Mitteilungen

über

Forschungsarbeiten

auf dem Gebiete des Ingenieurwesens

insbesondere aus den Laboratorien der technischen Hochschulen

herausgegeben vom

Verein deutscher İngenieure.

Heft 113.

Walther: Versuche über den Arbeitsbedarf und die Widerstände beim Blechbiegen.

1912

Springer-Verlag Berlin Heidelberg GmbH

Preis: 1 *M* für Lehrer und Schüler technischer Schulen, 2 *M* für sonstige Bezieher. Eine Zusammenstellung des Inhaltes der Hefte 1 bis 107 der Mitteilungen über Forschungsarbeiten zugleich mit einem Namen- und Sachverzeichnis wird auf Wunsch kostenfrei von der Redaktion der Zeitschrift des Vereines deutscher Ingenieure, Berlin N.W., Charlottenstr. 43, abgegeben. Heft 108 und 109: Vogel: Ueber die Temperaturänderung von Luft und Sauerstoff

beim Strömen durch eine Drosselstelle bei 10° C und Drücken bis zu 150 at. Soennecken: Der Wärmeübergang von Rohrwänden an strömendes Wasser.

Knoblauch und Hilde Mollier: Die spezifische Wärme c_p des überhitzten Wasserdampfes für Drücke von 2 bis 8 kg qcm und Temperaturen von 350 bis 550° C.

Heft 110 und 111: Untersuchungen an elektrisch und mit Dampf betriebenen Fördermaschinen.

Heft 112: E. Heyn und O. Bauer: Untersuchung eines gerissenen Flammrohrschusses.
 R. Baumann: Versuche mit Aluminium, geschweißt und ungeschweißt, bei gewöhnlicher und bei höherer Temperatur.

Bezugsbedingungen:

Preis des Heftes 1 Mk;

zu beziehen durch Julius Springer, Berlin W. 9, Linkstr. 23/24;

für Lehrer und Schüler technischer Schulen 50 Pfg,

zu beziehen gegen Voreinsendung des Betrages vom Verein deutscher Ingenieure, Berlin N.W. 7, Charlottenstraße 43.

Anzeigen: Die ganze Seite 100 \mathscr{M} , $\frac{1}{2}$ Seite 50 \mathscr{M} , $\frac{1}{4}$ Seite 25 \mathscr{M} , $\frac{1}{8}$ Seite Bei <u>3</u> 6 <u>12</u> maliger Wiederholung im Jahre. Beilagen: Preis und erforderliche Anzahl sind unter Einsendung eines Musters bei der Verlagsbuchhandlung von Julius Springer zu erfragen. Auflage des Blattes 27000.

Mitteilungen

über

Forschungsarbeiten

auf dem Gebiete des Ingenieurwesens

insbesondere aus den Laboratorien der technischen Hochschulen

herausgegeben vom

Verein deutscher Ingenieure.

Heft 113.

+++

1912 Springer-Verlag Berlin Heidelberg GmbH ISBN 978-3-662-01689-3 ISBN 978-3-662-01984-9 (eBook) DOI 10.1007/978-3-662-01984-9

Inhalt.

						Seite
Versuche über den Arbeitsbedarf	und	die	Widerstände	beim	Blechbiegen.	Von
Dr.=3ng. Franz Walther	: .		· · · · ·	• •		1

Versuche über den Arbeitbedarf und die Widerstände beim Blechbiegen¹).

Von Dr.-Jug. Franz Walther.

1) Einleitung.

Die Aufgabe, die Vorgänge bei bildsamer Biegung prismatischer Körper zu verfolgen, ist ein Teil der großen Frage nach Gesetzen über die bleibende Formänderung der festen Körper. Während das Verhalten der Gase und Dämpfe bei Formänderung zwar nicht dem inneren Wesen nach erkannt, jedoch zum großen Teil auf überraschend einfache Beziehungen zurückgeführt ist, zeigen sich schon bei der Untersuchung der Formänderung flüssiger Körper große Schwierigkeiten. Der feste Körper endlich, dessen Untersuchung am nächsten liegt und dessen Eigenschaften für die hausbackene Vorstellung am leichtesten der Untersuchung zugänglich scheinen, setzt einer Erforschung der Vorgänge und erst recht einem rechnerischen Aufbau, etwa wie ihn die mechanische Wärmetheorie für Gase und Dämpfe in so überraschend glücklicher und meist einfacher Weise errichtet hat, bisher noch unüberwindbare Schwierigkeiten entgegen. Ein Teil der Forscher hat sich dazu gewendet, die bleibende Formänderung durch ein Gleiten von Schichten unter Auftreten einer »inneren Reibung« darzustellen. Eine Handhabe zu solchen Untersuchungen bieten die bekannten Fließfiguren fester Körper. Sobald diese jedoch unsichtbar werden, hört auch ein Fortschreiten in dieser Richtung auf. Andere haben unter dem Mikroskop das Gefüge der Körper untersucht. Das Vorschreiten in dieser Richtung hat eine außerordentlich reichhaltige Menge von Entdeckungen gezeitigt und leistet für die Beurteilung der Stoffe wertvolle Dienste, jedoch hat man es noch nicht zu einem allgemeineren rechnerischen Ansatze über das Verhalten der betrachteten Stoffe gebracht. Ohne die Bedeutung und den Wert der oben genannten Untersuchungen verkennen zu wollen, setzen sich wieder andere das Ziel, um jeden Preis Unterlagen für die Rechnung des Praktikers zu finden. Es gibt sehr wichtige Formänderungen, die sowohl wissenschaftliches wie praktisches Interesse haben, die aber nicht warten können, bis man für die dem Anschein nach einfacheren, aber bis auf unabsehbare Zeit noch rätselhaften Beanspruchungen, wie es das bleibende Strecken, Stauchen und Verdrehen ist, Grundlagen gewonnen hat, auf welche sich möglicherweise die anderen recht einfach aufbauen. Die einzige Möglichkeit besteht darin, daß man die fraglichen Vorgänge in besonderen Versuchseinrichtungen sich vollziehen läßt, um beobachtend und messend Unterlagen für den praktischen Gebrauch zu finden,

¹) Ausgeführt im Ingenieurlaboratorium der Technischen Hochschule Hannover, Mitteilungen. Heft 113. l

Es ist wohl möglich, daß diese Bemühungen rückwärts auf die allgemeineren, grundlegenden Ueberlegungen und Untersuchungen befruchtend wirken werden.

In der vorliegenden Arbeit ist der zuletzt genannte Weg für die Untersuchung des bildsamen Biegens eingeschlagen worden. Es wurde nur ein kleiner, allerdings wichtiger Teil der Aufgabe bearbeitet: die Widerstände und der Arbeitsbedarf beim Biegen von Flußeisenblech.

Die Literatur über diese Frage ist nicht umfangreich. Die ältesten, von Hartig stammenden Angaben (Dr. E. Hartig, Versuche über Leistung und Arbeitsverbrauch der Werkzeugmaschinen, Leipzig 1873, Teubner) sind einigen wenigen Versuchen entnommen, die Hartig zusammen mit Studierenden ausgeführt hat. Sie ergeben unwahrscheinlich hohe, außerdem sich widersprechende Werte. Eine eingehende Beurteilung dieser Hartigschen Angaben bringt Paul Ludwik (»Technologische Studie über Blechbiegung«, Technische Blätter 1903 S. 137). Ludwik rollt hier die ganze Frage der Blechbiegung auf und stellt eine Anzahl vereinfachender Voraussetzungen auf, um die Aufgabe rechnerisch behandeln zu können. Im Anschluß daran baut er ein sehr anschauliches zeichnerisches Verfahren zur Bestimmung von Biegemoment, Biegearbeit und Federungsbetrag aus. Eine ähnliche Ableitung gibt übrigens Feret (Etude graphique de la flexion des prismes imparfaitement élastiques, Baumaterialienkunde 1900 S. 257). Ludwik gibt sodann einige Formeln für die praktische Anwendung. Die Ergebnisse prüft er mit einer besonders dazu gebauten Versuchseinrichtung und findet seine Aufstellungen bestätigt. Leider erfährt man nur wenig über die Versuchseinrichtung und die Versuche selber.

Wir glaubten einige Punkte nachprüfen zu sollen, über die wir in der im übrigen wertvollen — Arbeit keine erschöpfende Auskunft fanden.

Folgende Punkte wurden der Prüfung unterzogen:

- 1) der Einfluß des Krümmungshalbmessers, auf den gebogen wurde, der Blechstärke und der Blechbreite auf Arbeitsbedarf und Biegemoment,
- 2) Größe und Bedeutung der Federungsarbeit, der Betrag des Federns nach dem Biegen,
- 3) der Einfluß der Geschwindigkeit des Biegens und der Zeiträume zwischen den einzelnen Teilbiegungen auf den Biegewiderstand unerwärmten und erwärmten Eisens,
- 4) die Bedeutung der unbearbeiteten Oberfläche des Bleches für den Rollwiderstand der Walzen der Biegemaschine,
- 5) der Einfluß von absatzweise vollzogenem Biegen auf den gesamten Arbeitsbedarf und den mechanischen Wirkungsgrad der Maschine,
- 6) der Einfluß der schiebenden Wirkung der Auflagerkraft auf Krümmungshalbmesser, Biegemoment und Biegungsarbeit.

Um Aufschluß über die Leistungsfähigkeit von Walzenbiegemaschinen zu erhalten, wurden noch Versuche angestellt über die Reibung zwischen Walzen und Blech.

Von einfachen Grundlagen abgeleitete Formeln wurden mit den Ergebnissen verglichen und in eine für die praktische Rechnung brauchbare Form gebracht.

Der Schluß enthält die Anwendung der gefundenen Ergebnisse auf den Bau und die Berechnung von Biegemaschinen.

2) Beschreibung der Versuchseinrichtung.

Die Versuche wurden vorgenommen mittels einer eigens zu diesem Zweck gebauten Versuchseinrichtung. Die Ausführung der Versuche wurde in erster Linie durch den Verein deutscher Ingenieure ermöglicht, der in gütiger Weise Geldmittel zum Bau der Versuchseinrichtung bewilligte. Zu großem Dank bin ich auch dem Blechwalzwerk Schulz Knaudt Aktiengesellschaft in Essen verpflichtet, das mich durch Ueberlassung von Kesselblech unterstützte, ferner der Hannoverschen Maschinenbau-Aktiengesellschaft vormals Georg Egestorff, die

einige Arbeiten zu herabgesetztem Preise für mich ausführte, und der Bismarckhütte, der ich die Meßfedern verdankte. Auch von den Hülfsmitteln des Ingenieurlaboratoriums der Technischen Hochschule Hannover konnte ich infolge

der gütigen Erlaubnis des Hrn. Geheimen Regierungsrates Professors Frese Gebrauch machen. Den genannten Herren sei auch an dieser Stelle der wärmste Dank ausgesprochen.

Es liegt nahe, für die Durchführung der Biegeversuche eine Einrichtung herzustellen, deren Aufbau im wesentlichen dem der gewöhnlichen Walzenbiegemaschinen gleicht. Dieser Gedanke mußte aber aufgegeben werden, da sich beim Biegen mit Walzen die jeweils unter der Biegewalze erreichte Krümmung weder durch Beobachtung noch durch Rechnung einigermaßen genau feststellen läßt. Für die Bestimmung der Biegearbeit ist aber die wesentlichste Bedingung die, daß man das Maß der erzeugten Krümmung kennt. Bei unserem Verfahren wird vielmehr das Versuchstück auf eine Rolle aufgewickelt; hierbei ist es

möglich, sowohl den Grad der Biegung, den das Blech jedesmal erhält, zu erkennen, als auch den praktisch wichtigen Betrag der Federung beim Freiwerden vom äußeren Zwange zu ermitteln.

Der Formänderungsvorgang ist äußerlich der gleiche, wie bei den gewöhnlichen Walzenbiegemaschinen. Man kann unsere Maschine als die eine Seite einer solchen Walzenbiegemaschine ansehen. Auch die Formänderungen selbst unterscheiden sich in keiner Weise von den dort auftretenden; denn sowohl die Biegemomente wie die Querkräfte werden auf der Seite, auf der die Ursachen für die Formänderung zu suchen sind, die gleichen.

Die Versuchseinrichtung beruht, wie oben angedeutet, auf dem Grundgedanken, daß man den zu untersuchenden Blechstreifen auf eine Rolle, sogenannte Lehre L aufwickelt und die Arbeit feststellt, die zu diesem Vorgang erforderlich ist. Vergl. die Gesamtanordnung der Maschine, Fig. 1 bis 4 oder Fig. 5. Das Blech wird mittels einer Schraube gegen die Oberfläche der Lehre angepreßt. Die Mutter der Befestigungsschraube sitzt mit zwei Zapfen drehbar in einem Bügel, Fig. 5, der mittels zweier Bolzen an der Lehre befestigt ist. Das Blech stützt sich links, Fig. 1, auf eine von Kugellagern getragene Stützrolle R von 400 mm Dmr. Der Lagerbock für die Stützrolle ist auf dem Winkeltisch T verschiebbar unb feststellbar, T selber wird mittels Schraube S am Gestell G in lotrechter Richtung verstellt und dann festgeklemmt. Die Schraube S kann auch dazu benuzt werden, zu Beginn des Versuches das Blech gegen

Fig. 5. Zeigereinrichtung für die Bestimmung von M.

Fig. 6 und 7. Rollenlager zur Biegemaschine.

die Lehre anzubiegen. Die Lehre ist auf einer gehärteten Büchse B, Fig. 6 und 7, verkeilt. Diese sitzt unter Vermittelung von Stahlrollen leicht drehbar auf einem gehärteten Ring, welcher auf das geschliffene vordere Ende der Antriebwelle w warm aufgezogen und dann auf Maß geschliffen ist. Das Drehmoment an der Lehrenwelle, später mit M_b bezeichnet, wird übertragen mittels einer Verdrehungsfeder f von kreisförmigem Querschnitt, deren vierkantige Köpfe einerseits in dem Hinterende der Hauptwelle, andererseits in dem Ende der Büchse

B stecken. M_b bringt die Lehre und damit die Büchse gegenüber der Welle zum Ausschwingen. An der Büchse ist ein Hebel c befestigt, Fig. 8 bis 12. Der Hebel c trägt einen Drehzapfen z für den Lenker d. Das eine Ende von d ist in einem Klotz k gelagert, welcher in einer Führung des mit der Hauptwelle verbundenen Armes d gleiten kann. Das andere Ende des Hebels trägt den Schreibstift n_1 , dessen Ausschlag dem Drehmoment M_b entspricht. Die Zuführung des Papiers wird abgeleitet von dem Abrollen eines Schraubenrädchens s_2 auf dem festgehaltenen großen Schraubenrade s_1 . Diese Bewegung wird durch die Winkelräder w_1 und w_2 auf die Rolle e weiter übertragen, diese treibt gmittels schraubenförmig gewickelter Stahlschnur an. Die mittlere Rolle f trägt das noch nicht beschriebene Papier. Das Papier läuft von f über g am Schreib-

Fig. 9 bis 12. Schreibwerk zur Biegeeinrichtung. 1:4.

stift n_1 vorbei nach g, wo es sich aufwickelt. Ein an dem Arm d befestigter Stift n_2 schreibt dauernd eine Linie und macht die später beschriebene Prüfung der nach jedem »Nullschaubild« vom Hauptstift geschriebenen Nullinie möglich; er gestattet auch eine Aufsicht über etwaiges seitliches Rutschen des Papiers.

Die Maschine wird mittels Schnecke und Schneckenrades S_1 angetrieben, Fig. 1 bis 3. Die Schneckenwelle ist zur Aufnahme einer Kraftmesserkurbel eingerichtet für die Bestimmung des Wirkungsgrades der Maschine im Leerlauf und unter bestimmtem Achsdruck sowie beim Biegen. Im ganzen sind 16 Lehren vorhanden, welche bei den einzelnen Versuchen alle oder mit Ueberschlagung einer oder mehrerer verwendet wurden. Die Durchmesser der Lehren sind etwa in geometrischer Reihe abgestuft, so daß die jeweiligen Krümmungsänderungen möglichst gleich groß werden. Um die Maschine ähnlich wie eine Biegemaschine mit drei Walzen anwenden zu können, wurde noch ein besonderer zweiter Stützrollenbock beschafft. Die Lehre wirkte dabei als Oberwalze, von ihr ging auch der Antrieb aus. Um aus dem entnommenen Schaubild, dessen Fläche den Arbeitsbedarf für das Blechbiegen angibt, auch das an der Auflaufstelle des Bleches auftretende Biegemoment M später berechnen zu können, wurde ein Zeiger z angewendet (Fig. 13 u. 14, vergl. auch Fig. 5), der zur Ablesung

Fig. 13 und 14. Zeigervorrichtung für die Bestimmung von M.

der in Fig. 23 angedeuteten Abstände C, c, g diente. Hinter der Stützrolle war eine Lichtquelle aufgestellt. Es wurde das Fadenpaar des Zeigers auf die Mitte der durch das Auflaufen des Bleches entstehenden dunklen Stelle an der Oberfläche der Stützrolle eingestellt. Auch die Auflaufstelle an der Lehre wurde durch Absehen vermerkt und angerissen, dann wurden die Abstände C, c, g gemessen. Bei nicht gar zu geringer Spannweite des Versuchstückes gewährte dieses Verfahren die wünschenswerte Genauigkeit. Man war bei der Anfertigung des Zeigers mit besonderer Sorgfalt bestrebt, die Richtung der beiden Fäden genau durch die Drehachse gehen zu lassen und die in der Zeichnung rechts gelegene Kante genau gleichlaufend zu diesen zu machen. Von Bedeutung war die zuletzt genannte Einrichtung auch zur Bestimmung des Druckes, mit welchem das Blech auf der Stützrolle auflag. Die Kugellager der Stützrolle hatten die vom Hersteller angegebenen — geringen — Reibungswiderstände. Jedoch war die rollende Reibung zwischen der rauhen Blechoberfläche einerseits und der Stützrolle andererseits beträchtlicher, als wir sie in der Literatur (vergl. Hütte, 18. Auflage S. 207) für Rollen von Eisen auf Eisen angegeben fanden. Dieses Ergebnis ist wohl auf die unebene, mit Walzhaut bedeckte Staboberfläche zurückzuführen. Die rollende Reibung wurde durch Eichung festgestellt und in entsprechender Weise bei Verwertung des Schaubildes berücksichtigt.

Fig. 4 gibt ein Schaubild der Versuchseinrichtung während der Biegung eines Stabes wieder. Man bemerkt Lehre und Aufspannbügel, Stützrolle mit Zeiger, einen Teil des Schreibwerkes, die Befestigung des Stützrollenbockes auf dem Winkeltisch, die zum Einstellen dienende Spindel und den Antrieb durch Schneckenrad und Kurbelkraftmesser. Rechts unten sieht man die zum Biegen verwendeten Lehren und gebogene Blechstücke, links zwei Verdrehungsfedern, den alten Aufspannbügel und einen Zerreißstab.

3) Begründung der gewählten Anordnung.

Bei der zuerst gewählten Einrichtung des Rollenlagers der Hauptwelle waren Welle und Büchse sauber geschliffen und trugen zwischen sich die in 2 Kränzen gelagerten Rollen. Die Rollenkränze waren durch Stehbolzen miteinander verbunden. Jedoch zeigten sich sowohl in der Büchse wie auf der Lauffläche der Welle bald Riefen, welche den Ausschlag der Feder hemmten. Nach dem Aufbringen eines gehärteten Ringes o auf die Welle, Fig. 6, und dem Härten der Büchse zeigten sich keinerlei Schwierigkeiten mehr. Die Rollen bestehen aus blank gezogenem ungehärtetem bestem Werkzeugstahl, ihr Durchmesser ließ mittels der genauesten vorhandenen Schraubenlehren keine Abweichungen erkennen. Büchse und Welle waren mit großer Genauigkeit geschliffen. Nach längerem Gebrauche haben sich trotz großen Druckes (bis 2000 kg) wohl Schattierungen, aber keine sichtbaren Abblätterungen und Eindrücke an den Laufflächen und den Rollen gezeigt.

Sowohl bei dem Schreibhebel wie bei der Papierzuführung für das Schreibwerk war ein gewisser toter Gang in den Gelenken und zwischen den Zähnen der Rädchen unvermeidlich. Erfahrungen mit anderen, auch mit Hebelübertragung arbeitenden Schreibwerken an Kraftmessern ließen es als wichtig erscheinen, die Gelenke recht genau herzustellen und sie dauernd unter Aufsicht zu halten. Auf diese Weise wurde der tote Gang gering gehalten. Der tote Gang im Räderantrieb wurde dadurch unwirksam gemacht, daß man vor Beginn jedes Versuches durch Drehen der Räder von Hand die Zähne untereinander in Fühlung brachte.

Aus den Zahlentafeln ersieht man, daß die Abstände C ziemlich klein genommen wurden. Beim Biegen auf Lehre empfahl es sich nämlich, C nicht zu groß zu wählen, weil das aufgewickelte Blech das Bestreben zeigte, nach Durchlaufen eines gewissen Winkels etwas von der Lehre abzufedern und dadurch anderes Blech über die Stützrolle nachzuzichen. Einerseits sank dadurch die Ablesung der Meßfeder, andererseits aber krümmte sich das abgespreizte Versuchstück schärfer, so daß es nicht auf die ganze Länge dieselbe Krümmung zeigte. Sobald ein Abfedern beobachtet wurde, galt der Versuch als beendet.

Die Befestigung des Bleches wurde ursprünglich mittels des in Fig. 15 bis 19 gekennzeichneten Bügels vorgenommen. Der Bügel hing mit 2 Bolzen an der Lehre, das Blech wurde durch einen im Bügel liegenden Keil fest gegen die Lehre angezogen, mußte aber einen scharfen Knick erleiden, bevor die verlangte Krümmung zum Vorschein kam. Infolge des Knickes lief das Blech erst ziemlich spät auf die Lehre auf und war bald darauf dem oben beschriebenen Abfedern ausgesetzt. Diese Art der Aufspannung des Bleches wurde daher verworfen. Die in Fig. 20 und 21 angegebene neuere Einrichtung ermöglichte eine bessere Ausnutzung des Versuchstückes und ließ vor allem ein Abfedern erst nach dem Aufbiegen eines größeren Blechstückes zu.

Bei einigen Eichversuchen und beim Biegen erwärmten Eisens war der alte Bügel jedoch recht vorteilhaft zu verwenden. Um dem Blech immer die richtige Lage auf der Lehre zuzuweisen, wurde nach Fig. 20 und 21 jeder Stab durchbohrt und mittels Stiftes gegenüber einem Zwischenstücke ausgerichtet, in welches die Spitze der Druckschraube hineingriff. Ein gerades Aufliegen, Fig. 22, wurde durch Absehen nach einem an die Seiten-

Fig. 15 bis 19. Aelterer Aufspannbügel zur Biegemaschine. 1:10.

Fig. 20 und 21. Neuer Aufspannbügel zur Biegemaschine. 1:10.

fläche der Lehre angelegten Richtscheit erreicht. Die dabei erzielte Genauigkeit war völlig ausreichend, da, wie wir durch besondere Vergleichsbiegungen feststellten, die Veränderung des Biegewiderstandes durch Schiefbiegen nur gleich dem Verhältnis der zum Biegen kommenden wirklichen Blechbreite b_1 zn der Breite b war.

4) Gang der einzelnen Versuche.

Bei dem — vorzugsweise angewendeten — Aufwickeln des Bleches auf Lehre schwang der an der Einspannstelle befindliche Bügel während des Biegens zusammen mit der Lehre herum und beeinflußte durch sein Gewicht den Ausschlag der Feder. Es wurde deshalb Anfang- und Endstellung der Lehre beim Biegen vermerkt und nach jedem Versuch eine Schwenkung der Lehre mit dem Stabe unter gleichzeitigem Antrieb des Schreibwerkes ausgeführt, um ein »Nullschaubild« zu entnehmen, dessen mittlere Höhe von der des Biegeschaubildes abzuziehen war, um die Biegearbeit zu erhalten. Ferner wurde ein »Federungsversuch« vorgenommen, bei welchem das nach dem Biegeversuch abgefederte Blech von neuem auf die Lehre gebogen wurde. Wurde der Ausschlag des Schreibstiftes bei dieser Biegung von dem des entsprechenden Biegungsschaubildes abgezogen und bei allem die Roll- und Lagerwiderstände entsprechend berücksichtigt, so ergab sich die reine Arbeit für bildsame Biegung.

Der Einfluß der Geschwindigkeit beim Biegen wurde in der Weise erforscht, daß man nach einigen Drehungen der Handkurbel im Versuche innehielt und nach einiger Zeit von Hand das Schreibpapier ein kleines Stück unter dem Stift fortbewegte. Dieses Verfahren wurde nachgeprüft, indem man öfters mit außerordentlicher Langsamkeit ($1/_5$ mm Blechlänge in 1 sk) den Versuch führte. Der oben genannte Strich für »Geschwindigkeit gleich Null« fiel außerordentlich nahe dem für die genannte, sehr geringe Geschwindigkeit entnommenen Schaubilde.

Die Versuche über den Einfluß der Breite zur Dicke für Breiteverhältnisse von $\frac{1}{4}$ bis 80 konnten nicht mit demselben Versuchstoffe durchgeführt werden. Wir beschränkten uns darauf, mehrere Gruppen von Stäben gleichen Stoffes in gleicher Dicke, aber verschiedener Breite anfertigen zu lassen. Uebrigens ließen sich auch Stäbe von 400 mm Breite in der Biegemaschine mit Lehren von 60 mm Breite ohne Schwierigkeit biegen. Die Pfeilhöhe der Querbiegung war bei Blechen von 400 mm Breite sehr gering und unterscheidet sich nicht von derjenigen der in der Maschine mit breiten Walzen gebogenen Bleche.

Die Einstellung des Zeigers für die Beobachtung der Größen C, c, g konnte nur in den Ruhepausen vorgenommen werden. Jedoch ließ sich eine Veränderung der genannten Entfernungen durch Anhalten oder Bewegen der Lehre nicht feststellen, so daß auch hier die für den Ruhezustand gewonnenen Werte auf den Beharrungszustand übertragen werden konnten.

Für die Bestimmung der zum Biegen verwendeten »Roharbeit« wurde auf die Schneckenwelle die bewährte Clairsche Kraftmesserkurbel aufgesetzt und bei einer Anzahl von Versuchen Schaubilder entnommen.

5) Formeln für Moment und Arbeit beim Biegeversuche.

Es bedeuten beim Biegen auf Lehre, Fig. 23:

δ in cm die Blechstärke,

b in cm die Blechbreite,

C, c, g in cm die am Stabe beim Versuche genommenen Messungen, R in cm den Halbmesser der Stützrolle,

- D_L in cm den Durchmesser der Lehre,
- D_1 in cm den Durchmesser der neutralen Faser des Stabes vor dem Biegen,
- D_2 in cm den Durchmesser der neutralen Faser des aufgewickelten Stabes,
- D_3 in cm den Durchmesser der neutralen Faser des Stabes nach dem Biegen,
- R_L, R_1, R_2, R_3 in cm die entsprechenden Halbmesser,
- s₁, s₂, s₃ die zu entsprechenden Zeiten vorhandenen Streckungen und Stauchungen in der äußersten Faser in Hundertstel der Länge,
- f_r in cm den Hebelarm der rollenden Reibung in der Formel $M_r = P_{f_r}$. f_k in cm den Hebelarm der Kugellagerreibung,
- *f* in cm den ideellen Hebelarm der vereinigten Roll- und Lagerwiderstände an der Stützrolle,
- M in cmkg das an der Auflaufstelle auf das Blech wirkende Biegemoment,
- *P* in kg den Druck des in Biegung befindlichen Stabes auf die Stützrolle beim Biegeversuch,
- P_1 in kg desgleichen beim Federungsversuch,
- M_b in cmkg das die Feder verdrehende Moment beim Biegeversuche,
- M_f in cmkg das beim Federungsversuche die Feder verdrehende Moment (beide mit Abzug des durch das Bügelgewicht entstehenden Drehmomentes),
- M_{b1} in cmkg das beim Biegeversuche wirkende Moment der Feder mit Abzug aller Reibungen,
- M_{f1} in cmkg das beim Federungsversuche wirkende verdrehende Moment der Feder mit Abzug aller Reibungen,
- $M_{/2}$ in cmkg das beim Federungsversuch auf das Blech an der Auflaufstelle wirkende Blechbiegemoment,
- M_{h2} in cmkg das beim Biegeversuche wirkende Moment der Feder mit Abzug von Reibung und Federungsbetrag,
- $A_b = \frac{M_{b2}}{R_2}$ in cmkg/cm die durch die Feder übertragene, reine bildsame
 - Biegearbeit für 1 cm Länge des Bleches in der Neutralen,
- $A_{f} = rac{M_{f1}}{R_{2}}$ in cmkg/cm die durch die Feder übertragene Federungsarbeit für 1 cm Länge des Bleches in der Neutralen,
- A_e in cmkg/cm die jeweils zum bildsamen Biegen erforderliche Arbeit, bezogen auf 1 cm Blechlänge und 1 vH Dehnungszuwachs in der äußersten Faser.

Die Versuche wurden nach folgenden Formeln verwertet:

a)
$$\boldsymbol{M} = \frac{M_b}{c+d}^{O}$$
,
b) $A_e = \frac{M_{b2}}{R_2} \left(\frac{\boldsymbol{\delta}}{D_3} - \frac{\boldsymbol{\delta}}{D_1} \right) 100.$

Zur Bestimmung des an der Auflaufstelle auf die Lehre auftretenden Momentes M und des zum Biegen nutzbar verwendeten Momentes M_{b1} sollen folgende Ableitungen dienen, Fig. 23, 24 und 25. Wir stellen die Momentengleichung für Blech und Lehre, bezogen auf den Punkt O, auf. Dazu sind in Fig. 24 sämtliche äußeren Kräfte und Momente an Blech und Lehre anzubringen. In Punkt A wirkt P und T, in Punkt O wirken P, T, M_b (das Federdrehungsmoment) und M_z (das Zapienreibungsmoment). Alle anderen Kräfte treten als innere Kräfte paarweise und entgegengesetzt auf, fallen also in der Momentengleichung heraus. Man hat daher bezüglich O:

Das von den Roll- und Lagerwiderständen der Stützrolle (vom Halbmesser *R*) herrührende Moment Tg kann gleich $\left(P \frac{f_k}{R} + P \frac{f_r}{R}\right)g = Pf \frac{g}{R}$ gesetzt werden, worin $f = f_k + f_r$ ein ideeller Hebelarm der vereinigten Roll- und Lagerwiderstände der Stützrolle ist. M_z kann durch Pf_z ersetzt werden, worin f_z ein Hebelarm der Zapfenreibung ist. Es wird somit

$$M_b = P\left(c + \frac{f}{R}g + f_z\right).$$

Das Biegemoment M des Bleches an der Auflaufstelle B wird aus den Gleichgewichtsbedingungen des linken Blechstückes AB nach Fig. 15 ermittelt. Die Momentengleichung bezüglich B ergibt

$$M = P C + T h \qquad \dots \qquad \dots \qquad \dots \qquad \dots \qquad (2).$$

Da beide Faktoren von *Th* gegenüber denen von *PC* klein sind, so kann mit guter Annäherung M = I C oder $P = \frac{M}{c}$ geschrieben werden. Es wird somit aus Gl. (2)

$$M_b = rac{M}{C} \left(c + rac{f}{R} g + f_z
ight)$$
 und $M = rac{M_b C}{c + rac{f}{R} g + f_z}$

 Pf_z ist, wie die Versuche, Fig. 29, zeigen, sehr klein gegenüber dem Biegewiderstande und dem Widerstande an der Stützrolle; es kann daher f_z im Nenner des aufgeführten Bruches vernachlässigt werden. Wir finden demnach die oben gegebene Formel a)

$$M = \frac{M_b C}{c + \frac{f}{R} g}, \quad \text{oder} \quad \left(\frac{f}{R} g = d \text{ gesetzt}\right) M = \frac{M_b C}{c + d}, \quad . \quad . \quad (3).$$

Der Betrag des Federmomentes M_b , welcher nutzbringend zum Biegen verwendet wird, heiße M_{b1} . Er ergibt sich, wenn wir die Wirkung des vereinigten Roll- und Kugellagerwiderstandes, der am Umfang der Stützrolle auftritt und auf die Lehrenachse O am Hebelarm g wirkt, zugleich mit M_z von M_b abziehen. Es wird $M_{b1} = M_b - P \frac{f}{R} g - M_z$. Wird M_z wie oben vernachlässigt und $\frac{f}{R} g = d$ gesetzt, so ergibt sich

Eine ganz ähnliche Ueberlegung führt zur Ermittelung von M_{f1} .

Für einen Teil der Biegeversuche wurden Schaubilder am Kurbelkraftmesser entnommen. Um die reine Biegearbeit mit der zu ihrer Erzeugung in die Kurbel hineingeschickten Arbeit vergleichen zu können, ist die beobachtete Umfangskraft k an der Kurbel noch zu verändern. Die beim Biegen für die Roharbeit erforderliche Umfangskraft ist

$$k' = k - (k_2 - k_0) - \frac{M_{f_1}}{H \, 50 \, \eta_1}.$$

 $(k_2 - k_0)$ wird aus dem Schaubild des Leerlaufes am Kurbelkraftmesser entnommen; es ist der Zusatz in kg, der durch das Anheben des Einspannbügels im Biegeschaubild der Kurbel entsteht.

 $\frac{M_{J1}}{H 50 \eta_1}$ ist das Moment in cmkg, das für die Federungsarbeit in die Kurbel geschickt werden muß, wenn 50 die Uebersetzung des Schneckenan-

triebes, II in em den Kurbelarm und η_1 den Wirkungsgrad des Schneckentriebes bedeutet.

Es bedeutet ferner:

 $A_1 = 2 H \pi k'$ die Roharbeit in emkg für eine Umdrehung der Kurbel,

- A_{z} in cmkg die reine Biegearbeit für eine Umdrehung der Kurbel (abgeleitet aus M_{b2}),
- $\eta = \frac{d_2}{A_1}$ unter Vornahme oben genannter Verbesserungen den Wirkungsgrad der Biegung.

6) Für die Bearbeitung der Versuchsergebnisse erforderliche Eichungen.

1) Bei der Eichung der Federn wurde wie folgt verfahren, Fig. 26:

Um eine auf die Büchse b aufgebrachte Lehre L wurde ein Drahtseil geschlungen An diesem hing ein Zugkraftmesser D und ein Gehänge g, welches mit einer Schneide unter den Wagebalken w faßte. w war in dem Bocke c

Fig. 26.

gelagert und trug am anderen Ende einen Untersatz u, auf den sich Gewichte auflegen ließen. Nach jeder neuen Belastung wurde der Antrieb des Schreibwerks von Hand gedreht und so ein kleiner Strich gezogen. Es wurden Versuche mit verschiedenen Lehren vorgenommen, um unter verschiedenem Achsdruck zu eichen. Es ergaben sich für dieselben Momente auch bei verschiedenen Achslasten recht genau dieselben Ausschläge, was für die Empfindlichkeit der Einrichtung spricht. Bei den soeben erwähnten Eichungsergebnissen spielt die Scilsteifigkeit eine gewisse Rolle. Ihr Einfluß wurde dadurch entfernt, daß man sowohl belastend wie entlastend eichte. Das Mittel aus den Ausschlägen bei Be- und Entlastung war bei der Bearbeitung der Versuchsergebnisse zu verwenden. Fig. 27a bis d gibt als Beispiel das Ergebnis der Eichung der »Feder 1« bei Anwendung einer Lehre von großem und einer Lehre von kleinem Durchmesser sowohl für Belastung wie für Entlastung.

2) Für die Empfindlichkeit der Meßeinrichtung ist von großer Bedeutung die Reibung der Rollenlagerung. Diese Reibung ist gering, sie hat bei einem Achsdruck von 500 kg etwa einen Betrag von 8 cmkg, der bei der schwachen

Fig. 27 a bis d. Eichung der Verdrehungsfeder »1«.

»Feder 3« einem Ausschlag von etwa $^{1/7}$ mm entspricht. Möglicherweise sind hierauf und auf kleine Totgänge im Schreibwerk die nicht sehr erheblichen Abweichungen der Versuchsergebnisse gleich behandelter Stäbe zurückzuführen. Andere Unsicherheiten der Versuchsergebnisse mögen daher rühren, daß das Blech abfederte und die Federungsarbeit zum Teil zum Biegen neuen Bleches benutzt wurde, zum anderen Teile aber durch Gleiten des Stabes an der Lehre verloren ging.

Zur Feststellung der Reibung und der Empfindlichkeit des Rollenlagers wurde folgende Einrichtung benutzt, Fig. 28. Die Büchse b saß lose ohne Feder auf der Welle. Um eine darauf aufgebrachte Lehre wurde mit Hülfe des älteren Aufspannbügels B ein Seil geschlungen, welches beiderseits belastet werden konnte. Ein Gegengewicht G war zum Ausgleich des Bügelgewichtes an einem Arm Abefestigt. Auf der Büchse b wurde eine Wasserwage w und ein Arm a mit Oesen zum Anhängen des Zugkraftmessers d und eines Gegengewichtes g befestigt. Nach dem Anhängen der Gewichte P wurde die Lehre so eingestellt, daß die Wasserwage auf null einspielte. Dann wurde die Welle unter der Büchse herumgedreht und von Hand ein solcher Zug an dem Kraftmesser ausgeübt, daß die Wage dauernd auf null einspielte. Dasselbe wurde mit anderer Drehrichtung der Welle mit umgehängten Kraftmesser und Gegengewicht gwiederholt, da die beiderseits angehängten Belastungsstücke P verhältnismäßig erhebliche Abweichungen in ihrem Gewichte zeigten. Die Ergebnisse der Versuche sind in Fig. 29 aufgetragen.

3) Der Betrag der rollenden Reibung wurde in folgender Weise ermittelt, Fig. 30. Eine starke Schiene wird an ihrem linksseitigen Ende belastet und übt dadurch einen Druck P_1 auf die Stützrolle und einen Druck P_2 auf die Lehre aus. Wird jetzt die Lehre in Umdrehung versetzt, so zieht sie unter gleichzeitiger Verdrehung der Meßfeder die Schiene nach rechts herüber. Mehrmals während des Versuches wurden die Abstände a, b und der für den Einfluß des Eigengewichtes der Schiene maßgebende Abstand c vermerkt. Nachher wird in umgekehrter Richtung die Schiene wieder nach links bewegt, da beim Herüberbewegen nach rechts infolge der Durchbiegung der Schiene das Belastungsgewicht G gehoben, also der Ausschlag der Feder erhöht wird und beim Verschieben nach links das Gewicht sinkt, also der Federausschlag sich verringert. Beide Einflüsse heben sich auf, man erhält die reine rollende Reibung, wenn man die nach den Angaben des Erbauers geringfügigen Kugellagerreibungen abzieht. Fig. 31, 32^{1} und 33 geben ein älteres von mir benutztes Verfahren zur Bestimmung der rollenden Reibung an. Ein Flacheisen F ist an einem 'Zugbande S_{2} mittels Schneide aufgehängt und wird durch den Zug des Bandes S_{1} gegen die Stützrolle R gepreßt. An S_{1} greift der Zugkraftmesser D_{1} an, der seinerseits mittels Balken B und der Bleigewichte bei P belastet ist. Eine Schnur greift

Fig. 31 und 32. Versuchseinrichtung zur Bestimmung des Widerstandes am Umfange der Stützrolle an der Vorrichtung zum Blechbiegen.

Fig. 33. Schema der Anordnung.

an F an, führt links in den Fig. 31 und 33 über eine Rolle und trägt einen Zugkraftmesser D_2 , dessen Gewicht ganz rechts durch das Gegengewicht g ausgeglichen ist. Wir setzen die Schiene unter Druck und üben am Kraftmesser D_2 links einen Zug aus, derart, daß eine kleine Bewegung des Flacheisens zu

bemerken ist. Diese Bewegung wird deutlich gemacht durch Vergrößerung mit einem langen Zeiger, der in der Fig. 31 und 32 klar zu erkennen ist. Haben wir links gezogen und einen kleinen Ausschlag vermerkt, so bringen wir den Kraftmesser D_2 nach rechts, tauschen das Gegengewicht nach links um und wiederholen den geschilderten Vorgang. Dies geschieht, weil durch geringe Schieflage der Bänder S_1 und S_2 seitliche Kräfte vorhanden sein können, welche die Wirkung von D_2 hemmen oder fördern. Um für verschiedene Belastungen, also für verschiedene Stellungen des Rollenbocks, Messungen machen zu können, wird der Rollenbock durch eine Schraubenwinde verstellt.

Die Einrichtung war brauchbar, wie auch der Vergleich mit den Ergebnissen zeigte, welche die Einrichtung nach Fig. 30 ergab. Sie war aber nicht so einfach anzubringen und zu bedienen, wie die vorher beschriebene. Außerdem mußten viele einzelne Punkte vermerkt werden, da wegen der rauhen Staboberfläche sehr große Schwankungen des Reibungsbetrages beobachtet wurden.

Die Reibungen des Kugellagers und des Rollenlagers können aus den gemessenen Widerständen leicht abgetrennt werden. Die Versuche über die rollende Reibung ergeben die Anwendbarkeit des Gesetzes $M_r = P f_r$, wobei f_r gleich 0,066 cm gefunden wurde.

4) Die vorher beschriebene Einrichtung nach Fig. 30 wurde auch dazu benutzt, die Reibungsziffer zwischen Schmiedeisen von unbearbeiteter Oberfläche und glatten gußeisernen Walzen festzustellen. Die Flachschiene wurde durch ein Zugband nach links gehalten, mit Gewichten beschwert und die Lehre darüber her gedreht. Es fand dann eine Verdrehung der Feder statt, aus welcher die an der Lehre wirkende Umfangskraft und damit die Reibung zwischen Stab und Walze für Ruhe und Bewegung berechnet werden konnte.

5) Die Reibung der Kugellager im Stützbocke war gering. Sie wurde mangels einer geeigneten Einrichtung nach den Angaben des Erbauers eingesetzt. Die Leerlaufversuche mit der unbelasteten Rolle geben für den Leergang Werte, die sich den für bestimmte Belastungen vom Hersteller angegebenen Werten gut anschließen.

Fig. 34. Eichung der Eigenreibung der Versuchsmaschine. k =Kurbelkraft bei verschiedenen Achsdrücken P.

Mitteilungen. Heft 113.

6) Durch die Feststellung der Eigenreibung der Maschine wurde eine Prüfung der berechneten Drücke P ermöglicht. Diese, wenn auch nicht sehr genaue Nachprüfung war bei den Federungsversuchen von Wichtigkeit. \mathbf{Es} war dort c zu gering, um mit dem Zeiger einigermaßen genau abgelesen werden zu können. Das »Federungsschaubild« am Kurbelkraftmesser enthielt nun zum allergrößten Teile Lagerreibungen, die aus dem Drucke P_1 hervorgingen. Die Federungsarbeit war dabei fast ganz bedeutungslos. Aus der Höhe des Federungsschaubildes am Kurbelkraftmesser konnte daher an Hand von Fig. 34 der Druck P_1 einigermaßen genau bestimmt und mit Hülfe der Ablesung von C mittels Zeigers das beim Anfedern wirksame Moment M_{ℓ^2} ermittelt werden. Das nach abwärts gerichtete Gewicht von Lehre und Welle und das Anheben des Bügels wurden dabei berücksichtigt. Die Eichung wurde im übrigen durchgeführt, als wenn ein Biegeversuch vorgenommen würde, Fig. 35. Ein Galgen G trägt auf seinem Querholz eine Schneide, auf welcher die Schiene s liegt. s wird einerseits durch Kette k und Gewichte g belastet, andererseits wird sie von einem Drahtseil angegriffen, welches um die Lehre geschlungen ist und den Zugkraftmesser D trägt. Die Ergebnisse sind in Fig. 34 aufgetragen.

Auf S. 19 ist eine größere Zahl von Schaubildern wiedergegeben, die bei Biegeversuchen und bei Eichungen entnommen wurden und besonders kennzeichnend sind.

7) Aufführung und Deutung der Versuchsergebnisse.

Eine große Rolle spielt bei Biegeversuchen die Lage der »neutralen Schicht«. Wir bestimmten diese Schicht auf zwei Arten. Es wurden in einem bestimmten Abstand am ungebogenen Stabe quer zur Stabdicke zwei Marken angeritzt und durch Anlegen eines Stahlbandmaßes nach vorgenommener Biegung die Länge des Versuchstückes auf der Zug- und auf der Druckseite gemessen. Es war nicht leicht, zumal auf der Druckseite, das Bandmaß gut zum Anliegen zu bringen. Das andere Verfahren bestand darin, daß man nach Fig. 36 den Krümmungshalbmesser aus den Werten von s und f ermittelte und die Länge des Bogens ABC berechnete. Dasselbe wurde für die äußere Schicht bezüglich $A_1 B_1 C_1$ durchgeführt.

Hier war die Messung des Abstandes f bei schwacher Biegung nicht sehr zuverlässig, bei schärferen Biegungen verringert sich dieser Nachteil.

Wir fanden das einfache Ergebnis, daß die neutrale Schicht, soweit sich dieses prüfen ließ, in der Mitte zwischen Druck- und Zugseite lag, ein Ergebnis, das wir bei der Verschiedenartigkeit des Zug- und des Druckschaubildes nicht vermutet hatten.

Die Querschnitte wurden mit der Genauigkeit, mit welcher man dieses feststellen konnte, nach der Biegung als eben befunden.

Es wurde sodann untersucht, ob bei absatzweise vollzogenem Biegen sich gegenüber einer einzigen entsprechend schärferen Biegung ein Mehrbedarf an

Beispiele von Schaubildern der Versuchsmaschine.

19 reiner Biegearbeit fühlbar macht. Hierzu gab Anlaß die Tatsache, daß beim Zugversuch nach vorher gegangener Entlastung und darauf folgender Wiederbelastung von manchen eine sofortige Erhöhung der Streckspannung über den zuletzt erreichten Höchstbetrag der Spannung beobachtet wurde. Von uns angestellte Zugversuche, Fig. 37, bestätigten dieses für das untersuchte Siemens-Martin-Kesselblech nicht — nach der Wiederbelastung hob sich die Streckgrenze

Fig. 37. Zugversuche mit abgedrehten Stäben aus Siemens-Martin-Kesselblech über den Einfluß unmittelbar vorher stattgefundener Streckung auf die Lage der Streckgrenze.

nur auf den zuletzt erreichten Höchstbetrag der Spannung -, da aber der Biegeversuch sich aus Zug und Druck zusammensetzt und über die entsprechenden Erscheinungen bei Druck infolge der großen Schwierigkeiten des Druckversuches nichts bekannt ist, so waren Biegeversuche nach dieser Richtung hin wohl angebracht.

Zugversuche mit Stäben aus Schweißstahl, die wir angestellt haben, zeigten auch bei sofortiger Wiederbelastung einen Spannungsverlauf, wie er in Fig. 38 angedeutet ist.

Bei den Zugversuchen nach Fig. 37 ist der Einfachheit halber der Verlauf der Spannungs-Dehnungskurve bis zur Streckgrenze weggelassen und nur die Streckgrenze und der fernere Verlauf bis zur Entlastung aufgetragen. Die durch O angemerkten Punkte sind die Stellen der Entlastung und Wiederbelastung.

Die bereits erwähnten Biegeversuche über den Arbeitsbedarf bei absatzweise vollzogenem Biegen sind in den Zahlentafeln 17 bis 28, S. 37 bis 39 und der Fig. 39 zu finden. Man hat bei den einzelnen Biegeversuchen für eine Biegegeschwindigkeit gleich null die Werte A_b , also die Biegearbeiten für 1 cm Länge des Stabes mit Abzug der Reibungswiderstände in der Versuchsmaschine und des Teiles der Arbeit, der auf federnde Formänderung entfällt, festgestellt. Der Arbeitsbetrag, der zum bildsamen Biegen auf die Lehre 2 erforderlich ist, sei A und die Arbeit für die ferneren Biegungen bis auf Lehre 16 sei Z. Wir haben $Q = \frac{Z}{A}$ als Ordinaten aufgetragen und als Abszissen die Zahl der verwendeten Lehren. Dasselbe geschah nach Fig. 40 mit einigen Stäben von 10 mm Stärke aus Thomas-Flußeisen von 50 mm Breite. Die Fig. 39 macht es wahrscheinlich, daß bei größerer Zahl Lehren, also einer größeren Zeit seit der ersten Biegung, die gesamte Arbeit geringer wird: bei Fig. 40 ist das Entgegen-

gesetzte der Fall. Die Auftragungen der Fig. 54, S. 31, für $Q = \frac{Z}{A}$ nach einer vor verschiedenen langen Zeiträumen vollzogenen Vorbiegung lassen bei geringeren Vorbiegungen ein Gleichbleiben von Q vermuten, bei größeren (Vorbiegung auf Lehre 8) ein Abfallen.

Im ganzen können wir schließen, daß der Einfluß, wenn er überhaupt vorhanden ist, nur eine geringe Bedeutung hat.

Die oft ziemlich beträchtichen Unterschiede in den Werten Q können der Verschiedenartigkeit des Stoffes, die sich ja auch in dem recht verschiedenen Verlaufe der Zugschaubilder für denselben Stoff zeigt, zugeschrieben werden.

In vielen Zahlentafeln und Auftragungen kommen die Werte A_e und M vor. Es bedeutet A_e die Einheitsarbeit für ein Stabstück von 1 cm Länge, das so stark gebogen wird, daß der Dehnungs- bezw. Stauchungszuwachs in der äußersten Faser 1 vH beträgt. Dieser Wert wird aus den Versuchsergebnissen nach den Formeln im 5. Abschnitt dieser Arbeit hergeleitet.

M bedeutet das an der Auflaufstelle auf das Blech einwirkende Biegemoment, das natürlich von den Stababmessungen, dem Krümmungsgrade und der stofflichen Beschaffenheit des Stabes abhängt. Wir fanden noch eine weitere Abhängigkeit des Biegemomentes von dem Hebelarm C der biegenden Kraft P. Es tritt bei geringer werdendem C eine schiebende Wirkung von P ein, welche den Betrag von M herabmindert.

Wie die schiebende Wirkung von P sich in eine Biegung umsetzt, ist in Fig. 41 verdeutlicht. 1 ist die Stellung vor dem Hochdrücken der Stützrolle, 2 würde die Form des Stabes nach dem Andrücken sein, wenn er ohne Wirkung des Biegemomentes und ohne Hindernis an der Lehre der schiebenden Kraft nachgeben könnte, in 3 ist die wirklich erzeugte Biegung zu erkennen. Um Aufschluß über den Einfluß der Schubspannungen zu erhalten, wurden Versuche angestellt, von denen diejenigen mit den Stäben 01, 02 und 8 dargestellt sind. Bei diesen Stäben waren die Einflüsse am größten, da ohne Weglassung einzelner Lehren gebogen wurde.

In der Zahlentafel 1 und der Fig. 42 ist für die Stäbe 01 und 02 das Verhältnis der angewendeten Hebelarme C und das Verhältnis der gleichzeitig

Einflüsse eines veränderten Hebelarmes C der biegenden Kraft.

Alle Werte gelten für Biegegeschwindigkeit = null.

Zahlentafel 1. Stäbe 01 und 02.

	the second s			the second s							_		and the second second				_
L	Art des pannens	M_b	C	đ	c + d	М	Р	Pd	Mb1	erhältnis der C	erhältnis der M	R_2	D_1	R_1	$egin{array}{c} R_2 \ R_1 \end{array}$	$1-rac{R_2}{R_1}$	y
	· 02	ekg	cm	em	em	ekg	kg	ckg	ekg	\geq	\geq	em	cm	em			1
																1	
	lang	7190	21,2	0 4 7 0	20,6	7380	347	61,5	7128	0	1 0 0				•		0,97
3	kurz	7500	8.3	0,178	8,5	7260	880	156	7344	2,00	1,02	54,1	s	30	U	· 1	0,97
	lang	700	10.4		1,97	3700			(590)	9.0			7 0 0		0.07	0	1,06
4	kurz	720	5,2	0,167	0,92	4050	780	130	590	2,0	-	30,7	72,3	36,1	0,85	0,15	0,97
_	lang	1055	15.0		2,34	6780	450	71	984			07 -			0 0 0		0,86
5	kurz	1240	3.8	0,157	0.94	500 0	1320	206	1034	4,0	1,35	27,7	66,7	33,4	0,83	0,17	1,22
	kurz	1140	3.1		0.63	5580	1800	266	874	. .					0		1.05
6	lang	975	16.7	0,148	2,34	6950	415	61	914	5,4	1,26	25,2	59,5	29,7	0,85	0,15	0,88
_	lang	870	15.6		1,83	7410	480	68	802					22.0	0.07	0.10	0,83
7	kurz	1035	3.4	0,142	0,69	5080	1500	214	821	4,0	1,41	23,3	53,9	26,9	0,87	0,13	1,25
0	kurz	836	4,7	0.100	0,69	5 67 0	1210	167	669		1 0 7	01.0	10 5		0.00	0.10	0,98
8	lang	760	15,2	0,139	1,50	7750	510	71	689	ə,24	1,37	21,9	49,5	24,7	0,88	0,12	0,74
•	lang	730	14,2	0 1 0 0	1,30	7950	560	74	656	5 0	1 00	90 5	10.5		0.00	0.10	0,69
9	kurz	905	2,69	0,132	0,50	4900	1840	242	663	5,5	1,62	20,5	40,9	23,3	0,88	0,12	1,13
10	kurz	853	3,43	0 100	0,59	4960	1450	185	668	90	1 50	10 5	49.9	91 7	0.00	0.10	1,34
10	lang	760	12,36	0,128	1,26	7440	600	77	683	э,0	1,50	19,5	40,0	21,1	0,90	0,10	0,92
	lang	712	12,5	0.101	1,20	7400	590	73	639	4 4 5	1 00	101	40.7	90.9	0 00	0.11	0,78
11	kurz	880	2,8	0,124	0,56	4400	1560	193	687	4,40	1,09	10,1	40,1	20,3	0,89	0,11	1,42
10	kurz	822	2,7	0 101	0,42	5300	1960	237	-585	90	1 90	17 0	970	10.0	0.01	0.00	1,23
12	lang	668	10,3	0,121	1,04	6680	650	79	589	0,0	1,20	11,2	57,9	10,9	0,91	0,09	0,98
	lang	602	12,6	0	1,08	7050	560	66	536		1 0 0	10.1	901	10.0	0.01		0,85
13	kurz	848	2,2	0,118	0,33	5750	2600	306	542	0,72	1,23	10,4	90,I	18,0	0,91	0,09	1,05
	kurz	1560	3,2		0,78	6440	2000	221	1339		1 0 -	14.0	94.2		0.00	0.15	1,22
16	lang	1360	10,0	0,111	1,67	8150	815	91	1269	3,0	1,37	14,2	54,3	17,1	0,83	0,17	0,92

Erklärung der Ziffer y.

$$\frac{M_{b_1}}{R_2} = y M\left(\frac{1}{R_2} - \frac{1}{R_1}\right), \qquad y = \frac{M_{b_1}}{M\left(\frac{1}{R_2} - \frac{1}{R_1}\right)R_2}, \qquad y = \frac{M_{b_1}}{M\left(1 - \frac{R_2}{R_1}\right)}$$

Bei rein elastischer Biegung ist y = 1/2; bei rein bildsamer Biegung ohne Schubwirkung = 1.

Infolge der Verringerung von M durch Verkleinerung von C steigt y trotz der schwachen bleibenden Biegungen bedeutend an.

- 23 -

beobachteten Werte von M aufgetragen. Man sieht deutlich, daß bei geringerem C, also größerem Drucke P, das Moment M nicht unbeträchtlich herabsinkt. Ferner sind in Fig. 43 die bei denselben Stäben gemessenen Momente M_{b1} aufgeführt, welche der reinen Biegearbeit auf ein 1 cm langes Blechstück entsprechen. Die Linienzüge laufen entsprechend der stofflichen Verschiedenheit und kleiner Unterschiede in den Stababmessungen dauernd dicht übereinander her. Daraus läßt sich schließen, daß die Arbeit zum Biegen auf eine bestimmte Krümmung immer gleich ist, ob nun die Formänderung nur durch ein Biegemoment oder — mehr oder weniger — auch durch Schubkräfte herbeigeführt worden ist. Als drittes findet man unter Fig. 44 die Ziffer y aufgetragen, welche neben der Krümmungsänderung $\left(\frac{1}{R_2} - \frac{1}{R_1}\right)$ für das Verhältnis zwischen M und $\frac{M_{b1}}{R_2}$ maßgebend ist. Bei rein elastischer Biegung besitzt der Faktor den Wert $\frac{1}{2}$, bei rein bildsamer Biegung ohne Schubwirkung den Wert 1. Man sieht, daß sich y bei den lang gespannten Stäben zwischen 0,75 und 1,00 bewegt, aber bei kurzer Spannweite trotz der verhältnismäßig schwachen blei-

Stab 8 (Zahlentafel 2, Fig. 45) ist für mehrere Spannweiten bei jeder Lehre untersucht worden. Wir preßten den Stützbock von unten gegen das Blech, bogen dann ein bestimmtes Stück, beobachteten die Abstände *C*, *c*, *g*, drückten dann die Rolle weiter an, so daß *C* sich verkleinerte, und bogen weiter. Die Ausschläge des Schaubildes wurden nach der Formel $M = M_b \frac{C}{c+d}$ verwertet. Wir fanden einen ziemlich stetigen Verlauf der Werte von *M*, der deutlich das Abfallen von *M* zugleich mit *C* erkennen läßt.

benden Biegung weit über 1,00 hinaus bis zu 1,40 ansteigt.

Auch bei den Federungsversuchen machte sich eine bedeutende Beeinflussung des Wertes von M_{f^2} durch die Veränderung der Spannweite C bemerkbar, eine Veränderung der Federungsarbeit konnte nicht festgestellt werden.

Zal	ilei	ita	fel	2.
			~ ~ ~	

Stab 8. Biegeversuche über die Veränderlichkeit des biegenden Momentes *M* bei verändertem Hebelarm *C* der biegenden Kraft. Der Stab war früher auf Lehre 5 gebogen.

				° 8°
b	= 5.0)5 cm	$\delta = 1.518$	em

Lehre	M_b mm	M_b ekg	C cm	$\begin{array}{c} C\\ c+d \end{array}$	M ckg	Lehre	Mь mm	M_b ckg	C cın	$\frac{C}{c+d}$	М ckg			
		;												
6 »	$15,0 \\ 16,8$	870 975	14,7 7,5	7,85 6,06	3840 5910	9 »	$10,9 \\ 11,1$	$\begin{array}{c} 632\\ 643 \end{array}$	$^{12,9}_{7,0}$	9,7 9,48	6110 6090			
»	21,0	1220	2,2	5,21	3360	»	14,8	860 860	3,5 34	6,46	5520 4670			
						"	14,0	000	0,4	0,44	4010			
7	12, 6	730	13,0	8,4	3110	10	10,1	588	13,7	10,3	6020			
»	13,0	754	8,6	7,63	5740	»	11,1	642	6,7	8,9	5720			
»	14,4	835	4,4	6,8	5680	»	13,9	808	3,7	6,9	5570			
»	14, 6	848	2,8	5,3	1490	»	14,0	811	3,7	6,9	5 60 0			
8	11.4	660	12,9	9,6	3810	11 »	$12,0 \\ 11,2$	698 650	15,4 9,4	$12,5 \\ 11,4$	$8700 \\ 7400$			
×	11,4	660	5,9	8,0	5290	»	10,7	620	5,0	10,4	6480			
»	14,6	790	2,5	5,46	43 00	»	11,5	670	3,9	6,38	4280			
	ŕ		ĺ ĺ			×	14,4	837	3, 5	6,70	55 9 0			

In Zahlentafel 3 und den Auftragungen Fig. 46 sind die Ergebnisse für die Biegung der Stäbe 121 und 121a ausführlich angegeben. Es ist das der gewöhnlich vorkommende Fall der Biegung. Nach einer erstmaligen, hier nicht zu vermeidenden größeren Biegung wurde der Stab mit mäßiger Geschwindigkeit auf eine Lehre nach der anderen gebogen. Außer M und A_e ist die Federungsarbeit und der mechanische Wirkungsgrad bei den einzelnen Teilbiegungen angegeben. Die Werte für η sind recht gering, sie würden, um für gewöhnliche Biegemaschinen zu passen, eine Vergrößerung erfahren müssen. Die fliegende Anordnung der Hauptwelle, der Antrieb durch Schnecke, der verhältnismäßig kleine Abstand C wirken ungünstiger auf den Wirkungsgrad ein, als dies bei Walzenbiegemaschinen der Fall zu sein pflegt.

Der Geschwindigkeitseinfluß ist bei der ersten verwendeten Lehre verhältnismäßig groß, da hier die größte Biegegeschwindigkeit herrschte, von Lehre 3 bis 16 ist er dagegen sehr gering. Die Stäbe 58 und 58a (jedesmal eine Lehre überschlagen, Fig. 47, Zahlentafel 4) zeigen ein ähnliches Bild. Federungsarbeit und Geschwindigkeitseinfluß sind ungefähr dieselben, wie beim vorigen Stabpaar, der Wirkungsgrad steigt. Der gesamte Arbeitsbedarf, verglichen mit der Arbeit zum Aufwickeln auf die erste Lehre, ist etwas höher als bei 121 und 121a.

Bei den Stäben 33 und 89 (jedesmal 2 Lehren überschlagen, Fig. 48 und 49, Zahlentafel 5) steigen Federungsarbeit und Geschwindigkeitseinfluß etwas an, der Wirkungsgrad ist beträchtlich größer.

Um den von uns vermuteten Einfluß größerer Vorbiegung auf die Widerstände bei gleich darauf folgendem Weiterbiegen zu prüfen, wurden die im Folgenden bezeichneten Stäbe in der angedeuteten Weise bearbeitet.
 L
 Stab
 27
 .
 .
 1
 .
 .
 4, 5
 .
 8, 9
 .
 .
 12, 13
 .
 15, 16

 »
 76
 und
 76a
 .
 1
 .
 .
 4, 5, 6
 .
 .
 9, 10, 11
 .
 .
 16

» 107 und 107a. . 2, 3, 4 ... 8, 9, 10 14, 15, 16.

Es ergaben sich jedoch gegenüber den bisher besprochenen Stäben keine Unterschiede.

Man kann die Ergebnisse der bisher aufgeführten Versuche so fassen:

Das Biegemoment M steigt mit wachsender Krümmung allmählich an. Es ändert sich von einem Krümmungsverhältnis $\frac{\delta}{\varrho} = \frac{1}{55}$ bis $\frac{1}{18}$ um etwa 25 vH. Die neutrale Schicht liegt, so weit sich dies prüfen läßt, in halber Höhe des Querschnittes. Bei einer Spannweite $C < 10 \delta$ sinkt das Biegemoment merklich ab.

Die gesamte reine Biegearbeit steigt ungefähr in gleichem Grade wie die Krümmung, also im umgekehrten Verhältnis des Krümmungshalbmessers; gerade wie beim Biegemoment tritt bei stärkeren Biegungen eine Erhöhung von A. ein es steigt also die Arbeit für die Einheit des Biegungsgrades.

Die gesamte reine Biegearbeit wird durch Biegen in mehreren Absätzen nicht beeinflußt, ebenso auch nicht durch Veränderung des biegenden Hebelarmes C.

Bemerkenswert sind die Erscheinungen beim Biegen mit Zeitzwischenräumen. Der Plan der Versuche ist in Folgendem angegeben. Die Zahlen ohne Klammern bezeichnen die Nummer der Lehre, die eingeklammerten Zahlen die Zeitzwischenräume zwischen den Teilbiegungen in Tagen.

$G_{\text{ruppo I}} (A) 2 (1), 3 (1), 4 (1) \dots$	•	-14 (1), 15
(11) (11) (2) (2) (3) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2	•	7(2), 8
$(-{ m C})$ 2 (1), 3, 4, 5		1 6
D) 2 (2), 3, 4, 5 \ldots .		16
Gruppe II $\langle E \rangle$ 2 (4), 3, 4, 5		16
F) 2 (8), 3, 4, 5		16
R) 2 (14)		16
G) 4 (1), 5, 6, 7		16
(H) 4 (2), 5, 6, 7 \dots .		16
Gruppe III $\langle J \rangle$ 4 (3), 5, 6, 7		16
\mathbf{K} 4 (6), 5, 6, 7		16
S) 4 (14)		16
(L) 8 (1), 9, 10 \ldots		16
$(1 \dots 1 \dots 1 M) = (1 \dots 1 M) = (2), 9, 10 \dots 1 \dots 1 \dots 1$	•	16
Gruppe IV) N) 8 (4), 9, 10		16
T) 8 (14)		16

Die Versuchsergebnisse sind in den Zahlentafeln 6 bis 16 ausführlich angegeben. Dort ist auch die Art der Bearbeitung der Versuchsergebnisse zu ersehen. Obgleich ziemlich große Stablängen der Biegung ausgesetzt wurden, so zeigten sich doch bei gleich behandelten Stäben infolge der stofflichen Verschiedenheit ziemlich große Unterschiede. Die Betrachtung der Zugversuche in Fig. 37 zeigt, daß man auch nichts anderes erwarten kann. Um die Versuchsergebnisse aber untereinander vergleichen zu können, setzen wir die auf 1 cm Länge des Bleches und auf 1 vH Dehnungszuwachs der äußersten Faser umgerechnete Biegearbeit, die bei der ersten Biegung beobachtet wurde, gleich A_{e0} und vergleichen die Einheitsarbeiten A_e der späteren Biegungen mit diesem Werte. Die Biegegeschwindigkeit ist überall gleich null. In den Fig. 50 bis 53 sind als Ordinaten die bei den einzelnen Lehren beobachteten Verhältnisse

 A_{r0} Eine Zusammenfassung der Fig. 50 und 53 stellt die Fig. 54 dar. Die reine Biegearbeit für das Aufwickeln auf die erste benutzte Lehre (bei Biegegeschwindigkeit = null) sei = A, die Summe der Arbeiten bei den späteren Biegungen bis Lehre Nr. 16 (gleichfalls bei Geschwindigkeit = null) sei = Z. In Fig. 54 ist die Abszisse die nach der ersten Biegung bis zum Weiter-

biegen verflossene Zeit, die Ordinate ist $Q = \frac{Z}{A}$. Es ergibt sich ein eigenartiges Bild; die Gruppe C bis R (erste Biegung auf Lehre 2) zeigt zunächst ein Gleichbleiben von Q, nach zwei Tagen ein Ansteigen und weiterhin ein stetiges Abfallen bis 7 vH unterhalb des Wertes für Zeit = null. Die Linienzüge für die Stäbe G bis S (Ausgang von Lehre 4) zeigen ebenfalls ein allmähliches Sinken

Versuche über den Betrag des Biegemomentes, Alle Werte gelten für Biege-Zahlentafel 3.

L	D_l	R_2	c	с	9 R	d	M_b	M_b	М	Р	Pđ	$M_{b1} = M_b - P d$	M_f	M_{f}	$M_{/2}$	C_1	P_1	$P_1 d$
_	cm	em	em	em		em	mm	ckg	ckg	kg	cmkg		mm	ckg	ckg	em	kg	ckg
2	73,9	37,7	$16,9 \\ 14,4 \\ 10,8$	$15,4 \\ 14,4 \\ 1,33$	1,96	0,188	29,8 30,6 12.5	$6120 \\ 6290 \\ 725$	6610 6210 5200	$395 \\ 430 \\ 480$	74 81 85	$6046 \\ 6209 \\ 640$	- 6.9		2700	8,0	- 340	
3	66,8	34,1	13, 5	1,66	1,69	0,178	11,8	686	5300	390	69	617	5,9	342	3 2 50	11,0	290	52
4	60,1	30,7	7,3	1,27 1.24	1,56	0,167	$18,2 \\ 18.1$	$\frac{1058}{1050}$	5790 5820	790 750	$\frac{132}{125}$	$926 \\ 925$	5,5 5.2	319 301	$\frac{2600}{2600}$	7,5 7.5	350 350	58 58
5	53,9	27.7	8,5	1,31	1.42	0.157	18,4	1065	6180	730	115	950	5,3	307	2700	8,0	335	52
		, ,	14,0 11.1	$2,25 \\ 1.44$., .	$17,05 \\ 15.9$	990 922	$\begin{array}{c} 6000\\ 6450 \end{array}$	$425 \\ 580$	73 86	917 836	5,4 4.2	$\frac{314}{244}$	$\frac{2500}{3200}$	7,0 11,0	$\frac{360}{290}$	56 43
6	48,9	25,2	6,6	0,95	1,31	0,148	16,75	914	5500	830	123	791	4,8	279	2500	6,8	3 70	53
7	45,1	23,3	9,9 6.75	1,20	1,21	0,142	13,9 14.2	808 825	6600 5990	670 890	95 126	713	4,7	273	3100	10,0	310	44
8	42.3	21.9	7,2	0,75	1 14	0 130	12,55	729	6650	930	129	600	4,0	232	2450	7,2	340	47
	1-,0	2.,0	7,4	0,78	1,14	0,100	12,25	710	6700 6250	910 920	126	584 606	3,6	209	2450	7,2	340	47
9	39,5	20,5	7,0	0,78	1,06	0,132	12,55 12,4	725	6400	920	$123 \\ 121$	596	3,9	$\frac{238}{226}$	$2450 \\ 2450$	7,0	350	46
10	37,1	19,5	6,1	0,67	1,01	0.128	11,9	689	6260	1030	132	557	3,1	180	3100	10,0	310	40
		,	8,1 93	0,75		-,	10,9	631 666	6800	840	108	523 571	4,0	$\frac{232}{185}$	$2500 \\ 2750$	6,5 8.5	385	49
11	34,8	18,1	4,3	0,50	0,91	0,124	13,0	751	5500	1280	. 159	592	3,4	197	2500	6,5	390	48
12	32,9	17,2	6, 6	0,57	0,88	0,121	10,9	630	7000	1060	128	502	3,3	1 9 0	2450	6,Ò	410	50
19	91 0	10 1	0,0	0,67	0 - 0			040		970		525	_	_			_	_
10	51,5	10,4	5,2	0, 49	0,79	0,118	11,1	640	5800	1120	132	508	3,4	196	2150	5,5	390	46
14	29, 6	15,5	7,8	0,68	0,75	0,115	10,9 10.2	$\begin{array}{c} 631 \\ 592 \end{array}$.7100 .7160	: 920 800	106	525 500	$^{2,4}_{2,2}$	$139 \\ 128$	3050 3100	9,5 10.0	320 310	37
15	28.3	14.8	8,8	$^{0,50}_{0,50}$	0.70	0 1 1 8	8,7	501	7200	820	92	409	3,1	180	1800	4,0	450	51
20	20,0	1 1,0	7,8	0,43	0,10	0,115	8,7	501	7250	930	105	396	2,5	145	2750	8,5	340	38
16	27,0	14,2	5,9	0,48	0,66	0,111	9,5 8,8	551 510	7200	1060	126	$\frac{425}{392}$	2,9	168	2450	7,0	350	
				,		•	. ,								Zahl	enta	fel 4	4.
9	72 0	97 7	12,0	11,3	1 0-	0.100	33,4	6850	7150	595	112	6738						-
2	10,9	51,1	15,0	14,0	1,95	0,188	30,1	6170	6500	435	82	6088	-	-		-		50
4	60,1	30,8	10,5 10.5	1,97 1.75	1,56	0,167	13,8 11.8	$1430 \\ 1225$	6700	670 635	112	1328	3,6	375	3040 2900	8,1	345	57
6	48.9	25.2	12,8	2,54	1 2 1	0.148	30,6	1780	7900	620	92	1688	4,1	238	3260	10,6	307	45
	10,0	20,2	8,8	1,94	1,01	0,140	26,7	$1550 \\ 1975$	6500	740 680	109	1441	4,6	267	210 0	5,0	420	62 48
8	42,3	21,9	8,9	1,80	1,15	0,139	20,9	1210	6 740	750	104	1201	3,6	210	2700	7,2	375	52
10	37,1	19,5	10,6	1,41	1.01	0.128	19,9	1152	7900	745	95	1057	3,4	19 8	2700	7,7	350	45
	ŕ	,	9,3	1,20	1	-,	18,7 194	$1083 \\ 1123$	-7600 -8200	820	105	978	3,1 3.2	180	$2600 \\ 3480$	6,5 8.7	400	48
12	32,9	17,2	7,9	1,00	0,88	0, 121	18,0	1040	7300	925	112	928	3,1	180	2700	6,7	405	49
14	29,6	15, 5	11,1	1 20	0,75	0,115	17,7	1026	8300	750	86	940	3,1	180	2990	7,9	380	44
10	07.0		9,4	1,05			15,5	900	8600	880	91	809	$^{-2,5}_{-3,5}$	204	2360	5,6	420	47
10	27,0	14,2	10,4	0,93	0,66	0,111	14,4	835	8350	800	89	746	2, 6	151	2820	7,3	390	43
															Zahl	enta	fel a	5.
0	73,9	37,7	16,6	1,58	1,95	0.188	29,6	6080	6300	380	68	6 012			-	-	-	-
2	Ĺ		12,1	1,16	-,		31,6	6490 1920	6640	550	104	6386		210	3040	10.9	300	47
5	53,9	27,7	15,2	4,02	1,42	0,157	21,8	2260	8250	540	85	2175	2,9	300	2800	8,2	340	53
5	42,3	21,9	8,3	1,78	1,14	0,139	16,5	1760	7600	910	126	1634	2,0	208	2800	8,0	350	48
0			9,9 9.7	2,15 1.74	7		18,5	1920	8300 7700	840	116 91	$1804 \\ 1384$	$^{2,6}_{(1.4)}$	270	2200	5,0	440 340	42
11	$ ^{34,8}$	18,1	8,7	1,67	0,91	0,124	16,6	1720	8350	960	119	1601	2,4	250	2480	6,3	395	49
14	29,6	15,5	11,1	1,70	0,75	0,115	12,3	1275	7750	695	80	1195	1,5	156	2600	7,3	355	41
1.4			15,4 9.9	2,10 0.96			13,9	841	7800	650 790	75 98	1370	1,1	114	2500	8,8 6.2	400	44
16	27,0	14,2	13,6	1,25	0,66	0,111	8,5	884	8800	650	72	812	2,3	240	2240	5,3	420	47

der Biegearbeit, des Wirkungsgrades usw. geschwindigkeit = null. Stäbe 121 und 121 a.

			$A_{b1} =$	1	_	8	б					M _{f1}				n =
$M_{f1} = M_f - P_1 d$		$\begin{array}{c} M_{b2} = \\ M_{b1} - M_{f1} \end{array}$	M_{b2} R_{2}	D_3	D_1	$\frac{-100}{D_3}$	D_1 100	$s_3 - s_1$	A_e	ĸ	$k_2 - k_0$	900	k'	A _i	A_2	A_2
			ckg	em	em	$= s_3$	$= s_1$	vH	cmkg	kg	kg	kg	kg	emkg	emkg	A_1
(200)		5740	159	70 5		1 005	0	1 0.05	80.9	0.0		0.22	0 5 9	9120	720	0 0 0 0
(300)	8,0	5909	155	79,5	×	1,905	0	1,905	82.0	10.3	0,1	0,33	10 0	$\frac{2150}{2250}$	740	0.328
339	, 9.9	301	8.82	75.0	79,5	2,017	1,905	0,112	78,9	2,73		0,35	2,42	546	42,5	0.078
290	8,5	327	9,56	74,8	79,0	2,028	1,916	0,112	85,2	2,42	0,1	0,32	2,10	474	45,0	0,095
261	8,5	665	21,7	66,4	75,0	2,293	2,017	0,276	78,4	2,97	0.1	0,26	2,74	612	87,0	0, 142
243	7,9	682	22,3	65,8	74,8	2,304	2,028	0,276	8 t ,0	2,97	0,1	0,23	2,77	623	89,0	0,143
255	9,2	695	25,1	58,1	66,4	2,598	2,293	0,305	82,6	3,21	0,05	0,25	3,03	684 700	90,5	0,132
258	10,7	659	23,7	59.0	59.8	2,598	2,304	0,294	91,0	3,34		0,26	3,15	709	80,0	0,120
199 296	1,9	607 565	20,2	53 1	58.1	2,805	2,598 2.598	0.253	89.0	2,01	0,05	0.22	2,94	660	73 0	0.110
220	9.8	484	20.75	48.8	52.9	3,100	2,865	0,235	86,5	2,55		0,24	2.38	539	63.0	0.117
(230)		469	20,1	49,5	53,1	3,055	2,851	0,204	99,0	3,27	0,05	0,24	3,10	598	57,1	0,082
185	8,5	415	19,0	45,8	48,8	3,319	3,100	0,219	87,0	2,91	0.05	0,16	2,71	610	57,0	0,094
162	7,4	422	19, 3	46,0	49,5	3,285	3,055	0,230	84,0	2,03	0,00	0,14	2,95	666	58,0	0,088
192	9,3	414	20,1	42,8	45,8	3,544	3,319	0,225	89,0	2,97		0,17	2,91	654	56,0	0,086
180	8,8	416	20,3	43,1	46,0	3,509	3,285	0,224	91,0	3,15		0,16	3,10	672	56,3	0,084
140.	7,2	417	21,4	40,5	42,8	3,744	3,544	0,200	107	3,34		0,14	3,30	741	52,9	0,071
183	9,4	340 490	17,4	40,8	43,1	3,710	3,509 2 7 4 4	0,201	102 5	2,61		0,16	2,61	500	44,3	0,076
145	8,0	420	23,3	38.5	40,5	3 939	3,710	0.229	102,5	2,01		0.14	2,05	851	54 0	0.063
140	8.2	362	21,0	36.2	38.0	4.176	3,974	0,202	104	3,15		0,15	3.09	695	44.5	0.064
(140)		380	22,1	36,5	38,5	4,149	3,939	0,210	105,6	3,03		0,17	2,95	665	46,5	0,070
(140)			_	34,6	36,2	4,376	4,176	0,200					—			<i>`</i>
(140)	9,2	358	21,8	34,7	36,5	4,363	4,149	0.214	102	3,53		0,14	3,47	780	43,8	0,056
102	6,6	423	27,3	32,7	34,6	4,632	4,376	0,256	106, 5	2,79	_	0,10	2,77	622	55,7	0,089
93	6,0	407	26, 2	32,8	34,7	4,618	4,363	0,255	102, 5	2,61		0,10	2,59	581	53,2	0,092
129	8,7	280	18,9	31,5	32,7	4,819	4,632	0,187	101	2,55		0,10	2,52	567	37,5	0,066
107	7,2	289	19,5	31,5	32,8	4,811	4,618	0,193	101 1	2,73		0,10	2,70	009	39.6	0,065
129	9,1	296	20,8	30,2	91,5	15,022 5,011	4,819	0,205	102,5	3.03		0,10	5,25	152	35,6	0,054
				50,5	51,5	5,011	-,011	, 0,200		0,00			1			
Stabe	3 58	una 58	a.													
(320)	8,50	6418	171	78,5	s	1,980	0	1,980	86,3	11,4	0,1	0,39	11,05	2480	830	0,333
(300)	7,95	5788	153	78,5	~ 0 ~	1,990	1 0 9 0	1,990	11,0	9,40		0,32	9,12	2052	685	0,332
316	10,3	1012	32,8 97.7	65 °	18,5	2,348	1,980	0,368	09,0 75 3	3.90	0,1	0,37	2 9 8	660	140	0,204
108	0,0 7.67	1495	59.3	52.9	65.1	2,338 2.939	2.348	$0,500 \\ 0.591$	100.1	4.49		0,31 0.22	4.34	975	182	0.187
205	8.13	1236	49.0	52,6	65,8	2,953	2,358	0,595	82,4	4,79	0,05	0,21	4,65	1050	153	0,146
162	7,40	1119	51,1	44,7	52,9	3,432	2,939	0,493	102,6	3, 51	0.05	0,19	3,38	760	144	0,189
158	7,21	948	43,4	44,7	52,6	3, 432	2,953	0, 479	90,5	4,00	0,05	0,18	3,88	872	118	0,135
153	7,88	9 0 4	46,4	40,2	44,7	3,868	3,432	0,436	107,0	3,63		0,18	3,55	800	117	0,146
129	6,65	849	43,5	40,4	44,7	3,862	3,432	0,430	100,0	3,26		0,14	3,22	724	105	0,145
138	8,05	891	52,0	35,8	40,2	4,330	3,868	0,462	112,6	3,14	—	0,16	3,08	091	114	0,165
131	1,60	804	±0,0	32.1	35.8	4.793	4.330	0,463	112.0	3,63		0.14	3.57	804	103	0.128
(86)	(4.67)	723	46.6	32.6	36.3	4,771	4,303	0,498	99,8	3,57	_	0,10	3,55	799	90	0,113
157	11,02	646	45,5	29,7	32,1	5,180	4,793	0,387	117,5	3,57		0,15	3,49	784^{+}	95	0,121
108	7,61	638	44,9	29,7	32,6	5,181	4,771	0,410	109,5	3,74		0,11	3,70	831	79°	0,095
Stäbe	e 33 1	und 89.														
(230)	6,10	5782	153	80,5	~	1,910	0	1,910	80,2	10, 6	011	0,256	10,39	2340	721	0,310
(250)	6,61	6136	163	80,5	~	1,930	0	1,930	84,5	11,65	, , , , , , , , , , , , , , , , , , ,	0,278	11,42	2560	770	0,300
193	7,01	1629	58,8	59,6	80,5	2,591	1,910	0,681	86,0	4,50	0,05	0,200	4,42	990	205	0,207
247	8,95	1928	69,8	58,9	80,5	2,637	1,930	0,707	98,5	+,60		0.246	$^{+,42}_{-1.04}$	990	245	0,249
160	7,30	1474	67,4 79 ol	46,7	59,6	5,299 8 9 9 0	2,091 9.697	0,708	90,0 100 A	4,80 475	0,05	0,170	4,84	1080 1090	186	0,172
(104)	9,02 (5.79)	1980	70 6	40,0	46 7	4 013	3,299	0.714	99.0	4.00		0.110	1,00 3,99	898	160	0.178
201	11.10	1401	77.7	38.0	46.5	4,068	3,330	0,738	105.6	4,85	-	0,152	4,80	1080	177	0,164
(115)	(7,42)	1080	70.0	32,7	38,4	4,703	4,013	0,690	102,0	3,70		0,114	3,67	825	137	0,166
(77)	(4,96)	1220	78,9	32,8	38,0	4,739	4,068	0,671	117, 5	3,65		0,166	3,54	792	152	0,192
154	10,85	599	42,0	30,3	32,7	5,115	4,703	0, 412	102,0	3,52		0,158	3,43	770	76,5	0,099
193	13,60	619	43,5	30,2	32,8	5,120	4,739	0,391	111,5	3,23		0,214	3,09	690	81,3	0,118

von Q, jedoch ohne den oben bezeichneten Sprung. Die Gruppe L bis T (erste Biegung auf Lehre 8) weist zunächst ein rasches Abfallen des Widerstandes auf, dann steigt Q wieder an, um weiterhin gleich zu bleiben.

Der benutzte Baustoff war Siemens-Martin-Kesseleisen von 15,5 mm Stärke und 50 mm Breite.

Bei den dazugehörigen Ergebnissen der Stäbe A, Fig. 50 (Zwischenräume zwischen 2 Biegungen je 1 Tag) zeigt sich ein starkes Ansteigen; bei den Ergebnissen des Stabpaares B (Zwischenräume zwischen 2 Biegungen je 1 Tag) ist eine ähnliche Vergrößerung der Arbeiten zu beobachten.

biegen und Weiterbiegen.

Für alle »Zeitstäbe« sind auch die Auftragungen über die »Federungsarbeiten« für 1 cm Stablänge aufgetragen, Fig. 55 bis 58. Es zeigt sich im ganzen eine ähnliche Veränderlichkeit der Arbeiten, wie dies unter dem Einfluß von Zeitzwischenräumen bei den Biegeversuchen zu beobachten war. Um einen Vergleich der aufgetragenen Kurven untereinander zu ermöglichen, ist in --Linien das für die erste Lehre ermittelte A_i aufgetragen.

Die Ergebnisse der Federungsversuche, Fig. 55 bis 58 und 59 bis 61, lassen sich in die Beziehung fassen:

$$A_f = \xi f \frac{\sigma_s^2}{2E},$$

worin f die gesamte Querschnittfläche, σ_s die Spannung in der Fließperiode darstellt und ξ vom Grade der bisher vollzogenen Biegung und in geringem Maße auch von der jeweils vollzogenen Biegung abhängt. Für eine Biegung,
Biegungen.	llu
einzelnen	ndiølzeit — n
den	chwir
zwischen	in Riomanac
räumen	caltan f
Zeitı	Wouto
uοл	A TLA
Einfluß	

Alle Werte gelten für Biegegeschwindigkeit = null. 5.003 cm. $\delta = 1.567$ cm, $\delta \delta^2 = 12.45$ cm³; Stab 60a: b = 5,051 cm, $\delta = 1,559$ cm, $\delta \delta^2 = 12,30$ cm³. 4 с0. 48 ŧ Ċ Stäbe ġ fel Zahlenta

	s_1 A_e	ckg	1 90,4	1 91.0	0 90,5	5 91,0	5 93,9	1 94,5	8 90,0	0 110,0	0 110,0	115,6	6 108,6	117,2	30 115,8	10 110,7	(177) - T	32 125.2	$12,05 \text{ cm}^3$.	0 77,9	10 77,9	1 940	1 81,2	15 97,4	Lõ 94,0	6 104,1	10 109 2	0 100,00	107.5	13 97.8	52 109,8	52 101.0	76 112,5	6,06 57	105,5	102,0
			1,92	1,91	0,17	0,27	0,27	0,25	0,23	0,51	0,45	0, 4	0, 4	0,44	0,4	- 6		0,4	oδ²	1,94	1,94	0,1	0,1	$0,2_{4}$	0,2,	0,2	0,0		0 4	0.4	0,4	0,4	0,3	0,3	, 0,7	0.7.
, (m)	$\frac{\delta}{D_1} \frac{100}{100}$	ΗΛ	0	0	1,921	2,091	2,072	2,366	2,347	2,605	3,139	3,115	3,589	3,560	4 045	4,002	+,+ (·)	4,551	cm, <i>t</i>	0	0	1,940	1,940	2,111	2,111	2,356	2,356	200,2	3 149	3,142	3,555	3,555	4,006	4,006	4,382	4 389
	$\frac{\delta}{D_3} \frac{100}{100}$	чН	1,921	1,911	2,091	2,012	2,347	2,617	2,605 3,139	3,115	3,589	3,560	4,045	4,002	4,473	4,551	4,924	4,883	= 1,537	1,940	1,940	2, 111	2,111	2,356	2,356	2,632	2,632	0,142 9,149	0,1∉2 8 555	3,555	4,006	4,006	4,382	4,382	5, 125	5 195
	$egin{array}{c} Ab = \ Mb_2 \ Mb_2 \ R_2 \ R_2 \end{array}$	ckg	174	174	15,4	14,4 25,0	25,8	23,6	24,8 57.0	56.0	49,5	51,2	49,6	51,9	49,7	52,3	00.00	53,8	m, ð =	151	151	16,0	13, 8	24,0	23,1	28,8	26,1	0,20 10,1	44.9 44.8	40.4	49,5	45,5	42, 4	34,0	78,6	78.0
TO 10060	$M_{b_2} = M_{b_1} - M_{f_1}$		6540	6540	525	484 784	190	655	688 1224	1303	1014	1053	895	936	817	860	0 T 8	792	= 5,09 C	5665	5665	546	471	732	209	197	723	0771	6611	826	868	824	693	558	1118	1080
	$M_{f1} = \frac{M_{f1}}{1}$		(360)	(360)	0.000	304 245	221	260	202	103 203	187	196	181	168	157	164	21	104	13a: b	(360)	(360)	333	424	272	271	176	191	1 9 1	179 179	161	163	160	181	210	148	
00 000	с Р ₁ <i>d</i>	ckg		1	01	0 69	59	65	5 2 3	62	51	54	51	47	46	45	1	46	stab 1			67	81	71	72	63	69	00 1	45	• 4 • 6	52	50	5 5	57	50	40
· · ·	P_{l}	kg		I	062 290	420 415	350	415	340	435	385	410	410	380	390	380	380	405	3; 5		1	375	455	425	430	400	440	470	028	325	420	405	465	485	455	001
	c1	сm			6,4	4 2 2 4	8 8	4,9	8,9 9,9	9 4 8	6,7	5,5	5,8	6,9	6,4	6,6 1	, 0,	5,4	2,05 0		}	6,8	4,2	4,9	4,6	5,3	4,3	4,1	ກ ຄ	, o , v	5.5	6.4	4.3	4,1	4.5	•
	M/ [,] 2	emke		1	2520	2050	2880	2040	3010	2080	2580	2250	2370	2610	2530	2500	2680	2170	$\delta^2 = 1$		I	2550	1900	2030	1980	2100	1900	1930	3150	0612 3060	2300	2560	2000	2000	2050	
	Лf	ckg		1	100	3140	280	325	255	265	238	250	232	215	203	209	116	150	sm, b		I	400	505	343	343	239	260	250	204	204	215	210	206	267	198	
	$M_{b1} = M_{b-Pd}$		0069	6900	855	1009	1009	915	890	1506	1201	1249	1076	1104	716	1024	891	896	1,536 (6025	6025	879	895	1004	086	973	914	1412	1512	6101	1062	984	874	768	1266	
	Pd	ckg	100	100	118	122 146	146	215	120	149	134	226	124	166	116	186	169	194), δ =	85	85	108	103	116	150	142	136	138	7 F	118	148	126	146	92	89	
	Ρ	kg [.]	530	530	665	685 870	870	1360	760	1050	1010	1720	1000	1340	086	1580	1500	1720	5,11 CII	455	455	610	580	700	006	910	870	026	830	010T	1190	1020	1240	780	810	
5	Т	ckg	7200	7200	6780	6730 8340	8340	8120	7450	9000 9020	9050	8600	8830	8700	9210	9480	9110	8600	= q ::	6380	6380	7600	6700	7620	7200	7710	7400	7820	7520	2150	8100	7540	7680	6800	8300	
	ЧĮ	emkg	7000	7000	973	980 1155	1155	1130	1010	1655	1335	1475	1200	1270	1090	1210	1060	1090	tab 113	6110	6110	987	998	1120	1130	1115	1050	1530	1430	1105	1210	1110	1020	860	1355	
5	p	сm		0,188	0.178		0,167	0 157		0, 142		0,132	191	0,124	0 118		0 113	01160	D. S		0,188	(1 7	0,1,0		101.0	0 157		0,142		0,132		0,124		0,118		1,111
2010	R d			1,96	1.69	_	1,56	1 49	7 F (-	1, 21		1,06	100	10,01	0.79	· · ·	0.66	20.00	täbe		1,96	(((1,03	с и т	1,00	1 10	4 F F	1.21		1,06		0,91	i c	0,79	1	0.65
2	э	сm	13.0	13,0	1,35	1,25	1,16	0,57	1,18	1,20	1.20	0,73	1,07	0, 82	1,03	0,69	0,60	0,52	ы С	13.3	13,3	1,46	1,53	1,08	1,09	1,07	1,05	1,44	1,59	1 26	0.89	0.96	0.87	0,98	1,55	1
1010	G	cm	13.5	13,5	10,2	9 9 9 9	9,4	6,0	9,8 8,1	4, X A A	9.0	5,0	8,8	6,5	9,4	6,0	6,1	5,0	afel	14.0	14,0	12,7	11,5	8,5	8,0	8.5	8,5	x,1	1, 9 9	1. 1. 7. 7.	8.9	7.4	6.2	8,7	10,2	
onor:	R_2	сm		37,7	34.1		30,7	7 76		23,3	0	20,5	101	1,01	16.4	F 60 T	14.8	261 1	ulent		37,75		; 1 (∓0	100	9,06	5 1 0		23,3	•	20,5		18,1		16,4		14.2
107	T			67	:0		4	LC.	5	2		م	÷	1	- 1		, 13	2	Zal	~	-1	c	¢	-	ť	10	5	7		6		11	9	51	ç	07

Ae Ae	CKg	83,1	74,0	91,0 67.0	01,0 846	78.4	84,9	79,1	90,0	84,5	98,5	92,8	98,0	94,2	100,9	93,8	117.0	105,0	,		86,9	87,1	86,0 25 -	21,2	92,5	93,0	79,0 103.0	97.0	98.2	98,4	94,8	95,8	97,0	103,5	104.5	104.0	108,0	103,0	106,0
83 — 81		1,890	1,881	0,172	0,100	0.230	0,265	0,272	0, 498	0,510	0,399	0,402	0, 472	0,450	0,461	0.457	0.641	0,709		12,4	2,021	2,021	0,108	0,108	0,276	0,210	0.274	0.287	0.277	0,229	0,229	0,216	0,216	0,474	0,458	0,478	0,494	0,502	0,479
$rac{\delta}{D_1} rac{100}{100} = rac{s_1}{2}$	ΗA	0	0	1,590	2.072	2.061	2,285	2,291	2,550	2,563	3,048	3,073	3,447	3,475	3,919	3,925	4.380	4,382	1 N 2	. n n . m	0	0	2,021	2,021	2,122	221,2	2.398	2.662	2,672	2,949	2,949	3,178	3,178	3,382	3,389	3,856	3,840	4,334	4,334
$rac{\delta}{D_3} rac{100}{100}$	ΗΛ	1,890	1,881	21012	2,285	2.291	2,550	2,563	3,048	3,073	3,447	3, 475	3,919	3,925	4,380	4,382	5,021	5,091		- 0,040 (0 -	$^{2,021}_{}$	$^{2,021}_{\circ}$	2,122	221,2	2,398	2,090 9 669	2,002	2,949	2,949	3,178	3,178	3,382	3,389	3,856	3,840	4,334	4,334	4,836	4,813
$Ab = Mb_2$ R_2 R_2 of c	CIAS	157	159	19.0	18.0	18.0	22,5	21,5	44,6	43,0	39,4	37,2	46,4	42,4	46,5	42,9	75,0	74,2	4) f	175	176	ີ່	0 1 1 1 1	20,02	96.04	28.1	27,8	27,2	22,5	21, 6	20,7	21,0	48,9	47,9	49,8	53,0	51, 5	50,8
$M_{b2} = M_{f_1}$		5918	566	417	552	553	627	598	1043	1006	808	762	843	771	762	704	1072	1060	1 200 01		6572	6661	616 606	101	101	716	222	700	688	520	501	552	459	952	932	856	910	197	784
$M_{f_1} = \int_{f_2 - P_1 d} d$	-	(200)	171	111	193	187	251	230	138	138	129	156	119	157	108	117	94	93	- y - 6		(350)	(350)	010 015	000	2 U 3 9 1 6	202	198	181	191	192	235	197	213	157	181	153	162	176	164
P ₁ d A	840	1	54	5 99	62	62	59	60	48	48	45	47	37	46	42	45	40	41	oh 70	7 	}	10 0	010	69	0 0 9 8	65	57	57	58	57	55	52	5 3	46	51	44	47	52	51
P_1			3.03	370	370	370	377	380	337	337	340	355	300	370	360	380	360	372		2 -			010	000	405	375	365	385	390	405	385	370	380	360	395	365	390	450	440
cy em		-	8 0	5 10 6 10 7 10	6,2	6,2	5,4	5,8	7,3	7,3	7,5	6, 8	9,2	6, 2	6,8	5,8	6,6	6, 4		-	1	0	0,0 0 a	ດ ເຊ	0 0 0 0	1 2 6	8,0	7,5	7,2	9,0	7,9	8,8	7,5	9,0	7,1	9,0	7,0	5,0	5,5
M_{j^2} emke	- Samo	I	0960	1960	2300	2300	2040	2200	2450	2450	2550	2410	2760	2300	2440	2200	2380	2380	- 19	- - -	ł	0000	0706	9580	2510	3550	2930	2880	2810	3640	3030	3250 -	2850	3220	2800	3260	2740	2240	2420
Mf cke	 -	ł	225	295	255	249	310	290	186	186	174	203	156	203	150	162	134	134	58.4	~ - ^ -	1		0 0 7 7 7 7	626	486	266	252	238	349	249	290	249	266	203	232	197	209	226	215
$M_{b1} = M_{b-Pd}$	-	6118	787	646	745	740	878	828	1181	1144	938	918	962	928	870	821	1166	1153	030 60		2769	110/	2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3	000	1009	923	975	881	879	712	736	649	672	1109	1113	1009	1072	973	948
P d ckg		82	19.8	144	145	145	132	182	154	151	127	128	86	127	115	121	104	122	<i>v</i> – <i>v</i>		n n n	י ה י ה	70T	180	105	127	135	111	108	94	66	6 6	88	115	109	66	148	147	132
kg P	-	435	120	810	870	870	840	1160	1080	1060	960	016	792	1030	975	1030	940	1100	67 CM		020 202	070	041	780	610	810	860	750	730	662	700	670	635	006	850	820	1220	1280	1145
M ckg	0	6380 5620	7580	6310	7750	6520	7740	5910	7960	7400	8000	7720	7920	8010	8430	8020	8720	7390	8 — 1 F	7000	0221	0/0/	040909	7020	7350	7360	7450	7510	7320	7300	1700	7350	7600	7200	7650	7510	7680	6700	7320
M_b cmkg	c	6200	865	260	890	885	1010	1010	1335	1295	1065	1046	1060	1055	985	942	1270	1275	.h 79.		0201	0111	766	1120	1104	1050	1110	992	987	806	835	742	760	1224	1224	1108	1220	1120	1080
d em		0,188		0,178	10 T C	101.0	0.157		0.142	-	0.132		0.124		0.118		0 111	111,0	F_{1} St ₅	2	0,188		0,178		0,167	1	0,157	0 118	0 # + ()	0.149		0.139	5	0.128		0.191		0.115	2
$R \mid g$		1,96		1,69	د بر بر	1,00	1.42		1.21	`	1.06		0.91	(-	0.79		990	00,0	tähe	2	1,96		1,69		1,56		1,42	1 21	1011	1.21	-	1.14		1.01		0.88		0.75	
cm c		1,40	1.02	0.79	0,85	0,85	1,04	0,71	1,10	1,08	0,99	0,95	1,22	0,90	0,90	0,80	1,24	1,05	Б б		1,34	1,04 0.04	4 ° ()	1.97	1.65	1.04	1,14	1,17	1,20	0,97	1,05	0,97	1,06	1, 23	1,31	1,24	0,88	0,76	0,83
c c		11,6	10.5	7.8	8,9	7,5	9,2	5,1	4,4	0, <i>i</i>	8,4	8,0	10,0	8,1	8,7	7,8	9,3	6,7	afel		14,0	14,0 0,14	5 x	0.6	12.1	9,1	8,7	10,0	10,0	11,0	11,0	11,0	12,0	8,0	9,0	9,2	6,3	5,2	6,4
R_2 cm		37,8		34,2	0.00	0,00	27.8)	23,4	•	20.5		18,2	-1	16.4		14.8	0 ⁽ ±1	lent		37,7		34,1		30,7		24,7	25.9	1	23.2		20.9		19.5		17.2		15.5	
بر itteilunge:	- n.	∾ He	ft 1	ຕ [13.	-	Ħ	г	>	7		6		11	1	13	0	16	01	Z_{a}	-	5		ŝ		4	1	с С	y	>	7		8	3	10		12		14	

- 33 -

$2,0 \text{ cm}^3$.	A.	ckg	82,7	87,0	87,2	87,6	92,2	92,0	104,6	104,6	00 F	112.0	108.0	110.0	111, 2	110,5	114,0	111,0	104,6	;,48 cm ³	87,0	91,6	93,0	84,5	63.0 86.0	98.2	92,1	100,0	102,7	101,0	103,6	114,5	119.0	112,0	115,0	113.2
$\delta^2 = 1$	1 <i>s</i> - <i>8</i> 1		2,400	2,400	0,211	0,211	0,280	0,280	0,275	0,275	0,188	0,100	0.415	0.432	0,432	0,438	0,438	0,451	0,451	$\delta^2 = 12$	2,392	2,392	0,218	0,200	0,277	0.242	0,241	0,180	0,184	0,450	0,462	0,442	0,430	0,441	0,426	0.420
cm, b	$\frac{\delta}{D_1} \frac{100}{100}$	ΗΛ	0	0	2,400	2,400	2,611	2,611	2,891	2,891	3,166 9.146	0,100 3 354	3.354	3.769	3,769	4,201	4,201	4,639	4,639	m cm, b	0	0	2,392	2,392	2,611	2 8 8 8 8 8 8 8	2,870	3,130	3,111	3,310	3,295	3,760	5,757 4 909	4.187	4,654	4.628
= 1,558	$\frac{\delta}{D_3} \frac{100}{100}$	ΗA	2,400	2,400	2,611	2,611	2,891	2,891	3,166	3,166	3,304 9 054	0,004 3769	3,769	4.201	4,201	4,639	4,639	5,090	5,090	= 5,48(2,392	2,392	2,611	2,592	2,888 9 e 7 0	3.130	3,111	3, 310	3, 295	3,760	3,757	4,202	4,187 4 654	4,628	5,080	0.003
cm, δ	$Ab = \\ Mb_2 \\ R_2 \\ R_2$	ckg	198	208	18,4	18,5	25,8	25,7	28,5	28,5	7 0 7 7 0 7	10,1 46,4	448	47.5	48,0	48,2	49,9	50,0	47,4	em, b	210	219	20,3	16,9	25,8	23.8	22,2	18,0	18,9	45,5	47,8	50,7	4 4 4 5 5 8 9	49,5	49,1	00.3
= 4,97 ($M_{b2} = M_{b1} - M_{f1}$		6119	6762	512	520	655	653	664	666	440	412 805	865	822	831	752	779	714	678	= 1,520	6473	6745	567	471	656 695	556	520	397	417	880	923	876	840	774	$702 \\ -222$	022
44a: b	$M_{f1} = M_{f-P_1} d$		(350)	(250)	223	169	246	236	197	190	180	523	504	194	175	132	124	152	188	23a: d=	(380)	(280)	243	304	192	139	161	191	173	135	134	163	116	143	194	i ci x
Stab	$P_1 d$	ckg		I	62	56	44	43	51	4.	9 t 9 t	00	45	44	45	42	38	39	44	stab 1			42	20	40	+ + + +	42	34	42	39	40	0	0 r 0 r	37	38 98	40
; ;	P_1	kg		I	394	358	300	290	362	330	330	4 UD 9 4 9	040 878	365	375	368	335	355	400	m³; 5		ł	265	318	270	0066	295	315	302	304	310	330 2 2 2	287	322	340	360
11,8 C	చ	сm		I	6,5	9,5 ,	10,0	10,5	8,5	9,9	6°	ۍ م	, a 0 a	5 0 0	- 6	8.0	10,5	.8 .9	6,1	,84 C		1	12, 5	8,8	11,4	10 9 9	9,8	8,5	9,0	10,0	9,2	8,4	11,0 ° ,	, .	8,3	0
$b \delta^3 =$	$M_{j'2}$	cmkg		I	2550	3400	3000	3050	3080	3260	3200	2000	9050	3000	36.50	2940	3500	3150	2450	$\delta^2 = 11$		١	3200	2800	3090	0017	2900	2680	2720	3040	2850	2800	3150	2800	2820	9600
сm,	Mj	ekg		I	285	225	290	279	248	237	226	279	010	6 # 7 0 % 6	220	174	162	191	232	em, <i>t</i>		l	285	354	232	180	203	225	215	174	174	203	151	180	232	500
= 1,550	$M_{b_1} = M_{b-Pd}$		6669	7012	735	689	901	889	861	856	625	635	0011	2001	1006	884	903	866	866	= 3,165 -	67.53	7025	810	775	848	405 705	681	588	590	1015	1057	1039	6-00 6-00	917	968	002
m, δ=	Pd	ckg	×	8000	77	77	85	91	89	84	129	114	101	101	4 0	4	94	8 4	0 6	n, <i>b</i> =	77	75	100	85	92	91 80	8 1 8	92	138	91	111	101	8.1	83	96	116
= 4,92 CI	P	ke	488	525	555	495	575	615	625	590	925	8 20	002	000	780	730	815	750	810	l , 5 2 8 CII	460	450	640	540	620	010	220	660	066	710	870	840	720	1020 725	860	1010
4: b =	М	ckg	7040	7380	7150	0069	7240	7350	7720	7700	7840	1880	2050	0000	8020	8010	8000	8100	8020	: 0 =	7020	7310	6400	6450	7180	0101	7300	7600	7100	7700	7560	2900	7860	8300	8420	8330
Stab 4	Mb	cmk¢	6750	7100	812	766	986	980	950	940	754	749	021	11/00	1100	968	266	950	956	tab 123	6830	7100	910	860	940	940 761	765	680	728	1106	1168	1140	1060	1000	991	1091
э <i>G</i> .	ų	сm		0,167		0,157		0,148	0110	0,142	0.139		0,128		0, 121		0,115		0,111	<i>Н</i> . S		0,167		0,101	0,148		0, 142		0,139	0 1 9 8	0,125	191.0	44460	0, 115	L 1 1 1	
Stäbe	B a			1,56		1,42	1	1,31	1 0 1	1,21	1.14		1,01		0,88		0,75		0,66	Stäbe		1,56	9	1,42	1,31	•	1,21	,	1,14	1 01	1,01	88.0		0,75	990	2000
10.	ల	сm	197	13.4	1.31	1.38	1.57	1,46	1,38	1,45	0,68	0,77	1,43	1,36	1,40 1 90	1 90	1.11	1 16	1,07	11.	14 7	15.7	1,27	1,44	1,37	1,41	1,16	0.89	0,60	1,43	1,21	1, 24	1,45	0,97 1.97	1,05	0 0
afel	Ö	em	4	14.0	12.9	13.9	12.6	12,0	12,4	13,0	8.5	9,6	10,4	10,1	10 2	110,01	2 6 7 8	0,0 8 0 1	9,9	afel	15.2	16.3	10,0	12,0	11,6	11,6	12.4	11.5	7,2	10.8	8,7	9,4	10,9	11 5	9,8	0
ılent	R_2	cm		30,8		27,8	1	25,3		4,62	22.0	2	19,3		17,3		15, 6		14,3	ılent		30,8		21,8	25.3		23,4	0	22,0	0	19,3	17.9	n'' 1	15,6	0 	14,0
Zal	T			4		5		9	t	-	X	>	10		12		14		16	Zal		4	1	°.	9		2		x	ç	10	19	4 1	14	16	2

- 34 -

ł								The second se	All and a support of the local division of t													
	R_{2}	o	ల	B B	p	JIb	W	đ	Pd	$M_{b_1} = M_b - Pd$	Mf	Mf2	Ċ	P_{1}	$P_1 d$	$M_{j1} = M_{j1} = M_{j} - P_1 d$	$M_{b_2} = M_{f_1}$	$Ab = Mb_2$ Mb_2 B_0	$\frac{\delta}{D_3} \frac{100}{100}$	$\frac{\delta}{D_1} \frac{100}{100}$	18 88	Ae
	cm	сm	сm		сm	cmkg	ckg	kg	ckg		ckg	cmkg.	сm	kg	ekg			ckg	νH	Ηл		cke
	$30,8 \Big \frac{1}{1}$	2,4 1	1,8	1,56	0,167	5880	6050	490 570	82 05	5798 6965	1	1	1	1		(280)	5518	179	2,380	0	2,380	75,2
	0,7 0,1 1	1,3	1,25	1	1 1 1 1	749	6000	530	0 60 80	6969 666	279	3100	12,5	248	30	(280) 240	6085 426	197	2,422 2.582	2.380	2,422 0.202	81,4 7.5,8
		0,8 0.4	1,18	1,42	101.0	775	6280	580	91	684	266 195	3000	11,0	272	43	223	461	16,6	2,628	2,422	0,206	82,0
	25,3	7,3	0,80	1,31	0,148	006	6890	950	141	759	197	2520	9 9 9 9	307 307	45	141 152	660	23,5	2,854 2,909	2,582 6282 888	0,272	86,5 85 %
	23,4	2,6	0,83	1.21	0.142	670	7020	725	103	567	180	2900	9,5	305	43	137	430	18,4	3,050	2,854	0,196	94,0
	'	9,0 4,0	0,78			719 630	7400	780	111	608	186	2850	9,0	315	45	141	467	20,0	3,110	2,909	0,201	99,5
	22,0	7,9	0,60	1,14	0,139	683	0069	880	123	562	156	2780	~ % . 2	000 930	46	110	6/0 452	20.5	3,242 3,313	3,050	0,192	87,5 101 0
	19.3	8,7	1,20	1 0 1	0 198	1110	7280	835	106	1004	128	2600	8, 1	320	41	87	917	47,5	3,706	3,242	0.464	102.5
		9,0 , 1	1,21		07160	1082	7210	805	103	979	197	2380	6,9	345	34	163	816	42,2	3,758	3,313	0,445	95,0
	17, 3	0,9 6,8	1.10	0,88	0,121	980 1020	7400	830	100	869 920	185	2680	ວິດ ບໍ່ເ	312	න ජ ශ ේ	118	751	43,5	4,157	3,706	0,451	96,5
	1 2 2	8,7	0,92	7 6		890	7480	860	8 6	792	162	2980	9.8 8.6	305	9 C 00	127	665	42.5	4.582	9,150 4.157	0.425	33,0 100 0
	0(01	9,1	1,02	0, t U	0110	940	7530	830	95	845	150	2790	0,9	310	36	114	731	47,0	4,646	4,213	0,433	108,5
	14,3	4, 1 1 1	0,91	0,66	0,111	850	7600	835	6 C	757	122	2670	8°.0	315	30	87	670	46,9	5,048	4,582	0,466	100, 6
		• • •	0,40			676	1040	6/2	1.6	222	133	2000	8,0 8	320	36	16	735	51,4	5,118	4,646	0,472	109,0
д.	lenta	fel	13.	Stäbe) <i>K</i> .	Stab 1	$9: \delta =$	= 1,544	cm, b	= 5, 13	em, i	$b\delta^2 = 0$	12,20	em³;	Stab	i 38: ð	= 1,550	cm, b	= 4,92	$cm, b\delta$	= 11,	10 cm^3
	30,8 1	3,1 1	2,4	1.56	0.167	7000	7160	548	91	6069	1	ł			1	(240)	6669	216	2,370	0	2,370	91, 2
		1,01	3,5 7 2	, , ,		6300	6480	462	22	6223						(240)	5983	194	2,370	0	2,370	82,1
	$27,8\frac{1}{1}$	0.1	1,25	1,42	0,157	865 770	6760 6090	610	96 97	769 676	285	2820	11,5	245	6 6 6 6	246	523	18,8	2,572	2,370	0,202	93,0
	35 0 1	2,1	1, 42	· · ·		931	7190	592	87	844	209	2850	12.0	232	9 6	175	699	26.4	2,853	2 579	0,205	01,10 02 6
		(0,2	1,17	1.01	0,140	845	6530	620	92	753	209	2800	11,2	250	37	172	581	23,0	2,853	2.575	0,278	82,8
	$23,4^{-1}$	8,0 9,0	1,01	1,21	0,142	170	7220	670	95	675	220	2550	8,5	220	31	189	486	20,3	3,077	2,853	0,224	93,3
		0,0	0.78			611	0100	200	211	190	174	2800	11,5	242	. u	140	457	19,5	3,077	2,853	0,224	87,1
	22,0	7,8	0.61	1, 14	0,139	660	6880	875	122	2.30	199	2800	e 6	012	40	152	177 988	17.6	0,270 9 975	3,077	0,198	97 , 3
	10 2	10,5	1,38	101	0010	1095	7600	725	93	1002	157	2850	10.5	270	35	122	880	45.5	3.725	3.275	0,450	00,00 101.9
_	2627	9,4	1, 28	1011	021,0	1070	7120	760	94	976	209	2600	8,4	310	40	169	807	41.6	3,730	3.275	0.455	91.9
	17,3	10,6	1,32	0,88	0.121	1060	7750	730	88	972	180	2850	10,3	275	33	147	825	47,6	4,181	3,725	0,456	104, 3
_		4,0 م	1 80			1650	7000	810	86 86	947	174	2850	10,4	275		141	800	46,4	$\frac{4}{181}$	3,730	0,451	102, 8
	14,3	0,0 8	1 69	0,66	0,111	10001	1 200	000	0 P - F	2001	0 1 1	2800	ດົດ	0 6 7		211	1470	103,0	5,123	4,181	0,942	109, 5
		2	1061			1000	1100	0.00	# OT	nnet	20	2100	x x	200	4	128	8/01 -	96.4	5.123	4.181	0.942	102.5

- 35 -

Ae	ckg	89,5	81,2	90,0	86,0	93,6	93,9	97,2	96,8	01,0	01,0	04,8	97,5	00,2	98,7	
18 88		3,39	3, 41	0,180	0.170	0,246	0,234	0,234	0,240	0,227 1	0,210 1	0,474 1	0,463	0,400 1	0, 422	
$= \frac{\delta}{b_1} \frac{100}{100}$	Ηv	0	0	3, 390	3,410	3,570	3,580	3,816	3,814	4,050	4,054	4,277	4,264	4,751	4,707	4
$\frac{\delta}{D_3} 100 = s_3$	ΥH	3,390	3,410	3,570	3,580	3,816	3,814	4,050	4,054	4,477	4,264	4,751	4,707	5,151	5,129	
$\begin{array}{c} A_b = \\ M_{b2} \\ R_2 \\ R_2 \end{array}$	ckg	303	277	16,2	14,6	24,0	21,9	22,6	23,1	22,9	21,2	49,6	45,1	40,2	41, 6	
$M_{b_2} = M_{f_1} - M_{f_1}$		6680	6084	332	300	464	422	411	420	394	365	773	704	575	595	
$M_{f1} = M_{f-P_1 d}$		(240)	(240)	192	204	209	206	210	154	187	152	137	132	164	163	
P_1d	ckg			34 1	40	35	3 8	40	37	39	39	37	36	3 9	34	
P_1	kg		l	276	304	277	298	325	300	320	322	326	316	352	312	
Ċ'	сm			11,4	10,2	12,0	10,8	8,9	10,5	10,0	9,8	9,5	9,8	8,6	10,3	
M_{f2}	emkg			3150	3100	3320	3210	2900	3150	3200	3150	3100	3100	3040	3210	
JM.	ckg		l	226	244	244	244	250	191	226	191	174	168	203	197	
$M_{b1} = M_{b} - Pd$		6920	6324	524	504	673	628	621	574	581	517	910	836	739	758	
Pd	ckg	80	76	78	86	68	69	76	76	74	81	86	80	06	82	
đ	kg	574	545	590	652	532	538	610	610	615	670	750	698	815	741	
W	ckg	7190	6650	6730	6580	7220	7040	7250	7080	7300	7040	7600	7120	2690	7410	
M	cmkg	2000	6400	602	590	741	697	269	650	655	598	966	916	829	840	
ġ	cm		0,139	0010	0,132		0,128		0,124		0,121		0,115		0,111	
$\frac{g}{R}$			1,14	0 0 T	1,00		1,01		0,91		0,88	1	0,75		0,66	
ల	сm	12,1	11,6	0,89	0.78	1,27	1,17	1,01	0,94	0.95	0.77	1.22	1,19	0,90	1,02	
σ	cm	12.5	12,2	11,4	10,1	13,6	13,1	11,9	11,6	11.9	10.5	10.2	10,2	9,4	10,0	
R_2	em		0,22		c, 02	0	19,5	(18,2	1	17,2	1	10,6		14,3	
Г			x	("		10		11		12		14		16	

	87,5	
	3,320	0.0
, (III)	0	<
- nofe	3, 320	
о (шо	279	
0 # 0 (1	6105	
	(230)	10007
2000		1
1,000 UIII ;		
-		١
m, or		١
ı, <i>u</i> == ±,⊌₀ C	65 6335	
1,000 (11)	470	
	6650	
ougo og	6400	
DIADE M.		1.14 0.139
entaret 15.	14.2 13.5	
7anit	_	å

87,5 85,1 91,8 93,6 93,6 93,6 93,6 100,5 98,5 98,5 98,5 100,8 113,8 113,8 113,8 111,6
3,320 3,340 0,247 0,245 0,245 0,239 0,239 0,239 0,239 0,2453 0,449 0,449 0,449 0,458 0,449
0 0 33,320 33,555 33,555 33,555 33,812 33,812 33,812 4,0251 4,220 4,225 4,232 4,533 4,633
3 , 3 , 2 , 0 3 , 5 , 5 , 5 3 , 3 , 5 , 5 , 5 3 , 3 , 5 , 1 , 2 3 , 3 , 5 , 1 , 2 , 5 4 , 6 , 9 , 1 , 2 , 1 , 2 , 1 , 5 , 1 , 2 , 1 , 5 , 1 , 1 , 6
2555 2511 115,2 21,1 15,2 23,3 23,3 23,3 23,4 23,6 20,2 20,2 20,2 20,5 45,9 45,9 45,9 45,5 43,8
6105 56005 431 431 4310 450 450 414 414 414 414 567 716 667 627
(230) 194 194 194 194 194 199 199 151 151 115 1116 1118 128 128
8 74 66 66 9 1 66 66 66 7 6 67 6 67 6 7 6 67 6 7 6 7
290 308 308 308 310 310 310 310 306 306 306
11 10,6 10,6 10,8 10,8 10,6 8,9 10,6 8,9 8,9 8,9 10,6 10,6 10,6 10,6 10,6 10,6 10,6 10,6
3150 3150 3150 3150 2850 2920 3040 3040 3000
2332 244 2323 2322 2322 1174 1174 1156 1151 1151 1151 1151
55 53 55 53 55 53 55 53 55 53 55<
65 67 67 67 78 66 77 75 86 77 100 88 87 76 95 78 86 77 65 70 86 77 86 77 86 70 86 77 86 70 86 86 70 86 86 70 86 86 70 86 86 70 86 86 70 86 87 70 86 87 70 86 87 70 86 87 70 86 87 70 86 87 70 86 87 70 86 87 70 86 87 70 86 87 70 86 70 86 87 70 86 86 70 86 86 70 86 86 70 86 86 70 86 87 87 86 86 70 86 87 70 86 87 70 86 87 70 86 87 70 86 87 70 86 86 86 86 86 86 86 86 86 86 86 86 86
4470 4700 47000 4700 4700 4700 4700 4700 4700 4700 4700 4700
6650 6210 6640 6640 5780 5780 7870 7450 7450 7450 7450 8840 8840 8530 8530 8530 8530 8530
559400 712 5840 580 580 643 643 643 643 643 643 643 885 957 688 885 850
0,139 0,132 0,124 0,124 0,121 0,121
1,14 1,06 1,01 0,91 0,88 0,75 0,76
13,5 13,5 0,95 0,96 0,96 0,96 0,87 0,88 0,88 0,88
22,0 20,5 19,3 18,2 18,2 17,2 15,6 14,3
8 01 1 1 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

- 36 -

= 2,0	ی ہے۔ ت	$L_2 = 16$	V			05 -	~	177	$A_{L_2} =$)7a.	1	9 1	• <	~ 0	. = 18	$- A_{L_i}$					~	167	$A_I =$		
138 160	\$25 \$25 440	925 540	ວ. ແ ຊີ ຜູ້ທີ່	15 16	26,4	374	138	512	612	5,9) 98 17,8) 20,8	2140 364 420	200 200 210	2340 564 63(2440 644 740	23,4 6,2 7,1	0 0 9 9 9 9	404	95 7	935 1	0.0	040	7,6 8,0 1	- -
160 149 138 138 1	1780 575 1470	1880 675 1570	18,0 6,5 15,1 7,1	8 6 7 9 ×	21,9 20,4 28,6	323 302 406	159 148 138	450 544	582 550 644	5,6 5,3 6,2	12	20,4	624 625 2070) 366 335 190	996(96(1226(1090 1060 2360	10,5 10,2 22.4 22.4	3,1 8,2 8,2	94 5 60 5 81 4 8	66 11 00 10 79 8	360 1 260 2 060 1	10 00 11 00 11 10	470 1 360 1 150 1	9,5 9,5 1,1 1,1	001
240 6 210 1 211 1	6700 1780 895	6800 1880 995	$ \begin{array}{c} 33,0 \\ 18,1 \\ 9,55 \\ \end{array} $	н 4 Ю	23,6 26,7 100	460 520 1540	180 190 180	640 710 1720	740 810 1820	7,1 7,8 17,5 17,5	14	180 177 10,0	6760 6650 342	240 240 220	7000	7100 6990 632	34,6 34,0 6,1	57 2 1,2 7.4	00 1 61 3 15 4	$\begin{array}{c c} 40 & 67 \\ 24 & 10 \\ 90 & 13 \\ \end{array}$	940 2 285 2 505 1	00 05 12 95 12	040 1 390 1 600	4,4 7 4,6 7 4,0 1	
ckg	ckg	ckg	шш	_	ckg	ckg	ckg	ckg	ckg	шШ		ckg	ckg	ckg	ckg	ckg	mm	kg	c 82	kg c]	kg c	kg c	kg c	c m	- 81
₩ ¹	M_{b_1}	M_b	Mb	L	$\frac{M_{b2}}{R_2}$	Mb2	M_f1	Mb_1	Mb	M_b		$\frac{M_{b2}}{R_2}$	M_{b2}	Mf	M _{b1}	M	M_b	$\frac{M_{b_2}}{R_2}$	I_{b2}	<i>t</i> ₁	T Iq	r po	M _b	Пъ	
\cdot Sta	el 19	entai	Zahl		:		null. 7a.	eit = d 10	ndigk 7 un	schwi e 10	egege Stäb	ür Bi 18.	slten f ifel	enta	le We Zahl	AI.			90.	Stab	17.	afel	lent	Zah	
nung.	Krümı	mten]	estimı	r b	g eine	chung	rrei	zur E	larf 1	tsbed	rbei	ten A	esam	en g	auf d	gen 8	iegun	nzelb	ar Ei	ahl de	Anza	ß der	linflu	щ	
0,42 0,43	4,693 4,681	,121	1,1 5 8,5 5	Ω4	$731 \\ 694$	29 36		39 38 38	348 338	7,8 8,4	2710 2840	68 	1 1	8989 898 898	93 95 92	835 855	00 120	8 00 00 00	95 92	0,111	0,66	1,03 0,97	9,8 9,4	14,3	
0,44	4,232	,681	1, v 9, 0 4	ידי כ	762	87		39	337 337	a,0 8,1	0740	200 200	- 01 0 0	ее 76	80 80	695 695	30 60		103	0, 115	0 , 75	1,05 1,36	9,2 11,6	15,6	
0,20	4,025	232	1,9	101	376	58	- (C) -	46	382	8,9 9,9	3400	47	9 4 9 01	60	06	745	00	6 4 2 2	69	0, 121	0,88	0,83	10, 4	17,2	
0,22	3,800	,025	2,1 4	010	401	71		39	312	9,3	920	10	5 5	57	88	714	40	22 0	99	0,124	191	0,81	10,6	18,2	
0,23	9,000 3,812	,051	4,0 4	101	436	31		37	301	10,0 9,8	2950		9 H	56 56	** 101	740 815	80	- 22 - 8	+ ' 99			0.8.0	10,1 9.3		
0,24	3,567	,812	5,4 3	010	490	37		37	288	10,3	0960	44	10	62	81	636	50	8	20	0.128	1.01	0,99	12, 2	19.3	
0,21	3,340	,555	0,1 3	ା ଜି 	413	- 86	• +	34	258	12,3	8170	32		61	06	680	10	1 2 2	± 02	0, 132	1,06	0.90	10,6	20,5	~ *
0.24	0 3.320	,340	2.6 3.0	20	0231 462	(UU) 61	- (?	43	395	8	600		3 1 1	643 69	69 196	495 950	00	0 0	650			3,6	14,1		•
. 3, 3 2	0	,320	6 00 90	67 6	6385	(00)	6) 9	1	1		1	1	س	658	65	466	09	0	665	0.139	1.14	4,7	15,2	22.0	
	чн	Нν	ß					ckg	kg	I	mkg	- 0	Э ——		ckg	kg	â	່ວ ໜ	emk	сm	;	сm	cm	em	
83 - 8	$\frac{0}{D_1} \frac{100}{100}$	- 100 3 83		- 1 F	$M_{b_2} = M_b$	$-P_1d$	M_{f}	P_1d		GI		p.o.	3	M_{b-}	Pd	I			M_b	d	g B	ల	o	R_2	
	G	~~~	-	A_{I}		= V	- W		$P_{\mathbf{l}}$	C ₁ cm	Mrs	р. И И	l Ha	M_{b_1}				-	-		-		-		
	83 - 8 83 - 8 83 - 8 83 - 8 83 - 8 9,284 0,284 0,284 0,284 0,284 0,284 0,284 0,284 0,284 0,284 0,284 0,284 0,284 0,284 0,284 0,284 0,284 0,284 0,485 0,485 0,485 0,485 0,485 0,485 0,485 0,485 0,485 0,485 0,485 0,485 0,485 0,485 0,485 0,485 1,160	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$uxy - r_{10}$ $uyy	325 43 161 462 25,6 3,567 3,320 0,21 258 37 137 490 25,4 3,812 3,557 0,24 277 35 175 490 25,4 3,812 3,557 0,23 301 37 137 491 22,1 4,051 3,812 0,29 315 39 171 491 22,1 4,051 3,812 0,29 315 39 171 401 22,1 4,051 3,800 0,29 325 376 21,9 4,593 0,46 0,45 337 39 187 762 4,93 0,43 337 39 187 762 4,93 0,43 337 39 129 761 4,435 5,116 4,633 0,43 337 39 129 762 4,933 0,433 0,43 337 39 129 762 4,633 0,433 0,43 337 39 129 762 <td>cm kg $M_f - P_1 d$ $M_{b_1} - M_f$ $\overline{R_2}$ $= s_1$ $s_3 = s_2$ $s_3 = s_1$ $s_3 = s_2$ /td> <td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td> <td>kg cmkg cm kg enk enk</td> <td>P2 $M_1 - M_1$ R_2 R_1 $M_1 - M_1$ R_2 R_3 /td> <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td> <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td> <td>kg lig Mo M</td> <td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td> <td>$\mathbf{x}$ P_{c} P_{cl} P_{cl} M_{cl} <</td> <td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td> <td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td> <td>$\frac{g}{R} = g$</td> <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td> <td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td> <td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td>	cm kg $M_f - P_1 d$ $M_{b_1} - M_f$ $\overline{R_2}$ $= s_1$ $s_3 = s_2$ $s_3 = s_1$ $s_3 = s_2$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	kg cmkg cm kg enk enk	P2 $M_1 - M_1$ R_2 R_1 $M_1 - M_1$ R_2 R_3	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	kg lig Mo M	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	\mathbf{x} P_{c} P_{cl} P_{cl} M_{cl} <	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \frac{g}{R} = g$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

- 37 -

·	38	

ckg 7080 6900 1790 840 870 816 772 1430 1450 576	ckg 200 200 200 160 190 156 156 158 150	ckg 6880 6700 1590 1630 750 680 660 616 1290 1292	ckg 161 156 52,0 53,0 27,1 24,5 26,2 24,5 63,0 63,0	
$\begin{array}{c} 7080\\ 6900\\ 1790\\ 1790\\ 840\\ 870\\ 816\\ 772\\ 1430\\ 1450\\ 576 \end{array}$	$\begin{array}{c} 200\\ 200\\ 200\\ 160\\ 190\\ 156\\ 156\\ 140\\ 158\\ 150\\ \end{array}$	6880 6700 1590 1630 750 680 660 616 1290 1292	$\begin{array}{c} 161\\ 156\\ 52,0\\ 53,0\\ 27,1\\ 24,5\\ 26,2\\ 24,5\\ 63,0\\ 63,0\\ \end{array}$	
7080 6900 1790 1790 840 870 816 772 1430 1450 576	$\begin{array}{c} 200\\ 200\\ 200\\ 160\\ 190\\ 156\\ 156\\ 140\\ 158\\ 150\\ \end{array}$	6880 6700 1590 1630 750 680 660 616 1290 1292	$161 \\ 156 \\ 52,0 \\ 53,0 \\ 27,1 \\ 24,5 \\ 26,2 \\ 24,5 \\ 63,0 \\ 63,0 \\ 63,0 \\ 100$	
$\begin{array}{c} 6900\\ 1790\\ 1790\\ 840\\ 870\\ 816\\ 772\\ 1430\\ 1450\\ 576 \end{array}$	$\begin{array}{c} 200\\ 200\\ 160\\ 190\\ 156\\ 156\\ 140\\ 158\\ 150\\ \end{array}$	6700 1590 1630 750 680 660 616 1290 1292	$156 \\ 52,0 \\ 53,0 \\ 27,1 \\ 24,5 \\ 26,2 \\ 24,5 \\ 63,0 \\ 63,0 \\ 63,0 \\ 156 \\ 1$	
1790 1790 840 870 816 772 1430 1450 576	200 160 190 156 156 140 158 150	$ \begin{array}{r} 1590\\ 1630\\ 750\\ 680\\ 660\\ 616\\ 1290\\ 1292\\ 192 \end{array} $	$52,0 \\ 53,0 \\ 27,1 \\ 24,5 \\ 26,2 \\ 24,5 \\ 63,0 \\ 63,0 \\ 63,0 \\ \end{array}$	
$ \begin{array}{r} 1790 \\ 840 \\ 870 \\ 816 \\ 772 \\ 1430 \\ 1450 \\ 576 \\ \end{array} $	$ \begin{array}{r} 160 \\ 190 \\ 190 \\ 156 \\ 156 \\ 140 \\ 158 \\ 150 \\ \end{array} $	1630 750 680 660 616 1290 1292	53,027,124,526,224,5 $63,063,0$	
840 870 816 772 1430 1450 576	190 190 156 156 140 158 150 150 1	750 680 660 616 1290 1292	$27,1 \\ 24,5 \\ 26,2 \\ 24,5 \\ 63,0 \\ 63,0$	
$ \begin{array}{r} 870 \\ 816 \\ 772 \\ 1430 \\ 1450 \\ 576 \\ \end{array} $	190 156 156 140 158 150	680 660 616 1290 1292	24,526,224,563,063,0	
816 772 1430 1450 576	156 156 140 158 150	660 616 1290 1292	$26,2 \\ 24,5 \\ 63,0 \\ 63,0$	
772 1430 1450 576	$156 \\ 140 \\ 158 \\ 150$	616 1290 1292	$24,5 \\ 63,0 \\ 63,0$	
$\begin{array}{r} 1430 \\ 1450 \\ 576 \end{array}$	$140 \\ 158 \\ 150$	1290 1292	$\substack{63,0\\63,0}$	
$\begin{array}{r} 1450 \\ 576 \end{array}$	$\begin{array}{c}158\\150\end{array}$	1292	63,0	
576	150	100		
		426	21,9	
543	150	393	20,2	
566	160	406	22,5	
524	180	344	19,0	
1200	140	1060	68,4	
1230	148	1082	69,6	
451	116	335	22,6	
399	116	383	26,0	
379	110	269	18,9	
362	110	252	•17,8	
	$\begin{vmatrix} 1230 \\ 451 \\ 399 \\ 379 \\ 362 \\ 70 \\ AL_2 =$	$\begin{vmatrix} 1230 & 146 \\ 451 & 116 \\ 399 & 116 \\ 379 & 110 \\ 362 & 110 \\ 76) & AL_2 = 171 \end{vmatrix}$	$ \begin{vmatrix} 1230 \\ 451 \\ 399 \\ 362 \\ 110 \\ 269 \\ 362 \\ 110 \\ 252 \\ 76 \\ 4L_2 = 171 \\ 0 - 184 $	$ \begin{vmatrix} 1230 & 148 & 1082 & 09,0 \\ 451 & 116 & 335 & 22,6 \\ 399 & 116 & 383 & 26,0 \\ 379 & 110 & 269 & 18,9 \\ 362 & 110 & 252 & .17,8 \\ 4L = 171 \ \end{vmatrix} $

Zahlentafel 20. Stab 76 und 76a.

76a) $\begin{array}{c} AL_2 = 166 \\ Z = 307,6 \end{array} \} Q = 1,85$

Zahlentafel 21. Stab 54.

1	28,7	589 0	104	5786	110	5676	132,5)
5	19,0	1980	93	1887	105	1782	64,5	$AL_2 = 142,5 \ ckg$
9	17,0	1770	100	1670	106	1564	75,4	Z = 302,5
13	15,0	1560	78	1482	43	1439	90,5	Q = 2, 12
16	12, 5	1300	105	1195	- 33	1162	82,0)

Zahlentafel 22. Stab 74.

1 6	27,8 25,5	$\begin{array}{c} 5700 \\ 2650 \end{array}$	$\begin{array}{r} 143 \\ 96 \end{array}$	$\begin{array}{c} 5557\\ 2554\end{array}$	100 85	$\begin{array}{c} 5457\\ 2469\end{array}$	128,0 98,0	$AL_2 = 138,0 \text{ ckg}$
11 16	$18,2 \\ 15,6$	$\begin{array}{c} 1900 \\ 1620 \end{array}$	98 82	$\begin{array}{c} 1802\\ 1538 \end{array}$	85 85	$\begin{array}{c}1717\\1453\end{array}$	94,6 102,0	$\int \begin{array}{c} Z = 2.04, 0 \\ Q = 2,06 \end{array}$

1	34.3	6850	213	6637	180	6457	151,0
3	25.6	1485	126	1359	172	1187	34,9
5	27.7	1605	81	1524	134	1390	50,1
	22,7	1320	97	1223	142	1081	46,4
	16,0	928	126	802	135	667	32,5
	17.8	1020	101	919	- 78	841	46,5
3	14.4	836	92	744	89	655	40,0
3	20.5	1190	153	1037	83	954	67,1

$$A_{L_2} = 161 \text{ ckg}$$

Z = 307.5 ckgQ = 1,91

L	M ckg	C' em	P kg	d em	Pd ckg	Mb mm	M _b ckg	M _{b1} ckg	R ₂ em	M _{f1} ckg	M_{b2} ckg	$\begin{array}{c} A_{b1} = \\ \frac{M_{b2}}{R_2} \\ c \mathrm{kg} \end{array}$
1 3 5 7 9 11 13 15 16	3100 2800 3200 3100 3250 3400 3200 3500 3700	$\begin{array}{r} 4,7\\6,8\\5,1\\7,7\\7,2\\10,6\\5,0\\6,3\\4,2\end{array}$	660 412 628 403 453 320 640 555 882	0,199 0,178 0,157 0,142 0,132 0,124 0,118 0,113 0,111	132 73 99 57 60 40 75 63 98	$\begin{array}{c} 30,3\\ 11,0\\ 14,0\\ 10,3\\ 9,8\\ 10,4\\ 7,5\\ 7,1\\ 8,7 \end{array}$	$\begin{array}{r} 3150\\ 639\\ 812\\ 600\\ 570\\ 602\\ 435\\ 412\\ 506 \end{array}$	3018 666 713 543 510 562 360 349 408	$\begin{array}{r} 42,8\\ 34,1\\ 27,7\\ 23,3\\ 20,5\\ 18,1\\ 16,4\\ 14,8\\ 14,2\\ \end{array}$	$120 \\ 122 \\ 88 \\ 70 \\ 69 \\ 44 \\ 45 \\ 38 \\ 64$	$2898 \\ 544 \\ 625 \\ 473 \\ 441 \\ 518 \\ 315 \\ 311 \\ 344$	67,8 16,0 22,6 20,2 21,5 28,6 19,2 21,0 24,2

Zahlentafel 24. Stab 151. b = 5.0 cm, $\delta = 1.0$ cm.

 $\begin{array}{c} A = 67,8 \\ Z = 173,3 \end{array} \Big\} \ Q = 2,56.$

Zahlentafel 25. Stab 152. b = 5.0 cm, $\delta = 1.0$ cm.

1	3000	14,8	202	0,199	40	28,2	2930	2890	42,8	65	2915	68,0
3	26 80	10,6	252	0,178	45	10,0	580	535	34,1	60	475	13,9
5	2700	10,3	264	0,157	42	11,8	682	640	27,7	55	585	21,1
7	2600	11,4	228	0,142	33	9,4	544	511	23,3	32	479	20,5
9	2600	11,7	222	0,132	29	6,8	394	365	20,5	38	327	16,0
11	2600	5,8	448	0,124	55	8,0	464	409	18,1	40	369	20,4
13	2900	8,4	345	0,118	40	8,4	48 6	446	16,4	40	406	24,8
15	3000	5,2	579	0,113	65	6,9	400	335	14,8	40	295	20,0
	-			$\begin{array}{rcl} A = & 6 \\ Z = 13 \end{array}$	8,0 6,7 (+	24,2) =	160,9	Q = 2,3	6.		-	

Zahlentafel 26. Stab 153. b = 5.0 cm, $\delta = 1.0$ cm.

1	3000	18,7	160	0,199	32	27,3	2830	2798	42,8	45	2753	64,6
4	2860	21,0	137	0,167	23	14,1	818	795	30,7	38	757	24,7
7	2890	14,9	194	0,142	2 8	13,3	712	684	23,3	45	639	27,4
10	2770	15,1	184	0,128	24	9,3	540	516	19,5	55	461	23,6
13	2860	9,6	300	0,118	35	10,4	602	567	16,4	60	507	30,9
16	2900	5,5	530	0,111	59	10,1	586	527	14,2	67	460	32,4
		• ′	•		•	•		•	•	•	•	•

Zahlentafel 27. Stab 154. b = 5.0 cm, $\delta = 1.0$ cm.

1 5 9	$3250 \\ 3050 \\ 3150 \\ 3050$	14,4 18,2 14,5 13,1	$226 \\ 167 \\ 217 \\ 234$	$0,199 \\ 0,157 \\ 0,132 \\ 0,118$	$45 \\ 26 \\ 29 \\ 27$	27,4 18,3 14,6 11,7	$2840 \\ 1060 \\ 847 \\ 680$	2795 1034 818 653	$\begin{array}{c c} 42,8 \\ 27,7 \\ 20,5 \\ 16.4 \end{array}$	50 44 32 82	$2745 \\ 990 \\ 786 \\ 621$	64,1 35,8 38,4 38,0
13 16	$\begin{array}{c} 3050 \\ 3000 \end{array}$	13,1 9,7	$\begin{array}{c} 234\\ 310 \end{array}$	$0,118 \\ 0,111$	$\begin{array}{c} 27\\ 35\end{array}$	11,7 8,5	$\begin{array}{c} 680 \\ 493 \end{array}$	653 458	16,4 14,2	32 26	$\begin{array}{c} 621\\ 432\end{array}$	$38,0 \\ 30,5$

Zahlentafel 28. Stab 155. b = 5.0 cm, $\delta = 1.0$ cm.

1 6 11 16	$2770 \\ 2810 \\ 2800 \\ 2910$	17,0 15,2 14,6 7,0	163 185 192 416	$0,199 \\ 0,148 \\ 0,124 \\ 0,111$	32 27 24 46	$23,1 \\ 20,8 \\ 14,7 \\ 11,9$	2410 1210 851 690	2378 1183 827 644	$\begin{array}{c} 42,8\\ 25,2\\ 18,1\\ 14,2 \end{array}$	$50 \\ 40 \\ 38 \\ 49$	2328 1143 789 595	54,4 45,5 43,5 41,9
			Sta	ab	A ekg		Z čkg		Q			
			15	53	64.6	3	139,0		2,15			
			15	54	64,1	L	142,7		2, 22			
			15	55	54,4	L	130,9		2,40			

die gerade auf der Grenze zwischen bildsamer und elastischer Formänderung liegt, wäre $\xi = \frac{1}{2}$, für starke Biegung = 1. Entsprechend der bei den Biegeversuchen beobachteten Erhöhung der Streckgrenze müßte bei den Lehren von geringem Krümmungshalbmesser sich eine beträchtliche — ungefähr von dem Quadrate der jeweiligen Streckspannung abhängige — Erhöhung des Wertes

 A_f ergeben. Das ist aber bei den aufgeführten Stäben 121 und 121a sowie bei 58 und 58a nicht der Fall, bei 33 und 89 (stärkere Teilbiegungen) ist die beobachtete Erhöhung auf Rechnung der bedeutenden Biegung mit Ueberschlagung mehrerer Lehren zu setzen, bei den Zeitstäben wohl nur auf die durch den Zeitzwischenraum zwischen den Biegungen erfolgte »Festigung« des Eisens, die ja auch bei den entsprechenden Biegeversuchen zum Teil zu beobachten ist.

Im übrigen waren die Beobachtungen über die Federungsarbeit außerordentlich schwankend, was wohl auf die bei schwächeren Biegungen unangenehm fühlbare Veränderlichkelt der rollenden Reibung an der Oberfläche der Stützrolle zurückzuführen ist, auch darauf, daß die benutzte schwächste Feder 3 für die schwachen Federungswiderstände einen recht geringen Ausschlag gab.

Einfluß der Geschwindigkeit auf die Biegewiderstände.

Die Zahlentafeln 29 bis 41¹) und Fig. 62 bis 67 geben den Einfluß der Geschwindigkeit beim Biegen unerwärmten Eisens wieder. Es bedeutet v die Zahl der Umdrehungen der Schnecke in einer Sekunde, u die Geschwindigkeit in cm sk, mit der sich die neutrale Faser des Bleches bewegt, s in Hundertteilen die bei der jeweiligen Teilbiegung vollzogene Streckung bezw. Stauchung in der äußersten Faser des Versuchstückes, C den Hebelarm der biegenden Kraft in cm, b die Länge des Bogens von Stützrolle bis Auflaufstelle an der Lehre in cm, p in Hundertteilen die Erhöhung der reinen Biegearbeit, die sich bei der Geschwindigkeit u zeigt gegenüber derselben Arbeit bei der Geschwindigkeit null. Die Stäbe 180 bis 185 und 40, Fig. 62 bis 65, wurden auf die Lehre 2, 4, 8, 16 gebogen. Während des Versuches wurde die Geschwindigkeit der Schnecke zwischen bestimmten Grenzen verändert. Unter

¹) Zahlentafeln 39 bis 41 sind ausgefallen.

»Geschwindigkeit des Biegens« verstehen wir den Krümmungszuwachs $d\frac{1}{e}$, be-

zogen auf die Zeiteinheit, also $\frac{\Delta \frac{1}{e}}{\Delta t}$, worin Δt die Zeit für das Durchlaufen des Bogens *b* von der Stützrolle bis zur Auflaufstelle an der Lehre ist. Diese Geschwindigkeit ist zunächst von der Krümmungsänderung, die gerade vollzogen wird, abhängig und steigt im gleichen Maße wie diese. Als Maß der Formänderung setzen wir die oben erklärte Größe *s* an. Δt ist $= \frac{b}{u}$ oder mit guter

Annäherung $= \frac{c}{u}$, so daß $\frac{d}{dt} \frac{1}{e}$ verhältnisgleich mit $\frac{s}{c} = \frac{us}{c}$ ist.

Unter Weglassung der Verhältnisziffer kann man die Geschwindigkeit der Biegung unmittelbar gleich $\frac{us}{c}$ setzen. Weiter kann man dann die Erhöhung

der reinen Biegearbeit p als abhängig von $\frac{u\,s}{C}$ betrachten und schreiben $p = C_1 \, u \, s \, \frac{1}{C}$, worin C_1 aus Versuchen bestimmt werden soll.

Zunächst prüften wir nach, ob C_1 veränderlich war bei gleichem $\frac{us}{\alpha}$.

Wendete man als Geschwindigkeit der Schnecke eine Umdrehung in der Sekunde an, so war die Geschwindigkeit u im Verhältnis der Lehrendurchmesser verschieden, dagegen die Streckung s im umgekehrten Verhältnis, so daß das Produkt us bei gleicher Umdrehungszahl v dasselbe war. Der Hebelarm C war bei allen diesen Versuchen = 150 mm. Wir fanden folgendes bemerkungswerte Ergebnis:

War bei gleichem Versuchstoffe $\frac{us}{C}$ unveränderlich, so war auch der Einfluß der Biegegeschwindigkeit sehr genähert gleich groß. Wenn wir unseren Vorgang auf Zug und Druck zurückführen dürfen, so ist der Einfluß der Geschwindig-

Fig. 66 und 67. Werte für C_1 in der Gleichung $p = C_1 u s \frac{1}{C}$ für Biegung unerwärmten Eisens.

keit unabhängig davon, ob die jeweils erreichte Gesamtformänderung groß oder klein ist, wenn nur die in der Zeiteinheit vollzogene Dehnung dieselbe bleibt.

Die Beziehung $p = C_1 us \frac{1}{c}$ wurde bei den Stäben 54, 74, 117, 51, 84 und 55 auch für schwache Biegungsgrade nachgeprüft. Auch hier fanden wir das oben Gesagte bestätigt. In den Zahlentafeln 29 bis 41 und den Auftragungen Fig. 66 und 67 sind alle sowohl für schwache als für starke Biegungen berechneten Werte von C_1 aufgetragen. Die Linienzüge für C_1 laufen einander sehr ähnlich, zeigen aber für die letztgenannten Stäbe allerdings große Abweichungen. Da jedoch dort die Einflüsse der Geschwindigkeit an sich recht gering sind, so machen kleine Totgänge im Schreibwerk und Verschiedenheiten in der rollenden Reibung, nicht zu vergessen auch stoffliche Ungleichheiten, genug aus, um das Bild zu verwirren. Jedenfalls genügt uns die Erkenntnis, daß der

Zahlentafeln über den Einfluß der Biegegeschwindigkeit auf den Arbeitsbedarf beim Biegen von nicht erwärmtem Eisen.

Ermittelung der Ziffer C_1 in der Gleichung $p = C_1 \frac{us}{c}$.

L	р vH	C em	p C	u em/sk	8 vH	<i>us</i>	$\frac{us}{C}$	$C_1 = \frac{p C}{us}$
1 5 9 13 16	28,2 17,5 10,6 11,5 12,5	11,2 11,0 9,2 10,6 8,4	315 194 97 122 105	5,8 3,4 2,45 2,00 1,70	$1,85 \\ 1,03 \\ 1,03 \\ 1,03 \\ 0,75$	10,8 3,45 2,53 2,06 1,28	$0,96 \\ 0,32 \\ 0,275 \\ 0,195 \\ 0,152$	30 56 39 59 87
			Zahlen	tafel 30.	Stab 74	ł.		
1 6 11 16	19,6 8,4 14,0 12,9	9,6 9,6 8,4 10,6	188 80 -118 137	5,3 3,06 2,19 1,70	1,85 1,32 1,19 1,17	9,7 4,1 2,6 1,98	1,01 0,429 0,310 0,188	19,4 19,0 45,0 69,0
			Zahlen	tafel 31.	Stab 11	7.		·
1 3 5 7 9 11 13 16	22,1 9,7 5,85 7,5 8,7 6,9 7,95 9,1	6,7 9,6 14,0 8,7 7,7 9,3 9,9 5,5	148 93 82 65 67 64 79 50	5,3 3,8 3,1 2,65 2,34 2,06 1,86 1,70	1,85 0,46 0,55 0,47 0,47 0,49 0,45 0,52	9,7 1,74 1,70 1,24 1,10 1,01 0,84 0,87	$1,45 \\ 0,181 \\ 0,121 \\ 0,142 \\ 0,142 \\ 0,108 \\ 0,085 \\ 0,158$	$ \begin{array}{c} 15,4\\54,0\\48,0\\52,0\\61,0\\64,0\\66,0\\44,0\end{array} $
			Zahler	ntafel 32	. Stab 5	1.		
1 4 7 10 13 16	18,6 13,3 19,2 24,5 11,7 9,7	9,2 7,5 9,0 7,9 10,5 6,2	173 100 172 193 123 60	3,4 2,8 1,94 1,80 1,36 1,24	1,85 0,72 0,80 0,70 0,72 0,70	6,3 2,02 1,55 1,26 0,98 0,87	0,685 0,270 0,172 0,160 0,093 0,090	27,4 50,0 111,0 153,0 126,0 (69)

Zahlentafel 29. Stab 54.

Zahlentafel 33. Stab 84.

L	р v H	C' em	p C	us	us C	$C_1 = \frac{p C}{u s}$
2	23,7	13,6	325	9,7	0,715	33,5
3	10,6	10,8	114	1,08	0,10	106
4	9,1	9,9	90	0,96	0,097	94
$\overline{5}$	9,4	9,9	93	0,98	0,099	95
6	8,6	9,4	81	0,89	0,095	91
8	16.5	8,0	132	0,63	0,079	(201)
9	5.7	9,2	52	0,59	0,064	88
10	7.5	11,0	83	0,56	0,051	148
13	5.0	6,6	33	0,49	0,074	67
14	5.0	8,2	41	0,44	0,054	94
15	5.0	9,0	45	0,44	0,049	102
16	4,0	9,5	38	0,39	0,041	97

L	р vH	C em	p C	u s	$\frac{us}{C}$	$C_1 = \frac{p C}{u s}$
1	15,1	9,9	150	9,7	0,98	15,8
5	9,4	10,2	·96	1,90	0,186	50
7	8,7	9,8	85	1,43	0,145	59
9	13,8	7,4	102	1,14	0,154	90
11	11,6	8,6	100	1,11	0,129	90
13	9,0	7,5	68	0,93	0,123	73
14	2,8	8,7	24	0,49	0,056	49
16	3,0	7,4	22	0,87	0,117	(26)

Zahlentafel 34. Stab 55.

Zahlentafel 35. Stäbe 180 und 181. Lehre 2.

v	u cm/sk	8 vH	u s	р vH	C cm	p C	<u>u 8</u> C	$C_1 = \frac{p C}{us}$
0, 2 0,5 1,0	0,95 2,36 4,72	$2,06 \\ 2,06 \\ 2,06 \\ 2,06$	$1,96 \\ 4,85 \\ 9,70$	15,5 20,2 23,8	13,6 13,6 13,6	226 273 323	0,144 0,360 0,715	116 56,2 33,3
	\mathbf{Z}_{i}	ahlenta	fel 36.	Stäbe 189	2 und 18	3. Lehre	• 9 4.	
0,2	0,77	2,53	1,96	16,9	14,0	236	0,140	121
0,5	1,92	2,53	4,85	21,8	14,0	305	0,346	63
1,0	3,85	2,53	9,70	24,9	14,0	349	0,692	36
	\mathbf{Z}	ahlenta	fel 37.	Stäbe 184	4 und 18	5. Lehr	e 8.	
0,2	0,55	3,55	1,96	14,0	13,5	188	0,145	96
0,5	1,37	3,55	4,85	20,0	13,5	270	0,361	56
1,0	2,75	3,55	0,70	23,2	13,5	312	0,717	32,5
		Zahl	entafel	38. Stak	40. Le	hre 16.		
0,004	9,0072	5, 42	0,039	2,0	14,0	28	0,00379	720
0,1	0,18	5,42	0,97	13,1	14,0	183	0,069	189
0, 5	0,90	5, 42	4,88	19,5	14,0	273	0,349	56

Versuche mit erhitzten Stäben.

Geschwindigkeit überall 1,25 Umdrehungen der Schnecke in 1 sk. Zahlentafel 42. Geschwindigkeitseinfluß bei etwa 1100° C (hellrot).

Stab	L	<i>М</i> 0 m m	M mm	$\frac{M}{M_0}$	Feder
39	$2 \\ 6 \\ 10 \\ 16$	5,9	12,5	2,12	2
6		6,9	12,5	1,80	2
18		6,7	16,9	2,52	2
87		8,8	22,0	2,50	2

Zahlentafel 43.

							4		
Stab	Feder	L	Abl. hellrot	mm kirschrot	M ₀ hellrot	ckg kirschrot	$\frac{b\delta^2}{4}$	hellrot	σ ₀ kirschrot
$39 \\ 6 \\ 18$	2 2 2 2	$2 \\ 6 \\ 10$	5,9 7,2 6,7	7,9 9,6 9,4	610 750 690	820 1000 980	3,0 3,0 3,0	$204 \\ 250 \\ 230$	$274 \\ 333 \\ 328$
Stab	Feder	L	hellrot	dunkelrot	hellrot	dunkelrot	$\frac{b\delta^2}{4}$ cm ³	hellrot	dunkelrot
87	2	16	8,8	21,9	915	2270	3,0	305	755

»Festigkeiten σ_0 « in der Formel $M_0 = \frac{b \, \delta^2}{i} \sigma_0$.

Einfluß der Geschwindigkeit bei diesen letzten Fällen, die der Praxis am nächsten kommen, recht gering ist und daß er sich aus der Beziehung $p = \frac{c_1}{\alpha} us$ ergibt.

Die Zahlentafeln 42 und 43 und die Fig. 68 zeigen Versuche mit erwärmten Stäben von heller bis dunkler Rotglut, die auf Lehren verschiedenen Durchmessers aufgewickelt wurden. Die Umdrehungszahl der Antriebschnecke in der Sekunde und der Hebelarm C waren dieselben, also auch hier das Produkt $\frac{u \, s}{u} =$ konst.

Fig. 68. Biegeversuche mit erhitzten Stäben über den Einfluß der Biegegeschwindigkeit. Geschwindigkeit: 1,25 Umdrehung der Schnecke in 1 sk.

Es wurde eine Erhöhung des Widerstandes gegenüber demjenigan bei einer Geschwindigkeit gleich null bis zu 150 vH vermerkt. Der Unterschied bei Stab 6 ist darauf zurückzuführen, daß dieser Stab bei der Erwärmung eine starke Krümmung im Sinne der zu vollziehenden Biegung angenommen hatte, also das Produkt us einen geringeren Wert besaß (Zahlentafel 42).

Die Zahlentafel 43 gibt Auskunft über die Beträge der Biegewiderstände bei Geschwindigkeit null bei denselben Stäben. Legt man auch hier die einfache Beziehung zugrunde $M = \frac{b\delta^2}{4}\sigma_0$, welche für unerwärmtes Eisen an anderer Stelle abgeleitet wird, so ergeben sich die in der Zahlentafel berechneten Werte für σ_0 . Das sind Werte, die der Zerreißfestigkeit von auf die betreffende Temperatur erwärmtem, langsam zerrissenem Eisen entsprechen.

Der bedeutende Einfluß der Geschwindigkeit auf den Biegewiderstand erwärmten Eisens überraschte, da in der Literatur nichts vorzufinden war, was auf eine derartige Erscheinung hätte hindeuten können. Der Grund für dieses Verhalten liegt nicht klar.

Die alltägliche Erfahrung, daß bildsame Stoffe wie Teer und Pech, wenn man ihnen viel Zeit zur Formänderung gibt, durch ihr eigenes Gewicht ins Fließen geraten, dagegen einer schnellen Formänderung einen beträchtlichen Widerstand entgegensetzen, bietet etwas Aehnliches wie der oben geschilderte Vorgang.

Alle vorbenannten Ergebnisse über den »Einfluß der Geschwindigkeit« sind im Grunde nichts anderes als das, was man sonst »elastische Nachwirkung« nennt. Bringt man in der Materialprüfungsmaschine einen Stab unter eine bestimmte Belastung und läßt diese längere Zeit einwirken, so zeigt sich eine je nach der Art des Stoffes verschiedene Nachdehnung derart, daß eine gewisse Gesamtdehnung bei geringerer Kraft eintritt, als es bei ständigem Anwachsen der Belastung der Fall sein würde. Die uns bekannt gewordenen Versuche über den Einfluß der Geschwindigkeit bei Formänderungen stammen 1) von Hugo Fischer (Zivilingenieur 1872), und 2) von Martens (Handbuch der Materialkunde bei »Schlagbiegeproben«). Beide finden bei den gebräuchlichen Baustoffen Einflüsse, aber in geringem Betrage. Dies rührt wohl daher, daß beide nur ein enges Geschwindigkeitsgebiet bearbeitet haben: Fischer zerreißt mit verhältnismäßig kleinen Geschwindigkeiten und Martens stellt Schlagbiegeversuche an. Bei den letzteren ist die Geschwindigkeit der Formänderung durchweg groß. Da jedoch nach den Ergebnissen unserer Versuche die Schaulinie des Einflusses bei großen Geschwindigkeiten etwa der Abszissenachse gleichläuft, so lassen sich durch Vergleich der Schlagbiegeversuche untereinander keine großen Unterschiede feststellen.

Es ist wohl möglich, daß dem bei schnellerer Formänderung des Eisens steigenden Widerstand eine geringere »Dehnung« im Zugschaubild gegenüber steht. Ueber diese Vorgänge könnten nur Zugversuche mit verschiedener Geschwindigkeit Auskunft geben.

Wir hätten diesen Punkt in der Weise erforschen müssen, daß wir Eisen bogen, dann ausglühten, es dann auf der Dreiwalzenbiegemaschine mit verschiedenen Geschwindigkeiten richteten und endlich dem Zugversuch aussetzten. Jedoch war dieses Beginnen ziemlich aussichtslos, da die genannte Maschine für eine einigermaßen beträchtliche Biegung zu viele Durchläufe erfordert, also zu langsam biegt.

Einfluß der Stabbreite auf den Biegewiderstand.

Eine größere Anzahl von Stäben wurde gebogen, um den Einfluß der Breite des Versuchstückes auf den Biegewiderstand festzustellen. Die Gruppe 1 (Stäbe 215 bis 219) hatte eine Dicke von 26,1 mm und eine Breite zwischen 26,1 und 6,5 mm (die schmaleren Stäbe waren aus derselben Stange durch Abhobeln hergestellt). Die Stäbe der Gruppe 2 (Stäbe Nr. 200 bis 206) hatten eine Dicke von 7,85 mm und eine Breite zwischen 80 und 8,12 mm, die der Gruppe 3 (Stäbe Nr. 207 bis 214) eine Dicke von 4 mm und eine Breite zwischen 30 und 380 mm. Es stellten sich in dem auf die Einheit der Breite bezogenen Biegungswiderstand Unterschiede heraus, wie aus den Zahlentafeln 44 bis 52 und den Auftragungen Fig. 69 bis 71 zu ersehen ist.

Die Unterschiede sind nicht groß und schwanken zum Teil verhältnismäßig erheblich; jedoch läßt sich nicht verkennen, daß mit geringerer Breite der auf die Einheit der Breite bezogene Biegewiderstand, wenn auch wenig, so doch ersichtlich wächst, daß er jedenfalls nicht abfällt. Die nähere Ueberlegung führt uns zu der Einsicht, daß nicht die Breite an sich das Maßgebende für den beobachteten Unterschied der Widerstände ist, sondern vielmehr die Form, in welche der Querschnitt bei der Biegung übergeführt wird. In Fig. 72 ist die Form dargestellt, in welche ein rechteckiger Querschnitt bei Biegung übergehen will: es entsteht eine Nebenkrümmung von etwa dem doppelten Halbmesser der Hauptkrümmung. Die neutrale Schicht wird keine Zylinderfläche, sondern eine Sattelfläche. Diese Nebenkrümmung kann sich aber in Wirklichkeit nicht zu dem oben angegebenen Betrage auswachsen, vielmehr tritt durch die Wirkung der Auflagerkräfte, vor allem an der Stützrolle, eine Abflachung ein. Diese Abflachung wird stärker sein bei breitem Blech oder auch kleineren Auflagerkräften, die bei kleinem Hebelarm der biegenden Kraft auftreten, und sie wird in geringerem Maße vorhanden sein bei schmalerem Blech oder auch geringeren Auflagerkräften infolge größeren Hebelarmes der biegenden Kraft.

Bei den früher angegebenen Versuchen waren diese Einflüsse der verschiedenen Abflachung bei verschiedenem C auf den Arbeitsbedarf offenbar auch vorhanden. Sie waren nur zu klein, um durch die Versuche erwiesen werden zu können und praktisch ins Gewicht zu fallen. Wie oben gesagt, stellten wir diesen Einfluß bei den Stäben verschiedener Breite dagegen fest.

Daß eine Formänderung der geschilderten Art auf Arbeitsbedarf und Widerstände von Einfluß sein kann, leuchtet ein, jedoch zeigt der beschriebene Einfluß das entgegengesetzte Vorzeichen, als bei der elastischen Biegung gefunden wurde.

In seiner grundlegenden Arbeit über die Verdrehung elastischer Prismen, welche dem Hookeschen Gesetze folgen (de Saint-Vénant, Mémoire sur la torsion des Prismes, Paris 1855; vergl. auch Love, Lehrbuch der Elastizität, deutsch

Fig. 69. Versuche über den Einfluß der Breite auf den Biegewiderstand. Stäbe 200 bis 206.

Zahlentafel 44. Stabdicke 26,1 mm.										
Lehre	Stab			Breite 🌢	M_b b	C				
		mm	ckg	em	ekg	mm				
				1						
1	215	56,8	11600	2,61	4450	150				
1	216	34,6	7100	1,528	4650	150				
1	217	24,3	4980	1,023	4880	150				
1	218	15,1	3100	0,605	5 12 0	150				
1	219	15,3	3140	0,630	4980	150				
	Zahlentafel 45. Stabdicke 26.1.									
4	215	41,4	4300	2,61	1650	150				
4	216	26,2	2725	1,528	1780	150				
4	217	15,3	1590	1,023	1550	150				
4	218	10,2	1060	0,605	1750	150				
4	219	10,4	1080	0,630	1720	150				
Zahlentafel 46. Stabdicke 26.1.										
10	215	23,0	4700	2,61	1800					
10	216	14,7	3010	1,528	1980					
10	217	9,7	1990	1,023	1960					
10	218	6,5	1330	0,605	2200					
10	219	6,4	1310	0,630	2100					
	· I	Z	ahlentai	fel 47.						

- 49 --Breiteneinflüsse.

Zahlentalei 47.								
Lehre	Stab	δ mm	b mm	<i>b</i> δ ² cm ³	Mb mm	Feder	M _b ckg	$\frac{M_b}{b \ \delta^2}$
5	207	3,98	30,0	4,75	6,7	3	388	81,8
5	208	4,05	45,8	7,51	9,65	3	560	74,6
5	209	4,12	60,7	11,10	13,4	3	777	70,0
5	210	4,10	91,4	15,35	18,1	3	1048	68,3
5	211	4,05	124,6	20,48	24,7	3	1440	70,0
5	212	4,10	190	31,90	38,0	3	2200	69,2
5	213	4,14	260	44,40	30,2	3	3140	70.6
5	214	4,25	380	68,70	22,8	3	4675	68.3
		• ,	. 7.	, blontofo	1 4 9			,
10	906	1.1.05	45.8	7 51	140.	1 2 1	996	1 1 1 8
10	200	4,05	40,0	11.1	0,0 6 4 5	9	975	44,0 99 o
10	209	4,12	194.6	20.45	19 1		575	33,0
10	211	4,05	124,0	20,40	15,1		1101	57,1
10	212	4,10	190	51,9	20,1	1 3	1104	36,5
			. Za	ahlentafe	1 49.			
16	208	4,05	45,8	7,51	5, 8	3	308	41,0
16	209	4,12	60,7	11,1	5, 8	3	337	30,2
16	211	4,05	124,6	20, 48	11,3	3	655	31,9
16	212	4,10	190	31,9	17,9	3	1040	32,7
			Za	hlentafe	1 50.	•		
2	200	7.86	8.21	5.07	6.1	1 3 1	354	70.0
2	201	7.81	10.74	6.48	7.25	3	420	64.9
	202	7.85	20.70	12.75	14.70	3	851	66.9
2	202	7.8%	26,75	16 30	17 90	3	1040	63.9
- .,	200	7.85	38.00	23.40	25.9	3	1500	64 1
- -	204	7.86	56 30	34 80	214	2	2220	63.9
~,	206	7.85	80,00	49.50	30.4	2	3150	63.6
-	200	1 1,00	, 00,00		1	· - ·	0100	00,0
	1		Za	ahlentaie	1 51.			
8	200	7,86	8,21	5,07	3,6	3	209	41,2
8	201	7,81	10,74	6,48	$^{-1,1}$	3	238	36, 8
8	202	7,85	20,70	12,75	7,5	3	435	34,2
8	203	7,82	26,75	16,30	10,1	3	585	36,0
8	204	7,85	38,00.	23,40	14, 2	3	824	35,3
8	206	7,85	80,00	49,50	28,6	3	16 6 0	33,5
			Zs	hlentafe	1 52.	•		
12	200	i 7.86	j 8,21	5,07 i	2,0	j 3 i	116 i	22.9
12	201	7.81	10.74	6.48	2.2	3	128	19.8
12	202	7.85	20.70	12.75	4.0	3	232	18.2
12	203	7.82	26.75	16.30	5.8	3	307	18.8
12	204	7.85	38.00	23.40	7 1		411	17.6
12	206	7.85	80.00	19.50	15.3	3	885	17.9
				1 10,00	10,0	· "	1	11,0
Mittei	nungen. 1	Heit 113.					4	

von Timpe, Leipzig 1907, S. 452-157), betrachtet de Saint-Vénant auch diese »antiklastische« Krümmung. Er zeigt, daß das Verhältnis der Hauptkrümmungen am gebogenen Stabe gleich der Poissonschen Zahl ist. Für den gewöhnlichen Fall der Praxis, daß sich die Nebenkrümmung nicht zu dem berechneten Betrage auswächst, gibt de Saint-Vénant Momente an, durch welche die Platte zu einer rein zylindrischen Fläche gebogen werden kann, durch welche überhaupt das Verhältnis der beiden Hauptkrümmungen sich beliebig ändern läßt, und stellt eine Gleichung für die Formänderungsarbeit auf, welche zur Biegung mit gegebenen Hauptkrümmungen erforderlich ist. Dabei ergibt sich für die beiden Fälle, daß sich einmal die Nebenkrümmung zum vollen Betrage auswächst und das andere Mal, daß sie ganz vernichtet wird, ein bestimmter Unterschied der Arbeit. Verschwindet die Nebenkrümmung ganz (breites Blech), so ist ein Mehrarbeitsaufwand von etwa 9 vH erforderlich gegenüber dem anderen Grenzfalle (schmales Blech). Natürlich darf man nicht elastisches und bildsames Biegen miteinander vergleichen; jedoch ist es auffällig, daß wir für schmaleres Blech (an welchem die Nebenkrümmung fast ungeschwächt bestehen bleibt) einen Mehrbetrag an Arbeit finden.

Wir sind nicht in der Lage, für diese Erscheinung eine zwingende Erklärung zu geben. Es ist nicht ausgeschlossen, daß hier gewisse Vorgänge eine Rolle spielen, welche bei der elastischen Biegung nicht berücksichtigt werden. Wir meinen die »innere Reibung« zwischen nebeneinander liegenden, n ungleichem Maße verlängerten oder verkürzten Fasern.

Es wird in allen Abhandlungen über elastische Biegung, sowohl bei Biegung durch ein Kräftepaar wie auch durch eine Schubkraft, davon ausgegangen, daß die benachbarten Fasern einen gegenseitigen Zwang zufolge ihrer verschiedenen Formänderung nicht ausüben. Auch die »strenge« Elastizitätstheorie wendet nach dem Vorgange von de Saint-Vénant diese Vereinfachung sowohl für den Fall der Biegung als für den der Verdrehung irgendwie gestalteter Querschnitte an. Die bisher angestellten Versuche, namentlich über die elastische Verdrehung rechteckiger Querschnitte, geben mit der de Saint-Vénantschen Theorie sehr gute Uebereinstimmung, so daß in der Tat das Fehlen der genannten Spannungen bei elastischer Formänderung wahrscheinlich wird.

Es ist nicht ausgeschlossen, daß bei bildsamer Biegung solche gegenseitige Beeinflussung der Fasern auftritt, und wir glauben, daß eine Verschiedenheit des Arbeitsbedarfs bei 'größerem oder geringerem Verschwinden der Nebenkrümmung darauf zurückge!ührt werden könnte.

Eine Besprechung dieses Einflusses ist in Bach, »Elastizität und Festigkeit«, 4. Auflage S. 100 (Zugversuche mit Stäben von plötzlicher Querschnittverminderung und S. 208 bis 210 (über Biegung) zu finden. Jedoch gelang es uns trotz eingehender Ueberlegung nicht, an Hand dieser Abhandlungen für unseren Fall einen zwingenden Schluß zu ziehen. So einleuchtend auch das dort über Zugversuche Angeführte ist, so fanden wir dennoch nicht aus diesen Erwägungen eine unanfechtbare Erklärung für unseren Fall.

Eine Beeinflussung von Schichten gleichlaufend der neutralen Schicht untereinander ist wohl möglich, konnte aber nicht nachgewiesen werden. Bei den von uns untersuchten Querschnitten ist die vermutete Beeinflussung dem Anscheine nach durchaus gleichartig, so daß durch die Veränderung der Dicke nichts über diese Frage zu erfahren ist.

Betrag des Federns nach dem Biegen.

Der Strahl I, Fig. 73, ist eine in der Halbmesserrichtung gezogene Linie an dem auf die Lehre gewickelten Stabe, Strahl II dieselbe Linie nach dem Federn. Könnte jede Faser sich frei bewegen, so würde der Querschnitt so zurückfedern, daß Strahl I in die gedachte Linie $a \ b \ c \ d$ überginge. Es scheint

nicht leicht, diese Lage II wegen der vermuteten Beeinflussungen der Fasern untereinander zu finden. Eine Theorie des Vorgangs stellte zuerst Wöhler auf (vergl. Rudeloff, Einfluß des Biegens und Richtens auf die Festigkeitseigenschaften von Flußeisen, Mitteilungen des Königlichen Material-Prüfungsamtes, Groß-Lichterfelde 1901); vergl. die Fig. 73, welche die von den genannten Schriftstellern vertretene Anschauung verdeutlicht. Daran anschließend geht auch Ludwik in seiner Arbeit davon aus, daß die Querschnitte nach dem Federn eben bleiben, daß also der Strahl II wirklich eine Gerade ist. Die Lage dieser Geraden folgt daraus, daß für die in den Fasern verbleibenden Längsspannungen sowohl Summe als auch Moment gleich null sein muß. Wir fanden diese Theorie durch unsere Versuche, soweit wie eine Prüfung möglich war, im ganzen bestätigt. Wir bemühten uns, den Sinn des von Ludwik angegebenen zeichnerischen Verfahrens rechnerisch zu fassen, um eine Formel zu finden, welche den Vorgang darstellt. Zu diesem Zwecke gingen wir von Fall 1a für das Schaubild des Zugversuches (vergl. Fig. 76) und von sofortiger Biegung auf die betreffende Krümmung aus, um für eine zu bildende Formel ungefähr den richtigen Bau kennen zu lernen. Die Rechnung war etwas verwickelt, führte aber zu einfachen Ergebnissen. Wir fanden:

$$\Lambda) \quad \frac{R_2}{R_3} = 1 - a \frac{R_2}{\delta} \boldsymbol{x},$$

worin R_2 der bei der Biegung erreichte Krümmungshalbmesser der Neutralen, R_3 der Halbmesser derselben Faser nach dem Federn, δ die Blechstärke, $a = \frac{\sigma_s}{E}$ ist und x sich aus der Formel ergibt:

B)
$$x = 3 - 4 \left(\frac{R_2}{\delta}\right)^2 a^2$$
.

Für $\frac{R_2}{\delta}$ läßt sich setzen $\frac{1}{2s_2}$, worin s_2 die gesamte Streckung der äußersten Faser in vH ist, also

$$x = 3 - \frac{a^2}{s_2^2}.$$

Nach Formel B) schwankt x zwischen 2 und 3 für schwache oder starke Biegung. Nach den von uns vorgenommenen Versuchen haben wir auf Fig. 74 (Linienzug $\Delta s_2 = s_2$) x in seiner Abhängigkeit von s_2 dargestellt. Wir finden eine recht glatte Schaulinie, die allerdings von der Kurve der Formel B abweicht. Das kommt bei geringeren Streckungen vielleicht daher, daß sich im Zugschaubild der Uebergang von elastischer zu bildsamer Formänderung nicht

Fig. 74. Versuche über den Betrag des Federns gebogener Stäbe. Werte des Faktors x in der Gleichung $\frac{R_2}{R_3} = 1 - a \frac{R_2}{\delta} x$, vergl. Zahlentafeln. Die in [] Klammern bei den einzelnen Kurven angegebenen Zahlen bedeuten die bei den einzelnen Teilbiegungen erreichten Dehnungen bezw. Stauchungen der äußersten Fasern in vH der Länge.

in scharfem Knick vollzicht, und bei größeren Formänderungen daher, daß sich der Uebergang im Punkte 2 bemerkbar macht (vergl. Fig. 81). Außerdem haben wir zwar festgestellt, daß für den Betrag des Biegemomentes ein gleicher Verlauf des Zug- und des Druckschaubildes angenommen werden darf, das scheint hier aber nicht erlaubt zu sein. Man wird also die Formel B nach dem Vergleich der Schaulinien I und II berichtigen müssen.

Die Zuverlässigkeit des von Wöhler und Ludwik angegebenen Verfahrens ist durch unsere Ergebnisse natürlich nicht widerlegt, vielmehr macht das Fehlen des Druckschaubildes die genauere Nachprüfung unmöglich.

Die oben angegebene Formel A) läßt sich auch für absatzweises Biegen anwenden, wenn nur x richtig eingesetzt wird. Wir haben, um x zu finden, mehrere Versuche angestellt, die in den Zahlentafeln 53 bis 63 und auf Fig. 74 wiedergegeben sind. Es bedeutet in den Zahlentafeln $q = \frac{R_2}{R_3}$ das Verhältnis des Krümmungshalbmessers auf der Lehre zu demjenigen nach dem Federn.

Versuche über den Betrag des Federns.

Zahlentafel 53. Stab 88.					Zahlentafel 57. Stab 010.						
		s I	1	<u>i</u>				8	1	80	
L	1-q	- Ra		• 2	æ	L	1 - q	$\frac{v}{R_0}$	 a		x
				VH						<u></u>	
8	0.041	0.071	850	3.53	2.45	5	0.087	0.053	800	2.64	3.70
9	0,066	0,076	»	3,79	4.20	8	0,067	0,067	»	3,34	3,56
10	0,060	0,080	»	3,99	4,10	1 1	0,063	0,081	»	4,06	4,10
11	0,059	0,086	»	4,29	4,30	14	0,058	0,094	,»	4,70	4,40
12	0,053	0,090	N	4,50	4,00	1.6	0,058	0,104	»	5,13	4,75
13	0,038	0,095	»	4,71	3,06)	1.	im Mitio	. n è i	" T	
14	0,048	0,100	*	5,00	4,10		21 82	IIII MILLICE		0 VII.	
15	0,041	0,105	»	5,22	3,64						
10	0,041	0,109	"	5,42	5.80	Zał	lentaí	el 58. St	ab 140	$\delta = 0, \delta$	558 CM
	As_2 in	n Mittel =	= 0,236	vH.		3	0,182	0,0193	730	0,965	2,56
7		tofel 53	str	h 10		4	0,210	0,0215	»	1,075	3,30
		L A ART	r. Du		1 3 4 2	5	0,185	0,0237	»	1,185	3,20
4	0,056	0,050	850	2,53	$^{2,40}_{4,10}$	6	0,174	0,0260	»	1,300	3,30
а С	0,086	0,056	"	2,80 3.07	4,12	7	0.162	0,0282	<i>`</i> ^	1,41	3,30
7	0.070	0.066	" 》	3,07	3,90	8	0,160	0,0300	»	1,50	3,50 9 4 4
	0.064	0.071		3.53	3,85	10	0,144	0,0320	» 、	1,60	ə,36 9 i i
9	0,070	0,076	»	3.79	4,50	11	0,133	0.0363	<i>"</i>	1.81	3.51
10	0,065	0,080	*	3, 9 9	4,40	12	0,118	0,0381	»	1,90	3,29
11	0,060	0,086	»	4, 29	4,40	13	0,101	0,0400	»	2,00	2,95
1.2	0,058	0,090	*	4,50	4,40	14	0,101	0,0424	»	2,12	3, 12
13	0,050	0,095	»	4,71	4,05	15	0,099	0,0444	»	2.22	3, 21
1.4	0.050	0,100	×	5,00	4,25	_					
15	0,052	0,105	»	5,22	4,61			$\mathfrak{I} *_2 = 0,$	104 vH.		
16	0,040	0,109	*	5,42	3,70						
	$arDelta s_2$ in	m Mittel	= 0,243	vH.		Zal	ilentaf	el 59. S	tab 14	1, $\delta = 4$,1 mm.
2	Zahlen	tafel 5.	5. Sta	ab 54.		2	0,504	0,0109	610	0,550	3,35
	0.078	0.041	850	1 2.05	1 2.70	4	0,504	0,0134	»	0,670	4,50
- 3	0.087	0.045	»	2.25	3.30	6	0,335	0,0163	»	0,815	3,31
4	0,090	0,050	»	2,53	3,84		0,288	0,0188	»	0,940	3,32
5	0,082	0,056	>>	2,80	3,94	10	0,258	0,0211	×	1,05	3,30
6	0.080	0,061	»	3,07	4,25	14	0,228	0.0258	, »	1,19	3.06
7	0,091	0,066	»	3,32	5,10	16	0,190	0.0288	×	1.44	3.35
8	0,092	0 071	»	3,53	5,50	Ľ.	1 0,100		1	-,	
9	0,071	0,076	»	3,79	4,55			$\varDelta s_2 = 0$,127 vH	•	
10	0,064	0,080	>>	3,99	4,35						
12	0,059	0,086	,)	4,29	4,30	7.0	blontof		tob 14	0 8 F	
12	0,052	0,090	*	4 71	4.05	Za.	mentar	0100.5	ad 14	$2, 0 \equiv 3$	»,2 mm.
14	0.055	0,100		5.00	4.69	2	0,695	0,0085	550	0,425	3,25
15	0,055	0,105	»	5,22	4,90	4	0,570	0,0104	»	0,520	3,25
16	0,050	0,109	»	5,42	4,65	3	0,468	0,0127	»	0,635	3,26
·						8	0,408	0,0146	»	0,730	3,28
	⊿ 8 2 i	ım Mittel	= 0,24	vн.		10	0,352	0,0164) »	0,820	$ ^{-3,17}$
.7	Schlent	afel 50	6 Ste	nh 011		14	0,284	0,0186	× ×	1 0,930	2,90
			. ,ju 1 enn	1 9 40	1 4 9 1	16	0,240	0.0200	, »	1,12	2 76
1 5	0,110	0.048	⁵⁰⁰	2,40	4 1 0	Ĩ				,	<u> </u>
0 6	0.080	0.058	, ×	2.91	4.16	1		$As_2 = 0$,699 vH	•	
7	0.080	0.063	»	3.15	4.06	1					
8	0.074	0,067	»	3,37	3,95	7.	hlantef		tah 14	2 6	1 a mm
.9	0,071	0,072	»	3,59	4,06	La	nientai	CI 01. C	nau 14	o, v =	i,9 mm
10	0,070	0,075) »	3,77	4,29	6	0,669	0,00755	550	0,377	2,76
11	0,070	0,081	»	4,06	4;55	8	0,600	0,00870	· »	0,435	2.87
12	0,061	0,086	*	4,28	4,20	1,0	0,515	0,00975	»	0,490	2,75
13	0,058	0,090	×	4,48	4,21	12	0,456	0,0110	»	0,550	2,75
(14), (15)			1	1.	1.	14	0,380	0,0122		0,610	2,55
16	0,050	0,104	l »	5,18	4,16	16	0,319	0,0134		0,670	1 2,35
	4	$s_2 = 0, 23$	31 vH.			1		$\varDelta s_2 = 0$,058 vH	l.	

Versuch Nr.	a	<i>s</i> 2' vH	$\frac{a}{s_2}$	$\left(\frac{a}{s_2}\right)^2$	$3 - \left(\frac{a}{s_2}\right)^2$
1	$\frac{1}{555}$	0,238	0,758	0,575	2,425
2	$\frac{1}{476}$	0,480	0,439	0,193	2,807
3	$\frac{1}{638}$	0,864	0,182	0,0331	2,967
4	$\frac{1}{850}$	2,05	0,0578	0,00333	. 2,997
5	$\frac{1}{850}$	2,51	0,047	0,00230	2,998
6	$\frac{1}{850}$	3,53	0,0235	0,000551	3,000
7	$\frac{1}{850}$	5,42	0,0217	0,00047	3,000
8	1 550	0,74	0,246	0,0608	2,940
9	$\frac{1}{550}$	1,18	0,154	0,0236	2,976
10	$\frac{1}{610}$	1,50	0,110	0,0121	2,988

Zahlentafel 62. Theoretisches x zu Zahlentafel 63 ($s_2' = 100 s_2$).

Zahlentafel 63 (vergl. Zahlentafel 62).

Versuch Nr.	ծ mm	L	1-q	$\frac{1}{a}$	$\frac{\delta}{R_2}$	$\frac{1}{a}\frac{\delta}{R_2}$	$s_2{}^\prime$ vH	x
	2.0	1	0 705	555	0.00470	9.65	A 999	9.10
2	4.0	1	0,195	476	0.00410	4 50	0,238	2,10
3	8.0	1	0.202	638	0.0190	12.1	0,480	2,50
4	15,5	2	0,073	850	0,041	34,9	2.05	2,54
5	15,5	4	0,056	850	0,050	42,5	2,51	2.39
6	15,5	8	0,044	850	0,071	60,2	3,53	2,65
7	15,5	16	0,032	850	0,109	92,6	5,42	2,95
8	1,9	16	0,300	550	0,0147	8,10	0,74	2,42
9	3,2	16	0,170	550	0,0235	12,8	1,18	2,18
10	4,1	16	0,145	610	0,0295	18,0	1,50	2.60

Bei den angegebenen Schaulinien steht in eckigen Klammern der bei jedesmaliger Biegung erreichte Zuwachs $\varDelta s_2$ an Formänderung der äußersten Faser in Hundertstel angegeben. Die Abszisse bedeutet die gesamte erreichte Formänderung s_2 . Wir verzeichnen ein Anwachsen des Wertes x mit fallendem $\varDelta s_2$ bei den rechts gezeichneten Schaulinien, andererseits aber ein Abfallen von xbei noch kleinerem in den links gezeichneten Linien.

Es steigt also, wie Fig. 75 zeigt, der Wert für x für ein bestimmtes s_2 mit fallendem $\varDelta s_2$ zunächst an, um bei $\varDelta s_2 =$ null auch hier auf den Wert x = 2 zu fallen.

Krümmungshalbmesser und dementsprechend Federungsbetrag waren durch größeren oder kleineren biegenden Hebelarm C nicht beeinflußt.

Bei den warm gebogenen Stäben war ein Abfedern nicht vorhanden.

8) Rechnerische Fassung der Versuchsergebnisse.

Die folgenden Rechnungen gelten für ein breites Blech, das mit sehr geringer Geschwindigkeit gebogen wird. Der Hebelarm, an welchem die biegende Kraft angreift, sei groß, also ein schiebender Einfluß von Querkräften nicht vorhanden. Das Blech werde auf den Krümmungshalbmesser ϱ gebogen, die Krümmung vor der Biegung sei gleich null.

Die von uns angegebenen Formeln stützen sich auf das von Feret und Ludwik (vergl. Seite 2 dieser Arbeit) angegebene zeichnerische Verfahren zur Bestimmung von Biegemoment und Biegearbeit. Dieses Verfahren führt zu Werten, die sich recht genau an die von uns beobachteten anschmiegen. Es beruht auf dem Grundgedanken, daß jede Faser der bei Biegung eintretenden Verlängerung oder Verkürzung den Widerstand entgegensetzt, den sie bei einem mit gleicher Geschwindigkeit vollzogenen Zug- oder Druckversuche leisten würde. Wird die Biegung in mehreren Absätzen vollzogen, so bewegt sich die Formänderungs-Spannungslinie so, wie es beim Zugversuche beobachtet wurde (vergl. Versuche mit Siemens-Martin-Kesseleisen, Fig. 37). Eine wesentliche Vereinfachung konnten wir an Hand unserer Versuche noch dadurch hineinbringen, daß die neutrale Fläche in der Mitte lag und alles auf das Schaubild des Zugversuches zurückgeführt werden konnte.

Das oben erwähnte zeichnerische Verfahren hat ohne Zweifel den Vorzug, daß es recht anschaulich ist und daß es allen Launen des Zugschaubildes folgt. Daß die Genauigkeit bei diesem Verfahren bei gewöhnlicher Sorgfalt und bei Anwendung handlicher Größen für die Zeichenblätter nicht sehr groß ist, stört den Praktiker nicht, wohl aber ein anderer Umstand: Er kommt nicht oft in die Lage, eine solche Ermittlung machen zu müssen. Will er die Aufgabe dann richtig lösen, so ist der Aufwand an Mühe, der dazu gehört, sich in den Sinn des Verfahrens hineinzudenken und sich über die Maßstäbe klar zu werden, in unserem Falle so groß, daß eine wenn auch etwas verwickelte Formel ihn schneller und mit geringerer Mühe zum Ziele führen würde, wenn er nur beim gewöhnlichen Rechnen keinen Fehler macht Es ist übrigens gelungen, die Formeln recht einfach zu halten, so daß sie nach unserer Meinung für den praktischen Gebrauch die Mehrzahl der vorkommenden Fälle umfassen und doch übersichtlich sind. Zu betonen ist noch, daß eine allgemeine rechnerische Fassung der Spannungs-Dehnungslinie bisher unmöglich ist. Wir haben deshalb die Kurve in gerade Linien zerlegt und werden bei den einzelnen Formeln ausdrücklich den Bereich angeben müssen, für den sie gelten.

Die in Folgendem abgeleiteten Formeln geben Biegemoment und Biegearbeit für verschiedene Arten von Zugschaubildern an. Die Formeln müssen dann noch mit den durch unsere Versuche ermittelten Verbesserungen bei Einfluß der Breite, der Geschwindigkeit, der Zeitzwischenräume und der Zahl der Biegungen (für das Biegemoment M) versehen werden.

Die in den Formeln wiedergegebenen Arbeitsbeträge enthalten nicht den federnden Teil der Arbeit, da dieser, wie besondere Versuche lehrten, in der Walzenbiegemaschine wiedergewonnen wird.

Wir wollen 3 unterscheidende Formen der Spannungs-Dehnungsschaulinie behandeln, Fig. 76:

1a) Schaubild eines Stoffes mit ausgesprochenem Fließbereich; schwächere Biegungen,

1b) Schaubild eines Stoffes mit ausgespröchenem Fließbereich; stärkere Biegungen.

2) Schaubild eines Stoffes ohne Fließbereich.

Man sieht, daß wir das Zugschaubild aus geraden Linien zusammengesetzt haben, was nach Vergleich mit den Versuchsergebnissen wohl zulässig ist. Hat man von irgend einem Baustoffe das Schaubild des Zugversuches, so kann man sich aus diesem leicht die für die geraden Linien maßgebenden Zahlen ermit-

teln. Allerdings wird man dieses gewöhnlich nicht zur Verfügung haben, da die Handelsbezeichnungen meist nur über die Härte und über die Zugfestigkeit Auskunft geben, während für uns die Streckgrenze das Wesentliche ist. Man wird dann schätzen müssen, wenn man Zerreißversuche nicht anstellen kann.

Fall 1a (Fig. 77).

Es ist δ die Blechstärke, b die Blechbreite, v der Krümmungshalbmesser der neutralen Schicht unter der Walze, t die Länge des zu biegenden Blechstückes.

1) rein elastische Biegung

Biegemoment
$$M = 2 \int_{0}^{\frac{\delta}{2}} by \frac{y}{\varrho} E dy = \frac{E}{\varrho} b \frac{\delta^3}{12} = \sigma b \frac{\delta^2}{6}$$

Arbeit $= \frac{1}{2} M \frac{\ell}{\varrho} = \frac{1}{24} E b \frac{\delta^3}{\varrho^2} l.$

2) bildsame Biegung. Rein elastische Biegung findet hier statt bis zu einer bestimmten Schichthöhe h_a derart, daß

$$\frac{h_a}{\varrho} = \frac{\sigma_s}{E} = \alpha.$$

Lassen wir im Punkte A, Fig. 77, Proportionalitäts-, Elastizitäts- und Streck- \cdot grenze zusammenfallen, so setzt sich M zusammen aus zwei Beträgen:

$$M = 2 \int_{0}^{a_{\beta}} \int_{a_{\varphi}}^{a_{\beta}} by dy + 2 \int_{a_{\beta}}^{b_{\gamma}} \int_{a_{\varphi}}^{b_{\gamma}} \delta y dy,$$

$$M = 2 \sigma_{s} \frac{b}{a_{\varphi}} \int_{0}^{a_{\beta}} y^{2} dy + 2 \sigma_{s} b \int_{a_{\beta}}^{b_{\gamma}} y dy.$$

$$M = \sigma_{s} b \frac{\delta^{2}}{4} - \sigma_{s} b a^{2} \varrho^{2} + \frac{2}{3} \sigma_{s} a^{2} \varrho^{2} b = \sigma_{s} b \frac{\delta^{2}}{4} - \frac{1}{3} \sigma_{s} b a^{2} \varrho^{2}$$

Die Formel gilt für $\varrho < \frac{\delta}{2a}$, sie geht für $\varrho = 0$ in $M = \sigma_s b \frac{\delta^2}{4}$ und für $\varrho = \frac{\delta}{2a}$ in $\sigma_s \frac{b\delta^2}{6}$ über. Letzteres ist die bekannte Formel für elastische Bie-

gung, wenn nur in den äußersten Schichten auf Zug- und Druckseite die Spannung σ_s herrscht.

Für schärfere Biegungen ist eine Vereinfachung auf $M = \sigma_s b \frac{\delta^2}{4}$ zulässig, d. h. das Spannungsbild der Fig. 78 wird durch das der Fig. 79 ersetzt. Der Fehler werde für eine ziemlich schwache Biegung ermittelt. Sei

 $\delta - 1$ cm, $\varrho = 100$ cm, $\sigma_s = 2500$ kg/qcm, b = 1 cm, $a = \frac{\sigma_s}{E} = \frac{2500}{2\ 000\ 000} = \frac{1}{800}$, Fig. 78 und 79.

dann ist nach der genaueren Formel:

$$M = \frac{2500}{4} - \frac{1}{3} \cdot 2500 \cdot \left(\frac{100}{800}\right)^2 = 625 - 13 = 612 \text{ emkg.}$$

Durch Vernachlässigung des Gliedes $(-\frac{1}{3}\sigma_s b a^2 \varrho^2)$ — in unserem Falle = -13 cmkg —, wird ein Fehler von 2,1 vH begangen.

Die Biegearbeit setzt sich aus einem elastischen und einem bildsamen Teil zusammen. Hier kommt nur der bildsame Teil in Betracht, weil, wie an anderer Stelle nachgewiesen wird, die Arbeit zum elastischen Biegen wiedergewonnen wird.

$$A = 2 \int_{0}^{l} \int_{a\rho}^{\frac{\delta}{2}} \sigma_{s} b \frac{\vartheta}{2\rho} \frac{y - a\rho}{\frac{\delta}{2} - a\rho} dy dx = lb \sigma_{s} \frac{\vartheta}{\rho} \frac{1}{\frac{\delta}{2} - a\rho} \int_{a\rho}^{\frac{\delta}{2}} (y - a\rho) dy.$$
$$A = lb \sigma_{s} \frac{\vartheta}{2\rho} \frac{1}{\left(\frac{\vartheta}{2} - a\rho\right)} \left(\frac{\vartheta}{2} - a\rho\right)^{2} = lb \frac{\vartheta}{2\rho} \sigma_{s} \left(\frac{\vartheta}{2} - a\rho\right).$$

Bei stärkeren Biegungen verschwindet auch hier a v gegen $\frac{\delta}{2}$, so daß die Formel übergeht in

$$d = lb \frac{\delta^2}{4\varrho} \sigma_s.$$

Die Formel gilt auch hier, Zutreffen des Zugschaubildes nach Fig. 76 (nach 1a) vorausgesetzt, für $\varrho = 0$ bis $\varrho = \frac{\delta}{2a}$.

Es bedeutet E_1 die Zunahme der Spannung für 1 vH Streckung im Zugschaubild oberhalb des »Fließbereiches« in kg/qcm, ein Maß, welches leicht aus einem vorliegenden Zugschaubild entnommen werden kann. Die Spannung in einer beliebigen Faser ist

Biegemoment:

M

$$M = M_{1} + M_{2},$$

$$M_{1} = 2 \int_{0}^{a_{p}} \int_{a_{q}}^{a_{p}} y \, b \, dy,$$

$$M_{1} = 2 \int_{0}^{b} \int_{a_{p}}^{a_{p}} \int_{a_{q}}^{a_{p}} \int_{a_{q}}^{a_{q}} \int_{a_{q}}^{a_{q}} \int_{a_{q}}^{b} \int_{a_{q}}^{a_{q}} \int_{a_{q}}^{a_{q}} \int_{a_{q}}^{b} \int_{a_{q}}^{a_{q}} \int_{a_{q}}^{$$

Eine gute Annäherung gibt schon

$$M = b \varrho^{2} \left[\sigma_{s} \frac{\delta^{2}}{4 \varrho^{2}} + 8{}_{,33} E_{1} \left(\frac{\delta}{\varrho} \right)^{3} \right] = \delta^{2} b \left[\frac{\sigma_{s}}{4} + 8{}_{,33} E_{1} \frac{\delta}{\varrho} \right].$$

Die bildsame Arbeit ist gleich der Summe der Arbeiten, welche dem bildsamen Wege der einzelnen Flächenstreifchen b dy mal der mittleren Spannung bei deren Formänderung entspricht.

$$A = 2 \int_{0}^{l} \int_{a\rho}^{\frac{\delta}{2}} \frac{\partial}{\partial a\rho} (x) \frac{\partial}{\partial \rho} \frac{\partial}{\partial \rho} - a\rho \left[\sigma_s + \frac{E_1}{2} 100 \left(\frac{\delta}{2\rho} - a \right) \frac{y - a\rho}{\frac{\delta}{2} - a\rho} \right] b \, dy \, dx.$$

$$A = \frac{1}{\rho} \frac{1}{2} \frac{\frac{\delta}{2} - a\rho}{\frac{\delta}{2} - a\rho} lb \int_{a\rho}^{\frac{\delta}{2}} (y - a\rho) \sigma_s \, dy + 2 \frac{\left(\frac{\delta}{2} - a\rho \right)}{\rho \left(\frac{\delta}{2} - a\rho \right)} lb \frac{E_1 100}{2\rho} \left(\frac{\delta}{2} - a\rho \right) \int_{a\rho}^{\frac{\delta}{2}} (y - a\rho)^2 \, dy$$

$$A = \sigma_s \frac{2}{\varrho} lb \int_{a\varphi}^{\frac{h}{2}} (y - a\varrho) \, dy + \frac{lb}{\varrho^2} E_1 \, 100 \int_{a\varphi}^{\frac{h}{2}} (y - a\varrho)^2 \, dy = B + C,$$

$$B = \sigma_s \frac{lb}{\varrho} \left(\frac{\delta^2}{4} - \varrho \, \delta a + \varrho^2 a^2 \right),$$

$$C = \frac{lb}{\varrho^2} E_1 \, 100 \left(\frac{\delta^3}{24} - \frac{1}{3} a^3 \varrho^3 - a \, \varrho \, \frac{\delta^2}{4} + a^2 \varrho^2 \frac{\delta}{2} \right),$$

$$A = \sigma_s \frac{lb}{\varrho} \left(\frac{\delta}{2} - a \, \varrho \right)^2 + \frac{lb E_1 \, 100}{3 \varrho^2} \, (\delta - a \, \varrho)^3.$$

- 59 -

Für schärfere Biegung ist $a\varrho$ klein gegenüber $\frac{\delta}{2}$. Dann ist eine Vereinfachung möglich auf:

$$\boldsymbol{A} = b \, l \left(\sigma_s \, \frac{\delta^2}{4 \, \varrho} + 3,93 \, E_1 \, \frac{\delta^3}{\varrho^2} \right).$$

Die Formeln sowohl für das Biegemoment wie für die Biegearbeit gelten für den Bereich $\varrho = 0$ bis $\varrho = \frac{\delta}{2a}$; vorausgesetzt, daß das Zugschaubild nach Fig. 81 zutrifft.

Fall 1b (Fig. 80).

Es bedeutet p die am Ende des Fließbereiches erreichte Streckung im absoluten Maß; E_i wie früher die Zunahme der Spannung für 1 vH Streckung oberhalb des Fließbereiches im Zugschaubild.

Das Biegemoment setzt sich aus drei Beträgen zusammen:

$$M = 2 \sigma_{s} \frac{b}{a \varrho} \int_{0}^{a \rho} y^{2} dy + 2 \sigma_{s} \int_{a \rho}^{p \rho} y dy + 2 \int_{p \rho}^{\frac{b}{2}} \sigma_{s} + E_{1} \left(\frac{\delta}{2 \varrho} - p \right) 100 \frac{y - p \varrho}{\frac{\delta}{2} - p \varrho} by dy,$$

$$M = 2 \sigma_{s} \frac{b}{a \varrho} \frac{1}{3} (a \varrho)^{3} + \sigma_{s} b \left(p^{2} \varrho^{2} - a^{2} \varrho^{2} \right) + 2 \sigma_{s} b \int_{p \rho}^{\frac{\delta}{2}} y dy + 2 \frac{E_{1}}{\varrho} 100 b \int_{0}^{\frac{\delta}{2}} (y - p \varrho) y dy,$$

$$M = 2 \sigma_{s} \frac{b}{3} (a \varrho)^{2} + \sigma_{s} b \varrho^{2} (p^{2} - a^{2}) + \sigma_{s} b \left(\frac{\delta^{2}}{4} - p^{2} \varrho^{2} \right) + \frac{2 E_{1}}{\varrho} 100 b \left[\int_{p \rho}^{\frac{\delta}{2}} y^{2} dy - p \varrho \int_{p \rho}^{\frac{\delta}{2}} y dy \right]$$

Die Auflösung der eckigen Klammer ergibt für das letzte Glied:

$$\begin{split} X &= \frac{2}{\varrho} E_1 \ 100 \ b \left[\frac{1}{3} \left(\frac{\delta^3}{8} - \varrho^3 p^3 \right) - p \varrho^{-1} \frac{\delta^3}{4} - p^2 \varrho^2 \right) \right] \\ &= \frac{2}{\varrho} E_1 \ 100 \ b \left[\frac{\delta^3}{24} - \frac{1}{3} \ \varrho^3 p^3 - \frac{1}{8} \ \delta^2 p \varrho + \frac{1}{2} \ p^3 \varrho^3 \right] \\ &= \frac{2}{\varrho} E_1 \ 100 \ b \left[\frac{\delta^3}{24} - \frac{1}{8} \ p \varrho \ \delta^2 + \frac{1}{6} \ p^3 \varrho^3 \right]. \end{split}$$

Durch Einsetzen von X folgt:

$$M = b \varrho^{2} \left[\frac{2}{3} \sigma_{s} a^{2} + \sigma_{s} \left(p^{2} - a^{2} \right) + \sigma_{s} \left(\frac{\delta^{2}}{4 \varrho^{2}} - p^{2} \right) + 200 E_{1} \left(\frac{1}{24} \frac{\delta^{3}}{\varrho^{3}} - \frac{1}{8} p \frac{\delta^{2}}{\varrho^{2}} + \frac{1}{6} p^{3} \right) \right],$$

$$M = b \varrho^{2} \left[-\frac{1}{3} \sigma_{s} a^{2} + \frac{1}{4} \frac{\delta^{2}}{\varrho^{2}} \left(\sigma_{s} - E_{1} \ 100 \ p \right) + 33 E_{1} p^{3} + \frac{200}{24} E_{1} \frac{\delta^{3}}{\varrho^{3}} \right],$$

$$M = b \varrho^{2} \left[\frac{\delta^{2}}{4 \varrho^{2}} \left(\sigma_{s} - E_{1} \ 100 \ p \right) + 33 E_{1} p^{3} - \frac{1}{3} \sigma_{s} a^{2} + 8, 33 E_{1} \frac{\delta^{3}}{\varrho^{3}} \right].$$

Vor Anwendung der Formeln zu 1b muß man sich zunächst überzeugen, ob man bei der Formänderung in das Gebiet der wieder ansteigenden Spannung hineinkommt, sonst gilt die Formel nicht. Man muß dann die Rechnung nach 1a anwenden.

Da das Anwendungsgebiet der Formel nach 2 für alle Krümmungen mit $\varrho < \frac{\delta}{2p}$ gilt, also schärfere Biegungen umfaßt, so macht das zweite und das dritte Glied in der eckigen Klammer sehr wenig aus, so daß man schreiben kann:

$$M = b \varrho^2 \left[\frac{\delta^2}{4 \varrho^2} (\sigma_s - E_1 \ 100 \ p) + 8{,}_{33} E_1 \left(\frac{\delta}{\varrho} \right)^3 \right]$$

oder

$$M = b \,\delta^2 \bigg[\frac{\sigma_s}{4} + E_1 \left(8, 33 \frac{\delta}{g} - 25 \, p \right) \bigg].$$

Biegearbeit. $A = A_1 + A_2$.

 A_1 = bildsame Arbeit entsprechend einer gleichbleibenden Spannung σ von $y = a \varrho$ bis zur äußersten Faser:

Entsprechend einer 'früheren Ableitung finden wir

$$A_{1} = \frac{\sigma_{s}b\,l\,\delta}{2\,\varrho} \left(\frac{\delta}{2} - a\,\varrho\right).$$

Dazu kommt die Arbeit A, durch die zusätzliche Spannung in den äußersten Fasern

$$A_{2} = 2 \int_{0}^{\sqrt{\frac{3}{2}}} \int_{p,\varphi}^{\sqrt{\frac{3}{2}}} \left(\frac{\delta}{2\varrho} - p\right) dx \quad \frac{y - p\varrho}{\frac{\delta}{2} - p\varrho} \frac{E_{1}}{2} \quad 100 \left(\frac{\delta}{2\varrho} - p\right) - \frac{y - p\varrho}{\frac{\delta}{2} - p\varrho} b \, dy.$$

Dieser Ausdruck läßt sich vereinfachen zu

$$A_{2} = \frac{100}{\varrho^{2}} \frac{E_{1}b}{\rho^{2}} \int_{p_{2}}^{\frac{\delta}{2}} (y - p\varrho)^{2} dy,$$

$$A_{2} = \frac{100}{\varrho^{2}} \frac{E_{1}bl}{\varrho^{2}} \left(\frac{\delta^{3}}{24} - \frac{p^{3}\varrho^{3}}{3} - p\varrho \frac{\delta^{2}}{4} + \frac{p^{2}\varrho^{2}\delta^{2}}{2}\right) = 100 E_{1} \frac{bl}{3\varrho^{2}} \left(\frac{\delta}{2} - p\varrho\right)^{2}.$$

$$A = \frac{\sigma_{s}bl\delta}{2\varrho} \left(\frac{\delta}{2} - a\varrho\right) + \frac{100 E_{1}bl}{3\varrho^{2}} \left(\frac{\delta}{2} - p\varrho\right)^{3}.$$

Für die hier in Betracht kommenden schärferen Biegungen läßt sich a ϱ gegen $\frac{\delta}{2}$ vernachlässigen, so daß wir finden:

$$A = \sigma_s \frac{bl}{4\varrho} + 33, s E_1 \frac{bl}{\varrho^2} \left(\frac{\delta}{2} - p \varrho\right)^3. \quad \text{Geltungsbereich: } \varrho < \frac{\delta}{2p}$$

Zusammenfassung der Formeln über Biegemoment und Biegearbeit. Moment:

$$\begin{array}{l} \text{fall 1 a)} & M = b \, \frac{\delta^2}{4} \, \sigma_s \, \text{ für } \varrho < \frac{\delta}{2a}, \\ \text{solution} & 1 \, \text{b} \end{array} \, M = b \, \delta^2 \left[\frac{\sigma_s}{4} + E_1 \left(8, 33 \, \frac{\delta}{\varrho} - 25 \, p \right) \right] \, \text{für } \varrho < \frac{\delta}{2p}, \\ \text{solution} & 2 \end{array} \, M = b \, \delta^2 \left[\frac{\sigma_s}{4} + 8, 33 \, E_1 \, \frac{\delta}{\varrho} \right] \, \text{für } \varrho < \frac{\delta}{2a}. \end{array}$$

Arbeit:

Die Fig. 82 und 83 sind die Auftragungen, welche sich aus der Einsetzung bestimmter Zahlenwerte bei den Fällen 1a, 1b und 2 ergeben.

Die Formeln für M bedürfen nach unseren Versuchen im Falle eines absatzweisen Biegens einer Verringerung von 5 bis 10 vH bei der höchsten mit Walzenbiegemaschinen auf einmal zu erreichenden Teilkrümmung. Für die Größe der bei geringem $\frac{C}{\delta}$ auftretenden Verkleinerung von M geben die früher aufgeführten Versuche einen Anhalt.

Fig. 82 und 83. Beziehung zwischen Krömmung, Biegemoment und Biegearbeit nach den Formeln in Abschnitt 8.

Sei überall: $\delta = 1$, b = 1, l = 1, $\frac{\sigma}{\delta} = 2400$, $E = 2\,000\,000$ kg/qcm, $a = \frac{1}{6}\,_{832}$, p = 2 vH, $E_1 = 200$ kg/qcm.

Die Formeln für die Biegearbeit sind ohne weiteres verwendbar, da aus unseren Versuchen auf einen Einfluß absätzweise vorgenommenen Biegens und veränderlichen biegenden Hebelarms auf den Arbeitsbedart nicht geschlossen werden kann.

Ausführungen über den Arbeitsbedarf ausgeführter Biegemaschinen und über deren Leistungsfähigkeit.

Wir haben die Wahrnehmung gemacht, daß das in der Praxis zur Ermittlung der Biegewiderstände angewendete Verfahren zwar theoretisch nicht auf richtigen Grundlagen beruht, daß man aber durch entsprechendes Einsetzen der Festigkeitziffer σ_s recht gut das Richtige trifft. Jedoch herrscht über den Arbeitsbedarf noch große Unklarheit, da die Ermittlung nach der naheliegenden Formel

$$\Lambda = M \frac{l}{\varrho},$$

die von uns im ganzen als richtig befunden worden ist, sehr geringe Werte liefert. Das rührt nur daher, daß man den außerordentlichen Einfluß der Reibung in der Biegemaschine übersieht. Wir wollen im Folgenden ein Beispiel für die Ermittlung des Wirkungsgrades geben. Zunächst muß eine Formel für die Mindestzahl der Durchgänge beim Biegen mit Walzen aufgesucht werden.

Sei (vergl. Fig. 74)

r der Halbmesser der Walzen,

 $\frac{r}{2}$ der Zapfenhalbmesser der Walzen,

C (im Mittel = 1,5 r) der Hebelarm der biegenden Kraft,

P der Druck des Bleches auf die Unterwalzen für 1 cm Breite,

1,5 P im Mittel der Druck des Bleches auf die Oberwalze für 1 cm Breite,

dann ist die am Umfange der Unterwalzen übertragbare Arbeit für ein Blechstück von 1 cm Länge und 1 cm Breite = 2 Pf.

Diese wird, wenn voll ausgenutzt, aufgezehrt durch

- 1) die Biegearbeit = $\frac{\partial^2}{4\rho} \sigma_s$,
- 2) die Reibungsarbeit der Oberwalzenzapfen = $\mu \frac{r}{2} 1,5 P \frac{1}{r}$,
- 3) den Rollwiderstand an den 3 Walzen = 3,5 $P f_r \frac{1}{r}$ (entstanden aus

$$(2P+Q)fr\frac{1}{r}$$

Es ist also:

$$2 Pf = \frac{\delta^2}{4\varrho} \sigma_s + \mu \frac{r}{2} 1{,}5 P \frac{1}{r} + 3{,}5 Pf_r \frac{1}{r}.$$

Für P läßt sich setzen $P = \frac{1}{4} \frac{\delta^2 \sigma_s}{1,5 r}$. Daraus folgt

$$2 f = 1.5 \frac{r}{\varrho} + 0.75 \mu + 3.5 \frac{fr}{r}$$

und für das Verhältnis:

$$\frac{r}{\varrho} = \frac{2f - 0.75 \,\mu - 3.5 \,\frac{fr}{r}}{1.5},$$

oder bei Vernachlässigung des Rollwiderstandes

$$\frac{r}{\varrho}=(1,33\ f-0,5\ \mu).$$

Der Krümmungshalbmesser ϱ ist dann mit einem Durchgange erzielbar. Beispiel: Sei f = 0.23 (Reibung der Ruhe),

$$\mu = 0,12 \text{ (nicht zu ungünstig!)},$$

$$fr = \frac{6,5}{100}$$
 cm; $r = 20$ cm; $\frac{7r}{r} = \frac{6,5}{2000}$,

dann ist $\frac{r}{\varrho} = (1,33 \cdot 0,23 - 0,06 - 0,0076) = 0,256.$

Es müßten für $r = \varrho$ etwa 4 Durchläufe stattfinden.

Die Zahl der nötigen Durchläufe, die wir oben ermittelt haben, muß gewöhnlich um 50 vH erhöht werden, weil man gegen Ende der Biegungen, um möglichst genau das verlangte Krümmungsmaß zu erhalten, mit schwächeren Biegungen vorgehen muß. Wir setzen demnach die in einem Durchgange mögliche Biegung

$$\frac{r}{\varrho}=0, 9 f-0, 33 \mu.$$

Um auf einen Halbmesser ϱ_1 zu biegen, ist dann die Zahl der nötigen Durchläufe:

$$n = \frac{\varrho}{\varrho_1} = \frac{r}{\varrho_1 (0, 9 f - 0, 33 \mu)}$$

Im Folgenden soll eine einfache Rechnung gegeben werden, um den Wirkungsgrad von Biegemaschinen bei der aus $\frac{r}{\varrho}$ sich ergebenden Zahl der Durchgänge *n* mit einer für praktische Zwecke ausreichenden Genauigkeit zu bestimmen.

n sei die Zahl der Durchläufe, ϱ_1 der verlangte Krümmungshalbmesser; der Halbmesser der Walzen sei wieder *r*, der Halbmesser der Walzenzapfen $\frac{r}{2}$, die Kraft *Q* als Resultierende von *P* sei im Mittel = 1,5 *P*.

Die Gewichte der Walzen der Biegemaschine sollen vernachlässigt werden, ebenso die Einwirkung der Umfangskräfte U auf die Größe der Zapfendrücke.

Für die Kraft P gelte wieder die einfache Beziehung

$$P = \frac{M}{C} = \frac{1}{C} \frac{b}{4} \frac{\delta^2}{4} \sigma_s;$$
$$A = \frac{b}{4} \frac{\delta^2}{\alpha_s} \sigma_s.$$

für die Biegearbeit:

 η_1 ist der Wirkungsgrad der Arbeit, welche durch die Zahnräder in die Unterwalzen eingeleitet wird, η_2 der mechanische Wirkungsgrad der Biegemaschine von Wellenleitung oder Elektromotor bis zu den Zahnrädern der Unterwalzen.

Die	reine Biegearbeit ist	٠	•	•	•	•	•	$= \frac{1}{4} \frac{lb \delta^2}{\varrho_1} \sigma_s ,$
die	Zapfenreibungsarbeit	•	•	•	•		•	$= 3,5 P \mu \frac{r}{2} \frac{l}{r} n,$
die	Rollarbeit	•				•		$= 3,5 P f_r \frac{l}{r} n.$

Auch die außerdem noch hervorzubringende Beschleunigung der Massen spielt eine Rolle, auf welche aber hier nicht eingegangen werden soll.

Es ist dann

$$\eta_{1} = \frac{\frac{1}{4} \frac{lb}{\varrho_{1}} \frac{\delta^{2}}{\varrho_{1}} \sigma_{s}}{\frac{1}{4} \frac{lb}{\varrho_{1}} \frac{\delta^{2}}{\varphi_{1}} \sigma_{s} + 3,5 \frac{1}{C} n \frac{lb}{2} \frac{\delta^{2}}{4} \sigma_{s} \left[\mu \frac{r}{2} \frac{1}{r} + \frac{fr}{r} \right]}{\eta_{1} = \frac{1}{1 + \frac{3,5}{1,5} \frac{\varrho_{1}}{r} n \left[\frac{\mu}{2} + \frac{fr}{r} \right]}.$$

$$\eta_{1} = \frac{1}{1 + 2,23 \frac{\varrho_{1}}{r} n \left[\frac{\mu}{2} + \frac{fr}{r} \right]}.$$

Setzt man aus der oben gefundenen Gleichung n ein und vernachlässigt das Glied mit f_r , so findet man

$$\eta_{1} = \frac{1}{1 + 2,23} \frac{q_{1}}{r} \frac{u}{2} \frac{r}{q_{1}} (0,9 f - 0,33 \mu)$$

$$\eta_{1} = \frac{1}{1 + 1,12} \frac{u}{0,9 f - 0,33 \mu}$$

$$\eta_{1} = \frac{1}{1 + \frac{1}{1 + \frac{1}{0,8 f} - 0,294}} = \frac{f - 0,366 \mu}{0,88 \mu + f}$$

 $\eta = \eta_1 \eta_2$, wobei $\eta_2 \propto 0.5$. Wegen der vielen für die große Uebersetzung nötigen Vorgelege und der Verluste beim Umsteuern ist dieser Wert für η_2 nicht zu niedrig angesetzt.

Beispiel:
$$\frac{f}{\mu} = 1$$
 $\eta = 0,167$
 $\stackrel{>}{=} 1,5$ $\eta = 0,167$
 $\stackrel{>}{=} 2,0$ $\stackrel{>}{=} 0,259$
 $\stackrel{>}{=} 2,0$ $\stackrel{>}{=} 0,284$
 $\stackrel{>}{=} 2,5$ $\stackrel{>}{=} 0,316$.

Setzt man für $\frac{t}{\mu} = 2$, $\sigma_s = 2500$ kg/qcm, V das Volumen der stündlich gebogenen Bleche von der Länge l in ecm, ϱ den Krümmungshalbmesser der Bie-

gung in em, δ die Blechstärke in em, so wird

$$N = N_0 + \frac{l b \delta^2 \sigma_s}{4 \varrho 3600 \cdot 7500 \cdot 0.284},$$

$$N = N_0 + l' \frac{\delta}{\varrho} \frac{1}{12 \ 200} \text{ in PS.}$$

also

Die angegebene Rechnung soll keinen Anspruch auf Genauigkeit erheben, sie soll nur ein Rechenbeispiel sein, welchem man sich beim Entwerfen anschließen kann. Immerhin hatten wir die Genugtuung, daß die Angaben einiger Biegemaschinen bauenden Werke über den Arbeitsbedarf sich recht genau an die soeben abgeleitete Formel anschließen.

Für die genauere Ermittlung kann man je nach dem vorliegenden Falle die Eigenreibung der Maschine, die Veränderlichkeit des Abstandes C, das dem Biegedruck entgegenwirkende Gewicht der Oberwalze, das etwaige Vorhandensein einer vierten Walze, die Verhältnisse beim Umsteuern sinngemäß verwerten, jedoch liegt in allen diesen Bestimmungen der Mangel, daß die Reibungsziffer an den Walzen von deren Zustand und dem Zustand der Blechoberfläche, vor allem aber die Reibung der Zapfen zu sehr von deren Schmierung abhängt. Entsprechend wäre die Rechnung beim Biegen kegelförmiger Gestalten auszuführen, dabei ist das an anderer Stelle genannte Rutschen des Bleches an den Walzen zu berücksichtigen.

Es ist erwünscht, besonders bei elektrischem Einzelantrieb, auch den nötigen Höchstbetrag der Antriebleistung zu kennen. Man kommt dann auf folgendem Wege einfach zum Ziele. In Fig. 84 seien z. B. die Unterwalzen angetrieben. Am Umfange jeder Unterwalze ist eine Kraft U = Pf verfügbar, worin f die Reibungsziffer zwischen Walzen und Blech darstellt. 2 Pfr ist der Höchstbetrag des am Umfange der Unterwalzen übertragbaren Momentes, er wird unter gewöhnlichen Verhältnissen erreicht, wenn das Blech die schärfste Krümmung erreicht hat. Das Moment 2P/r wird zur Ueberwindung der Reibung an den Zapfen der Oberwalze und zum Biegen des Bleches verbraucht. Stellt man nur wenig an, so ist das durch die Unterwalzen übertragene Moment kleiner als 2P/r, doch ist das hier gleichgültig. Geht man nun bis auf den Motor zurück, so ist es nicht schwer, mit Berücksichtigung der Lagerund Zahnreibungen die größte auftretende Antriebleistung zu kennen.

Für die Berechnung von Biegepressen sind die von uns angestellten Versuche über Federungsbetrag, Federungsarbeit und über die Veränderlichkeit des Biegemomentes M mit der Spannweite C von Bedeutung.

Die im Vorigen aufgeführten Versuche und Darlegungen lassen sich sinngemäß auch auf Richtmaschinen erweitern, vor allem für solche, welche zum Richten von Stäben rechteckigen Querschnittes bestimmt sind. Man wird verstehen, daß auch die Richtmaschinen eine bedeutende Menge Reibungsarbeit verzehren müssen. Die Formänderungsarbeit ist wegen der schwachen zu vernichtenden Krümmungen recht gering, die Lagerdrücke aber sehr groß, darum die Antriebsarbeit erheblicher, als man vermuten möchte. Bei Richtmaschinen wird man zur Bestimmung des Arbeitsbedarfes zweckmäßig nur die Reibung der Lager und der Zahnräder in Rechnung stellen und die Biegearbeit ganz vernachlässigen.

Die Biegungslinie.

Es wurde oben erwähnt, daß bildsame Biegung beim Biegen auf Lehre oder unter Walzen sich in scharfem Knick vollzicht, daß also die verlangte scharfe Krümmung erst kurz vor dem Auflaufen auf die Lehre oder die Oberwalze der Biegemaschine stattfindet. Das wird auch recht anschaulich gemacht durch folgendes zeichnerische Verfahren, welches gestattet, die Biegungslinie für den Fall der Biegung durch reines Kräftepaar — nicht auch durch Schub mit einiger Genauigkeit zu entwerfen. Es lehnt sich dieses Verfahren an das bekannte Mohrsche für die Auffindung der Biegungslinie bei Biegung unterhalb der Proportionalitätsgrenze an. Für nicht zu scharfe Biegung, d. h. zu große Pfeilhöhe ist

$$\frac{d^2y}{dx^2} = \frac{1}{o}.$$

Kennen wir nun von einem Stabe die Momente in den einzelnen Querschnitten, so können wir an Hand der Fig. 82 und 83 die zugehörigen Krüm-

Fig. 85. Aufzeichnung der Biegungslinie bei bildsamer Biegung. Mitteilungen. Heft 113. 5

mungshalbmesser ermitteln und winkelrecht zur Längsrichtung des Stabes die Beträge der Krümmungen auftragen. Die aufgetragene Figur behandeln wir als eine Belastung des Stabes und entwerfen das zugehörige Seileck. Dieses ist dann die gesuchte Biegungslinie.

In Fig. 85 soll die Stützrolle links einen Biegedruck ausüben. Das Biegemoment steigt geradlinig bis zum Auflaufpunkt an der Lehre an. Die Fig. 82 oder 83 läßt sich ohne weiteres über dem Stab auftragen, dann wird auf die bekannte Weise das Seileck konstruiert.

Die Wirkung der Schubkräfte auf die Form der Biegungslinie ist dabei vernachlässigt.

9) Zusammenfassung der Versuchsergebnisse und Schlußfolgerungen für den Bau und die Berechnung von Biegemaschinen.

Die Versuche wurden vorgenommen mit weichem Siemens-Martin-Kesselblech, Fließgrenze 2200 bis 2500 at, Festigkeit 4300 at bei 25 vH Dehnung, außerdem mit Flachstäben und Blechen von gewöhnlichem Thomas-Handelseisen von verschiedener Stärke. Das Biegemoment verändert sich bei absatzweise vollzogenem Biegen bei sofortigem Weiterbiegen nur wenig, es steigt z. B. bei einem Kesselmantel von 2000 mm Dmr. und 20 mm Wandstärke vom ersten bis zum letzten Durchlaufe etwa um 8 vH. Bei den in der Praxis in Betracht kommenden schwachen Biegungsgraden beim Blechbiegen kann man für schnelle Rechnung die alte Formel

$$M = \frac{J}{e} \sigma = W \sigma$$

weiter in der Weise anwenden, daß man für σ die beim Fließen auftretende Spannung, bei Kesselblech etwa 2200 bis 2500 kg/qcm, einsetzt und die Größe $W = \frac{b\delta^2}{4}$, bei sehr scharfen Biegungen oder härterem Stoff ohne ausgesprochene Fließperiode $W = \frac{b\delta^2}{3}$ gegenüber $W = \frac{b\delta^2}{6}$ bei elastischer Biegung einsetzt.

Die Schubspannungen haben bei diesem Ansatz auf den Arbeitsbedarf und bei den Spannweiten $C > 10\delta$ auf das Biegemoment keinen in Rechnung zu stellenden Einfluß.

Die Tatsache, daß sich das Biegemoment bei gleicher Entfernung der angreifenden. Kraft von der Auflaufstelle an der Lehre oder den Biegewalzen nicht im Verhältnis der Breite ändert, sondern bei schmaleren Stäben höher gefunden wurde, hat, wie die Auftragungen zeigen, nur für ganz schmale Stäbe größere Bedeutung; schon bei Stäben vom Breitenverhältnis $\frac{b}{\delta} = 20$ verschwindet der Einfluß.

Die gesamte Biegearbeit steigt ungefähr im gleichen Grade wie die Krümmung, bei schärferer Krümmung etwas rascher.

Die Ergebnisse der Federungsversuche lassen sich in die einfache Formel fassen:

$$A_f = \xi f \frac{\sigma_s^2}{2 E}$$
 (vergl. Seite 31).

Von großer Bedeutung für die Bearbeitung der Ergebnisse war der Betrag des Federns, also das Verhältnis des Krümmungshalbmessers nach dem Losnehmen gegenüber dem Halbmesser, auf den der Stab aufgewickelt war (vergl. Abschnitt 7). Es wurde untersucht, ob sich bei absatzweisem Biegen ein Mehrbedarf an reiner Biegearbeit fühlbar macht gegenüber einer einzigen Biegung. Es konnte das nicht festgestellt werden. Es ist möglich, daß derartiges bei hartem Eisen und Stahl auftritt, jedoch kommen diese Stoffe für das Kaltbiegen weniger in Betracht. Eine Aenderung wurde dagegen vermerkt, wenn zwischen den einzelnen Biegungen Zeiträume von einem oder mehreren Tagen lagen; die eigenartigen Erscheinungen sind in Abschnitt 7 näher behandelt.

Es fragte sich noch, ob ein Biegen in Absätzen nicht dadurch einen Mehrbedarf an Arbeit verlangt, daß nach jeder Teilbiegung der Stab um einen bestimmten Betrag zurückfedert.

Ohne Zweifel gilt dies für die benutzte Einrichtung. Zieht man nach stattgefundenem Aufwickeln des Bleches den Stützbock nach unten, so wird die Federungsarbeit durch Reibung in den Gängen des Gewindes vernichtet. Kurbelt man die Lehre rückwärts, so geht die genannte Arbeit durch Reibung zwischen Schnecke und Schneckenrad verloren.

Auf den Walzenbiegemaschinen hingegen ist der Vorgang anders. Es wurden mit Hülfe einer zweiten Stützrolle Versuche vorgenommen, derart daß das Blech auf die beiden Stützrollen gelegt und dann durch Hochschrauben des Tisches gegen die Lehre gepreßt wurde, ohne bildsame Formänderung zu erleiden.

Die Schaubilder zeigten nur den Ausschlag, der dem Rollenwiderstand an den 3 Walzen und den Lagerreibungen entsprach.

Der Einfluß der Geschwindigkeit des Biegens beträgt bei einer Streckbezw. Stauchgeschwindigkeit in der äußersten Schicht von 3 vH der Länge in einer Sekunde etwa 20 vH.

Für erwärmtes Eisen ist der Einfluß sehr groß, es wurde eine Erhöhung der Widerstände bis zu 150 vH beobachtet.

Der Grund für das langsame Biegen der gebräuchlichen Walzenbiegemaschinen liegt offenbar nicht in dem etwas höheren Widerstande beim schnellen Biegen, auch nicht an der durch schnelle Formänderung vielleicht verringerten Zähigkeit, sondern vielmehr daran, daß bei geringerer Geschwindigkeit eine genauere Wegesbegrenzung vor dem Umsteuern möglich ist. Bei der Massenherstellung von Röhren, bei welcher selbsttätige Wegesbegrenzung und Umsteuerung stattfindet, wendet man heute Umfangsgeschwindigkeiten der Walzen bis zu 250 mm in der Sekunde an gegenüber 20 mm bei gewöhnlichen Biegemaschinen. Der Hauptgrund dafür, daß man die Biegung absatzweise vornimmt, wurde darin gefunden, daß an der Oberfläche der treibenden Walzen nur die Reibung zur Arbeitsübertragung verfügbar ist. Diese Reibung hängt von dem Druck zwischen Blech und Walzen ab und wird größer bei engerer Walzenstellung. Die genannte Reibung muß dazu dienen, das Blech auf die verlangte Krümmung zu biegen und ferner - was das Wichtigste ist - die Reibung der Zapfen der Oberwalze, den Rollwiderstand und den Beschleunigungswiderstand beim Anlaufen zu überwinden. Zwischen gußeiserner Walze und unbearbeitetem Flußeisenblech fanden wir die Reibungsziffer der Ruhe = 0,23, die der Bewegung = 0,16 bei einer Gleitgeschwindigkeit von 2,5 cm/sk.

Für die Reibung der Zapfen ist bei den vorkommenden kleinen Geschwindigkeiten auch^e bei geschmierten Flächen eine Reibungsziffer von 0,12 bis 0,15 einzusetzen. Außerdem sind die Zapfen recht dick, der eine Zapfen der Oberwalze ist manchmal kugelförmig und zuweilen so dick wie die Walze selber. Beim Biegen von Formeisen, z. B. von Winkeleisen nach Fig. 88, ist außerdem noch eine beträchtliche gleitende Reibung zwischen Stab und Füh-
rungsflächen zu überwinden. Auch beim Biegen kegelförmiger Gestalten mittels gewöhnlicher Biegemaschinen mit zylindrischen Walzen tritt ein Rutschen ein, welches die in einem Durchgange mögliche zusätzliche Krümmung — entsprechend der Verjüngung des Kegels — mehr oder weniger herabsetzt. Es findet dort nur an einer einzigen Stelle der Unterwalzen ein Mitnehmen statt, an den übrigen rutscht das Blech. Einerseits kommt dadurch nur die Reibungsziffer der Bewegung für das Mitnehmen in Betracht, anderseits wird viel Arbeit durch Reibung vernichtet. Von der geringeren auf das Blech übertragenen Arbeit geht nun noch ein großer Teil durch Rutschen an der Oberwalze verloren. Es ist darum zu verstehen, daß die doppelte, manchmal sogar die dreifache Zahl der Durchgänge wie beim Biegen von Zylindern erforderlich ist.

Ein anderer wichtiger Grund kommt noch hinzu, der die Zahl der nötigen Durchläufe noch über das zur Uebertragung der erforderlichen Arbeit nötige Maß erhebt. Gegen Ende des Biegevorganges muß man, um die Krümmung möglichst genau auf das verlangte Maß zu bringen, mit größerer Vorsicht, also schwächeren Biegungen vorgehen. Die auch wohl gehörte Begründung, daß bei einer größeren Zahl Teilbiegungen eine bessere Gleichmäßigkeit der Krümmung zu erzielen wäre, ist nach Vergleichsversuchen, die ich nach dem System der drei Walzen vorgenommen habe, hinfällig.

Bei der Biegemaschine mit 3 Walzen wird der Einfluß der Zapfenreibung verringert durch Anwendung einer recht dicken Oberwalze, jedoch wird man zu diesem Mittel nur selten greifen können, da es erwünscht ist, auch auf recht kleine Durchmesser biegen zu können, also die Oberwalze möglichst dünn zu halten. Solche kleine Durchmesser kommen ja eigentlich meist nur bei entsprechend dünnerem Blech vor, das man in einer schwächeren Maschine biegen könnte. Jedoch begnügen sich die meisten Maschinenbauwerkstätten mit der Anschaffung einer — entsprechend starken — Biegemaschine.

Man hat eine Anordnung mit 4 Walzen nach Fig. 86 vorgeschlagen, bei welcher die Walzen 1 und 2 treiben und 3 und 4 lose laufen. Diese Bauweise ermöglicht eine schärfere Krümmung, namentlich bei erhitztem Eisen, dessen Oberfläche eine geringere Reibung hat, jedoch hat sie auch Schwierigkeiten. Die Walze 1 wird durch die rückwirkenden Auflagerkräfte der Walzen 3 und 4 und außerdem durch die Pressung der Walze 2 stark auf Biegung beansprucht, die Sicherheit des Durchziehens wird durch Verschiedenheiten in der Blechdicke gefährdet, außerdem kann der Druck auf die Walzen 1 und 2 durch zufällige Krümmung in der Querrichtung erhöht werden. Beim Biegen dünnen Bleches wendet man wohl eine Bauart mit drei Walzen nach Fig. 87 an. Die Walzen 1 und 2 ziehen das Blech durch, 3 läuft lose mit und kann verstellt werden. Die treibenden Walzen 1 und 2 bekommen infolge des kleinen biegenden Hebelarmes einen verhältnismäßig großen Druck, weshalb sie entsprechend stark gemacht werden müssen, wogegen die geschleppte Walze 3 infolge des größeren Abstandes einen kleineren Druck und kleinere Zapfenreibung aufweist. Ein Vorteil ist, daß das ungebogene Stück am Ende des Bleches klein ausfällt.

Die Zahl der erforderlichen Durchläufe ist von großer Bedeutung für die Leistungsfähigkeit der Maschinen, von ebenso großer für den gesamten Arbeitsbedarf. Die Ableitung einer Formel, aus welcher sich die Zahl der nötigen Durchläufe ergibt, ist in Abschnitt 8 zu finden. Diese Formel gibt die Mindestzahl der Durchläufe an. In der Praxis pflegt die Zahl aus den oben angegebenen Gründen größer zu sein, wir schlagen darum 50 vH zu.

Auf der oben genannten Formel für die Zahl der nötigen Durchläufe wurde eine andere aufgebaut für den gesamten Arbeitsbedarf beim Biegen von unerwärmtem Blech. Sie lautet:

$$N = N_0 + V rac{\delta}{\varrho} rac{1}{12} rac{200}{200}$$

Darin ist N die Zahl der Pferdestärken, N_0 die Zahl der Pferdestärken für den Leerlauf, V der Rauminhalt der stündlich gebogenen Bleche in cm³, δ die Blechstärke und ϱ der Krümmungshalbmesser der Biegung in cm.

Querschnitte von anderer als Blech- oder flachstabähnlicher Form lassen sich mit zylindrischen Walzen nicht einwandfrei biegen. Entweder tritt ein Verdrücken der Form ein wie bei Röhren, Wellblechen oder ein Kanten und Knicken wie bei Winkeleisen, Hochkantflacheisen. Im ersteren Falle — eine Wirkung des Biegemomentes in einer Symmetrieebene — verdrückt die Oberflächenpressung den Querschnitt: im zweiten Falle — Biegungsmoment in einer Ebene ohne Symmetrie — ist ein Kanten die Folge (bei Hochkanteneisen, **I**-Eisen u. dergl. gibt es eine Grenze, bei welcher auch an praktisch durchaus symmetrischen Querschnitten ein Umknicken erfolgt). Die äußeren Einwirkungen suchen den Stab nach der verlangten Achse ohne Symmetrie zu biegen, der Stab selber ist aber bestrebt, sich nach der Hauptsymmetrieebene zu biegen, aus diesem Widerstreit ergibt sich ein Windschiefwerden.

Für die Praxis wird es sich neben hinreichender Stützung des Werkstückes empfehlen, mit 4 Walzen zu biegen, von welchen zwei angetrieben werden, weil sonst die Leistungsfähigkeit zu gering sein würde.

Die zur Verhütung des Kantens angewendeten Mittel bringen so viel Fremdes und den eigentlichen Biegevorgang Verschleierndes in die Versuchsanordnung hinein, daß von der Verfolgung dieser Fälle leider abgesehen werden mußte. Für den Fall des Biegens von Winkeleisen nach Fig. 88 wurde die Versuchseinrichtung geeignet gemacht, die angegebenen Gründe erschwerten aber die Gewinnung brauchbarer Ergebnisse zu sehr. Es ist bei der angegebenen Anordnung ein Rutschen nicht zu vermeiden. Da die erforderlichen Stützkräfte sehr groß sind, so spielen diese Reibungsverluste eine zu große Rolle gegenüber der Biegearbeit. Das ist um so mehr zu bedauern, als solche Versuche über die Beeinflussung der Fasern untereinander vielleicht klarere Auskunft geben würden als das Biegen von Blech.

Beim Biegen auf Lehre könnte man die Versuche mit Winkeleisen ermöglichen durch Anbringung einer Stützrolle nach Fig. 89, jedoch bietet diese Bauweise so viele Schwierigkeiten, daß ich auf sie verzichten mußte.

Sonderabdrücke aus der Zeitschrift des Vereines deutscher Ingenieure, die in folgende Fachgebiete eingeordnet sind: 15. Gesundheitsingenieurwesen (Hei-1. Bagger. Bergbau (einschl. Förderung und zung, Lüftung, Beleuchtung, Wasser-2. Wasserhaltung). versorgung und Abwässerung). Brücken- und Eisenbau (einschl. 16. Hebezeuge (einschl. Aufzüge). Behälter). 17. Kondensations- und Kühlanlagen. Dampfkessel (einschl. Feuerungen, 4 18. Kraftwagen und Kraftboote. Schornsteine, Vorwärmer, Über-19. Lager- und Ladevorrichtungen hitzer). (einschl. Bagger). Dampfmaschinen (einschl. Abwärme-5. 20. Luftschiffahrt. kraftmaschinen, Lokomobilen). 21. Maschinenteile. Dampfturbinen. 6. Eisenbahnbetriebsmitte!. 22. Materialkunde. 7. Eisenbahnen (einschl. Elektrische 8 23. Mechanik. Rahnen). 24. Metall- und Holzbearbeitung (Werk-9 Eisenhüttenwesen (einschl.Gießerei). zeugmaschinen). 10. Elektrische Krafterzeugung und 25. Pumpen (einschl. Feuerspritzen und -verteilung. Strahlapparate). 11. Elektrotechnik (Theorie, Motoren 26. Schiffs- und Seewesen. usw.). 27. Verbrennungskraftmaschinen 12. Fabrikanlagen und Werkstattein-(einschl. Generatoren). richtungen. 28. Wasserkraftmaschinen. 13. Faserstoffindustrie. 29. Wasserbau (einschl. Eisbrecher). Gebläse (einschl. Kompressoren, 14. 30. Meßgeräte. Ventilatoren). Einzelbestellungen auf diese Sonderabdrücke werden gegen Voreinsendung des in der Zeitschrift als Fußnote zur Überschrift des betr. Aufsatzes bekannt gegebenen Betrages ausgeführt.

Vorausbestellungen auf sämtliche Sonderabdrücke der vom Besteller ausgewählten Fachgebiete können in der Weise geschehen, daß ein Betrag von etwa 5 bis 10 M eingesandt wird, bis zu dessen Erschöpfung die in Frage kommenden Aufsätze regelmäßig geliefert werden.

Zeitschriftenschau.

Vierteljahrsausgabe der in der Zeitschrift des Vereines deutscher Ingenieure erschienenen Veröffentlichungen 1898 bis 1910.

Preis bei portofreier Lieferung für den Jahrgang

10,- M für Nichtmitglieder. 3,- M für Mitglieder.

Seit Anfang 1911 werden von der Zeitschriftenschau der einzelnen Hefte einseitig bedruckte gummierte Abzüge angefertigt.

Der Jahrgang kostet

4,— \mathcal{M} für Nichtmitglieder.

2,- *M* für Mitglieder. Portozuschlag für Lieferung nach dem Ausland 50 Pfg für den Jahrgang. Bestellungen, die nur gegen vorherige Einsendung des Betrages ausgeführt werden, sind an die Redaktion der Zeitschrift des Vereines deutscher Ingenieure, Berlin NW., Charlottenstraße 43 zu richten.

Mitaliederverzeichnis d. Vereines deutscher Ingenieure.

Preis 2,50 M. Das Verzeichnis enthält die Adressen sämtlicher Mitglieder sowie ausführliche Angaben über die Arbeiten des Vereines.

Bezugsquellen.

Zusammengestellt aus dem Anzeigenteil der Zeitschrift des Vereines deutscher Ingenieure. Das Verzeichnis erscheint zweimal jährlich in einer Auflage von 35 bis 40000 Stück. Es enthält in deutsch, englisch, französisch, italienisch, spanisch und russisch ein alphabetisches und ein nach Fachgruppen geordnetes Adressenverzeichnis. Das Bezugsquellenverzeichnis wird auf Wunsch kostenlos abgegeben.