spindeln feste Zeiger und darunter an den Böcken Maßstäbe angebracht, an denen die Bewegungen in 0,1 mm abgelassen werden konnten. Beobachtet sind bei Prüfung

| des Stabes (Zerre | ißlast)              | 80 (9 | 46,1 t) | 81 (4 | 454 t) |
|-------------------|----------------------|-------|---------|-------|--------|
| an der Spindel .  |                      | oben  | unten   | oben  | unten  |
| Bewegungen        | ( am Bremszylinder   | 5,8   | 6,3     | 5,2   | 4,6    |
| in mm             | in der Mitte         | 5,1   | 5,8     | 5,4   | 4,6    |
| gegen den Bock    | am festen Widerlager | 5,9   | 6,2     | 4,7   | 4,9    |
| Mittlere Bewegun  | g in mm              | 5,6   | 6,1     | 5,1   | 4,7    |



a) Draufsicht.

Fig. 53. Bruchfläche des Stabes 81.

Die größere Zerreißlast hatte hiernach auch die größere Bewegung der Spindeln im Gefolge: dabei war bei Prüfung des Stabes 80 die Bewegung der unteren Spindel,

bei Prüfung des Stabes 81 die Bewegung der oberen Spindel die größere. Auf die Bremszylinder äußerte sich der Rückstoß bei Prüfung des Stabes 81 wie folgt. Im oberen Bremszylinder stieg der Druck auf 10 at, in dem unteren auf 2,5 at. Das Wasser spritzte weit heraus; irgendwelche Schäden an den Bremsvorrichtungen traten nicht ein. Zu bemerken bleibt, daß die Drucke in den Bremszylindern tatsächlich etwas höher gewesen sein können, als an den Manometern beobachtet worden ist, weil die Leitungen zu den letzteren ziemlich eng sind, so daß es nicht ausgeschlossen ist, daß die Manometeranzeige bei dem kurzen Stoß nicht auf den vollen Druck anstieg, indem das Druckwasser durch die weit offen stehenden Ventile mit geringerem Widerstande austreten konnte, als der Widerstand war, den das Wasser in den engen Leitungen zu den Manometern fand.

## C. Prüfung des Zugstabes 70.

## 1. Der Aufbau des Stabes.

Der Stab (Fig. 54) besteht im wesentlichen aus vier Stegblechen von 510 mm Breite und 15 mm Dicke, die nach Fig. 55 mit 190 mm lichtem Abstande (s. a. Fig. 58) paarweise angeordnet und außen mit vier Winkel,  $100 \cdot 100 \cdot 12$  mm, gesäumt sind; durch je vier obere und untere Bindebleche *a* bis *d* (Fig. 54) von 12 mm Dicke werden sie in ihrem Abstande gehalten. Die Länge der Bindebleche *a* und *d* beträgt 280 mm,



Stabkraft = 302 t, Bruttofläche = 396,8 qcm, Nettofläche = 306,32 qcm, Beanspruchung = 985 kg/qcm.

die der beiden anderen 260 mm. Die Stablänge zwischen den Außenkanten der Bindebleche a und d beträgt 5560 mm. Außerhalb davon sind die Stabenden auf 900 mm verbreitert (Fig. 54) und jeder der beiden Stege ist durch beiderseits beigelegte Anschlußbleche von 15 und 10 mm Dicke verstärkt. Die Einspannung der Stabenden in die Zerreißmaschine erfolgte durch Bolzen von 320 mm Durchmesser; ihr Achsabstand, die Systemlänge des Stabes, betrug 8000 mm. Zwischen den beiden



mittleren Bindeblechen b und c ist der Stab gestoßen (s. Fig. 56 bis 58). Der Stoß wird gebildet (s. Fig. 58) durch die beiden äußeren und inneren Stoßlaschen e und f und die vier Stoßlaschen g für die Gurtwinkel.

Unter den Bindeblechen b und c sind Querschotte angeordnet (s. Fig. 56 u. 57), bestehend aus einem 10 mm dicken Blech, das einseitig durch zwei Winkel (90  $\cdot$  90  $\cdot$  10) an die Stegbleche und auf der anderen Seite durch je einen ebensolchen Winkel an die beiden Bindebleche angeschlossen sind.

#### 2. Gegenstand der Beobachtung.

Die Zugbelastung wurde in den aus Tab. 25 ersichtlichen Stufen gesteigert, beginnend mit 18,23 t als Mullbelastung für die Bestimmung der Formänderungen. Bei jeder Stufe wurde unter jedesmaliger Beobachtung der gesamten und bleibenden Formänderungen zweimal auf 18,23 t entlastet, die Belastung bei dieser Stufe zum drittenmal angehoben, die Formänderungen nochmals abgelesen und dann erst die nächsthöhere Laststufe aufgebracht.

Zur Kontrolle der aus dem Wasserdruck und der Kolbenfläche berechneten Belastungen sind die Dehnungen der Zugstange S der Maschine (s. Fig. 50) beobachtet und auch hieraus wie bei Tab. 24 die Belastungen berechnet.

· An Formänderungen sind beobachtet:

 Längenänderungen innerhalb des Stoßes. Die Meßlängen betrugen 100 mm; sie lagen symmetrisch zur Stoßfuge und entsprachen somit dem Achsenabstande (Teilung) der neben der Stoßfuge gelegenen beiden Nietreihen.

Hierbei lagen, wie aus Fig. 56 bis 59 ersichtlich ist:

- a) die Meßstellen 1, 2, 5, 6, 9, 10, 12 und 13 auf den Rändern der Stegbleche; die Beobachtungen umfassen somit auch die Erweiterung der Stoßfugen;
- b) die Meßstellen 3, 7, 11 und 14 auf den Rändern der inneren Laschen und
- c) die Meßstellen 15 und 16 in halber Höhe der Stege auf den Außenflächen der äußeren Laschen.

Alle Beobachtungen sind mit Martensschen Spiegelapparaten ausgeführt. Da die Apparate für dieselbe Meßstrecke nicht, wie sonst üblich, paarweise, sondern nur einzeln angebracht werden konnten, so war es erforderlich, die Beobachtungen entsprechend den Kippbewegungen der Spiegel richtigzustellen, die durch Änderungen der Stablage veranlaßt wurden. Zur Beobachtung der letzteren dienten die auf den äußeren Stegblechen bei 4- und 8 (s. Fig. 57) angebrachten (feststehenden) Spiegel (s. a. Fig. 59).

- die Verschiebungen der Stegbleche gegen die inneren Stoßlaschen, und zwar an deren beiden Enden in den durch die Mittelebenen der äußersten Nietreihen gegebenen Querschnitten (s. die Meßstellen 17-24, Fig. 57). Die Messungen erfolgten in <sup>1</sup>/<sub>500</sub> mm mit den auch schon früher<sup>1</sup>) angewendeten Zeigerapparaten, die hier nach Fig. 59 angeordnet waren.
- 3. die Änderungen des Abstandes zwischen den beiden Stegen, und zwar an den beiden Querschnitten in den Mitten zwischen den Bindeblechen a und b, sowie c und d (s. die Meßstellen 25-28, Fig. 54). Die Endmarken der Meßstrecken lagen auf den Gurtwinkeln. Gemessen ist in  $\frac{1}{500}$  mm mit Rollenapparaten.
- 4. die Längenänderungen der Systemlänge des Stabes in <sup>1</sup>/<sub>10</sub> mm an beiden Stegen. Hierzu waren den vier Endmarken der Meßlängen gegenüber im Raum Maßstäbe fest aufgestellt. Die Unterschiede in den Bewegungen der beiden Marken derselben Meßlänge gegen diese Maßstäbe entsprechen den Längenänderungen des Stabes.

<sup>&</sup>lt;sup>1</sup>) Rudeloff: "Dritter Bericht über Versuche mit Nietverbindungen und Brückenteilen". Verhandlungen des Vereins zur Beförderung des Gewerbefleißes 1911.

Versuche im Eisenbau A 2.

#### 3. Versuchsergebnisse.

a) Bestimmung der Zugkräfte (Belastungen).

Die Wasserdrucke im Zylinder der 3000-t-Maschine sind an den Manometern 211 und 123 in Graden beobachtet. Aus den Beobachtungswerten für die einzelnen



Laststufen sind die im Kopf der Tab. 25 angegebenen Drucke p in at angegeben, wie sie sich mit den Eichwerten der Manometer berechnen. Die zu den Lastoder Druckstufen p = 13,17 bis p = 114,15 at in Tab. 25 angegebenen Dehnungen  $\lambda$  der Zugstange sind für die Meßlänge l = 40 cm beobachtet. Sie gelten von dem Anfangsdruck p = 3,195 at ab und entstammen abwechselnd einer Belastung und einer Ent- $\mathbf{59}$ lastung. Der Wert  $\lambda = \frac{\partial \vartheta}{200\ 000}$  cm für p = 3,195 at ist das Mittel aus 15 Beobachtungen, die sich ergaben als die Unterschiede der Ablesungen nach dem Entlasten auf p = 3,195 at gegen die erstmalige Ablesung für p = 0 beim Beginn des Versuches.

Mit den Mittelwerten der befriedigend übereinstimmenden Einzelwerte für  $\lambda$ , dem Stangenquerschnitt f = 1388 qcm und dem Elastizitätsmodul

 $E = 2\,090\,500 \, \text{kg/qcm}$ 

des Stangenmaterials (s. Tab. 23) sind die "Einzelwerte" der Zugbelastungen  $P_1 = \frac{\lambda}{l} f \cdot E$  in t berechnet. Die "Gesamtbelastungen" ergaben sich dann nach Vorgesagtem aus der Erhöhung der "Einzelwerte" von  $P_1$  für p=13,17bis 114,15 at um den Wert von  $P_1 = 21,4$  t für p = 3,195 at.

Den so errechneten Gesamt-Zugbelastungen  $P_1$  sind ferner in

Tab. 25 die Belastungen P = p F - R in t gegenübergestellt, die sich mit den at-Werten p, dem Kolbenquerschnitt F = 7918 qcm und der Reibung im Leer-

gange der Maschine R = 7068 kg ergeben. Aus den Unterschieden  $P - P_1$  in t sind schließlich die prozentuellen Unterschiede zwischen den Ergebnissen der beiden Verfahren zur Ermittlung der Zugbelastungen (aus den Dehnungen der Zugstange Sder Maschine und aus dem Wasserdruck × Kolbenfläche – Leergangsreibung) für die angewendeten Laststufen berechnet. Die zuverlässigere beider Bestimmungen ist meines Erachtens diejenige aus der Dehnung der Zugstange. Betrachtet man sie als richtig, so folgt aus den Endwerten der Tab. 25, daß der Ermittlung der Zugbelastung bis zu etwa 900 t aus dem am Manometer abgelesenen Wasserdruck ein Fehler von etwa 1 bis 1,5% anhaftet.

Den nachfolgenden Betrachtungen sind die aus den Dehnungen der Zugstange ermittelten Belastungen zugrunde gelegt.

#### b) Bestimmung der Formänderungen.

Die Ergebnisse der Formänderungsmessungen sind in den Tab. 26 bis 32 zusammengestellt; aus ihnen ergibt sich folgendes:

Die Längenänderung am Stoß, gemessen auf je 50 mm zu beiden Seiten des Stabquerschnittes mit der Stoßfuge (s. Fig. 57), sind bei dem Aufbau des vor-

liegenden Versuchsstabes im wesentlichen abhängig von den Dehnungen der Laschen und der vier Saumwinkel. Auf die gestoßenen Stegbleche kann innerhalb der gewählten Meßlänge ein Teil der Zugkraft nur durch die Reibung zwischen den Stegblechen einerseits und den Laschen und Saumwinkeln andererseits übertragen werden. Ist letzteres in irgendwie nennenswertem Maße der Fall, so wird die Längung  $\lambda_b$ , gemessen über den Stoß der Stegbleche, nicht wesentlich größer sein als die Deh-



Fig. 60. Längenänderungen der beiden Laschen und des inneren Stegbleches (über den Stoß gemessen) auf 100 mm Meßlänge. Seite (Steg) A des Stabes.

nung  $\lambda_l$  der Laschen. Aus den Werten der Tab. 26 und 28 ist das Verhältnis  $\lambda_b : \lambda_l$ schon bei der ersten Laststufe von 98,29 t am Steg A = 232 : 89 und am Steg B = 109 : 75. Hiernach kann gesagt werden, daß besonders am Steg A die gesamte Zugkraft an der Stoßstelle im Bereich der gewählten Meßlänge lediglich von den Laschen und Saumwinkeln aufgenommen worden ist. Den weiteren Verlauf der Dehnungen zeigen die nach den Mittelwerten der Tab. 26 und 28 aufgetragenen Schaulinien (Fig. 60) für den Steg A und (Fig. 61) für den Steg B.

Zu den Einzelwerten bleibt zunächst hervorzuheben, daß die Messungsergebnisse für die beiden Stegbleche desselben Steges befriedigend übereinstimmen. In Fig. 60 und 61 sind daher die Schaulinien nur für die inneren Stegbleche dargestellt. Die wagerechten Strecken der feineren, gestrichelten Linien für den oberen und unteren Rand entsprechen dem Fortschreiten der Längungen bei dem dreimaligen Wechsel zwischen Be- und Entlastung bei derselben Laststufe.

Sowohl die Längungen  $\lambda_b$  der Meßlängen auf den Stegblechen (s. Tab. 26) als auch die Dehnungen  $\lambda_l$  der Laschen (s. Tab. 28), gemessen auf den beim Versuch



Fig. 61. Längenänderungen der beiden Laschen und des inneren Stegbleches (über den Stoß gemessen) auf 100 mm Meßlänge. Seite (Steg) B des Stabes.

untenliegenden Kanten, waren bei allen Laststufen sichtlich größer als die gleichzeitig an den oberen Kanten ermittelten

Formänderungen. Diese Erscheinung läßt darauf schließen, daß der Stab sich an der Stoßstelle mit wachsender Belastung ständignach durchbog. unten Beim Stabe ohne Stoß hätte allenfalls teilweise mit der Zugkraft zunehmende Aufhebung des ursprünglichen Durchhanges unter dem Eigengewicht, also Durchbiegen nach oben, erwartet werden müs-

sen. Das gegenteilige Verhalten des Stabes dürfte darauf zurückzuführen sein, daß die Reibung zwischen den gestoßenen Stegblechen und den Laschen schon bei geringen Belastungen aufgehoben wurde und nun der Spielraum zwischen den Nieten und Lochwandungen stärkeres Durchbiegen unter dem freigewordenen Eigengewicht nach unten ermöglichte. Infolge der hiermit verbundenen stärkeren Längung an unteren Rande haben hier die Messungen an beiden Stegen nur bis 294 t bzw. 490,8 t fortgesetzt werden können (s. Tab. 26); bei höheren Belastungen ging die Drehung der Spiegel aus dem Meßbereich der Ablesemaßstäbe heraus.

Von den beiden Laschen desselben Steges erlitt sowohl auf der Seite A (Fig. 60) als auch auf der Seite B (Fig. 61) die äußere bei den einzelnen Laststufen größere Längung als die innere, und zwar gilt dies auch für die bleibenden Längungen Tab. 29 und Fig. 62 und 63. Diese Erscheinung kann in zwei Ursachen begründet sein. Erstens darin, daß beide Stege sich unter der Zugbeanspruchung nach außen durchbogen, und zweitens darin, daß die inneren Laschen mit den Stegblechen weniger fest verbunden waren und daher unter entsprechend stärkerem Gleiten gegen die Stegbleche verhältnismäßig weniger auf Zug beansprucht waren als die äußeren Laschen. Welche dieser beiden Ursachen vorlag oder ob beide gleichzeitig zur Wirkung kamen, läßt sich aus den vorliegenden Messungsergebnissen nicht ohne weiteres erkennen, zu-

mal für die Änderung der Feldweite innerhalb des Stoßes überhaupt keine Beobachtungen vorliegen.

Betrachtet man die Anordnung des Querschnittes, der die Zugbelastung in der Ebene der Stoßfuge aufzunehmen hatte, so zeigt sich, daß der Anteil des tragenden Querschnittes neben dem inneren Stegblech lediglich durch die Lasche gegeben ist; er beträgt  $51 \cdot 1,5 = 76,5$  qcm. Über dem äußeren Stegblech liegen dagegen die dreiteilige Lasche mit

 $f = 2 \cdot 8 \cdot 2 + 30 \cdot 1,5$  cm

und die beiden Saumwinkel mit  $f = 2 \cdot 22,7$  cm. Der Gesamtquerschnitt dieser



Fig. 62. Bleibende Längungen der beiden Laschen und des inneren Stegbleches (über den Stoß gemessen) auf 100 mm Meßlänge. Seite (Steg) A des Stabes.



Fig. 63. Bleibende Längungen der beiden Laschen und des inneren Stegbleches (über den Stoß gemessen) auf 100 mm Länge. Seite (Steg) B des Stabes.



Fig. 65. Bleibende Änderungen der Feldweiten.

Teile beträgt 122,4 qcm. Letzterer ist also nicht nur um 46 qcm größer als  $\operatorname{der}$ neben dem inneren Stegblech sondern gelegene, Schwerpunkt sein liegt auch weiter von dem Stegblech entfernt. Die Zugkräfte wurden an den Stabenden symmetrisch zu den beiden Stegblechen eingeleitet. Nach allem war somit von vornherein<sup>·</sup> Durchbiegen der beiden Stege nach innen, d. h. nach der Stab-4/100 mm achse hin zu er-

warten gewesen. Innerhalb der beiden anderen, durch die Bindebleche a, b und c, d (Fig. 54) begrenzten Felder außerhalb des Stoßes fand nach den Ergebnissen der Tab.30 und den hiernach verzeichneten Schaulinien Fig. 64 und 65 tatsächlich Durchbiegen der Stege nach innen statt. Dabei war hier die Symmetrie der Querschnitte günstiger, indem die Laschen beiderseits fehlten und nur das statische Moment der Saumwinkel die Durchbiegung beeinflußte. Hiernach erscheint es mindestens zweifelhaft, daß die Stege sich innerhalb des den Stoß enthaltenden Feldes nach außen durchbogen. Damit wächst aber die Wahrscheinlichkeit dafür, daß die äußeren Laschen sich deswegen stärker dehnten als die inneren, weil die inneren infolge stärkeren Gleitens weniger beansprucht waren.

Als Bestätigung möge auf folgendes Ergebnis hingewiesen sein. Das Maß des Gleitens der Stegbleche am Stoßende gegen die Laschenmitte ergibt sich aus dem Unterschiede zwischen den Längenänderungen  $\lambda_b$  und  $\lambda_l$ . Nach den Mittelwerten der Tab. 26 und 28 berechnet sich  $\lambda_b - \lambda_l$  wie folgt:



<sup>×</sup> gegen rechtes, · gegen linkes Ende der Lasche.

Das Gleiten der Stegblechenden gegen die Laschen war also an beiden Stegen A und B innen tatsächlich größer als außen und zudem war auch der Unterschied zwischen dem Gleiten innen und außen bei dem Steg A, also an dem Steg der größere, an dem auch der Unterschied der Dehnungen beider Laschen der größere war.

An den beiden Enden der inneren Laschen ist deren Gleiten gegen die Stegbleche unmittelbar gemessen (s. Tab. 31 und Fig. 66). Die Schaulinien(Fig. 66) lassen erkennen, daß geringes Verschieben schon bei 100 t Belastung wahrnehmbar war, daß es aber besonders mit Überschreitung der Belastung von 300 t einsetzte. Es ist dies die gleiche Belastung, bei der besonders nach Fig. 60, aber auch nach Fig. 61, die Unterschiede in den Längenänderungen der beiden Laschen desselben Steges begannen.

Bis zu 300 t etwa kann man auch nach Tab. 32 und Fig. 67 die Gesamtdehnung des Stabes innerhalb der Systemlänge der Belastung proportional erachten, während sie ebenso wie die bleibende Dehnung bei höheren Belastungen in stärkerem Maße zunahm.

Nach Vorstehendem sind 300 t sowohl durch das Verschieben der gestoßenen Stegbleche gegen die Laschen, als auch durch den Unterschied in den Dehnungen der Laschen, als auch durch die Dehnung innerhalb der Systemlänge des Stabes gewissermaßen als kritische Belastung gekennzeichnet. Eine zweite solche kritische Belastung liegt zwischen 500 und 600 t, indem bei ihr sowohl die Dehnung  $\lambda_i$  der äußeren Laschen (s. Fig. 60-63) als auch die Änderung der Feldweiten (s. Fig. 64 und 65) in erhöhtem Maße zunahmen.



Fig. 68. Der gerissene Stab 70 in der Maschine.

#### c) Brucherscheinungen.

Der erste Bruch eines Teiles des Stabes, und zwar eines Saumwinkels erfolgte bei 995,46 t (s. Fig. 68). Die rechnungsmäßige Belastung des Stabes in der Brücke, die Nutzlast, beträgt 302 t also  $\frac{1}{3.3}$  der ermittelten Bruchlast.

Mit dem Nettoquerschnitt des Stabes F = 306,32 qcm berechnet sich die Materialbeanspruchung aus der Nutzlast zu  $\sigma_N = \frac{302\,000}{306,32} = 985$  kg/qcm und aus der Bruchlast zu  $\sigma_B = \frac{995\,460}{306,32} = 3250$  kg/qcm. Die mittlere Materialfestigkeit der Stegbleche ist nach Tab. 33 an der Streckgrenze zu  $\sigma_S = 2800$  kg/qcm und an der Bruchgrenze zu  $\sigma_B = 3820$  kg/qcm ermittelt. Die Bruchspannung des Stabes 70 verhält sich demnach zur Streckgrenze des Materials wie 3250: 2800 oder wie 116: 100 und zur Bruchfestigkeit des Materials wie 3250: 3820 oder wie 85: 100. Den zeitlichen Verlauf des Bruches der einzelnen Teile des Stabes und die zugehörigen Belastungen läßt Tab. 34 ersehen. Zuerst riß der untere Saumwinkel des Steges A bei 1 (Fig. 69a), dann derselbe Winkel nochmals bei 2 (Fig. 69b), hierauf der obere Saumwinkel deselben Steges A bei 3 (Fig. 69b). Nachdem dann, wieder am Steg A bei 4 (Fig. 69a), noch ein Niet abgeschoren war, rissen nun beide Bleche des Steges B bei 5 (Fig. 70). Hiermit war zugleich die Höchstlast erreicht. Sie betrug 1114,70 t, entsprechend einer rechnungsmäßigen Materialspannung von  $\frac{1114700}{306.32} = 3640 \text{ kg/qcm}$  oder 95,3% der Materialfestigkeit.



Fig. 69 a. Seitenansicht des Steges A.



Fig. 69 b. Seitenansicht des Steges A.



Fig. 70. Seitenansicht des Steges B.

Die Belastung war beim Bruch 5 abgesunken; beim Wiederanheben riß unter 702,83 t bei 6 (Fig. 69a) nochmals der obere Saumwinkel des Steges A und bei 709,29 t erlitt auch wieder der untere Saumwinkel des Steges A bei 7 (Fig. 69b) einen Anbruch am Rande des vernieteten Schenkels. Von nun an sank die Belastung trotz weiterer Streckung des Stabes ständig ab. Hierbei rissen unter 628,6 t beide Saumwinkel des Steges B bei 8 (Fig. 70). Bei 610 t erfolgte Abscheren eines zweiten

und bei 559 t eines drittes Nietes des Saumwinkels bei 9 und 10 (Fig. 69a). Schließlich scherten auch die übrigen Niete des Saumwinkels ab und zugleich rissen die beiden Stegbleche durch. Die Brüche begannen am unteren Rande und schritten langsam nach oben hin fort.



Das Aussehen der entstandenen Brüche zeigen die Fig. 71-73. Der zuerst gerissene Saumwinkel (s. Fig. 69a) weist über die ganze Bruchfläche körnigen Bruch mit Bruchlinien (Fig. 71) auf. Der Verlauf der letzteren deutet darauf, daß der Bruch am Lochrande begann. Nach dem veränderten Aussehen des schmalen Streifens unter der Anlagefläche des Nietkopfes hat das Material beim Einziehen des Nietes gelitten. An den später noch entstandenen Bruchstellen 2 und 7 (Fig. 69b) war das Bruchgefüge ebenfalls körnig.



Fig. 72. Bruchflächen der Bleche des Steges B.

Die Bruchflächen der Stegbleche des Steges B, die unter der Höchstlast rissen (Stelle 5, Fig. 70), zeigen zwischen den Nietlöchern für den Anschluß der Saumwinkel ebenfalls feinkörniges Bruchgefüge mit Bruchlinien (s. Fig. 72); außerhalb dieser Nietlöcher ist das Gefüge bei drei Bruchflächen mattglänzend mit Trichterbildung, bei der vierten aber wieder feinkörnig. Anscheinend ist der Bruch der Bleche von dem auf halber Steghöhe gelegenen Nietloch ausgegangen; die Teile

58

mit körnigen Bruchflächen sind ohne wesentliche bleibende Dehnung plötzlich gerissen, während der Entstehung der Brüche innerhalb der matten Flächen Fließen des Materials voraufgegangen ist. Eine Bestätigung dieser Ansicht erblicke ich in dem Aussehen des Bruches der Stegbleche A. Hier begann der Bruch am untern Rande und pflanzte sich unter starkem Dehnen des Materials langsam nach oben hin fort. Das Bruchaussehen ist daher bis zum oberen Nietloch hin mattglänzend mit Trichterbildung. Oberhalb ist der Bruch schließlich bei geringerer Dehnung, die sich in der Abnahme der Dickenverminderung nach dem Rande zu deutlich zu erkennen gibt, erfolgt und das Bruchaussehen geht wieder in feines Korn über.



Fig. 73. Bruchflächen der Bleche des Steges A.

#### Zusammenfassung der Ergebnisse.

Die besondere Aufgabe der vorstehend im einzelnen besprochenen Versuche war die Erprobung der Maschine. Die nach dieser Richtung hin erzielten Ergebnisse lassen sich wie folgt zusammenfassen:

- 1. Die Handhabung der Ventile zwecks Einstellung und Regelung der Belastung hat sich als durchaus zuverlässig erwiesen.
- 2. Die Belastung P des Probestabes kann bei der jetzt gewählten Anordnung der Rohrleitungen (s. Seite 3) mit hinreichender Genauigkeit aus dem Wasserdruck p im Zylinder, der Kolbenfläche F und dem Leergangswiderstand R nach der Gleichung P = p F - R berechnet werden. Der wahrscheinliche Fehler des so berechneten Wertes betrug für alle Belastungen zwischen 80 und 900 t meist unter 1% und nicht über 1,5%. Belastungen unter 80 t kommen für eine 3000-t-Maschine nicht in Frage.
- 3. Bei Zugversuchen ist die Möglichkeit einer zuverlässigen Kontrolle der aus dem Wasserdruck berechneten Belastung anscheinend in Messungen der elastischen Dehnungen  $\lambda$  des zur Maschine gehörigen Zugstabes *i*, Fig.1, gegeben.

Bei 400 mm Meßlänge entspricht die Dehnungszunahme  $\Delta \lambda = \frac{270}{20\,000}$  mm der Steigerung der Belastung um je 100 t.

- 4. Die Kugellagerung der Druckplatten hat sich bei hohen Belastungen bewährt; bei geringen exzentrischen Belastungen hindern die Bewegungswiderstände die Einstellung der Druckplatten trotz des Wasserpolsters in den Kugellagern.
- 5. Die Rückschläge infolge plötzlichen Auslösens der elastischen Druckspannungen in den Maschinenspindeln beim Bruch der Zerreißproben haben bisher keine Übelstände gezeitigt.

| Stütz- | Bedeutung der W                                                                                                                                             | erte                                                                                                                                                                                                                                                                    |                                                                                              |                                                                                                                                           |                                                                                               | Belast                                                                                                         | ungen de                                                                                       | er Feder                                                                                                      | in kg                                                                                                 |                                                                                                      |                                                                                                         |                                                                                                                         |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| Nr.    | Bedeutung der w                                                                                                                                             | cree                                                                                                                                                                                                                                                                    | 500                                                                                          | 1000                                                                                                                                      | 1500                                                                                          | 2000                                                                                                           | 2500                                                                                           | 3000                                                                                                          | 3500                                                                                                  | <b>400</b> 0                                                                                         | 4500                                                                                                    | 5000                                                                                                                    |
| 1      | Zusammen-<br>drückung λ<br>der Feder<br>in mm<br>unter den über-<br>geschriebenen<br>Belastungen<br>bei Reihe Nr.<br>Mittlere Zunahme<br>für 500 kg Belastg | $ \frac{1}{2} $ $ \frac{3}{3} $ $ \frac{4}{5} $ $ \frac{5}{6} $ $ \frac{7}{8} $ $ \frac{9}{10} $ Mittel $ \frac{1}{2} $ | 11,9<br>12,4<br>11,8<br>11,8<br>11,8<br>11,0<br>11,4<br>12,3<br>12,7<br><b>11,97</b>         | 24,0<br>24,4<br>23,5<br>23,4<br>24,2<br>22,5<br>23,0<br>23,8<br>24,2<br><b>23,6</b><br><b>23,8</b><br>24,2<br><b>23,6</b><br><b>11,67</b> | 35,8<br>36,3<br>35,1<br>35,0<br>36,1<br>34,7<br>35,1<br>35,5<br>36,0<br><b>85,47</b><br>11,83 | 46,9<br>47,9<br>47,2<br>47,6<br>46,9<br>48,1<br>47,0<br>48,1<br>47,0<br>48,1<br>47,4<br>47,9<br>47,50<br>12,03 | 58,3<br>58,5<br>58,6<br>59,4<br>58,7<br>60,5<br>58,0<br>59,0<br>60,2<br><b>59,02</b><br>111,52 | 70,7<br>71,4<br>70,1<br>70,7<br>71,6<br>68,7<br>71,6<br>68,5<br>69,5<br>69,9<br>71,1<br><b>70,32</b><br>11,30 | 81,8<br>82,5<br>82,5<br>83,7<br>81,8<br>84,1<br>81,3<br>83,1<br>81,9<br>83,6<br><b>82,63</b><br>12,31 | 91,1<br>91,8<br>91,2<br>92,4<br>91,1<br>93,3<br>90,8<br>92,4<br>91,2<br>92,8<br><b>91,81</b><br>9,18 | 99,1<br>99,5<br>99,2<br>100,4<br>98,8<br>101,3<br>98,0<br>99,7<br>98,9<br>100,4<br><b>99,53</b><br>7,72 | 107,1<br>107,5<br>106,9<br>108,0<br>106,9<br>108,7<br>106,0<br>107,2<br>106,8<br>107,9<br><b>107,30</b><br><b>7</b> ,77 |
|        | Belastg. in kg fi<br>nahme von $\lambda$ um je                                                                                                              | ür Zu-<br>elmm                                                                                                                                                                                                                                                          | 41,8                                                                                         | 42,7                                                                                                                                      | 42,1                                                                                          | 41,5                                                                                                           | 43,3                                                                                           | 44,1                                                                                                          | 40,6                                                                                                  | 54,5                                                                                                 | 64,7                                                                                                    | 64,5                                                                                                                    |
| 2      | Zusammen-<br>drückung λ<br>der Feder<br>in mm<br>unter den über-<br>geschriebenen<br>Belastungen<br>bei Reihe Nr.                                           | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>Mittel                                                                                                                                                                                                               | 13,1<br>14,2<br>13,6<br>16,2<br>13,8<br>15,7<br>14,2<br>15,4<br>12,2<br>14,4<br><b>14,28</b> | 25,5<br>26,4<br>26,4<br>29,0<br>25,9<br>27,9<br>27,4<br>28,5<br>26,4<br>27,6<br><b>27,10</b>                                              | 38,1<br>39,5<br>39,7<br>42,4<br>38,7<br>40,5<br>38,2<br>39,8<br>38,3<br>39,7<br><b>39,49</b>  | 50,4<br>52,3<br>51,9<br>55,0<br>51,6<br>54,0<br>50,9<br>53,0<br>50,5<br>52,4<br><b>52,20</b>                   | 62,8<br>65,1<br>65,4<br>69,0<br>63,7<br>66,2<br>63,5<br>65,4<br>63,2<br>65,3<br><b>64,96</b>   | 74,5<br>76,3<br>76,4<br>80,1<br>74,4<br>77,0<br>74,8<br>76,2<br>74,2<br>76,0<br><b>75,99</b>                  | 83,4<br>85,2<br>84,7<br>88,3<br>83,3<br>85,8<br>82,9<br>84,8<br>82,9<br>84,8<br>82,9<br>84,9<br>84,62 | 91,7<br>93,7<br>92,9<br>96,5<br>92,0<br>94,7<br>91,7<br>93,8<br>91,7<br>93,6<br><b>93,23</b>         | 100,2<br>102,2<br>101,3<br>104,7<br>100,8<br>103,4<br>100,2<br>102,2<br>99,8<br>101,8<br><b>101,66</b>  | 107,5<br>109,4<br>108,7<br>112,2<br>108,2<br>110,8<br>107,7<br>109,7<br>107,2<br>109,3<br><b>109,07</b>                 |
|        | Mittlere Zunahme<br>für 500 kg Belastg                                                                                                                      | $von \lambda = \Delta \lambda$                                                                                                                                                                                                                                          | 14,28                                                                                        | 12,82                                                                                                                                     | 12,39                                                                                         | 12,71                                                                                                          | 12,76                                                                                          | 11,03                                                                                                         | 8,63                                                                                                  | 8,61                                                                                                 | 8,43                                                                                                    | 7,41                                                                                                                    |
|        | Belastung in kg f<br>nahme von $\lambda$ um j                                                                                                               | für Zu-<br>e 1 mm                                                                                                                                                                                                                                                       | 35,0                                                                                         | 39,0                                                                                                                                      | 40,4                                                                                          | 39,3                                                                                                           | 39,2                                                                                           | 45,3                                                                                                          | 57,9                                                                                                  | 58,1                                                                                                 | 59,3                                                                                                    | 67,5                                                                                                                    |

Tabelle 1. Zusammendrückung der Stützfedern bei wachsender Belastung.

| Tabelle    | 2. Ausbiege     | n des Sta             | bes 68 n       | nit wach:         | sender B       | elastung         | zwischen              | den Me                               | Bpunkten                | 1-2-1                   | 4 und 2-                | -8-5 (s. H                              | 'ig. 8).              |
|------------|-----------------|-----------------------|----------------|-------------------|----------------|------------------|-----------------------|--------------------------------------|-------------------------|-------------------------|-------------------------|-----------------------------------------|-----------------------|
| Gemessen   |                 | Beweg                 | ungen der M    | leßpunkte 1-      | -7-4 und 2     | -8-5 in 100      | <u>00</u> cm          | Mittlere B<br>der Meßpun<br>Ender in | ewegungen<br>kte an den | Ausbiegen<br>in cm      | des Stabes<br>10-4      | Gesamtausbieg<br>bes in cn              | en des Sta-<br>1 10-4 |
| an den     | Belastung in kg | Ende I (Pu            | inkt 1 u. 2)   | Ende II (P        | unkt 7 u. 8)   | Mitte (Pur       | 1kt 4 u. 5)           | III HADDAR                           | cul 10 - *              |                         |                         |                                         |                       |
| Meßpunkten |                 | wagerecht<br>a        | senkrecht<br>b | wagerecht<br>c    | senkrecht<br>d | wagerecht<br>e   | senkrecht<br>f        | $A = \frac{a+c}{2}$                  | $B = \frac{b+d}{2}$     | wagerecht $D_w = e - A$ | senkrecht $D_s = f - B$ | $Gesamt$ $D = V \overline{Dw^2 + Ds^2}$ | Zunahme               |
|            | 006 21          |                       |                |                   |                |                  |                       |                                      |                         |                         |                         |                                         | -                     |
|            | 304 800         | 28                    | -122           | 0                 | -20            | 60               | 56                    | + 14                                 | - 71                    | 46                      | 15                      | 48                                      | 48                    |
|            | 399,800         | 19<br>+               | 44             | -20               | -14            | 63               | -55                   | -  <br>0                             | - 79                    | 68                      | 24                      | 72                                      | 24                    |
|            | 505 100         | -                     | -164           | - 35              | -12            | 73               | -61                   | - 20                                 | 88                      | 93                      | 27                      | 67                                      | 25                    |
| ·          | 614 400         | -16                   | -184           | - 36              | -10            | 85               | -64                   | - 26                                 | - 97                    | 111                     | 33                      | 116                                     | 19                    |
|            | 712 500         | _ 22                  | -198           | - 38              | 0              | 88<br>88         | -63                   | - 30                                 | 66 -                    | 118                     | 36                      | 123                                     | 2                     |
|            | 813 900         | -24                   | -210           | - 43              | 9<br>+         | <b>9</b> 8       | 56                    | 33                                   | -102                    | 131                     | 46                      | 139                                     | 16                    |
|            | 918 400         | - 34                  | -222           | - 55              | 14<br>20       | 103              | -41                   | <br>55<br>2                          | -104                    | 148                     | <b>8</b> 8              | 161                                     | 22                    |
|            | $1\ 020\ 600$   | - 40                  | -230           | 20<br>1<br>1      | 52             | 103              | 24                    | - 21-                                | -104                    | 154                     |                         | 174                                     | 5 9<br>5 9            |
| 1 - 7 - 4  | 1 124 300       | 1 50                  | -240           | - 73              | 89 G           | 95               | 4<br>- 6              | 29 E                                 | 901 -<br>91             | 157                     | 102                     | 187                                     | 13<br>16              |
|            | 1 227 200       | 20<br>1<br>1          | - 244          | 105               | 04             | 00               | 174                   | e<br>08                              | 701                     | 157                     | 147                     | 200                                     | 61                    |
|            | 001 666 1       | # 01<br> -            | 676<br>        |                   | 9              | - 35             | 9<br>1<br>2<br>2<br>2 | 115                                  |                         | 150                     | 174                     | 230                                     | 12                    |
|            | 1 543 100       | 01130                 | - 939          |                   | H X            | , œ              | 130                   | -157                                 | - 72                    | 129                     | 202                     | 240                                     | 10                    |
|            | 1 641 300       | - 160                 | -198           | -263              | 124            | - 115            | 239                   | -211                                 | - 37                    | 96 +                    | 276                     | 292                                     | 52                    |
|            | 1 760 900       | -234                  | - 36           | -463              | 324            | -490             | 1383                  | -349                                 | +144                    |                         | 1239                    | 1247                                    | 955                   |
|            | 1760900         | -300                  | +252           | -545              | 646            | - 805            | 2234                  | -422                                 | 449                     | 383                     | 1785                    | 1826                                    | 579                   |
|            | 1760900         | -356                  | 462            | -643              | 914            | -1085            | 2939                  | -500                                 | 688                     | -585                    | 2251                    | 2326                                    | +200                  |
|            | 20 500          | - 368                 | 662<br>652     | -495<br>-695      | 860<br>1070    | -1235            | 2798 $3482$           | -397                                 | 761<br>861              | -703                    | 2037<br>2621            | 2155<br>2714                            | -171 + 559            |
|            | 17 206          |                       |                |                   |                |                  |                       |                                      |                         |                         | 1                       | -                                       |                       |
|            | 11 200          | 0                     | 101            | -                 | 8              | 08               | 60                    | 44                                   | - 23                    | 36                      | 115                     | 121                                     | 121                   |
|            | 399,800         | 75                    | -116           | 0                 | 18             | 100              | 124                   | 8000                                 | - 19                    | 62                      | 143                     | 156                                     | 35                    |
|            | 505 100         | 75                    | - 122          | 0                 | 86             | 125              | 147                   | 37                                   | - 18                    | 88                      | 165                     | 187                                     | 31                    |
|            | 614400          | 75                    | -136           | 0                 | 98             | 150              | ,168                  | 38                                   | - 19                    | 112                     | 187                     | 218                                     | 31                    |
|            | 712500          | 80                    | -140           | Ι                 | 108            | 175              | 191                   | 40                                   | - 16                    | 135                     | 207                     | 247                                     | 29                    |
|            | 813 900         | 80                    | -156           | -                 | 116            | 185              | $\frac{211}{21}$      | 40                                   | 120                     | 145                     | 231                     | 2/3                                     | 20                    |
|            | 918400          | 85                    | -162           | <b>_</b> ,        | 126            | 200              | 236                   | 43                                   | × 1                     | 101                     | 204                     | 662                                     | 07                    |
|            | 1 020 600       | ŝ                     | -172           |                   | 138            | 210              | 204                   | £ <del>1</del>                       | 11<br>- 17              | 101                     | 102                     | 920                                     | 070                   |
| ນ<br>. ດ   | 1 124 300       | S<br>S<br>S<br>S<br>S | 8/1-           | -                 | 140            | 000              | 162                   | 40<br>2 5                            |                         | 741                     | 1065                    | 374                                     | 66                    |
| 0-0-2      | 1 22/200        | 00                    | 001-           |                   | 160            | 016              | 019<br>246            | ₽ ₹                                  | 9 <b>4</b>              | 167                     | 359                     | 390                                     | 191                   |
|            | 1 433 100       | o x                   | 120            | - 0               | 182            | 195              | 379                   | 43                                   | 9 9<br>  +              | 152                     | 373                     | 403                                     | 13                    |
|            | 1 543 100       | 0 <b>0</b>            | 148            | )<br>             | 198            | 155              | 424                   | <b>5</b> 8                           | 25                      | 127                     | 399                     | 419                                     | 16                    |
|            | 1 641 300       | 58                    | - 70           | ا<br>تر           | 234            | 93               | 503                   | 27                                   | 82                      | 99                      | 421                     | 426                                     | 2                     |
|            | 1760900         | 45                    | +112           | — 14              | 434            | 98               | 1092                  | 15                                   | 273                     | ŝ                       | 819                     | 823                                     | 397                   |
|            | 1760900         | +                     | 392            | - 19              | 658            | $+\frac{118}{2}$ | 2103                  | ۲ م<br>+                             | 525                     |                         | 1578                    | 1582                                    | 759                   |
|            | 1760900         | 2 I 2<br>             | 612            | 52<br>52<br>1     | 874            | - 110            | 2807                  | <br> <br>                            | 700                     | 16                      | 2004                    | 0001                                    | +404<br>20            |
|            | 20 500          | 08                    | 044            | 20 I<br>77 0<br>1 | 794            | - 315            | 2769                  | 2000                                 | 28/                     | 102-                    | 1987                    | 0516                                    | 00 - 216              |
|            | 006 09/. T      | - 13                  | 144            | 17 -              | 1038           | 002 -            | 0899                  | 07                                   | 160                     | 007                     | 0007                    | 0107                                    | orr                   |

Tabelle 1, 2.

61

|           |        | Bewegunge      | n der Druckpl | atten in der E | Traftrichtung |             |                                       |
|-----------|--------|----------------|---------------|----------------|---------------|-------------|---------------------------------------|
|           | I      | Platte am Kolb | en            | Pla            | tte am Widerl | ager        | Verkürzung                            |
| Belastung |        |                | Bewegung      | gen in mm      |               |             | $\frac{des Stabes}{-\lambda = a - b}$ |
| t         | rechts | links          | Mittel<br>a   | rechts         | links         | Mittel<br>b | mm                                    |
| 304,8     | 1,1    | 1,2            | 1,15          | 0,0            | 0,0           | 0,0         | 1,15                                  |
| 399,8     | 1,6    | 1,6            | 1,60          | 0,0            | 0,0           | 0,0         | 1,60                                  |
| 505,1     | 2,2    | 2,1            | 2,15          | 0,0            | 0,0           | 0,0         | 2,15                                  |
| 614,4     | 2,6    | 2,8            | 2,70          | 0,0            | 0,0           | 0,0         | 2,70                                  |
| 712,5     | 3,3    | 3,1            | 3,20          | 0,0            | 0,0           | 0,0         | 3,20                                  |
| 813,9     | 3,5    | 3,6            | 3,55          | 0,1            | 0,0           | 0,05        | 3,50                                  |
| 918,4     | 4,1    | 4,1            | 4,10          | 0,1            | 0,0           | 0,05        | 4,05                                  |
| 1020,6    | 4,8    | 4,6            | 4,70          | 0,1            | 0,0           | 0,05        | 4,65                                  |
| 1124,3    | 5,1    | 5,0            | 5,05          | 0,2            | 0,0           | 0,10        | 4,95                                  |
| 1227,2    | 5,5    | 5,6            | 5,55          | 0,2            | 0,0           | 0,10        | 5,45                                  |
| 1333,2    | 6,3    | 6,2            | 6,25          | 0,2            | 0,0           | 0,10        | 6,15                                  |
| 1433,1    | 6,9    | 6,7            | 6,80          | 0,2            | 0,0           | 0,10        | 6,70                                  |
| 1543,1    | 7,7    | 7,6            | 7,65          | 0,2            | 0,1           | 0,15        | 7,50                                  |
| 1641,3    | 8,6    | 8,6            | 8,60          | 0,2            | 0,2           | 0,20        | 8,40                                  |
| 1760,9    | 10,6   | 10,2           | 10,40         | 0,2            | 0,6           | 0,40        | 10,00                                 |
| 1760,9    | 11,9   | 11,2           | 11,55         | -0,4           | 0,2           | -0,10       | 11,45                                 |

Tabelle 3. Verkürzung des Stabes 68 mit wachsender Belastung.



# Tabelle 5. Zusammendrückungen des

| Meß-     | Steg- | Lage de<br>(s. obi | r Meßstelle<br>ge Skizze) |        |                                        | na 127 - 129 |           | <u></u>   |            | Zus        | ammen      | drücku   | ngen i                                  | n Proz.    | · 10-4 1   | bei den    |
|----------|-------|--------------------|---------------------------|--------|----------------------------------------|--------------|-----------|-----------|------------|------------|------------|----------|-----------------------------------------|------------|------------|------------|
| Nr.      | seite | Höhen-<br>lage     | Stabende                  | 22     | 96                                     | 200          | 301       | 405       | 507        | 609        | 718        | 23       | 23                                      | 713        | 815        | 917        |
| 12<br>16 | 1     | oben<br>unten      | links                     | 0<br>0 | $\begin{vmatrix} -3\\12 \end{vmatrix}$ | $-1 \\ 24$   | 14<br>37  | 47<br>50  | 95<br>78   | 145<br>112 | 194<br>151 | 17<br>3  | 14<br>4                                 | 202<br>145 | 254<br>190 | 303<br>233 |
| 14<br>18 | 2     | oben<br>unten      | (Kolben)                  | 0<br>0 | 17<br>3                                | 44<br>5      | 76<br>17  | 108<br>55 | 147<br>100 | 187<br>145 | 225<br>187 | 9<br>6   | 6<br>6                                  | 230<br>182 | 271<br>227 | 314<br>266 |
| 20<br>24 | 1     | oben<br>unten      | rechts<br>(Wider          | 0<br>0 | 5<br>13                                | 13<br>45     | 33<br>78  | $50\\112$ | 64<br>141  | 79<br>162  | 91<br>180  | 11<br>11 | 8<br>4                                  | 88<br>182  | 102<br>200 | 114<br>216 |
| 22<br>26 | 2     | oben<br>unten      | lager)                    | 0<br>0 | $2 \\ 40$                              | 14<br>98     | 34<br>145 | 51<br>191 | 73<br>235  | 96<br>273  | 115<br>300 | 9<br>24  | $\begin{array}{c} 13 \\ 25 \end{array}$ | 118<br>301 | 139<br>330 | 152<br>351 |

|              | Pr                                   | oben                                         | Abr                  | nessun               | gen                  |                                                 | Spa                          | nnunge               | n kg/q               | (cm                                   | Bruchdehn                                           | ung bezogen                                      | auf                  | 30                         |
|--------------|--------------------------------------|----------------------------------------------|----------------------|----------------------|----------------------|-------------------------------------------------|------------------------------|----------------------|----------------------|---------------------------------------|-----------------------------------------------------|--------------------------------------------------|----------------------|----------------------------|
| Ver-<br>such | ent-<br>nommen<br>aus<br>(s. Fig. 5) | Material-<br>Zeichen                         | a Dicke              | с Breite             | لم Quer-<br>schnitt  | Elasti-<br>zitätszahl<br>$\frac{1}{\alpha} = E$ | Proportiona-<br>litätsgrenze | Streck-<br>grenze    | Bruch-<br>grenze     | $\frac{\sigma_S}{\sigma_B} \cdot 100$ | $l = 4,6 \sqrt[3]{f}$<br>10 cm<br>je 5<br>von der B | $l = 9 \sqrt{f}$<br>20 cm<br>je 10<br>ruchstelle | <i>l =</i><br>20 cm  | Querschnitt<br>verminderui |
| Nr.          |                                      |                                              | cm                   | cm                   | qcm                  | kg/qcm                                          | $\sigma_P$                   | $\sigma_S$           | $\sigma_B$           |                                       | %                                                   | %                                                | %                    | %                          |
| 1<br>2       | Saum-                                | II<br><sup>160</sup> / <sub>160</sub> · 17   | 1,77<br>1,67         | 2,86<br>2,90         | 5,06<br>4,84         | 2035000<br>2050000                              | $2270 \\ 2270$               | 2530<br>2620         | 3930<br>3720         | 65<br>71                              | 38,8<br>38,7                                        | 28,4<br>27,8                                     | 28,2<br>27,8         | 64<br>66                   |
| 3<br>4       | winkeln<br>b                         | II A<br><sup>160</sup> / <sub>160</sub> · 17 | 1,78<br>1,73         | 2,89<br>2,88         | 5,14<br>4,98         | $\frac{1985000}{2050000}$                       | 2430<br>2410                 | 2680<br>2600         | 3760<br>3640         | 71<br>72                              | 38,0<br>35,8                                        | 27,2<br>26,9                                     | 26,9<br>26,9         | 65<br>67                   |
| Mittel       |                                      | —                                            | 1,74                 | 2,88                 | 5,01                 | 2030000                                         | 2345                         | 2608                 | 3760                 | 70                                    | 37,8                                                | 27,6                                             | 27,5                 | 66                         |
| 5<br>6<br>7  | Steg-                                | . 12<br>700 • 17                             | 1,68<br>1,67<br>1,66 | 3,04<br>2,90<br>2,90 | 5,11<br>4,84<br>4,81 | 2060000<br>2040000                              | (1170)<br>1450<br>1660       | 2140<br>2020<br>1980 | 3430<br>3350<br>3440 | 62<br>60<br>58                        | 38,0<br>39,9<br>38,3                                | 27,4<br>27,5<br>27,8                             | 27,4<br>27,3<br>27,4 | 68<br>70<br>70             |
| 8            | blech<br>a                           | $5996 \cdot 12 \\700 \cdot 17$               | 1,64                 | 3,13                 | 5,13                 | 2050000                                         | 1750                         | 1950                 | 3480                 | 56                                    | ·40,7                                               | 29,8                                             | 28,9                 | 70                         |
| Mittel       |                                      |                                              | 1,66                 | 2,99                 | 4,97                 | 2050000                                         | 1620                         | 2023                 | 3420                 | 57                                    | 39,2                                                | 28,1                                             | 27,8                 | 70                         |
| 9            | Deck-<br>blech c                     | $5996 \cdot 13$<br>$950 \cdot 17$            | 1,72                 | 3,19                 | 5,49                 | 2060000                                         | 1460                         | 2700                 | 4240                 | 64                                    | 32,2                                                | 27,1                                             | 26,6                 | 51                         |
| 10           | Quer-<br>blech                       | $5996 \cdot 91 \\ 785 \cdot 10$              | 0,97                 | 3,28                 | 3,18                 | 2050000                                         | 2200                         | 2950                 | 4280                 | 69                                    | $l = 5,65 \sqrt{f}$<br>28,7                         | $l=11,3\sqrt{f}$ 24,6                            | 24,2                 | 45                         |

Tabelle 4. Ergebnisse der Zugversuche mit Materialproben aus Stab 68.

Bruchaussehen: Mattgrau, feinschuppig, Trichterbildung. Stab 1: parallel zur Oberfläche (Walzfläche) gespalten.

## Stabes 69 an den Enden der Stegbleche.

übergeschriebenen Belastungen in t

| 1020               | 1134       | 24       | 1184       | 1269       | 1485       | 24          | 1485       | 1698       | 24         | 1698       | 1911       | 24         | 1911       | 2125              | 2125         | 24                                      | 2125         |
|--------------------|------------|----------|------------|------------|------------|-------------|------------|------------|------------|------------|------------|------------|------------|-------------------|--------------|-----------------------------------------|--------------|
| 355<br>283         | 408<br>334 | 24<br>—3 | 408<br>334 | 470<br>395 | 570<br>489 | $11 \\ -25$ | 574<br>488 | 688<br>581 | $6 \\ -40$ | 703<br>585 | 833<br>670 | 19<br>45   | 851<br>686 | 984<br>930        | 1021<br>1000 | 124<br>224                              | 1049<br>1048 |
| 360<br>307         | 409<br>349 | 6<br>8   | 410<br>350 | 469<br>402 | 567<br>485 | 23<br>5     | 572<br>485 | 690<br>583 | $36 \\ 2$  | 700<br>589 | 806<br>687 | $47 \\ -3$ | 813<br>696 | 1021<br>781       | 1066<br>793  | $\begin{array}{c} 257 \\ 1 \end{array}$ | 1112<br>820  |
| 126<br>236         | 137<br>253 | 7<br>11  | 140<br>254 | 155<br>275 | 172<br>302 | 13<br>20    | 165<br>297 | 187<br>327 | 19<br>25   | 179<br>324 | 191<br>350 | 15<br>31   | 185<br>349 | $\frac{196}{374}$ | 192<br>374   | 15<br>41                                | 186<br>371   |
| 171<br>37 <b>4</b> | 184<br>396 | 14<br>20 | 183<br>390 | 199<br>417 | 228<br>454 | 9<br>17     | 226<br>447 | 249<br>481 | 5<br>21    | 246<br>474 | 272<br>502 | 7<br>20    | 266<br>499 | 290<br>519        | 288<br>515   | 7<br>17                                 | 289<br>513   |

| ig. 27.         | - de -                           | Auspiegen in uer<br>Pfeilrichtung |                           |    |        |       |       |       |      |       |      |       |       | h+   | 1    |      | ;    | <i>h</i> -1 |      |      |      |       |       |      |       |       |       |       |       |       |       |       |       |       |
|-----------------|----------------------------------|-----------------------------------|---------------------------|----|--------|-------|-------|-------|------|-------|------|-------|-------|------|------|------|------|-------------|------|------|------|-------|-------|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| tten a, b, c. F | Gesamtausbiegen<br>des Stabes    | TIL CITL 10 *                     | $D = \sqrt{D_x^2 + Dy^2}$ | I  | 26     | 62    | 129   | 142   | 135  | 167   | 177  | 45    | 09    | 168  | 173  | 185  | 210  | 234         | 41   | 251  | 291  | 373   | 112   | 373  | 482   | 226   | 507   | 703   | 468   | 755   | 1406  | 1667  | 1394  | 1809  |
| Meßpunk         | des Stabes<br>n 10-4             |                                   | senkrecht $Dy - 6 = B$    | I  | 6<br>+ | 13    | - 33  | - 17  | + 17 | 40    | 63   | 40    | 53    | -26  | + 13 | 37   | 62   | + 87        | 4    | 76   | 116  | 171   | - 15  | +138 | 197   | - 44  | +136  | 192   | -140  | +120  | 169   | -130  | 440   |       |
| hen den         | Ausbiegen<br>in cn               |                                   | wagerecht $D_x = 5 - A$   | I  | 24     | 61    | 125   | 141   | 134  | 162   | 165  | 20    | 28    | 166  | 173  | 181  | 201  | 217         | 41   | 239  | 267  | 332   | 111   | 346  | 440   | 222   | 488   | 676   | 447   | 745   | 1396  | 1662  | 1323  | 1801  |
| ng zwise        | wegung der<br>a und b an         | senkrecht                         | $B = \frac{3+11}{2}$      | -  | +<br>5 | - 71  | -213  | -207  | -159 | - 138 | -125 | + 114 | +105  | -316 | -305 | -289 | -266 | -251        | - 36 | -302 | -278 | -255  | - 147 | -344 | -363  | -314  | -528  | -602  | -600  | -746  | -1251 | -1454 | -1398 | -1661 |
| Belastu         | Mittlere Be<br>Meßstellen        | uen Enden<br>wagerecht            | $A = \frac{2+10}{2}$      |    | + 20   | 17    | 66    | 107   | 114  | 110   | 109  | -104  | -140  | + 80 | 83   | 87   | 95   | 129         | -131 | +145 | 181  | 242   | 2     | 252  | 314   | 144   | 366   | 550   | 437   | 627   | 1520  | 1704  | 1507  | 1895  |
| chsender        | cm                               | telle c                           | senkrecht<br>Richtung 6   |    | + 14   | - 58  | -246  | -224  | -142 | - 98  | -62  | + 154 | + 158 | -342 | -292 | -252 | -204 | -164        | - 32 | -226 | -162 | - 84  | -162  | -206 | -166  | - 358 | -392  | -410  | -740  | -626  | -1082 | -1584 | -1838 | -1826 |
| 9 mit we        | $27 \text{ in } \frac{1}{10000}$ | Meßs                              | wagerecht<br>Richtung 5   |    | + 44   | 78    | 224   | 248   | 248  | 272   | 274  | - 84  | -112  | +246 | 256  | 268  | 296  | 346         | 06 - | +384 | 448  | 574   | 116   | 598  | 754   | 366   | 854   | 1226  | 884   | 1373  | 2916  | 3366  | 2830  | 3696  |
| Stabes 6        | b und c Fig.                     | elle $b$                          | senkrecht<br>Richtung 11  |    | + 106  | 136   | 9 -   | + 24  | 84   | 132   | 174  | 88    | 96    | - 12 | + 24 | 62   | 108  | 146         | - 34 | + 58 | 106  | + 154 | - 114 | + 54 | + 54  | -234  | - 142 | -224  | - 484 | -362  | -962  | -1168 | -1336 | -1334 |
| egen des        | leßstellen <i>a</i> ,            | Meßst                             | wagerecht<br>Richtung 10  | 1  | - 94   | -148  | -108  | -118  | -130 | -146  | -160 | - 46  | -62   | -148 | -154 | -154 |      | - 90        | + 36 | -46  | 9    | + 46  | 154   | 70   | 100   | 232   | 154   | 302   | 444   | 384   | 1196  | 1258  | 1300  | 1476  |
| . Ausbid        | egung ber N                      | elle a                            | senkrecht<br>Richtung 3   |    | -96    | - 278 | - 420 | - 438 | -402 | -408  | -424 | + 140 | + 114 | -620 | -634 | -640 | -640 | -648        | - 38 | -662 | -662 | -664  | - 180 | -742 | - 780 | -394  | -914  | - 980 | -716  | -1130 | -1540 | -1740 | -1460 |       |
| tbelle 6        | Bew                              | Meßst                             | wagerecht<br>Richtung 2   |    | +133   | 183   | 305   | 333   | 358  | 365   | 378  | -163  | -218  | +308 | 320  | 328  | 333  | 348         | -298 | +335 | 368  | 438   | -145  | +435 | 528   | 55    | 578   | 798   | 430   | 870   | 1845  | 2150  | 1713  | 2315  |
| $T_{a}$         |                                  | Belastung in t                    |                           | 22 | 96     | 200   | 301   | 405   | 507  | 607   | 713  | 23    | 23    | 713  | 815  | 917  | 1020 | 1134        | 24   | 1134 | 1269 | 1485  | 24    | 1485 | 1698  | 24    | 1698  | 1911  | 24    | 1911  | 2125  | 2125  | 24    | 2125  |

64

Versuche zur Prüfung und Abnahme der 3000-t-Maschine.

| Belastung<br>in t | Wagerechte  | Bewegunger                  | n der Meß-  | Mittlere Be-<br>wegungen                           | Wage-                                     | Me              | $\frac{\text{Meislangen: Inks = 653,1 cm,}}{\text{rechts = 658,0 cm.}}$ |                              |                    |                              |  |  |  |  |
|-------------------|-------------|-----------------------------|-------------|----------------------------------------------------|-------------------------------------------|-----------------|-------------------------------------------------------------------------|------------------------------|--------------------|------------------------------|--|--|--|--|
| Belastung         | stellen     | d, e und f,<br>in cm $10-4$ | Fig. 27,    | der Meß-<br>stellen <i>d</i> u. <i>e</i><br>an den | rechtes Aus-<br>biegen in<br>der Mitte in | D               | Längena<br>in <sup>1</sup> / <sub>100</sub>                             | bnahme<br>cm der             | Längena<br>in % 10 | bnahme<br>)-3 de <b>r</b>    |  |  |  |  |
| in t              | Meßstelle d | Meßstelle e                 | Meßstelle f | Enden in<br>cm 10-4<br>1 + 9                       | cm 10-4                                   | lastung<br>in t | linken<br>(Kolben)                                                      | rechten<br>(Wider-<br>lager) | linken<br>(Kolben) | rechten<br>(Wider-<br>lager) |  |  |  |  |
| ж.<br>С           | Richtung 1  | Richtung 9                  | Klentung 4  | $A = \frac{1}{2}$                                  | $D_x = 4 - A$                             |                 | Stabl                                                                   | nälfte                       | Stabl              | nälfte                       |  |  |  |  |
| 22                |             |                             |             |                                                    |                                           | 22              |                                                                         |                              |                    |                              |  |  |  |  |
| 96                | 133         | - 78                        | 37          | 28                                                 | 9                                         | 96              | 0                                                                       | 0                            | 0                  | 0                            |  |  |  |  |
| 200               | 180         | - 78                        | 59          | 51                                                 | 8                                         | 200             | 5                                                                       | 0                            | 8                  | 0                            |  |  |  |  |
| 301               | 305         | - 80                        | 215         | 113                                                | 102                                       | 301             | 5                                                                       | 0                            | 8                  | 0                            |  |  |  |  |
| 405               | 338         | - 95                        | 233         | 122                                                | 111                                       | 405             | 8                                                                       | 1                            | 12                 | 2                            |  |  |  |  |
| 507               | 363         | - 95                        | 254         | 134                                                | 120                                       | 507             | 13                                                                      | 3                            | 20                 | 5                            |  |  |  |  |
| 609               | 373         | -100                        | 259         | 137                                                | 122                                       | 609             | 15                                                                      | 5                            | 23                 | 8                            |  |  |  |  |
| 713               | 375         | -100                        | 254         | 138                                                | 116                                       | 713             | 17                                                                      | 8                            | 26                 | 12                           |  |  |  |  |
| 23                | - 95        | 0                           | - 46        | -48                                                | + 2                                       | 23              | 5                                                                       | 5                            | 8                  | 8                            |  |  |  |  |
| <b>23</b>         | -145        | + 33                        | - 58        | -56                                                | -2                                        | 23              | 5                                                                       | 5                            | 8                  | 8                            |  |  |  |  |
| 713               | +325        | - 43                        | +257        | +141                                               | +116                                      | 713             | 20                                                                      | 9                            | 31                 | 14                           |  |  |  |  |
| 815               | 330         | - 38                        | 262         | 146                                                | 116                                       | 815             | 23                                                                      | 11                           | 35                 | 17                           |  |  |  |  |
| 917               | 325         | -28                         | 264         | 149                                                | 115                                       | 917             | '25                                                                     | 13                           | 38                 | 20                           |  |  |  |  |
| 1020              | 320         | - 73                        | 280         | 124                                                | 156                                       | 1020            | 28                                                                      | 18                           | 43                 | 27                           |  |  |  |  |
| 1134              | 323         | - 73                        | 320         | 125                                                | 195                                       | 1134            | 33                                                                      | 20                           | 51                 | 30                           |  |  |  |  |
| <b>24</b>         | -203        | +185                        | - 5         | - 9                                                | 4                                         | <b>24</b>       | 6                                                                       | 8                            | 9                  | 12                           |  |  |  |  |
| 1134              | +313        | 150                         | +369        | +232                                               | 137                                       | 1134            | 35                                                                      | 20                           | 54                 | 30                           |  |  |  |  |
| 1269              | 323         | 203                         | 437         | 263                                                | 174                                       | 1269            | 35                                                                      | 23                           | 54                 | 35                           |  |  |  |  |
| 1485              | 373         | 273                         | 561         | 323                                                | 238                                       | 1485            | 45                                                                      | 30                           | 69                 | 46                           |  |  |  |  |
| <b>24</b>         | - 80        | 375                         | 225         | 148                                                | 77                                        | <b>24</b>       | 8                                                                       | 10                           | 12                 | 15                           |  |  |  |  |
| 1485              | +383        | 333                         | 618         | 358                                                | 260                                       | 1485            | 45                                                                      | 30                           | 69                 | 46                           |  |  |  |  |
| 1698              | 443         | 400                         | 746         | 422                                                | 324                                       | 1698            | 50                                                                      | 36                           | 77                 | 55                           |  |  |  |  |
| <b>24</b>         | 123         | 498                         | 522         | 311                                                | 211                                       | <b>24</b>       | 13                                                                      | 10                           | 20                 | 15                           |  |  |  |  |
| 1698              | 505         | 483                         | . 884       | 494                                                | 390                                       | 1698            | 50                                                                      | 37                           | 77                 | 56                           |  |  |  |  |
| 1911              | 688         | 668                         | 1217        | 678                                                | 539                                       | 1911            | 57                                                                      | 42                           | 87                 | 64                           |  |  |  |  |
| <b>24</b>         | 498         | 755                         | 1085        | 627                                                | 458                                       | <b>24</b>       | 15                                                                      | 12                           | 23                 | 18                           |  |  |  |  |
| 1911              | 778         | 780                         | 1405        | 779                                                | 626                                       | 1911            | 57                                                                      | 43                           | 87                 | 65                           |  |  |  |  |
| 2125              | 1595        | 1775                        | 2962        | 1685                                               | 1277                                      | 2125            | 67                                                                      | 53                           | 103                | 81                           |  |  |  |  |
| 2125              | 1938        | 1988                        | 3522        | 1963                                               | 1559                                      | 2125            | 73                                                                      | 55                           | 112                | 84                           |  |  |  |  |
| <b>24</b>         | 1700        | 1925                        | 3209        | 1813                                               | 1396                                      | 24              | 24                                                                      | 18                           | 37                 | 27                           |  |  |  |  |
| 2125              | 2093        | 2230                        | 3859        | 2162                                               | 1697                                      | 2125            | 71                                                                      | 55                           | 109                | 84                           |  |  |  |  |

Tabelle 7. Wagerechtes Ausbiegen des Stabes 69 zwischen den Meßpunkten d und e (Fig. 27).

Tabelle 8. Verkürzungen des Stabes 69.

| Tabelle 9. | Ergebnisse ( | der Zugversuche | mit den | Materialproben | zum Zugstabe 76. |
|------------|--------------|-----------------|---------|----------------|------------------|
|            | 0            | 0               |         |                | 0                |

|              |                 | At          | messung | gen                          | Elastizitäts-                   | Spani                                                    | nungen k          | (g/qcm                      | Bruchde               | hnung bez<br>die Länge   | ogen auf                  | litts-<br>ung                |
|--------------|-----------------|-------------|---------|------------------------------|---------------------------------|----------------------------------------------------------|-------------------|-----------------------------|-----------------------|--------------------------|---------------------------|------------------------------|
| Probe<br>Nr. | Entnahme<br>aus | Dicke<br>mm | Breite  | Quer-<br>schnitt<br>f<br>qmm | $\frac{1}{\alpha} = E$ $kg/qcm$ | Propor-<br>tionali-<br>täts-<br>grenze<br>σ <sub>P</sub> | Streck-<br>grenze | Bruch-<br>grenze $\sigma_B$ | $l = 5,65 \sqrt{f}$ % | $l = 11,3 \sqrt[3]{f}$ % | <i>l</i> =<br>200 mm<br>% | Querschi<br>% ver-<br>minder |
| 1            |                 | 18,0        | 30,0    | 540                          | 2 069 000                       | 1390                                                     | 2690              | 5000                        | 37,7                  | 28,3                     | 28,1                      | 54                           |
| 2            | Stab            | 18,0        | 30,0    | 540                          | 2075000                         | 1300                                                     | 2690              | 5000                        | 36,1                  | 30,0                     | 29,5                      | 54                           |
| 3            | Stab            | 17,9        | 30,1    | 539                          | 2093000                         | 1300                                                     | 2640              | 4980                        | 34,9                  | 25,9                     | 25,8                      | 53                           |
| Mittel       |                 | _           |         |                              | 2 079 000                       | 1330                                                     | 2670              | 4990                        | 36,2                  | 28,1                     | 27,8                      | 54                           |
| 4            |                 | 11,7        | 37,7    | 441                          | 2025000                         | 1470                                                     | 3020              | 5030                        | 27,4                  | 21,1                     | 20,5                      | 60                           |
| 5            | Lesehon         | 11,4        | 37,6    | 429                          | 2095000                         | 1750                                                     | 3040              | 5170                        | 28,3                  | 21,7                     | 20,3                      | 59                           |
| 6            | Laschen         | 11,7        | 37,7    | 441                          | 2030000                         | 1470                                                     | 3040              | 5150                        | 27,3                  | 20,6                     | 19,5                      | 59                           |
| Mittel       |                 |             |         | _                            | 2050000                         | 1560                                                     | 3030              | 5120                        | 27,7                  | 21,1                     | 20,1                      | 59                           |
| Vers         | suche im Eis    | enhau A     | 2       |                              |                                 |                                                          |                   |                             |                       |                          | 5                         |                              |

Versuche im Eisenbau A 2.

65

| Belastung.   |
|--------------|
| gesteigerter |
| stufenweise  |
| bei          |
| 76           |
| Stabes       |
| des          |
| Dehnung      |

Tabelle 10.

2.079.000 kg/gem Mittlerer Elastizitätsmodul des Materials nach Tab. 9: R =Ouerschnitt des Stabes: f = 90 acm.

|                                                     |                                    | 52 000                    | ·                                      | 5"<br>22<br>1                       | · · · · ·    |                      | DOMINI T                 | 1100 00 177          | n mnor            | DID TAT OD               |                |                   | n. o. n               | 04                  | 1 000 61                                   | moh/8v                    |                    |                      |                |
|-----------------------------------------------------|------------------------------------|---------------------------|----------------------------------------|-------------------------------------|--------------|----------------------|--------------------------|----------------------|-------------------|--------------------------|----------------|-------------------|-----------------------|---------------------|--------------------------------------------|---------------------------|--------------------|----------------------|----------------|
| Lage der<br>Meßstelle                               | Belastung                          | Dehnun                    | g in cm                                | 10 <sup>-5</sup> auf<br><i>P</i> in | 12 cm M      | leßlänge<br>Zugspanr | bei den<br>nungen σ      | übergesc<br>in kg/qc | thriebene<br>3m   | n Belast                 | ungen          | Bleiber<br>überge | ıde Dehr<br>schriebeı | nung in<br>nen Bela | cm 10 <sup>-5</sup><br>astungen<br>in kg/c | auf 12 c<br>P in t<br>qcm | m Meßlä<br>und Zug | inge bei<br>sspannun | den<br>gen     |
| s. Fig. 42                                          | Nr.                                | $\sigma = 97$<br>P = 8,71 | 237<br>21,36                           | 406<br>36,54                        | 575<br>51,72 | 743<br>66,89         | 91 <del>4</del><br>82,22 | 1046<br>97,73        | 1258<br>113,24    | 1431<br>128,75           | 1603<br>144,26 | 406<br>36,54      | 575<br>51,72          | 743<br>66,87        | 914<br>82,22                               | 1086<br>98,73             | 1258<br>1-3,24     | 1431<br>128,75       | 1603<br>144,26 |
| e und f<br>am oberen<br>Stabrande                   | 07 co -4 ro                        | 22                        | 114<br>131<br>123<br>123<br>121<br>126 | 216<br>217<br>224<br>225            | 324<br>327   | 421<br>423           | 530<br>533               | 636<br>639<br>638    | 733<br>738<br>738 | 841<br>843<br>846<br>846 | 956<br>964     | 17<br>9<br>7      | 12                    | 4                   | ىر<br>س                                    | 15<br>18                  | 18<br>19           | 30                   | 45<br>51       |
|                                                     | Mittel                             | 22                        | 123,0                                  | 220,1                               | 325,5        | 422,0                | 531,5                    | 637,7                | 736,3             | 843,3                    | 960,0          | 11,0              | 12                    | 4                   | 2                                          | 16,5                      | 18,5               | 26,5                 | 48,0           |
| g und $hin MitteStabbreite$                         | - 5 8 4 v                          | 40                        | 124<br>141<br>131<br>133<br>133        | 224<br>223<br>231<br>232            | 326<br>331   | 421<br>423           | 529                      | 630<br>635<br>631    | 728<br>734<br>734 | 834<br>836<br>837        | 946<br>953     | 17<br>7<br>9      | 13                    |                     | œ                                          | 13                        | 21                 | 26                   | 42<br>45       |
|                                                     | Mittel                             | 40                        | 133,2                                  | 227,5                               | 328,5        | 422,0                | 528,5                    | 632,0                | 732,0             | 835,7                    | 949,5          | 11,0              | 13<br>13              |                     | ø                                          | 14,5                      | 19,5               | 26,0                 | 43,5           |
| <i>i</i> und <i>k</i><br>am unteren<br>Stabrande    | 0.4 3 <b>3</b> 2 1                 | 38                        | 118<br>132<br>126<br>131<br>131        | $213 \\ 218 \\ 222 \\ 223 \\ 223 $  | $316 \\ 325$ | 417<br>417           | 521<br>522               | 626<br>631<br>629    | 725<br>731<br>731 | 834<br>836<br>837        | 954<br>960     | 14<br>8<br>13     | 17                    | œ                   | 10                                         | 17 18                     | 23                 | 32 32                | 45<br>51       |
|                                                     | Mittel                             | 38                        | 128,4                                  | 219,0                               | 320,5        | 417,0                | 521,5                    | 628,7                | 729,0             | 835,7                    | 957,0          | 11,7              | 17                    | ×                   | 10                                         | 17,5                      | 24,0               | 32,0                 | 48,0           |
| Gesam                                               | tmittel $\lambda$                  | 33,3                      | 128,2                                  | 222,2                               | 324,8        | 420,3                | 527,2                    | 632,8                | 732,4             | 838,2                    | 955,5          | 11,2              | 14                    | 10                  | 7,7                                        | 16,2                      | 20,7               | 28,2                 | 46,5           |
| $P_1 = \frac{\lambda}{l}$                           | $\cdot f \cdot E$ in t             | 5,19                      | 19,97                                  | 34,62                               | 50,60        | 65,48                | 82,14                    | 98,59                | 114,11            |                          |                |                   |                       |                     |                                            |                           |                    |                      |                |
| Unterschied<br>zwischen der                         | $P-P_1$ in kg                      | +3,52                     | +1,39                                  | +1,92                               | +1,12        | +1,41                | +0,08                    | -0,86                | -0,87             |                          |                |                   |                       |                     |                                            |                           |                    |                      |                |
| Kraftanzeige $P$ und der wirklichen Belastung $P_1$ | $\frac{P-P_1}{P_1} \cdot 100$ in % | +40,4                     | +6,5                                   | +5,25                               | +2,17        | +2,11                | +0,10                    | -0,88                | -0,77             |                          |                |                   |                       |                     |                                            |                           |                    |                      |                |

66

Versuche zur Prüfung und Abnahme der 3000-t-Maschine.

Tabelle 11. Prüfung der Manometer 211 und 951.

Beziehungen zwischen den Ablesungen an der Gradteilung der Manometer und dem Flüssigkeitsdruck in at.

| Mano-<br>meter<br>Nr. | Beobach-<br>tungsreihe<br>Nr. |      | Abl  | esungen | am Man | ometer | in Grade | n bei de | n überge | eschriebe | nen Dru | cken  |       |
|-----------------------|-------------------------------|------|------|---------|--------|--------|----------|----------|----------|-----------|---------|-------|-------|
|                       | Druck in at                   | 10   | 20   | 30      | 40     | 50     | 60       | 70       | 80       | 90        | 95      |       |       |
|                       | 1                             | 31,3 | 61,9 | 93,4    | 123,3  | 153,1  | 183,2    | 212,6    | 242,5    | 271,4     | 285,6   |       |       |
| 211                   | 2                             | 31,3 | 61,9 | 93,4    | 123,3  | 153,0  | 183,2    | 212,6    | 242,5    | 271,5     | 285,7   |       |       |
|                       | 3                             | 31,3 | 62,0 | 93,3    | 123,2  | 153,1  | 183,3    | 212,5    | 242,5    | 271,4     | 285,6   | . —   |       |
|                       | Mittel                        | 31,3 | 61,9 | 93,4    | 123,2  | 153,1  | 183,2    | 212,6    | 242,5    | 271,4     | 285,6   | _     |       |
|                       | Druck in at                   | 1    | 3    | 5       | 10     | 15     | 20       | 25       | 30       | 35        | 40      | 45    | 50    |
|                       | 1                             | 6,6  | 18,7 | 31,0    | 60,8   | 90,6   | 120,4    | 150,2    | 180,4    | 209,9     | 240,0   | 269,6 | 299,6 |
|                       | 2                             | 6,3  | 18,7 | 30,7    | 60,8   | 90,6   | 120,4    | 150,2    | 180,2    | 209,9     | 240,0   | 269,6 | 299,5 |
| 951                   | 3                             | 6,5  | 18,8 | 31,2    | 60,9   | 90,8   | 120,5    | 150,4    | 180,5    | 210,0     | 240,1   | 269,7 | 299,7 |
| 551                   | 4                             | 6,5  | 18,8 | 31,0    | 60,9   | 90,8   | 120,4    | 150,3    | 180,4    | 210,0     | 240,1   | 269,6 | 299,6 |
|                       | 5                             | 6,4  | 18,6 | 31,1    | 60,9   | 90,8   | 120,5    | 150,4    | 180,6    | 210,0     | 240,2   | 269,8 | 299,7 |
|                       | 6                             | 6,4  | 18,8 | 31,1    | 60,9   | 90,8   | 120,6    | 150,4    | 180,7    | 210,1     | 240,2   | 269,8 | 299,7 |
|                       | Mittel                        | 6,5  | 18,7 | 31,1    | 60,9   | 90,7   | 120,5    | 150,3    | 180,5    | 210,0     | 240,1   | 269,7 | 299,6 |

Tabelle 12. Ergebnisse der Zugversuche mit den Materialproben zu den Stäben 80 und 81.

|          | aus<br>ab            | At                          | messung                                                          | en                     | Elastizi-              | Spann             | ungen k          | g/qcm                               | Mittlere<br>Entfer-                                                 | Dehnung             | δ bezogen           | auf Länge                    | tts-<br>g g              | nen       |
|----------|----------------------|-----------------------------|------------------------------------------------------------------|------------------------|------------------------|-------------------|------------------|-------------------------------------|---------------------------------------------------------------------|---------------------|---------------------|------------------------------|--------------------------|-----------|
| Probe    | nommen<br>ontrollsta | ${f Durch-}\ {f messer}\ d$ | $\begin{array}{c} \operatorname{Quer-}_{schnitt}\\f \end{array}$ | Meß-<br>länge          | $\frac{1}{\alpha} = E$ | Streck-<br>grenze | Bruch-<br>grenze | Ver-<br>hältnis $\sigma_S/\sigma_B$ | nung der<br>Bruch-<br>stelle von<br>der näch-<br>sten End-<br>marke | $l = 5,65 \sqrt{f}$ | $l = 11,3 \sqrt{f}$ | l = Ge-<br>samte<br>Meßlänge | Querschnit<br>7erminderu | uchaussel |
| Nr.      | Ent                  | mm                          | qmm                                                              | $\mathbf{m}\mathbf{m}$ | kg/qcm                 | 08                | 0B               | 100                                 | cm                                                                  | %                   | %                   | %                            | %                        | Br        |
| 1        |                      | 19,93                       | 312,1                                                            | 200                    | 2109800                | 2530              | 4350             | 58                                  | 3                                                                   | 37,0                | 28,2                | 27,1                         | 61                       |           |
| <b>2</b> | 00                   | 20,03                       | 315,2                                                            | $200_{-}$              | 2088300                | 2440              | 4350             | 56                                  | 4                                                                   | 38,4                | 31,7                | 30,0                         | 59                       | pig       |
| 3        | 80                   | 20,12                       | 318,2                                                            | 200                    | 2075600                | 2440              | 4320             | 56                                  | 2                                                                   | 34,9                | 27,7                | 26,0                         | 61                       | Inu       |
| Mittel   |                      | -                           |                                                                  |                        | 2 091 200              | 2470              | 4340             | 57                                  |                                                                     | 36,8                | 29,2                | 27,7                         | 60                       | blid      |
| 4        |                      | 17,98                       | 254,0                                                            | 180                    | $2\ 090\ 440$          | 2470              | 4370             | 57                                  | 7                                                                   | 37,6                | 29,1                | 28,8                         | 66                       | u, f      |
| 5        | 01                   | 19,99                       | 314,1                                                            | 200                    | 2094040                | 2670              | 4460             | 60                                  | 3                                                                   | 38,3                | 32,1                | 29,7                         | 65                       | fric a    |
| 6        | 81                   | 19,98                       | 313,6                                                            | 200                    | 2090140                | 2460              | 4270             | 58                                  | 2,5                                                                 | 39,8                | 33,5                | 29,3                         | 65                       | att       |
| Mittel   |                      | -                           | -                                                                | -                      | 2091540                | 2530              | 4370             | 58                                  |                                                                     | 38,6                | 31,6                | 29,3                         | 65                       | A         |

Tabelle 13. Dehnung der Materialproben zu den Stäben 80 und 81 bei stufenweisem Belasten bis zur Streckgrenze.

|        | Ent-        | D   | ehnun                                                  | gen i | n em | 10 - 5 | auf 15 | 6 cm 1 | Meßläi | nge b  | ei den | über  | geschr | ieben | en Be | lastun | gen | in    | t    | 0.0.0   |
|--------|-------------|-----|--------------------------------------------------------|-------|------|--------|--------|--------|--------|--------|--------|-------|--------|-------|-------|--------|-----|-------|------|---------|
| Probe  | nom-<br>men |     |                                                        |       | Deł  | nung   | szunal | nme fi | ür je  | 500 kg | g Last | zunah | me     |       |       |        | b   | leibe | end  | schnitt |
| Nr.    | aus<br>Stab | 0,5 | 1                                                      | 1,5   | 2    | 2,5    | 3      | 3,5    | 4      | 4,5    | 5      | 5,5   | 6      | 6,5   | 7     | 7,5    | 1   | 5     | 6    | qcm     |
| 1      |             | 112 | 114                                                    | 114   | 114  | 115    | 114    | 116    | 115    | 116    | 117    | 115   | 122    | 119   | 134   | 150    | _   | 7     | 20   | 3,12    |
| 2      |             | 114 | 117                                                    | 115   | 117  | 115    | 115    | 116    | 118    | 116    | 120    | 118   | 124    | 126   | 146   | 172    | 8   | 34    |      | 3,15    |
| 3      | 80          | 115 | 115                                                    | 116   | 117  | 115    | 116    | 115    | 115    | 116    | 120    | 116   | 120    | 119   | 127   | 127    | 7   | 27    |      | 3,18    |
| Mittel |             | 114 | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ |       |      |        |        |        |        |        |        |       |        |       |       | 8      | 23  | [20]  |      |         |
| 4      |             |     |                                                        | 1     | Stab | 4 ist  | mit    | and    | eren   | Last   | stufe  | n ge  | prüft  | ;     |       |        |     |       |      | 2,54    |
| 5      | 81          | 121 | 109                                                    | 114   | 117  | 115    | 115    | 114    | 115    | 114    | 116    | 116   | 117    | 120   | 117   | 120    | 3   | 9     | 13   | 3,14    |
| 6      | 01          | 124 | 106                                                    | 117   | 114  | 115    | 117    | 116    | 115    | 115    | 119    | 115   | 122    | 122   | 135   | 151    | 1   | 10    | —    | 3,14    |
| Mittel |             | 122 | 108                                                    | 115   | 116  | 115    | 116    | 115    | 115    | 115    | 117    | 116   | 120    | 121   | 126   | 136    | 2   | 10    | [13] |         |
| Belastung Nr.                                      | Beobachtungen<br>für die<br>Meßstrecken      | Dehnunge | enden Be- | Ablesungsrest<br>nach dem<br>Entlasten |       |        |           |
|----------------------------------------------------|----------------------------------------------|----------|-----------|----------------------------------------|-------|--------|-----------|
|                                                    | (Fig. 46)                                    | 20       | 40        | 60                                     | 80    | 100    | Millasten |
| 1                                                  |                                              | 210      | 414       | 618                                    | 824   | 1034   | 0         |
| <b>2</b>                                           |                                              | 206      | 412       | 616                                    | 822   | 1032   | 0         |
| 3                                                  |                                              | 204      | 410       | 616                                    | 822   | 1032   | -2        |
| 4                                                  | A u. C                                       | 206      | 414       | 618                                    | 826   | 1032   | -2        |
| 5                                                  |                                              | 208      | 416       | 622                                    | 826   | 1036   | 0         |
| Mittel                                             |                                              | 206,8    | 413,2     | 618,0                                  | 824,0 | 1033,2 |           |
| 1                                                  |                                              | 208      | 416       | 624                                    | 835   | 1047   | 0         |
| <b>2</b>                                           | 1                                            | 207      | 417       | 623                                    | 835   | 1045   | 0         |
| 3                                                  |                                              | 208      | 417       | 626                                    | 836   | 1047   | +2        |
| 4                                                  | B u. D                                       | 210      | 418       | 626                                    | 835   | 1049   | +3        |
| 5                                                  | 5                                            |          | 417       | 625                                    | 834   | 1046   | +2        |
| Mittel                                             |                                              | 208,4    | 417,0     | 624,8                                  | 835,0 | 1046,8 |           |
| Gesamtmittel $\lambda$                             | ·m · · · · ·                                 | 207,6    | 415,1     | 621,4                                  | 829,5 | 1040,0 |           |
| Maschinenfehler                                    | $r in \%^1$ ) .                              | -0,16    | -0,07     | +0,07                                  | +0,40 | +0,82  | —         |
| Richtiggestellte                                   | Dehnung $\lambda'_m$                         | 207,9    | 415,4     | 621,0                                  | 826,2 | 1031,5 |           |
| Dehnungssoll fi                                    |                                              | 10,40    | 10,38     | 10,32                                  |       |        |           |
| Mittelwert für                                     | $\frac{\Delta  \lambda_m'}{P} \cdots \cdots$ |          |           | 10,36                                  |       |        | ·         |
| Abweichung de                                      | er Einzelwerte                               |          |           |                                        |       |        |           |
| für $\frac{\Delta \lambda'_m}{P}$ vom Mittel in %. |                                              | +0,39    | +0,19     | -0,10                                  | -0,29 | -0,39  |           |

# Tabelle 14.Prüfung des Stabes 80 auf der 100-t-Werder-Maschine.Meßlänge = 25 cm;Querschnitt = 227 qcm.

| Tabelle 15. Prü | ifungen der | Manometer | 104 und | l 125 aui | t der | Wage von | Stückrath. |
|-----------------|-------------|-----------|---------|-----------|-------|----------|------------|
|-----------------|-------------|-----------|---------|-----------|-------|----------|------------|

| Manometer<br>Nr. | Beobach-<br>tungsreihe<br>Nr. |      | Ablesung | gen am M | anometer | in Grade | n bei den | übergesch | nriebenen | D <b>r</b> uc ken |       |
|------------------|-------------------------------|------|----------|----------|----------|----------|-----------|-----------|-----------|-------------------|-------|
|                  | Druck in<br>at                | 40   | 80       | 120      | 160      | 200      | 240       | 280       | 320       | 360               | ,380  |
|                  | 1                             | 31,0 | 62,7     | 93,4     | 124,1    | 154,2    | 183,5     | 212,5     | 242,1     | 270,8             | 285,0 |
| 104              | 2                             | 30,9 | 62,4     | 93,4     | 124,0    | 154,0    | 183,3     | 212,4     | 241,8     | 270,6             | 284,9 |
| 101              | 3                             | 30,9 | 62,6     | 93,4     | 124,1    | 154,1    | 183,3     | 212,4     | 242,0     | 270,4             | 284,7 |
|                  | 4                             | 30,9 | 62,5     | 93,4     | 124,1    | 154,1    | 183,4     | 212,3     | 241,7     | 270,4             | 284,6 |
| -                | Mittel                        | 30,9 | 62,5     | 93,4     | 124,1    | 154,1    | 183,4     | 212,4     | 241,9     | 270,6             | 284,8 |
|                  | Druck in at                   | 20   | 40       | 60       | 80       | 100      | 120       | 140       | 160       | 180               | 195   |
|                  | 1                             | 31,1 | 62,5     | 92,9     | 123,0    | 152,9    | 182,4     | 211,9     | 240,9     | 270,6             | 292,1 |
|                  | 2                             | 30,6 | 61,7     | 92,6     | 122,7    | 152,6    | 182,4     | 211,4     | 240,6     | 270,4             | 291,9 |
| 125              | 3                             | 31,1 | 62,3     | 93,2     | 122,9    | 152,7    | 182,4     | 212,2     | 240,9     | 270,5             | 291,9 |
| 120              | <b>4</b> <sup>`</sup>         | 30,9 | 62,2     | 92,9     | 122,8    | 152,7    | 182,3     | 211,7     | 240,8     | 270,3             | 291,8 |
|                  | 5                             | 30,9 | 62,4     | 92,8     | 122,8    | 152,8    | 182,4     | 211,8     | 240,9     | 270,7             | 292,0 |
|                  | 6                             | 30,8 | 62,2     | 92,8     | 122,9    | 152,8    | 182,4     | 211,6     | 240,8     | 270,4             | 291,8 |
|                  | Mittel                        | 30,9 | 62,2     | 92,8     | 122,9    | 152,8    | 182,4     | 211,8     | 240,8     | 270,5             | 291,9 |

<sup>1</sup>) Die Maschine zeigt die Last entsprechend den negativen Fehlerwerten zu groß und entsprechend den positiven Werten zu klein an; die beobachteten Dehnungen des Stabes sind demnach um den negativen Fehler zu vergrößern und um den positiven Fehler zu verringern, damit die richtiggestellten Dehnungswerte erhalten werden, die den im Tabellenkopf angegebenen Belastungen zukommen.

#### Tabelle 14, 15, 16.

## Tabelle 16. Prüfung des Stabes 80 auf der 500-t-Maschine.

Meßlänge = 25 cm; Querschnitt = 227 qcm.

Die Prüfung erfolgte bei zwei verschiedenen Stellungen des Kolbens im Arbeitszylinder der Maschine, gekennzeichnet durch die Länge L des aus dem Zylinder hervorragenden Kolbenteiles (s. erste Spalte).

| Kolben-<br>stellung | Belastungs-<br>reihe                                                | Beobachtung<br>für die<br>Maßstrecken        | Dehn                                            | ungen des<br>Arbeitszyl                         | Stabes in<br>linder, abg                              | $\frac{1}{200000}$ gelesen in                  | em bei de:<br>Graden a                                | n folgende<br>m Manom                                 | en Drucke<br>neter 104                                | n im                                                  | lesungs-<br>nach dem<br>itlasten   |
|---------------------|---------------------------------------------------------------------|----------------------------------------------|-------------------------------------------------|-------------------------------------------------|-------------------------------------------------------|------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|------------------------------------|
|                     | Nr.                                                                 | MCDSUCCKCH                                   | 20°                                             | 40°                                             | 60°                                                   | 80°                                            | 100°                                                  | 120°                                                  | 140°                                                  | 160°                                                  | Ab<br>rest<br>Er                   |
|                     | $\begin{array}{c}1\\2\\3\end{array}$                                | Au. C                                        | 365<br>362<br>363                               | 730<br>719<br>720                               | 1088<br>1085<br>1082                                  | $1467 \\ 1465 \\ 1469$                         | 1842<br>1839<br>1838                                  | $2218 \\ 2223 \\ 2222$                                | $2607 \\ 2614 \\ 2605$                                | 3011<br>3012<br>3002                                  | $+3 \\ +5 \\ +3$                   |
|                     | 4<br>5                                                              |                                              | $\begin{array}{c} 359\\ 364 \end{array}$        | $724 \\ 724$                                    | $\begin{array}{c} 1083 \\ 1087 \end{array}$           | $\begin{array}{c} 1460 \\ 1466 \end{array}$    | $\begin{array}{c} 1840 \\ 1842 \end{array}$           | $\begin{array}{c} 2221\\ 2226 \end{array}$            | $\begin{array}{c} 2600 \\ 2603 \end{array}$           | $\begin{array}{c} 3000\\ 3014 \end{array}$            | $^{+2}_{+3}$                       |
|                     | Mittel                                                              |                                              | 362,6                                           | 723,4                                           | 1085,0                                                | 1465,4                                         | 1840,2                                                | 2222,0                                                | 2605,8                                                | 3007,8                                                | +3,2                               |
| I.<br>L = 25,5      | 1<br>2<br>3<br>4<br>5<br>Mittel                                     | <i>B</i> u. <i>D</i>                         | 358<br>351<br>360<br>352<br>355<br><b>355,2</b> | 717<br>702<br>708<br>710<br>708<br><b>709,0</b> | 1072<br>1064<br>1066<br>1065<br>1068<br><b>1067,0</b> | 1438<br>1434<br>1447<br>1436<br>1438<br>1438,6 | 1813<br>1803<br>1807<br>1811<br>1814<br><b>1809,6</b> | 2181<br>2177<br>2185<br>2184<br>2188<br><b>2183,0</b> | 2565<br>2560<br>2564<br>2556<br>2558<br><b>2560,0</b> | 2961<br>2952<br>2953<br>2947<br>2960<br><b>2954,6</b> | $+3 \\ -3 \\ 0 \\ -2 \\ 0 \\ -0,4$ |
| om                  | Gesan                                                               | $tmittel \lambda$                            | 358,9                                           | 716,2                                           | 1076,0                                                | 1452,0                                         | 1824,9                                                | 2202,5                                                | 2583,2                                                | 2981,2                                                | 1,4                                |
|                     | $P_1 = \frac{1}{2}$                                                 | $\frac{\lambda}{l} \cdot f \cdot E^1$ ) in t | 34,64                                           | 69,13                                           | 103,86                                                | 140,15                                         | 176,15                                                | 212,60                                                | 249,34                                                | 287,76                                                | -                                  |
|                     | $\vec{\mathbf{N}} P =$                                              | $p F = R 	ext{ in t}$                        | 34,91                                           | 70,14                                           | 105,19                                                | 141,00                                         | 176,98                                                | 213,11                                                | 249,86                                                | 287,04                                                |                                    |
|                     | i g P                                                               | $-P_1$ in t                                  | +0,27                                           | +1.01                                           | +1,33                                                 | +0,85                                          | +0,83                                                 | -0,51                                                 | -0,52                                                 | -0,72                                                 |                                    |
|                     | $\frac{1}{P} \frac{1}{P} \frac{1}{P}$                               | $\frac{P_1}{1}$ · 100 in %                   | +0,81                                           | +1,46                                           | +1,28                                                 | +0,60                                          | +0,47                                                 | -0,24                                                 | -0,21                                                 | -0,25                                                 |                                    |
|                     | 1<br>2<br>3<br>4<br>5                                               | A u. C                                       | 367<br>362<br>363<br>365<br>358                 | 728<br>725<br>723<br>720<br>724                 | 1092<br>1092<br>1088<br>1094<br>1091                  | $1468 \\ 1466 \\ 1473 \\ 1468 \\ 1469$         | 1850<br>1851<br>1849<br>1845<br>1844                  | 2228<br>2223<br>2229<br>2227<br>2224                  | 2619<br>2612<br>2613<br>2609<br>2610                  | 3019<br>3023<br>3013<br>3015<br>3012                  | +7 +9 +6 +7 +3                     |
|                     | Mittel                                                              |                                              | 363,0                                           | 724,0                                           | 1091,4                                                | 1468,8                                         | 1847,8                                                | 2226,2                                                | 2612,6                                                | 3016,4                                                | +6,4                               |
| II. $L =$           | $\begin{array}{c}1\\2\\3\\4\\5\end{array}$                          | <i>B</i> u. <i>D</i>                         | 355<br>354<br>358<br>356<br>351                 | 711<br>715<br>719<br>709<br>712                 | 1078<br>1074<br>1075<br>1073<br>1068                  | $1446 \\ 1441 \\ 1454 \\ 1443 \\ 1445$         | 1820<br>1825<br>1825<br>1813<br>1812                  | 2204<br>2187<br>2196<br>2178<br>2188                  | $2574 \\ 2567 \\ 2574 \\ 2567 \\ 2567 \\ 2573$        | 2965<br>2973<br>2965<br>2964<br>2961                  | +4 +5 +9 +4 0                      |
| 88,3<br>cm          | Mittel                                                              |                                              | 354,8                                           | 713,2                                           | 1073,6                                                | 1445,8                                         | 1819,0                                                | 2190,6                                                | 2571,0                                                | 2965,6                                                | 4,4                                |
|                     | Gesa                                                                | mtmittel                                     | 359,9                                           | 718,6                                           | 1082,5                                                | 1457,3                                         | 1833,4                                                | 2208,4                                                | 2591,8                                                | 2991,0                                                | 5,4                                |
|                     | $P_1$                                                               | $=rac{\lambda}{l}f\cdot E^{1}$ ) in t       | 34,74                                           | 69,36                                           | 104,49                                                | 140,67                                         | 176,97                                                | 213,17                                                | 250,17                                                | 288,70                                                |                                    |
|                     | $\vec{N} P =$                                                       | p F - R in t                                 | 34,85                                           | 70,08                                           | 105,13                                                | 140,94                                         | 176,92                                                | 213,05                                                | 249,80                                                | 286,98                                                |                                    |
|                     |                                                                     | $P - P_1$ in t                               | +0,11                                           | +0,72                                           | +0,64                                                 | +0,27                                          | -0,05                                                 | -0,12                                                 | -0,37                                                 | -1,72                                                 |                                    |
|                     | $\frac{1}{2} \frac{\log \frac{1}{2}}{\log \frac{1}{2}} \frac{P}{P}$ | $\frac{P_1}{1} \cdot 100 \text{ in } \%$     | +0,32                                           | +1,03                                           | +0,61                                                 | +0,18                                          | -0,03                                                 | -0,06                                                 | -0,15                                                 | -0,60                                                 |                                    |

<sup>1</sup>)  $E = 2.126 \ 100 \ \text{kg/qcm}$  (s. S. 38).

## Tabelle 17. Prüfung des Stabes 81 auf der 500-t-Maschine.

| Belastungs-<br>reihe<br>Nr. |                       | Beobachtung<br>für die<br>Meßstrecken<br>(S. Fig. 47) | Dehnungen des Stabes in $\frac{1}{200\ 000}$ cm bei den folgenden Druckstufen,<br>abgelesen in Graden am Manometer 125 |            |        |        |        |        |        |        |            |  |
|-----------------------------|-----------------------|-------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|------------|--------|--------|--------|--------|--------|--------|------------|--|
| Nr                          | •                     | (5, Fig. 11)                                          | 20°                                                                                                                    | 40°        | 60°    | 80°    | 100°   | 120°   | 140°   | 106°   | Al<br>rest |  |
| 1                           |                       |                                                       | 340                                                                                                                    | 702        | 1081   | 1451   | 1830   | 2209   | 2596   | 2990   | +7         |  |
| <b>2</b>                    |                       |                                                       | 335                                                                                                                    | 709        | 1073   | 1447   | 1820   | 2206   | 2597   | 2984   | +1         |  |
| 3                           |                       | A u. C                                                | 344                                                                                                                    | 703        | 1084   | 1451   | 1828   | 2216   | 2600   | 2994   | +5         |  |
| <b>4</b>                    |                       |                                                       | 345                                                                                                                    | 703        | 1082   | 1451   | 1821   | 2208   | 2597   | 2985   | +3         |  |
| 5                           |                       |                                                       | 341                                                                                                                    | <b>704</b> | 1078   | 1450   | 1821   | 2211   | 2598   | 2984   | +2         |  |
| Mitt                        | Mittel                |                                                       | 341,0                                                                                                                  | 704,2      | 1079,6 | 1450,0 | 1824,0 | 2210,0 | 2597,6 | 2987,4 |            |  |
| 1<br>2<br>3 <i>B</i> u.     |                       |                                                       | 340                                                                                                                    | 699        | 1077   | 1444   | 1822   | 2194   | 2578   | 2972   | +4         |  |
|                             |                       | B u. D                                                | 333                                                                                                                    | 695        | 1067   | 1436   | 1807   | 2192   | 2579   | 2965   | _1         |  |
|                             |                       |                                                       | 338                                                                                                                    | 696        | 1072   | 1440   | 1812   | 2200   | 2583   | 2976   | +2         |  |
| <b>4</b>                    |                       |                                                       | 346                                                                                                                    | 699        | 1077   | 1446   | 1812   | 2197   | 2585   | 2972   | +6         |  |
| 5                           |                       |                                                       | 338                                                                                                                    | 700        | 1072   | 1440   | 1809   | 2197   | 2580   | 2966   | $\pm 0$    |  |
| Mitt                        | tel                   |                                                       | 339,0                                                                                                                  | 697,8      | 1073,0 | 1441,2 | 1812,4 | 2196,0 | 2581,0 | 2970,2 |            |  |
| (                           | Gesam                 | tmittel $\lambda$                                     | 340,0                                                                                                                  | 701,0      | 1076,3 | 1445,6 | 1818,2 | 2203,0 | 2589,3 | 2978,8 |            |  |
| Zug-                        | <i>P</i> <sub>1</sub> | $= \frac{\lambda}{l} \cdot f \cdot E^{1}$ ) in t      | 16,34                                                                                                                  | 33,68      | 51,72  | 69,46  | 87,35  | 105,85 | 124,42 | 143,13 |            |  |
| krait $P=$                  |                       | $= p \cdot F - R$ in t                                | 16,53                                                                                                                  | 34,46      | 52,15  | 70,18  | 88,40  | 106,88 | 125,40 | 143,99 |            |  |
| Unton                       |                       | $P-P_1$ in t                                          | 0,19                                                                                                                   | 0,78       | 0,43   | 0,72   | 1,05   | 1,03   | 0,98   | 0,86   |            |  |
| schied $\frac{P}{P}$        |                       | $\frac{P_1}{P_1} \cdot 100$ in %                      | 1,16                                                                                                                   | 2,32       | 0,83   | 1,04   | 1,20   | 0,98   | 0,79   | 0,60   |            |  |

 $\label{eq:Meßlänge} \begin{array}{l} \text{Meßlänge} = 25 \ \text{cm}; \ \text{Querschnitt} = f \ 113 \ \text{qcm}. \\ \text{Die Länge} \ L \ \text{des} \ \text{aus dem Zylinder hervorragenden Kolbenteiles betrug} \ 25 \ \text{cm}. \end{array}$ 

<sup>1</sup>)  $E = 2 \ 126 \ 100 \ \text{kg/qcm}$  (s. S. 38).

## Tabelle 18. Prüfung des Stabes 80 auf der 3000-t-Maschine.

| Belastun<br>reihe | gs-<br>Beobachtung<br>für die<br>Meßstrecke                  | D<br>a                                    | ehnunge<br>bgelesen | n des St<br>in Grad | abes in<br>en am M                          | 1<br>200 000 c<br>1anomet | m bei d<br>er 211 ur | en folger<br>nd nach | nden Dru<br>Tab. 11 | icken im<br>Imgerech                       | Zylinden<br>nnet in a | r,<br>.t                                      | sungs-<br>tch dem<br>asten |
|-------------------|--------------------------------------------------------------|-------------------------------------------|---------------------|---------------------|---------------------------------------------|---------------------------|----------------------|----------------------|---------------------|--------------------------------------------|-----------------------|-----------------------------------------------|----------------------------|
| Nr.               | $\begin{array}{c} \text{Grade} \\ \text{at} = p \end{array}$ | 10<br>3,195                               | 20<br>6,389         | 80<br>9,584         | 40<br>12,840                                | 50<br>16,105              | 60<br>19,370         | 70<br>22,566         | 80<br>25,798        | 90<br>28,928                               | 100<br>32,228         | $\begin{array}{c} 110\\ 35{,}562 \end{array}$ | Able:<br>restna<br>Entl    |
| $\frac{1}{2}$     |                                                              | $\begin{array}{c} 216 \\ 210 \end{array}$ | 460                 | 719<br>716          | 1001                                        | 1254<br>1249              | 1529<br>1520         | 1784                 | 2056<br>2054        | 2320                                       | 2575<br>2572          | 2851                                          | -12                        |
| $\frac{2}{3}$     | A u. C                                                       | 207                                       | 473                 | 731                 | 1004                                        | 1249<br>1261              | 1529<br>1537         | $1785 \\ 1792$       | 2054 2060           | $2319 \\ 2325$                             | $2573 \\ 2591$        | $\frac{2848}{2863}$                           | -5 + 4                     |
| 4                 |                                                              | 220                                       | 479                 | 727                 | 1007                                        | 1256                      | 1525                 | 1786                 | 2052                | 2315                                       | 2569                  | 2845                                          | -8                         |
| 5                 |                                                              | 225                                       | 482                 | 736                 | 1012                                        | 1261                      | 1541                 | 1799                 | 2069                | 2330                                       | 2592                  | 2864                                          | + 1                        |
| Mitte             | el 🛛                                                         | 215,6                                     | 472,4               | 725,8               | 1003,8                                      | 1256,2                    | 1532,2               | 1788,8               | 2058,2              | 2321,8                                     | 2580,0                | 2854,2                                        |                            |
| $rac{1}{2}$      |                                                              | $\begin{array}{c} 220\\ 218 \end{array}$  | 469<br>476          | $\frac{728}{725}$   | $\begin{array}{c} 1011 \\ 1003 \end{array}$ | $1264 \\ 1257$            | $1541 \\ 1538$       | $1798 \\ 1797$       | $\frac{2075}{2066}$ | $\begin{array}{c} 2338\\ 2330 \end{array}$ | $2601 \\ 2593$        | $2878 \\ 2869$                                | +13 + 10                   |
| 3                 | <i>B</i> u. <i>D</i>                                         | 225                                       | 474                 | 733                 | 1008                                        | 1263                      | 1541                 | 1800                 | 2069                | 2337                                       | 2606                  | 2877                                          | +10 + 12                   |
| 4                 |                                                              | 220                                       | 480                 | 729                 | 1010                                        | 1260                      | 1536                 | 1797                 | 2064                | 2328                                       | 2594                  | 2864                                          | + 4                        |
| 5                 |                                                              | 228                                       | 486                 | 737                 | 1017                                        | 1271                      | 1550                 | 1807                 | 2081                | 2343                                       | 2607                  | 2881                                          | +11                        |
| Mitte             | el                                                           | 222,2                                     | 447,0               | 730,4               | 1009,8                                      | 1263,0                    | 1541,2               | 1799,8               | 2071,0              | 2335,2                                     | 2600,2                | 2873,8                                        |                            |
| Ge                | esamtmittel $\lambda$                                        | 218,9                                     | 474,7               | 728,1               | 1006,8                                      | 1259,6                    | 1536,7               | 1794,3               | 2064,6              | 2328,5                                     | 2590,1                | 2864,0                                        |                            |
| Zug-              | $P_1 = \frac{\lambda}{l} \cdot f \cdot E \text{ in t}$       | 21,13                                     | 45,82               | 70,28               | 97,18                                       | 121,58                    | 148,33               | 173,19               | 199,29              | 224,76                                     | 250,02                | 276,45                                        |                            |
| Kran              | $P = p \cdot F - R$ in t                                     | 20,63                                     | 45,92               | 71,22               | 97,00                                       | 122,85                    | 148,70               | 174,01               | 199,20              | 224,38                                     | 250,43                | 276,91                                        |                            |
| Untor             | $P-P_1$ in t                                                 | -0,50                                     | +0,10               | +0,94               | -0,18                                       | +1,27                     | +0,37                | +0,81                | -0,09               | -0,38                                      | +0,41                 | +0,46                                         |                            |
| schied            | $\frac{P-P_1}{P_1} \cdot 100 \text{ in } \%$                 | -2,47                                     | +0,22               | +1,29               | -0,19                                       | +1,05                     | +0,25                | +0,46                | -0,05               | -0,17                                      | +0,16                 | +0,17                                         |                            |

Meßlänge = 25 cm.

70

| Tabelle 19. | Stauchung der Spindeln der 3000-t-Maschine bei wachsende | er 71 |
|-------------|----------------------------------------------------------|-------|
|             | Zugbelastung am Probestabe 80.                           |       |

| Meßlänge = | $= 60  \mathrm{cm}.$ |
|------------|----------------------|
|------------|----------------------|

| -sgu            | Zimmer<br>in  | ° C            | Stor  | uebung | dor Spir | doln in | 1                    | am hai    | den folg | ondon 7 | ugholost | ungon P | in t    | n n                           |
|-----------------|---------------|----------------|-------|--------|----------|---------|----------------------|-----------|----------|---------|----------|---------|---------|-------------------------------|
| 3elastu<br>reih | bei<br>Beginn | am<br>Ende     | 504   | uenung | der öpn  |         | 200 000 `<br>am Prob | estab (s. | Tabelle  | 18)     | ugociaso | ungen 1 | 1 111 0 | esungsi<br>ach de<br>Intlaste |
| nr.             | d<br>Belastur | er<br>ngsreihe | 21,13 | 45,82  | 70,58    | 97,18   | 121,58               | 148,33    | 173,19   | 199,29  | 224,76   | 250,02  | 276,45  | Abl                           |
|                 |               |                |       |        |          | I. Un   | tere S               | pindel.   |          |         |          |         |         |                               |
| 1               | 15,33         | 16,30          | 37    | 75     | 138      | 182     | 218                  | 264       | 300      | 336     | 375      | 412     | 453     | 65                            |
| 2               | 16,70         | 16,72          | 32    | 65     | 105      | 144     | 186                  | 228       | 265      | 297     | 335      | 372     | 409     | 16                            |
| 3               | 17,10         | $17,\!40$      | 29    | 57     | 96       | 135     | 173                  | 210       | 250      | 287     | 326      | 363     | 401     | 8                             |
| 4               | 17,40         | 18,12          | 31    | 70     | 105      | 147     | 184                  | 224       | 264      | 300     | 340      | 374     | 414     | 22                            |
| 5               | 18,10         | 18,40          | 34    | 66     | 103      | 143     | 179                  | 218       | 257      | 302     | 341      | 377     | 414     | <b>29</b>                     |
| Mittel          |               |                | 31,5  | 64,5   | 102,2    | 142,2   | 180,5                | 220,0     | 259,0    | 296,5   | 338,0    | 371,5   | 409,5   |                               |
|                 |               |                |       |        |          | II. O   | bere S <sub>1</sub>  | pindel.   |          |         |          |         |         |                               |
| 1               | 13,60         | 14,50          | 102   | 144    | 170      | 210     | 262                  | 296       | 340      | 372     | 402      | 437     | 471     | +128                          |
| 2               | 14,62         | 15,11          | 25    | 62     | 94       | 130     | 162                  | 196       | 228      | 272     | 309      | 336     | 369     | - 8                           |
| 3               | 14,91         | 15,17          | 38    | 70     | 99       | 132     | 169                  | 205       | 242      | 281     | 315      | 356     | 397     | + 46                          |
| 4               |               | 15,21          | 43    | 79     | 113      | 148     | 184                  | 201       | 235      | 276     | 321      | 356     | 399     | + 50                          |
| 5               | 14,94         | 15,05          | 17    | 48     | 83       | 114     | 156                  | 196       | 234      | 261     | 303      | 334     | 377     | + 11                          |
| Mittel          |               | _              | 30,8  | 64,7   | 97,3     | 141,0   | 167,8                | 199,5     | 234,8    | 272,5   | 312,0    | 345,5   | 385,5   |                               |
|                 |               |                |       | I      | II. Sur  | nme fü  | r beide              | e Spind   | eln.     |         |          |         |         |                               |
| 1               |               |                | 139   | 219    | 308      | 392     | 480                  | 560       | 640      | 708     | 777      | 849     | 924     | 193                           |
| 1               |               |                | 57    | 127    | 199      | 274     | 348                  | 424       | 493      | 569     | 644      | 708     | 778     | 8                             |
| . 3             | -             |                | 67    | 127    | 195      | 267     | 342                  | 415       | 492      | 568     | 641      | 719     | 798     | 54                            |
| 4               | 1             |                | 74    | 149    | 218      | 295     | 368                  | 425       | 499      | 576     | 661      | 730     | 813     | 72                            |
| 5               |               |                | 51    | 114    | 186      | 257     | 335                  | 414       | 491      | 563     | 644      | 711     | 791     | 40                            |

Tabelle 20. Prüfung des Stabes 81 auf der 3000-t-Maschine.

Meßlänge = 25 cm.

| las     | Be-<br>tung      | Be-<br>obachtung<br>für die<br>Meßstelle                     | Dehnur    | ngen des<br>an | Stabes<br>m Manor | in $\frac{1}{200\ 00}$ meter 21 | $\overline{0}$ cm bei<br>1 und na | den folg<br>ach Tabe | enden D<br>lle 11 ur | ruckstufe<br>ngerechr | en, abgel<br>let in at | esen in G   | raden       | esungsrest<br>ch dem<br>ntlasten |
|---------|------------------|--------------------------------------------------------------|-----------|----------------|-------------------|---------------------------------|-----------------------------------|----------------------|----------------------|-----------------------|------------------------|-------------|-------------|----------------------------------|
|         | Nr.              | $\begin{array}{l} \text{Grade} \\ \text{at} = p \end{array}$ | 5<br>1,60 | 10<br>3,20     | 15<br>4,79        | 20<br>6,39                      | 25<br>7,99                        | 30<br>9,58           | 35<br>11,21          | 40<br>12,84           | 45<br>14:47            | 50<br>16,11 | 55<br>17,74 | Able<br>na<br>Er                 |
|         | 1                |                                                              | 162       | 462            | 731               | 992                             | 1241                              | 1485                 | 1780                 | 2040                  | 2293                   | 2548        | 2841        | + 2                              |
|         | 2                |                                                              | 163       | 459            | 728               | 987                             | 1240                              | 1483                 | 1778                 | 2042                  | 2298                   | 2553        | 2836        | + 2                              |
|         | 3                |                                                              | 163       | 460            | 731               | 889                             | 1238                              | 1489                 | 1786                 | 2045                  | 2300                   | 2549        | 2839        | 0                                |
|         | 4                | A u. C                                                       | 165       | 466            | 730               | 979                             | 1238                              | 1484                 | 1778                 | 2036                  | 2291                   | 2538        | 2832        | -12                              |
|         | 5                |                                                              | 172       | 474            | 737               | 996                             | 1245                              | 1495                 | 1792                 | 2053                  | 2304                   | 2558        | 2848        | + 5                              |
| M       | ittel            |                                                              | 165,0     | 464,2          | 731,4             | <b>988,6</b>                    | 1239,4                            | 1487,2               | 1782,8               | 2043,2                | 2297,2                 | 2549,2      | 2839,2      |                                  |
| _       | 1                | 1                                                            | 166       | 466            | 734               | 995                             | 1244                              | 1491                 | 1789                 | 2049                  | 2302                   | 2555        | 2849        | + 1                              |
|         | 2                |                                                              | 168       | 463            | 733               | 992                             | 1246                              | 1489                 | 1784                 | 2050                  | 2304                   | 2559        | 2844        | + 2                              |
|         | 3                |                                                              | 166       | 468            | 737               | 1006                            | 1247                              | 1499                 | 1796                 | 2054                  | 2308                   | 2557        | 2850        | 0                                |
|         | 4                | <i>B</i> u. <i>D</i>                                         | 167       | 474            | 738               | 989                             | 1248                              | 1497                 | 1793                 | 2052                  | 2307                   | 2555        | 2851        | - 1                              |
|         | 5                |                                                              | 171       | 475            | 738               | 1000                            | 1247                              | 1497                 | 1794                 | 2056                  | 2308                   | 2565        | 2853        | + 4                              |
| M       | ittel            |                                                              | 167,6     | 469,2          | 736,0             | 996,4                           | 1246,4                            | 1494,6               | 1791,2               | 2052,2                | 2305,8                 | 2558,2      | 2849,4      |                                  |
| G       | esan             | ntmittel $\lambda_m$                                         | 166,3     | 466,7          | 733,7             | 992,5                           | 1242,9                            | 1490,9               | 1787,0               | 2047,7                | 2301,5                 | 2553,7      | 2844,3      |                                  |
| gkraft  | $P_1 =$          | $=\frac{\lambda}{l}f\cdot E$ in t                            | 7,99      | 22,42          | 35,25             | 47,69                           | 59,72                             | 71,64                | 85,87                | 98,39                 | 110,59                 | 122,70      | 136,67      |                                  |
| Zug     | P =              | pF - R in t                                                  | 7,98      | 20,63          | 33,28             | 45,92                           | 58,57                             | 71,22                | 84,07                | 97,00                 | 109,93                 | 122,85      | 135,78      |                                  |
| hied    | Р                | $-P_1$ in t                                                  | -0,01     | -1,79          | -1,97             | -1,77                           | -1,15                             | -0,42                | -1,80                | -1,39                 | -0,66                  | +0,15       | -0,89       |                                  |
| Untersc | $\frac{P-}{P_1}$ | $\frac{P_1}{1} \cdot 100 \text{ in \%}$                      | -0,13     | -8,00          | -5,59             | -3,71                           | -1,93                             | -0,59                | -2,30                | -1,41                 | -0,57                  | +0,12       | -0,65       |                                  |

| в       | elastung<br>Nr.                                                                              | Beobach-<br>tung für<br>die Meß-<br>strecke                  | Dehnu                                     | ngen de                                                          | s Stabes<br>am Ma                         | in $\frac{1}{200.00}$ nometer   | 00 cm be<br>951 und                    | i den folg<br>nach Ta                       | genden D<br>b.11 um                  | )ruckstuf<br>Igerechne                      | en, abgel<br>et in at                            | lesen in (                                 | Fraden                               | sungsrest<br>ch dem<br>tlasten |
|---------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------|------------------------------------------------------------------|-------------------------------------------|---------------------------------|----------------------------------------|---------------------------------------------|--------------------------------------|---------------------------------------------|--------------------------------------------------|--------------------------------------------|--------------------------------------|--------------------------------|
|         |                                                                                              | $\begin{array}{c} \text{Grade} \\ \text{at} = p \end{array}$ | 10<br>1,57                                | 20<br>3,21                                                       | 30<br>4,83                                | 40<br>6,50                      | 50<br>8,18                             | 60<br>9,85                                  | 70<br>11,53                          | 80<br>13,20                                 | 90<br>14,88                                      | 100<br>16,56                               | 110<br>18,24                         | Able<br>na<br>En               |
|         | $rac{1}{2}$                                                                                 |                                                              | $\begin{array}{c} 150 \\ 151 \end{array}$ | $\begin{array}{c} 422\\ 420\end{array}$                          | $\begin{array}{c} 684 \\ 687 \end{array}$ | 953<br>952                      | $1239 \\ 1241$                         | $\begin{array}{c} 1506 \\ 1506 \end{array}$ | $1787 \\ 1791$                       | $\begin{array}{c} 2061 \\ 2059 \end{array}$ | $\begin{array}{c} 2334\\ 2328 \end{array}$       | $\begin{array}{c} 2603\\ 2601 \end{array}$ | $2869 \\ 2871$                       | $^{+12}_{+10}$                 |
|         | 3<br>4<br>5                                                                                  | A u. C                                                       | $147 \\ 143 \\ 149$                       | 416 $412$ $410$                                                  | 682<br>673<br>672                         | 952<br>944<br>028               | $1236 \\ 1230 \\ 1221$                 | $1503 \\ 1490 \\ 1499$                      | $1791 \\ 1778 \\ 1771$               | 2057<br>2046                                | $\begin{array}{c} 2325\\ 2316\\ 2208\end{array}$ | $2600 \\ 2587 \\ 2570$                     | 2870<br>2859                         | + 8 + 3                        |
| _       | Mittel                                                                                       |                                                              | 142                                       | 410                                                              | 680                                       | 938<br>948                      | 1221                                   | 1488                                        | 1784                                 | 2042                                        | 2308<br>2322                                     | 2579<br>2594                               | 2854                                 |                                |
|         | $     \begin{array}{c}       1 \\       2 \\       3 \\       4 \\       5     \end{array} $ | <i>B</i> u. <i>D</i>                                         | $148 \\ 152 \\ 146 \\ 148 \\ 150$         | $ \begin{array}{r} 418 \\ 420 \\ 420 \\ 419 \\ 422 \end{array} $ | 682<br>685<br>683<br>682<br>687           | 951<br>954<br>954<br>951<br>954 | $1237 \\ 1240 \\ 1237 \\ 1239 \\ 1240$ | 1508<br>1507<br>1504<br>1506<br>1507        | 1784<br>1794<br>1794<br>1786<br>1782 | 2059<br>2063<br>2062<br>2059                | 2334<br>2331<br>2331<br>2329<br>2229             | $2602 \\ 2606 \\ 2604 \\ 2601 \\ 2607$     | 2871<br>2878<br>2873<br>2872<br>2891 | + 4 + 9 + 5 + 2 + 7            |
|         | Mittel                                                                                       |                                                              | 149                                       | 420                                                              | 684                                       | 954<br>953                      | 1240                                   | 1507                                        | 1790                                 | 2000                                        | 2332<br>2331                                     | 2604                                       | 2875                                 | + 1                            |
| G       | esamtmi                                                                                      | ttel                                                         | 147,7                                     | 418,0                                                            | 681,8                                     | 950,3                           | 1236,0                                 | 1502,5                                      | 1786,9                               | 2056,8                                      | 2326,8                                           | 2599,0                                     | 2869,8                               |                                |
| gkraft  | $P_1 = \frac{\lambda}{l}$                                                                    | $\cdot f \cdot E 	ext{ in t}$                                | 7,10                                      | 20,08                                                            | 32,76                                     | 45,66                           | 59,39                                  | 72,19                                       | 85,86                                | 98,83                                       | 111,80                                           | 124,88                                     | 137,89                               |                                |
| Zu      | $P = p \cdot .$                                                                              | F-R in t                                                     | 6,99                                      | 19,91                                                            | 32,73                                     | 45,97                           | 59,26                                  | 72,55                                       | 85,81                                | 99,07                                       | 112,33                                           | 125,64                                     | 138,95                               |                                |
| hied    | $P - P_1$                                                                                    | int                                                          | -0,11                                     | -0,17                                                            | -0,03                                     | +0,31                           | -0,13                                  | +0,36                                       | -0,05                                | +0,24                                       | +0,53                                            | +0,76                                      | +1,06                                |                                |
| Untersc | $\frac{P-P_1}{P_1}$                                                                          | • 100 in %                                                   | -1,55                                     | -0,85                                                            | -0,09                                     | +0,68                           | -0,22                                  | +0,50                                       | -0,06                                | +0,24                                       | +0,47                                            | +0,60                                      | +0,77                                |                                |

Tabelle 21. Prüfung des Stabes 81 auf der 3000-t-Maschine.

Meßlänge = 25 cm.

Tabelle 22. Stauchung der Spindeln der 3000-t-Maschine bei Prüfung des Zug-Stabes 81.

Meßlänge = 60 cm.

\_\_\_\_\_

| Belastung<br>Nr.                                                | Bezeich-<br>nung der<br>Spindel          | Stauch    | ungen d<br>Gra | er Spind<br>iden am | eln in <u>2</u> 0<br>Manome | 1<br>00 000<br>eter 211 | bei de<br>und nacl | n folgen<br>1 Tab. 11 | den Dru<br>umgere | ickstufen<br>chnet in | , abgele<br>at | sen in              | sungsrest<br>ch dem<br>tilasten |
|-----------------------------------------------------------------|------------------------------------------|-----------|----------------|---------------------|-----------------------------|-------------------------|--------------------|-----------------------|-------------------|-----------------------|----------------|---------------------|---------------------------------|
|                                                                 |                                          | 5<br>1,60 | 10<br>3,20     | 15<br>4,79          | 20<br>6,39                  | 25<br>7,99              | 30<br>9,58         | 85<br>11,21           | 40<br>12,84       | 45<br>14,47           | 50<br>16,11    | 55 Grad<br>17,75 at | Able<br>. na<br>Er              |
| 1                                                               |                                          | 7         | <b>24</b>      | 37                  | 51                          | 65                      | 87                 | 108                   | 130               | 146                   | 163            | 182                 | - 6                             |
| <b>2</b>                                                        |                                          | 7         | 25             | 37                  | 54                          | 69                      | 83                 | 101                   | 119               | 139                   | 157            | 175                 | 14                              |
| 3                                                               |                                          | 4         | 22             | 38                  | 54                          | 70                      | 87                 | 109                   | 127               | 144                   | 161            | 180                 | -12                             |
| 4                                                               | untere                                   | 7         | 24             | 40                  | 56                          | 75                      | 93                 | 114                   | 132               | 150                   | 167            | 188                 | +11                             |
| 5                                                               |                                          | 13        | 32             | 45                  | 59                          | 76                      | 93                 | 113                   | 133               | 150                   | 169            | -189                | + 3                             |
| Mittel                                                          |                                          | 7,6       | 25,4           | 39,4                | 54,8                        | 71,0                    | 88,6               | 109,0                 | 128,2             | 145,8                 | 163,4          | 182,8               | -                               |
| 1                                                               |                                          | 9         | 26             | 42                  | 59                          | 70                      | 88                 | 108                   | 122               | 139                   | 156            | 175                 | - 1                             |
| <b>2</b>                                                        |                                          | 10        | 25             | 42                  | 58                          | 73                      | 88                 | 108                   | 122               | 140                   |                | 178                 | + 8                             |
| 3                                                               |                                          | 14        | <b>34</b>      | 51                  | 67                          | 84                      | 99                 | 117                   | 133               | 148                   | 163            | 182                 | +10                             |
| 4                                                               | obere                                    | 16        | 38             | 54                  | 71                          | 87                      | 101                | 121                   | 138               | 155                   | 171            | 192                 | +16                             |
| 5                                                               |                                          | 20        | 40             | 55                  | 69                          | 84                      | 98                 | 118                   | 137               | 150                   | 167            | 187                 | +10                             |
| Mittel                                                          | -                                        | 13,8      | 32,6           | 48,8                | 64,8                        | 79,6                    | 94,8               | 114,4                 | 130,4             | 146,4                 | 164,2          | 182,8               |                                 |
| Gesamtm                                                         | ittel                                    | 10,7      | 29,0           | 44,1                | 59,8                        | 75,3                    | 91,8               | 111,7                 | 129,3             | 146,1                 | 163,8          | 182,8               |                                 |
| $\frac{1}{l} P_1 = \frac{\lambda}{l}$                           | $\cdot \mathbf{j} \cdot \mathbf{E}$ in t | 7,28      | 19,72          | 30,00               | 40,67                       | 51,21                   | 62,43              | 75,97                 | 87,94             | 99,36                 | 111,40         | 124,32              | _                               |
| $\left\  {{\mathbf{\bar{\bar{\mathbf{N}}}}} \right\ _{P} = p$ . | $F - R \operatorname{in} t$              | 7,98      | 20,63          | 33,28               | 45,92                       | 58,57                   | 71,22              | 84,07                 | 97,00             | 109,73                | 122,85         | 135,75              | -                               |
| P = P                                                           | 1 in t                                   | +0,70     | +0,91          | +3,28               | +5,25                       | +7,36                   | +8,79              | +8,10                 | +9,06             | 10,57                 | 11,45          | 11,43               |                                 |
| $\frac{1}{P_1} \frac{P_1}{P_1}$                                 | $\cdot 100  \mathrm{in}  \%$             | +9,6      | +4,6           | +10,9               | +12,9                       | +14,4                   | +14,1              | +10,7                 | +10,3             | +10,6                 | +10,3          | +9,2                |                                 |

|                                                                           | Mater            | rialzeichen |                                 | Abmess                  | sungen                                                           |                                                                        | Spannu                                   | ngen in                                                                    | kg/qcm                                              |                                    | Bruchdeh                        | nung % für                             | die Länge            | - 59<br>50                |
|---------------------------------------------------------------------------|------------------|-------------|---------------------------------|-------------------------|------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------|------------------------------------|---------------------------------|----------------------------------------|----------------------|---------------------------|
| Stab                                                                      |                  | Charge      | Proben<br>ent-<br>nommen<br>aus | Durch-<br>messer<br>d   | $\begin{array}{c} \text{Quer-}\\ \text{schnitt}\\ f \end{array}$ | $\frac{\text{Dehnungs-}}{\text{zahl}}$ $\frac{1}{\alpha} = E$          | P-<br>Grenze<br>$\sigma_P$               | $\begin{array}{c} \text{Streck-}\\ \text{grenze}\\ \sigma_{S} \end{array}$ | Bruch-<br>grenze $\sigma_B$                         | $rac{\sigma_{S}}{\sigma_{B}}$ 100 | $l = 5,65 \sqrt{f}$<br>= 100 mm | $l = 11,3 \sqrt{f}$ $= 200 \text{ mm}$ | l = 200  mm          | Querschnitt<br>verminderu |
| Nr.                                                                       | Nr.              | Nr.         |                                 | mm                      | qmm                                                              |                                                                        |                                          |                                                                            |                                                     |                                    |                                 |                                        |                      |                           |
| $egin{array}{c} 1 \\ 2 \\ 3 \end{array}$                                  | 1<br>2<br>3      | 9885/86     | Muffen                          | 20,03<br>20,04<br>19,97 | 314,9<br>315,3<br>313,1                                          | $\begin{array}{c} 2\ 065\ 000\\ 2\ 055\ 000\\ 2\ 075\ 000 \end{array}$ | 1910<br>1740<br>1760                     | $2540 \\ 2730 \\ 2560$                                                     | $5260 \\ 5150 \\ 5300$                              | $48 \\ 53 \\ 48$                   | 29,8<br>29,4<br>29,4            | 23,0<br>22,6<br>22,0                   | 22,4<br>21,9<br>21,8 | 55<br>55<br>53            |
|                                                                           | Mit              | tel         |                                 |                         |                                                                  | 2065000                                                                | 1800                                     | 2610                                                                       | 5240                                                | 50                                 | 29,5                            | 22,5                                   | 22,0                 | 54                        |
| 4<br>5<br>6                                                               | 12<br>13<br>14   | 9776        |                                 | 20,12<br>20,10<br>20,00 | 317,8<br>217,0<br>314,0                                          | $2\ 065\ 000$<br>$2\ 110\ 000$<br>$2\ 105\ 000$                        | $1570 \\ 1580 \\ 2230$                   | 2440<br>2390<br>2760                                                       | 4910<br>4890<br>4990                                | 50<br>49<br>56                     | 32,9<br>30,6<br>31,8            | 25,4<br>23,6<br>23,3                   | 25,3<br>23,0<br>23,2 | 55<br>59<br>61            |
|                                                                           | Mit              | tel         |                                 |                         |                                                                  | 2093000                                                                | 1790                                     | 2530                                                                       | 4930                                                | 52                                 | 31,8                            | 24,1                                   | 23,8                 | 58                        |
| 7<br>8<br>9                                                               | $23 \\ 24 \\ 25$ | 4854        | Zug-<br>stange                  | 20,05<br>20,10<br>20,10 | 315,6<br>317,0<br>317,0                                          | $\begin{array}{c} 2\ 055\ 000\\ 2\ 115\ 000\\ 2\ 095\ 000 \end{array}$ | $1580 \\ 1890 \\ 1890$                   | $2280 \\ 2490 \\ 2400$                                                     | $\begin{array}{r} 4750 \\ 4860 \\ 5040 \end{array}$ | $48 \\ 51 \\ 48$                   | 30,8<br>33,4<br>30,8            | 23,9<br>26,1<br>24,8                   | 23,8<br>23,4<br>24,7 | 55<br>58<br>57            |
|                                                                           | Mit              | tel         |                                 |                         | ·                                                                | 2088000                                                                | 1790                                     | 2390                                                                       | 4880                                                | 49                                 | 31,7                            | 24,9                                   | 24,0                 | 57                        |
| G                                                                         | esamt            | mittel      |                                 | —                       |                                                                  | 2090500                                                                | 1790                                     | 2460                                                                       | 4910                                                | 51                                 | <b>31,</b> 8                    | 24,5                                   | 23,9                 | <b>\58</b>                |
| $     \begin{array}{c}       10 \\       11 \\       12     \end{array} $ | 29<br>30<br>31   | 10 896      |                                 | 20,00<br>20,10<br>20,10 | 314,0<br>317,0<br>317,0                                          | 2 060 000<br>2 100 000<br>2 100 000                                    | 1430<br>1580<br>1890                     | 2360<br>2460<br>2520                                                       | 4900<br>4940<br>4940                                | 48<br>50<br>51                     | 32,0<br>33,1<br>32,4            | 25,4<br>25,9<br>25,6                   | 25,4<br>25,8<br>25,3 | 54<br>57<br>57            |
|                                                                           | Mit              | tel         |                                 |                         |                                                                  | 2 087 000                                                              | 1630                                     | 2450                                                                       | 4930                                                | 50                                 | 32,5                            | 25,6                                   | 25,5                 | 56                        |
| 13<br>14<br>15                                                            | 34<br>35<br>36   | 9942        |                                 | 19,97<br>20,10<br>20,10 | 313,1<br>317,0<br>317,0                                          | $\begin{array}{c} 2\ 055\ 000\\ 2\ 120\ 000\\ 2\ 110\ 000 \end{array}$ | 1440<br>1890<br>2530                     | 2630<br>2660<br>3060                                                       | 4680<br>4750<br>4910                                | 56<br>56<br>62                     | 32,3<br>33,8<br>33,2            | 24,9<br>26,8<br>28,0                   | 24,3<br>25,7<br>27,7 | 60<br>61<br>60            |
|                                                                           | Mit              | tel         | a                               |                         | -                                                                | 2095000                                                                | 1950                                     | 2780                                                                       | 4780                                                | 58                                 | 33,1                            | 26,6                                   | 25,9                 | 60                        |
| 16<br>17<br>18                                                            | 44<br>45<br>46   | 9996        | Spindel                         | 20,05<br>20,00<br>20,10 | 315,6<br>314,0<br>317,0                                          | $\begin{array}{c} 2\ 070\ 000\\ 2\ 085\ 000\\ 2\ 020\ 000 \end{array}$ | $1580 \\ 1590 \\ 1580$                   | 2960<br>3010<br>2970                                                       | 5810<br>5960<br>5870                                | $51 \\ 51 \\ 51 \\ 51$             | 28,3<br>26,2<br>26,8            | 24,1<br>20,5<br>20,0                   | 24,0<br>20,4<br>20,0 | 51<br>53<br>55            |
|                                                                           | Mit              | tel         |                                 |                         |                                                                  | 2058000                                                                | 1580                                     | 2980                                                                       | 5880                                                | 51                                 | 27,1                            | 21,5                                   | 21,5                 | 53                        |
| 19<br>20<br>21                                                            | 54<br>55<br>56   | 9953        |                                 | 19,95<br>20,01<br>20,01 | 312,4<br>317,0<br>317,0                                          | $\begin{array}{c} 2\ 075\ 000\\ 2\ 090\ 000\\ 2\ 055\ 000 \end{array}$ | $     1280 \\     1580 \\     1740     $ | 2660<br>2740<br>2670                                                       | $5430 \\ 5440 \\ 5430$                              | 49<br>51<br>49                     | 30,9<br>32,0<br>30,6            | 22,4<br>24,4<br>23,6                   | 22,324,323,6         | 54<br>54<br>56            |
|                                                                           | Mit              | ttel        |                                 |                         |                                                                  | 2 073 000                                                              | 1530                                     | 2690                                                                       | 5430                                                | 50                                 |                                 | 23,5                                   | 23,4                 | 55                        |
| G                                                                         | esamt            | tmittel     | l                               | - 1                     |                                                                  | 2 078 250                                                              | 1670                                     | 2730                                                                       | 5260                                                | 52                                 | 81,0                            | 24,3                                   | 24,1                 | 56                        |

| Tabelle 23. | Zugversuche | mit Materialproben | aus einzelnen Teilen | der 3000-t-Maschine. |
|-------------|-------------|--------------------|----------------------|----------------------|
|             |             |                    |                      |                      |
|             |             |                    |                      |                      |
|             |             |                    |                      |                      |

#### Tabelle 24.

#### Dehnung der Zugstange der 3000-t-Maschine bei Prüfung des Zugstabes 81.

Meßlänge = 40 cm; Stabquerschnitt = 1388 qcm.

Elastizitätsmodul E = 2.090500 kg/qcm.

|         | Belastung Nr.                                    | Dehi       | nung der<br>Gra | Zugstar<br>den am | nge in <u>2</u> 0<br>Manome | 1<br>00 000 cm<br>eter 951 | bei den<br>und nacl | folgend<br>n Tab. 11 | en Druc<br>umgere | kstufen,<br>chnet in | abgelese<br>at | n in                 | ungsrest<br>. Entlast. |
|---------|--------------------------------------------------|------------|-----------------|-------------------|-----------------------------|----------------------------|---------------------|----------------------|-------------------|----------------------|----------------|----------------------|------------------------|
|         | <u> </u>                                         | 10<br>1,57 | 20<br>3,21      | 30<br>4,83        | 40<br>6,50                  | 50<br>8,18                 | 60<br>9,85          | 70<br>11,53          | 80<br>13,20       | 90<br>14,88          | 100<br>16,56   | 110 Grad<br>18,24 at | Ablesi<br>nach d       |
|         | 1 .                                              | 20         | 57              | 91                | 127                         | 165                        | 204                 | 237                  | 273               | 310                  | 343            | 378                  | +7                     |
|         | 2                                                | 22         | 56              | 91                | 128                         | 164                        | 201                 | 238                  | 273               | 309                  | 345            | 380                  | +6                     |
|         | 3                                                | 21         | 55              | 91                | 126                         | 163                        | 199                 | 238                  | 272               | 308                  | 344            | 378                  | +5                     |
|         | 4                                                | 20         | 57              | 90                | 125                         | 161                        | 197                 | 235                  | 269               | 306                  | 341            | 378                  | +4                     |
|         | 5                                                | 20         | 55              | 90                | 125                         | 164                        | 198                 | 236                  | <b>270</b>        | 305                  | <b>340</b>     | 375                  | +1                     |
|         | Mittel für $\lambda$                             | 20,6       | 56,0            | 90,6              | 126,2                       | 163,4                      | 199,8               | 236,8                | 271,4             | 307,6                | 342,6          | 377,8                |                        |
| gkraft  | $P_1 = \frac{\lambda}{l} f \cdot E \text{ in t}$ | 7,47       | 20,30           | <b>32,8</b> 5     | 45,76                       | 59,24                      | 72,44               | 85,86                | 98,41             | 111,54               | 124,23         | 136,97               |                        |
| 'nZ     | P = p F - R in t                                 | 6,99       | 19,91           | 32,73             | 45,97                       | 59,26                      | 72,55               | 85,81                | 99,07             | 112,33               | 125,64         | 138,95               |                        |
| hied    | $P-P_1$ in t                                     | -0,48      | -0,39           | -0,12             | +0,21                       | +0,02                      | +0,11               | -0,05                | +0,66             | +0,79                | +1,41          | +1,98                |                        |
| Untersc | $\frac{P - P_1}{P_1}  100 \text{ in } \%$        | -0,64      | -1,92           | -0,34             | +0,46                       | +0,03                      | +0,15               | -0,06                | +0,67             | +0,71                | +1,13          | +1,45                |                        |

Tabelle 25. Ermittlung der Belastungen aus den Dehnungen  $\lambda$  der Zugstange der Maschinen und den Wasserdrucken p in at im Zylinder bei Prüfung des Stabes 70. Querschnitt der Stange: f = 1388 qcm; Elastizitätsmodul des Stangenmaterials: E = 2090500 kg/qcm; für die Ermittlung der Dehnungen  $\lambda$ : Meßlänge l = 40 cm; Reibungswiderstand beim Leerlauf der Maschine: R = 7068 kg; Kolbenquerschnitt F = 7918 qcm.

|                                  |                                                     |                             |                   |                  |                         | Dr    | uckstufer | n in at = | p, errec | hnet au | s den Al | olesunger | n in G <b>r</b> ade | en an                                                                                                                                                                                                       |        |
|----------------------------------|-----------------------------------------------------|-----------------------------|-------------------|------------------|-------------------------|-------|-----------|-----------|----------|---------|----------|-----------|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
|                                  | Bede                                                | utung d                     | er V              | Verte            |                         |       |           | Manom     | eter 211 |         |          |           |                     | 123                                                                                                                                                                                                         |        |
|                                  |                                                     |                             |                   |                  | 3,195                   | 13,17 | 26,07     | 38,57     | 51,30    | 63,67   | 76,49    | 89,16     | 89,11               | 102,00                                                                                                                                                                                                      | 114,15 |
| gstange                          | bachtet                                             | Anfa<br>tu                  | ngs<br>1g i       | belas-<br>n at   | 0                       |       |           |           | 3,195    |         |          |           |                     |                                                                                                                                                                                                             |        |
| ngen A der Zugst:<br>1 cm beobac | beol                                                |                             |                   | 1                | Mittel                  | 216   | 489       | 753       | 1025     | 1293    | 1560     | 1841      | 1850                | 2121                                                                                                                                                                                                        | 2386   |
|                                  | 1, l                                                | Rei                         | he                | <b>2</b>         | aus                     | 213   | 488       | 753       | 1026     | 1290    | 1560     | 1840      |                     | 2117                                                                                                                                                                                                        | 2383   |
|                                  | cn<br>hei                                           |                             |                   | 3                | 15 Be-                  | 211   | 486       | 753       | 1028     | 1296    | 1566     | 1848      |                     | 2124                                                                                                                                                                                                        | 2391   |
|                                  | 000                                                 |                             | •                 | 4                | obach-                  | 211   | 487       | 753       | 1027     | 1296    | 1565     | 1847      |                     | 2122                                                                                                                                                                                                        | 2391   |
| Ind                              | 500                                                 |                             |                   | 5                | $\operatorname{tungen}$ | 209   | 484       | 751       | 1027     | 1296    | 1565     | —         | _                   | 2128                                                                                                                                                                                                        | 2394   |
| Deh                              | Ë.                                                  | Mi                          | tel               | werte            | 59,0                    | 212,0 | 486,6     | 752,6     | 1026,6   | 1294,2  | 1563,2   | 1844,0    | [1850,0]            | 2122,4                                                                                                                                                                                                      | 2389,2 |
| ungen                            | $P_1$                                               | $=\frac{\lambda}{1}\cdot t$ | $\cdot E$         | Einzel-<br>werte | 21,4                    | 76,89 | 176,56    | 272,97    | 372,35   | 469,41  | 566,98   | 668,82    | 671,00              | 769,80                                                                                                                                                                                                      | 866,57 |
| elast<br>in f                    |                                                     | 1.                          |                   | Gesamt           |                         | 98,29 | 197,96    | 294,37    | 393,75   | 490,81  | 588,38   | 690,22    | 692,40              | Graden an<br>123<br>,11 102,00 11<br><br>50 2121 2<br>- 2117 2<br>- 2124 2<br>- 2122 2<br>- 2128 2<br>50,0] 2122,4 23<br>.,00 769,80 86<br>2,40 791,20 88<br>3,53 800,59 89<br>3,13 +9,39 +<br>0,89 +1,19 + | 887,97 |
| dguZ                             | P =                                                 | $= p \cdot F$               | -                 | R                | 18,23                   | 97,18 | 199,32    | 298,34    | 399,15   | 497,08  | 598,59   | 698,90    | 698,53              | 800,59                                                                                                                                                                                                      | 896,73 |
|                                  |                                                     | P-I                         | ' <sub>1</sub> ii | n t              | -                       | -1,11 | +1,36     | +3,97     | +5,40    | +6,27   | 10,21    | +8,68     | +6,13               | +9,39                                                                                                                                                                                                       | +8,76  |
| so                               | Unter-<br>schied $\frac{P - P_1}{P_1} \cdot 100$ in |                             |                   |                  |                         | 1,13  | +0,69     | +1,35     | +1,37    | +1,28   | +1,74    | +1,25     | +0,89               | +1,19                                                                                                                                                                                                       | +0,99  |

| Belastungs-                                   | Nr. Gemessen<br>und Lage am Längenzunahme $\lambda_b$ in $\frac{1}{100000}$ cm bei den folgenden Belastungen in t |                           |                                                                              |                                                                                  |                                                                                 |                                                                                            |                                                     |                                                             |                        |                     |                                |            |
|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------------|---------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-----------------------------------------------------|-------------------------------------------------------------|------------------------|---------------------|--------------------------------|------------|
| Nr.                                           | der<br>Meßstelle                                                                                                  | Stegblech<br>(s. Fig. 58) | 98,29                                                                        | 197,96                                                                           | 294,37                                                                          | 393,75                                                                                     | 490,81                                              | 588,38                                                      | 690,22                 | 692,40              | 791,20                         | 887,97     |
|                                               |                                                                                                                   |                           | St                                                                           | eg (Se                                                                           | ite) A                                                                          | des S                                                                                      | tabes.                                              |                                                             |                        |                     |                                |            |
| $egin{array}{c} 1 \\ 2 \\ 3 \\ 4 \end{array}$ | l<br>oben                                                                                                         |                           | 176<br>175<br>175<br>—                                                       | 404<br>402<br>402<br>—                                                           | 858<br>908<br>924<br>—                                                          | 2496<br>2686<br>2767                                                                       | $4276 \\ 4580 \\ 4675 \\$                           | $\begin{array}{c} 6015 \\ 6225 \\ 6344 \\ 6425 \end{array}$ |                        | 8391<br>—<br>—<br>— | 9 626<br>9 871<br>10 073<br>—  | 11 497<br> |
| Mittel                                        |                                                                                                                   |                           | 175                                                                          | 403                                                                              | 897                                                                             | 2650                                                                                       | 4510                                                | 6252                                                        |                        | (8391)              | 9 858                          | (11497)    |
| 1<br>2<br>3                                   | 9<br>unten                                                                                                        | äußeres                   | 272<br>288<br>290                                                            | 811<br>861<br>881                                                                | 1680<br>1788<br>1848                                                            |                                                                                            |                                                     |                                                             | -                      |                     |                                | ··· ,      |
| Mittel                                        |                                                                                                                   |                           | 283                                                                          | 851                                                                              | 1772                                                                            |                                                                                            |                                                     |                                                             | -                      | —                   | _                              |            |
| Gesam                                         | tmittel                                                                                                           |                           | 229                                                                          | 627                                                                              | 1335                                                                            |                                                                                            |                                                     |                                                             |                        |                     |                                |            |
| $\begin{array}{c}1\\2\\3\\4\end{array}$       | 2<br>oben                                                                                                         |                           | 189<br>189<br>187<br>                                                        | $     \begin{array}{r}       438 \\       446 \\       447 \\      \end{array} $ | 946<br>990<br>1008<br>—                                                         | 2599<br>2809<br>2900<br>—                                                                  | 4529<br>4754<br>4836<br>—                           | $\begin{array}{c} 6176 \\ 6426 \\ 6566 \\ 6646 \end{array}$ | 7845<br>—<br>—<br>—    | 8 523<br>           | 9 841<br>10 094<br>10 285<br>— | 11 687<br> |
| Mittel                                        |                                                                                                                   |                           | 188                                                                          | 444                                                                              | 981                                                                             | 2769                                                                                       | 4703                                                | 6454                                                        | (7845)                 | (8523)              | 10 064                         | (11687)    |
| $\frac{1}{2}$                                 | 10<br>unten                                                                                                       | inneres                   | $270 \\ 286 \\ 288$                                                          | 815<br>851<br>869                                                                | $     \begin{array}{ } 1658 \\     1746 \\     1802 \\     \end{array} $        | 4016<br>4256<br>4397                                                                       | $\begin{array}{c} 6196 \\ 6486 \\ 6646 \end{array}$ |                                                             |                        | <u>.</u>            | _                              | _          |
| Mittel                                        |                                                                                                                   |                           | 281                                                                          | 845                                                                              | 1735                                                                            | 4223                                                                                       | 6443                                                |                                                             | _                      | _                   |                                | _          |
| Gesam                                         | tmittel                                                                                                           |                           | 235                                                                          | 645                                                                              | 1358                                                                            | 3496                                                                                       | 5573                                                | _                                                           |                        | —                   | -                              |            |
|                                               |                                                                                                                   |                           | St                                                                           | eg (Se                                                                           | eite) B                                                                         | des S                                                                                      | tabes                                               | •                                                           |                        |                     |                                |            |
| $egin{array}{c} 1 \\ 2 \\ 3 \\ 4 \end{array}$ | 5<br>oben                                                                                                         |                           | 96<br>93<br>92<br>—                                                          | 270<br>269<br>268<br>—                                                           | 539<br>551<br>557<br>—                                                          | $     \begin{array}{r}       1360 \\       1611 \\       1722 \\       -     \end{array} $ | 3385<br>3647<br>3768<br>—                           | $5445 \\ 5605 \\ 5709$                                      | 7015<br>7354<br>—<br>— | 7592<br>—<br>—<br>— | 9119<br>9474<br>9664<br>—      |            |
| Mittel                                        |                                                                                                                   |                           | 94                                                                           | 269                                                                              | 549                                                                             | 1564                                                                                       | 3600                                                | 5586                                                        | 7185                   | (7592)              | 9419                           | -          |
| 1<br>2<br>3                                   | 12<br>unten                                                                                                       | äußeres                   | $     \begin{array}{r}       106 \\       108 \\       110     \end{array} $ | $382 \\ 400 \\ 409$                                                              | 980<br>1030<br>1067                                                             |                                                                                            |                                                     |                                                             |                        |                     |                                |            |
| Mittel                                        |                                                                                                                   |                           | 108                                                                          | 397                                                                              | 1026                                                                            | -                                                                                          |                                                     | -                                                           |                        | -                   | -                              | -          |
| Gesam                                         | tmittel                                                                                                           |                           | 101                                                                          | 333                                                                              | 788                                                                             | _                                                                                          |                                                     |                                                             |                        | <u> </u>            | _                              |            |
| $egin{array}{c} 1 \\ 2 \\ 3 \\ 4 \end{array}$ | 6<br>oben                                                                                                         |                           | 90<br>87<br>86<br>—                                                          | $245 \\ 243 \\ 241 \\ -$                                                         | 455<br>460<br>461<br>—                                                          | 1049<br>1237<br>1313<br>—                                                                  | 2905<br>3131<br>3233<br>—                           | 4614<br>4866<br>5000<br>5105                                | 6389<br>6697<br>       | 6937<br>—<br>—<br>— | 8438<br>8783<br>8977<br>—      | -          |
| Mittel                                        |                                                                                                                   |                           | 88                                                                           | 243                                                                              | 459                                                                             | 1200                                                                                       | 3090                                                | 4896                                                        | 6543                   | (6937)              | 8733                           | _          |
| 1<br>2<br>3                                   | 13<br>unten                                                                                                       | inneres                   | $\begin{array}{r}142\\146\\150\end{array}$                                   | 478<br>502<br>517                                                                | $     \begin{array}{r}       1120 \\       1184 \\       1223     \end{array} $ | 2988<br>3479<br>3640                                                                       | 5349<br>5589<br>5708                                | _                                                           | _                      |                     |                                |            |
| Mittel                                        |                                                                                                                   |                           | 146                                                                          | 499                                                                              | 1176                                                                            | 3369                                                                                       | 5549                                                | -                                                           | _                      | -                   | _                              | -          |
| Gesan                                         | tmittel                                                                                                           |                           | 117                                                                          | 371                                                                              | 818                                                                             | 2285                                                                                       | 4320                                                | _                                                           | -                      | -                   | -                              | -          |

Tabelle 26. Längenänderungen λ<sub>b</sub>, gemessen über den Stoß an den Stegblechen. Die Stoßstelle lag in Mitte der Meßlänge; die Beobachtungen begannen mit 21,40 t Anfangsbelastung.

Tabelle 27. Bleibende Längungen, gemessen über den Stoß an den Stegblechen. Die Stoßstelle lag in Mitte der Meßlängen. Die Beobachtungen begannen mit 21,40 t Anfangsbelastung; auf sie wurde auch stets wieder entlastet.

| Belastungs-    | Nr und    | Ge    | emessen         | Blaiba     | ndo Tän   | rung in    | 1            | m nach   | den folg     | ondon B        | elestung       | en in t        |
|----------------|-----------|-------|-----------------|------------|-----------|------------|--------------|----------|--------------|----------------|----------------|----------------|
| reihe          | Lage der  | auf   | am<br>Steablech | Dieinei    | une mani  | gung in    | 00 000       | in nacii | uch loig     | chuch D        |                |                |
| Nr.            | Megstelle | Seite | (s. Fig. 58)    | 98,29      | 197,96    | 294,37     | 393,75       | 490,81   | 558,38       | 690,22         | 791,20         | 887,97         |
| 1              |           |       |                 | 16         | 22        | 146        | 1361         | 2708     | 3759         | 4747           | 5964           | 7159           |
| <b>2</b>       | 1         |       |                 | 16         | <b>25</b> | 156        | 1455         | 2867     | 3909         | 4941           | 6129           | 7339           |
| 3              | oben      |       |                 |            |           |            |              |          | 4018         |                |                |                |
| Mittel         |           |       |                 | 16         | 24        | 151        | 1408         | 2788     | 3865         | 4844           | 6047           | 7249           |
| 1              |           |       | äußeres         | 90         | 367       | 912        |              |          |              |                |                |                |
| 2              | 9         |       |                 | 94         | 389       | 990        | -            | _        | _            | _              | —              |                |
| U              | unten     |       |                 |            | 970       | 051        |              |          |              |                |                |                |
| Mittel         |           |       |                 | 92         | 010       | 801        |              |          |              |                |                |                |
| Gesam          |           | A     |                 | 54         | 201       | 991        | -            |          | -            | 4050           | -              |                |
| 1              |           |       |                 | 21         | 33        | 200        | 1452<br>1557 | 2783     | 3839         | $4859 \\ 5068$ | 6126<br>6316   | $7394 \\ 7609$ |
| $\frac{2}{3}$  | oben z    |       |                 |            |           | - 210      | -            | 2010     | 4119         |                |                |                |
| Mittel         | 0.0011    |       |                 | 21         | 36        | 207        | 1505         | 2863     | 3986         | 4964           | 6221           | 7502           |
| 1              |           |       | inneres         | 94         | 369       | 902        | 2930         | 4505     | 5971         |                |                |                |
| $\frac{1}{2}$  | 10        |       |                 | 102        | 391       | 962        | 3070         | 4719     | 6269         |                |                | —              |
| 3              | unten     |       |                 | _          | -         | -          |              |          | 6469         |                |                |                |
| Mittel         |           |       |                 | 98         | 380       | 932        | 3000         | 4612     | 6236         |                |                |                |
| Gesam          | tmittel   |       |                 | 60         | 208       | 570        | 2253         | 3738     | 5111         | -              |                | —              |
| 1              | 1         |       |                 | -2         | 16        | 88         | 634          | 1900     | 3049         | 4249           | 5595           | 7284           |
| <b>2</b>       | 5         |       |                 | 0          | 17        | 91         | 725          | 2059     | 3271         | 4469           | 5823           | 7524           |
| 3              | oben      |       |                 |            |           |            |              |          | 3399         |                |                |                |
| Mittel         |           |       |                 | 1          | 17        | 90         | 680          | 1980     | 3240         | 4359           | 5709           | 7409           |
| 1              |           |       | äußeres         | -7         | 81        | 300        |              |          |              |                |                |                |
| 2              | 12        |       |                 | 6          | 87        | 328        | -            | -        |              | -              |                | -              |
|                | unten     |       |                 |            | 04        | 914        |              |          |              |                |                |                |
|                | <u> </u>  | •     |                 | 1          | 51        | 514<br>000 |              | -        |              | _              | -              |                |
| Gesam          |           | B     |                 | -1         | 01        | 202        | 210          | 1947     | 0401         | 95.05          | 4001           | 6650           |
| $\frac{1}{2}$  | 6         |       |                 | $-2 \\ -4$ | 4         | 33         | 310          | 1347     | 2401<br>2602 | 3565           | $4891 \\ 5122$ | 6971           |
| 3              | oben      |       |                 | _          | _         |            |              | _        | 2715         | _              |                | _              |
| Mittel         | -         |       |                 | -3         | 4         | 35         | 331          | 1414     | 2573         | 3664           | 5007           | 6815           |
| 1              |           | •     | inneres         | +9         | 121       | 404        | 2125         | 3711     | 4780         | 6060           |                |                |
| $\overline{2}$ | 13        |       |                 | 20         | 129       | 440        | 2320         | 3870     | 4972         | 6112           |                |                |
| 3              | unten     |       |                 |            |           |            |              |          | 5110         |                |                |                |
| Mittel         |           |       |                 | 15         | 125       | 422        | 2223         | 3791     | 4954         | 6086           | _              | -              |
| Gesam          | tmittel   |       |                 | 6          | 65        | 229        | 1277         | 2603     | 3764         | 4875           | -              | -              |

## Tabelle 28. Dehnungen $\lambda_i$ der Laschen.

Die Stoßstelle der Stegbleche lag gegenüber der Mitte der Meßlänge; die Beobachtungen begannen mit 21,40 t Anfangsbelastung.

| astung<br>he Nr                                                                                                                      | Nr. und<br>Lage der<br>Meßstellen                                          | Gemessen an<br>der Lasche |                                                                                                                                                 | Dehnu                                                                                                        | ngen λ <sub>l</sub> i                                                                                     | $\frac{1}{100000}$                                                                                                         | ) cm bei                                                                                                                                                                                                                                                                                                    | den fol                                                                                                                                                                                                               | genden E                                                                         | elastung                                                | en in t                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Belt                                                                                                                                 | Menstellen                                                                 | (s. 11g. 00)              | 96,29                                                                                                                                           | 197,96                                                                                                       | 294,37                                                                                                    | 393,75                                                                                                                     | 490,81                                                                                                                                                                                                                                                                                                      | 588,38                                                                                                                                                                                                                | 690,22                                                                           | 692,40                                                  | 791,20                                                                                           | 887,97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                      |                                                                            |                           |                                                                                                                                                 | Seite                                                                                                        | A des                                                                                                     | Stabe                                                                                                                      | es.                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                       |                                                                                  |                                                         |                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1                                                                                                                                    |                                                                            |                           | 82                                                                                                                                              | 170                                                                                                          | 236                                                                                                       | 283                                                                                                                        | 387                                                                                                                                                                                                                                                                                                         | 498                                                                                                                                                                                                                   | 642                                                                              | 656                                                     | 813                                                                                              | 1007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2                                                                                                                                    |                                                                            |                           | 79                                                                                                                                              | 165                                                                                                          | 229                                                                                                       | 282                                                                                                                        | 385                                                                                                                                                                                                                                                                                                         | 501                                                                                                                                                                                                                   | 649                                                                              |                                                         | 821                                                                                              | 1022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 3                                                                                                                                    | 3                                                                          |                           | 78                                                                                                                                              | 161                                                                                                          | 225                                                                                                       | 278                                                                                                                        | 382                                                                                                                                                                                                                                                                                                         | 502                                                                                                                                                                                                                   |                                                                                  | ; <del></del>                                           | 827                                                                                              | 1028                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 4                                                                                                                                    | oben                                                                       |                           |                                                                                                                                                 |                                                                                                              |                                                                                                           |                                                                                                                            |                                                                                                                                                                                                                                                                                                             | 502                                                                                                                                                                                                                   |                                                                                  |                                                         |                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Mittel                                                                                                                               |                                                                            |                           | 80                                                                                                                                              | 165                                                                                                          | 230                                                                                                       | 281                                                                                                                        | 385                                                                                                                                                                                                                                                                                                         | 501                                                                                                                                                                                                                   | 646                                                                              | (656)                                                   | 820                                                                                              | 1019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1                                                                                                                                    |                                                                            | t<br>innoro               | 94                                                                                                                                              | 223                                                                                                          | 346                                                                                                       | 476                                                                                                                        | 612                                                                                                                                                                                                                                                                                                         | 748                                                                                                                                                                                                                   | 897                                                                              | 896                                                     | 1130                                                                                             | 1559                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <b>2</b>                                                                                                                             |                                                                            | minere                    | 98                                                                                                                                              | 225                                                                                                          | 348                                                                                                       | 476                                                                                                                        | 616                                                                                                                                                                                                                                                                                                         | 748                                                                                                                                                                                                                   | 897                                                                              |                                                         | 1139                                                                                             | 1607                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 3                                                                                                                                    | 11                                                                         |                           | 98                                                                                                                                              | 225                                                                                                          | 354                                                                                                       | 481                                                                                                                        | 616                                                                                                                                                                                                                                                                                                         | 748                                                                                                                                                                                                                   |                                                                                  |                                                         | 1133                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 4                                                                                                                                    | unten                                                                      |                           |                                                                                                                                                 |                                                                                                              | -                                                                                                         |                                                                                                                            |                                                                                                                                                                                                                                                                                                             | 748                                                                                                                                                                                                                   |                                                                                  | ·                                                       |                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Mittel                                                                                                                               |                                                                            |                           | 97                                                                                                                                              | 224                                                                                                          | 349                                                                                                       | 478                                                                                                                        | 615                                                                                                                                                                                                                                                                                                         | 748                                                                                                                                                                                                                   | 897                                                                              | (896)                                                   | 1134                                                                                             | 1583                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Gesa                                                                                                                                 | Gesamtmittel                                                               |                           | 88                                                                                                                                              | 195                                                                                                          | 290                                                                                                       | 379                                                                                                                        | 500                                                                                                                                                                                                                                                                                                         | 624                                                                                                                                                                                                                   | 771                                                                              | 776                                                     | 977                                                                                              | 1301                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1                                                                                                                                    | 15                                                                         |                           | 89                                                                                                                                              | 219                                                                                                          | 409                                                                                                       | 537                                                                                                                        | 656                                                                                                                                                                                                                                                                                                         | 886                                                                                                                                                                                                                   | 1293                                                                             | 1373                                                    | 2023                                                                                             | 3383                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <b>2</b>                                                                                                                             | 15<br>in der<br>Mitte                                                      |                           | 89                                                                                                                                              | 221                                                                                                          | 415                                                                                                       | 531                                                                                                                        | 666                                                                                                                                                                                                                                                                                                         | 897                                                                                                                                                                                                                   | 1353                                                                             |                                                         | 2133                                                                                             | 3623                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 3                                                                                                                                    |                                                                            | e<br>Har Barra            | 89                                                                                                                                              | 221                                                                                                          | 418                                                                                                       | 526                                                                                                                        | 665                                                                                                                                                                                                                                                                                                         | 901                                                                                                                                                                                                                   |                                                                                  | -                                                       | 2175                                                                                             | 3738                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 4                                                                                                                                    | (auf hal-                                                                  | aubere                    | -                                                                                                                                               | . —                                                                                                          | -                                                                                                         | -                                                                                                                          |                                                                                                                                                                                                                                                                                                             | 900                                                                                                                                                                                                                   | -                                                                                |                                                         |                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Mittel                                                                                                                               | ber Höhe)                                                                  |                           | 89                                                                                                                                              | 220                                                                                                          | 414                                                                                                       | 531                                                                                                                        | 662                                                                                                                                                                                                                                                                                                         | 896                                                                                                                                                                                                                   | 1323                                                                             | (1373)                                                  | 2110                                                                                             | 3581                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                      |                                                                            |                           |                                                                                                                                                 |                                                                                                              |                                                                                                           |                                                                                                                            |                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                     | 1                                                                                |                                                         |                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                      |                                                                            |                           | <u></u>                                                                                                                                         | Seite                                                                                                        | B des                                                                                                     | Stabe                                                                                                                      | es.                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                       |                                                                                  |                                                         |                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                      |                                                                            |                           | 61                                                                                                                                              | Seite                                                                                                        | B des                                                                                                     | Stabe<br>340                                                                                                               | es.                                                                                                                                                                                                                                                                                                         | 582                                                                                                                                                                                                                   | 730                                                                              | 748                                                     | 903                                                                                              | 1103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $\frac{1}{2}$                                                                                                                        |                                                                            |                           | 61<br>56                                                                                                                                        | Seite<br>  144<br>  144                                                                                      | B des                                                                                                     | Stabe<br>340<br>334                                                                                                        | es.<br>450<br>457                                                                                                                                                                                                                                                                                           | 582<br>589                                                                                                                                                                                                            | 730<br>741                                                                       | 748                                                     | 903<br>902                                                                                       | 1103 $1130$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $\frac{1}{2}$                                                                                                                        | 7                                                                          |                           | 61<br>56<br>56                                                                                                                                  | Seite<br>  144<br>  144<br>  141                                                                             | B des<br>239<br>236<br>234                                                                                | Stabe<br>340<br>334<br>333                                                                                                 | es.<br>450<br>457<br>458                                                                                                                                                                                                                                                                                    | 582<br>589<br>590                                                                                                                                                                                                     | 730<br>741<br>—                                                                  | 748                                                     | 903<br>902<br>904                                                                                | $     1103 \\     1130 \\     1134   $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $\frac{1}{2}$ $\frac{3}{4}$                                                                                                          | 7<br>oben                                                                  |                           | $\begin{array}{c} 61\\ 56\\ 56\\ -\end{array}$                                                                                                  | Seite<br>  144<br>  144<br>  141<br>                                                                         | B des<br>239<br>236<br>234<br>-                                                                           | Stabe<br>340<br>334<br>333<br>-                                                                                            | es.<br>450<br>457<br>458<br>-                                                                                                                                                                                                                                                                               | 582<br>589<br>590<br>590                                                                                                                                                                                              | 730<br>741<br>—                                                                  | 748                                                     | 903<br>902<br>904                                                                                | 1103<br>1130<br>1134<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1<br>2<br>3<br>4<br>Mittel                                                                                                           | 7<br>oben                                                                  |                           | $ \begin{array}{c c} 61 \\ 56 \\ 56 \\ - \\ 58 \\ \end{array} $                                                                                 | Seite<br>  144<br>  144<br>  141<br> <br>  143                                                               | B des<br>239<br>236<br>234<br><br><b>236</b>                                                              | Stabe<br>340<br>334<br>333<br><br><b>336</b>                                                                               | es.<br>450<br>457<br>458<br>-<br>455                                                                                                                                                                                                                                                                        | 582<br>589<br>590<br>590<br>588                                                                                                                                                                                       | 730<br>741<br><br>736                                                            | 748<br><br><br>(748)                                    | 903<br>902<br>904<br><br><b>903</b>                                                              | 1103<br>1130<br>1134<br><br>1122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1<br>2<br>3<br>4<br>Mittel<br>1                                                                                                      | 7<br>oben                                                                  | . <i>t</i>                | $ \begin{array}{c c} 61 \\ 56 \\ 56 \\ - \\ 58 \\ 68 \\ \end{array} $                                                                           | Seite<br>144<br>144<br>141<br>-<br>143<br>174                                                                | B des<br>239<br>236<br>234<br>-<br><b>236</b><br>236<br>236                                               | Stabe<br>340<br>334<br>333<br><br><b>336</b><br>388                                                                        | es.<br>450<br>457<br>458<br>-<br>455<br>497                                                                                                                                                                                                                                                                 | 582<br>589<br>590<br>590<br>588<br>628                                                                                                                                                                                | 730<br>741<br><br>736<br>776                                                     | 748<br>—<br>—<br>(748)<br>792                           | 903<br>902<br>904<br><br><b>903</b><br>972                                                       | 1103<br>1130<br>1134<br><br><b>1122</b><br>1372                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1<br>2<br>3<br>4<br>Mittel<br>1<br>2                                                                                                 | 7<br>oben                                                                  | f<br>innere               | $ \begin{array}{c c} 61 \\ 56 \\ 56 \\ \\ 58 \\ 68 \\ 70 \\ \end{array} $                                                                       | Seite<br>144<br>144<br>141<br>-<br>143<br>174<br>174                                                         | B des<br>239<br>236<br>234<br>-<br>236<br>234<br>276<br>276<br>274                                        | Stabe<br>340<br>334<br>333<br><br><b>336</b><br>388<br>387                                                                 | es.<br>450<br>457<br>458<br><br>455<br>497<br>499                                                                                                                                                                                                                                                           | 582<br>589<br>590<br>590<br>588<br>628<br>634                                                                                                                                                                         | 730<br>741<br>—<br><b>736</b><br>776<br>787                                      | 748<br>—<br>—<br>(748)<br>792<br>—                      | 903<br>902<br>904<br><br><b>903</b><br>972<br>992                                                | $1103 \\ 1130 \\ 1134 \\ - \\ 1122 \\ 1372 \\ 1450 \\ 120 \\ 1372 \\ 1450 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 $ |
| $     \begin{array}{c}       1 \\       2 \\       3 \\       4 \\       Mittel \\       1 \\       2 \\       3       \end{array} $ | 7<br>oben<br>14                                                            | f<br>innere               | $ \begin{array}{c c} 61 \\ 56 \\ 56 \\ \\ 58 \\ 68 \\ 70 \\ 70 \\ 70 \\ \end{array} $                                                           | Seite<br>  144<br>  144<br>  141<br>                                                                         | B des<br>239<br>236<br>234<br>-<br>236<br>234<br>-<br>236<br>276<br>274<br>277                            | Stabe<br>340<br>334<br>333<br><br><b>336</b><br>388<br>387<br>392                                                          | es.<br>450<br>457<br>458<br>-<br>455<br>497<br>499<br>500                                                                                                                                                                                                                                                   | 582           589           590           590           590           588           628           634           636                                                                                                   | 730<br>741<br>—<br><b>736</b><br>776<br>787<br>—                                 | 748<br><br><br>(748)<br>792<br><br>                     | 903<br>902<br>904<br><br><b>903</b><br>972<br>992<br>1004                                        | 1103<br>1130<br>1134<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1<br>2<br>3<br>4<br>Mittel<br>1<br>2<br>3<br>4                                                                                       | 7<br>oben<br>14<br>unten                                                   | f<br>innere               | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                          | Seite<br>144<br>144<br>141<br><br>143<br>174<br>174<br>175<br>                                               | B des<br>239<br>236<br>234<br>-<br>236<br>234<br>-<br>236<br>276<br>276<br>274<br>277<br>-                | Stabo<br>340<br>334<br>333<br><br><b>336</b><br>388<br>387<br>392<br>                                                      | 450<br>457<br>458<br><br>455<br>497<br>499<br>500<br>                                                                                                                                                                                                                                                       | 582           589           590           590           590           588           628           634           636           638                                                                                     | 730<br>741<br><br><b>736</b><br>776<br>787<br>                                   | 748<br><br><br>(748)<br>792<br><br><br>                 | 903<br>902<br>904<br><br><b>903</b><br>972<br>992<br>1004<br>                                    | 1103<br>1130<br>1134<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1<br>2<br>3<br>4<br>Mittel<br>1<br>2<br>3<br>4<br>Mittel                                                                             | 7<br>oben<br>14<br>unten                                                   | <i>f</i><br>innere        | 61           56           56              58           68           70              69                                                          | Seite<br>144<br>144<br>141<br><br>143<br>174<br>174<br>175<br><br>174                                        | B des<br>239<br>236<br>234<br><br>236<br>276<br>276<br>277<br><br>276                                     | Stabo<br>340<br>334<br>333<br><br><b>336</b><br>388<br>387<br>392<br><br><b>389</b>                                        | 450           457           458           -           455           497           499           500           -           499                                                                                                                                                                               | 582<br>589<br>590<br>590<br>588<br>628<br>634<br>636<br>638<br>638<br>638                                                                                                                                             | 730<br>741<br><br>736<br>776<br>787<br><br>782                                   | 748<br>                                                 | 903<br>902<br>904<br><br><b>903</b><br>972<br>992<br>1004<br><br><b>989</b>                      | 1103<br>1130<br>1134<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1<br>2<br>3<br>4<br>Mittel<br>1<br>2<br>3<br>4<br>Mittel<br>Gesa                                                                     | 7<br>oben<br>14<br>unten<br>mtmittel                                       | f<br>innere               | 61<br>56<br>56<br><br>58<br>68<br>70<br>70<br><br>69<br>69<br>64                                                                                | Seite<br>144<br>144<br>141<br><br>143<br>174<br>174<br>175<br><br>174<br>159                                 | B des<br>239<br>236<br>234<br><br>236<br>274<br>276<br>277<br>-<br>276<br>276<br>256                      | Stabo<br>340<br>334<br>333<br><br><b>336</b><br>388<br>387<br>392<br><br><b>389</b><br><b>362</b>                          | es.<br>450<br>457<br>458<br>-<br>455<br>497<br>499<br>500<br>-<br>499<br>499<br>477                                                                                                                                                                                                                         | 582           589           590           590           590           588           628           634           636           638           634           634           634           634           634           634 | 730<br>741<br><br>736<br>776<br>787<br><br>782<br>782<br>759                     | 748<br><br>(748)<br>792<br><br>(792)<br>770             | 903<br>902<br>904<br><br>903<br>972<br>992<br>1004<br><br>989<br>946                             | 1103           1130           1134           -           1122           1372           1450           1473           -           1432           1277                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1<br>2<br>3<br>4<br>Mittel<br>1<br>2<br>3<br>4<br>Mittel<br>Gesa<br>1                                                                | 7<br>oben<br>14<br>unten<br>mtmittel                                       | f<br>innere               | 61           56           56              58           68           70              69           64           79                                | Seite<br>144<br>144<br>141<br>-<br>143<br>174<br>174<br>175<br>-<br>174<br>159<br>201                        | B des<br>239<br>236<br>234<br><br>236<br>274<br>276<br>276<br>276<br>276<br>256<br>331                    | Stabo<br>340<br>334<br>333<br><br><b>336</b><br>388<br>387<br>392<br><br><b>389</b><br><b>362</b><br>426                   | 450           457           458              455           497           499           500              499           500              499           500              499           500              499           500              500              500              500              500              559 | 582           589           590           590           590           588           628           634           636           638           634           634           634           631           771               | 730<br>741<br><br>736<br>776<br>787<br><br>782<br>782<br>759<br>1155             | 748<br><br>(748)<br>792<br><br>(792)<br>770<br>1180     | 903<br>902<br>904<br><br>903<br>972<br>992<br>1004<br><br>989<br>946<br>1735                     | 1103           1130           1134           -           1122           1372           1450           1473           -           1432           1277           2873                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1<br>2<br>3<br>4<br>Mittel<br>1<br>2<br>3<br>4<br>Mittel<br>Gesa<br>1<br>2                                                           | 7<br>oben<br>14<br>unten<br>mtmittel<br>16<br>in der                       | f<br>innere               | 61           56           56              58           68           70              69           64           79           81                   | Seite<br>144<br>144<br>141<br><br>143<br>174<br>174<br>175<br><br>174<br>159<br>201<br>200                   | B des<br>239<br>236<br>234<br><br>236<br>276<br>276<br>277<br>-<br>276<br>256<br>331<br>330               | Stabo<br>340<br>334<br>333<br><br><b>336</b><br>388<br>387<br>392<br><br><b>389</b><br><b>362</b><br>426<br>418            | 450           457           458              455           497           499           500              499           500              499           500              499           500              499           500              559           561                                                       | 582           589           590           590           590           588           628           634           636           638           634           631           771           778                             | 730<br>741<br><br>736<br>776<br>787<br><br>782<br>782<br>759<br>1155<br>1171     | 748<br><br>(748)<br>792<br><br>(792)<br>770<br>1180<br> | 903<br>902<br>904<br><br>903<br>972<br>992<br>1004<br><br>989<br>946<br>1735<br>1782             | 1103           1130           1134           -           1122           1372           1450           1473           -           1432           1277           2873           3075                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1<br>2<br>3<br>4<br>Mittel<br>1<br>2<br>3<br>4<br>Mittel<br>Gesa<br>1<br>2<br>3                                                      | 7<br>oben<br>14<br>unten<br>mtmittel<br>16<br>in der<br>Mitte              | f<br>innere<br>e          | 61           56           56           -           58           68           70           -           69           64           79           81 | Seite<br>144<br>144<br>141<br><br>143<br>174<br>174<br>175<br><br>174<br>159<br>201<br>200<br>200            | B des<br>239<br>236<br>234<br><br>236<br>276<br>276<br>274<br>277<br>-<br>276<br>256<br>331<br>330<br>329 | Stabo<br>340<br>334<br>333<br><br><b>336</b><br>388<br>387<br>392<br><br><b>389</b><br><b>362</b><br>426<br>418<br>411     | 450           457           458              455           497           499           500              499           500              499           500              499           500              499           501                                                                                      | 582           589           590           590           590           588           634           636           638           634           611           771           778                                           | 730<br>741<br><br>736<br>776<br>787<br><br>782<br>782<br>759<br>1155<br>1171<br> | 748<br>                                                 | 903<br>902<br>904<br><br>972<br>992<br>1004<br><br>989<br>946<br>1735<br>1782<br>1805            | 1103           1130           1134           -           1122           1372           1450           1473           -           1432           1277           2873           3075           3144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1<br>2<br>3<br>4<br>Mittel<br>1<br>2<br>3<br>4<br>Mittel<br>Gesa<br>1<br>2<br>3<br>4                                                 | 7<br>oben<br>14<br>unten<br>mtmittel<br>16<br>in der<br>Mitte<br>(auf hal- | f<br>innere<br>äußere     | 61           56           56           58           68           70           -           69           64           79           81           - | Seite<br>144<br>144<br>141<br><br>143<br>174<br>174<br>175<br><br>174<br>159<br>201<br>200<br>200<br>200<br> | B des<br>239<br>236<br>234<br><br>236<br>276<br>274<br>277<br>-<br>276<br>256<br>331<br>330<br>329<br>    | Stabo<br>340<br>334<br>333<br><br><b>336</b><br>388<br>387<br>392<br><br><b>389</b><br><b>362</b><br>426<br>418<br>411<br> | 450           457           458              455           497           499           500              499           500              499           500              499           500              559           561                                                                                      | 582           589           590           590           590           588           634           636           638           634           611           771           778           778           773               | 730<br>741<br><br>736<br>776<br>787<br><br>782<br>782<br>759<br>1155<br>1171<br> | 748<br>                                                 | 903<br>902<br>904<br><br>972<br>992<br>1004<br><br><b>989</b><br>946<br>1735<br>1782<br>1805<br> | 1103<br>1130<br>1134<br><br>1122<br>1372<br>1450<br>1473<br><br>1432<br>1277<br>2873<br>3075<br>3144<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

| Be-<br>lastungs-                                                                                               | Nr. und                                                            | Ger              | messen                     | Bleibe                                                                                                                                                                                                 | nde Läns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | rung in -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 c                                                                                                                                                        | m nach                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | den folg                                                                                                                                                                                    | enden B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | elastung                                                                                                                                                                         | en in t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| reihe                                                                                                          | Lage der<br>Meßstelle                                              | auf<br>Seite     | an der<br>Lasche           | 00.00                                                                                                                                                                                                  | 107.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 004.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100 000                                                                                                                                                    | 400.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 500.00                                                                                                                                                                                      | 000.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>F</b> 01 00                                                                                                                                                                   | 005.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Nr.                                                                                                            |                                                                    |                  | (s. Fig. 58)               | 98,29                                                                                                                                                                                                  | 197,96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 294,57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 393,75                                                                                                                                                     | 490,81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 988,38                                                                                                                                                                                      | 690,22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 791,20                                                                                                                                                                           | 887,97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1                                                                                                              |                                                                    |                  |                            | -4                                                                                                                                                                                                     | -18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -143                                                                                                                                                       | -137                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -125                                                                                                                                                                                        | -95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -46                                                                                                                                                                              | +32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\frac{2}{3}$                                                                                                  | 3<br>oben                                                          |                  |                            | -4                                                                                                                                                                                                     | -19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | - 74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -140                                                                                                                                                       | -141                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -123<br>-123                                                                                                                                                                                | 94<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 41                                                                                                                                                                               | +59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Mittel                                                                                                         |                                                                    |                  |                            | -4                                                                                                                                                                                                     | -19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -145                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -124                                                                                                                                                                                        | -95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -44                                                                                                                                                                              | +36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1                                                                                                              |                                                                    |                  | <i>f</i>                   | -2                                                                                                                                                                                                     | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12                                                                                                                                                         | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 27                                                                                                                                                                                          | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 130                                                                                                                                                                              | 448                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2                                                                                                              | 11                                                                 |                  | innere                     | -2                                                                                                                                                                                                     | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 14                                                                                                                                                         | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 29                                                                                                                                                                                          | 48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 132                                                                                                                                                                              | 468                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3                                                                                                              | unten                                                              | $\boldsymbol{A}$ |                            |                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 29                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Mittel                                                                                                         |                                                                    |                  |                            | _2                                                                                                                                                                                                     | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 13                                                                                                                                                         | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 28                                                                                                                                                                                          | 49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 131                                                                                                                                                                              | 458                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Gesa                                                                                                           | mtmittel                                                           |                  |                            | -3                                                                                                                                                                                                     | -8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -66                                                                                                                                                        | -61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -48                                                                                                                                                                                         | -23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | +44                                                                                                                                                                              | +247                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1                                                                                                              |                                                                    |                  |                            | 3                                                                                                                                                                                                      | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 13                                                                                                                                                         | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 93                                                                                                                                                                                          | 399                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1002                                                                                                                                                                             | 2293                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 2                                                                                                              | 15<br>auf hal-                                                     |                  | e                          | 3                                                                                                                                                                                                      | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 12                                                                                                                                                         | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 97<br>97                                                                                                                                                                                    | 424                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1080                                                                                                                                                                             | 2443                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 3                                                                                                              | ber Höhe                                                           |                  | äußere                     |                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 99                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Mittal                                                                                                         | 15<br>auf hal-<br>ber Höhe                                         |                  | 1                          |                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10                                                                                                                                                         | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 00                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1011                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Mitter                                                                                                         |                                                                    |                  |                            | 3                                                                                                                                                                                                      | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 13                                                                                                                                                         | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 96                                                                                                                                                                                          | 412                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1041                                                                                                                                                                             | 2368                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1                                                                                                              |                                                                    |                  |                            | -5                                                                                                                                                                                                     | 17<br>-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 57<br>- 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>13</b><br>65                                                                                                                                            | 6<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 96<br>                                                                                                                                                                                      | 412<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -35                                                                                                                                                                              | +53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1<br>2                                                                                                         | 7                                                                  |                  |                            |                                                                                                                                                                                                        | $\begin{array}{c} 17 \\ -7 \\ -7 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 57<br>- 8<br>-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $-65 \\ -72$                                                                                                                                               | 6<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 96<br>98<br>95                                                                                                                                                                              | $\begin{array}{c} 412 \\ -73 \\ -72 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $ \begin{array}{c c} 1041 \\ -35 \\ -35 \end{array} $                                                                                                                            | 2368 + 53 + 57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1<br>2<br>3                                                                                                    | 7<br>oben                                                          |                  |                            |                                                                                                                                                                                                        | 17<br>7<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 57<br>- 8<br>-10<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $-65 \\ -72 \\ -$                                                                                                                                          | 6<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 96<br>98<br>95<br>94                                                                                                                                                                        | $\begin{array}{r} 412 \\ -73 \\ -72 \\ -\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $   \begin{array}{r}     1041 \\     -35 \\     -35 \\     -   \end{array} $                                                                                                     | 2368 + 53 + 57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1<br>2<br>3<br>Mittel                                                                                          | 7<br>oben                                                          |                  |                            |                                                                                                                                                                                                        | $ \begin{array}{c} 17 \\ -7 \\ -7 \\ -7 \\ -7 \\ -7 \\ -7 \\ -7 \\ -$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 57<br>- 8<br>-10<br>-<br>- 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 13<br>65<br>72<br><br>-69                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 96<br>98<br>95<br>94<br>96                                                                                                                                                                  | $   \begin{array}{r}     -73 \\     -72 \\     - \\     -73 \\     -73 \\     -73 \\   \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $   \begin{array}{r}     -35 \\     -35 \\     - \\     - \\     -35 \\     \end{array} $                                                                                        | 2368<br>+53<br>+57<br>-<br>+55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Mittel<br>1<br>2<br>3<br>Mittel<br>1                                                                           | 7<br>oben                                                          |                  | f                          |                                                                                                                                                                                                        | $     \begin{array}{c}             17 \\             -7 \\             -7 \\           $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 57<br>- 8<br>-10<br>-<br>-<br>-<br>9<br>-26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $   \begin{array}{r}     -65 \\     -72 \\     - \\     -69 \\     -33   \end{array} $                                                                     | 6<br>103<br>102<br><br><b>103</b><br>23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 96<br>-98<br>-95<br>-94<br>-96<br>-4                                                                                                                                                        | $   \begin{array}{r}     412 \\     -73 \\     -72 \\     - \\     -73 \\     +28   \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $   \begin{array}{r}     1041 \\     -35 \\     -35 \\     - \\     -35 \\     +112   \end{array} $                                                                              | $2368 \\ +53 \\ +57 \\ - \\ +55 \\ +431$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Mittel<br>1<br>2<br>3<br>Mittel<br>1<br>2<br>2                                                                 | 7<br>oben<br>14                                                    |                  | <i>f</i><br>innere         |                                                                                                                                                                                                        | 17 $-7$ $-7$ $-7$ $-7$ $-5$ $-5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $     57 \\     - 8 \\     -10 \\     - 9 \\     -26 \\     -28 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $   \begin{array}{c}     -65 \\     -72 \\     - \\     -69 \\     -33 \\     -34   \end{array} $                                                          | $ \begin{array}{r} 6 \\ -103 \\ -102 \\ - \\ -103 \\ -23 \\ -22 \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 96  -98  -95  -94  -96  -4  -2  0                                                                                                                                                           | $ \begin{array}{r}     412 \\     -73 \\     -72 \\     -72 \\     -73 \\     +28 \\     +34 \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $   \begin{array}{r}     1041 \\     -35 \\     -35 \\     - \\     -35 \\     +112 \\     +120 \\   \end{array} $                                                               | $2368 \\ +53 \\ +57 \\ - \\ +55 \\ +431 \\ +455 \\ +455 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +57 \\ +5$ |
| I         2         3           Mittel         1         2         3           3         3         3         3 | 7<br>oben<br>14<br>unten                                           | В                | <i>f</i><br>innere         |                                                                                                                                                                                                        | $   \begin{array}{c}     -7 \\     -7 \\     -7 \\     -7 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\      -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\  $ | $     57 \\     - 8 \\     -10 \\     - 9 \\     -26 \\     -28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\    28 \\     $ | $ \begin{array}{c} -65 \\ -72 \\ - \\ -69 \\ -33 \\ -34 \\ - \\ - \\ \end{array} $                                                                         | 6<br>103<br>102<br><br><br><br><br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $96 \\ -98 \\ -95 \\ -94 \\ -96 \\ -4 \\ -2 \\ 0 \\ 0$                                                                                                                                      | $ \begin{array}{c} -73 \\ -72 \\ -73 \\ -73 \\ +28 \\ +34 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $   \begin{array}{r}     1041 \\     -35 \\     -35 \\     - \\     -35 \\     +112 \\     +120 \\     - \\   \end{array} $                                                      | $2368 \\ +53 \\ +57 \\ - \\ +55 \\ +431 \\ +455 \\ - \\ -$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Mittel<br>1<br>2<br>3<br>Mittel<br>1<br>2<br>3<br>Mittel                                                       | 7<br>oben<br>14<br>unten                                           | В                | <i>f</i><br>innere         | 3 $-5$ $-6$ $ -6$ $5$ $2$ $ 4$                                                                                                                                                                         | $   \begin{array}{c}     17 \\     -7 \\     -7 \\     -7 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\      -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\     -5 \\  $ | 57 - 8 - 10 - 9 - 26 - 28 27 - 27 - 27 - 27 - 27 - 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $ \begin{array}{c} -65 \\ -72 \\ - \\ -69 \\ -33 \\ -34 \\ - \\ -34 \\ - \\ -34 \\ \end{array} $                                                           | $ \begin{array}{c} -103 \\ -102 \\ -103 \\ -23 \\ -22 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -$  | $ \begin{array}{r} 96 \\ -98 \\ -95 \\ -94 \\ \hline -96 \\ -4 \\ -2 \\ 0 \\ \hline -2 \\ \end{array} $                                                                                     | $\begin{array}{c} 412 \\ -73 \\ -72 \\ -\\ -73 \\ +28 \\ +34 \\ -\\ +31 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $ \begin{array}{r} 1041 \\ -35 \\ -35 \\ -35 \\ -35 \\ +112 \\ +120 \\ - \\ 116 \\ \end{array} $                                                                                 | $2368 \\ +53 \\ +57 \\ - \\ +55 \\ +431 \\ +455 \\ - \\ 443$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Mittel<br>1<br>2<br>3<br>Mittel<br>1<br>2<br>3<br>Mittel<br>Gesa                                               | 7<br>oben<br>14<br>unten<br>mtmittel                               | В                | f<br>innere                | $     \begin{array}{r} 3 \\             -5 \\             -6 \\             -6 \\           $                                                                                                          | $   \begin{array}{r} 17 \\     -7 \\     -7 \\     -7 \\     -5 \\     -5 \\     -5 \\     -5 \\     -6 \\   \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 57 - 8 - 10 - 9 - 26 - 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $ \begin{array}{c} -65 \\ -72 \\ -69 \\ -33 \\ -34 \\ -34 \\ -34 \\ -34 \\ -34 \\ -52 \\ \end{array} $                                                     | $ \begin{array}{r} -103 \\ -102 \\ -103 \\ -23 \\ -22 \\ -23 \\ -23 \\ -63 \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $ \begin{array}{r} 96 \\ -98 \\ -95 \\ -94 \\ -96 \\ -4 \\ -2 \\ 0 \\ -2 \\ -49 \\ -49 \\ \end{array} $                                                                                     | $\begin{array}{r} 412 \\ -73 \\ -72 \\ -\\ -73 \\ +28 \\ +34 \\ -\\ +31 \\ -21 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $   \begin{array}{r} 1041 \\     -35 \\     -35 \\     -35 \\     +112 \\     +120 \\     - \\     116 \\     +41 \\   \end{array} $                                             | $2368 \\ +53 \\ +57 \\ - \\ +55 \\ +431 \\ +455 \\ - \\ 443 \\ +249 \\ +249$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Mittel<br>1<br>2<br>3<br>Mittel<br>1<br>2<br>3<br>Mittel<br>Gesa<br>1                                          | 7<br>oben<br>14<br>unten<br>mtmittel                               | В                | <i>j</i><br>innere         | $     \begin{array}{r} 3 \\             -5 \\             -6 \\             -6 \\           $                                                                                                          | $   \begin{array}{r}     17 \\     -7 \\     -7 \\     -7 \\     -5 \\     -5 \\     -5 \\     -6 \\     9   \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $   \begin{array}{r}     57 \\     -8 \\     -10 \\     -9 \\     -26 \\     -28 \\     -27 \\     -18 \\     11   \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $   \begin{array}{r}     -65 \\     -72 \\     -69 \\     -33 \\     -34 \\     - \\     -34 \\     -34 \\     -31 \\   \end{array} $                      | $ \begin{array}{r}             6 \\             -103 \\             -102 \\             -103 \\             -23 \\             -22 \\             -23 \\             -23 \\             -63 \\             -19 \\             -19 \\         $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{c} 96 \\ -98 \\ -95 \\ -94 \\ \hline -96 \\ -4 \\ -2 \\ 0 \\ \hline -2 \\ -49 \\ -2 \\ -49 \\ +71 \\ \end{array}$                                                            | $\begin{array}{r} 412 \\ -73 \\ -72 \\ -\\ -73 \\ +28 \\ +34 \\ -\\ +31 \\ -21 \\ +335 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $   \begin{array}{r} 1041 \\     -35 \\     -35 \\     -35 \\     -35 \\     +112 \\     +120 \\     -116 \\     +41 \\     805 \\   \end{array} $                               | $2368 \\ +53 \\ +57 \\ - \\ +55 \\ +431 \\ +455 \\ - \\ 443 \\ +249 \\ 1876$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Mittel<br>1<br>2<br>3<br>Mittel<br>1<br>2<br>3<br>Mittel<br>Gesa<br>1<br>2<br>2                                | 7<br>oben<br>14<br>unten<br>mtmittel<br>16<br>auf hal-             | В                | f<br>innere<br>e           | $     \begin{array}{r} 3 \\             -5 \\             -6 \\             -6 \\           $                                                                                                          | $   \begin{array}{r} 17 \\       -7 \\       -7 \\       -7 \\       -5 \\       -5 \\       -5 \\       -5 \\       -6 \\       9 \\       8 \\   \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $     \begin{array}{r}       57 \\       -8 \\       -10 \\       -9 \\       -26 \\       -28 \\       -27 \\       -18 \\       11 \\       11   \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $ \begin{array}{r} -65 \\ -72 \\ -69 \\ -33 \\ -34 \\ - \\ -34 \\ -52 \\ -31 \\ -39 \\ \end{array} $                                                       | $ \begin{array}{c} -103 \\ -102 \\ -\\ -23 \\ -22 \\ -\\ -23 \\ -23 \\ -21 \\ -23 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -2$ | $ \begin{array}{r} 96 \\ -98 \\ -95 \\ -94 \\ \hline -96 \\ -2 \\ 0 \\ \hline -2 \\ -49 \\ +71 \\ +73 \\ +75 \\ \end{array} $                                                               | $\begin{array}{r} 412 \\ -73 \\ -72 \\ - \\ -73 \\ +28 \\ +34 \\ - \\ +31 \\ -21 \\ +335 \\ +349 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $   \begin{array}{r} 1041 \\     -35 \\     -35 \\     -35 \\     -35 \\     +112 \\     +120 \\     - \\     116 \\     +41 \\     805 \\     844 \\   \end{array} $            | $\begin{array}{r} \textbf{2368} \\ +53 \\ +57 \\ - \\ +55 \\ +431 \\ +455 \\ - \\ \hline \\ \textbf{448} \\ +249 \\ 1876 \\ 1995 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Mittel<br>1<br>2<br>3<br>Mittel<br>1<br>2<br>3<br>Mittel<br>Gesa<br>1<br>2<br>3                                | 7<br>oben<br>14<br>unten<br>mtmittel<br>16<br>auf hal-<br>ber Höhe | В                | f<br>innere<br>e<br>ăußere | $     \begin{array}{r} 3 \\             -5 \\             -6 \\             -5 \\             -6 \\             -1 \\             4 \\             -1 \\             4 \\             6 \\           $ | $   \begin{array}{c}     17 \\     -7 \\     -7 \\     -7 \\     -7 \\     -5 \\     -5 \\     -5 \\     -6 \\     9 \\     8 \\     - \\   \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $     \begin{array}{r}       57 \\       -8 \\       -10 \\       -9 \\       -26 \\       -28 \\       -27 \\       -18 \\       11 \\       11 \\       -   \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $ \begin{array}{c} -65 \\ -72 \\ -\\ -69 \\ -33 \\ -34 \\ -\\ -34 \\ -\\ -34 \\ -39 \\ -\\ -\\ -39 \\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\$ | $\begin{array}{c} 6 \\ -103 \\ -102 \\ - \\ -103 \\ -23 \\ -22 \\ - \\ -23 \\ -23 \\ -63 \\ -19 \\ -19 \\ -19 \\ - \\ - \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{c} 96 \\ -98 \\ -95 \\ -94 \\ -96 \\ \mathbf{-4} \\ -2 \\ 0 \\ \mathbf{-2} \\ 0 \\ \mathbf{-49} \\ \mathbf{-49} \\ \mathbf{+71} \\ \mathbf{+73} \\ \mathbf{+75} \end{array}$ | $\begin{array}{c} 412 \\ -73 \\ -72 \\ -\\ \mathbf{-} \\ \mathbf{-} \\$ | $ \begin{array}{c}     1041 \\     -35 \\     -35 \\     -35 \\     -35 \\     +112 \\     +120 \\     - \\     116 \\     +41 \\     805 \\     844 \\     - \\   \end{array} $ | $\begin{array}{r} \textbf{2368} \\ +53 \\ +57 \\ - \\ +55 \\ +431 \\ +455 \\ - \\ \hline \\ \textbf{443} \\ +249 \\ 1876 \\ 1995 \\ - \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

Tabelle 29. Bleibende Längungen der Laschen.

Die Stoßstelle der Stegbleche lag gegenüber der Mitte der Meßlängen; die Beobachtungen begannen mit 21,40tAnfangsbelastung; auf sie wurde auch stets wieder entlastet.

## Tabelle 30.

## Verschiebungen der inneren, gestoßenen Stegbleche gegen die innere Lasche.

Die Meßstellen lagen in den Querschnitten mit den äußersten Nieten. Die Verschiebungen der Stegblechteile nach dem benachbarten Ende der Lasche hin sind als positiv bezeichnet.

| Be-<br>lastungs-<br>reihe | Nr. und<br>Lage der | Lage der Meß-<br>stelle zum Stoß |          | Verse  | hiebung | in $\frac{1}{5000}$ | cm bei d | len folge | nden Be  | lastunge | n in t |        |
|---------------------------|---------------------|----------------------------------|----------|--------|---------|---------------------|----------|-----------|----------|----------|--------|--------|
| Nr.                       | Meßstelle           | (s. Fig. 57)                     | 98,29    | 197,96 | 294,37  | 393,75              | 490,81   | 588,38    | 690.22   | 692,40   | 791,20 | 887,97 |
|                           |                     |                                  |          | Seite  | A des   | Stabe               | es.      |           |          |          |        |        |
| 1                         |                     |                                  | 4        | 13     | 29      | 54                  | 101      | 138       | 170      | 180      | 210    | 360    |
| 2                         | 17                  |                                  | 5        | 15     | 30      | 61                  | 108      | 140       | 180      | -        | 320    | 370    |
| 3                         | 17<br>ohon          |                                  | 5        | 17     | 30      | 65                  | 110      | 147       |          | - 1      | 320    | 370    |
| 4                         | open                | rechts,                          |          |        |         |                     |          | 150       |          |          |        |        |
| Mittel                    |                     | nach dem<br>Kalban               | 5        | 15     | 30      | 60                  | 106      | 144       | 175      | (180)    | 283    | 366    |
| 1                         |                     | der                              | 4        | 19     | 38      | 72                  | 123      | 163       | 199      | 208      | 238    | 293    |
| 2                         | 19                  | Maschine                         | 5        | 20     | 40      | 80                  | 129      | 167       | 203      | -        | 243    | 303    |
| 3                         | unten               | hin                              | 5        | 21     | 42      | 83                  | 133      | 173       |          | . —      | 248    | 303    |
| 4                         |                     |                                  |          |        |         |                     | -        | 173       | -        |          | -      | -      |
| Mittel                    | <u> </u>            |                                  | 5        | 20     | 40      | 78                  | 128      | 169       | 201      | (208)    | 243    | 300    |
| Gesan                     | ntmittel            |                                  | 5        | 18     | 35      | 69                  | 117      | 157       | 188      | 194      | 263    | 333    |
| 1                         |                     |                                  | 5        | 14     | 36      | 100                 | 139      | 173       | 213      | 225      | 260    | 310    |
| 2                         | 10                  |                                  | 5        | 16     | 39      | 105                 | 140      | 180       | 220      | -        | 265    | 320    |
| 3<br>4                    | oben                |                                  | 6        | 17     | 40      | 107                 | 145      | 181       | _        | _        | 270    | 320    |
|                           |                     | links,<br>nach dem               |          | 10     | 90      | 104                 | 1/1      | 101       | 017      | (005)    | 0.02   | 917    |
| MILLEI                    |                     | festen                           |          | 10     | 00      | 104                 | 141      | 130       | <u> </u> | (220)    | 200    | 010    |
| 1                         |                     | Wider-                           | 5 -      | 16     | 35      | 105                 | 158      | 213       | 275      | 305      | 355    | 445    |
| 2                         | 20                  | lager                            | 5        |        | 37      | 116                 | 166      | 225       | 295      | -        | 375    | 455    |
| 3                         | unten               | hin                              | 5        | 18     | 39      | 118                 | 173      | 231       | -        |          | 385    | 455    |
| 4                         |                     |                                  |          |        |         |                     | 100      | 255       |          | (005)    |        | 450    |
| Mittel                    |                     |                                  | <u>ə</u> | 17     | 37      | 113                 | 166      | 226       | 285      | (305)    | 372    | 452    |
| Gesar                     | ntmittel            |                                  | 5        | 16     | 38      | 109                 | 158      | 203       | 251      | (265)    | 318    | 384    |
|                           |                     | ,                                |          | Seite  | B des   | s Stab              | es.      |           |          |          |        |        |
| 1                         |                     |                                  | 3        | 9      | 18      | 42                  | 95       | 145       | 194      | 209      | 246    | 297    |
| <b>2</b>                  | 01                  |                                  | 4        | 9      | 19      | 51                  | 103      | 150       | 204      | -        | 257    | 309    |
| 3                         | 21<br>ohon          |                                  | 4        | 9      | 19      | 54                  | 107      | 157       |          | -        | 257    | 314    |
| 4                         | oben                | rechts,                          |          |        |         |                     |          | 159       |          |          |        |        |
| Mittel                    |                     | nach dem<br>Kolben               | 4        | 9      | 19      | 49                  | 102      | 153       | 199      | (209)    | 253    | 307    |
| 1                         |                     | der                              | 2        | 13     | 28      | 74                  | 136      | 183       | 239      | 260      | 293    | 346    |
| <b>2</b>                  | 93                  | Maschine                         | 4        | 14     | 30      | 88                  | 145      | 192       | 252      | -        | 302    | 360    |
| 3                         | unten               | hin                              | 4        | 14     | 30      | 92                  | 149      | 198       | -        | -        | 312    | 362    |
| 4                         |                     |                                  |          |        |         |                     |          | 203       |          |          |        |        |
| Mittel                    |                     |                                  | 3        | 14     | 29      | 85                  | 143      | 194       | 246      | (260)    | 802    | 356    |
| Gesa                      | ntmittel            |                                  | 4        | 11     | 24      | 67                  | 122      | 173       | 222      | (235)    | 278    | 332    |
| 1                         |                     |                                  | 1        | 6      | 12      | 28                  | 70       | 106       | 142      | 156      | 190    | 245    |
| 2                         | 99                  |                                  | 1        | 7      | 12      | 33                  | 77       | 111       | 150      | —        | 200    | 255    |
| 3                         | oben                |                                  | I.       | 8      | 12      | 37                  | 79       | 115       |          | -        | 204    | 260    |
| 4                         | 0.0011              | links,                           |          |        |         |                     |          | 118       |          |          |        |        |
| Mittel                    |                     | nach dem<br>festen               | 1        | 7      | 12      | 33                  | 75       | 113       | 146      | (156)    | 198    | 253    |
| 1                         |                     | Wider-                           | 3        | 12     | 27      | 74                  | 115      | 153       | 194      | 210      | 245    | 297    |
| 2                         | 24                  | lager                            | 3        | 13     | 31      | 82                  | 123      | 160       | 204      | -        | 255    | 313    |
| 3                         | unten               | hin                              | 3        | 14     | 33      | 85                  | 126      | 163       | -        | -        | 261    | 318    |
| 4                         |                     |                                  |          |        |         |                     |          | 167       |          | -        |        | -      |
| Mittel                    | I                   |                                  |          | 13     | 30      | 80                  | 121      | 161       | 199      | (210)    | 254    | 309    |
| Gesa                      | mtmittel            |                                  | 2        | 10     | 21      | 57                  | 98       | 137       | 173      | (183)    | 226    | 281    |

| Belastungs-<br>reihe                                                                                                                                                                                                                                                                                                   | Nr. und<br>Lage der<br>Meßstellen                                            | Gemessen<br>im Felde<br>und Art          | Änd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | erung d                                                                                                                                                                                                                                               | er Feldw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | reiten in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | cm 10-                                                                                                                    | 4 bei de                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | n folgen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | den Bela                                                                   | stungen                                                                                                                                                                          | in t                                                                                                                                                                                                                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Nr.                                                                                                                                                                                                                                                                                                                    | (s. Fig. 54).                                                                | änderung                                 | 98,29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 197,96                                                                                                                                                                                                                                                | 294,37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 393,75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 490,81                                                                                                                    | 588,38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 690,22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 692,40                                                                     | 791,20                                                                                                                                                                           | 887,97                                                                                                                                                                                                              |
| 1<br>2<br>3<br>4<br>Mittel                                                                                                                                                                                                                                                                                             | 27<br>oben                                                                   | Feld I                                   | 22<br>20<br>20<br><br>21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 30<br>24<br>20<br><br><b>25</b>                                                                                                                                                                                                                       | 22<br>20<br>18<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 42<br>54<br>60<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 60<br>78<br>84<br><br>74                                                                                                  | 80<br>92<br>100<br>108<br><b>95</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 82<br>82<br><br><br>82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 106<br>—<br>—<br>(106)                                                     | 24<br>6<br>6<br>-<br>12                                                                                                                                                          | $-220 \\ -260 \\ -276 \\$                                                                                                                                                                                           |
| 1<br>2<br>3<br>4<br>Mittel                                                                                                                                                                                                                                                                                             | 28<br>unten                                                                  | Gesamt                                   | -6<br>-8<br>-6<br>-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -2 + 10 + 10                                                                                                                                                                                                                                          | 18<br>34<br>36<br><br>29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 24<br>10<br>2<br><br>12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -6<br>-24<br>-28<br>-<br>-<br>-19                                                                                         | $ \begin{array}{r} -28 \\ -48 \\ -66 \\ -70 \\ \hline -53 \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $-42 \\ -42 \\ -$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 52<br><br><br>(-52)                                                        | $+38 \\ 54 \\ 70 \\ \\ 54 \\ 54$                                                                                                                                                 | 350<br>374<br>414<br>                                                                                                                                                                                               |
| Gesam                                                                                                                                                                                                                                                                                                                  |                                                                              |                                          | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 16                                                                                                                                                                                                                                                    | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 27                                                                                                                        | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 27                                                                         | 33                                                                                                                                                                               | 64                                                                                                                                                                                                                  |
| 1<br>2<br>3<br>Mittal                                                                                                                                                                                                                                                                                                  | 27<br>oben                                                                   | т.1.1 Т                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -4<br>-10<br>-                                                                                                                                                                                                                                        | $-20 \\ -26 \\ -$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0<br>6<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20<br>30<br>                                                                                                              | 36<br>44<br>56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 30 $42$ $40$ $97$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                                                          | $-42 \\ -44 \\ -$                                                                                                                                                                | $-328 \\ -340 \\ -$                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                        |                                                                              | bleibend                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -1                                                                                                                                                                                                                                                    | -20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 20                                                                                                                        | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                            | -40                                                                                                                                                                              |                                                                                                                                                                                                                     |
| 1<br>2<br>3                                                                                                                                                                                                                                                                                                            | 28<br>unten                                                                  |                                          | $     \begin{array}{c}       10 \\       10 \\       - \\       10     \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 14<br>30<br>                                                                                                                                                                                                                                          | 46<br>50<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 18<br>14<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -8<br>-24<br>-                                                                                                            | $-42 \\ -54 \\ -66 \\ -74$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $-36 \\ -42 \\ -46 \\ -41 \\ -41 \\ -41 \\ -36 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41 $ |                                                                            | $+54 \\ 70 \\ -$                                                                                                                                                                 | 394<br>434<br>                                                                                                                                                                                                      |
| MILLOUGI                                                                                                                                                                                                                                                                                                               | unten                                                                        |                                          | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 44                                                                                                                                                                                                                                                    | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -10                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ~- 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                            | 02                                                                                                                                                                               | 414                                                                                                                                                                                                                 |
| Gegam                                                                                                                                                                                                                                                                                                                  | tmittel                                                                      |                                          | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8                                                                                                                                                                                                                                                     | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5                                                                                                                         | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                            | 10                                                                                                                                                                               | 40                                                                                                                                                                                                                  |
| Gesam                                                                                                                                                                                                                                                                                                                  | 28<br>unten<br>mittel                                                        |                                          | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8                                                                                                                                                                                                                                                     | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5                                                                                                                         | - 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                            | 10                                                                                                                                                                               | 40                                                                                                                                                                                                                  |
| Gesam<br>1<br>2<br>3<br>4                                                                                                                                                                                                                                                                                              | tmittel<br>25<br>oben                                                        |                                          | 6<br>4<br>0<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8<br>4<br>10<br>14<br>                                                                                                                                                                                                                                | <b>13</b><br>30<br>38<br>38<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>10</b><br>58<br>56<br>54<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $5 \\ -60 \\ -60 \\ -$                                                                                                    | -4<br>-120<br>-120<br>-120<br>-120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -2 $-208$ $-216$ $-$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <br>                                                                       | 10<br>424<br>444<br>456<br>                                                                                                                                                      | <b>40</b><br>738<br>774<br>782<br>                                                                                                                                                                                  |
| Gesam<br>1<br>2<br>3<br>4<br>Mittel                                                                                                                                                                                                                                                                                    | tmittel<br>25<br>oben                                                        | Feld II                                  | 6<br>4<br>0<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8<br>4<br>10<br>14<br><br>- 9                                                                                                                                                                                                                         | <b>13</b><br>30<br>38<br>38<br><br><b>35</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10<br>58<br>56<br>54<br><br>56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $5 \\ -66 \\ -60 \\ -60 \\ -$                                                                                             | $- 4 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -$ | -2<br>-208<br>-216<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <br><br>( - 220)                                                           | 10<br>424<br>444<br>456<br><br>441                                                                                                                                               | 40<br>738<br>774<br>782<br><br>-765                                                                                                                                                                                 |
| Gesam<br>1 2 3 4<br>Mittel<br>1 2 3 4<br>4<br>4                                                                                                                                                                                                                                                                        | tmittel<br>25<br>oben<br>26<br>unten                                         | Feld II<br>Gesamt                        | 6<br>4<br>0<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $     \begin{array}{r}                                     $                                                                                                                                                                                          | <b>13</b> 30383835                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $     \begin{array}{r}       10 \\       -58 \\       -56 \\       -54 \\       - \\       -56 \\       -56 \\       -68 \\       - \\       - \\       -68 \\       - \\       -     \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $5 \\ -66 \\ -60 \\ -60 \\ -$<br>-62<br>$-82 \\ -60 \\ -58 \\ -$                                                          | -4 $-120$ $-120$ $-120$ $-120$ $-120$ $-180$ $-174$ $-168$ $-164$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | - 2<br>-208<br>-216<br><br>-212<br>-212<br>-360<br>-378<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <br><br>(-220)<br><br>                                                     | $\begin{array}{r} 10 \\ -424 \\ -444 \\ -456 \\ - \\ -441 \\ -678 \\ -700 \\ -716 \\ - \end{array}$                                                                              | 40<br>-738<br>-774<br>-782<br>-<br>-765<br>-<br>1204<br>-1242<br>-1266<br>-                                                                                                                                         |
| Gesam<br>1<br>2<br>3<br>4<br>Mittel<br>1<br>2<br>3<br>4<br>Mittel<br>Mittel<br>Mittel                                                                                                                                                                                                                                  | 25<br>oben<br>26<br>unten                                                    | Feld II<br>Gesamt                        | 6<br>4<br>0<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $     \begin{array}{r}                                     $                                                                                                                                                                                          | 13<br>30<br>38<br>38<br><br>35<br>82<br>88<br>90<br><br>87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $     \begin{array}{r}       10 \\       -58 \\       -56 \\       -54 \\       - \\       -56 \\       -56 \\       -56 \\       -56 \\       -56 \\       -82 \\       -82     \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>5</b><br>66<br>60<br>60<br>62<br>62<br>82<br>60<br>58<br><br>67                                                        | $\begin{array}{r} - 4 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -168 \\ -174 \\ -168 \\ -164 \\ -172 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | - 2<br>-208<br>-216<br><br><br>-212<br>-360<br>-378<br><br><br>-369                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <br><br>(-220)<br><br><br>(-382)                                           | 10<br>424<br>444<br>                                                                                                                                                             | 40<br>-738<br>-774<br>-782<br>-<br>-765<br>-<br>1204<br>-1242<br>-1266<br>-<br>-<br>-<br>1237                                                                                                                       |
| Gesam 1 2 3 4 Mittel 1 2 3 4 Mittel Gesam                                                                                                                                                                                                                                                                              | tmittel<br>25<br>oben<br>26<br>unten<br>tmittel                              | Feld II<br>Gesamt                        | $ \begin{array}{c}                                     $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $     \begin{array}{r}             8 \\             -4 \\             -10 \\             -14 \\             -9 \\             -40 \\             -50 \\             -52 \\             \\             -47 \\             -28 \\         \end{array} $ | <b>13</b> 30383835358288908761                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $     \begin{array}{r}       10 \\       -58 \\       -56 \\       -54 \\       - \\       -56 \\       -56 \\       -54 \\       -68 \\       -82 \\       -69 \\       -69 \\       \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>5</b><br>66<br>60<br>60<br><br><b>62</b><br><b>62</b><br><b>62</b><br><b>63</b><br><b>67</b><br><b>64</b>              | $\begin{array}{r} - 4 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -174 \\ -168 \\ -164 \\ -172 \\ -146 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | - 2<br>-208<br>-216<br><br><br>-212<br>-360<br>-378<br><br>-<br>-369<br>-291                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                            | 10<br>424<br>444<br>456<br><br>441<br>678<br>700<br>716<br><br><br>698<br>570                                                                                                    | 40<br>-738<br>-774<br>-782<br>-<br>-765<br>-1204<br>-1242<br>-1266<br>-<br>-<br>-1287<br>-1001                                                                                                                      |
| Gesam          1         2         3         4         Mittel         1         2         3         4         Mittel         Gesam         1         2         3         Mittel         3         Mittel                                                                                                               | tmittel<br>25<br>oben<br>26<br>unten<br>tmittel<br>25<br>oben                | Feld II<br>Gesamt                        | $ \begin{array}{c}             6 \\             4 \\           $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{c} 8 \\ -4 \\ -10 \\ -14 \\ - \\ -9 \\ -40 \\ -50 \\ -52 \\ - \\ -47 \\ -28 \\ \hline -47 \\ -28 \\ \hline -16 \\ -20 \\ - \\ -18 \\ \hline \end{array}$                                                                               | <b>13</b> 3038383835828288908761384039                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $ \begin{array}{r} 10 \\ -58 \\ -56 \\ -54 \\ -56 \\ -54 \\ -56 \\ -54 \\ -56 \\ -54 \\ -56 \\ -56 \\ -56 \\ -69 \\ -69 \\ -69 \\ -46 \\ -42 \\ -69 \\ -44 \\ -44 \\ -69 \\ -44 \\ -69 \\ -44 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\ -69 \\$ | <b>5</b><br>66<br>60<br>60<br>62<br>62<br>62<br>62<br>62<br>67<br>67<br>64<br>38<br><br>39                                | $\begin{array}{r} -4 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -92 \\ -86 \\ -89 \\ -89 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c c} - 2 \\ -208 \\ -216 \\ - \\ - \\ -212 \\ -360 \\ -378 \\ - \\ -369 \\ -291 \\ \hline -176 \\ -178 \\ -178 \\ -177 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <br><br>(-220)<br><br>(-220)<br><br><br>(-382)<br><br><br><br><br><br><br> | 10<br>-424<br>-444<br>-456<br>-<br>-441<br>-678<br>-700<br>-716<br>-<br>-<br>-698<br>-<br>-570<br>-<br>-404<br>-418<br>-<br>-<br>-411                                            | 40<br>-738<br>-774<br>-782<br>-<br>-765<br>-1204<br>-1242<br>-1266<br>-<br>-<br>-1237<br>-<br>-1001<br>-<br>-758<br>-778<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                           |
| Gesam           1           2           3           4           Mittel           1           2           3           4           Mittel           Gesam           1           2           3           Mittel           1           2           3           Mittel           1           2           3           Mittel | tmittel<br>25<br>oben<br>26<br>unten<br>tmittel<br>25<br>oben<br>26<br>unten | Feld II<br>Gesamt<br>Feld II<br>bleibend | $\begin{array}{c} 6 \\ 4 \\ 0 \\ 0 \\ - \\ 1 \\ \mathbf{-14} \\ - 18 \\ - 18 \\ - 18 \\ - \\ \mathbf{-7} \\ 8 \\ \mathbf{-7} \\ \mathbf{-7} \\ 8 \\ \mathbf{-7} \\ \mathbf{-7} \\ 8 \\ \mathbf{-7} \\ \mathbf{-7} \\ 8 \\ \mathbf{-16} \\ - \\ \mathbf{-15} \\ \mathbf{-15} \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ $ | $\begin{array}{c} 8 \\ -4 \\ -10 \\ -14 \\ - \\ -9 \\ -40 \\ -50 \\ -52 \\ - \\ -28 \\ \hline -47 \\ -28 \\ -28 \\ \hline -16 \\ -20 \\ - \\ -18 \\ -20 \\ -26 \\ - \\ -23 \\ \end{array}$                                                            | $\begin{array}{c} \textbf{13} \\ -30 \\ -38 \\ -38 \\ -38 \\ -38 \\ -38 \\ -38 \\ -39 \\ -35 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87 \\ -87$ | $\begin{array}{c} 10 \\ -58 \\ -56 \\ -54 \\ - \\ -56 \\ -56 \\ -54 \\ - \\ -56 \\ -56 \\ -56 \\ -56 \\ -68 \\ - \\ -82 \\ - \\ -69 \\ -46 \\ -42 \\ - \\ -44 \\ -16 \\ -2 \\ - \\ -9 \\ -9 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5    66    60    60    62    62    82    60    58     67    64    64    40    38     39     +40     +40      +40      +40 | $\begin{array}{r} -4 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -140 \\ -172 \\ -146 \\ -90 \\ -92 \\ -86 \\ -90 \\ -92 \\ -86 \\ -89 \\ -58 \\ -56 \\ -46 \\ -53 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c} - 2 \\ -208 \\ -216 \\ - \\ - \\ -212 \\ -360 \\ -378 \\ - \\ -369 \\ -378 \\ - \\ -369 \\ -378 \\ - \\ -369 \\ -291 \\ -291 \\ -176 \\ -178 \\ -178 \\ -177 \\ -260 \\ -266 \\ -276 \\ -268 \\ -268 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <br><br>(-220)<br><br><br>(-220)<br><br><br>(-382)<br><br><br><br><br><br> | $\begin{array}{c} 10 \\ -424 \\ -444 \\ -456 \\ - \\ -441 \\ -678 \\ -700 \\ -716 \\ - \\ -698 \\ -570 \\ -404 \\ -418 \\ - \\ -411 \\ -584 \\ -614 \\ - \\ -599 \\ \end{array}$ | 40<br>-738<br>-774<br>-782<br>-<br>-765<br>-1204<br>-1242<br>-1266<br>-<br>-<br>-1237<br>-<br>-1001<br>-<br>-758<br>-778<br>-<br>-768<br>-<br>-768<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |

d. h. des Abstandes der Stegbleche Seite A und B des Stabes voneinander.

| Belastungs-<br>reihe<br>Nr | Seite des       |        |         | Dehnunge | en in <sup>1</sup> /100 | cm bei d  | en folgend | en Belast | ungen in | t         |        |
|----------------------------|-----------------|--------|---------|----------|-------------------------|-----------|------------|-----------|----------|-----------|--------|
| Nr.                        | St <b>a</b> bes | 98,29  | 197,96  | 294,37   | 393,75                  | 490,81    | 588,38     | 690,22    | 692,40   | 791,20    | 887,97 |
|                            |                 |        | I. Ges  | amtdehr  | ung unt                 | ter der 1 | Belastun   | g.        |          |           |        |
| 1                          |                 | 8      | 17      | 25       | 35                      | 45        | 57         | 69        | 71       | 82        | 95     |
| <b>2</b>                   |                 | 8      | 17      | 25       | 36                      | 46        | 58         | 69        |          | 83        | 97     |
| 3                          | A               | 8      | 17      | 25       | 35                      | 47        | 58         |           |          | 83        | 98     |
| 4                          |                 |        |         | -        | · - ·                   |           | 58         |           |          |           |        |
| Mittel                     |                 | 8,0    | 17,0    | 25,0     | 35,3                    | 46,0      | 57,8       | 69,0      | (71,0)   | 82,7      | 96,7   |
| 1                          |                 | 7      | 17      | 25       | 36                      | 47        | 59         | 72        | 75       | 86        | 102    |
| 2                          |                 | 7      | 16      | 26       | 37                      | 48        | 59         | 72        |          | 87        | 102    |
| 3                          | B               | 7      | 15      | 26       | 36                      | 49        | 60         |           |          | 88        | 103    |
| 4                          |                 |        |         |          |                         | -         | 58         |           |          | —         |        |
| Mittel                     |                 | 7,0    | 16,0    | 25,7     | 36,3                    | 48,0      | 59,0       | 72,0      | 75,0     | 87,0      | 102,3  |
| Gesamt                     | tmittel         | 7,5    | 16,5    | 25,3     | 35,8                    | 47,0      | 58,4       | 70,5      | 73,0     | 84,9      | 99,5   |
|                            |                 | II. Bl | eibende | Dehnun   | g nach o                | dem Ent   | lasten a   | uf 21,4   | t.       | ·         |        |
| 1                          |                 | 0      | 0       | 0        | 2                       | 4         | 7          | 10        |          | 13        | 19     |
| $\overline{2}$             |                 | 0      | 0       | 1        | $\overline{2}$          | 5         | 8          | 11        | · · _ ·  | 14        | 20     |
| 3                          | A               |        | —       |          |                         | -         | 9          | 12        | .—       |           |        |
| Mittel                     |                 | 0      | 0       | 0,5      | 2,0                     | 4,5       | 8,0        | 11,0      | _        | 13,5      | 19,5   |
| 1                          |                 | 0      | 0       | 2 ·      | 5                       | 8         | 11         | 16        |          | 20        | 26     |
| 2                          |                 | 0      | 1       | 4        | 6                       | 9         | 13         | 17        |          | <b>20</b> | 27     |
| 3                          | B               | ·      | —       |          |                         | -         | 13         | 17        |          | "         |        |
| Mittel                     |                 | 0      | 0,5     | 3,0      | 5,5                     | 8,5       | 12,3       | 16,7      |          | 20,0      | 26,5   |
| Gesamt                     | mittel          | 0      | 0,25    | 1,8      | 3,8                     | 6,5       | 10,15      | 13,9      |          | 16,8      | 23,0   |

Die Dehnung ist ermittelt aus den Bewegungen der beiden Stabenden (Augen) gegen feste Punkte im Raum; die Beobachtungen begannen von der Nullast = 21.4 t ab.

| Tabelle 33. | Ergebnisse der | Zugversuche | mit den   | Materialproben | zum | Zugstabe | 70. |
|-------------|----------------|-------------|-----------|----------------|-----|----------|-----|
|             |                | Meßlänge :  | = 200  mm |                |     |          |     |

|        | Ent-<br>nom-<br>men<br>aus | Be-<br>zeichnung<br>der<br>Proben | Abmessungen |        |                                                                                    | Elasti-                           | Spannungen kg/qcm                      |                   |                  | ntfer-<br>ruch-<br>näch-<br>narke                     | Bruchdehnung<br>bezogen auf die Länge |                  |                            | itts-<br>rung         |
|--------|----------------------------|-----------------------------------|-------------|--------|------------------------------------------------------------------------------------|-----------------------------------|----------------------------------------|-------------------|------------------|-------------------------------------------------------|---------------------------------------|------------------|----------------------------|-----------------------|
| Probe  |                            |                                   | Dicke       | Breite | $\begin{array}{c} \operatorname{Quer-} \\ \operatorname{schnitt} \\ f \end{array}$ | zitätszahl $\frac{1}{\alpha} = E$ | Propor-<br>tionali-<br>täts-<br>grenze | Streck-<br>grenze | Bruch-<br>grenze | Mittlere E<br>nung der B<br>stelle v. d.<br>sten Endr | l=5,65 Vf                             | $l=11,3\sqrt{f}$ | l =<br>Gesamte<br>Meßlänge | Querschn<br>vermindei |
| Nr.    |                            |                                   | mm          | mm     | qmm                                                                                | kg/qcm                            | $\sigma_P$                             | $\sigma_S$        | $\sigma_B$       | cm                                                    | %                                     | %                | %                          | %                     |
| 12     | Steg-<br>blech             | 88. 520. 15                       | 15,3        | 30,6   | 468                                                                                | 2015000                           | 1500                                   | 2800              | 3360             | In der letzten Marke gerissen                         |                                       |                  |                            | (10)                  |
| 13     |                            |                                   | 15,0        | 30,7   | 461                                                                                | 2065000                           | 1740                                   | 3020              | 3660             | Außerhelb der Meßlärene universit                     |                                       |                  |                            |                       |
| 14     |                            |                                   | 14,7        | 30,7   | 451                                                                                | 2050000                           | 2220                                   | 2930              | 3700             | Aubernato der Meblange gerissen                       |                                       |                  |                            |                       |
| 15     |                            | 5996.<br>88. 520. 15              | 14,9        | 32,1   | 478                                                                                | 2060000                           | 1880                                   | 2920              | 4090             | 10                                                    | 36,1                                  | 25,7             | 25,7                       | 64                    |
| 16     |                            | 88 A<br>520. 15                   | 14,9        | 30,5   | 454                                                                                | 2020000                           | 1540                                   | 2860              | 3830             | Außerhalb der Meßlänge gerissen                       |                                       |                  |                            |                       |
| 17     |                            |                                   | 15,2        | 29,9   | 454                                                                                | 2020000                           | 1540                                   | 2580              | 3830             | 9                                                     | 32,5                                  | 23,1             | 23,0                       | 69                    |
| 18     |                            |                                   | 15,1        | 30,5   | 461                                                                                | 2010000                           | 1950                                   | 2760              | 4070             | Außerhalb der Meßlänge gerissen                       |                                       |                  |                            |                       |
| 19     |                            | 5996. 88 A<br>520. 15             | 15,0        | 32,2   | 483                                                                                | 2045000                           | 1860                                   | <b>26</b> 10      | 3980             | 9                                                     | 33,7                                  | 24,0             | 23,7                       | 65                    |
| Mittel |                            | _                                 | —           |        | _                                                                                  | 2035600                           | 1780                                   | 2810              | 3820             |                                                       | [34,1]                                | [24,3]           | [24,1]                     | [66]                  |
| 20     | Stoß-<br>lasche            | 5996.<br>90. 300. 16              | 15,5        | 32,2   | 499                                                                                | 2 055 000                         | 1600                                   | 2200              | 3580             | 7                                                     | 41,0                                  | 30,8             | 30 5                       | 70                    |

Versuche im Eisenbau A 2.

| Bruch<br>Nr. | Belastung           | Bruch                                                                                                                      | Nr. der zuge-<br>hörigen Licht-<br>bilderfigur |                           |                |                         |  |
|--------------|---------------------|----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|---------------------------|----------------|-------------------------|--|
|              | t                   | Art                                                                                                                        | Lage<br>im Höhe<br>Steg                        |                           | Bruch-<br>lage | Bruch-<br>aus-<br>sehen |  |
| 1            | 995,46              | Saumwinkel gerissen                                                                                                        | A                                              | unten                     | 69 a           | 71.                     |  |
| 2            | 1018,98             | Derselbe Winkel gerissen                                                                                                   | A                                              | unten                     | <b>6</b> 9 b   |                         |  |
| 3            | 1030,48             | Saumwinkel gerissen                                                                                                        | A                                              | oben                      | 69 b           | _                       |  |
| 4            | 1098,95             | Heftniet des Saumwinkels abgeschoren                                                                                       | A                                              | unten                     | 69 a           |                         |  |
| 5            | 1114,70             | Beide Stegbleche gerissen                                                                                                  | В                                              | über die<br>ganze<br>Höhe | 70             | 72                      |  |
| 6            | 702,83              | Saumwinkel gerissen                                                                                                        | A                                              | oben                      | 69 a           | _                       |  |
| 7            | 709,29              | Saumwinkel angebrochen                                                                                                     | A                                              | unten                     | 69 b           | _                       |  |
| 8            | 628,63              | Beide Saumwinkel gerissen                                                                                                  | В                                              | oben und<br>unten         | 70             |                         |  |
| 9            | 610,01              | 2. Heftniet des Saumwinkels abgeschoren                                                                                    | A                                              | unten                     | 69 a           |                         |  |
| 10           | 559,54              | Desgl. 3. Niet                                                                                                             | A                                              | unten                     | 69 a           | ·                       |  |
| 11           | sinkt<br>ständig ab | Nach und nach scheren die letzten sechs<br>Niete des Saumwinkels ab und die Steg-<br>bleche reißen, unten beginnend, durch | A                                              | über die<br>ganze<br>Höhe | 69 a           | 73                      |  |

Tabelle 34. Zeitlicher Verlauf der Brüche der einzelnen Stabteile.

# Verlag von Julius Springer in Berlin W9

- Eisen im Hochbau. Ein Taschenbuch mit Zeichnungen, Zusammenstellungen und Angaben über die Verwendung von Eisen im Hochbau Herausgegeben vom Stahlwerksverband A.-G., Düsseldorf. Fünfte, völlig neubearbeitete und erweiterte Auflage. Mit zahlreichen Abbildungen und 7 Tafeln. Gebunden Preis M. 16.-
- Taschenbuch für Bauingenieure. Unter Mitwirkung von hervorragenden Fachmännern herausgegeben von Dr.-Ing. E. h. Max Foerster Geh. Hofrat, ord. Professor für Bauingenieurwesen an der Technischen Hochschule Dresden. Dritte, verbesserte und erweiterte Auflage 2263 Seiten mit 3070 Textabbildungen.

In einen Leinenband gebunden Preis M. 64.in zwei Leinenbänden gebunden M. 70.-

Die Grundzüge des Eisenbetonbaues. Von Geh. Hofrat M. Foerster, ord. Professor an der Technischen Hochschule Dresden. Mit 164 Textabbildungen. Gebunden Preis M. 18.-

Repetitorium für den Hochbau. Von Dr.-Ing. E. h. Max Foerster, Geh. Hofrat, ord. Professor für Bauingenieurwissenschaften an der Technischen Hochschule Dresden.

1. Heft: Graphostatik und Festigkeitslehre. Für den Gebrauch an Technischen Hochschulen und in der Praxis. Mit 146 Textabbildungen. Preis M. 7.60

2 Heft: Abriß der Statik der Hochbaukonstruktionen. Für den Gebrauch an Technischen Hochschulen und in der Praxis. Mit 157 Textabbildungen. Preis M. 8.60

3. Heft: Grundzüge des Eisenhochbaues. Mit zahlreichen Textabbildungen. Unter der Presse

Technische Mechanik. Ein Lehrbuch der Statik und Dynamik für Maschinen- und Bauingenieure. Von Ed. Autenrieth. Zweite Auflage. Neubearbeitet von Professor Dr.-Ing. Max Ensslin, Stuttgart. Mit 297 Textabbildungen. Zweiter, unveränderter Neudruck. Unter der Presse

Elastizität und Festigkeit. Die für die Technik wichtigsten Sätze und deren erfahrungsmäßige Grundlage. Von Dr.-Ing. C. Bach, württ. Staatsrat, Professor des Maschineningenieurwesens, Vorstand des Ingenieurlaboratoriums und der Materialprüfungsanstalt an der Technischen Hochschule Stuttgart. Achte, vermehrte Auflage. Unter Mitwirkung von Professor R. Baumann, Stellvertreter des Vorstandes der Materialprüfungsanstalt an der Technischen Hochschule Stuttgart. Mit in den Text gedruckten Abbildungen und Tafeln. Unter der Presse

Festigkeitseigenschaften und Gefügebilder der Konstruktionsmaterialien. Von Dr. Ing. C. Bach und R. Baumann. Zweite Auflage. Mit etwa 700 Textabbildungen. Unter der Presse