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PREFACE.

THE object of the following treatise is to exhibit, in a concise

form, the elementary properties of the expressions known by

the name of Laplace's Functions, or Spherical Harmonics,

and of some other expressions of a similar nature. I do not,

of- course, profess to have produced a complete treatise on

these functions, but merely to have given such an introduc-

tory sketch as may facilitate the study of the numerous

works and memoirs in which they are employed. As

Spherical Harmonics derive their chief interest and utility

from their physical applications, I have endeavoured from

the outset to keep these applications in view.

I must express my acknowledgments to the Rev. C. H.

Prior, Fellow of Pembroke College, for his kind revision of

the proof-sheets as they passed through the press.

N. M. FERRERS.

GONVILLE AND CAIC8 COLLEGE,

August, 1877.

F. H.
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, CHAPTER I.

INTRODUCTORY. DEFINITION OF SPHERICAL HARMONICS.

1. IF V be the potential of an attracting mass, at any
point x, y, z, not forming a part of the mass itself, it is

known that V must satisfy the differential equation

or, as we shall write it for shortness, V
sF= 0.

The general solution of this equation cannot be obtained

in finite terms. We can, however, determine an expression
which we shall call V

{ ,
an homogeneous function of x, y, z

of the degree i, i being any positive integer, which will

satisfy the equation ;
and we may prove that to every such

solution V
t
there corresponds another, of the degree (i + 1),

expressed by -^ , where r* x t + y
z + z

2
.

For the equation (1) when transformed to polar co-ordi-

nates by writing x = r sin Q cos <, y = r sin Q sin <, z = r cos 0,

becomes

d*(rV) ,

1 df. fl^X 1 d?F
f

~d?~ + sO dd v
sl!

~M)
+

sin
2

dp
~

!

And since V satisfies this equation, and is an homo-

geneous function of the degree i, Vt
must satisfy the equa-

tion

... _. _ 1 df. Q dV\ ,

1 d*V
t

t (t + 1) T
7
; + -T z -73 sm 6 -j~ + -rnra -W = 0,sm ^ c/^ V ^ / sin ^ a^>*

F. H. 1



INTRODUCTORY.

since this is the form which equation (2) assumes when V
is an homogeneous function of the degree ".

Now, put V. = rsm U
t ,
and this becomes

or

..
,

_. TT ,

1 dr. Q dU\ 1 (FU
f f&.

( + !)
f- + -^ a 33 (

B ^ -J2T )
+ -^T2 T/Ti

=
(2)-

sin 0dV\ do J sin a 09

Now, since Z7j
is a homogeneous function of the degree

dr

or

therefore equation (2) becomes

r t<rV>
i dr /^ _

r sin ^ ^ V W / sin
2

dp

shewing that U
i

is an admissible value of F, as satisfying

equation (2).

It appears therefore that every form of U
{
can be ob-

tained from Vif by dividing by r*
m

,
and conversely, that

every form of V
i
can be obtained from U

i by multiplying
by r

2m
. Such an expression as F

4
we shall call a Solid

Spherical Harmonic of the degree i. The result obtained

by dividing V
t by r

1

,
which will be a function of two inde-

pendent variables 6 and < only, we shall call a Surface

Spherical Harmonic of the same degree. A very important
form of spherical harmonics is that which is independent
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of
<j).

The solid harmonics of this form will involve two of

the variables, x and y, only in the form a;
2 + y

3
, or will be

functions of y? + y* and z. Harmonics independent of
<j>

are

called Zonal Harmonics, and are distinguished, like spherical
harmonics in general, into Solid and Surface Harmonics.
The investigation of their properties will be the subject of

the following chapter.

The name of Spherical Harmonics was first applied to
these functions by Sir W. Thomson and Professor Tait, in

their Treatise on Natural Philosophy. The name "
Laplace's

Coefficients" was employed by Whewell, on account of

Laplace having discussed their properties, and employed
them largely in the Mecanique Celeste. Pratt, in his

Treatise on the Figure of the Earth, limits the name of

Laplace's Coefficients to Zonal Harmonics, and designates
all other spherical harmonics by the name of Laplace's
Functions. The Zonal Harmonic in the case which we shall

consider in the following chapter, i.e., in which the system
is symmetrical about the line from which 6 is measured,
was really, however, first introduced by Legendre, although
the properties of spherical harmonics in general were first

discussed by Laplace; and Mr Todhunter, in his Treatise,
on this account calls them by the name of "Legendre's,

Coefficients," applying the name of "Laplace's Coefficients"

to the form which the Zonal Harmonic assumes when in

place of cos 0, we write cos 6 cos & + sin sin 6' cos
(</> </>').

The name "
Kugelfunctionen

"
is employed by Heine,

in his standard treatise on these functions, to designate

Spherical Harmonics in general.

12



CHAPTER II.

ZONAL HARMONICS.

1. WE shall in this chapter regard a Zonal Solid Har-

monic, of the degree i, as a homogeneous function of

(#
2

4-y
2

)^, and z, of the degree
*

which satisfies the equation

d*V d*V d zV_+ +

Now, if this be transformed to polar co-ordinates, by
writing r sin 6 cos

(f>
for x, r sin 6 sin < for y, r cos 6 for 2, we

observe, in the first place, that a;
2 + y*

= r
2
sin

2
0. Hence

F will be independent of <, or will be a function of r

and 6 only. The differential equation between r and
which it must therefore satisfy will be

<P(rF) ,
1 d /.

fl
<ZF\ nr 35-* + -T

/, -^ sm y
-j-j-

= 0.
dr sm 6 dO \ dQ ]

Now F, being a function of r of the degree i, may be

expressed in the form r
iPl) where P

t
is a function of ^ only.

Hence this equation becomes

or, putting cos ^ =

In accordance with our definition of spherical surface

harmonics, P
i

will be the zonal surface harmonic of the
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degree i. When it is necessary to particularise the variable

involved in it, we shall write it P
i (/i).

The line from which 6 is measured, or in other words
for which /t

=
l, is called the Axis of the system of Zonal

Harmonics; and the point in which the positive direction

of the axis meets a sphere whose centre is the origin of

co-ordinates, and radius unity, is called the Pole of the

system.

Any constant multiple of a zonal harmonic (solid or

surface) is itself a zonal harmonic of the same order.

2. The zonal harmonic of the degree i, of which the
line

//,
= 1 is the axis, is a perfectly determinate function of

fi, having , nothing arbitrary but this constant. For the

expression r
iP

i may be expressed as a rational integral

homogeneous function of r and z, and therefore P
t
will be

a rational integral function of cos 6, that is of /i, of the

degree i, and will involve none but positive- integral powers
Of /A.

But P
i
is a particular integral of the equation

and the most general form of /(/*) must involve two ar-

bitrary constants. {Suppose then that the most general

form of/(/*.) is represented by P4 Ivd/Jt. We then have

d
(,,

Hence, adding these two equations together, and ob-

serving that, since 2\ satisfies the equation (3), the coefficient
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of Ivdp will be identically equal to 0, we obtain, for the de-

termination of v, the equation

whence P
{ (1 /**)

-

Of* v

dv /2 dP{

or

the integral of which is

log t; + logP4

2

(1
-

/*
2

)
= log (7

1
= a constant

;

/. c~ .

;

Hence
J^/i

= (7+ (7
X
J p., ^ , ;

and we obtain, for the most general form of/"(/A),

Now, P
f being a rational integral function of /A of {

dimensions, it may be seen that
|T= sr~p^

wi^ assume the
J\*-~P')-Li

form of the sum of i'+2 logarithms and i fractions, and

therefore cannot be expressed as a rational integral function

of p. Expressions of the form P. I

j-
., p2 are called Kugel-

J (LfJ< )
-L

f

functionen der zweiter Art by Heine, who has investigated
their properties at great length. They have, as will hereafter

be seen, interesting applications to the attraction of a sphe-
roid on an external point. We shall discuss their properties
more fully hereafter.

3. We have thus shewn that the most general solution

of equation (2) of the form of a rational integral function of a
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involves but one arbitrary constant, and that as a factor.

We shall henceforth denote by P4 , or P
( (/x), that particular

form of the integral which assumes the value unity when p
is put equal to unity.

We shall next prove the following important proposition.

Ifhbe less than unity, and if (1
-

2/^h + hs

)~^ "be expanded
in a series proceeding by ascending powers of h, the coefficient

of k
l

will be P^

Or, (1
-

2/*h + hy* = P + P,h + ... + P,h' + ...

We shall prove this by shewing that, if H be written for

(1 2/z/i + h*)~^, H will satisfy the differential equation

d
( ,., ,. dR\ , c

For, since H= (1
-

2/iA + h

_
H* d/*~

'

1 dff

,"

And
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= 3 (1
-

fiK) B5
(p
-

h)
-

Hence

3
{(1

-
/x

2

)
h + (

1 - pti) (p
-

A) }
II

5

= - 3/.//
3 + 3

{fjt (1 + /t
2

)
-
2^%) fi"

5

= -
3//, {/i

3 -
(1
-

2/i/i + h*) H 5

}

= 0, since 1 - 2/*fc + A2 = -ff"
2
.

Therefore i
1(1

- ^}
d
^\ + h ? (hll)

= 0.

a/u. { djjb )
ah

This may also be shewn as follows.

If x, y, s be the co-ordinates of any point, / the distance

of a fixed point, situated on the axis of 'is, from the origin,

and R be the distance between these points, we know that,

and that V* 7?)
=

Now, transform these expressions to polar co-ordinates,

by writing

x = r sin & cos <>, y r sin 6 sin $, z = r cos 0,

and we get

and the differential equation becomes
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or, putting cos =
p,,

d* (r\ d (. ~ d /1\,
r

jT^8 \ #J /7"r
~~ ^" 7V

Now, putting r = z'h, we see that

and
rap

.*. the above equation becomes

or li
,

ah

4. Having established . this proposition, we may proceed
as follows:

If Pi be the coefficient of h* in the expansion of //,

11=

Also, the coefficient of li
l
in the expansion of

|{('-<K7{^t!-
Hence equating to zero the coefficient of A*,
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Also pt
is a rational integral function of

/j,.

And, when /*
= 1, //= (1

- 2/4 + A2

)^

= l+/i + A2 + ...+^ + ...

Or when /i
=

1, _p4
= 1.

Therefore p< is what we have already denoted by P4
.

We have thus shewn that, if h be less than 1,

If h be greater than 1, this series becomes divergent.

But we may write

P,

since , is less than 1,

P P P
V+^ +w -fn& *.,,

Hence P
i
is also the coefficient of h~^i+r> in the expan-

sion of (1 2/t/4 + /4
s

)
2 in ascending powers of

,_
when h is

greater than 1. We may express this in a notation which is

strictly continuous, by saying that

This might have been anticipated, from the fact that the

fundamental differential equation for P{ is unaltered if

(i + 1) be written in place of i
;

for the only way in

which i appears in that equation is in the coefficient of P
t ,

which is i (i+ 1). Writing (i + 1) in place of i, this be-

comes (i + 1) { (i + 1). + 1] or
(i + 1) i, and is therefore

unaltered.
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5. We shall next prove that

where r8 = a? + y
1 + z

2
.

Let
* =

(*' + 2/' + *T*=/(z),

and let k be any quantity less than r.

Then [x* +/ + (z
-

&))-*=/ (z
-

k),

and, developing by Taylor's Theorem, the coefficient of k' is

Also {x
2 + f + (z

- &)T- = (
r
* ~ %kz +

I/,
,

*- 1 - 2/i
-

2
r V r r

since z = pr,

in the expansion of which, the coefficient of k1

is

P,

?"'

Equating these results, we get

The value of P
4 might be calculated, either by expanding

(1 2/i/i 4- /t
2

)"^ by the Binomial Theorem, or by effecting the

rm d s

/1\
differentiations in the expression ( 1)'' 1 .2. 3 ... idz\rj

and in the result putting
- = p. Both these methods how-

ever would be somewhat laborious
;
we proceed therefore to

investigate more convenient expressions.
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6. The first process shews, by the aid of Lagrange's
Theorem, that

'

Let y denote a quantity, such that

h being less than 1.

Then
1

dy h

ALso

. ^_^ = i_' y
-A h '

Hence, by Lagrange's Theorem,

_ _ ._

^7idpi-1
( 2 J

H

therefore, diiferentiating with respect to p, and observing
that
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1 dl

,

Hence

7. From this form of P
i

it may be readily shewn that
the values of

/*, which satisfy the equation Pi
=

0, are all real,

and all lie between 1 and 1.

For the equation

(/t

2

1)'
= has i roots = 1, and i roots = 1,

.'. T- (/A

2

1)'
= has i 1 roots = 1, (i 1) roots = 1, and

UfJi

one root = 0,

-j-g (/** 1)'
= has (t 2) roots = 1, one root between 1

and 0, one between and = 1, and (i 2) roots = 1,

and so on. Hence it follows that

a" i i

T-, (/i,

8

1)'
= has ^ roots between 1 and 0, and - roots be-

('f-i -
~

tween and I, if i be even,

i 1 i1
and - roots between 1 and 0,

- roots between and
'

2t

1, and one root = 0, if i be odd.

It is hardly necessary to observe that the positive roots of

each of these equations are severally equal in absolute mag-
nitude to the negative roots.

8. We may take this opportunity of introducing an im-

portant theorem, due to Kodrigues, properly belonging to

the Differential Calculus, but which is of great use in this

subject.

The theorem in question is as follows:

Jfmle any integer less than i,
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It may be proved in the following manner.

If (ar1)' be differentiated i-m times, then, since the

equation

(*
2

-l)< =

has i roots each equal to 1, and ^* roots each equal =
1, it

follows that the equation

has i (i m) roots
(i.

e. m) roots each = 1, and m roots

each = 1, in other words that (x
2

I)
m

is a factor of

***""
J_iy

daT"'
'

We proceed to calculate the other factor.

For this purpose consider the expression

(x + crj (a; + 2) ...
(a; + a

;) (a; + ft) (a; + ft) ...
(

Conceive this differentiated (I) i m times, (II)
times. The two expressions thus obtained will consist of an

equal number of terms, and to any term in (I) will corre-

spond one term in (II), such that their product will be

(# + ,) (x + a.^i
... (a? + a<) (# + ,) (# + &)... (x + A), i.e. the

term in (II) is the product of all the factors omitted from
the corresponding term in (I) and of those factors only.
Two such terms may be said to be complementary to each
other.

Now, conceive a term in (II) the product of p factors of

the form x + , say x + a, x + a' . . . x + a.
(p
\ and of q factors

of the form x + /3, say x + /3 y ,
x + /3/y . . . x + j3(l}

. We must

havejp + q
= i m.

The complementary term in (I) will involve

p factors x + ff, x + fi" ...x+fi
p
\

q factors x + <x
t
, x + a,,

. . . x + a^.
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Now, every term in (I) is of i +m dimensions. "We have

accounted for p + q (or i m) factors in the particular term
we are considering. There remain therefore 2m factors to

be accounted for. None of the letters .

a', a"...cc
(p)

, , ,...#,

P, /3".../S<", a, ...,,

can appear there. Hence the remaining factor must involve

in a's and m /3's, say,

There will be another term in (II) containing

(x + /3') (a? + 13") ...(x + /3<") (a + a) (x + J ...

The corresponding term in (I) will be, as shewn above,

Hence, the sum of these two terms of (I) divided by the
sum of the complementary two terms of (II) is

Now, let each of the a's be equal to 1, and each of the $'s

equal to 1, then this becomes
(a;

8

1)'". The same factor

enters into every such pair of the terms of (I). Hence

- - (a? T\
m

TO
~

(

ji-m t 2 _ -i \l 7i-nn / 2 _ -i y
Or-~^J1 = (^-ir- ^> to a numerical

factor pres.

The factor may easily be calculated, by considering that
//i-^/V _ TV

the coefficient of a^ in -_^-_^is 2{(2i-l).

J'-H /^S _ I)
1

and that the coefficient of xi
~m

in-V T;
- is

ax

... (i-m + 1).



16 ; ZOXAL HARMONICS.

Hence the factor is

1 1.2...(i-m)- or -__-

(i + m) (i+ m-l) ... (t-m + 1)' 1.2...(t+m)*

9. This theorem affords a direct proof that G-^ i (/i
2

1)',

C being any constant, is a value of f (/j.)
which satisfies the

equation

(W
'

from above,

' d
\~, z -, d (d l

, 2 1V)~|
. . r~ (it IJ < . f /* 1) r

dfjU j_ dfju (ft/A* J J

or

Hence, the given differential equation is satisfied by put-

Introducing the condition that P
i

is that value of / (JJL)

which is equal to 1, when /*
= 1, we get

T> f 2 i ^*^~ ii/A

10. We shall now establish two very important proper-
ties of the function P.

;
and apply them to obtain the develop-

ment of PI in a series,
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The properties in question are as follows :

If i and m be unequal positive integers,

r p
t
pmdp=o.

j -i

And

The following is a proof of the first property,

We have

Multiplying the first of these equations by Pm, the second

by P<} subtracting and integrating, we get

+ {i (i + 1)
- m (m + 1)] P

tP^fJt
= 0.

Hence, transforming the first two integrals by integration

by parts, and remarking that

i (i+ 1) m (TO + 1)
=

(i
- m) (i + m + 1),

we get

^-P,f=) -
[(1 -M (^-*5-?dp dp J J

'

\dfj, dp dp d

> = 0,

or

/ ,7P
4

dPm\

since the second term vanishes identically.

P. H.
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Hence, taking the integral between the limits 1 and
+ 1, we remark that the factor 1

//,

2
vanishes at both limits,

and therefore, except when i m, or i+ m + 1 = 0,

We may remark also that we have in general

p dP
{ p

dPm
* 7 7j~

a result which will be useful hereafter.

11. We will now consider the cases in which

i m, or i + m + 1 = 0.

We see that i-f m + 1 cannot be equal to 0, if i and m are

both positive integers. Hence we need only discuss the

case in which m = i. We may remark, however, that since

P
4

=P
(i+1) ,

the determination of the value of I P,
2

dp will also

n
J ~l

give the value of I P
4
P.

,, tf/t.
J -i

ri

The value of Pfdp may be calculated as follows:
J -i

"
1 = (P +P1

h+...

Integrate both sides with respect to
/JL ;

then since

we get, taking this integral between the limits 1 and + 1,

r-n
Al 1 fl -i -i -i

all the other terms vanishing, by the theorem just proved.
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h*
+ - + ...

3

-i J -i

Hence, equating coefficients of h
zi

,

... + A" P P
4

2

J -i

ri

12. From the equation I P
4
Pm <fyt

= 0, combined with
J-i

the fact that, when /*
= 1, P4

=
1, and that P

4
is a rational

integral function of /A, of the degree i, P4 may be expressed
in a series by the following method.

We may observe in the first place that, if m be any

integer less than i, I fj^P^fj,
= 0.

J -i

For as Pm,
Pm-1 . . . may all be expressed as rational in-

tegral functions of /A, of the degrees m, m 1 ... respectively,
it follows that fi

m
will be a linear function of Pm and zonal

harmonics of lower orders, /i"
1
"

1
of Pm_l

and zonal harmonics of
.

lower orders, and so on. Hence \iJ.

mP
id^ will be the sum of

a series of multiples of quantities of the form I PmP,<7/x,
ri

m being less than i
t
and therefore I /i

mP
4<7/A

=
0, if in be any

J-i

integer less than i.

Again, since

it follows, writing h for h, that

+. .. + (-l)'P4/*'+. ..

22



20 ZONAL HAKMONICS.

And writing //,
for

//,
in the first equation,

P ', P/...P/... denoting the values which P
, P,...^,

respectively assume, when /A is written for /A. Hence
P

l

' = P
l
or P

4 , according as i is even or odd. That is,

P. involves only odd, or only even, powers of i, according
as i is odd or even*.

Assume then

Our object is to determine A
t , A^....

Then, multiplying successively by ^~
2

, /uT
4

,
... and inte-

grating from 1 to + 1, we obtain the following system of

equations :

_^ +_^_ + ... +_Jg._ + ... =
,

13 i i _ 7
~_2* i __ A

o er > " ' " "*" O-* o~ o ""!"* ^>i_3 ' 2t-5 2i-2s-3

j 1*=! L + L*=I L =0nr o *
* r ^^ * * o *

>i i T^ * * * ^^ *

/^ 2*? I 2? -- - 2 ^ _ ^ 2? xLo ,T . i

And lastly, since P
4
= 1, when /i

=
1,

the last terms of the first members of these several equa-
tions being

13. The mode of solving the class of systems of equa-
tions to which this system belongs will be best seen by
considering a particular example.

*
Tliis is also evident, from the fact that Pt

is a constant multiple of
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Suppose then that we have

x y
'

6 + a c + a

w z

x y z _ 1

From this system of equations we deduce the following,
6 being any quantity whatever,

a+t) b + e c + G> (a>-

For this expression is of 1 dimension in a, b, c, a, /5, 7,

0, a>; it vanishes when d = a, or =
f$, and for no other

finite value of 6, and it becomes = , when 6 = w.
(a

We hence obtain

g
f

and therefore, putting
=

a,

^ (o + a) (a + ff) (a + o>) (6 + o>) (o + &>)~
G> (a b) (a c) (a> a) (&> /3)

with similar values for y and z.

And, if a) be infinitely great, in which case the last

equation assumes the form x + y + z = 1, we have

_ (a + a) (a + ff)~

(a
-
bY(a -c)

'

with similar values for y and z.

14. Now consider the general system

-*- +-^f- + ... +-^^- + ... = o,
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/y o* /vX
i ^f-2 i ^V

the number of equations, and therefore of letters of the
i> 4~ 1 i

forms x and a, being if i be odd, = + 1 if i be even
;
and

2> 2i

i\
the number of letters of the form a being if i be odd,

2

and ^ 1 if i be even.
^j

We obtain, as before,

^
I

*-. I , ^-?i_,

and, multiplying by CP,.^, + ^, and then putting 6 = a^,

(w
- a

t) (ca
-

Gi_2) . . . (to
-

a..J . . .

(a, + e) (a4_2 +&>)... (a,._2J + &>)...

(i-2,
~
^) (a^ - a

4_2) . . . (a,._2S
- ^ or aj

'

15. To apply this to the case of zonal harmonics, we see,

by comparing the equations for x with the equations for A,
that we must suppose o> = oo

;
and

= i _2
= 2,...oi_2t

= * - 2* ...

,
=

!, a,._a
= *-3,...2i_2,

= i-2s- 1...

Hence

. (2^
- 2.9 - 1) (2i

- 2g - 3). ..{2 (^
-

2g)
-

1|...
^i-8,

-
(
_ 25| |

_ ^ -
2) }...{(- 2s - 1) or (t

-
2s) }



ZONAL HARMONICS. 23

Or, generally, if i be odd,

_ (2i-l)(2-8)...( + 2)
<-

2.4...(-l)

(2i-3)(2i-5)...i
<-2
~ '

2.4...(i-3)x2~'_---
2.4...(-5)x2.4

"
(t_ 2)...3

And, if i be even,

^i=
2.4...t

'-2

2.4...(*-2)x2

Lj-4
=

2.4...(i-4) x2.4
'

We give the values of the several zonal harmonics, from

P
c
to P

10 inclusive, calculated by this formula,

P_ 8 1
2
~

2
^ "~

2
'

2
'
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7.5 5.3 . 3.1

2.22.4

8

P = U-9-7 e 9.7.5 7.5.3 2 5.3.1
6 2.4.6^ 2.4x2^ + 2x2.4^ 2.4.0

_ 231/I.
8 -

315//,
4 + lOo/i

2 - 5~~
p _ 13. 11. 9

7 11.9.7 5 .
9.7.5 7.5.3

'

2.4.6 ** "2.4x2^ + 2x 2. 4^ ~2~O /
*

= 15. 13^11.^ 8 13.11.9.7 6 11.9.7.5 4

2.4.6.8 ^ 2.4.6x2^ 2.4x2.4^
9.7.5.3 2

t

7.5.3.1
2x2.4.6^ '

2.4.6.8

_ 6435/A
8 -

12012/x
6 + 6930/A

4 -
1260yu,

2 + 35

128

_17.15.13.11 9 15.13.11.9 7 ,13.11.9^7 5

9= 2.4.6.8 /^"2.4.6x2 /ii"2.4x2.4^

11.9.7.5 3 9.7.5.3
2x2.4.6^ +

2.4.6.8 //>

_ 12155ya
9 -

25740/i
7 + 18018^-4620^+ 31 5/*

_ 19 .17. 15. 13.H 10_17_.15.13_.11.9 8 15.13.11.9.7
6

10
~

2.4.6:8.10 /*- 2.4.6.8"x"2 ^ +
2.4.6 x 2. 4"^
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13.11.9.7.5 4 11.9.7.5.3 2 9.7.5.3.1

"2.4x2.4.6^ * 2x2. 4. 6. 8^ 2.4.6.8.10

46189// - 109395/+ 90090/- 30030/*
4+ 3465/*

2- 63

256

It will be observed that, when these fractions are reduced

to their lowest terms, the denominators are in all cases

powers of 2, the other factors being cancelled by correspond-

ing factors in the numerator. The power of 2, in the

denominator of P
{ ,

is that which enters as a factor into the

continued product 1 . 2...1.

ri

16. "We have seen that
/ ^ P. . dp = 0, if m be any
J -i

integer less than i.

It will easily be seen that if m + i be an odd number, the

values of lp
mP

4
. d\t, are the same, whether /* be put = 1 or

1
;
but if m + i be an even number, the values of

l//,

mP
4

. dp

corresponding to these limits are equal and opposite. Hence,
(m + i being even)

P p-P^-
J -i

| /4
m
P. . At = 0, if ? = "-

2, t-
Jo

rl

"We may proceed to investigate the value of I u*P
t .du,

Jo
if m have any other value. For this purpose, resuming the
notation of the equations of Art. 13, we see that, putting
6 = m + 1, and o> = oo

,
we have

0,+ w + l a^+m + 1 a^ + m + l

_ (m + 1 a,) (m + 1 op . . . (m + 1 P
<_,,

<

) . . .
.~

(a, + m + 1} (a <_2 + m + 1) . . . (a^. + m + 1)~T7.
'
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and therefore, putting x
i
A

i
. . .

, a,
= *..., a,

= i 1 . . .
,

we get

\.-P> j...
A

<
A^ A^

(ra-t + 2)(m-i + 4)...(w-l) .,=
^ ITITlTr~~^"^T! ( 4-4U -4-21

* '

(m i+ 2) (wz i+ ) ...m
and =

; . -.w . -,. 7^ XT-: rr-if be even.
(w -f i + 1) (t + i - 1) ... (m + 3) (m + 1)

Iff the particular case in which m =
i, we get

2.4... (t-1) ,.

2.4 . i

(2,'+ 1) (8f- !)..(+ 3) (.'

17. "We may apply these formulae to develope any positive

integral power of p in a series of zonal harmonics, as we

proceed to shew.

Suppose that m is a positive integer, and that /i
m

is de-

veloped in such a series, the coefficient of P
4 being Ci}

so

that

then, multiplying both sides of this equation by Pf
and inte-

grating between the limits 1 and 1, all the terms on the

right-hand side will disappear except C
i
P2

4 d/j,, which will

2
become equal to =-..

zi + 1

Hence <7,
=

J
/^
m
P,

which is equal to 0, if m + * be odd. Hence no terms appear
unless m 4- i be even. In this case we have
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Hence the formula just investigated gives

if i be odd, and

r> - /9,' i -n fr

0< ^ '

'

(m + i+ 1) (m+ '-l) ... (m + 3) (TO+ 1)

if i be even.

Therefore if m be odd,

+ 7 2=1- -P+ 3
1 f / i A\ / i o i

* * m+ 2*

If TO be even,

= (2m + 1)
(2m + 1) (2W- 1) ... (TO -H 3) (m + 1)

Pm + ""

,

K m Pi 1 P
(TO + 3) (TO + 1)

2 ^
7/i + 1 r

Hence, putting for TO successively 0, 1, 2 ... 10, we get

/*
= P0>

4< 1' p +5 __P+P4t 2
__

9.7.5 4 7.541
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uf = 11 _Aii p .

7 _* p , ? p
11.9.7 * 9.7 ^T 1

63 5 9 3
7 1J

p 10p l p
4 2 '231 6 77 4 21 2 7

T-1 . 2.4.6 p , n 4.6 p , ^ 6 3 D
15. 13. 11. 9^'"*" 13.11.9 5+/ lT9^3 + 9

429 '39
'

33 3 '

3 "

_ 17
2.4.6.8 4.6.8

1

17.15.13.11.9 15.13.11.9 6

, q ^L8 p _i_ n
8 P 4- 1

13.11.9 4 11.9 2 9

JfcO p
~6435^ 8 '

495
~

6 '

143 4 '

99^ 2 '

9
"

0>

-19
2 - 4 - 6 - 8 p , 15

4 -^- 8

19.17.15.13.11 9 ^ 17.15.13.11 7

O . 8 T-. ,_1 8 -r-.

15.13.11 13.11

16 56

12155
* 9 '

2431
"

7 + 65 5 + 143
= _128_ 192 18 p 16 _8

9 7 ^ 5 ^ 3 ^ '

_ 21_?i_
4
-6.8i_l<>_ p 4.6.8.10

21.19.17.15.13.11 ""^ 19.17.15.13.11 8

,13
6- 8 - 10 p +9 _ 8^A_p +5J_p + J_p

17.15.13.11
6 ^ 15.13.11 4 ^ 13.11 ^ 11

128 82p,^.p + 10 pip
46189 * 2717

" 187
6 143 4 ^ 143 2 ^ 11
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18. Any zonal harmonic P< may be expressed in a finite

series of cosines of multiples of 6, these multiples being

i0,(i-2)0.... Thus

therefore, writing cos 6 for
/-i,

and observing that

1 - 2 cos 6h + h* = (1
- Aev~i e

) (1
- he- v~^),

we obtain

or

whence, equating coefficients of A1

,

D ....
P,= -

.. .
-

2.4...2i 2 .4 ... (2i 2) 2

'-

fl.3... (i-l)l
1

.,
the last term being \ : '} if i be even, and

5

{
2 . 4 ... i )

1.3...(+1) 1.3...(t-2)&*-7^ T( n ~7~- 7^ 2 cos 6, if i be odd.
2.4... (t-f 1) 2.4... (i 1)

19. Let us next proceed to investigate the value of

Clt

P
t
cos m0 sin 61 d0.

Jo
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Tins might be done, by direct integration, from the above

expression. Or we may proceed as follows.

The above value of P
i
when multiplied by cos mO sin

(that is by ~ (sin (m+ 1) 6 sin (m 1) 9}} will consist of a
Zt

series of sines of angles of the form {i 2n + (m I)} 0, that

is of even or odd multiples of 0, as i + m is odd or even.

Therefore, when integrated between the limits and TT it

will vanish, if i +m be odd. We may therefore limit our-

selves to the case in which i +m is even.

Again, since cos m0 can be expressed in a series of powers
of cos 0, and the highest power involved in such an expression
is cos 0, it follows that the highest zonal harmonic in the

development of cos m0 will be Pm. Hence I P
i
cos m0 sin d9

Jo

will be = 0, if m be less than i.

Now, writing

P
t
= C

t
cos id + C^ cos (i

-
2) + ...

we see that P
{
cos m0 sin dd will consist of a series of sines

of angles of the forms (m + i+ 1) 0, (m + i I) ... down to

(
m _ {_ l) $

5
there being no term involving m0, since the

coefficient of such a term must be zero. Hence

/'Jo
<
cos m0 sin dd,

'

o

will consist of a series of fractions whose denominators in-

volve the factors m + i+l, m + i 1 ... TO i 1 respectively.
Therefore when reduced to a common denominator, the result

will involve in its denominator the factor

(m + i+1) (TO+i-1) ... (m + 1) (m-1) ... (m-i-V)
if m be even, and

(wi + + l)(m + i-l)... (TO + 2) (m-2) ... (m-i-T)
if TO be odd.

For the numerator we may observe that since

t
cos m sin Oddf

Jo
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vanishes if m be less than
**,

it must involve the factors

m (i 2), m (i 4) ... m + (i 2), and that it does not

change sign with m. Hence it will involve the factor

{m - (i- 2)} (m
-

(i
-

4)} ... (m
-

2) m2

(m + 2) ... (m + i- 2)

if m be even, and

{m
-

(i-2)} {m- (i- 4)} ... (m
-

1) (m + 1) ... (m + i - 2)

if m be odd.

To determine the factor independent of m, we may pro-
ceed as follows :

P
i
= C

i
cos M + C

t_t cos (i
-

2) 6 + . . .
;

.'. P
4
cos i0= = C

i [cos (m + i) + cos (m {) 6}

+ -
(7,_2 (cos (m + i - 2) + cos (m-t + 2) 0} + ...;

,*. P
4
cos w0 sin = -C

i {sin (m + 1 + 1) sin (m + i 1)

+ sin (w i+ 1) sin (m i 1) 0]

1
+ -r (7^ {sin (wi + i 1) sin (m -f- 1 3)

+ sin (
- i + 3)

- sin (m
- i + 1) 0} + ...;

t
cos 7n0 sin J0

1 1 1

i 3 wi i -f- 3

z-1 t-1

-
-

(i
-

I)
2
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Now, when m is very large as compared with i, this be-
comes

since (7,-f C^ + ... = 1, as may be seen by putting #= 0.

/"" 2
Hence P. cos ra0 sin # d!# tends to the limit -- , as m

'<> m
is indefinitely increased.

The value of the factor involving m has been shewn
above to be

{m - (i
-

2)} {m - (i
-

4)} ... (m - 2) m2

(m + 2) ... (m + 1 - 2)

{m - ( + !)] {m - (i
-

1)} ... (m - 1) (m + 1) ... (m + + 1)

if m be even, and

|m-(/-2)| {m - (i- 4)] ... (m - 1) (m -1- 1) .... (m + t-2)

{m
-

(t + 1
) } {m^"(t

-
l)j . . . (m

-
2}~(m + 2) . .. (m + i + 1)

if m be odd.

Each of these factors contains in its numerator two factors

less, than in its denominator. It approaches, therefore, when

m is indefinitely increased, to the value 5 . Hence

/

I

J
I
cos 7?i^ sin $ dd

o

{w -(+!)} [m-(i- 1)| ...(*
-

1) (m + 1) ... [m

if m and / be even, and

_
{w - (i+ 1)] (m

- (i- 1)] ... (m -2) (m+2) ... {m+

if m and i be odd.

In each of these expressions i may be any integer such

that m i is even, * being not greater than m. Hence they
will always be negative, except when i is equal to ?n.
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20. We may apply these expressions to develop cos md
in a series of zonal harmonics..

Assume

Multiply by P sin 0, and integrate between the limits

and TT, and we get

(
m -(t--2)}{i-(t-4)}...{ro+(t-2)} 2

{m-(i+l)}[m -(*-!)} ... [TO + (t + 1)} 2i + l
*'

Hence

7? = - rav 4- ^ fo-
'

^

Hence, putting m successively
=

0, 1, 2, ... 10,

1
_ P

_
3 3 "

P _! P.
5 s 5 lf

p _ r _f p
-1.1.3.5.7.9 4 + 1.3.5.7

_ p _ -_ p i p
35 4

21 15 "

F. H.
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2.4.6.8 4.6
cos o0 = - 11 q JT-^ s-^ P. - 7

-1.1.3.7.9.11
'

1.3.7.9
1

-3
3.7

cos 60 = -13

= __
C3 5 9 " 7 l

2. 4. 6
2

. 8. 10

-1.1.3.5.7.9.11.13
* - p K " p __

1.3.5.7.9.11
* 3.5.7.9 2 5.7

= ^l?p_??4 p_Ap__Lp .

931 6 Q^ 4 91 2 'JSi^OJ35

2.4.6.8.10.12
.1.3.5.9.11.13.15 ^

4.6.8.10
?

6.8

1.3.5.9.11.13 a 3.5.9.11 5.!

1024 _ 128 112 p _ !_ p ."

429 7
117 ' 495 3 15 l>

2. 4. 6. 8
2

. 10. 12. 14
cos 89 =

-1. 1.3. 5.7.9.11. 13.15.17

_.^__ __
1 . 3 . 5 . 7 . 9 . 11 . 13 . 15 3 . 5 . 7 . 9 . 11 . 13

02 -1

_5
b p_ _P

6.7.9.11 7.9

16384 4096 p 256 64 _ JL^=

6435 8 3405 6 1001 4 693 " 63 S

cocQg- 19
2.4.6.8.10.12.14.16

J
-l. 1.3. 5. 7. 11. 13. 15. 17719 9

. __i^>jAi 10_-
12 . 14_ p _ _6 . 8 . 1(K 12_ T)

T73T577 . 11 .13 ."15". 17
7 3 . 5T77ii7l37T5

J
s

_ 8.10_ _ 1

5.7.11.13 3 7.11 *
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_ 32768 3072
__

128 16 p ^ 3

"12155 2431 7 455 s 143 8 77 "

1ft,_ 2.4.6.8.10M2.14.16.18
-1.1.3.5.7.9.11.13.15.17.19.21 10

4^6. 8. 10s
. 12. 14. 16

~~
J. / "^ ~ i _

1.3.5.7.9.11.13.15.17.19

6.8.10M2.14 8.10M2
3.5.7.9.11.13.15.17 6 5.7.9.11 . 13.15 4

5
ioa

P _ _1 P
7.9.11.13 2 9.11

_ 131072 _ 32768 p _ j>12 US ^00=

16F89 10 24453 8 1683 6
~

1001 4 9009 2

99
'

21. The present will be a convenient opportunity for

investigating the development of sin# in a series of zonal

harmonics. Since sin 6 = (1 /A
2

)^, it will be seen that the

series must be infinite, and that no zonal harmonic of an odd
order can enter. Assume then

sin0= C P + C
2 P, + ... + C

t
P

t + ...

i being any even integer.

Multiplying by P
( ,

and integrating with respect to p,

between the limits 1 and + 1, we get
'i 9

supposing P4 expressed in terms of the cosines of 6 and its

multiples

= ?*1 f'PiCl- cos 20) d0.
4 Jo

fj 9
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Hence, putting i= 0,

1 3
Putting i= 2, and observing that P

2
= - + -j cos 20,

4* 4

5 f* (1 + 3 cos 20) (1
- cos 20) J0O

2
= j I ac'
4J 4

f

"

-fl + 2 cos 20 - ~ (1+ cos 40)1
Jo (

*
)

For values of i exceeding 2, we observe, that if we write

for Pi the expression investigated in Art. 18, the only part

of the expression I P$ (1 cos 20) d6 which does not vanish
Jo

will arise either from the terms in P; which involve cos 20, or

from those which are independent of 0. We have therefore

_ i . s. (i+ 1) ij^-sj 9 9^":

^(^ 3)

a 2 . 4 ...(*- 2)
77

("i-J: +
* + *

2 cos
20)

(1
- cos 20) d9

-l 1.3... ^-3

= 7T

4 2.4... i 2.4... (-2) V *

2^+11.3... (i-l) 1.3... (-3)
2 2.4...f( + 2)2.4...(f-2)t"

rlOTlPA G1TI F7 - r^ r"^ _
-I iVllL/\_' &J.1J. V _. n

^^
"fiTL^-k"

* O
^^

_ (2/+l)7r 1.3... (i-l) 1 . 3 ... (/-3)
"~2 2 . 4

~
"(i + 2) 2 .4... (i-2)"

being any even integer.
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22. It will be seen that -~ , being a rational and integral

function of /uT
1

, yuT
3

..., must be expressible in terms of

PJ_I} Pi-3"' To determine this expression, assume

dP.

then multiplying by Pm ,
and integrating with respect to

//,

from 1 to + 1,

And

Now, since i > m,

.-.

J

1

pm^^ = [p.pj
1 - [p^r = 2,

since either m or i must be odd, and therefore either Pm or

P
4
=

1, when p = 1
;

.'. =
(2

-
1) P^ + (2i

-
5) P4 .3 + (2i

-
9) P^

Hence ^ -^-2 = (2t- 1) P^.
cZju, rift

23. From this equation we deduce

the limits /A and 1 being taken, in order that P
f
P

(_ 2 may
be, equal to at the superior limit.
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Now, recurring to the fundamental equation for a zonal

harmonic, we see that

r
1

24. We have already seen that I P
t
Pm dp = 0, i and ra

1

being different positive integers. Suppose now that it is

required to find the value of I P
t
Pm d/j,.

J n

We have already seen (Art. 10) that

And, from above,

'

-P V
i+1

_p .
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25. "We "will next proceed to give two modes of ex-

pressing Zonal Harmonics, by means of Definite Integrals.
The two expressions are as follows :

P = i

If* i
P. = -

I \u, + (a 1)* cos
TrJo

l

These we proceed to establish.

Consider the equation

if.TT Jo a
(a* -b*fi'

The only limitation upon the quantities denoted by a
and b in this equation is that 6

2 should not be greater than

a2
. For, if b

2 be not greater than a3

,
cos ^ cannot become

equal to r while ^ increases from to TT, and therefore the
o

expression under the integral sign cannot become infinite.

Supposing then that we write z for a, and V 1 p for 6,

we get

1 /> d*t _ 1

z - V~l p cos ^ (a
2 + p^

We may remark, in passing, that

r d* = r ^
Jo z V I/a cos^- Jo z + \f I

and is therefore wholly real.

Supposing that
/j

8 = ic
2 + 2/

2

,
and that x*+y*-{- zi = r

9
,
we

thus obtain

d^ 1
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Differentiate i times with respect to z, and there results

i*r _<*_:.l.A^ivi a ,

,r WJ o z - V-lL
~

i+1 ( L) i

p cos* r

Hence P=*

f Jo (z V lp COS*)
m '

In this, write pr for z, and (1 /r)* r for p, and we get

which, writing IT * for S-, gives

26. Again, we have

_1_ =
1 / __

(a
2

b
2 * TT J a

___
(a

2
b
2

)* TT a b cos^
'

In this write 1 yuA for a, and + (^ 1)^ h for 6, which is

admissible for all values of h from up to ^ (/J? 1)',
and

we obtain, since a2
6
2 becomes 1 2/A 4- K*,

1_ 1 r* d^r

(1
- 2ph + h*)*

=
7T Jo l-/Jl+(/A

a

-l)Hcos^r

1 /-T_^-V/T_ ^

7T J 1 {p (V?
~

1)"^ COS A|T}
A

'

= i T d^r [1 + ^ 0*'- 1)^ cosf} Ji+...

+
[fJ, (^ - if COS f}'/*' +...].
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Hence, equating coefficients of h',

P (P*
~

1)* COSW <ty.

The equality of the two expressions thus obtained for P. is

in harmony with the fact to which attention has already
been directed, that the value of P

i
is unaltered if (i + 1)

be written for i.

27. The equality of the two definite integrals which
thus present themselves may be illustrated by the following

geometrical considerations.

Let be the centre of a circle, radius a, C any point
within the circle, PCQ any chord drawn through C, and let

OC=b, COP = ^,COQ = ^. ThenCP2 = aa + &
2

s-. Hence

=
(a

2 -

= 0.

(a
2 + 6

2 - 2aZ> cos ) (a
2

sn
' '

a* + 6" - 2a6 cos $r a,
2 + tf - 2a6 cos

i/r
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Again, since the angles OP C, OQG are equal to one

another,

sinj?= sin OP (7_ sin OQO_ sin^
CP

=
06' 00 ~~~C~Q

'

sin ^y sn
"

(a
2 + 6

2 - 2a& cos*)* (a
2 + 6

3 - 2a& cos f)*
'

, J* dxjrwhence
,
-1-

r
= 0.

(a
2 + 6

2 - 2a6 cos &)*
*

(a
2 + 6* - 2a6 cos

- (n*
i

7>
2 _ 9/~

ia

i
= -

(a
2 + Z>

2- 2a6cos^ ^f./ 2^.2
-

(a + o* 2a6 cos

In this, write a2 + 6
2 =

//,,
2a&= + (/A

2

1)^, which gives
a2

6
2 =

1, and we get

We also see, by reference to the figure, that as S- in

creases from to TT, ty diminishes from TT to 0. Hence

28. From the last definite integral, we may obtain an ex-

pansion ofP
i
in terms of cos 6 and sin 0. Putting /-i

= cos 6,

we get

" C S sn

+ (cos 6 V 1 cos ^ sin #]'] d^r

= -
['{(cos ^)

1-*-^^ cos
2

f (cos^
M

(sin^)'+...
7T J Q 1.4



ZONAL HARMONICS. 43

os ^) (cos 6} (sin ff)*

m

2 //t

1.2.. .2m 2m(27n,-2)...2

(2. 4.. .2m)
2

P
4
=

(cos fff
-^^ (cos er (sm ^)

2 +



CHAPTER III.

APPLICATION OF ZONAL HARMONICS TO THE THEORY OF

ATTRACTION. REPRESENTATION OF DISCONTINUOUS

FUNCTIONS BY SERIES OF ZONAL HARMONICS.

1. WE shall, in this chapter, give some applications of

Zonal Harmonics to the determination of the potential of a

solid of revolution, symmetrical about an axis. When the

value of this potential, at every point of the axis, is known,
we can obtain, by means of these functions, an expression
for the potential at any point which can be reached from
the axis without passing through the attracting mass.

The simplest case of this kind is that in which the

attracting mass is an uniform circular wire, of indefinitely
small transverse section.

Let c be the radius of such a wire, p its density, k its

transverse section. Then its mass, M, will be equal to 27rpck,
and if its centre be taken as the origin, its potential at any

point of its axis, distant z from its centre, will be--r.
(c

2 + s
2

)i

Now, this expression may be developed into either of the

following series :

!* 1.3** , 1.3.. .(2^-1)^- + -- + ( --* +

Jiff lc2 1.3c< 1.8...(2i-l)c?

7r 2V+274*4
2.4...2 z

+

We must employ the series (1) if z be less than c, or

if the attracted point lie within the sphere of which the ring
is a great circle, and the series (2) if z be greater than c,

or if the attracted point lie without this sphere.
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Now, take any point whose distance from the centre is r,

and let the inclination of this distance to the axis of the

ring be 8. In accordance with the notation already em-

ployed, let cos Q = p. Then, the potential at this point will

be given by one of the following series :

_ _
o 2 V 2.4 V

!J^.(2z-J) r"
f ( '

2. -JL6.. .2i -^c*

/ 1M_ -i P _1_ I (f)'\r \ *-) t> A. f? 9; 2< ~ "'I v-' y*^ . rr . U . . . 6 /

For each of these expressions, when substituted for V,

satisfies the equation V
2 V= 0, and they become respectively

equal to (1) and (2) when is put = 0, and consequently
r = z. The expression (2') also vanishes when r is infinitely

great, and must therefore be employed for values of r greater
than c, while (!') becomes equal to (2') when r = c, and will

therefore denote the required potential for all values of r

less than c.

These expressions may be reduced to other forms by
means of the expressions investigated in Chap. 2, Art. 25, viz.

. = 1
t

7T J

Or P. = -
fu, + JLL^ 1 COS

Substitute the first of these in (!') and (observing that

fj,r
=

z] we see that it assumes the form

M_
2

1.3
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which is equivalent to

M

The substitution of the last form of P
l
in the series (2')

brings it into the form

fa
1

c*_

2t / o 9\ 1 fxT3

{2 + (2? r^)
a
cos*}

T o r41 . O c

which is equivalent to

M
7T o Z + (Z

~

2. Suppose next that the attracting mass is a hollow shell

of uniform density, whose exterior and interior bounding
surfaces are both surfaces of revolution, their common axis

being the axis of z. Let the origin be taken .within the

interior bounding surface
;
and suppose the potential, at any

point of the axis within this surface, to be

Then the potential at any point lying within the inner

bounding surface will be

For this expression, when substituted for V, satisfies the

equation V 2

F=0; it also agrees with the given value of

the potential for every point of the axis, lying within the

inner bounding surface, and does not become infinite at any

point within that surface.

Again, suppose the potential at any point of the axis

without the outer bounding surface to be
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Then the potential at any point lying without the outer

boundin surface will be

r r*

' '

r* ri+i

For this expression, when substituted for V, satisfies the

equation V
2 V ;

it also agrees with the given value of the

potential for every point of the axis, lying without the outer

bounding surface, and it does not become infinite at any
point within that surface.

By the introduction of the expressions for zonal har-

monics in the form of definite integrals, it will be found that

if the value of either of these potentials for any point in the

axis be denoted by <j> (z), the corresponding value for any
other point, which can be reached without passing through
any portion of the attracting mass, will be

- !
IT JO

3. We may next shew how to obtain, in terms of a series of

zonal harmonics, an expression for the solid angle subtended

by a circle at any point. We must first prove the following
theorem.

The solid angle, subtended by a closed plane curve at any
point, is proportional to the component attraction perpendicular
to the plane of the curve, exercised upon the point by a lamina,

of uniform density and thickness, bounded by the closed plane
curve.

For, if dS be any element of such a lamina, r its distance

from the attracted point, 9 the inclination of r to the line

perpendicular to the plane of the lamina, the elementary
solid angle subtended by dS at the point will be

J8 cos S

r*
'

And the component attraction of the element of the
lamina corresponding to dS in the direction perpendicular
to its plane will be

7
dS

p/c ., cos u,



48 APPLICATION OF ZONAL HARMONICS

p being the density of the lamina, Jc its thickness. Hence,
for this element, the component attraction is to the solid

angle as pk to 1, and the same relation holding for every
element of the lamina, we see that the component attraction

of the whole lamina is to the solid angle subtended by the

whole curve as pk to 1.

Now, if the plane of xy be taken parallel to the plane
of the lamina, and V be the potential of the lamina, its

component attraction perpendicular to its plane will be

dV
-]

Now since Fis a potential we have V 2

F=0, whence

Ay2

F=0, orW^W Hence ~ is itself a potential,
dz \dz J dz

and satisfies all the analytical conditions to which a potential
is subject. It follows that, if the solid angle subtended by
a closed plane curve at any point (x, y, z] be denoted by
a), CD will be a function of x, y, z, satisfying the equation

y
2^ = 0. Hence, if the closed plane curve be a circle it

follows that the magnitude of the solid angle which it sub-

tends at any point may be obtained by first determining
the solid angle which it subtends at any point of a line

drawn through its centre perpendicular to its plane, and

then deducing the general expression by the employment
of zonal harmonics.

Now let be the centre of the circle, Q any point on the

line drawn through perpendicular to the plane of the

circle, E any point in the circumference of the circle. With
centre Q, and radius QO, describe a circle, cutting QE in L.

From L draw LN
} perpendicular to Q 0.

Let OE=c, OQ = z.

Then EL =

Cc
2 +^'



TO THE THEORY OF ATTRACTION. 49

And the solid angle subtended by the circle at

ON
27

= 27T II -
(c* +)*]

To obtain the general expression for the solid angle sub-

tended at any point, distant r from the centre, we first

develope this expression in a converging series, proceeding
by powers of z. This will be

c 2c3 2.4c6
2. 4.. .2i

if be less than c, and

if z be greater than c.

Hence, by similar reasoning to that already employed,
we get, for the solid angle subtended at a point distant r
from the centre,

P,r 1 P.r 1 . 3 P,z*P ___* J__ _b 5 - 4-

c
+

2 c
3 2.4 c

5

1 Q /'0/_1
<

\ P ,.!'+!

_ / IV -- v- 4
fj Wi * ___,

^ ^)
"

9 4 9,' r*'+i
T

. TF 6 C/

if r be less than c, and

P r-
2

1 1 Pr 4
1 ^ (

i>/_-n p ^i \

! "5 ^ t-Js'-i',-s'-i,
(2

* 2.4 ?-
4 2.4...2i ^ "

if r be greater than c.

4. We may deduce from this, expressions for the potential
of a circular lamina, of uniform thickness and density, at an
external point. For we see that, if V be the potential of

such a lamina, k its thickness, and p its density, we have for

a point on the axis,

F. H.
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whence V

ifM be the mass of the lamina.

Expanding this in a converging series, we get

Jff lzz l.ls4 1.1. 3/
~ C ~^ + "~ + ~---'

( 1 y
* *^

i. L I
1 ; 2.4.6...2i a

2*'1

"j
if z be less than c, and

M fl^_lJ.C
4

1 . 1 . 3 c
6

~
c
2

(2 a 2". 4 2
3 + 2 . 4 . G z

5

' V 2 74T67772T~ a*-
1 + ' '

j

if s be greater than c.

Hence we obtain the following expressions for the po-
tential of an uniform circular lamina at a point distant r

from the centre of the lamina :

1 P r
2

1 IP? 1
*

Y-:

_ (_ iy li
1^ 8 ' ffi-3) P2/' , |
2.4.6...2i c

2*-1

'"j

if r be less than c, and

3/ (1 P c
2

_ 1
JL P/ 1JL3 P/ _

c
2

[2 r 2.4 r
3 2.4.6 r

5

_ r_ IY ^ -
(^ t ~

/ g'-2
. i i

1 ' 2.4.6...2i r21
'
1

j

if r be greater than c.
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It may be shewn that the solid angle may be expressed
in the form

and the potential of the lamina in the form

M 22 r*

;r

-
J o

+ * + s - r* cos

5. As another example, let it be required to determine
the potential of a solid sphere, \vhose density varies inversely
as the fifth power of the distance from a given external point

at any point of its mass.

It is proved by the method of inversion (see Thomson
and Tait's Natural Philosophy, Vol. 1, Art. 518) that the

potential at any external point P' will be equal to ^ , 0'

being the image of in the surface of the sphere, and M
the mass of the sphere. We shall avail ourselves of this

result to determine the potential at a given internal point.

Let C be the centre of the sphere, the given external

point. Join CO, and let it cut the surface of the sphere in A,
and in CA take a point 0', such that GO . CO = CA*. Then
0' is the image of 0.

Let P be any point in the body of the sphere, then we
wish to find the potential of the sphere at P.

Take as pole, and OC as prime radius, let OP = r,

POC = 0. Also let CA = a, CO = c.

Let the density of the sphere at its centre be p, then its

c
5

density at P will be p 5 . Hence

42
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the limits of r being the two values of r which satisfy the

equation of the surface of the sphere, viz.

r2 + c
9

2cr cos =
a?,

and those of 6 being and sin
* -

.

C

Hence, if r
a ,
r
2
be the two limiting values of r, we have

e

''sin-i;

a , 2

11 2ccos0 I 1

r. r
Now
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This is satisfied by V= ^ $-.

Assume then, as the complete solution of the equation,

It remains to determine the coefficients A , A^^A^^B^
J^j.-.-Bj, so that this expression may not become infinite for

any value of r corresponding to a point Avithiu the sphere,
and that at any point P on the surface of the sphere it may

be equal to
77-7,1

where O'P : OP :: a : c, and therefore, at

the surface,

T;r_ J\h 1 _ 4 7rpc
s
a*

a UP 3 (c* a'j'r'

And, at the surface, we have

r* - 2cr cos + c" a
2 =

;

1 1 /_! 2c cos^~" '

~~

c a,

Ajr+ 'A P
t + ... identically.

Hence

and 7?
g> 5,,...J5t

....l
0> ^....-1, all = 0.
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Hence since P =
1,

a2

3 c"-a

2
_

3 (c
2 - a2

)

2 {

4
and "

whence we obtain, as the expression for the potential at any
internal point,

F=~ COS _ 2
7T/3C

5

3(c
2 -a2

)

2
r

T
3c8 -tt3 r 3 r

3

6. We shall next proceed to establish the proposition that

if the density of a spherical shell, of indefinitely small thick-

ness, be a zonal surface harmonic, its potential at any internal

point will be proportional to the corresponding solid har-

monic of positive degree, and its potential at any external

point will be proportional to the corresponding solid harmonic

of negative degree.

Take the centre of the sphere as origin, and the axis of

the system of zonal harmonics as the. axis of z. Let b be the

radius of the sphere, Sb its thickness, U its volume, so that

JJ= 47r&
2
S6. Let GP

i
be the density of the sphere, Pt being

the zonal surface harmonic of the degree i, and C any con-

stant.

Draw two planes cutting the sphere perpendicular to the

axis of z, at distances from the centre equal to -1- d%

respectively. The volume of the strip of the sphere inter-

Jjf

cepted between these planes will be U, and its mass will be

CP,ET.

Now %=b/j,, hence d=bdjm, and this mass becomes
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Hence the potential of this strip at a point on the axis of z,

distant z from the centre, will be

CU P<

2
(
z
* + tf

which may be expanded into

and

To obtain the potential of the whole shell, we must inte-

grate these expressions with respect to p between the limits
- 1 and + 1. Hence by the fundamental property of Zonal

Harmonics, proved in Chap. II. Art. 10, we get for the po-
tential of the whole shell

CU z
1

--. -
j-j+i

at an internal point,

. -j+j at an external point.
2.1 -{- 1 z

From these expressions for the potential at a point on
the axis we deduce, by the method of Art. 1 of the present
Chapter, the following expressions for the potential at any
point whatever :

CU Pr*
V. = . -, at an internal point,

"li + 1 b

V9
= ^r -jrr at an external point.

2 4 + 1 r

From hence we deduce the following expressions for the

normal component of the attraction on the point.

Normal component of the attraction on an internal point,
measured towards the centre of the sphere,

dV i P r'~
l

* *'
dr
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Normal component of the attraction on an external point,
measured towards the sphere,

_dV.__ i+l
~

dr ~2i + l

In the immediate neighbourhood of the sphere, where r is

indefinitely nearly equal to b, these normal component at-

tractions become respectively

p ,'
i i p*

and their difference is therefore

And writing for U its value, 47rZ>
2

S3, this expression be-

comes
47rS& . CP

t
.

Or, the density may be obtained by dividing the alge-
braic sum of the normal component attractions on two points,
one external and the other internal, indefinitely near the

sphere, and situated on the same normal, by 4?r x thickness

of the shell.

7. It follows from this that if the density of a spherical
shell be expressed by the series

C
,

(7
t ,
C

2
... (7; ... being any constants, its potential (T

7
J at

an internal point will be

GP 1 C Pr 1 CPr* 1 CPr*^ n
. j_ _ i i ,

J ^VfV i i ^i
L

i' i

b
+

'3 b*
+

5 F *W+I b
t+1

"

and its potential (
F
2)

at an external point will be

n0 , , ,

J

\r~
+

3 ~F~ +
5 "r1

" +
27+T ^i+1

~
' "

In the last two Articles, by the word "density" is meant
"volume density," i.e. the mass of an indefinitely small

element of the attracting sphere, divided by the volume of
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the same element. The product of the volume density of

any element of the shell, into the thickness of the shell in

the neighbourhood of that element, is called "surface den-

sity." We see from the above that, if the surface density
be expressed by the series

er P + o-^ + <7
2
P

2 + ... + 0-^+ ...,

the potentials at an internal and an external point will seve-

rally be

...
b 36 oo
& +l"W +

1^
i o a i m 3 i " ' <^3 -t +i ' '

1 r

This variation in surface density may be obtained either

by combining a variable volume density with an uniform

thickness, as we have supposed, or by combining a variable

thickness with a uniform volume density, or by varying both
thickness and density.

8. We have seen, in Chap. II., that any positive integral

power of [i,
and therefore of course any rational integral

function of /i, may be expressed by a finite series of zonal

harmonics. It follows, therefore, that we can determine the

potential of a spherical shell, whose density is any rational

integral function of
p,.

Suppose, for instance, we have a shell whose density
varies as the square of the distance from a diametral plane.

Taking this plane as that of
a-y, the density may be ex-

pressed by pfj?, or p Yz
We have seen (Chap. n. Art. 20)

that

Hence, by the result of the last Article, the potential
will be

u/i
,
2py\ .

,
. . .

P "Q F + 7 /a" a^ an mtcrnal point,o \0 u J
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Z7/1 2P
2
6
2
\

P o
- + ? -3- at an external point ;

o V^ or/
T"% 9 O/*

"~~
4- Q O^J ^^

/ !*
or, since P

2
r = -J - r = - -

-, we obtain
*- î

Q- (r + K
'

7-3 )
for the potential at an internal point,o \o o /

T, -I- + -F I 3 H r H for that at an external point.
3 [r 5 \ r r J)

9. As an example of the case in which the density is re-

presented by an infinite series of zonal harmonics, suppose we
wish to investigate the potential of a spherical shell, whose

density varies as the distance from a diameter. Taking this

diameter as the axis of z, the density will be represented

by p sin 0, or p (1 /z
2

)'
2
'. We have investigated in Chap. II.

Art. 21, the expansion of sin in an infinite series of zonal

harmonics. Employing this expansion, we shall obtain for

the potential

P- p -_
2 6(2 16 2

6" 2.

or

irp. ....- ....-
2 P

(2 r 16 V "'
2.4...t(i+2)'2.4...(i-2)i Vm "'J

according as the attracted point is internal or external to the

spherical shell, i being any even integer. All these expres-
sions may be obtained in terms of surface density, by writing,
instead of p U, 47rcV.

10. We may next proceed to shew how the potential of

a spherical shell of finite thickness, whose density is any solid

zonal harmonic, may be determined. Suppose, for instance,
that we have a shell of external radius a, and internal radius

a, whose density, at the distance c from the centre, is

; < -PfC*, h being any line of constant length.
lit

Dividing the sphere into concentric thin spherical shells,

of thickness dc, the potential of any one of these shells, of
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radius c, at an internal point distant r from the centre will

DC*
be obtained by writing c for b, *jr

for C, 4nrc'dc for U, in

the first result of Art. 6. This gives

p ^Trtfdc P4cV 4?r p'

or . -fi-
h*

To obtain the potential of the whole shell, we must inte-

grate this expression, with respect to c, between the limits

a and a. This gives

Again, the potential of the shell of radius c, at an external

point, will be

p 47rc
2
dc PiC

zi
4?r p ^c

2'^
,

II ___L_. nr ___ * P ___ He
W 2i + l r

m
2i + lA* V+1

Integrating as before, we obtain for the potential of the

whole shell,

47T p (a"
+3 -q/iii+3

)
1 ' m

Suppose now that we wish to obtain the potential of the
whole shell at a point forming a part of its mass, distant r
from the centre. We shall obtain this by considering sepa-

rately the two shells into which it may be divided, the
external radius of the one, and the internal radius of the

other, being each r. Writing r for a, in the first of the fore-

going results, we obtain

'

TT * ' 1 I

2i + 1 It'
^

And writing r for a in the other result, we obtain_477^ _ pPt r^-a'^'

Adding these, we get for the potential of the whole

sphere
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It is hardly necessary to observe that the corresponding
results for a solid sphere may be obtained from the foregoing,

by putting a = 0.

If the density, instead of being
~ P. c\ be ~ P

i
c
m

,
similar

ll> ib

reasoning will give us, for the potential of the thin shell of

radius c and thickness dc at an internal and external point

respectively,

--PrV'-m^ and P &
2* + i/r^

r i 2i+lr^< y?rC

And, integrating as before, we obtain for the potential of

the whole shell,

-TNT* * fmPt

fam
~M - a""'"

2

)
r

l

at an internal point,"4 '

-.- m
p a a

i .

fi^-ri i+i at an external point.
TO + i + hm r

l x

And, at a point forming a part of the mass,

-*2 -^-"* 7-
TO+i+3

-a;"
t+i+3

11. Suppose, for example, that we wish to determine, in

each of the three cases, the potential of a spherical shell

whose external and internal radii are a, a, respectively, and
whose density varies as the square of the distance from a
diametral plane.

Taking this plane as that of xy, the density may be ex-

pressed by pz
2

,
or -jC>

2
- Now

/
u,
2 = ^-^- . Hence the

density of this sphere may be expressed as

The several potentials due to the former term will be,

2
writing 2 for i and multiplying by

-
,

o
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p ,

* aJr ' a s ' *

15 tf* '105F a r
s '

15 A* V 2 7

And for the latter term, writing for i, and 2 for w, and

multiplying by ^
,

47rp 4 , 4
477 p o^-fl'

5
47T p (cf-r*

r
5 - a'

5
\

12 "A*
(t

*
}> 15 77 r 3 77 V 4 or J

'

3*
2

?-
2

And, since P/
2 = -~

,
we get for the potential at an

A

internal point

at an external point

- a'
7

47r

5
~

?:> + r

at a point forming a part of the mass

f -

12. We may now prove that by means of an infinite sei'ies

of zonal harmonics we may express any function of p, what-

ever, even a discontinuous function. Suppose, for instance,

that we wish to express a function which shall be equal to

A from
/*-
= ! to /A

= \, and to B from p,=\ to /it= 1.

Consider what will be the potential of a spherical shell,

radius c, of uniform thickness, whose density is equal to A
for the part corresponding to values of

//,
between 1 and X,

and to B for the part corresponding to values of p between X
and 1.

Divide the shell, as before, into indefinitely narrow strips

by parallel planes, the distance between any two successive

planes being
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We have then, for the potential of such a sphere at any
point of the axis, distant z from the centre,

for the first part of the sphere

and for the latter part

These are respectively equal to

s ~z*

Ic

at an internal point ;
and to

/\

/

;(p.
+P1

at an external point.

Now it follows from Chap. II. (Art. 23) that if i be any

positive integer,

whence, since I P^ =
0, it follows that

'-i
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Also f P.dp = 1 - X, f P*di*
= 1 + X.

J\ J -1

Hence the above expressions severally become :

For the potential at an internal point on the axis

.**? A 1-

and for the potential at an external point on the axis

V / ~"~ x ' / ("D S\\ 7D/-\M ^-
q I

PAX)
-P

o(
X
)l ^** V #V

A-B

Hence the potentials at a point situated anywhere are

respectively

o

A-B

c

.,2

at an internal point;
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and

at an external point.

Now, if we inquire what will be the potential for the

following distribution of density,

\ [.4(1
-

X) + B(l + X)
- (A - )(P2(X)

-

-...],

we see by Art. G that it will be exactly the same, both at

an internal and for an external point, as that above in-

vestigated for the shell made up of two parts, whose densities

are A and B respectively.

But it is known that there is one, and only one, dis-

tribution of attracting matter over a given surface, which

will produce a specified potential at every point, both ex-

ternal and internal. Hence the above expression must

represent exactly the same distribution of density. That is,

writing the above scries in a slightly different form, the

expression
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is equal to A, for all values of p from 1 to X, and to B for all

values of fi from X to 1.

13. By a similar process, any other discontinuous function,
whose values are given for all values of

//,
from 1 to 1, may

be expressed. Suppose, for instance, we wish to express a
function which is equal to A from p = 1 to p = \, to B from

fi
= \ to /*

= X
2,
and to C from /A

= X
2
to p = 1. This will

be obtained by adding the two series

For the former is equal to .4 .Z? from /A
= 1 to /&

= Xp
and to from /A

=\ to /A
= 1

;
and the latter is equal to

B from
jj,
= 1 to /*

= X
2,
and to (7 from

/u,
= X

2
to p = 1.

By supposing A and (7 each = 0, and B = 1, we deduce a
series which is equal to 1 for all values of

//,
from p =\ to

/tt
= X

2,
and zero for all other values. This will be

This may be verified by direct investigation of the

potential of the portion of a homogeneous spherical shell,

of density unity, comprised between two parallel planes,
distant respectively c\ and cX

2
from the centre of the

spherical shell.

14. In the case in which X
t
and X

2
are indefinitely nearly

equal to each other, let \ = X, and \ = X + d\. We then

have, ultimately,

F. H.



66 APPLICATION OF ZONAL HARMONICS

Hence P^fa) -Pi+1(X2)
-P^XJ

Hence the series?

+ 5P,(x)P.OO

is equal to 1 when /i
= X (or, more strictly, when //,

has any
value from X to X + eZX) and is equal to for all other values

of /*.

We hence infer that

i +ZPMPM + ..- + (+ i)^(x)P,0") -f ...

is infinite when /i
= X, and zero for all other values of /*.

15. Representing the series

4{l + 3Pr(x)P + ... + (2t + IJP^P^) + ...}:'

by $(X) for the moment, we see that pcf)(\}d\ is equal to p
when ^ = X, and to zero for all other values. Hence the

expression

fa*W+ft*W + }&
is equal to pt

when /*
= X

1 , to p2
when /i

= X
2
... Supposing

now that X
lt
X

2
... are a series of values varying continuously

from 1 to 1, we see that this expression becomes

I pc/>(X)^X,-
J -i

p being any function of X, continuous* or discontinuous.

Hence, writing <(X) at length, we see that

f
J _i

is equal, for all values of p from - 1 to + 1, to the same
function of p. that p is of X.
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16. The same conclusion may be arrived at as follows :

The potential of a spherical shell, whose density is p,

and volume U, at any point on the axis of z, is

pd\

u ( r
1 z c

1

which is equal to ^- -I I pd\ -\ I pP
Ac (J -i CJ -i

for an internal point,

and to fji
f pd\ + -

2 1* pP1(X)cZ\ + .. .

i
(.2;^ _a

Z J _i

+ 4 fpPiWdX + ...,
^ J-l J

for an external point.

It hence follows that the potential, at a point situated

anywhere, is

for an internal point,

and to ~

for an external point.

And these expressions are respectively equal to those

for the potentials, at an internal and external point re-

spectively, for matter distributed according to the following
law of density :

52
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...j.

It will be observed, in applying this formula, that if p be

a discontinuous function of A, each of the expressions of the
rl

form I pP&JdX will be the sum of the results of a series of
J _i

integrations, each integration being taken through a series of

values of X, for which p varies continuously.



CHAPTER IV.

SPHEEICAL HARMONICS IN GENERAL. TESSERAL AND SEC-

TORIAL HARMONICS. ZONAL HARMONICS WITH THEIR

AXIS IN ANY POSITION. POTENTIAL OF A SOLID NEARLY

SPHERICAL IN FORM.

1. WE have hitherto discussed those solutions of the

equation V
2F= which are symmetrical about the axis of z,

or in other words, those solutions of the equivalent equation in

polar co-ordinates which are independent of <>. We propose,
in the present Chapter, to consider the forms of spherical
harmonics in general, understanding by a Solid Spherical
Harmonic of the I

th
degree a rational integral homogeneous

function of x, y, z, of the i
ih
degree which satisfies the equa-

tion V2V= 0, and by a Surface Spherical Harmonic of the

t* degree the quotient obtained by dividing a Solid Sphe-

rical Harmonic by (a? +y* + z*)*. Such an expression, as we
see by writing x = r sin cos <, y = r sin 6 sin

<f>,
z = r cos 0,

will be of the i
tt

degree in sin 6 cos
<f>,

sin sin <>, cos
;
and

will satisfy the differential equation in Y
it

1 d /. a dYt\, 1 &< .

-.
7, -53 (

sm -v
'

} + -r-5-2,
- + 1 (i + 1) Y, = 0,sm d0\ dO ) sin' dp

or, writing p for cos 0,

It will be convenient, before proceeding to investigate the

algebraical forms of these expressions, to discuss some of

their simpler physical properties.

2. We will then proceed to shew how spherical har-

monics may be employed to determine the potential, and
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consequently the attraction, of a spherical shell of indefinitely
small thickness.

We will first establish an important theorem, connecting
the potential of such a shell on an external point with that

on a corresponding internal point. The theorem is as follows :

If be the centre of such a shell, c its radius, P any in-

ternal point, P' an external point, so situated that P' lies on
OP produced, and that OP . OP' = c

2
, and if OP = r, OP' = r',

then the potential of the shell at P is to its potential at P'

as c to r, or (which is the same thing) as r' to c.

For, let A be the point where OP' meets the surface of

the sphere, Q any other point of its surface. Then, by a
known geometrical theorem,

And

QP: QP ::AP:AP'::c-r: r'-c.

c r cr rz
cr r

z
r c

r c rr cr c cr c r

Again, considering the element of the shell in the im-
mediate neighbourhood of Q, its potential at P is to its

potential at P' as QP is to QP, that is, as c to r, or (which
is the same thing) as r' to c, which ratio, being independent
of the position of Q, must be true for every element of the

spherical shell, and therefore for the whole shell. Hence
the proposition is proved.

3. Now, suppose the law of density of the shell to be

such that its potential at any internal point is F(JJ,, $)
-

1 .

c

rt

Then F(ji, <) . must be a solid harmonic of the degree i.
C

Hence F
(jj,, <) must be a surface harmonic of the degree i.

Let us represent it by Y
t
.

By the proposition j ust proved, the potential at any
external point, distant r from the centre, must be

r
m

Y*-
i 'i+l

'
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Hence, the component of the attraction of the sphere on
the internal point measured in the direction from the point
inwards, i.e. towards the centre of the sphere, is

And the component in the same direction pf the attraction

on the external point, measured inwards, is

Now suppose the two points to lie on the same line

passing through the centre of the sphere, and to be both

indefinitely clo^e to the surface of the sphere, so that r and r

are each indefinitely nearly equal to c.

And the attraction on the external point exceeds the

attraction on the internal point by

Now, supposing the shell to be divided into two parts,

by a plane passing through the internal point perpendicular
to the line joining it with the centre, we see that the at-

traction of the larger part of the shell on the two points will

be ultimately the same, while the component attractions of

the smaller portions, in the direction above considered, will

be equal in magnitude and opposite in direction. Hence the

difference between these components, viz. (2i + 1) ,
will be

c

equal to twice the component attraction of the smaller

portion in the direction of the line joining the two points.
But if pt

be the density of the shell, 8c its thickness, this

component attraction is '27rp t
Bc.

Hence (2i + 1)
c

*

or Pi
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And, if
<TJ

be the corresponding surface density,

It hence follows that if the potential of a spherical shell,

of indefinitely small thickness, be a surface harmonic, its

potential at any internal point will be proportional to the

corresponding solid harmonic of positive degree, and its po-
tential at any external point will be proportional to the

corresponding solid harmonic of negative degree.

That is, the proposition proved for zonal harmonics in

Chap. in. Art. 6, is now extended to spherical harmonics in

general.

4. The spherical harmonic of the degree i will involve

2i + 1 arbitrary constants.

For the solid spherical harmonic, r*Y., being a rational

integral function of x, y, z of the i
th

degree, will consist of

^
--- terms. Now the expression V 2

F, being a

rational integral function of x, y, z of the degree i - 2, will

(i 1)i
consist of - ~ terms

;
and the condition that it must be

= for all values of x, y, z, will give rise to
^~

relations
Zt

({+ ~]\ (,4. 2)
among the ^

-^
--J- coefficients of these terms, leaving

2
--- or 2i + 1, independent coefficients.

5. We proceed to shew how the spherical harmonic of the

degree i may be arranged in a series of terms, each of which

may be deduced by differentiation from the Zonal Harmonic
symmetrical about the axis of z. The solid zonal harmonic,
which, in accordance with the notation already employed, is

represented by r
fP

t (p), is a function of z and r of the degree i,

satisfying the equation V
2F= 0, or +

d~ + -*= 0.
ct^o cty ct&

Now, if we denote this expression by Pi (z), we see that
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since it is a function of z and r, it is a function of the dis-

tance (z) from a certain plane passing through the origin, and
of the distance (r) from the origin. Further, if we write for z

the distance from any other plane passing through the origin,

leaving r unaltered, the equation -7-5- + -T-^ + -rt

continue to be satisfied.

Now z + a. (x +J ly), a being any quantity whatever,

represents the distance from a certain plane passing through
the origin, since in this expression, the sum of the squares
of the coefficients of z, x, y is equal to unity. Hence

P
t {z + a(x + *Jly)} is a solid zonal harmonic of the

sc *u

degree i, its axis being the imaginary line - =
'J=-

= z.

Therefore the equation
d*V d*V d*V_
dx*

+
df

+
dz*

~ :U
'

is satisfied by F=P, {z + a (x + ^fIy)}, that is, expanding
by Taylor's Theorem, it is satisfied by

1.2... i dz*
'

for all values of ct.

Hence, since the equation in V is linear, it follows that

it is satisfied by each term separately, or that, besides P
i (z}

itself, each of the i expressions,

satisfies the equation V= 0.

By similar reasoning we may shew that each of the i ex-

pressions,

satisfies the same equation.
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Now each of the 2i solutions, thus obtained, is imaginary.
But the sum of any two or more of them, or the result

obtained by multiplying any two or more by any arbitrary

quantities, and adding the results together, will also be a

solution of the equation. Hence, adding each term of the

first series to the corresponding term of the second, we ob-

tain a series of * real solutions of the equation. Another

such series may be obtained by subtracting each term of the

second series from the corresponding term of the first, and

dividing by V 1. We have thus obtained (including the

original term PI(Z}} a series of 2t + l independent solutions

of the given equation, 'which, will be the %i + 1 independent
solid harmonics of the degree i.

6. We may deduce the surface harmonics from these by
writing r sin 6 cos < for x, r sin 6 sin

^>
for y, r cos 9 for z,

and dividing by r\ Then, putting cop 6 = JJL,
and observing

that P
t (a)

= r'P, (/*), ~j~ = r1 .
. . . we obtain the fol-

dz dp
lowing series of 2i + 1 solutions :

,

fi
-

L *a M ia
sinA sin -4^ ,

sin 2cf> sin
8

,--'- ,
... sin i& sin* 6

dp, d/ju

Expressions of the form

or

or their equivalents,
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(G and 8 denoting any quantities independent of 6 and <)
are called Tesseral Surface Harmonics of the degree i and
order or. The particular forms assumed by them when
a- = i are called Sectorial Surface Harmonics of the degree i.

It will be observed that, since j-^- is a numerical constant,
dp

Sectorial Harmonics only involve 6 in the form

The product obtained by multiplying a Tesseral or

Sectorial Surface Harmonic of the degree i by r* (that is,

the expression directly obtained in Art. 5) is called a Tesseral

or Sectorial Solid Harmonic of the degree i.

7. We shall denote the factor of a Tesseral or Sectorial

Harmonic which is a function of 0, that is sin ^ ~-t
,
or

dp?
- d*P (u)

(1 /*
2

)

2

j^ , by the symbol T("\ or, when it is necessary

to particularize the quantity of which it is a function, by

It will be convenient, for the purpose of comparison with
the forms of Tesseral Harmonics given in the Mecanique
Celeste, and elsewhere, to obtain TJ?) in a completely de-

veloped form.

Now, since P,(/t) - , r-^ . ^ '-, we see that
. JL.^o**^ CLUj

2M.2.3...t

S|
fc 2J-2 i V

~"~
/ 2(-4

*
-J/* +

~IT2~ /i '

Now 2'
*

4-
* *

w -* "
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,

2.4.(2i-l)(2*-3)

And therefore

_ g__
2.4(2*-l)(2-8)

The form given, by Laplace for a Tesseral Surface Har-

monic of the degree i and order <r is (see Mecanique Celeste?

Liv. 3, Chap. 2, pp. 4047)

-4 being a quantity independent of ^ and <. The factor of

this, involving /i, is. denoted by Thomson and Tait (Natural

Philosophy, Vol. 1, p. 149) by the symbol ^\ Thomson
and Tait also employ a symbol ^/

<7

>, adopted by Maxwell in

his Treatise on Electricity and Magnetism, Vol. 1, p. 164,
which is equal to

^d'PM^ P; -

or 2'- '
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Heine represents the expression

2(2t-l)

2.4.(2f-l)(2f-3)

_ 4 _

or (- 1)
2

/?>, by the symbol PJ (/*), and calls these expres-
sions by the name Zugeordnete ^Functionen Erster Art (Hand-
buck der Kugelfunctionen, pp. 117, 118) which Todhunter
translates by the term "Associated Functions of the First

Kind," which we shall adopt.

Heine also represents the series

(* a-} (i a- 1) .

i_/ > / \ / ..i rr 2

V *
) \" " *) v " ") v ^ ) i-<r-4

by the symbol ^(/*), (p- H7).

The several expressions, 2]^, I "), S-W, P^., -|j&, are con-

nected together as follows :

2 1

. 1.2. 3... i*

T<0} = w
2i(2i-l)...(t-<r + l)

'

H
*

8. It has been already remarked that the roots of the

equation Pt
= are all real. It follows also that those of the

dP. d*P
equations

-~=
Q, -j-j

=0... are real also. Hence we may

arrive at the following conclusions, concerning the curves,
traced on a sphere, which result from our putting any one
of these series of spherical harmonics = 0.

By putting a zonal harmonic=0, we obtaint small circles,

whose planes are parallel to one another, perpendicular to
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the axis of the zonal harmonic, and symmetrically situated

with respect to the diametral plane, perpendicular to this

axis. If i be an odd number this diametral plane itself

becomes one of the series.

By putting the tesseral harmonic of the order cr=0, we
obtain i <r small circles, situated as before, and a- great
circles, determined by the equation cos cr< =

0, or sin
<r<f)

= 0,

as the case may be, their planes all intersecting in the axis

of the system of harmonics, the angle between the planes of

7T

any two consecutive great circles being
-

.

By putting the sectorial harmonic = 0, we obtain i

great circles, whose planes all intersect in the axis of the

system, the angle between any two consecutive planes being
7T

9. The tesseral harmonic may be regarded from another

point of view. Suppose it is required to determine a solid

harmonic of the degree i, and of the form Yp', such that Y
s

shall be the product of a function of fi, and of a function of <,
which functions we will denote by the symbolsMf ,

Oi? respec-

tively. The differential equation, to which this will lead, is

Now this will be satisfied, if we make M
t
and <E>

4 satisfy
the following two equations :

_

The latter equation gives

= C cos a<> + C' sin c-<.

And, taking <r as an integer, positive or negative, the
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former is satisfied by M.= Tp\ i.e. (I-(S(J-J

+

\1 -/**)',

as we proceed to prove.

We know that

Differentiate a- times, and we get

,7<r4-l

whence, by Leibnitz's Theorem^

or

and, multiplying by (1 /i
2

)

2

,

Now, putting

we get

< A
;

= 0... (1).

-=
(i
- tsy -vpj-

-
<rfi (i

-
ii

9

)
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-
{er

(cr + 1) (1
-

/*")*- a" (1
- rf~

And t ( + 1) r/') = t (i+ 1) (1
- 1$

Hence the equation above given for M
t
is satisfied by

Jf. = TW, and the equation in Y
t
is satisfied by

Y
i
= Cr

t
w cos

o-</> + 0' T^> sin cr<.

10. In Chap. II.Art.lO we have established the fundamental

property of Zonal Harmonics, that if i and m be two unequal

positive integers, P^^dfi = 0. This is a particular case
J """ 1

of the general theorem that if Y
i}
Ym be two surface har-

monics of the degrees * and m respectively,

r rv
j-j.

'
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For, let Vf, Vm be the corresponding solid harmonics, so

that V
i
= r*Y

t,
Vm = rmYm. Then, by the fundamental pro-

perty of potential functions, we have at every point at which
no attracting matter is situated,

. . ._
da? dy* dz*

' da?' df
"

dz*

and therefore

v? df dz*
m
\dx* dtf dz*~

or, in accordance with our notation, F^y
2Vm J^V* Fj

= 0.

Now, integrate this expression throughout the whole

space comprised within a sphere whose centre is the origin
and radius a, a being so chosen that this sphere contains no

attracting matter. We then have

But also, when the integration extends over all space

comprised within any closed surface, we have

dS denoting an element of the bounding surface, and -r-
(tfi

differentiation in the direction of the normal at any point.

Now, in the present case, the bounding surface being a

sphere of radius a, and Vly Vm homogeneous functions of the

degrees ', m, respectively,

and, the integration being extended all over the surface of

the sphere, the limits of /* are 1 and 1, those of <, and STT.

Hence

F.H.
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whence, ifm i be not 0,

/i
rzv

I Yfdfuty will be investigated here-

after.

11. We may hence prove that if a function of p and
<f>

can be developed in a series of surface harmonics, such de-

velopment is possible in only one way.

For suppose, if possible, that there are two such develop-

ments, so that

^,<)=r;+F1 +... + Fi -f..,

and also

Then subtracting, we have

0= F - F '+ Ft
- 17+ ... + Ff

- Y[ + ... identically.

Now, each of the expressions F9
F ', Ft F/... F4 F/

being the difference of two surface harmonics of the degree
0, 1, ...i... is itself a surface harmonic of the degree
0, 1, ........ Denote these expressions for shortness by
Zot Zt

...Zt ... so that

=Z
9 + Zt + ... + Z, + ... identically.

Then, multiplying by Z^ and integrating all over the

surface of the sphere, we have

That is, the sum of an infinite number of essentially

positive quantities is = 0. This can only take place when
each of the quantities is separately = 0. Hence Z

i
is identi-

cally =
0, or Y

t

f = F and therefore the two developments
are identical.

We have not assumed here that such a development is

always possible. That it is so, will be shewn hereafter.
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12. By referring to the expression for a surface har-

monic given in Art. 4, we see that each of the Tesseral and

Sectorial Harmonics involves (1 /^, or some power of

(1 #t
2

)^, as a factor, and therefore is equal to when p =1.
From this it follows that when /* 1, the value of the

Surface Harmonic is independent of
<f>,

or that if Y (JM, </>) repre-
sent a general surface harmonic, Y

( 1, <f>)
is independent of

<f>,
and may therefore be written as F (+ 1). Or Y (1) is the

value of Y(/JL, <) at the pole of the zonal harmonic P<(/*),

Y( 1) at the other extremity of the axis of P
4 (/*).

We may now prove that

For, recurring to the fundamental equation,

dfj,

Now, if we integrate this equation with respect to
<f>,

between the limits and 2?r, we see that, since

and the value of Y
t only involves $ under the form of cosines

or sines of < and its multiples, and therefore the values of

rr* are the same at both limits, it follows that

Hence

f2ir

(

rZir

Hence I Y
t
dd> is a function of p which satisfies the

Jo
fundamental equation for a zonal harmonic, and we therefore

have

62
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ran-

IJo'0

C being a constant, as yet unknown.

To determine C, put /i=l, then by the remark just made,
Y

i
becomes 3^(1), and is independent of <. Hence, when

^ = 1,
P* Y

i d<j>
= 2'n-Y

i (l}. AlsoP
i (/i)

= l. We have there-

fore

fJoo
It follows from this that

13. We may now enquire what will be the value of

fl rtoi

YiZidpdh
J -iJo

Yi} Z. being two general surface harmonics of the degree i.

Suppose each to be arranged in a series consisting of the
zonal harmonic P

{
whose axis is the axis of z, and the system

of tesseral and sectorial harmonics deduced from it. Let us

represent them as follows :

cos <> + ... + cos o-

sin 2< + ... + S.TJA smo-<#> + ...

+ ^r
aPt

j
TV cos

<j>
+ c

2
!T cos

2(j> + ... f cffT/
CT) cos o-<

Co- jTj^ COS l^>

+ s
x
T

4
sin ^ + s

2T/2) sin
2c/> + . . . + ^T^W sin <r< + . . .

+ 8vTt
sin

**</>.

Hence the product 3^^ will consist of a series of terms,
in which < will enter under the form cos

cr</>
cos </<, or

cos
a<f)

sin
a'<f). This expression when integrated between
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the limits and 2?r vanishes in all cases, except when
cr' = <r and the expression consequently becomes equal to

cos
2

<r(j),
or sin

2

k
cr<. In these cases we know that, a- being any

positive integer,

T2ir TBir

I
cos

2
<r< d< =5= si

Jo Jo
sn a = IT.

o

Hence the question is reduced to the determination of the

value of

Now

n ,

-
^ J

dp
i+

But, by the theorem of Kodrigues, proved in Chap. II.

Art. 8, we know that

Hence T^ may also be expressed under the form

* J-^'-l

whence it follows that

1

Now, putting (/i

2

1)'
=M for the moment, and inte-

grating by parts,

t

J

1-*M
dp

ii+<r

1*"' 1M d1-'* 1M ..

**-1 *-*+i ^
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Ji <r
Jl^f

The factor ,. vanishes at both limits, hence
dfju

l ~ <r

'M, _f
1 di+ff~ lM tf-^M ,

^ *''
~

**"1 -'+1 *

by a repetition of the same process.

And by repeating this process a times, we see that

'M , ,

r - du, = ( 1*-'

i

-(-!) (2M. 2. 3...

Hence

and therefore

1

f"(KW cos
o-<f>)

2

tZ/i^ = f

X

/""(T-W sin
-iJo J-iJo

o- 2?r

It will be observed that this result does not hold when
cr = 0, in which case we have

fl /-27T

Y&
J-iJo

Hence

47T

* In this case f
*
Cos* tr&d<b = f

*
sin5

ffd>dd>
Jo JQ
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, 14. We have hitherto considered the Zonal Harmonic
under its simplest form, that of a "

Legendre's Coefficient
"
in

which the axis of z, i. e. the line from which 9 is measured, is

the axis of the system. We shall now proceed to consider it

under the more general form of a "Laplace's Coefficient,"
in which the axis of the system of zonal harmonics is in any
position whatever, and shall shew how this general form may
be expressed in terms of P

t (/*) and of the system of Tesseral

and Sectorial Harmonics deduced from it.

Suppose that &', <' are the angular co-ordinates of the
axis of the Zonal Harmonic, i.e. that the angle between this

axis and the axis of z is tf, and that the plane containing
these two axes is inclined to a fixed plane through the axis

of z which we may consider as that of zx, at the angle <f>'.

In accordance with the notation already employed, we shall

represent cos & by fjf.

The rectangular equations of the axis of this system
will be

_
sin & cos $ sin & sin

</>'
cos &

'

Hence the Solid Zonal Harmonic of which this is the axis

is deduced from the ordinary form of the solid zonal har-

monic expressed as a function of z and r by writing, in place
of z, x sin & cos <' + y sin 6' sin

(f>
+ z cos 6'.

To deduce the Surface Zonal Harmonic, transform the solid

zonal harmonic to polar co-ordinates, by writing rsin#cos<
for x, r sin sin

<f>
for y, r cos 6 for z, and divide by r*.

The transformation from the special to the general
form of surface zonal harmonic may be at once effected,

by substituting for p, or cos 9, cos0cos0'+sin0sin#
/

cos(< <').

Now, in order to develope

P
t [cos 9 cos & + sin 6 sin ff cos

(< <')}
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in the manner already pointed out, assume

P
t {cos cos & + sin sin & cos (0

-
0')}

=AP
t fa) + (CW cos + < sin 0)

cos 20 + <2> sin 20)

> cos o-0 + <"> sin 0-0)

cos i + #W sin i

the letters -4, ... <7 (<r)
,
S^ ... denoting functions of fi and

0', to be determined.

To determine (7 (<T)
, multiply both sides of this equation

by cos <70 T/^ and integrate all over the surface of the sphere,
i.e. between the limits 1 and 1 of p, and and 2?r of 0.

We then et

!
J

P
i {cos cos & + sin sin ff cos (0

-
0')} cos <r

-wo

-iJo

CO.

It remains to find the value of the left-hand member of

this equation.

Now cos o-0 2T
cr) is a surface harmonic of the degree i, and

therefore a function of the kind denoted by Yi
in Art. 12.

And we have shewn, in that Article, that

that is, that r/ ?IT/ surface harmonic of the degree i 5<? multi-

plied by the zonal harmonic of the same degree, and the product
integrated all over the surface of the sphere, the integral is

equal to
^.

=- into the value which the surface harmonic

assumes at the pole of the zonal harmonic.
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Hence
fl r2ir

P
4 [cos cos & + sin sin & cos

(<
-

<')} rt (/*, <) dp, d<j>
J -1./0

and therefore

P I P
t {cos 0cosff + sin sin 0' cos

(<
-

</>')}
cos a-(j>T

Hence

or CW = 2 ^ cos <rti T^ (fi).
\1 + <T

Similarly fW = 2 LL=f sin <rf T^ 0*').
I ^ "T" ^"

And to determine A, we have

f

1

f^P, (cos cos & + sin sin & cos
(<f>
-

A')} P<

J_iJo

-1JO

4?r

or ^ = ,().

Hence, P, (cos ^ cos 0' + sin sin ^ cos
(</> ^>')|

,W P, 0*) + 2[= cos (0
-

</,') Tp (/) T4

(
J)

0*)
I T A
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,W 0*) + ...

15. We have already seen (Chap. II. Art. 20) how any
rational integral function of

yu,
can be expressed by a finite

series of zonal harmonics. We shall now shew
^

how
^
any

rational integral function of cos 6, sin 6 cos <, sin 6 sin
</>,

can be expressed by a finite series of zonal, tesseral, and

sectorial harmonics.

For any power of cos < or sin <, or any product of such

powers, may be expressed as the sum of a series of terms of

the form cos cr<, or sin <r<, the greatest value of cr being the

sum of the indices of cos
</>
and sin <, and the other values

diminishing by 2 in each successive term. Hence any
rational integral function of cos 6, sin 6 cos

<j>,
sin sin

<f>,
will

consist of a series of terms of the form

cos
7" 6 sin" 6 cos cr< or cos

1" 6 sin" 6 sin
(?<j>,

where n is not less than <r.

If n be greater than cr, n a- must be an even integer. Let

n cr= 2s, then writing sin"# under the form (1 cos"#)* sin ^
we reduce cos"

1 6 sin" 6 cos
<T(J>

to the sum of a series of terms

of the form cos* 6 sin
"

6 cos cr<, or, writing cos =
//.,

of the
<r

form
/ji

p
(1 /A

2

)

2
cos a$.

Similarly cos 6 sin" 6 sin cr< is reduced to a series of
tr

terms of the form p? (1 yx

2

)

2
sin cr<.

1 f?*
T\JOVV ,.p__-*" **

..P+ir^
~(p+o-)(p + <r-l)...(p+l)<V^

and np+(T can be developed in a series of terms of the form
of multiples of Pp+<r , Pp+a z .... (Chap. II. Art. 17.)

Hence ^ can be expressed in a series of the form

d?
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A0> AI representing known numerical constants, and therefore
<T

fj? (1 /u,

2

)
2 assumes the form

p+r-z + ...),

consequently multiplying these series by cos
cr<j>

or sin c-0, we
obtain the developments of

tr jr

fj? (1 fj?)

2
cos <70 and i& (1 /*,*)

*
sin er<

in series of tesseral harmonics.

16. We will give two illustrations of this transformation.

First, suppose it is required to express cos
2
6 sin*0 sin

<j>
cos<

in a series of Spherical Harmonics.

Here we have sin
<j>

cos
<f>
= -= sin 20.2

Hence cos
2
6 sin* 6 sin < cos

<f>
=
^ cos

3 ^ sin
9
6 sin 20.2

Comparing this with cos"* sin" sin <r0, we see that n is

not greater than a.

Hence cos
2
6 sin

2 6 sin cos = -
/x

2

(1 /i
s

)
sin 20.

and

, 1 /8 ^2P4

12V35 d" 7

105 dp
3

21

/. cos
8
6 sin

2 ^ sin cos

1 ( 2
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Next, let it be required to transform cos
3
6 sin

3 6 sin $ cos
2

into a series of Spherical Harmonics.

Here sin
<f>
cos

2
< = ~ sin 2$ cos

<f>
=
^ (sin 3$ + sin <).

Now cos
3
6 sin

3
6 sin 3< =

/i
3

(1
-

/**)' sin 3<

Also cos
3
5 sin

3
sin < = /* (1

-
tf} (1

-
At

2

)* sin <j>

= (/-,/) (1
-^ sin

</>

Also (Chap. II. Art. 17)

16 24 10 1-
6̂ + 4+ ^

2 + *

Hence cos
3
6 sin

3
# sin

1/16 d5P

1

And cos
3
6 sin

3
6 sin 6 = ( ^

VG93 d/i, 385 dp 63

9 4i

vi ,

)2 gin G>

. ._

693 e 385 * 68

^ sinc^ cos
2

</>
=

(D - ^ sin
693 6

770 63
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17. The process above investigated is probably the most
convenient one when the object is to transform any finite

algebraical function of cos#, sin 6 cos
<j>,

and sin#sin<, into

a series of spherical harmonics. For general forms of a
function of p, and

<j>, however, this method is inapplicable,
and we proceed to investigate a process which will apply
universally, even if the function to be transformed be discon-

tinuous.

We must first discuss the following problem.

To determine the potential of a spherical shell whose
surface density is F(ji,<p), J^ denoting any function whatever
of finite magnitude, at an external or internal point.

Let c be the radius of the sphere, r' the distance of the

point from its centre, &, <}>'
its angular co-ordinates, Fthe

potential. Then p being equal to cos 6

fi rzv
=
J.J - fyC 2cr (cos 6 cos&+ sin 6 sin& cos

(<j>
-

The denominator, when expanded in a series of general
zonal harmonics, or Laplace's coefficients, becomes

for an internal and an external point respectively, Pt (p,

being written for

P
i (cos 6 cos & + sin 6 sin & cos

(<
-

<')}.

Hence, V1 denoting the potential at an internal, F2
at an

external, point,
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/-2ir /. f* /27T/. f* /27T

pJ_JQ
P>,

It will be observed that the expression Pi (p, <J>)
involves

//,
and // symmetrically, and also < and

<}>.
Hence it satisfies

the equation

d - T-7 ^
--

rz -,-,,

CtyU, J IfJ, d{J,*

And, since
/LI

and < are independent of
fjf and

^>',
this

differential equation will continue to be satisfied after P
4
has

been multiplied by any function of
yu.
and <, and integrated

with respect to
ft,

and
<f>.

That is, every expression of the

form

r rp
J-wo

is a Spherical Surface Harmonic, or "Laplace's Function"
with respect to // and <' of the degree i. And the several

terms of the developments of F
t
are solid harmonics of the

degree 0, 1, 2...1... while those of F
2
are the corresponding

functions of the degrees 1, 2, 3... (i+ 1), ... And
these are the expressions for the potential at a point (/, //, <')

of the distribution of density F(p!, </>')
at a point (c, /u.', <').

Now, the expressions for the potentials, both external

and internal, given in the last Article, are precisely the same
as those for the distribution of matter whose surface density is

J _i J /-WO

+ (2. + 1) [JfPifa 0) ^(^ </>)W +-},

or, as it may now be better expressed,
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+ 3 f |
J* (cos0 cos5'+ sin0 sinfl' cos (-<') F(p,

J-iJo

f f P
i{cos^cos^'+sm^sm^cos(^-<#>')}-F(^)^^+...

And, since there is only one distribution of density which
will produce a given potential at every point both external

and internal, it follows that this series must be identical

with F(fjb', <'). We have thus, therefore, investigated the

development of F(p, $) in a series of spherical surface

harmonics*.

The only limitation on the generality of the function

F(fi, <j>)
is that it should not become infinite for any pair of

values comprised between the limits 1 and 1 of /*, and
and 2?r of <.

18. Ex. To express cos 2<' in a series of spherical har-

monics.

For this purpose, it is necessary to determine the value of

(2t + 1) f [
*P

t (costf cos0'+sm0 Sin0' cos (<-<')} cos 2<j>dfjid6.
J-iJo

Now P
t (cos 6 cos & + sin 6 sin & cos ($ <'

= P<(eos0)P,(cos0')
2

- - -- -
-,

dp dp.

.

2ffS1

cos -

. a# t ,.""" ~

/2ir

Now I cos cr (^> (>')
cos

Jo

for all values of cr except 2.

* In connection with the subject of this Article, see a paper by Mr G. H.
Darwin in the Messenger of Mathematics for March, 1877.
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fZrr

And I cos 2
(<
-

<') cos 2<
d(j>
= TT cos 2< .

Jo

Also

And

Now when /*
= 1,

f ^c^^-iy.

And when /A
= 1,

r7
m

f i/
2 _ 1 V n'

1
"1 O/2

1 V
..2 i>)

a I/* ^ -Q ,rP-r-lV+1 ^ j -0
cZ/i
m J ^^-^ V

^t-i

Hence

= 4 or 0, as i is even or odd
;

, /N- f

cos

= 4?r cos
2<^>'

or 0, as i is even or odd
;

2<'

If, 2 . ,tPPa (cos^) ..,= T~ 1 T o Q 4 sin
2
^' --9-72

- IT cos 2<f>
4?r

(
1.2.3.4 dyu,

2 . .
t

o
--^^ 4 sm --r-^

- T cos
S . 4 . o . 6 df
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2 . ,,<fP(cos0' .,

.
o . o . 7 . o

- 2
i.7?>

....).

Hence the potential of a spherical shell, of radius c and
surface density cos 20', will be

/ T7 *2) r'2 77 <2) r'4
^(2) r'6

$vfTT- ("*(~vc 5fn f |
2 .i, _o . | T

and

(/7T

(2) 3 /TT (2) _5 /7T (2) 7

^ 'a ^~ .

4

F
. -75 + -p r^= .7 + .

at an internal and external point respectively.

19. We will now explain the application of Spherical
Harmonics to the determination of the potential of a homo-

geneous solid, nearly spherical in form. The following

investigation is taken from the Me'canique Celeste, Liv. in.

Chap. ii.

Let r be the radius vector of such a solid, and let

a being a small quantity, whose square and higher powers
may be neglected, a

lt
a

a) ...a,... lines of arbitrary length, and

YI, Ya,...Yi ... surface harmonics of the order 1, 2,...i... re-

spectively.
fL

The volume of the solid will be _ Tra
3
.

o

For it is equal to

=
\ f [

2

O J _j J

fr /"I /-Sir

J o J -1 -

4 f
1

/"
27r

=
Q Tra

3

,
since Y^^d^ = 0,

O J -i J o

for all values of i.

F. H.
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Again, if the centre of gravity of the solid be taken as

origin, a
l
= 0.

For if ~z be the distance of the centre of gravity from the

plane of xy,

4- r r
1

r
2ir

,

7ra
3 3= rV<

> J J -i J o

Similarly

4
k)

TTCC'X = 4a a . ajo

4 r
1

r
2ir

- vra
3

?/
= 4a3

a . ^ I (1 ^,
2

)i sin
(f)
Y

J-iJ Q

Now Y
t
is an expression of the form

A/j, + B(l- fjffi cos + (7(1
- ftf sin 0,

and therefore all the expressions x, y, z cannot be equal to 0,

unless a
i
= 0.

We may therefore, taking the centre of gravity as origin,
write

r = a + a(a g
r

s + ... + a.Y
t
+ ...),

as the equation of the bounding surface of the solid.

Now this solid may be considered as made up of a homo-

geneous sphere, radius a, and of a shell, whose thickness is

a( 2
F

2 + ... + a
i
F

4 4 ...)

The potential of this shell, at least at points whose least

distance from it is considerable compared with its thickness,
will be the same as that of a shell whose thickness is aa, and

density



TESSERAL AND SECTORIAL HARMONICS. 99

p being the density of the solid. Therefore the potential,
for any external point, distant H from the centre, will be

The potential at any internal point, distant R from the

centre, will be made up of the two portions

1 7rp R* + 27rp (a
2 -

J?) or 2

for the homogeneous sphere,

for the shell, and will therefore be equal to

20. If the solid, instead of being homogeneous, be made

up of strata of different densities, the strata, being concentric,
and similar to the bounding surface of the solid, we may

s*

deduce an expression for its potential as follows. Let - r be

the radius vector of any stratum, p its density, r having the

same value as in the last Article, and p being a function

of c only. Then, Be being the mean thickness of the stratum,
that is the difference between the values of c for its inner

and outer surfaces, the potential of the stratum at an ex-

ternal point will be

To obtain the potential of the whole solid at an external

point we must integrate this expression with respect to r,

between the limits and a, remembering that p is a func-

tion of c.
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Again, the potential of the stratum, above considered,

at an internal point will be

To obtain the potential of the whole solid at an internal

point we must integrate the expression (1) with respect to c

between the limits and R, and the expression (2) with

respect to c between the limits R and a, remembering in

both cases that p is a function of c, and add the results

together.



CHAPTER V.

SPHERICAL HARMONICS OF THE SECOND KIND.

1. WE have already seen (Chap. n. Art. 2) that the

differential equation of which P
t

is one solution, being of

the second order, admits of another solution, viz.

Now if
fj>

between the limits of integration be equal
to + 1, or to any roots of the equation P

t
= (all of which

roots lie between 1 and 1), the expression under the

integral sign becomes infinite between the limits of inte-

gration. We can therefore only assign an intelligible

meaning to this integral, by supposing /* to be always be-

tween 1 and oo
, or between 1 and oo . We will adopt

the former supposition, and if we then put C= 1, the

G (
l \ -n ^ ^

expression ^-7----5-, i.e. 7,0-7-5 =-r will be always posi-
(1
- F) \ P' O ~

!)/
tive. We may therefore define the expression

as the zonal harmonic of the second kind, which we shall

denote by Qt ,
or Q. (p), when it is necessary to specify the

variables of which it is a function.

It will be observed that, if p be greater than 1, P4
is

always positive. Hence, on the same supposition, Qt
is

always positive.

nr f (f/i 1 , /^ + 1
We see that QQ

= -^-r = ^ lo

J/i/*"" 1 -1



102 SPHERICAL HARMONICS OF THE SECOND KIND.

rv i i \j=
1* (2

-
I"-"* )<*/*

J/x V "I /*/

And, in a similar manner, the values of Q2 , Q3> ... may
be calculated.

2. But there is another manner of arriving at these

functions, which will enable us to express them, when the

variable is greater than unity, in a converging series, with-
out the necessity of integration.

This we shall do in the following manner.

Let U= v being not less, and u, not greater, than
v u,

unity.
mi w ty CL LJ
Then -=- =

,
=

2 ,

dv (y fjif dp (y /x)
2 '

-,? 1 / f),. f> \ 1 uy= 2 -.

Now, let - be expanded in a series of zonal harmonics

M, PM...Pt (ji),
so that

by the definition of P
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A 4 i /i *\ d ^And also ^- (1 -i/
2

)
_ I = ...+- J

(1
_

) -^r~4 P.'

And these two expressions are equal. Hence, equating
the coefficients

Hence $|(P) satisfies the same differential equation as P,
and Q t

. But since C7"= when v= oo
, it follows that

<^>j (j/)
= ()

when v = oo . Hence ^>.(i/) is some multiple of Q((y)=-AQ i (^)

suppose. It remains to determine A.

Now, <f>i(v) may be developed in a series proceeding by

ascending powers of -
,
as follows.

We have - = -
-f ^ + ... +-^+ ....

y p v v v

and also = < P (/.) + ft (i/)
P

t (^) +... + ^(v
)
P

1 (/*) + ...

Now, by Chap. n. Art. 17, we see that, if ra be any
integer greater than i, the coefficient of P, in

/Lt

m
is

)7T(OT + 4) (m + 2)

, , .
, T N (m i + 2) (m i + 4) . . . m . c . ,

and (2i -f 1) 7 . rr -
. if i be even,v

,

J

(m+t+l) (m + i-l).. .(-

m i being always even.

Hence, writing for m successively i, i + 2, i + 4, ... we get

4. C. ..(
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2.4...* 1
and :=

4. 6.. .(1 + 2) J_
\ ,.*+3

6.8...(z

(2i + 5)

Now, recurring to the equation

dp

8...(z + 4) 1
)

. ., p -r^ + .... v if i be even.

we see that, if $4 (V) be developed in a series of ascending

powers of -, the first term will be ~^T -^ , where C
v (7 (2i + !)!/*"

is the coefficient of ^ in the development of P
t (/*) ;

. (t + 2) (z + 4)...(2/-l) .,
that is C7= '-> ir * be odd,2.4. G...(i 1)

and -^ "C'-^ ^ if i be even.
2.4. 6...i

Hence the first term in the development of Q t (v) is

9. d, K (i 1)
'/ 1 r/57-7-TT if * be odd

'

2.4.6...; .....
and = ,. .

-
N

~ ... it i be even,
( + l) (t + 8)...(2t-l) (2i + l)

which is the same as the first term of the development of

P
t (v}, divided by -^ =- .

1 -\- L

Hence A = 2i+ 1, and we have

-=QM P
i'
~~ LU

3. The expression for Q t may be thrown into a more
convenient form, by introducing into the numerator and de-
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nominator of the coefficient of each term, the factor neces-

sary to make the numerator the product of i consecutive

integers. We shall thus make the denominator the product
of i consecutive odd integers, and may write

1.2.3...J
JL 3.4.5...fl + 2) J_

5.6.7...t _
+5)/**"

f

fe2...i2&
4*'1

whether i be odd or even.

4. We shall not enter into a full discussion of the pro-

perties of Zonal Harmonics of the Second Kind. They will be
found very completely treated by Heine, in his Handbuch der

Kugelfunctionen. We will however, as an example, investi-

gate the expression for -^ in terms of Qi+l , Qi+3
...

Recurring to the equation

we see that

Now we have seen (Chap. II. Art. 22) that

^^ =
(2.'- i)

P
t,M + (2*

-
5) P,_ + ...

Hence -} = (2+ 1) P,(^) + (2i- 3) P<_M +.
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^M =
(2 + 5) pi+2M + (2i

*M = (2/+ 9) Pi+ + (2t + 5)

And therefore the coefficient of P
4 (/t)

in the expansion
, d 1 .

oi j is

a/i v
/J,

(2t+ l) {(2*+3) Q,. + (2;+7) <X+3 (,) + (

Again,

A -n nJTA.JUIA

di> v
fj, d_

Hence, comparing coefficients of P.
(//,),

V V / _ it)' i o\ r\ i \ /f)
'

i

ty\ /^ / \

Hence it follows that

d.Qt (v) d.Q
-&r

~

and therefore that

5. By similar reasoning to that by which the existence of

Tesseral Harmonics was established, we may prove that there

is a system of functions, which may be called Tesseral Har-
monics of the Second Kind, derived from T/CT) in the same
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manner as Q (
is derived from P.. The general type of such

expressions will be

and this when multiplied by cos
<r<f>

or sin
<rcf>,

will give an

expression satisfying the differential equation

and which may be called the Tesseral Harmonic of the

second kind, of the degree i and order a.



CHAPTER VI.

ELLIPSOIDAL AND SPHEROIDAL HARMONICS.

1. THE characteristic property of Spherical Harmonics
is thus stated by Thomson and Tait (p. 400, Art. 537).

"A spherical harmonic distribution of density on a spheri-
cal surface produces a similar and similarly placed spherical
harmonic distribution of potential over every concentric

spherical surface through space, external and internal."

The object of the present chapter is to establish the ex-

istence of certain functions which possess an analogous pro-

perty for an ellipsoid. They have been treated of by Lame',

in his Legons sur les fonctions inverses des transcendantes et

les fonctions isothermes, and were virtually introduced by
Green, in his memoir On the Determination of the Exterior

and Interior Attractions of Ellipsoids of Variable Densities,

(Transactions of the Cambridge Philosophical Society, 1835).
We shall consider them both as functions of the elliptic co-

ordinates (as Lame' has done) and also as functions of the

ordinary rectangular co-ordinates
;
and after investigating

some of their more important general properties, shall pro-
ceed to a more detailed discussion of the forms which they
assume, when the ellipsoid is a surface of revolution.

2. For this purpose, it will be necessary to transform

the equation
tfV tfVd*V
j-t + -jn + -j-i

^
* or V F=0,

dx ay dz

into its equivalent, when the elliptic co-ordinates e, v, v are

taken as independent variables. If a, b, c be the semiaxes
of the ellipsoid, the two sets of independent variables are

connected by the relations
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f z
*

-i *' _2/!_ z
*

-i
2 ** Tli "*

~ "~"
> 2

""
7.2 t

"^ ^
^~"

*

a y
"

~~T~, "f

~~
i^~.
-

' ~r a~~i '

a + v b + v c +v

Thus a2 + e, J
2 + e, c

2 + e are the squares on the semiaxes

of the confocal ellipsoid passing through the point x, y, z.

a2 + v, &
2 + v, c

2 + v, the squares on the semiaxes of the

confocal hyperboloid of one sheet.

a2 + v, b* + v', <? + v, the squares on the semiaxes of the

confocal hyperboloid of two sheets.

Thus, e is positive if the point x, y, z be external to the

given ellipsoid, negative if it be internal.

And, if a2 be the greatest, c
2 the least, of the quantities

a', V, c",

e will lie between c
2 and oo

,

d*V d*V d*V
3. Now -

-.- + -7-1, -f -j-j = is the condition that
dx ay dz

nt((dVV (dV\* (dV\*\.
1 1 M I -r- 1 + I T- 1 + I -T- f dx du dz,
Jjj\\dxj \dy ) ^\dz) }

taken throughout a certain region of space, should be a mini-

mum. In the memoir by Green, above referred to, this

expression is transformed into its equivalent in terms of a

new system of independent variables, and the methods of the

Calculus of Variations are then applied to make the resulting

expression a minimum. We shall adopt a direct mode of

transformation, as follows :

Suppose a, ft, y to be three functions of x, y, z, such that

V
2
a = 0, V

2

/3 = 0, V
2

7 = ............... (1),

such also that the three families of surfaces represented by
the equations a = constant, /3

= constant, 7 = constant, inter-

sect each other everywhere at right angles, i.e. such that
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d/3 dy d/3 dy d@ dy _ _ dy dot. dy dy. dydi _
dx dx dy dy dz dz dx dx dy dy dz dz

Then

Q
dx dx dy dy dz dz

dx dy. dx d/3 dx dy dx '

!?/^Y ^If^}
2 d

*I(
d
t\

IJL~ (dx/ d(3* (dxj dy* (dx)

f) d*~^d(3dy 2 d*Vdydi Q d*V d*d]3"
dfidy dx dx dydz dx dx

"
dzd/3 dx dx

da dx*
'

d/3 dx*
'

dy dx*
'

-y-s- and -v^ being similarly formed, we see that, when the
dff dz

three expressions are added together, the terms involving
dV dV dV ... ,.
,- , --777, -7- will disappear by the conditions (1), and those

g -fT^-r > i r >
'

-7?> by the conditions (2). Hence
pc/7 c/7Cta dzdp

i-tT _ d^V
(/dj.^ /(^aV /^

c/jt
2

\(dxj (dt/J (dz

+
d
*Z\(W]\r

d/3* }(dx)

d 2

V\fdy\ -.,
1

"
' ""

VrfW I

'

4. Now, let
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/3*=r
Jv f

2

All these expressions satisfy the conditions (1), for a is

the potential of a homogeneous ellipsoidal shell, of proper

density, at an external point, and /3 and 7 possess the same

analytical properties.

Again, a is independent of v and v, and is therefore con-

stant when e is constant. Similarly ft is constant when v is

constant, and 7 is constant when v is constant. Hence a, yS,

7 satisfy the conditions (2).

dx

Now

y AM*
y)

+
\dz)

(a
a + ej^ + e) (C* +

And ii ~t~ fr, H 5 J

a + e 6 + e c + e

de

with similar expressions for , and -7- . Hence, squaring

and adding,

^
2

_ J

(c* + e/J (\ate/ \rfy/ \o?^

But from the equations

*
/? is a purely imaginary quantity. We may, if we please, write v 1/3'

for/3.
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we deduce

a? y* 2
2

(to e) (to v) (at v)
~"~

-

~~

7 2
i

~"
2 _i

~*
/ i_

2\ /
|^ 7 2\ /

i^
_2>

w being any quantity whatever. For this expression is of

dimensions in &>, e, u, i/, it vanishes when eo=e, u, or v,
and for those values of &> only, it becomes infinite when
a) = a2

,
b

2

,
or c\ and for those values of w only, and it is

= 1 when w oo .

From this, multiplying by a2 + &>, and then putting
w = a2

,
we deduce

2 = (e + a2

) (i; + a") (i/+_af)

(a
8 -

6*J (^- c*j
'

a result which will be useful hereafter.

Again, differentiating with respect to o>, and then putting
o> = e,

~
( + a") (e + 6

a

) (e + cr)

'

4. - 4 (e + a
'). (

fi + 6>
) (e +^?~

(e-v) (e
-

1/)

4

.V'F==,-->T7-,*--Y-r--,
(u
- u

) (u
-

e) (e
-

v)

The equation V
2 F= is thus transformed into
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(v
-

e) {(u'+ a2

) (</+ J
2

) (,/+ C')}t .

5. A class of integrals of this equation, presenting a close

analogy to spherical harmonic functions, may be investigated
in the following manner. Suppose E to be a function of e,

satisfying the equation

[{(e + a2

) (e + 1
2

) (e + c
2

))^ 4TF- (me + r) E,
de

i *

m and r being any constants.

Then, if H and Zf' be the forms which this function

assumes when v and v are respectively substituted for e,

the equation V
2F= will be satisfied by V=EHH'.

6. We will first investigate the form of the function

denoted by E, on the supposition that E is a rational integral
function of e of the degree n, represented by

We see that

e + a
2

) (e + 6
2

) (e +^
+ ......+ P.

= n f(n
-

1) (e + a
2

) (e + fc

2

) (e + c
2

)

je"'

2 + (n
-

2)^e-

(_!)/ -2^
+ -

-172--
F.H.

) f
c
,. f

| ^ ^
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Hence writing

(e + a
2

) (e + 6
2

) (e + c
2

)
= e

3 + 3// + 3/2e +/
we see that

= (me + r) e" +np^ + ^2
e-2 + .

Hence, equating coefficients of like powers of e, we get

r
n+^\=m,

n (n - 1)= T-o mP*

f

or, as they may be more simply written,

T
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n
\
(n - 1) [n

-
5) p* + 3n/ [

= nmp1 + r,
I \ ^/ J

n. (n 1 )

It thus appears that ^ is a rational function of r of the
first degree, p2

of the second, pn
of the nth

,
and when the

letters p,,j5g ...jpft have been eliminated, the resulting equa-
tion for the determination of r will be of the (n + l)

tb

degree.
Each of the letters pl} p.2---pn will have one determinate
value corresponding to each of these values of r; and we

have seen that m = n (n +
^ j

. There will therefore be (n + 1)

values of E, each of which is a rational integral expression
of the 71

th

degree, n being any positive integer.

7. But there will also be values of E, of the ?i
th

degree,
of the form

We thus obtain

=
(e + a^ (e + 6

2

) (e + c
2

) (Ti-1) e"-
2 + (71

- 2) q

(n
-

2) (n - 3) _,~~ ~ ~
1-f
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+ (e + a
2

)^ (e + 6
2

)]
(n
-

1)
je"'

2 + (
n - 2

(n-2)(n-3) n.

i sT~
~

<! + + qn-<i

*
(e+Z>

2

) (e+c
2

) (n-1) (n-2) 6
n

Hence

(n-1

+ (e + c?} (e+ 6
2

) (e + c
2

) (w-1) (w-2)
|e"-

3 + (-3)

, (^-3)>-4)19 226 ~T'
X Jy

r) je^-H (n-l)^e""
2

(w -l)(n-2)

(n
-

2) a
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By a similar process to that applied above, we shall find

that r is determined by an equation of the nih
degree, and

that m = (n 1) (
n ^ ) ,

and that each of the letters ql ,

\ }

^Vn-i
'

ls a rational function of r. Thus, there will be n
solutions of the form

(6 + Z>
2

)4 (e + cP)l [<T+ + (n
-

1)q^ + .. . + q^.
There will also be n solutions of a similar form, in which

the factors (e + c
2

)* (e + a2

)^, (e + a2

)^ (e + b
2

)^ are respectively
involved. Hence, the total number of solutions of the ?i

th

degree will be 4n + 1.

8. We may now investigate the number of solutions of

the degree n + ^ ,
n being any positive integer. These will

be of the following forms : three obtained by multiplying a

rational integral function of e of the degree n by (e + a?}*,

(e + 6
2

)^, (e + c
2

)^, respectively, and one by multiplying a
rational integral function of e of the degree n 1 by the

product

An exactly similar process to that applied above will

shew us that there will be n + 1 solutions of each of the
first three kinds, and n of the fourth. Hence the total number
of such solutions will be 3 (n + 1) + n, or 4/i + 3, that is

4
\

To sum up these results, w.e may say that the total

number of solutions of the nth
degree is 4?i + 1, n denoting

either a positive integer, or a fraction with an odd numerator,
and denominator 2.

Similar forms being obtained for H, H'
,
we may proceed

to transform the expression EHH' into a function of x, y, z.

9. Consider first the case in which

E= e +np^+^p^ + ... + Pn .
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Write this under the form

Then H=(v- (v
- o>

8) . . , (y
-

),

Hence

Now we have shewn (see Art. 4 of the present Chapter)
that (e wj (v &>0 (v wj

/ *? f
I TV! +

Each of the factors of EHH' being similarly transformed,
we see that EHH' is equal to the continued product of all

expressions of the form

( + a
2

) ( + i
2

) (a, + c
2

) (
-- + f +^- -l],\a + co b +co c + at J

the several values of w being the roots of the equation

* +*&--pfr+ +... +Pn = o.

As this equation has been already shewn to have (n + 1)
distinct forms, we obtain (n + 1) distinct solutions of the

equation V2

F=0, each solution being the product of n
expressions of the form

_ __L. JL _ i
a2 + co b* + a c' + co

That is, there will be n + 1 independent solutions of the

degree 2n in x, y, z, each involving only even powers of the
variables.

10. To complete the investigation of the number of solu-

tions of the degree 2n, let us next consider the case in which E

p^+. . .+pn .
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The object here will be to transform the product

(e + tffi ( + l^ (V + J
2

)i (e + rf (v + c
2

)* (v + c
2

)*,

since the other factors will, as already shewn, give rise to the

product of 7i 1 expressions of the form

* _*!+_* i7 2 . To. *

Now, by comparison of the value of ce
2

given in Art. 4,

we see that

(e + b
2

) (v + V] (v + V) (e +c
2

) (v + c
2

) (v' + c
2

)

=
(b

2 - c
2

) (i
2 - a2

) (c
2 - a2

) (c
2 - 6

2

) yV.

Hence, we obtain a system of solutions of the form of

the product of (n 1) expressions of the form

x2

y* z*
~ ~ ~"

multiplied by yz. Of these there will be n, and an equal
number of solutions in which zx, xy, respectively, take the

place of yz.

Thus, there will be 4tn + 1 solutions of the degree 2 in

the variables of which n + 1 are each the product of n

expressions of the form

cc
2

v
2

z'

v
,

' 72 i

' V i
'a+&) 0+<B c + co

n are each the product of (n 1) such expressions, multiplied

by yz,

n ... ... ... zx,

n ... ... ... xy.

11. We may next proceed to consider the solutions of the

degree 2n + 1 in the variables x, y, z.

Consider first the case in which

TI /
, i ,,2'Hi = (c + a
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Here the product (e + a2

)* (v + a2

)^ (v + a2

)'^ will, as just

shewn, give rise to a factor x in the product EHH'.

Hence we obtain a system of solutions each of which is

the product of n expressions of the form

~2 2 2

_ x__. 3 j___ _ 1
2

multiplied by x. Of these there will be n + 1, and an equal
number of solutions in which y, z, respectively take the

place of the factor x.

Lastly, in the case in which

e

--
"

z * n~l '

2

we see that in EHH' the product

4 (v+a^ (i/'+a
2

)
4
(e-f J

2

)^ (u+J
2

)' (u' + J
8

)^

will give rise to a factor xyz.

Hence we obtain a system of solutions each of which is

the product of (n 1) expressions of the form

i

multiplied by #3/5. Of these there will be n.

Thus there will be 4<n + 3 solutions of the degree 2n + I

in the variables, of which

(?r + 1) are each the product of n expressions of the form
2 2

h TT^--H -^
-- 1 multiplied by x,

a? + w b~ + co c
2 4 03

(n + 1) are each the product of n such expressions, multiplied

by y,
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n are each the product of (n 1) such expressions, multi-

plied by xyz.
12. Now an expression of the form C . EHIT, C being

any arbitrary constant, is an admissible value of the potential
a? u* z*

at any point within the shell '- + T* + -,
= 1. But it is

a 6 c

not admissible for the space without the shell, since it

becomes infinite at an infinite distance. The factor which
becomes infinite is clearly E, and we have therefore to

enquire whether any form, free from this objection, can be
found for this factor. We shall find that forms exist, bearing
the same relation to E that zonal harmonics of the second
kind bear to those of the first.

Now considering the equation

[{(6 + a2

) (e +
2

) (e + c
2

)]*
jT|
V= (me + r) U,

which we suppose to be satisfied by putting U= E, we see

that, since it is of the second order, it must admit of another

particular integral. To find this, substitute for U, E Ivde,

we then have

vde=
[{(e+

a2

) (e + i
1

) (e + c
2

)}* |J
E .

f

=
[{(e

+ a2

) (e + Z>
2

) (e + c
2

)]* T E .

jvde

Ev
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Now, since by supposition, the equation for the determi-

nation of U is satisfied by putting U=E, it follows that

when E Ivde is substituted for U, the terms involving Ivde
J J

will cancel each other, and the equation for the determina-

tion of v will be reduced to

-,dv

I do 2dE 1 _+ ~ + + * + *-

whence log v + 2 log E + log { (e + a
2

) (e + 6
2

) (e + c
2

)}*

=
log v + 2 logE + log dbo,

v and E being the values of v and .Z?, corresponding to e = 0.

E*
'

abc
Hence -' '

We may therefore take, as a value of the potential at

any external point,

r de

J 6 E*
{(e + a

2

) (e + &
2

) (e + c
2

)]^

For this obviously vanishes when e= co . It remains so

to determine v that this value shall, at the surface of the

ellipsoid, be equal to the value C.EHH', already assumed
for an internal point. This gives

fOO J

[ ae

J. ^ + a'. + . + t
'

Hence, putting v . E* . abc = V , we see that to the value

of the potential
rl

V
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for any internal point, corresponds the value

Je
VnEHHTJ e

for any external point.

13. We proceed to investigate the law of distribution of

density of attracting matter over the surface of the ellipsoid,

corresponding to such a distribution of potential.

Now, generally, if $n be the thickness of a shell, p its

volume density, the difference between the normal compo-
nents of the attraction of the shell on two particles, situated

close to the shell, on the same normal, one within and the

other without will be 4;7rp8n. This is the attraction of the

shell on the outer particle, minus the attraction on the inner

particle.

But the normal component of the attraction on the outer

j

particle estimated inwards is -7-

And, if V denote the potential of the shell on an in-

ternal particle, the normal component of the attraction on
dV

it estimated inwards is , .

an

, dV dV
Hence 4<7rpbn

=
j
---

7
-

.

an an

dV dV dx dV 3yNOW -J-
=

-j
--

T- + -; -j
- + -J- J-an dx an dy dn dz dn

ft 'V

And - - is the cosine of the inclination of the normal at
dn

the point x, y, z to the axis of x, and is therefore generally
or

equal to e , ,
e denoting the perpendicular from the

centre on the tangent plane to the surface
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And we have shewn that

=

whence _ _
# de a2 + e

'

or .==2-
a' +e

(ir _ c^e

Similarly ^-
= ^e

dU
}
^f =

. ^f=2e /^F^_'

dn
&

(dx ~de
^

~cfy ~S
+

~d^~ ~de)

= *e
~d([

'

Similarly

Now V'=V. de

o ^

And V=Vn .EHH'
1 de

therefore, generally,

de
'

de ]. & {(a? + 6
) (tf + e) (

c

-V.EHH'-1L

But, when the attracted particle is in the immediate

neighbourhood of the surface, e = 0. Hence, the first line
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of the value of becomes identical with the value of -
cLe de

and we have

_ __
~di de~ E abc'

E denoting the value which E assumes, when e = 0.

Hence, 4nrpSn = 2eV
'

-=-- .

-C< abc

But Sn, being the thickness of the shell, is proportional to

6 (1

e, and we may therefore write TT- = K- , Sa being the thick-
en, da

ness of the shell at the extremity of the greatest axis
;

_ Y* a l HH'

'*' P ~2TrSaabc E '

and this is proportional to the value of F corresponding to

any specified value of e, since HH' is the only variable

factor in either.

Hence functions of the kind which we are now considering

possess a property analogous to that of Spherical Harmonics

quoted at the beginning of this Chapter. On account of

this property, we propose to call them Ellipsoidal Harmonics,
and shall distinguish them, when necessary, into surface and
solid harmonics, in the same manner as spherical harmonics
are distinguished. They are commonly known as Lamp's

Functions, having been fully discussed by him in his Lemons,
The equivalent expressions in terms of x, y, z have been con-

sidered by Green in his Memoir mentioned at the beginning
of this chapter, and for this reason Professor Cayley in his
" Memoir on Prepotentials," read before the Royal Society
on June 10, 1875, calls them "

Greenians."

We may observe that the factor

JL JL
4?r Sa abc

is equal to -r T-^- , and therefore also to 7 ^- or
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Hence, it is equal to

4t7r

-K-
o

or to
i

-
F-TTTIvolume of shell

and the potential at any internal point
/* ,7

= f volume of shell x EEn .

and the potential at any external point

= i volume of shell x EE .

where for p must be substituted its value in terms of v and v.

14. "We will next -prove that if F
I;
F

2
be two different

ellipsoidal harmonics, dS an element of the surface of the

ellipsoid, lie F
x
F

2
dS = 0, the integration being extended all

over the surface.

We have generally

=
F,

-
F,

1 de 2 de

And throughout the space comprised within the limits of

integration, V
2 V

l
=

0, V
2 F

2
= 0. Hence

de 2 de

Now it has been shewn already that V
1 ,
F

2
are each of

the form EHH'
', where E is a function of e only, H the same

function of v
,
H' of v. We may therefore write

^ =/>)/>)/>'),
and similarly F

a =/2 (e)/2 (v)/a (v).
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Hence y^-VY^y
i j- *i K

ii +- (c \
>

/2W

*de * de
-

l

Now, all over the surface, e = 0. Hence

/'
(o) /' fo)

Hence, unless 2
.

y-jTcr
= 0, which cannot happen

/2 1"/ y i W
unless the functions denoted by yj and /5

are identical*, or

only differ by a numerical factor, we must have

Now e is proportional to the thickness of the shell at

any point. Calling this thickness Se, we have therefore

Hence, adding together the results obtained by integrating

successively over a continuous series of such surfaces, we get

F, ,
F

2
now representing solid ellipsoidal harmonics, and the

integration extending throughout the whole space comprised
within the ellipsoid.

* This may be shewn more rigorously by integrating through the

space bounded by two coufocal ellipsoids, deliued by the values X and p of e.

We then get, as in the te xt,

Now the factor within
{ } cannot vanish for all values of X and n, unless the

functions devoted by /j and /2
be identical, or only differ by a numerical

factor.
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15. It will be well to transform the expression

to its equivalent, in terms of v, v.

For this purpose we observe that if ds, ds be elements of
the two lines of curvature through any point of the ellipsoid,
dS= dsds.

Now,

ds* is the value of dx* + df + dz* when e and v are constant,

ds'
2

... ... ... e and v

, 2 _ (Hha'Xi; + a9

) (v + a2

) _

(-a"7(c*^r
therefore if e and v

'

do not vary,

dv

x v + a*
'

j
1 X ,

.'. dx = - - dv.'

Similarly

Again, differentiating with respect to o> the expression
a? ?/

2
z
z

obtained for .
--

\-
~---h -- 1. we get

a +o> b*+a> c +fo

2 f __f!__ _ (u
-

&)) (i/
-

&))

.

(a
2 + co) (6* + co) (c

2 + co) (a* -}- w)
2

(6
a+ a) (c*+ a>)

' ' '
'
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therefore, putting o> = v,

(a
2 + v)* (b* + v)* (c

2 + i/)

2

(a
2 + v) (&

2 + w) (c
8 + w)

'

A similar expression holding for ds* we get

2= _!.__(v'-vY(e-v)(e-v)_ , , ,

16 (a'+v) (tf+v) (c
2

+u) (a
a

+v') (6
2

+u) (c'+i/)
'

1 ^ y
2

-g
2

Again, ^
-
^jT^i

+
^, + e)2

+ ^ + e)2

(e
- u

) (e
-

v}

writing e for a in the expression above
;

16 (a'+ w) (b'+v) (c
2+ w) (

r _ ,.,
2 2 2 ' '' a

It has been shewn that, integrating all over the surface,

the limits of v are - c
2 and 5

2

,
those of t/, V and a2

.

Hence, V^ V
z , denoting two different ellipsoidal har-

monics

/:;

The value of the expression 1 1 1 V^dxdydz, or its equiva-

Qt

r-c* r-V*

abcl r^
J - bij -a|(a{(a

2+ u)

in any particular case, is most conveniently obtained by
expressing V as a function of x, y, z.

F.H. 9
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16. Before proceeding further with the discussion of ellip-

soidal harmonics in general, we will consider the special case

in which the ellipsoid is one of revolution. We must enquire
what modification this will introduce in the quantities which

we have denoted by a, ft, 7, viz.

fa =
Je (a*

_ I"'~
J _ a2 (V

and in the differential equation

We will first suppose the axis of revolution to be the

greatest axis of the ellipsoid, which is equivalent to supposing
l>

2 = c
2

. To transform a. and 7, put a2 + ^r
=

0', a2 + e = if,

a
2

-j- v = of
;
we then obtain

Ov I_ _ lr\rr
i I 77^ o To"

~~"
i -lUt:

'-a2 + 6
2

(a
2 -62

)^

b

d0 1 ,

To transform ft, we must proceed as follows.

Put
T/r
= - c

2
cos

2
-S3- 6

2
sin

2

OT, i> = c'
2
cos

2

$ - 6
s
'sin

2

(f>,

we then get generally

&' + ^ =
(5

2 _ c
)
cosv, c

2 + ^ =
(c

2 - &
2

)
sin

2^
;

city
= 2 (c

2
6
2

)
cos tzr sin CT cZtn-

;

8=~- r = 2
^-~ x ^

V -^1 J
<;> (a

2

-~6
2

)i

~~

(a
2^ V^

'
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Hence, J-
*

fo
_ +#),

djL 2 x '
di\

f 2 2 i 7.2N ^
j-s(f a +W -j-i
ay 2 x

t/o)

^~ 2V^1 d<f>'

Also, e = rf a
2
,

u' = o>'
2 a2

,
i = &

2

,
and our differential

equation becomes

_ a2 + J
2

) a,
2 - a2 + 5

2 F

or

This equation may be satisfied in the following ways.

First, in a manner altogether independent of <, by sup-

posing V to be the product of a function of tj and the same
function of o>, this function, which we will for the present
denote by/ (17) or/(o>), being determined by the equation

or
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tfl

d<f>

d'V
Secondly, by supposing --^ a constant multiple of F,

= o-
2

V, suppose.

Our equation may then be written

- a2

(a
2 - 2

) {(a,
2 - a2 + Z>

2

)
-

(if
- a

2 + &
2

)} 7= 0,

which may be satisfied by supposing the factor of F inde-

pendent of < to be of the form F
(rj) F(a>), where

- a2

(a
2 - 6

2

) ^(,) = m (7?

2-a2+

The factor involving ^ will be of the form

A COS
<r^> + B sin

cr<^).

Now, returning to the equation

we see that, supposing the index of the highest power of ij

involved inffa) to be i, we must have m = i(i+1).

Now, it will be observed that 77 may have any value

however great, but that &>
2

,
which is equal to a? + v, must

lie between a2
6
2 and 0. Hence, putting <o

2 =
(a

2
Z>
2

) /i
2

,

where
/u,

8 must lie between and 1, we get
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Hence this equation is satisfied by /{(a
2

6
8

)^} = CP
t ,

C being a constant
;
and supposing C = 1 we obtain the

following series of values for / (o>),

t = 0, /() =
!,

(a*
-

&)*

. 3
2 -(a2 -

i = 2, /() =
2 (a

2 -
6")

_ 5a)
3

-3&)(a
2 -62

)

Exactly similar expressions may be obtained for f(rj], and

these, when the attraction of ellipsoids is considered, will

apply to all points within the ellipsoid. But they will bn

inadmissible for external points, since 77 is susceptible of in-

definite increase.

The form of integral to be adopted in this case will bo

obtained by taking the other solution of the differential

equation for the determination of f(rj), i.e. the zonal har-

monic of the second kind, which is of the form Qi

where

p
'

Or, putting if = (a
2

5
M

) y
2
, #' = (a

2
&
2

) A.
2

,
we may write

17. We may now consider what is the meaning of the

quantities denoted by 77 and <u. They are the values of ^
which satisfy the equation
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and are therefore the semi-axes of revolution of the surfaces

confocal with the given ellipsoid, which pass through the

point x, y, z. One of these surfaces is an ellipsoid, and
its semi-axis is 77. The other is an hyperboloid of two sheets

whose semi-axis is &>.

Now, if 6 be the eccentric angle of the point x, y, z,

measured from the axis of revolution, we shall have

#2 = if cos
2
6.

But also, since r/*, to
2
,
are the two values of ^2 which

satisfy the equation of the surface,

Hence o>
2 = (a

2
6
2

) cos
2

0,

and we have already put

Avhence the quantity which we have already denoted by //,

is found to be the cosine of the eccentric angle of the point
x, y, z considered with reference to the ellipsoid confocal

with the given one, passing through the point x, y, z. We
have thus a method of completely representing the potential
of an ellipsoid of revolution for any distribution of density

symmetrical about its axis, by means of the axis of revo-

lution of the confocal ellipsoid passing through the point
at which the potential is required, and the eccentric angle
of the point with reference to the confocal ellipsoid. For

any such distribution can be expressed, precisely as in the

case of a sphere, by a series of zonal harmonic functions of

the eccentric angle.

18. When the distribution is not symmetrical, we must
have recourse to the form of solution which involves the factor

A cos
cr(f> + B sin 0-$. It will be seen that, supposing F to

represent a function of the degree i, and putting m = i (t+1),
the equation which determines F(w) is of exactly the same
form as that for a tesseral spherical harmonic. For F(v)}, if

the point be within the ellipsoid, we adopt the same form,
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if without, representing the tesseral spherical harmonic by

,
or T^ (v), we adopt the form

d\

19. It maybe interesting to trace the connexion of sphe-
rical harmonics with the functions just considered. This may
be effected by putting &

2 = a3
. We see then that 77 will become

equal to the radius of the concentric sphere passing through
the point, and if a2

4- 5
2
will become equal to rf. Hence

the equation for the determination off(ij) will become

which is satisfied by putting f(rj]
=

tf, or if*'""'. The former

solution is adapted to the case of an internal, the latter to

that of an external point.

With regard to /(&>), it will be seen that the confocal

hyperboloid becomes a cone, and therefore o> becomes inde-

finitely small. But u,, which is equal to - -.
, ,

remains

(a*-V)V
/Y*

finite, being in fact equal to - or cos 9. Hence /(/A) becomes
*?

the zonal spherical harmonic.

Again, the tesseral equations, for the determination of

F(i}), F (w), become

which are satisfied by F(rf) =rf or rj~
(>^\

And, writing for <w
2

, (a
2-i2

) yu,

2

,
we have, putting F(w}=x(p-},

- x

which ives A = TW /i.
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20. We will next consider the case in which the axis of

revolution is the least axis of the ellipsoid, which is equi-
valent to supposing a2 = 6

2
. To transform a and /3, put= 2

,
c
2 + e = rf, c

2 + v = <u
2

,
we thus obtain

M 2 '-*
^ /.j_ & 71

-
71a -c +0 (a'-c
8
;* 77

^ 2
tan

To transform y, we must proceed as follows :

Put ^r
= a2

sin
2

-57 &
2
cos

2

sr, v = a? sin
2

< J
2
cos

2

<^),

we then get, generally,

a
2 + ^ =

(a
2 - 6

2

)
cos

2

r, 6
2 + -^

= -
(a

2 - i
2

)
sin

2

tsr,

c
2

+i|r=c
2 a2

sin
2

^> J
2
cos

2

^>, d^r
= 2 (a

2

Hence

(a
2 sinV + b* COS'CT - c*)

4
(a*

- c
2

)
*

CC' -L n o "^

tt X

s i

rf 1_
^~ 2

also,

v=o)2 -c2

,

v = a",

and our differential equation becomes
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We will first consider how this equation may be satisfied

by values of V independent of
(/>.

We may then suppose Fto be the product of a function
of 77, and the same function of to, this function, which we will

suppose to be of the degree i, being determined by the

equation

On comparing this with the o'rdinary differential equa-
tion for a zonal harmonic, it will be seen that, on account
of a2

being greater than c
2

,
the signs of the several terms in

the series for /(>;) will be all the same, instead of being
alternately positive and negative. We shall thus have

I _2 ,.2+a ~ c

2(a
2 -c2

)*

i = 4 , ,^ _ 35V + 30 (a'
- c

8

) 77* + 3 (a
8 - c

2

)

2

m

and generally

We will denote the general value of /*(??) by w,
'

or, writing 77= (a
2

c
2

)-^, by ^(v).
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For external points, we must adopt for / (77)
a function

which we will represent by qA
V

g
,i

,
or q.(v), which will

\\CL C
J )

be equal to

(0
2 +a2 -c2

)

It is clear that /(w) may be expressed in exactly the
same way. But it will be remembered that if and &>

2 are
the two values of S-

2 which satisfy the equation

*,

Hence 77, as before, is the semi-axis of revolution of the
confocal ellipsoid passing through the point (x, y, z). But
rfv* = (a

2
c
2

)
z
z

,
an essentially negative quantity, since

a2
is greater than c

2
. Hence <u

2
is essentially negative. Now,

if 6 be the eccentric angle of the point (x, y, z] measured
from the axis of revolution, we have z

z =
-rf cos

2
0. Hence

and therefore w 2 =
(a

2
c
2

)
cos

2

=
(a

2
c
2

) /A
2
, suppose.

Hence the equation for the determination of /() assumes
the form

the ordinary equation for a zonal spherical harmonic. Hence
we may write

yu, being the cosine of the eccentric angle of the point x, y, z,

considered with reference to the confocal ellipsoid passing

through it.
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21. We have thus discussed the form of the potential,

corresponding to a distribution of attracting matter, sym-
metrical about the axis. When the distribution is not

symmetrical, but involves
<f>

in the form A cos er< -f B sin cr$,

we replace, as before, P, (A*) by T
t

&
(A*),

and pt (p) by a

function t^(v) determined by the equation

r"
and q. (v) by #* (v)

=-
^ v L v

d\

22. As an application of these formula?, consider the fol-

lowing question.

Attracting matter is distributed over the shell whose
x*

y* _|_ /
surface is represented by the equation j+ ^-j*

=
1, so

Ct

that its volume density at any point is P
4 (A*), A* being the

cosine of the eccentric angle, measured from the axis of

revolution
; required to determine the potential at any

point, external or internal.

The potential at any internal point will be of the form

CPMP{ (V] ........................ (i),

and at an external point, of the form

QM ........................ (2),

where (a
2

J
2

)*i>
= the semi-axis of the figure of the con-

focal ellipsoid of revolution passing through the point (p, v).

Now the expressions (1) and (2) must be equal at the

surface of the ellipsoid, where v =
(a b

Hence
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But generally

vi \ J i \ /

Hence

n
[

a l = pfVi
l(a'

- 6
8

)4)

'

l(a
2 - 6

3

j4j -^ T^J,
2

(X
2 -

1)

'

(a
2 -ft2)*

OP f
a

} = /jp f
a

} f
"

<fo
1

l(a'
- 6

8

)*J

*

j(a
2 -

^)4J J__ ^X)|
2

(X,

2-
1)

(a'
2 -62

)
i

We may therefore, putting U' = ^4P.
|- ^-rL write

and we thus express the potentials as follows :

APi (/*) P, (i/) Qj- -i I at an internal point,
I (a -6

j
2
J

AP.
(fjJ) Qi (z/)

P J - --I at an external point.
I(a

2

-^j 2
)

Or, substituting for Qi
its value in terms of P,,

V
l
= AP, 0*) Pi () p,

J^ |U l

at an internal point,

F =

at an external point.

Now, to determine A, we have, Ba being the thickness
of the shell at the extremity of the axis of revolution,
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. q \ drj drj -

n = a

a

Sa a
2 - .f

a I

'W-BW

a* -6s -i

Hence, if p = Pi (/A),
we obtain

ma _
a

And we thus obtain

(a" -6s
)

F. =
, 0*) P,

-
r P, () =

'V-ff 1

)*)

i;
J, ^(

, (^) Q. (i;) P. {
-----A .

'|(a
8_6z

*J

If the shell be represented by the equation

_i
a ~H a

*

tt G

it may be shewn in a similar manner that we shall have
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C

(d
2

-c*)V'

C

23. We may apply this result to the discussion of the

following problem.

If the potential of a shell in the form of an ellipsoid of
revolution about the greatest point be inversely proportional
to the distance from one focus, find the potential at any
internal point, and the density.

If the potential at P be inversely proportional to the
distance from one focus S, andH be the other focus, we have,

HP+SP = 2n, HP-SP=2w,
.'. SP =

rj ft).

Hence if M be the mass of the shell, F2
the potential at

any external point,

F- M
-

2

M I
_

2 - b
2

)?
v-

Now, by what has just been seen, the internal potential,

corresponding to P
t (JJL) Qt (v),

is

Hence, if F
2
be the potential at any internal point,
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a

And the volume density corresponding to P
i (/*) Qt (v)

is

Hence the density corresponding to the present distri-

bution is

M
^

P
{ fc)

P
47r (a

2 -
b*)

If F
a
had varied inversely as HP, we should have had

v - JL
2 I

*

and our results would have been obtained from the foregoing

by changing the sign of o>, and therefore of
//..

24. Now, by adding these results together, we obtain

the distributions of density, and internal potential, corre-

sponding to

2
77 w 77 + w rf to

2 '

or, in geometrical language,

V-*L M- M^ + HP
2 SP+ HP til

= M multiplied by the axis of revolution of the confocal

ellipsoid, and divided by the square on the conjugate semi-

diameter. We may express this by saying that the potential
at any point on the ellipsoid is inversely proportional to the
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square on the conjugate semi-diameter, or directly as the

square on the perpendicular on the tangent plane.

Corresponding to this, we shall have, writing 2k for i,

since only even values of i will be retained,

&

* 2*

a -

P =

k being 0, or any positive integer.

Again, subtracting these results we get

M M ,, 2&>
F

a
=- -oM-st,

1)
ft) 97 + ft>

f] ft)

=M multiplied by the distance from the equatoreal plane,
and divided by the square on the conjugate semi-diameter.

This gives, writing 2k + 1 for i,

a

a
3)

P
=

25. In attempting to discuss the problem analogous to

this for an ellipsoid of revolution about its least axis, we see

that since its foci are imaginary, the first problem would re-

present no real distribution. But if we suppose the external

potential to be the sum or difference of two expressions, each

inversely proportional to the distance from one focus, we
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obtain a real distribution of potential in the first case

inversely proportional to the square on the conjugate
semi-diameter, in the latter varying as the quotient of the

distance from the equatoreal plane by the square on the

conjugate semi-diameter.

It will be found, by a process exactly similar to that just

adopted, that the distributions of internal potential, and

density, respectively corresponding to these will be :

In the first case

*

Jc being 0, or any positive integer.

In the second case

o -2\i
}

jfc being 0, or any positive integer.

26. We may now resume the consideration of the ellip-

soid with three unequal axes, and may shew how, when the

potential at every point of the surface of an ellipsoidal shell

is known, the functions which we are considering may be

employed to determine its value at any internal or external

point. We will begin by considering some special cases,

F. H. 10



146 ELLIPSOIDAL AND SPHEROIDAL HARMONICS.

by which the general principles
of the method may be made

more intelligible.

27. First, suppose that the potential at every point of

the surface of the ellipsoid is proportional to x =
-^- suppose.

In this case, since x when substituted for V, satisfies the

equation VF= >
we see that F

I
wil1 als be the Potential

at any internal point. But this value will not be admissible

at external points, since x becomes infinite at an mfinit*

distance.

Now, transforming to elliptic co-ordinates

And the expression

2

) Kf + ft2
) (t +

satisfies, as has already been seen, the equation v
2 F=0, is

equal to F - at the surface of the ellipsoid, and vanishes

at an infinite distance. This is therefore the value of the

potential at any external point. It may of course be wri

28. Next, suppose that the potential at every point of

the surface is proportional to yz^V^, suppose. In this
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case, as in the last, we see that, since yz when substituted
for F, satisfies the equation \7

2F= 0, the potential at any

internal point will be V >- ; while, substituting for y, z their
OG

values in terms of elliptic co-ordinates we obtain for the

potential at any external point

+ &*) W + c
2

) [ty + a2

)

!.

29. "We will next consider the case in which the po-
or*

tential, at every point of the surface, varies as a;
2 = F -

s
ct

suppose. This case materially differs from the two just con-

sidered, for since #2 does not, when substituted for F, satisfy
the equation y

2F= 0, the potential at internal points cannot
in general be proportional to a:

2
. We have therefore first to

investigate a function of x, y, z, or of e, v, v which shall

satisfy the equation \7
2F=0, shall not become infinite within

the surface of the ellipsoid, and shall be equal to a? on its

surface.

Now we know that, generally

(6
2+ o)) (c

2 + to) x* + (c
2+ o>) (a

2 + a>) if + (a
2 + w) (&

2 + o>) s
2

-
(a

2 + a>) (6
2 + w) (c

2 + a>)
=

(e
-

a>) (u
-

a>) (u
-

o>).

And, if'^, ^
2
be the two values of <u which satisfy the

equation

(6
2

+<) (c
2 + o)) + (c

2

+a>) (a
2

+w) + (a
2

+a>) (6
2

+a>)
=

0...(l),

we see that

^(-^(tf-^O/.-ty-o.
and V2

(e
- ^

2) (v
-

<?,) (u
-
^)

= 0.

And, by properly determining the coefficients A
Q ,
A

I} A^ t

it is possible to make

102

Fr2

-f- when &
2cV + C

2

ay + a
2
i
2
a
8 - a

26V = 0.
ft
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Hence, the expression (2) when A
, Av A 2

are properly
determined will satisfy all the necessary conditions for an

internal potential, and will therefore be the potential for

every internal point.

Now, we have in general

(6
2 + 0J (c

2 + 0>2 + (c
2 + 0J (a

2 + 0J f + (a
2 + 6$ (6

2 + 0,} t
-

(a
2 +

a) (6
2 + 0,) (c

2 + OJ = (e
-
^) (v

-
<?0 (i/

-
0J

and, over the surface

as&V - a2
5
2
c
2 = 0.

Hence, ^ being any quantity whatever, we have, all over

the surface,

and therefore, putting S- =

(a
. _

^) (a-
- c

2

)
a=

2 = -

Hence, the right-hand member of this equation possesses

all the necessary properties of an internal potential. It

satisfies the general differential equation of the second order,

does not become infinite within the shell, and is proportional
to x2

all over the surface.

"We observe, by equation (1), that

(I
2 + co) (c

2+ w) + (c

2+ w) (a
2+ to} + (a

2+ a>) (6
2

+w) = 3 (0-co] (0-co}
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identically, and therefore, writing a2
for &>,

(a
2 - 6

2

) (a
2 - c

2

)
= 3 (a

2 + 0,) (a
2

Hence, over the surface of the shell,

3'

and we therefore have, for the internal potential,

J (6-fl,)fr-02 ) (i/r^ ,~ "

This is not admissible for external points, as it becomes
infinite at an infinite distance. We must therefore substi-

tute for the factor e 6
t

with a similar substitution for e O
z ,

thus giving, for the
external potential,

It - #i)
2

{(f + tt

'2

) (t +^ (t + Or

+[-=?
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The distribution of density over the surface, correspond-
ing to this distribution of potential, may be investigated by
means of the formula

or its equivalent in Art. 13 of this Chapter. We thus find that

p =
<br daSabc |_~ Oi^-OJ (a* + 0,)

30. The investigation just given, of the potential at an
external point of a distribution of matter giving rise to a

potential proportional to a2
all over the surface, has an in-

teresting practical application. For the Earth may be re-

garded as an ellipsoid of equilibrium (not necessarily with
two of its axes equal) under the action of the mutual gravi-
tation of its parts and of the centrifugal force. If, then,
V denote the potential of the Earth at any point on or with-
out its surface, and O the angular velocity of the Earth's

rotation, we have, as the equation of its surface, regarded as

a surface of equal pressure,

.'. V+ -

9
fl

2

(#
8 + 2/

2

)
= a constant, II suppose.

Hence, if a, I, c denote the semi-axes of the Earth, -we

have, for the determination of V, the following conditions :



__
da? df dz-

V at an infinite distance (2),

F= n - O2 ^ + 2 when

The term II will, as we know, give rise to an external

potential represented by
ro J f ro

nj
**

^rn^
The two terms - flV, ^fl

2

//

2
,
will give rise to terms

which may be deduced from the value of F
2 just given by

successively writing for V , l^V, and ^ O
2
6
2

,
and (in

j-i

the latter case) putting 6
2
for a

2

throughout. We thus get

r_
^ -

n2

6
8
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31. Any rational integral function V of x, y, z, which
satisfies the equation y'

2

F=0, can be expressed in a series

of Ellipsoidal Harmonics of the degrees 0, 1, 2...1 in #, y, z.

For if V be of the degree i, the number of terms in V will

be (^i)(+jHi3), Now the condition V2F=0 is

equivalent to the condition that a certain function of x, y, z

of the degree i 2, vanishes identically, and this gives rise

to ^ conditions. Hence the number of inde-
6

pendent constants in V is

(i + 1) fo'+ 2) (*+ 3) (/- 1) i (i+ 1)

6 6

or (i+ i)
2
. And the number of ellipsoidal harmonics of the

degrees 0, 1, 2...i in a?, y, z or of the degrees 0,
^>

1, 2" "2

in e, v, v, is, as shewn in Arts. 6 to 10 of this Chapter,

1 + 3 + 5+.. . + 2i + l,

or (i + 1)
2
. Hence all the necessary conditions can be satis-

fied.

32. Again, suppose that attracting matter is distributed

over the surface of an ellipsoidal shell according to a law of

density expressed by any rational integral function of the

co-ordinates. Let the dimensions of the highest term in this

expression be i, then by multiplying every term, except those

of the dimensions i and i 1 by a suitable power of

we shall express the density by the sum of two rational inte-

gral functions of x, y, z of the degrees i, i 1, respectively.

The number of terms in these will be
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And any ellipsoidal surface harmonic of the degree i, i 2...

in x, y, z, may, by suitably introducing the factor

<?
+ P +

? '

be expressed as a homogeneous function of a;, y, z of the

degree i
;
also any such harmonics of the degree i 1, i 3...

in x, y, z may be similarly expressed as a homogeneous
function of re, y, z of the degree i 1. And the total number
of these expressions will, as just shewn, be (i+ I)

2
, hence by

assigning to them suitable coefficients, any distribution of

density according to a rational integral function of x, y, z

may be expressed by a series of surface ellipsoidal harmonics,
and the potential at any internal or external point by the

corresponding series of solid ellipsoidal harmonics.

33. Since any function of the co-ordinates of a point on
the surface of a sphere may be expressed by means of a series

of surface spherical harmonics, we may anticipate that any
function of the elliptic co-ordinates v, v may be expressed by
a series of surface ellipsoidal harmonics. No general proof,

however, appears yet to have been given of this proposition.

But, assuming such a development to be possible at all, it

may be shewn, by the aid of the proposition proved in

Art. 15 of this Chapter, that it is possible in only one way,
in exactly the same way as the corresponding proposition
for a spherical surface is proved in Chap. IV. Art. 11.

The development may then be effected as follows. De-

noting the several surface harmonics of the degree i in x, y, z,
n

or - in v, v, by the symbols F^
(1)

, F/2)
,
... F/

2'*1
',

and by
2

F(v, v'} the expression to be developed, assume

Then multiplying by eV^ and integrating all over the

surface, we have

jeF (v, v'} V& dS = dS.
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The values of
feF(v, v^V^dS,

and of fe

be ascertained by introducing the rectangular co-ordinates

x, y, z, or in any other way which may be suitable for the

particular case. The coefficients denoted by C are thus

(determined, and the development effected.



EXAMPLES.

O 1 C Q

1. Prove that (sin 0)*
=_ P,

- P, +^ P
4
.

Why cannot (sin 0)
3
be expanded in a finite series of spherical

harmonics ?

1 1 1
l+sin^

2. Prove that 1 +
g
P

i
+

3
P +

4
P

3
+ = 1 S-

3
sin

2
-

3. Establish the equations

4. If p = cos 0, prove that

\

^ (^)
= 1 -t(t + 1)

sin
2 - + ... 4- (- l)-

(

-

and also that

+ m / fi \

(-!)'+
L-.-

(cos's) +...
v ;

)lt m\ 2/

5. Prove that, if a be greater than c, and i any odd

integer greater than m,

f (tf-^ac + cV'"a+"V = - 1 2

J
a

!*> /* am+ /?i -m a'

f
l

(dPtfj ... ..

-f- ) a/ii= z ( t + 1 ).

y_. \ /* /
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7. Prove that, when u = 1,
-' = .

8. Prove that

IP Pl
t
f

l
... J^^

P P P
*!> -^a

'

d^ \i-in 2
m \m'

is a numerical multiple of

P P P" 1
"

S<-1

9. Prove the following equation, giving any Laplace's co-

efficient in terms of the preceding one:

\Ppn
Jo

where Cp = pp.' +
even and

p* co$(u) /) and C is zero if n be

10. If
i, j, Jc be three positive integers whose sum is even,

prove that

2A ... (j + k-i) '2A ...(k + i-j) '2A...(i+j-k)

2A...(i+j + k) I

1.3 ... (i + j + k- 1) i+j+k+I'
Hence deduce the expansion of P

t
P

t
in a series of zonal

harmonics.

11. Express x*y + y
3 + yz + y + z as a sum of spherical

harmonics.

12. Find all the independent symmeti-ical complete harmonics
of the third degree and of the fifth negative degree.

13. Matter is distributed in an indefinitely thin stratum over

the surface of a sphere whose radius is unity, in such a manner
that the quantity of matter laid on an element (&S) of the surface

is
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where #, y, z are rectangular co-ordinates of the element SS re-

ferred to the centre as origin, and a, b, c, f, g, h are constants.

Find the value of the potential at any point, whether internal

or external.

14. If the radius of a sphere be r, and its law of density be

p = ax + by + cz, where the origin is at the centre, prove that its

477T
5

potential at an external point (f, 17, )
is (a + br) + c) where

R is the distance of (, 17, )
from the origin.

15. Let a spherical portion of an infinite quiescent liquid be

separated from the liquid round it by an infinitely thin flexible

membrane, and let this membrane be suddenly set in motion,

every part of it in the direction of the radius and with velocity

equal to Sa a harmonic function of position on the surface. Find
the velocity produced at any external or internal point of the

liquid. State the corresponding proposition in the theory of

Attraction.

16. Two circular rings of fine wire, whose masses are J/and
Jf, and radii a and a', are placed with their centres at distances

b, b', from the origin. The lines joining the origin with the
centres are perpendicular to the planes of the rings, and are in-

clined to one another at an angle 0. Shew that the potential of
the one rin<j on the other is

where B =b"-^^l b^g' + n(n
~ l}(n

~ 2) (n
~ 3W-

2.2 2.2.4.4

and B'
n
and Qn

are the same functions of b' and a' and of cos
and sin 6 respectively, and c is the greater of the two quantities

17. A uniform circular wire, of radius a, charged with

electricity of line-density e, surrounds an uninsulated concentric

spherical conductor of radius c; prove that the electrical density
at any point of the surface of the conductor is

-.11-5 ' _
2c\ '2a* > '2.4a4 4 '

2 . 4 . 6 ae

the pole of the plane of the wire being the pole of the harmonics.
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18. Of two spherical conductors, one entirely surrounds tho
other. The inner has a given potential, the outer is at tho

potential zero. The distance between their centres being so

small that its square may be neglected, shew how to find the

potential at any point between the spheres,

19. If the equation of the bounding surface of a homo-

geneous spheroid of ellipticity e be of the form

prove that the potential at any external point will be

M C-A ,.

where C and A are the equatoreal and polar moments of inertia

of the body.

Hence prove that F will have the same value if the spheroid
be heterogeneous, the surfaces of equal density differing from

spheres by a harmonic of the second order.

20. The equation R = a (1 + ay) is that of the bounding
surface of a homogeneous body, density unity, differing slightly
in form and magnitude from a sphere of radius a; a is a
small quantity the powers of which above the second may be

neglected; and y is a function of two co-ordinate angles, such
that

where Y
,
T

l
... Z

Q , Z^ ... are Laplace's 'functions. Prove that
the potential of the body's attraction on an external particle,
the distance of which from the origin of co-ordinates is r, is

given by the equation

,, 4wV
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21. If M be the mass of a uniform hemispherical shell of

radius c, prove that its potential, at any point distant r from

the centre, will be

-
2c 2 c

3 2 ' 2 .

Jf 1
r +

2.4.6

r5 3.5 r7 \

V~2.4.6.8 7
c V'

P _
- P .

*2.4.6 5
r
8 2.4.6.8 V

according as r is less or greater than c; the vertex of the hemi-

sphere being at the point at which
ju.
= 1,

22. A solid is bounded by the plane of xy, and extends to

infinity in all directions on the positive side of that plane.

Every point within the circle xa + y
a = a8

,
z = is maintained at

the uniform temperature unity, and every point of the plane xy
without this circle at the uniform temperature 0. Prove that,

when the temperature of the solid has become permanent, its

value at a point distant r from the origin, and the line joining
which to the origin is inclined at an angle to the axis of z will

be

r I r3 1 3 r5
'

_ r,i.j...^ t i; r
( ' 2.4...2i

z
*+a*+l

if r < a, and

1 o2

_K3 a*
/ ivllS^L-^p

"
+

2 a r
3 2.4 3 r4

"
^ ;

2.4...2J
"*

<*+',.-

if r > a.

23. Prove that the potential of a circular ring of radius c,

whose density at any point is cos mif/, c\j/ being the distance of the

point measured along the ring from some fixed point, is
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