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We have tabulated for comparison the probability of transition pre-
dicted by theory and that which is determined by experiment. Certainly
the theoretical value fails to agree in magnitude with the experimental
one by an amount much greater than the possible experimental error.
One may say, perhaps, that some factor must still be introduced in the

theoretical expression to obtain the correct magnitude of bi,; and the ex-
perimental observations offer a means of evaluating this. But, unfortun-
ately, the theoretical probabilities do not have even the right relative values.
They decrease with quantum number while for the experimental values
Tolman and Badger found a decided increase. The absolute values which
they calculated may be in error for the reasons given above, but more
perfect resolution would be expected to increase the trend they observed
rather than to eliminate it. It would seem, therefore, that the predictions
of the new quantum theory, while they may apply to some ideal system,
do not describe the conditions we have experimentally observed in the case
of hydrogen chloride.

In conclusion we wish to express our indebtedness to the Carnegie Insti-
tution of Washington for funds which made this work possible.

I Czerny, Zeits. f. Physik, 34, 227 (1925).
2 Tolman and Badger, Phys. Rev., 27, 383 (1926).
3 Dennison, Phys. Rev., 28, 318 (1926).
4 Reiche, Zeits. f. Physik, 41, 453 (1927).
6 Zahn, Phys. Rev., 24, 400 (1924).
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On the simple Bohr theory the orbit of an electron moving in a central
field of force about the nucleus is designated by two quantum numbers n
and k, of which the first is called the principal quantum number and the
second the azimuthal or auxiliary quantum number. These numbers
are allowed to take all integral values (for a given orbit k . n) except zero.
It will be seen that for k = 0 we get an orbit which is a straight line pass-
ing through the nucleus. This type of orbit is commonly known as a
"pendulum" orbit and has been usually ruled out of the system of actual
orbits because it involves collision of the electron with the nucleus. Never-
theless the fact that the energy of an electron orbit under the conditions
specified above depends only on the principal quantum number and not
on the azimuthal quantum number suggests the possibility of getting
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quantized pendulum orbits (in the case of hydrogenic atoms at any rate)
which have the correct energy values even though their physical possibility
is open to question. In fact the recent tendency in modem atomic theory
(as, for example, the matrix theory of Heisenberg and Born) to get away
from pictures in space and time would seem to emphasize the value of
utilizing for purposes of calculation the simplest possible orbits which have
the correct energy values.
Pendulum orbits have been investigated by J. W. Nicholson.' He

showed that if we write down the quantum condition for straight line
motion, viz., f mx,dx = nh, substitute therein from the energy equation,
disregarding the relativity correction, and integrate from x = 0 to x = a
we arrive at the usual Balmer energy value, viz., W = -27r2N2e4m/n2h2.
The next step was to employ the energy equation for the relativity case,
which is as follows:

mOc2 [.\ . -1] - = W (1)

where mo is the rest mass of the electron, e its charge, c the velocity of
light, W the energy and N the number of charges on the nucleus. The
result of the subsequent analysis appears to be that to a first approxima-
tion W comes out to have the same value as in the previous simpler case,
i.e., we get correctly quantized orbits. However, inspection shows that
there is a serious error involved in Nicholson's reasoning. In the quantum
condition he used the rest mass mo instead of the varying mass M.2 It
then becomes important to carry through the analysis correcting this error
to see what influence it has on the result.

Proceeding as usual3 we have for the momentum

p 2 = 2moW + W2/c2 + 2(moNe2 + WNe2/c2)/x + N2e4/c2x2 (2)

whence the quantum conditions becomes

f A/A +2B/x+ C/x2 dx = nh (3)

where
A = 2moW + W2/c2
B = moNe? + WNe2/c2 . (4)
C = N2e4/c2 )

As usual the integration is to be conducted from the larger of the two
roots of the radicand to the smaller and back again. Since B and C are
both positive quantities and A alone is negative, one of the roots of the
radicand is positive and the other negative, i.e., the electron must pass
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through the nucleus and penetrate a certain distance on the other side
before P. = 0. The difficulty is that the radicand becomes infinite for x
= 0 and hence the integral is an infinite integral. Examination discloses
that the integral does not converge as x = 0; hence the quantum condition
as stated ceases to have a meaning.
The question remains under what conditions a pendulum-orbit quant-

ized according to f P,dx = nh is possible. Independently of the failure of
the integral to converge the idea of the passage of the electron through the
nucleus may be distasteful to some. There is a possible way of avoiding
this, namely, by the introduction of a repulsive force (in addition to the
inverse square attractive force) operative only in the immediate vicinity
of the nucleus. This assumption is not so fearfully arbitrary, for the work
on a-particle scattering has indicated clearly that the inverse square law
breaks down in the close vicinity of the nucleus. Of course, the exact
form for a law of the kind indicated is a matter requiring closer investiga-
tion. For the purpose of the present work, however, the writer has thought
it valuable to see the effect of using the simplest possible law, namely, an
inverse cube force. The mathematical analysis in this case is far simpler
than in the cases of higher power force laws, and from the result we should
be able to infer qualitatively the effect of introducing a more complicated
law.

Replacing in equation (1) Ne2x by Ne2/x- ae2/x2 where a is a coefficient,
equation (3) becomes

9 7VA + 2B/x + C'/x2 + Di/x3 + D2/x' dx = nh (5)

where A and B are as given in (4) and

C' = N2e4/c2 - 2mOe2a - 2We2a/c2 (6)
DI = - 2Ne4a/c2, D2 = e4a2/c2.

The limits of integration are obtained as the roots of the equation

W + Ne2/x - ae2/x2 = 0. (7)
These roots are:

Xmax. = -Ne2/W - a/N )

Xmin = a (1 - aW/N2e2) (8)
N

both to the second approximation (i.e., a < < e2/W). Since D1 and D2
are correction terms we can evaluate (5) by expanding by the binomial
theorem. Then
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nh = j9 VA ± 2B/x + C'/x2 dx + . 2 (A + 2B/x + C'/x2)' /I(DI/x3
2

+ D2/x4)dx- .9 (A + 2B/x + C'/x2) -'1'(D1/x3 + D2/x4)2dx +... (9)
8

Since we do not intend to restrict C' to negative values we do not employ
the method of complex integration. We have

2Bf AA+2B/x+C'/X2dx= -2 Xin. + , arc

sin[- Ax + B Xmax
- AC Xmin.

2C'
Z1, for C' < 0+ c/ii5 (10)

(-2) V\C'zy, for C' > 0.

In (10) we have set X = Ax2 + 2Bx + C', whence Xmin = Ax2min +
2Bxmin. + C'. Moreover we also have

Zo=lgEV§,-7T VT-7 B ] Xmax.1

ZO = log [ + V-\C Xmin l (1)

Bx + C' Xmax.Z, arc sin [ g CXi

Proceeding similarly with the first correction term we have

j.9(A + 2B/x + C'/x2)-11'(Dl/x3 + D2/x4)dx
2

2 (3B A)] + xmi

[Di D2 (3CB -) if C' < O

C'VC' [- 2B C' CXmin[ 2 (C' xm
if C' >0 (12)

Investigation of the order of magnitude of the correction terms Di and
D2 indicates that it will not be necessary for the approximation desired
in this work to use the second order correction term. Substitution of the
limits and replacement of A, B, C', D1, D2 by their values as given in (4)
and (6) yield finally
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[-1 + (1 + W/MoC2) 2]

1 --{ mOc2 (1 + (N-1)X) =nh + (13)
7r moc2

where ' represents a correction term different according as C' < 0 or C'
> 0. Thus we have

qICf<o = Ne2/c [1 + (N -1)X]1/2. [2 + 2/N(1 - X) - 1/2N2(1- X)
+ 3X/2N(1 - X)2]

+ - r.H/2 -arc sin 1 +
(X - 1)"L72 N( (N -2)X)

[2(X - 1) - 2X/(1 -X) - 3X2/8(1 - X)2J (14)
and

*C,<= Ne2/c [1 + (N - 1)X]'/1 [2 + 2/N(1-X) - 1/2N2(1 - X)
+ 3X/2N(1- X)2]

(1 ) . [2(1- X) + 2X/ (1-X) + 3X2/8(1-X) 21 log [1 + 2(1 ) '/N

*{1 + N(1-X)/'} ] (15)

In the expressions (14) and (15) we have set X = 2mOc2a/N2e2. The quan-
tity X is of the order of unity, and it is clear that for (14) X > 1, while for
(15) X < 1.
Now returning to (13) we have, after the usual transpositions, the

following expression for the energy

- 2ir2N2moe4 1-2(SI + 2Ne2/c a)/nh (16)
n2h2 (6

- [(' - 6Ne2/c o*)(' + 2Ne2/ c. o) + 37r2N2e4/c2]/n2h2}

wherein we set [1 + (N-1)X]'1/' = . In order that (16) should be
equivalent to the Balmer formula with the addition of a correction term
of the same sign and the same order as that of the relativity term, it
is essential that we have

-2( + 2Ne2/c -[('- 6N e2/coa)( + 2Ne2/c a) + 37r2N2e4/c2]/nh
- 7r2N2e4/c2nh (17)

whence we must have:

I = - 2Ne2/c i { 1 + r2Ne2/canh (1 + 4Ne2o/cnh) }. (18)]
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Examination of (14) and (15) in connection with (18) shows that for C' < 0
it is in general not possible to find a value of X such that the corresponding
value of I satisfies (18). However, this does prove always to be possible
for C' > 0. In the particular case of the hydrogen atom where N = 1
and o- = 1, it develops that the proper value of X is X = 0.179 which cor-
responds to a = 0.25 X 10-13. For hydrogen, then, we have

Xmin. = 0.25 X 10-13[1-0.5 X 10-137r2moe2/n2h2]
or roughly 0.25 X 10-13 cm. This result cannot be looked upon as un-
reasonable, though unfortunately there is no experimental data available
for comparison. However, from the expression for X on page (5) it is
seen that a varies as N2 (though, of course, it will also depend on X which
will vary slightly with N). Hence xmi.. will increase roughly proportion-
ally with N (for small values of N, at any rate). Actual calculation for
the case of He(N = 2) shows Xmin. = 0.62 X 10-'3 cm. while for the case
of Al(N = 13) we get xmin. = 2 X 10-13 cm. This latter value is at any
rate qualitatively in agreement with Bieler's value for the effective radius
of the Al nucleus, namely 3.3 X 10-13 cm. as estimated from the analysis
of experiments4 on a-ray scattering by Al nuclei. Unfortunately, there
is no record of electron scattering at such close distances. Thus Schon-
land5 finds that in the case of electron scattering by Al foils the inverse
square law holds down to 1.8 X 10-11 cm. In any case there seems to be
no experimental data which would militate against the assumption under-
lying the above work.

It may be pertinent to introduce here a few remarks concerning the
relation between the kind of pendulum orbit used in this work and the
newer theories of atomic structure. In the Schrodinger wave mechanics'
the azimuthal quantum number has been put equal to I + 1, where I
can take only the values 0, 1, 2, 3,. Hence I = 0 would not lead to
the vanishing of the angular momentum, and so Schrodinger concludes
that paths for which the angular momentum vanishes do not exist. The
difficulty with this conclusion, as it seems to the present writer, is that
there seems no definite assurance that the angular momentum of the elec-
tron in an actual orbit must be represented by the quantum number I + 1.
More generally, the Schr6dinger theory does not fix electron orbits in time
and space as we have previously understood them; it fixes only the value of
a certain function (the eigen-funktion 4t) in the configuration space. It
thus seems that the new theory affords a considerable amount of latitude
in the choice of electron orbits corresponding to a given distribution of the
t function. The same comment applies to the matrix mechanics of Born
and Heisenberg, which is mathematically equivalent to the wave mechanics.
If modern atomic theory is going to retain atomic models at all (which
seems likely if only for the pictorial advantage afforded by them) then all
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that is required of an electron orbit in such a model is that it shall have the
proper energy value and be of the right order of magnitude for atomic
dimensions. It may well be that pendulum orbits which satisfy these
conditions will still prove useful in atomic theory.

1 J. W. Nicholson,, Phil. Mag., 45, 804 (1923).
2 This fact was first called to the attention of the present writer by Prof. A. E.

Ruark.
3 A. Sommerfeld, Atombau und Spektral linien, 3rd German ed., page 735.
4 E. S. Bieler, Proc. Roy. Soc., 105, 434 (1924).
6B. F. J. Schonland, Proc. Roy. Soc., 113, 87 (1926).
6 E. Schrodinger, Ann. Physik, 79, 371 (1926). The number I here used corresponds

to n in the paper referred to, in conformity with more recent usage.
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The doublet which should be present in the K,B radiation has only been
observed in the case of a few elements; between Z = 41 and Z = 50.1
Their separation is so small that they appear as a single line except with
an instrument of high resolving power.
We have recently found that the double X-ray spectrometer possesses

high resolving power when properly arranged. We have obtained a con-
siderable separation of the K,B doublet of Mo as shown in figure 3.
The geometry of the arrangement used will be easily understood from

figure 1. The two slits between the X-ray tube and the crystal Z are
quite wide (1.5 mm.) so that a divergent beam comes through to crystal A.
Crystal A may be regarded as the collimator and crystal B as the analyzer.
If these crystals are nearly perfect, such as split calcite, only one wave-
length is reflected at a given angle of incidence. This is not strictly true
as it has been found from previous experimental work that some energy
is reflected at about 4" of arc each side the proper angle for reflection of
a given wave-length, X.
A radiation of certain wave-length, say X, represented by full lines in

figure 1, falls on crystal A at proper angle 0 for reflection. Any other
wave-length proceeding along same path will not be reflected. But
radiation of another wave-length such as X2 of the figure coming through
the slits at a different angle (0 + dO) will be reflected at its proper angle
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