RAHMENTRAGWERKE UND DURCHLAUFTRÄGER

VON

DR. ING. RICHARD GULDAN

DOZENT UND LEITER DES LEHRSTUHLES FÜR BETONBAU AN DER DEUTSCHEN TECHNISCHEN HOCHSCHULE IN PRAG

MIT 307 TEXTABBILDUNGEN UND 54 TAFELN

SPRINGER-VERLAG WIEN GMBH

ALLE RECHTE, INSBESONDERE DAS DER ÜBERSETZUNG IN FREMDE SPRACHEN, VORBEHALTEN

COPYRIGHT 1940 BY SPRINGER-VERLAG WIEN URSPRÜNGLICH ERSCHIENEN BEI JULIUS SPRINGER IN VIENNA 1940 SOFTCOVER REPRINT OF THE HARDCOVER 1ST EDITION 1940

ISBN 978-3-662-01751-7 ISBN 978-3-662-02046-3 (eBook) DOI 10.1007/978-3-662-02046-3

Vorwort.

Es wird häufig die Ansicht vertreten, daß Baustatik ein Wissensgebiet sei, das derzeit schon als völlig durchforscht und abgeschlossen angesehen werden könne, weshalb auch für die praktische Anwendung keine wesentlichen Verbesserungen und Fortschritte mehr zu erwarten wären. Diese Anschauung ist jedoch grundsätzlich abzulehnen und wird auch durch das laufende Schrifttum ständig widerlegt. Bei dem gegenwärtig in allen Zweigen der Technik herrschenden Bestreben, die Leistungsfähigkeit der einzelnen Betriebe durch eine straffe und zielbewußte Organisation ständig zu steigern, erscheint es dringend notwendig, auch die Berechnungsmethoden der Baustatik und die zugehörigen Hilfsmittel immer zweckmäßiger zu gestalten, um so die Büroarbeiten auch bei der Behandlung schwieriger Konstruktionen auf ein Mindestmaß einschränken zu können.

Diesem Zwecke soll das vorliegende Buch in erster Linie dienen. Bei seinem Gesamtaufbau und seiner Gliederung war der Verfasser daher von dem Bestreben geleitet, vor allem den Wünschen der praktisch tätigen Ingenieure und Statiker gerecht zu werden, deren Ziel in der Regel eine möglichst rasche Lösung der gestellten Aufgaben sein wird. Gleichzeitig sind aber auch die Bedürfnisse der Studierenden weitgehendst berücksichtigt, denen eine anschauliche, wirklichkeitsnahe Darstellung der erforderlichen theoretischen Grundlagen in sinnvoller Verbindung mit der praktischen Anwendung und den zugehörigen Hilfsmitteln stets willkommen sein wird.

Der gesamte Inhalt des Buches ist in drei Teile gegliedert, um die Benutzung vor allem als Hand- und Hilfsbuch zu erleichtern und überall eine gute Übersicht zu erzielen. Im ersten Teil, der dem Text gewidmet ist, werden in sechs Abschnitten die mit der Ausgestaltung und Weiterentwicklung des bekannten "Drehwinkelverfahrens" zusammenhängenden Fragen von Grund auf eingehend behandelt und für die verschiedensten Tragwerksgattungen mit und ohne Vouten gebrauchsfertige Gleichungen in einfacher und zweckmäßiger Schreibweise aufgestellt, wobei stets auf eine strenge Unterscheidung zwischen Tragwerksformen mit "verschieblichen" und "unverschieblichen" Knotenpunkten besonderer Wert gelegt wird.

Der Einfluß der Querschnittsveränderlichkeit, namentlich der Stabendverstärkungen (Vouten), wird in augenfälliger Weise unter den üblichen Voraussetzungen auch zahlenmäßig vollständig klargestellt. Gleichzeitig wurden, einem in Fachkreisen oft geäußerten Wunsch entsprechend, ausführliche und bequeme Hilfsmittel in einer solchen Ausstattung geschaffen, daß sie dem Statiker die rechnerische Erfassung der Voutenwirkung ohne nennenswerten Mehraufwand an Arbeit gestatten und dazu beitragen, die beträchtlichen konstruktiven und wirtschaftlichen Vorteile zu erschließen, die sich aus einer günstigen Anordnung solcher Schrägen bei vielen Rahmentragwerken erzielen lassen. Es kann auf diese Weise in der Regel auch eine bedeutende Stahlersparnis erreicht werden.

Weiter wird in einem eigenen Abschnitt die Ermittlung der Einflußlinien an statisch unbestimmten Tragsystemen ausführlich dargelegt, wobei wiederum besonderes Augenmerk auf die Berücksichtigung der Voutenwirkung gerichtet ist. Die vorgeschlagenen Berechnungsverfahren gestatten unter gleichzeitiger Verwendung der im dritten Teil des Buches enthaltenen Zahlen- und Kurventafeln eine wesentliche Vereinfachung in der zahlenmäßigen Bestimmung der Einflußlinien für Rahmentragwerke mit geraden oder parabolischen Vouten.

Die Wirkung von gleichmäßigen und ungleichmäßigen Temperaturänderungen an statisch unbestimmten Tragwerken, sowie ihre rechnerische Erfassung wird in einem solchen Umfange erläutert, wie es für das Verständnis dieses Problems notwendig und für die praktische Anwendung wünschenswert erscheint.

Im Hinblick auf die große Bedeutung, die den Durchlaufträgern mit Auflagerverstärkungen im Bauwesen zukommt, wird diese Trägerform mit allen Sonderfällen im Anschluß an die Abschnitte über Rahmentragwerke einer eingehenden Behandlung unterzogen. Die praktische Berechnung dieser Trägerart für die verschiedensten Belastungsfälle, sowie die Ermittlung der Einflußlinien wird mit Hilfe der im dritten Teil zusammengestellten Zahlen- und Kurventafeln bedeutend erleichtert.

Da die Auflösung linearer Gleichungssysteme bei der zahlenmäßigen Berechnung von Rahmentragwerken eine große Rolle spielt, war es notwendig, auch dieser Frage einen angemessenen Raum zur Verfügung zu stellen und einige Rechenvorschriften für die abgekürzten Auflösungsverfahren in einer solchen Form auszuarbeiten, daß der Rechnungsgang auch von weniger Geübten leicht überblickt werden kann. Es schien zu diesem Zwecke eine bildmäßige Darstellung des Auflösungsvorganges am besten geeignet.

Der zweite Teil des Buches enthält 20 Zahlenbeispiele von Tragwerken aus dem Hoch- und Brückenbau, die die praktische Anwendung der im ersten Teil beschriebenen Verfahren unter Benutzung der im dritten Teil des Buches enthaltenen Hilfstafeln zeigen und auch in der ganzen Art der zahlenmäßigen Durchführung als Musterbeispiele aufzufassen sind. Da ein großer Teil von diesen Beispielen sowohl mit, als auch ohne Vouten berechnet worden ist, so kann der Einfluß der Stabendverstärkungen auf die Momentenverteilung bei verschiedenen Tragwerksformen zahlenmäßig verglichen und damit auch in seinen wirtschaftlichen Auswirkungen viel besser beurteilt werden.

Im dritten Teil des Buches sind sämtliche Hilfstafeln vereinigt. Es stehen 54 Zahlen- und Kurventafeln auf insgesamt 88 Buchseiten zur Verfügung. Sie ermöglichen eine einfache Umgehung zeitraubender und langwieriger Zahlenrechnungen und können so zu einer fühlbaren Entlastung der im Büro tätigen Ingenieure beitragen. Die meisten Tafeln erscheinen gleichzeitig als Zahlen- und Kurventafeln, um die Vorteile beider Darstellungsarten zu erreichen und dem Benutzer beim Gebrauch stets freie Wahl zu lassen.

So möge denn das Buch, dessen Erscheinen in eine wahrhaft große Zeit fällt, nicht nur den bereits berufstätigen Statikern und Ingenieuren bei der Erfüllung ihrer oft schwierigen und verantwortungsreichen Aufgaben ein willkommener Helfer und Berater sein, sondern auch zu einer gediegenen fachlichen Ausbildung und Erziehung unseres Ingenieurnachwuchses beitragen.

Allen, die an der Vollendung des Werkes Anteil haben, insbesondere meinen beiden ehemaligen Konstrukteuren Dipl.-Ing. B. PÜSCHEL, Dipl.-Ing. K. HORA und meinem derzeitigen Konstrukteur Dr.-Ing. G. ŠIMAČEK für seine wertvolle Mithilfe beim Lesen der Korrekturen, spreche ich an dieser Stelle meinen herzlichen Dank aus.

Weiters danke ich der "Deutschen Gesellschaft der Wissenschaften und Künste" in Prag, die durch ihre Unterstützung die Fertigstellung der umfangreichen Arbeit gefördert hat, und schließlich dem Verlag für die Berücksichtigung aller Sonderwünsche bei der Drucklegung und für die überaus sorgfältige Ausstattung des Buches.

Prag, im Juni 1940.

R. GULDAN.

Inhaltsverzeichnis.

Erster Teil.

Erster Abschnitt.

		Rahmentragwerke ohne Vouten.	Seite
I.	\mathbf{R}	echnungsgrundlagen für das "Drehwinkelverfahren"	1
	1.	Die Beziehungen zwischen den Formänderungsgrößen des Rahmenstabes	1
	2.	Vorzeichenregeln für Stabendmomente und Formänderungsgrößen	2
	3.	Gleichungsansätze für die Stabendmomente	2
II.	Ra	ahmentragwerke mit unverschieblichen Knotenpunkten	4
	1.	Allgemeines	4
	2.	Knotengleichungen für unverschiebliche Tragwerke	7
	3.	Berücksichtigung gelenkiger Stabanschlüsse	8
	4.	Beschreibung des Rechnungsganges	8
	5.	Tabellarische Aufstellung der Gleichungen	9
	6.	Bemerkungen über die Verwendung der Stabfestwerte k	10
III.	Ra	ahmentragwerke mit verschieblichen Knotenpunkten	11
	1.	Allgemeines	11
	2.	Aufstellung der Bedingungsgleichungen	13
	3.	Der beliebig belastete Stockwerksrahmen mit lotrechten, geschoßweise gleich	
		langen Ständern	15
		a) Bedingungsgleichungen	16
		b) Gleichungstabelle für einen unsymmetrischen, dreistieligen, zweistockigen Rahmen	18
		c) Tabellarische Aufstellung der Gleichungen für symmetrische Tragwerke	19
	4.	Der beliebig belastete, nur waagrecht verschiebliche Stockwerksrahmen mit lotrechten, ungleich langen Ständern	20
		Bedingungsgleichungen	21
	5.	Das BUVerfahren bei symmetrischen Tragwerken	23
	6.	Rahmentragwerke mit nur lotrecht verschieblichen Knotenpunkten	25
		A. Symmetrisch ausgebildete und symmetrisch belastete Vierendeel- Rahmentragwerke	26
		a) Bedingungsgleichungen	26
		b) Gleichungstabelle für ein symmetrisches Vierendeel-Rahmentragwerk	30
		B. Unsymmetrisch ausgebildete, seitlich festgehaltene Vierendeel-Rahmen- tragwerke	30
		a) Bedingungsøleichungen	31
		 b) Gleichungstabelle für ein unsymmetrisches, nur <i>lotrecht</i> verschiebliches Rahmentragwerk 	34
	7.	Rahmentragwerke mit <i>lotrecht</i> und <i>waaarecht</i> verschieblichen Knotenpunkten	36
	••	Bedingungsgleichungen	36

Linciter instelling	Zweiter	Abschnitt.
---------------------	---------	------------

	Rahmentragwerke mit beliebig veränderlichen Stabquerschnitten.	Seite
I.	Vorbemerkung	37
II.	Allgemeines über die Wirkung veränderlicher Stabquerschnitte	38
III.	Rechnungsgrundlagen 1. Die Endtangentenwinkel der Biegelinie des Rahmenstabes mit veränder-	40
	lichen Querschnitten	4 0
	2. Gleichungsansätze für die Stabendmomente	42
IV.	Die Stabfestwerte a, b, c	43
	1. Statische Deutung	43
	2. Die zahlenmäßige Ermittlung der Stabfestwerte a, b, c	44
	A. Bei Stäben mit beliebig veränderlichen Querschnitten	44
	Vouten	44
	C. Bei Stäben mit ungleichen Vouten	46
	3. Verwendung der Werte a, b, c in der Rahmenberechnung	48
v.	Die zahlenmäßige Ermittlung der Stabbelastungsglieder \mathfrak{M}	48
	lastung	48
	2. Bei Stäben ohne Vouten	49
	3. Bei Stäben mit geraden oder parabolischen Vouten	49
	A. Hilfstafeln für gleichmäßige Vollbelastung	49
	C. Stäbe mit ungleichen Vouten	50 51
VT	Rahmentragmerka mit unverschieblichen Knotennunkten	53
• 1.	1. Bedingungsgleichungen	53
	2. Beschreibung des Rechnungsganges	54
	3. Gleichungstabelle für ein unverschiebliches Tragwerk	55
V11.	Kanmentragwerke mit verschiedlichen Knotenpunkten	99 55
	2. Der beliebig belastete Stockwerksrahmen mit lotrechten, geschoßweise	00
	gleich langen Ständern	56
	a) Bedingungsgleichungen b) Gleichungstabelle für ein dreistöckiges, unsymmetrisches Rahmentrag-	56 58
	3 Der beliebig belastete Stockwerksrahmen mit lotrechten, ungleich langen	00
	Ständern	59
	Bedingungsgleichungen	59
	4. Rahmentragwerke mit nur <i>lotrecht</i> verschieblichen Knotenpunkten	60
	A. Symmetrisch ausgebildete und symmetrisch belästete vierendeel- Rahmentragwerke	60
	a) Bedingungsgleichungen	60
	b) Gleichungstabelle für ein symmetrisches dreigurtiges Vierendeel- Rahmentragwerk	61
	B. Unsymmetrisch ausgebildete, seitlich festgehaltene Vierendeel-Rahmen-	69
	a) Bodingungsgleichungen	62 62
	 b) Gleichungstabelle für ein unsymmetrisches Vierendeel-Rahmentrag- werk mit nur lotrecht verschieblichen Knotenpunkten 	64
	5. Rahmentragwerke mit lotrecht und waagrecht verschieblichen Knoten-	0 F
	a) Bedingungsgleichungen	00 65
	b) Gleichungstabelle für ein unsymmetrisches, lotrecht und waagrecht ver-	00
	schiebliches Rahmentragwerk	66

Dritter Abschnitt.

Einflußlinien für statisch unbestimmte Tragwerke.	Seite
I. Vorbemerkung	67
II. Ermittlung der M -Einflußlinien als Biegelinien am $(n-1)$ -fach statisch unbestimmten Tragwerk	67
1. Grundlagen des Verfahrens	67
2. Ermittlung der Biegelinie aus den Knotendrehwinkeln φ und den Knoten- verschiebungen δ	68
3. Vorzeichenregeln für die Einflußlinien und Momente	70
4. M-Einflußlinien für Feldquerschnitte	70
III. Ermittlung der <i>M</i> -Einflußlinien als Biegelinien am <i>n</i> -fach statisch unbe- stimmten Tragwerk	71
1. Grundlagen des Verfahrens	72
2. Sonderfälle	73
3. Durchführung der Rechnung	73
4. Schlußbemerkung	74
5. Beispiel: Einflußlinien für einen Zweifeldrahmen	75
IV. Ermittlung der Einflußlinien für die Querkräfte	76

Vierter Abschnitt.

Ι)ie Wirkung von Temperaturänderungen bei statisch unbestimmten Tragwerken.	•
Ι.	Tragwerke, die durch eine gleichmäßige Temperaturänderung keine Spannungs-	
	änderung erfahren	78
$\mathbf{II}.$	Tragwerke, bei welchen die durch Temperaturänderungen hervorgerufenen	
	Knotenverschiebungen aus geometrischen Beziehungen allein bestimmbar sind	78
	1. Vorbemerkung	78
	2. Knotengleichungen	79
	3. Zahlenmaßige Ermittlung der "Temperaturbelastungsglieder"	81
ш.	Tragwerke, bei welchen die Knotenverschiebungen aus geometrischen Be- ziehungen allein nicht bestimmbar sind	82
	1. Allgemeines	82
	2. Der unsymmetrische Mehrfeldrahmen mit waagrechten Riegeln und beliebig	
	veränderlichen Stabquerschnitten	82
	A. Ansätze für die Verschiebungsgrößen \varDelta der Rahmenstäbe	82
	B. Gleichungsansätze für die Stabendmomente	83
	C. Knotengleichungen	84
	D. Verschiebungsgleichungen	84
	3. Beschreibung des Rechnungsganges	85
	4. Gleichungstabelle für einen unsymmetrischen Dreifeldrahmen mit ver- änderlichen Stabquerschnitten bei Temperaturwirkung	86
	5. Schlußbemerkung	87
IV.	Wirkung der ungleichmäßigen Temperaturänderungen	87
	1. Voraussetzungen	87
	2. Belastungsglieder	87
	A. Anteil infolge Längenänderung der Stabachse	88
	B. Anteil infolge Krümmung der Stabachse	88
v.	Verschiedene Nebeneinflüsse bei Rahmentragwerken	89
	1. Einfluß des Schwindens bei Eisenbetontragwerken	89
	2. Berücksichtigung der durch die Längskräfte hervorgerufenen Form-	
	änderungen	90
	3. Wirkung der Stützen- und Auflagerverschiebungen	90

Inhaltsverzeichnis.

Fünfter Abschnitt.

	Der Durchlaufträger mit veränderlichen Stabquerschnitten unter Berücksichtigung aller Sonderfälle.	Seite
I.	Allgemeines	91
II.	Der Durchlaufträger mit beliebig veränderlichen Trägheitsmomenten in allen Feldern	92
	1. Gleichungsansätze für die Endtangentenwinkel der Biegelinie	92
	2. Übergang zu den Dreimomentengleichungen	94
	3. Beschreibung des Rechnungsganges	95
	4. Tabellarische Aufstellung der Dreimomentengleichungen für einen Fünf- feldbalken	96
	5. Der Durchlaufträger mit eingespannten Enden	96
	 A. Gleichungsansätze B. Tabellarische Aufstellung der Dreimomentengleichungen für einen Rünffeldbelken mit eingesenannten Enden 	96 97
	6 Der Durchlaufträger mit auskragenden Enden	97 97
***		00
111.	 Ber Durchlaufträger mit feldweise verschiedenen, innerhalb der Felder iedoch konstanten Trägheitsmomenten. 	98 98
	2. Der Durchlaufträger mit gleichen Trägheitsmomenten in allen Feldern	99
	3. Der Durchlaufträger mit gleichem Verhältnis $\frac{J}{J}$ in allen Feldern	99
	4. Der Durchlaufträger mit gleichen Trägheitsmomenten und gleichen Längen in allen Feldern	99
IV.	Temperatureinflüsse beim Durchlaufträger	100
	1. Allgemeines	100
	2. Voraussetzungen	100
	3. Ermittlung der Belastungsglieder	100
v.	Der Durchlaufträger mit nachgiebigen Stützen	101
	1. Voraussetzungen	101
	2. Ansatz für die Dreimomentengleichungen	101
VI.	Ermittlung der Einflußlinien für den Durchlaufträger	103
	1. Vorbemerkung	103
	2. Die M -Einflußlinien als Biegelinien am $(n-1)$ -fach statisch unbestimmten Tragwerke	103
	A. Allgemeines	103
	B. Ermittlung der Biegelinien aus den Momentenlinien \dots C. Bestimmung des Verdrehungswinkels γ der Gelenkquerschnitte \dots	$\begin{array}{c} 104 \\ 105 \end{array}$

Sechster Abschnitt.

Zweckmäßige Auflösungsverfahren für lineare Gleichungssysteme.

Abgekürzte Eliminationsverfahren	107
1. Allgemeines	107
2. Beschreibung der einzelnen Rechenvorschriften	108
A. Muster I für symmetrische Gleichungssysteme	108
B. Muster II für symmetrische Gleichungssysteme	109
C. Muster III für unsymmetrische Gleichungssysteme	110

Zweiter Teil.

	Zahlenbeispiele.	Seite
Vo	rbemerkung	112
	Erster Abschnitt. Rahmentragwerke ohne Vouten.	
Ι.	Unverschiebliche Tragwerke	113
	Zahlenbeispiel 1. Rahmenteil mit Kragarm	113
	Zahlenbeispiel 2. Zweifeldiger Unterzug in steifer Verbindung mit den Säulen	114
	Zahlenbeispiel 3. Symmetrischer Dachrahmen	116
	Zahlenbeispiel 4. Symmetrischer zweistöckiger Rahmen	117
	Zahlenbeispiel 5. Vierteiliger Zellensilo	119
п.	Verschiebliche Tragwerke	122
	Zahlenbeispiel 6. Dreischiffiger Shedrahmen	122
	Zahlenbeispiel 7. Tribünenrahmen	125
	Zahlenbeispiel 8. Unsymmetrischer Dreifeldrahmen (mit Tem- peraturwirkung)	129
	Zahlenbeispiel 9. Symmetrisches Vierendeel-Rahmentragwerk	133
	Zahlenbeispiel 10. Unsymmetrisches, lotrecht verschiebliches	135
	Zahlenbeispiel 11. Lotrecht verschiebliches Tragwerk mit zu- rückgesetztem Obergeschoß	138
	Zweiter Abschnitt.	

Rahmentragwerke mit Vouten.

I.	Ermittlung der Stabfestwerte a, b, c und der Belastungsglieder M mit Hilfe	
	der Zahlen- und Kurventafeln	141
	1. Stab mit beidseitig gleichen geraden Vouten	141
	2. Stab mit einseitig parabolischer Voute	143
	3. Säule mit Voute	144
	4. Stab mit verschiedenen Vouten an beiden Enden	146
	5. Geneigte Rahmenstäbe mit Vouten	148

		Seite
II.	Unverschiebliche Tragwerke	148
	Zahlenbeispiel 12. Rahmenteil mit Kragarm	149
	Zahlenbeispiel 13. Zweifeldiger Unterzug in steifer Verbindung mit den Säulen	151
	Zahlenbeispiel 14. Symmetrischer zweistöckiger Rahmen	153
111.	Verschiebliche Tragwerke	155
	Zahlenbeispiel 15. Tribünenrahmen	155
	Zahlenbeispiel 16. Lotrecht verschiebliches Tragwerk mit zu- rückgesetztem Obergeschoß	160
	Zahlenbeispiel 17. Unsymmetrischer dreifeldiger Brückenrahmen (mit Einflußlinien)	164

Dritter Abschnitt.

Der Durchlaufträger.

I.	Ermittlung der Stabfestwerte $\alpha_1 \alpha_2 \beta$ und der Belastungsglieder $\alpha_1^0 \alpha_2^0$ mit Hilfe der Zahlen- und Kurventafeln	171
	1. Stab mit beidseitig parabolischen Vouten	172
	2. Stab mit einseitig gerader Voute	173
II.	Vollständig durchgerechnete Zahlenbeispiele	174
	Zahlenbeispiel 18. Unsymmetrischer Zweifeldträger ohne Vouten (mit ungleicher Temperaturwirkung)	174
	Zahlenbeispiel 19. Unsymmetrischer Zweifeldträger mit geraden Vouten (mit Einflußlinien)	175
	Zahlenbeispiel 20. Symmetrischer Dreifeldträger mit paraboli- schen Vouten (mit Einflußlinien)	177

Dritter Teil.

Hilfstafeln zur Berechnung von Rahmentragwerken und Durchlaufträgern.				
			Seite	
I. Trägheitsmomente von Rechteckso	querschnitten	Taf. 1	184 - 185	
II. Stäbe ohne Vouten:				
Belastungsglieder M. M. (= Einspannmomente)	für gleichmäßig verteilte Streckenlasten für Dreieckslasten. Mo-	Taf. 2	186	
$\alpha_1^0 \alpha_2^0$ (= Endtangentenwinkel)	mente, Temperatur für Einzellasten	,, 3 ,, 4	187—189 190—191	

III. Stäbe mit Vouten:

A. Stabfestwerte und Belastungsglieder zur Berechnung von Rahmentragwerken.

v		einseitig gerade Vouten	Taf. 5	192 - 193
$\begin{array}{c} {\rm Stabfestwerte} \\ a_1 \ a_2 \ b \end{array}$	$ \begin{cases} \text{Zahlen-} \\ \text{tafeln} \end{cases} $,, parab. ,, beidseitig gerade Vouten ,, parab. ,,	,, 6 ,, 7 ,, 8	194—195 196 197
	Kurven- tafeln	einseitig gerade Vouten ,, parab. ,, beidseitig gerade Vouten ,, parab. ,,	,, 5a ,, 6a ,, 7a ,, 8a	$\begin{array}{r} 198 - 200 \\ 201 - 203 \\ 204 - 205 \\ 206 - 207 \end{array}$
$egin{array}{c} { m Belastungsglieder} & {\mathfrak M}_1 {\mathfrak M}_2 & \ { m (Vollbelastung)} \end{array}$	{ Zahlen- tafeln Kurven- tafeln	(einseitig gerade Vouten ,, parab. ,, beidseitig gerade Vouten ,, parab. ,, (einseitig gerade Vouten ,, parab. ,, beidseitig gerade Vouten ,, parab. ,,	Taf. 9 ,, 10 ,, 11 ,, 12 ,, 9a ,, 10a ,, 11a ,, 12a	208 209 210 211 212 213 214 215
$egin{array}{c} { m Belastungsglieder} & {\mathfrak M}_1{\mathfrak M}_2 & \ ({ m Einflußlinien}) & \end{array}$	{ Zahlen- tafeln (12teilig) Kurven- tafeln (10teilig)	(einseitig gerade Vouten ,, parab. ,, beidseitig gerade Vouten ,, parab. ,, (einseitig gerade Vouten ,, parab. ,, beidseitig gerade Vouten ,, parab. ,,	Taf. 13 ,, 14 ,, 15 ,, 16 ,, 13a ,, 14a ,, 15a ,, 16a	$\begin{array}{c} 216-218\\ 219-221\\ 222-223\\ 224-225\\ 226-228\\ 229-231\\ 232-233\\ 234-235\\ \end{array}$
. Stabfestwerte und Durchlaufträgern.	l Belastungsg	lieder zur Berechnung von		
$\begin{array}{c} \text{Stabfestwerte} \\ \alpha_1 \ \alpha_2 \ \beta \end{array}$	{ Zahlen- tafeln { Kurven- tafeln {	(einseitig gerade Vouten ,, parab. ,, beidseitig gerade Vouten ,, parab. ,, einseitig gerade Vouten ,, parab. ,, beidseitig gerade Vouten ,, parab. ,,	Taf. 17 ,, 18 ,, 19 ,, 20 ,, 17a ,, 18a ,, 19a ,, 20a	$\begin{array}{c} 236-237\\ 238-239\\ 240\\ 241\\ 242\\ 243\\ 244\\ 245\\ \end{array}$
	(Zahlen,	einseitig gerade Vouten	Taf. 21 22	246 - 247 248 - 249

Stabfestwerte	(Zahlen- tafeln	einseitig gerade Vouten " parab. " beidseitig gerade Vouten " parab. " (einseitig gerade Vouten	1ar. 17 ,, 18 ,, 19 ,, 20 ,, 17a	236-237 238-239 240 241 242
1 1	Kurven- tafeln	,, parab. ,, beidseitig gerade Vouten ,, parab. ,,	,, 18a ,, 19a ,, 20a	$243 \\ 244 \\ 245$
Belastungsglieder $\alpha_1^0 \alpha_2^0$ (Vollbelastung)	(Zahlen- tafeln Kurven- tafeln	<pre>(einseitig gerade Vouten</pre>	Taf. 21 ,, 22 ,, 23 ,, 24 ,, 21a ,, 22a ,, 23a ,, 24a	$\begin{array}{c} 246-247\\ 248-249\\ 250\\ 251\\ 252\\ 253\\ 254\\ 255 \end{array}$
$\begin{array}{c} \text{Belastungsglieder} \\ \alpha_1^0 \ \alpha_2^0 \\ \text{(Einflußlinien)} \end{array}$	Zahlen- tafeln (12teilig)	einseitig gerade Vouten ,, parab. ,, beidseitig gerade Vouten ,, parab. ,,	Taf. 25 ,, 26 ,, 27 ,, 28	$\begin{array}{r} 256-258\\ 259-261\\ 262-263\\ 264-265\end{array}$

IV. Rechenvorschriften zur Auflösung linearer Gleichungssysteme.

Symmetrische Gleichungssysteme	Muster I Muster II	bildmäßige Darstellung Zahlenbeispiel bildmäßige Darstellung Zahlenbeispiel	Taf. 29 ,, 29a ,, 30 ,, 30a	$266 \\ 267 \\ 268 \\ 269 \\$
Unsymmetrische Gleichungssysteme	{ Muster III	bildmäßige Darstellung Zahlenbeispiel	Taf. 31 ,, 31a	$\begin{array}{c} 270 \\ 271 \end{array}$

Seite

Erster Teil.

Erster Abschnitt.

Rahmentragwerke ohne Vouten.

I. Rechnungsgrundlagen für das "Drehwinkelverfahren".

1. Die Beziehungen zwischen den Formänderungsgrößen des Rahmenstabes.

Die Bezeichnung "Drehwinkelverfahren" ist in den Kreisen der Statiker überall geläufig und soll deshalb auch hier beibehalten werden, obwohl dieser Ausdruck

nicht ganz zutreffend ist, da als Rechnungsunbekannte neben Drehwinkeln häufig auch Verschiebungsgrößen Verwendung finden.

In Abb. 1 ist ein Rahmenstab mit den beiden anschließenden Knotenpunkten 1 und 2 vor und nach der Verformung zur Darstellung gebracht. Dabei wurde der allgemeine Fall vorausgesetzt, daß die Stabenden infolge der äußeren Belastung des Tragwerkes sowohl Verdrehungen als auch Verschiebungen erleiden. Alle Form-

Drehwinkel und Verschiebungsgrößen.

änderungsgrößen sind in Abb. 1 unter Berücksichtigung der im folgenden Kapitel angegebenen Vorzeichenregeln stark verzerrt eingetragen. Es bedeuten:

- φ_1 bzw. φ_2 ... die Winkel, um welche die Knotenpunkte 1 bzw. 2 verdreht werden ("Knotendrehwinkel"),
- ψ den Winkel, um den sich die Stabsehne verdreht ("Stabdrehwinkel"),
- τ_1 bzw. τ_2 ... die Winkel, welche die Endtangenten an die Biegelinie mit der Stabsehne einschließen ("*Endtangentenwinkel*"),
- δ_1 bzw. δ_2 ... die wahren Werte der senkrecht zur ursprünglichen Lage der Stabachse gemessenen Verschiebungen der Stabenden 1 bzw. 2 ("*wirkliche Verschiebungen*"),
- $\Delta = \delta_1 \delta_2$.. die gegenseitige Verschiebung der beiden Stabenden senkrecht zur Stabachse ("gegenseitige Verschiebung").

Der Stabdrehwinkel ψ ist nach Abb. 1 gegeben durch die Beziehung

$$\operatorname{tg} \psi = \frac{\varDelta}{l} \tag{1}$$

oder wegen der Kleinheit des Winkels auch durch

$$\psi = \frac{\Delta}{l},\tag{2}$$

wobei l die Stablänge bedeutet. Setzt man an Stelle der "gegenseitigen" Stabendverschiebung Δ die "wirklichen" Verschiebungen δ_1 und δ_2 , so erhält man

$$\psi = \frac{\delta_1 - \delta_2}{l} \cdot \tag{3}$$

Guldan, Rahmentragwerke.

Weiter ergeben sich aus Abb. 1 noch folgende Beziehungen:

$$\tau_1 = \varphi_1 + \psi; \quad \tau_2 = \varphi_2 + \psi. \tag{4}$$

Für alle Fälle, wo $\psi = 0$ wird, d. h. wo die Stabsehne nur parallel zu sich selbst verschoben wird, sind die Endtangentenwinkel τ_1 und τ_2 mit den entsprechenden Knotendrehwinkeln φ_1 und φ_2 identisch. Für den Sonderfall $\psi = 0$ wird also aus (4)

$$\tau_1 = \varphi_1; \quad \tau_2 = \varphi_2. \tag{4a}$$

2. Vorzeichenregeln für Stabendmomente und Formänderungsgrößen.

Für die Aufstellung von Beziehungen zwischen den Formänderungsgrößen und Momenten ist es notwendig, diese Werte nicht nur der $Grö\beta e$, sondern auch der

Richtung nach eindeutig festlegen zu können. Die zu diesem Zwecke festzusetzenden Vorzeichenregeln sollen so beschaffen sein, daß sich die zahlenmäßige Rechnung möglichst einfach und übersichtlich gestaltet und der häufige Wechsel der Vorzeichen in den verschiedenen Gleichungsansätzen vermieden wird. Es werden daher ein für allemal folgende Annahmen getroffen (Abb. 1 und 2a, b, c):

1. Die Knotendrehwinkel sind positiv, wenn die Verdrehung im Uhrzeigersinn erfolgt.

2. Die Stabdrehwinkel sind positiv, wenn die Verdrehung entgegen dem Uhrzeigersinn erfolgt.

3. Die Momente am herausgeschnittenen Stabe sind positiv, wenn sie im Uhrzeigersinn drehen.

4. Die Momente am herausgeschnittenen Knoten sind positiv, wenn sie entgegen dem Uhrzeigersinn drehen.

5. Die "gegenseitigen" Stabendverschiebungen Δ sind positiv, wenn sie positive Stabdrehwinkel erzeugen, d. h. wenn der Stab entgegen dem Uhrzeigersinn verdreht wird.

6. Die "*wirklichen"* Stabendverschiebungen sind positiv, wenn sie von oben nach unten oder von links nach rechts erfolgen. 7. Die *Momente* werden in den Abbildungen stets an der *Zugseite* angetragen.

3. Gleichungsansätze für die Stabendmomente.

Die Stabendmomente oder Stabanschlußmomente sind von den Formänderungsgrößen und der äußeren Belastung abhängig. Die Ableitung dieser Beziehungen kann in anschaulicher Weise mit Hilfe der Mohrschen Sätze erfolgen. Dies wird im zweiten Abschnitt, III, 1 und 2 für den ganz allgemeinen Fall eines Stabes mit veränderlichen Trägheitsmomenten ausführlich dargelegt. Dort ergeben sich schließlich als Sonderfall die bekannten vereinfachten Ausdrücke [siehe Gl. (98)] für einen Stab 1-2 mit gleichbleibendem Trägheitsmoment:

$$M_{1,2} = \frac{4 E J}{l} \varphi_1 + \frac{2 E J}{l} \varphi_2 + \frac{6 E J}{l} \psi + \mathfrak{M}_{1,2}$$

$$M_{2,1} = \frac{4 E J}{l} \varphi_2 + \frac{2 E J}{l} \varphi_1 + \frac{6 E J}{l} \psi + \mathfrak{M}_{2,1}.$$
(5)

Hierin bedeuten $M_{1,2}$ und $M_{2,1}$ die Stabendmomente bei 1 bzw. 2, E die Dehnungszahl, J das Trägheitsmoment des Stabquerschnittes und l die Stablänge.

Führt man zur weiteren Vereinfachung der Gleichung die Bezeichnung

$$k = \frac{2 E J}{l} \tag{6}$$

ein, wobei der Wert k künftig als *Steijigkeitszahl* oder *Stabfestwert* bezeichnet werden soll, so erscheinen die Gl. (5) in der gebräuchlicheren Form

$$M_{1,2} = k (2 \varphi_1 + \varphi_2 + 3 \psi) + \mathfrak{M}_{1,2}$$

$$M_{2,1} = k (2 \varphi_2 + \varphi_1 + 3 \psi) + \mathfrak{M}_{2,1}.$$
(7)

Die statische Bedeutung der Glieder $\mathfrak{M}_{1,2}$ bzw. $\mathfrak{M}_{2,1}$, die lediglich von der unmittelbar auf den betrachteten Stab einwirkenden äußeren Belastung abhängen, ergibt sich, wenn man in den vorstehen- σ

rattin finantin in the

a)

den Ausdrücken $\varphi_1 = 0$, $\varphi_2 = 0$ und $\psi = 0$ setzt. Man hat es dann mit einem beiderseits vollkommen eingespannten Träger zu tun und es wird für diesen Sonderfall nach Gl. (7)

$$M_{1,2} = \mathfrak{M}_{1,2}; \qquad (8)$$
$$M_{2,1} = \mathfrak{M}_{2,1},$$

d. h. die Werte $\mathfrak{M}_{1,2}$ und $\mathfrak{M}_{2,1}$, die man am besten als "*Stabbelastungsglieder"* bezeichnet, sind identisch mit den Einspannmomen-

 $\begin{array}{c} -\begin{pmatrix} & & & \\ & &$

ten für den vollkommen eingespannt gedachten Stab. Daraus ergibt sich, daß diese "Stabbelastungsglieder" auch derselben Vorzeichenregel unterliegen wie die Stabanschlußmomente.

Es ist also z. B. für einen von *oben* belasteten, liegenden Stab (Abb. 3a) das Stabbelastungsglied $\mathfrak{M}_{\text{links}}$ *negativ* (weil dieses Einspannmoment am herausgeschnittenen Stab entgegen dem Uhrzeigersinn dreht), während $\mathfrak{M}_{\text{rechts}}$ *positiv* ist (weil es dort im Uhrzeigersinn dreht). Für einen liegenden Stab, der von *unten* belastet wird (Abb. 3b), ergibt sich *umgekehrt* $\mathfrak{M}_{\text{links}}$ positiv und $\mathfrak{M}_{\text{rechts}}$ negativ.

Wird ein stehender Stab von *links* belastet (Abb. 4a), so wird \mathfrak{M}_{unten} negativ (weil dieses Einspannmoment am herausgeschnittenen Stab entgegen dem Uhrzeigersinn dreht) und \mathfrak{M}_{oben} positiv. Ist der Stab von rechts belastet (Abb. 4b), so tritt wieder das Umgekehrte ein.

In den Hilfstafeln 2 bis 4 sind gebrauchsfertige Formeln zur zahlenmäßigen Ermittlung der M-Werte für die wichtigsten Belastungsfälle enthalten.

Der später öfter gebrauchte Ansatz für die Summe der beiden Anschlußmomente eines Stabes ergibt sich unmittelbar aus (7), und zwar ist

$$M_{1,2} + M_{2,1} = 3 k (\varphi_1 + \varphi_2 + 2 \psi) + \mathfrak{M}_{1,2} + \mathfrak{M}_{2,1}.$$
(9)

Benutzt man als Unbekannte an Stelle des Stabdrehwinkels ψ nach (2) die "gegenseitige" Stabendverschiebung Δ , so lauten die Gl. (7) bzw. (9)

$$M_{1,2} = k \left(2 \varphi_1 + \varphi_2 + \frac{3 \Delta}{l} \right) + \mathfrak{M}_{1,2}$$

$$M_{2,1} = k \left(2 \varphi_2 + \varphi_1 + \frac{3 \Delta}{l} \right) + \mathfrak{M}_{2,1}.$$
(10)

1*

Rahmentragwerke mit unverschieblichen Knotenpunkten.

$$M_{1,2} + M_{2,1} = 3 k \left(\varphi_1 + \varphi_2 + \frac{2\Delta}{l} \right) + \mathfrak{M}_{1,2} + \mathfrak{M}_{2,1}.$$
(11)

In vielen Fällen ist es zweckmäßiger, an Stelle von ψ nach (3) die "*wirklichen"* Stabendverschiebungen δ_1 und δ_2 einzuführen. Dann nehmen die vorstehenden Gleichungen folgende Form an:

$$\begin{bmatrix} M_{1,2} = k \left[2 \varphi_1 + \varphi_2 + \frac{3 (\delta_1 - \delta_2)}{l} \right] + \mathfrak{M}_{1,2} \\ M_{2,1} = k \left[2 \varphi_2 + \varphi_1 + \frac{3 (\delta_1 - \delta_2)}{l} \right] + \mathfrak{M}_{2,1}. \end{bmatrix}$$
(10 a)

$$M_{1,2} + M_{2,1} = 3 k \left[\varphi_1 + \varphi_2 + \frac{2 (\delta_1 - \delta_2)}{l} \right] + \mathfrak{M}_{1,2} + \mathfrak{M}_{2,1}.$$
(11a)

II. Rahmentragwerke mit unverschieblichen Knotenpunkten. 1. Allgemeines.

Der Momentenverlauf eines Tragwerkes für einen gegebenen Belastungsfall ist bestimmt, wenn sämtliche Stabendmomente bekannt sind. Die Stabendmomente können aber aus den Gl. (7) erst dann berechnet werden, wenn die Knoten- und

Abb. 5 bis 15. "Unverschiebliche" Tragwerke.

 φ_1

3

 (\mathbf{f})

P

Abb. 21. Bei unsymmetrischer Belastung: $\varphi_3, \varphi_4, \varphi_3', \varphi_5, \varphi_5', \psi_1, \psi_2;$ bei symmetrischer Belastung: $\varphi_3, \varphi_5;$ bei antimetrischer Belastung: $\varphi_3, \varphi_4, \varphi_5, \psi_1, \psi_2.$

(4)

2

T

T

Abb. 19. Bei unsymmetr. Bel.: φ_3 , φ_4 , φ_3' , \varDelta_1 ; ,, symmetr. ,, : φ₃; ,, : φ_3 , φ_4 , \varDelta_1 . antimetr. ••

Abb. 22. Bei unsymmetrischer Belastung: $\varphi_3, \varphi_4, \varphi_3', \varphi_5, \varphi_6, \varphi_5', \Delta_1, \Delta_2;$ bei symmetrischer Belastung: $\varphi_3, \varphi_5;$ bei antimetrischer Belastung: $\varphi_3, \varphi_4, \varphi_5, \varphi_6, \varDelta_1, \varDelta_2.$

63

1

Abb. 20. Bei unsymm. Bel.: $\varphi_2, \varphi_2', \varphi_3, \varphi_3', \psi_1, \psi_2;$,, symmetr. ,, $:\varphi_2, \varphi_3;$,, antimetr. ,, $: \varphi_2, \varphi_3, \psi_1, \psi_2$.

Abb. 23. Bei unsymmetrischer Belastung: $\varphi_3, \varphi_4, \varphi_3', \varphi_5, \varphi_6, \varphi_5', \Delta_1, \Delta_2;$ bei symmetrischer Belastung: $\varphi_3, \varphi_5;$ bei antimetrischer Belastung: $\varphi_3, \ \varphi_4, \ \varphi_5, \ \varphi_6, \ \varDelta_1, \ \varDelta_{2^*}$

(H)

2

Abb. 25. Bei unsymm. Bel.: $\varphi_3, \varphi_4, \varphi_4', \varphi_3', \varphi_5, \varphi_5', \psi_1, \psi_2;$,, symmetr. ,, : φ_3 , φ_4 , φ_5 ; ,, antimetr. ,, : φ_3 , φ_4 , φ_5 , ψ_1 , ψ_2 .

Abb. 18 bis 25. Symmetrische Tragwerke, die nur bei symmetrischer Belastung "unverschieblich" sind.

9

Bei Tragwerken, deren Knotenpunkte durch die äußere Belastung nur Verdrehungen, aber keine Verschiebungen erleiden, können auch keine Stabdrehwinkel in Erscheinung treten, weshalb sich die Behandlung derartiger Systeme besonders einfach gestaltet.

Es ist also immer zuerst festzustellen, ob bei einem Tragwerk verschiebliche Knotenpunkte vorhanden sind, bzw. wieviel unbekannte Stabdrehwinkel insgesamt zu bestimmen sind. Ein besonderes Kennzeichen für solche Tragwerke, deren Knotenpunkte bei jeder beliebigen Belastung un-

verschieblich bleiben, besteht darin, daß

Abb. 26.

Bei unsymmetrischer Belastung: φ₁, φ₂, φ₃, φ₂', φ₂', φ₁', φ₄, φ₅, φ₆', φ₆', φ₅', φ₄', ψ₁, δ₁, δ₂, δ₃, δ₄;
 bei symmetrischer Belastung: φ₁, φ₂, φ₃, φ₄, φ₅, φ₆, δ₁, δ₂;

, antimetrischer , $: \varphi_1, \varphi_2, \varphi_3, \varphi_4, \varphi_5, \varphi_6, \psi_1, \delta_1, \delta_2.$

Abb. 27.

Bei unsymmetrischer Belastung: φ_2 , φ_3 , φ_4 , φ_3' , φ_2' , φ_5 , φ_6 , φ_7 , φ_6' , φ_5' , ψ_1 , ψ_2 , δ_1 , δ_2 , δ_3 ;

bei symmetrischer Belastung: φ_2 , φ_3 , φ_5 , φ_6 , δ_1 , δ_2 ;

,, antimetrischer ,, $: \varphi_2, \varphi_3, \varphi_4, \varphi_5, \varphi_6, \varphi_7, \psi_1, \psi_2, \delta_1.$

Abb. 26 bis 29. Symmetrische Tragwerke, die auch bei symmetrischer Belastung "verschieblich" sind.

sie auch dann noch stabil bleiben, wenn sämtliche steifen Stabanschlüsse durch Gelenke ersetzt werden. Als Beispiele dafür sind in den Abb. 5 bis 15 eine Anzahl solcher Tragwerkstypen zusammengestellt und die jeweils auftretenden unbekannten Knotendrehwinkel besonders vermerkt.

Es gibt ferner noch eine ganze Reihe von symmetrischen Tragwerksarten, die zwar an sich zu den Systemen mit verschieblichen Knotenpunkten zu rechnen sind, die aber bei symmetrischer Belastung keine Knotenverschiebungen erfahren. In den Abb. 18 bis 25 sind einige Vertreter solcher Systeme dargestellt, wobei die bei unsymmetrischer, symmetrischer und antimetrischer Belastung jeweils auftretenden Unbekannten getrennt angeführt sind.

Eine Ausnahme stellen die in den Abb. 26 bis 29 ersichtlichen Tragwerkstypen dar, bei welchen trotz symmetrischer Ausbildung und symmetrischer Belastung Knotenpunktverschiebungen auftreten.

2. Knotengleichungen für unverschiebliche Tragwerke.

Da bei derartigen Tragwerken keine Stabdrehwinkel ψ vorkommen, so brauchen nur so viele Gleichungen aufgestellt werden, als unbekannte Knotendrehwinkel vorhanden sind. Diese Gleichungen führen die Bezeichnung "Knotengleichungen" und sollen hier in allgemeiner Form aufgestellt werden.

Man denke sich aus irgendeinem unverschieblichen Rahmentragwerk einen Knotenpunkt n mit vier anschließenden, beliebig belasteten Stäben und den benachbarten Knotenpunkten 1 bis 4 herausgezeichnet (Abb. 30). In dieser Skizze sind auch die Steifigkeitszahlen k der einzelnen Rahmen-

stäbe, und zwar jeweils in der Stabmitte, eingetragen.

Mit $\psi = 0$ lauten die Ansätze für die Stabanschlußmomente im Knotenpunkt *n* nach (7) mit den hier gewählten Bezeichnungen:

Die sog. Knotengleichung stellt nun die Bedingung dar, daß die Summe der in einem Knotenpunkt angreifenden Momente gleich Null ist. Durch Summieren der Ausdrücke (12) erhält man somit:

$$\sum_{i=1}^{i=4} M_{n,i} = 0 = \varphi_n \cdot 2 \sum_{i=1}^{i=4} k_{n,i} + \sum_{i=1}^{i=4} k_{n,i} \varphi_i + \sum_{i=1}^{i=4} \mathfrak{M}_{n,i}.$$
(13)

Für den ganz allgemeinen Fall, daß beliebig viele Stäbe in den Knoten n einmünden und dort auch Kragarmmomente M_k übertragen werden, kann diese Bedingung folgendermaßen geschrieben werden:

$$\varphi_n \cdot 2\sum_i k_{n,i} + \sum_i k_{n,i} \varphi_i + \sum_i \mathfrak{M}_{n,i} + \sum_i M_k = 0.$$
(14)

Diese Gleichung kann für jeden Knotenpunkt des Tragwerkes verwendet werden. Man erhält auf diese Weise ein lineares Gleichungssystem mit so vielen Gleichungen, als unbekannte Knotendrehwinkel vorhanden sind. Ordnet man die Gleichungen nach den Unbekannten tabellarisch, so kommen die Beiwerte von φ_n in die von links nach rechts fallende *Diagonale* zu stehen. Sie sollen daher als "*Diagonalglieder*" mit dem Buchstaben "d" bezeichnet werden.

Weiter soll für die nur von der äußeren Belastung abhängigen Glieder der Gl. (14), also für die Summe der "*Stabbelastungsglieder"* $\mathfrak{M}_{n,i}$, einschließlich der etwa vorhandenen Kragarmmomente M_k , die Bezeichnung "*Knotenbelastungsglied"* eingeführt und dafür der Buchstabe "s" gesetzt werden. Damit lautet die *Knotengleichung* (14) in einfacher Schreibweise

$$d_n \varphi_n + \sum_i k_{n,i} \varphi_i + s_n = 0.$$
(15)

Darin bedeuten also

$$d_n = 2\sum_i k_{n,i},\tag{16}$$

$$s_n = \sum_i \mathfrak{M}_{n,i} + \sum M_k \tag{17}$$

oder, wenn keine Kragarmmomente vorhanden sind, einfach

$$s_n = \sum_i \mathfrak{M}_{n, i}. \tag{17a}$$

Н_{П,3}

(R)

Das Diagonalglied d_n für einen Knotenpunkt n ist somit gleich der doppelten Summe der Steifigkeitszahlen k aller in diesem Knotenpunkt steif angeschlossenen Stäbe.

Die Gl. (15) enthält außer dem Diagonalglied $d_n \varphi_n$ und dem Absolutglied s_n allgemein noch so viele Glieder $k_{n,i} \varphi_i$, als steife Stabanschlüsse im Knotenpunkt nvorhanden sind. Diese Glieder stellen jeweils das Produkt dar aus dem Drehwinkel eines benachbarten Knotenpunktes und dem Steifigkeitswert des Verbindungsstabes.

Die zahlenmäßige Aufstellung der Knotengleichungen kann nun unmittelbar durch wiederholte Anwendung der Gl. (15) vorgenommen werden. Es ist hierbei vorteilhaft, vorher alle k-Werte, die am besten tabellarisch ermittelt werden, in eine besondere Tragwerksskizze einzuschreiben, die künftig kurz "*Beiwertskizze"* genannt werden soll.

Werden die Gleichungen in Form einer Tabelle angeschrieben, so erzielt man damit nicht nur eine sehr gute Übersicht, sondern es ergibt sich auch sofort eine leichte Kontrolle der meisten Glieder des gesamten Gleichungssystems. Dieses erscheint nämlich symmetrisch in bezug auf die von links nach rechts fallende Diagonale der Gleichungstabelle. Dadurch treten etwaige Schreibfehler sofort in Erscheinung. Allerdings können auf diese Weise weder die Diagonalglieder "d", noch die Knotenbelastungsglieder "s" überprüft werden, weshalb sie von vornherein mit größerer Sorgfalt einzutragen sind.

Nach Auflösung des so erhaltenen Gleichungssystems kann dann wiederum an Hand der Beiwertskizze die Ermittlung der Stabendmomente nach den allgemeinen Gl. (7) vorgenommen werden. Hierzu werden auch die \mathfrak{M} -Glieder benötigt, die bereits am Beginn der Rechnung bei der Ermittlung der *s*-Werte verwendet worden sind.

3. Berücksichtigung gelenkiger Stabanschlüsse.

Ist in irgendeinem Knotenpunkt ein Stab gelenkig angeschlossen (Abb. 31), so sind für diese Stelle *zwei* Knotendrehwinkel zu ermitteln und damit auch *zwei* Knotengleichungen aufzustellen. Es handelt sich dann gewissermaßen um zwei voneinander unabhängige Knotenpunkte, für welche die zugehörigen Diagonalglieder ge-

trennt zu bestimmen sind. Es wird also z. B. mit den Bezeichnungen der Abb. 31, wo sich unmittelbar links vom Knotenpunkt n ein Gelenk n' befindet,

$$d_n' = 2 k_2; \quad d_n = 2 (k_1 + k_3 + k_4)$$

Es mündet nämlich in den Knotenpunkt n' nur der Stab (2) ein, während im Knotenpunkt n die Stäbe (1), (3) und (4) zusammentreffen. In ähnlicher Weise sind auch die zugehörigen Knotenbelastungsglieder zu bilden. Es wäre also hier nach (17a)

$$s_n' = \mathfrak{M}_{n',2}; \quad s_n = \mathfrak{M}_{n,1} + \mathfrak{M}_{n,3} + \mathfrak{M}_{n,4}$$

Die Knotengleichungen für die beiden Punkte n' und n würden somit nach (15) in ausführlicher Schreibweise lauten:

$$\begin{array}{ll} \mbox{für } n'\colon \ d_n'\,\varphi_n'+k_2\,\varphi_2+s_n'=0, \\ \mbox{für } n\colon \ d_n\,\varphi_n+k_1\,\varphi_1+k_3\,\varphi_3+k_4\,\varphi_4+s_n=0. \end{array}$$

Die Symmetrie der tabellarisch aufgestellten Gleichungen wird auch bei Berücksichtigung der gelenkigen Stabanschlüsse nicht gestört.

4. Beschreibung des Rechnungsganges.

Der praktische Vorgang bei der Berechnung von Rahmentragwerken mit unverschieblichen Knotenpunkten ist, kurz zusammengefaßt, folgender: 1. Feststellung der Tragwerksabmessungen, also der Stablängen und Querschnittsgrößen.

2. Berechnung der Querschnitt-Trägheitsmomente J (für Rechtecksquerschnitte nach Tafel 1) und der Festwerte k für sämtliche Stäbe.

3. Herstellung der "Beiwertskizze".

4. Berechnung der "Diagonalglieder" d nach (16).

5. Ermittlung der "Stabbelastungsglieder" \mathfrak{M} für die einzelnen Belastungsfälle (nach Tafel 2 bis 4) und der "Knotenbelastungsglieder" s nach (17) bzw. (17a).

6. Aufstellung der Gleichungstabelle nach (15) unter Benutzung der Beiwertskizze, wobei mit dem Anschreiben aller Glieder d und s begonnen werden kann.

7. Auflösung der Gleichungen nach Muster I oder II (siehe sechsten Abschnitt).

8. Berechnung der Stabendmomente nach den Gl. (7) unter Zuhilfenahme der Beiwertskizze.

Sehr häufig sind nun die Tragwerke für verschiedene Belastungsfälle, z. B. Eigengewicht, Nutzlast, Erddruck, Wind, Temperatur usw., getrennt zu behandeln, um das ungünstigste Zusammenwirken der einzelnen Belastungen besser erfassen zu können. Da aber in den Gleichungen eine Belastungsänderung nur in den Absolutgliedern zum Ausdruck kommt, während der übrige Teil des Gleichungssystems unverändert bleibt, so wird bei Berücksichtigung mehrerer Belastungsfälle immer nur die letzte Spalte der Gleichungstabelle, welche die *s*-Werte enthält, betroffen. Es kann somit der größte Teil der Arbeit bei der Auflösung der Gleichungen für alle Belastungsfälle gemeinsam durchgeführt werden.

5. Tabellarische Aufstellung der Gleichungen.

Die Gestalt des zu behandelnden Tragwerkes ist aus der Beiwertskizze Abb. 32 ersichtlich, in der alle k-Werte eingetragen sind. Wegen voller Einspannung in den

Punkten 1 bis 5 und 10 bis 13 sind dort die entsprechenden Knotendrehwinkel $\varphi = 0$ und es bleiben als Unbekannte nur $\varphi_6, \varphi_7, \varphi_8, \varphi_9$ übrig. Um die zu ihrer Bestimmung erforderlichen vier Knotengleichungen aufstellen zu können, sind vorher die entsprechenden *d*-Glieder d_6, d_7, d_8, d_9 nach (16) und die zugehörigen *s*-Glieder $s_6, s_7, s_8,$ s_9 nach (17 a) zu ermitteln, also

$$\begin{array}{ll} d_6 = 2 \, . \, (k_1 + k_5 + k_6 + k_9) & s_6 = \sum \mathfrak{M}_6 = \mathfrak{M}_{6,1} + \mathfrak{M}_{6,5} + \mathfrak{M}_{6,7} + \mathfrak{M}_{6,10} \\ d_7 = 2 \, . \, (k_2 + k_6 + k_7 + k_{10}) & s_7 = \sum \mathfrak{M}_7 \\ d_8 = 2 \, . \, (k_3 + k_7 + k_8 + k_{11}) & s_8 = \sum \mathfrak{M}_8 \\ d_9 = 2 \, . \, (k_4 + k_8 + k_{12}) & s_9 = \sum \mathfrak{M}_9. \end{array}$$

Wenn verschiedene Belastungsfälle $B^{(1)}$, $B^{(2)}$ usw. getrennt behandelt werden sollen, so sind auch die *s*-Glieder für diese Fälle getrennt zu ermitteln.

Sodann kann durch wiederholte Anwendung der Knotengleichung (15)

$$d_n \varphi_n + \sum_i k_{n,i} \varphi_i + s_n = 0$$

die Aufstellung der Gleichungen erfolgen. Man erhält:

$$\begin{array}{l} d_6 \, \varphi_6 + \, k_6 \, \varphi_7 & + \, s_6 = 0 \\ d_7 \, \varphi_7 + \, k_6 \, \varphi_6 + \, k_7 \, \varphi_8 + \, s_7 = 0 \\ d_8 \, \varphi_8 + \, k_7 \, \varphi_7 + \, k_5 \, \varphi_9 + \, s_8 = 0 \\ d_9 \, \varphi_9 + \, k_8 \, \varphi_8 & + \, s_9 = 0 \end{array}$$

Das Anschreiben dieser Gleichungen kann aber auch sofort tabellarisch, nach den Unbekannten geordnet, vorgenommen werden, wobei die Belastungsfälle $B^{(1)}$, $B^{(2)}$ usw. nur in den letzten Spalten in Erscheinung treten (siehe Gleichungstabelle 1).

	φ_6	φ_7	φ_8	φ_9	B ⁽¹⁾	$B^{(2)}$	usw.
φ_6	d_6	k_{6}			8 ₆	_	
φ_7	k_6	<i>d</i> ₇	k_7		8 ₇		
φ_8		k_7	d_8	k_8	8 ₈		
φ_9			k_8	d_{9}	89		

Gleichungstabelle 1.

6. Bemerkungen über die Verwendung der Stabfestwerte k.

Werden die Stabfestwerte $k^* = \frac{2 E J}{l}$ in wahrer Größe in die Rechnung eingeführt, so ergeben sich nicht nur die Momente, sondern auch die Formänderungswerte in wahrer Größe. Werden nun sämtliche k-Zahlen mit dem z-fachen Wert in Rechnung gesetzt, so erhält man sämtliche Formänderungsgrößen $\frac{1}{z}$ -fach verzerrt, während die Stabendmomente wiederum in wahrer Größe erscheinen.

Davon wird man bei der Rechnung immer Gebrauch machen, um allzu große Zahlenwerte in den Gleichungen zu vermeiden. Wenn aber auch die wahren Werte der Formänderungsgrößen für ein Rahmentragwerk zu ermitteln sind, so braucht man nur die unter Einführung der z-fach verzerrten k-Zahlen erhaltenen Werte der Unbekannten wieder zu entzerren. Beispielsweise gelten dann folgende Beziehungen, wenn die mit * bezeichneten Größen die *wahren* Werte und die gleichnamigen, aber ohne *, die $\frac{1}{z}$ -fach verzerrten Werte bedeuten:

$$\begin{array}{ll}
\varphi^* = \varphi \cdot z & \Delta^* = \Delta \cdot z \\
\psi^* = \psi \cdot z & \delta^* = \delta \cdot z.
\end{array}$$
(18)

Wählt man als Verzerrungsfaktor

$$z = \frac{1}{2 E J_0} \tag{19}$$

und für J_0 beispielsweise 0,001 m⁴, so wird

oder einfach

$$z = \frac{1000}{2E} \tag{20}$$

und es ergeben sich die für die Rechnung zu verwendenden, verzerrten Steifigkeitszahlen k mit

$$k = k^* \cdot z = \frac{2 E J}{l} \cdot \frac{1000}{2 E}$$

$$k = \frac{J}{l} \cdot 1000,$$
 (21)

wobei J in m⁴ und l in m einzuführen sind. Die k-Zahlen können für die praktische Berechnung auf drei gültige Ziffern abgerundet werden, ohne damit der Genauigkeit merklich zu schaden. Zur Erleichterung der rechnerischen Ermittlung der k-Werte kann für Rechtecksquerschnitte die Zahlentafel 1 benutzt werden.

III. Rahmentragwerke mit verschieblichen Knotenpunkten.

1. Allgemeines.

Bei vielen Tragwerken treten infolge der Belastung nicht nur Knotenverdrehungen, sondern auch Knotenverschiebungen auf. In solchen Fällen sind außer

Abb. 33 bis 41. "Verschiebliche" unsymmetrische Tragwerke.

den Knotendrehwinkeln φ auch Knotenverschiebungen δ bzw. die "gegenseitigen" Stabendverschiebungen Δ oder die sog. *Stabdrehwinkel* ψ als Formänderungsgrößen zu bestimmen.

Abb. 42 bis 47. Tragwerke mit Dreieckstabzügen.

Es wird sich also zuerst immer darum handeln, bei einem vorliegenden Tragwerk festzustellen, welche Knotenpunkte verschieblich sind und wie viele verschiedene Stabdrehwinkel ψ dadurch insgesamt erzeugt werden. Allgemein kann man sagen, daß stets so viele voneinander unabhängige Stabdrehwinkel ψ bzw. "gegenseitige" Stabendverschiebungen Δ auftreten, als gedachte Lager in den Knotenpunkten notwendig wären, um das gesamte Tragwerk "unverschieblich" zu machen.

Um eine bessere Übersicht über diese Tragwerksarten zu erhalten und auch eine raschere Beurteilung des zu erwartenden Umfanges der zahlenmäßigen Berechnung zu ermöglichen, erscheint es zweckmäßig, eine Einteilung in verschiedene Gruppen nach besonderen Merkmalen vorzunehmen. Man kann demnach unterscheiden:

1. Symmetrische Tragwerke, und zwar:

a) solche, deren Knotenpunkte bei symmetrischer Belastung unverschieblich, bei unsymmetrischer Belastung aber verschieblich sind (Abb. 18 bis 25, 42, 43, 45), und

b) solche, die auch bei symmetrischer Belastung Knotenpunktsverschiebungen erfahren (Abb. 26 bis 29).

2. Unsymmetrische Tragwerke (Abb. 33 bis 41).

Diese beiden Hauptgruppen können eine weitere Unterteilung erfahren in:

A. Tragwerke mit Dreieckstabzügen (Abb. 42 bis 47),

B. Tragwerke mit lotrecht und waagrecht verschieblichen Knotenpunkten (Abb. 26, 27, 28, 41),

C. Tragwerke mit gebrochenen Stabzügen oder beliebig geneigten Stäben (Abb. 48 bis 51).

Bei der zahlenmäßigen Berechnung von unsymmetrisch belasteten, aber symmetrisch ausgebildeten Tragwerken kann die Anwendung des Verfahrens der "Belastungs-Umordnung" (BU.-Verfahren) zu bedeutenden Vereinfachungen führen

(siehe Kapitel III, 5 dieses Abschnittes). Danach wird die gegebene unsymmetrische Belastung durch eine symmetrische und eine antimetrische ersetzt und die Berechnung für beide Belastungsarten getrennt durchgeführt. Auf diese Weise kann die Anzahl der gemeinsam zu bestimmenden Unbekannten beträchtlich herabgesetzt werden. Um darüber einen Überblick zu gewinnen, ist bei den einzelnen Abbildungen stets die Anzahl der Unbekannten vermerkt, die bei den in Betracht kommenden Belastungsfällen auftreten.

Bei Tragwerken mit Dreieckstabzügen (Abb. 42 bis 47) ist zu beachten, daß bei einer Parallelverschiebung eines Stabes stets $\Delta = 0$ und damit auch $\psi = 0$ ist. So werden z. B. bei dem in Abb. 52 dargestellten Tragwerk die Stabdrehwinkel ψ der Dreieckseiten gleich Null, ob-

Abb. 48 bis 51. Tragwerke mit gebrochenen Stabzügen oder geneigten Stielen.

wohl die Knotenpunkte 3, 4, 5 bei der Verformung Verschiebungen erleiden. Für die Behandlung der in der Gruppe C zusammengefaßten Rahmentragwerke

bringt die Verwendung des Drehwinkelverfahrens in der Regel keine Vorteile mit sich. Es sind nämlich häufig mehr Formänderungsgrößen zu bestimmen, als statisch überzählige Größen vorhanden sind. Außerdem sind auch Verschiebungspläne zu zeichnen, so daß es in solchen Fällen oft zweckmäßiger sein wird, auf die Verwendung des Drehwinkelverfahrens überhaupt zu verzichten und auf die Elastizitätsgleichungen zurückzugreifen, wenn nicht für die einfacheren Rahmenformen die in den verschiedenen Handbüchern enthaltenen fertigen Formeln Verwendung finden können.

2. Aufstellung der Bedingungsgleichungen.

Es sind hier zwei Arten von Bedingungsgleichungen zu unterscheiden, die im folgenden getrennt voneinander behandelt werden. Die erste Art ist bereits bekannt. Es sind dies die sog. *Knotengleichungen*, deren Anzahl immer genau so groß ist, als unbekannte Knotendrehwinkel φ vorhanden sind. Wenn nun aber noch r unbekannte Stabdrehwinkel ψ oder Verschiebungsgrößen δ bzw. \varDelta dazukommen, so sind auch noch r unabhängige Gleichungen aufzustellen, die als Verschiebungsgleichungen bezeichnet werden sollen.

Zur Aufstellung dieser beiden Gleichungsgruppen wird man am besten wieder gebrauchsfertige Mustergleichungen verwenden, deren Herleitung am einfachsten aus den allgemeinen statischen Gleichgewichtsbedingungen erfolgt.

Knotengleichungen. Hier kann derselbe Weg eingeschlagen werden wie bei den Systemen mit unverschieblichen Knotenpunkten. Abb. 53 stellt einen Knoten n dar, der mit vier Stäben und den benachbarten Knoten 1, 2, 3, 4 aus einem Rahmen-

tragwerk herausgeschnitten zu denken ist. Unter der Voraussetzung, daß bei allen vier Stäben Stabdrehwinkel ψ auftreten, lauten die Ausdrücke für die Stabendmomente am Knotenpunkt n nach den Gl. (7) unter Beachtung der in der Abb. 53 gewählten Bezeichnung:

$$M_{n,1} = k_{n,1} (2 \varphi_n + \varphi_1 + 3 \psi_{n,1}) + \mathfrak{M}_{n,1}$$

$$M_{n,2} = k_{n,2} (2 \varphi_n + \varphi_2 + 3 \psi_{n,2}) + \mathfrak{M}_{n,2}$$

$$M_{n,3} = k_{n,3} (2 \varphi_n + \varphi_3 + 3 \psi_{n,3}) + \mathfrak{M}_{n,3}$$

$$M_{n,4} = k_{n,4} (2 \varphi_n + \varphi_4 + 3 \psi_{n,4}) + \mathfrak{M}_{n,4}.$$
(22)

Die bereits bekannte Bedingung $\sum M = 0$ für den Knotenpunkt *n* ergibt durch Summieren der Ausdrücke (22):

$$\sum_{i=1}^{i=4} M_{n,i} = 0 = \varphi_n \cdot 2\sum_{i=1}^{i=4} k_{n,i} + \sum_{i=1}^{i=4} k_{n,i} \varphi_i + \sum_{i=1}^{i=4} k_{n,i} \psi_{n,i} + \sum_{i=1}^{i=4} M_{n,i}.$$
(23)

Treffen im Knotenpunkt n beliebig viele Stäbe zusammen und werden außerdem dort auch angreifende Kragarmmomente M_k in Betracht gezogen, so nimmt die Gl. (23) folgende Form an:

$$\varphi_n \cdot 2\sum_i k_{n,i} + \sum_i k_{n,i} \varphi_i + \sum_i 3 k_{n,i} \psi_{n,i} + \sum_i \mathfrak{M}_{n,i} + \sum_i \mathfrak{M}_k = 0.$$
(24)

Zur Vereinfachung der Schreibweise kann wieder ähnlich wie bei Gl. (15) gesetzt werden:

für den Beiwert des Diagonalgliedes

$$d_n = 2 \sum_i k_{n,i}, \qquad (25)$$

für das Knotenbelastungsglied

к_{п,3} П

$$s_n = \sum_i \mathfrak{M}_{n,i} + \sum M_k, \tag{26}$$

bzw., wenn keine Kragarmmomente vorhanden sind, einfach

$$s_n = \sum_i \mathfrak{M}_{n, i}.$$
 (26a)

Damit lautet die Gl. (24)

$$d_{n}\varphi_{n} + \sum_{i} k_{n,i}\varphi_{i} + \sum_{i} 3 k_{n,i}\psi_{n,i} + s_{n} = 0.$$
(27)

Vergleicht man nun diese für Tragwerke mit verschieblichen Knotenpunkten geltende Gl. (27) mit der für unverschiebliche Tragwerke aufgestellten Gl. (15), so ergibt sich, daß hier nur die Glieder $\sum_{i} 3 k_{n,i} \psi_{n,i}$ hinzukommen, während alle übrigen Bestandteile in der gleichen Form wie bei (15) in Erscheinung treten. Die dort gegebenen Erläuterungen haben daher auch hier volle Gültigkeit.

Führt man in der Rechnung an Stelle der Stabdrehwinkel ψ die "gegenseitigen" Stabendverschiebungen Δ ein, so lautet die Knotengleichung (27), wenn nach (2) $\psi_{n,i} = \frac{\Delta_{n,i}}{l_{n,i}}$ und weiter $3k_{n,i} = \bar{l}$ (28)

$$\frac{3\,k_{n,\,i}}{l_{n,\,i}} = \bar{k}_{n,\,i} \tag{28}$$

gesetzt wird:

$$d_{n}\varphi_{n} + \sum_{i} k_{n,i}\varphi_{i} + \sum_{i} \bar{k}_{n,i}\Delta_{n,i} + s_{n} = 0.$$
(29)

In der Knotengleichung ergeben sich somit stets so viele Glieder von der Form $3 k_{n,i} \psi_{n,i}$ bzw. $\bar{k}_{n,i} \Delta_{n,i}$, als in den betrachteten Knotenpunkt Stäbe mit Stabdrehwinkeln ψ bzw. mit "gegenseitigen" Stabendverschiebungen Δ einmünden.

Verschiebungsgleichungen. Zur gemeinsamen Bestimmung der unbekannten Formänderungsgrößen φ und ψ bzw. φ und Δ sind noch so viele sog. Verschiebungsgleichungen aufzustellen, als im Tragwerk insgesamt "gegenseitige" Stabendverschiebungen Δ oder Stabdrehwinkel ψ als Unbekannte vorkommen.

Denkt man sich durch das Tragwerk einen beliebigen Schnitt geführt, an den Trennungsstellen die Schnittkräfte M, N, Q angebracht, so können die bekannten statischen Gleichgewichtsbedingungen $\sum H = 0$ bzw. $\sum V = 0$ für den abgetrennten Tragwerksteil aufgestellt werden. Wenn hierbei die Schnittkräfte M, N, Q als Funktion der Formänderungsgrößen φ und ψ bzw. φ und Δ ausgedrückt werden, so erhält man eine brauchbare Bedingungsgleichung. Sie bringt also stets zum Ausdruck, daß die Projektion aller auf den abgetrennten oder übrigen Tragwerksteil einwirkenden Kräfte auf eine beliebige Richtung gleich Null sein muß.

Durch passende Wahl dieser Schnittführung an verschiedenen Stellen des Tragwerkes gewinnt man eine Reihe von unabhängigen linearen Gleichungen, die in der Regel zusammen mit den Knotengleichungen ausreichen, um sämtliche unbekannte Formänderungsgrößen gemeinsam zu ermitteln.

Es ist allerdings für die "*Verschiebungsgleichungen"* im Gegensatze zu den Knotengleichungen nicht möglich, eine einfache, gebrauchsfertige Form zu finden, die für *alle* Arten von Tragwerken Gültigkeit besitzt. Dennoch gelingt es aber, solche "Verschiebungsgleichungen" wenigstens für einzelne *Tragwerksarten* (z. B. Stockwerksrahmen, Vierendeelträger usw.) ein für allemal aufzustellen und so die Berechnung immerhin noch beträchtlich zu erleichtern. Dies soll nun im folgenden für verschiedene Tragwerksformen, die im Hochbau besonders häufig vorkommen, durchgeführt werden.

3. Der beliebig belastete Stockwerksrahmen mit lotrechten, geschoßweise gleich langen Ständern.

Es können hier auch ungleiche Feldweiten und Stockwerkshöhen sowie eine beliebige Zahl der Felder und Stockwerke vorausgesetzt werden. Abb. 54 zeigt einen Vertreter dieser Rahmengruppe. Ein Teil des Rahmentragwerkes ist mit seiner Verformung in größerem Maßstabe in Abb. 55 herausgezeichnet. Es ist leicht einzusehen, daß unter Vernachlässigung der Formänderung durch die Längskräfte die oberen Enden sämtlicher Stiele ein und desselben Stockwerkes gegenüber den unteren Enden durchwegs die *gleiche* "gegenseitige" Verschiebung Δ in waagrechter Richtung erleiden, während die Stabsehnen der einzelnen Riegel parallel zur ursprünglichen Stabachse bleiben. Es erscheinen also im gesamten Tragwerk nur so viele verschiedene Stabdrehwinkel ψ , als Stockwerke vorhanden sind.

a) Bedingungsgleichungen.

Knotengleichungen: Für den vorliegenden Fall lautet die allgemeine Knotengleichung (27) in ausführlicher Schreibweise

$$d_n \varphi_n + \sum_i k_{n,i} \varphi_i + 3 k_\mu \psi_\mu + 3 k_{\mu+1} \psi_{\mu+1} + s_n = 0.$$
(30)

Es treten also hier jeweils höchstens *zwei* ψ -Glieder auf, und zwar beziehen sich 3 $k_{\mu} \psi_{\mu}$ und 3 $k_{\mu+1} \psi_{\mu+1}$ auf die in den betrachteten Knoten *n* einmündenden Säulen des darunter- bzw. darüberliegenden Stockwerkes.

In den Gleichungen für jene Knoten des Tragwerkes, wo nur je eine Säule einmündet, z. B. in den obersten Knoten des Tragwerkes, erscheint auch nur ein ψ -Glied.

Wendet man die Knotengleichung (30) beispielsweise für den Knoten (8) des in Abb. 54 bzw. 55 dargestellten Stockwerksrahmens an, so erhält man mit den dort ersichtlichen Bezeichnungen:

 $d_8 \varphi_8 + k_7 \varphi_7 + k_8 \varphi_9 + k_{12} \varphi_{13} + 3 k_3 \psi_1 + 3 k_{12} \psi_2 + s_8 = 0.$

Verschiebungsgleichungen. Es sind also noch so viele unabhängige Bedingungsgleichungen aufzustellen, als unbekannte Stabdrehwinkel auftreten, d. h. als Stockwerke vorhanden sind. Man denke sich zu diesem Zwecke durch jedes Stockwerk an den obersten Säulenenden einen waagrechten Schnitt geführt und die Schnittkräfte M, N, Q angebracht. Für den abgetrennten Tragwerksteil kann sodann jeweils die statische Gleichgewichtsbedingung $\Sigma H = 0$ aufgestellt werden. Dies soll für den in Abb. 56 dargestellten beliebig belasteten Stockwerksrahmen für *ein*

Stockwerk durchgeführt werden. In Abb. 57 ist der oberhalb des Schnittes s-s befindliche Tragwerksteil mit allen auf ihn einwirkenden äußeren Kräften einschließlich der Schnittkräfte, die dort nur symbolisch angedeutet sind, gesondert herausgezeichnet. Die Bedingung $\Sigma H = 0$ kann nun für diesen Rahmenteil allgemein in folgender Form geschrieben werden:

$$\sum P + \sum q + \sum Q = 0, \tag{31}$$

darin bedeuten:

 ΣP die Summe der waagrechten Projektionen aller auf den abgetrennten Tragwerksteil, also oberhalb der gedachten Schnittstelle einwirkenden äußeren Einzellasten,

 Σq die Summe aller in waagrechter Richtung oberhalb der Schnittstelle wirkenden Streckenlasten,

 ΣQ die Summe der an den Schnittstellen übertragenen Querkräfte.

Über den Richtungssinn dieser Kräfte P, q und Q sei ein für allemal festgesetzt, daß die von *links* nach rechts gerichteten Kräfte positiv $|_ \rightleftharpoons^+ |$ in die Rechnung einzuführen sind.

Die Glieder ΣQ stimmen zahlenmäßig mit den Auflagerdrücken ΣA überein, wenn man die Schnittstellen am obersten Ende der Säulen annimmt. Sie setzen sich aus zwei Beiträgen zusammen, und zwar:

1. aus den Auflagerdrücken A der freiaufliegend gedachten Stäbe infolge der auf sie direkt einwirkenden äußeren Lasten (Abb. 58a),

2. aus den durch die Stabendmomente M_{ρ} (Moment am oberen Säulenende) und M_u (Moment am unte- ρ . ren Säulenende) hervorgerufenen Anteilen $\frac{M_o + M_u}{r}$ (Abb. 58b).

Es ist also:

$$\sum Q = \sum A = \sum \mathfrak{A} + \sum \frac{M_o + M_u}{l}$$
(32)

Damit lautet die Gl. (31)

$$\sum P + \sum q + \sum \mathfrak{A} + \sum \frac{M_o + M_u}{l} = 0$$
(33)

oder, da voraussetzungsgemäß sämtliche Säulen eines Stockwerkes dieselbe Länge l aufweisen,

$$\left(\underline{\Sigma}P + \underline{\Sigma}q + \underline{\Sigma}\mathfrak{A}\right) \cdot l + \underline{\Sigma}(M_o + M_u) = 0.$$
(34)

Man kann nun den Ausdruck $\sum (M_o + M_u)$ nach (9) mit den hier gewählten Bezeichnungen als Funktion der Formänderungsgrößen und der Stabbelastungsglieder ausdrücken und erhält

$$\sum (M_o + M_u) = \sum 3 k \varphi_o + \sum 3 k \varphi_u + \sum 6 k \psi + \sum (\mathfrak{M}_o + \mathfrak{M}_u).$$
(35)

Hierin bedeuten φ_o bzw. φ_u die Knotendrehwinkel des am "oberen" bzw. "unteren" Säulenende gelegenen Knotenpunktes. Führt man diesen Ausdruck in (34) ein, so ergibt sich:

$$\sum 3 k \varphi_o + \sum 3 k \varphi_u + \sum 6 k \psi + \left(\sum P + \sum q + \sum \mathfrak{A}\right) l + \sum (\mathfrak{M}_o + \mathfrak{M}_u) = 0.$$
(36)

Setzt man für den Beiwert von ψ , der in der Gleichungstabelle in die Diagonale zu stehen kommt, die sinngemäße Bezeichnung D_{μ} (= Diagonalglied des Stockwerkes μ), ferner für die Summe aller von der äußeren Belastung abhängigen Glieder

Guldan, Rahmentragwerke.

17

2

den Buchstaben S_{μ} (= Belastungsglied des Stockwerkes μ), so erhält man die Verschiebungsgleichung für ein beliebiges Stockwerk in zweckmäßiger Schreibweise

$$\sum_{\mu} 3 k \varphi_{u} + \sum_{\mu} 3 k \varphi_{o} + D_{\mu} \psi_{\mu} + S_{\mu} = 0.$$
(37)

Dabei ist

$$D_{\mu} = 6 \sum_{\mu} k, \tag{38}$$

d. h. gleich der sechsfachen Summe der Steifigkeitszahlen sämtlicher Säulen des betrachteten Stockwerkes, und

$$S_{\mu} = \left(\sum P + \sum_{\mu} q + \sum_{\mu} \mathfrak{A}\right) \cdot l_{\mu} + \sum_{\mu} (\mathfrak{M}_{o} + \mathfrak{M}_{u}).$$
(39)

Das S-Glied enthält somit die Summe aller oberhalb des betrachteten Stockwerkes waagrecht wirkenden Kräfte P und q sowie die oberen Auflagerdrücke \mathfrak{A}

aller freigelagert gedachten Säulen dieses Stockwerkes $[- \swarrow^{+}]$, multipliziert mit der Stockwerkshöhe l_{μ} , und außerdem die Summe der oberen und unteren Stabbelastungsglieder $(\mathfrak{M}_{o} + \mathfrak{M}_{u})$ dieser Säulen. Die Vorzeichen der Auflagerdrücke \mathfrak{A} stimmen immer mit dem Vorzeichen der Kräfte überein, aus welchen sie gebildet werden.

Bei der zahlenmäßigen Bestimmung der S_{μ} -Glieder ergeben sich oft Vereinfachungen. Wirken z. B. nur lotrechte Kräfte auf das Tragwerk ein, so ist $S_{\mu} = 0$; wirken waagrechte Knotenlasten, so wird einfach $S_{\mu} = l \sum P$ usw.

Abb. 59. Belastungs- und Beiwertskizze.

Die φ -Glieder treten paarweise für jede Säule in der Form $3 k \varphi_u$ und $3 k \varphi_o$ auf. Ihre Zahl ist somit gleich der Anzahl der in

dem betrachteten Stockwerk auftretenden unbekannten Drehwinkel φ_u und φ_o . Durch die Benutzung der gebrauchsfertigen Gl. (37) unter Zuhilfenahme einer Beiwertskizze werden viele Zwischenrechnungen entbehrlich und das Anschreiben der Gleichungstabelle gestaltet sich sehr einfach.

Anschließend sei die zahlenmäßige Anwendung der Gl. (37) für das vorletzte Geschoß eines Stockwerksrahmens gezeigt. In Abb. 59 ist die Belastung mit den erforderlichen Beiwerten dargestellt. Es ist also nach (38)

$$D_{\mu} = 6 \sum_{\mu} k = 6 (4 + 5 + 6 + 3) = 108.$$

Weiter ist nach (39)

$$S_{\mu} = l_{\mu} \sum P = 3,50 \ (4+2) = 21.$$

Damit wird nach (37)

$$\begin{split} &12 \varphi_9 + 15 \varphi_{10} + 18 \varphi_{11} + 9 \varphi_{12} + 12 \varphi_{13} + 15 \varphi_{14} + 18 \varphi_{15} + 9 \varphi_{16} + 108 \psi_3 + 21 = 0. \\ &\text{In derselben Weise wäre bei allen übrigen Stockwerken zu verfahren.} \end{split}$$

b) Gleichungstabelle für einen unsymmetrischen, dreistieligen, zweistöckigen Rahmen.

In Abb. 60 ist die Beiwertskizze des Rahmentragwerkes dargestellt. Der Gang der Rechnung ist im wesentlichen derselbe wie bei unverschieblichen Tragwerken.

Für den vorliegenden Rahmen sind als Unbekannte die sechs Knotendrehwinkel φ_4 bis φ_9 und zwei Stabdrehwinkel ψ_1 und ψ_2 gemeinsam zu ermitteln. Demgemäß werden für die Aufstellung der entsprechenden Rahmengleichungen folgende Werte zu ermitteln sein:

für die Knotengleichungen: d_4 bis d_9 nach (25) und s_4 bis s_9 nach (26); für die Verschiebungsgleichungen: D_1 , D_2 nach (38) und S_1 , S_2 nach (39).

Damit kann unter Zuhilfenahme der Beiwertskizze die tabellarische Aufstellung der Gleichungen vorgenommen werden. Man benutzt dazu die allgemeine Form der Knotengleichung (30):

$$d_n \varphi_n + \sum_i k_{n,i} \varphi_i + 3 k_\mu \psi_\mu + 3 k_{\mu+1} \psi_{\mu+1} + s_n = 0$$

und die Verschiebungsgleichung (37):

$$\sum_{\mu} 3 k \varphi_{u} + \sum_{\mu} 3 k \varphi_{o} + D_{\mu} \psi_{\mu} + S_{\mu} = 0.$$

(Siehe Gleichungstabelle 2.)

Abb. 60. Beiwertskizze.

	Gleichungstabelle 2.								
	φ4	φ_5	φ ₆	φ,	φ_8	\$\varphi_9\$	ψ_1	ψ_2	В
φ_4	d_4	k_4		k_{6}			$3 k_1$	$3 k_6$	8 ₄
φ_5	k4	d_5	k_5		k7		$3 k_2$	3 k ₇	85
φ_6		k_5	d_6			k ₈	$3 k_3$	3 k ₈	86
φ,	k ₆			<i>d</i> ₇	k_9			$3 k_6$	87
φ_8		k 7		k 9	d_8	k ₁₀		3 k ₇	8 ₈
\$\$9			k 8		k ₁₀	d_9		3 k ₈	89
ψ_1	3 k ₁	$3 k_2$	3 k ₃				D_1		S_1
ψ_2	$3k_6$	3 k ₇	3 k ₈	$3k_6$	3 k ₇	3 k ₈		D_2	S_2

c) Tabellarische Aufstellung[.] der Gleichungen für symmetrische Tragwerke.

Bei symmetrisch ausgebildeten und symmetrisch belasteten Tragwerken ergeben sich beträchtliche Vereinfachungen in der rechnerischen Behandlung. Es sind dabei zwei Fälle zu unterscheiden:

1. Die Symmetrale des Tragwerkes enthält Knotenpunkte.

Bei dem in Abb. 61 dargestellten, symmetrisch belasteten Rahmen treten als Unbekannte nur die Knotendrehwinkel φ_3 , φ_5 und φ_7 auf, da infolge der festen Einspannung

Gleichungstabelle 3.

	φ_3	φ_5	φ_7	B
φ_{3}	d_{3}	k_3		83
φ_5	k_3	d_5	k_5	\$ ₅
φ,		k_5	d_7	8 ₇

2*

der Säulenfüße $\varphi_1 = \varphi_2 = \varphi_1' = 0$, ferner wegen der symmetrischen Verformung auch $\varphi_4 = \varphi_6 = \varphi_8 = 0$ und ebenso $\psi_1 = \psi_2 = \psi_3 = 0$ sind. Aus Symmetriegründen muß weiter $\varphi_3' = -\varphi_3$, $\varphi_5' = -\varphi_5$ und $\varphi_7' = -\varphi_7$ sein. Der Rahmen ist somit für symmetrische Belastung genau so zu berechnen wie der in Abb. 62 samt den Stabfestwerten k dargestellte Rahmen, der in den Punkten 4, 6 und 8 fest eingespannt ist. Es sind also hier nur *drei* Knotengleichungen nach (15) anzuschreiben (siehe Gleichungstabelle 3).

2. Die Symmetrale des Tragwerkes geht durch die Feldmitte.

Einen solchen Fall zeigt Abb. 63, in welcher auch die Stabfestwerte k eingetragen sind. Auch hier treten bei symmetrischer Belastung keine Stabdrehwinkel auf. Als Unbekannte sind nur die Knotendrehwinkel φ_3 , φ_4 , φ_5 , φ_6 zu bestimmen. Wegen der angenommenen festen Einspannung der Säulenfüße ist $\varphi_1 = \varphi_2 = \varphi_2' = \varphi_1' = 0$.

Ferner ergibt sich wegen der symmetrischen Verformung $\varphi_4' = -\varphi_4$ und $\varphi_6' = -\varphi_6$. Es würde also z. B. die Knotengleichung für den Punkt 4 nach (15) lauten:

$$d_4 \varphi_4 + k_3 \varphi_3 + k_4 \varphi_4' + k_6 \varphi_6 + s_4 = 0.$$

Da nun $\varphi_4' = -\varphi_4$, so kann die vorstehende Gleichung auch in folgender Form geschrieben werden:

$$(d_4 - k_4) \varphi_4 + k_3 \varphi_3 + k_6 \varphi_6 + s_4 = 0.$$

Es wird also das Diagonalglied d für jeden der Symmetrale zunächst gelegenen Knotenpunkt um den Stabfestwert k jenes Stabes vermindert, der zum symmetrisch gelegenen

Knotenpunkt führt. Es ist daher zweckmäßig, für diesen verkleinerten Wert des Diagonalgliedes die Bezeichnung d' einzuführen. Also z. B. $d_4' = d_4 - k_4$ oder allgemein

	φ_3	φ_4	φ_5	φ ₆	B
φ_3	d_3	k_3	k_5		s_3
φ_4	k_3	d_4'		k_6	<i>s</i> ₄
φ_5	k_5		d_{5}	k_7	s_5
φ_6		k_{6}	k_7	d_{6}'	8 ₆

für einen Stab zwischen zwei symmetrischen Knotenpunkten n-n' mit der Steifigkeitszahl $k_{n,n'}$

$$d_n' = d_n - k_{n, n'}. \qquad (40)$$

Damit kann wieder nach (15) die Aufstellung der Gleichungstabelle 4 vorgenommen werden. Dabei bedeutet also nach (40) $d_4' = d_4 - k_4$ und $d_6' = d_6 - k_8$.

Bei symmetrischen Tragwerken ist somit immer darauf zu achten, ob die Symmetrieachse durch Knotenpunkte oder durch die Feldmitte verläuft (vgl. Zahlenbeispiel Nr. 4).

4. Der beliebig belastete, nur waagrecht verschiebliche Stockwerksrahmen mit lotrechten, ungleich langen Ständern.

Solche Tragwerke kommen bei Tribünenbauten, bei Stiegenhäusern, Dachbauten usw. vor. Einen Vertreter dieser Art zeigt ganz allgemein Abb. 64. Ein Teil dieses Rahmengebildes ist in Abb. 65 mit der zu erwartenden Verformung vergrößert dargestellt. Daraus ist ersichtlich, daß die oberen Säulenenden ein und desselben Stockwerkes stets um das gleiche Stück \varDelta gegenüber den unteren Säulenenden verschoben werden. Die Stabsehnen der Riegel verschieben sich bei der Verformung nur parallel zur ursprünglichen Lage. Es sind also auch hier die Stabdrehwinkel der Riegel gleich Null.

Durch die Verschiebungsgröße Δ der Säulen eines Stockwerkes sind die Stabdrehwinkel sämtlicher Säulen dieses Stockwerkes bestimmt. Mit den Bezeichnungen der Abb. 65 ist daher z. B. im untersten Geschoß:

$$\psi_1 = \frac{\Delta_1}{l_1}; \quad \psi_2 = \frac{\Delta_1}{l_2}; \quad \psi_3 = \frac{\Delta_1}{l_3}; \quad \psi_n = \frac{\Delta_1}{l_n}.$$
(41)

Es erscheint somit hier zweckmäßiger, an Stelle der ungleichen Stabdrehwinkel ψ die Verschiebung Δ als Unbekannte zu wählen. Damit wird erreicht, daß außer den Knotendrehwinkeln φ nur noch so viele Δ -Werte zu bestimmen sind, als Stockwerke vorhanden sind. Die Aufstellung der Rahmengleichungen erfolgt ähnlich wie früher.

a) Bedingungsgleichungen.

Knotengleichungen. Durch Einführen der Beziehungen (41) in die Knotengleichung (30) erhält man wieder in vereinfachter Schreibweise

$$\frac{d_{n}\varphi_{n} + \sum_{i} k_{n,i}\varphi_{i} + \bar{k}_{\mu}\Delta_{\mu} + \bar{k}_{\mu+1}\Delta_{\mu+1} + s_{n} = 0,}{\text{wobei } \bar{k}_{\mu} = \frac{3k_{\mu}}{l_{\mu}} \text{ und } \bar{k}_{\mu+1} = \frac{3k_{\mu+1}}{l_{\mu+1}},}$$
(42)

ferner Δ_{μ} und $\Delta_{\mu+1}$ die den übereinanderliegenden Stockwerken μ bzw. ($\mu + 1$) zugeordneten Verschiebungsgrößen bedeuten (Abb. 66).

Abb. 66.

Verschiebungsgleichungen. Die Auswertung der Bedingung $\Sigma H = 0$ für irgendein Stockwerk μ ergibt unter Beachtung, daß hier die Säulenlängen l verschieden sind, folgende Mustergleichung [vgl. auch (37)]:

$$\sum_{\mu} \bar{k} \varphi_u + \sum_{\mu} \bar{k} \varphi_o + D_{\mu} \Delta_{\mu} + S_{\mu} = 0; \qquad (44)$$

hierin bedeuten:

$$\bar{k} = \frac{3k}{l}, \quad D_{\mu} = 2\sum_{\mu} \frac{\bar{k}}{l};$$
(45)

Rahmentragwerke mit verschieblichen Knotenpunkten.

$$S_{\mu} = \sum P + \sum q + \sum_{\mu} \mathfrak{A} + \sum_{\mu} \frac{\mathfrak{M}_{o} + \mathfrak{M}_{u}}{l}; \qquad (46)$$

die \sum_{μ} beziehen sich auf alle Säulen des betrachteten Stockwerkes μ . Die Bedeutung der Glieder P, q, \mathfrak{A} und $\mathfrak{M}_o, \mathfrak{M}_u$ ist dieselbe wie in (39).

Die Anwendung dieser Gleichung läßt sich am besten an einem Zahlenbeispiel zeigen. In Abb. 67 ist ein Zweigeschoßrahmen mit der vorhandenen waagrechten

Abb. 67. Belastungs- und Beiwertskizze.

Belastung und den erforderlichen k-Werten dargestellt. Die Säulen sind bei 1, 2, 3 fest eingespannt. Es wären die Verschiebungsgleichungen für beide Stockwerke anzuschreiben. Nach (43) ist

Abb. 71.

Diese
$$\bar{k}$$
-Werte sind ebenfalls in Abb. 67, und zwar
als Klammerwerte eingetragen. Nach (45) wird weiter
 $D_1 = 2\sum_{\mu} \frac{\bar{k}}{l} = 2\left(\frac{3.3}{5.0} + \frac{6.0}{4.0} + \frac{4.0}{4.5}\right) = 6,10,$
 $D_2 = 2\left(\frac{4.0}{3.0} + \frac{3.6}{5.0} + \frac{3.75}{4.0}\right) = 5,98$
und schließlich nach (46)
 $S_1 = 3,0 + 6,0 = 9,0 \text{ t},$
 $S_2 = 3.0 \text{ t}.$

Somit lauten nach (44) die Verschiebungsgleichungen:

für das erste Stockwerk:

$$3,3 \varphi_4 + 6,0 \varphi_5 + 4,0 \varphi_6 + 6,10 \varDelta_1 + 9,0 = 0$$

und für das zweite Stockwerk:

 $4,0\,\varphi_{4}+3,6\,\varphi_{5}+3,75\,\varphi_{6}+4,0\,\varphi_{7}+3,6\,\varphi_{8}+3,75\,\varphi_{9}+5,98\,\varDelta_{2}+3,0=0.$

Mit Hilfe der allgemeinen Gl. (42) und (44) können u. a. auch Tragwerksformen berechnet werden, wie sie die Abb. 19, 22, 23, 24, 34, 35, 38, 40, 45, 46, 47, 68, 69, 70 und 71 zeigen.

5. Das BU.-Verfahren bei symmetrischen Tragwerken.

Sind symmetrisch ausgebildete Tragwerke unsymmetrisch belastet, so ist die Anzahl der zu bestimmenden Unbekannten genau so groß, als ob auch das Tragwerk

unsymmetrisch gestaltet wäre. Durch das bekannte Verfahren der "Belastungsumordnung", kurz BU.-Verfahren genannt, können auch in einem solchen Fall die Vorteile der Symmetrie ausgenutzt werden.

Diese Art der Behandlung soll an einem einfachen Beispiel kurz erläutert werden. Abb. 72 zeigt ein symmetrisches Tragwerk mit der unsymmetrisch einwirkenden Belastung P. Dieser gegebene Belastungsfall kann nun durch zwei andere ersetzt werden, die in den Abb. 72a und 72b dargestellt sind. Der Belastungsfall a besteht aus den symmetrisch einwirkenden Lasten $\frac{P}{2}$, der Belastungsfall b zeigt die Kräfte $\frac{P}{2}$ in antimetrischer Anordnung. Da die Überlagerung dieser beiden Belastungsfälle wieder die ursprüngliche Belastung ergibt, so muß auch die Überlagerung der aus den Fällen a und b erhaltenen Rechnungsergebnisse die gesuchten Werte ergeben.

Der mit diesem Verfahren verbundene Vorteil ist klar. Es sind an Stelle einer umfangreichen Gleichungsgruppe zwei voneinander unabhängige, kleinere Gleichungsgruppen aufzulösen und die Ergebnisse zu summieren. So wären z. B. bei der Behandlung der gegebenen unsymmetrischen Belastung nach Abb. 72 vier Unbekannte zu ermitteln, nämlich die Knotendrehwinkel $\varphi_3, \varphi_4, \varphi_3'$ und die Verschiebungsgröße Δ der Säulen. Nach dem BU.-Verfahren ist für den Belastungsfall a nur eine Unbekannte zu bestimmen, nämlich der Knotendrehwinkel $\overline{\varphi}_3$, denn $\overline{\varphi}_4 = 0$ und $\overline{\varphi}_3' = -\overline{\varphi}_3$. Für den Belastungsfall b sind drei Unbekannte zu ermitteln, und zwar die Knotendrehwinkel $\overline{\varphi}_3 = \overline{\varphi}_3'$ und $\overline{\varphi}_4$ sowie die Verschiebungsgröße $\overline{\Delta}$ der Säulen. Durch die Summierung der entsprechenden Formänderungswerte aus den beiden *Ersatzbelastungsfällen* erhält man dann bereits die gesuchten Formänderungswerte für den gegebenen Belastungsfall. Es wird hier also z. B.

$$\varphi_3 = \overline{\varphi}_3 + \overline{\overline{\varphi}}_3; \quad \varphi_4 = \overline{\overline{\varphi}}_4; \quad \varDelta = \overline{\varDelta}.$$

Aus den so erhaltenen Werten können dann die Stabanschlußmomente in der gewohnten Weise ermittelt werden.

Ebensogut kann man zunächst die Momente für beide Belastungsfälle getrennt ermitteln und sie dann summieren.

Ähnlich ist natürlich auch bei vorhandenen Streckenlasten vorzugehen (siehe Abb. 73 und 73a, b).

Bei der Durchführung der Rechnung nach diesem Verfahren ist darauf zu achten, daß sich die beiden Gleichungssysteme für den symmetrischen und antimetrischen Belastungsfall auch in einzelnen s-Gliedern und d-Gliedern unterscheiden. Über summetrische Belastungsfälle wurde im vorhergehenden Kapitel ausführlich ge-

sprochen. Über die Behandlung antimetrischer Belastungsfälle ist hier noch einiges zu ergänzen.

Antimetrische Belastungsfälle. Es sind wieder zwei Möglichkeiten in Betracht zu ziehen, die anschließend gesondert erörtert werden sollen.

1. Die Symmetrale des Tragwerkes enthält Knotenpunkte.

Es empfiehlt sich, in solchen Fällen bei der Aufstellung der Gleichungen nur eine Hälfte des Tragwerkes mit der entsprechenden Belastung in Betracht zu ziehen.

Abb. 74. Beiwertskizze.

Dabei ist aber zu beachten, daß dann bei den in der Symmetrale liegenden Säulen nur der halbe Wert der zugeordneten Steifigkeitszahl k in Rechnung zu setzen ist. Auf diese Weise ergibt sich wiederum sofort eine vollständig symmetrische Gleichungstabelle. So kann z. B. der in Abb. 72b ersichtliche Fall bei antimetrischer Belastung auch so aufgefaßt werden, wie in Abb. 74 angedeutet ist. Es kann dann die eine Hälfte mit der zugehörigen Belastung wie ein unsymmetrisches Tragwerk behandelt werden und es ergeben sich in der vorliegenden

Aufgabe zwei unbekannte Knotendrehwinkel φ_3 , φ_4 und die Verschiebungsgröße A. Somit kann unter Benutzung der Knotengleichung (42) und der Verschiebungsgleichung (44) die Aufstellung der Gleichungstabelle 5 vorgenommen werden. Die darin enthaltenen d-Glieder sind:

Gleichungstabelle 5.						
	φ_{3}	φ_4	Δ	В		
φ_3	d_3	k_3	\bar{k}_1	<i>s</i> 3		
φ_4	k_3	d_4	$0,5ar{k}_2$	<i>s</i> ₄		
Δ	\bar{k}_1	0,5 \overline{k}_2	D	S		

 $d_3 = 2 (k_1 + k_3)$ bzw. $d_4 = 2 (k_3 + 0.5 k_2);$ das D-Glied für die Verschiebungsgleichung

ist nach (45)

$$D = 2\left(rac{ar{k_1}}{l_1} + rac{0.5\,ar{k_2}}{l_2}
ight)^2$$

(Siehe auch Zahlenbeispiel Nr. 5.)

2. Die Symmetrale des Tragwerkes geht durch die Feldmitte.

Hier ist bei antimetrischer Belastung nur auf die Bildung der d-Glieder jener Knoten zu achten, die der Symmetrale am nächsten liegen. Im übrigen braucht wieder nur eine Hälfte des Tragwerkes in Betracht gezogen zu werden. Es ist z. B.

nach (29) unter Voraussetzung einer antimetrischen Belastung die Knotengleichung für den Knoten 5 des Rahmentragwerkes der Abb. 75:

$$d_5 \varphi_5 + k_5 \varphi_4 + k_6 \varphi_5' + \bar{k}_5 \varDelta_2 + s_5 = 0.$$

Da $\varphi_5 = \varphi_5'$ ist, so kann die Gleichung auch in folgender Form geschrieben werden:

$$(d_5 + k_6) \cdot \varphi_5 + k_5 \varphi_4 + k_5 \varDelta_2 + s_5 = 0.$$

Es zeigt sich, daß hier bei antimetrischer Belastung das d-Glied um den Betrag der Steifigkeitszahl k des Verbindungsstabes zum symmetrisch gelegenen Knoten vergrößert wird, während bei den symmetrisch be-

lasteten Tragwerken das Umgekehrte der Fall war. Es empfiehlt sich auch hier, für das vergrößerte *d*-Glied eine besondere Bezeichnung einzuführen, so z. B.

$$d_5 + k_6 = \bar{d_5}$$

oder allgemein für einen Stab zwischen zwei symmetrisch gelegenen Knotenpunkten n-n' mit der Steifigkeitszahl $k_{n,n'}$

$$\bar{d_n} = d_n + k_{n, n'}.$$

Unter Beachtung dieser Bezeichnung kann die Gleichungstabelle 6 aufgestellt werden. Hierzu können wieder die Knotengleichung (42) und die Verschiebungsgleichung (44) Verwendung finden.

Es gibt natürlich auch Tragwerke, bei welchen die Symmetrale abwechselnd durch Knoten und durch Feldmitten hindurchgeht (Abb. 76). Auch dann können bei der Aufstellung der Gleichungen die vorstehenden

(47)

Erläuterungen sinngemäße Anwendung finden.

	φ_3	φ_4	φ_5	\varDelta_1	Δ_2	B
φ_3	d_3	k_3		$\bar{k_1}$		83
φ_4	k_3	$ar{d}_4$	k_5	\overline{k}_2	$ar{k}_5$	84
φ_5		k_5	\overline{d}_{5}		\overline{k}_5	<i>s</i> ₅
Δ_1	\bar{k}_1	\bar{k}_2				S_1
\varDelta_2		$ar{k}_5$	\overline{k}_5		D_2	S_2
			1			

6. Rahmentragwerke mit nur lotrecht verschieblichen Knotenpunkten.

Derartige Tragwerke kommen im Hochbau ziemlich häufig vor. Es sind da vor allem die im Fachschrifttum unter der Bezeichnung "Vierendeelrahmen" bekannten Pfostenrahmentragwerke (Abb. 77, 78) und die Dachrahmen mit zurückgesetzten Außensäulen zu nennen (Abb. 79). Weiter gehören zu dieser Gruppe auch solche Rahmentragwerke, wo einzelne Säulen nicht ununterbrochen bis zum Fundament reichen (Abb. 80, 81). Bei allen diesen Rahmengebilden soll vorläufig vorausgesetzt werden, daß die waagrechte Verschieblichkeit ihrer Knoten verhindert sei, was in den Abbildungen durch seitliche Lager angedeutet ist.

Sind solche Tragwerke *symmetrisch* gebaut, so ergeben sich in der Berechnung verschiedene Vereinfachungen. Dieser Sonderfall soll zuerst behandelt werden.

Abb. 77 bis 81. Rahmentragwerke mit nur lotrecht verschieblichen Knotenpunkten.

A. Symmetrisch ausgebildete und symmetrisch belastete Vierendeel-Rahmentragwerke.

In Abb. 82 ist ein Vertreter dieser Tragwerksgattung mit dem zugehörigen Stabsehnenbild nach der Verformung infolge einer symmetrisch angeordneten Be-

lastung dargestellt. Es ist leicht festzustellen, daß die (3-7-11),Knotenreihen (4-8-12), (5-9-13) und die symmetrisch gelegenen Knoten (4'-8'-12'), (3'--7'-11') nur lotrecht verschieblich sind und daß wegen der Symmetrie der Verformung nur drei verschiedene Knotenverschiebungen δ_1 , δ_2 , δ_3 auftreten. Diese drei Verschiebungen bringen insgesamt drei verschiedene Stabdrehwinkel ψ_1, ψ_2, ψ_3 hervor, die den

Feldern 1, 2, 3 zugeordnet sind. Außerdem sind *neun* Knotendrehwinkel zu bestimmen, nämlich $\varphi_{2,3,4}, \varphi_{6,7,8}$ und $\varphi_{10,11,12}$. Die jeweils symmetrisch gelegenen Knoten erleiden gleich große, aber entgegengesetzt gerichtete Verdrehungen, z. B. $\varphi_2' = -\varphi_2; \quad \varphi_3' = -\varphi_3; \quad \varphi_4' = -\varphi_4$ usw. Ferner ist wegen der Symmetrie $\varphi_5 = \varphi_9 = \varphi_{13} = 0$ und bei Annahme einer vollkommenen Einspannung auch $\varphi_1 = \varphi_1' = 0.$

a) Bedingungsgleichungen.

Knotengleichungen. Es kann hier die für Stockwerksrahmen aufgestellte Form (30) Verwendung finden, wenn der Buchstabe μ , der sich auf die Stockwerke bezieht, durch den Buchstaben ν ersetzt wird, der nunmehr als Ordnungsziffer für die Rahmenfelder gelten soll. Sie lautet dann:

$$d_{n}\varphi_{n} + \sum_{i} k_{n,i}\varphi_{i} + 3 k_{\nu}\psi_{\nu} + 3 k_{\nu+1}\psi_{\nu+1} + s_{n} = 0.$$
(48)

Darin bedeuten somit:

 ψ_{ν} und $\psi_{\nu+1}$. die Stabdrehwinkel der Riegel in dem Feld ν bzw. $\nu + 1$, also die Stabdrehwinkel im Feld *links* bzw. *rechts* von dem betrachteten Knoten *n*, k_{ν} und $k_{\nu+1}$. die Steifigkeitszahlen der Riegel *links* bzw. *rechts* vom Knoten *n*.

Abb. 82a bis 82c. Abgetrennte Teile des Tragwerkes mit Schnittkräften.

Die zahlenmäßige Verwendung dieser Gleichung soll nun für den Knoten (7) des Tragwerkes der Abb. 82 gezeigt werden, der zur besseren Übersicht mit den zugehörigen Stäben und den benachbarten Knoten in Abb. 83 als Beiwertskizze samt der vorhandenen Belastung gesondert odargestellt ist. Man kann nun sofort das Diagonalglied d_7 berechnen, und zwar ist nach (25)

$$d_7 = 2\sum_i k_{7,\,i} = 2\ (8,5+3,5+4,0+8,0) = 48,0$$

Die zur Ermittlung des Knotenbelastungsgliedes s_7 erforderlichen Stabbelastungsglieder $\mathfrak{M}_{7,6}$ und $\mathfrak{M}_{7,8}$ erhält man nach Tafel 2:

$$\mathfrak{M}_{7,6} = + \frac{q l^2}{12} = \frac{4.0 \cdot 6.0^2}{12} = + 12.0 \text{ tm}; \ \mathfrak{M}_{7,8} = -\frac{3.0 \cdot 5.0^2}{12} = -6.25 \text{ tm};$$

daher nach (26a)

$$s_7 = \sum_i \mathfrak{M}_{7,i} = +12.0 - 6.25 = +5.75 \text{ tm}.$$

Damit kann bereits die Gleichung für den Knoten (7) an Hand der Beiwertskizze nach (48) angeschrieben werden. Sie lautet:

$$48 \varphi_7 + 8.5 \varphi_3 + 3.5 \varphi_6 + 4.0 \varphi_8 + 8.0 \varphi_{11} + 10.5 \varphi_1 + 12.0 \varphi_2 + 5.75 = 0.$$

Verschiebungsgleichungen. Man denke sich der Reihe nach in Abb. 82 die Schnitte I-I, II-II, III-III in den einzelnen Feldern links in unmittelbarer Nähe der Knoten durchgeführt und dort die Schnittkräfte M, N, Q angebracht. Für die auf diese Weise abgetrennten Tragwerksteile, die in den Abb. 82a, b, c mit den symbolisch angedeuteten Schnittkräften gesondert herausgezeichnet sind,

muß nun die Gleichgewichtsgleichung $\sum V = 0$ erfüllt sein, d. h. es muß die Summe der *lotrechten* Komponenten aller auf den abgeschnittenen Tragwerksteil einwirkenden Kräfte Null ergeben. Die lotrechte Teilkraft V im Punkte (1) kann nun für den vorliegenden Sonderfall eines symmetrischen Tragwerkes mit symmetrischer Belastung immer schon von vornherein zahlenmäßig angegeben werden, und zwar ist sie gleich dem halben Betrag der lotrecht wirkenden Gesamtbelastung des Tragwerkes.

Die Bedingungsgleichung $\sum V = 0$ kann unter Bezugnahme auf die verschiedenartigen Kräftegruppen etwas ausführlicher folgendermaßen geschrieben werden:

$$V + \sum P' + \sum q' + \sum Q = 0.$$
(49)

Hierin bedeuten:

V den lotrechten Anteil der Stützkraft im Punkte (1) infolge der Gesamtbelastung, $\Sigma P'$ die Summe aller links vom Schnitt einwirkenden Einzellasten,

 $\Sigma q'$ die Summe aller links vom Schnitt einwirkenden Einzenasten, $\Sigma q'$ die Summe aller links vom Schnitt einwirkenden Streckenlasten, ΣQ die Summe der im Schnitt übertragenen Querkräfte. Es ist

$$V = \frac{1}{2} \left(\sum P + \sum q \right). \tag{50}$$

Die Werte für P' und q' sind jeweils unmittelbar aus der Belastungsskizze zu entnehmen. Im übrigen kann ähnlich wie bei der Weiterentwicklung der Gl. (31) verfahren werden. Es können auch an Stelle der Querkräfte Q an den Stabenden die Auflagerdrücke A gesetzt werden, so daß unter Beachtung des Richtungssinnes der Kräfte $\begin{pmatrix} + \\ + \\ + \\ \end{pmatrix}$

$$\sum Q = \sum A = -\sum \mathfrak{A} + \sum \frac{M_l + M_r}{l_p}$$
(51)

geschrieben werden kann, wobei M_i und M_r die Momente am linken bzw. rechten Stabende des betrachteten Feldes ν bedeuten (Abb. 84). Die Summenzeichen Σ

beziehen sich auf alle Stäbe jenes Feldes, durch welches der Schnitt geführt ist.

Die Beiträge $\sum \mathfrak{A}$, d. s. also die Auflagerdrücke auf der linken Seite der freiaufliegend gedachten Stäbe, haben denselben Richtungssinn wie die Lasten, aus welchen sie gebildet werden.

Überträgt man (51) und (50) in (49), so ergibt sich für eine von oben nach unten gerichtete Belastung mit der angegebenen Vorzeichenregel und unter Beachtung, daß die Stäbe des Feldes ν stets die gleiche Länge l_{ν} aufweisen,

$$+\frac{1}{2}\left(\sum P+\sum q\right)-\sum P'-\sum q'-\sum_{r}\mathfrak{A}+\frac{1}{l_{r}}\sum_{r}\left(M_{l}+M_{r}\right)=0.$$
 (52)

Ersetzt man nun nach (35) unter sinngemäßer Abänderung der Bezeichnung die Summe der Stabendmomente durch die Formänderungsgrößen und Stabbelastungsglieder, so ergibt sich schließlich die Verschiebungsgleichung für symmetrische parallelgurtige Vierendeeltragwerke in folgender Form:

$$\sum_{v} 3 k \varphi_{i} + \sum_{v} 3 k \varphi_{r} + D_{v} \psi_{v} + S_{v} = 0, \qquad (53)$$

wobei
$$D_{\nu} = 6 \sum_{\nu} k$$
, (54)

$$S_{\nu} = \left[\frac{1}{2}\left(\sum P + \sum q\right) - \sum P' - \sum q' - \sum_{\nu} \mathfrak{A}\right] l_{\nu} + \sum_{\nu} (\mathfrak{M}_{l} + \mathfrak{M}_{r}).$$
(55)

Die in diesem Ausdruck vorhandenen Vorzeichen von P, q, P', q', \mathfrak{A} gelten unter der Voraussetzung, daß diese Kräfte von oben nach unten wirken.

Die Verschiebungsgleichung (53) enthält also vier Arten von Gliedern:

- $\sum_{r} 3 k \varphi_{l} \dots$ die Summe der Produkte aus dem *drei*fachen Stabfestwerte k und dem zugehörigen *linken* Knotendrehwinkel φ_{l} für alle Stäbe des Feldes ν .
- $\sum_{\mathbf{v}} 3 \, k \, \varphi_r \, \dots$ die Summe der Produkte aus dem *drei*fachen Stabfestwerte k und dem zugehörigen *rechten* Knotendrehwinkel φ_r für alle Stäbe des Feldes v.
- $D_{\nu} \psi_{\nu} \dots \dots$ das *Diagonalglied*, wobei D_{ν} nach (54) gleich der *sechs*fachen Summe der *k*-Werte des Feldes ν ist.
- S_{ν} das Belastungsglied, das nach (55) zu berechnen ist, wobei $\sum P'$ und $\sum q'$ jeweils nur die Summe der links vom gedachten Schnitt auf das Tragwerk einwirkenden Einzellasten bzw. Streckenlasten bedeuten, während jedoch unter $\sum P$ und $\sum q$ sämtliche Lasten zu verstehen sind. $\sum \mathfrak{A}$ bedeutet die Summe der an der Schnittstelle übertragenen Auflagerdrücke der freiaufliegend gedachten Stäbe des Feldes ν .

Schlußbemerkung: Die Verschiebungsgleichung (53) kann u. a. auch für Tragwerke von der Form, wie sie Abb. 85 zeigt, unmittelbar benutzt werden. Bei der

Bestimmung der Belastungsglieder S nach (55) kann dabei eine Vereinfachung in Anwendung kommen, indem für die in der Formel auftretenden Belastungswerte P, q usw. nur jene in Rechnung gesetzt werden, die sich *innerhalb* der Öffnung des eigentlichen Vierendeelträgers befinden, wie Abb. 85a zeigt, denn die $au\beta$ erhalb dieser Öffnung wirkenden Lasten würden sich aus der Formel ohnehin herauskürzen.

Es ergeben sich z. B. die Belastungsglieder S_1 und S_2 für das mit seiner Belastung in Abb. 85 ersichtliche Tragwerk nach Formel (55)

$$S_1 = \left[\frac{1}{2} \left(12 + 5 \cdot 20\right) - \frac{5 \cdot 6}{2}\right] \cdot 6,0 = +246 \text{ tm}$$

und für das zweite Feld

 $S_2 = \left[\frac{1}{2} (12 + 5.20) - 4.0 - 5.6 - \frac{5.4}{2}\right] 4.0 = +48 \text{ tm.}$

Das letzte Glied der Formel (55) liefert hier keinen Beitrag, da wegen der vor-

handenen symmetrischen Stabbelastung stets $\mathfrak{M}_l = -\mathfrak{M}_r$ wird, so daß die Summe beider Werte Null ergibt.

Die Anwendung beider Mustergleichungen (48) und (53) wird im folgenden an einem Beispiel gezeigt.

b) Gleichungstabelle für ein symmetrisches Vierendeel-Rahmentragwerk.

Das Tragwerk ist in Abb. 86 zugleich als Beiwertskizze dargestellt. Wird symmetrische Belastung vorausgesetzt, so verbleiben als Unbekannte die *vier* Knotendrehwinkel φ_2 , φ_3 , φ_5 , φ_6 und die *zwei* Stabdrehwinkel ψ_1 und ψ_2 . Die in der Symmetrieachse

gelegenen Knoten 4 und 7 erleiden zwar eine Verschiebung in lotrechter Richtung, aber keine Verdrehung, so daß $\varphi_4 = \varphi_7 = 0$ ist. Weiter wird auch $\varphi_1 = \varphi_1' = 0$, wenn die Stützenfüße vollkommen eingespannt sind.

Unter wiederholter Benutzung der Knotengleichung (48) und der Verschiebungsgleichung (53) können die Bestimmungsgleichungen an Hand der Beiwertskizze in tabellarischer Form angeschrieben werden (siehe Gleichungstabelle 7).

	φ_2	φ_3	$ \varphi_5$	φ_6	ψ_1	ψ_2	В
φ_2	d_2	k_2	k_4		$3 k_2$		82
φ_3	k_2	d_{3}		k_5	$3 k_2$	3 k ₃	8 ₃
φ_5	k_4		d_5	k7	3 k ₇		s_5
φ_{6}		k_5	k7	d_6	3 k ₇	3 k ₈	86
ψ_1	3 k ₂	$3 k_2$	3 k ₇	3 k ₇	D ₁		S_1
ψ_2	-	$3 k_3$		3 k ₈		D_2	S_2

Gleichungstabelle 7.

Die Gl. (48) und (53) können aber auch für anders gestaltete symmetrische Rahmengebilde, wie sie z. B. in den Abb. 87 bis 89 angedeutet sind, unmittelbar

B. Unsymmetrisch ausgebildete, seitlich festgehaltene Vierendeel-Rahmentragwerke.

In Abb. 90 ist ein Tragwerk dieser Art ersichtlich. Es ist durch Lager in den Knoten 7 und 12 in waagrechter Richtung unverschieblich festgehalten, so daß die

Knoten 4-9, 5-10, 6-11 nur in lotrechter Richtung verschieblich sind. Unter der Annahme fester Einspannung in den Punkten 1 und 2 bleiben noch zehn Knotendrehwinkel φ und vier Stabdrehwinkel ψ als Un-**Ø**) (9 bekannte übrig.

Im Gegensatz zu den früher behandelten svmmetrischen Tragwerken sind hier die in den Punkten 1 bzw. 2 auftretenden lotrechten Auflagerteilkräfte V zunächst zahlenmäßig nicht bekannt. Daher muß bei der Aufstellung der Verschiebungsgleichung ein anderer Weg eingeschlagen werden. Es ist vor allem zweckmäßig, an Stelle der Stabdrehwinkel ψ der waagrechten Stäbe die ...wirklichen" Verschiebungen δ der Knoten in lotrechter Richtung in die Rechnung einzuführen. Man er-

reicht damit zunächst, daß die vier Stabdrehwinkel w durch drei Verschiebungsgrößen δ ausgedrückt werden können, wodurch von vornherein die Gesamtzahl der Unbekannten um eins geringer ist. Außerdem ergibt sich auf diese Weise auch hier wieder sofort ein vollständig symmetrisches Gleichungssystem.

a) Bedingungsgleichungen.

Knotengleichungen. Man kann hier von dem allgemeinen Ansatz in der Form (48) ausgehen, welcher lautet:

$$d_n \varphi_n + \sum_i k_{n,i} \varphi_i + 3 k_r \psi_r + 3 k_{r+1} \psi_{r+1} + s_n = 0.$$
 (56)

Die Bedeutung der einzelnen Größen ist bei (48) ausführlich beschrieben und geht auch aus der Abb. 91 hervor. Darin ist ein Teil eines lotrecht verschieblichen Tragwerkes dargestellt, wobei die "wirklichen" Verschiebungen (m) (m+1)(m-1)

der Knotenreihen (m-1), m und (m+1) mit δ_{m-1} , δ_m und δ_{m+1} bezeichnet sind.

Der Knoten n, für welchen allgemein die Knotengleichung angeschrieben werden soll, gehört der Knotenreihe m an. Die benachbarten Felder haben die Längen l_{ν} und $l_{\nu+1}$. Die zugehörigen Stabdrehwinkel sind somit ψ_{r} und ψ_{r+1} .

In der obigen Gl. (56) kann man nun nach (3) an Stelle der Stabdrehwinkel die "wirklichen" Verschiebungen einführen. Mit der gewählten Bezeichnung wird also

$$\delta_{m-1}$$
 δ_{m}
 ψ_{p+1}
 δ_{mon}
 ψ_{p+1}
Abb. 91.

 $\psi_{\mathbf{v}} = \frac{\delta_{m-1} - \delta_m}{l_{\mathbf{v}}}; \quad \psi_{\mathbf{v}+1} = \frac{\delta_m - \delta_{m+1}}{l_{\mathbf{v}+1}}.$ Damit nimmt die Knotengleichung (56) nach kurzer Umformung folgende Gestalt an:

$$d_{n} \varphi_{n} + \sum_{i} k_{n,i} \varphi_{i} + \bar{k}_{\nu} \delta_{m-1} + \varkappa_{n} \delta_{m} - \bar{k}_{\nu+1} \delta_{m+1} + s_{n} = 0.$$
 (58)

Hierin bedeuten also nach Abb. 91:

 δ_m die lotrechte Verschiebung jener Knotenreihe, die den Knoten nenthält,

 δ_{m-1} und δ_{m+1} ... die lotrechten Verschiebungen der links bzw. rechts von n befindlichen Knotenreihen, - -

$$\bar{k}_{\nu} = \frac{3k_{\nu}}{l_{\nu}}$$
 bzw. $\bar{k}_{\nu+1} = \frac{3k_{\nu+1}}{l_{\nu+1}}$, (59)

$$\varkappa_n = \bar{k}_{\nu+1} - \bar{k}_{\nu}, \tag{60}$$

(57)

und zwar beziehen sich:

 $\bar{k}_{p} \delta_{m-1} \dots \dots \dots$ auf den *links* in den Knoten *n* einmündenden Stab (+), $\bar{k}_{p+1} \delta_{m+1} \dots \dots$ auf den *rechts* in den Knoten *n* einmündenden Stab (--), $\varkappa_{n} \delta_{m} \dots \dots \dots \dots$ auf den betrachteten Knoten *n* (±).

Als Beispiel soll die Anwendung der Knotengleichung (58) für die Knotenpunkte (5) und (10) der Abb. 90 gezeigt werden. Zu diesem Zwecke benötigt man die Beiwertskizze Abb. 92, in welcher die erforderlichen k-Werte und die vorhandene Belastung eingetragen sind.

Nach (59) wird

$$\bar{k}_{4} = \frac{3 \cdot 10,0}{5,0} = 6,0 \qquad \bar{k}_{13} = \frac{3 \cdot 5,0}{5,0} = 3,0$$
$$\bar{k}_{5} = \frac{3 \cdot 8,0}{6,0} = 4,0 \qquad \bar{k}_{14} = \frac{3 \cdot 4,0}{6,0} = 2,0$$

und nach (60)

Abb. 92. Beiwertskizze.

$$\begin{split} \varkappa_5 &= \bar{k}_5 - \bar{k}_4 = 4,0 - 6,0 = -2,0 \\ \varkappa_{10} &= \bar{k}_{14} - \bar{k}_{13} = 2,0 - 3,0 = -1,0. \end{split}$$

Weiter wird nach (25) $d_n = 2 \sum_i k_{n,i}$ $d_5 = 2 (10,0 + 8,0 + 6,0) = 48,0$

$$d_{10} = 2$$
 (6,0 + 5,0 + 4,0) = 30,0

Die zur Ermittlung der Knotenbelastungsglieder serforderlichen Stabbelastungsglieder \mathfrak{M} ergeben sich nach Tafel 2.

$$\begin{split} \mathfrak{M}_{5.4} &= + \frac{5,0.5,0^2}{12} = + 10,42 \text{ tm}; \quad \mathfrak{M}_{5.6} = -\frac{5,0.6,0^2}{12} = -15,0 \text{ tm} \\ s_5 &= + 10,42 - 15,0 = -4,58 \text{ tm} \\ \mathfrak{M}_{10.9} &= + \frac{4,0.5,0^2}{12} = + 8,33 \text{ tm}; \quad \mathfrak{M}_{10.11} = -\frac{4,0.6,0^2}{12} = -12,0 \text{ tm} \\ s_{10} &= + 8,33 - 12,0 = -3,67 \text{ tm}. \end{split}$$

Damit können nach (58) unter Zuhilfenahme der Beiwertskizze die Knotengleichungen angeschrieben werden. Sie lauten für den Knoten (5):

$$\begin{cases} 48,0 \ \varphi_{5} + 10,0 \ \varphi_{4} + 8,0 \ \varphi_{6} + 6,0 \ \varphi_{10} + 6,0 \ \delta_{1} - 2,0 \ \delta_{2} - 4,0 \ \delta_{3} - 4,58 = 0 \\ \text{und für den Knoten (10):} \\ 30,0 \ \varphi_{10} + 6,0 \ \varphi_{5} + 5,0 \ \varphi_{9} + 4,0 \ \varphi_{11} + 3,0 \ \delta_{1} - 1,0 \ \delta_{2} - 2,0 \ \delta_{3} - 3,67 = 0. \end{cases}$$
(58a)

Verschiebungsgleichungen. Man denke sich aus dem Tragwerk eine Knotenreihe (m), der die Knotenverschiebung δ_m zugeordnet ist, herausgeschnitten und sowohl die äußeren Kräfte als auch sämtliche Schnittkräfte angebracht (Abb. 93).

Die Gleichgewichtsgleichung $\sum V = 0$ lautet für den herausgeschnittenen Stabzug ganz allgemein, wenn der Schnitt in unmittelbarer Nähe der Knoten geführt wird,

$$\sum P + \sum_{\nu} A_{\nu}^{r} + \sum_{\nu+1} A_{\nu+1}^{l} = 0.$$
(61)

Darin bedeuten:

 $\sum_{v} P \dots \sum_{v+1} die Summe der$ *lotrecht*wirkenden Anteile aller am herausgeschnittenen Stabzug angreifenden äußeren Kräfte, $<math display="block">\sum_{v} A_{v}^{r} \text{ und } \sum_{v+1} A_{v+1}^{l} \dots die Summe der$ *rechten*Auflagerdrücke aller Stäbe im Felde <math>vbzw. der *linken* Auflagerdrücke aller Stäbe im Felde (v + 1). Die in der Gl. (61) auftretenden Auflagerdrücke ergeben sich unter der Voraus-

setzung von *positiven* Stabendmomenten nach Abb. 94 wie folgt $(\uparrow \downarrow)$:

Abb. 93. Knotenreihe (m) mit Schnittkräften.

Abb. 94.

Es bedeuten sinngemäß wie vorher:

 $\sum_{\nu} \mathfrak{A}_{\nu}^{r} \operatorname{und} \sum_{\nu+1} \mathfrak{A}_{\nu+1}^{l} \cdots$ die Summe der *rechten* Auflagerdrücke aller freiaufliegend gedachten Stäbe im Felde ν bzw. aller *linken* Auflagerdrücke der freiaufliegend gedachten Stäbe im Felde $(\nu + 1)$,

 M_{ν}^{\prime} und M_{ν}^{\prime} die *linken* bzw. rechten Anschlußmomente der Stäbe im Felde ν , $M_{\nu+1}^{\prime}$ und $M_{\nu+1}^{\prime}$ die *linken* bzw. rechten Anschlußmomente der Stäbe im Felde $(\nu + 1)$.

Setzt man (62) in (61) ein, so ergibt sich unter Beachtung des Richtungssinnes $(\uparrow\downarrow\downarrow)$:

$$-\sum_{\nu} P - \sum_{\nu} \mathfrak{A}_{\nu}^{r} - \sum_{\nu+1} \mathfrak{A}_{\nu+1}^{l} - \sum_{\nu} \frac{1}{l_{\nu}} (M_{\nu}^{l} + M_{\nu}^{r}) + \sum_{\nu+1} \frac{1}{l_{\nu+1}} (M_{\nu+1}^{l} + M_{\nu+1}^{r}) = 0.$$
(63)

Ersetzt man in (63) die Summen der Stabendmomente nach (11a) unter Benutzung der hier gewählten Bezeichnungsweise, so erhält man nach kurzer Umformung die Verschiebungsgleichung für irgendeine Knotenreihe (m) in einfacher Schreibart:

$$-\sum_{\nu} \bar{k}_{\nu} \varphi_{m-1} + \sum_{\nu+1} \varkappa_{m} \varphi_{m} + \sum_{\nu+1} \bar{k}_{\nu+1} \varphi_{m+1} - K_{\nu} \delta_{m-1} + D_{m} \delta_{m} - K_{\nu+1} \delta_{m+1} + S_{m} = 0.$$
(64)

Hierin bedeuten:

$$K_{\nu} = \frac{2}{l_{\nu}} \sum_{\nu} \bar{k}_{\nu} \text{ bzw. } K_{\nu+1} = \frac{2}{l_{\nu+1}} \sum_{\nu+1} \bar{k}_{\nu+1}$$
(65)

$$D_m = K_{\nu} + K_{\nu+1} \tag{66}$$

$$S_{m} = -\sum_{\nu} P - \sum_{\nu} \mathfrak{A}_{\nu}^{r} - \sum_{\nu+1} \mathfrak{A}_{\nu+1}^{l} - \frac{1}{l_{\nu}} \sum_{\nu} (\mathfrak{M}_{\nu}^{l} + \mathfrak{M}_{\nu}^{r}) + \frac{1}{l_{\nu+1}} \sum_{\nu+1} (\mathfrak{M}_{\nu+1}^{l} + \mathfrak{M}_{\nu+1}^{r}).$$
(67)

Es beziehen sich also: K_{ν} (= Beiwert von δ_{m-1}) auf das Feld *links* und $K_{\nu+1}$ (= Beiwert von δ_{m+1}) auf das Feld *rechts* von der betrachteten Knotenreihe.

Das Diagonalglied D_m für die Knotenreihe (m) ergibt sich stets als Summe der K-Werte der beiden anschließenden Felder. Das Belastungsglied S_m wird nach (67) Guldan, Rahmentragwerke.

bestimmt. Die nähere Bedeutung der einzelnen Glieder ist bei (61) und (62) erläutert. Die in (67) angegebenen Vorzeichen von P und \mathfrak{A} gelten unter der Voraussetzung, daß diese Kräfte von oben nach unten wirken.

Die Beiwerte $\bar{k_{\nu}}$, $\bar{k_{\nu+1}}$ und \varkappa_m (identisch mit \varkappa_n von früher) werden nach (59) bzw. (60) ermittelt. Die \varkappa -Werte brauchen aber nur für die lotrecht verschieblichen Knoten aufgestellt werden.

Über die Gliederzahl der vorstehenden Gleichung kann zusammenfassend gesagt werden:

1. Die Zahl der φ_{m-1} -Glieder ist gleich der Anzahl der links in die betrachtete Knotenreihe einmündenden Stäbe.

2. Die Anzahl der φ_{m+1} -Glieder ist gleich der Anzahl der im Felde rechts von der betrachteten Knotenreihe vorhandenen Stäbe.

3. Die Zahl der φ_m -Glieder ist im allgemeinen gleich der Anzahl der Knoten in der betrachteten Knotenreihe m. Wenn jedoch für einen Knoten $\bar{k}_{\nu} = \bar{k}_{\nu+1}$ ist, so wird nach (60) $\varkappa = \bar{k}_{\nu+1} - \bar{k}_{\nu} = 0$, wodurch dann das diesem Knoten zugeordnete φ_m -Glied entfällt.

4. Die δ -Glieder treten in jeder Gleichung nur je einmal auf.

Die praktische Verwendung der Gl. (64) soll hier sofort an einem Beispiel zahlenmäßig vorgeführt werden, und zwar für die Knotenreihe 5-10 des in Abb. 92 mit Belastung und Beiwerten ersichtlichen Tragwerkes. Daraus sind noch folgende Werte zu ermitteln:

nach (60):
$$\varkappa_5 = 4,0 - 6,0 = -2,0,$$

 $\varkappa_{10} = 2,0 - 3,0 = -1,0;$
nach (65): $K_2 = \frac{2}{5,0} (6,0 + 3,0) = 3,6,$
 $K_3 = \frac{2}{6,0} (4,0 + 2,0) = 2,0;$

nach (66): $D_2 = K_2 + K_3 = 3.6 + 2.0 = 5.6;$

nach (67):
$$S_2 = -3.0 - (5+4) \frac{5.0}{2} - (5+4) \frac{6.0}{2} = -52.5 \text{ t.}$$

Damit kann nach (64) die Gleichung für die Knotenreihe 5–10 mit der Verschiebung δ_2 angeschrieben werden:

$$-6.0 \varphi_4 - 3.0 \varphi_9 - 2.0 \varphi_5 - 1.0 \varphi_{10} + 4.0 \varphi_6 + 2.0 \varphi_{11} - 3.6 \delta_1 + 5.6 \delta_2 - 2.0 \delta_3 - 52.5 = 0.$$

(Siehe auch die vollständigen Zahlenbeispiele Nr. 10, 11.)

b) Gleichungstabelle für ein unsymmetrisches, nur lotrecht verschiebliches Rahmentragwerk.

Dieses Beispiel soll nur eine Übersicht über den Gang der gesamten Rechnung bieten, weshalb hier auf zahlenmäßige Angaben verzichtet werden kann. Abb. 95 zeigt die Beiwertskizze mit allen erforderlichen Eintragungen. Unter der Voraussetzung, daß das Rahmentragwerk in den Knoten 7 und 12, bzw. 3 und 8 gegen waagrechte Verschiebungen gesichert ist, treten bei beliebiger Belastung nur *lot*rechte Verschiebungen δ_1 , δ_2 und δ_3 auf. Weiter ergeben sich bei Annahme einer festen Einspannung in den Säulenfüßen $\varphi_1 = \varphi_2 = 0$ und es verbleiben zehn unbekannte Knotendrehwinkel φ_3 bis φ_{12} .

Vor dem Anschreiben der Knotengleichungen nach (58) sind zunächst zu ermitteln: die Diagonalglieder d_3 bis d_{12} , weiter nach (60) die Beiwerte \varkappa_4 , \varkappa_5 , \varkappa_6 , \varkappa_9 , \varkappa_{10} , \varkappa_{11} für die verschieblichen Knoten, und schließlich die Knotenbelastungsglieder s_3 bis s_{12} .

Für die Aufstellung der Verschiebungsgleichungen werden nach (64) benötigt: die Diagonalglieder D_1, D_2, D_3 nach (66), ferner die Beiwerte K_2 und K_3 nach (65) sowie die Belastungsglieder S_1, S_2, S_3 nach (67). Damit kann bei wiederholter Benutzung der Knotengleichung (58) und der Verschiebungsgleichung (64)

unter gleichzeitiger Zuhilfenahme der Beiwertskizze das gesamte Gleichungssystem unmittelbar in Form einer Tabelle angeschrieben werden (siehe Gleichungstabelle 8).

	φ_{3}	φ_4	φ_5	φ_6	\$\varphi_7\$	φ_8	φ_9	φ_{10}	φ_{11}	φ_{12}	δ_1	δ_2	δ_3	B
$arphi_{3}$	d_3	k_3				k_7					$-ar{k}_3$			83
φ_{4}	k_3	d_4	k4				k ₈				×4	$-\bar{k}_4$		84
φ_5		k_4	d_5	k_5				k_9			$ar{k}_4$	\varkappa_5	$-ar{k}_5$	85
φ_6			k_5	d_{6}	k_{6}				k ₁₀			$ar{k}_5$	× ₆	86
φ_{7}				k_{6}	<i>d</i> ₇					k_{11}			\bar{k}_{6}	87
φ_8	k7					d_8	k ₁₂				$-ar{k}_{12}$			8 ₈
φ_{9}		k_8				k ₁₂	d_9	k ₁₃			×9	$-ar{k}_{13}$		89
φ_{10}			k_9				k ₁₃	<i>d</i> ₁₀	k ₁₄		$\bar{k_{13}}$	×10	$-\bar{k}_{14}$	<i>s</i> ₁₀
φ_{11}				<i>k</i> ₁₀				k ₁₄	<i>d</i> ₁₁	k ₁₅		\bar{k}_{14}	×11	<i>s</i> ₁₁
φ_{12}					k ₁₁				k ₁₅	<i>d</i> ₁₂			$\bar{k_{15}}$	<i>s</i> ₁₂
δ_1	$-\bar{k}_3$	×4	$ar{k}_4$			$-\bar{k_{12}}$	×9	$ar{k}_{13}$			D_1	$-K_2$		S_1
δ_2		$-k_4$	×5	\overline{k}_5			$-\bar{k}_{13}$	×10	\bar{k}_{14}		$-K_2$	D_2	$-K_3$	S_2
δ_{3}			$-\bar{k}_5$	\varkappa_6	\bar{k}_{6}			$-\bar{k}_{14}$	×11	$ar{k}_{15}$		$-K_3$	D_3	S_3

Gleichungstabelle 8.

Abb. 96 und 97. Nur lotrecht verschiebliche Tragwerke.

35

Die allgemeinen Mustergleichungen (58) und (64) können u. a. auch für die in Abb. 96 und 97 ersichtlichen Tragwerksarten unmittelbar verwendet werden.

7. Rahmentragwerke mit lotrecht und waagrecht verschieblichen Knotenpunkten.

Als Ausgangspunkt für die hier anzustellenden Betrachtungen soll wieder das in Abb. 90 dargestellte Tragwerk dienen, das dort in *waagrechter* Richtung unverschieblich festgehalten war.

Denkt man sich diese Lager entfernt, so werden die Knoten 3-4-5-6-7 bzw. 8-9-10-11-12 infolge der äußeren Belastung in *waagrechter* Richtung um die

Abb. 98. Lotrecht und waagrecht verschiebliches Tragwerk.

Beträge δ_4 bzw. δ_5 verschoben, während gleichzeitig die Knoten 4-9, 5-10, 6-11 Verschiebungen δ_1 , δ_2 , δ_3 in *lotrechter* Richtung erleiden (Abb. 98).

a) Bedingungsgleichungen.

Knotengleichungen. Man kann hier die zuletzt abgeleitete Form (58) benutzen, die für *nur lotrecht* verschiebliche Tragwerke gilt, wenn man noch eine kleine Ergänzung anbringt. Diese Ergänzung besteht für den allgemeinen Fall, daß in dem betrachteten Knotenpunkt sowohl aus dem darunterliegenden Stockwerk (μ)

als auch aus dem darüberliegenden Stockwerk ($\mu + 1$) je ein lotrechter Stab einmündet, aus zwei Gliedern von der Form [vgl. (30)]

$$3 k_{\mu} \psi_{\mu} + 3 k_{\mu+1} \psi_{\mu+1} \tag{68}$$

$$\bar{k}_{\mu} \varDelta_{\mu} + \bar{k}_{\mu+1} \varDelta_{\mu+1}. \tag{68a}$$

Damit wird dem Umstand Rechnung getragen, daß in diesem Fall auch die lotrechten Stäbe Verdrehungen mitmachen und daher je ein ψ -Glied (bzw. Δ -Glied) in die Gleichung bringen (Abb. 99). Dabei bedeutet wie früher:

$$\bar{k}_{\mu} = \frac{3 k_{\mu}}{l_{\mu}}; \ \bar{k}_{\mu+1} = \frac{3 k_{\mu+1}}{l_{\mu+1}}$$

Somit ergibt sich die *Knotengleichung* für *lotrecht* und *waagrecht* verschiebliche Tragwerke, indem zur Gl. (58) der Ausdruck (68) bzw. (68a) hinzugefügt wird.

Sie lautet dann:

$$\frac{d_{n}\varphi_{n} + \sum_{i} k_{n,i}\varphi_{i} + \bar{k}_{\nu}\delta_{m-1} + \varkappa_{n}\delta_{m} - \bar{k}_{\nu+1}\delta_{m+1} + 3k_{\mu}\psi_{\mu} + 3k_{\mu+1}\psi_{\mu+1} + s_{n} = 0}{69}$$

bzw.

$$d_{n}\varphi_{n} + \sum_{i} k_{n,i}\varphi_{i} + \bar{k}_{\nu}\delta_{m-1} + \varkappa_{n}\delta_{m} - \bar{k}_{\nu+1}\delta_{m+1} + \bar{k}_{\mu}\Delta_{\mu} + \bar{k}_{\mu+1}\Delta_{\mu+1} + s_{n} = 0.$$
(69a)

Die Bedeutung der einzelnen Glieder ist bei Gl. (58) in allen Einzelheiten angegeben. Die zahlenmäßige Anwendung dieser Gleichung kann am besten an dem bereits behandelten Fall der Abb. 92 gezeigt werden, wenn im Gegensatz zu früher das Tragwerk auch in *waagrechter* Richtung verschieblich angenommen wird. Um die Knotengleichung für die Knoten 5 und 10 aufstellen zu können, ist nach (68 a) noch der Wert $\overline{z} = 3 \pm 6.0$

$$\bar{k}_9 = \frac{3.6,0}{4,0} = 4,5$$

zu ermitteln. Es mündet also hier nur *ein* lotrechter Stab (9) im Stockwerk (2) in den betrachteten Knoten ein, so daß nur *ein* Δ -Glied, nämlich 4,5 Δ_2 in der Gleichung vorkommt. Werden die übrigen Beiwerte aus Abb. 92 übernommen, so ergeben sich nach (69a) für Knoten 5:

 $48.0 \ \varphi_5 + 10.0 \ \varphi_4 + 8.0 \ \varphi_6 + 6.0 \ \varphi_{10} + 6.0 \ \delta_1 - 2.0 \ \delta_2 - 4.0 \ \delta_3 + 4.5 \ \varDelta_2 - 4.58 = 0$ und für Knoten 10:

30,0 φ_{10} + 6,0 φ_5 + 5,0 φ_9 + 4,0 φ_{11} + 3,0 δ_1 - 1,0 δ_2 - 2,0 δ_3 + 4,5 Δ_2 - 3,67 = 0. Die hier aufgestellten Gleichungen unterscheiden sich also von (58a) lediglich durch das Δ -Glied.

Verschiebungsgleichungen. Es sind immer so viele unabhängige Verschiebungsgleichungen aufzustellen, als insgesamt voneinander unabhängige Verschiebungsgrößen Δ bzw. δ vorhanden sind. Zu diesem Zwecke stehen die bekannten zwei Arten von Gleichgewichtsgleichungen zur Verfügung, nämlich $\Sigma V = 0$ und $\Sigma H = 0$.

Die Bedingung $\sum V = 0$ ist für jede *lotrecht* verschiebliche Knotenreihe des Tragwerkes aufzustellen. Hierfür kann die allgemeine Gl. (64) in unveränderter Form übernommen werden.

Die Bedingung $\sum H = 0$ ist auch hier wie bei allen *waagrecht* verschieblichen Tragwerken für jedes Stockwerk gesondert anzuschreiben. Es kann dazu die allgemeine Gl. (44) Verwendung finden, die mit den hier gewählten Bezeichnungen für das Stockwerk μ folgende Form annimmt:

$$\sum_{\mu} \bar{k}_{\mu} \varphi_{u} + \sum_{\mu} \bar{k}_{\mu} \varphi_{o} + D_{\mu} \Delta_{\mu} + S_{\mu} = 0.$$
 (70)

Die Bedeutung der einzelnen Glieder ist ausführlich bei Gl. (44) erläutert.

Auf die Durchführung eines Beispieles kann hier verzichtet werden, da die Anwendung der vorstehenden Gleichungen nichts Neues bringt.

Zweiter Abschnitt.

Rahmentragwerke mit beliebig veränderlichen Stabquerschnitten.

I. Vorbemerkung.

Es ist zwar bekannt, daß die Veränderlichkeit der Stabquerschnitte, insbesondere die als "*Vouten"* oder "Schrägen" bezeichneten Auflagerverstärkungen, auf die Momentenverteilung bei statisch unbestimmten Tragwerken einen großen Einfluß ausüben.¹ Dennoch kann man beobachten, daß in vielen Fällen die Ausbildung der

¹ STRASSNER: Neuere Methoden, 3. Aufl. Berlin: W. Ernst & Sohn, 1925. — SUTER: Methode der Festpunkte, 2. Aufl. Berlin: Julius Springer, 1932. — MANN: Theorie der Rahmenwerke. Berlin: Julius Springer, 1927. — BEVER: Die Statik im Eisenbetonbau, 2. Aufl. Berlin: Julius Springer, 1934, u. a.

unter Umständen sehr günstig wirkenden Vouten entweder überhaupt vermieden oder der durch ihre Ausführung bedingte wirtschaftliche Vorteil nicht genügend ausgenutzt wird. Das hat wohl in erster Linie seinen Grund darin, daß man häufig bei Berücksichtigung der Querschnittsveränderungen eine weniger übersichtliche und schwerer kontrollierbare Rechnung erwartet, als dies bei Außerachtlassung der Voutenwirkung der Fall ist.

Bei Anwendung zweckmäßiger Rechenverfahren und geeigneter Hilfsmittel, die in diesem Abschnitt zur Behandlung gelangen, treten aber solche Nachteile kaum in Erscheinung. Durch Schaffung der im Dritten Teil enthaltenen Zahlen- und Kurventafeln wird auch der Mehraufwand an Arbeit und Zeit, der mit der Berücksichtigung der Voutenwirkung verbunden ist, auf ein Mindestmaß herabgedrückt, so daß damit die notwendige Voraussetzung für eine weitgehende Anwendung in der Praxis gegeben ist.

II. Allgemeines über die Wirkung veränderlicher Stabquerschnitte.

In welcher Weise sich der Einfluß der Querschnittsveränderlichkeit bei Rahmentragwerken geltend macht und wie durch eine zweckmäßige Querschnittsgestaltung der Momentenverlauf günstig beeinflußt werden kann, darüber herrschen vielfach noch recht unklare Vorstellungen. Man kann aber verhältnismäßig rasch Einblick in die Wirkungsweise veränderlicher Stabquerschnitte gewinnen, wenn man zu-

nächst bei einfacheren Tragwerken einige Grenzfälle ins Auge faßt. Zu diesem Zweck soll vor allem der beiderseits fest eingespannte Träger in Betracht gezogen werden. Besitzt der Stab auf seiner ganzen Länge denselben Querschnitt, so hat der Momentenverlauf für eine gleichmäßige Vollbelastung die in Abb. 100 in voller Linie gezeichnete Form. Es ist dann an den Einspannstellen

$$M_E \!=\! rac{q\,l^2}{12}$$
 und im Feld $M_F \!=\! rac{q\,l^2}{24}$

Denkt man sich nun an den beiden Trägerenden gleichartige Auflagerverstärkungen, sog. *Vouten*, angeordnet, so werden sich unter der gleichen Belastung wie vorher

die Stützenmomente größer, die Feldmomente hingegen kleiner ergeben, wie dies in Abb. 100 in schwächeren vollen Linien angedeutet ist. Der Unterschied wird um so größer sein, je kräftiger die Vouten ausgebildet sind.

Setzt man eine symmetrische Trägerausbildung, also symmetrische Vouten, voraus, so wird sich die M-Linie bei gleichmäßiger Vollbelastung ebenfalls symmetrisch ergeben. Das Anwachsen der Stützenmomente und die Abnahme des Feldmomentes kann im Grenzfall so weit gehen, daß

$$M_E = rac{q \, l^2}{8}$$
 und $M_F = 0$

wird, wie aus dem stark strichliert gezeichneten Momentenverlauf der Abb. 100 zu entnehmen ist. Dieser Fall würde dann eintreten, wenn die Auflagerverstärkungen bis zur Stabmitte reichen würden und der Verhältniswert

$$n = \frac{J_c}{J_A} = 0$$

wäre, wobei J_c das Trägheitsmoment in der Stabmitte und J_A das Trägheitsmoment

am Auflager bedeuten. Es würde dann der beiderseits vollkommen eingespannte Träger genau so wirken wie zwei aneinanderstoßende, durch ein Gelenk verbundene Kragträger, deren Spannweite je $\frac{l}{2}$ beträgt (Abb. 101).

Aus dieser Überlegung ergibt sich, daß die Einspannmomente des beiderseits fest eingespannten Trägers bei Anordnung symmetrischer Auflagerverstärkungen im Grenzfall um 50% größer sein können als bei demselben Träger ohne Vouten.

Nun soll aber dieser Gedankengang auch noch in der anderen Richtung ergänzt werden. Würde man nämlich umgekehrt an den Enden des fest eingespannten Trägers statt Verstärkungen Verschwächungen vornehmen, so würden die Stützenmomente an Größe *abnehmen*, während aber gleichzeitig das Feldmoment in demselben Maß *zunehmen* würde, wie in Abb. 100 die schwach strichlierten Linien zeigen, die allmählich in die stark strichpunktierte Grenzlage

übergehen. Dieser Grenzfall tritt ein, wenn

$$n=rac{J_c}{J_A}=\infty$$

ist. Es werden dann die Stützenmomente $M_E = 0$ und das zugehörige Feldmoment erreicht den Wert

$$M_F=\frac{q\,l^2}{8},$$

d. h. es wirkt ein solcher "fest eingespannter" Träger dann genau so wie ein beiderseits *gelenkig* angeschlossener Balken.

Der Einfluß der Querschnittsveränderlichkeit kann also ziemlich bedeutend sein. Noch krasser liegen die Verhältnisse bei dem fest eingespannten Träger, der nur an *einer* Seite eine Voute besitzt. Diese bewirkt ein π

beträchtliches Ansteigen des an der Voutenseite gelegenen Einspannmomentes, während das der Gegenseite zugehörige

Abb. 102. M-Verlauf beim fest eingespannten Träger mit Voute links (strichliert) und ohne Vouten (voll). Einspannmoment gleichzeitig verkleinert wird (Abb.102). Im Grenzfalle, wenn also die Auflagerverstärkung über die ganze Trägerlänge reicht und wiederum so bemessen ist, daß

$$n = \frac{J_c}{J_A} = 0$$

Abb. 101.

cimment

mins (stronger of the form that will be the stronger of the form (voll). Wird (Abb. 102a), wirkt der beiderseits eingespannte Stab wie ein einseitig eingespannter Kragträger von derselben Länge l. Es wird das der Voutenseite zugehörige Stützenmoment $M_1 = \frac{q l^2}{2}$, während das andere Stützenmoment den Wert $M_2 = 0$ annimmt, wie aus Abb. 102a ersichtlich ist. Es ergibt sich also hier im Grenzfall ein Anwachsen des Stützenmomentes auf den sechsfachen Betrag jenes Wertes, der sich bei eingespannten Trägern ohne Vouten einstellt.

Obzwar nun bei den praktisch vorkommenden Fällen diese theoretischen Grenzwerte kaum erreicht werden, so ist doch eine Vernachlässigung der Voutenwirkung bei der Berechnung von statisch unbestimmten Tragwerken nicht zu empfehlen. Einen besonderen Ansporn zur Berücksichtigung der Querschnittsveränderlichkeit bildet aber vor allem die Tatsache, daß eine richtige und zweckmäßige Anordnung von Vouten einen außerordentlich günstigen Einfluß auf die Momentenverteilung zur Folge hat. Man vergleiche z. B. die in Abb. 103 eingetragene Momentenverteilung für Vollbelastung bei einem durchlaufenden Träger mit und ohne Vouten. Der voll gezeichnete Linienzug stellt die Momente für den Träger ohne Vouten dar, die strichlierte Linie gibt den Momentenverlauf für den Träger mit Vouten wieder. Denkt man nun an die Bemessung eines solchen Trägers, so ist es wohl einleuchtend,

daß die vergrößerten Stützenmomente von den durch die Vouten beträchtlich erhöhten Querschnitten im Bereich der Stützen verhältnismäßig leicht aufzunehmen sind und daß weiter die Verringerung der Feldmomente stets besonders willkommen sein wird, da im Feld in der Regel ein möglichst niedriger

Abb.103. M-Verlauf beim Durchlaufträger mit und ohne Vouten.

Querschnitt gefordert wird und außerdem, besonders bei weitgespannten Platten oder Balken, eine nicht unbeträchtliche Gewichtsverringerung erzielt wird. Schließlich kommt noch hinzu, daß die Auflagerverstärkungen auch für die Aufnahme der Querkräfte, die dort einen Größtwert erreichen, vorteilhaft erscheinen.

III. Rechnungsgrundlagen.

1. Die Endtangentenwinkel der Biegelinie des Rahmenstabes mit veränderlichen Querschnitten.

Es sei der Momentenverlauf für eine bestimmte Belastung eines Rahmenstabes mit beliebigen Auflagerverstärkungen gegeben (Abb. 104a) und die zugehörigen Endtangentenwinkel τ_1 , τ_2 der Biegelinie in bezug auf die Stabsehne gesucht. Zur Lösung dieser Aufgabe können verschiedene Wege eingeschlagen werden. Hier erscheint es der Anschaulichkeit wegen zweckmäßig, den bekannten Mohrschen Satz anzuwenden, welcher für den Stab mit gleichbleibender Dehnungszahl E und veränderlichem Trägheitsmoment J bei Annahme eines Vergleichswertes J_c lautet:

"Die EJ_c -fach verzerrten Endtangentenwinkel der Biegelinie sind gleich den Auflagerdrücken A_1 und A_2 der als Belastung aufgefaßten $\frac{J_c}{J}$ -fach verzerrten M-Fläche."

Es wird also, wenn τ_1 und τ_2 die wahren Werte der Endtangentenwinkel bedeuten,

Um nun diesen Satz von MOHR auf den vorliegenden Fall in übersichtlicher Weise anwenden zu können, ist es zweckmäßig, den gegebenen Momentenverlauf in folgende *drei* Bestandteile zu zerlegen, die am freiaufliegend gedachten Stab angreifen:

 1. Momentenverlauf infolge
 $+ M_1$ am Stabende 1 (Abb. 104d).

 2.
 ,,
 ,,
 $+ M_2$,,
 ,,
 2 (Abb. 104e).

 3.
 ,,
 ,,
 der äußeren Belastung (Abb. 104f).

Für diese drei Fälle können die Endtangentenwinkel als Auflagerdrücke der jeweils $\frac{J_c}{J}$ -fach verzerrten *M*-Flächen getrennt bestimmt werden und man erhält der Reihe nach folgende *drei* Anteile:

Durch Überlagerung dieser drei Fälle erhält man nach (71) unter Beachtung der aus den Abbildungen sich ergebenden Vorzeichen aller Winkelwerte (Uhrzeigersinn +):

$$EJ_{c}\tau_{1} = +\tau_{1}' - \tau_{1}'' + \alpha_{1}^{0}$$

$$EJ_{c}\tau_{2} = -\tau_{2}' + \tau_{2}'' - \alpha_{2}^{0}.$$
(72)

(Siehe auch Abb. 104g).

Die Belastungsfälle 1 und 2, die sich auf die Stabendmomente $+ M_1$ und $+ M_2$ beziehen, können unter Anwendung des Proportionalitätsgesetzes am besten so behandelt werden, daß man zunächst die Einheitsmomente angreifen läßt, also im *ersten* Fall das Moment $\overline{M_1} = +1$ (Abb. 104b) und im *zweiten* Fall das Moment $\overline{M_2} = +1$ (Abb. 104c). Die diesen Einheitsmomenten zugeordneten EJ_c -fach verzerrten Endtangentenwinkel α_1 und β_2 , bzw. α_2 und β_1 können wieder nach MOHR als Auflagerdrücke der entsprechenden $\frac{J_c}{J}$ fach verzerrten \overline{M} -Flächen bestimmt werden. Dieser Gedankengang ist in den Abb. 104b und 104c veranschaulicht, in welchen auch die zugehörigen Biegelinien jeweils angedeutet sind.

Nach dem MAXWELLschen Satz von der Gegenseitigkeit der Formänderungen muß aber $\beta_1 = \beta_2$ sein. Es braucht daher für die Rechnung der Wert β nur einmal ermittelt werden, weshalb künftig einfach

$$\beta_1 = \beta_2 = \beta \tag{73}$$

geschrieben wird. Es ist darunter immer jener EJ_c -fach verzerrte Endtangentenwinkel zu verstehen, der bei der Belastung des *einen* Stabendes mit dem Einheitsmoment $\overline{M} = +1$ am *entgegengesetzten* Stabende auftritt.

Es ergeben sich also, wie auch in Abb. 104d ersichtlich gemacht ist, bei dem Belastungsfall 1 für ein beliebiges Moment M_1 die EJ_c -fach verzerrten Endtangentenwinkel nach dem Proportionalitätsgesetz

Abb. 104a bis g. Beziehungen zwischen Endtangentenwinkeln und Momentenverlauf bei Rahmenstäben mit veränderlichen Querschnitten.

und ebenso beim Belastungsfall 2, Abb. 104e, für ein beliebiges Moment M_2

$$\tau_1^{\prime\prime} = M_2 \cdot \beta; \quad \tau_2^{\prime\prime} = M_2 \cdot \alpha_2.$$
 (75)

Führt man diese Ausdrücke in (72) ein, so erhält man schließlich:

$$EJ_{c}\tau_{1} = + M_{1}\alpha_{1} - M_{2}\beta + \alpha_{1}^{0}$$

$$EJ_{c}\tau_{2} = - M_{1}\beta + M_{2}\alpha_{2} - \alpha_{2}^{0}.$$
(76)

Hiermit sind die gesuchten Endtangentenwinkel τ_1 und τ_2 als Funktion der Stabendmomente M_1 , M_2 , der äußeren Belastung (α_1^0 und α_2^0) und der nur von der Stabform abhängigen Winkelwerte α_1 , α_2 , β dargestellt (Abb. 104a bis g).

2. Gleichungsansätze für die Stabendmomente.

In den Ausdrücken (76) sind bereits die wichtigsten Beziehungen zwischen Formänderungsgrößen, Stabendmomenten und äußerer Belastung enthalten. Sie können deshalb auch als Ausgangspunkt für weitere Ableitungen benutzt werden. Löst man z. B. diese beiden Gleichungen nach M_1 und M_2 auf, so erscheinen die *Stab*endmomente als Funktion der Endtangentenwinkel τ_1 , τ_2 , der Stabbelastung (α_1^0 und α_2^0) und der Winkelwerte α_1 , α_2 und β .

Es ergibt sich

$$M_{1} = \frac{EJ_{c}\alpha_{2}}{\alpha_{1}\alpha_{2}-\beta^{2}} \cdot \tau_{1} + \frac{EJ_{c}\beta}{\alpha_{1}\alpha_{2}-\beta^{2}} \cdot \tau_{2} - \frac{\alpha_{2}}{\alpha_{1}\alpha_{2}-\beta^{2}} \cdot \alpha_{1}^{0} + \frac{\beta}{\alpha_{1}\alpha_{2}-\beta^{2}} \cdot \alpha_{2}^{0}$$

$$M_{2} = \frac{EJ_{c}\beta}{\alpha_{1}\alpha_{2}-\beta^{2}} \cdot \tau_{1} + \frac{EJ_{c}\alpha_{1}}{\alpha_{1}\alpha_{2}-\beta^{2}} \cdot \tau_{2} - \frac{\beta}{\alpha_{1}\alpha_{2}-\beta^{2}} \cdot \alpha_{1}^{0} + \frac{\alpha_{1}}{\alpha_{1}\alpha_{2}-\beta^{2}} \cdot \alpha_{2}^{0}.$$
(77)

Für die in den vorstehenden Ausdrücken immer wiederkehrenden Festwerte, die nur von den Stababmessungen abhängen, kann eine vereinfachende Bezeichnung eingeführt werden, und zwar

$$\frac{EJ_c\alpha_2}{\alpha_1\alpha_2-\beta^2} = a_1; \ \frac{EJ_c\alpha_1}{\alpha_1\alpha_2-\beta^2} = a_2; \ \frac{EJ_c\beta}{\alpha_1\alpha_2-\beta^2} = b.$$
(78)

Damit lauten die Gl. (77) etwas übersichtlicher

$$M_{1} = a_{1} \tau_{1} + b \tau_{2} - \frac{1}{EJ_{c}} (a_{1} \alpha_{1}^{0} - b \alpha_{2}^{0})$$

$$M_{2} = b \tau_{1} + a_{2} \tau_{2} - \frac{1}{EJ_{c}} (b \alpha_{1}^{0} - a_{2} \alpha_{2}^{0}).$$
(79)

Um nun diese Ansätze in eine für die Berechnung von Rahmentragwerken geeignetere Form zu bringen, ist es zweckmäßig, an Stelle der Endtangentenwinkel τ_1 und τ_2 die *Knotendrehwinkel* φ und *Stabdrehwinkel* ψ einzuführen. Nach den schon im ersten Abschnitt aufgestellten Beziehungen (4) ist nun allgemein

$$au_1 = arphi_1 + arphi \quad ext{und} \quad au_2 = arphi_2 + arphi,$$

so daß damit (79) übergeführt werden kann in

$$M_{1} = a_{1} \varphi_{1} + b \varphi_{2} + (a_{1} + b) \psi - \frac{1}{EJ_{c}} (a_{1} \alpha_{1}^{0} - b \alpha_{2}^{0})$$

$$M_{2} = a_{2} \varphi_{2} + b \varphi_{1} + (a_{2} + b) \psi - \frac{1}{EJ_{c}} (b \alpha_{1}^{0} - a_{2} \alpha_{2}^{0}).$$
(80)

Setzt man

$$a_1 + b = c_1; \quad a_2 + b = c_2,$$
 (81)

ferner

$$-\frac{1}{EJ_c} (a_1 \alpha_1^0 - b \alpha_2^0) = \mathfrak{M}_1; \quad -\frac{1}{EJ_c} (b \alpha_1^0 - a_2 \alpha_2^0) = \mathfrak{M}_2, \quad (82)$$

so erhält man die Ausdrücke für die Anschlußmomente M_1 , M_2 eines Rahmenstabes 1–2 mit beliebig veränderlichen Querschnitten in übersichtlicher Form:

$$M_{1} = a_{1} \varphi_{1} + b \varphi_{2} + c_{1} \psi + \mathfrak{M}_{1}$$

$$M_{2} = a_{2} \varphi_{2} + b \varphi_{1} + c_{2} \psi + \mathfrak{M}_{2}.$$
(83)

Bei Verwendung von \varDelta als Rechnungsunbekannte an Stelle von ψ würden diese Ausdrücke lauten:

$$M_{1} = a_{1} \varphi_{1} + b \varphi_{2} + \frac{c_{1}}{l} \cdot \varDelta + \mathfrak{M}_{1}$$

$$M_{2} = a_{2} \varphi_{2} + b \varphi_{1} + \frac{c_{2}}{l} \cdot \varDelta + \mathfrak{M}_{2}.$$
(83a)

Die Anwendung dieser Gleichungen in der Rahmenberechnung macht es erforderlich, sowohl für die Momente als auch für die Beiwerte eine genauere Bezeichnung einzuführen, um eine Verwechslung zu

vermeiden und Irrtümer tunlichst auszuschalten. Zu diesem Zweck schreibt man die Gl. (83) in allgemeiner Form für einen Stab ν mit den Endpunkten mund n (Abb. 105) am besten folgendermaßen:

Abb. 105. Beiwerte des Rahmenstabes.

$$M_{m,n} = a_{m,n} \varphi_m + b_{\nu} \varphi_n + c_{m,n} \psi_{\nu} + \mathfrak{M}_{m,n}$$

$$M_{n,m} = a_{n,m} \varphi_n + b_{\nu} \varphi_m + c_{n,m} \psi_{\nu} + \mathfrak{M}_{n,m}.$$
(84)

Darin bedeuten:

$$a_{m,n} = \frac{EJ_{c} \cdot \alpha_{n,m}}{\alpha_{m,n} \cdot \alpha_{n,m} - \beta_{v}^{2}}; \quad (\text{Beiwert } a \text{ für das Stabende } m)$$

$$a_{n,m} = \frac{EJ_{c} \cdot \alpha_{m,n}}{\alpha_{m,n} \cdot \alpha_{n,m} - \beta_{v}^{2}}; \quad (\text{Beiwert } a \text{ für das Stabende } n)$$

$$b_{v} = \frac{EJ_{c} \cdot \beta_{v}}{\alpha_{m,n} \cdot \alpha_{n,m} - \beta_{v}^{2}}; \quad (\text{Beiwert } b \text{ des Stabes } v)$$

$$c_{m,n} = a_{m,n} + b_{v}; \quad (\text{Beiwert } c \text{ für das Stabende } m)$$

$$c_{n,m} = a_{n,m} + b_{v}; \quad (\text{Beiwert } c \text{ für das Stabende } n).$$
(85)
(85)
(85)
(85)
(86)

Schließlich sei noch der Ausdruck für die Summe der beiden Stabendmomente angeschrieben, der bei späteren Ableitungen öfter gebraucht wird. Durch Summieren der beiden Gl. (84) ergibt sich:

$$M_{m,n} + M_{n,m} = c_{m,n} \varphi_m + c_{n,m} \varphi_n + (c_{m,n} + c_{n,m}) \psi_{\nu} + \mathfrak{M}_{m,n} + \mathfrak{M}_{n,m}.$$
(87)

IV. Die Stabfestwerte a, b, c.

1. Statische Deutung.

Über die Frage der Dimension und statischen Bedeutung der Stabfestwerte, die zugleich ein Maß der Stabsteifigkeit darstellen, geben unmittelbar die Ausdrücke (84) für die Stabendmomente Auskunft. Es ist daraus zunächst sofort ersichtlich, daß die drei Beiwerte a, b, c die Dimension eines Momentes haben müssen, da die Drehwinkel $\varphi_m, \varphi_n, \psi$ unbenannte Zahlen vorstellen. Die nähere statische Bedeutung der einzelnen Glieder und Beiwerte ergibt sich schließlich, wenn jeweils alle übrigen Glieder zum Verschwinden gebracht werden.

Setzt man beispielsweise

$$\varphi_n = 0; \quad \psi_r = 0; \quad \mathfrak{M}_{m,n} = 0; \quad \mathfrak{M}_{n,m} = 0,$$
lauten die Gl. (84)

$$M_{m,n} = a_{m,n} \varphi_m; \quad M_{n,m} = b_{\nu} \varphi_m. \tag{88}$$

Für $\varphi_m = 1$ wird weiter

$$M_{m,n} = a_{m,n}; \quad M_{n,m} = b_{\nu},$$
 (88a)

d. h. der Stabfestwert $a_{m,n}$ kann statisch als jenes Moment $M_{m,n}$ gedeutet werden, das bei einer Verdrehung $\varphi_m = 1$ auftritt, wenn gleichzeitig alle übrigen Formänderungsgrößen gleich Null sind und der Stab unbelastet ist. Ebenso kann der Stabfestwert b_r als jenes Moment aufgefaßt werden, das unter denselben Voraussetzungen am *entgegen*gesetzten Stabende, also am fest eingespannten Ende auftritt (Abb. 106).

Für den Stabfestwert $a_{n,m}$ gilt sinngemäß dieselbe Überlegung (Abb. 107).

Um über die Bedeutung der c-Werte Aufschluß zu erhalten, setzt man

$$\varphi_m = 0; \quad \varphi_n = 0; \quad \mathfrak{M}_{m, n} = 0; \quad \mathfrak{M}_{n, m} = 0.$$

Für diesen Fall lauten die Gl. (84)

$$M_{m,n} = c_{m,n} \cdot \psi_r; \quad M_{n,m} = c_{n,m} \cdot \psi_r;$$
 (89)
für $\psi_r = 1$ ergibt sich schließlich

 $M_{m,n} = c_{m,n}; \quad M_{n,m} = c_{n,m},$ (89a)

d. h. die Beiwerte $c_{m,n}$ bzw. $c_{n,m}$ können statisch als die Stabendmomente $M_{m,n}$ bzw. $M_{n,m}$ gedeutet werden, die bei einer Stabverdrehung $\psi_r = 1$ an dem Stabende m bzw. n auftreten, wenn gleichzeitig die übrigen Formänderungsgrößen verschwinden und der Stab unbelastet ist (Abb. 108).

2. Die zahlenmäßige Ermittlung der Stabfestwerte a, b, c.

Es sind hier allgemein zwei Fälle zu unterscheiden.

A. Bei Stäben mit beliebig veränderlichen Querschnitten.

In solchen Fällen müssen zunächst die Winkelwerte α_1 , α_2 , β für die Belastung $\overline{M_1} = +1$ bzw. $\overline{M_2} = +1$ am freiaufliegend gedachten Stab ermittelt werden. Dies kann in der bereits beschriebenen Weise nach dem MOHRschen Satz erfolgen. Sodann erhält man aus den Formeln (78) bzw. (85) und (86) die endgültigen Werte. Sind die Stäbe symmetrisch ausgebildet, so wird natürlich

$$a_{m,n} = a_{n,m}$$
 bzw. $c_{m,n} = c_{n,m}$. (90)

B. Bei Stäben mit einseitig oder beidseitig geraden oder parabolischen Vouten.

Diese Stabformen treten im Bauwesen am häufigsten auf, weshalb sie eine besonders eingehende Behandlung erfordern. Unter der Annahme, daß sich die Trägheitsmomente der verschiedenen Querschnitte im gleichen Verhältnis ändern wie die dritten Potenzen der Querschnittshöhen, lassen sich für die Stabsteifigkeitswerte a_1, a_2 und b gebrauchsfertige Zahlentafeln aufstellen, in denen die verschiedensten Voutenlängen und Voutenhöhen berücksichtigt sind. Dies ist hier in der Weise geschehen, daß zunächst unter teilweiser Benutzung der in STRASSNERS

"Neuere Methoden" entwickelten analytischen Ausdrücke die Endtangentenwinkel α_1 , α_2 und β für alle in Betracht kommenden Voutenformen berechnet und sodann mit Hilfe der Ausdrücke (78) die Stabfestwerte a_1, a_2 und b ermittelt worden sind. Es wurden auf diese Weise für vier verschiedene Stabformen Zahlen- und Kurventafeln geschaffen, und zwar für:¹

1. Stäbe mit einseitig geraden Vouten (Zahlentafel 5, Kurventafel 5a).

2. Stäbe mit einseitig parabolischen Vouten (Zahlentafel 6, Kurventafel 6a).

3. Stäbe mit beidseitig geraden, zur Stabmitte symmetrisch ausgebildeten Vouten (Zahlentafel 7, Kurventafel 7a).

4. Stäbe mit beidseitig parabolischen, zur Stabmitte symmetrisch ausgebildeten Vouten (Zahlentafel 8, Kurventafel 8a).

In sämtlichen Tafeln sind die *a*- und *b*-Werte in $\frac{1}{EJ_e}$. facher Verzerrung für einen Einheitsstab von der Länge l = 1 enthalten. Üm die Zuordnung dieser verzerrten Tafelwerte zu den wahren a^* - und b^* -Werten eindeutig zum Ausdruck zu bringen und doch eine Verwechslung zu vermeiden, sind die Tafelwerte mit den entsprechenden deutschen Buchstaben a_1 , a_2 und b bezeichnet. Es bestehen sonach folgende Beziehungen:

1. Bei Stäben mit einseitigen Vouten (Abb. 109):

$$a_1^* = \frac{EJ_c}{l} \mathfrak{a}_1; \quad a_2^* = \frac{EJ_c}{l} \mathfrak{a}_2; \quad b^* = \frac{EJ_c}{l} \mathfrak{b}. \quad (91)$$

2. Bei Stäben mit beidseitig symmetrisch angeordneten Vouten (Abb. 110):

$$a^* = \frac{EJ_c}{l} \mathfrak{a}; \quad b^* = \frac{EJ_c}{l} \mathfrak{b}.$$
 (92)

Darin bedeutet J_c das Trägheitsmoment im unveränderlichen Stabbereich und l die wirkliche Länge des Stabes. Die verschiedenen Voutenformen und Voutengrößen kommen in den Tafeln durch die Verhältniszahlen λ und n zum Ausdruck. Es ist

$$\lambda = \frac{l_v}{l} = \frac{\text{Voutenlänge}}{\text{Stablänge}},$$
(93)

$$n = \frac{J_c}{J_A} = \frac{\text{Trägheitsmoment im unveränderlichen Stabbereich}}{\text{Trägheitsmoment des Auflagerquerschnittes}}.$$
 (94)

Zwischenwerte von n bzw. λ sind in den Tafeln einzuschalten, was naturgemäß in den Kurventafeln bequemer durchzuführen ist. Die Anordnung der Kurven-

Abb. 110.

Abb. 109 und 110. Grundwerte der Voutenstäbe.

Abb. 111. Schema der Kurventafeln 5a und 6a zur Ermittlung der Werte $a_1 a_2 b$ bei Voutenstäben.

¹ Vgl. GULDAN: Beitrag zur Berechnung von Rahmentragwerken mit veränderlichen Stabquerschnitten. Prag: J. CALVE, 1933 und H. D. I.-Mitteilungen, Jg. 1934.

tafeln 5a bzw. 6a für Stäbe mit einseitigen Vouten ist aus der schematischen Abb. 111 ersichtlich, in der nur eine λ -Kurve eingezeichnet ist. Die Werte a_1 , a_2 , b sind der Reihe nach für gegebene *n*- und λ -Werte aus den drei aufeinanderfolgenden Tafeln zu entnehmen. Jede einzelne dieser drei Tafeln, die eine Schar von λ -Kurven enthalten, ist so eingerichtet, daß die *n*-Werte als *Abszissen* und die Stabfestwerte a bzw. b als *Ordinaten* erscheinen. (Siehe Einführungsbeispiele 1 bis 4, Seite 141 bis 148.)

Für den Sonderfall, daß $\lambda = 0$ oder n = 1 wird, hat man es mit einem Stab mit unveränderlichem Trägheitsmoment zu tun. Die Zahlen- und Kurventafeln liefern für diesen Fall stets

$$\mathfrak{a}_1 = \mathfrak{a}_2 = \mathfrak{a} = 4; \ \mathfrak{b} = 2. \tag{95}$$

Damit wird nach (91) oder (92)

$$a^* = \frac{4 E J_c}{l}; \quad b^* = \frac{2 E J_c}{l}, \tag{96}$$

ferner nach (81) oder (86)

$$c^* = a^* + b^* = \frac{6 E J_c}{l}.$$
 (97)

Für diesen Sonderfall gehen die allgemeinen Gl. (84) für die Stabendmomente in die bereits im ersten Abschnitt benutzte Form (5) für Stäbe mit unveränderlichem Querschnitt über und lauten:

$$M_{1.2} = \frac{4EJ_c}{l}\varphi_1 + \frac{2EJ_c}{l}\varphi_2 + \frac{6EJ_c}{l}\psi + \mathfrak{M}_{1.2}$$

$$M_{2.1} = \frac{4EJ_c}{l}\varphi_2 + \frac{2EJ_c}{l}\varphi_1 + \frac{6EJ_c}{l}\psi + \mathfrak{M}_{2.1}.$$
(98)

Die Zahlen- und Kurventafeln ermöglichen ferner auch die Berücksichtigung der sprunghaft ansteigenden Trägheitsmomente an den Stabkreuzungspunkten. Es kann dort eine sehr steil abfallende Voute angenommen und im Grenzfall $n = \frac{J_c}{J_A} = 0$ gesetzt werden (siehe Zahlenbeispiel Nr. 13).

C. Bei Stäben mit ungleichen Vouten.

Besitzen die auf beiden Seiten des Stabes vorhandenen Vouten verschiedene Formen, so können die Stabfestwerte zwar nicht direkt aus den Tafeln entnommen werden, doch ist ihre Bestimmung unter Zuhilfenahme der Tafeln 17, 18, bzw. 17a, 18a für die Winkelwerte α_1 , α_2 und β noch verhältnismäßig einfach. Diesem Ermittlungsverfahren liegt folgender Gedankengang zugrunde.¹

Soll z. B. für den in Abb. 112 dargestellten Einheitsstab der EJ_c -fach verzerrte Winkelwert α_1 bestimmt werden, so kann dies nach Mohr bekanntlich in der Weise erfolgen, daß man den Auflagerdruck A_1 der $\frac{J_c}{J}$ -fach verzerrten \overline{M} -Linie ermittelt. Nun kann man aber die vorliegende Stabform durch andere Stäbe ersetzen, für welche die gesuchten Winkelwerte aus den vorhandenen Tafeln unmittelbar zu entnehmen sind. Man denkt sich also an Stelle des gegebenen Stabes mit zwei verschiedenen Vouten (Abb. 112) drei Ersatzstäbe, und zwar zwei Stäbe

mit nur je einer Voute von der jeweils gleichen Form wie beim gegebenen Stab

¹ Vgl. auch DAŠEK, Beton und Eisen 1936, wo unabhängig von den bereits weiter zurückliegenden Arbeiten des Verfassers ebenfalls auf diesen Zusammenhang hingewiesen worden ist.

(Abb. 112a, b) und einen Stab ohne Vouten (Abb. 112c). Für jeden dieser Stäbe können nun die zugehörigen Auflagerdrehwinkel α_1 , α_2 und β in der bekannten Weise als Auflagerdrücke bestimmt werden. Es ist weiter unschwer festzustellen, daß der in Abb. 112 dargestellte Fall mit ungleichen Vouten durch eine entsprechende Überlagerung der drei in Abb. 112a, b, c dargestellten Fälle erhalten werden kann. Wenn zugleich beachtet wird, daß in Übereinstimmung mit dem Aufbau der Zahlen- und Kurventafeln das Stabende auf der Voutenseite

stets mit "1" und das entgegengesetzte, also voutenfreie Ende mit "2" bezeichnet ist, so kann unter Bezug auf die Abbildungen geschrieben werden:

$$A_{1} = A_{1}^{(a)} + A_{2}^{(b)} - A_{1}^{(c)};$$

$$A_{2} = A_{2}^{(a)} + A_{1}^{(b)} - A_{2}^{(c)}.$$
(99)

Hierin bedeuten sämtliche A-Werte jeweils die Auflagerdrücke der in den Abbildungen schraffierten \overline{M} -Flächen, wobei sich die Zeichen ^(a), ^(b) und ^(c) auf die Ersatzstäbe beziehen.

Setzt man in (99) an Stelle der AuflagerdrückeA die entsprechenden Auflagerdrehwinkel und beachtet man, daß

$$A_1^{(c)} = \frac{1}{3} \text{ und } A_2^{(c)} = \frac{1}{6}$$
 (100)

ist, so wird:

$$\begin{aligned} \alpha_1 &= \alpha_1^{(a)} + \alpha_2^{(b)} - \frac{1}{3}; \\ \beta_2 &= \beta_2^{(a)} + \beta_1^{(b)} - \frac{1}{6}. \end{aligned} (101)$$

Die letzte Gleichung kann, da nach dem MAXWELLschen Satz $\beta_1 = \beta_2 = \beta$ sein muß, auch so geschrieben werden:

$$\beta = \beta^{(a)} + \beta^{(b)} - \frac{1}{6}$$
 (102)

Dieselbe Überlegung führt natürlich zum Ziel, wenn es sich um die Ermittlung von α_2 handelt. Zwecks besserer Übersicht werden die drei entsprechenden Formeln zur Ermittlung von α_1 , α_2 und β bei Stäben mit ungleichen Vouten noch einmal gemeinsam angeschrieben, wobei die in den

Hilfstafeln verwendeten Bezeichnungen $\overline{\alpha}_1$, $\overline{\alpha}_2$, $\overline{\beta}$ für den "Einheitsstab" verwendet werden:

$$\overline{\alpha}_{1} = \overline{\alpha}_{1}^{(a)} + \overline{\alpha}_{2}^{(b)} - \frac{1}{3}$$

$$\overline{\alpha}_{2} = \overline{\alpha}_{2}^{(a)} + \overline{\alpha}_{1}^{(b)} - \frac{1}{3}$$

$$\overline{\beta} = \overline{\beta}^{(a)} + \overline{\beta}^{(b)} - \frac{1}{6}$$
(103)

Die Bedeutung der Zeiger ist in der schematischen Abb. 113 ersichtlich gemacht.

Die praktische Verwendung ist damit hinreichend klar. Die Winkelwerte für die *Ersatzstäbe* ^(a) und ^(b) sind bei geraden Vouten aus Tafel 17 bzw. 17a, bei parabolischen Vouten aus Tafel 18 bzw. 18a zu entnehmen. Damit können dann aus den Formeln (103) die gesuchten Winkelwerte leicht ermittelt werden. Die Stabfestwerte $a_{1,2}, a_{2,1}$ und b ergeben sich dann aus den Formeln (78) (siehe auch Einführungsbeispiel 4, Seite 146).

3. Verwendung der Werte a, b, c in der Rahmenberechnung.

Für die Verwendung der Stabfestwerte a, b, c bei der zahlenmäßigen Berechnung von Rahmentragwerken gilt im wesentlichen dasselbe, was bereits im ersten Abschnitt, II, 6 über die Steifigkeitszahl k gesagt worden ist. Führt man die Beiwerte a,b, c in wahrer Größe in die Rechnung ein, so erhält man auch die Momente und die Formänderungswerte in wahrer Größe. Führt man hingegen sämtliche Stabfestwerte z-fach verzerrt in die Rechnung ein, so ergeben sich die Momente wieder in wahrer Größe, obwohl die Formänderungswerte durchwegs $\frac{1}{z}$ -fach verzerrt erscheinen. Als Verzerrungsfaktor kann auch hier

$$z = \frac{1}{EJ_0} \tag{104}$$

gewählt werden, wobei J_0 ein in der Rechnung öfter wiederkehrendes Trägheitsmoment oder einen willkürlich gewählten runden Wert bedeutet. So kann z. B. für $J_0 = 0,001 \text{ m}^4$ gesetzt werden, womit der Verzerrungsfaktor

$$z = \frac{1000}{E} \tag{105}$$

wird. Es würde also z. B. für die zahlenmäßige Rechnung zu setzen sein:

$$a_1 = \frac{EJ_c}{l} \mathfrak{a}_1 \cdot z = \frac{EJ_c}{l} \mathfrak{a}_1 \quad \frac{1000}{E} = \frac{1000J_c}{l} \mathfrak{a}_1$$

und ähnlich

$$a_2 = \frac{1000 J_c}{l} a_2; \ b = \frac{1000 J_c}{l} b, \tag{106}$$

wobei auch J_c in m⁴ gedacht ist. Sollen ausnahmsweise auch die Formänderungswerte in ihrer wahren Größe bestimmt werden, so sind die aus der Rechnung erhaltenen verzerrten Größen nachträglich durch Multiplikation mit z wieder zu entzerren [siehe auch Gl. (18) des ersten Abschnittes].

V. Die zahlenmäßige Ermittlung der Stabbelastungsglieder M.

1. Bei Stäben mit beliebig veränderlichen Querschnitten und beliebiger Belastung.

Da die Stabbelastungsglieder mit den Einspannmomenten des fest eingespannten Trägers identisch sind, so unterliegen sie derselben Vorzeichenregel, die bereits im ersten Abschnitt, I, 2 für die Stabendmomente festgelegt worden ist. Im übrigen kann die Berechnung allgemein nach den Ausdrücken (82) erfolgen, welche mit der neuen Bezeichnungsweise lauten:

$$\mathfrak{M}_{1} = -\frac{1}{EJ_{c}} \left(a_{1}^{*} \alpha_{1}^{0} - b^{*} \alpha_{2}^{0} \right); \ \mathfrak{M}_{2} = -\frac{1}{EJ_{c}} \left(b^{*} \alpha_{1}^{0} - a_{2}^{*} \alpha_{2}^{0} \right).$$
(107)

Ersetzt man nach (91) die wahren Stabfestwerte a_1^* , a_2^* , b^* durch die auf den *Einheitsstab* bezogenen Werte a_1 , a_2 , b, so erhält man:

$$\mathfrak{M}_{1} = -\frac{1}{l} \left(\mathfrak{a}_{1} \, \alpha_{1}^{0} - \mathfrak{b} \, \alpha_{2}^{0} \right); \ \mathfrak{M}_{2} = +\frac{1}{l} \left(\mathfrak{a}_{2} \, \alpha_{2}^{0} - \mathfrak{b} \, \alpha_{1}^{0} \right).$$
(108)

Die in dieser Formel enthaltenen Werte α_1^0 und α_2^0 können am einfachsten nach MOHR als Auflagerdrücke A_1^0 und A_2^0 der $\frac{J_c}{J}$ -fach verzerrten M_o -Fläche am freiaufliegend gedachten Träger bestimmt werden (Abb. 114).

Bei symmetrisch ausgebildeten Vouten und symmetrischer Stabbelastung wird

$$\alpha_1^0 = \alpha_2^0 = \alpha^0$$
 und $\mathfrak{a}_1 = \mathfrak{a}_2 = \mathfrak{a}$,

so daß die Formeln (108) dann einfach lauten:

$$\mathfrak{M}_{1} = -\frac{\alpha^{0}}{l} (\mathfrak{a} - \mathfrak{b}); \quad \mathfrak{M}_{2} = +\frac{\alpha^{0}}{l} (\mathfrak{a} - \mathfrak{b}).$$
(109)

2. Bei Stäben ohne Vouten.

In diesem Falle wird nach (95) $a_1 = a_2 = 4$ und b = 2, womit die Gl. (108) übergehen in

$$\mathfrak{M}_{1} = -2 \frac{2 \alpha_{1}^{0} - \alpha_{2}^{0}}{l}; \ \mathfrak{M}_{2} = +2 \frac{2 \alpha_{2}^{0} - \alpha_{1}^{0}}{l}.$$
 (108 a)

Bei symmetrischer Belastung wird überdies $\alpha_1^0 = \alpha_2^0 = \alpha^0$ und damit

$$\mathfrak{M}_1 = -\frac{2 \alpha^0}{l}; \ \mathfrak{M}_2 = + \frac{2 \alpha^0}{l}.$$
 (109 a)

Die \mathfrak{M} -Werte für Stäbe ohne Vouten sind für verschiedene Belastungsfälle auf den Tafeln 2 bis 4 zusammengestellt.

3. Bei Stäben mit geraden oder parabolischen Vouten.

Für alle Belastungsfälle, mit denen der praktisch tätige Ingenieur am häufigsten zu tun hat, wurde eine ganze Reihe von Zahlen- und Kurventafeln aufgestellt, um die sonst allzu zeitraubende Ermittlung der Stabbelastungsglieder einfacher zu gestalten. Die Einrichtung und der Gebrauch dieser Hilfstafeln, die nach den verschiedenen Stabformen und Belastungsfällen geordnet sind, seien hier kurz beschrieben.

A. Hilfstafeln für gleichmäßige Vollbelastung.

Hierbei sind folgende Stabformen berücksichtigt:

1. Stäbe mit einseitig geraden Vouten (Zahlentafel 9, Kurventafel 9a).

2. Stäbe mit einseitig parabolischen Vouten (Zahlentafel 10, Kurventafel 10a).

3. Stäbe mit *beidseitig geraden*, zur Stabmitte symmetrisch ausgebildeten Vouten (Zahlentafel 11, Kurventafel 11a).

4. Stäbe mit *beidseitig parabolischen*, zur Stabmitte symmetrisch ausgebildeten Vouten (Zahlentafel 12, Kurventafel 12a).

Die Ausgangswerte für die Benutzung der Hilfstafeln sind stets die von der Voutenform abhängigen Werte

$$n = \frac{J_c}{J_A}$$
 und $\lambda = \frac{l_v}{l}$,

deren Bedeutung aus (93) und (94) hervorgeht.

Guldan, Rahmentragwerke.

(2)

Abb. 114.

4

Sämtliche Tafeln sind so aufgebaut, daß sich die gesuchten Belastungsglieder M. also die Einspannmomente des voll eingespannten Trägers, aus folgenden Formeln ergeben:

Bei Stäben mit beidseitig symmetrisch ausgebildeten Vouten:

$$\mathfrak{M}_{1} = -\varkappa \cdot \frac{q l^{2}}{12}; \ \mathfrak{M}_{2} = +\varkappa \cdot \frac{q l^{2}}{12},$$
(110)

bei Stäben mit einseitigen Vouten:

$$\mathfrak{M}_{1} = -\varkappa_{1} \frac{q l^{2}}{12}; \ \mathfrak{M}_{2} = +\varkappa_{2} \frac{q l^{2}}{12}.$$
 (110a)

Zur Entnahme der z-Werte können die Zahlen- und Kurventafeln Verwendung finden. Die Kurventafeln für Stäbe mit einseitigen Vouten sind als Doppeltafeln eingerichtet, und zwar ergibt der obere Teil den Wert \varkappa_1 und der untere Teil \varkappa_2 .

Abb. 115 und 116. Schema der Kurventafeln 9a und 11a, bzw. 10a und 12a zur Bestimmung der M-Werte bei Voutenstäben.

Sämtliche Kurventafeln zur Ermittlung der Belastungsglieder für Vollbelastung enthalten die n-Werte als Kurvenschar, während die λ -Werte als Abszissen und die gesuchten \varkappa -Werte als Ordinaten erscheinen. In Abb. 115 ist die Anlage dieser Kurventafeln für Stäbe mit beidseitig symmetrisch ausgebildeten Vouten schematisch dargestellt, während die Abb. 116 die Anordnung der Doppeltafeln für Stäbe mit einseitigen Vouten zeigt. (Siehe auch Einführungsbeispiele 1, 2, 3, Seite 141 bis 146.)

Die Größe des Einflusses der verschieden geformten Vouten tritt bei den Kurventafeln ganz besonders klar hervor, weshalb

sie auch für die Gestaltung der verschiedenen Rahmenstäbe und namentlich bei fest eingespannten Trägern wertvolle Anhaltspunkte liefern können.

B. Hilfstafeln für Einzellasten bzw. Streckenlasten.

Um allen Laststellungen Rechnung zu tragen, wurden für die wichtigsten Voutenformen die Einflußlinien für die Einspannmomente des voll eingespannten Trägers ermittelt und in den Hilfstafeln 13 bis 16 und 13 a bis 16 a zusammengestellt.

Abb. 117a und b. Auswertung der M-Einflußlinien für Einzellasten bzw. Streckenlasten bei Voutenstäben.

zugeordneten Werte n = (0); (0,03); (0,05); (0,10); (0,20); (0,50); (1,0) in einem Felde gezeichnet ist. Dadurch ist die Einschaltung zwischen verschiedenen n-Werten, die häufiger vorkommt, leicht durchführbar.

die graphischen Tafeln 13a bis 16a als zehnteilige Einflußlinien dargestellt sind und dadurch vorteilhaft zur direkten Auswertung, also zur unmittelbaren Bestimmung der Stabbelastungsglieder M1 und M2 benutzt werden können. Die Einrichtung dieser Tafel ist so getroffen, daß immer eine Gruppe von Einflußlinien für einen bestimmten Wert λ und die Da in jedem Falle sowohl die Einflußlinien für \mathfrak{M}_1 als auch für \mathfrak{M}_2 gezeichnet sind, so wird die Auswertung besonders einfach, wie auch aus der Abb. 117a hervorgeht. Es wird für irgendeine von oben nach unten wirkende Last P an der Stelle xunter Beachtung der Vorzeichenregel (erster Abschnitt, I, 2)

$$\mathfrak{M}_{1} = -\eta_{1} \cdot Pl; \ \mathfrak{M}_{2} = +\eta_{2} \cdot Pl.$$
(111)

Für mehrere gleich große Einzellasten wird

$$\mathfrak{M}_{1} = -Pl \sum \eta_{1}; \ \mathfrak{M}_{2} = +Pl \sum \eta_{2}.$$
(111a)

Handelt es sich um gleichmäßig verteilte Streckenlasten, so können ebenfalls die Einflußlinien vorteilhaft zur Auswertung verwendet werden. Es ergibt sich dann nach Abb. 117 b

$$\mathfrak{M}_1 = -F_1 \cdot q l^2; \ \mathfrak{M}_2 = +F_2 \cdot q l^2,$$
 (112)

wobei F_1 und F_2 die der belasteten Strecke entsprechenden Flächen der Einflußlinien für \mathfrak{M}_1 bzw. \mathfrak{M}_2 eines Trägers mit l = 1 bedeuten (siehe Zahlenbeispiel Seite 142).

Ist ferner der Stab völlig unregelmäßig belastet, so geschieht die Ermittlung der Belastungsglieder \mathfrak{M}_1 und \mathfrak{M}_2 am zweckmäßigsten in der Art, daß die gegebene Belastung durch eine Reihe von Einzellasten ersetzt wird, womit dann die Auswertung der Einflußlinien durch Summieren der einzelnen Einflüsse (

Schließlich können diese Tafeln auch zur Ermittlung der Stabbelastungsglieder Verwendung finden, wenn die äußere Belastung aus einem Biegungsmoment besteht.

Denkt man sich dieses Angriffsmoment M durch ein Kräftepaar mit dem Hebelarm a ersetzt, dann ist

$$M = P \cdot a$$
, also $P = \frac{M}{a}$. (113)

Werden für dieses Kräftepaar die \mathfrak{M} -Einflußlinien ausgewertet, so erhält man nach Abb. 118 für ein *rechtsdrehendes* Angriffsmoment (\bigcirc):

$$\mathfrak{M}_{1,2} = -M \frac{\eta_1'' - \eta_1'}{a}; \ \mathfrak{M}_{2,1} = +M \frac{\eta_2'' - \eta_2'}{a}.$$
(114)

Hingegen erhält man für ein *linksdrehendes* Angriffsmoment ((\cap) :

$$\mathfrak{M}_{1.2} = + M \, \frac{\eta_1^{\prime\prime} - \eta_1^{\prime}}{a}; \, \mathfrak{M}_{2.1} = - M \, \frac{\eta_2^{\prime\prime} - \eta_2^{\prime}}{a}. \tag{114a}$$

C. Stäbe mit ungleichen Vouten.

Hier gelten ähnliche Überlegungen wie bei der Ermittlung der Stabfestwerte a_1 , a_2 und b für solche Stäbe und es gestaltet sich damit die Berechnung wieder verhältnismäßig einfach. Zur Verwendung gelangen die allgemeinen Formeln (108), welche lauten:

$$\mathfrak{M}_{1} = -\frac{1}{l} (\mathfrak{a}_{1} \alpha_{1}^{0} - \mathfrak{b} \alpha_{2}^{0})$$

$$\mathfrak{M}_{2} = +\frac{1}{l} (\mathfrak{a}_{2} \alpha_{2}^{0} - \mathfrak{b} \alpha_{1}^{0}).$$
 (115)

Die in diesen Ausdrücken enthaltenen Werte a_1 , a_2 und b sind nach IV, 2, C dieses Abschnittes zu ermitteln, während für die Bestimmung der Auflagerdrehwinkel α_1^0

Abb. 118. Auswertung der M-Einflußlinien für äußere Momente.

4*

und α_2^0 , die von der äußeren Belastung abhängen, sinngemäß zu verfahren ist wie bei der in IV, 2, C ausführlich behandelten Ermittlung der Winkelwerte α_1 , α_2 und β . Hier sind die gesuchten EJ_c -fachen Auflagerdrehwinkel α_1^0 und α_2^0 identisch mit den entsprechenden Auflagerdrücken der $\frac{J_c}{J}$ -fach verzerrten M_0 -Fläche am freiaufliegenden Träger. Wie nun aus Abb. 119 hervorgeht, läßt sich diese verzerrte M_0 -Fläche F_0 durch die drei darunter gezeichneten M-Flächen $F^{(a)}$, $F^{(b)}$, $F^{(c)}$ in der Art ersetzen, daß

$$F_0 = F^{(a)} + F^{(b)} - F^{(c)} \tag{116}$$

wird. Dieselbe Beziehung muß auch für die Auflagerdrücke der verzerrten M_0 -Fläche gelten, so daß mit den Bezeichnungen der Abb. 119 a, b, c geschrieben werden kann:

Abb. 119c.

Abb. 119a bis c. Ersatzstäbe (a) (b) (c) zur Bestimmung der Werte α_1^0 und α_2^0 bei Stäben mit ungleichen Vouten.

 $A_1^{\ 0} = A_1^{\ 0(a)} + A_2^{\ 0(b)} - A_1^{\ 0(c)} \tag{117}$

bder auch
$$\alpha_1^0 = \alpha_1^{0(a)} + \alpha_2^{0(b)} - \alpha_1^{0(c)}$$

bzw. $\alpha_2^0 = \alpha_2^{0(a)} + \alpha_1^{0(b)} - \alpha_2^{0(c)}$. (118)

Diese Formeln entsprechen in ihrem Aufbau und auch in ihrer Bedeutung sinngemäß den Formeln (103). Die Werte $\alpha_1^{0(a)}$, $\alpha_1^{0(b)}$, $\alpha_2^{0(a)}$, $\alpha_2^{0(b)}$ und $\alpha_1^{0(c)}$, $\alpha_2^{0(c)}$ beziehen sich wieder auf die *Ersatzstäbe* (a), (b), (c), wie aus der schematischen Skizze in Abb. 120 klar hervorgeht.

Verwendet man auch hier die in den Hilfstafeln gewählten Bezeichnungen $\overline{\alpha}_1^{0(a)}$, $\overline{\alpha}_2^{0(a)}$ usw. für die auf den Stab mit der Länge l = 1 bezogenen

Auflagerdrehwinkel, so lauten die vorstehenden Formeln (118)

Für die zahlenmäßige Auswertung der Ausdrücke (118) sind nach der Art der Belastung folgende Fälle zu unterscheiden:

1. Gleichmäßige Vollbelastung. In diesem Falle sind die α⁰-Werte für die Ersatzstäbe mit geraden Vouten aus der Hilfs-

gegebener Stab

stäbe mit geraden Vouten aus der Hilfstafel 21 bzw. 21 a und für Ersatzstäbe mit parabolischen Vouten aus der Hilfstafel 22 bzw. 22 a direkt zu entnehmen (siehe Einführungsbeispiel Seite 147).

2. Einzellasten. Für diesen Fall stehen wieder Einflußlinien zur Verfügung, und zwar für Stäbe mit geraden Vouten auf der Tafel 25 und für Stäbe mit parabolischen Vouten auf der Tafel 26.

3. Streckenlasten oder beliebige Belastung. Bei gleichmäßig verteilten Streckenlasten kann die Auswertung der unter 2 erwähnten Einflußlinien in ähnlicher Weise erfolgen, wie dies an Hand der Abb. 117 b für die Ermittlung der M-Werte beschrieben worden ist. Etwaige unregelmäßige Belastungen sind durch Einzellasten zu ersetzen, so daß wieder die Einflußlinien zur Auswertung herangezogen werden können.

VI. Rahmentragwerke mit unverschieblichen Knotenpunkten.

In allen folgenden Ableitungen wird stets auf die entsprechenden Ausführungen des ersten Abschnittes Bezug genommen. Dadurch werden einerseits überflüssige Wiederholungen vermieden, anderseits ergeben sich direkte Vergleichsmöglichkeiten, die auch gewisse Unterschiede in den Einzelheiten

der Berechnungen in Erscheinung treten lassen.

1. Bedingungsgleichungen.

Für die Ableitung einer gebrauchsfertigen Mustergleichung kann naturgemäß genau derselbe Weg eingeschlagen werden wie im ersten Abschnitt für den gleichen Fall. Man betrachte also auch hier wieder einen Rahmenknotenpunkt n, in welchen vier Stäbe mit beliebig veränderlichen Trägheitsmomenten einmünden (Abb. 121). Die zugehörigen Stabfestwerte aund b der einzelnen Stäbe seien bekannt. Sie sind in dieser Skizze eingetragen, und zwar die a-Werte jeweils an den Stabenden und die b-Werte in der Stabmitte.

Zur Aufstellung der Knotengleichgewichtsbedingung, welche besagt, daß die Summe aller im Knoten n angreifenden Momente gleich Null sein muß, werden zunächst die Ausdrücke für die Stabanschlußmomente im Knoten n angeschrieben. Nach (84) wird mit der Bezeichnung in Abb. 121 und unter Beachtung, daß hier ψ für alle Stäbe Null ist:

$$M_{n,1} = a_{n,1} \varphi_n + b_{n,1} \varphi_1 + \mathfrak{M}_{n,1}$$

$$M_{n,2} = a_{n,2} \varphi_n + b_{n,2} \varphi_2 + \mathfrak{M}_{n,2}$$

$$M_{n,3} = a_{n,3} \varphi_n + b_{n,3} \varphi_3 + \mathfrak{M}_{n,3}$$

$$M_{n,4} = a_{n,4} \varphi_n + b_{n,4} \varphi_4 + \mathfrak{M}_{n,4}.$$
(119)

Entsprechend der Gl. (13) erhält man auch hier durch Summieren der Ausdrücke (119)

$$\sum_{i=1}^{i=4} M_{n,i} = 0 = \varphi_n \sum_{i=1}^{i=4} a_{n,i} + \sum_{i=1}^{i=4} b_{n,i} \varphi_i + \sum_{i=1}^{i=4} \mathfrak{M}_{n,i}.$$
(120)

In allgemeiner Schreibweise für beliebig viele in einem Knoten n zusammentreffende Stäbe und unter Annahme, daß dort außerdem Kragarmmomente M_k angreifen, lautet die Gl. (120) [vgl. Gl. (14)]:

$$\varphi_n \sum_i a_{n,i} + \sum_i b_{n,i} \varphi_i + \sum_i \mathfrak{M}_{n,i} + \sum_i M_k = 0.$$
 (121)

Durch Einführung der von früher bereits bekannten vereinfachenden Bezeichnungen ergibt sich die endgültige Form der *Knotengleichung* für Rahmentragwerke mit unverschieblichen Knotenpunkten [vgl. Gl. (15)]

$$d_n \varphi_n + \sum_i b_{n,i} \varphi_i + s_n = 0.$$
(122)

Hierin bedeuten (vgl. Gl. (16) und (17))

$$d_n = \sum_i a_{n,i}, \tag{123}$$

$$s_n = \sum_i \mathfrak{M}_{n,i} + \sum M_k \tag{124}$$

oder, wenn kein Kragarmmoment auftritt, einfach

$$s_n = \sum_i \mathfrak{M}_{n, i}. \tag{124a}$$

Das Diagonalglied d_n stellt somit die Summe der am betrachteten Knoten n liegenden a-Werte aller dort steif angeschlossenen Stäbe vor.

Abb. 122. Rahmenteil mit gelenkigem Stabanschluß. Beiwertskizze.

Das Knotenbelastungsglied s_n ist die Summe der nach V dieses Abschnittes zahlenmäßig zu ermittelnden Stabbelastungsglieder $\mathfrak{M}_{n,i}$, einschließlich der Summe der etwa vorhandenen, direkt im Knoten angreifenden Kragarmmomente.

Die Glieder $\sum b_{n,i} \varphi_i$ treten in einer Knotengleichung in solcher Zahl auf, als in dem betrachteten Knoten Stäbe steif angeschlossen sind. Sind jedoch einzelne dieser Stäbe im gegenüberliegenden Knoten φ_i fest eingespannt, so daß dort $\varphi_i = 0$ wird, so entfallen auch die diesen Stäben zugeordneten Glieder $b_{n,i} \varphi_i$.

Für gelenkige Stabanschlüsse gilt auch hier im wesentlichen dasselbe, was bereits im ersten Abschnitt, II, 3 über diesen Fall gesagt worden ist. Es sind dann für jeden Knoten, in welchem z. B. ein Stab gelenkig angeschlossen ist (Abb.122),

zwei Gleichungen aufzustellen und somit auch zwei Diagonalglieder zu bestimmen, welche mit den Bezeichnungen der Abb. 122 lauten

$$d_{n'} = a_{n',2}; \ d_n = a_{n,1} + a_{n,3} + a_{n,4}$$
 (123a)

2. Beschreibung des Rechnungsganges.

Der Arbeitsvorgang bei Aufstellung der Rahmengleichungen läßt sich in folgende Abschnitte gliedern:

1. Feststellung der Tragwerksabmessungen: Stablängen, Querschnittsgrößen, Voutenlängen usw.,

2. Ermittlung der Beiwerte a_1 , a_2 und b nach IV dieses Abschnittes,

3. Anfertigung der "Beiwertskizze",

4. Ermittlung der Diagonalglieder d_n nach (123),

5. Berechnung der "Stabbelastungsglieder" $\mathfrak M$ nach V
 dieses Abschnittes und der "Knotenbelastungsglieder" s_n n
ach (124) bzw. (124a),

6. Tabellarische Aufstellung der Gleichungen nach (122) unter Benutzung der "Beiwertskizze",

7. Auflösung des Gleichungssystems nach Muster I oder II,

8. Ermittlung der Stabendmomente nach (84) unter Zuhilfenahme der Beiwertskizze.

(Siehe auch Zahlenbeispiel Nr. 12, 13.)

3. Gleichungstabelle für ein unverschiebliches Tragwerk.

In Abb. 123 ist die Gestalt des Tragwerkes mit der zugehörigen Belastung ersichtlich, während Abb. 124 die Beiwertskizze darstellt.

Es sind hier insgesamt vier Knotendrehwinkel, nämlich φ_6 , φ_7 , φ_8 , φ_9 gemeinsam zu bestimmen, also vier Gleichungen aufzustellen. Nach Ermittlung von d_6 , d_7 ,

Abb. 124. Beiwertskizze.

 d_8 , d_9 nach (123) und s_6 , s_7 , s_8 , s_9 nach (124a) kann an Hand der Beiwertskizze die Aufstellung der Gleichungsgruppe 9 bzw. der Gleichungstabelle 9 durch wiederholte Anwendung der Mustergleichung (122) vorgenommen werden.

			Gle	ichung	stabell	e 9.	
Gleichungs	gruppe 9.		φ_6	φ_7	φ_8	<i>φ</i> 9	B
$d_6 \varphi_6 + b_6 \varphi_7$ $d_6 \varphi_6 + b_6 \varphi_7$	$+ s_6 = 0$	φ ₆	d_{6}	b ₆			8 ₆
$a_7 \varphi_7 + b_6 \varphi_6 + b$ $d_7 \varphi_7 + b_6 \varphi_6 + b$	$q \varphi_8 + s_7 = 0$	φ ₇	b_6	<i>d</i> ₇	b7		8 ₇
$\frac{d_8\varphi_3}{d_8\varphi_3} + \frac{b_7\varphi_7}{\phi_7} + \frac$	+s = 0	φ_8		b7	d_8	<i>b</i> ₈	s_8
$u_9 \varphi_9 + v_8 \varphi_8$	1 09 - 0	φ_9			b_8	d_9	89

(Siehe auch Zahlenbeispiel Nr. 12, 13, 14.)

VII. Rahmentragwerke mit verschieblichen Knotenpunkten. 1. Allgemeines.

Wie schon im ersten Abschnitt ausführlich dargelegt wurde, versteht man darunter solche Tragwerke, bei welchen nicht allein *Knoten*verdrehungen, sondern auch *Stab*verdrehungen vorkommen. Als Unbekannte der Rechnung treten in solchen Fällen die Knotendrehwinkel φ und die Stabdrehwinkel ψ bzw. die "gegenseitigen" Verschiebungen Δ oder die Knotenverschiebungen δ auf. Demgemäß sind zwei Arten von Bedingungsgleichungen zur Bestimmung dieser Unbekannten zu unterscheiden.

Knotengleichungen. In Abb. 125 ist der Knotenpunkt irgendeines verschieblichen Tragwerkes mit vier Stäben und den benachbarten Knotenpunkten 1, 2, 3, 4 herausgezeichnet. Ferner sind darin die Festwerte a_1, a_2 und b sowie c_1 und c_2 der einzelnen Stäbe in ordnungsgemäßer Bezeichnung so eingetragen, wie es für eine Beiwertskizze zweckmäßig ist. Es sei zunächst vorausgesetzt, daß alle vier im Knotenpunkt n zusammentreffenden Stäbe verdrehbar sind.

Durch Auswertung der Bedingung $\sum_{i} M_{n,i} = 0$ ergibt sich sodann unter Benutzung von (84) in derselben Weise wie früher [vgl. (27)] die allgemeine Form der Knotengleichung

$$d_{n}\varphi_{n} + \sum_{i} b_{n,i}\varphi_{i} + \sum_{i} c_{n,i}\psi_{n,i} + s_{n} = 0.$$
 (125)

Die Werte d_n und s_n sind nach (123) bzw. (124) zu ermitteln.

Die Glieder $c_{n,i} \psi_{n,i}$, wobei unter $c_{n,i}$ stets der am Knoten n gelegene c-Wert zu verstehen ist, treten nur bei Stäben in Erscheinung, die eine Verdrehung erleiden. Es ergeben sich also in einer Knotengleichung immer nur so viele ψ -Glieder, als in den betrachteten Knoten Stäbe mit Verdrehungen vorhanden sind.

Verschiebungsgleichungen. Wie im ersten Abschnitt, so können auch hier für die verschiedenen Tragwerkstypen gebrauchsfertige Mustergleichungen aufgestellt werden. Das soll in den folgenden Kapiteln gezeigt werden.

2. Der beliebig belastete Stockwerksrahmen mit lotrechten, geschoßweise gleich langen Ständern.

a) Bedingungsgleichungen.

Knotengleichungen. Zieht man in Betracht, daß für die hier behandelten Tragwerksformen in einer Knotengleichung höchstens zwei ψ -Glieder auftreten

können, und zwar für die oberhalb und unterhalb in den betrachteten Knoten einmündenden Stiele, so kann in Gl. (125) an Stelle von

$$\sum_{i} c_{n,i} \psi_{n,i} = c_{n,\mu} \psi_{\mu} + c_{n,\mu+1} \psi_{\mu+1}$$
(126)

gesetzt werden. Hierin bedeuten ψ_{μ} bzw. $\psi_{\mu+1}$ die Stabdrehwinkel in den unterhalb

bzw. oberhalb des Knotens *n* liegenden Stockwerken und $c_{n,\mu}$ bzw. $c_{n,\mu+1}$ die am Knoten *n* gelegenen *c*-Werte der Stiele im Stockwerk μ bzw. $\mu + 1$ (Abb. 126). Damit lautet die *Knotengleichung* (125) [vgl. (30)] ausführlicher:

$$d_n \varphi_n + \sum_i b_{n,i} \varphi_i + c_{n,\mu} \psi_{\mu} + c_{n,\mu+1} \psi_{\mu+1} + s_n = 0.$$
 (127)

Die zahlenmäßige Anwendung dieser Gleichung sei an folgendem Beispiel für einen Knoten gezeigt. In Abb. 127 ist die Beiwertskizze für einen Tragwerksteil dargestellt. Darin sind nur die Beiwerte enthalten, die für die Aufstellung dieser einen Gleichung benötigt werden. Es sind dies die am Knoten (5) gelegenen a-Werte, sowie die zugehörigen Klammerwerte c und schließlich die in der Stabmitte eingetragenen b-Werte für jene Stäbe, die am Knoten (5) zusammentreffen. Dabei ist zu beachten, daß nach (86) die c-Werte immer einfach als Summe der entsprechenden Werte a und b des betrachteten Stabes erhalten werden. Das Diagonalglied für den Knoten (5) ergibt sich nach (123) mit

$$d_5 = \sum_i a_{5,i} = 8,2 + 2,2 + 5,0 + 1,8 = 17,2.$$

Damit lautet die Gleichung für den Knoten (5) nach (127):

$$17,2 \varphi_5 + 0,9 \varphi_4 + 1,1 \varphi_6 + 3,3 \varphi_8 + 12,2 \psi_1 + 8,3 \psi_2 + s_5 = 0.$$

Verschiebungsgleichungen. Für die Aufstellung und weitere Auswertung der statischen Gleichgewichtsgleichung $\Sigma H = 0$ für irgendein Stockwerk kann auch hier von der allgemeinen Gl. (34) ausgegangen werden, da dort dieselben Voraussetzungen vorliegen wie hier. Diese Gleichung lautet:

$$\left(\sum P + \sum q + \sum \mathfrak{A}\right) l + \sum (M_o + M_u) = 0.$$
(128)

Drückt man den Summenausdruck $(M_o + M_u)$ nach (87) als Funktion der Formänderungsgrößen und der Stabbelastung aus, so erhält man die Verschiebungsgleichung für ein Stockwerk μ mit der hier gewählten Bezeichnung:

$$\sum_{\mu} c_{u} \varphi_{u} + \sum_{\mu} c_{o} \varphi_{o} + D_{\mu} \psi_{\mu} + S_{\mu} = 0, \qquad (129)$$

wobei

$$D_{\mu} = \sum_{\mu} (c_o + c_u)$$
 (130)

$$S_{\mu} = \left(\sum P + \sum q + \sum_{\mu} \mathfrak{A}\right) \cdot l_{\mu} + \sum_{\mu} (\mathfrak{M}_{o} + \mathfrak{M}_{u}).$$
(131)

Vorzeichen: _ → +

Die Verschiebungsgleichung enthält somit:

1. Die Glieder $\sum_{\mu} c_u \varphi_u$, d. h. die Summe der Produkte aus den unteren Drehwinkeln und den unteren *c*-Werten aller Stäbe des Stockwerkes μ .

2. Die Glieder $\sum_{\mu} c_o \varphi_o$, d. h. die Summe der Produkte aus den oberen Drehwinkeln und den oberen *c*-Werten aller Stäbe des Stockwerkes μ .

3. Das Diagonalglied $D_{\mu} \psi_{\mu}$, wobei nach (130) D_{μ} die Summe der oberen und unteren *c*-Werte sämtlicher Stäbe des Stockwerkes bedeutet.

4. Das Belastungsglied S_{μ} , das nach (131) aus der äußeren Belastung zu ermitteln ist. (Genauere Angaben siehe im ersten Abschnitt, III, 3.)

Die praktische Anwendung der Verschiebungsgleichung (129) wird anschließend an einem Beispiel gezeigt. In Abb. 128 sind nur die erforderlichen Beiwerte c der Säulen eingetragen. Nach (130) werden die Diagonalglieder

$$\begin{split} D_1 = &\sum_{(1)} (c_o + c_u) = 15,0 + 12,5 + 26,4 + 20,0 + 13,0 + 10,2 = 97,1 \\ D_2 = &\sum_{(2)} (c_o + c_u) = 12,5 + 10,0 + 20,5 + 15,5 + 11,3 + 8,4 = 78,2 \end{split}$$

und nach (131) die Belastungsglieder

Abb. 128. Beiwertskizze.

$$S_1 = (4,0 + 2,0) \cdot 3,0 = 18,0 \text{ tm}$$

 $S_2 = 2,0 \cdot 3,5 = 7,0 \text{ tm}.$

Somit lauten die Verschiebungsgleichungen nach (129) für das erste Stockwerk:

$$15,0 \, \varphi_4 + 26,4 \, \varphi_5 + 13,0 \, \varphi_6 + 97,1 \, \psi_1 + 18,0 = 0$$

und für das zweite Stockwerk:

$$\begin{array}{l} 10,0\,\varphi_{4}\,+\,15,5\,\varphi_{5}\,+\,8,4\,\varphi_{6}\,+\,12,5\,\varphi_{7}\,+\,20,5\,\varphi_{8}\,+\\ \,\,+\,11,3\,\varphi_{9}\,+\,78,2\,\psi_{2}\,+\,7,0\,=\,0. \end{array}$$

b) Gleichungstabelle für ein dreistöckiges, unsymmetrisches Rahmentragwerk.

Die Gestalt des Tragwerkes ist aus Abb. 129 ersichtlich, die zugleich als Beiwertskizze dargestellt ist. Es seien beliebige Belastung und verschiedene Feldweiten und Geschoßhöhen vorausgesetzt.

	$arphi_{5}$	φ_6	φ_7	φ_8	φ_9	φ_{10}	φ_{11}	φ_{12}	φ_{13}	φ_{14}	ψ_1	ψ_2	ψ_3	B
φ_5	d_5	b_5			b_8						c _{5,1}	c _{5,9}		s_5
φ_6	b_5	d_6	b_6			b_9					C 6, 2	C _{6,10}		<i>s</i> ₆
φ7		b_6	<i>d</i> ₇	b7			<i>b</i> ₁₀				C _{7,3}	c _{7, 11}		87
φ_8			b7	d_8				<i>b</i> ₁₁			C _{8,4}	c _{8,12}		88
φ_9	b_8				d_9	<i>b</i> ₁₂			<i>b</i> ₁₅			C _{9,5}	C _{9,13}	89
φ_{10}		b_9			<i>b</i> ₁₂	<i>d</i> ₁₀	<i>b</i> ₁₃					<i>c</i> _{10,6}		<i>s</i> ₁₀
φ_{11}			<i>b</i> ₁₀			<i>b</i> ₁₃	<i>d</i> ₁₁	<i>b</i> ₁₄		<i>b</i> ₁₆		c _{11,7}	c _{11, 14}	<i>s</i> ₁₁
φ_{12}				<i>b</i> ₁₁			<i>b</i> ₁₄	d_{12}				c _{12,8}		s_{12}
φ_{13}					b_{15}				d_{13}	b ₁₇			c _{13,9}	<i>s</i> ₁₃
φ_{14}							<i>b</i> ₁₆		b ₁₇	<i>d</i> ₁₄			c _{14, 11}	<i>s</i> ₁₄
ψ_1	c _{5,1}	c 6, 2	c7,3	c _{8,4}							D_1			S_1
ψ_2	c _{5,9}	C 6, 10	c7, 11	$c_{8,12}$	C 9, 5	c _{10,6}	c _{11,7}	c _{12,8}		- Michael Market		D_2		S_2
ψ_3					$c_{9,13}$		$c_{11, 14}$		$c_{13,9}$	$c_{14, 11}$			D_3	S_3

Gleichungstabelle 10.

Insgesamt sind 13 Unbekannte zu bestimmen, und zwar: die Knotendrehwinkel φ_5 bis φ_{14} und die Stabdrehwinkel ψ_1 , ψ_2 , ψ_3 . Mit Hilfe der Beiwertskizze sind nach (123) die Diagonalglieder d_5 bis d_{14} der Knotengleichungen und nach (130) die Diagonalglieder D_1 , D_2 , D_3 der Verschiebungsgleichungen zu bestimmen. Weiter sind noch die Belastungsglieder s_5 bis s_{14} nach (124a) sowie S_1 , S_2 , S_3 nach (131) zu ermitteln. Damit kann die tabellarische ¹⁴ Aufstellung der Knotengleichungen nach (127) und der Verschiebungsgleichungen nach (129) vorgenommen werden.

3. Der beliebig belastete Stockwerksrahmen mit lotrechten, ungleich langen Ständern.

Es ist hier zweckmäßig, als Unbekannte an Stelle der ψ -Werte die Verschiebungsgrößen Δ einzuführen (vgl. auch die im ersten Abschnitt, III, 4 an Hand der Abb. 65 gegebenen näheren Erklärungen).

a) Bedingungsgleichungen.

Knotengleichungen. Führt man für die in Gl. (127) enthaltenen ψ -Werte, die nach den Stockwerken benannt sind, nach (2) die entsprechenden Δ -Werte ein, so ergibt sich die *Knotengleichung* in übersichtlicher Form:

$$d_n \varphi_n + \sum_i b_{n,i} \varphi_i + \bar{c}_{n,\mu} \Delta_{\mu} + \bar{c}_{n,\mu+1} \Delta_{\mu+1} + s_n = 0.$$
 (132)

Hierin bedeuten:

$$\bar{c}_{n,\mu} = \frac{c_{n,\mu}}{l_{\mu}}; \ \bar{c}_{n,\mu+1} = \frac{c_{n,\mu+1}}{l_{\mu+1}}.$$
 (133)

Bei der Ermittlung der Stabendmomente aus den Formänderungsgrößen empfichlt es sich, die bereits in der Stabfestwerttabelle nach (133) enthaltenen \bar{c} -Werte zu verwenden. Die entsprechenden Formeln lauten dann für eine Säule m-n des

Stockwerkes μ unter Beachtung, daß $\psi_{\mu} = \frac{\Delta_{\mu}}{l_{\mu}}$ ist:

$$M_{m,n} = a_{m,n} \varphi_m + b \varphi_n + \bar{c}_{m,n} \Delta_\mu + \mathfrak{M}_{m,n}$$

$$M_{n,m} = a_{n,m} \varphi_n + b \varphi_m + \bar{c}_{n,m} \Delta_\mu + \mathfrak{M}_{n,m}.$$
(134)

Verschiebungsgleichungen. Die allgemeine Form der Verschiebungsgleichung für das Stockwerk μ ergibt sich wieder durch Auswertung der Bedingung $\Sigma H = 0$ und lautet in übersichtlicher Schreibweise (vgl. 44):

$$\sum_{\mu} \bar{c}_{u} \varphi_{u} + \sum_{\mu} \bar{c}_{o} \varphi_{o} + D_{\mu} \varDelta_{\mu} + S_{\mu} = 0.$$
(135)

Hierin bedeuten:

$$D_{\mu} = \sum_{\mu} \frac{1}{l} (\bar{c}_o + \bar{c}_u), \tag{136}$$

$$S_{\mu} = \sum P + \sum q + \sum_{\mu} \mathfrak{A} + \sum_{\mu} \frac{1}{l} (\mathfrak{M}_{o} + \mathfrak{M}_{u}).$$
(137)
Vorzeichen: $= \mathbf{Z}^{+}$

Es folgt ein Zahlenbeispiel, in welchem die Anwendung der Gl. (135) gezeigt wird. In Abb. 130 sind nur die zur Aufstellung der Verschiebungsgleichung er-

Abb. 130. Belastungs- und Beiwertskizze.

(Siehe auch die Zahlenbeispiele Nr. 15, 17.)

4. Rahmentragwerke mit nur lotrecht verschieblichen Knotenpunkten.

A. Symmetrisch ausgebildete und symmetrisch belastete Vierendeel-Rahmentragwerke.

a) Bedingungsgleichungen.

Es kann hier die für Stockwerksrahmen aufgestellte Knotengleichungen. Gl. (127) übernommen werden, wenn die Stockwerksbezeichnung μ durch die Felderbezeichnung ν ersetzt wird (Abb. 131). Sie lautet dann:

$$d_n \varphi_n + \sum_i b_{n,i} \varphi_i + c_{n,\nu} \psi_{\nu} + c_{n,\nu+1} \psi_{\nu+1} + s_n = 0.$$
(138)

Wie aus Abb. 132 hervorgeht, bedeuten also:

 ψ_{ν} bzw. $\psi_{\nu+1}$ die Stabdrehwinkel im Feld ν bzw. (ν + 1), also in den Feldern links bzw. rechts von dem betrachteten Knoten. $c_{n v}$ bzw. $c_{n,v+1}$

 $\sum V = 0$ erhält man die Verschiebungsgleichung in über-

sichtlicher Darstellung für ein Feld (ν) wie folgt:

die am betrachteten Knoten n gelegenen c-Werte der links bzw. rechts einmündenden Riegel.

Verschiebungsgleichungen. Da die allgemeinen Ausführungen im ersten Abschnitt, III, 6, A auch hier volle Gültigkeit haben, so sind weitere Erläuterungen an dieser Stelle entbehrlich. Durch Auswertung der statischen Gleichgewichtsgleichung

Abb. 132. Teil eines nur lotrecht verschieblichen Tragwerkes.

$$\sum_{\boldsymbol{\nu}} c_l \varphi_l + \sum_{\boldsymbol{\nu}} c_r \varphi_r + D_{\boldsymbol{\nu}} \psi_{\boldsymbol{\nu}} + S_{\boldsymbol{\nu}} = 0, \qquad (139)$$

wobei

$$+ c_{n,\nu} \psi_{\nu} + c_{n,\nu+1} \psi$$

Rahmentragwerke mit nur lotrecht verschieblichen Knotenpunkten.

$$D_{\mathbf{v}} = \sum_{\mathbf{v}} (c_l + c_r), \tag{140}$$

$$S_{\mathbf{r}} = \left[\frac{1}{2}\left(\sum P + \sum q\right) - \sum P' - \sum q' - \sum_{\mathbf{r}} \mathfrak{A}\right] l_{\mathbf{r}} + \sum_{\mathbf{r}} (\mathfrak{M}_{l} + \mathfrak{M}_{r}). \quad (141)$$

Die in diesem Ausdruck vorhandenen Vorzeichen von P, q, P', q', \mathfrak{A} gelten unter der Voraussetzung, daß diese Kräfte von oben nach unten wirken.

Nähere Erläuterungen über die Bedeutung der einzelnen Werte von (141) sind bei (49) gegeben.

Die Gl. (139) enthält somit vier Arten von Gliedern:

 $\sum_{\nu} c_l \varphi_l \dots$ die Produkte aus den linken *c*-Werten und den linken Knotendrehwinkeln des betrachteten Feldes ν .

 $\sum_{\nu} c_r \varphi_r \dots$ die Produkte aus den rechten *c*-Werten und den rechten Knotendrehwinkeln des betrachteten Feldes ν .

 $D_{\nu}\psi_{\nu}$ wobei das Diagonalglied D_{ν} nach (140) die Summe der linken und rechten c-Werte sämtlicher Stäbe des Feldes ν bedeutet.

 S_{ν} das Belastungsglied, das nach (141) zu bestimmen ist.

b) Gleichungstabelle für ein symmetrisches dreigurtiges Vierendeel-Rahmentragwerk.

Die Gestalt des Tragwerkes ist aus Abb. 133 ersichtlich, worin auch die wichtigsten Beiwerte eingetragen sind, nämlich die *a*- und *b*-Werte für sämtliche Stäbe und außerdem für die waagrechten Riegel auch die *c*-Werte. Als Unbekannte sind sechs Knotendrehwinkel zu ermitteln, und zwar $\varphi_2, \varphi_3, \varphi_5, \varphi_6, \varphi_8, \varphi_9$ und die Stabdrehwinkel ψ_1 und ψ_2 . Wegen der Symmetrie wird $\varphi_4 = \varphi_7 = \varphi_{10} = 0$ und wegen fester Einspannung der Säulenfüße auch $\varphi_1 = \varphi_1' = 0$.

Nach Ermittlung der Diagonalglieder dund D, sowie der Belastungsglieder s und

Abb. 133. Beiwertskizze.

	φ_2	φ_3	$arphi_{5}$	φ ₆	φ_8	φ_9	ψ_1	ψ_2	B
φ_2	d_2	b_2	b_4				C _{2,3}		<i>s</i> ₂
φ_{3}	<i>b</i> ₂	d_3		b_5			C _{3, 2}	C _{3,4}	<i>s</i> ₃
φ_5	<i>b</i> 4		d_5	b_6	<i>b</i> ₈		C _{5,6}		85
φ ₆		b_5	<i>b</i> ₆	d_6		<i>b</i> ₉	C _{6,5}	C _{6,7}	<i>8</i> 6
φ_8			b_8		d_8	b ₁₀	c _{8,9}		88
<i>\$</i> 9				<i>b</i> 9	b10	d_{9}	$c_{9,8}$	c _{9,10}	89
ψ_1	C _{2,3}	c _{3, 2}	C _{5,6}	c _{6,5}	C _{8,9}	C _{9,8}	D_1		S_1
ψ_2		c _{3,4}		C 6,7		$c_{9,10}$		D_2	S_2

Gleichungstabelle 11.
S nach den entsprechenden Formeln, kann die Aufstellung der Gleichungstabelle 11 an Hand der Beiwertskizze durch wiederholte Anwendung der *Knotengleichung* (138) bzw. der *Verschiebungsgleichung* (139) erfolgen.

B. Unsymmetrisch ausgebildete, seitlich festgehaltene Vierendeel-Rahmentragwerke.

a) Bedingungsgleichungen.

Knotengleichungen. Bei solchen Tragwerken erscheint es vorteilhafter, an Stelle der Stabdrehwinkel ψ die Knotenverschiebungen δ in Rechnung zu stellen (Abb. 134).

Abb. 134 und 135. Allgemeine Bezeichnungsweise bei lotrecht verschieblichen Tragwerken. Tragwerksteil.

Ersetzt man also in Gl. 138, die auch hier Gültigkeit haben muß, nach (3) ψ durch δ , so erhält man nach entsprechender Umformung die Knotengleichung wieder in zweckmäßiger Schreibart, und zwar

$$d_n\varphi_n + \sum_i b_{n,i}\varphi_i + \bar{c}_{n,\nu}\,\delta_{m-1} + \varkappa_n\,\delta_m - \bar{c}_{n,\nu+1}\,\delta_{m+1} + s_n = 0.$$
(142)

Hierin bedeuten sinngemäß wie früher:

$$\bar{c}_{n,\nu} = \frac{c_{n,\nu}}{l_{\nu}}; \ \bar{c}_{n,\nu+1} = \frac{c_{n,\nu+1}}{l_{\nu+1}}$$
(143)

$$\varkappa_n = \bar{c}_{n,\nu+1} - \bar{c}_{n,\nu}. \tag{144}$$

Ein Vergleich mit der Knotengleichung (138) ergibt, daß an Stelle der dort enthaltenen zwei ψ -Glieder hier drei δ -Glieder auftreten, deren Bedeutung aus Abb. 135 eindeutig hervorgeht. Es bezieht sich also δ_m immer auf die Knotenreihe, in welcher der betrachtete Knoten (n) liegt, während δ_{m-1} und δ_{m+1} die Verschiebungen der links bzw. rechts von (n) befindlichen Knotenreihen bedeuten. Ist einer von den drei δ -Werten Null, so verschwindet das entsprechende δ -Glied der Gleichung.

Das Glied $\varkappa_n \delta_m$ entfällt aber auch, wenn $\bar{c}_{n,\nu} = \bar{c}_{n,\nu+1}$ wird, denn dann ist nach (144) der Beiwert $\varkappa_n = 0$.

Die in der Knotengleichung auftretenden Beiwerte $\bar{c}_{n,\nu}$ und $\bar{c}_{n,\nu+1}$ sind stets die am betrachteten Knoten n gelegenen \bar{c} -Werte der links bzw. rechts einmündenden Stäbe.

Anschließend soll nun sofort die zahlenmäßige Anwendung der zuletzt gewonnenen Knotengleichung für den Knoten (10) des in Abb. 134 dargestellten Rahmens als Beispiel gezeigt werden. In Abb. 136 sind die erforderlichen Beiwerte a, b, \bar{c} , die zur Aufstellung dieser Gleichung benötigt werden, eingetragen, wobei die \bar{c} -Werte zur besseren Unterscheidung von den a-Werten in eine Klammer gesetzt sind. Es ist also z. B. nach (143)

$$\bar{c}_{10,9} = \frac{16,8}{3,0} = 5,6; \ \bar{c}_{10,11} = \frac{13,6}{4,0} = 3,4$$

und nach (144)

$$\kappa_{10} = \bar{c}_{10, 11} - \bar{c}_{10, 9} = 3,4 - 5,6 = -2,2$$

Weiter wird das Diagonalglied

$$d_{10} = \sum a_{10} = 8,5 + 10,0 + 7,4 + 8,2 = 34,1.$$

Damit kann bereits nach (142) die Knotengleichung für den Knoten (10) aufgestellt werden. Sie lautet:

$$34,1 \varphi_{10} + 6,4 \varphi_5 + 6,8 \varphi_9 + 5,4 \varphi_{11} + 5,2 \varphi_{15} + 5,6 \delta_1 - 2,2 \delta_2 - 3,4 \delta_3 + s_{10} = 0.$$

Verschiebungsgleichungen. Für eine aus dem Tragwerk herausgeschnittene Reihe übereinanderliegender Knotenpunkte (Abb. 93 und 94) kann nach (63) die statische Gleichgewichtsgleichung $\sum V = 0$ in folgender Form geschrieben werden $(\stackrel{+}{\uparrow}\stackrel{-}{\downarrow})$:

$$-\sum_{\nu} P - \sum_{\nu} \mathfrak{A}_{\nu}^{r} - \sum_{\nu+1} \mathfrak{A}_{\nu+1}^{l} - \sum_{\nu} \frac{1}{l_{\nu}} \left(M_{\nu}^{l} + M_{\nu}^{r} \right) + \sum_{\nu+1} \frac{1}{l_{\nu+1}} \left(M_{\nu+1}^{l} + M_{\nu+1}^{r} \right) = 0.$$
(145)

Drückt man nach (87) die Summen der Stabendmomente wieder als Funktion der Formänderungsgrößen und Stabbelastungsglieder aus und berücksichtigt man außerdem unter Bezugnahme auf Abb. 93, daß

$$\psi_{\nu} = \frac{\delta_{m-1} - \delta_m}{l_{\nu}}; \quad \psi_{\nu+1} = \frac{\delta_m - \delta_{m+1}}{l_{\nu+1}},$$
(146)

so ergibt sich nach entsprechender Umformung die Verschiebungsgleichung für irgendeine Knotenreihe mit der hier gewählten Bezeichnungsweise in folgender Form:

$$-\sum_{\nu} \bar{c}_{m-1,m} \varphi_{m-1} + \sum_{\nu} \varkappa_{m} \varphi_{m} + \sum_{\nu+1} \bar{c}_{m+1,m} \varphi_{m+1} - \sum_{\nu} C_{\nu} \delta_{m-1} + D_{m} \delta_{m} - C_{\nu+1} \delta_{m+1} + S_{m} = 0,$$
(147)

wobei

$$C_{\nu} = \sum_{\nu} \frac{\bar{c}_{m-1, m} + \bar{c}_{m, m-1}}{l_{\nu}}, \qquad (148)$$

d. i. der Beiwert von δ_{m-1} und bedeutet die Summe aller \bar{c} -Werte im Felde (ν) (also im Felde *links* der betrachteten Knotenpunktreihe), geteilt durch l_{ν} ;

$$C_{\nu+1} = \sum_{\nu+1} \frac{\bar{c}_{m+1,m} + \bar{c}_{m,m+1}}{l_{\nu+1}},$$
 (148a)

d. i. der Beiwert von δ_{m+1} und bedeutet die Summe aller \bar{c} -Werte im Felde $(\nu + 1)$ (also im Felde *rechts* der betrachteten Knotenpunktreihe), geteilt durch $l_{\nu+1}$;

$$D_m = C_r + C_{r+1}, \tag{149}$$

d. i. das Diagonalglied (Beiwert von δ_m) und bedeutet die Summe der *C*-Werte der *links* und *rechts* von der betrachteten Knotenpunktreihe (*m*) gelegenen Felder (ν) und ($\nu + 1$);

$$\varkappa_m = (\bar{c}_{m,\,m+1} - \bar{c}_{m,\,m-1}),\tag{150}$$

d. s. die Beiwerte von φ_m und bedeuten jeweils die Differenz der *rechts* und *links* der betrachteten Knotenpunktreihe (m) gelegenen \bar{c} -Werte;

$$S_{m} = -\sum_{\nu} P - \sum_{\nu} \mathfrak{A}_{\nu}^{r} - \sum_{\nu+1} \mathfrak{A}_{\nu+1}^{l} - \frac{1}{l_{\nu}} \sum_{\nu} (\mathfrak{M}_{\nu}^{l} + \mathfrak{M}_{\nu}^{r}) + \frac{1}{l_{\nu+1}} \sum_{\nu+1} (\mathfrak{M}_{\nu+1}^{l} + \mathfrak{M}_{\nu+1}^{r}),$$
(151)

d. i. das Belastungsglied für die Knotenpunktreihe (m). Die Bedeutung der einzelnen Glieder wurde bereits bei (61) und (62) erläutert.

Die in obigem Ausdruck vorhandenen Vorzeichen von P und \mathfrak{A} gelten unter der Voraussetzung, daß diese Kräfte von oben nach unten wirken.

Zur Beschreibung der Gl. (147) sei noch folgendes bemerkt:

Die Zahl der φ_{m-1} -Glieder ist gleich der Anzahl der auf der *linken* Seite der betrachteten Knotenreihe (m) einmündenden Stäbe.

Ebenso ist die Anzahl der φ_{m+1} -Glieder gleich der Anzahl der *rechts* in die betrachtete Knotenreihe (m) einmündenden Stäbe.

Die Anzahl der φ_m -Glieder ist allgemein gleich der Anzahl der Knotenpunkte in der betrachteten Knotenreihe (m). Wenn jedoch für einen Knoten $\varkappa = 0$ ist, was dann zutrifft, wenn $\bar{c_{m,m+1}} - \bar{c_{m,m-1}} = 0$ wird, so entfällt das zugehörige φ_m -Glied. Die δ -Glieder treten in jeder Gleichung nur je einmal auf.

 $\begin{array}{c} (2a_{2\delta} & b_{11} & a_{47} & 3a_{4\delta} & b_{11} & a_{4\delta} & 3a_{4\delta} & b_{12} & a_{11} & 3a_{10} \\ (C_{2\delta}) & (C_{45}) & (C_{45}$

Abb. 137. Beiwertskizze.

b) Gleichungstabelle für ein unsymmetrisches Vierendeel-Rahmentragwerk mit nur lotrecht verschieblichen Knotenpunkten.

In Abb. 137 ist die Beiwertskizze eines derartigen Tragwerkes ersichtlich. Es ist in den Knotenpunkten 6 und 10 in waagrechter Richtung unverschieblich festgehalten und bei 1 und 2 fest eingespannt, so daß als Unbekannte insgesamt die acht Knotendrehwinkel φ_3 bis φ_{10} und die Verschiebungs-

	φ_3	φ_4	φ_5	φ_6	φ_7	φ_8	<i>\$</i> 9	φ_{10}	δ_1	δ_2	B
φ_3	d_3	b_3			b_6				$-\bar{c}_{3,4}$		83
φ_4	b_3	d_4	b_4			b ₇			\varkappa_4	$-\bar{c}_{4,5}$	<i>s</i> ₄
φ_5		b 4	d_5	b_5			b ₈		$\bar{c}_{5,4}$	\varkappa_5	s_5
φ_6			b_5	d_6				<i>b</i> ₉		Ē _{6,5}	86
φ7	<i>b</i> ₆			-	<i>d</i> ₇	b10			$-\bar{c}_{7,8}$		87
φ_8		b7			<i>b</i> ₁₀	d_8	<i>b</i> ₁₁		×8	-Ē8,9	88
φ_9			b_8			<i>b</i> ₁₁	d_{9}	<i>b</i> ₁₂	$\bar{c}_{9,8}$	×9	89
φ_{10}				<i>b</i> 9			b_{12}	<i>d</i> ₁₀		Ē10, 9	<i>s</i> ₁₀
δ_1	$-\bar{c}_{3,4}$	\varkappa_4	$\bar{c}_{5,4}$		$-\bar{c}_{7,8}$	×8	$\overline{c}_{9,8}$		D_1	$-C_{\mathrm{II}}$	S_1
δ_2		$-\bar{c}_{4,5}$	\varkappa_5	$\bar{c}_{6.5}$		$-\bar{c}_{8,9}$	\varkappa_9	$\bar{c}_{10,9}$	$-C_{\mathrm{II}}$	D_2	S_2

Gleichungstabelle 12.

(Siehe Zahlenbeispiel Nr. 16.)

größen in lotrechter Richtung δ_1 und δ_2 gemeinsam zu bestimmen sind. Mit Hilfe der Beiwertskizze Abb. 137 sind zunächst noch weitere Rechnungsgrößen zu ermitteln, und zwar:

 d_3 bis d_{10} in der bekannten Art, \varkappa_4 , \varkappa_5 , \varkappa_8 , \varkappa_9 nach (144) bzw. (150), sodann C_{I} , C_{II} , C_{III} nach (148) und D_1 , D_2 nach (149), wobei $D_1 = C_{\text{I}} + C_{\text{II}}$ und $D_2 = C_{\text{II}} + C_{\text{III}}$.

Schließlich sind noch die Belastungsglieder s_3 bis s_{10} und nach (151) S_1 und S_2 zu bestimmen, worauf die Aufstellung der Gleichungstabelle 12 unter Benutzung der *Knotengleichung* (142) und der *Verschiebungsgleichung* (147) an Hand der Beiwertskizze unmittelbar erfolgen kann.

5. Rahmentragwerke mit lotrecht und waagrecht verschieblichen Knotenpunkten.

Allgemeine Betrachtungen über die Eigenart dieser Tragwerksgattung finden sich im ersten Abschnitt, III, 7. Es ist darnach lediglich bei den Knotengleichungen eine kleine Erweiterung der bereits bekannten Ansätze für nur lotrecht verschiebliche Systeme vorzunehmen, während für die Verschiebungsgleichungen die früher aufgestellten Gleichungsformen unverändert übernommen werden können.

a) Bedingungsgleichungen.

Knotengleichungen. Der bei Rahmentragwerken mit nur lotrecht verschieblichen Knotenpunkten aufgestellten Knotengleichung liegt die Voraussetzung zugrunde, daß höchstens zwei Stäbe, und zwar die waagrecht in den betrachteten Knotenpunkt (n) einmündenden Riegel, eine Stabverdrehung erleiden. Es kommen daher in dieser Gleichung auch nur zwei ψ -Glieder vor. Zieht man nun in Betracht, daß in dem vorliegenden Fall, wo die Knotenpunkte in lotrechter und waagrechter Richtung verschieblich sind, auch die lotrechten Stäbe Verdrehungen mitmachen, so müssen in der Knotengleichung noch zwei weitere ψ -Glieder oder Δ -Glieder von derselben Bauart hinzutreten, wie sie von den Stockwerksrahmen her bereits bekannt sind. Diese Glieder haben die bekannte Form [vgl. (126)]

$$c_{n,\mu}\psi_{\mu} + c_{n,\mu+1}\psi_{\mu+1}, \qquad (152)$$

wenn als Unbekannte die Stabdrehwinkel der lotrechten Stäbe gewählt werden, oder [vgl. (132)] $\bar{c}_n \, \mu \, A_{\mu} + \bar{c}_n \, \mu + 1 \, A_{\mu+1}$ (152a)

$$\mathcal{O}_{n,\mu} \Delta \mu + \mathcal{O}_{n,\mu+1} \Delta \mu + 1$$
, (192a)

wenn die gegenseitigen Stabendverschiebungen der lotrechten Stäbe als Unbekannte Verwendung finden. Fügt man also den Ausdruck (152) bzw. (152a) zur Gl. (142) hinzu, so erhält man die *Knotengleichung* für beliebig verschiebliche Tragwerke:

$$\frac{d_{n}\varphi_{n} + \sum_{i} b_{n,i}\varphi_{i} + \bar{c}_{n,\nu} \,\delta_{m-1} + \varkappa_{n} \,\delta_{m} - \bar{c}_{n,\nu+1} \,\delta_{m+1} + c_{n,\mu} \,\psi_{\mu} + }{+ c_{n,\mu+1} \,\psi_{\nu+1} + s_{n} = 0,}$$
(153)

bzw.

$$\frac{d_{n}\varphi_{n} + \sum_{i} b_{n,i}\varphi_{i} + \bar{c}_{n,\nu} \,\delta_{m-1} + \varkappa_{n} \,\delta_{m} - \bar{c}_{n,\nu+1} \,\delta_{m+1} + \bar{c}_{n,\mu} \,\Delta_{\mu} + }{+ \bar{c}_{n,\mu+1} \,\Delta_{\mu+1} + s_{n} = 0.}$$
 (153 a)

Die Zeiger ν beziehen sich auf die Felder, die Zeiger μ auf die Stockwerke des Tragwerkes.

Verschiebungsgleichungen. Hier kommen beide Arten der bekannten statischen Gleichgewichtsbedingungen $\sum V = 0$ und $\sum H = 0$ zur Anwendung. Es sind Guldan, Rahmentragwerke. 5

aber dafür keine neuen Ableitungen erforderlich, da die gebrauchsfertigen Gleichungen von früher unmittelbar benutzt werden können. So hat z. B. die aus der Bedingung $\sum V = 0$ für Tragwerke mit nur lotrecht verschieblichen Knotenpunkten aufgestellte Gl. (147) auch hier volle Gültigkeit.

Ebenso kann die für Stockwerksrahmen mit waagrecht verschieblichen Knotenpunkten aus der Bedingung $\Sigma H = 0$ abgeleitete Verschiebungsgleichung (129) bzw. (135) in unveränderter Form übernommen werden.

b) Gleichungstabelle für ein unsymmetrisches, lotrecht und waagrecht verschiebliches Rahmentragwerk.

Ein solches Tragwerk zeigt Abb. 138. Es treten hier folgende Unbekannte auf: die sechs Knotendrehwinkel φ_3 bis φ_8 , die Verschiebung δ_1 der Knotenreihe 4-7 in lotrechter Richtung sowie die den zwei Stockwerken entsprechenden Ver-

schiebungsgrößen Δ_1 und Δ_2 . Zur Aufstellung der Knotengleichungen nach (153a) sind vorher die Diagonalglieder d_3 bis d_8 und die Belastungsglieder s_3 bis s_8 sowie die Werte \varkappa_4 und \varkappa_7 nach (144) zu ermitteln. Für die Verschiebungsgleichung (147), welche die Bedingung $\sum V = 0$ zum Ausdruck bringt, sind das Diagonalglied D_1 und das Belastungsglied S_1 , und schließlich für die Verschiebungsgleichung (135), welche aus der Bedingung $\sum H = 0$ abgeleitet worden ist, die Diagonalglieder D_1 und D_{II} und die Belastungsglieder S_1 und S_{II} zahlenmäßig festzulegen.

An Hand der Beiwertskizze Abb. 139 kann dann die Gleichungstabelle 13 unter Benutzung der Mustergleichungen unmittelbar angeschrieben werden.

	φ_{3}	φ_4	φ_5	φ_6	φ7	φ_8	δ_1	$ \Delta_{I}$	Δ_{II}	B
φ_3	d_3	b_3		b_5			$-\bar{c}_{3,4}$	$\bar{c}_{3,1}$	$\bar{c}_{3,6}$	s_3
φ_4	b_3	d_4	<i>b</i> 4		b_6		×4		Č4,7	8 ₄
φ_5		b_4	d_5			b 7	$\bar{c}_{5,4}$	Ē _{5,2}	$\bar{c}_{5,8}$	s_5
φ_6	b_5			d_{6}	b_8		$-\bar{c}_{6,7}$		ē 6,3	86
φ_7		b_6		b_8	d_7	<i>b</i> 9	×7		ē _{7,4}	8 ₇
φ_8			b ₇		<i>b</i> ₉	d_8	$\bar{c}_{8,7}$		ē, 5	8 ₈
δ_1	$-\bar{c}_{3,4}$	×4	C _{5,4}	$-\bar{c}_{6,7}$	×7	$\bar{c}_{8,7}$	D_1			S_1
$\varDelta_{\mathbf{I}}$	Ē _{3,1}		<i>c</i> _{5.2}					D_{I}		S_{I}
\varDelta_{II}	$\bar{c}_{3,6}$	$\bar{c}_{4,7}$	$\bar{c}_{5,8}$	ē, 3	ē7,4	$\bar{c}_{8,5}$			D_{II}	S_{II}

Gleichungstabelle 13.

Dritter Abschnitt.

Einflußlinien für statisch unbestimmte Tragwerke.

I. Vorbemerkung.

In diesem Abschnitt soll hauptsächlich die Ermittlung der Momenteneinflußlinien eingehend behandelt werden, da diese in der Regel die Grundlage zur Berechnung der übrigen inneren Kräfte, also der Quer- und Längskräfte bilden. Es kommen hier zwei verschiedene Verfahren zur Behandlung. Die zu lösenden Aufgaben werden dabei immer auf einen ruhenden Belastungsfall zurückgeführt, so daß die bisher erläuterten Berechnungsmethoden für Rahmentragwerke auch hier wiederum unmittelbar zur Anwendung kommen können.

Da die M-Einflußlinien für beliebig gelegene Feldquerschnitte eines Rahmenstabes leicht bestimmbar sind, wenn die Einflußlinien für die Stabendmomente bekannt sind, so werden diese in der Regel auch immer zuerst ermittelt und dann erst daraus die übrigen abgeleitet (siehe auch Kapitel III, 4 dieses Abschnittes).

II. Ermittlung der M-Einflußlinien als Biegelinien am (n-1)-fach statisch unbestimmten Tragwerk.

1. Grundlagen des Verfahrens.

Auf Grund des MAXWELLschen Satzes kann die M-Einflußlinie bei statisch unbestimmten Tragwerken für irgendeinen Querschnitt in folgender Weise erhalten werden. Man schaltet an dieser Stelle ein Gelenk ein, wodurch der Grad der statischen Unbestimmtheit um 1 vermindert wird, und läßt dort zwei gleich große, aber entgegengesetzt gerichtete Momente von solcher Größe angreifen, daß sie eine gegenseitige Verdrehung der beiden Gelenkquerschnitte um den Winkel $\gamma = 1$ hervor-

rufen (Abb. 140 a, b, c). Die Biegelinie für diesen Belastungszustand ist dann bereits die gesuchte M-Einflußlinie für den Gelenkquerschnitt.

Unter Voraussetzung der Gültigkeit des Proportionalitätsgesetzes ist nun ohne weiteres klar, daß man die M-Einflußlinie auch erhalten kann, wenn in dem Gelenkquerschnitt zunächst zwei Momente von der Größe M = 1 angreifen. Es wird dann allgemein eine Verdrehung der beiden Gelenkquerschnitte um den Winkel $\nu \leq 1$ hervorgerufen. In diesem Fall stellt die zugehörige Biegelinie die y-fach verzerrte *M*-Einflußlinie dar. Das Verzerrungsmaß ist also durch den Winkelwert γ gegeben, der deshalb stets zahlenmäßig ermittelt werden muß. Die wirklichen Einflußlinienordinaten η ergeben sich somit aus

$$\eta = \frac{y}{\gamma},\tag{154}$$

67

5*

wobei y die für M = 1 erhaltenen Biegelinienordinaten und γ den zugehörigen Öffnungswinkel der Gelenkquerschnitte bedeuten.

Bei der zahlenmäßigen Ermittlung des Winkelwertes γ denkt man sich diesen in zwei Teile φ_r und φ_l gespalten. Unter Berücksichtigung der früheren Vorzeichenregel für Knotendrehwinkel ergibt sich

$$\gamma = \varphi_l - \varphi_r, \tag{155}$$

wobei nach Abb. 140 b, c φ_l bzw. φ_r den Verdrehungswinkel des links bzw. rechts vom Gelenk liegenden Querschnittes bedeutet. Diese beiden Werte sind also identisch mit den in der Rahmenberechnung auftretenden Knotendrehwinkeln im Gelenk und können daher in der bekannten Art ermittelt werden. Dabei ist noch folgendes zu beachten:

Wenn die in der Rahmenberechnung verwendeten Stabfestwerte a, b, c (bei Stäben mit veränderlichen Querschnitten) oder k (bei Stäben mit konstanten Querschnitten), wie üblich, z-fach verzerrt werden, so ergeben sich bekanntlich sämtliche Formänderungsgrößen ($\varphi, \psi, \Delta, \delta, y, \gamma$ usw.) stets $\frac{1}{z}$ -fach verzerrt. Bezeichnet man

also die wahren Werte mit *, so ergibt sich nach (154)

$$\eta = \frac{y^*}{\gamma^*} = \frac{y \cdot z}{\gamma \cdot z} = \frac{y}{\gamma}, \qquad (156)$$

d. h. die *wahren* Werte (η) der Einflußlinienordinaten erhält man auch bei Verwendung der aus der Rechnung erhaltenen *verzerrten* Formänderungswerte y und γ bzw. φ_r und φ_l .

2. Ermittlung der Biegelinie aus den Knotendrehwinkeln φ und den Knotenverschiebungen δ .

Die Form der Biegelinie eines unbelasteten Rahmenstabes (1–2) ist bekanntlich bestimmt, wenn die Stabendverschiebungen δ_1 und δ_2 und die Endtangentenwinkel τ_1 , τ_2 gegeben sind, wobei nach (4)

$$\tau_1 = \varphi_1 + \psi; \quad \tau_2 = \varphi_2 + \psi.$$
(157)

Abb. 141. Biegelinie eines Rahmenstabes.

Wie aus der Abb. 141 hervorgeht, setzen sich die Biegelinienordinaten y allgemein aus den zwei Beiträgen y_1 und y_2 zusammen. Es gilt somit für eine beliebige Stelle des Stabes, wenn y senkrecht zur ursprünglichen Stabachse gemessen wird,

$$y = y_1 + y_2.$$
 (158)

Hierin bedeutet y_1 den Beitrag infolge der Stabkrümmung und y_2 den Beitrag infolge der Stabendverschiebungen. Beide Werte können getrennt voneinander ermittelt werden.

Es soll hier folgende Vorzeichenregel gelten: Eine Durchbiegung ist positiv, wenn ein liegender Stab nach unten, ein stehender nach rechts durchgebogen wird (Abb. 142). Demgemäß wird auch eine Knotenverschiebung positiv eingeführt, wenn sie von oben nach unten oder von links nach rechts erfolgt.

Die Werte y_1 sind nur von der Stabkrümmung, also nur von den Endtangentenwinkeln τ_1 und τ_2 abhängig. Sie könnten bei Stäben mit konstantem Querschnitt

in der bekannten Weise mit Hilfe der ω -Zahlen¹ ermittelt werden. Es soll hier aber ein anderer Weg gezeigt werden, der auch bei Stäben mit geraden und parabolischen Vouten verhältnismäßig rasch zum Ziele führt. Der Gedankengang ist dabei folgender:

Die Biegelinie für einen Stab mit den gegebenen Endtangentenwinkeln τ_1 und τ_2 (Abb. 143) kann auch durch Überlagerung von zwei Biegelinien erhalten werden, bei welchen abwechselnd $\tau_2 = 0$ bzw. $\tau_1 = 0$ ist (Abb. 143 a, b). Wenn also für irgendeinen Stab mit einseitigen geraden oder parabolischen Vouten für bestimmte Werte τ_1 und τ_2 die Biegelinie zu er

Abb. 143, 143a, b. Ermittlung der Biegelinie eines Stabes mit den Endtangentenwinkeln τ_1 und τ_2 aus den Einflußlinien für \mathfrak{M} .

mitteln ist, so können hierzu die in den Tafeln 13 bis 16 bzw. 13a bis 16a festgelegten Einflußlinien für die Einspannmomente \mathfrak{M} des vollkommen eingespannten Trägers verwendet werden. Denn diese Einflußlinien sind nichts anderes als Biegelinien mit den Randbedingungen $\tau_1 = 1$ und $\tau_2 = 0$ bzw. $\tau_1 = 0$ und $\tau_2 = 1$.

Da nun auch hier das Proportionalitätsgesetz Gültigkeit hat, so können diese Linien auch für den hier vorliegenden Fall benutzt werden, wo $\tau_1 \neq 1$ und $\tau_2 = 0$ bzw. $\tau_1 = 0$ und $\tau_2 \neq 1$ ist. Es brauchen die einzelnen Ordinaten η der *M*-Einflußlinien nur entsprechend verzerrt zu werden. So ergibt sich z. B. die in Abb. 143 a dargestellte Biegelinie durch τ_1 -fache Verzerrung der \mathfrak{M}_1 -Einflußlinie für die entsprechende Stabform und sinngemäß die in Abb. 143 b angedeutete Einflußlinie durch τ_2 -fache Verzerrung der zugehörigen \mathfrak{M}_2 -Einflußlinie. Durch Überlagerung beider Linien erhält man die gesuchten Einflußlinienordinaten y_1 . Dabei ist nur noch zu berücksichtigen, daß die \mathfrak{M} -Einflußlinien für Stäbe mit l = 1 aufgestellt sind, so daß diese Ordinaten noch mit der wirklichen Stablänge l zu multiplizieren sind. Es wird also

$$y_1 = (\eta_1 \cdot \tau_1 - \eta_2 \cdot \tau_2) l.$$
 (159)

Durch das hier angegebene Verfahren zur Ermittlung der Biegelinien aus den Endtangentenwinkeln τ und insbesondere durch Verwendung der im Dritten Teil zur Verfügung stehenden \mathfrak{M} -Einflußlinien für verschiedene Stabformen wird die Ermittlung der M-Einflußlinien für Rahmentragwerke beträchtlich vereinfacht (siehe Zahlenbeispiel Nr. 17).

Die Ermittlung von y_2 , das nur von den *senkrecht* zur ursprünglichen Stabachse gemessenen Verschiebungen δ_1 und δ_2 der beiden Stabenden abhängig ist, geschieht aus einer rein geometrischen Beziehung.

Nach Abb. 141 wird:

$$y_2 = \frac{\delta_1 - \delta_2}{l} \cdot x' + \delta_2 \quad \text{oder} \quad y_2 = \frac{\delta_2 - \delta_1}{l} \cdot x + \delta_1. \tag{160}$$

Sind die beiden Stabendverschiebungen gleich Null, so ist auch $y_2 = 0$ und es wird nach (158) für diesen Fall

$$y = y_1. \tag{158a}$$

¹ Siehe u. a. BEYER (Fußnote S. 71) und DOMKE: Handbuch f. Eisenbetonbau, 4. Aufl., Bd. 1. Berlin 1930.

3. Vorzeichenregeln für die Einflußlinien und Momente.

Unter der Voraussetzung, daß die zur Erzeugung der Einflußlinie im Gelenk angebrachten Momente bei liegenden Stäben den in Abb. 144, bei stehenden Stäben den in Abb. 144a dargestellten Richtungssinn aufweisen, gelten folgende Regeln:

Abb. 144 und 144a. Richtungssinn der Momente M = 1 im Gelenk.

1. Die Vorzeichen eines Einflußlinienzweiges sind positiv, wenn er bei einem liegenden Stab unterhalb, bei einem stehenden Stab rechts von der Stabachse liegt (Abb. 145).

2. Die Vorzeichen der durch die Auswertung eines Einflußlinienzweiges erhaltenen Momentenwerte stimmen mit den Vorzeichen dieses Einflußlinienzweiges überein, wenn die Belastung bei liegenden Stäben von oben nach unten, bei stehenden Stäben

Abb. 145.

Abb. 145 und 146. Vorzeichen der Biegelinienordinaten und der Momente.

von links nach rechts wirkt. Im umgekehrten Fall ergeben sich die entgegengesetzten Vorzeichen.

3. Positive Momente erzeugen bei liegenden Stäben unten Zug und oben Druck, bei stehenden Stäben rechts Zug und links Druck (Abb. 146).

Anmerkung: Diese hier festgesetzte Vorzeichenregel für die Momente weicht zwar von der im ersten Abschnitt, I, 2 für die Stabendmomente angegebenen ab, ist aber für das hier behandelte Verfahren der M-Einflußlinienermittlung und auch für die Auswertung zweckmäßiger.

4. M-Einflußlinien für Feldquerschnitte.

Nach Abb. 147 ergibt sich das Feldmoment an der Stelle x für einen Stab 1-2 mit den Stabendmomenten M_1 und M_2 wie folgt:

$$M_{x} = M_{1} \cdot \frac{x'}{l} + M_{2} \cdot \frac{x}{l} + M_{0}^{(x)}$$
(161)

oder

$$M_{x} = M_{1} + (M_{2} - M_{1}) \cdot \frac{x}{l} + M_{0}^{(x)}, \qquad (162)$$

wobei $M_0^{(x)}$ das an der Stelle x am freiaufliegend gedachten Träger auftretende

Moment infolge der äußeren Belastung bedeutet. Wirkt auf den Stab selbst keine Belastung ein, so vereinfachen sich die beiden Formeln zu

$$M_x = M_1 \cdot \frac{x'}{l} + M_2 \cdot \frac{x}{l} \tag{161a}$$

oder

$$M_x = M_1 + (M_2 - M_1) \cdot \frac{x}{l}.$$
 (162a)

Mit Hilfe dieser Formeln können nun auch die Ordinaten der M-Einflußlinien für Feldquerschnitte aus den Ordinaten der Einflußlinien für die benachbarten Stützmomente errechnet werden. Die

Zahlenrechnung wird am

Abb. 147. Bestimmung des Feldmomentes M_x eines Rahmenstabes.

besten tabellarisch durchgeführt und besteht bei Benutzung der Formel (161) im wesentlichen aus einer $\frac{x'}{l}$ - bzw. $\frac{x}{l}$ -fachen Verzerrung der Einflußwerte für M_1 bzw. M_2 , die dann einfach zu addieren sind. Bei Benutzung der Formel (162) ist zuerst die Differenz der Einflußordinaten (M_2 — M_1) zu bilden und dann $\frac{x}{l}$ -fach zu verzerren. Die allgemeine Formel (161) bzw. (162) ist nur für die Ermittlung der Ordinaten in dem einen Feld zu verwenden, in welchem der Querschnitt selbst liegt, da hier die wandernde Einzellast den Betrag M_0 liefert. Die Ordinaten in den übrigen Feldern können mit der vereinfachten Formel (161a) bzw. (162a) berechnet werden. Dieser Vorgang ist in Abb. 148 für die Entwicklung der M_x -Einflußlinie bei einem durchlaufenden Träger angedeutet.

III. Ermittlung der *M*-Einflußlinien als Biegelinien am *n*-fach statisch unbestimmten Tragwerk.

Vorbemerkung.

Der wesentlichste Unterschied gegenüber dem vorher behandelten Verfahren besteht darin, daß diesmal das gegebene Tragwerk vollständig *unverändert* bleibt, also die statische Unbestimmtheit nicht vermindert wird.¹ Dadurch ergibt sich ein bedeutender Vorteil, da die Gleichungstabelle nur *einmal* angeschrieben werden muß und die Auflösung für alle ideellen Belastungsfälle *gleichzeitig* vorgenommen werden kann. Außerdem ist die Möglichkeit gegeben, in derselben Gleichungstabelle auch beliebig viele *wirkliche* Belastungsfälle, z. B. eine etwa vorhandene ruhende Belastung, Vollbelastung, Eigengewicht usw., gleichzeitig mit zu erledigen.

¹ Siehe auch L. MANN: Theorie der Rahmenwerke. Berlin, 1927. — BEYER: Statik im Eisenbetonbau. Berlin, 1933.

72 M-Einflußlinien als Biegelinien am n-fach statisch unbestimmten Tragwerk.

1. Grundlagen des Verfahrens.

Das Anschlußmoment $M_{m,n}$ eines Rahmenstabes m-n mit beliebig veränderlichen Querschnitten ist nach (84)

$$M_{m,n} = a_{m,n} \varphi_m + b_{\nu} \varphi_n + c_{m,n} \psi_{\nu} + \mathfrak{M}_{m,n}.$$
(163)

In diesem Ausdruck ist das Stabendmoment $M_{m,n}$ als Funktion der beiden Knotendrehwinkel φ_m und φ_n , des Stabdrehwinkels ψ_r und der auf den Stab einwirkenden äußeren Belastung dargestellt. Es sind somit allgemein vier Teilbeträge vorhanden. Wenn es also ohne besondere Schwierigkeiten möglich ist, die Einflußlinien für diese vier Teilbeträge zu ermitteln, so ergibt sich damit ein brauchbares Verfahren zur Bestimmung der M-Einflußlinien. Diese Forderung kann nun tatsächlich mit Hilfe des Satzes von MAXWELL von der Gegenseitigkeit der Verschiebungen erfüllt werden. Darnach ist z. B. die Einflußlinie des Knotendrehwinkels φ_m identisch mit der Biegelinie infolge der Belastung durch ein Moment M = 1 im Knotenpunkt m. In ähnlicher Weise erhält man die Einflußlinie für ψ_{ν} als Biegelinie, wenn auf den Stab ν ein Kräftepaar M = 1 als Belastung wirkt. Da in dem vorliegenden Falle aber die algebraische Summe der durch die Beiwerte $a_{m,n}$, b_r , $c_{m,n}$ verzerrten Einflußwerte der Formänderungsgrößen gebraucht wird, so ist es natürlich zweckmäßig, schon von vornherein die Einflußlinie für diesen Summenausdruck

$$M_{m,n} = a_{m,n} \varphi_m + b_{\nu} \varphi_n + c_{m,n} \psi_{\nu}$$
(164)

zu ermitteln. Dies ist leicht zu erreichen, wenn man im gegebenen Tragwerk gleichzeitig folgende Belastungen anbringt und dafür die Biegelinie ermittelt:

- 1. im Knotenpunkte *m* das Moment $M_m = a_{m,n}$. $1 = a_{m,n}$
- $M_n = b_r$ $.1 = b_r$, 2. ,, ,, (165)•• n ,, $M_{r} = c_{m,n} \cdot 1 = c_{m,n}$ 3. am Stab v ,, ,,

Das am Stab v anzubringende Moment $M_r = c_{m,n}$ ist als Kräftepaar mit dem Hebelarm l_{ν} in der Weise wirkend zu denken, daß an beiden Enden des Stabes, welcher den zu untersuchenden Querschnitt enthält, die gleich großen, aber entgegengesetzt gerichteten Kräfte

$$P = \frac{c_{m,n}}{l_{\mathfrak{p}}} = \bar{c}_{m,n} \tag{166}$$

angreifen. An dieser ideellen Belastung braucht auch dann nichts geändert werden, wenn als Unbekannte an Stelle von ψ die gegenseitige Verschiebung Δ in Rechnung

Abb. 149. "Ideelle Belastung" zur Bestimmung der $\overline{M}_{m,n}$ -Einflußlinie.

gestellt wird.

Läßt man die in den Knotenpunkten angreifenden Momente $a_{m,n}$ und b_r im Uhrzeigersinn, das Kräftepaar entgegen dem Uhrzeigersinn drehen, so bleiben die im ersten Abschnitt, I, 2 festgelegten Vorzeichen für die Formänderungsgrößen und Stabendmomente auch hier in voller Gültigkeit.

In Abb. 149 sind nun diese "ideellen Belastungen", die zur Bestimmung der Einflußlinie von $M_{m,n}$ erforderlich sind, in dem angegebenen Richtungssinn eingetragen. Damit sind die ersten drei Beiträge summarisch erfaßt und es

fehlt nur noch der vierte Anteil, nämlich die Einflußlinie für $\mathfrak{M}_{m,n}$. Diese erstreckt sich nur über den Bereich jenes Stabes, in welchem sich der zu untersuchende Querschnitt befindet, denn sie ist identisch mit der Einflußlinie für das Einspannmoment des beiderseits fest eingespannt gedachten Stabes m-n. Durch Überlagerung der beiden Einflußlinien für $\overline{M}_{m,n}$ und $\mathfrak{M}_{m,n}$ erhält man schließlich die gesuchte Einflußlinie für $M_{m,n}$.

2. Sonderfälle.

Kommen in dem zu untersuchenden Tragwerke nur solche Stäbe vor, deren Querschnitte zwar feldweise verschieden sind, innerhalb eines Feldes jedoch gleichbleiben, so können auch die Formeln und Gleichun-

gen des ersten Abschnittes Verwendung finden. Der Ausdruck für das Stabendmoment lautet dann nach (7) für einen Stab zwischen den Knotenpunkten m, n

$$\begin{split} M_{m,n} &= k \left(2 \, \varphi_m + \varphi_n + 3 \, \psi_{\nu} \right) + \mathfrak{M}_{m,n} \\ &= 2 \, k \, \varphi_m + k \, \varphi_n + 3 \, k \, \psi_{\nu} + \mathfrak{M}_{m,n}. \end{split}$$
(167)

Der Summenausdruck (164) ergibt sich für diesen Sonderfall mit $\overline{M}_{m,n} = 2 k \varphi_m + k \varphi_n + 3 k \psi_r$ (168)

Abb. 150. "Ideelle Belastung" für ein Tragwerk ohne Vouten.

und damit die ideelle Belastung zur Ermittlung der Einflußlinie für $\overline{M}_{m,n}$ [vgl. auch (165)]: $M_m = 2 k; \quad M_n = k; \quad M_\nu = 3 k.$ (169)

Das Moment $M_{\nu} = 3 k$ kann hier durch das Kräftepaar [vgl. auch (166)]

$$P = \frac{3k}{l_{u}} = \overline{k} \quad (170)$$

mit dem Hebelarm l_{p} ersetzt werden. In Abb. 150 ist für diesen Sonderfall die ideelle Belastung zur Bestimmung der $\overline{M}_{m,n}$ -Einflußlinie dargestellt.

In vielen Fällen ergeben sich aber bei der Annahme der "ideellen Belastung" verschiedene Vereinfachungen. Ist z. B. der zu untersuchende Stab im Knotenpunkte m bzw. n fest eingespannt, so ist der zugehörige Knotendrehwinkel φ_m

Abb. 151 bis 153. "Ideelle Belastungen" zur Bestimmung der M-Einflußlinien.

bzw. φ_n für jeden Belastungsfall gleich Null. Die "ideelle Belastung" am fest eingespannten Stabende bringt im Tragwerk keine Formänderungen hervor und kann daher entfallen. Ebenso entfällt bei einem Stabe, für den $\psi = 0$ ist, die "ideelle Belastung" durch das Kräftepaar.

In den Abb. 151, 152, 153 ist für einige Tragwerke die "ideelle Belastung" zur Bestimmung der \overline{M} -Einflußlinie für den jeweils besonders bezeichneten Querschnitt eingetragen.

3. Durchführung der Rechnung.

Bei diesem Verfahren wird also das Stabanschlußmoment $M_{m,n}$ zunächst in zwei Bestandteile $\overline{M}_{m,n}$ [siehe (164)] und $\mathfrak{M}_{m,n}$ gespalten, die vollkommen unabhängig voneinander bestimmt werden können. Der Ausdruck (163) kann daher auch geschrieben werden:

$$M_{m,n} = \overline{M}_{m,n} + \mathfrak{M}_{m,n} \tag{171}$$

oder

$$\eta^*_{m,n} = y + y^{(0)}_{m,n}, \tag{172}$$

wobei y die Ordinaten der Einflußlinie für $M_{m,n}$ und $y_{m,n}^0$ die Ordinaten der Einflußlinie für $\mathfrak{M}_{m,n}$ bedeuten.

Da sich nun, wie bereits hervorgehoben worden ist, die Einflußlinie für $\mathfrak{M}_{m,n}$ nur über jenes Feld erstreckt, das den zu untersuchenden Querschnitt enthält,

Abb. 154. Entwicklung der Einflußlinie für $M_{7,8}$.

- 1. die Einflußlinie für $M_{7,8}$ (voll);
- 2. die Einflußlinie für $\mathfrak{M}_{7,8}$ (strichliert);

3. in dem Feld 7–8 der nach (172) durch Überlagerung der $\mathfrak{M}_{7,8}$ - und $\overline{M}_{7,8}$ -Linie erhaltene Einflußlinienzweig von $M_{7,8}$ (strichpunktiert).

Der strichpunktiert gezeichnete Linienzug im Felde 7–8 in Verbindung mit dem außerhalb dieses Feldes gelegenen Linienzug $\overline{M}_{7.8}$ stellt die gesuchte Einflußlinie $M_{7.8}$ dar (siehe Zahlenbeispiel Nr. 17).

Über die zahlenmäßige Durchführung der Rechnung wäre noch folgendes zu sagen. Die "ideelle Belastung" besteht nach (165) aus den Beiwerten a, b, c, die in der Rahmenrechnung als Stabfestwerte vorkommen. Wie nun im zweiten Abschnitt, IV, 3 dargelegt worden ist, verwendet man zur Aufstellung der Rahmengleichungen nicht die wahren Steifigkeitswerte a, b, c, sondern aus Zweckmäßigkeitsgründen entsprechend verzerrte Werte. Wenn nun dieselben verzerrten Werte auch als "ideelle Belastung" zur Ermittlung der $\overline{M}_{m,n}$ -Einflußlinie angebracht werden, so ergeben sich sämtliche damit errechneten Formänderungswerte $\varphi, \psi, \Delta, \delta, y$ usw. wieder in wahrer Größe, so daß daraus ohne weiteres die Biegelinie bestimmt werden kann, die zugleich die Einflußlinie für $\overline{M}_{m,n}$ darstellt.

Zur Ermittlung der Einflußlinie für $\mathfrak{M}_{m.n}$ stehen für Stäbe mit geraden oder parabolischen Vouten zwölfteilige Einflußlinien als Zahlentafeln (13 bis 16) und zehnteilige Einflußlinien als graphische Tafeln (13a bis 16a) zur Verfügung. In jeder dieser Tafeln sind stets auch die Einflußlinien für den Stab ohne Vouten (n = 1) berücksichtigt und außerdem sind die \mathfrak{M} -Einflußlinien für Stäbe mit konstantem Querschnitt auch auf der Tafel 4 gesondert enthalten.

4. Schlußbemerkung.

Mit Rücksicht auf die auch hier geltende Vorzeichenregel aus dem ersten Abschnitt, I, 2 ist bei der Benutzung der \mathfrak{M} -Einflußlinientafeln 13a bis 16a des Dritten Teiles noch folgendes zu beachten. Um an Raum zu sparen, sind dort sowohl die \mathfrak{M}_1 - als auch die \mathfrak{M}_2 -Linien ohne Rücksicht auf das Vorzeichen nach oben gezeichnet. Unter Beachtung des Vorzeichens sollten aber nur die \mathfrak{M}_1 -Linien nach oben aufgetragen werden, weil sie negativ sind, hingegen die \mathfrak{M}_2 -Linien nach

so wird außerhalb dieses Feldes überall $y^{(0)}_{m,n} = 0$ und damit nach (172) einfach

$$\eta^*_{m,n} = y. \tag{173}$$

In Abb. 154 ist die Anwendung der beiden Formeln (172) und (173) an einem unverschieblich festgehaltenen Mehrfeldrahmen veranschaulicht. Es sind darin gezeichnet: unten, weil sie positiv sind (Abb. 155). Bei Überlagerung der $\overline{M}_{m,n}$ -Linie mit der $\mathfrak{M}_{m,n}$ -Linie ist daher diesem Umstande Rechnung zu tragen. Abb. 156a zeigt

z. B., wie die $\overline{M}_{5,4}$ - und $\mathfrak{M}_{5,4}$ -Linien für einen unverschieblich festgehaltenen Zweifeldrahmen den Vorzeichen gemäß aufzutragen und zu überlagern wären. Die endgültige Einflußlinie für $M_{5,4}$ ist in Abb. 156b zwischen den Punkten 4 bis 6 aufgetragen. Die Einflußlinie für $M_{5,6}$ würde sich, wie aus Abb. 157a, b hervorgeht, zwar in ähnlicher Form, jedoch mit negativen Vorzeichen ergeben.

In dieser Art müßten also die Einflußlinien gezeichnet werden, wenn man folgerichtig die früheren Vorzeichenregeln für die Stabendmomente beibehalten wollte.

Beim Vergleich der Einflußlinien für $M_{5,4}$ und $M_{5,6}$ in den Abb. 156b und 157b fällt das ungewohnte Aussehen der $M_{5,4}$ -Linie auf, da sie nach der früheren Vor-

(2)

Abb. 157a.

(4

zeichenregel *positiv* erscheint und daher nach *unten* aufgetragen ist. Im Fachschrifttum findet man aber häufiger die *M*-Einflußlinien für Stützenmomente

Abb. 156a, b. Einflußlinie für $M_{5.4}$.

allgemein als negative Zweige nach oben aufgetragen, wie das auch in dem früher besprochenen Verfahren der Einflußlinienermittlung in Erscheinung tritt. Zur Wahrung der Einheitlichkeit ist es daher zu empfehlen, die fertigen Einflußlinien für die Auswertung ebenfalls in der gebräuchlicheren Art darzustellen. Um dies zu erreichen, braucht man nur beim Aufzeichnen der M-Einflußlinie für einen Querschnitt links eines Knotenpunktes einen Vorzeichenwechsel vornehmen, wie dies

Abb. 157a, b. Einflußlinie für $M_{5,6}$.

5. Beispiel: Einflußlinien für einen Zweifeldrahmen.

3

Die Gestalt des Tragwerkes ist aus der Beiwertskizze Abb. 158 ersichtlich. Es sollen die M-Einflußlinien gleichzeitig für alle vier Riegelendquerschnitte ermittelt werden. Die "ideelle Belastung" besteht hier nach (165) für die einzelnen \overline{M} -Einflußlinien aus folgenden Beträgen:

für	$M_{4.5}$:	$a_{{\bf 4},{f 5}}$	und	b_4	(siehe	e Abb.	159a)	Belastungsfall	B_{I} ,
,,	$\overline{M}_{5, 4}$:	a _{5,4}	,,	b_4	(,,	,,	159b)	,,	$B_{\rm II}$,
,,	$M_{5, 6}$:	a _{5,6}	,,	b_5	(,,	,,	159c)	,,	$B_{\rm III}$,
"	$M_{6,5}$:	a _{6,5}	,,	b_5	(,,	,,	159d)	"	B_{IV} .

Für die "ideelle Belastung" entfällt im Riegel überall das Kräftepaar nach (166), da bei den Riegeln keine Stabdrehwinkel auftreten können.

Zur Aufstellung der Gleichungstabelle 14 können auch hier die Knotengleichungen (132) und die Verschiebungsgleichungen (135) benutzt werden. Es ergeben

sich als Unbekannte die drei Knotendrehwinkel φ_4 , φ_5 und φ_6 sowie die Verschiebungsgröße \varDelta der Säulen. Die Knotenbelastungsglieder s_n sind hier unmittelbar gegeben durch die in den Knotenpunkten angreifende "ideelle Belastung". Ihre Vorzeichen sind durchwegs negativ, weil die als äußere Belastung in den Knotenpunkten wirkenden Momente im Sinne des Uhrzeigers drehen. Es sind insgesamt die in den Abb. 159a bis d

Abb. 158. Beiwertskizze.

ersichtlichen vier Belastungsfälle $B_{\rm I}$ bis $B_{\rm IV}$ zu behandeln, die gemeinsam in einer Gleichungstabelle mitgeführt werden können.

Abb. 159a bis d. "Ideelle Belastungen".

Gleichungstabelle 14.

	φ_4	φ_5	φ_6	Δ	B_{I}	B_{II}	B_{III}	$B_{\rm IV}$
φ_4	d_4	b_4		<i>c</i> _{4,1}	-a4,5	-b4	_	_
φ_5	b_4	d_5	b_5	$\overline{c}_{5,2}$	$-b_{4}$	-a _{5,4}	-a _{5,6}	$-b_{5}$
φ_6		b_5	d_6	<i>c</i> _{6,3}	-		$-b_{5}$	-a _{6,5}
Δ	c _{4,1}	$\bar{c}_{5,2}$	$\bar{c}_{6,3}$	D			_	

Nach Auflösung des Gleichungssystems und der getrennten Ermittlung der unbekannten Formänderungsgrößen für die vier verschiedenen Belastungsfälle

kann die Ermittlung der Biegelinien bzw. der Einflußlinien in der unter III, 3 dieses Abschnittes angegebenen Weise erfolgen (siehe auch Zahlenbeispiel Nr. 17).

Abb. 160. Momenten- und Querkraftlinie eines Rahmenstabes.

IV. Ermittlung der Einflußlinien für die Querkräfte.

Für einen Rahmenstab zwischen den Knotenpunkten m-n erhält man nach Abb. 160 unter Berücksichtigung der in II, 3 dieses Abschnittes angegebenen Vorzeichenregel an der Stelle x die Querkraft

$$Q_{x} = Q_{x^{0}} + \frac{M_{n, m} - M_{m, n}}{l_{v}}$$
 (174)

Dabei ist, wie allgemein üblich, angenommen, daß eine positive Querkraft links vom Querschnitt nach oben bzw. rechts vom Schnitt nach unten gerichtet ist. Q_x^0 bedeutet die Querkraft an der Stelle x des freiaufliegend gedachten Stabes. Liegen für irgendein Rahmentragwerk die Einflußlinien der Anschlußmomente

 $M_{m,n}$ und $M_{n,m}$ eines Stabes m-n bekannt vor, so kann die Ermittlung der Q_x -Einflußlinie nach (174) durchgeführt werden. Um nun bei einer vorwiegend zeichnerischen Durchführung der Aufgabe ein bequemes Auftragen der einzelnen Ordinaten zu ermöglichen, empfiehlt es sich, die Gl. (174) in folgender Form zu benutzen:

$$Q_x = \frac{1}{l_{\nu}} \left[Q_x^0 \, l_{\nu} + (M_{n.m} - M_{m.n}) \right] \tag{175}$$

oder

$$Q_x = \frac{1}{l_p} \, (\eta_1 + \eta_2). \tag{175 a}$$

Hierin bedeuten also:

- $\eta_1 = Q_x^0 \cdot l_v \dots \dots$ die l_v -fach verzerrten Ordinaten der Q_x^0 -Einflußlinie, die sich nur über das Feld erstreckt, in welchem der zu untersuchende Querschnitt liegt,
- $\eta_2 = M_{n,\,m} M_{m,\,n}$. die Ordinatendifferenz der Einflußlinien für die benachbarten Stabendmomente,

..... die Länge des Stabes, dem der zu untersuchende Querschnitt angehört.

Abb. 161 a bis c. Entwicklung der Einflußlinie für Q_x .

Wird jedoch die Ermittlung der Q-Einflußlinien rechnerisch in Tabellenform vorgezogen, so geschieht dies am besten nach Gl. (174). Dies ist in den Abb. 161a, b, c für einen Dreifeldbalken veranschaulicht. Abb. 161a zeigt die Einflußlinien

für $M_{m,n}$ und $M_{n,m}$, deren Differenz durch Schraffieren besonders hervorgehoben ist. In Abb. 161 b ist die $\frac{1}{l_{\nu}}$ -fach verzerrte Differenz der *M*-Einflußlinien aufgetragen, und zwar auf die Waagrechte bezogen. Gleichzeitig ist auch die Q_x^0 -Einflußlinie im Felde m-n eingezeichnet. Abb. 161 c zeigt schließlich die endgültige Einflußlinie für Q_x , die durch Überlagerung der beiden in Abb. 161 b ersichtlichen Linienzüge erhalten wird.

Es wäre an dieser Stelle noch etwas über die Ermittlung der Einflußlinien für die Längskräfte und für die Auflagerdrücke zu sagen. Da nun die Längskräfte und Auflagerdrücke als Funktion der Querkräfte in Erscheinung treten, so ergeben sich auch die zugehörigen Einflußlinien durch eine entsprechende Überlagerung von Querkrafteinflußlinien. Man erhält also z. B. die

Längskraft in der Säule $(2{-}5)$ des in Abb. 162 ersichtlichen Rahmentragwerkes unter Beachtung der Vorzeichen mit

$$N_{2,5} = Q_{5,6} - Q_{5,4}.$$

 $\varrho_x = \varrho_x^o + \frac{1}{L} (M_{n,m} - M_{m,n})$

Abb. 161c.

Man wird aber nur in seltenen Fällen Einflußlinien für die Längskräfte wirklich zeichnen, da es in der Regel wegen der einfachen Beziehung zwischen Quer- und Längskräften genügen wird, durch entsprechende Auswertung der Querkrafteinflußlinien auch die gesuchten Größtwerte der Längskräfte zu ermitteln.

Vierter Abschnitt.

Die Wirkung von Temperaturänderungen bei statisch unbestimmten Tragwerken.

In diesem Abschnitt wird der Einfluß der Temperaturänderungen untersucht, die sich entweder über das ganze Tragwerk oder nur über einzelne seiner Teile erstrecken. Zunächst soll vorausgesetzt werden, daß sich diese Temperaturänderun-

Abb. 163 bis 166. Tragwerke, die einer gleichmäßigen Wärmeänderung keinen Widerstand entgegensetzen.

gen in allen Querschnitten ein und desselben Stabes gleichmäßig vollziehen. Die Berücksichtigung einer über den Querschnitt ungleichmäßig, jedoch linear verlaufenden Temperaturzunahme oder -abnahme wird in Kapitel IV dieses Abschnittes behandelt.

I. Tragwerke, die durch eine gleichmäßige Temperaturänderung keine Spannungsänderung erfahren.

Auch bei statisch unbestimmten Tragwerken kann eine Temperaturänderung ohne Einfluß auf die Spannungsverteilung sein. Das ist dann der Fall, wenn bei einer Temperaturänderung die Stäbe des Tragwerkes nur Verschiebungen erleiden, ohne daß an irgendeiner Stelle dieser Gestaltsänderung ein Widerstand entgegengesetzt wird. Es treten dann nirgends Stabkrümmungen und daher auch nirgends Biegungsmomente auf.

Einige solcher Tragwerksarten, die bei gleichmäßigen Temperaturänderun-163 bis 166 dargestellt, worin auch die

gen spannungslos bleiben, sind in den Abb. 163 bis 166 dargestellt, worin auch die Gestaltsänderung strichliert angedeutet ist.

II. Tragwerke, bei welchen die durch Temperaturänderungen hervorgerufenen Knotenverschiebungen aus geometrischen Beziehungen allein bestimmbar sind.

1. Vorbemerkung.

Bei den folgenden Ableitungen soll grundsätzlich angenommen werden, daß die einzelnen Stäbe der Tragwerke beliebig veränderliche Stabquerschnitte (Vouten) aufweisen und auch die Temperaturänderungen der einzelnen Rahmenstäbe verschieden sein können.

Da bei den hier zur Behandlung gelangenden Rahmentragwerken die Knotenverschiebungen sofort aus den Längenänderungen durch Ausnutzung geometrischer Beziehungen bestimmt werden können, so sind damit auch die Stabdrehwinkel ψ von vornherein gegeben und nur die Knotendrehwinkel φ zu berechnen. In den Abb. 173 und 174 sind Tragwerke dieser Art dargestellt, für welche also nur die Knotengleichungen $\sum M = 0$ aufzustellen sind.

Aber auch bei vielen symmetrischen Tragwerksformen können die Knotenverschiebungen bzw. die Stabdrehwinkel ψ aus den Stablängenänderungen unmittel-

Abb. 167 bis 171. Symmetrische Tragwerke, deren Knotenverschiebungen bei gleichartigen Wärmeänderungen geometrisch bestimmbar sind.

bar bestimmt werden, wenn die Temperaturänderung in den symmetrisch gelegenen Stäben gleich ist. Als Beispiele hierfür können die Rahmenformen in Abb. 167 bis 171 angesehen werden, in welchen auch die zu erwartenden Knotenverschiebungen infolge einer gleichmäßigen Temperaturerhöhung angedeutet sind.

2. Knotengleichungen.

Denkt man sich aus einem *unbelasteten* Tragwerk, das einer Temperaturänderung ausgesetzt ist, einen Knotenpunkt (n) herausgeschnitten, so kann unter der Annahme, daß bei allen im Knotenpunkte (n) zusammentreffenden Stäben verschiedene Stabdrehwinkel ψ auftreten, für die Stabanschlußmomente nach (84) geschrieben werden:

$$M_{n,1} = a_{n,1}\varphi_n + b_{n,1}\varphi_1 + c_{n,1}\psi_{n,1}$$

$$M_{n,2} = a_{n,2}\varphi_n + b_{n,2}\varphi_2 + c_{n,2}\psi_{n,2}$$

$$M_{n,i} = a_{n,i}\varphi_n + b_{n,i}\varphi_i + c_{n,i}\psi_{n,i}.$$
(176)

Die Bedingung $\sum_{i} M_{n,i} = 0$ ergibt somit für diesen Fall:

$$\sum_{i} M_{n,i} = \varphi_n \sum_{i} a_{n,i} + \sum_{i} b_{n,i} \varphi_i + \sum_{i} c_{n,i} \psi_{n,i} = 0.$$
(177)

Nun liegen aber voraussetzungsgemäß die Stabdrehwinkel ψ hier für jeden Stab bekannt vor und können deshalb in die vorstehenden Gleichungen zahlenmäßig eingeführt werden. Dadurch erhält das dritte Glied in den Gl. (176) die Bedeutung eines *Belastungsgliedes* und wird daher künftig mit \mathfrak{M}^t bezeichnet.

Damit lauten im vorliegenden Falle die Ausdrücke für die Anschlußmomente eines Stabes ν zwischen den Knotenpunkten m und n

$$M_{m,n} = a_{m,n} \varphi_m + b_{\nu} \varphi_n + \mathfrak{M}^t_{m,n}$$

$$M_{n,m} = a_{n,m} \varphi_n + b_{\nu} \varphi_m + \mathfrak{M}^t_{n,m},$$
(178)

wobei

für

$$\mathfrak{M}^{t}_{m,n} = c_{m,n} \, \psi_{\nu} = \frac{c_{m,n}}{l_{\nu}} \cdot \varDelta_{\nu} = \bar{c}_{m,n} \, \varDelta_{\nu}$$

$$\mathfrak{M}^{t}_{n,m} = c_{n,m} \, \psi_{\nu} = \frac{c_{n,m}}{l_{\nu}} \cdot \varDelta_{\nu} = \bar{c}_{n,m} \, \varDelta_{\nu}.$$
(179)

Abb. 172. "Temperaturbelastungsglieder" $\mathfrak{M}_{m,n}^t$ und $\mathfrak{M}_{n,m}^t$. Die "Temperaturbelastungsglieder" $\mathfrak{M}_{m,n}^{t}$ bzw. $\mathfrak{M}_{n,m}^{t}$ bedeuten nichts anderes als die Stabanschlußmomente eines fest eingespannt gedachten Stabes ($\varphi_m = 0, \varphi_n = 0$), der um den Winkel ψ verdreht wird, bzw. dessen Endpunkte eine gegenseitige Verschiebung um den Betrag Δ erfahren (Abb. 172). Die Vorzeichen von \mathfrak{M}^{t} sind jeweils durch das Vorzeichen von ψ bzw. Δ bestimmt.

Für Stäbe, die symmetrisch zur Stabmitte ausgebildet sind, ist $c_{m,n} = c_{n,m}$, so daß dann auch $\mathfrak{M}^{t}_{m,n} = \mathfrak{M}^{t}_{n,m}$ wird. Setzt man in der Gl. (177) in Anlehnung an die früheren Ableitungen

das Diagonalglied
$$d_n = \sum_i a_{n,i},$$
 (180)

für das Knotenbelastungsglied
$$s_n^t = \sum_i \mathfrak{M}^t_{n,i} = \sum_i c_{n,i} \psi_{n,i},$$
 (181)

so erscheint die *Knotengleichung* in derselben äußeren Form wie bei den Tragwerken mit unverschieblichen Knotenpunkten [vgl. (122)]:

$$d_n \varphi_n + \sum_i b_{n,i} \varphi_i + s_n^t = 0.$$
(182)

Bemerkung: Erfolgt die Berechnung eines Rahmentragwerkes nach den Gleichungen des ersten Abschnittes, so lauten die Ausdrücke (178) für die Stabendmomente entsprechend (7) sinngemäß unter den hier getroffenen Voraussetzungen für den Temperaturbelastungsfall:

$$M_{m,n} = 2 k \varphi_m + k \varphi_n + \mathfrak{M}^t_{m,n}$$

$$M_{n,m} = 2 k \varphi_n + k \varphi_m + \mathfrak{M}^t_{n,m},$$
(178a)

wobei die "Temperaturbelastungsglieder" folgende Werte annehmen:

$$\mathfrak{M}^{t}_{m,n} = \mathfrak{M}^{t}_{n,m} = 3 \ k \ \psi_{\nu} = \frac{3 \ k}{l_{\nu}} \ \Delta_{\nu} = \bar{k} \ \Delta_{\nu}. \tag{179a}$$

Die Knotengleichung würde in diesem Falle lauten [vgl. (15)]:

$$d_n \varphi_n + \sum_i k_{n,i} \varphi_i + s_n^t = 0.$$
 (182 a)

3. Zahlenmäßige Ermittlung der "Temperaturbelastungsglieder".

Um die zahlenmäßige Ermittlung der Belastungsglieder \mathfrak{M}^t und s^t einfach und übersichtlich gestalten zu können, muß vorerst wieder eine klare Bezeichnungsweise und eine geeignete Vorzeichenregel für die verschiedenen Größen festgesetzt werden. Es bedeuten:

 λ_{ν} die "wirkliche" Längenänderung des Stabes ν ;

 Δ_{ν} die "gegenseitige Verschiebung" der Endpunkte des Stabes ν senkrecht zur Stabachse;

 $\psi_{\mathbf{v}} = \frac{\Delta_{\mathbf{v}}}{l_{\mathbf{v}}} \dots$ den durch die gegenseitige Verschiebung $\Delta_{\mathbf{v}}$ hervorgerufenen Stabdrehwinkel.

Vorzeichenregel:

 λ_{ν} wird als Verlängerung positiv, als Verkürzung negativ eingeführt. Δ_{ν} wird positiv angenommen, wenn es einen positiven Stabdrehwinkel ψ_{ν} hervorruft, d. h. wenn es eine Stabverdrehung entgegen dem Uhrzeigersinn erzeugt.

Man erhält also z. B. für das in Abb. 173 ersichtliche Tragwerk:

und damit

Abb. 173 und 174. Bestimmung der Verschiebungen ⊿ aus den Stablängenänderungen λ.

Für das in Abb. 174 dargestellte Tragwerk ergeben sich die Δ -Werte der einzelnen Stäbe aus den bekannt vorausgesetzten Stablängenänderungen folgendermaßen: $\Delta_1 = -\lambda_5; \Delta_2 = -(\lambda_5 + \lambda_6); \Delta_3 = -(\lambda_5 + \lambda_6 + \lambda_7); \Delta_4 = -(\lambda_5 + \lambda_6 + \lambda_7 + \lambda_8);$ $\Delta_5 = \lambda_1; \ \Delta_6 = \lambda_2 - \lambda_1; \ \Delta_7 = \lambda_3 - \lambda_2; \ \Delta_8 = \lambda_4 - \lambda_3.$ (184)

Sind auf diese Weise die Werte ψ bzw. Δ für die einzelnen Stäbe ermittelt, so erhält man damit unmittelbar aus den Formeln (179) die gesuchten "Temperaturbelastungsglieder" \mathfrak{M}^t .

Es muß hier ausdrücklich hervorgehoben werden, daß bei der zahlenmäßigen Ermittlung der \mathfrak{M}^t -Glieder die *wahren* Werte von k bzw. \overline{k} und c bzw. \overline{c} benutzt werden müssen, um auch die Momente infolge der Temperaturwirkung in *wahrer* Größe zu erhalten. Es empfiehlt sich daher, gleich in der Stabfestwerttabelle auch die wahren Werte k^* bzw. \overline{k}^* oder c^* bzw. \overline{c}^* mitzuführen. Dabei ist z. B.

$$ar{k^*} = rac{ar{k}}{z} \,\, ext{oder} \,\, ar{c^*} = rac{ar{c}}{z}$$

Guldan, Rahmentragwerke.

wenn k oder \bar{c} die z-fach verzerrten Stabfestwerte bedeuten. Es ist weiter zu beachten, daß die Dimension der aus der Rechnung erhaltenen Momente mit der Dimension der zur Ermittlung der "Temperaturbelastungsglieder" \mathfrak{M}^t benutzten wahren Werte \bar{k}^* bzw. \bar{c}^* übereinstimmt. Will man also die Momente in tm erhalten, so sind auch E in t/m², J in m⁴ und l in m einzusetzen.

III. Tragwerke, bei welchen die Knotenverschiebungen aus geometrischen Beziehungen allein nicht bestimmbar sind.

1. Allgemeines.

Die bisher behandelten Fälle, in welchen von der Annahme ausgegangen worden ist, daß sämtliche Stabdrehwinkel ψ bzw. Verschiebungsgrößen \varDelta mit Hilfe von geometrischen Beziehungen aus den Stablängenänderungen unabhängig von den Knotendrehwinkeln φ zu ermitteln sind, werden in Wirklichkeit seltener vorkommen. Hingegen wird es sich sehr oft ergeben, daß zwar die ψ - und \varDelta -Werte einzelner Stäbe auf diese Art bestimmt werden können, daß aber die übrigen Stabdrehwinkel gemeinsam mit den Knotendrehwinkeln durch Auflösen des gesamten Gleichungssystems berechnet werden müssen. Bei derartigen Tragwerken müssen also zur Ermittlung der noch fehlenden Formänderungsgrößen ψ bzw. \varDelta wieder die schon bekannten Verschiebungsgleichungen herangezogen werden. Diese Art der Behandlung soll im folgenden ausführlich an einer Tragwerksform gezeigt werden, die im Bauwesen besonders häufig auftritt.

2. Der unsymmetrische Mehrfeldrahmen mit waagrechten Riegeln und beliebig veränderlichen Stabquerschnitten.

A. Ansätze für die Verschiebungsgrößen \varDelta der Rahmenstäbe.

In Abb. 175 ist das Stabsehnenbild eines solchen Tragwerkes infolge einer Temperaturerhöhung gezeichnet. Aus den bekannt anzunehmenden Längenänderungen der einzelnen Stäbe können hier nur die gegenseitigen Verschiebungen Δ_5 , Δ_6 , Δ_7 der Riegel unmittelbar berechnet werden, und zwar ist mit den Bezeichnungen der Abb. 175:

und damit

$$\begin{aligned} \Delta_5 &= \lambda_2 - \lambda_1; \quad \Delta_6 &= \lambda_3 - \lambda_2; \quad \Delta_7 &= \lambda_4 - \lambda_3 \\ \psi_5 &= \frac{\lambda_2 - \lambda_1}{l_s}; \quad \psi_6 &= \frac{\lambda_3 - \lambda_2}{l_s}; \quad \psi_7 &= \frac{\lambda_4 - \lambda_3}{l_s}. \end{aligned}$$

$$(185)$$

1

Abb. 175. Tragwerk, dessen Knotenverschiebungen bei Wärmeänderungen geometrisch nicht bestimmbar sind.

Mit Hilfe dieser Werte ergeben sich dann aus (179) bzw. (179a) die M^t-Glieder der Riegel.

Die Verschiebungsgrößen $\Delta_1, \Delta_2, \Delta_3, \Delta_4$ der Stiele sind deshalb nicht sofort zu ermitteln, weil der Ruhepunkt im Riegel 5-8, von welchem die Ausdehnung nach beiden Seiten fortschreitet, wegen der

Unsymmetrie des Tragwerkes von vornherein nicht angegeben werden kann. Es steht aber nur eine Verschiebungsgleichung zur Verfügung, da nur ein Stockwerk vorhanden ist. Es kann damit auch nur eine Verschiebungsgröße, etwa Δ_1 , bestimmt werden, alle übrigen ergeben sich aus geometrischen Beziehungen. Mit den Bezeichnungen der Abb. 175 und unter Beachtung der angenommenen Vorzeichenregel gilt:

$$\begin{aligned} \Delta_2 &= \Delta_1 - \lambda_5 \\ \Delta_3 &= \Delta_2 - \lambda_6 = \Delta_1 - (\lambda_5 + \lambda_6) \\ \Delta_4 &= \Delta_3 - \lambda_7 = \Delta_1 - (\lambda_5 + \lambda_6 + \lambda_7). \end{aligned}$$
(186)

Wenn bei der zahlenmäßigen Auswertung dieser Ausdrücke die Längenänderungen λ der angenommenen Vorzeichenregel gemäß als Verlängerung *positiv* und als Verkürzung *negativ* eingeführt werden, so ergeben sich auch die Δ -Werte bereits mit dem richtigen Vorzeichen.

B. Gleichungsansätze für die Stabendmomente.

Die Ausdrücke für die Stabendmomente in einem unbelasteten Tragwerk, das einer Temperaturänderung ausgesetzt ist, lauten nach (178) bzw. (179) allgemein:

$$M_{m,n} = a_{m,n} \varphi_m + b_{\mathbf{r}} \varphi_n + \bar{c}_{m,n} \Delta_{\mathbf{r}}$$

$$M_{n,m} = a_{n,m} \varphi_n + b_{\mathbf{r}} \varphi_m + \bar{c}_{n,m} \Delta_{\mathbf{r}},$$
(187)

dabei bedeuten wie früher $\bar{c}_{m,n} = \frac{c_{m,n}}{l_{\nu}}$ und $\bar{c}_{n,m} = \frac{c_{n,m}}{l_{\nu}}$.

Bei Anwendung dieser Ausdrücke (187) auf die einzelnen Stäbe des Tragwerkes sind aber drei Fälle zu unterscheiden.

1. Die Verschiebungsgrößen Δ sind aus den Längenänderungen *allein* berechenbar. Die Δ -Werte können daher unabhängig von den φ -Werten gesondert bestimmt und in die vorstehenden Gleichungen eingeführt werden. Die Gleichungen sind dann identisch mit den Ausdrücken (178).

2. Die Δ -Werte sind als Unbekannte mitzuführen, da sie aus geometrischen Beziehungen nicht bestimmt werden können. In diesem Falle bleiben die Gleichungen in der Form (187) bestehen.

3. Die Δ -Werte sind im Sinne von (186) als eine lineare Funktion einer unbekannten Stabendverschiebung Δ_p und einer Reihe von gesondert bestimmbaren Verschiebungen λ (Stablängenänderungen) im Gesamtwert λ_s in Rechnung zu setzen. Dieser Fall trifft beispielsweise für das in Abb. 175 dargestellte Rahmentragwerk bei den Verschiebungen Δ_2 , Δ_3 , Δ_4 zu. Allgemein kann man schreiben

$$\Delta_{\mathbf{r}} = f(\Delta_{\mathbf{r}}, \lambda_{\mathbf{s}}^{(\mathbf{r})}). \tag{188}$$

Bedeutet Δ_p die gegenseitige Verschiebung des äußersten linken Ständers, so lautet die vorstehende Gleichung $\Delta_{-} \Delta_{-} \Delta_{-} \lambda_{-} \lambda_{-}$

$$\Delta_{\mathbf{v}} = \Delta_{\mathbf{p}} - \lambda_{\mathbf{s}}^{(\mathbf{v})}. \tag{188a}$$

Hierin ist λ_s die Summe der Längenänderungen des Riegels zwischen den Knotenpunkten, denen die Verschiebungsgrößen Δ_r und Δ_p zugeordnet sind. Führt man die Beziehung (188a) in (187) ein, so ergibt sich

$$M_{m,n} = a_{m,n} \varphi_m + b_{\mathbf{v}} \varphi_n + \bar{c}_{m,n} (\Delta_{\mathbf{p}} - \lambda_s^{(\mathbf{v})})$$

$$M_{n,m} = a_{n,m} \varphi_n + b_{\mathbf{v}} \varphi_m + \bar{c}_{n,m} (\Delta_{\mathbf{p}} - \lambda_s^{(\mathbf{v})}).$$
(189)

Num kann man, da der Summenwert $\lambda_s^{(v)}$ jeweils bekannt ist, für

$$- \bar{c}_{m,n} \cdot \lambda_s^{(\mathbf{p})} = \mathfrak{M}^t_{m,n} - \bar{c}_{n,m} \cdot \lambda_s^{(\mathbf{p})} = \mathfrak{M}^t_{n,m}$$

$$(190)$$

setzen. Dieser Wert hat auch hier wieder die Bedeutung eines Stabbelastungsgliedes. Damit erhalten die Ausdrücke (189) für die Stabendmomente auch bei Temperaturwirkung wieder denselben Aufbau wie für gewöhnliche Belastung. Sie lauten:

$$M_{m,n} = a_{m,n} \varphi_m + b_{\nu} \varphi_n + \bar{c}_{m,n} \varDelta_p + \mathfrak{M}^t_{m,n}$$

$$M_{n,m} = a_{n,m} \varphi_n + b_{\nu} \varphi_m + \bar{c}_{n,m} \varDelta_p + \mathfrak{M}^t_{n,m}.$$
(191)

Nach diesen vorbereitenden Arbeiten kann an die Aufstellung der allgemeinen Rahmengleichungen für die vorliegende Tragwerksgattung geschritten werden.

C. Knotengleichungen.

Abb. 176. Knoten- und Stabbezeichnung bei Mehrfeldrahmen.

In Abb. 176 ist ein Teil eines Mehrfeldrahmens unter Verwendung einer allgemeinen Bezeichnungsart der Stäbe und Knoten-

punkte dargestellt. Die Ansätze für die Stabanschlußmomente im Knotenpunkte n lauten:

$$\begin{array}{l}
 M_{n,n-1} = a_{n,n-1}\varphi_n + b_{\nu}\varphi_{n-1} + \mathfrak{M}t_{n,n-1}, \\
 M_{n,n+1} = a_{n,n+1}\varphi_n + b_{\nu+1}\varphi_{n+1} + \mathfrak{M}t_{n,n+1}, \\
 \end{array} \qquad \text{nach (178)}$$

$$M_{n,m} = a_{n,m} \varphi_n + b_r \varphi_m + \bar{c}_{n,m} \varDelta_p + \mathfrak{M}^t_{n,m}. \qquad \text{nach (191)}$$

Damit erhält man die Bedingung $\sum_{i} M_{n,i} = 0$ im Knotenpunkte *n* in der üblichen Schreibweise:

$$d_{n}\varphi_{n} + b_{\nu}\varphi_{n-1} + b_{r}\varphi_{m} + b_{\nu+1}\varphi_{n+1} + \bar{c}_{n,m}\varDelta_{\nu} + s_{n}^{t} = 0.$$
 (192)

Hierbei ist $s_n^t = \sum_i \mathfrak{M}_{n,i}^t$ [siehe auch (181)].

Im vorliegenden Falle ist φ_m durch die Randbedingungen gegeben. Bei voller Einspannung der Säulenfüße wird $\varphi_m = 0$ und die Knotengleichung nimmt dann folgende Form an:

$$d_{n}\varphi_{n} + b_{\nu}\varphi_{n-1} + b_{\nu+1}\varphi_{n+1} + \bar{c}_{n,m}\varDelta_{p} + s_{n}^{t} = 0.$$
 (192a)

D. Verschiebungsgleichungen.

Wenn außer der Temperaturänderung keine andere Belastung auf das Tragwerk einwirkt, so ergibt sich die Verschiebungsgleichung $\Sigma H = 0$ nach (33) in vereinfachter Form, nämlich:

$$\sum_{r} \frac{M_o + M_u}{l_r} = 0, \tag{193}$$

worin l_r jeweils die Länge der Säule (r) bedeutet.

Es sind nun wieder die Stabendmomente durch die Formänderungsgrößen zu ersetzen. Das geschieht nach (87) und man erhält mit der hier gewählten Bezeichnung an Stelle von (193)

$$\sum_{r} \frac{c_o}{l_r} \cdot \varphi_o + \sum_{r} \frac{c_u}{l_r} \varphi_u + \sum_{r} \frac{c_o + c_u}{l_r} \cdot \psi_r = 0.$$
(194)

Weiter ist unter Beachtung von (188a)

$$\psi_r = \frac{\Delta_r}{l_r} = \frac{\Delta_p - \lambda_s^{(r)}}{l_r}.$$
(195)

Damit ergibt sich unter gleichzeitiger Einführung der \bar{c} -Werte:

$$\sum_{\mathbf{r}} \bar{c}_o \varphi_o + \sum_{\mathbf{r}} \bar{c}_u \varphi_u + \sum_{\mathbf{r}} \frac{\bar{c}_o + \bar{c}_u}{l_r} \cdot \mathcal{A}_p - \sum_{\mathbf{r}} \frac{\bar{c}_o + \bar{c}_u}{l_r} \cdot \lambda_s^{(\mathbf{r})} = 0.$$
(196)

Die \sum_{r} beziehen sich auf alle Säulen des Rahmens. Der letzte Summenausdruck der vorstehenden Gleichung enthält nur bekannte Größen und kann sofort zahlenmäßig

ermittelt werden. Er stellt somit das Belastungsglied der Verschiebungsgleichung bei Temperaturwirkung vor. Man setzt also wie früher:

$$D = \sum_{r} \frac{\bar{c}_o + \bar{c}_u}{l_r},\tag{197}$$

$$S^{t} = -\sum_{r} \frac{\bar{c}_{o} + \bar{c}_{u}}{l_{r}} \cdot \lambda_{s}^{(r)}.$$
(198)

Damit lautet die Verschiebungsgleichung in brauchbarer und übersichtlicher Form:

$$\sum_{r} \bar{c}_{u} \varphi_{u} + \sum_{r} \bar{c}_{o} \varphi_{o} + D \varDelta_{p} + S^{t} = 0.$$
(199)

Diese Gleichung stimmt der Form nach überein mit der allgemeinen Verschiebungsgleichung (135) für Stockwerksrahmen mit lotrechten, ungleich hohen Ständern.

Sind die Säulenfüße fest eingespannt, so wird $\varphi_u = 0$ und die Gleichung vereinfacht sich noch weiter zu

$$\sum_{r} \bar{c}_{o} \varphi_{o} + D \varDelta_{p} + S^{t} = 0.$$
(199a)

3. Beschreibung des Rechnungsganges.

Zur besseren Übersicht sei hier die Reihenfolge der Rechenarbeiten bei Berücksichtigung der Temperaturwirkung nochmals kurz zusammengefaßt.

1. Ermittlung der Längenänderung λ jedes einzelnen Stabes. Diese nimmt für einen Stab ν mit der Länge l_{ν} bei einer Temperaturänderung von t^0 den Wert $\lambda_{\nu} = \omega \cdot t^0 \cdot l_{\nu}$ an, wobei ω die Wärmeausdehnungszahl des Stabmaterials bedeutet. 2. Berechnung der Stabfestwerte a, b, c bzw. \bar{c} unter Zuhilfenahme der Zahlen-

oder Kurventafeln des Dritten Teiles.

3. Herstellung der Beiwertskizze.

4. Feststellung derjenigen gegenseitigen Verschiebungen Δ , die aus den Längenänderungen der Stäbe allein bestimmbar sind, und ihre Ermittlung nach (185).

5. Wahl einer Säulenverschiebung Δ_p (am besten die der linken Säule) als Rechnungsunbekannte, durch welche alle übrigen Säulenverschiebungen ausgedrückt werden.

6. Berechnung der \mathfrak{M}^t -Glieder für jede einzelne Säule nach (190) und für jeden Riegel nach (179) mit Hilfe von (185).

7. Ermittlung der für die Knotengleichungen bzw. Verschiebungsgleichung erforderlichen Werte, und zwar d_n in der üblichen Weise und s_n^t nach (181), ferner D nach (197) und S^t nach (198).

8. Anschreiben der Gleichungen nach (192) und (199) und deren Auflösung.

9. Ermittlung der Stabendmomente nach 2, B dieses Kapitels.

4. Gleichungstabelle für einen unsymmetrischen Dreifeldrahmen mit veränderlichen Stabquerschnitten bei Temperaturwirkung.

Die Form des Tragwerkes ist in Abb. 177 dargestellt. Die zugehörige Beiwertskizze zeigt Abb. 178. Bei Annahme fester Einspannung der Säulenfüße werden φ_1 bis φ_4 gleich Null, so daß als Unbekannte nur die vier Knotendrehwinkel φ_5, φ_6 , φ_7 , φ_8 und die Verschie-(5) a_{5,6} b₅ a65 6 a67

Abb. 177 und 178. Tragwerk und Beiwertskizze.

Längenänderungen λ_1 bis λ_7 aus $\lambda_{\nu} = \omega \cdot t^0 \cdot l_{\nu}$ zu berechnen, worauf die Ansätze für die Δ -Werte der einzelnen Stäbe aufgestellt werden können, und zwar:

Nach (181) ergeben sich die "Knotenbelastungsglieder" s_n^t wie folgt:

 $s_5^{t} = \mathfrak{M}_{5,1}^{t} + \mathfrak{M}_{5,6}^{t}; \quad s_6^{t} = \mathfrak{M}_{6,2}^{t} + \mathfrak{M}_{6,5}^{t} + \mathfrak{M}_{6,7}^{t}; \quad s_7^{t} = \sum \mathfrak{M}_7^{t}; \quad s_8^{t} = \sum \mathfrak{M}_8^{t}.$

Die \mathfrak{M}^t -Glieder erhält man wie folgt: für die Stiele nach (190)

$$\begin{split} \mathfrak{M}^{t}_{5,1} &= -\bar{c}_{5,1} \cdot \lambda_{s}^{(1)} = 0 \qquad (\text{weil } \lambda_{s}^{(1)} = 0), \\ \mathfrak{M}^{t}_{6,2} &= -\bar{c}_{6,2} \cdot \lambda_{s}^{(2)} = -\bar{c}_{6,2} \cdot \lambda_{5}, \\ \mathfrak{M}^{t}_{7,3} &= -\bar{c}_{7,3} \cdot \lambda_{s}^{(3)} = -\bar{c}_{7,3} \left(\lambda_{5} + \lambda_{6}\right), \\ \mathfrak{M}^{t}_{8,4} &= -\bar{c}_{8,4} \cdot \lambda_{s}^{(4)} = -\bar{c}_{8,4} \left(\lambda_{5} + \lambda_{6} + \lambda_{7}\right) \end{split}$$

und für die Riegel, wenn angenommen wird, daß diese unsymmetrisch ausgebildet sind (also $\bar{c}_{m,n} \neq \bar{c}_{n,m}$), nach (179)

$$\begin{aligned} \mathfrak{M}^{t}_{5\cdot 6} &= \bar{c}_{5\cdot 6} \, \varDelta_{5}, & \mathfrak{M}^{t}_{6\cdot 5} &= \bar{c}_{6\cdot 5} \, . \, \varDelta_{5}, \\ \mathfrak{M}^{t}_{6\cdot 7} &= \bar{c}_{6\cdot 7} \, \varDelta_{6}, & \mathfrak{M}^{t}_{7\cdot 6} &= \bar{c}_{7\cdot 6} \, . \, \varDelta_{6}, \\ \mathfrak{M}^{t}_{7\cdot 8} &= \bar{c}_{7\cdot 8} \, \varDelta_{7}, & \mathfrak{M}^{t}_{8\cdot 7} &= \bar{c}_{8\cdot 7} \, . \, \varDelta_{7}. \end{aligned}$$

Wenn die Stäbe symmetrisch ausgebildet sind, so wird, weil dann $\tilde{c}_{m,n} = \bar{c}_{n,m}$, immer auch $\mathfrak{M}^{t}_{m,n} = \mathfrak{M}^{t}_{n,m}$.

Weiter sind die Diagonalglieder zu ermitteln, und zwar für die Knotengleichungen:

$$d_5 = \sum a_5; \ d_6 = \sum a_6; \ d_7 = \sum a_7; \ d_8 = \sum a_8$$

und für die Verschiebungsgleichung nach (197)

$$D_1 = \sum_r \frac{\bar{c}_o + \bar{c}_u}{l_r},$$

ferner nach (198) das Belastungsglied

$$S_1^t = -\sum_r \frac{\bar{c}_o + \bar{c}_u}{l_r} \cdot \lambda_s^{(r)}.$$

Nach diesen Vorbereitungen kann die Aufstellung der Gleichungstabelle 15 vorgenommen werden. Da-

			~			
	φ_5	φ_6	φ_7	φ_8	Δ_1	B^t
φ_5	d_5	b_5			Č _{5,1}	s_5^t
φ_6	b_5	d_{6}	b_6		$\bar{c}_{6,2}$	s_6^t
φ_7		b_6	<i>d</i> ₇	b7	ē7,3	s_7^t
φ_8			b7	d_8	Ē _{8,4}	s_8^{t}
\varDelta_1	<i>c</i> _{5,1}	$\overline{c}_{6,2}$	$\overline{c}_{7,3}$	Ē _{8,4}	D_1	S_1^{t}

Gleichungstabelle 15.

zu wird die Knotengleichung (192a) und die Verschiebungsgleichung (199a) benutzt.

Nach Auflösen der Gleichungen können nach (186) auch die Verschiebungsgrößen Δ_2 , Δ_3 , Δ_4 der Stiele (2), (3), (4) ermittelt werden, so daß dann die Stabendmomente nach den bekannten Formeln bestimmbar sind (siehe Zahlenbeispiel Nr. 8).

5. Schlußbemerkung.

Nun wären auf ähnliche Weise auch noch andere Tragwerksarten, z. B. die Stockwerksrahmen mit schiefen Riegeln oder die Vierendeelrahmen usw. zu untersuchen und dafür gebrauchsfertige Gleichungen aufzustellen. Zu diesem Zwecke wäre im wesentlichen genau so vorzugehen, wie das bisher gezeigt worden ist. Es werden oft Verschiebungspläne erforderlich sein, um die \varDelta -Werte zur Ermittlung der "Temperaturbelastungsglieder" \mathfrak{M}^t bestimmen zu können. Grundsätzlich haben bei allen Rahmentypen die Gleichungen auch unter Berücksichtigung der Temperaturwirkung denselben Aufbau wie jene für gewöhnliche Belastungsfälle, die in den früheren Abschnitten ja bereits ausführlich behandelt worden sind. Praktisch liefert also die Untersuchung des Temperatureinflusses lediglich mehr Belastungsfälle, während im übrigen aber dieselben Rahmengleichungen Verwendung finden können.

IV. Wirkung der ungleichmäßigen Temperaturänderungen.

1. Voraussetzungen.

1. Es werden hier nur solche Tragwerke in Betracht gezogen, bei welchen die verschiedenen Stäbe zwar ungleiche Trägheitsmomente aufweisen können, jeder einzelne Stab aber auf seiner ganzen Länge einen gleichbleibenden Querschnitt besitzt.

2. Die Temperaturänderung kann für jeden Stab verschieden sein, für ein und denselben Stab soll sie aber in allen seinen Querschnitten denselben Verlauf haben.

3. Der Verlauf der Temperaturänderung innerhalb eines Querschnittes geht *linear* vor sich. Sind t_o und t_u die Temperaturänderungen an der oberen bzw. unteren Querschnittsrandfaser, so ist $\Delta t = t_u - t_o$ der Unterschied der Temperaturänderungen in den Randfasern (Abb. 179).

Abb. 179. Temperaturver teilung im Querschnitt.

4. Die durch die Temperaturänderungen eintretenden Verformungen sind so klein, daß die infolge der Krümmung der Stabachse auftretenden Stabverkürzungen vernachlässigt werden können.

2. Belastungsglieder.

Es sind hier zwei Beiträge zu unterscheiden:

A. Der Anteil infolge Längenänderung der Stabachse.

B. Der Anteil infolge Krümmung der Stabachse durch die ungleichen Temperaturänderungen in den verschiedenen Querschnittsfasern.

A. Anteil infolge Längenänderung der Stabachse.

Die Temperaturänderung t_m in der Stabachse wird nun unter der Annahme, daß diese in der halben Querschnittshöhe liegt,

$$t_m = \frac{t_u + t_o}{2} \tag{200}$$

betragen, wenn t_u bzw. t_o die Temperaturänderungen am unteren bzw. oberen Querschnittsrand bedeuten (Abb. 179). Damit ergibt sich die Verlängerung der Stabachse

$$\lambda_m = \omega \cdot t_m \cdot l = \omega \cdot l \frac{t_u + t_o}{2} \cdot$$
(201)

Mit den so ermittelten Verlängerungen λ_m der Stabachsen sind die Δ -Werte der einzelnen Stäbe zu bestimmen und dann in der bereits früher angegebenen Weise die M^t-Glieder zu berechnen.

B. Anteil infolge Krümmung der Stabachse.

Dieser Beitrag wird nur in Ausnahmefällen zu berücksichtigen sein. Er ist dadurch gekennzeichnet, daß er für irgendeinen Stab nur infolge des Temperaturunterschiedes in der oberen und unteren Querschnittsfaser dieses Stabes hervorgerufen werden kann. Um die statische Deutung der einer solchen Temperaturwirkung entsprechenden Belastungsglieder richtig erfassen zu können, sei auf die Ansätze (7) für die Stabendmomente bei Stäben mit gleichen Trägheitsmomenten zurückgegriffen. Sie lauten:

$$egin{aligned} &M_{1,\,2}=k\,(2\,arphi_1+arphi_2+3\,arphi)+\mathfrak{M}_{1,\,2}\ &M_{2,\,1}=k\,(2\,arphi_2+arphi_1+3\,arphi)+\mathfrak{M}_{2,\,1}. \end{aligned}$$

Die in diesen Ausdrücken enthaltenen Belastungsglieder $\mathfrak{M}_{1,2}$ und $\mathfrak{M}_{2,1}$ stellen Einspannmomente am beiderseits fest eingespannt gedachten Träger vor und ergeben sich nach (108a) auch allgemein aus den Formeln

$$\mathfrak{M}_{1,2} = -2 \cdot \frac{2 \alpha_1^0 - \alpha_2^0}{l}, \quad \mathfrak{M}_{2,1} = +2 \cdot \frac{2 \alpha_2^0 - \alpha_1^0}{l}, \quad (202)$$

wenn die Werte α_1^0 und α_2^0 die EJ-fach verzerrten Tangentenwinkel der Biegelinie an den Enden des freiaufliegend gedachten Stabes infolge der äußeren Belastung bedeuten (Abb. 180).

Dieselben Ausdrücke können nun benutzt werden, um die Belastungsglieder bei ungleichmäßiger Temperaturänderung zahlenmäßig zu berechnen. Zu diesem Zwecke

Abb. 180.

Abb. 181. Bestimmung der Winkelwerte α_1^{0*} und α_2^{0*} .

sind lediglich die infolge der ungleichartigen Temperaturwirkung hervorgerufenen Verdrehungen der Endquerschnitte des freiaufliegend gedachten Stabes zu ermitteln, EJ-fach zu verzerren und dann in die Formeln (202) einzuführen.

Abb. 181 zeigt die Verformung eines freiaufliegenden Trägers von der Höhe hund der Länge l infolge ungleichartiger Temperaturänderung in starker Verzerrung. Aus Symmetriegründen müssen die Tangentenwinkel an beiden Stabenden gleich groß sein, also $\alpha_1^0 = \alpha_2^0$. Nach den vorangegangenen Erläuterungen ist nun, wenn α_1^{0*} und α_2^{0*} die wahren Winkelwerte bedeuten,

$$x_1^{\ 0} = E J \,\alpha_1^{\ 0} \,^*; \quad \alpha_2^{\ 0} = E J \,\alpha_2^{\ 0} \,^*. \tag{203}$$

Die zahlenmäßige Größe der Winkel α_1^{0*} und α_2^{0*} ergibt sich nach Abb. 181 aus einfachen geometrischen Beziehungen. Die Längenänderung der oberen Faser in bezug auf die untere beträgt:

$$\lambda_o = \omega \cdot \varDelta t \cdot l. \tag{204}$$

Es verschiebt sich also an den beiden Stabenden der obere Querschnittsrand in bezug auf den unteren um den Betrag von $\frac{\lambda_o}{2}$. Somit ist

$$\operatorname{tg} \alpha_1^{0*} = \frac{\lambda_o}{2h} = \frac{\omega \cdot \varDelta t \cdot l}{2h}, \qquad (205)$$

oder wegen der Kleinheit des Winkels auch

$$\alpha_1^{0*} = \frac{\omega \cdot \Delta t \cdot l}{2h} \cdot$$
(206)

Nach (203) wird also

$$\alpha_1^{\ 0} = \alpha_2^{\ 0} = \frac{EJ \cdot \omega \cdot \varDelta t \cdot l}{2h} \tag{207}$$

und damit nach (202)

$$\mathfrak{M}^{t}_{1,2} = -2 EJ \cdot \frac{2 \omega \cdot \Delta t \cdot l}{2h} - \frac{\omega \cdot \Delta t \cdot l}{2h}}{l} = -\frac{EJ \cdot \omega \cdot \Delta t}{h}, \qquad (208)$$
$$\mathfrak{M}^{t}_{2,1} = + \frac{EJ \cdot \omega \cdot \Delta t}{h},$$

.

wobei

$$t = t_u - t_o.$$
 (209)

Sind nun die "Temperaturbelastungsglieder" aus beiden Anteilen zahlenmäßig festgestellt, so werden sie zusammengefaßt und die weitere Berechnung erfolgt dann in der bekannten Weise. Auch hier wird an der Form der Gleichungstabelle nichts geändert, so daß der Temperaturbelastungsfall gemeinsam mit den übrigen Belastungsfällen berechnet werden kann.

Bei Stäben mit veränderlichen Querschnittshöhen würden sich bei der Ermittlung des Anteiles infolge Krümmung der Stabachse gewisse Schwierigkeiten ergeben, wenn dieser Einfluß genau berücksichtigt werden sollte. Zur Vereinfachung der Rechnung wird es aber in den meisten Fällen vollständig ausreichend sein. diesen Beitrag unter Annahme einer konstanten Querschnittshöhe zu ermitteln oder den Einfluß der ungleichmäßigen Temperaturänderung überhaupt zu vernachlässigen.

V. Verschiedene Nebeneinflüsse bei Rahmentragwerken.

1. Einfluß des Schwindens bei Eisenbetontragwerken.

Unter der Voraussetzung, daß sich das Schwinden innerhalb der Stabmasse in der Längsrichtung vollkommen gleichmäßig vollzieht, ist die Wirkung einer solchen Stabverkürzung in derselben Weise rechnungsmäßig zu verfolgen wie etwa der Einfluß einer gleichmäßigen Temperaturerniedrigung. Tatsächlich gestatten bis heute die Vorschriften der meisten Staaten, die Schwindwirkungen bei Eisenbetontragwerken genau so zu behandeln wie eine Temperaturwirkung, die die gleiche Stabverkürzung hervorruft. Nach diesen vereinfachten Annahmen bietet die Berücksichtigung der Schwindwirkung bei Eisenbetontragwerken nichts Neues und es kann auf die Kapitel I bis III dieses Abschnittes verwiesen werden.

2. Berücksichtigung der durch die Längskräfte hervorgerufenen Formänderungen.

Bekanntlich treten die Einflüsse der Formänderungen der Längs- und Querkräfte im Verhältnis zu denen, die durch die Momente verursacht werden, bei Rahmentragwerken stark zurück. Es ist daher üblich, diese Nebeneinflüsse, namentlich die infolge Formänderung durch Querkräfte, in den meisten Fällen zu vernachlässigen. Es kann sich aber doch in Ausnahmefällen die Notwendigkeit ergeben, die durch die Formänderung infolge von Längskräften hervorgerufenen Zusatzmomente zu bestimmen.

Man wird sich aber wohl fast in allen Fällen mit einer nachträglichen Ermittlung dieser Zusatzbeanspruchungen begnügen können. Liegt also die Berechnung der Momente ohne Berücksichtigung der Stablängenänderung durch die Längskräfte vor, so werden mit diesen Momenten die Längskräfte berechnet, die natürlich in Wirklichkeit nur Näherungswerte darstellen. Mit diesen Näherungswerten bestimmt man nach dem bekannten HOOKEschen Gesetz die Längenänderungen der einzelnen Rahmenstäbe. Für einen Stab mit gleichbleibendem Querschnitt F und der Länge l ergibt sich somit bei einer Längskraft P die Längenänderung

$$\lambda = \frac{P \cdot l}{EF},\tag{210}$$

wobei E die Dehnungszahl bedeutet.

Ist die Querschnittsfläche des untersuchten Stabes nicht durchwegs gleich, so wird, wenn man die Spannung in jedem Querschnitte gleichmäßig verteilt annimmt, die gesamte Längenänderung

$$\lambda = \int_{0}^{l} \frac{P \cdot dx}{EF} = \frac{P}{E} \int_{0}^{l} \frac{dx}{F}$$
(211)

oder auch

$$\lambda = \frac{P}{E} \sum \frac{\Delta x}{F},$$
 (211a)

wenn man sich den Stab in einzelne Teile von der Länge Δx zerlegt denkt und F jeweils die mittlere Querschnittsfläche dieses Stabteiles bedeutet.

Sind auf diese Weise sämtliche Längenänderungen ermittelt, so können in der gleichen Art wie früher bei der Berücksichtigung von Temperaturänderungen die Belastungsglieder \mathfrak{M} aus diesen Längenänderungen berechnet werden. Unter Verwendung derselben Gleichungstabelle, aus welcher die ersten Momente bestimmt worden sind, ergeben sich nun durch Auswerten des neuen Belastungsfalles die Zusatzmomente, die durch die Formänderung infolge der Stablängskräfte verursacht werden. Fügt man die so erhaltenen Werte zu den zuerst ermittelten hinzu, so ergeben sich angenähert die gesuchten endgültigen Werte. Auf eine Wiederholung dieser Rechnung unter Berücksichtigung der neuen Längskräfte zur Verbesserung der Ergebnisse kann wegen des geringfügigen Einflusses in der Regel verzichtet werden.

3. Wirkung der Stützen- und Auflagerverschiebungen.

Wenn ein Tragwerk den auftretenden Stützensenkungen oder Auflagerverschiebungen einen inneren Widerstand entgegensetzt, so werden sich Formänderungen einstellen, die im Tragwerk Spannungen erzeugen. Die unter diesem Einfluß entstehenden Momente sind in ähnlicher Weise zu ermitteln wie bei einer Temperaturwirkung, wo diese Stützen- und Auflagerverschiebungen durch Längenänderungen in den einzelnen Stäben hervorgerufen werden. Es hängt auch hier von der Be-

Allgemeines.

schaffenheit des Tragwerkes ab, ob die durch Auflagerverschiebungen bewirkten übrigen Knotenverschiebungen aus geometrischen Beziehungen, also aus Verschiebungsplänen *allein* bestimmt werden können. Ist dies der Fall, so brauchen wiederum nur die Knotengleichungen aufgestellt und aufgelöst werden. Dies trifft bei vielen symmetrischen Tragwerken zu, wenn auch die Auflagersenkungen symmetrisch erfolgen (Abb. 182, 183, 184). In der Regel wird jedoch mit solchen Fällen

Abb. 182 bis 184. Symmetrische Stützensenkungen bei Rahmentragwerken.

zu rechnen sein, wo zur Bestimmung der Unbekannten auch Verschiebungsgleichungen herangezogen werden müssen. Es können aber stets beliebig viele Stützensenkungen gleichzeitig in Rechnung gesetzt werden.

Die Größe der Stützensenkungen muß naturgemäß als bekannt vorausgesetzt werden. Es wird freilich in den meisten Fällen sehr schwierig sein, namentlich wenn es sich um Fundamentsetzungen handelt, auch nur annähernd richtige Annahmen zu treffen. Einfacher ist diese Aufgabe, wenn etwa nur die Zusammendrückung von schlanken Stützen (z. B. bei Pendelstützen) zu berücksichtigen ist, oder wenn ein Tragwerk aus Eisenbeton zum Teil auf einer Eisenkonstruktion aufgesetzt ist. In solchen Fällen kann die Senkung der Stützen aus dem HOOKEschen Gesetz für bekannte Auflagerkräfte ermittelt werden. Die Aufgabe unterscheidet sich dann aber nicht mehr von der in dem vorhergehenden Kapitel behandelten und es gilt daher die dort angestellte Betrachtung auch hier.

Fünfter Abschnitt.

Der Durchlaufträger mit veränderlichen Stabquerschnitten unter Berücksichtigung aller Sonderfälle.

I. Allgemeines.

Die Behandlung dieser Tragwerksform, die eine überaus große Rolle im gesamten Bauwesen spielt, bietet an sich keine besonderen Schwierigkeiten. Sie stellt eigentlich nur einen Sonderfall eines Rahmentragwerkes vor, dessen Knotenpunkte sich bei den Stützen befinden. Unter der Voraussetzung, daß keine Stützensenkungen auftreten, können die durchlaufenden Träger als "unverschiebliche" Tragwerke in dem Sinne aufgefaßt werden, wie sie im ersten Abschnitt, II bzw. im zweiten Abschnitt, VI ausführlich besprochen worden sind. Es ergeben sich also keine Stabdrehwinkel, so daß wiederum nur *Knotengleichungen* aufzustellen sind. Ihre Anzahl ist allgemein gleich der Zahl der Stützen. Da aber die Drehwinkel der Endauflager sehr einfach als Funktion der benachbarten Knotendrehwinkel ausgedrückt werden können, so verbleiben nur noch so viele Gleichungen, als Innenstützen vorhanden sind.

Ein Durchlaufträger mit Stützensenkungen stellt hingegen ein "verschiebliches" Tragwerk vor. Wenn aber die Verschiebungen von vornherein zahlenmäßig bekannt sind, so lassen sich daraus auch die Stabdrehwinkel sofort unabhängig von den Knotendrehwinkeln bestimmen. Es wären daher auch in diesem Falle nur *Knotengleichungen* aufzustellen, deren Anzahl wieder auf die Zahl der Innenstützen beschränkt werden könnte.

Die Berechnung könnte also allgemein in der Weise erfolgen, daß die Knotendrehwinkel als Unbekannte gewählt werden, nach deren Ermittlung die Berechnung der gesuchten Stützenmomente aus den bekannten Formeln für die Stabendmomente durchzuführen wäre. Dieses Verfahren würde hier aber keine Vorteile bieten. Es ist hingegen zweckmäßiger, sofort die *Stützenmomente* als *Unbekannte* der Rechnung zu benutzen. Es ergibt sich damit eine Gruppe von Gleichungen, die unter der Bezeichnung "Dreimomentengleichungen" bekannt sind. Darin treten in der Regel nur so viele unbekannte Momente auf, als Mittelstützen vorhanden sind. Im übrigen zeigt die Gleichungstabelle der "Dreimomentengleichungen" äußerlich denselben Aufbau und dieselben Eigenschaften wie jene der entsprechenden Knotengleichungen. Die Auflösung des Gleichungsaufwand natürlich wesentlich geringer ist als bei der Wahl der Formänderungsgrößen als Unbekannte. Daher soll auch hier bei der Besprechung des durchlaufenden Trägers den "Dreimomentengleichungen" der Vorzug gegeben werden.

Nach diesen Gesichtspunkten wird nun im folgenden der Durchlaufträger zuerst in der *allgemeinsten* Art behandelt, indem sowohl verschiedene Feldweiten als auch innerhalb eines jeden Feldes beliebig veränderliche Stabquerschnitte (Vouten) vorausgesetzt sind. Anschließend daran wird auch auf die häufig auftretenden Sonderfälle Rücksicht genommen.

II. Der Durchlaufträger mit beliebig veränderlichen Trägheitsmomenten in allen Feldern.

1. Gleichungsansätze für die Endtangentenwinkel der Biegelinie.

Ausgehend von den Gl. (76), in welchen die Endtangentenwinkel der Biegelinie eines Rahmenstabes als Funktion der Stabendmomente und der äußeren Belastung dargestellt sind, kann geschrieben werden:

$$E J_{c} \tau_{1} = M_{1} \alpha_{1} - M_{2} \beta + \alpha_{1}^{0}$$

$$E J_{c} \tau_{2} = M_{2} \alpha_{2} - M_{1} \beta - \alpha_{2}^{0}.$$
(212)

Die in diesen Ausdrücken auftretenden Winkelwerte beziehen sich durchwegs auf den *freiaufliegend* gedachten Stab, und zwar bedeuten:

<i>α</i> ₁	den EJ_c -fachen Tangentenwinkel der Biegelinie im Endpunkte (1), wenn dort ein Moment $M = +1$ angreift (Abb. 185a).
<i>α</i> ₂	den EJ_c -fachen Tangentenwinkel der Biegelinie im Endpunkte (2), wenn dort ein Moment $M = +1$ angreift (Abb. 185b).
β	den EJ_c -fachen Tangentenwinkel der Biegelinie, der bei der Be- lastung des einen Stabendes mit dem Moment $M = +1$ am anderen Stabende auftritt (Abb. 185a, b).
α_1^0 bzw. α_2^0	die EJ_{\circ} -fachen Endtangentenwinkel der Biegelinie am Stabende (1) bzw. (2), infolge der äußeren Belastung (Abb. 185c).

Weiter sind unter M_1 und M_2 die endgültigen Stabanschlußmomente zu verstehen, während J_c ein beliebig zu wählendes Vergleichsträgheitsmoment darstellt.

Diese Gleichungen sollen jetzt auf den durchlaufenden Träger angewendet werden. Unter der Voraussetzung, daß keine Stabdrehwinkel auftreten, sind die

Endtangentenwinkel τ nach (4) identisch mit den entsprechenden Knotendrehwinkeln. Man kann nun beim durchlaufenden Träger alle Knotendrehwinkel für die Mittelstützen auf zweifache Art

Abb. 186. Bezeichnung der Stützen und Felder bei Durchlaufträgern.

durch die Endtangentenwinkel ausdrücken. Mit der Bezeichnung der Abb. 186 ergibt sich z. B., daß der Knotendrehwinkel φ_n als Endtangentenwinkel $\tau_{n,n-1}$ an der *rechten* Seite des Stabes $(\nu - 1)$ und auch als Endtangentenwinkel $\tau_{n,n+1}$ an der *linken* Seite des Stabes (ν) in Erscheinung tritt.

Durch sinngemäße Anwendung der Ausdrücke (212) kann also mit Bezug auf Abb. 186 für diese beiden Endtangentenwinkel geschrieben werden:

$$EJ_{c}^{(\nu-1)}\tau_{n,n-1} = M_{n,n-1} \cdot \alpha_{n,n-1} - M_{n-1,n}\beta_{\nu-1} - \alpha_{n,n-1}$$

$$EJ_{c}^{(\nu)}\tau_{n,n+1} = M_{n,n+1} \cdot \alpha_{n,n+1} - M_{n+1,n}\beta_{\nu} + \alpha_{n,n+1}^{0}.$$
(213)

Hierin bedeuten $J_c^{(\nu-1)}$ bzw. $J_c^{(\nu)}$ die Vergleichsträgheitsmomente in den Feldern $(\nu-1)$ bzw. (ν) .

Da nun die Stabanschlußmomente links und rechts einer jeden Stütze gleich groß sind, so ergeben sich in den vorstehenden Gleichungen noch einige Vereinfachungen. Es ist jedoch zu beachten, daß nach der Vorzeichenregel, welche den hier benutzten Ausdrücken zugrunde liegt, die Momente im vorliegenden Falle links und rechts einer jeden Stütze mit verschiedenen Vorzeichen erscheinen. Dieser Nachteil ist jedoch leicht zu beseitigen, wenn in den Gl. (213) jeweils nur das rechts von jeder Stütze gelegene Moment in Rechnung gesetzt wird. Es ergibt sich dann auch sofort eine Übereinstimmung mit der sonst im Fachschrifttum bei durchlaufenden Trägern üblichen Vorzeichenwahl für die Momente. Weiter kann auch die Bezeichnung der Stützenmomente vereinfacht werden, indem nur je ein Zeiger verwendet wird, der angibt, zu welcher Stütze das Moment gehört. Es soll also künftig geschrieben werden:

$$M_{n,n-1} = -M_{n,n+1} = -M_n; \ M_{n+1,n} = -M_{n+1,n+2} = -M_{n+1}$$

$$M_{n-1,n} = M_{n-1}; \ M_{n,n+1} = M_n.$$
(214)

Damit erscheinen die Gl. (213) in folgender Form:

$$\tau_{n,n-1} = \frac{1}{E J_c^{(\nu-1)}} \left[-M_n \alpha_{n,n-1} - M_{n-1} \beta_{\nu-1} - \alpha_{n,n-1}^0 \right]$$

$$\tau_{n,n+1} = \frac{1}{E J_c^{(\nu)}} \left[M_n \alpha_{n,n+1} + M_{n+1} \beta_{\nu} + \alpha_{n,n+1}^0 \right].$$
 (215)

2. Übergang zu den Dreimomentengleichungen.

Da die beiden Endtangentenwinkel $\tau_{n,n-1}$ und $\tau_{n,n+1}$, die durch die Ausdrücke (215) festgelegt sind, sowohl der Größe als auch der Richtung nach übereinstimmen müssen, so können diese beiden Ausdrücke gleichgesetzt werden. Man erhält:

$$M_{n-1}\frac{\beta_{\nu-1}}{EJ_{c}^{(\nu-1)}} + M_{n}\left[\frac{\alpha_{n,n-1}}{EJ_{c}^{(\nu-1)}} + \frac{\alpha_{n,n+1}}{EJ_{c}^{(\nu)}}\right] + M_{n+1}\frac{\beta_{\nu}}{EJ_{c}^{(\nu)}} + \frac{\alpha_{n,n-1}}{EJ_{c}^{(\nu-1)}} + \frac{\alpha_{n,n+1}}{EJ_{c}^{(\nu)}} = 0.$$
(216)

Diese Gleichung stellt eine Beziehung zwischen drei aufeinanderfolgenden Stützenmomenten eines Durchlaufträgers dar und man bezeichnet sie deshalb als "Dreimomentengleichung".

Um für die einzelnen Beiwerte und Absolutgrößen der Dreimomentengleichungen bei praktischen Rechnungen stets eine günstige Größenordnung zu erhalten, multipliziert man die allgemeine Gl. (216) mit einem geeigneten Verzerrungsfaktor zund erhält dann:

$$M_{n-1} \frac{\beta_{\nu-1}}{EJ_{c}^{(\nu-1)}} \cdot z + M_{n} \left[\frac{\alpha_{n,n-1}}{EJ_{c}^{(\nu-1)}} \cdot z + \frac{\alpha_{n,n+1}}{EJ_{c}^{(\nu)}} \cdot z \right] + M_{n+1} \frac{\beta_{\nu}}{EJ_{c}^{(\nu)}} \cdot z + \frac{\alpha_{n,n-1}}{EJ_{c}^{(\nu)}} \cdot z + \frac{\alpha_{n,n+1}}{EJ_{c}^{(\nu)}} \cdot z = 0.$$
(216a)

Führt man nun ähnlich wie bei der Rahmenberechnung auch in der vorstehenden Gleichung eine vereinfachende Bezeichnung ein, so erhält man die Dreimomentengleichung in übersichtlicher Form:

$$b_{r-1} M_{n-1} + d_n M_n + b_r M_{n+1} + S_n = 0.$$
(217)

Hierin bedeuten:

$$b_{\nu-1} = \frac{\beta_{\nu-1}}{E J_c^{(\nu-1)}} \cdot z = \beta^*_{\nu-1} \cdot z$$

$$b_{\nu} = \frac{\beta_{\nu}}{E J_c^{(\nu)}} \cdot z = \beta_{\nu}^* \cdot z,$$
(218)

$$d_{n} = \left[\frac{\alpha_{n,n-1}}{E J_{c}^{(\nu-1)}} \cdot z + \frac{\alpha_{n,n+1}}{E J_{c}^{(\nu)}} \cdot z\right] = \alpha^{*}_{n,n-1} \cdot z + \alpha^{*}_{n,n+1} \cdot z = a_{n,n-1} + a_{n,n+1}$$
(219)

$$S_{n} = \left[\frac{\alpha^{0}_{n,n-1}}{E J_{c}^{(\nu-1)}} \cdot z + \frac{\alpha^{0}_{n,n+1}}{E J_{c}^{(\nu)}} \cdot z\right] = \alpha^{0*}{}_{n,n-1} \cdot z + \alpha^{0*}{}_{n,n+1} \cdot z.$$
(220)

Die mit * bezeichneten Größen stellen jeweils die *wahren* Winkelwerte vor (Abb. 185a, b, c). Der Verzerrungsfaktor z ist beliebig wählbar, ist aber für das gesamte System konstant. Man setzt am besten

$$z = E J_c, \tag{221}$$

worin J_c ein öfter vorkommendes Trägheitsmoment oder irgende
in geeigneter runder Wert ist.

Der Beiwert d_n , der nach (219) die Summe der links und rechts von der betrachteten Stütze gelegenen, z-fach verzerrten α^* -Werte bedeutet, erscheint in der Gleichungstabelle in der Diagonale, weshalb er auch hier wieder als "Diagonalglied" bezeichnet werden soll.

Die Gl. (217) kann in dieser Form so oft aufgestellt werden, als Innenstützen vorhanden sind. Die so erhaltene Gleichungsanzahl genügt aber nur dann, wenn der Träger in seinen Endstützen nicht *fest eingespannt* ist. In diesem Falle müssen noch zwei Bestimmungsgleichungen für die Einspannmomente hinzutreten. (Näheres siehe in Kapitel II, 5 dieses Abschnittes.)

Bei der zahlenmäßigen Berechnung von Durchlaufträgern mit Hilfe der Dreimomentengleichungen (217) sind als Vorbereitung die Festwerte *b* nach (218), die Diagonalglieder d_n nach (219) für die Mittelstützen und schließlich die Belastungsglieder S_n nach (220) ebenfalls für alle Mittelstützen zu bestimmen. Die Bedeutung und Herkunft dieser Werte geht aus den angeführten Formeln hervor. Die darin enthaltenen Winkelwerte α , β und α^0 müßten für Felder mit beliebig veränderlichem Trägheitsmoment unter Zuhilfenahme des Mohrschen Satzes ermittelt werden. Hingegen sind alle diese Werte für Felder mit geraden oder parabolischen Vouten unmittelbar aus den Tafeln 17 bis 28 bzw. 17 a bis 24 a im Dritten Teil zu entnehmen.

Die Benutzung der Hilfstafeln für Stäbe mit ungleichen Vouten auf beiden Seiten ist im zweiten Abschnitt, IV, 2 und V, 3 ausführlich behandelt. Es gelten dann vor allem die For-

meln (103) und (118).

Um Irrtümer beim Aufstellen der Gleichungen zu vermeiden, empfiehlt es

sich auch hier, eine Beiwertskizze anzulegen, in welcher sowohl die *b*-Werte als auch die *a*-Werte eingetragen sind. Eine solche Beiwertskizze zeigt z. B. Abb. 187, in welcher die *b*-Werte jeweils in der Stabmitte und die α -Werte an den zugehörigen Stabenden erscheinen. An Hand dieser Skizze sind nach (219) die Diagonalglieder der Mittelstützen sehr leicht zu ermitteln. So wird z. B.:

$$d_2 = a_{2,1} + a_{2,3}; \ d_3 = a_{3,2} + a_{3,4}$$
 usw.

3. Beschreibung des Rechnungsganges.

Der Gang der Berechnung ist im wesentlichen derselbe wie bei den Rahmentragwerken, wo die Formänderungsgrößen als Unbekannte auftreten. Er läßt sich in folgende Abschnitte zusammenfassen:

1. Feststellung der Tragwerksabmessungen, also der Stablängen, Querschnittsgrößen, Voutenlängen und Trägheitsmomente.

2. Ermittlung der Winkelwerte α und β (bei Vouten unter Benutzung der Tafeln 17 bis 20 bzw. 17a bis 20a des Dritten Teiles) und der Stabfestwerte a und b nach (218) und (219).

3. Herstellung der Beiwertskizze und Berechnung der Diagonalglieder d nach (219).

4. Ermittlung der Winkelwerte α^0 (bei Vouten unter Benutzung der Zahlentafeln 21 bis 28 oder der Kurventafeln 21 a bis 24 a des Dritten Teiles) und der Belastungsglieder S_n nach (220).

5. Tabellarische Aufstellung der Dreimomentengleichungen nach (217) und deren Auflösung.

Es ist natürlich auch hier vorteilhaft, sämtliche in Betracht kommenden Belastungsfälle in einer einzigen Gleichungstabelle zu vereinigen und gemeinsam zu behandeln. (Siehe Zahlenbeispiele Nr. 19, 20.)

4. Tabellarische Aufstellung der Dreimomentengleichungen für einen Fünffeldbalken.

Der Träger hätte die in Abb. 188a ersichtliche Form. In Abb. 188b ist die zugehörige Beiwertskizze dargestellt. Durch wiederholte Anwendung des Gleichungs-

Abb. 188 a und b. Fünffeldbalken mit Beiwertskizze.

	M ₂	M_3	M4	M_5	B_{I}	$B_{\rm II}$	usw.
M_2	d_2	b_2			$S_{2}^{(I)}$	$S_2^{(II)}$	
M_3	<i>b</i> ₂	d_3	b_3		$\overline{S_3}^{(\mathrm{I})}$	$S_{3}^{(II)}$	
M_4		b_3	d_4	b_4	$S_4^{(I)}$	$S_4^{(II)}$	
M_5			<i>b</i> ₄	d_5	$S_{5}^{(I)}$	$S_{5}^{({\rm II})}$	

Gleichungstabelle 16.

ansatzes (217) können die den vier Innenstützen entsprechenden Dreimomentengleichungen tabellarisch angeschrieben werden (siehe Gleichungstabelle 16). In den letzten Spalten erscheinen die Belastungsglieder für die verschiede-Belastungsfälle, nen die zur Unterscheidung mit $B_{\rm I}$, $B_{\rm II}$... usw. bezeichnet sind.

5. Der Durchlaufträger mit eingespannten Enden.

A. Gleichungsansätze.

Der Unterschied gegenüber dem soeben behandelten Fall, wo eine freie Lagerung in den Endstützen vorausgesetzt worden ist, besteht ledig-

lich darin, daß hier zwei Gleichungen mehr aufgestellt werden müssen, weil auch die Einspannmomente in den Endstützen gemeinsam mit den übrigen Stützen-

Abb. 189. Beiwertskizze.

momenten zu bestimmen sind. Zur Aufstellung dieser neu hinzutretenden Gleichungen kann wiederum die allgemeine Form (217) sinngemäß Verwendung finden. Für die *linke* Stütze würde sie mit den Bezeichnungen der Abb. 189 lauten:

$$d_1 M_1 + b_1 M_2 + S_1 = 0, (222)$$

d. h. es entfällt hier das Glied $b_{r-1} M_{n-1}$, weil *links* von der betrachteten Stütze überhaupt kein Feld vorhanden ist. Das zugehörige Diagonalglied vereinfacht sich in diesem Falle nach (219) zu

$$d_1 = \frac{\alpha_{1,2}}{EJ_c^{(1)}} \cdot z = \alpha^*_{1,2} \cdot z = a_{1,2}, \tag{223}$$

ebenso das Belastungsglied nach (220) zu

$$S_1 = \frac{\alpha_{1,2}^0}{E J_c^{(1)}} \cdot z = \alpha_{1,2}^0 \cdot z.$$
 (224)

Bei voller Einspannung der *rechten* Endstütze lautet die Gl. (217) für diese Stütze mit den Bezeichnungen der Abb. 189

$$b_{\nu-1} M_{n-1} + d_n M_n + S_n = 0.$$
(225)

Hier verschwindet das Glied $b_r M_{n+1}$, weil *rechts* von der betrachteten Stütze kein Feld mehr vorhanden ist. Das zugeordnete Diagonalglied ergibt sich daher mit

$$d_n = \frac{\alpha_{n,n-1}}{E J_c^{(\nu-1)}} \cdot z = \alpha^*_{n,n-1} \cdot z = a_{n,n-1}$$
(226)

und das Belastungsglied mit

$$S_n = \frac{\alpha^{0}_{n,n-1}}{E J_c^{(\nu-1)}} \cdot z = \alpha^{0*}_{n,n-1} \cdot z.$$
(227)

Bei der Beurteilung des Umfanges der Rechnung muß hier in Betracht gezogen werden, daß so viele Gleichungen gemeinsam aufzulösen sind, als insgesamt Stützen vorkommen. Würde man in einem solchen Falle den Durchlaufträger wie ein Rahmentragwerk mit Formänderungsgrößen als Unbekannte berechnen, so würden sich zwei Gleichungen *weniger* ergeben. Allerdings müßten dann die gesuchten Momente nach Auflösung des Gleichungssystems noch aus den bekannten Formeln ermittelt werden. Dennoch bietet für die Berechnung des durchlaufenden Trägers mit eingespannten Enden auch das Drehwinkelverfahren beachtenswerte Vorteile.

B. Tabellarische Aufstellung der Dreimomentengleichungen für einen Fünffeldbalken mit eingespannten Enden.

Abb. 190 zeigt die Beiwertskizze, in welcher also auch für die Endstützen die entsprechenden Werte eingetragen sind. Damit kann die tabellarische Aufstellung der Dreimomentengleichungen vorgenommen werden (siehe Gleichungstabelle 17). Die erste und letzte Gleichung in der Tabelle ergibt sich unter Benutzung von (222) bzw. (225).

1a12	az, az,	,3 a 3,2	a 3,4	a43 a45	a 5,4	a _{5,6}	a 5,5 %
त्र 1 दे 1 5	δη ② <i>d</i> ₂ S ₂	<i>b</i> ₂ (03 13 13 13	(4) đ4 54	by (5) d. S5) <i>b</i> 5	© d.6 S6
		Abb.	190. Bei	wertskizze.			
		Gleich	ungst	abelle	17.		
	M ₁		M_3	M_4	M_5	M_{6}	В

	M_1	M ₂		M ₄	M_5	M 6	В
M_1	d_1	b_1					S_1
M_2	b_1	d_2	b_2				S_2
M_{3}		b_2	d_3	b_3			S_3
M_4			b_3	d_4	b 4		S_4
M_{5}				b_4	d_5	b_5	S_5
M_{6}					b_5	d_6	S_6

6. Der Durchlaufträger mit auskragenden Enden.

Der Einfluß der belasteten Kragarme kommt in der Gleichungstabelle für die zweite und vorletzte Stütze zur Geltung, und zwar nur in den Belastungsgliedern. Wendet man die allgemeine Gl. (217) auf die zweite Stütze des Durchlaufträgers (Abb. 191) an, so erhält man

$$b_1 M_1 + d_2 M_2 + b_2 M_3 + S_2 = 0. (228)$$

Guldan, Rahmentragwerke.

97

7
Sonderfälle.

Nun ist das Moment M_1 von vornhere
in bekannt, da es gleich ist dem Moment M_k des Kragarmes. Also kann gesetzt werden:

$$M_1 = M_{k_1}.$$

Es ist somit das erste Glied der Gl. (228) zahlenmäßig bestimmt und kann mit

dem ebenfalls zahlenmäßig gegebenen Belastungsglied S_2 vereinigt werden. Damit erhält man ein neues Belastungsglied

$$S_{2}' = S_{2} + b_{1} \cdot M_{k_{1}} \tag{229}$$

und die Gleichung für die zweite Stütze lautet dann

$$d_2 M_2 + b_2 M_3 + S_2' = 0.$$
 (230)

Ähnlich ergibt sich für die vorletzte Stütze n

$$b_{\nu-1} M_{n-1} + d_n M_n + S_n' = 0, (231)$$

wobei

$$S_{n}' = S_{n} + b_{\nu} \cdot M_{k_{n+1}}.$$
(232)

Die äußere Form der Gleichungstabelle hat also für den Durchlaufträger mit Kragarmen dasselbe Aussehen wie für einen solchen ohne Kragarme.

III. Sonderfälle.

In den bisherigen Ausführungen wurde allgemein angenommen, daß die Querschnitte des Durchlaufträgers entweder *beliebig* veränderlich sind oder daß bei den Stützen sog. Vouten als Auflagerverstärkungen vorkommen. Da nun sämtliche Zahlentafeln, die zur Ermittlung der Beiwerte und Belastungsglieder für Stäbe mit verschiedenen Voutenformen im Dritten Teil zur Verfügung stehen, stets auch den Sonderfall "Stäbe ohne Vouten" (d. h. n = 1 oder $\lambda = 0$) enthalten, so sind natürlich die bisher angegebenen Gleichungen unter Benutzung dieser Hilfstafeln auch dann vorteilhaft zu verwenden, wenn die zu behandelnden Durchlaufträger gleichzeitig Felder mit und ohne Vouten aufweisen.

Es würde sich also erübrigen, auf einzelne Sonderfälle näher einzugehen. Sie sollen aber trotzdem in den folgenden Kapiteln der Reihe nach zur Sprache kommen, um den genauen Zusammenhang zwischen der *allgemeinsten* Form der Dreimomentengleichungen (217) und den für die verschiedenen Sonderfälle im Fach-

schrifttum gebräuchlichen Gleichungsformen, welche verhältnismäßig häufig Verwendung finden, zu zeigen.

1. Der Durchlaufträger mit feldweise verschiedenen, innerhalb der Felder jedoch konstanten Trägheitsmomenten.

Die in Gl. (216) auftretenden EJ_c -fach verzerrten Winkelwerte α und β können für Stäbe mit konstanten Trägheitsmomenten $J_c^{(\nu-1)}$ bzw. $J_c^{(\nu)}$ nach dem bekannten Satz von Монк als Auflagerdrücke der in Abb. 192 b angedeuteten *M*-Flächen sehr einfach bestimmt werden, und zwar ergeben sich:

$$\begin{aligned}
\alpha_{n, n-1} &= \frac{l_{\nu-1}}{3}; \qquad \beta_{\nu-1} &= \frac{l_{\nu-1}}{6} \\
\alpha_{n, n+1} &= \frac{l_{\nu}}{3}; \qquad \qquad \beta_{\nu} &= \frac{l_{\nu}}{6}.
\end{aligned}$$
(233)

Führt man nun die vorstehenden Ausdrücke für α und β in die allgemeine Gl. (216) ein, so erhält man, wenn der als konstant angenommene Wert Efortgelassen wird, die Gleichungsform für eine Stütze (n) (siehe Abb. 192a).

$$M_{n-1} \cdot \frac{l_{\nu-1}}{J^{(\nu-1)}} + 2 M_n \left(\frac{l_{\nu-1}}{J^{(\nu-1)}} + \frac{l_{\nu}}{J^{(\nu)}} \right) + M_{n+1} \frac{l_{\nu}}{J^{(\nu)}} + \frac{6 \alpha^0_{n,n-1}}{J^{(\nu-1)}} + \frac{6 \alpha^0_{n,n+1}}{J^{(\nu)}} = 0.$$
(234)

Die Werte α^0 sind für Stäbe mit unveränderlichen Querschnitten mit Hilfe der in den Tafeln 2 bis 4 für verschiedene Belastungsfälle angegebenen Formeln zu berechnen. Für Einzellasten können auch die Einflußlinien auf Tafel 4 benutzt werden.

Der Zusammenhang zwischen den Werten α^0 und \mathfrak{M} auf den Tafeln 2 bis 4 geht aus den Gl. (108a) und (109a) hervor.

2. Der Durchlaufträger mit gleichen Trägheitsmomenten in allen Feldern.

Es kann also in Gl. (234) $J^{(\nu-1)} = J^{(\nu)}$ gesetzt werden, und man erhält nach Kürzung dieser Werte

$$M_{n-1} \cdot l_{\nu-1} + 2 M_n (l_{\nu-1} + l_{\nu}) + M_{n+1} l_{\nu} + 6 \alpha^0_{n, n-1} + 6 \alpha^0_{n, n+1} = 0.$$
(235)

3. Der Durchlaufträger mit gleichem Verhältnis $\frac{J}{l}$ in allen Feldern.

In diesem Falle kann man in Gl. (234) $\frac{l_{\nu-1}}{J^{(\nu-1)}} = \frac{l_{\nu}}{J^{(\nu)}}$ setzen und es ergibt sich nach entsprechender Vereinfachung:

$$M_{n-1} + 4 M_n + M_{n+1} + \frac{6 \alpha^0_{n,n-1}}{l_{\nu-1}} + \frac{6 \alpha^0_{n,n+1}}{l_{\nu}} = 0.$$
 (236)

4. Der Durchlaufträger mit gleichen Trägheitsmomenten und gleichen Längen in allen Feldern.

Unter dieser Voraussetzung kann in Gl. (234) $l_{\nu-1} = l_{\nu} = l$, ferner $J^{(\nu-1)} = J^{(\nu)} = J$ gesetzt werden und man erhält nach Multiplikation mit $\frac{J}{I}$

$$M_{n-1} + 4 M_n + M_{n+1} + \frac{6}{l} (\alpha^0_{n, n-1} + \alpha^0_{n, n+1}) = 0.$$
(237)

7*

IV. Temperatureinflüsse beim Durchlaufträger.

1. Allgemeines.

Da der durchlaufende Träger nur *ein* festes Auflager besitzt, werden die infolge einer gleichmäßigen Temperaturänderung entstehenden gleich großen Längenänderungen aller Fasern in keiner Weise behindert, so daß auch keine Spannungen im Träger auftreten können. Sind jedoch die Temperaturänderungen nicht gleichmäßig über die Trägerquerschnitte verteilt, so zeigt der Träger das Bestreben, sich wegen der ungleichen Längenänderungen der einzelnen Fasern zu krümmen. Diese Krümmungen können sich aber nicht ungehindert einstellen, da die Stützen sowohl ein Durchsenken als auch ein Abheben des Trägers von den Lagern nicht zulassen, wodurch dort Auflagerkräfte wirksam werden.

Es treten also beim Durchlaufträger infolge ungleichmäßig über den Querschnitt verteilter Temperaturänderungen sowohl Biegungsmomente als auch Querkräfte auf.

2. Voraussetzungen.

Die Behandlung der vorliegenden Aufgabe erfolgt unter Zugrundelegung nachstehender Annahmen:

1. Die Querschnitte ändern sich nur von Feld zu Feld, innerhalb eines jeden Feldes sind sie stets gleich.

2. Die Temperaturänderungen sind nur feldweise verschieden, innerhalb eines jeden Feldes sind sie für alle Querschnitte gleichartig.

3. Die Temperaturänderungen gehen innerhalb eines jeden Querschnittes so vor sich, daß sie der Breite nach gleichmäßig und der Höhe nach linear erfolgen.

4. Die Elastizitätszahl ${\it E}$ ist für den gesamten Träger gleich groß.

3. Ermittlung der Belastungsglieder.

Nach der im ersten Punkt enthaltenen Voraussetzung gelten hier die Dreimomentengleichungen (234), wobei das Belastungsglied in der Form

$$S_n = 6 \left(\frac{\alpha^0_{n,n-1}}{J^{(\nu-1)}} + \frac{\alpha^0_{n,n+1}}{J^{(\nu)}} \right)$$
(238)

erscheint. Um nun dieses Belastungsglied in eine unmittelbare Beziehung zur Temperaturänderung selbst zu bringen, können die bei der Untersuchung der

Abb. 193. Allgemeine Bezeichnungen.

Temperaturwirkung an Rahmentragwerken angestellten Betrachtungen verwertet werden. Es ergeben sich mit den hier gewählten Bezeichnungen (Abb. 193) die EJ_c -fachen Werte von α_1^0 und α_2^0 nach (207) für das Feld $(\nu - 1)$ mit der Trägerhöhe $(h_{\nu-1})$ und der Temperaturänderung $(\varDelta t_{\nu-1})$

$$x^{0}_{n.n-1} = \frac{EJ^{(\nu-1)} \cdot \omega \cdot \varDelta t_{\nu-1} l_{\nu-1}}{2 h_{\nu-1}}$$
(239)

und für das Feld (v) mit der Trägerhöhe h_v und dem Temperaturunterschied Δt_v

$$\alpha^{0}_{n,n+1} = \frac{EJ^{(\nu)} \cdot \omega \cdot \varDelta t_{\nu} \cdot l_{\nu}}{2 h_{\nu}} \cdot$$
(239a)

Damit wird nach (238) das "Temperaturbelastungsglied"

$$S_n^{t} = 3 E \omega \left(\frac{\Delta t_{\nu-1} \cdot l_{\nu-1}}{h_{\nu-1}} + \frac{\Delta t_{\nu} \cdot l_{\nu}}{h_{\nu}} \right), \qquad (240)$$

wobei

 $\Delta t = t_u - t_o$. Sind die Trägerhöhen in allen Feldern gleich, also $h_{\nu} = h_{\nu+1} = h$, so wird

$$S_n^{\ t} = \frac{3 E \omega}{h} \left(\Delta t_{\nu-1} \cdot l_{\nu-1} + \Delta t_{\nu} \cdot l_{\nu} \right) \tag{240a}$$

und wenn außerdem auch die Temperaturänderungen in benachbarten Feldern gleich sind, so ergibt sich für die dazwischenliegende Stütze (n)

$$S_n^t = \frac{3 E \omega \cdot \Delta t}{h} (l_{\mathfrak{p}-1} + l_{\mathfrak{p}}).$$
(240 b)

Nach Ermittlung der "Temperaturbelastungsglieder" kann somit die zahlenmäßige Durchrechnung unter den hier zugrunde gelegten Voraussetzungen nach der Form (234) der Dreimomentengleichungen durchgeführt werden. (Siehe Zahlenbeispiel Nr. 18.)

V. Der Durchlaufträger mit nachgiebigen Stützen.

1. Voraussetzungen.

1. Die Trägerquerschnitte sind beliebig veränderlich.

2. Die Nachgiebigkeit kann bei beliebig vielen Stützen eintreten, sie kann aus Hebungen und Senkungen bestehen.

3. Die Verschiebungen senkrecht zur Trägerachse sind so klein, daß sie nur elastische Formänderungen im Tragwerk hervorrufen.

4. Die Senkungen bzw. Hebungen der Stützen sind zahlenmäßig gegeben.

2. Ansatz für die Dreimomentengleichungen.

In Abb. 194 ist die Verformung eines beliebig belasteten Durchlaufträgers mit positiven Stützenverschiebungen, also Stützensenkungen dargestellt. Darin sind folgende Winkelwerte

besonders bezeichnet: 1. Die Winkel $\tau_{n,n-1}$ und $\tau_{n,n+1}$, welche die gemeinsame Tangente T-T an die Biegelinie in der verschobenen Stütze (n') mit den endgültigen Stabsehnen (n') - (n'-1)

und (n') - (n' + 1) einschließt.

bzw. ψ_{ν} , also die Winkel, um

2. Die Stabdrehwinkel $\psi_{\nu-1}$

Abb. 194. Durchlaufträger mit Stützensenkungen.

welche die Stabsehnen im Felde (v-1) bzw. (v) durch die Stützensenkungen gedreht werden (nach der gewählten Vorzeichenregel entgegen dem Uhrzeigersinn positiv).

3. Der Knotendrehwinkel φ_n des Knotenpunktes n, der als Scheitelwinkel zweimal in Erscheinung tritt, und zwar

$$\begin{array}{ll} \text{im Felde} \ (\nu - 1) & \varphi_n = \tau_{n.\,n-1} - \psi_{\nu-1} \\ \text{und im Felde} \ (\nu) & \varphi_n = \tau_{n.\,n+1} - \psi_{\nu}. \end{array} \tag{242}$$

(241)

Ersetzt man nun in (242) die Endtangentenwinkel τ nach (215), so ergibt sich

$$\varphi_{n} = \frac{1}{EJ_{c}^{(\nu-1)}} \left[-M_{n} \alpha_{n,n-1} - M_{n-1} \beta_{\nu-1} - \alpha^{0}_{n,n-1} \right] - \psi_{\nu-1}$$

$$\varphi_{n} = \frac{1}{EJ_{c}^{(\nu)}} \left[M_{n} \alpha_{n,n+1} + M_{n+1} \beta_{\nu} + \alpha^{0}_{n,n+1} \right] - \psi_{\nu}.$$
(243)

Durch Gleichsetzen dieser beiden Ausdrücke erhält man nach entsprechender Vereinfachung und unter Annahme eines bei jedem Glied auftretenden Verzerrungsfaktors z:

$$M_{n-1} \frac{\beta_{\nu-1}}{EJ_{c}^{(\nu-1)}} \cdot z + M_{n} \left[\frac{\alpha_{n,n-1}}{EJ_{c}^{(\nu-1)}} \cdot z + \frac{\alpha_{n,n+1}}{EJ_{c}^{(\nu)}} \cdot z \right] + M_{n+1} \frac{\beta_{\nu}}{EJ_{c}^{(\nu)}} \cdot z + \frac{\alpha_{n,n-1}}{EJ_{c}^{(\nu)}} \cdot z + \frac{\alpha_{n,n-1}}{EJ_{c}^{(\nu)}} \cdot z + (\psi_{\nu-1} - \psi_{\nu}) \cdot z = 0.$$
(244)

Setzt man an Stelle des nur von der Stützenverschiebung abhängigen Gliedes

$$(\psi_{\nu-1} - \psi_{\nu}) \cdot z = S_n'$$
 (245)

und an Stelle des von der äußeren Belastung abhängigen Belastungsgliedes [vgl. auch (220)]

$$\frac{{}^{\alpha}{}^{0}_{n,n-1}}{EJ_{c}^{(\nu-1)}} \cdot z + \frac{{}^{\alpha}{}^{0}_{n,n+1}}{EJ_{c}^{(\nu)}} \cdot z = S_{n}, \qquad (245a)$$

so kann man die Gl. (244) ähnlich wie (217) in gekürzter Form schreiben:

$$b_{\nu-1} M_{n-1} + d_n M_n + b_{\nu} M_{n+1} + S_n + S_n' = 0,$$
(246)

wobei in Übereinstimmung mit (218) und (219) bedeuten:

$$b_{\nu-1} = \frac{\beta_{\nu-1}}{EJ_c^{(\nu-1)}} \cdot z,$$

$$b_{\nu} = \frac{\beta_{\nu}}{EJ_c^{(\nu)}} \cdot z,$$
(247)

$$d_{n} = \frac{\alpha_{n,n-1}}{EJ_{c}^{(\nu-1)}} \cdot z + \frac{\alpha_{n,n+1}}{EJ_{c}^{(\nu)}} \cdot z = a_{n,n-1} + a_{n,n+1}.$$
(248)

Die zahlenmäßige Ermittlung der Beiwerte b und d und die Wahl des Verzerrungsfaktors z wurde früher bereits ausführlich besprochen.

Über die Auswertung der Formel (245) zur Ermittlung des Belastungsgliedes S_n' infolge Nachgiebigkeit der Stützen ist folgendes zu sagen. Da voraussetzungsgemäß die Stützensenkungen δ zahlenmäßig gegeben sind, so sind auch die Stabdrehwinkel ψ von vornherein bekannt, und zwar ist

$$\psi_{\nu-1} = \frac{\delta_{n-1} - \delta_n}{l_{\nu-1}} \quad \text{und} \quad \psi_{\nu} = \frac{\delta_n - \delta_{n+1}}{l_{\nu}}.$$
(249)

Führt man diese Werte in (245) ein, so erhält man

$$S_{n'} = \left(\frac{\delta_{n-1} - \delta_n}{l_{\nu-1}} + \frac{\delta_{n+1} - \delta_n}{l_{\nu}}\right) \cdot z.$$
(250)

In diesem Ausdruck ist δ positiv einzuführen, wenn es sich um eine Stützensenkung handelt.

M-Einflußlinien als Biegelinien am (n-1)-fach statisch unbestimmten Tragwerke. 103

Sonderfälle. Auf eine eingehende Behandlung der verschiedenen Sonderfälle kann hier verzichtet werden, da sie nichts Neues bringen. Es können die in III, 1 bis 4 zusammengestellten Dreimomentengleichungen, die durch das Belastungsglied S' sinngemäß zu ergänzen sind, unmittelbar übernommen werden. Wird aber der Einfluß von Stützensenkungen *allein* untersucht, so entfallen die von der äußeren Belastung stammenden α^0 -Glieder und man erhält in ausführlicher Schreibweise:

1. Für Durchlaufträger mit *feldweise verschiedenen*, innerhalb der Felder jedoch konstanten Trägheitsmomenten [vgl. Gl. (234)]

$$M_{n-1} \cdot \frac{l_{\nu-1}}{J^{(\nu-1)}} + 2 M_n \left(\frac{l_{\nu-1}}{J^{(\nu-1)}} + \frac{l_{\nu}}{J^{(\nu)}} \right) + M_{n+1} \frac{l_{\nu}}{J^{(\nu)}} + + 6 E \left[\frac{\delta_{n-1} - \delta_n}{l_{\nu-1}} + \frac{\delta_{n+1} - \delta_n}{l_{\nu}} \right] = 0.$$
(246 a)

2. Für Durchlaufträger mit gleichem J in allen Feldern [vgl. Gl. (235)]

$$M_{n-1} \cdot l_{\nu-1} + 2M_n(l_{\nu-1} + l_{\nu}) + M_{n+1}l_{\nu} + 6EJ\left[\frac{\delta_{n-1} - \delta_n}{l_{\nu-1}} + \frac{\delta_{n+1} - \delta_n}{l_{\nu}}\right] = 0.$$
(246 b)

3. Für Durchlaufträger mit gleichem Verhältnis $\frac{J}{L}$ in allen Feldern

$$M_{n-1} + 4M_n + M_{n+1} + 6E\left[(\delta_{n-1} - \delta_n)\frac{J^{(\nu-1)}}{l_{\nu-1}^2} + (\delta_{n+1} - \delta_n)\frac{J^{(\nu)}}{l_{\nu}^2}\right] = 0.$$
(246 c)

4. Für Durchlaufträger mit gleichem J und l in allen Feldern.

$$M_{n-1} + 4M_n + M_{n+1} + \frac{6EJ}{l^2} (\delta_{n-1} - 2\delta_n + \delta_{n+1}) = 0.$$
 (246 d)

VI. Ermittlung der Einflußlinien für den Durchlaufträger.

1. Vorbemerkung.

Im dritten Abschnitt wurden zwei verschiedene Verfahren zur Bestimmung der Einflußlinien für Rahmentragwerke behandelt, die auch für den durchlaufenden Träger Verwendung finden können. Besonders geeignet erscheint hier das erste, bei dem die Ermittlung der Einflußlinien als Biegelinien am (n-1)-fach statisch unbestimmten Tragwerk erfolgt. Zu diesem Verfahren werden im folgenden noch einige für den Durchlaufträger wichtige Betrachtungen hinzugefügt.

2. Die *M*-Einflußlinien als Biegelinien am (n-1)-fach statisch unbestimmten Tragwerke.

A. Allgemeines.

Es bestehen beim durchlaufenden Träger zunächst zwei Möglichkeiten zur rechnerischen Lösung der gestellten Aufgabe.

1. Die Anwendung des Drehwinkelverfahrens.

2. Die Anwendung der Dreimomentengleichungen.

Über den ersten Fall ist nichts Neues zu sagen, die Behandlung erfolgt in derselben Art wie dies für Rahmentragwerke ausführlich erläutert worden ist. Wesentlich anders gestaltet sich hingegen die Benutzung der Dreimomentengleichungen, die bei Durchlaufträgern mit frei oder gelenkig gelagerten Enden verschiedene Vorteile mit sich bringt. Durch die Einschaltung des Gelenkes über einer Stütze ergeben sich zwei voneinander unabhängige, einfachere Tragwerke, wobei für jedes immer nur so viele unbekannte Momente zu ermitteln sind, als jeweils Zwischenstützen übrig bleiben. So wird z. B. der Zweifeldbalken in Abb. 195 durch Einschaltung eines Gelenkes in zwei freiaufliegende Träger zerlegt und der Dreifeldbalken der Abb. 196 für die Ermittlung der M_2 -Einflußlinie in einen freiaufliegenden Träger und einen Zweifeldbalken. Weiter wird der Vierfeldbalken der Abb. 197

Abb. 195 bis 197. Ermittlung der M-Einflußlinien durch Gelenkeinschaltung.

den Trägern mit geraden oder parabolischen Vouten mit Hilfe der Zahlen- und Kurventafeln des Dritten Teiles durch ein rascheres Verfahren ersetzt werden.

Die Aufgabe besteht darin, für einen Stab mit gegebenem M-Verlauf die zugehörige Biegelinie zu ermitteln. Dieser M-Verlauf kann nach Abb. 198 durch zwei dreieckförmige M-Flächen ersetzt werden. Die Ordinaten der Biegelinien für jede dieser beiden Teilbelastungsflächen können nach dem Proportionalitätsgesetz aus den Biegelinienordinaten η_1 bzw. η_2 für M = 1 bestimmt werden, die für verschiedene Stabformen mit l = 1 in den Zahlentafeln 25 bis 28 enthalten sind. Denn die in diesen Tafeln dargestellten Einflußlinien für die Endtangentenwinkel α_1^0 bzw. α_2^0 sind nichts anderes als *Biegelinien* des freiaufliegenden Trägers von der Länge l = 1, wenn abwechselnd an beiden Stabenden ein Moment M = 1 angreift.

für die Ermittlung der M_2 -Einflußlinie in einen freiaufliegenden Träger und in einen Dreifeldbalken gespalten (Abb. 197 a) und für die Bestimmung der M_3 -Einflußlinie in zwei Zweifeldbalken (Abb. 197 b).

Die zahlenmäßige Durchrechnung dieser "ideellen" Belastungsfälle geschieht zunächst nach den in diesem Abschnitte angegebenen Gleichungen. Sind auf diese Weise die Momente bestimmt, so folgt der zweite Teil der Rechnung, nämlich die Ermittlung der Biegelinien für die einzelnen ideellen Belastungsfälle und der zugehörigen Drehwinkel φ_1 und φ_r der Gelenkquerschnitte. Davon soll in den nächsten Kapiteln die Rede sein.

B. Ermittlung der Biegelinien aus den Momentenlinien.

Diese Aufgabe kann in der bekannten Weise mit Hilfe des Mohrschen Satzes gelöst werden, indem man die entsprechend verzerrten M-Flächen als Belastung in Rechnung stellt. Diese Art ist aber ziemlich zeitraubend und kann bei durchlaufenEs ergeben sich also allgemein unter Benutzung dieser Hilfstafeln die wahren Werte y_i^* der Biegelinienordinaten in einem Trägerfeld (*i*) von der Länge l_i durch einfache Überlagerung der den beiden *M*-Dreiecken zugeordneten Beiträge, also

$$y_i^* = (M_m \cdot \eta_1 + M_n \cdot \eta_2) \frac{l_i^2}{E J_c^{(i)}}$$
 (251)

Wird M_m oder M_n gleich Null, was bei der ersten und letzten Stütze des durchlaufenden Trägers gewöhnlich der Fall ist, so verschwindet für diese Felder im Ausdruck (251) das entsprechende M-Glied. Die Vorzeichen von M_m und M_n sind in der üblichen Art anzunehmen, also *positiv*, wenn das Moment M_m

unten Zug erzeugt, und negativ, wenn es oben Zug erzeugt. Um nun die wahren Werte der gesuchten *M*-Einflußlinienordinaten η_M zu erhalten, sind die aus (251) zu bestimmenden *Biege*linienordinaten aber noch nach (154) durch den Öffnungswinkel γ der Gelenkquerschnitte zu dividieren. Über die zahlenmäßige Ermittlung dieses Wertes γ bei Trägern mit geraden oder parabolischen Vouten ist im nächsten Kapitel die Rede.

C. Bestimmung des Verdrehungswinkels γ der Gelenkquerschnitte.

Nach (155) ist

$$\gamma = \varphi_l - \varphi_r. \tag{252}$$

Hierin bedeuten φ_r die Verdrehung des rechten und φ_l die des linken Gelenkquerschnittes. Bei durchlaufenden Trägern mit unnachgiebigen Stützen werden infolge der im Gelenk angebrachten gleich großen, aber *entgegengesetzt* gerichteten Momente die beiden Drehwinkel φ_r und φ_r

die beiden Drehwinkel φ_l und φ_r stets entgegengesetztes Vorzeichen aufweisen, was bei den früher behandelten Tragwerken mit verschieblichen Knotenpunkten nicht immer der Fall sein muß. Es kann also hier im weiteren Verlaufe der Rechnung der Wert γ , der den Öffnungswinkel im Gelenk darstellt, der Einfachheit halber als die Summe der absoluten Werte $|\varphi_1|$ und $|\varphi_r|$ aufgefaßt werden, ohne *m-i* auf ihr Vorzeichen noch besonders achten zu müssen. Es kann somit geschrieben werden:

$$\gamma = |\varphi_l| + |\varphi_r|.$$
 (252a)

Die Werte φ_l und φ_r , welche mit den Auflagerdrehwinkeln bzw. Endtangentenwinkeln links und rechts vom Gelenk identisch sind, könnten wieder nach MOHR als Auflagerdrücke der entsprechend verzerrten

M-Flächen ermittelt werden. Für Stäbe mit geraden und parabolischen Vouten gibt es aber auch hier einen einfacheren Weg, indem wieder die Hilfstafeln des Dritten Teiles herangezogen werden.

Ermittlung der Einflußlinien für den Durchlaufträger.

In den Tafeln 17 bis 20 bzw. 17a bis 20a sind die Auflagerdrehwinkel $\bar{\alpha}$ und $\bar{\beta}$ für einen freiaufliegenden Träger von der Länge l = 1 infolge eines am Trägerende angreifenden Momentes M = 1 enthalten. Die diesen Tafeln zugrunde liegenden Bezeichnungen sind in den Abb. 199a, b schematisch dargestellt.

Nun können z. B. die in der Abb. 200a gegebenen *M*-Flächen in beiden Feldern durch je *zwei* einfache Dreieckflächen ersetzt werden, von welchen stets eine positiv und eine negativ erscheint (Abb. 200b). Durch Anwendung des Proportionalitätsgesetzes lassen sich somit aus den zahlenmäßig gegebenen $\overline{\alpha}$ - und $\overline{\beta}$ -Werten die gesuchten wahren Winkelwerte φ_l^* und φ_r^* für Stäbe mit verschiedenen Voutenformen leicht ermitteln. Es werden also mit den Bezeichnungen der Abb. 199a, b bzw. 200a, b

$$\varphi_l^* = \varphi^*_{n,n-1} = (M_{n,n-1} \cdot \bar{\alpha}_{n,n-1} - M_{n-1,n} \cdot \bar{\beta}_{\nu-1}) \frac{\iota_{\nu-1}}{EJ_c^{(\nu-1)}}$$

oder, da $M_{n,n-1} = 1$

$$\varphi^{*}_{n,n-1} = (\bar{\alpha}_{n,n-1} - M_{n-1,n}\bar{\beta_{r-1}}) \frac{l_{r-1}}{EJ_{c}^{(r-1)}}$$
(253)

Ferner

$$\varphi_r^* = \varphi_{n,n+1}^* = (M_{n,n+1} \cdot \bar{\alpha}_{n,n+1} - M_{n+1,n} \cdot \bar{\beta}_{\nu}) \frac{l_{\nu}}{EJ_c^{(\nu)}}$$

oder, da $M_{n,n+1} = 1$,

$$\varphi^*_{n,n+1} = (\overline{\alpha}_{n,n+1} - M_{n+1,n}, \overline{\beta}_{\nu}) \frac{l_{\nu}}{EJ_c^{(\nu)}}$$
(253a)

Man erhält also unter Anwendung von (253) und (253a) den wahren Wert des Öffnungswinkels $\gamma^* = |\varphi^*_{n,n-1}| + |\varphi^*_{n,n+1}|$

bzw.

$$\gamma^{*} = \frac{1}{E} \left[(\bar{\alpha}_{n,n-1} - M_{n-1,n} \cdot \bar{\beta}_{\nu-1}) \cdot \frac{l_{\nu-1}}{J_{c}^{(\nu-1)}} + (\bar{\alpha}_{n,n+1} - M_{n+1,n} \cdot \bar{\beta}_{\nu}) \cdot \frac{l_{\nu}}{J_{c}^{(\nu)}} \right] \cdot$$
(254)

Bezeichnet man der Einfachheit halber den Klammerausdruck, der den E-fach verzerrten Wert von γ^* bedeutet, mit γ , so kann auch geschrieben werden

$$\gamma^* = \frac{\gamma}{E}.$$
 (254a)

Die endgültigen Ordinaten $\eta_M^{(i)}$ der *M*-Einflußlinienzweige in irgendeinem Trägerfeld (*i*) ergeben sich schließlich nach (154) unter Beachtung von (251) mit

$$\eta_{M}^{(i)} = \frac{y_{i}^{*}}{\gamma^{*}} = (M_{m} \eta_{1} + M_{n} \eta_{2}) \frac{l_{i}^{2}}{E J_{c}^{(i)}} \cdot \frac{E}{\gamma}$$

$$\eta_{M}^{(i)} = \frac{1}{\gamma} (M_{m} \eta_{1} + M_{n} \eta_{2}) \frac{l_{i}^{2}}{J_{c}^{(i)}} \cdot$$
(255)

oder

In der zahlenmäßigen Berechnung der vorstehenden Ausdrücke ergibt sich noch eine kleine Vereinfachung, wenn J_c in allen Feldern des Durchlaufträgers gleich groß ist. Es kann dann in (254) $J_c^{(p-1)} = J_c^{(p)} = J_c$ gesetzt werden, so daß die Beziehung (254a) auch in der Form

$$\gamma^* = \frac{\gamma}{E J_c} \tag{256}$$

geschrieben werden kann, worin aber

$$\gamma = (\bar{\alpha}_{n,n-1} - M_{n-1,n} \cdot \bar{\beta}_{\nu-1}) \, l_{\nu-1} + (\bar{\alpha}_{n,n+1} - M_{n+1,n} \cdot \bar{\beta}_{\nu}) \, l_{\nu} \tag{257}$$

zu setzen ist. Damit ergeben sich dann die gesuchten Einflußlinienordinaten $\eta_M^{(i)}$ für irgendein Trägerfeld (i)

$$\eta_{M}^{(i)} = \frac{y_{i}^{*}}{\gamma^{*}} = \frac{1}{\gamma} \left(M_{m} \eta_{1} + M_{n} \eta_{2} \right) \cdot l_{i}^{2}.$$
(258)

Sechster Abschnitt.

Zweckmäßige Auflösungsverfahren für lineare Gleichungssysteme.

I. Abgekürzte Eliminationsverfahren.

1. Allgemeines.

Die Auflösung eines Systems linearer Gleichungen spielt bei der rechnerischen Behandlung statisch unbestimmter Tragwerke eine wichtige Rolle. Es herrschen aber über den erforderlichen Zeitaufwand zur Auflösung einer Gleichungsgruppe vielfach noch recht irrige Anschauungen, und zwar vor allem in dem Sinne, daß die damit verbundene Arbeit weit *überschätzt* wird.

Es ist hier besonders hervorzuheben, daß die Gleichungssysteme, die sich nach dem Drehwinkelverfahren ergeben, im allgemeinen einen für die Auflösung sehr günstigen Aufbau zeigen, da die Diagonalglieder zahlenmäßig gegenüber allen übrigen Gliedern in der Regel bedeutend überwiegen. Man erzielt in diesem Falle selbst bei Verwendung des gewöhnlichen Rechenschiebers hinreichend genaue Ergebnisse. Auch Iteration¹ ist oft mit Vorteil anwendbar.

Von den gebräuchlichen Verfahren zur Auflösung linearer Gleichungssysteme bietet aber in der Regel das aus der Ausgleichsrechnung der Geodäsie² bekannte "GAUSSSche Eliminationsverfahren", namentlich bei Anwendung der abgekürzten Form, die meisten Vorteile, so daß diesem

auch hier der Vorzug gegeben wird.

Das Wesen der hier zu besprechenden abgekürzten Verfahren läßt sich am besten durch folgende Überlegungen veranschaulichen. Wäre z. B. ein System von fünf Gleichungen mit den Unbekannten X_1 bis X_5 gegeben, so könnte man im Wege der Elimination zunächst aus sämtlichen Gleichungen die Unbekannte X_1 beseitigen und erhielte so ein System von vier Gleichungen mit den Unbekannten X_2 bis X_5 . In derselben Art kann man aus diesen vier Gleichungen X_2 eliminieren und erhält so eine weitere Gruppe von drei Gleichungen mit den Unbekannten X_3 bis X_5 . Setzt man diesen Weg fort, so gelangt man in der letzten Rechenstufe zu einer Gleichung mit einer Unbekannten.

Dieser Vorgang ist in Abb. 201, wo die gegebenen *fünf* Gleichungen und auch die Gleichungen der einzelnen Rechenstufen durch einfache Striche angedeutet sind, schematisch dargestellt. Die erste Gleichung jeder Gruppe ist durch einen starken

¹ Vgl. u. a. BEYER, DOMKE (Fußnote S. 69), TAKABEYA: Rahmentafeln, Berlin 1931.

² W. JORDAN: Handbuch der Vermessungskunde, 7. Aufl., Bd. 1. Stuttgart, 1920.

Strich besonders hervorgehoben und mit einer römischen Ziffer versehen. Aus diesen Gleichungen (I) bis (V), die als *Hauptgleichungen* bezeichnet werden sollen, kann man sodann rückläufig, bei (V) beginnend, die einzelnen Unbekannten ermitteln. Bei den abgekürzten Eliminationsverfahren verzichtet man nun darauf, sämtliche Gleichungen jeder Rechenstufe anzuschreiben, und stellt jeweils nur die "Hauptgleichungen" auf.

Zur zahlenmäßigen Durchführung der Berechnung eignet sich besonders die Tabellenform. Es sollen darin *alle* Rechenoperationen enthalten sein, so daß außerhalb derselben keine besonderen Nebenrechnungen zur Auflösung des gesamten Gleichungssystems erforderlich sind. Diese Rechenvorschriften sind in der Ausgleichsrechnung der Geodäsie schon längst eingebürgert und finden in letzter Zeit auch bei der Lösung der Aufgaben der Statik immer mehr Verbreitung.

Für die allgemeine Darstellung des Auflösungsvorganges wurde bisher auch in Statiklehrbüchern vorwiegend die aus der Ausgleichsrechnung der Geodäsie übernommene Bezeichnungsweise nach GAUSS verwendet. Da diese Art aber den praktisch tätigen Ingenieuren und Statikern nicht immer hinreichend geläufig ist, wird hier eine bildmäßige Darstellung gewählt, bei welcher der Gang der Rechnung einprägsamer erscheint und auch die Reihenfolge der einzelnen Rechenoperationen leichter zu überblicken ist.

Der Grundgedanke dieser bildmäßigen Darstellung der abgekürzten Gleichungsauflösung, die in den Mustern I, II, III auf den Tafeln 29, 30, 31 zur Anwendung gelangt, ist kurz folgender: An Stelle der Zahlenwerte werden einfache Zeichen gesetzt, und zwar so, daß in jeder Gleichung nur ein solches Zeichen vorkommt, also z. B. in der ersten Gleichung ein [], in der zweiten ein (), in der dritten ein \triangle usw. Um aber die Verschiedenheit der einzelnen Beiwerte in ein und derselben Gleichung anzudeuten, werden Ziffern verwendet, die mit den Ordnungszahlen der Unbekannten übereinstimmen. So wird z. B. der Beiwert von X_4 in der ersten Gleichung mit [4], in der zweiten Gleichung mit (4), in der dritten Gleichung mit \triangle usw. bezeichnet werden.

2. Beschreibung der einzelnen Rechenvorschriften.

A. Muster I für symmetrische Gleichungssysteme.

Der Auflösungsvorgang nach dieser Rechenvorschrift ist aus der bildmäßigen Darstellung auf der Tafel 29 unmittelbar ersichtlich. Es soll hier aber an Hand dieser Tafel noch eine ausführliche Beschreibung gegeben werden.

In der ersten Spalte der Tabelle ist die Benennung der Gleichungen bzw. Zeilen nach den Unbekannten durchgeführt, die den Diagonalgliedern D zugeordnet sind, während auf der rechten Seite die Zeilen fortlaufend beziffert sind.

Bei der Durchführung der einzelnen Rechnungsstufen bleiben die Bildzeichen der ursprünglichen Gleichungen erhalten. Die Verschiedenheit der Zahlenwerte wird nur durch *Punkte* über den Figuren zum Ausdruck gebracht. So wird z. B. auf Tafel 29a zunächst die Gl. (I) der Reihe nach mit $-\frac{100}{D_1}, -\frac{100}{D_1}, \dots, -\frac{100}{D_1}$ multipliziert. Demgemäß ist die der *ersten* Umformung entsprechende Zeile (6) mit *einem* Punkte, die der *zweiten* Umformung entsprechende Zeile (7) mit *zwei* Punkten bezeichnet usw. Man erhält auf diese Weise die Zeilen (6) bis (9). Wegen der Symmetrie des gegebenen Gleichungssystems brauchen die Zeilen (6) bis (9) nicht vollständig angeschrieben zu werden, sondern es genügen die Glieder rechts von der neuen Diagonale.

Die "Hauptgleichung" (II) ergibt sich sodann durch einfaches Summieren aller in der ersten Spalte mit (X_2) bezeichneten Gleichungen. Auch hier bleiben die Zeichen der ursprünglichen Gleichung für (X_2) erhalten. Um den wertmäßigen Unterschied gegenüber dieser Gleichung auszudrücken, ist aber die Schraffur der Zeichen fortgelassen und statt D_2 und B_2 jetzt d_2 bzw. b_2 gesetzt [siehe Zeile (10)]. Der weitere Gang der Rechnung ist nur eine Wiederholung des bisherigen Vor-

Der weitere Gang der Rechnung ist nur eine Wiederholung des bisherigen Vorganges, und zwar wird nun die Gl. (II) der Reihe nach mit $-\frac{3}{d_2}$, $-\frac{4}{d_2}$, $-\frac{5}{d_2}$ multipliziert, was in den Zeilen (11) bis (13) durchgeführt ist. Auch hier sind die Zeilen nicht vollständig angeschrieben, sondern nur die Glieder rechts der Diagonale.

Die "Hauptgleichung" (III) erhält man durch einfaches Summieren aller in der ersten Spalte mit (X_3) bezeichneten Gleichungen. Sie ist in der Zeile (14) angeschrieben und enthält dieselben Zeichen wie die ursprüngliche Gleichung (X_3) , jedoch ohne Schraffur.

In derselben Weise werden auch die "Hauptgleichungen" (IV) und (V) ermittelt, wie aus der Tafel 29 ersichtlich ist. So kann schließlich die rückläufige Ermittlung der Unbekannten X_5 bis X_1 aus den "Hauptgleichungen" (V) bis (I) erfolgen.

Anschließend wird die Reihenfolge der Rechenarbeiten nach Muster I in Schlagworten zusammengefaßt:

1. Anschreiben der Gleichungen ohne die Glieder links der Diagonale [siehe Zeile (1) bis (5)].

2. Änschreiben der Umwandlungsfaktoren — $\frac{z_1}{D_1}$, wobei für z_1 der Reihe nach die Glieder der "Hauptgleichung" (I) zu setzen sind.

3. Multiplikation der "Hauptgleichung" (I) mit diesen Faktoren [siehe Zeile (6) bis (9)].

4. Ermittlung der "Hauptgleichung" (II) durch Summieren aller Gleichungen (X_2) [siehe Zeile (10)].

5. Anschreiben der Umwandlungsfaktoren $-\frac{z_2}{d_2}$, wobei für z_2 der Reihe nach die Glieder der "Hauptgleichung" (II) zu setzen sind.

6. Multiplikation der "Hauptgleichung" (II) mit diesen Faktoren [siehe Zeile (11) bis (13)].

7. Ermittlung der "Hauptgleichung" (III) durch Summieren aller Gleichungen (X_3) [siehe Zeile (14)] usw. bis zur Aufstellung der letzten "Hauptgleichung".

8. Rückläufige Ermittlung der Unbekannten, beginnend bei der letzten "Hauptgleichung".

(Vgl. auch Zahlenbeispiel auf Tafel 29a.)

B. Muster II für symmetrische Gleichungssysteme.

Diese Rechenvorschrift, die auf Tafel 30 schematisch dargestellt ist, zeigt im Vergleich mit jener auf Tafel 29 nur eine andere Reihenfolge der einzelnen Rechenoperationen.

Es wird hier zunächst die gegebene Gl. (1^*) als "Hauptgleichung" (I) in unveränderter Form in Zeile (1) nochmals angeschrieben. Sodann wird, wieder in unveränderter Form, die gegebene Gl. (2^*) in Zeile (2) angeschrieben und darunter die mit — $\frac{2}{D_1}$ multiplizierte "Hauptgleichung" (I) als Zeile (3). Durch Summieren der Zeilen (2) und (3) erhält man die "Hauptgleichung" (II) als Zeile (4).

Es werden hier also immer nur jene Rechenoperationen durchgeführt, die zur Ermittlung der nächsten "Hauptgleichung" erforderlich sind. Dadurch kommen die zu summierenden Zeilen unmittelbar untereinander zu stehen.

Zur Aufstellung der "Hauptgleichung" (III) schreibt man die gegebene Gl. (3*) unverändert als Zeile (5) an, setzt darunter die mit $-\frac{2}{D_1}$ multiplizierte "Hauptgleichung" (I) als Zeile (6) und schließlich die mit $-\frac{3}{d_2}$ multiplizierte "Haupt-gleichung" (II) als Zeile (7). Die Summe der Zeilen (5) bis (7) ergibt bereits die "Hauptgleichung" (III) als Zeile (8). In derselben Weise ist die Ermittlung der übrigen "Hauptgleichungen" vorzunehmen, wie aus dem Auflösungsschema selbst ersichtlich ist.

In Schlagworten läßt sich der Rechnungsgang nach Muster II wie folgt zusammenfassen:

1. Anschreiben der gegebenen Gl. (1*) bis (5*) ohne die Glieder links der Diagonale.

2. Anschreiben der unveränderten Gl. (1*) als "Hauptgleichung" (I) [siehe Zeile (1)].

3. Anschreiben der gegebenen Gl. (2*) als Zeile (2).

4. Multiplikation der "Hauptgleichung" (I) mit dem Faktor — $\frac{2}{D}$ [siehe Zeile (3)].

5. Ermittlung der "Hauptgleichung" (II) durch Summieren der Zeilen (2) und (3) [siehe Zeile (4)].

(b) [ister lene (1)]. 6. Anschreiben der gegebenen Gl. (3*) als Zeile (5). 7. Multiplikation der "Hauptgleichung" (I) mit dem Faktor — $\frac{\textcircled{3}}{D_1}$ und der "Hauptgleichung" (II) mit dem Faktor — $\frac{\textcircled{3}}{d_2}$ [siehe Zeile (6) und (7)]. 8. Ermittlung der "Hauptgleichung" (III) durch Summieren der Zeilen (5)

bis (7) [siehe Zeile (8)] usw. bis zur Aufstellung der letzten "Hauptgleichung".

9. Rückläufige Ermittlung der Unbekannten X_5 bis X_1 , beginnend bei der letzten "Hauptgleichung".

(Vgl. auch Zahlenbeispiel auf Tafel 30a.)

Ein Vergleich der Tafeln 29 und 30 zeigt den Zusammenhang der beiden Rechenvorschriften und auch die Unterschiede in der Reihenfolge der einzelnen Rechenarbeiten klar auf. Für den praktischen Gebrauch sind wohl beide Arten nahezu gleichwertig.

C. Muster III für unsymmetrische Gleichungssysteme.

Der Unterschied gegenüber der Auflösung von symmetrischen Gleichungssystemen besteht nur darin, daß hier die Umrechnungsfaktoren in der zweiten Spalte nicht einfach aus den einzelnen Gliedern der zuletzt erhaltenen "Hauptgleichungen" jeweils direkt zu entnehmen sind, sondern wegen der fehlenden Symmetrie gesondert ermittelt werden müssen. Aber auch dieser Vorgang kann nach dem Muster III auf Tafel 31 vollständig mechanisiert werden. Der dabei einzuhaltende Vorgang ist wieder in der zweiten Spalte der Tafel ersichtlich. Die Faktoren zur Umwandlung der "Hauptgleichung" (I) können noch unmittelbar aus den gegebenen Gleichungen übernommen werden. Diese Umwandlungsfaktoren haben auch hier den gemeinsamen Nenner D₁, während als Zähler der Reihe nach die übrigen Beiwerte von X_1 aus den gegebenen Gleichungen auftreten. Es ergeben sich damit die Zeilen (6) bis (9), die aber hier wegen der Unsymmetrie des Gleichungssystems stets vollständig anzuschreiben sind. Die "Hauptgleichung" (II) erhält man durch einfaches Summieren aller (X_2) -Gleichungen.

Die Faktoren zur Umwandlung der "Hauptgleichung" (II) haben wie bei der Auflösung eines symmetrischen Gleichungssystems durchwegs den gemeinsamen Nenner d_2 . Der jeweilige Zähler ergibt sich der Reihe nach mit $\sum (X_{3,2}), \sum (X_{4,2}),$ $\sum (X_{5,2})$. Hierin bezieht sich der erste Zeiger auf die in der ersten Spalte angegebene Benennung der einzelnen Gleichungen, der zweite Zeiger auf die Spalte der Unbekannten. Es bedeutet also z. B. $\sum (X_{4,2})$ die Summe jener Glieder der Gleichungen (X_4) , welche in der Spalte unter X_2 vorkommen.

Die "Hauptgleichung" (III) erhält man wie früher als Summe aller (X_3) -Gleichungen.

Der weitere Rechnungsgang geht ähnlich vor sich wie der bisher beschriebene. Die Faktoren zur Umwandlung der "Hauptgleichung" (III) haben wieder durchwegs den gleichen Nenner, und zwar d_3 . Die Zähler ergeben sich der Reihe nach mit $\sum (X_{4,3})$, $\sum (X_{5,3})$. Es ist also wieder z. B. $\sum (X_{5,3})$ die Summe jener Glieder der Gleichungen (X_5) , welche in der Spalte unter X_3 stehen.

Die "Hauptgleichung" (IV) ergibt sich als Summe aller (X_4) -Gleichungen.

In derselben Weise erhält man die "Hauptgleichung" (V). Die Ermittlung der einzelnen Unbekannten X_5 bis X_1 kann dann in der üblichen Weise rückläufig aus (V) bis (I) erfolgen.

Zusammenfassend ergibt sich somit nach Muster III für unsymmetrische Gleichungssysteme folgender Rechnungsgang:

1. Anschreiben des gesamten Gleichungssystems [siehe Zeile (1) bis (5)].

2. Anschreiben der Umwandlungsfaktoren — $\frac{z_1}{D_1}$, wobei für z_1 der Reihe nach die Beiwerte von X_1 aus den gegebenen Gleichungen zu setzen sind.

3. Multiplikation der "Hauptgleichung" (I) mit diesen Faktoren [siehe Zeile (6) bis (9)].

4. Ermittlung der "Hauptgleichung" (II) durch Summieren aller Gleichungen (X_2) .

5. Anschreiben der Umwandlungsfaktoren $-\frac{z_2}{d_2}$. Für z_2 sind der Reihe nach die Werte $\sum (X_{3,2})$, $\sum (X_{4,2})$, $\sum (X_{5,2})$ zu setzen, wobei z. B. $\sum (X_{3,2})$ die Summe jener Glieder der Gleichungen (X_3) bedeutet, die in der Spalte X_2 vorkommen.

6. Multiplikation der "Hauptgleichung" (II) mit diesen Faktoren [siehe Zeile (11) bis (13)].

7. Ermittlung der "Hauptgleichung" (III) durch Summieren aller Gleichungen (X_3) [siehe Zeile (14)] usw. bis zur Aufstellung der letzten "Hauptgleichung".

8. Rückläufige Ermittlung der Unbekannten, beginnend bei der letzten "Hauptgleichung".

(Vgl. auch Zahlenbeispiel auf Tafel 31a.)

Zweiter Teil.

Zahlenbeispiele.

Vorbemerkung.

Bei der Auswahl der Zahlenbeispiele wurde stets darauf Bedacht genommen, daß zunächst die *einfacheren* Rahmentragwerke zur Behandlung gelangen und dann erst allmählich die *schwierigeren* Fälle folgen. Es soll dabei vor allem gezeigt werden, wie die im Ersten Teil des Buches beschriebenen Berechnungsverfahren praktisch anzuwenden sind und wie die zahlenmäßige Durchführung der Berechnung am zweckmäßigsten und vorteilhaftesten zu geschehen hat.

Um auch den zahlenmäßigen Einfluß der Vouten auf die Momentenverteilung bei den im Bauwesen gebräuchlichen Tragwerken zu veranschaulichen und gleichzeitig auch die Art und den Umfang der Berechnungsweise mit und ohne Voutenwirkung gegenüberstellen und vergleichen zu können, wurden in den folgenden zwei Abschnitten einzelne Rahmenformen mit denselben Belastungen zuerst ohne und dann mit Vouten behandelt.

Die notwendigen Erläuterungen des Rechenganges werden nur in Schlagworten gegeben, um die Übersicht über die eigentliche Zahlenrechnung nicht durch allzu viel Text zu stören. Da aber doch größter Wert darauf zu legen ist, überall den Zusammenhang mit dem Ersten Teil des Buches zu wahren, so wird bei allen zur Anwendung gelangenden Gleichungen und Formeln durch Nummernangaben auf den Textteil hingewiesen. Wo es wünschenswert erscheint, wird außerdem auch auf einschlägige Abschnitte noch besonders aufmerksam gemacht, um ein Nachschlagen im Text zu erleichtern und ein eingehenderes Studium der mit den Beispielen zusammenhängenden allgemeinen Fragen anzuregen.

Erster Abschnitt.

Rahmentragwerke ohne Vouten.

Bei allen folgenden Beispielen wurde für die Ermittlung der Trägheitsmomente J vorwiegend die Hilfstafel 1 benutzt. Die Berechnung der Stabbelastungsglieder \mathfrak{M} erfolgte stets nach den für die verschiedensten Belastungsfälle zusammengestellten Formeln der Tafeln 2, 3, 4. Die Stabfestwerte k werden immer tabellarisch ermittelt, und zwar meist nach (21) in der verzerrten Form $k = \frac{1000 J}{l}$. Bei der zahlenmäßigen Bestimmung der Werte k, \mathfrak{M} und M, sowie bei der Auflösung der Gleichungen erzielt man in der Regel auch mit dem gewöhnlichen Rechenstab hinreichend genaue Ergebnisse.

I. Unverschiebliche Tragwerke.

Zahlenbeispiel 1 (vgl. auch Nr. 12).

Rahmenteil mit Kragarm. Feste Einspannung in den Knotenpunkten 1, 3, 4, daher $\varphi_1 = \varphi_3 = \varphi_4 = \hat{0}$. Es ist somit nur eine Unbekannte zu bestimmen, nämlich φ_2 . Die Stablängen und Querschnittsabmessungen sind aus Abb. 202, die Belastungsangaben aus Abb. 203 zu entnehmen.

Die k-Werte sind

Abb. 202. Tragwerksabmessungen.

Festwerttabelle 1.

in der Geiwerlskizze					
Abb. 204 eingetragen.	Stab	Querschnitt $b/\hbar^{(cm)}$	Trägheitsmoment J ^(M4)	Länge _l (m)	$k = \frac{1000 J}{l}$
Diagonalytica a ₂ .	1.0	10/00	0.00790	4.00	1.90
Nach (16) ist all- gemein	$\begin{array}{c} 1-2\\ 2-3\end{array}$	40/80 40/70	0,00720	4,00 7,50	1,80
$d_n = 2\sum_i k_{n,i},$	2-4	40/40	0,00213	3,50	0,61
() .			(4)		
$\begin{array}{c} P_{r}=2.5t P_{r}=5t P_{r}=5t \\ 2.50 2.$	B=5t		Q.61	,	
<i>q</i> ,-2,0 <i>t/m</i> ② <i>q</i> ₂ -3, - 5,00	0t/m 50)	2	,52	

Abb. 203. Belastungsangaben.

(7)

1.80

daher laut Beiwertskizze (Abb. 204) $d_2 = 2(1,80 + 1,52 + 0,61) = 7,86.$

Stab 2-3. Nach den Tafeln 2 bzw. 4 erhält man

$$\begin{split} \mathfrak{M}_{2,3}^{(q_2)} &= -\frac{q\,l^2}{12} = -\frac{3,0\cdot7,5^2}{12} = -14,06\,\mathrm{tm}\,; \quad \mathfrak{M}_{3,2}^{(q_2)} = +14,06\,\mathrm{tm}\,; \\ \mathfrak{M}_{2,3}^{(P_3)} &= -\frac{2\,P\,l}{9} = -\frac{2\cdot5\cdot7,5}{9} = -\frac{8,33}{9}\,,\,\,; \quad \mathfrak{M}_{3,2}^{(P_3)} = +\frac{8,33}{9}\,,\,\,; \\ \mathfrak{M}_{2,3}^{(P_3)} &= -22,39\,\mathrm{tm}\,; \quad \mathfrak{M}_{3,2}^{(P_3)} = +22,39\,\mathrm{tm}\,. \end{split}$$

Kragarm.

 $M_{2.\,k}=\,+\,2,0\cdot{5.0^2\over2}+\,2,5\,.\,5,0\,+\,5,0\,.\,2,5\,=\,+\,50,00~{
m tm}.$

Knotenbelastungsglied s_2 .

Nach (17) ist allgemein

 $s_n = \sum_i \mathfrak{M}_{n,i} + \sum M_k,$

daher

$$s_2 = \mathfrak{M}_{2,3} + M_{2,k} = -22,39 + 50,00 = +27,61 \text{ tm}.$$

Knotengleichung.

Nach (15) ist allgemein

$$d_n \varphi_n + \sum_i k_{n,i} \varphi_i + s_n = 0.$$

Guldan, Rahmentragwerke.

Da sämtliche dem Knoten 2 benachbarten Knotendrehwinkel Null sind, so ergibt sich einfach: und daraus $d_2 \varphi_2 + s_2 = 0$ oder 7,86 $\varphi_2 + 27,61 = 0$ $27 c_1$

$$p_2 = -\frac{27,61}{7,86} = -3,51.$$

Zahlenbeispiel 2 (vgl. auch Nr. 13).

Zweifeldiger Unterzug in steifer Verbindung mit den Säulen des darunterund darüberliegenden Stockwerkes (Abb. 206). Feste Einspannung in den Knoten-

punkten 1, 2, 3, 7, 8, 9, seitlich unverschieblich festgehalten, daher nur *drei* Unbekannte, und zwar φ_4 , φ_5 , φ_6 . Belastungs- und Maßangaben siehe Abb. 206 und 207.

Die k-Werte sind in der Beiwertskizze Abb. 208 eingetragen. Diagonalglieder d.

Nach (16) ist allgemein

$$d_n = 2\sum_i k_{n,i}.$$

Stab	${f Querschnitt}\ b/\hbar^{ m (cm)}$	Trägheitsmoment J ^(m4)	Länge l ^(m)	$k = \frac{1000 J}{l}$
1-4 3-6	50/60	0,00900	4,0	2,25
2 - 5	60/60	0,01080	4,0	2,70
4 - 5	30/80	0,01280	8,0	1,60
5 - 6	30/80	0,01280	6,0	2,13
$\substack{\textbf{4-7}\\\textbf{6-9}}$	50/50	0,00521	3,5	1,49
5 - 8	55/55	0,00763	3,5	2,18

Festwerttabelle 2.

Damit erhält man unter Zuhilfenahme der Beiwertskizze:

 $\begin{array}{ll} d_4 = 2 \ (2,25 + 1,60 + 1,49) & = 10,68 \\ d_5 = 2 \ (2,70 + 1,60 + 2,13 + 2,18) & = 17,22 \\ d_6 = 2 \ (2,25 + 2,13 + 1,49) & = 11,74. \end{array}$

 $Stabbelastungsglieder \mathfrak{M}.$

Stab 4-5. Nach den Tafeln 2 bzw. 4 erhält man:

$$\mathfrak{M}_{4,5}^{(q_1)} = -\frac{q l^2}{12} = -\frac{4,0.8,0^2}{12} = -21,30 \text{ tm}; \ \mathfrak{M}_{5,4}^{(q_1)} = +21,30 \text{ tm};$$

$$\mathfrak{M}_{4,5}^{(q_1)} = -21,30 \text{ tm}; \ \mathfrak{M}_{5,4}^{(q_1)} = +21,30 \text{ tm};$$

$$\mathfrak{M}_{4,5}^{(P_1)} = -\frac{1 \cdot u \, b^2}{l^2} = -\frac{3 \cdot 3 \cdot 5 \cdot 3 \cdot 5^2}{8 \cdot 0^2} = -\frac{3 \cdot 5 \cdot 1}{8 \cdot 0^2} = \frac{3 \cdot 5 \cdot 3 \cdot 3}{8 \cdot 0^2} = \frac{1 \cdot 5 \cdot 5 \cdot 3}{8 \cdot 0^2} = \frac{1 \cdot 5 \cdot 5 \cdot 3}{8 \cdot 0^2} = \frac{1 \cdot 5 \cdot 5 \cdot 3}{8 \cdot 0^2} = \frac{1 \cdot 5 \cdot 5 \cdot 3}{8 \cdot 0^2} = \frac{1 \cdot 5 \cdot 5 \cdot 3}{8 \cdot 0^2} = \frac{1 \cdot 5 \cdot 5 \cdot 3}{8 \cdot 0^2} = \frac{1 \cdot 5 \cdot 5 \cdot 5}{8 \cdot 0^2} = \frac{1 \cdot 5$$

Abb. 207. Belastungsangaben.

$$\mathfrak{M}_{5,6}^{(q_2)} = -\frac{ql^2}{12} = -\frac{4,5.6,0^2}{12} = -13,5 \text{ tm}; \ \mathfrak{M}_{6,5}^{(q_2)} = +13,5 \text{ tm}; \\\mathfrak{M}_{5,6}^{(P_2)} = -\frac{P.l}{8} = -\frac{6.6,0}{8} = -\frac{4,5}{8}, ; \ \mathfrak{M}_{6,5}^{(P_2)} = +\frac{4,5}{8}, ; \\\mathfrak{M}_{5,6} = -18,0 \text{ tm}; \ \mathfrak{M}_{6,5} = +18,0 \text{ tm}.$$

Knotenbelastungsglieder s.

Nach (17a) ist allgemein

 $s_n = \sum_i \mathfrak{M}_{n,i},$ daher $s_4 = -24,81 \text{ tm};$ $s_5 = + 27,17 - 18,0 = + 9,17 \text{ tm};$ $s_6 = +18,0 \text{ tm}.$

Knotengleichungen.

Nach (15) ist allgemein

$$d_n \, arphi_n + \sum\limits_i k_{n,\,i} \, arphi_i + s_n = 0.$$

Damit können unter gleichzeitiger Benutzung der Beiwertskizze die Gleichungen für die drei Knotenpunkte 4, 5, 6 unmittelbar in Form einer Tabelle angeschrieben werden (siehe Gleichungstabelle 2).

Daraus erhält man

$$arphi_4=+\,2,41\,;\;\;arphi_5=-.0,58\,;\;\;arphi_6=-.1,43.$$

Momente.

Nach (7) ist allgemein für einen Stab 1–2, wenn $\psi = 0$:

$$M_{1,\,2} = k \left(2 \ \varphi_1 + \varphi_2
ight) + \mathfrak{M}_{1,\,2}.$$

Entnimmt man die entsprechenden k-Werte aus der Beiwertskizze, so erhält man durch wiederholte Anwendung dieser Formel:

$$\begin{array}{lll} M_{1,\,4} = & 2,25 \, . \, 2,41 = + \, 5,42 \, {\rm tm} & M_{4,\,1} = 2,25 \, . \, 2 \, . \, 2,41 & = + \, 10,84 \, {\rm tm} \\ M_{2,\,5} = - \, 2,70 \, . \, 0,58 = - \, 1,57 \, \, , & M_{4,\,5} = \, 1,6 \, (2 \, . \, 2,41 - \, 0,58) - 24,81 = - \, 18,03 \, \, , \\ M_{3,\,6} = - \, 2,25 \, . \, 1,43 = - \, 3,22 \, \, , & M_{4,\,7} = \, 1,49 \, . \, 2 \, . \, 2,41 & = + \, \, 7,18 \, \, , \\ \end{array}$$

Gleichungstabelle 2.

	φ_{4}	φ_5	φ_6	
φ_4	10,68	1,60		- 24,81
φ_5	1,60	17,22	2,13	+ 9,17
φ_{6}		2,13	11,74	+ 18,0

Abb. 209. Momentenverlauf.

und ebenso:

$M_{5,2}=3,13~{ m tm}$	$M_{6,3} = -6,43 \ { m tm}$	$M_{7,4} = +3,59 \text{ tm}$
$M_{{ m 5,4}}=+~29,\!17$,,	$M_{\rm 6,5}=+$ 10,68 ,,	${M}_{8,5}=1,\!26$,,
$M_{\rm 5,\;6} = -23{,}52$,,	$M_{6,9} = - 4,26$,,	$M_{{ m 9,6}}=2,\!13$,, .
$M_{\rm 5,\;8} = -$ 2,53 ,,		

Das zugehörige Momentenbild ist in Abb. 209 ersichtlich.

Zahlenbeispiel 3.

Symmetrischer Dachrahmen mit fest eingespannten Säulenfüßen. Abmessungen des Tragwerkes und Belastungsangaben siehe Abb. 210a, b. Wegen symmetrischer

Abb. 210a. Tragwerksabmessungen.

Festwerttabelle 3.

(P)

q_=1,8t/m

4,6t/m

2

3,00

P=4.0t

100000000

3,00

300

(4)

3

Abb. 210b. Belastungsangaben.

3,00

P=4.0t

2

 $\widehat{\mathcal{T}}$

Die k-Werte sind in der Beiwertskizze Abb. 211 eingetragen.

$$\begin{split} d_n &= 2\sum_i k_{n,i}, \\ \text{also} \qquad d_2 &= 2 \ (1,80 + 1,90 + 0,96) = 9,32. \\ \text{Stabbelastungsglieder } \mathfrak{M} \ (\text{siehe Tafel 2 bzw. 4}). \\ \mathfrak{M}_{2,3} &= -\frac{4,6 \cdot 6,0^2}{12} = -13,8 \ \text{tm}; \quad \mathfrak{M}_{3,2} = +13,8 \ \text{tm}; \\ \mathfrak{M}_{2,4}^{(q_2)} &= -\frac{1,8 \cdot 6,0^2}{12} = -5,4 \ ,, \\ \mathfrak{M}_{2,4}^{(P)} &= -\frac{4,0 \cdot 6,0}{8} = -3,0 \ ,, \end{split}$$

$$\mathfrak{M}_{2,4} = \mathfrak{M}_{2,4}^{(q_2)} + \mathfrak{M}_{2,4}^{(P)} = -5.4 - 3.0 = -8.4 \text{ tm}; \quad \mathfrak{M}_{4,2} = +8.4 \text{ tm}.$$

Knotenbelastungsglied s_2 .

Nach (17a) ist allgemein

$$s_n = \sum_i \mathfrak{M}_{n,i},$$

daher

$$s_2 = \mathfrak{M}_{2,3} + \mathfrak{M}_{2,4} = -13.8 - 8.4 = -22.2 \text{ tm}$$

Knotengleichung.

Nach (15) ist allgemein

$$d_n \varphi_n + \sum_i k_{n,i} \varphi_i + s_n = 0.$$

Da hier alle Drehwinkel φ_i der dem Knotenpunkte 2 benachbarten Rahmenknoten gleich Null sind, so wird einfach:

$$egin{aligned} &d_2\,arphi_2+s_2=0 & ext{oder} & 9,32\,arphi_2-22,2=0 \ &&&&& \ && \ &&& \ &&& \ &&& \ &&& \ &&& \ &&& \ &&& \ &&& \ &&& \ && \ &&& \ && \ &&& \ && \$$

Momente.

und daraus

Nach (7) wird allgemein für einen Stab 1-2, wenn w = 0: $M_{1,2} = k (2 \varphi_1 + \varphi_2) + \mathfrak{M}_{1,2}.$

Mit Benutzung der Beiwertskizze (Abb. 211) erhält man durch wiederholte Anwendung dieser Formel:

 $M_{1,2} = +1,80.2,38$ = + 4.28 tm $M_{2,1}^{1,2} = +2.1,80.2,38$ 8,56 ,, = + $M_{2,3} = +2.190.238 - 138 = -4.76$ $M_{2,4} = +2.0,96.2,38 - 8,4 = - 3,83$ $M_{3,2}^{--} = +1,90.2,38 + 13,8$ = + 18,33 ,, $M_{4,2} = +0,96.2,38 + 8,4$ = + 10,69 ,, . Das zugehörige Momentenbild siehe Abb. 212.

Stab

1 - 3

3 - 4

3 - 5

5 - 5'

Abb. 212. Momentenverlauf.

Länge

l(m)

3,80

6,50

4.00

6,50

 $k = 1000 \overline{J}$

4,16

1,25

3.22

Ø

1

Zahlenbeispiel 4 (vgl. auch Nr. 14).

Symmetrischer zweistöckiger, dreistieliger Rahmen mit fest eingespannten Stielen (siehe Abb. 213 und 214). Wegen symmetrischer Belastung wird $\varphi_4 = 0$, so daß nur zwei Un-Festwerttabelle 4.

Querschnitt

 $b/h^{(cm)}$

45/75

45/60

45/70

bekannte zu bestimmen sind, und zwar $\varphi_3 = - \varphi_{3'}$ und $\varphi_5 = - \varphi_{5'}.$

Die k-Werte sind in der Beiwertskizze Abb. 215 eingetragen.

Diagonalglieder d.

Nach (16) ist allgemein

$$d_n = 2\sum_i k_{n,i},$$

also

$$d_3=2\ (4,16\ +\ 1,25\ +\ 3,22)=17,26\,;\ d_5=2\ (3,22\ +\ 2,10)=10,64.$$

Da es sich aber hier um ein symmetrisches Tragwerk handelt, bei welchem die Symmetrale durch die Mitte des Stabes 5-5' hindurchgeht, so ist an Stelle von d_5 nach (40)

$$d_{5'} = d_5 - k_{5,5'} = 10,64 - 2,10 = 8,54$$

Trägheitsmoment

J(m⁴)

0.01582

0.00810

0,01286

6,50

2

zu setzen (siehe Erster Teil, erster Abschnitt, III, 3, c).

 $Stabbelastungsglieder \mathfrak{M}.$

Stab 3-4 (siehe Tafel 2 bzw. 4).

117

$$\mathfrak{M}_{3,4}^{(q_1)} = -\frac{q l^2}{12} = -\frac{4,0.6,5^2}{12} = -14,10 \,\mathrm{tm}\,;\,\mathfrak{M}_{4,3}^{(q_1)} = +14,10 \,\mathrm{tm}\,;\,$$

$$\mathfrak{M}_{3,4}^{(P_1)} = -\frac{P \cdot a \cdot b^2}{l^2} = -\frac{7,0.2,6.3,9^2}{6,5^2} = -6,55 , ; \mathfrak{M}_{4,3}^{(P_1)} = +\frac{7,0.2,6^2.3,9}{6,5^2} = +4,37 , ;$$

$$\mathfrak{M}_{3,4}{}^{(P_2)} = -\frac{P \cdot a \cdot b^2}{l^2} = -\frac{7,0.5,2.1,3^2}{6,5^2} = -\underbrace{1,46 \ ,, \ ;}_{\mathfrak{M}_{3,4}} \mathfrak{M}_{4,3}{}^{(P_2)} = +\underbrace{\frac{7,0.5,2^2.1,3}{6,5^2}}_{6,5^2} = +\underbrace{5,83 \ ,, \ ;}_{\mathfrak{M}_{4,3}} = -22,11 \ \mathrm{tm} \,;$$

Abb. 214. Belastungsangaben.

$$\mathfrak{M}_{5,5'} = -\frac{3.6 \cdot 13.0^2}{12} = -50.7 \ \mathrm{tm}; \ \mathfrak{M}_{5',5} = +50.7 \ \mathrm{tm}.$$

Knotenbelastungsglieder s.

Nach (17a) ist allgemein

$$s_n = \sum_i \mathfrak{M}_{n,i}$$
,

$$s_3 = \mathfrak{M}_{3,4} = -22,11 \text{ tm}; \quad s_5 = \mathfrak{M}_{5,5'} = -50,70 \text{ tm}.$$

Knotengleichungen.

daher

Nach (15) ist allgemein

$$d_n \varphi_n + \sum_i k_{n,i} \varphi_i + s_n = 0.$$

Damit erhält man die beiden Gleichungen für die Knotenpunkte 3 und 5:

Die Auflösung ergibt:

$$\varphi_5 = + 5,87,$$

 $\varphi_3 = + 0,186.$

Abb. 216. Momentenverlauf.

Momente.

Nach (7) is all gemein mit $\psi = 0$: $M_{1,2} = k (2 \varphi_1 + \varphi_2) + \mathfrak{M}_{1,2}.$

Abb. 215. Beiwertskizze.

Damit erhält man unter Benutzung der Beiwertskizze (Abb. 215):

Das zugehörige Momentenbild ist in Abb. 216 ersichtlich.

Zahlenbeispiel 5.

Vierteiliger Zellensilo mit Rechtecksgrundriß (Abb. 217). Es sind die waagrecht wirkenden Momente für den in Abb. 218 ersichtlichen Belastungsfall zu ermitteln. Die Berechnung erfolgt für einen Zellenstreifen von 100 cm Höhe und 20 cm Dicke unter der Annahme unverschieblicher Knotenpunkte. Wegen der Symmetrie des Tragwerkes kann hier für die unsymmetrischen Belastungsfälle das BU.-Verfahren mit Vorteil angewendet werden (siehe Erster Teil, erster Abschnitt, III, 5).

Festwerttabelle 5.

Festwerttabelle 5.					p=12t/2
Stab	$\begin{array}{c} \text{Querschnitt} \\ b/h^{(\text{cm})} \end{array}$	Trägheitsmoment $J^{(\mathrm{m}^4)}$	Länge l ^(m)	$k = \frac{10}{l}$	
$1-2-3, \ 4-5-6$ $1-4, \ 2-5, \ 3-6$	100/20 100/20	0,00067 0,00067	5,00 6,00	2,00 1,6Ġ	Abb. 218. Bela- stungsangaben.

Die k-Werte sind in der Beiwertskizze Abb. 219 eingetragen, wobei sinngemäß nach (19) $z = \frac{10}{2 E J}$

Der gegebene unsymmetrische Belastungsfall p wird ersetzt durch einen symmetrischen mit $+\frac{p}{2}$ (Abb. 220a) und einen antimetrischen mit $\pm \frac{p}{2}$ (Abb. 220b). Für den symmetrischen Fall werden $\varphi_4 = \varphi_5 = \varphi_6 = 0$, so daß nur *drei* Unbekannte, und zwar

 $\varphi_1 = -\varphi_1', \ \varphi_2 = -\varphi_2', \ \varphi_3 = -\varphi_3'$ gemeinsam zu bestimmen sind. Für den antimetrischen Fall sind jedoch sechs Unbekannte, nämlich $\varphi_1 = \varphi_1'$, $\varphi_2 = \varphi_2'$, $\varphi_3 = \varphi_3'$, φ_4 , φ_5 , φ_6 gemeinsam zu ermitteln.

Abb. 220a und b. Symmetrische und antimetrische Ersatzbelastung.

a) Symmetrischer Fall (Abb. 220a).

Diagonalglieder d.

Aus der Beiwertskizze ergibt sich durch Anwendung von (16)

$$d_n = 2 \sum_i k_{n,i},$$

 $d_1 = d_3 = 2 (2,00 + 1,6\dot{6}) = 7,33;$ $d_2 = 2 (2,00 + 2,00 + 1,66) = 11,33.$

 $Stabbelastungsglieder \mathfrak{M}.$

Für $\frac{p}{2} = 0.6$ t/m wird:

Unverschiebliche Tragwerke.

$$\begin{split} \mathfrak{M}_{2,3} &= + \frac{0.6 \cdot 5.0^2}{12} = + 1,25 \text{ tm}; \quad \mathfrak{M}_{3,2} = - 1,25 \text{ tm}; \\ \mathfrak{M}_{2,5} &= - \frac{0.6 \cdot 6.0^2}{12} = - 1,80 \text{ ,}; \quad \mathfrak{M}_{5,2} = + 1,80 \text{ ,}; \\ \mathfrak{M}_{3,6} &= + \frac{0.6 \cdot 6.0^2}{12} = + 1,80 \text{ ,}; \quad \mathfrak{M}_{6,3} = - 1,80 \text{ ,}. \end{split}$$

 $Knotenbelastungsglieder \ s.$

Nach (17a) ist allgemein

$$s_n = \sum_i \mathfrak{M}_{n,i}.$$

Daher:

 $s_2 = +$ 1,25 — 1,80 = — 0,55 tm; $s_3 = -$ 1,25 + 1,80 = + 0,55 tm. Knotengleichungen.

Nach (15) ist allgemein

$$d_n \varphi_n + \sum_i k_{n,i} \varphi_i + s_n = 0.$$

An Hand der Beiwertskizze (Abb. 219) kann durch wiederholte Anwendung dieses Ausdruckes die Gleichungstabelle 5a angeschrieben werden.

	φ_1	$arphi_2$	$arphi_3$	B	
φ_1	+ 7,33	+ 2,00			Daraus erhält man:
φ_2	+ 2,00	+ 11,33	+ 2,00	- 0,55	$\varphi_2 = + 0,0683,$
φ_3		+ 2,00	+7,33	+ 0,55	$arphi_{3}=-$ 0,0936.

Gleichungstabelle 5a (symmetrischer Fall).

b) Antimetrischer Fall (Abb. 220b).

Diagonalglieder d.

Den sechs Unbekannten entsprechend sind auch *sechs* Diagonalglieder zu bestimmen. Es empfiehlt sich hier, nur eine Hälfte des gesamten Tragwerkes in Betracht zu ziehen (Abb. 221). Dabei ist für die in der Symmetrale gelegenen Stäbe $\frac{k}{2} = 1,0$ anzunehmen (vgl. Erster Teil, erster Abschnitt, III, 5). Aus der Beiwertskizze (Abb. 221) ist ersichtlich, daß d_1, d_2, d_3 gegenüber früher unverändert bleiben:

Abb. 221. Beiwertskizze für antimetrische Belastung. $d_1 = d_3 = 7,33; \quad d_2 = 11,33.$

_ Neu zu bestimmen sind daher nur d_4 , d_5 , d_6 . Nach $d_n = 2\sum_i k_{n,i}$ wird:

$$\begin{array}{l} d_4 = d_6 = 2 \; (1,6 \dot{6} + 1,0) \\ d_5 = 2 \; (1,0 + 1,6 \dot{6} + 1,0) = 7,33. \end{array}$$

Stabbelastungsglieder \mathfrak{M} .

Nach der Belastungsskizze Abb. 220b erhält man unter Beachtung, daß nur eine Tragwerkshälfte in Betracht zu ziehen ist, dieselben Werte wie früher, nämlich:

$\mathfrak{M}_{2,3} = +1,25 ext{ tm};$	$\mathfrak{M}_{3,2} = -1.25 \text{ tm};$
$\mathfrak{M}_{2,5} = -1,80$,, ;	$\mathfrak{M}_{5,2}=+$ 1,80 ,, ;
$\mathfrak{M}_{\mathbf{3, 6}} = +$ 1,80 ,, ;	$\mathfrak{M}_{6,3} = -1,80$,, ;
$\mathfrak{M}_{5, 6} = -1,25$,, ;	$\mathfrak{M}_{6.5}=+$ 1,25 ,, .

Knotenbelastungsglieder s.

Nach (17a) $s_n = \sum_i \mathfrak{M}_{n,i}$ erhält man für eine Tragwerkshälfte: $s_2 = -0.55 \text{ tm}; \quad s_5 = +1.80 - 1.25 = +0.55 \text{ tm};$ $s_3 = +0.55 \text{ ,,}; \quad s_6 = -1.80 + 1.25 = -0.55 \text{ ,,}.$

Knotengleichungen.

An Hand der Beiwertskizze Abb. 221 können ähnlich wie früher die Gleichungen wieder in Tabellenform angeschrieben werden.

	φ_1	φ_2	φ_{3}	φ_{4}	φ_5	φ_6	В
φ_1	+ 7,33	+ 2,00		+ 1,6Ġ			_
φ_2	+ 2,00	+ 11,33	+ 2,00		$+ 1,6\dot{6}$		0,55
φ_3		+ 2,00	+ 7,33			$+ 1,6\dot{6}$	+ 0,55
φ_4	$+ 1,6\dot{6}$			+ 5,33	+ 1,00		
φ_5		+ 1,66		+ 1,00	+ 7,33	+ 1,00	+ 0,55
φ_6			$+ 1,6\dot{6}$		+ 1,00	+ 5,33	— 0,55

Gleichungstabelle 5b (antimetrischer Fall).

Daraus ergeben sich:

$\varphi_1 = -0,0344;$	$\varphi_4 = + 0,0342;$
$\varphi_2 = + 0,0978;$	$\varphi_5 = -0,1252;$
$\varphi_3 =0,1404;$	$\varphi_6 = + 0,1704.$

Durch einfaches Summieren der Unbekannten aus den beiden Fällen a und bergeben sich die gesuchten φ -Werte für den Belastungsfall nach Abb. 218. Diese Rechnung wird in folgender Tabelle durchgeführt.

	φ_1	φ_2	φ3	φ_4	φ_5	φ ₆	φ_1'	\$\varphi_2'	φ3΄
Symmetr. Belastung Antimetr. Belastung	- 0,0186 - 0,0344	+ 0,0683 + 0,0978	- 0,0936 - 0,1404	+ 0,0342	- 0,1252	 + 0,1704	+ 0,0186 - 0,0344	-0,0683 + 0,0978	+ 0,0936 - 0,1404
Gesamtbelastung	- 0,0530	+ 0,1661	- 0,2340	+0,0342	-0,1252	+ 0,1704	- 0,0158	+0,0295	-0,0468

Momente für Gesamtbelastung p = 1,2 t/m in einer Zelle.

Nach (7) ist mit $\psi = 0$:

$$M_{1,2} = k (2 \varphi_1 + \varphi_2) + \mathfrak{M}_{1,2}$$

Da die bisher verwendeten Stabbelastungsglieder \mathfrak{M} nur für $\frac{p}{2} = 0.6$ t/m berechnet waren, sind diese zur Momentenermittlung für p = 1.2 t/m zu verdoppeln. Es ergeben sich durch wiederholte Anwendung der vorstehenden Formel:

$M_{1,2} = + 0,120 \text{ tm}$	$M_{4,1} = + 0,026 \ { m tm}$	$M_{1,'2'} = -0,004 \text{ tm}$
$M_{1,4} = -0,120$,,	$M_{ m 4,1^{'}}=+$ 0,088 $$,,	$M_{1^{'},4}=+0,004$,,
	$M_{4\ 5}\ =\ 0,114$ "	
$M_{2,1} = +$ 0,558 tm	$M_{5,4} = -0.432 \text{ tm}$	$M_{2,'1'} = +$ 0,086 tm
$M_{2,3}=+2,696$,,	$M_{\rm 5,6}~=2,\!660$,,	$M_{2^{'},3^{'}}=+0,024$,,
$M_{2,5}=3,255$,,	$M_{5,2^{'}}=0,\!368$,,	$M_{2,'5} = -0,110$,,
	$M_{\rm 5,2}~=+$ 3,459 ,,	
$M_{3,2} =3,104 \text{ tm}$	$M_{6,5} = + 2,931 \text{ tm}$	$M_{3', 2'} = -0.128 \text{ tm}$
$M_{3,6}=+3,104$ "	$M_{{ m 6},{ m 3}'}=+0,490$,,	$M_{3^{\prime},\;6}\;=\;+\;0,\!128\;$,, .
	$M_{\rm 6,3}=-3,422$ "	

Der Momentenverlauf ist aus Abb. 222 ersichtlich.

Aus den Ergebnissen des hier behandelten Belastungsfalles können sehr einfach die Momente für beliebige andere Belastungsfälle ermittelt werden. Sind z. B. gleichzeitig zwei anliegende Zellen belastet, so erhält man den zugehörigen Momentenverlauf durch einfache Spiegelung und Überlagerung der in Abb. 222 dargestellten Momente. Sind zwei diagonal gegenüberliegende Zellen belastet, so denkt man sich das in Abb. 222 ersichtliche Momentenbild in der Zeichenebene um 180° gedreht und überlagert es wiederum mit dem ursprünglichen Momentenverlauf.

II. Verschiebliche Tragwerke.

Zahlenbeispiel 6.

Dreischiffiger Shedrahmen (Abb. 223). Säulenfüße fest eingespannt, also $\varphi_1 = \varphi_2 = \varphi_3 = \varphi_4 = 0$. Längen-, Querschnitts- und Belastungsangaben siehe

Abb. 223. Tragwerksabmessungen.

Abb. 223 und 224. Unbekannte: Sieben Knotendrehwinkel φ_5 , φ_6 , φ_7 , φ_8 , φ_9 , φ_{10} , φ_{11} und ein Stabdrehwinkel ψ .

restwerttabene '	estwo	ertta	bel	le (6.
------------------	-------	-------	-----	------	----

Stab	$\begin{array}{c} \text{Querschnitt} \\ b/h^{(\text{cm})} \end{array}$	Trägheitsmoment J ^(m4)	Länge l ^(m)	$k = \frac{1000 J}{l}$
$\begin{array}{c} 1-5, \ 4-8\\ 2-6, \ 3-7\\ 5-6-7-8\\ 5-9, \ 6-10, \ 7-11\\ 6-9, \ 7-10, \ 8-11\end{array}$	35/45 35/40 30/50 30/50 30/40	0,00266 0,00187 0,00313 0,00313 0,00160	$\begin{array}{r} 4,50\\ 4,50\\ 8,00\\ 6,70\\ 3,60\end{array}$	$0,59 \\ 0,42 \\ 0,39 \\ 0,47 \\ 0,44$

Die k-Werte sind in der Beiwertskizze Abb. 225 eingetragen.

Diagonalglieder d und D.

Nach (25) ist allgemein

$$d_n = 2\sum_i k_{n\cdot i},$$

also

$$\begin{array}{rll} d_5 =& 2 \left(0,59 + 0,39 + 0,47\right) &= 2,90, \\ d_6 = d_7 =& 2 \left(0,42 + 0,39 + 0,39 + 0,44 + 0,47\right) = 4,22, \\ d_8 =& 2 \left(0,59 + 0,39 + 0,44\right) &= 2,84, \\ d_9 = d_{10} = d_{11} = 2 \left(0,47 + 0,44\right) &= 1,82. \end{array}$$

Abb. 225. Beiwertskizze.

Nach (38) ist allgemein

$$D_{\mu} = 6 \sum_{\mu} k,$$

 $D = 6 (2.0,59 + 2.0,42) = 12,12.$

also

a) Lotrechte Lasten.

 $Stabbelastungsglieder \mathfrak{M}.$

Nach Tafel 2 bzw. 4 erhält man:

$$\begin{split} \mathfrak{M}_{5,6} &= \mathfrak{M}_{6,7} = \mathfrak{M}_{7,8} = -\frac{q_1 l^2}{12} - \frac{P.a (l-a)}{l} = -\frac{0.5 \cdot 8.0^2}{12} - \frac{5.0 \cdot 2.5 \cdot 5.5}{8.0} \\ &= -2.66 - 8.60 = -11.26 \text{ tm}; \\ \mathfrak{M}_{6,5} &= \mathfrak{M}_{7,6} = \mathfrak{M}_{8,7} = +11.26 \text{ tm}; \\ \mathfrak{M}_{5,9} &= \mathfrak{M}_{6,10} = \mathfrak{M}_{7,11} = -\frac{1.5 \cdot 6.0^2}{12} = -4.50 \text{ ,, ;} \\ \mathfrak{M}_{9,5} &= \mathfrak{M}_{10,6} = \mathfrak{M}_{11,7} = +4.50 \text{ ,, ;} \\ \mathfrak{M}_{9,6} &= \mathfrak{M}_{10,7} = \mathfrak{M}_{11,8} = -\frac{0.75 \cdot 2.0^2}{12} = -0.25 \text{ ,, ;} \\ \mathfrak{M}_{6,9} &= \mathfrak{M}_{7,10} = \mathfrak{M}_{8,11} = +0.25 \text{ ,, .} \end{split}$$

 $Knotenbelastung sglieder \ s.$

Nach (26a) ist allgemein

$$s_n = \sum_i \mathfrak{M}_{n,i}$$

Damit wird

$$w = 0.8 \, \mathrm{t/m}$$

 $Stabbelastungsglieder \mathfrak{M}.$

$$\mathfrak{M}_{4.8} = + \frac{0.8 \cdot 4.5^2}{12} = + 1.35 \text{ tm}; \quad \mathfrak{M}_{8.4} = - 1.35 \text{ tm};$$

$$\mathfrak{M}_{8,11} = + \frac{0.8 \cdot 3.0^2}{12} = + 0.60 , ; \mathfrak{M}_{11,8} = -0.60 , ...$$

 $Knotenbelastungsglieder \ s.$

$$s_8 = -1.35 + 0.60 = -0.75 \text{ tm}; \ s_{11} = -0.60 \text{ tm}.$$

Belastungsglied S der Verschiebungsgleichung.

Da hier P = 0 und stets $\mathfrak{M}_{\mu} = -\mathfrak{M}_{o}$, so wird nach (39)

$$S_{\mu} = (\sum q + \sum_{\mu} \mathfrak{A}) l_{\mu};$$

daher, wenn das Abgleiten eines Teiles der Windkraft nicht in Rechnung gestellt wird,

$$S = -\left(0.8 \cdot 3.0 + \frac{0.8 \cdot 4.50}{2}\right) 4.50 = -18.90 \text{ tm.}$$

Aufstellung der Gleichungen.

Die Knotengleichungen lauten allgemein nach (30) unter Beachtung, daß hier das Glied $3 k_{\mu+1} \cdot \psi_{\mu+1}$ entfällt, weil nur in den Säulen Stabverdrehungen auftreten:

$$d_n \, arphi_n + \sum_i k_{n,\,i} \, arphi_i + \, 3 \, k_\mu \, arphi_\mu + s_n = 0.$$

Für die Knotenpunkte 9, 10, 11 entfällt auch das Glied $3 k_{\mu} \psi_{\mu}$, da bei allen dort einmündenden Stäben $\psi = 0$. Die Verschiebungsgleichung lautet nach (37):

$$\sum_{\mu} 3 k \varphi_{u} + \sum_{\mu} 3 k \varphi_{o} + D_{\mu} \psi_{\mu} + S_{\mu} = 0.$$

Mit Hilfe dieser beiden Gleichungen kann an Hand der Beiwertskizze die Gleichungstabelle 6 angeschrieben werden. Die beiden gleichzeitig zu behandelnden Belastungsfälle $B^{(a)}$ und $B^{(b)}$ unterscheiden sich nur durch die letzte Spalte der Tabelle.

	φ_{5}	φ_6	φ,	φ_8	φ ₉	φ_{10}	φ_{11}	ψ	B ^(a)	B ^(b)
φ_5	+2,90	+ 0,39			+ 0,47			+ 1,77	—15,76	
φ_6	+0,39	+4,22	+0,39		+0,44	+ 0,47		+ 1,26	- 4,25	
φ_7		+0,39	+4,22	+0,39		+ 0,44	+ 0,47	+ 1,26	— 4,25	
φ_8			+0,39	+2,84			+0,44	+ 1,77	+11,51	— 0,75
φ ₉	+0,47	+0,44			+1,82				+ 4,25	
φ_{10}		+0,47	+ 0,44			+1,82			+ 4,25	
φ_{11}			+0,47	+0,44			+1,82		+ 4,25	- 0,60
ψ	+1,77	+1,26	+ 1,26	+ 1,77				+12,12	—	

Gleichungstabelle 6.

Die Auflösung der Gleichungen ergibt:

a) Für lotrechte Belastung $(B^{(a)})$ $\varphi_5 = +6,42; \quad \varphi_7 = +2,00; \quad \varphi_9 = -4,30; \quad \varphi_{11} = -2,00;$ $\varphi_6 = +1,25; \quad \varphi_8 = -3,54; \quad \varphi_{10} = -3,15; \quad \psi = -0,76.$

b) Für Wind $(B^{(b)})$

Momente.

Nach (7) ist allgemein für einen Stab 1–2: $M_{1,2} = k (2 m_1 + m_2 + m_2)$

$$M_{1,\,2} = k \ (2 \ \varphi_1 + \varphi_2 + 3 \ \psi) + \mathfrak{M}_{1,\,2}$$

Durch wiederholte Anwendung dieser Formel erhält man sämtliche Stabendmomente.

	te Belastung $(B^{(a)})$	Für lotrechte	a) Für
--	--------------------------	---------------	--------

$M_{1,5} = +$	2,45 tm	$M_{6,9} = - 0,54 \ { m tm}$	$M_{8,4} = -5,52 \text{ tm}$
$M_{2, 6} =$	0,43 ,,	$M_{{ m 6,10}}=$ 4,80 ,,	$M_{\rm 8, 7}~=+$ 9,28 ,,
$M_{3,7} = -$	0,12 ,,	$M_{\rm 6,7}~=$ 9,50 ,,	$M_{\rm 8,11} = -3,75$,,
$M_{4,8} =$	3,44 ,,	${M}_{7,3}\ =+\ 0,72$,,	$M_{9,5}~=+~3,\!48$,,
$M_{5,1} = +$	6,24 ,,	$M_{{ m 7,6}}=+13,31$,,	$M_{9,6}~=-3,\!48$,,
$M_{5, 6} =$	5,76 ,,	$M_{{ m 7,10}}=+~0,62$ "	$M_{10,6} = + 2.13$,
$M_{5, 9} =$	0,48 ,,	$M_{7,11} = - 3,56$ "	$M_{10,7} = -2,13$,,
$M_{6,2} = +$	0,10 ,,	$M_{7,8} = -11,09$,,	$M_{11,7} = +3,56$,
$M_{6,5} = +$	14,74 ,,		$M_{11,8} = -3,56$,.

Zugehöriges Momentenbild siehe Abb. 226.

Abb. 226. Momentenverlauf für lotrechte Belastung.

b) Für Wind $(B^{(b)})$.

$M_{1,5} = +2,82 \text{ tm}$	$M_{6.9}~=-0.25~{ m tm}$	$M_{8,4} = +0.99 \text{ tm}$
$M_{2, 6} = + 2,30$,,	$M_{{ m 6,10}}=-0,35$,,	$M_{8,7} = -1,01$,,
$M_{ m 3,\ 7}=+$ 2,28 ,,	$M_{\rm 6.7}~=0,62$,,	$M_{8,11} = + 0,02$ "
$M_{ m 4,8}=+$ 4,29 $$,,	$M_{{ m 7,3}}~=+~2,04$,,	$M_{9,5} = -0.16$,,
$M_{5,1}=+$ 2,09 ,,	$M_{{ m 7,6}}=-0,64$,,	$M_{9,6}~=+~0,16$,,
$M_{\rm 5, \ 9} = 0,94$,,	${M}_{\rm 7,10}=0,\!38$,,	$M_{10,6} = +0.01$
$M_{5,6} = -1,\!15$,,	$M_{{ m 7,11}}=0,19$,,	$M_{10,7} = -0.01$,
$M_{6.5} = -0.87$,	$M_{7,8}~=-0,84$,,	$M_{\rm max} = \pm 0.41$
$M_{11} = \pm 2.09$		
1126,2 = 12,00,0		$M_{11,8} = -0.41$,,

Zugehöriges Momentenbild siehe Abb. 227.

Abb. 227. Momentenverlauf für Wind von rechts.

Zahlenbeispiel 7 (vgl. auch Nr. 15).

Tribünenrahmen mit fest eingespannten Säulenfüßen (Abb. 228). Daher $\varphi_1 = \varphi_2 = \varphi_3 = 0$. Es sind somit nur *fünf* unbekannte Knotendrehwinkel φ_4 , φ_5 ,

Abb. 228. Tragwerksabmessungen.

 $\varphi_6, \varphi_7, \varphi_8$ und zwei Verschiebungs-größen Δ_I und Δ_{II} gemeinsam zu bestimmen. Längen- und Querschnittsangaben siehe Abb. 228. Zu behandeln sind zwei Fälle:

a) Lotrechte Belastung (Abb. 229) und

b) Wind (Abb. 230).

Die Werte k und \overline{k} (in Klammern) sind in der Beiwertskizze Abb. 231 eingetragen.

Diagonalglieder d und D.

Nach (25) erhält man:

 $d_4 = 6,50;$ $d_6 = 7,50;$ $d_5 = 9,52;$ $d_7 = 5,66;$ $d_8 = 8,60.$

Nach (45) ist allgemein

$$D_{\mu}=~2{\displaystyle\sum_{\mu}}rac{ar{k}}{l}$$

Festwerttabelle 7.

Stab	$egin{array}{llllllllllllllllllllllllllllllllllll$	Trägheitsmoment $J^{(m^4)}$	Länge l ^(m)	$k = \frac{1000 \ J}{l}$	$\overline{k} = -\frac{3}{l}\frac{k}{l}$
1-4	45/45	0.00342	4,00	0,86	0,645
2 - 5	$45'\!/50$	0,00469	6,00	0,78	0,390
3 - 6	45'/55	0,00624	9,00	0,69	0,230
4 - 5	45'/70	0,01286	5,38	2,39	
5 - 6	45'/70	0,01286	8,55	1,50	
5 - 7	30/30	0,00068	7,80	0,09	0,035
6 - 8	45'/55	0,00624	4,00	1,56	1,170
7 - 8	43/85	0,02201	8,03	2,74	

Abb. 231. Beiwertskizze.

also für das erste Stockwerk

$$D_{\rm I}=\,2\left(rac{0,645}{4,0}+rac{0,390}{6,0}+rac{0,230}{9,0}
ight)=\,0,504,$$

für das zweite Stockwerk

$$D_{\rm II} = 2\left(rac{0.035}{7.8} + rac{1.170}{4.0}
ight) = 0.594$$

a) Lotrechte Lasten (Abb. 229).

Stabbelastungsglieder M.

$$\begin{split} \mathfrak{M}_{4,5} &= -\frac{7,0.5,0^2}{12} = -14,58 \text{ tm}; \quad \mathfrak{M}_{5,4} = +14,58 \text{ tm}; \\ \mathfrak{M}_{5,6} &= -\frac{7,0.8,0^2}{12} = -37,33 \text{ ,, }; \quad \mathfrak{M}_{6,5} = +37,33 \text{ ,, }; \\ \mathfrak{M}_{7,8} &= -\frac{4,0.8,0^2}{12} = -21,33 \text{ ,, }; \quad \mathfrak{M}_{8,7} = +21,33 \text{ ,, }. \end{split}$$

Kragarmmoment.

$$M_{7, k} = + \frac{4.0 \cdot 6.0^2}{2} = + 72.00 \text{ tm.}$$

 $Knotenbelastung sglieder \ s.$

Nach (26) ist allgemein

$$s_n = \sum_i \mathfrak{M}_{n,i} + \sum M_k$$

also

$$\begin{array}{rll} s_4 & = & -14,58 \ {\rm tm}\,; & s_7 = & -21,33 + 72,00 = + \ 50,67 \ {\rm tm}\,; \\ s_5 = & + \ 14,58 - 37,33 = & - \ 22,75 \ ,, \ ; & s_8 & = + \ 21,33 \ ,, \ . \\ s_6 & = & + \ 37,33 \ ,, \ ; \end{array}$$

Die Belastungsglieder S für die Verschiebungsgleichungen sind hier gleich Null, weil nur lotrecht wirkende Belastungen vorhanden sind.

b) Wind.

$$w = 1,05 \text{ t/m}$$
 (Abb. 230).

Stabbelastungsglieder.

$$\begin{split} \mathfrak{M}_{1,1} &= -\frac{1,05 \cdot 4,0^2}{12} = -1,40 \text{ tm}; \quad \mathfrak{M}_{4,1} = +1,40 \text{ tm}; \\ \mathfrak{M}_{4,5} &= -\frac{1,05 \cdot 2,0^2}{12} = -0,35 \text{ ,, }; \quad \mathfrak{M}_{5,4} = +0,35 \text{ ,, }; \\ \mathfrak{M}_{5,6} &= -\frac{1,05 \cdot 3,0^2}{12} = -0,79 \text{ ,, }; \quad \mathfrak{M}_{6,5} = +0,79 \text{ ,, }; \\ \mathfrak{M}_{6,8} &= -\frac{1,05 \cdot 4,0^2}{12} = -1,40 \text{ ,, }; \quad \mathfrak{M}_{8,6} = +1,40 \text{ ,, }; \\ \mathfrak{M}_{7,8} &= -\frac{1,05 \cdot 0,8^2}{12} = +0,06 \text{ ,, }; \quad \mathfrak{M}_{8,7} = -0,06 \text{ ,, }. \end{split}$$

Kragarmmoment.

$$M_{7,k} = -\frac{1,05.0,6^2}{2} = -0,19 \text{ tm.}$$

Knotenbelastungsglieder s.

$$\begin{array}{l} s_4 = + \ 1,40 - 0,35 = + \ 1,05 \ {\rm tm}\,; \quad s_7 = + \ 0,06 - 0,19 = - \ 0,13 \ {\rm tm}\,; \\ s_5 = + \ 0,35 - 0,79 = - \ 0,44 \ ,,\,; \quad s_8 = + \ 1,40 - 0,06 = + \ 1,34 \ ,,\,. \\ s_6 = + \ 0,79 - 1,40 = - \ 0,61 \ ,,\,; \end{array}$$

Belastungsglieder S der Verschiebungsgleichungen.

Nach (46) gilt hier unter Beachtung, daß P = 0 und stets $\mathfrak{M}_o = - \mathfrak{M}_u$:

$$S_{\mu} = \sum q + \sum_{\mu} \mathfrak{A}.$$

Daher wird im ersten Stockwerk

$$S_{\rm I} = +$$
 1,05 . 10,4 $+ \frac{1,05 \cdot 4,0}{2} = +$ 13,02 t,

im zweiten Stockwerk

$$S_{\rm II} = +1,05 \cdot 1,4 + \frac{1,05 \cdot 4,0}{2} = +3,57 \text{ t.}$$

Aufstellung der Gleichungen.

Knotengleichungen nach (42):

$$d_n \varphi_n + \sum_i k_{n,i} \varphi_i + \bar{k}_{\mu} \varDelta_{\mu} + \bar{k}_{\mu+1} \varDelta_{\mu+1} + s_n = 0.$$

Verschiebungsgleichungen nach (44):

$$\sum_{\mu} \bar{k} \varphi_{\mu} + \sum_{\mu} \bar{k} \varphi_{o} + D_{\mu} \Delta_{\mu} + S_{\mu} = 0.$$

Durch wiederholte Anwendung dieser allgemeinen Gleichungen kann unter gleichzeitiger Benutzung der Beiwertskizze Abb. 231 die Gleichungstabelle 7 angeschrieben werden. Die beiden Belastungsfälle unterscheiden sich wieder nur durch die letzten zwei Spalten dieser Tabelle.

	φ_4	φ_5	$arphi_{6}$	φ,	φ_8	Δ_{I}	Δ_{11}	B ^(a)	B ^(b)
φ_4	+6,50	+2,39				+0,645		-14,58	+ 1,05
φ_5	+2,39	+9,52	+1,50	+0,09		+0,390	+0,035	-22,75	0,44
φ_6		+1,50	+7,50		+1,56	+0,230	+1,170	+37,33	— 0,61
φ_7		+0,09		+5,66	+2,74		+0,035	+50,67	— 0,13
φ_8			+1,56	+2,74	+8,60		+1,170	+21,33	+ 1,34
Δ_{I}	+0,645	+0,390	+0,230			+0,504			+13,02
$\Delta_{\rm II}$		+0,035	+1,170	+0,035	+1,170		+0,594		+ 3,57

Gleichungstabelle 7.

Durch Auflösung erhält man:

a) Für die lotrechte Belastung $(B^{(a)})$.

Momente.

Nach (10) ist allgemein für einen Stab 1-2:

 $\varphi_6 = +[3,001;$

Abb. 233. M-Verlauf für Wind von links.

Damit erhält man:

a) Für die lotrechte Belastung $(B^{(a)})$.

$M_{1,4} = +0,75 \mathrm{tm}$	$M_{5,4} = + 33,55 { m tm}$	$M_{7,5} = -0.66 \text{ tm}$
$M_{2,5} = +2,65$,,	$M_{5,2} = + 5,37$,,	$M_{{ m 7,8}}=-71,36$,,
$M_{3, 6} = -5,79$,,	$M_{ m 5,7}=+~0,45$,,	$M_{8,6} = + 6,10$,
$M_{4,1}=+1,58$,,	$M_{{ m 5,6}}=39{ m ,}40$,,	$M_{8,7} = -6,10$,, .
$M_{4,5} = -1,58$,,	$M_{6,3} =11,54$,,	
-/-	$M_{6,8} = -6,00$,,	
	$M_{\rm 6,5}=+17,53$,,	

Zugehöriges Momentenbild siehe Abb. 232.

b) Für Wind $(B^{(b)})$.

 $M_{5,4} = + 8,06 \, \mathrm{tm}$ $M_{7.5} = -0.61 \,\mathrm{tm}$ $M_{1.4} = -18,96 \text{ tm}$ $M_{7.8} = +0,79$, $M_{5,2} = -11,80$,, $M_{2.5} = -11,95$, $M_{5,7} = -0.54$,, $M_{3,6} = -5,06$,, $M_{8,6} = -6,59$,, $M_{5,6} = + 4,28$, $M_{8.7} = +$ 6,59 ,, . $M_{4,1} = -13,71$, $M_{6.3} = - 2,99$,, $M_{4.5} = + 13,71$, $M_{6.5} = +10,08$,, $M_{6,8} = -7,10$,

Zugehöriges Momentenbild siehe Abb. 233.

Zahlenbeispiel 8.

Unsymmetrischer Dreifeldrahmen (Abb. 234). Säulenfüße fest eingespannt, daher $\varphi_1 = \varphi_2 =$ $= \varphi_3 = \varphi_4 = 0$. Es sind insgesamt fünf Unbekannte gemeinsam zu bestimmen, und zwar

vier Knotendrehwinkel φ_5 , φ_6 , φ_7 , φ_8 und die Verschiebungsgröße Δ . Zu behandeln sind zwei Fälle:

- a) Vollbelastung (Abb. 235).
- b) Temperaturerhöhung (Abb. 236).

Festwerttabelle 8.

Diese enthält hier die Werte k für sämtliche Stäbe, sowie \overline{k} für die Säulen und außerdem die *wahren* Werte $\bar{k}^* = \frac{3k^*}{l} = \frac{6EJ}{l^2}$ für alle Stäbe, wobei für $E = 2100\,000$ t/m² eingesetzt wird. Diese Werte dienen später zur Ermittlung der Temperaturbelastungsglieder.

Stab	Querschnitt $b/\hbar^{(m cm)}$	Trägheitsmoment J ^(M4)	Länge l ^(m)	$k = \frac{1000 J}{l}$	$\overline{k} = \frac{3 k}{l}$	$\bar{k}^* = \frac{6 E J}{l^2}$
(1)	40/50	0,00417	5,00	0,83	0,498	2100
(2), (3)	40'/55	0,00555	7,00	0,79	0,339	1426
(4)	40/45	0,00304	4,50	0,68	0,453	1891
(5)	40/60	0,00720	6,00	1,20	· · · ·	2520
(6)	40/70	0,01143	8,00	1,43		2251
(7)	40/70	0,01143	8,50	1,35		1994
Gulda	n. Rahmentragw	verke.				9

Guldan, Rahmentragwerke.

Die Werte k und \bar{k} (in Klammern) sind in der Beiwertskizze Abb. 237 eingetragen. Diagonalglieder d und D.

Nach (26a) wird

$$s_5 = -14.7 \text{ tm}; s_7 = +26.1 - 29.5 = -3.4 \text{ tm}; s_6 = +14.7 - 26.1 = -11.4 \text{ tm}; s_8 = +29.5 \text{ tm}.$$

Stab	Temperatur- erhöhung t ⁰	Stablänge l ^(m)	Längenänderung $\lambda_{\nu}^{(\mathrm{m})} = \omega . t^0 . l_{\nu}$
(1)	18	5,00	0,001080
(2), (3)	25	7,00	0,002100
(4)	20	4,50	0,001080
(5)	18	6,00	0,001296
(6)	25	8,00	0,002400
(7)	20	8,50	0,002040

Stablängenänderungen λ .

(Ausführliche Beschreibung des Rechnungsganges siehe Erster Teil, vierter Abschnitt, III, 3 und 4.) Die Ermittlung der Längenänderung λ_{ν} der einzelnen Stäbe (ν) erfolgtam besten tabellarisch, wobei $\omega = 0,000012$ angenommen wird. Die "gegenseitigen" Verschiebungen Δ_{ν} der einzelnen Stiele (ν) sind allgemein nach (188a) $\Delta_{\nu} = \Delta_{\mu} - \lambda_{s}^{(\nu)}$.

b) Temperatur.

Wählt man \varDelta_1 als Unbekannte, so erhält man der Reihe nach unter Bezugnahme auf Abb. 236

$$\Delta_7 = \lambda_4 - \lambda_3 = 0,001080 - 0,002100 = -0,001020$$

Stabbelastungsglieder \mathfrak{M}^t .

1. Für die Rahmenstiele.

Nach (190) ist allgemein, wenn an Stelle von \bar{c} das Zeichen für den wahren Wert \bar{c}^* gesetzt wird,

$$\mathfrak{M}^{t}_{m,n} = \mathfrak{M}^{t}_{n,m} = -\bar{c}^{*} \cdot \lambda_{s}^{(\nu)}.$$

Nun ist nach (97) für einen Stab ohne Vouten $c^* = \frac{6 EJ}{l}$ und weiter nach (133) $\bar{c}^* = \frac{c^*}{l}$, also für den vorliegenden Fall

$$\bar{c}^* = \frac{6 EJ}{l^2} = \bar{k}^*.$$

Diese Werte sind für die einzelnen Stäbe in der letzten Spalte der Festwerttabelle enthalten. Es wird also hier für die Stiele

$$\mathfrak{M}^{t}_{m,n} = \mathfrak{M}^{t}_{n,m} = - \bar{k}^{*} \cdot \lambda_{s}^{(v)}$$

Damit erhält man:

2. Für die Rahmenriegel.

Nach (179a) ist allgemein, wenn wieder für \bar{k} der wahre Wert \bar{k}^* gesetzt wird, $\mathfrak{M}_{m,n}^t = \mathfrak{M}_{n,m}^t = \bar{k}^* \cdot \mathfrak{L}_v.$

Damit erhält man:

Stab (5)
$$\mathfrak{M}_{6,6}^t = \mathfrak{M}_{6,5}^t = \bar{k}_5^* \cdot \varDelta_5 = 2520 \cdot 0,001020 = + 2,57 \text{ tm};$$

,, (6) $\mathfrak{M}_{6,7}^t = \mathfrak{M}_{7,6}^t = \bar{k}_6^* \cdot \varDelta_6 = = 0;$
,, (7) $\mathfrak{M}_{7,8}^t = \mathfrak{M}_{8,7}^t = \bar{k}_7^* \cdot \varDelta_7 = -1994 \cdot 0,001020 = - 2,03 \text{ tm}.$

 $Knotenbelastungsglieder s^t$.

Nach (17a) wird

$$s_5^{t} = +2,57 \text{ tm}; s_7^{t} = -5,27 - 2,03 = -7,30 \text{ tm}; s_6^{t} = -1,85 + 2,57 = +0,72 \text{ tm}; s_8^{t} = -10,85 - 2,03 = -12,88 \text{ ,,}$$

Belastungsglied der Verschiebungsgleichung.

Nach (198) ist unter denselben Voraussetzungen wie bisher

$$S^{t} = -\sum_{r} \frac{\overline{c}_{o}^{*} + \overline{c}_{u}^{*}}{l_{r}} \cdot \lambda_{s}^{(r)} = -2\sum_{r} \frac{\overline{k}^{*}}{l_{r}} \cdot \lambda_{s}^{(r)}$$

 denn

$$\bar{c}_o^* = \bar{c}_u^* = \bar{k}^*.$$

Damit ergibt sich hier

$$S^{t} = -2\left(\frac{k_{2}^{*}}{l_{2}} \cdot \lambda_{s}^{(2)} + \frac{\bar{k}_{3}^{*}}{l_{3}} \cdot \lambda_{s}^{(3)} + \frac{\bar{k}_{4}^{*}}{l_{4}} \cdot \lambda_{s}^{(4)}\right) = -2\left(\frac{1426 \cdot 0.001296}{7.0} + \frac{1426 \cdot 0.003696}{7.0} + \frac{1891 \cdot 0.005736}{4.5}\right) = -6.85^{t}$$

Aufstellung der Gleichungen.

Die Knotengleichungen lauten allgemein nach (42) unter Berücksichtigung, daß hier jeweils das Glied $\bar{k}_{\mu+1} \varDelta_{\mu+1}$ entfällt, weil nur ein Stockwerk vorhanden ist:

$$d_n \varphi_n + \sum_i k_{n,i} \varphi_i + \overline{k_\mu} \Delta_\mu + s_n = 0.$$

Die Verschiebungsgleichung lautet allgemein nach (44)

$$\sum_{\mu} \overline{k} \varphi_{u} + \sum_{\mu} k \varphi_{o} + D_{\mu} \varDelta_{\mu} + S_{\mu} = 0.$$

Damit kann unter Verwendung der Beiwertskizze (Abb. 237) die Gleichungstabelle 8 gleichzeitig für beide Belastungsfälle angeschrieben werden.

	φ_5	φ_6	φ_7	φ_8	\varDelta_1	B ^(a)	B ^(b)
φ_5	+ 4,06	+ 1,20			+ 0,498		+ 2,57
<i>\$</i> 6	+1,20	+6,84	+ 1,43		+0,339		+ 0,72
φ7		+1,43	+7,14	+1,35	+0,339	- 3,4	- 7,30
φ_8			+1,35	+4,06	+0,453	+ 29,5	
Δ_1	+0,498	+0,339	+0,339	+0,453	+0,594		- 6,85

Gleichungstabelle 8.

Die Auflösung ergibt:

a) Für Vollbelastung $(B^{(a)})$: $\varphi_5 = +3,172; \quad \varphi_8 = -8,095;$ $\varphi_6 = +0,633; \quad \Delta_1 = +2,135;$ $\varphi_7 = +1,778;$ b) Für Temperatur $(B^{(b)})$: $\varphi_5 = -1,985; \quad \varphi_8 = + 1,772;$ $\varphi_6 = -0,392; \quad \varDelta_1 = + 11,96.$ $\varphi_7 = + 0,197;$

Momente.

Nach (10) ist für einen Stab 1-2:

$$M_{1,\,2}=k\left(2\ arphi_1+arphi_2+rac{3\,arLambda}{l}
ight)+\mathfrak{M}_{1,\,2}.$$

Damit erhält man an Hand der Beiwertskizze sämtliche Stabendmomente für beide Belastungsfälle. a) Für Vollbelastung $(B^{(a)})$

$$M_{1,5} = +3,69 ext{ tm}$$
 $M_{5,1} = +6,33 ext{ tm}$ $M_{7,6} = +32,09 ext{ tm}$
 $M_{2,6} = +1,22 ext{ , }$ $M_{5,6} = -6,33 ext{ , }$ $M_{7,3} = +3,53 ext{ , }$
 $M_{3,7} = +2,13 ext{ , }$ $M_{6,5} = +20,03 ext{ , }$ $M_{7,8} = -35,63 ext{ , }$
 $M_{4,8} = -4,53 ext{ , }$ $M_{6,2} = +1,72 ext{ , }$ $M_{8,7} = +10,04 ext{ , }$
 $M_{6,7} = -21,75 ext{ , }$ $M_{8,4} = -10,04 ext{ , }$

Das zugehörige Momentenbild siehe Abb. 238.

Abb. 238. Momentenverlauf für Vollbelastung.

b) Für Temperatur $(B^{(b)})$:	
$M_{1,5} = 0.83 \left(-1.985 + 3 \cdot \frac{11.96}{5.00} \right)$	= + 4,31 tm
$M_{2, 6} = 0,79 \left(-0.392 + 3 \cdot \frac{11.96}{7.00} \right) - 1.85$	= + 1,89 "
$M_{3,7} = 0,79 \left(+\ 0,197 + 3 \cdot \frac{11,96}{7,00} ight) - 5,27$	=1,06 "
$M_{4,8} = 0,68 \left(+1,772 + 3 \cdot \frac{11,96}{4,50} ight) - 10,85$	=

$$\begin{split} &M_{5,1} = 0,83 \left(-2 \cdot 1,985 + 3 \cdot \frac{11,96}{5,00}\right) &= +2,66 \text{ tm} \\ &M_{5,6} = 1,20 \left(-2 \cdot 1,985 - 0,392\right) + 2,57 &= -2,66 \text{ ,,} \\ &M_{6,5} = 1,20 \left(-2 \cdot 0,392 - 1,985\right) + 2,57 &= -0,75 \text{ ,,} \\ &M_{6,2} = 0,79 \left(-2 \cdot 0,392 + 3 \cdot \frac{11,96}{7,00}\right) - 1,85 = +1,58 \text{ ,,} \\ &M_{6,7} = 1,43 \left(-2 \cdot 0,392 + 0,197\right) &= -0,84 \text{ ,,} \\ &M_{7,6} = 1,43 \left(+2 \cdot 0,197 - 0,392\right) &= +0,00 \text{ ,,} \\ &M_{7,3} = 0,79 \left(+2 \cdot 0,197 + 3 \cdot \frac{11,96}{7,00}\right) - 5,27 = -0,91 \text{ ,,} \\ &M_{7,8} = 1,35 \left(+2 \cdot 0,197 + 1,772\right) - 2,03 &= +0,90 \text{ ,,} \\ &M_{8,7} = 1,35 \left(+2 \cdot 1,772 + 0,197\right) - 2,03 &= +3,02 \text{ ,,} \\ &M_{8,4} = 0,68 \left(+2 \cdot 1,772 + 3 \cdot \frac{11,96}{4,50}\right) - 10,85 = -3,02 \text{ ,,} \\ \end{split}$$

Das zugehörige Momentenbild siehe Abb. 239.

Abb. 239. Momentenverlauf für Temperaturerhöhung.

Zahlenbeispiel 9.

Symmetrisches Vierendeel-Rahmentragwerk (Abb. 240). Die Säulenfüße sind fest eingespannt, somit $\varphi_1 = \varphi_1' = 0$. Wegen der symmetrischen Belastung (Abb. 241) verbleiben nur *fünf* Unbekannte,

verbierden nur *junj* Chlockalinke, und zwar die *vier* Knotendrehwinkel $\varphi_2 = -\varphi_2', \varphi_3 = -\varphi_3',$ $\varphi_4 = -\varphi_4', \varphi_5 = -\varphi_5'$ und der Stabdrehwinkel ψ_1 . Für die Stäbe des mittleren Feldes ist $\psi_2 = 0$. (Siehe Erster Teil, erster Abschnitt, III, 6, A.)

Abb. 240. Tragwerksabmessungen.

Festwerttabelle 9.

Stab	b/h ^(cm)	J ^(m4)	l(m)	$k = \frac{1000 J}{l}$
1-2	50/80	0,02133	6,50	3,28
2-4	50/80	0,02133	3,80	5,61
2 - 3	$45'\!/70$	0,01286	3,50	3,68
4-5	45'/85	0,02303	3,50	6,58
3-5	25'/28	0,00046	3,80	0,12
3-3'	45 /70	0,01286	5,00	2,57
5-5'	45/85	0.02303	5.00	4.61

Abb. 241. Belastungsangaben.

Abb. 242. Beiwertskizze.
Beiwertskizze siehe Abb. 242.

Diagonalglieder d und D.

Nach (25) $d_n = 2\sum_i k_{n,i}$

erhält man $d_2 = 25,14; \ d_3 = 12,74; \ d_4 = 24,38; \ d_5 = 22,62.$

Da hier die Symmetrale durch die Mitte der Stäbe 3-3' und 5-5' verläuft, so sind die zugehörigen Diagonalglieder in abgeänderter Form (siehe Erster Teil, erster Abschnitt, III, 3, c) nach (40)

$$d_{3}' = d_{3} - k_{3,3'} = 12,74 - 2,57 = 10,17$$

 $d_{5}' = d_{5} - k_{5,5'} = 22,62 - 4,61 = 18,01.$

Nach (54)

$$D_{\nu} = 6 \sum_{\nu} k$$

wird

$$D_1 = 6 (k_{2,3} + k_{4,5}) = 6 (3,68 + 6,58) = 61,56.$$

 $Stabbelastungsglieder \ \mathfrak{M}.$

Stab 1-2: Kragarmmoment

$$M_k = 1.5 \cdot 1.9 + \frac{4.1 \cdot 1.9^2}{2} = 10.25 \text{ tm.}$$

Nach M-Formel 23 auf Tafel 3 ist:

$$\begin{split} \mathfrak{M}_{1,\,2} &= + \, M \cdot \frac{b}{l} \left(2 - \frac{3 \, b}{l} \right) = + \, 10,25 \cdot \frac{3,50}{6,5} \left(2 - \frac{3 \cdot 3,5}{6,5} \right) = + \, 2,12 \, \mathrm{tm}, \\ \mathfrak{M}_{2,\,1} &= + \, M \cdot \frac{a}{l} \left(2 - \frac{3 \, a}{l} \right) = + \, 10,25 \cdot \frac{3,0}{6,5} \left(2 - \frac{3 \cdot 3,0}{6,5} \right) = + \, 2,91 \, \mathrm{, m}. \end{split}$$

Weiter wird nach der M-Formel 1:

$$\begin{split} \mathfrak{M}_{2,3} &= -\frac{4,9.3,5^2}{12} = -5,00 \text{ tm}; \quad \mathfrak{M}_{3,2} = +5,00 \text{ tm}; \\ \mathfrak{M}_{4,5} &= -\frac{5,1.3,5^2}{12} = -5,21 \text{ ,, }; \quad \mathfrak{M}_{5,4} = +5,21 \text{ ,, }; \\ \mathfrak{M}_{3,3'} &= -\frac{4,9.5,0^2}{12} = -10,21 \text{ ,, }; \\ \mathfrak{M}_{5,5'} &= -\frac{5,1.5,0^2}{12} = -10,62 \text{ ,, }. \end{split}$$

 $Knotenbelastung sglieder \ s.$

$$s_n = \sum_i \mathfrak{M}_{n,i}$$

erhält man

Nach (26a)

 $s_2 = + 2,91 - 5,00 = -2,09 \text{ tm}; \quad s_4 = -5,21 \text{ tm};$ $s_3 = + 5,00 - 10,21 = -5,21 \text{ ,, }; \quad s_5 = +5,21 - 10,62 = -5,41 \text{ ,, }.$ Belastungsglied S der Verschiebungsgleichung.

Nach (55) ist allgemein für ein Feld (ν)

$$S_{\mathbf{v}} = \left[\frac{1}{2}\left(\sum P + \sum q\right) - \sum P' - \sum q' - \sum_{\mathbf{v}} \mathfrak{A}\right] \ l_{\mathbf{v}} + \sum_{\mathbf{v}} (\mathfrak{M}_{l} + \mathfrak{M}_{r}).$$

Die Glieder $\Sigma P'$ und $\Sigma q'$ fallen hier weg und man erhält

$$S_1 = \left[\frac{1}{2} (9,0 + 4,9.12,0 + 5,1.12,0) - \frac{(4,9 + 5,1)(3,5)}{2}\right] 3,5 = +164,5 \text{ tm}.$$

Aufstellung der Gleichungen.

Knotengleichungen nach (48):

$$d_n \varphi_n + \sum_i k_{n,i} \varphi_i + 3 k_{\nu} \psi_{\nu} + 3 k_{\nu+1} \psi_{\nu+1} + s_n = 0.$$

Verschiebungsgleichung nach (53):

$$\sum_{\nu} 3 k \varphi_{l} + \sum_{\nu} 3 k \varphi_{r} + D_{\nu} \psi_{\nu} + S_{\nu} = 0.$$

Damit kann an Hand der Beiwertskizze Abb. 242 die Aufstellung der Gleichungstabelle 9 vorgenommen werden.

	φ_2	$arphi_3$	φ_4	φ_5	ψ_1	
φ_2	+25,14	+ 3,68	+ 5,61		+11,04	— 2,09
φ_3	+ 3,68	+10,17		+ 0,12	+11,04	— 5,21
φ_4	+ 5,61		+24,38	+ 6,58	+19,74	— 5,21
φ_5		+ 0,12	+ 6,58	+ 18,01	+19,74	— 5,41
ψ_1	+ 11,04	+ 11,04	+19,74	+ 19,74	+ 61,56	+164,50

Gleichungstabelle 9.

Die Auflösung ergibt:

Momente. Nach (7)

$$M_{1,2} = k (2 \varphi_1 + \varphi_2 + 3 \psi) + \mathfrak{M}_1$$

erfolgt an Hand der Beiwertskizze die Berechnung der Stabendmomente.

Das zugehörige Momentenbild siehe Abb. 243.

Zahlenbeispiel 10.

Unsymmetrisches, lotrecht verschiebliches Tragwerk (Abb. 244). Feste Einspannung in den Knotenpunkten 1, 2, 3, 7, 8, 12, daher $\varphi_1 = \varphi_2 = \varphi_3 = \varphi_7 = \varphi_8 = \varphi_{12} = 0$. Unbekannte: Die *sechs* Knotendrehwinkel $\varphi_4, \varphi_5, \varphi_6, \varphi_9, \varphi_{10}, \varphi_{11}$ und die

lotrechte Verschiebung δ der Knotenreihe 5–10. Belastungsangaben siehe Abb. 245.

Abb. 245. Belastungsangaben.

Stab	${f Querschnitt} \ b/h^{(cm)}$	Trägheitsmoment $J^{(m^4)}$	Länge l ^(m)	$k = \frac{1000 J}{l}$	$\overline{k} = \frac{3 k}{l}$
1-4, 2-6	40/70	0.01143	5,00	2,29	
3-4, 8-9	30/50	0,00313	4,00	0,78	
4-5	35/55	0,00485	4,00	1,21	0,908
5 - 6	35'/55	0,00485	6,00	0,81	0,405
6-7, 11-12	30/50	0,00313	5,00	0,63	
4-9, 6-11	40/70	0,01143	4,00	2,86	
5-10	30/30	0,00068	4,00	0,17	
9-10	40/85	0,02047	4,00	5,12	3,84
10-11	40'/85	0,02047	6,00	3,41	1,705 .

Festwerttabelle 10.

Ĥ (10) 3,41 Q63 €. (1705) ° 86 Q63 Worto in Klammel 2

Abb. 246. Beiwertskizze.

 $\varkappa_5 = \bar{k}_{5,6} - \bar{k}_{5,4} = 0,405 - 0,908 = -0,503;$ $\varkappa_{10} = \vec{k}_{10,11} - \vec{k}_{10,9} = 1,705 - 3,84 = -2,135;$ v $2 \nabla \overline{i}$

Nach (60) ist allgemein

Beiwerte \varkappa und K.

also

Die Werte k bzw. \overline{k} (in Klammern) sind in der Beiwertskizze Abb. 246 eingetragen.

 $\varkappa_n = \bar{k}_{\nu+1} - \bar{k}_{\nu}$

nach (65) ist

$$K_{p} = \frac{1}{l_{p}} \sum_{p} k_{p},$$

 $K_{I} = \frac{2}{4.0} (0.908 + 3.84) = 2.374;$

für das Feld II:

daher für das Feld I:

$$K_{\rm II} = \frac{2}{6,0} \left(0,405 + 1,705 \right) = 0,703.$$

Diagonalglieder d und D.

Nach (25)

wird

 $d_n = 2\sum_i k_{n,i}$

Nach (66) ist allgemein

$$D_m = K_v + K_{v+1}$$

somit hier

Nach

 $D = K_{\rm I} + K_{\rm II} = 2,374 + 0,703 = 3,077.$

 $Stabbelastungsglieder \mathfrak{M}.$

$$\mathfrak{M}_{1,2} = - \mathfrak{M}_{2,1} = - \frac{q l^2}{12}$$

wird

$\mathfrak{M}_{3,4} = -6,00 \mathrm{tm};$	$\mathfrak{M}_{10,11} = -10,50 \text{ tm};$	$\mathfrak{M}_{9,8} = + 4.00 \mathrm{tm};$
$\mathfrak{M}_{6,7} = -9,38$,, ;	$\mathfrak{M}_{11, 12} = -6,25$,, ;	$\mathfrak{M}_{10,9} = + 4,67$, ;
$\mathfrak{M}_{8,9} = - 4,00$,, ;	$\mathfrak{M}_{4,3} = + 6,00$,, ;	$\mathfrak{M}_{11, 10} = + 10,50$,, ;
$\mathfrak{M}_{9,10}=-4,67$,, ;	$\mathfrak{M}_{7,6} = + 9,38$,, ;	$\mathfrak{M}_{\mathbf{12,11}}=+$ 6,25 ".
Ferner wird unter gleichzeit	iger Verwendung der <i>m</i> -F	ormel 25 auf Tafel 4
$\mathfrak{M}_{4,5} = -\frac{4,5.4,0^2}{12}$	$-\frac{2,0.4,0}{8} = -7,00$ tm;	$\mathfrak{M}_{5,4} = +$ 7,0 tm

u. ä. mit M-Formel 26:

$$\mathfrak{M}_{5, 6} = -\frac{4.5 \cdot 6.0^2}{12} - \frac{2 \cdot 2.0 \cdot 6.0}{9} = -16.17 \text{ tm}; \quad \mathfrak{M}_{6, 5} = +16.17 \text{ tm}.$$

Knotenbelastungsglieder s.

Nach (26a)

$$s_n = \sum_i \mathfrak{M}_{n,i}$$

erhält man

$s_3 =$	-6,00 tm;	s ₈ =	4,00	\mathbf{tm}
$s_4 = +$	6,00-7,00=-1,00 ,, ;	$s_9 = + 4,00 - 4,67 =$	— 0,67	,, ;
$s_5 = +$	7,00 - 16,17 = -9,17 ,, ;	$s_{10} = + 4,67 - 10,50 =$	5,83	,, ;
$s_6 = +$	16,17 - 9,38 = +6,79 ,, ;	$s_{11} = + 10,50 - 6,25 =$	+ 4,25	,, ;
$s_{7} =$	+ 9,38 ,, ;	s ₁₂ =	+ 6,25	,, ·

Belastungsglied S der Verschiebungsgleichung.

Nach (67) ergibt sich unter Beachtung, daß hier die \mathfrak{M} -Glieder entfallen, weil für jeden Stab $\mathfrak{M}^l = -\mathfrak{M}^r$ ist:

$$S = -\sum_{\mathbf{v}} P - \sum_{\mathbf{v}} \mathfrak{A}_{\mathbf{v}}^{\mathbf{r}} - \sum_{\mathbf{v}+1} \mathfrak{A}_{\mathbf{v}+1}^{l}$$

$$S = -6,0 - (4,5 + 3,5) \frac{4,0}{2} - \frac{2,0}{2} - (4,5 + 3,5) \frac{6,0}{2} - 2,0 = -49,0 \text{ t.}$$

Aufstellung der Gleichungen.

Knotengleichungen nach (58):

$$d_n \varphi_n + \sum_i k_{n,i} \varphi_i + \bar{k}_{\nu} \delta_{m-1} + \varkappa_n \delta_m - \bar{k}_{\nu+1} \delta_{m+1} + s_n = 0.$$

Verschiebungsgleichung nach (64) mit der Vereinfachung, daß hier die beiden Glieder $K_{\nu} \delta_{m-1}$ und $K_{\nu+1} \delta_{m+1}$ entfallen, weil die Verschiebungen $\delta_{m-1} = \delta_{m+1} = 0$ sind:

$$-\sum_{\nu}\bar{k}_{\nu}\varphi_{m-1}+\Sigma\varkappa_{m}\varphi_{m}+\sum_{\nu+1}\bar{k}_{\nu+1}\varphi_{m+1}+D_{m}\delta_{m}+S_{m}=0.$$

An Hand der Beiwertskizze Abb. 246 kann die Gleichungstabelle 10 aufgestellt werden, wobei sämtliche Beiwerte nur mit zwei Dezimalstellen zur Verwendung gelangen.

	φ_{4}	φ_5	φ_{6}	φ_9	φ_{10}	φ_{11}	δ	В
φ_4	+ 14,28	+ 1,21		+ 2,86			- 0,91	- 1,00
φ_5	+ 1,21	+ 4,38	+ 0,81		+ 0,17		- 0,50	- 9,17
$arphi_{6}$		+ 0,81	+13,18			+ 2,86	+ 0,41	+ 6,79
φ_9	+ 2,86			+ 17,52	+ 5,12		- 3,84	- 0,67
φ_{10}		+ 0,17		+ 5,12	+ 17,40	+ 3,41	- 2,13	- 5,83
φ_{11}			+ 2,86		+ 3,41	+ 13,80	+ 1,71	+ 4,25
δ	- 0,91	-0,50	+ 0,41	- 3,84	- 2,13	+ 1,71	+ 3,08	- 49,00

Gleichungstabelle 10.

Die Auflösung ergibt:

Momente.

Nach (10a) ist für einen Stab 1, 2 mit den Stabendverschiebungen δ_1 und δ_2 allgemein:

$$\begin{split} M_{1,2} &= k \Big[2 \ \varphi_1 + \varphi_2 + \frac{3 \ (\delta_1 - \delta_2)}{l} \Big] + \mathfrak{M}_{1,2} \\ M_{2,1} &= k \Big[2 \ \varphi_2 + \varphi_1 + \frac{3 \ (\delta_1 - \delta_2)}{l} \Big] + \mathfrak{M}_{2,1}. \end{split}$$

Damit ergeben sich folgende Momente:

$M_{1.4} = + 0.84 \text{ tm}$	$M_{5,4} = -5,37 \text{ tm}$	$M_{9,4} = + 30,99 \text{ tm}$
$M_{2, 6} = - 1,74$,	$M_{5,10}~=+~2,29$,,	$M_{9,8} = +12,16$ "
$M_{4,1} = +$ 1,67 tm	$M_{5,6} = + 3,01$,,	$M_{9,10} = -43,14$ "
$M_{4,3} = + 6,58$,,	$M_{6,2} = - 3,48 \text{ tm}$	$M_{10,5} = + 1,92 \text{ tm}$
$M_{4,9} = + 17,06$,	$M_{6,5} = + 30,51$,	$M_{ m 10, 9} = -45,09$,
$M_{4,5} = -25,24$,,	$M_{\rm 6,11}~=16,84$,,	$M_{ m 10,11}=+$ 43,03 ,,
$M_{3,4} = -5,72 \mathrm{tm}$	$M_{\rm 6,7}~=-10,34$,,	$M_{11, 6} = -27,17 \text{ tm}$
$M_{7,6} = + 8,90$,	$M_{8,9} = + 0.08 \mathrm{tm}$	$M_{11,10} = + 38,80$,,
.,	$M_{ m 12,11}=+$ 3,50 "	$M_{\rm 11,12} =11,76$,,

Das zugehörige Momentenbild siehe Abb. 247.

Lotrecht verschiebliches Tragwerk mit zurückgesetztem Obergeschoß (Abb. 248). Feste Einspannung in den Knotenpunkten 1, 2, 6, 9, daher $\varphi_1 = \varphi_2 = \varphi_6 = \varphi_9 = 0$. Unbekannte: Die *fünf* Knotendrehwinkel φ_3 , φ_4 , φ_5 , φ_7 , φ_8 und die lotrechte Verschiebung δ der Knotenreihe 4—7. Belastungsangaben siehe Abb. 249.

Festwerttabelle 11.

Stab	${f Querschnitt}\ b/\hbar^{ m (cm)}$	Trägheitsmoment $J^{(\mathrm{m}^4)}$	Länge l(m)	$k = \frac{1000 J}{l}$	$\overline{k} = \frac{3 k}{l}$
$\begin{array}{c} 1 - 3, \ 2 - 5 \\ 3 - 4 \\ 4 - 5 \\ 5 - 6 \\ 4 - 7 \\ 5 - 8 \\ 7 - 8 \\ 8 - 9 \end{array}$	$\begin{array}{r} 45/40\\ 35/60\\ 35/60\\ 35/60\\ 30/30\\ 40/30\\ 30/50\\ 35/70\\ \end{array}$	$\begin{array}{c} 0,00240\\ 0,00630\\ 0,00630\\ 0,00630\\ 0,00630\\ 0,00068\\ 0,00090\\ 0,00313\\ 0,01000\\ \end{array}$	3,00 1,70 3,80 3,20 2,70 2,70 2,70 3,80 3,20	0,80 3,71 1,66 1,97 0,25 0,33 0,82 3,12	6,55 1,31 0,65

Die Werte k bzw. \bar{k} (in Klammern) sind in der Beiwertskizze Abb. 250 eingetragen. Beiwerte \varkappa und K.

Nach (60) ist allgemein $\varkappa_n = \bar{k}_{\nu+1} - \bar{k}_{\nu}$, daher $\varkappa_4 = \bar{k}_{4,5} - \bar{k}_{4,3} = 1,31 - 6,55 = -5,24,$ $\varkappa_7 = \bar{k}_{7,8} = +0,65.$ Nach (65) ist

$$K_{\mathbf{v}} = \frac{2}{l_{\mathbf{v}}} \sum_{\mathbf{v}} \bar{k}_{\mathbf{v}},$$

daher für das Feld (I):

$$K_{\mathrm{I}} = rac{2}{1,7} (6,55) = 7,70;$$

für das Feld (II):

$$K_{\rm II} = rac{2}{3,8} (1,31 + 0,65) = 1,03.$$

 $d_{\mathbf{3}}$

 d_{4}

Diagonalglieder d und D.

Nach (25)

$$d_n = 2\sum_i k_{n,i}$$

= 9,02; $d_5 = 9,52;$ $d_8 = 8,54.$
= 11.24; $d_7 = 2.14;$

Nach (66) wird allgemein

$$D_m = K_r + K_{r+1},$$

 $D = K_I + K_{II} = 7,70 + 1,03 = 8,73.$

also

wird

Abb. 249. Belastungsangaben.

Stabbelastungsglieder \mathfrak{M} .

Mit den M-Formeln 1 bzw. 34 erhält man:

$$\begin{split} \mathfrak{M}_{3,4} &= -1,01 \text{ tm}; \quad \mathfrak{M}_{4,3} = +1,01 \text{ tm}; \\ \mathfrak{M}_{4,5} &= -5,05 \text{ ,}; \quad \mathfrak{M}_{5,4} = +5,05 \text{ ,}; \\ \mathfrak{M}_{5,6} &= -3,58 \text{ ,}; \quad \mathfrak{M}_{6,5} = +3,58 \text{ ,}; \\ \mathfrak{M}_{7,8} &= -\frac{2,4 \cdot 3,8^2}{12} - \frac{3,6 \cdot 1,4 \cdot 2,4^2}{3,8^2} - \frac{3,7 \cdot 2,7 \cdot 1,1^2}{3,8^2} = -5,74 \text{ tm}; \\ \mathfrak{M}_{8,7} &= +\frac{2,4 \cdot 3,8^2}{12} + \frac{3,6 \cdot 1,4^2 \cdot 2,4}{3,8^2} + \frac{3,7 \cdot 2,7^2 \cdot 1,1}{3,8^2} = +6,11 \text{ ,}; \\ \mathfrak{M}_{8,9} &= -\frac{2,4 \cdot 3,2^2}{12} - \frac{12,0 \cdot 1,4 \cdot 1,8^2}{3,2^2} = -7,37 \text{ ,}; \\ \mathfrak{M}_{9,8} &= +\frac{2,4 \cdot 3,2^2}{12} + \frac{12,0 \cdot 1,4^2 \cdot 1,8}{3,2^2} = +6,18 \text{ ,}. \end{split}$$

Knotenbelastungsglieder s.

Nach (26a)

wird

$$s_n = \sum_i \mathfrak{M}_{n,i}$$

= -1,01 tm; $s_3 =$ $s_7 =$ = -5,74 tm; $s_4 = +1.01 - 5.05 = -4.04$,, ; $s_8 = +6,11 - 7,37 = -1,26$,. $s_5 = +5,05 - 3,58 = +1,47$,;

Belastungsglieder S der Verschiebungsgleichung.

Nach (67) ist allgemein

$$S_{m} = -\sum_{\nu} P - \sum_{\nu} \mathfrak{A}_{\nu}^{r} - \sum_{\nu+1} \mathfrak{A}_{\nu+1}^{l} - \frac{1}{l_{\nu}} \sum_{\nu} (\mathfrak{M}_{\nu}^{l} + \mathfrak{M}_{\nu}^{r}) + \frac{1}{l_{\nu+1}} \sum_{\nu+1} (\mathfrak{M}_{\nu+1}^{l} + \mathfrak{M}_{\nu+1}^{r}).$$

Damit erhält man hier laut Belastungsskizze Abb. 249:

$$S = -2,55 - 5,60 - rac{4,2 \cdot 1,7}{2} - rac{4,2 \cdot 3,8}{2} - rac{2,4 \cdot 3,8}{2} - rac{3,6 \cdot 2,4}{3,8} - rac{3,7 \cdot 1,1}{3,8} + rac{-5,74 + 6,11}{3,8} = -27,50 ext{ t.}$$

Aufstellung der Gleichungen.

Knotengleichungen nach (58):

$$d_n \varphi_n + \sum_i k_{n,i} \varphi_i + \bar{k_\nu} \delta_{m-1} + \varkappa_n \delta_m - \bar{k_{\nu+1}} \delta_{m+1} + s_n = 0.$$

Verschiebungsgleichungen nach (64) mit der Vereinfachung, daß auch hier die Glieder $K_{\nu} \delta_{m-1}$ und $K_{\nu+1} \delta_{m+1}$ entfallen, weil die beiden Verschiebungen δ_{m-1} und δ_{m+1} der benachbarten Knotenpunktreihen gleich Null sind:

$$-\underbrace{\Sigma}_{\mathbf{v}}\bar{k}_{\mathbf{v}}\varphi_{m-1}+\underbrace{\Sigma}_{\mathbf{x}_{m}}\varphi_{m}+\underbrace{\Sigma}_{\mathbf{v}+1}\bar{k}_{\mathbf{v}+1}\varphi_{m+1}+D_{m}\delta_{m}+S_{m}=0.$$

Damit kann unter Benutzung der Beiwertskizze Abb. 250 die Gleichungstabelle 11 aufgestellt werden.

	φ_3	φ_4	$arphi_{5}$	φ7	φ_8	δ	B
φ_3	+ 9,02	+ 3,71				-6,55	- 1,01
φ_4	+ 3,71	+ 11,24	+ 1,66	+ 0,25		-5,24	- 4,04
φ_5		+ 1,66	+ 9,52		+0,33	+ 1,31	+ 1,47
φ_7		+ 0,25		+ 2,14	+0,82	+ 0,65	- 5,74
φ_8			+ 0,33	+ 0,82	+ 8,54	+ 0,65	- 1,26
δ	- 6,55	- 5,24	+ 1,31	+0,65	+ 0,65	+ 8,73	-27,50

Gleichungstabelle 11.

Die Auflösung ergibt:

$arphi_{3}=+$ 6,125;	$\varphi_7 = - 0,641;$
$arphi_4=+$ 3,436;	$\varphi_8 = - 0,487;$
$\varphi_5 = -2.144;$	$\delta = +$ 10,227.

Momente.

Nach (10a) ist allgemein für einen Stab 1, 2 mit den Stabendverschiebungen δ_1 , δ_2 :

$$egin{aligned} &M_{1,\,2}=k\,\left[2\,arphi_1+arphi_2+rac{3\,(\delta_1-\delta_2)}{l}
ight]+\mathfrak{M}_{1,\,2}\ &M_{2,\,1}=k\,\left[2\,arphi_2+arphi_1+rac{3\,(\delta_1-\delta_2)}{l}
ight]+\mathfrak{M}_{2,\,1}. \end{aligned}$$

Damit erhält man folgende Stabendmomente:

$M_{1,3} = + 4,90 \text{ tm}$	$M_{{ m 5,4}}=+17,04~{ m tm}$	$M_{7,4} = + 0,54 \text{ tm}$
$M_{2,5}=-1,72$,,	$M_{5,8}=1,58$,,	$M_{7,8} = -0,54$ "
$M_{3,1} = + 9,80 \text{ tm}$	$M_{5, 6} = -12,03$,,	$M_{8,5} = -1.03 \ { m tm}$
$M_{3,4} = - 9,80$,,	$M_{5,2} = - 3,43$,,	$M_{ m 8,7}=+$ 11,41 "
$M_{4,3} = -17,74 \text{ tm}$	$M_{6.5} =0,64 \ { m tm}$	$M_{8,9} = -10,41$ "
$M_{4,7} = + 1,56$,,		$M_{9,8} = + 4,66 \text{ tm}$
$M_{4.5} = + 16,20$,,		

Diese Momente sind in Abb. 251 maßstäblich aufgetragen.

Zweiter Abschnitt.

Rahmentragwerke mit Vouten.

I. Ermittlung der Stabfestwerte *a b c* und der Belastungsglieder M mit Hilfe der Zahlen- und Kurventafeln.

Es soll hier nur an einigen Fällen ausführlich gezeigt werden, wie die als "Vorarbeit" zur eigentlichen Rahmenberechnung aufzufassende zahlenmäßige Ermittlung der Stabfestwerte a, b, c und der Stabbelastungsglieder \mathfrak{M} unter Benutzung der Zahlen- und Kurventafeln durchzuführen ist. Es kann dann bei den später folgenden Zahlenbeispielen, bei welchen diese Arbeit in der Regel tabellarisch erfolgt, auf lange Erläuterungen in jedem einzelnen Fall verzichtet werden, weil im wesentlichen immer derselbe Vorgang einzuhalten ist, wie er hier eingehend besprochen wird.

1. Stab mit beidseitig gleichen geraden Vouten.

Die Längen- und Querschnittsabmessungen sind aus Abb. 252, die Belastungen aus Abb. 253 zu entnehmen.

A. Ermittlung der Stabfestwerte a, b, c.

Aus Zahlentafel 1 erhält man:

für den unveränderlichen Stabbereich mit b/h = 30/50 (cm) $J_c = 0,003125$ m⁴, für den Auflagerquerschnitt mit $b/h_A = 30/85$ (cm) $J_A = 0,015353$,, ; somit ist

$$n = \frac{J_c}{J_A} = \frac{0,003125}{0,015353} = 0,204 \pm 0,20$$
 und $\lambda = \frac{l_v}{l} = \frac{1,50}{6,00} = 0,25.$

Mit diesen Werten für n und λ erhält man aus Zahlentafel 7

a = 7,84; b = 5,10 und damit nach (106) $a_1 = a_2 = a = \frac{1000 J_c}{l} \cdot a = \frac{1000 \cdot 0.003125}{6,00} \cdot 7,84 = 4,08;$ $b = \frac{1000 J_c}{l} \cdot b = \frac{1000 \cdot 0.003125}{6,00} \cdot 5,10 = 2,66.$

142 Ermittlung der Stabfestwerte a, b, c und der Belastungsglieder \mathfrak{M} .

Nach (86) ist

$$c_{1,2} = c_{2,1} = a + b = 4,08 + 2,66 = 6,74.$$

Die Festwerte a, b sind in der Beiwertskizze Abb. 254 eingetragen, und zwar die a-Werte an den Stabenden, der b-Wert in der Stabmitte.

B. Ermittlung der Stabbelastungsglieder M.

Nach Abb. 253 kommen hier drei Arten der Belastung vor, nämlich:

- a) eine durchgehende Gleichlast $q_1 = 5.6 \text{ t/m},$
- b) eine gleichförmige Streckenlast $q_2 = 3,2$,, , c) drei Einzellasten: $P_1 = 3,0$ t, $P_2 = 4,3$ t, $P_3 = 6,5$ t.

Diese drei Fälle kommen nachstehend getrennt zur Behandlung.

a) Durchgehende Gleichlast $q_1 = 5.6 \text{ t/m}$.

Aus der Zahlentafel 11 oder aus der Kurventafel 11a erhält man für die hier vorliegenden Leitwerte n = 0,20 und $\lambda = 0,25$ den Wert $\varkappa = 1,183$ und damit

$$\mathfrak{M}_1 = -\varkappa \, \frac{q_1 \, l^2}{12} = -1,183 \, \frac{5.6 \cdot 6.0^2}{12} = -19,87 \, \mathrm{tm}\,; \ \mathfrak{M}_2 = +19,87 \, \mathrm{tm}.$$

b) Gleichförmige Streckenlast $q_2 = 3.2$ t/m.

Hier kommt man am besten durch Auswertung der M-Einflußlinie zum Ziel. Die entsprechende Einflußlinie für n = 0,20 und $\lambda = 0,25$ ist auf Tafel 15a enthalten. Es empfiehlt sich, die Auswertung so vorzunehmen, daß die jeweils zu ermittelnde Fläche stets in ein Trapez (F_1) und in ein Reststück (F_1) zerlegt wird, wie in der

Abb. 253 a. Auswertung der M-Einflußlinie bei Streckenlasten.

schematischen Abb. 253a angedeutet ist. Es wird dann $F_1 = F_1' + F_1''$ bzw. $F_2 = F_2' + F_2''$. Damit erhält man für den vorliegenden Fall

 $F_1 = 0.0374;$ $F_2 = 0.0567,$

wobei die Flächen F_1 und F_2 auf den Träger mit der Länge l = 1 bezogen sind. Nach (112) ergeben sich som
it die der Streckenlast q_2 entsprechenden Belastungsglieder für den vorliegenden Träger mit l = 6.0 m:

$$\begin{split} \mathfrak{M}_1 = &- F_1 \cdot q_2 \cdot l^2 = - \ 0.0374 \cdot 3.2 \cdot 6.0^2 = - \ 4.31 \ \mathrm{tm}\,; \\ \mathfrak{M}_2 = &+ F_2 \cdot q_2 \cdot l^2 = + \ 0.0567 \cdot 3.2 \cdot 6.0^2 = + \ 6.53 \ ,, \ . \end{split}$$

c) Drei Einzellasten $P_1 = 3,0$ t, $P_2 = 4,3$ t, $P_3 = 6,5$ t.

Es kann hier dieselbe Einflußlinie zur Auswertung benutzt werden wie vorher (auf Tafel 15a; n = 0.20, $\lambda = 0.25$). Es ist allgemein $\mathfrak{M}_1 = -\eta_1$. P. l; $\mathfrak{M}_2 =$

 $= + \eta_2$. P. l. Die auf den Träger mit der Länge l = 1 bezogenen Maße sind in Abb. 253b enthalten. Damit erhält man für die drei Laststellungen

Somit

$$\begin{split} \mathfrak{M}_1 &= - \begin{bmatrix} 0,158.3,0+0,191.4,3+0,099.6,5 \end{bmatrix}.6,0 = -11,63\,\mathrm{tm}\,;\\ \mathfrak{M}_2 &= + \begin{bmatrix} 0,025.3,0+0,091.4,3+0,188.6,5 \end{bmatrix}.6,0 = +10,13\,,, \end{split}$$

Zusammenfassung.

Bei gleichzeitiger Einwirkung der zunächst getrennt in Rechnung gestellten drei Belastungsarten erhält man:

$$\mathfrak{M}_1 = -19,87 - 4,31 - 11,63 = -35,81 \text{ tm};$$

 $\mathfrak{M}_2 = +19,87 + 6,53 + 10,13 = +36,53 ,$

Die Momentenverteilung für diesen Fall (beidseitig volle Einspannung) ist in Abb. 255 dargestellt.

2. Stab mit einseitig parabolischer Voute.

Die Längen- und Querschnittsabmessungen sind in Abb. 256, die Belastungen in Abb. 257 angegeben.

Abb. 256. Stababmessungen.

A. Ermittlung der Stabfestwerte a_1, a_2, b, c_1, c_2 .

Aus Zahlentafel 1 ergibt sich:

für den Voutenanfang mit b/h = 50/70 (cm) für den Auflagerquerschnitt mit $b/h_A = 50/200$ (cm) $J_A = 0,3 \text{ m}^4;$ $n = \frac{J_c}{J_A} = \frac{0.014292}{0.3} = 0.043$ und $\lambda = \frac{l_v}{l} = \frac{10.0}{10.0} = 1.0.$ somit ist

Mit diesen beiden Leitwerten erhält man aus der Kurventafel 6a:

 $a_1 = 28,00; \quad a_2 = 6,30; \quad b = 7,64$

Abb. 257. Belastungsangaben.

Abb. 258. Beiwertskizze.

und damit nach (106) $a_1 = \frac{1000 \cdot J_c}{l} \cdot a_1 = \frac{1000 \cdot 0.014292}{10.0} \cdot 28.0 = 40.0;$ $a_2 = \frac{1000 \cdot J_c}{l} \cdot a_2 = 9,0; \quad b = \frac{1000 \cdot J_c}{l} \cdot b = 10,9.$ Nach (86) ist $c_1 = a_1 + b = 40,0 + 10,9 = 50,9;$ $c_2 = a_2 + b = 9,0 + 10,9 = 19,9.$

Die Festwerte a₁, a₂, b, c₁, c₂ sind in der Beiwertskizze Abb. 258 eingetragen.

Abb.255. M-Verlauf bei voller Einspannung.

144 Ermittlung der Stabfestwerte a, b, c und der Belastungsglieder \mathfrak{M} .

B. Ermittlung der Stabbelastungsglieder M.

Nach Abb. 257 besteht die Belastung aus einer gleichmäßig verteilten Vollast q und aus vier Einzellasten P. Die beiden Belastungsfälle werden nachstehend getrennt behandelt.

a) Gleichlast
$$q = 2.0 \text{ t/m}$$

Aus der Kurventafel 10a erhält man für n = 0,043 und $\lambda = 1,0$ die Werte $\varkappa_1 = 1,90$ und $\varkappa_2 = 0,545$.

Damit wird:

$$\begin{split} \mathfrak{M}_1 &= -\varkappa_1 \frac{q \, l^2}{12} = -1,90 \quad \frac{2,0 \cdot 10,0^2}{12} = -31,67 \text{ tm}; \\ \mathfrak{M}_2 &= +\varkappa_2 \frac{q \, l^2}{12} = +0,545 \frac{2,0 \cdot 10,0^2}{12} = +9,08 \text{ ,, }. \end{split}$$

b) Vier Einzellasten P = 3.6 t.

Es gelangen hier am besten die Einflußlinien auf Tafel 14a zur Verwendung. Mit Rücksicht darauf, daß alle vier Einzellasten gleich groß sind, wird hier einfach

$$\mathfrak{M}_1 = -P \cdot l \sum \eta_1; \quad \mathfrak{M}_2 = +P \cdot l \sum \eta_2.$$

Die Ordinaten η_1 bzw. η_2 unter den *vier* Lasten erhält man für die Leitwerte n = 0.043 und $\lambda = 1.0$ der Reihe nach:

$$\eta_1 \dots 0,170; 0,262; 0,237; 0,103; \eta_2 \dots 0,007; 0,033; 0,074; 0,096.$$

Hierbei ist zwischen den Einflußlinien für n = 0.03 und 0.05 schätzungsweise interpoliert worden. Damit ergibt sich

$$\mathfrak{M}_1 = -3.6 . 10.0 (0.170 + 0.262 + 0.237 + 0.103) = -27.79 ext{ tm};$$

 $\mathfrak{M}_2 = +3.6 . 10.0 (0.007 + 0.033 + 0.074 + 0.096) = +7.56$,.

lastungsarten erhält man

Abb. 259. *M*-Verlauf bei voller Einspannung.

Die Momentenverteilung für diesen beidseitig festeingespannt gedachten Stab unter dem Einfluß der Gesamtbelastung ist in Abb. 259 dargestellt.

 $\begin{array}{l} \mathfrak{M}_1 = - \ 31,67 - 27,79 = - \ 59,46 \ \mathrm{tm}, \\ \mathfrak{M}_2 = + \ 9,08 + \ 7,56 = + \ 16,64 \ ,, \ . \end{array}$

Zusammenfassung. Bei gleichzeitiger Einwirkung der beiden Be-

3. Säule mit Voute.

In Abb. 260 ist eine Säule als Glied eines Rahmentragwerkes mit der vorhandenen Belastung und allen erforderlichen Längen- und Querschnittsabmessungen dargestellt. Da es mitunter üblich ist, an Stelle der Voute eine entsprechend kürzere starre Stabstrecke in Rechnung zu setzen, sollen nachstehend beide Arten zahlenmäßig durchgeführt und einander gegenübergestellt werden.

1. Art: Stab mit gerader Voute.

A. Ermittlung der Festwerte a_1, a_2, b, c_1, c_2 .

Aus Tafel 1 ergibt sich:

für den unveränderlichen Stabbereich mit b/h = 30/50 (cm) $J_c = 0,003125$ m⁴, für den Auflagerquerschnitt mit $b/h_A = 30/250$ (cm) $J_A = 0,390625$,, . Somit ist I = 0.003125 I = 0.60

$$n = \frac{J_c}{J_A} = \frac{0,003125}{0,390625} = 0,008$$
 und $\lambda = \frac{l_v}{l} = \frac{0,60}{4,00} = 0,15$

Mit diesen Werten für n und λ erhält man aus der Kurventafel 5a

$$a_1 = 7,00; \quad a_2 = 4,60; \quad b = 3,35$$

und damit nach (106)

sowie nach (86)

Sämtliche Festwerte sind in Abb. 260a eingetragen.

wertskizze.

B. Ermittlung der Stabbelastungsglieder M.

Aus Tafel 9a erhält man mit den vorliegenden Leitwerten n = 0,008 und $\lambda = 0,15$ die Werte $\varkappa_1 = 1,53$ und $\varkappa_2 = 0,76$ und damit für die vorhandene Gleichlast q = 0,95 t/m unter Beachtung der Vorzeichenregel

$$\begin{split} \mathfrak{M}_1 &= + \varkappa_1 \frac{q \, l^2}{12} = + \, 1{,}53 \cdot \frac{0{,}95 \cdot 4{,}0^2}{12} = + \, 1{,}94 \; \mathrm{tm}\,;\\ \mathfrak{M}_2 &= - \varkappa_2 \frac{q \, l^2}{12} = - \, 0{,}76 \cdot \frac{0{,}95 \cdot 4{,}0^2}{12} = - \, 0{,}96 \;\;,. \end{split}$$

2. Art: Stab mit starrer Strecke.

Es wird als Ersatz für die Abschrägung eine unendlich starre Strecke mit der Länge $l_v = 0,50$ m angenommen (Abb. 261), so daß hier

$$n = rac{J_c}{J_A} = rac{0,003125}{\infty} = 0 \quad ext{und} \quad \lambda = rac{l_v}{l} = rac{0,50}{4,00} = 0,125.$$

A. Ermittlung der Festwerte a_1 , a_2 , b, c_1 , c_2 .

Aus Tafel 5a erhält man für die Leitwerte n = 0 und $\lambda = 0.125$:

$$a_1 = 6,80; \quad a_2 = 4,60; \quad b = 3,25$$

und damit nach (106)

$$\begin{aligned} a_1 &= \frac{1000 J_c}{l} \cdot \mathfrak{a}_1 = \frac{1000 \cdot 0,003125}{4,0} \cdot 6,80 = 5,31; \\ a_2 &= \frac{1000 J_c}{l} \cdot \mathfrak{a}_2 = 3,59; \quad b = \frac{1000 J_c}{l} \cdot \mathfrak{b} = 2,54 \end{aligned}$$

Guldan, Rahmentragwerke.

Abb. 261. Abb. 261 a. Abb. 261 und 261 a. Stababmessungen und Beiwertskizze. 10

146 Ermittlung der Stabfestwerte a, b, c und der Belastungsglieder \mathfrak{M} .

und nach (86)

$$c_1 = a_1 + b = 5,31 + 2,54 = 7,85;$$

 $c_2 = a_2 + b = 3,59 + 2,54 = 6,13.$

Diese Beiwerte, die nur geringe Abweichungen gegenüber den für den Voutenstab berechneten Werten zeigen, sind in Abb. 261a eingetragen.

B. Ermittlung der Stabbelastungsglieder M.

Mit den Leitwerten n=0 und $\lambda=0,125$ erhält man aus Tafel 9a

 $\varkappa_1 = 1,52$ und $\varkappa_2 = 0,765$

und damit unter Beachtung der Vorzeichenregel

$$\begin{split} \mathfrak{M}_{1} &= +\varkappa_{1} \frac{q \, l^{2}}{12} = +1,52 \quad \cdot \frac{0.95 \cdot 4.0^{2}}{12} = +1,92 \text{ tm};\\ \mathfrak{M}_{2} &= -\varkappa_{2} \frac{q \, l^{2}}{12} = -0,765 \cdot \frac{0.95 \cdot 4.0^{2}}{12} = -0,97 \quad ,, \ , \end{split}$$

Abb. 261 b. *M*-Verlauf bei voller Einspannung.

also wieder nur geringe Abweichungen gegenüber früher. Die Momentenverteilung nach beiden Rechnungsarten ist in Abb. 261 b für volle Einspannung eingetragen.

4. Stab mit verschiedenen Vouten an beiden Enden.

Die Form des Stabes mit allen erforderlichen Maßangaben ist aus Abb. 262 ersichtlich.

A. Ermittlung der Stabfestwerte a_1, a_2, b, c_1, c_2 .

Auch in diesem Falle können die Zahlentafeln Verwendung finden. Die Festwerte a_1, a_2, b sind aber nicht direkt aus den Tafeln zu entnehmen, sondern nach (103) (2 - 300 - 1) (2 - 300

IV, 2, C.)

$$\begin{array}{c} Ersatzstab, a. a. "\\ J_{A} = Q,0213 m^{4} \\ \hline \\ \hline \\ 225 & L = Q,0063 m^{4} \\ L = Q$$

Ersatzstab "a" mit gerader Voute.

Nach Abb. 262a wird

$$n = \frac{J_c}{J_A} = \frac{0,0063}{0,0213} = 0,296 \equiv 0,30;$$

$$\lambda = \frac{l_o}{l} = \frac{2,25}{9,0} = 0,25.$$

Aus Tafel 17 erhält man mit diesen Leitwerten für den Ersatzstab $,,a^{\prime\prime}$:

$$ar{lpha}_1{}^{(a)}=0,242\,;\;ar{lpha}_2{}^{(a)}=0,332\,;\ ar{eta}{}^{(a)}=0,158.$$

und "b" mit je einer Voute zu bestimmen. (Siehe Erster Teil, zweiter Abschnitt,

Ersatzstab "b" mit parabolischer Voute.

Nach Abb. 262b wird

$$n = \frac{J_c}{J_A} = \frac{0,0063}{0,042} = 0,15;$$

$$\lambda = \frac{l_v}{l} = \frac{2,70}{9,0} = 0,30.$$

Aus Tafel 18 erhält man mit diesen Leitwerten für den Ersatzstab $,b^{\prime\prime}$:

$$ar{lpha}_1{}^{(b)}=0,\!227\,;\;ar{lpha}_2{}^{(b)}=0,\!332\,;\ ar{eta}^{(b)}=0,\!156.$$

Damit ergeben sich nach (103) die Winkelwerte $\bar{\alpha}_1$, $\bar{\alpha}_2$, $\bar{\beta}$ für die gegebene Stabform der Abb. 262, und zwar:

$$\begin{split} \bar{\alpha}_1 &= \bar{\alpha}_1^{(a)} + \bar{\alpha}_2^{(b)} - \frac{1}{3} = + \ 0.242 + 0.332 - 0.333 = + \ 0.241; \\ \bar{\alpha}_2 &= \bar{\alpha}_2^{(a)} + \bar{\alpha}_1^{(b)} - \frac{1}{3} = + \ 0.332 + 0.227 - 0.333 = + \ 0.226; \\ \bar{\beta} &= \bar{\beta}^{(a)} + \bar{\beta}^{(b)} - \frac{1}{6} = + \ 0.158 + 0.156 - 0.167 = + \ 0.147. \end{split}$$

Mit diesen Werten, die noch auf den Stab mit der Länge l = 1 bezogen sind, erhält man nach (78)

$$a_{1} = \frac{\bar{\alpha}_{2}}{\bar{\alpha}_{1} \bar{\alpha}_{2} - \bar{\beta}^{2}} = \frac{0,226}{0,241 \cdot 0,226 - 0,147^{2}} = \frac{0,226}{0,0329} = 6,87;$$

$$a_{2} = \frac{\bar{\alpha}_{1}}{\bar{\alpha}_{1} \bar{\alpha}_{2} - \bar{\beta}^{2}} = \frac{0,241}{0,0329} = 7,33; \quad b = \frac{\bar{\beta}}{\bar{\alpha}_{1} \bar{\alpha}_{2} - \bar{\beta}^{2}} = \frac{0,147}{0,0329} = 4,47.$$

Daraus folgt schließlich nach (106)

$$a_1 = \frac{1000 J_c}{l} \cdot \mathfrak{a}_1 = \frac{1000 \cdot 0,0063}{9,0} \cdot 6,87 = 4,81;$$

(36) $a_2 = \frac{1000 J_c}{l} \cdot \mathfrak{a}_2 = 5,13; \ b = \frac{1000 J_c}{l} \cdot \mathfrak{b} = 3,13$

und nach (86)

$$c_{1} = a_{1} + b = 4,81 + 3,13 = 7,94;$$

$$c_{2} = a_{2} + b = 5,13 + 3,13 = 8,26.$$

$$\bigcirc \begin{vmatrix} a_{7} - 4,81 & b - 3,43 & a_{2} - 5,13 \\ \hline c_{7} - 7,94 & c_{7} - 8,26 \end{vmatrix} \bigcirc$$

Diese Festwerte sind in Abb. 263 eingetragen. Abb. 263. Beiwertskizze.

B. Ermittlung der Stabbelastungsglieder M.

Der Vorgang ist hier ähnlich wie bei der Ermittlung der Stabfestwerte. Es werden wieder zuerst für die Ersatzstäbe "a", "b" mit je einer Voute und für den Ersatzstab "c" ohne Voute mit Hilfe der Zahlen- und Kurventafeln die der gegebenen Belastung (hier Gleichlast q = 4.7 t/m) entsprechenden Winkelwerte $\bar{\alpha}_1^{0(a)}$, $\bar{\alpha}_2^{0(a)}$; $\bar{\alpha}_1^{0(b)}$, $\bar{\alpha}_2^{0(b)}$ und $\bar{\alpha}_1^{0(c)}$, $\bar{\alpha}_2^{0(c)}$ bestimmt und damit nach (118a) die Winkelwerte $\bar{\alpha}_1^{0}$ und $\bar{\alpha}_2^{0}$ für die vorliegende Stabform mit ungleichen Vouten ermittelt.

(Siehe Erster Teil, zweiter Abschnitt, V, 3C.)

Ersatzstab "a" mit gerader Voute.	Ersatzstab "b" mit parabolischer Voute.
Auf Tafel 21 erhält man mit den Leitwerten $n = 0.30$ und $\lambda = 0.25$	Aus Tafel 22 erhält man mit den Leitwerten $n = 0,15$ und $\lambda = 0.30$
$\bar{\alpha}_1^{0(a)} = 0,0378; \ \bar{\alpha}_2^{0(a)} = 0,0411.$	$\bar{\alpha}_1^{0(b)} = 0,0372; \ \bar{\alpha}_2^{0(b)} = 0,0410.$

Für den Ersatzstab "c" ohne Vouten kann aus jeder der beiden Tafeln entnommen werden:

$$\bar{\alpha}_1^{0}{}^{(c)} = \bar{\alpha}_2^{0}{}^{(c)} = 0,0417.$$

Damit wird nach (118a)

$$\bar{\alpha}_{1}^{\ 0} = \bar{\alpha}_{1}^{\ 0(a)} + \bar{\alpha}_{2}^{\ 0(b)} - \bar{\alpha}_{1}^{\ 0(c)} = 0,0378 + 0,0410 - 0,0417 = 0,0371;$$

$$\bar{\alpha}_{2}^{\ 0} = \bar{\alpha}_{2}^{\ 0(a)} + \bar{\alpha}_{1}^{\ 0(b)} - \bar{\alpha}_{2}^{\ 0(c)} = 0,0411 + 0,0372 - 0,0417 = 0,0366$$

Fällen getroffen werden können. Man kann natürlich auch irgendeine ungleichmäßige Auflagerverstärkung, so z. B. die Säulenverbreiterungen bei Pilzdecken, durch eine einfachere Voutenform oder auch durch eine kürzere, unendlich starre Strecke ersetzen. Die weitere Berechnung ist dann unter Benutzung der Hilfstafeln im Dritten Teil des Buches in der gewohnten Weise vorzunehmen.

II. Unverschiebliche Tragwerke.

Vorbemerkung. Die in diesem Abschnitte zur Behandlung gelangenden Zahlenbeispiele wurden auch im ersten Abschnitt bereits vollständig durchgerechnet. Es sind also hier wieder dieselben Längenabmessungen der einzelnen Rahmenstäbe und auch dieselben Belastungen vorhanden, jedoch treten im Gegensatz zu früher nun bei einzelnen Stäben Vouten auf. Es empfiehlt sich daher, das Endergebnis, also die Momentenverteilung der Tragwerke *mit* und *ohne* Vouten zu vergleichen, um den Einfluß der Veränderlichkeit der Stabquerschnitte auch zahlenmäßig ungefähr abschätzen zu lernen.

Will man aber auch die Formänderungswerte φ , ψ , Δ , δ in beiden Fällen miteinander vergleichen, so ist zu beachten, daß bei der Berechnung der Tragwerke ohne Vouten aus Zweckmäßigkeitsgründen in der Regel nach (20) der Reduktionsfaktor $z = \frac{1000}{2E}$ verwendet worden ist, während bei den Tragwerken mit Vouten meist nach (105) $z = \frac{1000}{E}$ gewählt wird. Es sind daher die unter dieser Voraussetzung ermittelten Formänderungsgrößen vorerst zu verdoppeln, damit sie unmittelbar mit den entsprechenden Werten aus der ersten Rechnung (ohne Vouten) verglichen werden können.

Es sei hier ausdrücklich darauf hingewiesen, daß die Bezeichnung der Festwerte a_1 und a_2 grundsätzlich immer so gewählt wird, daß bei Stäben mit einseitigen Vouten a_1 den Festwert auf der *Voutenseite* und a_2 den Festwert auf dem *voutenfreien* Ende bedeutet. Zur Erzielung einer guten Übersicht enthalten die Festwerttabellen in der letzten Spalte jeweils die Nummern jener Hilfstafeln, aus welchen die Werte a_1 , a_2 und b für die zugehörigen Leitwerte n und λ entnommen worden sind.

Zahlenbeispiel 12 (vgl. auch Nr. 1).

Rahmenteil mit Kragarm. Feste Einspannung in den Knotenpunkten 1, 3, 4, daher $\varphi_1 = \varphi_3 = \varphi_4 = 0$. Es ist also nur *eine* Unbekannte zu bestimmen, nämlich φ_2 . Die Längen- und Querschnittsabmessungen sind aus Abb. 266, die Belastungs-

Abb. 266. Tragwerksabmessungen.

Abb. 267. Belastungsangaben.

Ð

angaben aus Abb. 267 zu entnehmen. Bei der Berechnung soll die gerade Voute des Stabes 2-3 berücksichtigt werden.

P=5.0t

2,0t/m(2

Die Ermittlung der Festwerte a_1 , a_2 , b für die einzelnen Stäbe erfolgt am besten in einer Tabelle, in welcher alle Zwischenrechnungen aufgenommen sind.

Stab	$b/\hbar^{(m cm)}$	$J_c^{(m^4)}$	b/h	A J	A ^(m4)	l(m)	l _v (m)	$\lambda = -\frac{\lambda}{2}$	$\left \frac{v}{l} \right n$	$=\frac{J_c}{J_A}$
$\substack{\substack{1-2\\2-3\\2-4}}$	40/60 40/60 40/40	0,0072 0,0072 0,0021	0 40/6 0 40/1 3 40/4	50 0,0 .00 0,0 40 0,0	00720 03333 00213	4,0 7,5 3,5	$\begin{vmatrix} 0\\1,88\\0 \end{vmatrix}$		5 (1),216 1
Stab	λ	n	aı	a2	b		<i>a</i> ₁	<i>a</i> ₂	b	Tafel
$egin{array}{c} 1-2 \\ 2-3 \\ 2-4 \end{array}$	0 0,25 0	$\begin{array}{c}1\\0,216\\1\end{array}$	4 6,60 4	4 4,47 4	$\begin{vmatrix} 2\\ 3,10\\ 2 \end{vmatrix}$,	7,20 6,34 2,44	7,20 4,28 2,44	3,60 2,98 1,22	5a —

Festwerttabelle 12.

Die Beiwerte a_1, a_2, b in der vorstehenden Tabelle ergeben sich nach (106) wie folgt:

$$a_1 = \frac{1000 J_c}{l} \cdot \mathfrak{a}_1; \quad a_2 = \frac{1000 J_c}{l} \cdot \mathfrak{a}_2; \quad b = \frac{1000 J_c}{l} \cdot \mathfrak{b}.$$

Sämtliche Festwerte sind in der Beiwertskizze Abb. 268 eingetragen, und zwar die a-Werte an den Stabenden und die b-Werte in der Stabmitte.

Diagonalglied d_2 .

Nach (123) ist allgemein

$$d_n = \sum_i a_{n,i}$$

daher laut Beiwertskizze Abb. 268

$$d_2 = 7,20 + 6,34 + 2,44 = 15,98$$

Abb. 268. Beiwertskizze.

2,98

-₿(3)

 $Stabbelastungsglieder \ \mathfrak{M}.$

Stab 2-3. Einseitig gerade Voute mit n = 0,216; $\lambda = 0,25$; l = 7,5 m.

Die Beiträge für die durchgehende Belastung $q_2 = 3,0$ t/m sowie für die Einzellasten $P_3 = P_4 = 5$ t an den Orten $\frac{2,5}{7,5} = 0,3$ bzw. $\frac{5,0}{7,5} = 0,6$ werden getrennt ermittelt und dann summiert. Es ergeben sich nach Tafel 9a

$$\mathfrak{M}_{2,3}^{(q_2)} = -\varkappa_1 \frac{q l^2}{12} = -1,39 \cdot \frac{3,0 \cdot 7,5^2}{12} = -19,60 \text{ tm};$$

$$\mathfrak{M}_{3,2}^{(q_2)} = +\varkappa_2 \frac{q l^2}{12} = +0,826 \cdot \frac{3,0 \cdot 7,5^2}{12} = +11,60 \text{ ,,}$$

und nach den Einflußlinientafeln 13a

$$\begin{split} \mathfrak{M}_{2,3}{}^{(P_3)} &= -\eta_1 \cdot P \cdot l = -0,210 \cdot 5,0 \cdot 7,5 = -7,87 \text{ tm};\\ \mathfrak{M}_{3,2}{}^{(P_3)} &= +\eta_2 \cdot P \cdot l = +0,047 \cdot 5,0 \cdot 7,5 = +1,76 \ ,, \ ;\\ \mathfrak{M}_{2,3}{}^{(P_4)} &= -\eta_1 \cdot P \cdot l = -0,113 \cdot 5,0 \cdot 7,5 = -4,24 \ ,, \ ;\\ \mathfrak{M}_{3,2}{}^{(P_4)} &= +\eta_2 \cdot P \cdot l = +0,132 \cdot 5,0 \cdot 7,5 = +4,95 \ ,, \ ; \end{split}$$

somit zusammengefaßt:

$$\begin{split} \mathfrak{M}_{2,3} &= \mathfrak{M}_{2,3}^{(q_2)} + \mathfrak{M}_{2,3}^{(P_3)} + \mathfrak{M}_{2,3}^{(P_4)} = -19,60 - 7,87 - 4,24 = -31,71 \text{ tm};\\ \mathfrak{M}_{3,2} &= \mathfrak{M}_{3,2}^{(q_2)} + \mathfrak{M}_{3,2}^{(P_3)} + \mathfrak{M}_{3,2}^{(P_4)} = +11,60 + 1,76 + 4,95 = +18,31 \text{ ,,.}\\ Kragarm. \\ M_{2,k} &= +2,0 \cdot \frac{5,0^2}{2} + 2,5 \cdot 5,0 + 5,0 \cdot 2,5 = +50,00 \text{ tm}. \end{split}$$

 $Knotenbelastungsglied s_2.$

Nach (124) ist allgemein
$$s_n = \sum_i \mathfrak{M}_{n,i} + \sum M_k$$
,
daher $s_2 = \mathfrak{M}_{2,3} + M_{2,k} = -31,71 + 50,0 = +18,29 \text{ tm.}$

Knotengleichung.

Nach (122) ist allgemein

10tm

$$d_n \varphi_n + \sum_i b_{n,i} \varphi_i + s_n = 0$$

Da im vorliegenden Fall sämtliche dem Knoten 2 benachbarten Knotendrehwinkel gleich Null sind, so wird einfach

$$d_2 \varphi_2 + s_2 = 0 \quad ext{oder} \quad 15,98 \ \varphi_2 + 18,29 = 0$$

und daraus

2,79 (2

4.12

$$\varphi_2 = -\frac{18,29}{15,98} = -1,145$$

Momente.

Nach (83) ist allgemein für einen Stab 1-2 mit $\psi = 0$:

$$M_{1, 2} = a_1 \varphi_1 + b \varphi_2 + \mathfrak{M}_{1, 2}$$

Damit ergeben sich unter Benutzung der Beiwertskizze Abb. 268 zur Entnahme der Werte a und b:

Diese Momente sind in Abb. 269 maßstäblich aufgetragen.

Zahlenbeispiel 13 (vgl. auch Nr. 2).

Zweifeldiger Unterzug in steifer Verbindung mit den Säulen des darunter- und darüberliegenden Stockwerkes. Feste Einspannung in den Knotenpunkten 1, 2, 3, 7, 8, 9. Seitlich unverschieblich festgehalten, daher nur *drei* Unbekannte, und zwar φ_4 , φ_5 , φ_6 . Die Belastungsangaben sowie die Längen- und Querschnittsabmessungen sind aus Abb. 270 zu entnehmen.

Abb. 270. Tragwerksabmessungen mit Belastungsangaben.

Bei der Berechnung sollen bei den Riegeln 4–5 und 5–6 die geraden Vouten berücksichtigt werden, während bei den Säulen 1–4 und 2–5 am oberen Ende an Stelle der Vouten starre Strecken mit den Längen $l_v = 0,36$ m bzw. 0,40 m anzunehmen sind, längs welcher also $J_A = \infty$ ist.

Stab	b/h ^(cm)	<i>J</i> ^(m4)	b/h_	4 J _A (m	4) 1	(m)	<i>l</i> v ^(m)	$\lambda = \frac{l}{l}$	v n	$=rac{J_c}{J_A}$
1-42-53-64-55-64-7, 6-95-8	$\begin{array}{c} 50/60\\ 60/60\\ 50/60\\ 30/55\\ 30/55\\ 50/50\\ 55/55\\ \end{array}$	$\begin{array}{c} 0,00900\\ 0,01080\\ 0,00900\\ 0,00416\\ 0,00416\\ 0,00521\\ 0,00763\end{array}$	50/c 60/c 50/6 30/9 30/8 50/5 55/5	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	4 00 4 23 8 80 6 21 3 63 3	4,00 4,00 8,00 8,00 5,00 8,50 8,50	0,36 0,40 0 1,80 1,50 0 0	$\left \begin{array}{c} 0,09\\ 0,10\\ 0\\ 0,222\\ 0,25\\ 0\\ 0\\ 0\end{array}\right $	5	$0\\0\\1\\0,228\\0,325\\1\\1$
Stab	λ	n	a 1	a ₂	b		<i>a</i> 1	a2	b	Tafel
$\begin{array}{r}1-4\\2-5\\3-6\\4-5\\5-6\\4-7,\ 6-9\\5-8\end{array}$	$\begin{array}{c} 0,09\\ 0,10\\ 0\\ 0,225\\ 0,25\\ 0\\ 0\\ 0 \end{array}$	$\begin{array}{c} 0 \\ 0 \\ 1 \\ 0,228 \\ 0,325 \\ 1 \\ 1 \end{array}$	5,90 6,09 4 7,00 5,85 4 4	4,40 4,44 4 7,00 4,35 4 4	2,85 2,96 2 4,45 2,79 2 2 2		3,24 6,44 9,00 3,64 4,05 5,95 8,72	9,90 12,00 9,00 3,64 3,01 5,95 8,72	6,41 7,99 4,50 2,31 1,93 2,98 4,36	5a 5a 7a 5a

Festwerttabelle 13.

Die Beiwerte a_1, a_2, b in der vorstehenden Tabelle werden nach (106) wie folgt bestimmt:

$$a_1 = rac{1000\,J_c}{l}\cdot\mathfrak{a}_1; \ \ a_2 = rac{1000\,J_c}{l}\cdot\mathfrak{a}_2; \ \ b = rac{1000\,J_c}{l}\cdot\mathfrak{b}_2.$$

Alle Festwerte sind in der Beiwertskizze Abb. 271 eingetragen, und zwar die *a*-Werte an den Stabenden, die *b*-Werte in der Stabmitte.

Diagonalglieder d.

Nach (123) ist allgemein $d_n = \sum_i a_{n,i}$. An Hand der Beiwertskizze Abb. 271 erhält man damit für den vorliegenden Fall:

$$egin{array}{rll} d_4 &= 13,24 + 3,64 + 5,95 &= 22,83; \ d_5 &= 16,44 + 3,64 + 4,05 + 8,72 &= 32,85; \ d_6 &= 9,00 + 3,01 + 5,95 &= 17,96. \end{array}$$

$Stabbelastungsglieder \mathfrak{M}.$

Die Beiträge für die verschiedenen Belastungen werden jeweils getrennt ermittelt und dann summiert.

Stab 4-5. Beidseitig gerade Vouten mit n = 0,228 und $\lambda = 0,225$; l = 8,0 m. Belastung: $q_1 = 4,0$ t/m und $P_1 = 5,0$ t an der Stelle $\frac{a}{l} = \frac{5,0}{8,0} = 0,625$. Nach Tafel 11a wird

$$\mathfrak{M}_{4,5}^{(q_1)} = -\varkappa \frac{q l^2}{12} = -1,162 \cdot \frac{4,0 \cdot 8,0^2}{12} = -24,79 \text{ tm}; \quad \mathfrak{M}_{5,4}^{(q_1)} = +24,79 \text{ tm}.$$

Aus den Einflußlinientafeln 15a ergibt sich nach Interpolation

$$\begin{split} \mathfrak{M}_{4,5}^{(P_1)} &= -\eta_1 \cdot P \cdot l = -0.091 \cdot 5.0 \cdot 8.0 = -3.64 \,\mathrm{tm}\,;\\ \mathfrak{M}_{5,4}^{(P_1)} &= +\eta_2 \cdot P \cdot l = +0.186 \cdot 5.0 \cdot 8.0 = +7.44 \,\,,,\,; \end{split}$$

daher

$$\begin{split} \mathfrak{M}_{4,5} &= \mathfrak{M}_{4,5}^{(q_1)} + \mathfrak{M}_{4,5}^{(P_1)} = -24,79 - 3,64 = -28,43 \text{ tm};\\ \mathfrak{M}_{5,4} &= \mathfrak{M}_{5,4}^{(q_1)} + \mathfrak{M}_{5,4}^{(P_1)} = +24,79 + 7,44 = +32,23 \text{ ,...} \end{split}$$

Stab 5-6. Einseitig gerade Voute mit n = 0.325 und $\lambda = 0.25$; l = 6.0 m.

Belastung: $q_2 = 4.5 \text{ t/m}$; $P_2 = 6.0 \text{ t}$ in der Stabmitte.

Nach Tafel 9a wird

$$\mathfrak{M}_{5,6}^{(q_2)} = -\varkappa_1 \frac{q \, l^2}{12} = -1,293 \cdot \frac{4,5 \cdot 6,0^2}{12} = -17,45 \text{ tm};$$

$$\mathfrak{M}_{6,5}^{(q_2)} = +\varkappa_2 \frac{q \, l^2}{12} = +0,872 \cdot \frac{4,5 \cdot 6,0^2}{12} = +11,77 \quad ,, .$$

Nach den Einflußlinientafeln 13a wird

$$\mathfrak{M}_{5, 6}^{(P_2)} = -\eta_1 P \cdot l = -0.171 \cdot 6.0 \cdot 6.0 = -6.16 ext{ tm};$$

 $\mathfrak{M}_{6, 5}^{(P_2)} = +\eta_2 P \cdot l = +0.105 \cdot 6.0 \cdot 6.0 = +3.78 ,,;$

daher

$$\mathfrak{M}_{5, 6} = \mathfrak{M}_{5, 6}^{(q_2)} + \mathfrak{M}_{5, 6}^{(P_2)} = - 17,45 - 6,16 = -23,61 \text{ tm}; \\ \mathfrak{M}_{6, 5} = \mathfrak{M}_{6, 5}^{(q_2)} + \mathfrak{M}_{6, 5}^{(P_2)} = + 11,77 + 3,78 = +15,55 , ...$$

Knotenbelastungsglieder s.

Nach (124a) ist allgemein

$$s_n = \sum_i \mathfrak{M}_{n,i},$$

also

$$\begin{array}{l} s_4 = - \ 28,43 \ {\rm tm}; \\ s_5 = + \ 32,23 - 23,61 = + \ 8,62 \ {\rm tm}; \\ s_6 = + \ 15,55 \ {\rm tm}. \end{array}$$

Knotengleichungen.

Nach (122) ist allgemein

$$d_n \varphi_n + \sum_i b_{n,i} \varphi_i + s_n = 0.$$

Damit kann unter Benutzung der Beiwertskizze Abb. 271 die Gleichungstabelle 13 aufgestellt werden.

	φ_4	$arphi_{5}$	φ_6	B
$arphi_4$	+ 22,83	+ 2,31		- 28,43
φ_5	+ 2,31	+ 32,85	+ 1,93	+ 8,62
φ ₆		+ 1,93	+ 17,96	+15,55

Gleichungstabelle 13.

Diese Momente sind in Abb. 272 maßstäblich aufgetragen.

Zahlenbeispiel 14 (vgl. auch Nr. 4).

Symmetrischer zweistöckiger Rahmen mit fest eingespannten Stielen. Die Längen- und Querschnittsabmessungen sind aus Abb. 273, die Belastungen aus

Abb. 274 zu entnehmen. Wegen symmetrischer Belastung ist $\varphi_4 = 0$, so daß nur zwei Unbekannte zu ermitteln sind, und zwar φ_3 und $\varphi_5 = -\varphi_5'$. Es sind bei der Berechnung die geraden Vouten der Riegel 3-4 und 5-5' sowie der Säule 3-5 zu berücksichtigen.

Festwerttabelle 14.

Stab	<i>b/h</i> (cm)	<i>J</i> _c ^(m4)	b/h_A	J _A (m ⁴)	<i>l</i> (m)	<i>l_v</i> (m)	$\lambda = \frac{l_v}{l}$	$n = \frac{J_c}{J_A}$
$1-3 \\ 3-4 \\ 3-5 \\ 5-5'$	$45/75 \\ 45/50 \\ 45/70 \\ 45/60$	0,01582 0,00469 0,01286 0,00810	$\begin{array}{r} 45/75\\ 45/100\\ 45/582\\ 45/120\end{array}$	0,01582 0,03750 7,39265 0,06480	3,80 6,50 4,00 13,00	0 1,30 0,845 3,65	0 0,20 0,21 0,28	1 0,125 0,0017 0,125
		1	1			1	1	

Stab	٦	n	a1	a ₂	b	<i>a</i> ₁	<i>a</i> ₂	b	Tafel
$1-3 \\ 3-4 \\ 3-5 \\ 5-5'$	0 0,20 0,21 0,28	$1\\0,125\\0,0017\\0,125$	$\begin{array}{r} 4 \\ 6,60 \\ 9,70 \\ 10,25 \end{array}$	4 4,50 5,00 10,25	2 3,10 4,30 7,10	$16,66 \\ 4,76 \\ 31,19 \\ 6,39$	16,66 3,25 16,08 6,39	8,33 2,24 13,82 4,42	 5a 7a

Die Tabellenwerte a_1 , a_2 , b sind nach (106) wie folgt gerechnet:

$$\frac{1000 J_c}{l} \cdot \mathfrak{a}_1; \quad a_2 = \frac{1000 J_c}{l} \cdot \mathfrak{a}_2; \quad b = \frac{1000 J_c}{l} \cdot \mathfrak{b}.$$

 $a_1 =$

Sämtliche Festwerte sind in der Beiwertskizze Abb. 275 eingetragen.

Diagonalglieder d.

Nach (123) ist allgemein

$$d_n = \sum_i a_{n,i}$$

also $d_3 = 16,66 + 3,25 + 16,08 = 35,99;$ $d_5 = 31,19 + 6,39 = 37,58.$

Da aber die Symmetrale durch die Mitte des Stabes 5-5' hindurchgeht, so ist an Stelle von d_5 sinngemäß nach (40)

$$d_5' = d_5 - b_{5,5}' = 37,58 - 4,42 = 33,16$$

 $Stabbelastungsglieder \mathfrak{M}.$

Die Beiträge der verschiedenen Belastungen werden getrennt ermittelt und dann summiert.

zu setzen.

Stab 3-4. Einseitig gerade Voute auf der rechten Seite mit n = 0,125 und $\lambda = 0,20$; l = 6,5 m.

Belastung: $q_1 = 4,0$ t/m und $P_1 = P_2 = 7,0$ t an den Orten $\frac{a}{l} = \frac{1,3}{6,5} = 0,2$ bzw. $\frac{a}{l} = \frac{3,9}{6,5} = 0,6$ von der Voutenseite aus gemessen.

Nach Tafel 9a wird

$$\mathfrak{M}_{3,4}^{(q_1)} = -\varkappa_2 \cdot \frac{q \, l^2}{12} = -0.81 \cdot \frac{4.0 \cdot 6.5^2}{12} = -11.41 \text{ tm};$$

$$\mathfrak{M}_{4,3}^{(q_1)} = +\varkappa_1 \cdot \frac{q \, l^2}{12} = +1.43 \cdot \frac{4.0 \cdot 6.5^2}{12} = +20.14 \text{ ,,...}$$

Nach der Einflußlinientafel 13a wird

$$\begin{split} \mathfrak{M}_{\mathbf{3},\mathbf{4}}^{(P_1)} &= -\eta_2 \cdot P \cdot l = -0,121 \cdot 7,0 \cdot 6,5 = -5,51 \text{ tm};\\ \mathfrak{M}_{\mathbf{4},\mathbf{3}}^{(P_1)} &= +\eta_1 \cdot P \cdot l = +0,148 \cdot 7,0 \cdot 6,5 = +6,73 \ ,,;\\ \mathfrak{M}_{\mathbf{3},\mathbf{4}}^{(P_2)} &= -\eta_2 \cdot P \cdot l = -0,013 \cdot 7,0 \cdot 6,5 = -0,59 \ ,,;\\ \mathfrak{M}_{\mathbf{4},\mathbf{3}}^{(P_2)} &= +\eta_1 \cdot P \cdot l = +0,171 \cdot 7,0 \cdot 6,5 = +7,78 \ ,, \end{split}$$

Damit ergeben sich zusammengefaßt:

$$\mathfrak{M}_{3,4} = -11,41 - 5,51 - 0,59 = -17,51 \text{ tm};$$

 $\mathfrak{M}_{4,3} = +20,14 + 6,73 + 7,78 = +34,65 ,, .$
Stab 5-5'. Beidseitig gerade Vouten mit $n = 0,125$ und $\lambda = 0,28; l = 13,0$ m.
Belastung: $q_2 = 3,6 \text{ t/m}.$
Nach Tafel 11a wird

$$\mathfrak{M}_{5,5'}{}^{(q_2)} = -\varkappa \cdot \frac{q \, l^2}{12} = -1,23 \cdot \frac{3.6 \cdot 13.0^2}{12} = -62,36 \text{ tm}$$

Knotenbelastungsglieder s.

Nach (124a) ist allgemein $s_n = \sum \mathfrak{M}_{n,i},$

daher

$$s_3 = -17,51 \text{ tm};$$

 $s_5 = -62,36 ,, .$

Knotengleichungen.

Nach (122) ist allgemein

$$d_n \varphi_n + \sum_i b_{n,i} \varphi_i + s_n = 0.$$

Damit erhält man unter Benutzung der Beiwertskizze Abb. 275 die Gleichungen

 $(\varphi_3) \ldots 35,99 \varphi_3 + 13,82 \varphi_5 - 17,51 = 0;$ $(\varphi_5) \ldots 13,82 \varphi_3 + 33,16 \varphi_5 - 62,36 = 0.$

Abb. 276. Momentenverlauf.

Die Auflösung ergibt: $\varphi_5 = +2,00$; $\varphi_3 = -0,282$. Momente.

Nach (83) ist allgemein für Stäbe mit $\psi = 0$:

$$M_{1,2} = a_1 \varphi_1 + b \varphi_2 + \mathfrak{M}_{1,2}.$$

Damit ergeben sich an Hand der Beiwertskizze Abb. 275 folgende Stabendmomente:

Diese Momente sind in Abb. 276 maßstäblich aufgetragen.

III. Verschiebliche Tragwerke.

Zahlenbeispiel 15 (vgl. auch Nr. 7).

Tribünenrahmen mit fest eingespannten Säulenfüßen (Abb. 277). Es sind also $\varphi_1 = \varphi_2 = \varphi_3 = 0$, so daß insgesamt *fünf* Knotendrehwinkel φ_4 , φ_5 , φ_6 , φ_7 , φ_8 und *zwei* Verschiebungsgrößen $\Delta_{\rm I}$ und $\Delta_{\rm II}$ als Unbekannte gemeinsam zu bestimmen sind. Längen- und Querschnittsabmessungen siehe Abb. 277. Es sind bei den geneigten Stäben 4–5, 5–6 und 7–8 die einseitig geraden Vouten, ferner bei den Säulen 2–5 und 5–7 am oberen Ende starre Strecken in Rechnung zu stellen.

- Zu behandeln sind zwei Belastungsfälle:
- a) Lotrechte Belastung (Abb. 278a).
- b) Wind (Abb. 278b).

Die in der Festwerttabelle 15 enthaltenen Werte a, b, \bar{c} ergeben sich wie folgt: Nach (106)

$$a_1 = \frac{1000 J_c}{l} \cdot \mathfrak{a}_1; \quad a_2 = \frac{1000 J_c}{l} \cdot \mathfrak{a}_2; \quad b = \frac{1000 J_c}{l} \cdot \mathfrak{b};$$

nach (81)

Abb. 278 a. Lotrechte Belastung.

Abb. 277. Tragwerksabmessungen.

Abb. 278 b. Windbelastung.

Stab	b/h ^(cm)	<i>J_c</i> ^(m4)		b/h _A	J _A ((m ⁴)	į (m)	$l_v^{(m)}$	$\lambda = -$	$\frac{l_v}{l}$	$n = \frac{J_c}{J_A}$
1-42-53-64-55-65-76-87-8	$\begin{array}{r} 45/45\\ 45/50\\ 45/55\\ 45/60\\ 45/60\\ 30/30\\ 45/55\\ 45/50\\ \end{array}$	0,0034 0,00462 0,0062 0,0081(0,00862 0,0081(0,00062 0,0062	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5/45 $5/\infty$ 5/55 5/120 5/120 $5/\infty$ 5/55 5/100	0,00 0,00 0,06 0,06 0,00 0,00	$)342 \\ \infty \\)624 \\ 3480 \\ 3480 \\ \infty \\)624 \\ 3750 \\$	4,00 6,00 9,00 5,38 8,55 7,80 4,00 8,03	$0\\0,36\\0\\1,70\\2,50\\0,55\\0\\4,80$	0 0,06 0,31 0,29 0,07 0 0,59	6 3 0 8	$1,000 \\ 0 \\ 1,000 \\ 0,125 \\ 0,125 \\ 0 \\ 1,000 \\ 0,125$
Stab	λ	n	aı	¢2	б	a1	a2	ь	ī,	- .	Tafel
1-42-53-64-55-65-76-87-8	0 0,06 0,316 0,293 0,070 0 0,598	$1,000 \\ 0 \\ 1,000 \\ 0,125 \\ 0,125 \\ 0 \\ 1,000 \\ 0,125$	$\begin{array}{c c} 4, \\ 5, 15 \\ 4 \\ 8, 65 \\ 8, 20 \\ 5, 36 \\ 4 \\ 14, 20 \end{array}$	$\begin{array}{r} 4\\ 4,26\\ 4\\ 4,75\\ 4,70\\ 4,27\\ 4\\ 5,07\end{array}$	$2 \\ 2,55 \\ 2 \\ 3,81 \\ 3,68 \\ 2,64 \\ 2 \\ 5,03$	$\begin{array}{r} 3,42\\ 4,02\\ 2,77\\ 13,02\\ 7,76\\ 0,464\\ 6,24\\ 8,30 \end{array}$	3,42 3,33 2,77 7,15 4,45 0,370 6,24 2,96	$1,71 \\ 1,99 \\ 1,39 \\ 5,74 \\ 3,48 \\ 0,228 \\ 3,12 \\ 2,94$	$1,285 \\ 1,002 \\ 0,462 \\ \\ 0,089 \\ 2,34 \\$	1,2850,8870,4620,0772,34	5a 5a 5a 5a 5a 5a

Festwerttabelle 15.

nach (133) für einen Stab mit der Länge l_{μ}

Die Werte \bar{c}_1 und \bar{c}_2 brauchen nur für die Säulen bestimmt zu werden, da bei den übrigen Stäben keine Verdrehung auftritt.

In der Beiwertskizze Abb. 279 sind die Festwerte a_1, a_2, b , ferner (in Klammern) auch die Werte \bar{c}_1 und \bar{c}_2 eingetragen.

Diagonalglieder d und D.

Nach (123)

$$d_n = \sum_i a_{n,i}$$

erhält man

Nach (136) ist allgemein für ein Stockwerk μ

$$D_{\mu} = \sum_{\mu} \frac{1}{\bar{l}} \left(\bar{c}_o + \bar{c}_u \right)$$

also hier für das erste Stockwerk

$$D_{\mathrm{I}} = rac{2 \cdot 1,285}{4,0} + rac{1,002 + 0,887}{6,0} + rac{2 \cdot 0,462}{9,0} = 1,060$$

und für das zweite Stockwerk

$$D_{\rm II} = \frac{0,089 + 0,077}{7,80} + \frac{2.2,34}{4,0} = 1,191.$$

a) Lotrechte Lasten (Abb. 278a).

Stabbelastungsglieder M.

Stab 4-5. Einseitig gerade Voute auf der rechten Seite mit n = 0,125 und $\lambda = 0,316$; l' = 5,00 m.

Belastung: q = 7,0 t/m.

Nach Tafel 9a wird

$$\begin{split} \mathfrak{M}_{4,5} &= -\varkappa_2 \cdot \frac{q \, l^2}{12} = -0.75 \cdot \frac{7.0 \cdot 5.0^2}{12} = -10.92 \, \mathrm{tm}\,;\\ \mathfrak{M}_{5,4} &= +\varkappa_1 \cdot \frac{q \, l^2}{12} = +1.59 \cdot \frac{7.0 \cdot 5.0^2}{12} = +23.2 \quad , . \end{split}$$

Stab 5-6. Einseitig gerade Voute auf der linken Seite mit n = 0,125 und $\lambda = 0,293$; l' = 8,0 m.

Belastung: q = 7,0 t/m.

Nach Tafel 9a wird

$$\mathfrak{M}_{5,6} = -\varkappa_1 \cdot \frac{q \ l^2}{12} = -1,56 \cdot \frac{7,0 \cdot 8,0^2}{12} = -58,3 \text{ tm};$$

$$\mathfrak{M}_{6,5} = +\varkappa_2 \cdot \frac{q \ l^2}{12} = +0,76 \cdot \frac{7,0 \cdot 8,0^2}{12} = +28,4 \text{ ,, }.$$

Stab 7-8. Einseitig gerade Voute auf der linken Seite mit n = 0,125 und $\lambda = 0,598$; l' = 8,0 m.

Belastung : q = 4.0 t/m.

Nach Tafel 9a wird

$$\mathfrak{M}_{7.8} = -\varkappa_1 \cdot \frac{q \, l^2}{12} = -1.64 \cdot \frac{4.0 \cdot 8.0^2}{12} = -35.0 \text{ tm};$$

$$\mathfrak{M}_{8.7} = +\varkappa_2 \cdot \frac{q \, l^2}{12} = +0.71 \cdot \frac{4.0 \cdot 8.0^2}{12} = +15.16 \text{ ,...}$$

Kragmoment:

$$M_{7,k} = \frac{+4.0.6,0^2}{2} = +72,0 \text{ tm}.$$

 $Knotenbelastungsglieder \ s.$

Nach (124)

$$s_n = \sum_i \mathfrak{M}_{n,i} + \sum M_k$$

erhält man

Die Belastungsglieder S für die Verschiebungsgleichungen sind durchwegs Null, weil nur lotrechte Belastungen vorhanden sind.

b) Wind.
$$w = 1,05 \text{ t/m}$$
 (Abb. 278b).

 $Stabbelastungsglieder \ \mathfrak{M}.$

Stab 1-4. Keine Vouten; l = 4.0 m; q = 1.05 t/m, daher

$$\mathfrak{M}_{1,4} = -\frac{q l^2}{12} = -\frac{1,05 \cdot 4,0^2}{12} = -1,40 \text{ tm};$$

 $\mathfrak{M}_{4,1} = +1,40 \text{ ,,.}$

Stab 4-5. Einseitig gerade Vouten auf der rechten Seite mit n = 0,125 und $\lambda = 0,316$; l' = 2,0 m.

Belastung: q = 1,05 t/m.

Nach Tafel 9a wird

$$\mathfrak{M}_{4,5} = -\varkappa_2 \cdot \frac{q\,l^2}{12} = -0.75 \cdot \frac{1.05 \cdot 2.0^2}{12} = -0.26 \text{ tm};$$

$$\mathfrak{M}_{5,4} = +\varkappa_1 \cdot \frac{q\,l^2}{12} = +1.59 \cdot \frac{1.05 \cdot 2.0^2}{12} = +0.56 \text{ ,, }.$$

Stab 5-6. Einseitig gerade Voute auf der linken Seite mit n = 0,125 und $\lambda = 0,293$; l' = 3,0 m.

Belastung: q = 1,05 t/m.

Nach Tafel 9a wird

$$\mathfrak{M}_{5, \, 6} = -\varkappa_1 \cdot rac{q \, l^2}{12} = -1,56 \cdot rac{1,05 \cdot 3,0^2}{12} = -1,23 \; \mathrm{tm}\, ;$$
 $\mathfrak{M}_{6, \, 5} = +\varkappa_2 \cdot rac{q \, l^2}{12} = +0,76 \cdot rac{1,05 \cdot 3,0^2}{12} = +0,60 \; , .$

Stab 6-8. Keine Vouten; l = 4,0 m; q = 1,05 t/m, daher wie bei Stab 1-4 $\mathfrak{M}_{6,8} = -1,40$ tm; $\mathfrak{M}_{8,6} = +1,40$ tm.

Stab 7-8. Einseitig gerade Voute auf der linken Seite, jedoch von unten belastet; n = 0.125 und $\lambda = 0.598$; l' = 0.8 m; q = 1.05 t/m.

Nach Tafel 9a wird

$$\mathfrak{M}_{7,8} = + \varkappa_{1} \cdot \frac{q l^{2}}{12} = + 1,64 \cdot \frac{1,05 \cdot 0,8^{2}}{12} = + 0,09 \text{ tm};$$

$$\mathfrak{M}_{8,7} = -\varkappa_{2} \cdot \frac{q l^{2}}{12} = -0,71 \cdot \frac{1,05 \cdot 0,8^{2}}{12} = -0,04 \text{ ,,.}$$

Kragmoment:

$$M_{7,k} = -\frac{1,05 \cdot 0,6^2}{2} = -0,19 \,\mathrm{tm}.$$

 $Knotenbelastungsglieder \ s.$

Nach (124)

$$s_n = \sum_i \mathfrak{M}_{n,i} + \sum M_k$$

erhält man

$$s_4 = +1,40 - 0,26 = +1,14 \text{ tm}; \quad s_7 = -0,19 + 0,09 = -0,10 \text{ tm};$$

 $s_5 = +0,56 - 1,23 = -0,67 \text{ ,}; \quad s_8 = +1,40 - 0,04 = +1,36 \text{ ,},$
 $s_6 = +0,60 - 1,40 = -0,80 \text{ ,};$

Belastungsglieder S der Verschiebungsgleichungen.

Nach (137) wird hier unter Beachtung, daß P = 0 und bei den belasteten Säulen stets $\mathfrak{M}_o = -\mathfrak{M}_u$, einfach

$$S_{\mu} = \sum q + \sum_{\mu} \mathfrak{A};$$

daher für das erste Stockwerk

$$S_{\rm I} = +1,05 . 10,40 + \frac{1,05 . 4,0}{2} = +13,02 \, {
m t}$$

und für das zweite Stockwerk

$$S_{\rm II} = +$$
 1,05 . 1,40 $+ \frac{1,05 \cdot 4,0}{2} = +$ 3,57 t.

Aufstellung der Gleichungen.

Knotengleichungen nach (132):

$$d_n \varphi_n + \sum_i b_{n,i} \varphi_i + \bar{c}_{n,\mu} \Delta^{\mu} + \bar{c}_{n,\mu+1} \Delta_{\mu+1} + s_n = 0.$$

Verschiebungsgleichungen nach (135):

$$\sum_{\mu} \bar{c}_u \varphi_u + \sum_{\mu} \bar{c}_o \varphi_o + D_\mu \Delta_\mu + S_\mu = 0.$$

Durch wiederholte Anwendung dieser Gleichungen kann an Hand der Beiwertskizze Abb. 279 die Aufstellung der Gleichungstabelle 15 vorgenommen werden. Die beiden Belastungsfälle unterscheiden sich nur durch die letzte Spalte dieser Tabelle.

	φ_4		φ_5		φ_6	φ_7	φ_8	$\Delta_{\mathbf{I}}$	$\Delta_{\rm II}$	B ^(a)	B ^(b)
φ_4	+10,57	+	5,74					+ 1,285			+ 1,14
φ_5	+ 5,74	+	25,17	+	3,48	+0,228		+1,002	+0,077	—35,1	— 0,67
φ_6		+	3,48	+	13,46		+3,12	+0,462	+2,340	+28,4	— 0,80
<i>\$</i> 7		+	0,228			+8,76	+2,94		+0,089	+37,0	- 0,10
φ_8				+	3,12	+2,94	+9,20		+2,340	+15,16	+ 1,36
Δı	+ 1,285	+	1,002	+	0,462			+1,060			+13,02
⊿II		+	0,077	+	2,340	+0,089	+2,340		+ 1,191		+ 3,57

Gleichungstabelle 15.

Durch Auflösung erhält man:

a) Für die lotrechte Belastung $(B^{(a)})$:

$$\begin{array}{ll} \varphi_4 = - \ 0,079; & \varphi_6 = - \ 4,456; & \varDelta_{\rm I} \ = + \ 0,148; \\ \varphi_5 = + \ 2,014; & \varphi_7 = - \ 3,568; & \varDelta_{\rm II} = + \ 13,821. \\ & \varphi_8 = - \ 2,510; \end{array}$$

b) Für Wind
$$(B^{(b)})$$
:
 $\varphi_4 = +1,755; \quad \varphi_6 = +2,042; \quad \varDelta_I = -15,287;$
 $\varphi_5 = -0,008; \quad \varphi_7 = -0,636; \quad \varDelta_{II} = -11,389.$
 $\varphi_8 = +2,259;$

Momente.

Nach (134) ist allgemein für einen Stab 1–2

$$M_{1,2} = a_1 \, \varphi_1 + o \, \varphi_2 + c_1 \, \Box + \, M_{1,2}$$

Damit erhält man an Hand der Beiwertskizze Abb. 279:

a) Für die lotrechte Belastung.

$M_{1,4} = +0.05 \text{ tm}$	$M_{5,4}=+48,\!97~{ m tm}$	$M_{7,5} =$	0,00	tm
$M_{2,5}=+\;4,14\;$,,	$M_{5,2}=+$ 8,25 ,,	$M_{7,8} =$	71,99	"
$M_{\rm 3,6}=-$ 6,12 ,,	$M_{\rm 5,6} =58,\!18$ "	$M_{8,7} =$	2,77	",
$M_{4,1} = -0.08$,,	$M_{5,7}=+~~0,99$,,	$M_{8,6} = +$	2,77	,, .
$M_{4,5} = +0.08$,	$M_{6,5} = + 15,58$,,			
	$M_{\rm 6,3} = -12,27$,,			
	$M_{\rm 6,8} =$ 3,30 "			

Abb. 280. M-Verlauf für lotrechte Belastung.

Zugehöriges Momentenbild siehe Abb. 280.

Abb. 281. M-Verlauf für Wind von links.

b) Für Wind.

$M_{1,4} = -18,04 \text{ tm}$	$M_{5,4} = + 10,53 \ { m tm}$	$M_{6,5} = +$ 9,66 tm
$M_{2,5} = -13,58$,,	$M_{5,2} = -15,35$,,	$M_{\rm 6,3} = -1,\!40$,,
$M_{3,6}=4,22$,,	$M_{\rm 5,6}=+$ 5,81 ,,	$M_{{ m 6, 8}} = -8,26$,,
$M_{4,1} = -12,24$ "	$M_{5,7}=1,03$,,	$M_{{7,5}}=-1,31$,,
$M_{4,5} = + 12,24$ "	$M_{_{8,7}}=+$ 4,78 ,,	$M_{{ m 7,8}}=+1,45$,, .
	$M_{8,6}=-4,78$,,	

Zugehöriges Momentenbild siehe Abb. 281.

Zahlenbeispiel 16 (vgl. auch Nr. 11).

Lotrecht verschiebliches Tragwerk mit zurückgesetztem Obergeschoß (Abb. 282). Wegen fester Einspannung in den Knotenpunkten 1, 2, 6, 9 ist $\varphi_1 = \varphi_2 = \varphi_6 = \varphi_9 = 0$, so daß insgesamt *sechs* Unbekannte, nämlich *fünf* Knotendrehwinkel φ_3 , φ_4 , φ_5 , φ_7 , φ_8 und die Verschiebungsgröße δ der Knotenreihe 4–7 gemeinsam zu bestimmen sind. Die Belastungsangaben sind aus Abb. 283 zu entnehmen.

Es ist dies der Stab 7–8, der eine über die ganze Länge reichende gerade Voute aufweist $(\lambda = \frac{l_0}{l} = 1)$. Am linken Auflager ist b/h = 40/40 (cm), am rechten 40/100 (cm), somit $J_c = 0,00213 \text{ m}^4$, $J_A = 0,03333 \text{ m}^4$ und $n = \frac{J_c}{J_A} = \frac{0,00213}{0,03333} = 0,064$. Für $\lambda = 1,0$ und n = 0,064 ergeben sich aus Tafel 5a

$$\mathfrak{a_1}=32{,}6\,;\;\mathfrak{a_2}=8{,}2\,;\;\mathfrak{b}=8{,}05{,}$$

für alle übrigen Stäbe ist $a_1 = a_2 = 4$ und b = 2.

Die in der Festwerttabelle 16 enthaltenen Werte a, b, \overline{c} werden wie folgt gerechnet: Nach (106)

$$a_1 = \frac{1000 J_c}{l} \cdot \mathfrak{a}_1; \quad a_2 = \frac{1000 J_c}{l} \cdot \mathfrak{a}_2; \quad b = \frac{1000 J_c}{l} \cdot \mathfrak{b}.$$

Nach (81)

$$c_1 = a_1 + b; \ c_2 = a_2 + b.$$

Nach (133) für einen Stab mit der Länge l_{μ} :

$$ar{c}_1 = rac{c_1}{l_\mu} = rac{a_1+b}{l_\mu}; \quad ar{c}_2 = rac{c_2}{l_\mu} = rac{a_2+b}{l_\mu}.$$

Stab	$b/h^{(cm)}$	$J_c^{(m^4)}$	<i>l</i> (m)	aı	a2	b	<i>a</i> ₁	<i>a</i> ₂	b		$\vec{c_2}$	Tafel
1-3, 2-5	45/40	0,00240	3,00	4	4	2	3,20	3,20	1,60	_		
3-4	35/60	0,00630	1,70	4	4	2	14,82	14,82	7,41	13,076	13,076	
4-5	35/60	0,00630	3,80	4	4	2	6,63	6,63	3,32	2,618	2,618	
5 - 6	35/60	0,00630	3,20	4	4	2	7,88	7,88	3,94			
4-7	30/30	0,000675	2,70	4	4	2	1,00	1,00	0,50			
5 - 8	40/30	0,00090	2,70	4	4	2	1,33	1,33	0,67			
7-8	40/40	0,00213	3,80	32,6	8,2	8,05	18,27	4,60	4,51	5,995	2,397	5a
8-9	40/100	0,03333	3,20	4	4	2	41,66	41,66	20,83		·	

Festwerttabelle 16.

In der Beiwertskizze Abb. 284 sind die Festwerte a_1 , a_2 , b sowie (in Klammern) die erforderlichen Werte \overline{c}_1 und \overline{c}_2 eingetragen.

Guldan, Rahmentragwerke.

Beiwerte \varkappa und C. Nach (144) ist für einen lotrecht verschieblichen Knotenpunkt (n) zwischen den Feldern (v) und (v + 1) allgemein

$$\varkappa_{n} = \overline{c}_{n,\nu+1} - \overline{c}_{n,\nu},$$
her
$$\varkappa_{4} = + 2,618 - 13,076 = -10,458;$$

$$\varkappa_{7} = + 2,397.$$

Nach (148) ist allgemein für ein Feld (v) zwischen den Knotenpunktreihen (m-1) und m

$$C_{\nu} = \sum_{\nu} \frac{\overline{c}_{m-1,m} + \overline{c}_{m,m-1}}{l_{\nu}}$$

= 3.586.

somit für das Feld (I):

2,397 + 5,995

$$C_{\rm I} = \frac{2.13,076}{1,70} = 15,383;$$

für das Feld (II):

$$3,8$$

$$d_{n} = \sum a_{n-1}$$

2.2,618

Diagonalglieder d und D.

Nach (123)

$$n = \frac{1}{i} a_{n,i}$$

erhält man an Hand der Beiwertskizze:

 C_{II}

$$d_3 = 18,02;$$
 $d_5 = 19,04;$ $d_8 = 61,26.$
 $d_4 = 22,45;$ $d_7 = 5,60;$

Nach (149) ist für eine verschiebliche Knotenpunktreihe (m) zwischen den Feldern (ν) und $(\nu+1)$ allgemein

$$D_m = C_{\mathbf{v}} + C_{\mathbf{v}+1},$$

also für die Knotenpunktreihe (4-7):

$$D = C_{\rm I} + C_{\rm II} = 15,383 + 3,586 = 18,969.$$

$Stabbelastungsglieder \mathfrak{M}.$

Für die Stäbe ohne Vouten können die M-Glieder aus Zahlenbeispiel 11 übernommen werden, weil dort mit derselben Belastung gerechnet worden ist. Also:

$\mathfrak{M}_{3,4} = -1,01 \text{ tm};$	$\mathfrak{M}_{5, 6} = -3,58 \text{ tm};$
$\mathfrak{M}_{4,3}=+$ 1,01 ,, ;	$\mathfrak{M}_{\mathbf{6,5}}=+$ 3,58 ,, ;
$\mathfrak{M}_{4,5} = -5,05$,, ;	$\mathfrak{M}_{8,9} = -7,37$, ;
$\mathfrak{M}_{5,4}=+$ 5,05 ,, ;	$\mathfrak{M}_{9,8}=+$ 6,18 ,, .

Stab 7-8. Einseitig gerade Voute auf der rechten Stabseite mit $\lambda = 1$, n = 0,064; l = 3.8 m.

Belastung: $q_1 = 2,4$ t/m sowie die Einzellasten $P_2 = 3,6$ t und $P_3 = 3,7$ t an den Orten $\frac{a}{l} = \frac{2,4}{3,8} = 0,63$ bzw. $\frac{1,1}{3,8} = 0,29$ von der Voutenseite aus gemessen.

Die Einflüsse der verschiedenen Belastungen werden getrennt ermittelt und dann summiert.

Nach Tafel 9a wird:

$$\begin{split} \mathfrak{M}_{7.8}^{(q_1)} &= -\varkappa_2 \cdot \frac{q\,l^2}{12} = -0.540 \cdot \frac{2.4 \cdot 3.8^2}{12} = -1.56 \text{ tm};\\ \mathfrak{M}_{8.7}^{(q_1)} &= +\varkappa_1 \cdot \frac{q\,l^2}{12} = +1.625 \cdot \frac{2.4 \cdot 3.8^2}{12} = +4.69 \text{ ,,.} \end{split}$$

Nach der Einflußlinientafel 13a wird:

$$\begin{split} \mathfrak{M}_{\mathbf{7,8}}^{(P_2)} &= -\eta_2 \cdot P \cdot l = -0,078 \cdot 3,6 \cdot 3,8 = -1,07 \text{ tm};\\ \mathfrak{M}_{\mathbf{8,7}}^{(P_2)} &= +\eta_1 \cdot P \cdot l = +0,180 \cdot 3,6 \cdot 3,8 = +2,46 \ ,,;\\ \mathfrak{M}_{\mathbf{7,8}}^{(P_3)} &= -\eta_2 \cdot P \cdot l = -0,020 \cdot 3,7 \cdot 3,8 = -0,28 \ ,,;\\ \mathfrak{M}_{\mathbf{8,7}}^{(P_3)} &= +\eta_1 \cdot P \cdot l = +0,198 \cdot 3,7 \cdot 3,8 = +2,78 \ ,, \end{split}$$

Durch Zusammenfassung erhält man:

 $\mathfrak{M}_{7,8} = -1,56 - 1,07 - 0,28 = -2,91 \text{ tm};$ $\mathfrak{M}_{8,7} = +4,69 + 2,46 + 2,78 = +9,93 , .$

Knotenbelastungsglieder s.

Nach (124a)

$$s_n = \sum_i \mathfrak{M}_{n,i}$$

erhält man:

$$s_3 = -1,01 \text{ tm};$$
 $s_7 = -2,91 \text{ tm};$
 $s_4 = +1,01 - 5,05 = -4,04 \text{ ,, };$ $s_8 = +9,93 - 7,37 = +2,56 \text{ ,, }.$
 $s_5 = +5,05 - 3,58 = +1,47 \text{ ,, };$

Belastungsglied S der Verschiebungsgleichung.

Nach (151) ist allgemein für eine Knotenreihe (m)

$$S_{m} = -\sum_{\nu} P - \sum_{\nu} \mathfrak{A}_{\nu}^{r} - \sum_{\nu+1} \mathfrak{A}_{\nu+1}^{l} - \frac{1}{l_{\nu}} \sum_{\nu} (\mathfrak{M}_{\nu}^{l} + \mathfrak{M}_{\nu}^{r}) + \frac{1}{l_{\nu+1}} \sum_{\nu+1} (\mathfrak{M}_{\nu+1}^{l} + \mathfrak{M}_{\nu+1}^{r}).$$

Zahlenmäßig wird sich dieser Ausdruck nur durch das letzte Glied $\frac{1}{l_{7,8}}$ ($\mathfrak{M}_{7,8} + \mathfrak{M}_{8,7}$) von jenem bei Zahlenbeispiel 11 unterscheiden. Es wird:

$$S = -2,55 - 5,60 - \frac{4,2 \cdot 1,7}{2} - \frac{4,2 \cdot 3,8}{2} - \frac{2,4 \cdot 3,8}{2} - \frac{3,6 \cdot 2,4}{3,8} - \frac{3,7 \cdot 1,1}{3,8} + \frac{-2,91 + 9,93}{3,8} = -25,75 \text{ t.}$$

Aufstellung der Gleichungen.

Knotengleichungen nach (142):

 $d_n \varphi_n + \sum_i b_{n,i} \varphi_i + \bar{c}_{n,\nu} \delta_{m-1} + \varkappa_n \delta_m - \bar{c}_{n,\nu+1} \delta_{m+1} + s_n = 0.$

Verschiebungsgleichung nach (147) mit der Vereinfachung, daß die Glieder $C_{\nu} \delta_{m-1}$ und $C_{\nu+1} \delta_{m+1}$ entfallen, weil die Verschiebungen δ_{m-1} und δ_{m+1} der benachbarten Knotenpunktreihen gleich Null sind:

$$-\sum_{\mathbf{v}} \bar{c}_{m-1,m} \varphi_{m-1} + \sum \varkappa_m \varphi_m + \sum_{\mathbf{v}+1} \bar{c}_{m+1,m} \varphi_{m+1} + D_m \delta_m + S_m = 0.$$

Damit kann an Hand der Beiwertskizze Abb. 284 die Gleichungstabelle 16 aufgestellt werden.

	φ_3	$arphi_{4}$	φ_5	φ ₇	φ_8	δ	В
φ_3	+ 18,02	+ 7,41					— 1,01
φ_4	+ 7,41	+ 22,45	+ 3,32	+0,50		— 10,458	- 4,04
φ_5		+ 3,32	+ 19,04		+ 0,67	+ 2,618	+ 1,47
φ7		+ 0,50		+ 5,60	+ 4,51	+ 2,397	— 2,91
φ_8			+ 0,67	+ 4,51	+ 61,26	+ 5,995	+ 2,56
δ	— 13,076	— 10,458	+ 2,618	+2,397	+ 5,995	+ 18,969	- 25,75

Gleichungstabelle 16.

Die Auflösung ergibt:

Momente.

Nach (84) ist allgemein für einen Stab 1–2 mit den Stabendverschiebungen δ_1 und δ_2 , wenn nach (3) für $\psi = \frac{\delta_1 - \delta_2}{l}$ und für $\frac{c}{l} = \overline{c}$ gesetzt wird:

$$egin{aligned} &M_{1,2} = a_1 \, arphi_1 + b \, arphi_2 + c_1 \, (o_1 - o_2) + \mathfrak{M}_{1,2}, \ &M_{2,1} = a_2 \, arphi_2 + b \, arphi_1 + \overline{c}_2 \, (\delta_1 - \delta_2) + \mathfrak{M}_{2,1}, \end{aligned}$$

Damit ergeben sich mit Benutzung der Beiwertskizze Abb. 284 folgende Stabendmomente:

$M_{1,3} = + 4,21 \text{ tm}$	$M_{5,4} = +15,49~{ m tm}$	$M_{7,4} =0.44 \text{ tm}$
$M_{\rm 2,5}=1,50$,,	$M_{5,8} = - 1,50$,,	$M_{{ m 7,8}}=+~~0,44$ "
$M_{3,1}=+\;\;8,42\;\;,$	$M_{\rm 5,6} = -10,98$,,	$M_{8,5} = - 1,13$,
$M_{3,4} = - 8,42$,,	$M_{5,2} = - 3,00$,,	$M_{ 8, 7}=+24,\!12$,,
$M_{4,3}=14,51$,,	$M_{\rm 6,5} = -$ 0,12 ,,	$M_{{ m 8,9}}=22,99$,,
$M_{4,7}=+~0,93$,,		$M_{9,8} = - 1,63$, .
$M_{ m 4,5} = + 13,\!58$,,		

Die Momente sind in Abb. 285 maßstäblich aufgetragen.

Abb. 285. Momentenverlauf.

Zahlenbeispiel 17.

Unsymmetrischer dreifeldiger Brückenrahmen mit frei gelagerten Enden und zwei Mittelsäulen (Abb. 286). Die Säulenfüße sind fest eingespannt, daher

 $\varphi_1 = \varphi_2 = 0.$ Es sind die Momente infolge ständiger Belastung (Abb. 287) und die Einflußlinien für die Stabanschlußmomente $M_{4,3}$ und $M_{4,5}$ zu ermitteln, wobei die geraden Vouten der Stäbe 3-4, 4-5, 5-6 und die starren Strecken an den oberen Enden der

Abb. 287. Belastungsangaben.

Säulen 1-4 und 2-5 rechnungsmäßig zu berücksichtigen sind.

Diese beiden Aufgaben werden nach den Ausführungen im Ersten Teil, dritter Abschnitt, III gemeinsam durchgeführt. Als Unbekannte sind insgesamt vier Knotendrehwinkel $\varphi_3, \varphi_4, \varphi_5, \varphi_6$ und die Verschiebungsgröße Δ der Säulen gemeinsam zu bestimmen. Die in nachstehender Festwerttabelle ausgewiesenen Werte a, b, \bar{c} werden wie folgt berechnet:

Nach (106)

$$a_1 = \frac{100 J_c}{l} \mathfrak{a}_1; \quad a_2 = \frac{100 J_c}{l} \cdot \mathfrak{a}_2; \quad b = \frac{100 J_c}{l} \cdot \mathfrak{b}_2$$

(wobei hier aber wegen der großen Querschnitte nach (105) sinngemäß $z = \frac{100}{E}$ gewählt wurde).

Nach (81)

$$c_1 = a_1 + b; \quad c_2 = a_2 + b.$$

Nach (133) für einen Stab mit der Länge l_{μ}

$$ar{c_1} = rac{c_1}{l_\mu} = rac{a_1+b}{l_\mu}; \ ar{c_2} = rac{c_2}{l_\mu} = rac{a_2+b}{l_\mu}.$$

Die Werte \bar{c}_1 und \bar{c}_2 brauchen nur für die Säulen bestimmt zu werden, da bei den übrigen Stäben $\psi = 0$ ist.

Stab	$b/\hbar^{(m cm)}$	<i>J</i> ^(m4)	$J_c^{(m^4)}$ b/h_A		J _A ^(m4) l ^(m)		n)	ı _v (m)	$\lambda = \frac{l_l}{l}$) n	$=rac{J_c}{J_A}$	
1-4 2-5 3-4 4-5 5-6	$\begin{array}{r} 45/90 \\ 45/90 \\ 45/95 \\ 45/95 \\ 45/95 \\ 45/100 \end{array}$	$\begin{array}{c} 0,0273\\ 0,0273\\ 0,0322\\ 0,0322\\ 0,0322\\ 0,0375\end{array}$	$\begin{array}{c} 45/\infty \\ 45/\infty \\ 45/195 \\ 45/195 \\ 45/195 \\ 45/195 \end{array}$		∞ 0,2781 0,2781 0,2781 0,2781	9, 12, 15, 26, 18,	00 00 00 00 00 00	1,20 1,20 7,50 9,00 9,00	0,13 0,10 0,50 0,35 0,50	3	0 0,12 0,12 0,135	
Stab	λ	n	¢1	¢2	b	<i>a</i> 1	<i>a</i> ₂	ь	cī1	$\bar{c_2}$	Tafel	
1-42-53-44-55-6	0,133 0,10 0,50 0,35 0,50	0 0 0,12 0,12 0,135	7,156,0912,5212,8311,90	4,62 4,44 5,01 12,83 4,95	3,40 2,96 4,81 9,24 4,60	$2,17 \\ 1,39 \\ 2,68 \\ 1,59 \\ 2,48$	1,40 1,01 1,07 1,59 1,03	$ \begin{array}{c} 1,03\\ 0,67\\ 1,03\\ 1,14\\ 0,96 \end{array} $	0,356 0,172 — — —	0,270 0,140 	5a 5 5 7 5a	

Festwerttabelle 17.

erhält man

$$d_3 = 1.07;$$
 $d_5 = 2.48 + 1.59 + 1.39 = 5.46;$
 $d_4 = 2.68 + 1.59 + 2.17 = 6.44;$ $d_6 = 1.03.$

Nach (136) ist allgemein für ein Stockwerk (μ)

$$D_{\mu} = \sum_{\mu} \frac{1}{l} (\bar{c}_o + \bar{c}_u),$$

also hier

$$D = \frac{0.356 + 0.270}{9.0} + \frac{0.172 + 0.140}{12.0} = 0.096.$$

Belastungsglieder.

1. Ständige Belastung: g = 2.7 t/m (Abb. 287).

Stabbelastungsglieder M.

Stab 3-4. Einseitig gerade Voute am rechten Stabende mit n = 0.12 und $\lambda = 0.50$; $l = 15.0 \,\mathrm{m}.$

_

Nach Tafel 9 wird

$$\mathfrak{M}_{3,4} = -\varkappa_2 \cdot \frac{q \, l^2}{12} = -0,710 \cdot \frac{2,7 \cdot 15,0^2}{12} = -35,9 \text{ tm};$$

$$\mathfrak{M}_{4,3} = +\varkappa_1 \cdot \frac{q \, l^2}{12} = +1,683 \cdot \frac{2,7 \cdot 15,0^2}{12} = +85,2 \text{ ,,}.$$

Stab 4-5. Beidseitig gerade Vouten mit n = 0.12 und $\lambda = 0.35$; l = 26.0 m. Nach Tafel 11 wird:

$$\mathfrak{M}_{4,5} = -\varkappa \cdot \frac{q l^2}{12} = -1,256 \cdot \frac{2,7 \cdot 26,0^2}{12} = -191,0 \text{ tm}; \ \mathfrak{M}_{5,4} = +191,0 \text{ tm}.$$

Stab 5-6. Einseitig gerade Voute mit n = 0.135 und $\lambda = 0.50$; l = 18.0 m. Nach Tafel 9a wird

$$\mathfrak{M}_{5.6} = -\varkappa_1 \cdot \frac{q l^2}{12} = -1,640 \cdot \frac{2,7 \cdot 18,0^2}{12} = -119,6 \text{ tm};$$

$$\mathfrak{M}_{6.5} = +\varkappa_2 \cdot \frac{q l^2}{12} = +0,725 \cdot \frac{2,7 \cdot 18,0^2}{12} = +52,9 \text{ ,,}$$

Knotenbelastungsglieder s.

Nach (124a)

$$s_n = \sum_i \mathfrak{M}_{n,i}$$

erhält man

 $s_3 = -35,9 \text{ tm};$ $s_5 = +191,0 - 119,6 = +71,4 \text{ tm};$ $s_4 = +85,2 - 191,0 = -105,8 \text{ tm};$ $s_6 = +52,9 \text{ tm}.$

Das Belastungsglied S für die Verschiebungsgleichungen ist Null, weil keine waagrechte Belastung vorhanden ist.

2. "Ideelle" Belastung zur Ermittlung der Einflußlinie für $M_{4,3}$ (Abb. 289).

Diese Belastung besteht hier aus den in den Knotenpunkten 4 bzw. 3 angreifenden Momenten im Betrage von 3

$$b_{4,3}=2,68~~{
m bzw.}~~b_{3,4}=1,0$$

(vgl. Erster Teil, dritter Abschnitt, III). Damit ergeben sich sehr einfach die

Abb. 289. "Ideelle" Belastung für die $M_{4,3}$ -Einflußlinie. Abb. 290. "Ideelle" Belastung für die $M_{4,5}$ -Einflußlinie.

Knotenbelastungsglieder:

$$s_3 = -1,03; \ s_4 = -2,68.$$

3. "Ideelle" Belastung zur Ermittlung der Einflußlinie für $M_{4,5}$ (Abb. 290).

Die Belastung besteht hier aus den in den Knotenpunkten 4 bzw. 5 angreifenden Momenten im Betrage von

> $a_{4,5} = 1,59$ bzw. $b_{4,5} = 1,14$. $s_4 = -1,59; \quad s_5 = -1,14.$

Knotenbelastungsglieder s:

Aufstellung der Gleichungen.

Knotengleichungen nach (132):

$$d_n \varphi_n + \sum_i b_{n,i} \varphi_i + \bar{c}_{n,\mu} \Delta_{\mu} + \bar{c}_{n,\mu+1} \Delta_{\mu+1} + s_n = 0.$$

Verschiebungsgleichung nach (135):

$$\sum_{\mu} ar{c}_u \, arphi_u + \sum_{\mu} ar{c}_o \, arphi_o + D_\mu \, arLambda_\mu + S_\mu = 0.$$

Damit kann an Hand der Beiwertskizze Abb. 288 die Gleichungstabelle 17 für alle drei Belastungsfälle $(B^{(1)})$, $(B^{(2)})$, $(B^{(3)})$ gemeinsam aufgestellt werden.

	φ_3	φ_4	φ_5	$arphi_{6}$	Δ	B ⁽¹⁾	B ⁽²⁾	B ⁽³⁾
φ_3	+ 1,07	+ 1,03				— 35,9	- 1,03	
φ_4	+1,03	+ 6,44	+ 1,14		+0,356	- 105,8	- 2,68	— 1,59
φ_5		+ 1,14	+ 5,46	+ 0,96	+0,172	+ 71,4		
φ_6			+ 0,96	+ 1,03		+ 52,9		
Δ		+ 0,356	+ 0,172		+ 0,096			

Gleichungstabelle 17.

Die Auflösung ergibt:

1. Fall	2. Fall	3. Fall
(ständige Last):	(,,ideelle" Belastung	("ideelle" Belastung
	für $M_{4,3}$):	für $M_{4,5}$):
$\varphi_3 = +$ 16,13;	$arphi_{3}=+$ 0,5641;	$arphi_{3}=-0,3436$;
$\varphi_4 = + 18,10;$	$\varphi_4 = + 0,4140;$	$\varphi_4 = + 0,3569;$
$\varphi_5 = - 7,33;$	$arphi_{5}=-0,0488;$	$arphi_{5}=+$ 0,2256;
$\varphi_{6} = -44,50;$	$arphi_{f 6}=+0,\!0458$;	$\varphi_6 = -0,2095;$
$\Delta = -53,42;$	$\varDelta = -1,4366;$	$\Delta = -1,7183.$

Momente für den ersten Fall (ständige Last):

Nach (134) ist allgemein für einen Stab 1-2

 $M_{1,2} = a_1 \varphi_1 + b \varphi_2 + \overline{c}_1 \varDelta + \mathfrak{M}_{1,2}.$

Damit ergeben sich an Hand der Beiwertskizze Abb. 288 die Stabendmomente:

Abb. 291. *M*-Verlauf für die ständige Belastung g = 2.7 t/m.

In Abb. 291 sind diese Momente maßstäblich aufgetragen.

Einflußlinie für $M_{4.3}$ und $M_{4.5}$.

Für das praktische Rechnen kann der Ausdruck (172) zur Ermittlung der $M_{m,n}$ -Einflußlinienordinaten $\eta^*_{m,n}$ sinngemäß auch in der Form

$$\eta^*_{m,n} = y \pm y^{(0)}_{m,n} \tag{1}$$

geschrieben werden. Hierin bedeuten y die Ordinaten der Biegelinie infolge der "ideellen" Belastung und $y^{(0)}_{m,n}$ die Ordinaten der Einflußlinie für $\mathfrak{M}_{m,n}$, die positiv einzuführen sind, wenn sich der zu untersuchende Querschnitt am rechten, und negativ, wenn er sich am linken Stabende befindet (vgl. Erster Teil, dritter Abschnitt, III, 3).

Die Einflußlinie für $\mathfrak{M}_{m,n}$ also für das Einspannmoment an der Stelle m des fest eingespannt gedachten Trägerfeldes m-n, erstreckt sich nur über dieses Feld, so daß außerhalb desselben einfach nach (173)

$$\eta^*_{m,n} = y \tag{1a}$$

wird. Die Ordinaten y und $y^{(0)}_{m,n}$ können für Stäbe mit geraden oder parabolischen Vouten aus den Einflußlinientafeln im Dritten Teil des Buches entnommen werden.

a) Ermittlung der Ordinaten y.

Es gelten hier die allgemeinen Ausführungen aus dem Ersten Teil, dritter Abschnitt, II, 2 über die Ermittlung der Biegelinien aus den Knotendrehwinkeln φ und den Knotenpunktverschiebungen δ . Da im vorliegenden Fall die Knotenpunktverschiebungen keinen Beitrag liefern, so entfällt der in der allgemeinen Formel (158) enthaltene Wert y_2 und es wird einfach $y = y_1$. Somit ist nach (159)

$$y_1 = y = (\eta_1 \cdot \tau_1 - \eta_2 \cdot \tau_2) l,$$

und da hier die Endtangentenwinkel τ identisch sind mit den Knotendrehwinkeln φ , so kann die vorstehende Gleichung in der Form

$$y = (\eta_1 \, \varphi_1 - \eta_2 \, \varphi_2) \, l = \bar{y} \, . \, l \tag{2}$$

Verwendung finden. Hierin bedeuten also: η_1 bzw. η_2 die aus den Hilfstafeln zu entnehmenden Ordinaten der \mathfrak{M}_1 - bzw. \mathfrak{M}_2 -Einflußlinie für die jeweils vorliegende Stabform und l die Länge des Stabes.

b) Ermittlung der Ordinaten $y^{(0)}_{m,n}$.

Diese sind identisch mit den Ordinaten η der \mathfrak{M} -Einflußlinie, werden aber nur für jenes Feld gebraucht, in welchem der zu untersuchende Querschnitt liegt.

Da nun die Tafelwerte $\eta_{m,n}$ auf einen Stab mit der Länge l = 1 bezogen sind, so ergeben sich für ein Feld mit der Länge l die Ordinaten

$$y^{(0)}_{m,n} = \eta_{m,n} \cdot l.$$
 (3)

Es kann also die allgemeine Formel (1), die für das Feld mit dem zu untersuchenden Querschnitt gilt, unter Beachtung von (2) und (3) für die zahlenmäßige Auswertung in folgender Form Verwendung finden:

$$\eta^*_{m,n} = \bar{y} \cdot l \pm \eta_{m,n} \cdot l = (\bar{y} \pm \eta_{m,n}) \, l. \tag{4}$$

Für die übrigen Felder ist nach (173) sinngemäß

$$\eta^*_{m,n} = \overline{y} \cdot l.$$

c) Zahlenmäßige Durchführung der Rechnung.

Sie erfolgt wieder am besten tabellarisch, und zwar für jedes Feld getrennt. In der Spalte 1 werden jeweils die den Leitwerten n und λ entsprechenden η -Werte der M-Einflußlinie aus den Hilfstafeln eingetragen. In der Spalte 2 werden diese Ordinaten mit den für die ideelle Belastung bereits ermittelten Drehwinkeln φ der anschließenden Knotenpunkte verzerrt und in Spalte 3 summiert. In dieser Spalte ist bei jenem Feld, das den zu untersuchenden Querschnitt enthält, noch ein weiterer Wert aufzunehmen, nämlich die in Formel (4) enthaltene Summe ($\overline{y} \pm \eta_{m,n}$). Dies trifft z. B. bei der Ermittlung der Einflußlinie für $M_{4,3}$ im Feld 3-4 zu, wobei die Werte ($\overline{y} + \eta_4$) zu setzen sind, weil es sich um einen Querschnitt am *rechten* Stabende handelt. Bei der Ermittlung

۲	3a)	$\eta^*_{4,3} = \overline{y} \cdot l$	4		0,157	0,211	0,254	0,268	0,256	0,214	0,155	
9	$ \begin{array}{l} l = 18,0m \\ \lambda = 0,50 \\ n = 0,135 \\ \eta = 0,135 \\ \eta = 0,0458 \\ \eta = 0,0458 \\ \eta = 0,0458 \\ \eta = 0,0468 \\ \eta $	$\vec{y} = +\eta_5 \varphi_5 - \eta_6 \varphi_6$	3		0,0087	0,0117	0,0141	0,0149	0,0142		0,0086	
Stab 5-6		$+ \eta_5 \varphi_5 \\ - \eta_6 \varphi_6$	2	0,0045 0,0002	0,0081 0,0006	0,0104 0,0013	0,0117 0,0024	- 0,0112 - 0,0037	- 0,0093 0,0049	0,0064 0,0055	0,0034 0,0052	0,0010 0,0035
		п5 Пв	1	$0,093 \\ 0,004$	$0,166 \\ 0,014$	$0,214 \\ 0,029$	$0,239 \\ 0,053$	$0,230 \\ 0,081$	$0,190\\0,107$	$0,131 \\ 0,120$	$0,069 \\ 0,114$	$0,021 \\ 0,076$
9	$\begin{array}{c} l = 26,0m \psi_{4} = + 0,4140 \\ \lambda = 0,35 \psi_{5} = -0,0488 \textbf{0} \textbf{2} \textbf{4} \textbf{6} \textbf{8} \textbf{7} \\ \boldsymbol{n} = 0,12 \psi_{5} = -0,0488 \textbf{0} \textbf{7} \textbf{7} \textbf{7} \textbf{7} \end{array}$	$\eta^{*}_{4,3}=\overline{y}.l$	4	+ 1,019	+ 1,786	+ 2,293	+ 2,363	+ 2,023	+ 1,490	+ 0,897	+ 0,478	+ 0,185
۲		$ \begin{array}{c} \overline{y} = \\ \eta_4 \varphi_4 - \eta_5 \varphi_5 \end{array} $	3	+ 0,0392	+ 0,0687	+ 0,0882	+ 0,0909	+ 0.0778	+ 0,0573	+ 0.0345	+ 0.0184	+ 0,0071
Stab 4−5		$+ \eta_4 \varphi_4 - \eta_5 \varphi_5$	2	$^+$ 0,0389 + 0,0003	+ 0,0675 + 0,0012	+ 0,0853 + 0,0029	+ 0,0853 + 0,0056	+ 0,0696 + 0,0082	+ 0,0472 + 0,0101	+ 0,0244 + 0,0101	+ 0,0104 + 0,0080	$^+$ 0,0025 + 0,0046
		714 715	1	$0,094 \\ 0,006$	$0,163 \\ 0,025$	$0,206 \\ 0,059$	$0,206 \\ 0,114$	$0,168 \\ 0,168$	$0,114 \\ 0,206$	$0,059 \\ 0,206$	$0,025 \\ 0,163$	$0,006 \\ 0,094$
Stub 3 - 4. 3 @		$\eta^{*}_{4,3} = (\overline{y} + \eta_4) \cdot l$	4	+ 0,816	+ 1,535	+ 2,154	+ 2,550	+ 2,762	+ 2,621	+ 2,204	+ 1,589	+ 0,810
		$ar{y} = ar{y} + \eta_4$	3	$0.0366 \\+ 0.0544$	- 0,0617 $+$ 0,1023	- 0,0734 $+$ 0,1436	- 0,0730 $+$ 0,1700	0,0549 $+$ 0,1841	- 0,0243 $+$ 0,1747	$^+$ 0,0099 + 0,1469	$^{+}_{+} \begin{array}{c} 0,0349 \\ + \end{array} \\ 0,1059 \end{array}$	$^+$ 0,0330 + 0,0540
		$+ \eta_3 \varphi_3 \\ - \eta_4 \varphi_4$	2	+ 0,0011 0,0377	+ 0,0062 0,0679	+ 0,0164 0,0898	+ 0,0276 0,1006	+ 0,0440 0,0989	+ 0,0581 0,0824	+ 0,0666 0,0567	+ 0,0643 0,0294	+ 0,0417 0,0087
	$\begin{array}{c} \lambda = 1 \\ \lambda = 0 \\ n = 0 \end{array}$	73 714	1	$0,002 \\ 0,091$	$0,011 \\ 0,164$	$0,028 \\ 0,217$	$0.049 \\ 0.243$	$0.078 \\ 0.239$	$0,103 \\ 0,199$	$\substack{0,118\\0,137}$	$0,114 \\ 0,071$	$0,074 \\ 0,021$
		Ort		-	01	e	4	Ð	9	5	x	6

Ermittlung der Einflußlinie für $M_{4,3}$.

Zahlenbeispiel 17.
6 8 8	04/	$\eta^{*}_{4,5} = \overline{y} \cdot l$	4	+ 0,392	+ 0,725	+ 0,979	+ 1,170	+ 1,240	+ 1,175	+ 0,985	+ 0,711	+ 0,371	
		$y = \eta_5 \varphi_5 - \eta_6 \varphi_6$	3	+ 0.0218	+ 0.0403	+ 0.0544	+ 0.0650	+ 0.0689	+ 0.0653	+ 0.0547	+ 0.0395	+ 0,0206	
Stab $5 \neg 6$ $\begin{array}{c} 0m & \varphi_5 = + 0.22! \\ 05 & \varphi_6 = - 0.20! \end{array}$		$+ \eta_5 \varphi_5$ $\eta_6 \varphi_6$	ભ	$^+$ 0,0210 + 0,0008	+ 0,0374 + 0,0029	+ 0,0483 + 0,0061	+ 0,0539 + 0,0111	+ 0,0519 + 0,0170	+ 0,0429 + 0,0224	+ 0,0296 + 0,0251	+ 0,0156 + 0,0239	+ 0,0047 + 0,0159	
l = 18, $\lambda = 0.5$ n = 0, 18,		715 716	1	$0,093 \\ 0,004$	$0,166 \\ 0,014$	$0,214 \\ 0,029$	$0,239 \\ 0,053$	$0,230 \\ 0,081$	$0,190\\0,107$	$0,131 \\ 0,120$	$0,069 \\ 0,114$	$0,021 \\ 0,076$	
	(not to	$\eta_{\pm_{4,5}} = (\overline{y} - \eta_{4}) \cdot l$	4	1,609	2,870	— 3,791		— 3,793			— 1,375	— 0,653	
2569 0 2 4		$\frac{y}{y} - \eta_4$	ŝ	+ 0,0321 0,0619	+ 0,0526 0,1104	+ 0,0602 0,1458	+ 0,0478 0,1582	+ 0,0221 0,1459	0,0058 0,1198	0,0254 0,0844	0,0279 0,0529	0,0191 0,0251	
Stab $4 - 5$ $6.0 \text{ m} \varphi_4 = + 0.3$ $,35 \varphi_5 = + 0.2$ $,12 \varphi_5 = + 0.2$	-	$+ \eta_4 \varphi_4$ $- \eta_5 \varphi_5$	2	+ 0,0335 0,0014	+ 0,0582 0,0056	+ 0,0735 0,0133	+ 0,0735 0,0257	+ 0,0600 0,0379	+ 0,0407 0,0465	+ 0,0211 0,0465	+ 0,0089 0,0368	+ 0,0021 0,0212	
l = 2 $\lambda = 0$ n = 0	-	n4 15	1	$0,094 \\ 0,006$	$0,163 \\ 0,025$	$0,206 \\ 0,059$	$0,206 \\ 0,114$	$0,168 \\ 0,168$	$0,114 \\ 0,206$	$0,059 \\ 0,206$	$0,025 \\ 0,163$	$0,006 \\ 0,094$	
0 # 5 #	(1991)	$\eta^{*_4,5}=\bar{y}.l$	4	-0,498		1,305	-1,553	-1,682		1,341			
	IATAL (TATAL	$\frac{\overline{y}}{\eta_3} = \eta_3 \varphi_3 - \eta_4 \varphi_4$	3	0,0332	0,0623		0,1035	0,1121	0,1064	0,0894	0,0645	0,0329	
$\begin{array}{l} Stab \ 3-4 \\ 0 \\ 0 \\ 2 \\ p_4 \\ p_4 \\ = + 0,35t \end{array}$		$+ \eta_3 \varphi_3$ $\eta_4 \varphi_4$	2	0,0007 0,0325	0,0038 0,0585		0,0168 0,0867	0,0268 0,0853	0,0354 0,0710	0,0405 0,0489	0,0392 0,0253		
l = 15, l = 15, l = 0, 5, l = 0, 11, l = 0		73 74	1	$0,002 \\ 0,091$	$0,011 \\ 0,164$	$0,028 \\ 0,217$	$0,049 \\ 0,243$	$0,078 \\ 0,239$	$0,103 \\ 0,199$	$0,118 \\ 0,137$	$0,114 \\ 0,071$	$0,074 \\ 0,021$	
	-	Ort		I	5	S	4	Ŋ	9	7	x	6	

Ermittlung der Einflußlinie für $M_{4,5}$.

170

Verschiebliche Tragwerke.

 $\frac{1}{4}, \frac{1}{5}, \frac{1}{5}, \frac{1}{5}$ Die Einflußlinien für $M_{4,3}$ (= Ordmaten $\eta^*_{4,3}$) und fur $M_{4,5}$ (= Or (Über die Art des Auftragens vgl. Erster Teil, dritter Abschnitt, III, 4.) der Einflußlinie für $M_{4,5}$ sind im Feld 4–5 die Werte $(\bar{y} - \eta_4)$ in Rechnung zu stellen, weil sich der zu untersuchende Querschnitt am *linken* Stabende befindet.

In der Spalte 4 ergeben sich schließlich jeweils die endgültigen Ordinaten η^* der gesuchten Einflußlinien.

Dieser Vorgang kann an Hand der beiden Tabellen, in welchen die Ermittlung der Einflußlinien für $M_{4,3}$ und $M_{4,5}$ zahlenmäßig durchgeführt worden ist, in allen Einzel-

heiten verfolgt werden. Zu bemerken wäre noch, daß die Ortsbezeichnung in Übereinstimmung mit den Hilfstafeln bei Stäben mit einseitigen Vouten stets bei der Voutenseite beginnt. Im übrigen sind alle erforderlichen Angaben aus dem Tabellenkopf zu entnehmen.

Dritter Abschnitt.

Der Durchlaufträger.

I. Ermittlung der Stabfestwerte $\alpha_1, \alpha_2, \beta$ und der Belastungsglieder α_1^0, α_2^0 mit Hilfe der Zahlen- und Kurventafeln.

Es soll hier zunächst wieder der Gebrauch der Hilfstafeln zur zahlenmäßigen Berechnung der Stabfestwerte und Belastungsglieder für den durchlaufenden Träger mit Vouten an zwei Beispielen etwas ausführlicher behandelt werden. Der Vorgang ist im wesentlichen derselbe wie bei der Ermittlung der Stabfestwerte und Belastungsglieder für Rahmentragwerke, so daß auch auf die eingehendere Behandlung dieser Aufgaben in der Einleitung des vorangehenden Abschnittes verwiesen werden kann und die folgenden Erörterungen etwas kürzer gefaßt werden dürfen.

1. Stab mit beidseitig parabolischen Vouten.

Die Längen- und Querschnittsabmessungen sowie die Belastungsangaben sind in Abb. 294 bzw. 294a eingetragen.

Aus Zahlentafel 1 erhält man:

für den unveränderlichen Stabbereich mit b/h = 40/70 (cm) $J_c = 0,0114 \text{ m}^4$, für den Auflagerquerschnitt $b/h_A = 40/150$ (,,) $J_A = 0,1125$,,.

ad
$$n = \frac{J_c}{J_A} = \frac{0,0114}{0,1125} = 0,101 \sim 0,10$$
$$\lambda = \frac{l_v}{l} = \frac{3,90}{13,00} = 0,30.$$

A. Ermittlung der Stabfestwerte α , β .

Mit den vorliegenden Leitwerten n = 0,10 und $\lambda = 0,30$ entnimmt man aus der Zahlentafel 20

$$\bar{\alpha} = 0,212; \ \beta = 0,143.$$

Diese Winkelwerte $\bar{\alpha}$ und $\bar{\beta}$ sind EJ_c -fach verzerrt und auf einen Stab mit der Länge l=1 bezogen. Die

wahren Werte würden lauten:

$$\alpha^* = \bar{\alpha} \cdot \frac{l}{EJ_c}; \ \beta^* = \bar{\beta} \cdot \frac{l}{EJ_c}.$$

Für die Rechnung verwendet man jedoch aus Zweckmäßigkeitsgründen die z-fach verzerrten Werte, wobei nach (221) $z = EJ_c$ gesetzt werden kann. Somit wird

 $\alpha^* \cdot z = \bar{\alpha} \cdot l = 0,212 \cdot 13,00 = 2,756;$ $\beta^* \cdot z = \bar{\beta} \cdot l = 0,143 \cdot 13,00 = 1,859.$

Diese Werte sind in Abb. 294 b so eingetragen, wie es für die weitere Berechnung zweckmäßig erscheint: α an den Stabenden und β in der Stabmitte.

B. Ermittlung der Belastungsglieder α_1^0 , α_2^0 .

Es sind nach Abb. 294a zwei Belastungsarten vorhanden:

- a) eine durchgehende Gleichlast q = 2.0 t/m,
- b) die Einzellasten $P_1 = 4.5 \text{ t}; P_2 = 7.5 \text{ t}.$

Die beiden Fälle werden getrennt behandelt.

a) Gleichlast q = 2.0 t/m.

Nach Tafel 24 wird für n = 0,10 und $\lambda = 0,30$:

$$\bar{x}_1^0 = \bar{x}_2^0 = \bar{x}^0 = 0,0357.$$

Diese EJ_c -fach verzerrten Werte beziehen sich wieder auf den Stab mit der Länge l = 1 und der Belastung q = 1. Die wahren Werte wären somit

$$x^{0*} = \bar{x}^0 \cdot \frac{q \, l^3}{E \, J_c}.$$

Mit dem bereits festgelegten Verzerrungsfaktor $z = EJ_c$ ergibt sich das Belastungsglied in der für die Rechnung verwendeten Form:

 $\alpha^{0*} \cdot z = \bar{\alpha}^{0} \cdot q \; l^3 = 0.0357 \cdot 2.0 \cdot 13.00^3 = 156.9 \; \text{tm}^2.$

b) Einzellasten $P_1 = 4.5 t$, $P_2 = 7.5 t$.

Aus der Einflußlinientafel 28 erhält man für die auf Zwölferteilung bezogenen Laststellungen $\frac{12 a}{l} = \frac{12.5,0}{13,0} = 4,62$ und $\frac{12.8,0}{13,0} = 7,38$ mit den Leitwerten n = 0.10 und $\lambda = 0.30$ durch geradlinige Einschaltung folgende Einflußlinienordinaten:

für
$$\alpha_1^{0}$$
: $\eta_1 \rightarrow 0.055$ und 0.049;für α_2^{0} : $\eta_2 \rightarrow 0.049$ und 0.055.

Damit ergibt sich wieder unter der Annahme von $z = EJ_c$

 α_1^{0*} . $z = \eta_1 P$. l^2 und α_2^{0*} . $z = \eta_2 P$. l^2

und mit den obigen Zahlenwerten

$$\alpha_1^{0*} \cdot z = (0.055 \cdot 4.5 + 0.049 \cdot 7.5) \cdot 13.0^2 = 103.9 \text{ tm}^2;$$

 $\alpha_2^{0*} \cdot z = (0.049 \cdot 4.5 + 0.055 \cdot 7.5) \cdot 13.0^2 = 107.0 \text{ tm}^2.$

Zusammenfassung.

Bei gleichzeitiger Einwirkung der unter a und b behandelten Belastungsarten ergibt sich 000 0

$$\alpha_1^{0*} \cdot z = 156.9 + 103.9 = 260.8 \text{ tm}^2;$$

 $\alpha_2^{0*} \cdot z = 156.9 + 107.0 = 263.9 \text{ tm}^2.$

2. Stab mit einseitig gerader Voute.

Die Belastungs- und Maßangaben sind aus Abb. 295 bzw. 295a zu entnehmen. Aus Zahlentafel 1 erhält man:

für den unveränderlichen Stabbereich mit b/h = 15/35 (cm) $J_c = 0,000536 \text{ m}^4,$ $b/h_A = 15/60$ (,,) $J_A = 0,002700$,, . für den Auflagerquerschnitt mit Somit ist

$$n = \frac{J_c}{J_A} = \frac{0,000536}{0,002700} = 0,199 \sim 0,20$$
 und $\lambda = \frac{l_v}{l} = \frac{1,50}{5,00} = 0,30.$

A. Ermittlung der Stabfestwerte a_1 , a_2 , b.

Mit den Leitwerten n = 0.20 und $\lambda = 0.30$ ergeben sich aus Tafel 17 die auf den Einheitsstab bezogenen EJ_c -fach verzerrten Winkelwerte

 $\bar{\alpha}_1 = 0,207;$ $\bar{\alpha}_2 = 0,330;$ $\bar{\beta} = 0,151.$

Die wahren Werte für den Stab mit der Länge
$$l$$
 sind daher:

$$\alpha_1^* = \bar{\alpha}_1 \cdot \frac{l}{EJ_c}; \qquad \alpha_2^* = \bar{\alpha}_2 \cdot \frac{l}{EJ_c}; \qquad \beta^* = \bar{\beta} \cdot \frac{l}{EJ_c}.$$
Wählt man wieder den Verzerrungsfaktor $z = EJ_c$, so
$$() 1035 \qquad (2) 1035 \qquad (2) 1050$$

Wählt man wieder den Verzerrungsfaktor $z = EJ_c$, so erhält man die Rechnungswerte

$$\begin{aligned} a_1 &= \alpha_1^* \cdot z = \bar{\alpha}_1 \cdot l = 0,207 \cdot 5,0 = 1,035; \\ a_2 &= \alpha_2^* \cdot z = \bar{\alpha}_2 \cdot l = 0,330 \cdot 5,0 = 1,650; \\ b &= \beta^* \cdot z = \bar{\beta} \cdot l = 0,151 \cdot 5,0 = 0,755. \end{aligned}$$

Diese Werte sind in Abb. 295b eingetragen.

B. Ermittlung der Belastungsglieder α_1^0 , α_2^0 .

Für die Gleichlast q = 1,1 t/m erhält man mit den Leitwerten n = 0,20 und $\lambda = 0,30$ aus Tafel 21 die auf den Einheitsstab mit der Belastung q = 1 bezogenen, EJ_c -fach verzerrten Winkelwerte

$$\bar{\alpha}_1^0 = 0.0351; \quad \bar{\alpha}_2^0 = 0.0404.$$

Die wahren Werte würden sich für den Stab mit der Länge l und der Belastung q mit

$$\alpha_1^{0*} = \bar{\alpha}_1^{0} \cdot \frac{q \, l^3}{E J_c}; \qquad \alpha_2^{0*} = \bar{\alpha}_2^{0} \cdot \frac{q \, l^3}{E J_c}$$

ergeben.

Mit dem bereits bei der Bestimmung der Werte α_1 , α_2 und β festgelegten Verzerrungsfaktor $z = EJ_c$ erhält man die Rechnungswerte

$$\begin{aligned} & \alpha_1{}^0{}^* \,.\, z = ar{lpha}_1{}^0 \,.\, q \ l^3 = 0{,}0351 \,.\, 1{,}1 \,.\, 5{,}0^3 = 4{,}83 \ {
m tm}^2; \\ & \alpha_2{}^0{}^* \,.\, z = ar{lpha}_2{}^0 \,.\, q \ l^3 = 0{,}0404 \,.\, 1{,}1 \,.\, 5{,}0^3 = 5{,}56 \quad ,, \ . \end{aligned}$$

II. Vollständig durchgerechnete Zahlenbeispiele.

Zahlenbeispiel 18 (vgl. auch Nr. 19).

Zweifeldträger mit verschiedenen Feldweiten, aber konstantem Querschnitt. Die Belastungs- und Maßangaben sind aus Abb. 296 zu entnehmen. Es sind zwei Belastungsfälle zu behandeln, nämlich:

Gleichmäßige Vollbelastung q = 0,5 t/m.
 Ungleiche Temperaturänderung Δt =

2. Under the temperatural dering $\Delta t = t_u - t_o = -15^{\circ}$.

1. Gleichmäßige Vollbelastung q = 0.5 t/m.

Nach (235) lautet die Dreimomentengleichung für den vorliegenden Fall wegen $M_1 = M_3 = 0$:

$$M_2 (l_1 + l_2) + 6 \alpha_{2,1}^0 + 6 \alpha_{2,3}^0 = 0.$$

Nach Tafel 2 ist für gleichmäßige Vollbelastung

$$\alpha_1^0 = \alpha_2^0 = \frac{q l^3}{24},$$

also 6
$$(\alpha_{2,1}^{0} + \alpha_{2,3}^{0}) = 6\left(\frac{0.5 \cdot 5.0^{3}}{24} + \frac{0.5 \cdot 7.5^{3}}{24}\right) = 68,36 \text{ tm}^{2}.$$

Weiter ist

$$25,0 M_2 + 68,36 = 0;$$
 daraus wird

womit die obige Gleichung einfach lautet:

 $l_1 + l_2 = 5.0 + 7.5 = 12.5 \,\mathrm{m},$

$$M_2 = \frac{-68,36}{25,0} = -2,73 \text{ tm.}$$

Der zugehörige Momentenverlauf ist aus Abb. 297 ersichtlich. Zum Vergleich ist diese Momentenlinie auch in Abb. 299 strichliert eingezeichnet, in welcher der Momentenverlauf für dieselbe Belastung, jedoch unter Annahme von Vouten dargestellt ist.

2. Ungleichmäßige Temperaturwirkung.

Es kann hier die Dreimomentengleichung in derselben Form Verwendung finden wie vorher: $2 M_2 (l_1 + l_2) + 6 \alpha_{2,1}^0 + 6 \alpha_{2,3}^0 = 0.$

Es sind also nur die xº-Werte infolge Temperaturwirkung neu zu bestimmen.

Nach (239) bzw. (239a) wird mit $J_1 = J_2 = 0,0008 \text{ m}^4$, $E = 2100\,000 \text{ t/m}^2$ (für Beton), $\omega = 0,000012$, h = 0.40 m und $\varDelta t = -15^\circ$:

$$\alpha_{2,1}^{0} = \frac{EJ.\omega.\Delta t.l_{1}}{2h}; \quad \alpha_{2,3}^{0} = \frac{EJ.\omega.\Delta t.l_{2}}{2h}$$

und somit

$$6 (\alpha_{2,1}^{0} + \alpha_{2,3}^{0}) = \frac{3 E J \cdot \omega \cdot \Delta t}{h} (l_{1} + l_{2}) =$$
$$= -\frac{3 \cdot 2100000 \cdot 0,0008 \cdot 0,000012 \cdot 15}{0.40} (5,0 + 7,5) = -28,35 \text{ tm}^{2}.$$

Damit lautet die Gleichung für M_2 :

0

daraus wird

$$M_2 = \frac{28,35}{25,0} = +1,134 \text{ tm.}$$

 $25,0 M_2 - 28,35 = 0;$

Der zugehörige Momentenverlauf ist aus Abb. 297a ersichtlich.

Zahlenbeispiel 19 (vgl. auch Nr. 18).

Zweifeldträger mit geraden Vouten. Die Abmessungen Unsymmetrischer des Tragwerkes sind aus Abb. 298 zu entnehmen. Es ist wie im vorhergehenden Beispiel der Momentenverlauf für eine durch-

gehende Gleichlast q = 0.5 t/m zu bestimmen und sodann die Einflußlinie für das Stützenmoment M_2 zu ermitteln.

1. Gleichlast q = 0.5 t/m.

Die Dreimomentengleichung für die Mittelstütze (2) lautet nach (217) unter Beachtung, daß hier $M_1 = M_3 = 0$ ist:

$$d_2 M_2 + S_2 = 0. (I)$$

Der Beiwert d_2 ergibt sich nach (219)

$$d_2 = a_{2,1} + a_{2,3} = \alpha_{2,1}^* \cdot z + \alpha_{2,3}^* \cdot z$$
(II)

und das Belastungsglied S_2 nach (220)

$$S_2 = \alpha_{2,1}^{0*} \cdot z + \alpha_{2,3}^{0*} \cdot z.$$
 (III)

Auch hier kann der Verzerrungsfaktor $z = EJ_c$ gewählt werden, so daß sich wie in den Einführungsbeispielen die Festwerte

für Stab 1:
$$a_{2,1} = \alpha_{2,1}^* \cdot z = \overline{\alpha}_{2,1} \cdot l_1 = \overline{\alpha}_1 \cdot l_1 = 0,179 \cdot 5,0 = 0,895,$$

,, ,, 2: $a_{2,3} = \alpha_{2,3}^* \cdot z = \overline{\alpha}_{2,3} \cdot l_2 = \overline{\alpha}_1 \cdot l_2 = 0,199 \cdot 7,5 = 1,493$

ergeben. Sie sind in der letzten Spalte der Festwerttabelle 19 enthalten. Die Werte $\overline{\alpha}_1$ in der vorletzten Spalte sind aus der Tafel 17 für die Leitwerte n = 0,10 und $\lambda = 0,30$ bzw. n = 0,10 und $\lambda = 0,25$ entrommen und beziehen sich auf die Voutenseite des Stabes. Die Werte $\overline{\alpha}_2$ und β werden hier nicht gebraucht.

Mit obigen Werten wird nach (II)

$$d_2 = 0,895 + 1,493 = 2,388.$$

F	es	tw	\mathbf{er}	tt	a h	e11	le l	19
ж.	60	UW	OI.	$\nu \nu$		D I I		10.

Stab	<i>b/h</i> (cm)	<i>J_c</i> ^(m⁴)	$b/h_A^{(cm)}$	J _A (m ⁴)	l(m)	<i>l</i> v ^(m)	$\lambda = \frac{l_v}{l}$	$n = \frac{J_c}{J_A}$	ā1	ā. l	Tafel
${\substack{1-2\\2-3}}$	$15/35 \\ 15/35$	0,000536 0,000536	$15/75 \\ 15/75$	0,005273 0,005273	5,0 7,5	1,50 1,875	0,30 0,25	0,10 0,10	0,179 0,199	0,895 1,493	17 17

T=Q5t/m

1.134 tm

Abb. 297 a.

3

Ermittlung des Belastungsgliedes S.

Dazu benötigt man nach (III) die x^0 -Werte, die zur Mittelstütze gehören. Stab 1-2. Einseitig gerade Voute mit n = 0,10 und $\lambda = 0,30$; $l_1 = 5,0$ m. Belastung: q = 0.5 t/m.

Aus Tafel 21 ergibt sich mit den vorliegenden Leitwerten n und λ der der Voutenseite zugeordnete Winkelwert $\overline{\alpha}_1^0 = 0,0333.$

Mit $z = EJ_c$ folgt somit:

$$\alpha_{2,1}^{0*}$$
. $z = \overline{\alpha}_1^{0}$. $q l_1^{3} = 0.0333 \cdot 0.5 \cdot 5.0^3 = 2.08 \text{ tm}^2$

Stab 2-3. Einseitig gerade Voute mit n = 0,10 und $\lambda = 0,25$; $l_2 = 7,5$ m. Belastung: q = 0.5 t/m.

Aus Tafel 21 ergibt sich

Mit $z = EJ_c$ erhält man

 $\alpha_{2.3}^{0*} \cdot z = \bar{\alpha}_1^{0} \cdot q \, l_2^{-3} = 0.0355 \cdot 0.5 \cdot 7.5^3 = 7.49 \, \mathrm{tm}^2;$

 $\bar{\alpha}_1^0 = 0.0355.$

daher nach (III)

 $S_2 = 2,08 + 7,49 = 9,57 \text{ tm}^2$.

$$2,388 M_2 + 9,57 = 0,$$

woraus
$$M_{\rm 2} = -\frac{9{,}57}{2{,}388} = -4{,}01~{\rm tm}$$

wird. Der zugehörige Momentenverlauf ist in Abb. 299 dargestellt, wo zugleich auch die Mo-

mente aus dem vorangehenden Zahlenbeispiel

ersichtlich gemacht sind, um den Einfluß der Voutenwirkung besser zu veranschaulichen.

2. Ermittlung der Einflußlinie für M2.

$$\eta^{(i)} = ({M_1} \, \eta_1 + \, {M_2} \, \eta_2) \cdot rac{l^2_{\,\,i}}{\gamma} \cdot$$

Bei der Auswertung dieser Formel geht man für die einzelnen Felder getrennt vor. Um eine Übereinstimmung mit der Bezeichnung der Hilfstafeln zu erhalten, wird festgesetzt, daß sich bei Feldern mit einseitigen Vouten M_1 auf die Voutenseite und M_2 auf die voutenfreie Seite bezieht. Damit wird

für das Feld (1) wegen
$$M_1 = -1, \ M_2 = 0: \qquad \eta^{(1)} = -\eta_1 \cdot \frac{t_1^2}{\gamma},$$
 (IV)

$$,, \quad ,, \quad ,, \quad (2) \quad ,, \quad M_1 = -1, \ M_2 = 0: \qquad \eta^{(2)} = -\eta_1 \cdot \frac{l_2^{\ 2}}{\gamma} \cdot \qquad (V)$$

Hierin bedeuten η_1 die aus der Tafel 25 zu entnehmenden Ordinaten der Einfluß-linie für die Auflagerdrehwinkel α_1^{0} . Der Wert γ ergibt sich nach (257) unter Beachtung, daß hier die nach den Stützen benannten Momente $M_1 = M_3 = 0$ sind, mit

$$\gamma = \bar{lpha}_{2,\,1} \,.\, l_1 + \bar{lpha}_{2,\,3} \,.\, l_2 = 0,895 \,+\, 1,493 = 2,388,$$

wobei die entsprechenden Werte $\bar{\alpha}$. l aus der letzten Spalte der Festwerttabelle 19 entnommen sind.

M2=1

Abb. 300.

L1=7.50m

l₁=5.00m

.4,01tm

Für die zahlenmäßige Auswertung der Ausdrücke (IV) und (V) kann noch eine kleine Vereinfachung vorgenommen werden. Es ist

$$\frac{l_1^2}{\gamma} = \frac{5.0^2}{2.388} = 10.47; \quad \frac{l_2^2}{\gamma} = \frac{7.5^2}{2.388} = 23.56$$

so daß nach (IV) bzw. (V) $\eta^{(1)} = -10,47 \eta_1$ und $\eta^{(2)} = -23,56 \eta_1$ wird. In der folgenden Tabelle ist nach diesen Formeln die zwölfteilige Einflußlinie für M_2 ausgerechnet.

	Feld 1-2 $\lambda = 0,30$ n = 0,10 $\eta^{(1)} = -10$,	2) (1) 2 10 8 6 4 2 0 47. η ₁ ; Tafel 25	Feld 2-3 $\lambda = 0.25$ n = 0.10 $\eta^{(2)} = -23.5$	1 1 0 2 4 6 8 10 12 56. η ₁ ; Tafel 25
Ort	η_1	$\eta^{(1)} = -10,47.\eta_1$	η_1	$\eta^{(2)} = -23,56.\eta_1$
$ \begin{array}{r} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 9 \end{array} $	$\begin{array}{c} 0,0145\\ 0,0280\\ 0,0399\\ 0,0484\\ 0,0525\\ 0,0526\\ 0,0526\\ 0,0492\\ 0,0427\\ 0,0340\end{array}$	$\begin{array}{c} - 0,152 \\ - 0,293 \\ - 0,418 \\ - 0,507 \\ - 0,550 \\ - 0,551 \\ - 0,515 \\ - 0,515 \\ - 0,447 \\ - 0,356 \end{array}$	$\begin{array}{c} 0,0163\\ 0,0312\\ 0,0439\\ 0,0522\\ 0,0557\\ 0,0553\\ 0,0515\\ 0,0446\\ 0,0355\end{array}$	$\begin{array}{r} -0,384\\ -0,735\\ -1,034\\ -1,230\\ -1,312\\ -1,303\\ -1,213\\ -1,213\\ -1,051\\ -0,836\end{array}$
$\begin{array}{c} 10\\11 \end{array}$	0,0238 0,0122		$0,0247 \\ 0,0126$	

Einflußlinie für M_2 .

In Abb. 301 ist die Einflußlinie für M_2 dargestellt. Zum Vergleich ist dort diese Einflußlinie für denselben Träger, jedoch ohne Vouten, strichliert eingezeichnet.

Zahlenbeispiel 20.

Symmetrischer Dreifeldträger mit parabolischen Vouten. Die Abmessungen des Tragwerkes sind aus Abb. 302 zu ersehen. Es sind zu ermitteln:

1. Der Momentenverlauf für eine Gleichlast $q = 2,5 \, {
m t/m}.$

2. Die Einflußlinie für das Stützenmoment M_{2} .

3. Die Einflußlinie für

____ahne Vouten wirkung

das Feldmoment M_{f_1} im ersten Feld an der Stelle $x = \frac{l_1}{6}$ vom Auflager 1. Die Ermittlung der Stabfestwerte erfolgt wieder tabellarisch.

Stab	<i>J_c</i> ^(m⁴)	J _A ^(m4)	l(m)	l _v (m)	$\lambda = \frac{l_v}{l}$	$n = \frac{J_c}{J_A}$	ā	$\overline{\alpha}_2$	β	ā. l	<i>φ</i> .ι	Tafel
$1-2 \\ 3-4$	0,0265	0,5194	11,00	11,0	1,00	0,05	0,058	0,241	0,068	0,638	0,748	18
2-3	0,0265	0,5194	22,00	11,0	0,50	0,05	0,123	0,123	0,094	2,706	2,068	20
Gı	1ldan, Rah	mentragwei	rke.		•		•		•	•	. 12	•

Festwerttabelle 20.

Guldan, Rahmentragwerke.

Abb. 301.

Die Berechnung der Trägheitsmomente J_c und J_A für die vorliegenden Plattenbalkenquerschnitte erfolgt nach der Formel

$$J = J_1 + J_2 + x^2 \frac{F_1 \cdot F_2}{F_1 + F_2}$$

wobei sich J_1 bzw. F_1 auf den Plattenteil und J_2 bzw. F_2 auf den Stegteil des Plattenbalkenquerschnittes beziehen. Es ist also für den Querschnitt J_c mit Bezug auf Abb. 302 a

$$J_c = 0,0005625 + 0,00720 + 0,375^2 \cdot rac{0,30 \cdot 0,24}{0,30 + 0,24} = 0,0265 \ \mathrm{m}^4$$

und ebenso mit Bezug auf Abb. 302 b

$$J_A = 0,0005625 + 0,2667 + 1,075^2 \cdot rac{0,30 \cdot 0,80}{0,30 + 0,80} = 0,5194 \ \mathrm{m}^4.$$

1. Momentenverlauf für eine Gleichlast
$$q = 2.5$$
 t/m.

Aus Symmetriegründen ist $M_2 = M_3$, so daß die Dreimomentengleichung nur für M_2 aufgestellt werden muß. Sie lautet nach (217) unter Beachtung, daß hier $M_1 = 0$ und $M_3 = M_2$ ist:

$$(d_2 + b_2) M_2 + S_2 = 0, (I)$$

wobei nach (219)

nach (218)

und nach (220)

$$b_2 = \beta_2^* \cdot z$$

 $S_2 = \alpha_2 \cdot 0^* \cdot z + \alpha_2 \cdot 0^* \cdot z.$

 $d_2 = a_{2,1} + a_{2,3} = \alpha_{2,1}^* \cdot z + \alpha_{2,3}^* \cdot z;$

Die Winkelwerte $\alpha_{2,1}^*$, $\alpha_{2,3}^*$ und β_2^* sind in den letzten Spalten der Festwerttabelle 20 enthalten. Sie ergeben sich unter der Voraussetzung von $z = EJ_e$ mit:

Damit wird nach den vorstehenden Formeln:

 $d_2 = 0,638 + 2,706 = 3,344$ und $b_2 = 2,068$ sowie $d_2 + b_2 = 3,344 + 2,068 = 5,412$. Damit lautet die Gl. (I):

$$5,412 M_2 + S_2 = 0. \tag{I'}$$

Ermittlung des Belastungsgliedes S.

Zu diesem Zwecke sind zuerst die α^0 -Werte für die einzelnen Stäbe zu bestimmen. Stab 1-2. Einseitig parabolische Voute mit n = 0,05 und $\lambda = 1,0$; $l_1 = 11,0$ m. Belastung: q = 2,5 t/m.

Aus Tafel 22 ergibt sich der der Voutenseite zugeordnete Wert $\bar{\alpha}_1^0 = 0,0121$; mit $z = EJ_c$ wird $\alpha_{2,1}^{0*} \cdot z = \bar{\alpha}_1^0 \cdot q \ l_1^3 = 0,0121 \cdot 2,5 \cdot 11,0^3 = 40,3 \text{ tm}^3.$

Stab 2–3. Beidseitig parabolische Vouten mit n = 0,05 und $\lambda = 0,50$; $l_2 = 22,0$ m. Belastung: q = 2,5 t/m.

Aus Tafel 24 erhält man $\bar{\alpha}_1^0 = \bar{\alpha}_2^0 = \bar{\alpha}^0 = 0,0236;$ mit $z = EJ_c$ wird $\alpha_{2,3}^{0*} \cdot z = \bar{\alpha}_0 \cdot q \, l_2^3 = 0,0236 \cdot 2,5 \cdot 22,0^3 = 628,2 \, \text{tm}^2;$ somit wird $S_2 = \alpha_{2,1}^{0*} + \alpha_{2,3}^{0*} = 40,3 + 628,2 = 668,5.$ Führt man diesen Wert in Gl. (I') ein, so erhält man $5,412 \, M_2 + 668,5 = 0$ und daraus

$$M_2 = -\frac{668,5}{5,412} = -123,5 \text{ tm.}$$

2.00

Der zugehörige Momentenverlauf ist in Abb. 303 eingetragen. Zum Vergleich ist dort auch die Momentenverteilung für dieselbe Belastung, jedoch unter Außerachtlassung der Voutenwirkung eingezeichnet.

2. Ermittlung der Einflußlinie für M_2 .

Auch hier soll das im Ersten Teil, fünfter Abschnitt, VI, 2 erläuterte Verfahren am (n-1)-fach statisch unbestimmten System benutzt werden.

Durch Einschaltung eines Gelenkes bei Stütze (2), wo die beiden Momente M = 1 anzubringen sind, wird der gegebene Dreifeldträger

in einen freiaufliegenden und einen Zweifeldbalken zerlegt (Abb. 304b).

Es ist also zunächst der Momentenverlauf infolge der Belastung M = 1 am Zweifeldträger 2-3-4 zu bestimmen, um die gesuchte Einflußlinie als Biegelinie ermitteln zu können. Die Dreimomentengleichung für M_3 lautet nach (217) mit den Bezeichnungen der Abb. 304b unter Beachtung, daß $M_4 = 0$ und $S_3 = 0$ ist:

$$b_2 M_2 + d_3 M_3 = 0.$$

Nun ist hier $M_2 = -1$ und weiter aus der vorangehenden Rechnung bereits bekannt:

$$b_2 = 2,068; \ \ d_3 = d_2 = 3,344.$$

Somit lautet die vorstehende Gleichung für $M_{\rm 3}$ zahlenmäßig:

 $\begin{array}{r} -2,068+3,344\ M_3=0;\\ \text{daraus wird}\\ M_3=\frac{2,068}{3,344}=+0,618. \end{array}$

Damit ist der gesamte Momentenverlauf bereits gegeben (siehe Abb. 304c), für den die Biegelinie zu ermitteln und der Winkelwert γ (Abb. 304a) zu bestimmen ist.

Die endgültigen Einflußlinienordinaten ergeben sich für ein Feld (i) zwischen den Stützen 1 und 2 nach (258) allgemein mit:

$$\eta^{(i)} = (M_1 \eta_i + M_2 \eta_2) \cdot \frac{l_i^2}{\gamma} \cdot$$

Die Auswertung des vorstehenden Ausdruckes erfolgt wieder am besten tabellarisch, wobei die jeweiligen Werte für η_1 bzw. η_2 für die entsprechenden Stabformen aus den Einflußlinientafeln für α_1^0 bzw. α_2^0 zu entnehmen sind. Um eine Übereinstimmung in der Bezeichnung mit den zur Anwendung gelangenden Hilfstafeln zu erzielen und Irrtümer zu vermeiden, sei wieder festgesetzt, daß in der vorstehenden Formel M_1 bei Stäben mit einseitigen Vouten stets das Moment auf der Voutenseite und M_2 das Moment auf der voutenfreien Seite bedeutet. Unter dieser Voraussetzung wird:

12*

Der Wert γ ergibt sich nach (257) unter Beachtung, daß $M_1=0$ ist:

$$\gamma = \bar{\alpha}_{2,1} \cdot l_1 + (\bar{\alpha}_{2,3} - M_3 \cdot \beta_2) \cdot l_2.$$

Aus der Festwerttabelle entnimmt man:

$$\bar{\alpha}_{2,1} \cdot l_1 = 0,638; \quad \bar{\alpha}_{2,3} \cdot l_2 = 2,706; \quad \bar{\beta}_2 \cdot l_2 = 2,068$$

und aus Abb. 304c
Damit erhält man $\gamma = 0,638 + 2,706 - 0,618 \cdot 2,068 = 2,066$
und schließlich
 $\frac{l_1^2}{\gamma} = \frac{11,0^2}{2,066} = 58,57,$
bzw.
 $\frac{l_2^2}{\gamma} = \frac{22,0^2}{2,066} = 234,27.$

bzy

Mit diesen Werten ergeben sich die Ausdrücke I, II, III für die Einflußlinienordinaten in den Feldern (1), (2) und (3) in einer zur tabellarischen Auswertung geeigneteren Form:

$$\eta^{(1)} = -58,57 \ \eta_1; \tag{I'}$$

$$\eta^{(2)} = 234,27 (-\eta_1 + 0.618 \eta_2);$$
 (II')

$$\eta^{(3)} = + 0.618 \cdot 58.57 \ \eta_1 = -0.618 \cdot \eta^{(1)}.$$
 (III')

Die weitere Rechnung ist in den folgenden Tabellen durchgeführt.

-						
	Feld 1-2 $\lambda = 1,00$ n = 0,05 $\eta^{(1)} = -58,5^{\circ}$) (1) 10 8 6 4 2 0 7 η_1 ; Tafel 22	Feld 2-3 $\lambda = 0,50$ n = 0,05 $\eta^{(2)} = 234,27$ ((1) $0 \frac{2}{2} \frac{4}{6} \frac{6}{8}$ $-\eta_1 + 0,618 \eta_2);$	(2) 10 12 Tafel 24	Feld 3-4 (1) (2) 0 2 4 6 8 10 12
Ort	η_1	$\eta^{(1)} = -58,57.\eta_1$	$-\eta_1 \\ 0,618 \eta_2$	$\begin{vmatrix} A = \\ = -\eta_1 + 0,618 \eta_2 \end{vmatrix}$	$\eta^{(2)} = 234,27 A$	$\eta^{(3)} = -0,618 \eta^{(1)}$
1	0,0047	— 0,275	-0,0101 + 0,0048	0,0053	— 1,242	+ 0,170
2	0,0089	0,521	-0,0195 + 0,0096	0,0099	2,319	+ 0,322
3	0,0125	— 0,732	-0,0279 + 0,0143	0,0136	— 3,186	+ 0,452
4	0,0156	0,914	-0,0345 + 0,0186	0,0159	— 3,725	+ 0,565
5	0,0177	— 1,037	-0,0383 + 0,0220	0,0163	— 3,819	+ 0,641
6	0,0189	— 1,107	-0,0386 + 0,0239	0,0147	— 3,444	+ 0,684
7	0,0187	— 1,095	-0,0356 + 0,0237	0,0119	— 2,788	+ 0,677
8	0,0174	— 1,019	-0,0301 + 0,0213	0,0088	2,062	+ 0,630
9	0,0146	— 0,855	-0,0232 + 0,0172	0,0060	— 1,406	+ 0,528
10	0,0106	— 0,621	-0,0156 + 0,0121	0,0035	0,820	+ 0,384
11	0,0056	0,328	-0,0078 + 0,0062	0,0016	— 0,375	+ 0,203

Ermittlung der Einflußlinie für M_2 .

Die Einflußlinie für M_2 ist in Abb. 305 dargestellt. Gleichzeitig ist in dieser Abbildung die Einflußlinie für M_2 ohne Berücksichtigung der Voutenwirkung eingetragen.

3. Einflußlinie für das Feldmoment M_{f_1} im ersten Feld an der Stelle $x = \frac{l_1}{6}$ vom Auflager 1.

Nach (162) ist mit der hier verwendeten Bezeichnung unter Beachtung, daß $M_1 = 0$ ist:

$$M_{f_1} = M_2 \frac{x}{l_1} + M_0 = 0.1 \dot{6} M_2 + M_0.$$

Ermittlung der Einflußlinie für das Feldmoment M_{f_1} .

		Feld 1-2		Feld	2-3	Feld 3—4			
	(4	2) 2 10 8 6 4 2	(1) 	(1) 0 2 4 6	(2) 8 10 12	(1) 0 2 4	(2) 6 8 10 12		
Ort	$\eta^{(1)}_{0,1\dot{6}\eta^{(1)}}$	M ₀	$y^{(1)} = (1) + (2)$	η ⁽²⁾	$y^{(2)} = 0,16 \eta^{(2)}$	η ⁽³⁾	$y^{(3)} = 0,16\eta^{(3)}$		
	1	2	3	1	2	1	2		
1	-0,275 -0,046	+0,153	+ 0,107		0,207	+ 0,170	+ 0,028		
2	-0,521 -0,087	+0,306	+ 0,219	2,319	0,386	+ 0,322	+ 0,054		
3	-0,732 -0,122	+ 0,458	+ 0,336	— 3,186	0,531	+ 0,452	+ 0,075		
4	-0,914 -0,152	+ 0,611	+ 0,459	— 3,725	0,621	+ 0,565	+ 0,094		
5	-1,037 -0,173	+ 0,764	+ 0,591	— 3,819	0,636	+ 0,641	+ 0,107		
6	-1,107 -0,184	+ 0,917	+ 0,733		0,574	+ 0,684	+ 0,114		
7		+ 1,070	+ 0,888		0,465	+ 0,677	+ 0,113		
8		+ 1,222	+ 1,052		0,344	+ 0,630	+ 0,105		
9	-0,855 -0,142	+ 1,375	+ 1,233	1,406	0,234	+0,528	+ 0,088		
10	0,621 0,103	+ 1,528	+ 1,425		0,137	+0,384	+ 0,064		
11	-0,328 -0,055	+ 0,764	+ 0,709	0,375	— 0,063	+ 0,203	+ 0,034		

Setzt man in diesem Ausdruck an Stelle von M_2 die bereits ermittelten Einflußlinienordinaten (η) und ebenso für M_0 , so gelangt man zu den Einflußlinienordinaten (y) von M_{f^1} . Die Einflußlinienwerte für M_0 , die nur im ersten Feld auftreten, sind in Abb. 306 eingetragen.

Damit kann die Auswertung des obigen Ausdruckes tabellarisch erfolgen.

In Abb. 307 sind die Einflußlinien für das Feldmoment M_{f_1} mit und ohne Berücksichtigung der Voutenwirkung eingetragen.

Dritter Teil Hilfstafeln. Tafel 1.

184

Trägheitsmomente von Rechtecksquerschnitten in dm⁴.

ζ,

	\$ 	J_8 ==	6 h ³ 12				von I	l'räg Rechter	heits) eksquer	mom. schnitt	ente en in d	lm⁴.							
b(cm)	10	15	20	25	30	35	40	45	50	55	60	65	20	75	80	85 25	06	95	100
10	0,083	0,281	0,667	1,302	2,250	3,573	5,333	7,594	10,417	13,86	18,00	22,89	28,58	35,16	42,67	51,18	60,75	71,45	83,33
15	0,125	0,422	1,000	1,953	3,375	5,359	8,000	11,391	15,625	20,80	27,00	34,33	42,88	52,73	64,00	76,77	91,13	107,17	125,00
20	0,167	0,563	1,333	2,604	4,500	7,146	10,667	15,188	20,833	27,73	36,00	45,77	57,17	10,31	85,33	102,35	121,50	142,90	166,67
25	0,208	0,703	1,667	3,255	5,625	8,932	13,333	18,984	26,042	34,66	45,00	57,21	71,46	87,89	106,67	127,94	151,88	178,62	208,33
30	0,250	0,844	2,000	3,906	6,750	10,719	16,000	22,781	31,250	41,59	54,00	68,66	85,75	105,47	128,00	153,53	182,25	214,34	250,00
35	0,292	0,984	2,333	4,557	7,875	12,505	18,667	26,578	36,458	48,53	63,00	80,10	100,04	123,05	149,33	179,12	212,63	250,07	291,67
40	0,333	1,125	2,667	5,208	9,000	14,292	21,333	30,375	41,667	55,46	72,00	91,54	114,33	140,63	170,67	204,71	243,00	285,79	333,33
45	0,375	1,266	3,000	5,859	10,125	16,078	24,000	34,172	46,875	62,39	81,00	102,98	128,63	158,20	192,00	230,30	273,38	321,52	375,00
50	0,417	1,406	3,333	6,510	11,250	17,865	26,667	37,969	52,083	69,32	90'06	114,43	142,92	175,78	213,33	255,89	303,75	357,24	416,67
55	0,458	1,547	3,667	7,161	12,375	19,651	29,333	41,766	57,292	76,26	99,00	125,87	157,21	193,36	234,67	281,47	334,13	392,96	458,33
60	0,500	1,688	4,000	7,813	13,500	21,438	32,000	45,563	62,500	83,19	108,00	137,31	171,50	210,94	256,00	30,706	364,50	428,69	500,00
65	0,542	1,828	4,333	8,464	14,625	23,224	34,667	49,359	67,708	90,12	117,00	148,76	185,79	228,52	277,33	332,65	394,88	464,41	541,67
20	0,583	1,969	4,667	9,115	15,750	25,010	37,333	53,156	72,917	97,05	126,00	160,20	200,08	246,09	298,67	358,24	425,25	500,14	583,33
75	0,625	2,109	5,000	9,766	16,875	26,791	40,000	56,953	78,125	103,98	135,00	171,64	214,38	263,67	320,00	383,83	455.63	535,86	625,00
80	0,667	2,250	5,333	10,417	18,000	28,583	42,667	60,750	83,333	110,92	144,00	183,08	228,67	281,25	341,33	409,42	486,00	571,58	666,67
85	0,708	2,391	5,667	11,068	19,125	30,370	45,333	64,547	88,542	117,85	153,00	194,53	242,96	298,83	362,67	435,01	516,38	607,31	708,33
06	0,750	2,531	6,000	11,719	20,250	32,156	48,000	68,344	93,750	124,78	162,00	205,97	257,25	316,41	384,00	460,59	546,75	643,03	750,00
95	0,792	2,672	6,333	12,370	21,375	33,943	50,667	72,141	98,958	131,71	171,00	217,41	271,54	333,98	405,38	486,18	577,13	678,76	791,67
100	0,833	2,813	6,667	13,021	22,500	55,729	53,333	75,938	104,167	138,65	180,00	228,85	285,83	351,56	426,67	511,77	607,50	714,48	833,33

Hilfstafeln.

Tafel 1 (Fortsetzung).

185 190 200		527,6 571,6 666,7	527,6 571,6 666,7 791,5 857,4 1000,0	527,6 571,6 666,7 791,5 857,4 1000,0 055,3 1143,2 1333,3	327,6 571,6 666,7 791,5 857,4 1000,0 055,3 1143,2 1333,3 319,1 1429,0 1666,7	327,6 571,6 666,7 791,5 857,4 1000,0 791,5 1143,2 1333,3 319,1 1429,0 1666,7 582,9 1714,7 2000,0	527,6 571,6 666,7 791,5 857,4 1000,0 751,5 857,4 1000,0 755,3 1143,2 1333,3 319,1 1429,0 1666,7 582,9 1714,7 2000,0 846,7 2000,5 2333,3	527,6 571,6 666,7 791,5 857,4 1000,0 055,3 1143,2 1333,3 319,1 1429,0 1666,7 582,9 1714,7 2000,0 846,7 2000,5 2333,3 110,5 2286,3 2666,7	527,6 571,6 666,7 791,5 857,4 1000,0 355,3 1143,2 1333,3 319,1 1429,0 1666,7 582,9 1714,7 2000,0 846,7 2000,5 2333,3 314,4 2000,5 2333,3 314,4 2000,5 2333,3 314,4 2572,1 3000,0	527,6 571,6 666,7 791,5 857,4 1000,0 055,3 1143,2 1333,3 319,1 1429,0 1666,7 582,9 1714,7 2000,0 846,7 2000,5 2333,3 946,7 2000,5 2333,3 110,5 2286,3 2666,7 374,4 2572,1 3000,0 638,2 2857,9 3333,3	527,6 571,6 666,7 791,5 857,4 1000,0 055,3 1143,2 1333,3 319,1 1429,0 1666,7 582,9 1714,7 2000,0 846,7 2000,5 2333,3 110,5 2286,3 2666,7 374,4 2572,1 3000,0 638,2 2857,9 3143,7 902,0 3143,7 3666,7	527,6 571,6 666,7 791,5 857,4 1000,0 055,3 1143,2 1333,3 319,1 1429,0 1666,7 582,9 1714,7 2000,0 846,7 2000,5 2333,3 3110,5 2286,3 2666,7 374,4 2586,3 2666,7 375,2 2857,9 3333,3 902,0 3143,7 3666,7 638,2 2857,9 3333,3 902,0 3143,7 3666,7 165,8 3429,5 4000,0	527,6 571,6 666,7 791,5 857,4 1000,0 055,3 1143,2 1333,3 319,1 1429,0 1666,7 582,9 1714,7 2000,0 846,7 2000,5 2333,3 110,5 2286,3 2666,7 374,4 2572,1 3000,0 638,2 2857,9 3143,7 902,0 3143,7 3666,7 165,8 3143,7 3666,7 429,6 3715,3 4333,3	527,6 571,6 666,7 791,5 857,4 1000,0 055,3 1143,2 1333,3 319,1 1429,0 1666,7 582,9 1714,7 2000,0 646,7 2000,5 2333,3 846,7 2000,5 2333,3 374,4 2572,1 3000,0 658,2 2857,9 3333,3 902,0 3143,7 3666,7 658,2 2857,9 3333,3 658,2 2857,9 3333,3 902,0 3143,7 3666,7 165,8 3429,5 4000,0 633,4 4001,1 4666,7	527,6 571,6 666,7 791,5 857,4 1000,0 315,3 1143,2 1333,3 319,1 1429,0 1666,7 552,9 1714,7 2000,0 846,7 2000,5 2333,3 110,5 2286,3 2666,7 374,4 25286,3 2666,7 638,2 2857,0 3333,3 902,0 3143,7 3666,7 165,8 3429,5 400,0 638,4 400,1 4666,7 363,4 420,6 3143,7 365,4 420,6 3715,3 4526,6 3715,3 4333,3	527,6 571,6 666,7 791,5 857,4 1000,0 319,1 1429,0 1666,7 319,1 1429,0 1666,7 582,9 1714,7 2000,0 646,7 2000,5 2333,3 319,1 1429,0 1666,7 211,5 2000,5 2333,3 374,4 2572,1 3000,0 638,2 2857,9 3333,3 902,0 3143,7 3666,7 165,8 3429,5 4000,0 420,6 3143,7 3666,7 957,3 4826,9 3333,3 957,3 4201,1 4666,7 165,8 3429,5 4000,0 957,3 4326,9 5000,0 957,3 4502,1 4666,7 165,8 3420,6 5000,0 957,3 4502,1 4001,1 1457,7 5333,3 5333,3	577,6 571,6 666,7 791,5 857,4 1000,0 319,1 1429,0 1666,7 552,9 1143,2 1333,3 552,9 1714,7 2000,0 846,7 2000,5 2333,3 110,5 2286,3 2666,7 374,4 2572,1 3000,0 638,2 2857,9 3333,3 902,0 3143,7 3666,7 165,8 3429,5 4000,0 638,4 400,1,1 4666,7 902,0 3143,7 3666,7 165,8 3429,5 4000,0 957,3 4826,9 5000,0 957,3 4826,9 5000,0 957,3 4858,5 5666,7 444,9 4558,5 5666,7	577,6 571,6 666,7 791,5 857,4 1000,0 355,3 1143,2 1333,3 319,1 1429,0 1666,7 582,9 1714,7 2000,0 846,7 2000,5 2333,3 110,5 2286,3 2666,7 374,4 2000,0 3333,3 100,5 2286,3 2666,7 858,2 2857,9 3333,3 110,5 2286,3 2666,7 874,4 2572,1 3000,0 638,2 2857,9 3333,3 902,0 3143,7 3666,7 83715,3 4333,3 466,7 902,0 3143,7 3666,7 83429,6 3715,3 4333,3 957,3 4586,5 600,0 844,9 457,7 5333,3 454,9 4568,5 5666,7 844,9 4588,5 5666,7 844,9 4588,5 5666,7 8484,9 4588,5 <	571,6 571,6 666,7 791,5 857,4 1000,0 319,1 1429,0 1666,7 319,1 1429,0 1666,7 319,1 1429,0 1666,7 319,1 1429,0 1666,7 314,1 2000,5 2333,3 314,4 2000,5 2333,3 314,4 2572,1 3000,0 638,2 2857,9 3333,3 902,0 3143,7 3666,7 165,8 3429,5 4000,0 638,4 400,1,1 4666,7 165,8 3429,5 5000,0 357,3 4826,9 5000,0 357,3 4858,5 5666,7 429,6 3143,7 3666,7 363,4 400,1,1 4666,7 429,6 3143,7 5666,7 357,3 4858,5 5666,7 429,6 3143,7 533,3 429,6 3143,7 5666,7 456,6 5666,7 <t< th=""></t<>
180 18		6 486,0 527	6 486,0 527 	6 486,0 521 9 729,0 791 2 972,0 105/	6 486,0 527 9 729,0 791 2 972,0 105i 5 1215.0 131'	6 486,0 521 9 729,0 791 2 972,0 105i 5 1215.0 131i 8 1458,0 158:	6 486,0 521 9 729,0 791 2 972,0 1055 5 1215.0 1315 8 1458,0 1583 1701,0 184 184	6 486,0 527 9 729,0 791 2 972,0 1051 5 1215.0 1311 5 1458,0 1581 2 1701,0 1841 5 1944,0 211	6 486,0 527 9 729,0 791 2 972,0 105i 5 1215.0 131f 8 1458,0 158i 8 1458,0 184i 5 1701,0 184i 5 1944,0 211i 6 2187,0 2377	6 486,0 523 9 729,0 791 2 972,0 105i 5 1215.0 1311 6 1215.0 1314 7 1458,0 1583 1 1458,0 1583 2 1944,0 2114 5 1944,0 2114 6 2187,0 2377 1 2430,0 2633	6 486,0 527 9 729,0 791 2 972,0 105i 5 1215.0 131i 8 1458,0 158i 9 1701,0 184i 1 1944,0 211i 8 2187,0 237i 9 2187,0 2673,0 2 2187,0 2673,0	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	6 486,0 527 9 729,0 791 2 972,0 105i 5 1215.0 131i 6 1458,0 158i 2 1701,0 184i 5 1944,0 211i 6 2377,0 263i 7 2430,0 263i 1 2430,0 263i 7 2916,0 316 7 2915,0 263i 7 2915,0 263i 7 2915,0 316 7 3159,0 342	6 486,0 523 9 729,0 791 2 972,0 1055 5 1215.0 1315 6 1215.0 1315 7 1944,0 1683 6 1944,0 2111 7 2430,0 2633 7 2430,0 2633 7 2916,0 316 7 2916,0 316 8 3159,0 369 8 3160,0 316	6 486,0 527 9 729,0 791 2 972,0 1057 5 1215.0 1311 6 1215.0 1311 7 1215.0 1311 8 1458,0 1583 9 1701,0 1844 5 1944,0 2110 6 1944,0 2111 1 2430,0 2633 1 2430,0 2633 1 2430,0 2633 1 2430,0 2633 1 2430,0 2633 3 3169,0 3161 3 3159,0 369 3 3645,0 365	6 486,0 532 2 972,0 1055 2 972,0 1055 5 1215.0 1315 8 1458,0 1583 9 1701,0 1844 5 1944,0 2111 8 1701,0 1844 8 2187,0 2873 9 2187,0 2874 8 2187,0 2871 9 2480,0 2633 1 2430,0 2633 1 2430,0 2633 7 2916,0 316 7 2916,0 316 8 3159,0 3863 9 3645,0 366 8 3402,0 366 9 3645,0 366 9 3888,0 422	6 486,0 521 9 729,0 791 5 972,0 1055 6 1215,0 1311 5 1215,0 1311 6 1215,0 1311 7 1944,0 1583 7 1944,0 2110 8 2187,0 2633 1 2430,0 2633 1 2430,0 2633 7 2916,0 316 3 3402,0 3683 3 3402,0 3683 9 3888,0 422 9 3888,0 422 9 3888,0 443	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
170 175		409,4 440,0	409,4 446,0 614,1 669,6	409,4 445,6 614,1 669,5 818,8 893,5	4105,4 445,6 614,1 669,5 818,8 893,5 1023,4 1116,7	449,4 449,4 419,4 619,1 614,1 669,5 818,8 893,5 1023,4 11116,1 1228,3 1339,1	440,4 440,4 440,6 614,1 669,6 818,8 818,8 893,5 1116,7 1023,4 1116,7 1339,5 1433,0 1563,7 1563,7	440,4 440,4 440,4 614,1 669,6 818,8 803,5 1023,4 1116,7 1228,3 1339,8 1433,0 1563,5 1637,7 1786,1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	440,4 440,4 440,4 614,1 669,6 818,8 893,5 1023,4 1116,7 1228,3 1339,6 1433,0 1563,1 1687,7 1786,1 1842,4 2009,5 2047,1 2233,5	440,4 440,4 4440,4 614,1 609,5 813,5 818,8 803,5 1116,7 1023,4 1116,7 1563,5 1433,0 1563,5 1563,5 1637,7 1563,6 1563,5 1842,4 2009,5 2047,1 2251,8 2456,5 2456,5	440,4 440,4 440,4 614,1 669,6 818,8 893,5 818,8 893,5 818,8 893,5 1023,4 1116,7 1228,3 1339,6 1433,0 1563,5 1433,0 1563,5 1832,7 1786,i 18342,4 2009,i 2047,1 2233,5 2261,8 2456,5 2456,5 2679,5	440,4 440,4 440,4 614,1 609,6 818,8 803,5 818,8 803,5 818,8 803,5 818,8 803,5 1023,4 1116,6 1116,5 1339,6 1228,3 1339,5 1283,0 1563,5 1683,7 1786,4 1684,4 2009,4 1842,4 2009,4 2047,1 2233,7 22551,8 2456,5 2661,2 2670,7 2661,2 2670,7 2661,2 2903,7	440,4 440,4 440,4 614,1 669,6 818,8 893,5 818,8 893,5 818,8 893,5 1023,4 1116,7 1228,3 1339,6 1433,0 1563,5 1433,0 1563,5 1433,0 1563,5 1842,4 2009,6 1842,4 2009,6 2251,8 2456,5 2456,5 2679,7 2865,9 3126,7	440,4 4440,4 4440,4 614,1 669,6 818,8 893,5 818,8 893,5 818,8 893,5 1023,4 1116,7 1023,4 1116,7 1233,0 1563,5 1637,7 1786,7 1637,7 1786,7 2009,4 2009,4 2047,1 2233,7 2251,8 2456,5 2661,9 3126,7 2865,9 3126,3 3070,6 3340,4	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	440,4 4440,4 4440,4 614,1 669,6 818,8 818,8 818,8 818,8 818,8 818,8 818,8 818,8 818,8 818,8 818,8 818,8 818,8 818,8 8128,3 1116,7 1687,7 1563,5 1687,7 1563,5 1887,4 2009,6 1842,4 2009,5 2047,1 2233,5 22661,2 2456,5 2456,5 2679,7 2865,9 3126,1 3275,3 3572,3 3575,3 3572,3 3576,3 3572,3	440,4 440,4 440,4 614,1 609,6 818,8 803,5 818,8 803,5 818,8 803,5 1023,4 1116,6 1116,6 1116,6 1433,0 1563,5 1433,0 1563,5 1433,0 1563,5 1433,0 1563,5 1433,0 1563,5 1433,0 1563,5 1942,4 2009,6 2045,5 2456,5 2456,5 2679,7 22551,8 2456,5 2456,5 2679,7 2865,9 3126,3 3070,6 3349,6 348,6 372,3 3684,8 4019,1	440,4 440,4 440,4 40,4 440,4 440,6 614,1 609,6 818,8 818,8 818,8 893,5 818,8 818,8 893,5 1228,3 1116,7 1563,5 1637,7 1563,6 1563,5 1842,4 2009,6 2333,1 2251,8 2456,5 2679,7 2456,5 2679,7 3126,1 2861,2 2903,6 3349,0 3875,9 3126,1 3796,5 3889,6 3329,6 3796,1 38889,6 4242,1
165 1	3 374,3 4		0 561,5 6	0 561,5 €	0 561,5 € 7 748,7 € 3 935,9 1(0 561,5 6 748,7 5 3 935,9 1(1123,0 15	0 561,5 6 7 748,7 8 3 935,9 10 1123,0 11 1123,0 11 1310,2 11	0 561,5 6 7 748,7 2 3 748,7 2 3 935,9 10 0 1123,0 11 5 1310,2 1497,4 1497,4 11 11	0 561,5 6 7 748,7 5 3 935,9 10 3 935,9 11 3 935,9 12 1 1123,0 12 3 1497,4 14 1 1684,5 14	0 561,5 6 7 748,7 2 3 935,9 10 3 935,9 12 3 935,9 12 1 1123,0 12 3 1497,4 14 1 1497,4 16 1 18310,2 116 1 1497,4 11 1 1831,7 12 1 1831,7 12	0 561,5 6 7 748,7 2 3 748,7 2 3 935,9 10 11123,0 11 12 3 1497,4 1 1 1497,4 1 1 1684,5 1 1 1684,5 1 3 2058,9 2	0 561,5 6 7 748,7 8 3 935,9 10 3 935,9 12 3 935,9 12 6 1123,0 12 7 1310,2 14 7 1497,4 16 1 1497,4 16 1 1871,7 20 3 2058,9 22 3 2058,9 22 0 22246,1 2	0 561,5 6 7 748,7 8 3 935,9 10 3 935,9 12 7 1123,0 12 3 1497,4 16 3 1684,5 11 7 1871,7 20 9 1684,5 12 7 1871,7 20 9 2058,9 22 7 2433,2 2	0 561,5 6 7 748,7 8 3 935,9 10 3 935,9 12 3 935,9 12 7 1310,2 14 6 1684,5 16 7 1871,7 26 3 2058,9 22 3 2058,9 22 3 2058,9 24 3 2058,9 22 3 2058,9 24 3 2058,9 24 3 2058,9 24 3 2058,9 24	0 561,5 6 7 748,7 8 3 935,9 10 0 1123,0 12 0 1123,0 12 1 1497,4 16 1 1871,7 20 0 1684,5 12 1 2058,9 22 2 2433,2 2 3 2620,4 2 3 2807,6 3	0 561,5 6 7 748,7 8 3 935,9 10 0 1123,0 11 3 1497,4 1 1 1497,4 1 2 1684,5 1 3 1684,5 1 3 2058,9 2 3 2058,9 2 3 2620,4 2 3 2620,4 2 3 2620,4 2 3 2620,4 3 3 2620,4 3	0 561,5 6 7 748,7 8 3 935,9 10 0 1123,0 12 3 1497,4 16 7 1810,2 14 7 1871,7 20 7 1871,7 20 7 1871,7 20 8 2058,9 22 8 2058,9 22 7 2433,2 2 8 2620,4 26 7 2994,8 3 3 2807.6 3 3 3181,9 3	0 561,5 6 7 748,7 8 3 935,9 10 7 1123,0 12 3 935,9 1497,4 3 1497,4 1 1 1497,4 1 1 1684,5 1 1 1684,5 1 1 2058,9 2 2 2433,2 2 3 2058,9 2 3 2058,9 2 3 2058,9 2 3 2058,9 2 3 2807,4 2 3 3 2181,0 3 3 2181,0 3 3 3181,9 3 3 3369,1	0 561,5 6 7 748,7 8 3 935,9 10 0 1123,0 12 0 1123,0 12 1 1310,2 14 1 1497,4 16 1 1871,7 20 1 2058,9 22 2 2246,1 24 2 2807,6 3 3 2058,9 22 0 22846,1 24 3 2058,9 3 3 2620,4 3 3 3181,9 3 3 3181,9 3 3 3181,9 3 3 3181,9 3 3 31556,3 3
155 160	310,3 341,3		465,5 512,0	465,5 512,0 620,6 682,7	465,5 512,0 620,6 682,7 775,8 853,3	465,5 512,0 620,6 682,7 775,8 853,3 931,0 1024,0	465,5 512,0 465,5 512,0 620,6 682,7 775,8 853,3 931,0 1024,0 086,1 1194,7	465,5 512,0 620,6 682,7 775,8 853,3 931,0 1024,0 086,1 1194,7 086,1 1194,7 241,3 1365,3	465,5 512,0 620,6 682,7 620,6 682,7 775,8 853,3 931,0 1024,0 086,1 1194,7 241,3 1365,3 396,5 1536,0	465,5 512,0 620,6 682,7 620,6 683,3 775,8 853,3 931,0 1024,0 086,1 1194,7 1366,5 1366,3 396,5 1536,0 551,6 1706,7	465,5 512,0 620,6 682,7 620,6 682,7 775,8 853,3 931,0 1024,0 086,1 1194,7 1194,7 1194,7 241,3 1365,3 396,5 1536,0 551,6 1706,7 706,8 1877,3	465,5 512,0 620,6 682,7 620,6 683,7 775,8 853,3 931,0 1024,0 086,1 1194,7 086,1 1194,7 396,5 1536,3 551,6 1706,7 551,6 17706,7 861,9 2048.0	465,5 512,0 620,6 682,7 775,8 853,3 931,0 1024,0 086,1 1194,7 241,3 1365,3 396,5 1536,0 551,6 1536,0 551,6 1706,7 706,8 1877,3 861,9 2048,0 706,8 1877,3 861,9 2048,0 701,7 2218,7	465,5 512,0 620,6 682,7 775,8 853,3 775,8 853,3 931,0 1024,0 086,1 1194,7 1194,7 1365,3 396,5 1536,0 551,6 1536,0 706,8 1536,0 861,9 2048,0 861,9 2048,0 017,1 2218,7 3861,9 2048,0 1772,3 2389,3	465,5 512,0 620,6 682,7 775,8 653,3 775,8 853,3 931,0 1024,0 086,1 1194,7 086,1 1194,7 396,5 1536,3 396,5 1536,0 551,6 1706,7 706,8 1877,3 861,9 2048,0 017,1 2218,7 172,3 2389,3 327,4 2560,0	465,5 512,0 620,6 682,7 775,8 853,3 931,0 1024,0 086,1 1194,7 1194,7 1194,7 086,1 1194,7 1194,7 1365,3 396,5 1536,0 396,5 1536,0 386,5 1536,0 386,1,9 2048,0 0017,1 2218,7 327,4 2560,0 482,6 2730,7	465,5 512,0 620,6 682,7 775,8 853,3 931,0 1024,0 086,1 1194,7 086,1 1194,7 241,3 1365,3 396,5 1536,0 551,6 1706,7 551,6 1706,7 706,8 1877,3 861,9 2048,0 017,1 2218,7 172,3 2389,3 327,4 2560,0 3227,4 2560,0 637,7 2901,3	465,5 512,0 620,6 682,7 775,8 853,3 931,0 1024,0 086,1 1194,7 241,3 1365,3 396,5 1536,0 551,6 1536,0 396,5 1536,0 396,5 1536,0 706,8 1877,3 861,9 2048,0 017,1 2218,7 325,3 2389,3 327,4 2560,0 482,6 2730,7 637,7 2901,3 3072,0 3072,0	465,5 512,0 620,6 682,7 775,8 853,3 931,0 1024,0 086,1 1194,7 1194,7 1365,3 396,5 1536,0 551,6 1536,0 551,6 1536,3 551,6 1536,0 551,6 1706,7 706,8 1877,3 861,9 2048,0 017,1 2218,7 327,4 2389,3 327,4 2560,0 3327,4 2560,0 3327,4 2560,0 6337,7 2901,3 3242,7 3242,7
150 1	281,3 3		421,9 4	421,9 4 562,5 6	421,9 4 562,5 6 703,1 7	421,9 4 562,5 6 703,1 7 843,8 5	421,9 421,9 421,9 6 562,5 6 703,1 7 843,8 9 984,4 1(421,9 4 562,5 6 703,1 7 7843,8 9 9843,4 10 1125,0 12	421,9 421,9 562,5 6 562,5 7 703,1 7 703,1 7 843,8 9 984,4 10 1125,0 12 1265,6 12	421,9 421,9 562,5 6 562,5 6 773,1 7 7843,8 9 984,4 10 1125,0 12 1265,6 13 1406,3 15	421,9 4 562,5 6 562,5 7 703,1 7 703,1 7 703,1 7 703,1 7 703,1 7 703,1 7 703,1 7 703,1 7 843,8 9 984,4 10 1126,0 12 1266,6 13 11266,6 13 11406,3 17 1546,9 17	421,9 421,9 562,5 6 562,5 6 703,1 7 703,1 7 703,1 7 843,8 9 984,4 10 984,4 10 1125,0 12 1125,0 12 1126,0 13 1546,8 15 1546,9 17 1687,5 16	421,9 421,9 562,5 6 562,5 6 703,1 7 703,1 7 703,1 7 703,1 7 703,1 7 703,1 7 703,1 7 703,1 7 703,1 7 703,1 7 703,1 12 1125,0 12 1125,0 12 11406,3 15 11546,9 17 11646,9 17 11828,1 20	421,9 421,9 562,5 6 562,5 6 703,1 7 703,1 7 703,1 7 703,1 7 703,1 7 703,1 7 703,1 7 703,1 7 843,8 9 934,4 10 1125,0 12 1265,6 13 1566,6 13 1546,9 17 1687,5 16 1828,1 20 1968,8 21	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
40 145	28,7 254,1		43,0 381,1	43,0 381,1 57,3 508,1	43,0 381,1 57,3 508,1 71,7 635,1	43,0 381,1 57,3 508,1 71,7 635,1 86,0 762,2	43,0 381,1 57,3 508,1 71,7 635,1 86,0 762,2 00,3 889,2	43,0 381,1 57,3 508,1 71,7 635,1 86,0 762,2 00,3 889,2 14,7 1016,2	43,0 381,1 57,3 508,1 71,7 635,1 86,0 762,2 00,3 889,2 14,7 1016,2 29,0 1143,2	43,0 381,1 57,3 508,1 71,7 635,1 71,7 635,1 71,7 635,1 71,7 635,1 71,7 635,1 71,7 635,1 71,7 635,1 71,7 635,1 71,7 635,1 71,7 635,1 86,0 762,2 80,3 889,2 14,7 1016,2 29,0 1143,2 43,3 1270,3	43,0 381,1 57,3 508,1 71,7 635,1 86,0 762,2 00,3 889,2 14,7 1016,2 29,0 1143,2 29,0 1143,2 29,0 1143,2 257,7 1397,3 57,7 1397,3	43,0 381,1 57,3 508,1 71,7 635,1 71,7 635,1 86,0 762,2 80,03 889,2 00,3 889,2 14,7 1016,2 14,7 1016,2 29,00 1143,2 43,3 1270,3 57,7 1397,3 72,0 1524,3	43,0 381,1 57,3 508,1 71,7 635,1 86,0 762,2 80,3 889,2 14,7 1016,2 29,0 1143,2 29,0 1143,2 29,0 1143,2 557,7 1397,3 557,7 1397,3 557,7 1594,3 557,7 1597,3 557,7 1597,3 557,7 1597,3 557,7 1597,3 557,7 1597,3 557,7 1554,3 557,3 1554,3	43,0 381,1 57,3 508,1 71,7 635,1 86,0 762,2 90,3 889,2 14,7 1016,2 29,0 1143,2 29,0 1143,2 27,7 1397,3 55,7 1397,3 57,0 1524,3 86,3 1651,3 00,7 1524,3 86,3 1651,3 00,7 1578,4	43,0 381,1 57,3 508,1 71,7 635,1 86,0 762,2 80,3 889,2 14,7 1016,2 14,7 1016,2 29,0 1143,2 29,0 1143,2 29,0 1143,2 29,0 1143,2 29,0 1143,2 29,0 1143,2 29,0 1143,2 29,0 1143,2 177,3 1397,3 557,7 1397,3 56,3 1651,3 1651,3 1651,3 15,0 1905,4	43,0 381,1 57,3 508,1 71,7 635,1 86,0 762,2 90,3 889,2 14,7 1016,2 29,0 1143,2 29,0 1143,2 29,0 1143,2 29,0 1143,2 29,0 1143,2 29,0 1143,2 29,0 1143,2 29,0 1143,2 29,0 1143,2 29,0 1143,2 29,0 1143,2 29,0 1143,2 29,0 1143,2 29,0 1143,2 29,0 1143,2 29,0 1143,2 29,0 1143,2 29,0 1524,3 86,3 1651,3 15,0 1524,3 20,7 1905,4 20,3 2032,4	43,0 381,1 57,3 508,1 71,7 635,1 71,7 635,1 86,0 762,2 80,3 889,2 14,7 1016,2 14,7 1143,2 29,0 1143,2 43,3 1270,3 557,7 1397,3 557,7 1397,3 157,0 1524,3 86,3 1651,3 86,3 1651,3 15,0 1905,4 15,0 1905,4 15,0 1905,4 15,0 1905,4 15,0 1905,4	43,0 381,1 57,3 508,1 71,7 635,1 86,0 762,2 80,3 889,2 14,7 1016,2 29,0 1143,2 29,0 1143,2 57,7 1397,3 57,7 1397,3 56,3 1524,3 60,7 1524,3 60,7 1524,3 29,0 1143,2 29,0 1143,2 29,0 1143,2 29,1 1397,3 86,3 1651,3 20,7 1524,3 20,7 1905,4 15,0 1905,4 29,3 2032,4 29,3 2032,4 28,3 2032,4 28,0 2032,4	43,0 381,1 57,3 508,1 71,7 635,1 86,0 762,2 00,3 889,2 14,7 1016,2 29,0 1143,2 27,7 1397,3 43,3 1270,3 55,7 1397,3 43,3 1270,3 86,3 1524,3 72,0 1524,3 86,3 1651,3 00,7 1778,4 15,0 1905,4 15,0 2159,4 43,7 2159,4 28,3 2032,4 28,6 2286,5 72,3 2413,5 72,3 2413,5
135 1.	205,0 25	1 100	30.7,9 39	307,5 410,1 41	30',',5 34 410,1 4{ 512,6 5'	30', b 310, b 410, 1 512, 6 512, 6 615, 1 6	307,50 34 410,1 44 512,6 55 615,1 66 717,6 8	307,59 34 410,11 41 512,6 5 ⁷ 615,1 6 ¹ 717,6 81 820,1 9	30(5) 330(5) 34 410,1 41 41 512,6 55 56 615,1 66 88 820,1 922,6 10	30(₁) 34 410,1 4! 410,1 4! 512,6 5' 615,1 6! 717,6 8! 820,1 9 922,6 10' 1025,2 11'	30(5) 330(5) 34 410,1 4! 4! 615,1 6! 5' 717,6 8! 8! 820,1 922,6 10' 922,6 11' 1025,2 1127,7 12 12	30(₁) 34 410,1 4! 410,1 4! 512,6 5' 615,1 6! 615,1 6! 820,1 9 922,6 10' 1025,2 11' 1127,7 12 1230,2 13 1230,2 13	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccc} & 330(z, b) & 34\\ \hline 410, 1 & 44\\ \hline 410, 1 & 44\\ \hline 615, 1 & 66\\ \hline 615, 1 & 66\\ \hline 615, 1 & 68\\ \hline 717, 6 & 88\\ \hline 820, 1 & 68\\ \hline 820, 1 & 99\\ \hline 922, 6 & 100\\ \hline 922, 6 & 100\\ \hline 1025, 2 & 111\\ \hline 1127, 7 & 129\\ \hline 1127, 7 & 129\\ \hline 1127, 7 & 128\\ \hline 111, 7 &$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
5 130	2,8 183,1	1,1 274,6	-	5,5 366,2	3,9 457,7	3,5 366,2 3,9 457,7 3,3 549,2	5,5 366,2 3,9 457,7 3,3 549,2 3,7 640,8	5,5 366,2 3,9 457,7 3,3 549,2 3,7 640,8 1,0 732,3	i, j 366,2 3,9 457,7 3,3 549,2 3,3 549,2 3,7 640,8 1,0 732,3 2,4 823,9	i,5 366,2 3,9 457,7 3,3 549,2 3,7 640,8 1,0 732,3 2,4 823,9 3,8 915,4	i, j 366,2 3, 3 457,7 3, 3 549,2 3, 3 549,2 1,7 640,8 2,4 823,9 2,4 823,9 3,5 915,4 3,1007,0 5,2	i, i, 5 366,2 3,9 457,7 3,3 549,2 3,3 549,2 1,7 640,8 2,4 823,9 3,8 915,4 3,8 915,4 3,6 1007,0	i,5 366,2 5,9 457,7 3,3 549,2 3,3 549,2 1,0 732,3 2,4 823,9 3,8 915,4 3,6 1007,0 5,6 1008,5 7,9 1190,0	i,5 366,2 i,9 457,7 3,3 549,2 3,3 549,2 1,0 732,3 2,4 823,9 3,8 915,4 3,8 915,4 3,6 1007,0 3,6 1008,5 3,3 1281,6	i,5 366,2 i,9 457,7 3,3 549,2 3,3 549,2 1,0 732,3 3,4 823,9 3,8 915,4 3,3 1098,5 1,9 1190,0 7,3 1281,6 3,3 1281,6	i,5 366,2 i,9 457,7 i,9 457,7 3,3 549,2 i,7 640,8 i,0 732,3 j,4 823,9 j,5 1007,0 j,6 1098,5 j,7 1323,1 j,7 1373,1 j,7 1373,1 j,7 1373,1	i,5 366,2 i,9 457,7 i,9 457,7 3,3 549,2 i,7 640,8 i,4 823,9 i,8 915,4 i,8 915,4 i,8 915,4 i,8 1008,5 i,7 1373,1 i,7 1373,1 i,7 1373,1 i,7 1556,2	i,5 366,2 i,6 457,7 i,9 457,7 3,3 549,2 i,7 640,8 i,9 732,3 i,4 823,9 i,5 1007,0 i,5 1007,0 i,6 1098,5 i,7 1323,1 i,8 1190,0 i,3 1281,6 i,7 1373,1 i,1 1464,7 i,5 1647,7	i,5 366,2 i,9 457,7 i,9 457,7 3,3 549,2 i,7 640,8 i,0 732,3 i,4 823,9 i,5 1007,0 i,6 1098,5 i,9 1098,5 i,9 1190,0 i,3 1281,6 i,1 1464,7 i,5 1566,2 i,6 1643,7 i,7 1373,1 i,7 1373,1 i,8 1647,7 i,8 1647,7
120 125	144,0 162	216,0 244		288,0 325	288,0 325 360,0 406	288,0 325 360,0 406 432,0 488	288,0 325 288,0 406 360,0 406 432,0 488 504,0 569	288,0 325. 288,0 325. 360,0 406 360,0 408 504,0 569 576,0 651	288,0 325 288,0 325 360,0 406 432,0 488 504,0 569 504,0 651 648,0 732 648,0 732	288,0 325 288,0 325 360,0 406 432,0 488 504,0 569 576,0 661 648,0 732 648,0 732 720,0 813	288,0 325 288,0 325 360,0 406 432,0 488 576,0 569 648,0 732 720,0 813 720,0 813	288,0 325 288,0 325 360,0 406 432,0 488 504,0 569 504,0 569 648,0 732 720,0 813 720,0 813 792,0 895 864,0 976	288,0 325 288,0 406 380,0 406 432,0 458 504,0 569 504,0 569 648,0 732 648,0 732 720,0 813 720,0 813 732,0 805 792,0 805 936,0 1057	288,0 325 288,0 406 360,0 406 432,0 488 504,0 569 504,0 569 648,0 732 648,0 732 648,0 732 648,0 732 648,0 732 720,0 813 720,0 813 736,0 1057 864,0 976 936,0 1057 1007,0 1139	288,0 325 288,0 406 380,0 406 432,0 488 432,0 488 504,0 569 576,0 561 648,0 732 720,0 813 720,0 813 792,0 805 864,0 976 936,0 1057 1008,0 11139 1080,0 1220	288,0 325 288,0 406 360,0 406 432,0 488 504,0 569 504,0 569 576,0 513 7720,0 813 7292,0 895 864,0 976 936,0 1139 1008,0 1130 1152,0 1302	288,0 325 386,0 406 380,0 406 432,0 488 432,0 569 576,0 519 576,0 651 732,0 813 729,0 813 792,0 805 864,0 976 936,0 11057 1152,0 1220 1152,0 1302 1152,0 1383 1224,0 1383	288,0 325 288,0 406 360,0 406 432,0 488 504,0 569 504,0 569 578,0 661 678,0 569 578,0 618 732,0 813 732,0 813 732,0 813 732,0 813 732,0 813 732,0 895 936,0 1057 936,0 1159 1008,0 1139 1008,0 1139 1152,0 1302 1152,0 1303 1224,0 1303 1224,0 1464	288,0 325 288,0 406 360,0 406 432,0 488 504,0 569 504,0 569 576,0 651 648,0 732 720,0 813 720,0 813 720,0 813 720,0 813 720,0 813 720,0 813 720,0 813 720,0 133 1008,0 1130 1152,0 1302 1296,0 1363 1286,0 1464 1368,0 1546
115	126,7	190,1	-	253,5	253,5	253,5 316,8 380,2	253,5 316,8 380,2 443,6	253,5 316,8 380,2 443,6 507,0	253,5 253,5 316,8 380,2 507,0 507,0 570,3	253,5 253,5 316,8 380,2 507,0 577,0 633,7 633,7	253,5 253,5 316,8 380,2 507,0 570,3 633,7 697,1	253,5 253,5 316,8 380,2 507,0 570,3 633,7 633,7 697,1 760,4	253,5 263,5 316,8 380,2 507,0 570,3 633,7 633,7 633,7 637,1 570,3 823,8	253,5 253,5 280,2 380,2 507,0 570,3 633,7 633,7 633,7 760,4 823,8 1 823,8 1 823,8 1 823,8 1 823,8 1 1 1 1 1 1 1 1 1 1 1 1 1	253,5 1 253,5 1 316,8 1 380,2 1 507,0 6 607,1 1 633,7 6 637,1 1 760,4 1 883,7 1 883,8 1 950,5 1	253,5 253,5 316,8 380,2 507,0 570,3 633,7 633,7 633,7 633,7 760,4 823,8 1 760,4 1 887,2 1 950,5 1 1013,9 10,9 10,9 10,9 10,9 10,9 10,9 10,9 10	253,5 216,8 316,8 380,2 380,2 657,0 607,0 607,1 633,7 633,7 760,4 760,4 823,8 950,5 1013,9 1013,9	253,5 216,8 316,8 380,2 380,2 507,0 697,1 697,1 687,2 1013,9 950,5 1013,9 1013,9 1140,7 1140,7	253,5 253,5 253,5 316,8 380,2 507,0 570,3 633,7 633,7 637,1 760,4 1013,9 1013,9 1013,9 1013,9 1140,7 1140,7 1114
110	96,5 110,9	44.7 166.4		92,9 221,8	92,9 221,8 41,2 277,3	92,9 221,8 221,8 41,2 277,3 89,4 332,8	92,9 92,9 41,2 89,4 33,2,8 33,6 388,2	92,9 92,9 41,2 89,4 332,8 37,6 88,2 88,2 443,7	92,9 92,9 41,2 89,4 37,6 88,2 85,9 443,7 499,1	92,9 92,9 41,2 89,4 37,6 88,9 88,9 443,7 443,7 443,7 443,7 443,7 443,7 443,7 85,9 443,7 49,1 82,3 554,6	92,9 221,8 91,2 221,8 41,2 277,3 89,4 332,8 87,6 388,2 85,9 443,7 34,1 499,1 82,3 554,6 82,3 554,6 80,6 610,0	7 221,8 92,9 221,8 41,2 277,3 89,4 332,8 87,6 388,2 85,9 443,7 85,9 443,7 85,9 443,7 85,9 443,7 85,3 554,6 82,3 554,6 83,8 610,0 78,8 665,5	92,9 221,8 94,12 221,8 81,2 277,3 89,4 332,8 87,6 388,2 37,6 388,2 34,1 499,1 82,3 554,6 82,3 554,6 82,3 554,6 30,6 610,0 78,8 665,5 77,0 721,0	7 221,8 92,9 221,8 41,2 277,3 89,4 332,8 87,6 388,2 85,9 443,7 85,9 443,7 84,1 499,1 85,3 554,6 82,3 554,6 82,3 665,5 75,8 665,5 77,0 721,0 75,3 776,4	7 7 92,9 221,8 41,2 277,3 89,4 332,8 85,9 443,7 85,9 443,7 84,1 499,1 82,3 554,6 82,3 554,6 82,3 554,6 82,3 554,6 82,3 554,6 82,3 554,6 82,3 554,6 82,3 554,6 82,3 554,6 82,3 554,6 82,3 554,6 830,6 610,0 78,8 665,5 77,0 721,0 23,5 831,9	7 7 92,9 221,8 41,2 277,3 89,4 332,8 87,6 388,2 85,9 443,7 85,9 443,7 84,1 499,1 82,3 554,6 82,3 554,6 82,3 665,5 75,8 665,5 75,3 776,4 75,3 831,9 71,8 837,3	7 7 92,9 221,8 41,2 277,3 89,4 332,8 37,6 388,2 34,1 499,1 34,1 499,1 85,9 443,7 85,9 443,7 85,9 665,5 75,8 665,5 75,3 776,4 75,3 776,4 23,5 831,9 23,5 831,9 23,5 831,9 23,5 831,9 23,5 831,9	7 7 92,9 221,8 41,2 277,3 89,4 332,8 87,6 388,2 85,9 443,7 34,1 499,1 82,3 554,6 82,3 554,6 82,3 554,6 82,3 554,6 82,3 554,6 82,3 554,6 82,3 554,6 776,8 665,5 776,4 776,4 75,3 776,4 71,8 837,3 83,5 998,3 867,3 942,8 68,2 998,3	Y 221,8 92,9 221,8 89,4 332,8 87,6 388,2 85,9 443,7 84,1 499,1 82,3 554,6 82,3 554,6 82,3 554,6 82,3 554,6 82,3 554,6 82,3 554,6 82,3 554,6 82,3 554,6 82,3 554,6 82,3 554,6 82,3 554,6 82,3 554,6 75,8 665,5 75,3 776,4 71,8 887,3 20,0 942,8 68,2 998,3 68,2 998,3 68,2 998,3 68,2 998,3 1053,7 1053,7
(cm) h 1 (cm)	10 6	-	57 CI	19 14 20 15	10 19 14 14 15 14 15 15 14 15 15 15 15 15 15 15 15 15 15 15 15 15	15 14 20 19 25 21 30 25	10 10 10 10 10 10 10 10 10 10 10 10 10 1	15 14 20 19 25 24 30 25 40 25	15 14 20 19 25 24 30 26 40 35 45 45	15 14 20 19 20 28 30 28 35 28 45 48 50 48	15 14 20 19 25 24 35 33 36 38 50 24 50 45 55 45	15 14 20 13 25 24 35 33 40 28 35 33 60 55 55 55	15 14 20 13 20 24 20 28 30 28 31 30 20 28 31 32 32 33 33 33 40 36 60 48 65 57	1b 14 20 13 25 24 35 33 36 45 40 38 65 55 65 56 65 66	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	15 14 20 19 20 19 20 28 35 28 60 55 60 57 85 65 85 85 86 77 75 78	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$

Trägheitsmomente von Rechtecksquerschnitten in dm⁴.

Tafel 2.

Belastungsglieder

(für Stäbe ohne Vouten)

Gleichmäßig verteilte Streckenlasten.

(2) α_1^0 und α_2^0 (= *EJ*-fach verzerrte Auflagerdrehwinkel des freiauflieg. Trägers).

Nr.	${f Belastungsart,}\ M_o ext{-}Flächen$	$\mathfrak{M}_1 \mathfrak{M}_2$	$\alpha_1^0 \alpha_2^0$
1		$\mathfrak{M}_1 = -\mathfrak{M}_2 = -\frac{ql^2}{12}$	$\alpha_1^0 = \alpha_2^0 = \frac{ql^3}{24}$
2	$\begin{array}{c} \hline & & & \\ \hline \\ \hline$	$\begin{split} \mathfrak{M}_{1} &= -\mathfrak{M}_{2} = -\frac{q s}{24 l} (3 l^{2} - s^{2}) \\ \mathrm{f} \ddot{\mathrm{u}} r s &= \frac{l}{2} \colon \mathfrak{M}_{1} = -\mathfrak{M}_{2} = -\frac{11 q l^{2}}{192} \\ \mathrm{f} \ddot{\mathrm{u}} r s &= \frac{l}{3} \colon \mathfrak{M}_{1} = -\mathfrak{M}_{2} = -\frac{13 q l^{2}}{324} \\ \mathrm{f} \ddot{\mathrm{u}} r s &= \frac{l}{4} \colon \mathfrak{M}_{1} = -\mathfrak{M}_{2} = -\frac{47 q l^{2}}{1536} \end{split}$	$\alpha_1^0 = \alpha_2^0 = \frac{q s}{48} (3 l^2 - s^2)$ für $s = \frac{l}{2}$: $\alpha_1^0 = \alpha_2^0 = \frac{11 q l^3}{384}$ für $s = \frac{l}{3}$: $\alpha_1^0 = \alpha_2^0 = \frac{13 q l^3}{648}$ für $s = \frac{l}{4}$: $\alpha_1^0 = \alpha_2^0 = \frac{47 q l^3}{3072}$
3	$ \begin{array}{c} $	$\begin{split} \mathfrak{M}_{1} &= -\mathfrak{M}_{2} = -\frac{qs^{2}}{6l}(2l+a)\\ & \text{für } a = \mathbf{s} = \frac{l}{3};\\ & \mathfrak{M}_{1} = -\mathfrak{M}_{2} = -\frac{7ql^{2}}{162} \end{split}$	$ \frac{\alpha_1^0 = \alpha_2^0 = \frac{q s^2}{12} (2 l + a)}{\text{für } a = s = \frac{l}{3};} \\ \alpha_1^0 = \alpha_2^0 = \frac{7 q l^3}{324} $
4	$\begin{array}{c} 1 \\ \hline 1 \\ \hline r \\ r \\ r \\ r \\ r \\ s \\ \hline r \\ r \\ s \\ \hline r \\ s \\ r \\ s \\ r \\ s \\ \hline r \\ s \\ s \\ r \\ s \\ s \\ s \\ s \\ s \\ s \\$	$\begin{split} \mathfrak{M}_{1} &= -\mathfrak{M}_{2} = \\ &= -\frac{q s}{12 l} \left[3 l^{2} - 3 (b + s)^{2} - s^{2} \right] \\ & \text{für } a = s = b = \frac{l}{5} \\ & \mathfrak{M}_{1} = -\mathfrak{M}_{2} = -\frac{31 q l^{2}}{750} \end{split}$	$ \begin{array}{r} \overline{\alpha_1^0 = \alpha_2^0 =} \\ = \frac{q s}{24} \left[3 l^2 - 3 (b+s)^2 - s^2 \right] \\ \text{für } a = s = b = \frac{l}{5}; \\ \alpha_1^0 = \alpha_2^0 = \frac{31 q l^3}{1500} \end{array} $
5	$ \begin{array}{c} $	$\begin{split} \mathfrak{M}_{1} &= -\frac{qs^{2}}{12l^{2}}\left[2l(3l-4s)+3s^{2}\right]\\ \mathfrak{M}_{2} &= +\frac{qs^{3}}{12l^{2}}(4l-3s)\\ \text{für}s &= b = \frac{l}{2}\colon \mathfrak{M}_{1} = -\frac{11ql^{2}}{192}\\ \mathfrak{M}_{2} &= +\frac{5ql^{2}}{192} \end{split}$	$\begin{aligned} \alpha_1^{\ 0} &= \frac{q s^2}{24 l} (2 l - s)^2 \\ \alpha_2^{\ 0} &= \frac{q s^2}{24 l} (2 l^2 - s^2) \\ \text{für } s &= b = \frac{l}{2} \colon \alpha_1^{\ 0} &= \frac{9 q l^3}{384} \\ \alpha_2^{\ 0} &= \frac{7 q l^3}{384} \end{aligned}$
6	$\begin{array}{c} \overbrace{}^{\textcircled{0}} \overbrace{}^{\overbrace{}} \overbrace{}} \overbrace{} \overbrace{}} \overbrace{} \overbrace{}} \overbrace{} \overbrace{} \overbrace{} \overbrace{}} \overbrace{} \overbrace{} \overbrace{} \overbrace{} \overbrace{} \overbrace{} \overbrace{} \overbrace{}} \overbrace{} \overbrace{} \overbrace{}} \overbrace{} \overbrace{}} \overbrace{} \overbrace{} \overbrace{} \overbrace{} \overbrace{} \overbrace{} \overbrace{}} \overbrace{} \overbrace{} } \overbrace{} \overbrace{}} \overbrace{} \overbrace{}} \overbrace{} \overbrace{} \overbrace{}} \overbrace{} \overbrace{} \overbrace{}} \overbrace{} \overbrace{}} \overbrace{}} \overbrace{}} \overbrace{}} \overbrace{} \overbrace{}} \overbrace{} \overbrace{}} \overbrace{}} \overbrace{}} \overbrace{}} \overbrace{}} \overbrace{}} \overbrace{}} \overbrace{}} \overbrace{}} \overbrace{} \overbrace{}} \overbrace{} \overbrace{}} \overbrace{} \overbrace{}} \overbrace{}} \overbrace{}} \overbrace{}} \overbrace{}} \overbrace{}} \overbrace{}} \overbrace{} \overbrace{}} \overbrace{} \overbrace{}} \overbrace{} \overbrace{}} \overbrace{}} \overbrace{}} \overbrace{}} \overbrace{}} \overbrace{}} \overbrace{}} \overbrace{}} \overbrace{} \overbrace{}} \overbrace{} \overbrace{}} \overbrace{} \overbrace{}} \overbrace{a}} \overbrace{}} \phantom$	$\mathfrak{M}_1 = -rac{qs}{12l^2} [12ab^2 + s^2(l-3b)]$ $\mathfrak{M}_2 = +rac{qs}{12l^2} [12a^2b + s^2(l-3a)]$	$\alpha_{1}^{0} = \frac{q b s}{24 l} [4 a (b+l) - s^{2}]$ $\alpha_{2}^{0} = \frac{q a s}{24 l} [4 b (a+l) - s^{2}]$

Tafel 3.

Belastungsglieder $\mathfrak{M}_1 \mathfrak{M}_2$ bzw. $\alpha_1^0 \alpha_2^0$.

Nr.	$egin{array}{c} { m Belastungsart,} & M_o ext{-Flächen} \end{array}$	$\mathfrak{M}_{1} \mathfrak{M}_{2}$	$\alpha_1^0 \alpha_2^0$
13	$ \begin{array}{c} $	$\begin{split} \mathfrak{M}_{1} = -\mathfrak{M}_{2} = -\frac{qs^{2}}{12l} (4l - 3s) \\ & \text{für } s = b = \frac{l}{3}; \\ & \mathfrak{M}_{1} = -\mathfrak{M}_{2} = -\frac{ql^{2}}{36} \end{split}$	$\alpha_{1}^{0} = \alpha_{2}^{0} = \frac{q s^{2}}{24} (4 l - 3 s)$ für $s = b = \frac{l}{3}$: $\alpha_{1}^{0} = \alpha_{2}^{0} = \frac{q l^{3}}{72}$
14	$q \frac{a}{2}$	$\begin{split} \mathfrak{M}_{1} &= -\mathfrak{M}_{2} = \\ &= -\frac{qs}{12l} [6a(l-a) + s(4l-3s)] \\ & \text{für } a = s = b = \frac{l}{5} : \\ & \mathfrak{M}_{1} = -\mathfrak{M}_{2} = -\frac{41ql^{2}}{1500} \end{split}$	$\begin{aligned} &\alpha_1{}^0 = \alpha_2{}^0 = \\ &= \frac{qs}{24} \left[6a(l-a) + s(4l-3s) \right] \\ & \text{für } a = s = b = \frac{l}{5}; \\ & \alpha_1{}^0 = \alpha_2{}^0 = \frac{41 q l^3}{3000} \end{aligned}$
15	$ \begin{array}{c} $	$\mathfrak{M}_1 = - \mathfrak{M}_2 = - \frac{17 q l^2}{384}$	$\alpha_1^{\ 0} = \alpha_2^{\ 0} = \frac{17 q l^3}{768}$
16	$\begin{array}{c} \begin{array}{c} & & \\ & & \\ & \\ \end{array} \\ \hline \\ & \\ \end{array} \\ \hline \\ & \\ \end{array} \\ \begin{array}{c} \\ & \\ \end{array} \\ \hline \\ & \\ \end{array} \\ \hline \\ & \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \hline \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \hline \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \hline \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ $	$\mathfrak{M}_1 = -\mathfrak{M}_2 = -\frac{5 q l^2}{128}$	$\alpha_1^{0} = \alpha_2^{0} = \frac{5 \ q \ l^3}{256}$
17	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\$	$\begin{split} \mathfrak{M}_{1} &= -\mathfrak{M}_{2} = \\ &= -\frac{q}{12l} \left[l^{3} - a^{2} \left(2l - a \right) \right] \\ & \text{für } a = b = \frac{l}{3} \\ & \mathfrak{M}_{1} = -\mathfrak{M}_{2} = -\frac{11ql^{2}}{162} \end{split}$	$\alpha_1^0 = \alpha_2^0 = \frac{q}{24} [l^3 - a^2(2l - a)]$ für $a = b = \frac{l}{3}$: $\alpha_1^0 = \alpha_2^0 = \frac{11 q l^3}{324}$
18	$ \begin{array}{c} $	$\mathfrak{M}_1=-rac{ql^2}{20}$ $\mathfrak{M}_2=+rac{ql^2}{30}$	$\alpha_{1}^{0} = \frac{q l^{3}}{45}$ $\alpha_{2}^{0} = \frac{7 q l^{3}}{360}$
19	$(7) = \frac{1}{\sqrt{\frac{2}{7}}} = \frac{1}{$	$\begin{split} \mathfrak{M}_{1} &= -\frac{qs^{2}}{30l^{2}} [10a^{2} + s(5a + s)]\\ \mathfrak{M}_{2} &= +\frac{qs^{3}}{20l^{2}}(5a + s)\\ \text{für } s &= a = \frac{l}{2} \colon \mathfrak{M}_{1} = -\frac{ql^{2}}{30}\\ \mathfrak{M}_{2} &= +\frac{3ql^{2}}{160} \end{split}$	$\alpha_1^0 = \frac{q s^2}{360l} [40 a^2 + 7 s (5 a + s)]$ $\alpha_2^0 = \frac{q s^2}{180l} [10 a^2 + 4 s (5 a + s)]$ für $s = a = \frac{l}{2}$: $\alpha_1^0 = \frac{41 q l^3}{2880}$ $\alpha_2^0 = \frac{17 q l^3}{1440}$

Tafel 3 (Fortsetzung).

Belastungsglieder $\mathfrak{M}_1 \mathfrak{M}_2$ bzw. $\alpha_1^0 \alpha_2^0$.

Nr.	Belastungsart, M_o -Flächen	M ₁ M ₂	$\alpha_1^0 \alpha_2^0$
20	$ \begin{array}{c} $	$\begin{split} \mathfrak{M}_{1} &= -\frac{qs^{2}}{60l^{2}}(10bl+3s^{2})\\ \mathfrak{M}_{2} &= +\frac{qs^{3}}{60l^{2}}(5b+2s)\\ \mathrm{f}\ddot{\mathrm{u}}\mathrm{r}s &= b = \frac{l}{2}\colon\mathfrak{M}_{1} = -\frac{23ql^{2}}{960}\\ \mathfrak{M}_{2} &= +\frac{7ql^{2}}{960} \end{split}$	$\alpha_1^0 = \frac{q s^2}{360 l} \left[5 b (4 l + s) + 8 s^2 \right]$ $\alpha_2^0 = \frac{q s^2}{360 l} \left[10 b (l + s) + 7 s^2 \right]$ $\text{für } s = b = \frac{l}{2} \colon \alpha_1^0 = \frac{53 q l^3}{5760}$ $\alpha_2^0 = \frac{37 q l^3}{5760}$
21	qas <u>3b</u> +2s qas <u>3b</u> +2s qbs <u>3a</u> +s <u>5t</u>	$\begin{split} \mathfrak{M}_{1} &= -\frac{q s}{60 l^{2}} \left[10 b^{2} \left(3 a + s \right) + \\ &+ s^{2} (15 a + 10 b + 3 s) + 40 a b s \right] \\ \mathfrak{M}_{2} &= + \frac{q s}{60 l^{2}} \left[10 a^{2} \left(3 b + 2 s \right) + \\ &+ s^{2} \left(10 a + 5 b + 2 s \right) + 20 a b s \right] \\ &\text{für } a = s = b = \frac{l}{3}; \\ &\qquad \mathfrak{M}_{1} &= -\frac{q l^{2}}{45} \\ &\qquad \mathfrak{M}_{2} &= + \frac{29 q l^{2}}{1620} \end{split}$	$\begin{aligned} \alpha_1^{\ 0} &= \frac{q s}{360l} \left[10 a^2 (3 b + 2 s) + \right. \\ &+ 20 b^2 (3 a + s) + s^2 (40 a + \\ &+ 25 b + 8 s) + 100 a b s \right] \\ \alpha_2^{\ 0} &= \frac{q s}{360l} \left[20 a^2 (3 b + 2 s) + \right. \\ &+ 10 b^2 (3 a + s) + s^2 (35 a + \\ &+ 20 b + 7 s) + 80 a b s \right] \\ & \text{für } a = s = b = \frac{l}{3}; \\ & \alpha_1^{\ 0} &= \frac{101 q l^3}{9720} \\ & \alpha_2^{\ 0} &= \frac{47 q l^3}{4860} \end{aligned}$
22	7 = 2 = 2 $7 = 2$	$\begin{split} \mathfrak{M}_{1} &= \\ &= -\frac{q s}{6 l^{2}} \left[6 a b^{2} + s^{2} \left(a - 2 b \right) \right] \\ \mathfrak{M}_{2} &= \\ &= + \frac{q s}{6 l^{2}} \left[6 a^{2} b + s^{2} \left(b - 2 a \right) \right] \end{split}$	$\alpha_{1}^{0} = \frac{q b s}{12 l} [2 a (b + l) - s^{2}]$ $\alpha_{2}^{0} = \frac{q a s}{12 l} [2 b (a + l) - s^{2}]$
23		$\begin{split} \mathfrak{M}_{1} &= + M \frac{b}{l} \left(2 - \frac{3 b}{l} \right) \\ \mathfrak{M}_{2} &= + M \frac{a}{l} \left(2 - \frac{3 a}{l} \right) \\ \mathbf{f} \ddot{\mathbf{u}} \mathbf{r} a &= b = \frac{l}{2} \mathbf{:} \\ \mathfrak{M}_{1} &= \mathfrak{M}_{2} = + \frac{M}{4} \end{split}$	$\alpha_{1}^{0} = M \frac{l}{6} \left(\frac{3 b^{2}}{l^{2}} - 1 \right)$ $\alpha_{2}^{0} = M \frac{l}{6} \left(1 - \frac{3 a^{2}}{l^{2}} \right)$ für $a = b = \frac{l}{2}$: $\alpha_{1}^{0} = -\alpha_{2}^{0} = -\frac{M l}{24}$
24	$\begin{array}{c c} \hline Temperatur & t_{0} \\ \hline h & t_{0} \\ \hline t \\ \hline t \\ \Delta t - t_{u} - t_{0} \\ \hline m_{1} \\ \hline \end{array}$	$\mathfrak{M}_{1} = -\frac{EJ\omega \cdot \Delta t}{h}$ $\mathfrak{M}_{2} = +\frac{EJ\omega \cdot \Delta t}{h}$	$\alpha_1^0 = \alpha_2^0 = + \frac{l E J \omega \cdot \Delta t}{2 h}$

Tafel 4.

Einzellasten (Einflußlinien).

Belastungsglieder

(für Stäbe ohne Vouten)

m₁ (7) (2)

 \mathfrak{M}_1 und \mathfrak{M}_2 (= Einspannmomente des festeingespannten Trägers) bzw.

 α_1^0 und α_2^0 (= *EJ*-fach verzerrte Auflagerdrehwinkel des freiauflieg. Trägers).

Nr.	${f Belastungsart,}\ M_o ext{-}Flächen$	$\mathfrak{M}_{1}\mathfrak{M}_{2}$	$\alpha_1^0 \alpha_2^0$
25		$\mathfrak{M}_1 = -\mathfrak{M}_2 = -\frac{Pl}{8}$	$\alpha_1^0 = \alpha_2^0 = \frac{P l^2}{16}$
26	$ \begin{array}{c} $	$\mathfrak{M}_{1} = -\mathfrak{M}_{2} = -\frac{Pa(l-a)}{l}$ für $a = b = \frac{l}{3}$: $\mathfrak{M}_{1} = -\mathfrak{M}_{2} = -\frac{2Pl}{9}$	$\alpha_{1}^{0} = \alpha_{2}^{0} = \frac{Pa(l-a)}{2}$ $\alpha_{1}^{0} = \alpha_{2}^{0} = \frac{Pl^{2}}{9}$
27	$ \begin{array}{c} \frac{2}{4} + \frac{2}{2} + \frac{2}{4} $	$\mathfrak{M}_1 = -\mathfrak{M}_2 = -\frac{3Pl}{16}$	$\alpha_1^{\ 0} = \alpha_2^{\ 0} = \frac{3 \ P l^2}{32}$
28	$\begin{array}{c} \begin{array}{c} 2 \\ \overline{4} \\ $	$\mathfrak{M}_1 = -\mathfrak{M}_2 = -\frac{5Pl}{16}$	$\alpha_1^0 = \alpha_2^0 = \frac{5 P l^2}{32}$
29	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\$	$\mathfrak{M}_{1} = -\mathfrak{M}_{2} = -\frac{19Pl}{72}$	$\alpha_1^{0} = \alpha_2^{0} = \frac{19 P l^2}{144}$
30	$ \begin{array}{c} \frac{1}{5} + \frac{1}{5} $	$\mathfrak{M}_1 = -\mathfrak{M}_2 = -\frac{2 P l}{5}$	$\alpha_1^0 = \alpha_2^0 = \frac{P l^2}{5}$

Belastungsglieder $\mathfrak{M}_1 \mathfrak{M}_2$ bzw. $\alpha_1^0 \alpha_2^0$.

Tafel 5.

Einseitig gerade Vouten.

(a)	(a2)
JA - Ly-	Je Je
•	<u>د</u>

Stabfestwerte $a_1 a_2 b$.

λ		$\frac{l_v}{l}$	n =	$rac{J_{c}}{J_{A}}$
---	--	-----------------	-----	----------------------

2 n	1,00	0,90	0,80	0,70	0,60	0,50	0,40	0,30	0,20	0,15	0,12
	4,00	4,30	4,74	5,23	5,88	6,74	7,99	9,94	13,55	16,90	20,07
1,00	4,00	4,08	4,24	4,38	4,55	4,77	5,05	5,44	6,05	6,54	6,94
,	2,00	2,08	2,25	2,39	2,58	2,83	3,17	3,67	4,51	5,22	5,85
	4,00	4,30	4,71	5.19	5,80	6,63	7.80	9,63	12,97	16,02	18.88
0,90	4,00	4,06	4,18	4.27	4,40	4,55	4,74	4,99	5,37	5,65	5,88
,	2,00	2,08	2,23	2,36	2,54	2,76	3,06	3,50	4,22	4,83	5,36
	4.00	4,29	4.69	5.14	5.73	6.52	7.62	9.33	12.40	15,17	17.73
0,80	4,00	4,05	4,13	4,21	4,30	4,42	4,56	4,75	5,03	5,24	5,40
	2,00	2,08	2,21	2,35	2,52	2,73	3,02	3,45	4,15	4,75	5,27
	4.00	4.29	4.66	5.09	5.65	6,38	7.41	8.97	11.72	14,13	16.32
0,70	4,00	4,04	4,11	4,17	4,25	4,34	4,46	4,62	4,86	5,05	5,20
,	2,00	2,09	2,21	2,35	2,51	2,73	3,02	3,44	4,14	4,73	5,24
	4.00	4,27	4.62	5.02	5.54	6,21	7.13	8,50	10,84	12,82	14,55
0,60	4,00	4,04	4,10	4,15	4,22	4,30	4,41	4,56	4,78	4,96	5,10
	2,00	2,09	2,21	2,34	2,51	2,72	3,01	3,42	4,09	4,64	5,11
	4,00	4,25	4,56	4,93	5.39	5,98	6,76	7,91	9,76	11,26	12,52
0,50	4,00	4,04	4,09	4.14	4.20	4,28	4,38	4,52	4,73	4,89	5,01
	2,00	2,09	2,21	2,34	2,50	2,70	2,97	3,35	3,95	4,42	4,81
	4.00	4.24	4.53	4.87	5.30	5,84	6,55	7.56	9,16	10,42	11,46
0,45	4,00	4,04	4,08	4,14	4,20	4,27	4,37	4,50	4,70	4,84	4,96
	2,00	2,09	2,20	2,33	2,48	2,68	2,93	3,29	3,83	4,25	4,59
	4,00	4,23	4,49	4,81	5.20	5,68	6,31	7,19	8,54	9,57	10,40
0,40	4,00	4,04	4,08	4,13	4,19	4,26	4,36	4,48	4,66	4,79	4,89
	2,00	2,09	2,19	2,32	2,46	2,64	2,88	3,20	3,69	4,05	4,34
	4,00	4,21	4,45	4,74	5,08	5,51	6,05	6,80	7,91	8,72	9,36
0,35	4,00	4,04	4,08	4,13	4,18	4,25	4,34	4,45	4,61	4,72	4,81
	2,00	2,08	2,18	2,30	2,43	2,60	2,81	3,10	3,52	3,82	4,06
	4,00	4,19	4,40	4,66	4,96	5,32	5,78	6,39	7,27	7,90	8,38
0,30	4,00	4,03	4,07	4,12	4,17	4,23	4,31	4,41	4,55	4,65	4,72
	2,00	2,08	2,17	2,27	2,40	2,55	2,73	2,98	3,33	3,57	3,76
	4,00	4,16	4,35	4,57	4,82	5,12	5,49	5,98	6,65	7,11	7,46
0,25	4,00	4,03	4,07	4,11	4,15	4,21	4,28	4,36	4,48	4,56	4,61
	2,00	2,07	2,15	2,24	2,35	2,48	2,64	2,84	3,12	3,31	3,45
	4,00	4,14	4,29	4,47	4,67	4,91	5,20	5,56	6,05	6,37	6,61
0,20	4,00	4,03	4,06	4,09	4,13	4,18	4,24	4,31	4,40	4,46	4,50
	2,00	2,06	2,13	2,21	2,30	2,40	2,53	2,69	2,90	3,04	3,14
	4,00	4,11	4,23	4,36	4,51	4,69	4,90	5,15	5,48	5,69	5,84
0,15	4,00	4,02	4,05	4,08	4,11	4,15	4,19	4,24	4,31	4,35	4,38
	2,00	2,05	2,11	2,17	2,24	2,32	2,41	2,52	2,67	2,77	2,83
	4,00	4,08	4,16	4,25	4,35	4,46	4,59	4,75	4,94	5,07	5,15
0,10	4,00	4,02	4,04	4,06	4,08	4,10	4,13	4,17	4,21	4,24	4,25
	2,00	2,04	2,08	2,12	2,17	2,22	2,28	2,35	2,44	2,50	2,54
	4,00	4,04	4,08	4,13	4,18	4,23	4,29	4,36	4,45	4,50	4,54
0,05	4,00	4,01	4,02	4,03	4,04	4,06	4,07	4,09	4,11	4,12	4,13
	2,00	2,02	2,04	2,06	2,09	2,11	2,14	2,18	2,22	2,24	2,26
0.00	4,00	4,00	4,00	4,00	4,00	4,00	4,00	4,00	4,00	4,00	4,00
0,00	4,00	4,00	4,00	4,00	4,00	4,00	4,00	4,00	4,00	4,00	4,00
	1 4.00	1 4,00	1 4,00	1 4.00	1 4.00	1 4,00	1 4.00	1 4,00	4,00	4,00	, <u> </u>

Obere Zahl \mathfrak{a}_1

Mittlere Zahl \mathfrak{a}_2

Untere Zahl **b**

 $a_1^* = \frac{EJ_c}{l} \mathfrak{a}_1$ $a_2^* = \frac{EJ_c}{l} \mathfrak{a}_2$ $b^* = \frac{EJ_c}{l} \mathfrak{b}$

Tafel 5 (Fortsetzung).

n	0,10	0,08	0,06	0,05	0,04	0,03	0,02	0,01	0,005	0
	23,11	27,43	34,37	39,63	47,20	59,17	81,51	141,57	247,26	œ
1.00	7.29	7.68	8.38	8.81	9.37	10.15	11.37	13.85	16.93	œ
-,	6,42	7,14	8,35	9,17	10,29	11,95	14,76	21,22	30,59	œ
	21,60	25,45	31,49	36,03	42,50	52,58	70,99	118.55	197.46	
0.90	6.07	6.29	6.63	6.84	7.10	7.45	7.97	8.93	10.02	
	5,84	6,47	7,43	8,10	9,01	10,34	12,57	17,66	24,99	
	20.13	23.51	28.68	32.51	37.88	46.06	60.45	95.02	146.04	1 220 00
0.80	5.55	5 72	5.97	6 13	6 34	6 62	7 05	7 89	8 90	20,00
0,00	5,74	6,37	7,31	7,97	8,87	10,18	12,38	17,28	23,97	130,00
	18.33	21.10	25 23	28 21	32.26	38.21	48.08	69 27	95 73	394 44
0 70	5 33	5 4 9	5 72	5.87	6.06	6 33	6 74	7 51	8 36	19.99
0,10	5,70	6,31	7,20	7,82	8,65	9,84	11,74	15,63	20,23	53,33
	16.11	18 19	21.18	23 25	25.97	29.76	35.63	46 74		199 50
0.60	5 22	5 97	5.58	5 79	5 00	6 1 3	6.47	7.07	7.64	10.00
0,00	5 52	6.06	6.99	7.94	8.00	0,10	10.20	1,01	15 90	10,00
		0,00	0,82	7,34	8,00			12,82	15,38	27,90
0.50	13,61	15,02	16,96	18,24	19,86	22,00	25,09	30,34	35,22	56,00
0,50	5,12	5,20	5,43	3,34	5,08	9,00	0,10	6,50	0,84	8,00
	5,14	5,50	6,13	6,51	6,97	7,58	8,44	9,85	11,13	16,00
	12,34	13.44	14.95	15.91	17.11	18.66	20.83	24.33	27.44	39.73
0.45	5.06	5.17	5.33	5.43	5.54	5.69	5.89	6 19	6 45	7 27
,	4,87	5,23	5,70	6,01	6,37	6,85	7,50	8,52	9,40	12,56
	11.00	11.04	19.07	19 70	14.64	15 74	17.99	10.54	01 71	
0.10	1 00	5 00	13,07	10,10	5 90	15,74	11,44	19,54	21,51	20,09
0,40	4,90	5,08	5,21	5,29	5,59	5,50	3,00	5,89	6,08	6,07
	4,57	4,80	5,24	5,48	5,76	6,12	6,60	7,33	7,93	10,00
	9,89	10,52	11,35	11,86	12,47	13,22	14,22	15,73	16,97	21,45
0,35	4,88	4,97	5,07	5,14	5,22	5,31	5,43	5,60	5,74	6,15
	4,25	4,48	4,77	4,95	5,16	5,43	5,77	6,28	6,68	8,05
	8,77	9,22	9,81	10,17	10,58	11,09	11,75	12,72	13,49	16,21
0,30	4,78	4,84	4,93	4,98	5,04	5,11	5,20	5,32	5,42	5,71
	3,90	4,08	4,30	4,43	4,59	4,78	5,02	5,36	5,64	6,53
	7,73	8,05	8,45	8,69	8,97	9,30	9,73	10.33	10.81	12.44
0,25	4,66	4,71	4,78	4,81	4,86	4,91	4,97	5.06	5.13	5.33
	3,56	3,69	3,85	3,94	4,05	4,18	4,34	4,57	4,75	5,33
	6,80	7,01	7,27	7,43	7,60	7,81	8,07	8.44	8.73	9.69
0,20	4,53	4,57	4,62	4,64	4,67	4.71	4.75	4.81	4.86	5.00
	3,22	3,31	3,42	3,48	3,55	3,64	3,75	3,90	4,01	4,38
	5.96	6.09	6.25	6.35	6.45	6.57	6.73	6.94	7 10	7 64
0.15	4.40	4.43	4.46	4.48	4 50	4 52	4 55	4 59	4 62	4 71
.,	2,89	2,94	3,01	3,06	3,10	3,15	3,22	3,31	3,38	3,60
	5.22	5 29	5 38	5 43	5 48	5 55	5.63	5 74	5 89	<u> </u>
0.10	4,27	4 98	4 30	4 91	4 99	4 94	4 95	1 90	4 20	4 4 4
5,20	2,57	2,60	2,64	2,67	2,69	2,72	2,76	2,81	2,84	2,96
	4.57	4.60	4.63	4 65	4 68	4 70	4 73	4 78	4.81	
0.05	4,13	4,14	4,15	4,15	4 16	4 16	4 17	4 1 8	4 10	4 91
.,	2,28	2,29	2,31	2,32	2,33	2,34	2,35	2,37	2,39	2,44
	4,00	4,00	4,00	4,00	4,00	4.00	4,00	4.00	4.00	4.00
0,00	4,00	4,00	4,00	4,00	4,00	4.00	4,00	4.00	4.00	4.00
	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2.00	2.00	2.00
								,	_, _	_,

Guldan, Rahmentragwerke.

 $\mathbf{13}$

Tafel 6.

Einseitig parabol. Vouten.

(a)	
Ja	7
	-0
la/-	

Stabfestwerte $a_1 a_2 b$.

(a ₁) J _A			Je a	2)		;	$l = \frac{l_v}{l}$		n =	$\frac{J_c}{T}$	
							ı			J_A	
λ^n	1,00	0,90	0,80	0,70	0,60	0,50	0,40	0,30	0,20	0,15	0,12
	4,00	4,28	4,61	5,01	5,52	6,19	7,12	8,52	10,95	13,08	15,00
1,00	4,00	4,06	4,12	4,20	4,29	4,40	4,54	4,72	5,01	5,22	5,40
	2,00	2,09	2,20	2,33	2,49	2,70	2,97	3,36	4,00	4,52	4,97
	4,00	4,27	4,58	4,97	5,45	6,08	6,94	8,23	10,44	12,33	14,01
0,90	4,00 2.00	4,05 2.09	4,10 2.20	4,17 2.32	4,24 2.48	4,34 2.68	4,45 2,94	$\frac{4,61}{3,31}$	$4,85 \\ 3,91$	5,02 4.40	5,17 4.81
				4.01		F 05		7.01	0.97	11 51	10.05
0.80	4,00	4,25	4,09	4,91	5,50 4.21	4.30	4.40	4.54	9,07 4.75	4.90	12,95
0,00	2,00	2,09	2,19	2,32	2,47	2,66	2,91	3,26	3,83	4,29	4,67
	4.00	4,24	4,52	4,85	5,27	5,80	6,51	7,54	9,23	10,61	11,79
0,70	4,00	4,04	4,08	4,14	4,20	4,27	4,36	4,49	4,68	4,82	4,94
	2,00	2,09	2,19	2,31	2,45	2,64	2,87	3,21	3,74	4,15	4,50
	4,00	4,22	4,47	4,78	5,15	5,62	6,24	7,12	8,52	9,62	10,55
0,60	4,00	4,04	4,08	4,13	4,18	4,25	4,34	4,45	4,63	4,76	4,86
	2,00	2,08	2,18		2,43	2,00	2,82		3,00		[4,20
	4,00	4,20	4,42	4,69	5,01	5,41	5,93	6,65	7,75	8,59	9,27
0,50	4,00	4,03	4,07	4,12	4,17	4,23	4,31	4,42	4,57	4,68	4,77
	2,00	2,08	2,17		2,40	2,55		3,02	ə,42		3,90
	4,00	4,18	4,39	4,64	4,93	5,30	5,76	6,40	7,35	8,06	8,64
0,45	4,00	4,03	4,07	4,11	4,16	4,22	4,30	4,39	4,53	4,64	4,71
	2,00		2,10								
	4,00	4,17	4,36	4,58	4,85	5,17	5,59	6,14	6,95	7,54	8,01
0,40	4,00	4,03	4,07	4,11	4,15	4,21	4,28	$\frac{4,37}{2.87}$	4,49 3 19	4,58	4,65
0.95	4,00	4,15	4,33	4,53	4,76	5,04	5,40 4 26	5,87 4 34	6,55	7,03	7,41
0,55	2,00	2,07	2,14	2,23	2,32	2,44	2,59	2,79	3,06	3,25	3,40
	4.00	4 14	4 29	4 46	4 67	4 91	5.21	5 60	6.15	6.53	6.83
0.30	4,00	4,03	4,06	4,09	4,13	4,18	4,23	4,30	4,40	4,47	4,52
,	2,00	2,06	2,13	2,20	2,29	2,40	2,53	2,69	2,92	3,08	3,20
	4,00	4,12	4,25	4,40	4,57	4,77	5,01	5,32	5,75	6,05	6,27
0,25	4,00	4,02	4,05	4,08	4,12	4,16	4,20	4,26	4,34	4,40	4,44
	2,00	2,05	2,11	2,18	2,25	2,34	2,45	2,59	2,77	2,90	2,99
	4,00	4,10	4,20	4,32	4,46	4,62	4,81	5,05	5,37	5,59	5,75
0,20	4,00	4,02	4,04	4,07	4,10	4,13	4,17	4,22	4,28	4,33	4,36
	2,00	2,04	2,09			<i>2,2</i> 0					
	4,00	4,08	4,16	4,25	4,35	4,47	4,61	4,78	5,00	5,15	5,26
0,15	4,00	4,02	4,04	4,06 2.12	4,08 2.17	4,10	4,13	4,17	4,22	4,25	4,27
0.10	4,00	4,05	4,11	4,17	4,24	4,32	4,41	4,51 4 19	4,65	4,74	4,81
0,10	2.00	2.03	2.05	2.04	2.11	2,15	2,19	2,25	2,31	2,35	2,38
		4.00		4.00	4 10	4 10	4.90	4.95	4.90	4.96	4.90
0.05	4,00	4,03	4,00	4,09	4.03	4.04	4.05	4.06	4,08	4,09	4,09
0,00	2,00	2,01	2,03	2,04	2,06	2,08	2,10	2,12	2,16	2,18	2,19
	4,00	4,00	4,00	4,00	4,00	4,00	4,00	4,00	4,00	4,00	4,00
0,00	4,00	4,00	4,00	4,00	4,00	4,00	4,00	4,00	4,00	4,00	4,00
	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	z,00	2,00	2,00

Tafel 6 (Fortsetzung).

Obere Zahl \mathfrak{a}_1	
Mittlere Zahl	a2

a 1 *	_	$\frac{EJ_c}{l}\mathfrak{a}_1$
a_2^*	=	$\frac{EJ_c}{l}\mathfrak{a}_2$
b *	=	$\frac{EJ_c}{l}\mathfrak{b}$

Untere	Zahl	b	

) <i>n</i>	0,10	0,08	0,06	0,05	0,04	0,03	0,02	0,01	0,005	0
	16.77	19.21	22.87	25.53	29.20	34.67	44.16	66.43	99.40	x 0
1.00	5.55	5.74	5.99	6.16	6.38	6.67	7,11	7.94	8.88	0 0
1,00	5,36	5,89	6,65	7,18	7,87	8,86	10,49	13,91	18,38	œ
	15 55	15.04	00 70		95.05	90.95	07 77	F 4 90		
0.00	10,00	17,64	20,73	5 79	20,90	30,30	37,77	54,38	77,38	
0,90	5,29 5.18	5,44 5.66	6.35	5,78 6.82	5,90	8.31	0,53 9.72	7,17	7,87	_
0.00	14,25	15,99	18,50	20,27	22,63	26,01	31,53	43,20	58,15	1 220,00
0,80	5,14	5,27	0,40	5,57 6 40	5,72	5,92	6,22	6,76	7,35	20,00
		5,45	0,07	0,49	7,04	7,00	8,99	11,55	14,14	130,00
	12,84	14,22	16,17	17,51	19,27	21,71	25,56	33,18	42,16	324,44
0,70	5,03	5,16	5,32	5,42	5,55	5,73	5,98	6,43	6,90	13,33
	4,80	5,19	5,72	6,08	6,53	7,16	8,11	9,90	11,88	53,33
	11.35	12.39	13.82	14.77	16.00	17.66	20.16	24 81	29.86	199 50
0.60	4.94	5.05	5.19	5.28	5.39	5.53	5.74	6.09	6.44	10.00
,	4,51	4.84	5.27	5.55	5,91	6.39	7.09	8,34	9.64	27.50
	9,85	10,58	11,56	12,20	13,00	14,05	15,57	18,24	20,94	56,00
0,50	4,84	4,93	5,04	5,11	5,20	5,31	5,47	5,72	5,96	8,00
	4,16	4,41	4,73	4,95	5,21	5,54	6,02	6,84	7,63	16,00
	9,12	9,72	10,50	11,01	11,64	12,46	13,62	15,59	17,53	39,73
0,45	4,78	4,86	4,96	5,02	5,09	5,19	5,32	5,53	5,72	7,27
	3,96	4,17	4,45	4,62	4,84	5,11	5,50	6,14	6,74	12,56
	8.40	8.88	9.51	9,90	10.39	11.01	11.88	13.32	14 70	28.89
0,40	4,71	4,78	4,86	4,92	4,98	5,06	5.17	5,34	5.49	6.67
,	3,74	3,92	4,15	4,29	4,47	4,69	4,99	5,49	5,94	10,00
	7 79	8 00	9 59	0.00	0.94	0.71	10.05	11.90	10.04	01.45
0.35	4 64	4 69	4 77	4,81	4 86	9,71	10,35	5 15	12,34	21,40
0,00	3,52	3,67	3,85	3,97	4,11	4,35	5,02 4.51	4,89	5,27	8.05
								,		
0.90	7,06	7,35	7,72	7,94	8,21	8,55	9,01	9,73	10,40	16,21
0,30	4,00	4,0U	4,00	4,70	4,74	4,79	4,86	4,97	5,06	5,71
	3,30	ə,41 	3,30	3,00	3,75	3,89	4,06	4,34	4,58	6,53
	6,45	6,66	6,93	7,09	7,28	7,52	7,84	8,34	8,78	12,44
0,25	4,47	4,51	4,56	4,58	4,62	4,66	4,71	4,79	4,86	5,33
	3,07	3,16	3,27	3,34	3,42	3,51	3,64	3,84	4,01	5,33
	5,88	6,03	6,21	6,32	6,46	6,62	6,83	7,16	7,45	9,69
0,20	4,38	4,41	4,45	4,47	4,49	4,52	4,56	4,62	4,66	5,00
	2,84	2,91	2,99	3,04	3,09	3,16	3,25	3,39	3,51	4,38
	5,35	5.44	5,56	5,64	5,72	5,82	5,96	6.16	6 34	7 64
0,15	4,29	4,31	4,33	4,35	4,37	4.39	4,41	4.45	4.48	4.71
	2,62	2,67	2,72	2,75	2,79	2,84	2,90	2,99	3,06	3,60
	4 86	4 01	4.08	5 09	5.07	5 19	5 91	r 90	E 41	
0.10	4.19	4.21	4 22	4 23	4 24	4 95	4 97	0,32	0,41	0,09
-,	2.41	2.43	2.47	2.49	2.51	2.54	2,57	4,29	4,31 2,86	4,44 9 0 A
	_,			,	_,	 ,01		2,02		2,90
0.05	4,41	4,44	4,47	4,48	4,50	4,53	4,56	4,61	4,65	4,91
0,05	4,10	4,11	4,11	4,12	4,12	4,13	4,14	4,15	4,16	4,21
	2,20	2,21	2,23	2,24	2,25	2,26	2,27	2,30	2,32	2,44
	4,00	4,00	4,00	4,00	4,00	4,00	4,00	4,00	4,00	4,00
0,00	4,00	4,00	4,00	4,00	4,00	4,00	4,00	4,00	4,00	4,00
, -	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00
-										

Tafel 7.

Beidseitig gerade Vouten.

Stabfestwerte a b.

	<i>Jc</i>		a)	$\lambda = rac{l_v}{l}$			Obe	re Zahl	a	$a^* = rac{EJ_c}{l} \mathfrak{a}$		
JA - Ly		-24-5	4	n	$b = \frac{J_c}{J_A}$		\mathbf{Unt}	ere Zał	ıl b	b *	$=rac{EJ_c}{l}\mathfrak{b}$	
) n	1,00	0,90	0,80	0,70	0,60	0,50	0,40	0,30	0,20	0,15	0,12	
0,50	4,0 2,0	4,29 2,19	4,67 2,43	5,12 2,73	5,69 3,12	6,47 3,66	7,56 4,43	9,26 5,68	$\begin{array}{c} 12,36\\ 8,04 \end{array}$	$15,20 \\ 10,28$	17,86 12,43	
0,45	4,0 2,0	4,28 2,18	4,63 2,42	$5,05 \\ 2,71$	5,59 3,09	6,31 3,61	7,31 4,35	8,84 5,52	11,58 7,71	14,04 9,75	16,31 11,67	
0,40	4,0 2,0	4,26 2,18	4,59 2,41	4,98 2,68	5,48 3,04	$^{6,13}_{3,53}$	7,02 4,21	8,37 5,28	$10,72 \\ 7,22$	12,77 8,97	14,62 10,57	
0,35	4,0 2,0	4,25 2,17	4,54 2,39	4,90 2,64	5,35 2,98	$5,92 \\ 3,42$	6,70 4,03	7,86 4,96	9,79 6,59	11,41 7,99	12,83 9,24	
0,30	4,0 2,0	4,22 2,16	4,49 2,36	4,81 2,59	5,20 2,89	5,69 3,27	6,35 3,80	7,30 4,58	8,82 5,87	10,03 6,92	11,05 7,83	
0,25	4,0 2,0	4,20 2,14	4,43 2,32	4,70 2,52	5,03 2,78	$5,44 \\ 3,10$	5,97 3,53	6,71 4,14	7,84 5,10	8,69 5,85	9,38 6,45	
0,20	4,0 2,0	4,17 2,13	4,36 2,27	4,58 2,44	4,85 2,65	5,17 2,91	5,58 3,24	6,12 3,69	6,90 4,35	7,46 4,84	7,89 5,21	
0,15	4,0 2,0	4,13 2,10	$4,28 \\ 2,22$	4,45 2,35	$^{4,65}_{2,51}$	4,88 2,69	5,17 2,93	5,53 3,23	6,03 3,65	6,37 3,94	6,62 4,16	
0,10	4,0 2,0	4,09 2,07	4,20 2,15	4,31 2,24	$4,44 \\ 2,35$	4,59 2,47	$4,76 \\ 2,61$	4,98 2,79	5,26 3,02	5,44 3,17	5,57 3,28	
0,05	4,0 2,0	4,05 2,04	4,10 2,08	4,16 2,13	4,22 2,18	4,29 2,23	4,37 2,30	4,47 2,37	4,58 2,47	4,65 2,53	4,70 2,57	
0	4,0 2,0	4,00 2,00	4,00 2,00	4,00 2,00	4,00 2,00	4,00 2,00	4,00 2,00	4,00 2,00	4,00 2,00	4,00 2,00	4,00 2,00	
) n	0,12	0,10	0,08	0,06	0,05	0,04	0,03	0,02	0,01	0,005	0	
0,50	$17,86 \\ 12,43$	20,40 14,52	24,02 17,55	29,73 22,38	34,05 26,11	40,24 31,53	50,01 40,19	68,16 56,57	$116,72 \\ 101,44$	202,00 182,02	80 80	
0,45	16,31 11,67	$18,44 \\ 13,51$	$21,43 \\ 16,14$	26,06 20,26	29,49 23,37	$34,33 \\ 27,81$	$\frac{41,77}{34,71}$	55,08 47,25	88,24 79,06	140,41 129,89	_	
0,40	$14,62 \\ 10,57$	$16,32 \\ 12,08$	$18,64 \\ 14,17$	$22,14 \\ 17,35$	$24,65 \\ 19,67$	28,09 22,87	$33,16 \\ 27,65$	41,67 35,76	60,45 53,89	85,01 77,87	375,5 370,0	
0,35	$12,83 \\ 9,24$	$14,10 \\ 10,38$	$15,77 \\ 11,90$	$18,21 \\ 14,13$	$19,88 \\ 15,68$	22,09 17,75	$25,\!18$ $20,\!66$	$30,00 \\ 25,25$	39,30 34,19	49,45 44,04	114,4 107,9	
0,30	$11,05 \\ 7,83$	11,93 8,62	$13,05 \\ 9,64$	$14,\!62 \\ 11,\!07$	$15,65 \\ 12,03$	16,96 13,24	$18,70 \\ 14,87$	21 ,2 3 17,26	25,57 21,39	29,74 25,39	49,38 44,38	
0,25	9,38 6,45	9,95 6,97	$10,66 \\ 7,60$	$11,61 \\ 8,46$	12,20 9,01	12,98 9,72	$13,86 \\ 10,54$	$15,14 \\ 11,73$	$17,16 \\ 13,62$	$18,92 \\ 15,28$	26,00 22,00	
0,20	$7,89 \\ 5,21$	$^{8,24}_{5,52}$	8,66 5,89	9,20 6,38	9,53 6,67	9,92 7,03	$10,40 \\ 7,46$	$\substack{11,02\\8,03}$	11,96 8,90	12,73 9,60	15,56 12,22	
0,15	$\substack{6,62\\4,16}$	$6,82 \\ 4,33$	$7,05 \\ 4,53$	7,34 4,78	$7,51 \\ 4,93$	7,70 5,10	$7,94 \\ 5,31$	8,24 5,58	8,67 5,96	9,00 6,26	$10,14 \\ 7,29$	
0,10	5,57 3,28	5,67 3,36	5,78 3,46	$5,92 \\ 3,58$	5,99 3,64	6,08 3,72	6,19 3,81	6,32 3,92	6,50 4,08	6,64 4,20	7,11 4,61	
0,05	4,70 2,57	4,74 2,60	4,78 2,63	4,83 2,67	4,86 2,70	4,89 2,72	4,93 2,75	4,97 2,79	5,03 2,84	5,08 2,88	5,23 3,00	
0	4,00 2,00	4,00 2,00	4,00 2,00	4,00 2,00	4,00 2,00	4,00 2,00	4,00 2,00	4,00 2,00	4,00 2,00	4,00 2,00	4,00 2,00	

Tafel 8.

Stabfestwerte *a b*.

Beidseitig parab. Vouten.				$\lambda = \frac{l_v}{l}$			Obere Zahl a			$a^* = \frac{EJ_c}{a}a$	
			$n = \frac{J_c}{J_A}$			Untere Zahl b			$b^* = rac{EJ_c}{l} \mathfrak{b}$		
2 1	1,00	0,90	0,80	0,70	0,60	0,50	0,40	0,30	0,20	0,15	0,12
0,50	4,0 2,0	4,23 2,16	4,51 2,35	4,84 2,59	5,25 2,89	5,78 3,29	6,51 3,84	7,58 4,68	9,38 6,14	10,92 7,42	12,28 8,57
0,45	4,0 2,0	4,22 2,15	4,47 2,34	4,78 2,56	$5,16 \\ 2,84$	5,64 3,21	6,30 3,71	7,24 4,47	8,81 5,75	10,11 6,85	11,24 7,82
0,40	4,0 2,0	4,20 2,14	4,44 2,32	4,72 2,52	5,06 2,78	5,49 3,12	6,07 3,57	6,89 4,23	8,21 5,33	9,28 6,24	10,19 7,03
0,35	4,0 2,0	4,18 2,13	4,40 2,29	4,65 2,48	4,95 2,71	5,33 3,01	5,83 3,40	6,52 3,97	7,61 4,88	8,46 5,60	9,17 6,22
0,30	4,0 2,0	$4,16 \\ 2,12$	4,35 2,26	4,57 2,43	4,84 2,63	5,16 2,89	5,58 3,22	6,15 3,69	7,01 4,41	7,67 4,97	8,19 5,43
0,25	4,0 2,0	4,14 2,11	4,30 2,23	4,49 2,37	4,71 2,55	4,98 2,76	5,32 3,03	5,77 3,40	6,43 3,95	6,91 4,36	7,29
0,20	4,0 2,0	4,12 2,09	4,25 2,19	4,40 2,31	4,58 2,45	4,79 2,62	5,05 2,83	5,39 3.11	5,87 3,50	6,20 3,79	6,46 4.01
0,15	4,0 2,0	4,09 2,07	4,19 2,15	4,31 2,24	4,44 2.35	4,60 2,47	4,78 2,62	5,02 2.81	5,34 3.08	5,56 3.26	5,72 3,40
0,10	4,0 2,0	4,06 2,05	4,13 2,11	4,21 2,17	4,30 2,24	4,40 2,32	4,52 2,41	4,66 2,53	4,85	4,98 2,79	5,07 2,86
0,05	4,0 2,0	4,03 2,03	4,07 2,06	4,11 2,09	4,15 2,12	4,20 2,16	4,26 2,21	4,32 2,26	4,41 2,33	4,46 2,37	4,50 2,40
0	4,0 2,0	4,00 2,00	4,00 2,00	4,00 2,00	4,00 2,00	4,00 2,00	4,00 2,00	4,00 2,00	4,00 2,00	4,00 2,00	4,00 2,00
à n	0,12	0,10	0,08	0,06	0,05	0,04	0,03	0,02	0,01	0,005	0
0,50	12,28 8,57	13,52 9,64	15,21 11,10	17,69 13,29	19,47 14,88	21,90 17,06	25,46 20,30	31,52 25,87	45,32 38,79	65,09 57,58	8
0,45	$11,24 \\ 7,82$	12,25 8,70	13,61 9,89	$15,56 \\ 11,63$	16,94 12,87	18,77 14,53	$21,40 \\ 16,94$	25,69 20,92	34,89 29,56	46,95 41,06	_
0,40	10,19 7,03	10,99 7,72	12,05 8,65	13,52 9,97	14,54 10,89	$15,86 \\ 12,09$	17,71 13,79	20,61 16,47	26,40 21,91	33,33 28,49	375,5 370,0
0,35	9,17 6,22	9,78 6,75	10,56 7,44	11,64 8,40	12,36 9,05	13,27 9,88	14,52 11,02	16,39 12,74	19,90 16,01	23,75 19,64	114,4 107,9
0,30	8,19 5,43	8,64 5,82	9,20 6,31	9,95 6,98	$10,44 \\ 7,42$	11,05 7,97	11,86 8,70	13,03 9,77	15,10 11,67	17,21 13,64	49,38 44,38
0,25	7,29 4,69	7,60 4,96	7,99 5,30	8,49 5,74	8,81 6,02	9,20 6,37	9,71 6,82	10,42 7,46	11,60 8,54	12,75 9,59	26,00 22,00
0,20	6,46 4,01	6,67 4,19	6,92 4,41	7,24 4,68	7,44 4,86	7,68 5,07	7,99 5,34	8,40 5,70	9,07 6,30	9,68 6,85	15,56 12,22
0,15	5,72 3,40	5,85 3,51	6,00 3,64	6,20 3,80	6,31 3,90	6,45 4,02	6,62 4,17	6,85 4,37	7,21 4,68	7,52 4,96	10,14 7,29
0,10	5,07 2,86	$5,14 \\ 2,92$	5,22 2,99	5,32 3,08	5,39 3,13	5,46 3,19	5,54 3,26	5,66 3,36	5,83 3,51	5,98 3,63	7,11 4,61
0,05	4,50 2,40	4,53 2,43	4,56 2,46	4,61 2,49	4,63 2,51	4,66 2,53	4,69 2,56	4,74 2,60	4,80 2,65	4,86	5,23 3.00
0	4,00 2,00	4,00 2,00	4,00 2,00	4,00 2,00	4,00 2,00	4,00 2,00	4,00 2,00	4,00 2,00	4,00 2,00	4,00 2,00	4,00 2,00

, o o						(time	000.	and De							Oher	ra Zahl	×. ۳	-	3
Ľ		Ж П	:	1	ם ו	elas	cullg	n Su		T	27162	•				520			1 -	$x_1 \frac{x}{12}$
<u>[</u>]	-1-		$u = -\frac{1}{2}$	$\frac{J_c}{J_A}$ (= Ein Träg	ter) fü	mome r gleic	nte ar hmäßi	n voll ige Vc	einges ollbela	spannt stung	ten :			ii I	2 Unte	əre Zah	1 ×2 M	$t_2^2 = +$	$\kappa_2 \frac{q l^2}{12}$
n 1,0(0 0,90	0,80	0,70	0,60	0,50	0,40	0,30	0,20	0,15	0,12	0,10	0,08	0,06	0,05	0,04	0,03	0,02	0,01	0,005	0
1,0	0,978	1,043 0,955	$1,071 \\ 0,931$	$1,110\\0,897$	$1,146 \\ 0,865$	$1,193 \\ 0,826$	1,255	1,348 0,709 (1,416 0,663	1,469 0,629	1,513 0,602	1,571 0,566	1,638 0,531	$1,683 \\ 0,507$	$1,739 \\ 0,479$	$1,812 \\ 0,445$	$1,916 \\ 0,400$	2,095 0,331	$2,274 \\ 0,272$	6,000 0,000
1,0) 1,020) 0,978	$1,046 \\ 0,954$	$1,077 \\ 0,929$	$1,116 \\ 0,896$	$1,157 \\ 0,863$	1,209 0,822	1,278	1,381 0,704 (1,456 0,658	1,516 0,624	1,566 0,597	1,629 0,565	$1,711 \\ 0,528$	$1,764 \\ 0,504$	$1,830 \\ 0,477$	$1,916 \\ 0,444$	$2,042 \\ 0,401$	$2,266 \\ 0,336$	$2,502 \\ 0,280$	5,410 0,010
1,0) 1,022) 0,979	$1,049 \\ 0,959$	$1,081 \\ 0,934$	$1,120 \\ 0,904$	$1,164 \\ 0,873$	$1,\hat{2}19$ 0,836	1,293 0,789 (1,404 0,727 (1,487 0,685	1,553 0,654	$1,609 \\ 0,629$	$1,679 \\ 0,600$	$1,773 \\ 0,564$	$1,834 \\ 0,542$	$1,911 \\ 0,516$	$2,014 \\ 0,485$	$2,167 \\ 0,442$	2,448 0,375	$2,754 \\ 0,314$	$4,840 \\ 0,040$
1,0) 1,024) 0,982	$1,052 \\ 0,963$	$1,085 \\ 0,941$	$1,126 \\ 0,915$	$1,173 \\ 0,887$	1,232 0,853	1,313	1,435 0,752 (1,527 0,713 (1,602 0,683	$1,665 \\ 0,659$	$1,745 \\ 0,631$	$1,852 \\ 0,594$	$1,923 \\ 0,572$	$2,012 \\ 0,545$	$2,131 \\ 0,511$	$2,306 \\ 0,465$	$2,619 \\ 0,391$	2,938 0,323	$\frac{4}{0,090}$
1,0) 1,026) 0,983	1,056 0,966	$1,091 \\ 0,947$	$1,134 \\ 0,924$	$1,184 \\ 0,898$	1,249 0,866	1,338	1,471 0,770	1,572 0,731	$1,653 \\ 0,701$	$1,722 \\ 0,676$	$1,809 \\ 0,647$	$1,923 \\ 0,610$	$1,997 \\ 0,587$	2,090 0,559	$2,211 \\ 0,523$	$2,382 \\ 0,476$	2,667 0,401	2,926 0,337	3,760 0,160
1,0) 1,028) 0,984	1,061 0,968	1,097 0,951	$1,142 \\ 0,930$	$1,196 \\ 0,905$	$1,266 \\ 0,874$	1,359	1,498 (1,601	1,683 0,710	$1,751 \\ 0,686$	$1,835 \\ 0,657$	$1,943 \\ 0,620$	$2,012 \\ 0,598$	$2,095 \\ 0,571$	$2,200 \\ 0,538$	$2,342 \\ 0,494$	2,559 0,430	2,739 0,379	$3,250 \\ 0,250$
1,0	0 1,027	1,059 0,969	$1,100 \\ 0,952$	$1,145 \\ 0,931$	1,200 0,907	1,271 0,877	1,364 :	1,502	1,602 0,745 (1,681 0,716	$1,746 \\ 0,692$	1,825 0,664	$1,925 \\ 0,629$	$1,987 \\ 0,608$	$2,062 \\ 0,583$	$2,154 \\ 0,552$	$2,276 \\ 0,512$	2,457 0,456	$2,601 \\ 0,412$	3,003 0,303
1,0) 1,026) 0,985	1,059 0,970	$1,101 \\ 0,953$	1,147 0,933	$1,202 \\ 0,909$	$1,272 \\ 0,879$	1,364	1,496	1,591 0,751	1,665 0,723	$1,724 \\ 0,701$	$1,796 \\ 0,675$	$1,885 \\ 0,642$	$1,940 \\ 0,623$	$2,004 \\ 0,600$	2,083 0,572	$2,185 \\ 0,538$	$2,332 \\ 0,489$	2,445 0,452	$2,760 \\ 0,360$
1,0) 1,026) 0,985	1,058 0,971	$1,101 \\ 0,954$	$1,146 \\ 0,934$	$1,200 \\ 0,911$	1,267 0,882	1,355 : 0,846 (1,479	1,566	1,632 0,735	$1,685 \\ 0,714$	$1,747 \\ 0,690$	$1,824 \\ 0,661$	$1,871 \\ 0,644$	$1,925 \\ 0,624$	$1,990 \\ 0,600$	$2,072 \\ 0,571$	$2,189 \\ 0,530$	2,277 0,500	$2,523 \\ 0,423$
1,0	0,986	$1,060 \\ 0,972$	$1,098 \\ 0,956$	$1,141 \\ 0,937$	$1,193 \\ 0,914$	1,256 0,887	1,337 : 0,853 (1,449	1,526 0,775 (1,583 0,752	$1,628 \\ 0,734$	$1,681 \\ 0,713$	$1,745 \\ 0,688$	$1,782 \\ 0,673$	$1,826 \\ 0,656$	$1,878 \\ 0,636$	1,943 0,612	2,033 0,578	$2,100 \\ 0,554$	$2,290 \\ 0,490$
1,0	0,987	1,057 0,973	$1,093 \\ 0,958$	$1,133 \\ 0,940$	$1,180 \\ 0,919$	1,237 0,894	1,309	1,406	1,471 0,794 (1,518 0,775	1,555 0,759	$1,597 \\ 0,742$	1,648 0,718	$1,681 \\ 0,709$	$1,712 \\ 0,695$	$1,752 \\ 0,679$	1,801 0,660	$1,868 \\ 0,634$	1,919 0,615	$2,063 \\ 0,563$
1,0) 1,023) 0,988	$1,052 \\ 0,976$	$1,084 \\ 0,962$	$1,119 \\ 0,946$	$1,160 \\ 0,927$	1,209 0,905	1,270 : 0,878 (1,349 0,840 (1,400 : 0,821 (1,438 0,805	$1,466 \\ 0,792$	$1,498 \\ 0,779$	$1,537 \\ 0,763$	$1,559 \\ 0,753$	$1,581 \\ 0,743$	$\begin{array}{c} 1,614\\ 0,730 \end{array}$	$1,650 \\ 0,715$	$1,698 \\ 0,695$	$1,734 \\ 0,681$	$1,840 \\ 0,640$
1,0) 1,022) 0,990	$1,045 \\ 0,979$	1,071 0,967	$1,100 \\ 0,954$	$1,133 \\ 0,938$	$1,172 \\ 0,920$	1,219 :	1,279	1,316),855 (1,344 0,843	$1,364 \\ 0,834$	$1,387 \\ 0,823$	$1,414 \\ 0,811$	$1,430 \\ 0,804$	$1,447 \\ 0,797$	$\substack{1,467\\0,788}$	$1,492 \\ 0,777$	$1,525 \\ 0,763$	$1,549 \\ 0,753$	$1,623 \\ 0,723$
1,0	0,993	$1,034 \\ 0,984$	$1,053 \\ 0,975$	$1,074 \\ 0,965$	$1,098 \\ 0,954$	1,125 0,941	1,157 : 0,926 (1,196	1,221 0,896 (1,238 0,888	$1,251 \\ 0,882$	$1,266 \\ 0,875$	$1,282 \\ 0,867$	$1,292 \\ 0,863$	$1,303 \\ 0,858$	$1,315 \\ 0,852$	$1,330 \\ 0,846$	$1,350 \\ 0,837$	$1,364 \\ 0,830$	$1,410 \\ 0,810$
1,0	0,996	1,019 0,991	$1,029 \\ 0,986$	$1,041 \\ 0,980$	$1,053 \\ 0,974$	1,067 0,967	1,084 : 0,959 (1,103	1,115 0,944 (1,123 0,940	$1,129 \\ 0,937$	$1,136 \\ 0,934$	$1,144 \\ 0,930$	$1,148 \\ 0,928$	$1,153 \\ 0,926$	$1,159 \\ 0,923$	$1,165 \\ 0,920$	1,175 0,916	$1,181 \\ 0,913$	$1,203 \\ 0,903$
1,0	1,0	1,0	1,0 1 . 0	1,0	1,0	1,0	1,0	1,0	1,0	1,0 1,0	1,0 1,0	1,0 1,0	1,0 1,0	1,0 1,0	1,0 1,0	1,0 1,0	1,0	1,0	1,0	1,0

208

Hilfstafeln.

el 10.	$\kappa_1 \frac{q l^2}{12}$	$\kappa_2 \frac{ql^2}{12}$	0	6,000 0,000	5,410 0,010	$4,840 \\ 0,040$	$4,290\\0,090$	$3,760 \\ 0,160$	$3,250 \\ 0,250$	3,003 $0,303$	$2,760 \\ 0,360$	2,523 $0,423$	$2,290 \\ 0,490$	2,063 0,563	$1,840 \\ 0,640$	$1,623 \\ 0,723$	$1,410\\0,810$	1,203 0,903	$1,0 \\ 1,0$
Тaf		- - -	0,005	$2,632 \\ 0,327$	2,683 0,349	$2,694 \\ 0,373$	2,648 0,399	$2,534 \\ 0,433$	2,355 $0,482$	2,246 0,513	2,127 0,549	1,999 0,590	$1,866 \\ 0,635$	$1,727 \\ 0,685$	$1,585 \\ 0,740$	$1,440 \\ 0,798$	$1,294 \\ 0,861$	$1,147 \\ 0,929$	1,0 1,0
	^ر 1 کار	×2 30	0,01	$2,391 \\ 0,389$	2,436 0,410	2,454 0,432	2,432 0,457	2,353 $0,486$	2,215 0,527	2,126 0,553	2,025 0,585	$1,915 \\ 0,620$	$1,796 \\ 0,662$	$1,674 \\ 0,706$	$1,544 \\ 0,756$	$1,412 \\ 0,811$	$1,276 \\ 0,870$	$1,139 \\ 0,933$	1,0
	e Zahl :	re Zahl	0,02	2,153 0,458	$2,191 \\ 0,478$	2,212 0,501	$2,205 \\ 0,522$	$2,156 \\ 0,546$	$2,057 \\ 0,579$	$1,988 \\ 0,601$	$1,908 \\ 0,627$	$1,817 \\ 0,657$	$1,718 \\ 0,692$	$1,610 \\ 0,732$	$1,496 \\ 0,777$	$1,377 \\ 0,826$	$1,254 \\ 0,879$	$1,129 \\ 0,938$	1,0
	Ober	Unte	0,03	$2,012 \\ 0,504$	2,047 0,523	2,069 0,544	$2,069 \\ 0,564$	2,035 0,585	$1,956 \\ 0,614$	$1,899 \\ 0,632$	$1,831 \\ 0,655$	$1,752 \\ 0,682$	$1,664 \\ 0,714$	$1,568 \\ 0,750$	$1,464 \\ 0,791$	$1,354 \\ 0,836$	$1,240 \\ 0,886$	$1,122 \\ 0,941$	1,0
		and ma	0,04	$1,920 \\ 0,536$	$1,951 \\ 0,555$	$1,971 \\ 0,576$	$1,974 \\ 0,595$	1,948 0,614	$1,883 \\ 0,640$	$1,834 \\ 0,656$	$1,774 \\ 0,677$	$1,703 \\ 0,701$	$1,623 \\ 0,730$	$1,535 \\ 0,763$	$1,439 \\ 0,801$	$1,336 \\ 0,844$	1,228 $0,892$	$1,116 \\ 0,944$	1,0 1,0
			0,05	1,847 0,563	$1,875 \\ 0,581$	$1,894 \\ 0,601$	$1,900 \\ 0,619$	$1,880 \\ 0,638$	$1,824 \\ 0,661$	$1,781 \\ 0,676$	$1,727 \\ 0,695$	$1,663 \\ 0,717$	$1,590 \\ 0,744$	$1,508 \\ 0,775$	$1,418 \\ 0,811$	$1,321 \\ 0,851$	$1,219 \\ 0,896$	$1,112 \\ 0,946$	1,0 1,0
			0,06	$1,789 \\ 0,586$	$1,814 \\ 0,603$	$1,833 \\ 0,622$	$1,839 \\ 0,640$	$1,825 \\ 0,657$	$1,775 \\ 0,679$	$1,736 \\ 0,693$	$1,688 \\ 0,710$	$1,629 \\ 0,731$	$1,561 \\ 0,755$	$1,484 \\ 0,785$	$1,400 \\ 0,818$	$1,308 \\ 0,857$	$1,210 \\ 0,900$	$1,108 \\ 0,948$	1,0 1,0
		en .	0,08	$1,697 \\ 0,622$	$1,720 \\ 0,638$	$1,737 \\ 0,657$	$1,744 \\ 0,674$	$1,734 \\ 0,689$	1,696.0,708	$1,664 \\ 0,720$	$1,623 \\ 0,735$	$1,572 \\ 0,754$	$1,514 \\ 0,775$	$1,446 \\ 0,801$	$1,370 \\ 0,832$	$1,286 \\ 0,867$	$1,196 \\ 0,907$	$1,102 \\ 0,951$	1,0
	\mathfrak{M}_2	spannt stung	0,10	$1,628 \\ 0,652$	$1,648 \\ 0,667$	$1,663 \\ 0,685$	$1,672 \\ 0,700$	$1,665 \\ 0,715$	$1,634 \\ 0,731$	$1,607 \\ 0,742$	$1,572 \\ 0,755$	$1,528 \\ 0,771$	$1,475 \\ 0,791$	$1,414 \\ 0,815$	$1,345 \\ 0,843$	$1,268 \\ 0,875$	$1,184 \\ 0,912$	$1,095 \\ 0,954$	1,0
	$\cdot \mathfrak{M}_1$	leinge: ollbel£	0,12	$1,572 \\ 0,676$	$1,590 \\ 0,691$	$1,604 \\ 0,708$	$1,613 \\ 0,723$	$1,609 \\ 0,736$	$1,583 \\ 0,751$	$1,560 \\ 0,761$	$1,529 \\ 0,772$	$1,490 \\ 0,787$	$1,442 \\ 0,805$	$1,387 \\ 0,826$	1,323 0,852	$1,252 \\ 0,882$	$1,174 \\ 0,917$	$1,090 \\ 0,956$	1,0
	eder	m vol lige V	0,15	$1,505 \\ 0,707$	$1,521 \\ 0,721$	$1,534 \\ 0,736$	$1,542 \\ 0,750$	$1,540 \\ 0,762$	$1,520 \\ 0,776$	$1,501 \\ 0,784$	$1,475 \\ 0,794$	$1,442 \\ 0,807$	$1,401 \\ 0,822$	$1,352 \\ 0,842$	$1,296 \\ 0,864$	$1,231 \\ 0,892$	$1,160 \\ 0,923$	$1,083 \\ 0,959$	1,0
	gsgli	ente a: chmäß	0,20	$1,421 \\ 0,748$	$1,434 \\ 0,760$	$1,444 \\ 0,774$	$1,452 \\ 0,786$	$1,452 \\ 0,797$	$1,439 \\ 0,808$	1,425 0,815	$1,405 \\ 0,823$	$1,378 \\ 0,833$	$1,345 \\ 0,846$	$1,305 \\ 0,862$	$1,258 \\ 0,882$	$1,203 \\ 0,905$	$1,142 \\ 0,932$	$1,074 \\ 0,964$	1,0 1,0
	tung	mome r gleid	0,30	$1,307 \\ 0,808$	$1,316 \\ 0,818$	$1,323 \\ 0,829$	$1,330\\0,839$	$1,331 \\ 0,847$	$1,324 \\ 0,855$	$1,316 \\ 0,860$	1,303 0,866	$1,286 \\ 0,873$	$1,263 \\ 0,882$	$1,234 \\ 0,893$	$1,200 \\ 0,908$	$1,159 \\ 0,925$	$1,112 \\ 0,946$	$1,059 \\ 0,971$	1,0
	elas	spann (er) fü	0,40	$1,229 \\ 0,852$	$1,235 \\ 0,860$	$1,241 \\ 0,869$	$1,246 \\ 0,877$	1,248 0,883	$1,244 \\ 0,889$	$1,239 \\ 0,893$	$1,230\\0,897$	$1,218 \\ 0,902$	$1,202 \\ 0,909$	$1,181 \\ 0,917$	1,156 0,928	$1,125 \\ 0,941$	$1,089 \\ 0,957$	1,047 0,977	1,0 1,0
	24	= Ein Träg	0,50	$1,170 \\ 0,887$	$1,175 \\ 0,893$	$1,179 \\ 0,899$	$1,183 \\ 0,906$	$1,185 \\ 0,912$	$1,183 \\ 0,916$	1,179 0,919	$1,174 \\ 0,922$	$1,165 \\ 0,925$	$1,154 \\ 0,930$	$1,139 \\ 0,936$	$1,120\\0,944$	$1,097 \\ 0,954$	1,069 0,967	1,037 0,982	1,0
	nn 1	$\frac{J_{c}}{J_{A}}$ (0,60	$1,124 \\ 0,916$	$1,127 \\ 0,921$	$1,130\\0,926$	$1,133 \\ 0,931$	$1,135 \\ 0,935$	$1,134 \\ 0,938$	$1,131 \\ 0,940$	$1,128 \\ 0,942$	$1,122 \\ 0,945$	$1,114 \\ 0,948$	$1,103 \\ 0,953$	$1,090 \\ 0,958$	$1,073 \\ 0,966$	$1,052 \\ 0,975$	1,028 0,986	1,0
	л — Л	" "	0,70	$1,086 \\ 0,941$	1,088 0,944	$1,090 \\ 0,948$	$1,092 \\ 0,952$	$1,093 \\ 0,954$	$1,093 \\ 0,957$	$1,091 \\ 0,958$	$1,089 \\ 0,960$	1,085 0,961	$1,080 \\ 0,964$	$1,073 \\ 0,967$	1,063 0,970	$1,052 \\ 0,976$	1,037 0,982	$1,020 \\ 0,990$	1,0
	uten.)	0,80	$1,053 \\ 0,963$	$1,054 \\ 0,965$	$1,056 \\ 0,967$	1,057 0,970	1,058 0,971	1,057 0,973	$1,057 \\ 0,974$	1,055 0,975	$1,053 \\ 0,976$	$1,050 \\ 0,977$	$1,046 \\ 0,979$	$1,040 \\ 0,981$	$1,033 \\ 0,984$	$1,024 \\ 0,988$	$1,013 \\ 0,994$	1,0
4 1	D. VO	23	06'0	1,025 0,983	1,025 0,984	$1,026 \\ 0,985$	$1,027 \\ 0,986$	$1,027 \\ 0,987$	$1,027 \\ 0,987$	$1,027 \\ 0,988$	$1,026 \\ 0,988$	1,025 0,989	$1,024 \\ 0,989$	1,022 0,990	$1,019 \\ 0,991$	$1,016 \\ 0,993$	$1,011 \\ 0,994$	$1,006 \\ 0,997$	1,0
	рыга	2	1,00	$^{1,0}_{1,0}$	$^{1,0}_{1,0}$	$1,0 \\ 1,0$	$1,0 \\ 1,0$	$1,0 \\ 1,0$	$^{1,0}_{1,0}$	1,0 1,0	$1,0 \\ 1,0$	1,0 1 , 0	$1,0 \\ 1,0$	$1,0 \\ 1,0$	$1,0 \\ 1,0$	$1,0 \\ 1,0$	$1,0 \\ 1,0$	$^{1,0}_{1,0}$	1,0 1,0
тт.		17	и Y	1,00	0,90	0,80	0,70	0,60	0,50	0,45	0,40	0,35	0,30	0,25	0,20	0,15	0,10	0,05	0
	G	uldan,	Rahn	nentrag	werke													14	

Guldan, Rahmentragwerke.

Hilfstafeln.

209

Tafel 11.

Belastungsglieder $\mathfrak{M}_1 \mathfrak{M}_2$

Beidseitig gerade Vouten. (= Einspannmomente am volleingespannten Träger) für gleichmäßige Vollbelastung.

Tafelwerte: \varkappa .

Y R	1,00	0,90	0,80	0,70	0,60	0,50	0,40	0,30	0,20	0,15	0,12
0,50	1,000	1,012	1,028	1,044	1,062	1,084	1,109	1,141	1,183	1,211	1,231
0,45	1,000	1,013	1,031	1,048	1,068	1,091	1,119	1,154	1,199	1,229	1,251
0,40	1,000	1,014	1,032	1,050	1,072	1,096	1,125	1,160	1,207	1,237	1,259
0,35	1,000	1,015	1,033	1,052	1,073	1,097	1,126	1,161	1,207	1,236	1,256
0,30	1,000	1,015	1,032	1,051	1,072	1,095	1,123	1,156	1,199	1,225	1,244
0,25	1,000	1,015	1,031	1,048	1,068	1,090	1,115	1,145	1,183	1,207	1,223
0,20	1,000	1,013	1,028	1,043	1,061	1,080	1,102	1,128	1,160	1,180	1,194
0,15	1,000	1,011	1,023	1,036	1,051	1,067	1,084	1,105	1,131	1,146	1,157
0,10	1,000	1,008	1,017	1,027	1,037	1,049	1,062	1,077	1,094	1,104	1,112
0,05	1,000	1,005	1,010	1,015	1,020	1,027	1,033	1,041	1,050	1,056	1,060
0	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000

An	0,12	0,10	0,08	0,06	0,05	0,04	0,03	0,02	0,01	0,005	0
0,50	1,231	1,247	1,267	1,289	1,302	1,318	1,337	1,361	1,395	1,422	1,500
0,45	1,251	1,269	1,289	1,312	1,326	1,342	1,362	1,385	1,419	1,442	1,495
0,40	1,259	1,276	1,296	1,318	1,331	1,347	1,364	1,385	1,413	1,434	1,480
0,35	1,256	1,272	1,290	1,311	1,323	1,337	1,352	1,371	1,396	1,413	1,455
0,30	1,244	1,257	1,274	1,293	1,303	1,315	1,329	1,345	1,367	1,382	1,420
0,25	1,223	1,235	1,249	1,265	1,274	1,284	1,296	1,310	1,328	1,340	1,375
0,20	1,194	1,204	1,215	1,228	1,236	1,244	1,253	1,265	1,280	1,290	1,320
0,15	1,157	1,164	1,173	1,183	1,189	1,195	1,203	1,211	1,223	1,231	1,255
0,10	1,112	1,117	1,123	1,130	1,134	1,138	1,143	1,149	1,157	1,163	1,180
0,05	1,060	1,062	1,065	1,069	1,071	1,073	1,076	1,079	1,083	1,086	1,095
0	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000

Tafel 12.

Belastungsglieder $\mathfrak{M}_1 \mathfrak{M}_2$

Beidseitig parabol. Vouten. (= Einspannmomente am volleingespannten Träger) für gleichmäßige Vollbelastung.

) n	1,00	0,90	0,80	0,70	0,60	0,50	0,40	0,30	0,20	0,15	0,12
0,50	1,000	1,014	1,029	1,046	1,065	1,087	1,113	1,145	1,186	1,213	1,233
0,45	1,000	1,014	1,029	1,046	1,066	1,088	1,113	1,145	1,185	1,212	1,231
0,40	1,000	1,014	1,029	1,046	1,064	1,086	1,111	1,141	1,180	1,206	1,224
0,35	1,000	1,013	1,028	1,044	1,062	1,082	1,106	1,135	1,172	1,195	1,212
0,30	1,000	1,013	1,026	1,041	1,058	1,077	1,099	1,125	1,159	1,180	1,196
0,25	1,000	1,011	1,024	1,038	1,053	1,070	1,089	1,113	1,142	1,161	1,174
0,20	1,000	1,010	1,021	1,033	1,046	1,060	1,077	1,097	1,122	1,137	1,149
0,15	1,000	1,008	1,017	1,026	1,037	1,049	1,062	1,078	1,097	1,109	1,118
0,10	1,000	1,006	1,012	1,019	1,027	1,035	1,044	1,055	1,069	1,077	1,083
0,05	1,000	1,003	1,007	1,010	1,014	1,019	1,024	1,029	1,037	1,041	1,044
0	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
			· ·.					1			

Tafelwerte: ×.

2 n	0,12	0,10	0,08	0,06	0,05	0,04	0,03	0,02	0,01	0,005	0
0,50	1,233	1,248	1,266	1,287	1,299	1,314	1,331	1,352	1,384	1,408	1,500
0,45	1,231	1,246	1,263	1,283	1,295	1,309	1,326	1,346	1,376	1,400	1,495
0,40	1,224	1,238	1,254	1,273	1,285	1,298	1,313	1,333	1,360	1,383	1,480
0,35	1,212	1,225	1,240	1,258	1,268	1,280	1,294	1,312	1,338	1,358	1,455
0,30	1,196	1,207	1,221	1,237	1,246	1,157	1,269	1,285	1,308	1,326	1,420
0,25	1,174	1,185	1,196	1,210	1,218	1,227	1,238	1,252	1,272	1,288	1,375
0,20	1,149	1,157	1,167	1,178	1,185	1,193	1,202	1,213	1,230	1,243	1,320
0,15	1,118	1,125	1,132	1,141	1,146	1,152	1,160	1,168	1,181	1,192	1,255
0,10	1,083	1,088	1,093	1,099	1,103	1,107	1,112	1,118	1,127	1,134	1,180
0,05	1,044	1,047	1,049	1,053	1,054	1,057	1,059	1,062	1,067	1,071	1,095
0	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000

211

Tafel 9a.

Táfel 10a.

-

Tafel lla.

→ λ

Tafel 12a.

Tafel 13. Einseitig gerade Vouten.

Einflußlinien für die Belastungsglieder M1 M2

(= Einspannmomente am volleingespannten Träger).

 $\lambda = rac{l_v}{l}$ Obere Zahl η_1 $\mathfrak{M}_1 = -\eta_1 P l$ $n = rac{J_c}{J_A}$ Untere Zahl η_2 $\mathfrak{M}_2 = +\eta_2 P l$

λ	n	1	2	3	4	5	6	7	8	9	10	11
	0,00	0,083 —	0,167 	0,250	0,333 —	0,417 —	0,500 —	0,583 —	0,667 —	0,750 —	0,833 —	0,917
	0,03	077 001	141 005	190 011	225 020	241 031	245 043	229 055	194 068	147 075	088 074	029 056
	0,05	077 002	138 006	186 014	215 025	229 037	227 051	208 065	173 078	126 085	074 081	024 058
1,00	0,10	076 002	134 009	176 019	202 032	210 048	202 065	180 081	147 092	103 098	057 090	018 061
	0,20	075 002	129 012	167 025	186 042	190 061	180 080	156 097	123 108	084 111	044 098	013 065
	0,50	075 003	126 015	156 034	169 056	167 080	153 101	127 119	097 128	064 126	034 107	010 067
	1,00	070 007	116 023	141 047	148 074	142 101	125 125	101 142	074 148	047 141	023 116	007 070
	0,00	0,083	0,167 	0,250 —	0,333 —	0,417 —	0,500 —	0,521 012	0,444 037	0,313 063	0,167 074	0,048 058
	0,03	080 001	156 004	222 009	279 017	318 030	332 047	301 070	238 091	161 101	082 096	023 065
	0,05	080 001	153 005	215 012	263 023	293 039	298 058	267 081	209 100	140 108	072 099	019 066
0,50	0,10	079 002	146 008	200 018	238 032	256 052	251 074	220 096	169 113	112 117	057 104	017 066
	0,20	076 003	137 011	183 025	211 043	220 066	208 089	177 111	135 124	088 125	044 108	013 068
	0,50	074 004	126 018	159 037	174 062	172 088	157 110	130 129	096 139	062 133	031 113	009 069
	1,00	070 007	116 023	141 047	148 074	142 101	125 125	101 142	074 148	047 141	023 116	007 070

Obere Zahl η_1 Untere Zahl η_2 Einseitig gerade Vouten. Einflußlinien für $\mathfrak{M}_1 \mathfrak{M}_2$. Tafel 13 (Fortsetzung).

								_				
λ	n	1	2	3	4	5	6	7	8	9	10	11
	0,00	0,083	0,167	0,250	0,333	0,416 001	0,440 014	0,399 038	0,316 065	0,212 085	0,109 087	0,032 062
	0,03	082 000	159 002	228 008	286 017	320 031	311 054	269 079	206 099	134 109	069 099	020 065
	0,05	081 001	155 004	219 011	271 022	296 039	284 063	245 087	186 106	123 112	063 101	018 066
0,40	0,10	080 001	149 007	205 017	246 031	260 053	245 077	208 100	157 116	$\begin{array}{c} 103\\119\end{array}$	051 105	015 067
	0,20	077 003	140 011	187 025	216 044	222 067	206 092	172 113	130 126	084 126	041 109	012 068
	0,50	074 005	126 018	161 037	176 061	175 087	157 111	129 130	096 139	061 134	030 113	008 069
	1,00	070 007	116 023	141 047	148 074	142 101	125 125	101 142	074 148	047 141	$023 \\ 116$	007 070
	0,00	0,083	0,167	0,250	0,333 —	0,393 006	0,391 027	0,342 054	0,264 080	0,174 095	0,088 092	0,025 063
	0,03	083 000	160 002	229 008	285 017	306 036	291 060	246 085	186 105	122 112	061 101	018 066
	0,05	081 001	156 004	221 011	270 023	286 043	269 068	227 092	171 110	111 116	056 103	016 066
0,35	0,10	080 001	150 007	207 017	246 032	256 054	237 079	199 103	148 119	097 121	048 106	014 067
	0,20	077 002	141 010	190 024	216 044	220 068	201 094	$167 \\ 115$	125 128	080 128	039 109	011 068
	0,50	074 005	127 018	162 037	177 061	174 087	156 112	128 130	094 140	061 134	030 113	008 069
	1,00	070 007	116 023	141 047	148 074	142 101	$125 \\ 125$	101 142	074 148	047 141	$023 \\ 116$	007 070
	0,00	0,083 —	0,167 —	0 ,2 50	0,327 002	0,358 016	0,341 041	0,291 067	0,222 091	0,143 103	0,073 096	0,021 063
	0,03	082 000	160 002	230 008	278 020	287 042	266 068	223 093	167 111	108 116	054 104	015 067
	0,05	081 001	156 004	221 011	$\begin{array}{c} 264 \\ 025 \end{array}$	270 048	250 074	209 097	$155 \\ 115$	101 119	050 105	015 066
0,30	0,10	080 001	151 007	209 016	243 034	246 058	225 083	187 107	138 122	089 124	045 107	013 067
	0,20	078 002	142 010	190 025	215 045	215 070	194 096	161 117	119 130	077 128	038 110	011 068
	0,50	073 005	128 018	163 037	177 061	173 088	154 112	126 131	093 140	060 134	029 113	008 069
	1,00	070 007	116 023	141 047	148 074	142 101	$125 \\ 125$	101 142	074 148	047 141	023 116	007 070

Tafel 13 (Fortsetzung).

Einseitig gerade Vouten. Einflußlinien für $\mathfrak{M}_1 \mathfrak{M}_2$. Obere Zahl η_1 Untere Zahl η_2

	<i>n</i>	1	2	3	4	5	6	7	8	0	10	11
^	"	<u> </u>	4		4	,			0		10	11
	0,00	0,083	0,167	0,250	0,307 009	0,320 029	0,295 055	0,249 084	0,186 104	0,120 111	0,061 102	0,018 065
	0,03	082 000	161 002	228 009	263 025	265 050	242 076	201 100	149 117	097 120	048 106	013 067
	0,05	081 001	157 004	221 012	252 030	252 055	229 081	190 105	141 120	091 122	046 106	013 067
0,25	0,10	081 001	152 007	207 018	234 037	232 063	209 089	173 111	128 125	082 126	041 108	011 068
	0,20	079 002	143 010	190 025	211 047	208 073	187 098	153 120	113 131	073 130	036 110	010 068
	0,50	074 005	129 018	163 037	176 062	171 089	152 113	124 132	091 141	058 135	029 113	008 069
	1,00	070 007	116 023	141 047	148 074	142 101	125 125	101 142	074 148	047 141	023 116	007 070
	0,00	0,083	0,167	0,240 003	0,279 019	0,278 042	0,254 070	0,210 096	0,156 113	0,100 118	0,049 104	0,013 067
	0,03	083 001	160 003	218 012	243 032	240 058	216 085	178 108	131 123	085 124	042 108	012 068
	0,05	082 001	157 005	212 015	235 036	231 062	208 089	171 112	126 125	081 125	040 108	011 068
0,20	0,10	081 001	151 008	201 020	220 042	216 068	193 095	158 117	117 129	075 128	037 110	010 068
	0,20	079 002	143 011	186 026	202 050	197 077	176 102	144 123	106 134	068 131	033 111	009 069
	0,50	074 005	129 018	162 037	173 063	167 090	148 115	120 133	088 142	056 136	028 114	008 069
	1,00	070 007	116 023	141 047	148 074	142 101	125 125	101 142	074 148	047 141	023 116	007 070
	0,00	0,083 —	0,156 005	0,198 022	0,211 045	0,205 073	0,183 100	0,149 120	0,108 133	0,069 130	0,035 110	0,011 068
	0,03	083 002	147 008	184 027	196 051	190 079	168 105	137 125	100 136	064 132	031 112	009 069
	0,05	082 002	145 009	181 028	193 053	186 081	165 106	134 127	098 137	063 132	031 112	008 069
0,10	0,10	081 002	141 011	175 031	187 056	180 083	159 109	129 129	095 138	061 134	030 113	008 069
	0,20	079 003	136 014	168 034	178 060	171 087	152 112	123 132	090 141	058 135	028 113	008 069
	0,50	075 006	126 018	154 040	163 067	156 094	138 119	112 137	082 144	052 137	026 115	007 070
	1,00	070 007	116 023	141 047	148 074	142 101	125 125	101 142	074 148	047 141	023 116	007 070

Einseitig parab. Vouten.

Tafel 14.

Einflußlinien für die Belastungsglieder $\mathfrak{M}_1 \mathfrak{M}_2$

(= Einspannmomente am volleingespannten Träger).

 $\lambda = \frac{l_v}{l}$ $\lambda = \frac{J_c}{l}$ $m = \frac{J_c}{J_A}$

Obere Zahl η_1 $\mathfrak{M}_1 = -\eta_1 P l$ Untere Zahl η_2 $\mathfrak{M}_2 = +\eta_2 P l$

λ	n	1	2	3	4	5	6	7	8	9	10	11
	0,00	0,083	0,167 	0,250 	0,333 —	0,417	0,500	0,583 —	0,667	0,750 —	0,833 —	0,917
	0,03	080 001	151 004	207 010	254 019	279 031	286 045	265 063	221 080	159 091	088 088	027 062
	0,05	078 001	146 006	200 013	240 024	259 039	259 055	235 074	194 090	136 098	073 093	022 063
1,00	0,10	078 002	141 008	188 019	220 033	231 050	224 070	199 089	158 104	108 109	057 099	016 065
	0,20	076 003	135 011	176 025	199 042	204 063	191 085	166 103	128 117	085 119	043 104	012 067
	0,50	070 006	122 019	154 037	168 060	166 085	151 108	125 126	094 136	060 132	030 111	008 069
	1,00	070 007	116 023	141 047	148 074	142 101	125 125	101 142	074 148	047 141	023 116	007 070
	0,00	0,083 —	0,167	0,250 	0,333 —	0,417 	0,500 —	0,521 012	0,444 037	0,313 063	0,167 074	0,048 058
	0,03	082 000	157 003	222 010	269 021	293 039	281 062	242 086	184 105	120 112	062 100	018 065
	0,05	082 001	154 005	216 013	259 026	274 047	260 071	222 095	168 112	110 117	055 104	016 067
0,50	0,10	079 002	148 008	202 018	235 035	244 058	228 083	193 105	144 120	094 122	047 106	014 067
	0,20	078 002	141 011	187 025	211 046	212 070	195 095	162 116	122 129	078 128	038 110	011 068
	0,50	074 004	127 017	161 037	175 061	171 088	153 112	126 131	093 140	060 135	029 113	008 069
	1,00	070 007	116 023	141 047	148 074	142 101	125 125	101 142	074 148	047 141	023 116	007 070

Tafel 14 (Fortsetzung).

Einseitig parabol. Vouten. Einflußlinien für $\mathfrak{M}_1 \mathfrak{M}_2$. Obere Zahl η_1 Untere Zahl η_2

	T	ī	1	1	1	1	1	1	1	1		1
λ	n	1	2	3	4	5	6	7	8	9	10	11
	0,00	0,083 —	0,167 	0,250	0,333	0,416 001	0,440 014	0,399 038	0,316 065	0,212 085	0,109 087	0,032 062
	0,03	082 000	160 003	224 010	268 024	280 044	259 071	218 095	164 113	105 117	053 104	016 066
	0,05	081 001	156 004	215 013	253 030	260 052	240 077	202 101	151 117	097 120	048 106	014 067
0,40	0,10	080 001	149 008	203 018	233 037	234 062	215 087	178 110	133 124	085 125	043 108	012 068
	0,20	078 002	141 011	186 026	208 047	207 073	188 098	154 119	115 131	074 129	037 110	011 068
	0,50	074 004	126 018	160 037	152 061	170 089	151 113	123 132	091 141	058 135	029 113	008 069
	1,00	070 007	116 023	141 047	148 074	142 101	125 125	101 142	074 148	047 141	023 116	007 070
	0,00	0,083	0,167	0,250	0,333 	0,393 006	0,391 027	0,342 054	0,264 080	0,174 095	0,088 092	0,025 063
	0,03	082 000	159 003	222 011	260 026	265 050	243 076	204 099	152 116	097 121	048 106	014 067
	0,05	081 001	155 005	215 014	248 031	251 055	229 081	190 104	141 120	090 123	046 106	013 068
0,35	0,10	080 001	149 008	201 020	228 039	228 065	207 090	171 112	126 127	081 126	041 108	012 068
	0,20	078 002	142 011	185 026	205 048	203 075	182 101	150 121	111 132	070 131	035 111	010 068
	0,50	074 005	126 018	160 038	152 062	168 090	149 114	122 133	090 141	057 135	028 114	008 069
	1,00	070 007	116 023	141 047	148 074	142 101	125 125	101 142	074 148	047 141	023 116	007 070
	0,00	0,083	0,167 —	0,250 	0,327 002	0,358 016	0,341 041	0,291 067	0,222 091	0,143 103	0,073 096	0,021 063
	0,03	082 001	159 003	218 013	249 030	249 055	226 082	188 105	138 121	090 123	045 106	013 068
	0,05	082 000	155 005	211 016	239 034	238 060	215 086	177 109	131 124	084 125	042 108	012 067
0,30	0,10	080 001	150 007	199 021	221 042	218 068	196 094	161 116	119 129	076 129	038 109	011 068
	0,20	078 002	141 011	184 027	202 050	197 077	176 103	144 123	106 135	068 132	034 111	010 069
	0,50	074 005	126 018	160 038	172 063	166 090	147 115	120 133	088 142	056 136	028 114	008 069
	1,00	070 007	116 023	141 047	148 074	142 101	$\begin{array}{c} 125\\ 125\end{array}$	101 142	074 148	047 141	023 116	007 070

Obere Zahl η_1 Untere Zahl η_2 Einseitig parabol. Vouten. Einflußlinien für $\mathfrak{M}_1 \mathfrak{M}_2$. Tafel 14 (Fortsetzung).

λ	n	1	2	3	4	5	6	7	8	9	10	11
	0,00	0,083 —	0,167	0,250	0,307 009	0,320 029	0,295 055	0,249 084	0,186 104	0,120 111	0,061 102	0,018 065
	0,03	082 000	158 004	212 015	236 036	233 061	210 088	172 111	128 125	081 126	041 108	011 068
	0,05	082 001	154 006	205 018	227 039	223 065	200 092	164 114	121 127	077 128	039 109	011 068
0,25	0,10	080 001	148 008	194 023	212 046	207 072	185 098	152 119	112 132	072 130	036 110	010 069
	0,20	078 002	141 012	180 029	196 053	190 080	169 106	139 125	101 136	065 133	032 112	009 069
	0,50	074 005	125 018	159 038	170 064	163 091	145 116	118 134	086 143	055 136	027 114	007 070
	1,00	070 007	116 023	141 047	148 074	142 101	125 125	101 142	074 148	047 141	023 116	007 070
	0,00	0,083	0,167	0,240 003	0,279 019	0,278 042	0,254 070	0,210 096	0,156 113	0,100 118	0,049 104	0,013 067
	0,03	081 000	155 006	202 019	220 042	215 069	192 095	157 117	115 130	074 128	036 110	010 068
	0,05	081 001	151 007	196 022	213 045	207 072	185 098	151 119	111 132	071 129	035 110	010 069
0,20	0,10	079 001	146 009	187 026	201 050	195 077	174 103	142 123	104 135	067 131	033 111	009 069
	0,20	077 003	140 013	170 033	188 056	182 083	161 104	131 128	096 138	062 133	030 113	008 069
	0,50	073 005	125 019	157 039	167 066	160 093	142 117	$\begin{array}{c} 115\\135\end{array}$	084 143	054 137	026 114	007 070
	1,00	070 007	116 023	141 047	148 074	142 101	$125 \\ 125$	101 142	074 148	047 141	023 116	007 070
	0,00	0,083 —	0,156 005	0,198 022	0,211 045	0,205 073	0,183 100	0,149 120	0,108 133	0,069 130	0,035 110	0,011 068
	0,03	077 003	141 011	174 031	185 057	178 084	157 110	128 129	094 139	060 134	029 113	008 069
	0,05	077 003	139 012	171 032	181 058	174 086	154 111	$\begin{array}{c} 125\\ 130 \end{array}$	092 140	059 134	029 113	008 069
0,10	0,10	075 003	135 014	166 035	176 061	169 088	150 113	121 132	089 141	057 135	028 114	008 069
	0,20	075 004	131 016	160 037	170 064	163 091	144 116	$\begin{array}{c} 177\\ 134 \end{array}$	085 143	$\begin{array}{c} 055\\ 136 \end{array}$	027 114	007 070
	0,50	073 006	123 020	150 042	159 069	152 096	134 121	109 138	080 146	051 138	$\begin{array}{c} 025\\ 115 \end{array}$	007 070
	1,00	070 007	$\begin{array}{c} 116 \\ 023 \end{array}$	141 047	148 074	142 101	$125 \\ 125$	$\begin{array}{c} 101 \\ 142 \end{array}$	074 148	047 141	$023 \\ 116$	007 070

Tafel 15.

Beidseitig gerade Vouten. $\lambda = \frac{l_v}{l}$ $j_A = \frac{J_c}{J_A}$ $\lambda = \frac{J_c}{l}$ $\lambda = \frac{J_c}{l}$

Einflußlinien für die Belastungsglieder M₁ M₂

(= Einspannmomente am volleingespannten Träger).

									-			
λ	n	1	2	3	4	5	6	7	8	9	10	11
	0	0,083	0,167	0,250	0,333	0,417	0,500 500	0,417	0,333	0,250	0,167	0,083
	0,03	078 004	142 019	192 044	222 082	222 135	191 191	135 222	082 222	044 192	019 142	004 078
	0,05	077 005	139 021	185 047	210 085	211 132	183 183	132 211	085 210	047 185	021 139	005 077
0,50	0,10	076 005	136 020	178 047	198 085	197 128	171 171	128 197	085 198	047 178	020 136	005 076
	0,20	074 006	131 022	168 048	185 082	181 121	158 158	121 181	082 185	048 168	022 131	006 074
	0,50	073 006	123 024	151 051	163 082	157 114	139 139	114 157	082 163	051 151	024 123	006 073
	1,00	070 007	116 023	141 047	148 074	142 101	125 125	101 142	074 148	047 141	023 116	007 070
	0	0,083	0,167	0,250	0,333	0,406	0,225 225	0,009 406	0,333	0,250	0,167	0,083
	0,03	081 003	149 014	205 035	241 071	240 125	192 192	125 240	071 241	035 205	014 149	003 081
	0,05	079 003	146 016	198 039	229 075	226 127	186 186	127 226	075 229	039 198	016 146	003 079
0,40	0,10	078 004	141 019	186 044	211 080	206 127	174 174	127 206	080 211	044 186	019 141	004 078
	0,20	075 005	134 021	174 047	192 081	188 122	161 161	122 188	081 192	047 174	021 134	005 075
	0,50	074 006	126 023	155 049	168 079	161 112	141 141	112 161	079 168	049 155	023 126	006 074
	1,00	070 007	116 023	141 047	148 074	142 101	125 125	101 142	074 148	047 141	023 116	007 070
	0	0,083	0,167	0,250 —	0,333	0,348 058	0,212 212	0,058 348	 0,33 3	0,250	0,167	0,083
	0,03	081 002	152 012	211 030	246 065	240 118	187 187	118 240	065 246	030 211	012 152	002 081
	0,05	080 002	148 014	204 034	235 068	226 122	181 181	122 226	068 235	034 204	014 148	002 080
0,35	0,10	078 003	142 017	192 039	215 076	207 123	171 171	123 207	076 215	039 192	017 142	003 078
	0,20	076 005	136 019	176 045	194 080	188 120	160 160	120 188	080 194	045 176	019 136	005 076
	0,50	074 006	126 022	157 048	169 078	162 111	141 141	111 162	078 169	048 157	022 126	006 074
	1,00	070 007	116 023	141 047	148 074	142 101	125 125	101 142	074 148	047 141	023 116	007 070

Obere Zahl η_1

Untere Zahl η_2

Tafel 15 (Fortsetzung).

$$\begin{split} \mathfrak{M}_1 &= - \, \eta_1 \, P \, l \\ \mathfrak{M}_2 &= + \, \eta_2 \, P \, l \end{split}$$

		~										
λ	n	1	2	3	4	5	6	7	8	9	10	11
	0	0,083 —	0,167	0 ,2 50 —	0,322 009	0,298 087	0,200 200	0,087 298	0,009 322	0,250	0,167	0,083
	0,03	082 001	156 008	217 025	249 058	230 117	180 180	117 230	058 249	025 217	008 156	001 082
	0,05	081 002	153 010	208 030	236 064	220 117	175 175	117 220	064 236	030 208	010 153	002 081
0,30	0,10	079 003	145 015	195 036	216 072	203 120	167 167	120 203	072 216	036 195	015 145	003 079
	0,20	076 005	137 018	179 042	196 077	186 118	157 157	118 186	077 196	042 179	018 137	005 076
	0,50	074 006	127 022	157 047	169 077	161 110	140 140	110 161	077 169	047 157	022 127	006 074
	1,00	070 007	116 023	141 047	148 074	142 101	125 125	101 142	074 148	047 141	023 116	007 070
	0	0,083 —	0,167	0,250 000	0,290 030	0,259 102	0,188 188	0,102 259	0,030 290	0,000 250	 0,167	0,083
	0,03	083 001	158 006	218 022	238 060	217 115	172 172	115 217	060 238	022 218	006 158	001 083
	0,05	081 002	154 009	210 026	228 064	211 115	168 168	115 211	064 228	026 210	009 154	002 081
0,25	0,10	080 002	148 012	197 033	211 071	196 117	162 162	117 196	071 211	033 197	012 148	002 080
	0,20	078 003	140 017	181 040	194 074	182 115	153 153	115 182	074 194	040 181	017 140	003 078
	0,50	074 006	126 021	157 046	168 076	160 109	139 139	109 160	076 168	046 157	021 126	006 074
	1,00	070 007	116 023	141 047	148 074	142 101	125 125	101 142	074 148	047 141	023 116	007 070
	0	0,083	0,167	0,238 008	0,256 048	0,229 110	0,175 175	0,110 229	0,048 256	0,008 238	0,167	0,083
	0,03	081 001	154 006	207 027	222 064	203 113	163 163	113 203	064 222	027 207	006 154	001 081
	0,05	080 001	151 008	201 030	214 067	197 114	160 160	114 197	067 214	030 201	008 151	001 080
0,20	0,10	078 002	145 012	190 035	202 070	188 114	155 155	114 188	070 202	035 190	012 145	002 078
	0,20	076 003	136 017	177 040	188 074	176 112	149 149	112 176	074 188	040 177	017 136	003 076
	0,50	073 006	125 021	157 045	166 075	158 108	137 137	108 158	075 166	045 157	021 125	006 073
	1,00	070 007	116 023	141 047	148 074	142 101	125 125	101 142	074 148	047 141	023 116	007 070

Tafel 16.

Beidseitig parab. Vouten.

J_A Z

$\lambda = \frac{l_v}{l}$ $n = \frac{J_c}{J_A}$ Einflußlinien für ale Belastungsglieder $\mathfrak{M}_1 \mathfrak{M}_2$ (= Einspannmomente am volleingespannten Träger).

λ	n	1	2	3	4	5	6	7	8	9	10	11
	0	0,083	0,167	0,250	0,333	0,417	0,500 500	0,417	0,333	0,250	0,167	0,083
	0,03	080 002	150 013	206 033	234 070	228 123	184 184	123 228	070 234	033 206	013 150	002 080
	0,05	080 002	147 014	199 036	225 072	215 124	178 178	124 215	072 225	036 199	014 147	002 080
0,50	0,10	079 003	141 018	187 041	206 078	199 122	168 168	122 199	078 206	041 187	018 141	003 079
	0,20	076 004	135 020	174 044	190 079	182 119	$\begin{array}{c} 156\\ 156\end{array}$	119 182	079 190	044 174	020 135	004 076
	0,50	074 005	124 022	155 047	167 077	159 110	139 139	110 159	077 167	047 155	022 124	005 074
	1,00	070 007	116 023	141 047	148 074	142 101	$125 \\ 125$	101 142	074 148	047 141	023 116	007 070
	0	0,083 —	0,167	0,250 —	0,333 —	0,406 009	0,225 225	0,009 406	0,333	0,250	0,167	0,083
	0,03	082 001	154 009	210 029	238 064	222 120	178 178	120 222	064 238	029 210	009 154	001 082
	0,05	080 002	149 012	201 034	224 069	212 120	172 172	120 212	069 224	034 201	012 149	002 080
0,40	0,10	079 003	143 016	192 039	208 074	197 119	163 163	119 197	074 208	039 192	016 143	003 079
	0,20	076 004	138 018	176 043	191 077	180 117	154 154	117 180	077 191	043 176	018 138	004 076
	0,50	073 005	124 022	155 046	167 076	159 109	138 138	109 159	076 167	046 155	022 124	005 073
	1,00	070 007	116 023	141 047	148 074	142 101	125 125	101 142	074 148	047 141	023 116	007 070
	0	0,083 	0,167	0,250	0,333 —	0,348 058	0,212 212	0,058 348	 0,333	0,250	0,167	0,083
	0,03	082 000	156 008	210 027	234 063	216 118	173 173	118 216	063 234	027 210	008 156	000 082
	0,05	081 002	150 011	203 031	221 069	206 119	168 168	119 206	069 221	031 203	011 150	002 081
0,35	0,10	080 002	145 014	190 036	206 072	193 117	160 160	117 193	072 206	036 190	014 145	002 080
E .	0,20	077 004	137 018	177 041	189 075	179 115	151 151	115 179	075 189	041 177	018 137	004 077
	0,50	073 005	124 021	156 046	166 076	158 109	137 137	109 158	076 166	046 156	021 124	005 073
	1,00	070 007	116 023	141 047	148 074	1 4 2 101	$125 \\ 125$	101 142	074 148	047 141	023 116	007 070

Obere Zahl η_{1}

Untere Zahl η_2

Tafel 16 (Fortsetzung).

$$\begin{split} \mathfrak{M}_1 &= - \eta_1 \, P \, l \\ \mathfrak{M}_2 &= + \, \eta_2 \, P \, l \end{split}$$

λ	n	1	2	3	4	5	6	7	8	9	10	11
	0	0,083	0,167	0,250	0,322 009	0,298 087	0,200 200	0,087 298	0,009 322	0,250	0,167	0,083
	0,03	082 001	156 007	210 025	225 065	209 115	167 167	115 209	065 225	025 210	007 156	001 082
	0,05	082 002	151 011	202 030	216 068	200 116	163 163	116 200	068 216	030 202	011 151	002 082
0,30	0,10	080 003	146 013	189 036	202 072	189 115	157 157	115 189	072 202	036 189	013 146	003 080
	0,20	078 004	138 017	175 041	187 075	176 113	149 149	113 176	075 187	041 175	017 138	004 078
	0,50	073 005	124 021	156 046	165 076	157 108	136 136	108 157	076 165	046 156	021 124	005 073
	1,00	070 007	116 023	141 047	148 074	142 101	125 125	101 142	074 148	047 141	023 116	007 070
	0	0,083 —	0,167	0,250 000	0,290 030	0,259 102	0,188 188	0,102 259	0,030 290	0,000 250		0,083
	0,03	082 001	155 008	204 028	216 066	197 114	161 161	114 197	066 216	028 204	008 155	001 082
	0,05	081 001	151 010	196 032	208 069	192 114	158 158	114 192	069 208	032 196	010 151	001 081
0,25	0,10	080 002	146 012	186 036	196 072	182 114	152 152	114 182	072 196	036 186	012 146	002 080
	0,20	078 003	138 016	173 041	183 074	171 112	146 146	112 171	074 183	041 173	016 138	003 078
	0,50	073 005	123 020	154 046	164 075	156 107	135 135	107 156	075 164	046 154	020 123	005 073
	1,00	070 007	116 023	141 047	148 074	142 101	125 125	101 142	074 148	047 141	023 116	007 070
	0	0,083 —	0,167 —	0,238 008	0,256 048	0,229 110	0,175 175	0,110 229	0,048 256	0,008 238	0,167	0,083
	0,03	082 001	152 008	192 033	203 069	187 112	154 154	112 187	069 203	033 192	008 152	001 082
	0,05	081 001	149 010	187 035	197 070	182 112	152 152	112 182	070 197	035 187	010 149	001 081
0,20	0,10	080 002	140 014	178 038	188 072	175 111	147 147	111 175	072 188	038 178	014 140	002 080
	0,20	077 003	131 017	168 042	178 074	167 109	142 142	109 167	074 178	042 168	017 131	003 077
	0,50	073 005	123 020	153 046	162 075	154 106	133 133	106 154	075 162	046 153	020 123	005 073
	1,00	070 007	116 023	141 047	148 074	142 101	125 125	101 142	074 148	047 141	023 116	007 070

Guldan, Rahmentragwerke.

Tafel 13a.

Einseitig gerade Vouten.

Einflußlinien für die Belastungsglieder ଲୀ, ଲୁ

(= Einspannmomente am volleingespannten Träger).

$$\lambda = \frac{l_v}{l} \qquad \qquad \mathfrak{M}_1 = -\eta_1 P l$$
$$n = \frac{J_c}{J_A} \qquad \qquad \mathfrak{M}_2 = +\eta_2 P l$$

Einseitig gerade Vouten.

Tafel 13a (Fortsetzung).

$$\begin{array}{ll} \text{Einflußlinien für } \mathfrak{M}_1 \mathfrak{M}_2. \\ \mathfrak{M}_1 = -\eta_1 \, P \, l & \mathfrak{M}_2 = + \, \eta_2 \, P \, l \end{array}$$

Einseitig gerade Vouten.

Tafel 14a.

Einseitig parabol. Vouten.

Tafel 14a (Fortsetzung).

$$\begin{array}{ll} \text{Einflußlinien für } \mathfrak{M}_1 \, \mathfrak{M}_2. \\ \mathfrak{M}_1 = - \, \eta_1 \, P \, l & \mathfrak{M}_2 = + \, \eta_2 \, P \, l \end{array}$$

Einseitig parabol. Vouten.

Einseitig parabol. Vouten.

Tafel 15a.

$$\mathbf{233}$$

Tafel 16a.

Tafel 17.

Einseitig gerade Vouten.

Stabfestwerte $\alpha_1 \alpha_2 \beta$

für den Durchlaufträger (= Endtangentenwinkel der Biegelinie am freiaufliegenden Träger inf. M = +1).

) n	1,00	0,90	0,80	0,70	0,60	0,50	0,40	0,30	0,20	0,15	0,12
	0,333	0,309	0,282	0,255	0,227	0,198	0,167	0,134	0,098	0,079	0,066
1,00	333	325	315	305	293	279	264	245	219	203	191
	166	157	149	139	129	117	105	090	073	063	056
	333	309	284	258	230	202	172	139	104	084	071
0,90	333	327	320	312	304	294	283	269	250	238	230
	166	158	151	142	133	122	111	098	081	072	065
	333	310	286	261	235	207	178	146	111	092	079
0,80	333	329	324	319	313	306	298	288	275	267	260
	166	160	153	145	137	128	118	106	092	083	077
	333	312	289	265	240	214	186	156	122	103	091
0,70	333	331	327	323	319	315	309	303	294	289	285
	166	161	155	149	142	135	126	116	104	097	091
	333	313	292	270	247	223	197	168	136	118	106
0,60	333	332	329	327	325	322	318	314	309	305	303
	166	162	158	153	147	141	134	126		110	106
	333	315	296	277	256	234	210	184	155	138	126
0,50	333	332	331	330	328	327	325	322	319	317	316
		163		156	152	148	142	136	129	124	121
	333	317	299	281	261	241	218	194	166	149	139
0,45	333	333	332	331	330	328	327	325	323	321	320
	166	164	161	158	154	151	146	141	135	131	128
	333	318	302	285	267	248	227	204	178	163	153
0,40	333	333	332	331	331	330	329	328	326	325	324
	166	164	162	160	157	154	150	146	141	138	135
	333	319	305	289	273	255	237	216	192	178	168
0,35	333	333	333	332	332	331	330	330	328	328	327
	<u> </u>		163		159	156	154	150	146		142
0.00	333	321	308	294	280	264	247	228	207	194	186
0,30	333	333	333	333	332	332	331	331	330	330	329
					101					149	
0.95	333	323	311	299	287	273	259	242	223	212	205
0,25	333 166	333 166	333	333	333	332	332	332	332	331	331
					102		100		100	104	104
0.90	333	324	315	305	295	284	271	258	242	232	226
0,20	333 166	000 166	333 165	333 165	333	333 163	000 169	333 161	332 150	332 158	332 158
				011							
0.15	333	326	319	311	303	295	285	274	262	254	249
0,10	166	333 166	333 166	333 166	333 165	333 165	333 164	333 163	355 162	333 162	000 161
				910	010		200				
0.10	333	329	324	333	313	307	300	292 333	284	279	270 333
0,10	166	167	166	166	166	166	165	165	165	164	164
	222	991			200		216	210	200		202
0.05	333	333	320	320	333	333	333	312	308	333	303 333
-,	166	167	167	167	166	166	166	166	166	166	166
	323	323	333	333	333	333	323	322	333	323	333
0,00	333	333	333	333	333	333	333	333	333	333	333
	166	166	166	166	166	166	166	166	166	166	166

Tafel 17 (Fortsetzung).

(M=+1	(2)
$1 \overline{a_1}$	B
B	
∠ p	<u> </u>

M=+1

Obere Zahl $\bar{\alpha}_1$ Mittlere Zahl $\overline{\alpha}_2$ Untere Zahl $\overline{\beta}$

 $\alpha_1^* = \frac{\alpha_1}{EJ_c} = \overline{\alpha}_1 \frac{l}{EJ_c}$ $\alpha_2^* = \frac{\alpha_2}{EJ_c} = \overline{\alpha}_2 \frac{l}{EJ_c}$ $\beta^* = \frac{\beta}{EJ_c} = \overline{\beta} \frac{l}{EJ_c}$

λ n	0,12	0,10	0,08	0,06	0,05	0,04	0,03	0,02	0,01	0,005	0
	0.066	0.057	0.048	0.038	0.033	0.028	0.022	0.016	0.009	0.005	
1.00	191	182	172	157	150	140	129	115	094	076	
_,	056	050	045	038	035	031	026	021	014	009	-
	071	063	053	043	038	032	026	020	012	007	0,000
0,90	230	223	216	205	199	193	185	174	159	146	090
	065	060	055	048	045	041	036	031	024	018	005
	079	070	061	051	045	039	033	026	017	012	003
0,80	260	256	251	243	239	235	229	222	211	202	163
	077	073	068	062	059	055	051	045	038	033	017
	091	082	072	062	056	050	044	036	027	021	009
0,70	285	281	278	273	271	267	263	258	251	245	219
	091	087	083	078	075	072	068	063	057	052	036
	106	097	088	078	072	066	060	052	043	036	021
0,60	303	301	298	295	294	292	289	286	282	278	261
	106	103	099	095	093	090	087	083	076	073	059
	126	118	110	100	094	088	082	074	065	058	042
0,50	316	314	313	311	310	309	308	306	303	302	292
	121	119	116	113		108	106	103	099	095	083
	139	131	123	113	108	102	096	089	079	073	055
0,45	320	320	319	317	317	316	315	313	311	310	303
	128	126	124	121	119	118	115	113	109	106	096
	153	145	137	128	123	118	112	105	096	090	072
0,40	324	324	323	322	322	321	320	319	318	317	312
	135	134	132	129	128	126	125	122	119	117	108
	168	161	154	146	141	136	130	124	115	109	092
0,35	327	327	326	326	325	325	325	324	323	322	319
	142	140	139	137	136	135	133	131	129	127	120
	186	179	173	165	161	156	151	148	137	131	114
0,30	329	329	329	329	328	328	328	327	327	326	324
	148	147	146	144	143	142	141	140	138		131
	205	199	194	187	183	179	174	169	161	156	141
0,25	331	331	331	331	330	330	330	330	330	329	328
	194	192	191	150		149	140		140	145	141
0.00	226	222	217	211	208	204	200	195	189	184	171
0,20	332	332	332	332	332	332	332	332	331	331	331
	190	197	157	150	150	155	199	104	199	152	149
0.15	249	246	242	237	235	232	229	224	220	216	205
0,15	333	333	333	333	333	333	333	333	333	332	332
	101	161	101	100		160		159	159	158	157
6 4 6	275	273	270	266	265	263	260	258	254	251	243
0,10	333	333	333	333	333	333	333	333	333	333	333
	164	164	164	164	164	164	163	163	163	163	162
0.05	303	302	300	298	297	296	295	294	292	290	286
0,05	333	333	333	333	333	333	333	333	333	333	333
	166	166	166	166	166	166	166	166	166	166	166
0.00	333	333	333	333	333	333	333	333	333	333	383
0,00	333	333	333	333	333	333	333	333	333	333	333
	1 166	166	166	100	166	166	166	166	166	166	166

Tafel 18.

Einseitig parab. Vouten.

Jr

2

$$\lambda = rac{l_v}{l}$$
 $n = rac{J_c}{J_A}$

Stabfestwerte $\alpha_1 \alpha_2 \beta$

für den Durchlaufträger (= Endtangentenwinkel der Biegelinie am freiaufliegenden Träger inf. M = +1).

			_								_
λ n	1,00	0,90	0,80	0,70	0,60	0,50	0,40	0,30	0,20	0,15	0,12
	0.333	0.313	0.292	0.269	0.246	0.221	0.193	0.163	0.129	0.109	0.096
1.00	333	330	326	322	317	311	303	294	282	273	267
2,00	166	161	156	150	143	135	127	116	103	094	088
	200	914						171	197	110	105
0.00	000	014	294	275	200	220	200	205	137	118	105
0,90	166	160	328	545 159	146	120	190	109	290	109	280
		102	157	152		159	152	120		103	
	333	315	296	276	255	232	208	180	148	129	116
0,80	333	332	330	327	325	322	318	313	307	303	299
	166	163	159	154	149	144	137	129	119	113	108
	333	317	299	281	261	240	217	191	160	142	130
0,70	333	332	331	329	328	326	323	320	316	313	310
	166	164	160	157	153	148	143	136	128	122	118
and a second sec	333	318	302	286	268	248	227	203	175	158	147
0.60	333	333	332	331	330	328	327	325	322	320	319
0,00	166	164	162	159	156	152	148	143	136	132	129
					070	050			100	150	107
0 50	333	320	306	291	270	258	240	218	193	178	107
0,50	100	333	100	332	351	330	330	328	327	326	325
		105	105				155	149	144		159
	333	321	308	295	280	264	246	226	203	188	179
0,45	333	333	333	332	332	331	331	330	329	328	327
	166	165	164	162	160	158	155	152	148	145	143
	333	322	310	298	284	270	254	235	213	200	191
0,40	333	333	333	333	332	332	331	331	330	329	329
	166	166	164	163	161	159	157	155	152	149	148
	333	323	313	301	289	276	262	245	225	213	205
0,35	333	333	333	333	333	332	332	332	331	331	331
	166	166	165	164	162	161	159	157	155	153	152
	333	325	315	305	295	283	270	255	238	227	219
0,30	333	333	333	333	333	333	333	332	332	332	332
-	166	166	165	164	163	162	161	160	158	156	155
	333	326	318	309	300	290	279	266	251	242	235
0.25	333	333	333	333	333	333	333	333	333	332	332
-,	166	166	166	165	164	164	163	162	160	159	159
	222	997	991	914	206	208				050	959
0.90	222	041 999	021 999	014 000	200	200	209	210	200	208	202
0,20	166	166	166		165	165	164	163	169	169	161
							104			102	
0.45	333	329	324	318	312	306	299	291	281	275	270
0,15	333	333	333	333	333	333	333	333	333	333	333
	166	166	166	166	166	166	165	165	164	164	164
	333	330	327	323	319	315	310	304	297	293	290
0,10	333	333	333	333	333	333	333	333	333	333	333
	166	167	166	166	166	166	166	166	166	165	165
	333	332	330	328	326	324	321	318	315	312	311
0,05	333	333	333	333	333	333	333	333	333	333	333
	166	167	167	167	167	167	166	166	166	166	166
	333	333	333	333	333	333	333	333	333	333	333
0,00	333	333	333	333	333	333	333	333	333	333	333
ŕ	166	166	166	166	166	166	166	166	166	166	166

J.

Tafel 18 (Fortsetzung).

(M=+1	
1) a1	P
8	an
	$M = +1^{-1}$

Obere Zahl $\bar{\alpha}_1$ Mittlere Zahl $\bar{\alpha}_2$

Untere Zahl $\overline{\beta}$

 $\alpha_1^* = \frac{\alpha_1}{EJ_c} = \overline{\alpha}_1 \frac{l}{EJ_c}$ $\alpha_2^* = \frac{\alpha_2}{EJ_c} = \overline{\alpha}_2 \frac{l}{EJ_c}$ $\beta^* = \frac{\beta}{EJ_c} = \overline{\beta} \frac{l}{EJ_c}$

λ n	0,12	0,10	0,08	0,06	0,05	0,04	0,03	0,02	0,01	0,005	0
· · · · · · · · · · · · · · · · · · ·	0.096	0.086	0.076	0.065	0.058	0.051	0.044	0.035	0.024	0.016	
1.00	267	261	255	246	241	235	227	217	199	183	
2,00	088	084	078	072	068	063	058	051	042	034	—
	105	095	085	074	067	060	052	043	031	023	0,000
0.90	285	281	276	270	266	262	256	248	235	223	090
	098	094	089	083	079	075	070	064	055	047	005
	116	107	097	085	079	072	064	054	041	032	003
0,80	299	296	293	289	286	283	279	274	265	256	163
	108	104	100	095	092	088	084	078	069	062	017
	130	121	111	100	093	086	078	069	056	046	009
0,70	310	309	306	304	302	300	297	293	287	282	219
	118	115	112	107	105	102	098	093	086	079	036
	147	138	129	118	112	105	097	088	075	065	021
0,60	319	318	316	315	313	312	310	308	304	301	261
	129	126	123	120	118	115	112	108	102	097	059
	167	159	151	141	135	128	121	112	099	090	042
0,50	325	324	323	322	322	321	320	319	317	315	292
	139	137	135	132	130	129	126	123	119	115	083
	179	171	163	154	148	142	135	126	114	104	055
0,45	327	327	326	325	325	324	324	323	321	320	303
	143	142	140	138	136	135	133	130	126	123	096
	191	[,] 184	177	168	163	157	150	142	130	121	072
0,40	329	329	328	328	327	327	327	326	325	324	312
	148	146	145	143	142	141	139	137	134	131	108
	205	198	191	183	178	173	167	159	148	140	092
0,35	331	330	330	330	329	329	329	328	328	327	319
	152			148	147	146	145	143	141	138	120
	219	214	207	200	196	191	185	178	168	160	114
0,30	332	331	331	331	331	331	330	330	330	329	324
	155	155	154	153	152	151	150	149	147	145	131
	235	230	225	218	215	210	205	199	190	183	141
0,25	332	332	332	332	332	332	332	332	331	331	328
	159	158		157	156	150	155	154	153	191	141
	252	248	243	238	235	231	227	222	214	208	171
0,20	333	333	333	333	333	333	333	332	332	332	331
	161	161	161	160	160	159	159	158	157	157	149
	270	267	264	259	257	254	251	247	240	236	205
0,15	333	333	333	333	333	333	333	333	333	333	332
		163	163	163	163		162	162	161		157
	290	288	285	282	281	279	276	273	269	265	243
0,10	333	333	333	333	333	333	333	333	333	333	333
	165	165	165	165	165	165	165	164	164	164	162
	311	310	308	307	306	305	304	302	300	298	286
0,05	333	333	333	333	333	333	333	333	333	333	333
-	166	166	166	166	166	166	166	166	166	- 166	166
	333	333	333	333	333	333	333	333	333	333	333
0,00	333	333	333	333	333	333	333	333	333	333	333
	166	166	166	166	166	166	166	166	166	166	166

Tafel 19.

Beidseitig gerade Vouten.

Stabfestwerte $\alpha \beta$

für den Durchlaufträger (= Endtangentenwinkel der Biegelinie am frei-aufliegenden Träger inf. M = +1).

 $\lambda = rac{l_v}{l} \qquad n = rac{J_c}{J_A}$

Untere Zahl $\bar{\beta}$

Obere Zahl $\bar{\alpha}$ $\alpha^* = \frac{\alpha}{EJ_c} = \bar{\alpha} \frac{l}{EJ_c}$ $\beta^* = \frac{\beta}{EJ_c} = \bar{\beta} \frac{l}{EJ_c}$

λ n	1,00	0,90	0,80	0,70	0,60	0,50	0,40	0,30	0,20	0,15	0,12
0,50	0,333 166	0,314 160	0,294 153	0,273 146	0,251 138	0,227 129	0,202 118	0,173 106	0,140 091	0,121 082	0,109 076
0,45	333 166	316 161	297 156	278 149	258 142	236 135	212 126	186 116	155 103	138 096	126 090
0,40	333 166	317 162	300 158	283 152	$\begin{array}{c} 264 \\ 147 \end{array}$	244 141	222 133	198 125	171 115	154 108	144 104
0,35	333 166	319 163	304 160	288 155	271 151	253 146	234 140	212 134	187 126	172- 120	162 117
0,30	333 166	321 164	307 161	293 158	279 155	263 151	245 147	226 142	204 135	191 132	182 129
0,25	333 166	322 165	311 163	299 161	286 158	273 155	258 152	241 149	222 144	210 141	203 139
0,20	333 166	324 165	315 164	305 163	294 161	283 159	271 157	257 155	241 152	231 150	225 149
0,15	333 166	326 166	319 165	311 164	303 163	294 162	285 161	274 160	261 158	254 157	249 156
0,10	333 166	329 166	324 166	318 166	313 165	306 165	300 164	292 164	284 163	278 162	275 162
0,05	333 166	331 167	328 167	326 166	323 166	319 166	316 166	312 166	308 166	305 166	303 165
0,00	$\begin{array}{c} 33\dot{3}\\ 16\dot{6}\end{array}$	333 166	333 166	$\begin{array}{c} 333\\ 166\end{array}$	$\begin{array}{c} 333\\ 166\end{array}$	333 166	333 166	333 166	333 166	333 166	333166
λ n	0,12	0,10	0,08	0,06	0,05	0,04	0,03	0,02	0,01	0,005	0,00
λ n 0,50	0,12 0,109 076	0,10 0,099 071	0,08 0,089 065	0,06 0,078 059	0,05 0,071 055	0,04 0,064 050	0,03 0,056 045	0,02 0,047 039	0,01 0,035 030	0,005 0,026 024	0,00 0,000 000
λ n 0,50 0,45	0,12 0,109 076 126 090	0,10 0,099 071 117 086	0,08 0,089 065 108 081	0,06 0,078 059 097 076	0,05 0,071 055 091 072	0,04 0,064 050 085 069	0,03 0,056 045 077 064	0,02 0,047 039 069 059	0,01 0,035 030 057 052	0,005 0,026 024 049 046	0,00 0,000 000 025 025
λ n 0,50 0,45 0,40	0,12 0,109 076 126 090 144 104	0,10 0,099 071 117 086 136 100	0,08 0,089 065 108 081 127 097	0,06 0,078 059 097 076 117 092	0,05 0,071 055 091 072 112 089	0,04 0,064 050 085 069 106 086	0,03 0,056 045 077 064 099 083	0,02 0,047 039 069 059 091 078	0,01 0,035 030 057 052 081 072	0,005 0,026 024 049 046 073 067	0,00 0,000 025 025 051 049
λ n 0,50 0,45 0,40 0,35	$\begin{array}{c} 0,12\\ 0,109\\ 076\\ 126\\ 090\\ 144\\ 104\\ 162\\ 117\\ \end{array}$	0,10 0,099 071 117 086 136 100 155 114	0,08 0,089 065 108 081 127 097 147 111	0,06 0,078 059 097 076 117 092 138 107	0,05 0,071 055 091 072 112 089 133 105	0,04 0,064 050 085 069 106 086 128 103	0,03 0,056 045 077 064 099 083 122 100	0,02 0,047 039 069 059 091 078 114 096	0,01 0,035 030 057 052 081 072 105 091	0,005 0,026 024 049 046 073 067 098 087	0,00 0,000 025 025 051 049 077 073
λ n 0,50 0,45 0,40 0,35 0,30	0,12 0,109 076 126 090 144 104 162 117 182 129	0,10 0,099 071 117 086 136 100 155 114 175 127	0,08 0,089 065 108 081 127 097 147 111 168 124	0,06 0,078 059 097 076 117 092 138 107 160 121	0,05 0,071 055 091 072 112 089 133 105 156 120	0,04 0,064 050 085 069 106 086 128 103 151 118	0,03 0,056 045 077 064 099 083 122 100 145 116	0,02 0,047 039 069 059 091 078 114 096 139 113	0,01 0,035 030 057 052 081 072 105 091 130 109	0,005 0,026 024 049 046 073 067 098 087 124 106	0,00 0,000 025 025 051 049 077 073 105 095
λ n 0,50 0,45 0,40 0,35 0,30 0,25	0,12 0,109 076 126 090 144 104 162 117 182 129 203 139	0,10 0,099 071 117 086 100 155 114 175 127 197 138	0,08 0,089 065 108 081 127 097 147 111 168 124 191 136	0,06 0,078 059 097 076 117 092 138 107 160 121 184 134	0,05 0,071 055 091 072 112 089 133 105 156 120 180 133	0,04 0,064 050 085 069 106 086 128 103 151 118 176 132	0,03 0,056 045 077 064 099 083 122 100 145 116 171 130	0,02 0,047 039 069 059 091 078 114 096 139 113 165 128	0,01 0,035 030 057 052 081 072 105 091 130 109 158 125	0,005 0,026 024 049 046 073 067 098 087 124 106 152 123	0,00 0,000 025 025 051 049 077 073 105 095 135 115
x n 0,50 0,45 0,40 0,35 0,30 0,25 0,20	0,12 0,109 076 126 090 144 104 162 117 182 129 203 139 225 149	0,10 0,099 071 117 086 100 155 114 175 127 197 138 220 148	0,08 0,089 065 108 081 127 097 147 111 168 124 191 136 215 147	0,06 0,078 059 097 076 117 092 138 107 160 121 184 134 209 145	0,05 0,071 055 091 072 112 089 133 105 156 120 180 133 206 144	0,04 0,064 050 085 069 106 086 128 103 151 118 176 132 203 143	0,03 0,056 045 077 064 099 083 122 100 145 116 171 130 198 142	0,02 0,047 039 069 059 091 078 114 096 139 113 165 128 194 141	0,01 0,035 030 057 052 081 072 105 091 130 109 158 125 187 139	0,005 0,026 024 049 046 073 067 098 087 124 106 152 123 182 138	0,00 000 025 025 051 049 077 073 105 095 135 115 168 132
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,12 0,109 076 126 090 144 104 162 117 182 129 203 139 225 149 249 156	0,10 0,099 071 117 086 130 155 114 175 127 197 138 220 148 245 156	0,08 0,089 065 108 081 127 097 147 111 168 124 191 136 215 147 241 155	0,06 0,078 059 097 076 117 092 138 107 160 121 184 134 209 145 237 154	0,05 0,071 055 091 072 112 089 133 105 156 120 180 133 206 144 234 154	0,04 0,064 050 085 069 106 086 128 103 151 118 176 132 203 143 231 153	0,03 0,056 045 077 064 099 083 122 100 145 116 171 130 198 142 228 153	0,02 0,047 039 069 059 091 078 114 096 139 113 165 128 194 141 224 152	0,01 0,035 030 057 052 081 072 105 091 130 109 158 125 187 139 219 151	0,005 0,026 024 049 046 073 067 098 087 124 106 152 123 182 138 215 150	0,00 0,000 025 025 051 049 077 073 105 095 135 168 132 204 146
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,12 0,109 076 126 090 144 104 162 117 182 129 203 139 225 149 249 156 275 162	0,10 0,099 071 117 086 136 100 155 114 175 127 197 138 220 148 245 156 272 162	0,08 0,089 065 108 081 127 097 147 111 168 124 191 136 215 147 241 155 270 161	0,06 0,078 059 097 076 117 092 138 107 160 121 184 134 209 145 237 154 266 161	0,05 0,071 055 091 072 112 089 133 105 156 120 180 133 206 144 234 154 265 161	0,04 0,064 050 085 069 106 086 128 103 151 118 176 132 203 143 231 153 263 161	0,03 0,056 045 077 064 099 083 122 100 145 116 171 130 198 142 228 153 260 160	0,02 0,047 039 069 059 091 078 114 096 139 113 165 128 194 141 224 152 257 160	0,01 0,035 030 057 052 081 072 105 091 130 109 158 125 187 139 219 151 254 159	0,005 0,026 024 049 046 073 067 098 087 124 106 152 123 182 138 215 150 251 159	0,00 0,000 025 025 051 049 073 105 095 135 168 132 204 146 243 157
x n 0,50 0,45 0,40 0,35 0,30 0,25 0,20 0,15 0,10 0,05	0,12 0,109 076 126 090 144 104 162 117 182 129 203 139 225 149 249 25 149 249 256 275 162 303 165	0,10 0,099 071 117 086 136 100 155 114 175 127 197 138 220 148 245 156 272 162 302 165	0,08 0,089 065 108 081 127 097 147 111 168 124 191 136 215 147 241 155 270 161 300 165	0,06 0,078 059 097 076 117 092 138 107 160 121 184 134 209 145 237 154 266 161 298 165	0,05 0,071 055 091 072 112 089 133 105 156 120 180 133 206 144 234 154 265 161 297 165	0,04 0,064 050 085 069 106 086 128 103 151 118 176 132 203 143 231 153 263 161 296 165	0,03 0,056 045 077 064 099 083 122 100 145 116 171 130 198 142 228 153 260 160 295 165	0,02 0,047 039 069 059 091 078 114 096 139 113 165 128 194 141 224 152 257 160 294 165	0,01 0,035 030 057 052 081 072 105 091 130 109 158 125 187 139 219 151 254 159 292 165	0,005 0,026 024 049 046 073 067 098 087 124 106 152 123 182 138 215 150 251 159 290 165	0,00 0,000 025 025 049 077 073 105 135 168 132 204 146 243 157 286 164

Tafel 20.

Beidseitig parab. Vouten.

	(JC		
JA-	lv	ly.	a, ì	à
(M=	+1	2-		
$\overline{\mathcal{O}}$	<u>u</u>	2	2)

Stabfestwerte $\alpha \beta$

für den Durchlaufträger (= Endtangentenwinkel der Biegelinie am freiaufliegenden Träger inf. M = +1).

$$\lambda = rac{l_v}{l}$$
 $n = rac{J_c}{J_A}$
Obere Zahl \overline{lpha} $lpha * = rac{lpha}{EJ_c}$

Untere Zahl $\bar{\beta}$

 $\alpha^* = \frac{\alpha}{EJ_c} = \bar{\alpha} \frac{l}{EJ_c}$ $\beta^* = \frac{\beta}{EJ_c} = \bar{\beta} \frac{l}{EJ_c}$

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$												
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	n l	1,00	0,90	0,80	0,70	0,60	0,50	0,40	0,30	0,20	0,15	0,12
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0,50	0,333	0,320	0,305	0,290	0,273	0,256	0,236	0,213	0,186	0,170	0,159
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		166	163	159	155	151	145	139	132	122	115	111
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0,45	333	321	308	293	278	262	244	223	198	183	172
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		166	164	161	157	153	149	144	138	129	124	120
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0,40	333	322	310	297	283	268	252	233	210	196	187
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		166	164	162	159	156	152	148	143	136	132	129
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0,35	333	323	312	301	289	275	260	243	223	210	202
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		166	165	163	161	158	155	152	148	143	139	137
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		333	324	315	305	294	282	269	254	236	225	218
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0,30	166	165	164	162	160	158	156	153	149	146	144
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		333	326	318	309	300	290	279	266	250	241	234
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0,25	166	166	165	163	162	161	159	157	154	152	151
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0,20	333	327	321	314	306	298	288	278	265	257	252
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		166	166	165	165	164	163	162	16 0	158	157	156
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0,15	333	329	324	318	312	306	299	291	281	275	270
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		166	166	166	165	165	164	164	163	162	161	161
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0,10	333	330	327	323	319	315	310	304	297	293	290
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		166	167	166	166	166	166	165	165	164	164	164
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0,05	333	332	330	328	326	324	321	318	315	312	311
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		166	167	167	167	167	166	166	166	166	166	166
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		333	333	333	333	333	333	333	333	333	333	333
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0,00	166	166	166	166	166	166	166	166	166	166	166
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$												
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	n J	0,12	0,10	0,08	0,06	0,05	0,04	0,03	0,02	0,01	0,005	0,00
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		0 150	0.150	0.141	0 130	0 1 2 3	0.116	0 108	0.097	0.083	0.071	0.000
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0,50	111	107	103	0,190	0,120	0,110	086	080	071	063	000
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0,45	172	165	156	146	140	133	125	115	102	091	025
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		120	117	113	109	106	103	099	094	086	079	025
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0,40	187	180	172	162	157	151	143	134	122	111	051
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		129	126	123	120	117	115	112	107	101	095	049
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0,35	202	195	188	179	175	169	162	154	143	133	077
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		137	135	132	130	128	126	123	120	115	110	073
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0,30	218	212	205	198	193	188	182	175	165	156	105
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		144	143	141	139	137	136	134	131	127	124	095
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0,25	234	229	224	217	213	209	204	197	188	181	135
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		151	150	148	147	146	145	143	141	139	136	115
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0,20	252	248	243		234	931	226	221	213	207	168
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		156	155	155	154	153	152	151	150	148	146	132
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	0,15	270	967	263	250	957	954	250	246	240	995	204
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		161	160	160	159	159	158	158	157	156	155	146
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	0,10	200		200			970	976	979	200		949
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		164	164	163	163	163	163	163	162	162	161	240 157
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		911	910	309		206	205	204	309	300		996
0,00 166 166 166 166 166 166 166 166 166 1	0,05	166	166	166	166	166	166	166	166	165	165	164
0,00 166 166 166 166 166 166 166 166 166 16	0,00		220	220	220	220	222	220	220	220	200	220
		166	166	166	166	166	166	166	166	166	166	166

Guldan, Rahmentragwerke.
Tafel 17a.

 $\mathbf{242}$

für den Durchlaufträger (= Endtangentenwinkel der Biegelinie am freiaufliegenden Träger infolge M = +1). Stabfestwerte $\alpha_1 \alpha_2 \beta$

Einseitig gerade Vouten.

 \bigcirc

Hilfstafeln.

Stablestwerte $\alpha_1 \alpha_2 \beta$

für den Durchlaufträger (= Endtangentenwinkel der Biegelinie am freiaufliegenden Träger infolge M = +1).

16*

Tafel 19a.

Hilfstafeln.

Tafel 20a.

Hilfstafeln.

Tafel 21.

Einseitig gerade Vouten.

Belastungsglieder $\alpha_1^0 \alpha_2^0$

für den Durchlaufträger (= Endtangentenwinkel der Biegelinie am freiaufliegenden Träger) inf. gleichmäßiger Vollbelastung.

) X	1,00	0,90	0,80	0,70	0,60	0,50	0,40	0,30	0,20	0,15	0,12
1,00	0,0416	0,0392	0,0364	0,0336	0,0306	0,0273	0,0238	0,0198	0,0153	0,0127	0,0110
	0416	0401	0382	0361	0338	0314	0286	0253	0212	0186	0168
0,90	0416	0394	0369	0342	0313	0282	0249	0211	0167	0141	0124
	0416	0403	0387	0369	0350	0329	0305	0277	0241	0218	0202
0,80	0416	0396	0373	0348	0323	0294	0263	0228	0186	0162	0145
	0416	0405	0393	0379	0364	0347	0327	0304	0274	0255	0242
0,70	0416	0398	0378	0357	0334	0309	0281	0249	0211	0188	0173
	0416	0408	0398	0388	0377	0364	0349	0332	0309	0294	0284
0,60	0416	0401	0384	0366	0347	0326	0302	0275	0242	0222	0208
	0416	0411	0404	0397	0389	0380	0370	0357	0341	0330	0323
0,50	0416	0405	0391	0377	0362	0345	0326	0304	0277	0260	0249
	0416	0413	0409	0405	0399	0393	0387	0379	0368	0362	0357
0,45	0416	0406	0394	0382	0369	0354	0338	0319	0295	0281	0271
	0416	0414	0411	0407	0403	0399	0394	0388	0380	0375	0371
0,40	0416	0408	0398	0388	0377	0364	0350	0334	0314	0302	0293
	0416	0415	0412	0410	0407	0404	0400	0396	0390	0386	0383
0,35	041Ġ	0409	0402	0393	0384	0374	0363	0349	0333	0323	0316
	041Ġ	0415	0414	0412	0410	0408	0405	0402	0398	0395	0393
0,30	0416	0411	0405	0398	0391	0383	0374	0364	0351	0343	0337
	0416	0416	0414	0413	0412	0411	0409	0407	0404	0402	0401
0,25	0416	0412	0408	0403	0398	0392	0386	0378	0368	0362	0358
	0416	0416	0415	0414	0414	0413	0412	0411	0409	0408	0407
0,20	0416	0414	0411	0408	0404	0400	0396	0390	0384	0380	0377
	0416	0416	0416	0415	0415	0415	0414	0414	0413	0412	0412
0,15	0416	0415	0414	0412	0409	0407	0404	0401	0397	0394	0393
	0416	0416	0416	0416	0416	0416	0416	0415	0415	0415	0414
0,10	0416	0416	0415	0414	0413	0412	0411	0409	0407	0406	0405
	0416	0416	0416	0416	0416	0416	0416	0416	0416	0416	0416
0,05	0416	0416	0416	0416	0416	0415	0415	0415	0414	0414	0414
	0416	0417	0417	0416	0416	0416	0416	0416	0416	0416	0416
0	0416	0416	0416	0416	0416	0416	0416	0416	0416	0416	0416
	0416	0416	0416	0416	0416	0416	0416	0416	0416	0416	0416

Tafel 21 (Fortsetzung).

$l_v = l_v$	J_c	Obere Zahl $\overline{\alpha}_1^0$	$\alpha_1^{0*} = \frac{\alpha_1^0}{E J_c} = \overline{\alpha}_1^0 \frac{q l^3}{E J_c}$
$n = \frac{1}{l}$	$n = \overline{J_A}$	Untere Zahl $\overline{\alpha}_{2}^{0}$	$\alpha_2^{0*} = \frac{\alpha_2^0}{EJ_c} = \overline{\alpha}_2^0 \frac{ql^3}{EJ_c}$

λn	0,12	0,10	0,08	0,06	0,05	0,04	0,03	0,02	0,01	0,005	0
1,00	0,0110 0168	0,0098 0155	0,0084 0140	0,0069 0122	0,0061 0112	0,0053 0100	0,0043 0087	0,0033 0071	0,0020 0050	0,0012 0035	_
0,90	0124	0112	0098	0083	0074	0065	0055	0044	0029	0020	0,0002
	0202	0190	0176	0159	0150	0139	0126	0111	0089	0073	0022
0,80	0145	0133	0119	0104	0095	0086	0076	0063	0048	0037	0013
	0242	0232	0220	0206	0198	0188	0177	0163	0144	0129	0075
0,70	0173	0161	0149	0134	0126	0117	0106	0094	0078	0066	0035
	0284	0276	0267	0255	0249	0241	0232	0221	0205	0193	0145
0,60	0208	0198	0187	0173	0166	0157	0148	0136	0120	0109	0075
	0323	0317	0311	0303	0298	0292	0286	0278	0266	0256	0219
0,50	0249	0240	0231	0220	0213	0206	0198	0188	0174	0164	0130
	0357	0353	0349	0343	0340	0337	0332	0327	0319	0312	0287
0,45	0271	0263	0255	0245	0239	0233	0225	0216	0204	0194	0163
	0371	0368	0365	0361	0358	0355	0352	0348	0342	0337	0316
0,40	0293	0287	0280	0271	0266	0260	0254	0246	0235	0227	0198
	0383	0381	0379	0375	0374	0372	0369	0366	0361	0358	0342
0,35	0316	0310	0304	0297	0293	0288	0283	0276	0267	0260	0235
	0393	0392	0390	0388	0386	0385	0383	0381	0378	0375	0364
0,30	0337	0333	0328	0322	0319	0315	0311	0306	0298	0292	0272
	0401	0400	0399	0398	0397	0396	0395	0393	0391	0389	0382
0,25	0358	0355	0351	0347	0344	0341	0338	0334	0328	0324	0308
	0407	0407	0406	0405	0405	0404	0403	0403	0401	0400	0396
0,20	0377	0374	0372	0369	0367	0365	0363	0360	0356	0353	0341
	0412	0411	0411	0411	0410	0410	0410	0409	0408	0408	0403
0,15	0393	0391	0390	0388	0387	0386	0384	0383	0380	0378	0371
	0414	0414	0414	0414	0414	0414	0414	0413	0413	0413	0412
0,10	0405	0405	0404	0403	0403	0402	040 1	0401	0399	0398	0395
	0416	0416	0416	0416	0416	0416	0416	0416	0416	0415	0415
0,05	0414	0413	0413	0413	0413	0413	0413	0412	0412	0412	0411
	0416	0416	0416	0416	0416	0416	0416	0416	0416	0416	0416
0	0416	0416	0416	0416	0416	0416	0416	0416	0416	0416	0416
	0416	0416	0416	0416	0416	0416	0416	0416	0416	0416	0416

Tafel 22.

Einseitig parab. Vouten.

Belastungsglieder $\alpha_1^0 \alpha_2^0$

für den Durchlaufträger (= Endtangentenwinkel der Biegelinie am freiaufliegenden Träger) inf. gleichmäßiger Vollbelastung.

λ. n	1,00	0,90	0,80	0,70	0,60	0,50	0,40	0,30	0,20	0,15	0,12
1,00	0,0416	0,0399	0,0381	0,0361	0,0339	0,0315	0,0288	0,0256	0,0217	0,0192	0,0175
	0416	0408	0398	0388	0376	0362	0345	0325	0298	0279	0266
0,90	0416	0401	0385	0367	0347	0325	0300	0271	0234	0211	0195
	0416	0410	0402	0394	0384	0372	0359	0342	0320	0305	0293
0,80	0416	0404	0389	0374	0356	0336	0314	0288	0255	0234	0219
	0416	0412	0406	0399	0391	0383	0372	0359	0342	0330	0321
0,70	0416 0416	0405 0413	0393 0409	0380 0404	0365 0398	0348 0392	0329 0384	0306 0375	0278 0362	0259 0353	0246 0346
0,60	0416	0408	0398	0387	0375	0361	0345	0326	0302	0287	0276
	0416	0414	0412	0408	0404	0400	0395	0388	0379	0373	0368
0,50	0416	0410	0402	0394	0384	0374	0362	0347	0328	0316	0307
	0416	0415	0414	0412	0409	0406	0403	0399	0393	0389	0386
0,45	0416	0411	0404	0397	0389	0380	0370	0357	0341	0331	0323
	0416	0416	0415	0413	0411	0409	0406	0403	0399	0396	0394
0,40	0416	0412	0406	0401	0394	0387	0378	0367	0354	0345	0339
	0416	0416	0415	0414	0412	0411	0409	0407	0404	0402	0400
0,35	0416	0413	0409	0404	0398	0392	0385	0377	0366	0359	0354
	0416	0416	0416	0415	0414	0413	0411	0410	0408	0406	0405
0,30	0416	0414	0410	0407	0403	0398	0393	0386	0378	0372	0368
	0416	0416	0416	0416	0415	0414	0413	0412	0411	0410	0409
0,25	0416	0414	0412	0410	0406	0403	0399	039 4	0388	0384	0381
	0416	0416	0416	0416	0416	0415	0415	0414	0413	0413	0412
0,20	0416	0415	0414	0412	0410	0408	0405	0402	0398	0395	0393
	0416	0416	0416	0416	0416	0416	0416	0415	0415	0415	0414
0,15	0416	0416	0415	0414	0413	0411	0410	0408	0405	0404	0402
	0416	0416	0416	0416	0416	0416	0416	0416	0416	0416	0416
0,10	041Ġ	0416	0416	0416	0415	0414	0413	0413	0411	0411	0410
	041Ġ	0416	0416	0416	0416	0416	0416	0416	0416	0416	0416
0,05	0416	0416	0416	0416	0416	0416	0416	0416	0415	0415	0415
	0416	0416	0416	0416	0416	0416	0416	0416	0416	0416	0416
0	0416	0416	0416	0416	0416	0416	0416	0416	0416	0416	0416
	0416	0416	0416	0416	0416	0416	0416	0416	0416	0416	0416

l_v	Jc	Obere Zahl $\overline{\alpha}_1^0$	$\alpha_1^{0*} = \frac{\alpha_1^0}{EJ_c} = \overline{\alpha}_1^0 \frac{ql^3}{EJ_c}$
$\lambda = \frac{1}{l}$	$n = \frac{1}{J_A}$	Untere Zahl $\bar{\alpha}_2^0$	$\alpha_2^{0*} = \frac{\alpha_2^0}{EJ_c} = \bar{\alpha}_2^0 \frac{q l^3}{EJ_c}$

λ	0,12	0,10	0,08	0,06	0,05	0,04	0,03	0,02	0,01	0,005	0
1,00	0,0175 0266	0,0163 0255	0,0148 0243	0,0131 0227	0,0121 0218	0,0110 0207	0,0098 0193	0,0082 0175	0,0061 0148	0,0045 0124	_
0,90	0195	0183	0169	0153	0143	0132	0120	0104	0082	0064	0,0002
	0293	0284	0274	0261	0253	0243	0231	0216	0191	0170	0022
0,80	0219	0208	0195	0179	0170	0160	0147	0132	0110	0092	0013
	0321	0314	0305	0294	0288	0280	0271	0258	0238	0220	0075
0,70	0246	0236	0224	0210	020 2	0192	0181	0167	0145	0128	0035
	0346	0341	0334	0326	0322	0316	0308	0299	0283	0269	0145
0,60	0276	0267	0257	0245	0238	0230	0220	0207	0188	0172	0075
	0368	0365	0360	0355	0351	0347	0342	0335	0324	0314	0219
0,50	0307	0300	0292	0283	0277	0270	0262	0251	0235	0222	0130
	0386	0384	0381	0378	0375	0373	0370	0365	0358	0351	0287
0,45	0323	0317	0310	0302	0297	0291	028 3	0274	0260	0248	0163
	0394	0392	0390	0387	0385	0383	0381	0378	0372	0367	0316
0,40	0339	0333	0328	0320	0316	0311	0305	0297	0285	0274	0198
	0400	0399	0397	0395	0394	0392	0391	0388	0384	0380	0342
0,35	0354	0350	0345	0339	0335	0331	0326	0320	0309	0301	0235
	0405	0404	0403	0402	0401	0400	0399	0397	0394	0391	0364
0,30	0368	0365	0361	0356	0354	0350	0346	0341	0333	0326	0272
	0409	0409	0408	0407	0406	0406	0405	0404	0402	0400	0382
0,25	0381	0379	0376	0372	0370	0368	0365	0361	0355	0350	0308
	0412	0412	0411	0411	0410	0410	0410	0409	0408	0407	0396
0,20	0393	0391	0389	0387	0385	0384	0382	0379	0375	0371	0341
	0414	0414	0414	0414	0413	0413	0413	0413	0412	0411	0403
0,15	0402	0402	0400	0399	0398	0397	039 6	0394	0392	0390	0371
	0416	0416	0415	0415	0415	0415	0415	0415	0415	0414	0412
0,10	0410	0410	0409	0408	0408	0408	0407	0406	0405	0404	0395
	0416	0416	0416	0416	0416	0416	0416	0416	0416	0416	0415
0,05	0415	0415	0415	0415	0414	0414	0414	0414	0414	0413	0411
	0416	0416	0416	0416	0416	0416	0416	0416	0416	0416	0416
0	0416 0416	$\begin{array}{c} 041\dot{6}\\ 041\dot{6}\\ \end{array}$	0416 0416	0416 0416	0416 0416						

Tafel 23.

Beidseitig gerade Vouten.

Belastungsglieder a⁰

für den Durchlaufträger (= Endtangentenwinkel der Biegelinie am freiaufliegenden Träger) inf. gleichmäßiger Vollbelastung.

$$\lambda = \frac{l_v}{l} \qquad n = \frac{J_c}{J_A} \qquad \alpha^0 * = \frac{\alpha^0}{E J_c} = \bar{\alpha}^0 \frac{q \, l^3}{E \, J_c}$$

Tabellenwerte:	$\overline{\alpha}^{0}$
----------------	-------------------------

) n	1,00	0,90	0,80	0,70	0,60	0,50	0,40	0,30	0,20	0,15	0,12
0,50	0,0416	0,0400	0,0384	0,0365	0,0344	0,0321	0,0296	0,0266	0,0228	0,0205	0,0189
0,45	0416	0403	0389	0373	0356	0337	0315	0290	0258	0239	0225
0,40	0416	0405	0394	0381	0367	0351	0334	0313	0287	0271	0260
0,35	0416	0408	0399	0388	0377	0365	0351	0334	0314	0301	0292
0,30	0416	0410	0403	0395	0387	0378	0367	0354	0339	0329	0322
0,25	0416	0412	0407	0401	0395	0389	0381	0372	0361	0354	0349
0,20	0416	0414	0410	0407	0403	0398	0393	0387	0380	0375	0372
0,15	0416	0415	0413	0411	0409	0406	0403	0400	0395	0393	0391
0,10	0416	0416	0415	0414	0413	0412	0410	0409	0407	0406	0405
0,05	0416	0416	0416	0416	0416	0415	0415	0415	0414	0414	0414
0,00	0416	0416	0416	0416	0416	0416	0416	0416	0416	0416	0416
	ı 						·				
λn	0,12	0,10	0,08	0,06	0,05	0,04	0,03	0,02	0,01	0,005	0,00
0,50	0,0189	0,0177	0,0163	0,0146	0,0137	0,0126	0,0113	0,0098	0,0076	0,0059	0,0000

λ	0,12	0,10	0,08	0,06	0,05	0,04	0,03	0,02	0,01	0,005	0,00
0,50	0,0189	0,0177	0,0163	0,0146	0,0137	0,0126	0,0113	0,0098	0,0076	0,0059	0,0000
0,45	0225	0215	0203	0189	0181	0171	0161	0147	0129	0114	0062
0,40	0260	0251	0242	0230	0223	0215	0206	0195	0180	0167	0123
0,35	0292	0285	0278	0268	0263	0257	0250	0240	0228	0218	0182
0,30	0322	0317	0311	0303	0299	0295	0289	0282	0272	0265	0237
0,25	0349	0345	0341	0335	0332	0329	0325	0320	0313	0307	0287
0,20	0372	0369	0366	0363	0361	0359	0356	0353	0348	0344	0330
0,15	0391	0389	0387	0385	0384	0383	0381	0380	0377	0374	0366
0,10	0405	0404	0403	0402	0402	0401	0400	0400	0398	0397	0393
0,05	0414	0413	0413	0413	0413	0413	0412	0412	0412	0412	0411
0,00	0416	0416	0416	0416	0416	0416	0416	0416	0416	0416	0416

Tafel 24.

Beidseitig parab. Vouten.

Belastungsglieder α^0

für den Durchlaufträger (= Endtangentenwinkel der Biegelinie am freiaufliegenden Träger) inf. gleichmäßiger Vollbelastung.

$$\begin{array}{c}
 1 \\
 J_A \\
 J_A \\
 \overline{J_C} \\
 J_A \\
 \overline{J_C} \\
 \overline{J_$$

$$\lambda = \frac{l_r}{l} \qquad n = \frac{J_c}{J_A} \qquad \qquad \alpha^0 * = \frac{\alpha^0}{E J_c} = \bar{\alpha}^0 \frac{q l^3}{E J_c}$$

Tabellenwerte: $\overline{\alpha}^{0}$

) h	1,00	0,90	0,80	0,70	0,60	0,50	0,40	0,30	0,20	0,15	0,12
0,50	0,0416	0,0408	0,0399	0,0388	0,0377	0,0363	0,0348	0,0329	0,0305	0,0289	0,0277
0,45	0416	0409	0402	0393	0383	0372	0359	0344	0323	0310	0300
0,40	0416	0411	0404	0397	0390	0381	0370	0358	0341	0330	0322
0,35	0416 -	0412	0407	0402	0395	0388	0380	0370	0357	0348	0342
0,30	0416	0413	0409	0405	0401	0395	0389	0382	0372	0365	0360
0,25	0416	0414	0412	0409	0405	0402	0397	0392	0385	0380	0376
0,20	0416	0415	0413	0411	0409	0407	0404	0400	0396	0393	0390
0,15	0416	0416	0415	0414	0412	0411	0409	0407	0405	0403	0401
0,10	0416	0416	0416	0415	0415	0414	0413	0412	0411	0410	0410
0,05	0416	0417	0416	0416	0416	0416	0416	0416	0415	0415	0415
0,00	0416	0416	0416	0416	0416	0416	0416	0416	0416	0416	0416
<u> </u>		·	· · · · · · · · · · · · · · · · · · ·							·	

À n	0,12	0,10	0,08	0,06	0,05	0,04	0,03	0,02	0,01	0,005	0
0,50	0,0277	0,0268	0,0257	0,0244	0,0236	0,0226	0,0215	0,0200	0,0177	0,0156	0,0000
0,45	0300	0292	0283	0272	0265	0257	0248	0235	0215	0198	0062
0,40	0322	0316	0308	0299	0293	0287	0279	0268	0252	0238	0123
0,35	0342	0337	0331	0324	0319	0314	0308	0300	0287	0275	0182
0,30	0360	0357	0352	0347	0343	0339	0334	0328	0318	0309	0237
0,25	0376	0374	0371	0367	0364	0361	0358	0353	0346	0340	0287
0,20	0390	0388	0386	0384	0382	0380	0378	0375	0370	0366	0330
0,15	0401	0400	0399	0398	0397	0396	0394	0393	0390	0387	0366
0,10	0410	0409	0409	0408	0408	0407	0406	0406	0404	0403	0393
0,05	0415	0415	0415	0414	0414	0414	0414	0414	0414	0413	0411
0,00	0416	0416	0416	0416	0416	0416	0416	0416	0416	0416	0416

•

Belastungsglieder $\alpha_1^0 \alpha_2^0$

für den Durchlaufträger (= Endtangentenwinkel der Biegelinie am freiaufliegenden Träger) infolge gleichmäßiger Vollbelastung.

Tafel 21a.

Hilfstafeln.

253

Tafel 23a.

Beidseitig gerade Vouten. Belastungsglieder a⁰

für den *Durchlaufträger* (= Endtangentenwinkel der Biegelinie am freiaufliegenden Träger) infolge gleichmäßiger Vollbelastung.

Tafel 24a.

Belastungsglieder a⁰

für den *Durchlaufträger* (= Endtangentenwinkel der Biegelinie am freiaufliegenden Träger) infolge gleichmäßiger Vollbelastung.

.

Tafel 25.

Einseitig gerade Vouten.

			2		Einflußlinien der Belastungsglieder α ₁ º α ₂ º										
	ly I l'iLinie	α_oLi	nie	für d	en <i>Dur</i>	<i>chlauft</i> linie a	<i>räger</i> (m frei	= Endi aufliege	tangent enden '	- Eräger)	cel der •	Biege-			
1	2	14 72 10 11	2	$\lambda = -$	$\frac{l_v}{l}$	Ol	pere Za	whl η_1		$\alpha_1^{0*} =$	$\frac{1}{EJ_c}$	$\eta_1 \ P \ l^2$			
4	a	a ^o ₂	Ζ	$n = \frac{1}{3}$	$\frac{J_c}{J_A}$	Un	tere Za	hl η_2		$\alpha_{2}^{0}* =$	$\frac{1}{EJ_c}$	$\eta_2 \ P \ l^2$			
λ	n	1	2	3	4	5	6	7	8	9	10	11			
	0,00	 _						_			_	-			
	0,03	0,0018 0023	0,0033 0044	0,0045 0065	0,0055 0084	0,0062 0104	0,0066 0119	0,0065 0132	0,0061 0138	0,0052 0136	0,0039 0119	0,0021 0079			
	0,05	0026 0029	0048 0058	0067 0085	0080 0111	0089 0135	0093 0156	0092 0170	0085 0177	0072 0171	0053 0147	0028 0095			
1,00	0,10	0044 0044	0081 0083	0111 0123	0132 0160	0144 0193	0149 0220	0144 0237	0131 0242	0109 0230	0078 0192	0041 0121			
	0,20	0075 0060	0135 0121	0182 0177	0213 0229	0231 0272	0234 0306	0223 0326	0199 0327	0163 0304	0115 0248	0060 0151			
	0,50	0152 0097	0266 0190	0348 0277	0400 0355	0423 0418	0420 0462	0391 0482	0342 0472	0275 0427	0192 0338	0098 0199			
	1,00	0244 0138	0424 0270	0547 0390	0617 0494	0641 0574	0625 0625	0574 0641	0494 0617	0390 0547	0270 0424	0138 0244			
	0,00	0,0035 0069	0,0070 0139	0,0104 0208	0,0139 0277	0,0174 0347	0,0209 0417	0,0227 0469	0,0216 0478	0,0183 0445	0,0131 0355	0,0068 0209			
	0,03	0067 0088	0131 0176	0192 0264	0247 0349	0293 0429	0322 0497	0321 0535	0292 0532	0240 0482	0169 0382	0087 0223			
	0,05	0076 0092	0150 0184	0216 0275	0273 0362	0319 0444	0345 0510	0341 0546	0308 0541	0251 0489	0177 0386	0091 0225			
0,50	0,10	0095 0099	0182 0197	0258 0293	0319 0383	0364 0467	0385 0531	0374 0563	0334 0554	0271 0500	0190 0393	0099 0228			
	0,20	0121 0107	0227 0213	0315 0315	0382 0410	0424 0493	0437 0553	0417 0582	0369 0570	0297 0511	0208 0401	0107 0232			
	0,50	0180 0124	0321 0244	0428 0357	0498 0459	0532 0542	0530 0591	0495 0613	0430 0595	0343 0528	0238 0413	0123 0238			
	1,00	0244 0138	0424 0270	0547 0390	0617 0494	0641 0574	0625 0625	0574 0641	0494 0617	0390 0547	0270 0424	0138 0244			

Obere Zahl η_1 Untere Zahl η_2 Einseitig gerade Vouten. Einflußlinien für $\alpha_1^0 \alpha_2^0$ Tafel 25 (Fortsetzung).

		••						÷				
λ	n	1	2	3	4	5	6	7	8	9	10	11
_	0,00	0,0060 0090	0,0120 0180	0,0180 0270	0,0240 0360	0,0299 0450	0,0332 0519	0,0328 0550	0,0299 0547	0,0244 0494	0,0173 0399	0,0089 0227
	0,03	0092 0104	0182 0207	0266 0311	0340 0409	0397 0498	0415 0560	0399 0587	0354 0574	0286 0515	0201 0403	0104 0233
	0,05	0101 0106	0197 0212	0285 0289	0362 0417	0415 0505	0431 0566	0413 0592	0364 0578	0294 0516	0206 0404	0106 0233
0,40	0,10	0118 0111	0226 0222	0320 0328	0399 0430	0449 0518	0459 0577	0435 0601	0383 0585	0308 0522	0215 0409	0111 0236
	0,20	0141 0117	0265 0232	0367 0343	0446 0446	0490 0532	0495 0588	0466 0611	0408 0592	0326 0529	0227 0412	0117 0238
	0,50	0191 0130	0340 0253	0455 0369	0530 0472	$\begin{array}{c} 0565\\ 0554 \end{array}$	0560 0608	0520 0627	0450 0606	0358 0536	0248 0419	0127 0241
	1,00	0244 0138	0424 0270	0547 0390	0617 0494	0641 0574	0625 0625	0574 0641	0494 0617	0390 0547	0270 0424	0138 0244
	0,00	0,0076 0099	0,0153 0200	0,0229 0299	0,0302 0399	0,0368 0491	0,0391 0557	0,0378 0583	0,0337 0571	0,0277 0511	0,0192 0400	0,0098 0231
	0,03	0108 0111	0212 0221	0309 0330	0394 0436	0446 0524	0458 0581	0434 0605	0382 0589	0308 0525	0215 0410	0111 0237
	0,05	0115 0113	0225 0225	0327 0337	0412 0441	0462 0528	0471 0585	0445 0608	0391 0591	0314 0527	0219 0412	0113 0238
0,35	0,10	0131 0117	0251 0233	0358 0345	0442 0450	0488 0536	0494 0592	0464 0615	0406 0596	0326 0530	0226 0414	0117 0239
	0,20	0152 0121	0287 0241	0399 0357	0480 0462	0522 0545	0522 0601	0488 0621	0425 0601	0339 0535	0235 0417	0121 0240
	0,50	0197 0132	0352 0258	0472 0376	0547 0479	0581 0560	0573 0614	0531 0632	0459 0610	0365 0539	0253 0421	0129 0242
	1,00	0244 0138	0424 0270	0547 0390	0617 0494	0641 0574	0625 0625	0574 0641	0494 0617	0390 0547	0270 0424	0138 0244
	0,00	0,0095 0109	0,0191 0218	0,0286 0327	0,0376 0434	0,0430 0520	0,0446 0578	0,0422 0601	0,0373 0583	0,0302 0525	0,0209 0407	0,0106 0232
	0,03	0124 0117	0246 0234	0359 0350	0448 0458	0493 0542	0497 0597	0467 0619	0410 0600	0328 0534	0227 0415	0117 0239
	0,05	0132 0119	0258 0238	0372 0354	0461 0461	050 4 0546	0508 0 0 00	0477 0620	0415 0601	0332 0534	0231 0417	0119 0240
0,30	0,10	0145 0122	0280 0244	0399 0361	0484 0467	0525 0550	0526 0604	0492 0625	0427 0604	0340 0537	0238 0418	0122 0241
-	0,20	0165 0125	0310 0249	0430 0368	0513 0474	0550 0556	0547 0610	0509 0628	0440 0607	0352 0539	0245 0420	0125 0242
	0,50	0201 0133	0367 0263	0489 0382	0565 0484	0596 0565	0586 0618	0541 0635	0468 0612	0371 0541	0257 0422	0131 0243
	1,00	$\begin{array}{c} 0244 \\ 0138 \end{array}$	0424 0270	0547 0390	0617 0494	$0641 \\ 0574$	0625 0625	$\begin{array}{c} 0574 \\ 0641 \end{array}$	0494 0617	0390 0547	0270 0424	0138 0244

Guldan, Rahmentragwerke.

Tafel 25 (Fortsetzung).

Einseitig gerade Vouten. Einflußlinien für $\alpha_1^0 \alpha_2^0$ Obere Zahl η_1 Untere Zahl η_2

λ	n	1	2	3	4	5	6	7	8	9	10	11
	0,00	0,0117 0117	0,0235 0235	0,0352 0352	0,0444 0461	0,0492 0546	0,0492 0595	0,0464 0618	0,0405 0596	0,0325 0533	0,0224 0411	0,0117 0239
	0,03	0144 0123	0287 0246	0409 0366	0495 0473	0534 0556	0534 0610	0498 0629	0433 0607	0346 0538	0240 0419	0123 0242
	0,05	0150 0124	0294 0249	0421 0369	0503 0475	0542 0557	0541 0611	0503 0629	0437 0608	0349 0539	0243 0420	0124 0242
0,25	0,10	0163 0126	0312 0253	0439 0373	0522 0478	0557 0561	0553 0614	0515 0632	0446 0609	$\begin{array}{c} 0355\\ 0541 \end{array}$	0247 0420	0126 0242
	0,20	0179 0129	0336 0257	0464 0378	0543 0482	0577 0565	0570 0616	0528 0635	0458 0612	0363 0542	0252 0422	0129 0243
	0,50	0210 0136	0382 0268	0505 0384	0580 0488	0609 0569	0597 0621	0551 0638	0475 0615	0376 0543	0261 0423	0133 0243
	1,00	0244 0138	0424 0270	0547 0390	0617 0494	0641 0574	0625 0625	0574 0641	0494 0617	0390 0547	0270 0424	0138 0244
	0,00	0,0142 0124	0,0285 0249	0,0416 0370	0,0505 0479	0,0542 0560	0,0540 0612	0,0502 0631	0,0435 0607	0,0347 0540	0,0240 0420	0,0124 0243
	0,03	0168 0132	0325 0257	0456 0378	0536 0483	$\begin{array}{c} 0571\\ 0565\end{array}$	0564 0616	0523 0635	0453 0612	0360 0541	0250 0422	0128 0243
	0,05	0172 013 3	0334 0261	0463 0380	0543 0484	0576 0565	0569 0618	0527 0635	0457 0612	0363 0541	0251 0422	0129 0243
0,20	0,10	0181 0134	0347 0264	$\begin{array}{c} 0476\\ 0382 \end{array}$	0554 0486	0586 0567	0578 0619	0534 0636	0462 0613	0367 0542	$\begin{array}{c} 0254 \\ 0422 \end{array}$	0130 0243
	0,20	019 4 0136	0363 0265	0491 0384	0568 0488	0598 0569	0588 0621	0543 0638	0469 0614	0372 0542	0258 0423	0132 0243
	0,50	0218 0137	0395 0268	0519 0387	0593 0491	0620 0571	0607 0623	0559 0640	0482 0616	0381 0544	0264 0424	0135 0244
	1,00	0244 0138	0424 0270	0547 0390	0617 0494	0641 0574	0625 0625	0574 0641	0494 0617	0390 0547	0270 0424	0138 0244
	0,00	0,0202 0135	0,0385 0268	0,0513 0389	0,0586 0492	0,0615 0572	0,0603 0625	0,0557 0641	0,0478 0618	0,0378 0545	0,0263 0423	0,0137 0244
	0,03	0219 0135	0397 0268	0523 0389	0596 0493	0163 0573	0609 0624	0560 0641	0483 0617	0382 0544	0265 0424	0137 0244
	0,05	0220 0136	0400 0269	0525 0389	0598 - 0493	0624 0573	0610 0624	0562 0641	0484 0617	038 3 0544	0265 0424	0137 0244
0,10	0,10	0223 0136	0403 0269	0528 0390	0600 0493	0627 0573	0612 0624	0563 0641	0485 0617	0384 0544	0266 0424	0137 0244
	0,20	0228 0137	0408 0269	0532 0390	0604 0493	0630 0573	0615 0624	0566 0641	0487 0617	038 6 0544	0267 0424	0137 0244
	0,50	0240 0137	0416 0270	0540 0390	0611 0494	0636 0574	0620 0625	0570 0641	0491 0617	0388 0544	0268 0424	0138 0244
	1,00	0244 0138	0424 0270	0547 0390	0617 0494	0641 0574	$\begin{array}{c} 0625 \\ 0625 \end{array}$	$\begin{array}{c} 0574 \\ 0641 \end{array}$	0494 0617	0390 0547	0270 0424	0138 0244

Tafel 26.

Einseitig parabol. Vouten.

	-ly	-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2) inve	Einflußlinien der Belastungsglieder $\alpha_1^0 \alpha_2^0$ für den Durchlaufträger (= Endtangentenwinkel der Biege- linie am freiaufliegenden Träger).									
	2	71 72	2	λ = -	$\frac{l_v}{l}$	0	bere Za	ahl η_1		$\alpha_1^{0*} =$	$=\frac{1}{EJ_c}$	$\eta_1 \mathrel{P} l^2$	
	ai	<i>a</i> ^o ₂	7	$n = -\frac{1}{2}$	$\frac{J_c}{J_A}$	Ur	ntere Za	ahl η_2		$\alpha_2^{0*} =$	$=\frac{1}{EJ_c}$	$\eta_2 \ P \ l^2$	
λ	n	1	2	3	4	5	6	7	8	9	10	11	
	0,00		_			_	-	_					
	0,03	0,0036 0048	0,0068 0097	0,0097 0144	0,0122 0190	0,0140 0233	0,0151 0270	0,0153 0298	0,0143 0311	0,0122 0299	0,0090 0251	0,0048 0156	
	0,05	0047 0056	0089 0113	0125 0168	0156 0220	0177 0269	0189 0309	0187 0338	0174 0347	0146 0330	0106 0274	0056 0168	
1,00	0,10	0069 0069	0129 0139	0178 0205	0216 0268	0241 0323	0251 0369	0246 0398	0223 0403	0185 0375	0132 0306	0069 0184	
	0,20	0101 0085	0185 0170	0252 0250	0300 0324	0328 0388	0334 0436	0321 0463	0286 0462	0232 0424	0164 0339	0084 0202	
	0,50	0162 0113	0293 0222	0389 0324	0452 0414	0480 0487	0478 0539	0447 0561	0390 0548	0311 0492	0218 0386	0111 0225	
	1,00	0244 0138	0424 0270	0547 0390	0617 0494	0641 0574	0625 0625	0574 0641	0494 0617	0390 0547	0270 0424	0138 0244	
	0,00	0,0035 0069	0,0070 0139	0,0104 0208	0,0139 0277	0,0174 0347	0,0209 0417	0,0227 0469	0,0216 0478	0,0183 0445	0,0131 0355	0,0068 0209	
	0,03	0099 0104	0194 0208	0280 0310	0353 0408	0403 0493	0419 0554	0401 0580	0355 0568	0287 0509	0201 0399	0104 0231	
	0,05	0111 0108	0214 0217	0308 0322	0384 0422	0431 0508	0444 0568	0423 0594	0373 0579	0300 0518	0210 0406	0108 0235	
0,50	0,10	0129 0114	0246 0227	0348 0337	0423 0436	0468 0521	0476 0580	0450 0603	0394 0587	0316 0524	0220 0409	0114 0237	
	0,20	0153 0120	0287 0237	0395 0351	0472 0453	0511 0537	0514 0593	0481 0615	0420 0596	0335 0531	0232 0414	0120 0237	
	0,50	0198 0130	0355 0255	0474 0372	0548 0476	0579 0557	0572 0611	0530 0630	0458 0608	0364 0538	0252 0420	0129 0242	
	1,00	0244 0138	0424 0270	0547 0390	0617 0494	0641 0574	0625 0625	0574 0641	0494 0617	0390 0547	0270 0424	0138 0244	

Tafel	l 26 (H	fortsetz	ung).	Eir Ei	nseitig Influßli	parabo nien fü	l. Vout ir α ₁ ° α	en. x ₂ 0		Obere Zahl η_1 Untere Zahl η_2			
λ	n	1	2	3	4	5	6	7	8	9	10	11	
-	0,00	0,0060 0090	0,0120 0180	0,0180 0270	0,0240 0360	0,0299 0450	0,0332 0519	0,0328 0550	0,0299 0547	0,0244 0494	0,0173 0399	0,0089 0227	
	0,03	0124 0116	0244 0231	0349 0344	0434 0450	0482 0535	0487 0592	0459 0614	0402 0596	0322 0530	0224 0413	0116 0238	
0,40	0,05	0134 0118	0260 0236	0369 0349	0453 0454	0497 0540	0501 0595	0471 0616	0412 0598	0329 0533	0229 0415	0118 0239	
	0,10	0149 0122	0286 0243	0401 0358	0484 0463	0523 0548	0525 0602	0489 0623	0426 0602	0340 0536	0237 0418	0122 0240	
	0,20	0170 0126	0318 0250	0436 0367	0517 0471	0553 0 <u>5</u> 55	0550 0609	0511 0627	0444 0606	0353 0538	0245 0420	0126 0241	
	0,50	0206 0131	0369 0261	0491 0378	0566 0494	0600 0565	0589 0618	0544 0635	0470 0612	0373 0541	0258 0422	0132 0243	
	1,00	0244 0138	0424 0270	0547 0390	0617 0494	0641 0574	0625 0625	0574 0641	0494 0617	0390 0547	0270 0424	0138 0244	
	0,00	0,0076 0099	0,0153 0200	0,0229 0299	0,0302 0399	0,0368 0491	0,0391 0557	0,0378 0583	0,0337 0571	0,0277 0511	0,0192 0400	0,0098 0231	
	0,03	0138 0120	0270 0241	0387 0358	0473 0464	0515 0548	0516 0602	0484 0622	0422 0602	0336 0537	0234 0418	0120 0241	
	0,05	0146 0122	0284 0244	0403 0362	0487 0467	0529 0551	0529 0605	0493 0624	0428 0604	0342 0537	0239 0418	0122 0241	
0,35	0,10	0161 0125	0307 0250	0428 0368	0511 0473	0549 0556	0546 0609	0508 0628	0440 0607	0351 0540	0244 0419	0125 0241	
	0,20	0180 0129	0336 0255	0458 0375	0537 0478	0573 0562	0565 0615	0525 0633	0455 0610	0361 0542	0251 0421	0129 0242	
	0,50	0213 0136	0377 0263	0503 0384	0579 0486	0609 0568	0597 0620	0550 0637	0475 0614	0376 0542	0261 0423	0133 0243	

								The second secon				
	0,05	0146 0122	0284 0244	0403 0362	0487 0467	0529 0551	0529 0605	0493 0624	0428 0604	0342 0537	0239 0418	0122 0241
0,35	0,10	0161 0125	0307 0250	0428 0368	0511 0473	0549 0556	0546 0609	0508 0628	0440 0607	0351 0540	0244 0419	0125 0241
	0,20	0180 0129	0336 0255	0458 0375	0537 0478	0573 0562	0565 0615	0525 0633	0455 0610	0361 0542	0251 0421	0129 0242
	0,50	0213 0136	0377 0263	0503 0384	0579 0486	0609 0568	0597 0620	0550 0637	0475 0614	0376 0542	0261 0423	0133 0243
	1,00	0244 0138	0424 0270	0547 0390	0617 0494	0641 0574	0625 0625	0574 0641	0494 0617	0390 0547	0270 0424	0138 0244
	0,00	0,0095 0109	0,0191 0218	0,0286 0327	0,0376 0434	0,0430 0520	0,0446 0578	0,0422 0601	0,0373 0583	0,0302 0525	0,0209 0407	0,0106 0232
	0,03	0152 0125	0299 0249	0424 0370	0508 0475	0545 0557	0542 0611	0506 0629	0439 0608	0350 0539	0242 0419	0125 0242
	0,05	0161 0126	0312 0252	0436 0372	0520 0477	0556 0559	0552 0613	0512 0631	0445 0610	$\begin{array}{c} 0355\\ 0541 \end{array}$	0246 0421	0126 0242
0,30	0,10	0173 0128	0331 0255	0456 0376	0537 0481	0571 0563	0565 0616	0524 0634	0453 0611	0361 0543	0251 0421	0128 0243
	0,20	0189 0131	0353 0260	0479 0380	0558 0484	0590 0566	0580 0461	0536 0636	0464 0614	0369 0544	0256 0423	0131 0243
	0,50	0218 0137	038 6 0265	0515 0386	0589 0490	0617 0570	0604 0622	0556 0639	0480 0615	0380 0543	0263 0423	0134 0244

1,00

0138

Obere Zahl η_1 Untere Zahl η_2 Einseitig parabol. Vouten. Einflußlinien für $\alpha_1^0 \alpha_2^0$

Tafel 26 (Fortsetzung).

λ	n	1	2	3	4	5	6	7	8	9	10	11
	0,00	0,0117 0117	0,0235 0235	0,0352 0352	0,0444 0461	0,0492 0546	0,0492 0595	0,0464 0618	0,0405 0596	0,0325 0533	0,0224 0411	0,0117 0239
	0,03	0169 0129	0330 0257	0459 0378	0539 0484	$\begin{array}{c} 0574\\ 0564\end{array}$	0567 0616	0526 0636	0456 0612	0358 0543	0251 0422	0129 0243
	0,05	0177 0130	0339 0259	0469 0380	0548 0484	0581 0565	0573 0619	0531 0636	0459 0612	$\begin{array}{c} 0364\\ 0544\end{array}$	0253 0422	0130 0244
0,25	0,10	0187 0131	0354 0261	0483 0383	0560 0487	0592 0568	0582 0620	0540 0638	0465 0614	0370 0544	0263 0422	0131 0244
	0,20	0200 0133	0372 0265	0499 0385	0576 0489	0604 0569	0593 0622	0548 0638	0473 0616	$0375 \\ 0545$	0260 0423	0133 0244
	0,50	0223 0138	0400 0265	0524 0388	0597 0492	0624 0572	0610 0623	0561 0640	0484 0616	0383 0544	0265 0424	0135 0244
	1,00	0244 0138	0424 0270	0547 0390	0617 0494	$\begin{array}{c} 0641 \\ 0574 \end{array}$	0625 0625	0574 0641	0494 0617	0390 0547	0270 0424	0138 0244
	0,00	0;0142 0124	0,0285 0249	0,0416 0370	0,0505 0479	0,0542 0560	0,0540 0612	0,0502 0631	0,0435 0607	0,0347 0540	0,0240 0420	0,0124 0243
	0,03	0184 0132	0362 0265	0489 0384	0566 0488	0596 0569	0586 0621	0542 0638	0468 0615	0371 0543	0257 0423	0132 0243
	0,05	0192 0134	0366 0265	0495 0385	0571 0489	0601 0570	0591 0621	0545 0638	0471 0615	0373 0543	0259 0423	0132 0243
0,20	0,10	0198 0135	0377 0266	0505 0386	0580 0490	0609 0571	0597 0622	0550 0639	0475 0615	0376 0543	0261 0423	0133 0244
	0,20	0209 0135	0393 0269	$\begin{array}{c} 0515\\ 0388 \end{array}$	0589 0491	$0617 \\ 0572$	0604 0623	0556 0640	0480 0616	0380 0544	0263 0424	0134 0244
	0,50	0226 0137	0404 0269	0532 0389	0604 0493	0630 0573	0615 0624	0566 0641	0487 0617	0386 0544	0267 0424	0137 0244
	1,00	0244 0138	0424 0270	0547 0390	0617 0494	0641 0574	0625 0625	0574 0641	0494 0617	0390 0547	0270 0424	0138 0244
	0,00	0,0202 0135	$0,0385 \\ 0268$	0,0513 0389	0,0586 0492	0,0615 0572	0,0603 0625	0,0557 0641	0,0478 0618	0,0378 0545	0,0263 0423	0,0137 0244
	0,03	0225 0135	0407 0269	0532 0390	0604 0493	0630 0573	$\begin{array}{c} 0615\\ 0624 \end{array}$	0565 0641	0487 0617	0385 0544	0267 0424	0136 0244
	0,05	0229 0135	0409 0269	0533 0390	0605 0493	0631 0573	$\begin{array}{c} 0616\\ 0625 \end{array}$	0566 0641	0488 0617	0386 0544	0267 0424	0136 0244
0,10	0,10	0233 0136	0412 0270	0536 0390	0607 0493	0633 0574	0618 0625	0568 0641	0489 0617	0387 0544	0268 0424	0137 0244
	0,20	0236 0136	0415 0270	0539 0390	0610 0494	0635 0574	0620 0625	0569 0641	0490 0617	0388 0545	0268 0424	0137 0244
	0,50	0240 0137	0420 0270	0543 0391	0614 0494	0638 0574	0622 0625	0572 0641	0492 0617	0389 0545	0269 0424	0138 0244
	1,00	0244 0138	0424 0270	0547 0390	0617 0494	0641 0574	$0625 \\ 0625$	$\begin{array}{c} 0574 \\ 0641 \end{array}$	0494 0617	0390 0547	0270 0424	0138 0244

Tafel 27.

Beidseitig gerade Vouten.

Einflußlinien der Belastungsglieder $\alpha_1^0 \alpha_2^0$

für den Durchlaufträger (= Endtangentenwinkel der Biegelinie am freiaufliegenden Träger).

λ	. n	1	2	3	4	5	6	7	8	9	10	11
	0		_	_	_	_		_	-		-	_
	0,03	0,0046 0038	0,0089 0075	0,0128 0112	0,0162 0146	0,0186 0177	0,0194 0194	0,0177 0186	0,0146 0162	0,0112 0128	0,0075 0089	0,0038 0046
	0,05	0057 0045	0111 0091	0158 0135	0196 0176	0223 0210	0230 0230	0210 0223	0176 0196	0135 0158	0091 0111	0045 0057
0,50	0,10	0079 0059	0150 0117	0210 0173	0257 0224	0286 0266	0291 0291	0266 0286	0224 0257	0173 0210	0117 0150	0059 0079
	0,20	0110 0076	0204 0151	0279 0221	0334 0284	0364 0335	0365 0365	0335 0364	0284 0334	0221 0279	0151 0204	0076 0110
	0,50	0167 0108	0311 0213	0409 0310	0477 0396	0504 0461	0495 0495	0461 0504	0396 0477	0310 0409	0213 0311	0108 0167
	1,00	0244 0138	0424 0270	0547 0390	0617 0494	0641 0574	0625 0625	0574 0641	0494 0617	0390 0547	0270 0424	0138 0244
	0	0,0042 0041	0,0085 0082	0,0127 0123	0,0169 0164	0,0210 0205	0,0225 0225	0,0205 0210	0,0164 0169	0,0123 0127	0,0082 0085	0,0041 0042
	0,03	0081 0069	0159 0137	0233 0205	0297 0269	0342 0323	0349 0349	0323 0342	0269 0297	0205 0233	0137 0159	0069 0081
	0,05	0091 0074	0178 0148	0256 0220	0323 0288	0367 0344	0373 0373	0344 0367	0288 0323	0220 0256	0148 0178	0074 0091
0,40	0,10	0109 0083	0210 0167	0296 0246	0365 0320	0407 0379	0410 0410	0379 0407	0320 0365	0246 0296	0167 0210	0083 0109
	0,20	0134 0095	0253 0189	0350 0279	0421 0359	0460 0424	0459 0459	0424 0460	0359 0421	0279 0350	0189 0253	0095 0134
	0,50	0189 0119	0334 0233	0447 0338	0521 0429	0551 0500	0543 0543	0500 0551	0429 0521	0338 0447	0233 0334	0119 0189
	1,00	0244 0138	0424 0270	0547 0390	0617 0494	0641 0574	0625 0625	0574 0641	0494 0617	0390 0547	0270 0424	0138 0244
	0	0,0064 0060	0,0129 0122	0,0193 0182	0,0257 0242	0,0308 0295	0,0318 0318	0,0295 0308	0,0242 0257	0,0182 0193	0,0122 0129	0,0060 0064
	0,03	0100 0083	0196 0166	0287 0247	0364 0324	0410 0383	0414 0414	0383 0410	0324 0364	0247 0287	0166 0196	0083 0100
	0,05	0109 0087	0212 0174	0308 0259	0385 0338	0428 0399	0432 0432	0399 0428	0338 0385	0259 0308	0174 0212	0087 0109
0,35	0,10	0125 0095	0241 0189	0342 0279	0420 0363	0461 0426	0461 0461	0426 0461	0363 0420	$\begin{array}{c} 0279\\ 0342 \end{array}$	0189 0241	$\begin{array}{c} 0095 \\ 0125 \end{array}$
-	0,20	0148 0104	0279 0207	0385 0305	0463 0393	0501 0459	0498 0498	0459 0501	0393 0463	0305 0385	0207 0279	0104 0148
	0,50	0196 0123	0351 0240	0468 0351	0542 0444	0572 0517	0563 0563	0517 0572	0444 0542	0351 0468	0240 0351	0123 0196
	1,00	0244 0138	0424 0270	0547 0390	0617 0494	$\begin{array}{c} 0641 \\ 0574 \end{array}$	0625 0625	$\begin{array}{c} 0574\\ 0641 \end{array}$	0494 0617	0390 0547	0270 0424	0138 0244

Tafel 27 (Fortsetzung).

Obere Zahl η_{1}

Untere Zahl η_2

 $\alpha_1{}^0 * = \frac{1}{EJ_c} \eta_1 P l^2$ $\alpha_2{}^0 * = \frac{1}{EJ_c} \eta_2 P l^2$

λ	n	1	2	3	4	5	6	7	8	9	10	11
	0	0,0087 0079	0,0176 0158	0,0263 0237	0,0348 0314	0,0396 0374	0,0400 0400	0,0374 0396	0,0314 0348	0,0237 0263	0,0158 0176	0,0079 0087
	0,03	0120 0096	0236 0192	0344 0287	0429 0373	0470 0436	0471 0471	0436 0470	0373 0429	0287 0344	0192 0236	0096 0120
	0,05	0128 0099	0250 0199	0361 0296	0445 0382	0484 0447	0483 0483	0447 0484	0382 0445	0296 0361	0199 0250	0099 0128
0,30	0,10	0141 0105	0274 0210	0388 0310	0470 0400	0508 0468	0504 0504	0468 0508	0400 0470	0310 0388	0210 0274	0105 0141
	0,20	0161 0113	0305 0224	0423 0329	0503 0421	0538 0492	0533 0533	0492 0538	0421 0503	0329 0423	0224 0305	0113 0161
	0,50	0203 0127	0367 0250	0483 0361	0560 0457	0589 0532	0579 0579	0532 0589	0457 0560	0361 0483	0250 0367	0127 0203
	1,00	0244 0138	0424 0270	0547 0390	0617 0494	0641 0574	0625 0625	0574 0641	0494 0617	0390 0547	0270 0424	0138 0244
	0	0,0112 0095	0,0226 0191	0,0339 0287	0,0427 0373	0,0468 0435	0,0469 0469	0,0435 0468	0,0373 0427	0,0287 0339	0,0191 0226	0,0095 0112
	0,03	0142 0108	0278 0216	0402 0321	0485 0412	0521 0480	0517 0517	0480 0521	0412 0485	0321 0402	0216 0278	0108 0142
	0,05	0148 0110	0289 0221	0414 0327	0496 0419	0532 0487	0527 0527	0487 0532	0419 0496	0327 0414	0221 0289	0110 0148
0,25	0,10	0160 0115	0309 0229	0433 0337	0513 0431	0548 0501	0542 0542	0501 0548	0431 0513	0337 0433	0229 0309	0115 0160
	0,20	0178 0120	0333 0238	0459 0349	0537 0444	0569 0517	0560 0560	0517 0569	0444 0537	0349 0459	0238 0333	0120 0178
	0,50	0211 0132	0380 0253	0499 0370	0575 0468	0606 0546	0595 0595	0546 0606	0468 0575	0370 0499	0253 0380	0132 0211
	1,00	0244 0138	0424 0270	0547 0390	0617 0494	0641 0574	0625 0625	0574 0641	0494 0617	0390 0547	0270 0424	0138 0244
	0	0,0139 0110	0,0281 0220	0,0410 0328	0,0494 0418	0,0530 0487	0,0525 0525	0,0487 0530	0,0418 0494	0,0328 0410	0,0220 0281	0,0110 0139
	0,03	0162 0117	$\begin{array}{c} 0314\\ 0231 \end{array}$	0449 0348	$\begin{array}{c} 0531\\0443\end{array}$	0564 0514	0556 0556	0514 0564	0443 0531	0348 0449	0231 0314	0117 0162
	0,05	0166 0118	0323 0234	$\begin{array}{c} 0457\\ 0352 \end{array}$	0538 0447	0570 0519	$\begin{array}{c} 0562\\ 0562\end{array}$	0519 0570	0447 0538	0352 0457	0234 0323	0118 0166
0,20	0,10	0175 0120	0338 0241	0473 0358	0550 0454	0581 0527	0572 0572	0527 0581	0454 0550	0358 0473	0241 0338	0120 0175
	0,20	0188 0123	0353 0248	0487 0365	0565 0463	0599 0538	0584 0584	0538 0599	0463 0565	0365 0487	0248 0353	0123 0188
	0,50	0216 0133	0387 0259	0516 0378	0589 0477	0619 0557	0606 0606	0557 0619	0477 0589	0378 0516	0259 0387	0133 0216
	1,00	0244 0138	0424 0270	0547 0390	0617 0494	$\begin{array}{c} 0641 \\ 0574 \end{array}$	$\begin{array}{c} 0625\\ 0625\end{array}$	0574 0641	0494 0617	0390 0547	0270 0424	0138 0244

Tafel 28.

Beidseitig parab. Vouten.

$$(1) \quad J_{\mathcal{L}} \quad J_{$$

Einflußlinien der Belastungsglieder $\alpha_1^0 \alpha_2^0$

für den Durchlaufträger (= Endtangentenwinkel der Biegelinie am freiaufliegenden Träger).

λ	n	1	2	3	4	5	6	7	8	9	10	11
	0		_	_	_	_	=	_	_		_	
	0,03	0,0088 0071	0,0173 0143	0,0250 0212	0,0313 0277	0,0351 0328	0,0356 0356	0,0328 0351	0,0277 0313	0,0212 0250	0,0143 0173	0,0071 0088
	0,05	0101 0078	0195 0156	0279 0232	0345 0301	0383 0356	0386 0386	0356 0383	0301 0345	0232 0279	0156 0195	0078 0101
0,50	0,10	0122 0089	0231 0178	0324 0261	0393 0337	0430 0397	0431 0431	0397 0430	0337 0393	0261 0324	0178 0231	0089 0122
	0,20	0147 0101	0275 0201	0379 0295	0449 0378	0484 0443	0481 0481	0443 0484	0378 0449	0295 0379	0201 0275	0101 0147
	0,50	0196 0120	0349 0236	0465 0345	0539 0440	0566 0512	0557 0557	0512 0566	0440 0539	0345 0465	0236 0349	0120 0196
	1,00	0244 0138	0424 0270	0547 0390	0617 0494	0641 0574	0625 0625	0574 0641	0494 0617	0390 0547	0270 0424	0138 0244
	0	0,0042 0041	0,0085 0082	0,0127 0123	0,0169 0164	0,0210 0205	0,0225 0225	0,0205 0210	0,0164 0169	0,0123 0127	0,0082 0085	0,0041 0042
	0,03	0118 0093	0231 0185	0333 0276	0412 0357	0452 0420	0454 0454	0420 0452	0357 0412	0276 0333	0185 0231	0093 0118
	0,05	0128 0097	0249 0195	0355 0289	0433 0372	0473 0437	0472 0472	0437 0473	0372 0433	0289 0355	0195 0249	0097 0128
0,40	0,10	0145 0105	0278 0210	0390 0307	0467 0396	0505 0463	0500 0500	0463 0505	0396 0467	0307 0390	0210 0278	0105 0145
	0,20	0166 0113	0314 0225	0428 0330	0506 0421	0538 0492	0533 0533	0492 0538	0421 0506	0330 0428	$\begin{array}{c} 0225\\ 0314 \end{array}$	0113 0166
	0,50	0204 0125	0366 0248	0486 0360	0564 0458	0593 0535	0581 0581	0535 0593	0458 0564	0360 0486	0248 0366	0125 0204
	1,00	0244 0138	0424 0270	0547 0390	0617 0494	0641 0574	0625 0625	0574 0641	0494 0617	0390 0547	0270 0424	0138 0244
	0	0,0064 0060	0,0129 0122	0,0193 0182	0,0257 0242	0,0308 0295	0,0318 0318	0,0295 0308	0,0242 0257	0,0182 0193	0,0122 0129	0,0060 0064
	0,03	0134 0102	0262 0205	0375 0303	0457 0391	0495 0457	0494 0494	0457 0495	0391 0457	0303 0375	0205 0262	0102 0134
	0,05	0143 0106	0277 0212	0394 0313	0474 0403	0511 0470	0509 0509	0470 0511	0403 0474	0313 0394	0212 0277	0106 0143
0,35	0,10	0159 0112	0302 0222	0421 0328	0500 0419	0535 0489	0530 0530	0489 0535	0419 0500	0328 0421	0222 0302	0112 0159
	0,20	0177 0119	0331 0236	0453 0344	0530 0438	0563 0511	0554 0554	0511 0563	0438 0530	0344 0453	0236 0331	0119 0177
	0,50	0209 0127	0374 0251	0501 0369	0575 0467	0604 0546	0590 0590	0546 0604	0467 0575	0369 0501	0251 0374	0127 0209
	1,00	0244 0138	0424 0270	0547 0390	0617 0494	0641 0574	$\begin{array}{c} 0625\\ 0625\end{array}$	0574 0641	0494 0617	0390 0547	0270 0424	0138 0244

Tafel 28 (Fortsetzung).

Obere Zahl η_1

Untere Zahl η_2

 $\alpha_1{}^0 * = \frac{1}{EJ_c} \eta_1 P l^2$ $\alpha_2{}^0 * = \frac{1}{EJ_c} \eta_2 P l^2$

λ	n	1	2	3	4	5	6	7	8	9	10	11
_	0	0,0087 0079	0,0176 0158	0,0263 0237	0,0348 0314	0,0396 0374	0,0400 0400	0,0374 0396	0,0314 0348	0,0237 0263	0,0158 0176	0,0079 0087
	0,03	0154 0111	0294 0222	0418 0328	0498 0420	0534 0488	0529 0529	0488 0534	0420 0498	0328 0418	0222 0294	0111 0154
0,30	0,05	0159 0114	0306 0228	0431 0335	0511 0428	0545 0498	0540 0540	0498 0545	0428 0511	0335 0431	0228 0306	0114 0159
	0,10	0171 0118	0327 0236	0452 0347	0531 0441	0564 0512	0555 0555	0512 0564	0441 0531	0347 0452	0236 0327	0118 0171
	0,20	0187 0123	0351 0245	0476 0358	0553 0455	0583 0528	0574 0574	0528 0583	0455 0553	0358 0476	0245 0351	0123 0187
	0,50	0214 0130	0383 0256	0513 0377	0586 0476	0614 0553	0599 0599	0553 0614	0476 0586	0377 0513	0256 0383	0130 0214
	1,00	0244 0138	0424 0270	0547 Q390	0617 0494	0641 0574	0625 0625	0574 0641	0494 0617	0390 0547	0270 0424	0138 0244
	0	0,0112 0095	0,0226 0191	0,0339 0287	0,0427 0373	0,0468 0435	0,0469 0469	0,0435 0468	0,0373 0427	0,0287 0339	0,0191 0226	0,0095 0112
0,25	0,03	0168 0119	0327 0238	0455 0349	0534 0444	$\begin{array}{c} 0566\\ 0515\end{array}$	0559 0559	0515 0566	0444 0534	0349 0455	0238 0327	0119 0168
	0,05	0175 0121	0337 0242	0465 0354	0544 0450	0574 0522	0565 0565	0522 0574	0450 0544	0354 0465	0242 0337	0121 0175
	0,10	0185 0124	0353 0247	0480 0360	$\begin{array}{c} 0556\\ 0458\end{array}$	0586 0532	0577 0577	0532 0586	0458 0556	0360 0480	0247 0353	0124 0185
	0,20	0200 0128	$\begin{array}{c} 0371\\ 0252 \end{array}$	0497 0369	0572 0468	0600 0543	0589 0589	0543 0600	0468 0572	0369 0497	0252 0371	0128 0200
	0,50	0220 0132	0389 0256	0520 0379	0596 0481	0624 0561	0608 0608	0561 0624	0481 0596	0379 0520	0256 0389	0132 0220
	1,00	0244 0138	0424 0270	0547 0390	0617 0494	$\begin{array}{c} 0641 \\ 0574 \end{array}$	0 62 5 0 62 5	057 4 0641	0494 0617	0390 0547	0270 0424	0138 0244
	0	0,0139 0110	0,0281 0220	0,0410 0328	0, 0494 0418	0,0530 0487	0,0525 0525	0,0487 0530	0,0418 0494	0,0328 0410	0,0220 0281	0,0110 0139
	0,03	0187 0125	0356 0248	0485 0365	0563 0462	0593 0537	058 2 0582	0537 0593	0462 0563	$\begin{array}{c} 0365\\0485\end{array}$	0248 0356	0125 0187
	0,05	0191 0126	0364 0251	0491 0368	0569 0466	0598 0541	0587 0587	0541 0598	0466 0569	0368 0491	0251 0364	0126 0191
0,20	0,10	0201 0128	0374 0255	0501 0372	0578 0471	0606 0547	0594 0594	0547 0606	0471 0578	0372 0501	0255 0374	0128 0201
	0,20	0209 0130	0385 0260	0512 0377	0588 0477	0615 055 4	0602 0602	0554 0615	0477 0588	0377 0512	0260 0385	0130 0209
	0,50	0225 0134	0399 0264	0528 0383	0604 0487	0631 0566	0612 0612	0566 0631	0487 0604	0383 0528	0264 0399	0134 0225
	1,00	0244 0138	0424 0270	0547 0390	0617 0494	0641 0574	$\begin{array}{c} 0625\\ 0625 \end{array}$	0574 0641	0494 0617	0390 0547	0270 0424	0138 0244

Tafel 29.

Symmetrisches Gleichungssystem.

Gekürztes Auflösungsverfahren Muster I.

(Bildmäßige Darstellung.)

Gleich	Rechnunsgang	x_1	<i>x</i> ₂	x_3	X4	X5	B	Zeile
(x_1)	(I)=(1)	D,	2	3	Æ	5	B1	
(x_2)			02/	3	Ð	3	B ₂	(2)
(X3)				D3	A	ß	B3	(3)
(X4)					Dų	(5)	B4	(4)
(X5)						D5	<i>B</i> 5	(5)
(X ₂)	- <u>2</u> ×(I)		Ż	İ	(Å	5	B ₁	(6)
(X3)	$-\frac{3}{D_1} \times (I)$			Ï	Ÿ	ii ii	B ₁	(7)
(X4)	$-\frac{\underline{\mathcal{B}}}{\underline{\mathcal{D}}_{1}} \times (\underline{\mathcal{I}})$					5	<i>B</i> ₁	(8)
(X5)	$-\frac{\partial}{\partial t} \times (I)$					5	<i>B</i> ₁	(9)
	$(I\!I) = \sum (x_2)$		<i>d</i> ₂	3	Ø	(5)	D ₂	(10)=(2)+(6)
(X3)	$-\frac{3}{d_2} \times (I)$			Ġ	(Å	Ś	Ď2	(11)
(X4)	$-\frac{\textcircled{2}}{d_2} x(I)$				Ä	(Š	ΰ,	(12)
(X5)	- <u>(</u>] <u>d</u> 2 ×(<u>I</u>)					<u>نة</u>	D ₂	(13)
	$(III) = \sum (x_3)$			đ3		▲	Ъз	(14)=(3)+(7)+(11)
(X4)	- <u>A</u> x(II)				Å	À	$\dot{D_3}$	(15)
(\mathcal{X}_5)	- <u>Å</u> x (III)					<u>نگ</u>	i,	(16)
	$(I\!\!Y) = \sum (x_4)$				<i>d</i> 4	\square	Ъ4	(17)=(4)+(8)+(12)+(15)
(X5)	- <u>(II</u>)					5	Ĭ4	(18)
	$(\mathbf{Y}) = \sum (x_5)$					<i>d</i> 5	b_5	(19) = (5) + (9) + (13) + + (16) + (18)

Ermittlung der Unbekannten: aus (\mathbf{T}) : $x_5 = \frac{-b_5}{d_s}$

,,	(πr) :	$r = \frac{-\overline{b_4} - x_5. \ (5)}{-\overline{b_4} - \overline{b_5} - \overline{b_5}}$
~	(11).	$-h - r_{-} A - r_{-} A$
"	(III):	$x_3 = \frac{3}{d_1} = \frac{1}{d_2} = \frac{1}{d_1} = \frac{1}{d_2} = \frac{1}{d_2} = \frac{1}{d_2} = \frac{1}{d_1} = \frac{1}{d_2} $
	()).	$x_{2} = -b_{2} - x_{5} \cdot (5) - x_{4} \cdot (4) - x_{3} \cdot (3)$
"	(#).	$\frac{d_2}{d_2} = \frac{d_2}{d_2}$
n	<i>(I)</i> :	$\mathcal{X}_{1} = \frac{-D_{1} - \mathcal{X}_{5} \cdot (2) - \mathcal{X}_{4} \cdot (2) - \mathcal{X}_{3} \cdot (2) - \mathcal{X}_{2} \cdot (2)}{0}$
		·

Hilfstafeln.

Symmetrisches Gleichungssystem.

Tafel 29a.

Zahlenbeispiel.

Gekürzte Auflösung nach Muster I (siehe Tafel 29).

								_			
Gleich.	Rechnungsgang	x1	x2	$ x_3$	x4	x_5	B	Zeile Nr.			
(<i>x</i> ₁)	(I) = (1)	+26,50	+2,15	+ 3,40	+ 1,92	- 6,84	+42,3	(1)			
(x_2)			+32,40	+2,88	+ 3,05	-5,75	+26,5	(2)			
(<i>x</i> ₃)				+38,80	+2,85	- 7,05	-5,4	(3)			
(x4)					+29,10	- 4,90	-52,6	(4)			
(x_5)						+54,00	+15,7	(5)			
(x2)	$-rac{2,15}{26,50}$ · (I)		-0,175	- 0,276	- 0,156	+0,555	- 3,43	(6)			
(<i>x</i> ₃)	$-rac{3,40}{26,50}\cdot(1)$			- 0,436	- 0,246	+ 0,878	-5,43	(7)			
(x4)	$-rac{1,92}{26,50}\cdot({ m I})$				- 0,139	+ 0,495	- 3,07	(8)			
(x ₅)	$+rac{6,84}{26,50}\cdot({ m I})$					- 1,765	+ 10,91	(9)			
	$(II) = \sum (x_2)$	ľ	+32,22	+ 2,60	+2,89	- 5,19	+23,07	(10) = (2) + (6)			
(x3)	$-\frac{2,60}{32,22}$ · (II)			- 0,210	- 0,233	+ 0,419	- 1,86	(11)			
(x 4)	$-rac{2,89}{32,22}\cdot({ m II})$				-0,259	+0,466	- 2,07	(12)			
(<i>x</i> ₅)	$+rac{5,19}{32,22}\cdot \mathrm{(II)}$					- 0,836	+3,72	(13)			
	$(III) = \sum (x_3)$			+38,15	+2,37	- 5,75	- 12,69	(14) = (3) + (7) + (11)			
(x4)	$-\frac{2,37}{38,15}\cdot(\mathrm{III})$				- 0,147	+0,357	+ 0,79	(15)			
(x ₅)	$+rac{5,75}{38,15}\cdot(\mathrm{III})$					- 0,867	- 1,91	(16)			
	$(IV) = \sum (x_4)$				+28,55	- 3,58	- 56,95	(17) = (4) + (8) + (12) - + (15)			
(x5)	$+rac{3,58}{28,55}$ (IV)					- 0,449	- 7,14	(18)			
	$(\mathbf{V}) = \sum (x_5)$					+50,08	+21,28	(19) = (5) + (9) + (13) - (16) + (16) + (18)			
Aus Gl. (V): $x_5 = \frac{-21,28}{50.08} = -0,425$											
((IV): $x_{1} = \frac{+56}{-100}$	5,95 - 3,5	8.0,425	$- \pm \frac{55}{5}$	<u>,43</u>	1 942					
$\begin{array}{c} 28,55 \\ \pm 12.69 \\ \pm 5.75 \\ 0.425 \\ \pm 28,55 \\ 10.49 \\ \pm 66 $											
$,, (111): x_3 = \frac{1}{38,15} $											
,, ,, (II): $x_2 = \frac{-23,07 - 5,20.0,425 - 2,89.1,942 - 2,60.0,148}{22.22} = -\frac{31,27}{22.25} = -0.971$											
	$\begin{array}{c} 32,22 \\$										

$$,, \quad ,, \quad (\mathrm{I})\colon x_1 = \frac{-42,30-6,84\,.\,0,425-1,92\,.\,1,942-3,40\,.\,0,148+2,15\,.\,0,971}{26,50} = -\frac{47,35}{26,50} = -\frac{47,35}{2$$

= --- 1,787.

Tafel 30.

Symmetrisches Gleichungssystem.

Gekürztes Auflösungsverfahren Muster II.

(Bildmäßige Darstellung.)

							Toile
Rechnungsgang	<i>x</i> ₁	<i>x</i> ₂	L3	X4	X5	B	Nr.
(1*)	D		3	Ħ	S	B1	
(2*)		Dz	3	Ø	Ø	B2	
(3*)			03	A	A	B3	
(4*)				Û,		В4	
(5*)					D5	B5	
(I)=(1*)	Di	Z	83	<u> </u>	1	Bj	(1)
(2*)		D 2	3	(4)	(5)	B ₂	(2)
$-\frac{2}{D_1} \times (I)$		2	J	Æ	5	B ₁	(3)
$(II) = \sum_{(2)}^{(3)}$		d ₂	3	Ø	6	b _z	(4)=(2)+(3)
(3*)			D3	A	A	Вз	(5)
$-\frac{3}{n} \times (I)$			Ï	Ë.	<u>اي:</u>	.: B1	(6)
$-\frac{3}{42} \times (I)$			ġ	Ġ	Ġ	Ż ₂	(7)
$(III) = \sum_{(5)}^{(7)}$			đ3	A	▲	D3	(8)=Σ(5)bis(7)
(4*)				D4	(B)	В4	(9)
- <u> </u>				Ψ̈́	Ī	Ë ₁	(10)
$-\frac{\cancel{P}}{dz} \times (II)$				Ψ̈́	Ö	ii Dz	(11)
$-\frac{A}{a} \times (II)$				À	à	Ġz	(12)
$(IV) = \sum_{(g)}^{(12)}$		ļ		đ4	Ø	Ъ4	$(13) = \Sigma(9) bis(12)$
(5*)					05	<i>B</i> 5	(14)
$-\frac{2}{\alpha} \times (I)$					Ī	 By	(15)
$-\frac{3}{42}\times(II)$					Ï	ij Ď2	(16)
— <u> </u>					Ä	ij3	(17)
— <u>(II</u>)					Ġ	By	(18)
$(\mathbf{Y}) = \sum_{(14)}^{(18)}$					d_5	b5	(19)=∑(14)bis(18)
		1		1			3

Ermittlung der Unbekannten x_5 bis x_1 rückläufig aus (II) bis (II) (vgl. auch Tafel 29)

(Beschreibung siehe S. 109.)

Hilfstafeln.

Symmetrisches Gleichungssystem.

Tafel 30a.

Zahlenbeispiel.

Gekürzte Auflösung nach Muster II (Siehe Tafel 30).

Rechnungsgang	x1	x_2	x3	x4	x_5		Zeile Nr.
(1*)	+26,50	+2,15	+ 3,40	+ 1,92	- 6,84	+42,3	
(2*)		+32,40	+ 2,88	+3,05	- 5,75	+26,5	
(3*)			+38,80	+2,85	- 7,05	-5,4	
(4*)				+29,10	- 4,90	- 52,6	
(5*)					+54,00	+15,7	
$(I) = (1^*)$	+ 26,50	+ 2,15	+ 3,40	+ 1,92	- 6,84	+ 42,3	(1)
(2*)		+32,40	+ 2,88	+ 3,05	- 5,75	+26,5	(2)
$-rac{2,15}{26,50}$ · (I)		- 0,175	- 0,276	- 0,156	+0,555	- 3,43	(3)
(II) $= \sum_{(2)}^{(3)}$		+ 32,22	+ 2,60	+ 2,89	- 5,19	+ 23,07	(4) = (2) + (3)
(3*)	ļ		+38,80	+2,85	7,05	- 5,4	(5)
$-rac{3,40}{26,50}$ · (I)			- 0,436	- 0,246	+ 0,878	- 5,43	(6)
$-rac{2,60}{32,22}$ · (II)			- 0,210	- 0,233	+ 0,419	- 1,86	(7)
(III) $= \sum_{(5)}^{(7)}$			+ 38,15	+ 2,37	- 5,75	- 12,69	(8) = (5) bis (7)
(4*)				+29,10	- 4,90	-52,60	(9)
$-rac{1,92}{26,50}\cdot({ m I})$				- 0,139	+0,495	- 3,07	(10)
$-rac{2,89}{32,22}$ · (II)				- 0,259	+0,466	- 2,07	(11)
$-rac{2,37}{38,15}$ · (III)				- 0,147	+0,357	+ 0,79	(12)
$(IV) = \sum_{(9)}^{(12)}$				+ 28,55	- 3,58	- 56,95	(13) = (9) bis (12)
(5*)					+ 54,00	+15,70	(14)
$+rac{6,84}{26,50}$ · (I)					- 1,765	+ 10,91	(15)
$+rac{5,19}{32,22}$ · (II)					- 0,836	+ 3,72	(16)
$+rac{5,75}{38,15}$ · (III)					- 0,867	- 1,91	(17)
$+rac{3,58}{28,55}$ · (IV)					- 0,449	- 7,14	(18)
$(V) = \sum_{(14)}^{(18)}$					+ 50,08	+ 21,28	(19) = (14) bis (18

aus (V): $x_5 = -0,425$ aus (III): $x_3 = +0,148$ aus (I): $x_1 = -1,787$. ,, (IV): $x_4 = +1,942$,, (II): $x_2 = -0,971$

Tafel 31.

Unsymmetrisches Gleichungssystem.

Gekürztes Auflösungsverfahren **Muster III.**

(Bildmäßige Darstellung.)

Gleich.	Rechnungsgang	<i>x</i> ₁	<i>x</i> ₂	x_{j}	X4	x_5	B	Zeile Nr.
(X4)	$(\mathbf{I}) = (1)$	// <i>D</i> _///		3	1	5	By	(1)
(x_{2})			//D2//	3	Ð	3	<i>B</i> ₂	(2)
(X3)				D3	A	A	<i>B</i> 3	(3)
(X4)				(3)	Dų	(B)	B4	(4)
(X5)		Ś	Ø	I	Ø	Dş	<i>B</i> 5	(5)
(x_2)	- <u> </u>		Ż	3	<u></u>	Ī	Ġ,	(6)
(X3)	$-\frac{\Delta}{D_{H}} \times (I)$		Ë	; Ĵ	i 4	i.	Ë,	(7)
(X4)	$-\frac{d\Delta}{h} \times (I)$		2	ii ii	Ë.	- iii	ö,	(8)
(X5)	$-\frac{Q}{D_1} \times (I)$		2	3	4	 5	Ď1	(9)
	$(\mathbf{I}) = \sum (x_2)$		<i>d</i> ₂	3	Ø	6	Ъ2	(10)=(2)+(6)
(X3)	$-\frac{\Sigma(x_{3,2})}{d_2} \times (II)$			3	(Ŧ)	Ġ	i,	(11)
(X4)	$-\frac{\Sigma(x_{4,2})}{d_2} \times (II)$			Ï	(4)	Ï	öz	(12)
(X5)	$-\frac{\Sigma(x_{5,2})}{d_2} x(II)$			Ï	Ŵ	Ï	 Dz	(13)
	$(III) = \sum (x_3)$			d_3	A	A	Ъз	(14)=(3)+(7)+(11)
(X4)	$-\frac{\Sigma(x_{4,3})}{d_3} \times (II)$				À	À	İ3	(15)
(X5)	$-\frac{\Sigma(x_{5,3})}{d_3}x(II)$				Ä	Ä	ii d3	(16)
	$(I\!\!I) = \sum (x_4)$				<i>d</i> 4	5	Ъ4	(17)=(4)+(8)+(12)+
(X5)	$-\frac{\Sigma(x_{5,4})}{d_{4}}x(II)$					Ġ	Ż4	(18)
	$(\mathbf{I}) = \sum (x_5)$					d_5	<i>b</i> 5](19)=(5)+(9)+(13)+ +(16)+(18)

Ermittlung der Unbekannten: aus (\mathbf{T}) : $x_5 = \frac{-b_5}{d_5}$ (\mathbf{T}) : $x_4 = \frac{-b_4 - x_5 \cdot \mathbf{S}}{d_4}$ (\mathbf{T}) : $x_3 = \frac{-b_3 - x_5 \cdot \mathbf{S}}{d_3}$ (\mathbf{T}) : $x_2 = \frac{-b_2 - x_5 \cdot \mathbf{S}}{d_3}$ (\mathbf{T}) : $x_1 = \frac{-b_1 - x_5 \cdot \mathbf{S}}{d_3}$)-x4.(4)-x3 d2 $-x_4 \cdot \mathbf{x} - x_3 \cdot \mathbf{x} - x_2 \cdot \mathbf{x}$ Q

⁽Beschreibung siehe S. 110.)

Hilfstafeln.

Unsymmetrisches Gleichungssystem.

Tafel 31a.

Zahlenbeispiel.

Gekürzte Auflösung nach Muster III (siehe Tafel 31).

Gleich.	Rechnungsgang	$ x_1$	x_2	x ₃	x4	x_5	<u> </u>	Zeile	
(<i>x</i> ₁)	(I) = (1)	+62,14	+7,46	+4,48	- 2,04	- 9,86	+51,4	Nr. (1)	
(x ₂)		+5,27	+49,35	+4,08	- 3,56	- 2,19	- 38,1	(2)	
(x ₃)		+3,46	+5,03	+35,64	+ 3,15	- 2,22	+17,2	(3)	
(<i>x</i> ₄)		+1,94	+3,72	+4,08	+28,76	- 1,77	- 4,6	(4)	
(x_5)		- 2,16	- 4,38	+ 3,55	+10,14	+44,18	- 28,8	(5)	
(x ₂)	$-rac{5,27}{62,14}\cdot ({ m I})$		- 0,633	- 0,380	+ 0,173	+ 0,836	- 4,36	(6)	
(x ₃)	$-rac{3,46}{62,14}\cdot ({ m I})$		- 0,415	- 0,249	+ 0,114	+0,549	- 2,86	(7)	
(x4)	$-\frac{1,94}{62,14}\cdot(\mathrm{I})$		- 0,233	-0,140	+0,064	+ 0,308	1,60	(8)	
(<i>x</i> ₅)	$+rac{2,16}{62,14}$ · (I)		+0,259	+0,156	- 0,071	- 0,343	+1,79	(9)	
	$(II) = \sum (x_2)$		+48,72	+ 3,70	- 3,39	- 1,35	- 42,46	(10) = (2) + (6)	
(<i>x</i> ₃)	$-rac{4,62}{48,72}$ (II)			- 0,351	+0,321	+ 0,128	+ 4,03	(11)	
(x 4)	$-rac{3,49}{48,72}$ · (II)			- 0,265	+ 0,243	+ 0,097	+ 3,04	(12)	
(x ₅)	$+rac{4,12}{48,72}$ (II)			+0,313	- 0,287	-0,114	- 3,59	(13)	
	$(III) = \sum (x_3)$			+ 35,04	+ 3,59	- 1,54	+18,37	(14) = (3) + (7) + (11)	
(x4)	$-rac{3,68}{35,04}$ · (III)				- 0,377	+0,162	- 1,93	(15)	
(x ₅)	$-rac{4,02}{35,04}$ · (III)				- 0,412	+ 0,177	- 2,11	(16)	
	$(\mathbf{IV}) = \sum (x_4)$				+ 28,69	- 1,20	- 5,09	(17) = (4) + (8) + (12) + (15)	
(<i>x</i> ₅)	$-\frac{9,37}{28,69}$ · (IV)					+ 0,392	+1,66	(18)	
	$(\mathbf{V}) = \sum (x_5)$					+44,29	- 31,05	(19) = (5) + (9) + (13) + + (16) + (18)	
Aus Gl. (V): $x_5 = \frac{+31,05}{44,29} = +0,701$,, ,, (IV): $x_4 = \frac{+5,09+1,20.0,701}{22.60} = +\frac{5,93}{28.69} = +0,207$									
	$(III): x = -\frac{18}{2}$	3,37 + 1,5	54.0,701	<u> </u>	0,207 =	18,03	= -0.5	15	
$x_{3} = \frac{35,04}{35,04} = $									