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The notion of norm or numerical value of a complex quantity, c = a +
b4l-1, namely, Ic| = -va2 + b2, as it arises in algebra, has a more or
less immediate generalization to more extensive matric systems. The
three important properties: (1) ici + c2i < Icil + jc2l; (2) icl.c21 = icil.ic2l;
(3) ci is the positive square root of a positive definite quadratic form,
are carried over at the expense only of replacing (2) by (2') ic,.c21 <Icil.c21
and allowing in place of (3), (3') Icl is the positive square root of a positive
definite form, Hermitian or quadratic. By cl.c2 in these geometrical
examples is meant the inner product' or a generalization of it. Two
other generalizations of norm have been of great importance. The
first of these is that of the theory of algebraic numbers,2 where (1) is
dropped, (2) is retained, and in place of (3) one has, Norm of c is a cer-
tain function of the nth degree, n being the order of the algebraic field.
The second is that of a general theory of sets as treated for example by
Fr6chet,3 where (1) is retained, (2) and (3) are dropped. The theory of
integral equations as usually developed is geometrical in an infinity of
dimensions and retains (1), (2'), (3'). It is noted that instances in which
(1) and (2') are retained usually keep (3') also. Now the importance
of (3') is chiefly that it implies (1) and (2') with the conventions as to
linearity and so forth usually assumed. The converse that (1) and (2')
imply (3') is false. It is of interest to show that most of the familiar
properties of the norm may be retained, in particular (1) and (2'), when
the norm is positive definite but otherwise largely arbitrary.
Three discussions bearing on this topic may be referred to. First,

a geometrical study involving points but not their duals, by Minkowski,
in his Geometrie der Zahlen.4 The great generality of the idea of norm is
there beautifully developed although it is not carried so far as it is here;
but since the concept of the point dual is not brought in by Minkowski,
most of the ideas here discussed are not found there. A second discussion,
involving inner products, but treating only a very special case of the
non-quadratic norm for an infinite number of variables is given by F.
Riesz5 in examining the convergence of bilinear forms. The third dis-
cussion involving only a scalar system, and hence without inner products,
between elements of different systems is given by KuirschAk.6 It is
perhaps the most suggestive system of scalars in the literature in which
||n|| may be less than n, for n a natural number.
The following treatment relates under one head the notions of convex

region,4 the triangle property,7 the linearly homogeneous property of
distance8 or norm, conjugate norms,5 the inner product,' convergence of
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a bilinear form,0 Minkowski's gauge form4 and Schwarz's inequality9
(so-called), as these occur in geometry, hypercomplex number theory,
integral equations, and more generally, general linear analysis.10
The following theorem. may be proved: Every geometric system ad-

mitting a gauge set may be normalized by means of that set. In order that
there may be no ambiguity an extended sequence of definitions will be
given to cover all terms used.

If P is a proposition concerning a system, S, it may be that another
system, T, is such that the proposition P has a meaning for the system T.
The content of the proposition may be seriously altered while its form is
not affected except in the sense that S is replaced by T. We may em-
ploy the functional notations P(S) and P(T) to suggest that the form of
the proposition is carried over unaltered from one system to the other.
To avoid repetition certain propositional functions will be here listed for
reference. These serve as definitions, whenever all of the terms appearing
in a proposition have been themselves defined, for example, "Reg (L),"
below, acquires a meaning only in a system in which OL and 1L are defined.
The "Addition Proposition,""l Add. (R): (i) R is a system comprising

elements, r, and a rule of binary combination, +. (ii) For any ri, r2,
of R, ri + r2 is a uniquely defined element of R. (iii) For any ri, r2,
of R, r + r2=-r2+ ri. (iv) For any ri, r2, r, of R, r,+ (r2 +r) =
(r, + r2) + r3. (v) There is an element OR of R (also denoted by merely
0), such that for every r of R, r + OR = r. (vi) For a given r,of R,
there is not more than one element r of R, such that ri + r = r,. (vii)
For a given ri of R, there is one and only element, r, of R such that r, +
r = OR-this element, r, is denoted by -r,.
The "Multiplication Proposition," Mult. (R, 5, T. P): (i) There are

systems R, 5, T, P, comprising elements, respectively, r, s, t, p, and two.
rules of binary combination + and ., and such that with respect to +,
the addition proposition is valid for each of the systems. (ii) For any.
r of R, s of S, t of T, r.s and s.t are uniquely defined, and s.t is an element
of P. (iii) For any r,, r2 of R, and si, s2 of S, it is true that r,.(sL + S2) =
r,.s, + rl.s2 and (r, + r2).s, = r,.s, + r2.si. (iv) For any r of R, s of 5,
t of T, it is true that r.(s.t) = (r.s).t. (v) For any r of R, and s of S,,
it is true that OR.S = OT) and r.Os= OT-
The "Commutative Proposition," Com. (C. M. L.): (i) C is a subsystem

of M. (ii) For each c of C and I of L, c.l= l.c. (iii) There exists an ele-
ment 1c, of C (also denoted merely by 1) such that for every 1, 1C.I= 1.
The "Regular Propositicon," Reg. (L): (i) The elements of L fall into

two mutually exclusive subsets Lo* and L oo. (ii) The elements of L.* fiall
into two mutually exclusive subsets, L. and L*. (iii) OL is an element
of L.. (iv) 1L if it has been defined and exists, is an element of L*.
(v) For every I of L, -I is in the same set as 1. (vi) There exists at least
one l* other than lL
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The "Regular Multiplication Proposition," R. Mult. (R, S, T, P):
(i) Reg. (R), Reg. (S), Reg. (T), Reg. (P). (ii) Mult. (R, S, T, P).
(iii) Mult. (Ro*p So*, To*, Po*) (iv) Mult. (Roo SOl Top PO).
The "Regular Commutative Proposition," R. Com. (C, M, L): (i) Com.

(C, M, L). (ii) For every c of C and I of L, co,,J, CO'.l* and c*.lo are, of
Lo; c*.1* is of L*; coo .1*, c*.l oo,.and c Ol01o are of L 00. (iii) ic is of L*.
(iv) For every 11 and 12of L, if neither l1nor 12is in L., 11 + l is not in
L co , and if both 11 and 12 are in Lo, 11 + 12 is in Lo.
The "Regular Conjugate Proposition," R. Conj. (C, R, S): For each

r of R, there is a c of C and an s of S, such that (i) r.s = s.r = c.c; (ii)
if r is of Ro, c is of CO, s is of S; if r is of R*, c is of C$, s is of S*; if r
is of R ., c is of C ,, s is of S 0 .
The "Normal Proposition," Nrm. (L): (i) Each I of L has associated

with it a unique value, [i111. (ii) Reg. (L). (iii) For each 1o, 1lloll = 0;
for each 14, l1*|11 is a positive real finite number; for each I |OI I [is
positively infinite. (iv) For each I of L, [|-111 = I111. (v) If 1L exists,
|IILII = 1. (vi) There exists at least one 1* for which 111*11 is different from
unity.
The "Normal Multiplication Proposition," N. Mult. (R, S, T, P):

(i) Nrm. (R), Nrm. (S), l4rm. (T), Nrm. (P). (ii) Mult. (R, S, T, P).
(iii) 11s.41 < His11-1.lt.
The "Normal Commutative Proposition," N. Com. (C, M, L): (i)

Com. (C, M, L). (ii) For every c of C and I of L, for which IIcII.IIlII exists,
1Ic.1l = IIcl.11111. (iii) ;llcil = 1. (iv) For every 11 and 12 of L, 111 + 121
' 11411 + 111411.
The "Normal Conjugate Proposition," N. Conj. (C, R, S): For each

r of R, there is a c of C and an s of S' such that (i) r.s = s.r = c.c, (ii)
lirl = Itchl = tisl.
The "Linear Proposition," Lin. (C, M, L): (i) Mult. (M, M, L, L).

(ii) Mult. (M, L, M, L). (iii) Com. (C, M, L).
In the above, L is called a linear system, with M as system of multipliers,

and C as commutative subsystem of M.
The "Hypernumber Proposition," Hyp. (C, H): (i). Lin. (C, C, C).

(ii) Lin. (C, H, H).
In the above, H is called a system of hypernumbers with-C as commutative

subsystem.
The "Vector Proposition,'' Vect. (C, H, V): (i) Hyp. (C, H). (ii)

Lin. (C, H, V).
In the above, V is called a system of vectors, with H as associated system

of hypernumbers.
The "Regular Linear Proposition," R. Lin. (C, M, L): (i) R. Mult.

(M, M, L, L)-. (ii) R. Mult. (M, L, M, L). (iii) R. Com. (C, M, I).
The "Regular Hypernumber Proposition," R. Hyp. (C, H): (i) R. Lin.

(C, C, C). (ii) R,. Lin. (C, H, H).
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The "Regular Vector Proposition," R. Vect. (C, H, V): (i) R. Hyp.
(C, H). (ii) R. Lin. (C, H, V).
The "Normal Linear Proposition," N. Lin. (C, M, L): (i) N. Mult.

(M, M, L, L). (ii) N. Mult. (M, L, M, L). (iii) N. Com. (C, M, L).
The "Normal Hypernumber Proposition," N. Hyp. (C, H): (i) N. Lin.

(C, C, C). (ii) N. Lin. (C, H, H).
The "Normal Vector Proposition," N. Vect. (C, H, V): (i) N. Hyp.

(C, H). (ii) N. Lin. (C, H, V).
The "Geometric Proposition," Geom. (C, H, X, U): (i) Vect. (C, H,

X). (ii) Vect. (C, H, U). (iii) Mult. (H, X, U, H). (iv) Mult. (H, U,
X, H).
The "Regular Geometric Proposition," R. Geom. (C, H, X, U): (i) R.

Vect. (C, H, X). (ii) R. Vect. (C, H, U). (iii) R. Mult. (H, X, U, H).
(iv) R. Mult. (H, U, X, H). (v) R. Conj. (C, X, U). (vi) R. Conj.
(C, U, X).
The "Normal Geometric Proposition," N. Geom. (C, H, X, U): (i) N.

Vect. (C, H, X). (ii) N. Vect. (C, H, U). (iii) N. Mult. (H, X, U, H).
(iv) N. Mult. (H, Up X, H). (V) N. Conj. (C, X, U). '(vi) N. Conj.
(C, U, X).
The "Gauge Proposition," Gge. (C, H, R, S): (i) For each r of RG

there is an s of SG, such that r.s = s.r = lc, while for this s and any
other element r' of RG, llr'.sll = |Is.r'll < 1. (ii) For each r* of R*
there is an r of RG, and a c of C*, such that r* = c.r = r.c.
The "Gauge Geometric Proposition," Gge. Geom. (C, H, X, U): (i)

R. Geom. (C, H, X, U). (ii) N. Hyp. (C, H). (iii) There exists a subset
XG of X*, and a subset UG of U*. (iv) Gge. (C, H, X, U). (v) Gge.
(C, H, U, X).
The "Division Proposition," Div. (C, S, T): For each s of S*, there is

at least one t of T*, such that (i) s.t = t.s. = lC, (ii) ||s|l.|ltIl = 1.
The "Norm Product Proposition," N. Prod. (R): For every ri, r2

of R, for which 117r11.11r211 is defined, 11r7.r211 = lIrl.ll11r211.
A system (C, H, X, U) is said to be a geometric system if Geom. (C, H,

X, U) is valid with respect to it. It is further said to admit a gauge set,
if Gge. Geom. (C, H, X, U) also is valid. To normalize a geometric system
is to define llxil and l|ull in such a manner that N. Geom. (C, H, X, U)
is valid, while any geometric system for which N. Geom. (C, H, X, U)
holds is said to be a normal geometric system.
A geometric system admitting a gauge set may be normalized but

leads to a special type of normal geometric system, since for any geometric
system admitting a guage set, the following additional propositions may
be proved: Div. (C, C, C), Div. (C, H, H), N. Prod. (C), N. Prod. (H),
and for the normalized system obtained the following also are provable:
Div. (C, X, U), Div. (C, U, X). For the general normal geometric system
none of these six propositions may be true.
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To normalize a geometric system admitting a guage set, define for
every XG and UG, IIXGII = 1, I|UGII = 1, and for every c.xG and C.UG,
IIC.XGII = lIcI|, llC.UGIl = Itchl. The theorem then follows without diffi-
culty.
For the general normal geometric system, the relative inclination, 0,

of two elements, x of X*, and u of U*, may be defined by, I|x.u|| = |IxiI|iIlI
cos 0. Thus x of X*, and u of U* are mutually orthogonal if and only
if JJx.uU| = 0. Two elements, x of X* and u of U*, are mutually conju-
gate if and only if x.u = u.x = c.c while also hixil = |lull = ticl. Two
elements, x of X*, and u of U*, are mutually reciprocal if and only if x.u =
u.x = lc while also lJxll.lluJl = 1. The sets (x) and (u) for which
|lxll = 1, and l|tull = 1, respectively, are Convex. The relation [Jr, +
r2ll < lirill + tir2il is called the Triangle Inequality of the norm. The
relation tlc.ll = ilcl.lllli is called the Linearly Homogeneous Property
of .the norm. The expressions llxll and Ilull are said to be Conjugate
Norms and when continuous, each is a "Gauge Form." The expressions
x.u and u.x are Inner Products. Each of the bilinear forms x.u and u.x
"converges" if Hxlj and lull are finite, since ilx.u|l <IixIl.liuil, and
llu.x|l < ilu|l.llx1l, which are statements of the general form of Schwarz's
Inequality.
The following possibilities for a normal geometrical system may be

emphasized: (i) The product among hypernumbers need not be com-
mutative. (ii) The product involving two x's or two u's need not have
a meaning. (iii) The system C may be an integral system in which divi-
sion is not in general possible. (iv) |inc|| may be less than n, where by
nc is meant 1c + 1c + . . . + 1c to n terms, for n > 1. (v) The conju-
gate of a given element need not be unique. (vi) The set of elements
(x) for which lixil = 1, may be dense but not continuous, as for example
the rational points on a circle. In particular, the above theory is ap-
plicable to the Geometry of Numbers of Minkowski,4 to a system where
C is a Kurschak valuated field,6 and to a system where H is a quaternion
field.12
While in every normal geometric system each x of X* has a conjugate,

u of U*, which has again the given x as its conjugate, the conjugate
relation is not in general a simple one. The geometric systems for which
(3') is satisfied are identified by the semi-linear property that if xi and ul
be conjugates, and x2, u2 be conjugates, then cl.x1 + c2x2 and c'i.ui + c'2.u2
will be conjugates where cl, c2, c I1, cI2 are of C, while c and c' are themselves
conjugates in a more elementary sense.

1 Due to Grassmann, Geometrische Analyse, 1847, paragraph 7, p. 16; cf. Gibbs,
Vector Analysis (E. B. Wilson).

2 Suggested by Gauss, Dirichlet, Werke, I, p. 539. Extended use by Kronecker,
"De unitatibus complexis," Werke I, p. 14.

Frechet, M., Sur-quelques points..., Rend. Circ. M. Palermo, 22, 1906 (1-74).
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Consult A. D. Pitcher and E. W. Chittenden, "On the Foundations of the Calcal
Fonctionelle of Fr&dhet," Trans. Amer. Math. Soc., 19, 1918 (66-78).

4Minkowski, H., Geometrie der Zahien, p. 9 (Ed. 1910), Leipzig,
6 Riesz, F., Les systrnes d'equations linAaires, Paris (1913).
6 Kiursch&k, J., Ueber Limesbildung. . ., Crelle, 142, 1913 (211).
7 Proved in elementary geometry for triangles, namely (1) above.
8 Identified since C. Wessel (1799), Gauss, and Hamilton.
9 Moore, E. H., Fifth Int. Cong. Math. 1912, I (253).

10 Moore, E. H., Bull. Amer. Math. Soc., (Ser. 2), 18, 1912 (334-362), and later papers.
Cf. Moebius, Der barycentrische Calcul, (1897), Werke, I.

12 Cf. Hurwitz, A., Zahlentheorie der Quatkrnionen, Berlin (1919).

PROBLEMS OF POTENTIAL THEORY
BY PROEuSSOR G. C. EVANS

DIPARTMoNT or MATEMATICS, Rica INSTITUTS

Communicated by E. H. Moore, January 18, 1921

1. The Equations of Laplace and Poisson.-As is well known, B6cher
considered the integral form of Laplace's equation:'

J u ds-0, (1)

and showed that it was entirely equivalent to the differential form

82u+ 82u = O (2)

for functions u continuous with their first partial derivatives over any
"Weierstrassian" region (as Borel would call -it2); in fact he showed that
any such solution of (1) possessed continuous derivatives of all orders
and satisfied (2) at every point., One can go still further, and consider
solutions of (1) which have merely sumablederivatives, and of the first
order, with practically the same result.
THZORBM I.-If the function u is what we shall call a "potential func-

tion for its gradient vector VU,"3 the components of the latter being sum-
mable superficially in the Lebesgue sense, and if the equation

fV uds= 0 (1)

is satisfied for every curve of a certain class,4 then the function u has merely
unnecessary discontinuities, and when these are removed by changing
the value of u in the points at most of a point set of superficial measure
zero, the resulting function has continuous derivatives of all orders and
satisfies (2) at every point.

Let us pass on to the equation

f ds-f pda (3)
an

in which a curvilinear integral on the left is equal to a superficial integral
on the right, and this equality is a generalization of Poisson's equation
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