


ELEMENTARY MATRICES
AND SOME APPLICATIONS TO DYNAMICS

AND DIFFERENTIAL EQUATIONS

by

R. A. FRAZER, D.Sc, F.R.AE.S., F.I.AE.S., F.R.S.
Formerly Deputy-Chief Scientific Officer in the

Aerodynamics Division, the National Physical Laboratory

W. J. DUNCAN, C.B.E., D.Sc, F.R.S.
Mechan Professor of Aeronautics and Fluid Mechanics in

the University of Glasgow, Fellow of University College London

AND

A. R. COLLAR, M.A., D.Sc, F.R.AE.S.
Sir George White Professor of Aeronautical Engineering

in the University of Bristol

CAMBRIDGE
AT THE UNIVERSITY PRESS

1963



CAMBRIDGE UNIVERSITY PRESS
Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, Sao Paulo

Cambridge University Press
The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www. Cambridge. org
Information on this title: www.cambridge.org/9780521091558

© Cambridge University Press 1938

This publication is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without the written

permission of Cambridge University Press.

First published 1938
Reprinted 1963

Re-issued in this digitally printed version 2007

A catalogue record for this publication is available from the British Library

ISBN 978-0-521-09155-8 paperback



CONTENTS
page

Preface xvii

CHAPTER I

FUNDAMENTAL DEFINITIONS AND
ELEMENTARY PROPERTIES

Art.
1 • 1 Preliminary Remarks 1
1-2 Notation and Principal Types of Matrix 1
1-3 Summation of Matrices and Scalar Multipliers 4
1-4 Multiplication of Matrices 6
1*5 Continued Products of Matrices 9
1-6 Properties of Diagonal and Unit Matrices 12
1-7 Partitioning of Matrices into Submatrices 13
1*8 Determinants of Square Matrices 16
1-9 Singular Matrices, Degeneracy, and Rank 18
1*10 Adjoint Matrices 21
1*11 Reciprocal Matrices and Division 22
1-12 Square Matrices with Null Product 23
1-13 Reversal of Order in Products when Matrices are Transposed

or Reciprocated 25
1«14 Linear Substitutions 26
1*15 Bilinear and Quadratic Forms 28
1*16 Discriminants and One-Signed Quadratic Forms 30
1-17 Special Types of Square Matrix 33

CHAPTER II

POWERS OF MATRICES, SERIES, AND
INFINITESIMAL CALCULUS

2-1 Introductory 37
2-2 Powers of Matrices 37
2«3 Polynomials of Matrices 39
2-4 Infinite Series of Matrices 40
2-5 The Exponential Function 41
2' 6 Differentiation of Matrices 43



Vi CONTENTS

Art. page
2*7 Differentiation of the Exponential Function 45
2*8 Matrices of Differential Operators 46
2*9 Change of the Independent Variables 48
2«10 Integration of Matrices 52
2-11 TheMatrizant 53

CHAPTER III

LAMBDA-MATRICES AND CANONICAL FORMS

3«1 Preliminary Remarks 57

PART I. Lambda-Matrices

3 »2 Lambda-Matrices 57
3-3 Multiplication and Division of Lambda-Matrices 58
3-4 Remainder Theorems for Lambda-Matrices 60
3-5 The Determinantal Equation and the Adjoint of a Lambda-

Matrix 61
3*6 The Characteristic Matrix of a Square Matrix and the Latent

Roots 64
3-7 The Cayley-Hamilton Theorem 70
3 • 8 The Adj oint and Derived Adj oints of the Characteristic Matrix 73
3-9 Sylvester's Theorem 78
3-10 Confluent Form of Sylvester's Theorem 83

PART II. Canonical Forms

3-11 Elementary Operations on Matrices 87
3-12 Equivalent Matrices 89
3-13 A Canonical Form for Square Matrices of Rank r 89
3« 14 Equivalent Lambda-Matrices 90
3«15 Smith's Canonical Form for Lambda-Matrices 91
3-16 Collineatory Transformation of a Numerical Matrix to a

Canonical Form 93



CONTENTS Vll

CHAPTER IV

MISCELLANEOUS NUMERICAL METHODS
Art page
4 1 Range of the Subjects Treated 96

PART I. Determinants, Reciprocal and Adjoint Matrices,
and Systems of Linear Algebraic Equations

4'2 Preliminary Remarks 96
4-3 Triangular and Related Matrices 97
4-4 Reduction of Triangular and Related Matrices to Diagonal

Form 102
4-5 Reciprocals of Triangular and Related Matrices 103
4-6 Computation of Determinants 106
4-7 Computation of Reciprocal Matrices 108
4-8 Reciprocation by the Method of Postmultipliers 109
4-9 Reciprocation by the Method of Submatrices 112
4-10 Reciprocation by Direct Operations on Rows 119
4-11 Improvement of the Accuracy of an Approximate Reciprocal

Matrix 120
4-12 Computation of the Adjoint of a Singular Matrix 121
4-13 Numerical Solution of Simultaneous Linear Algebraic Equa-

tions 125

PART II . High Powers of a Matrix and the Latent Boots

4-14 Preliminary Summary of Sylvester's Theorem 133
4-15 Evaluation of the Dominant Latent Roots from the Limiting

Form of a High Power of a Matrix 134
4-16 Evaluation of the Matrix Coefficients Z for the Dominant

Roots 138
4-17 Simplified Iterative Methods 140
4-18 Computation of the Non-Dominant Latent Roots 143
4-19 Upper Bounds to the Powers of a Matrix 145

Part III . Algebraic Equations of General Degree

4-20 Solution of Algebraic Equations and Adaptation of Aitken's
Formulae 148

4-21 General Remarks on Iterative Methods 150
4-22 Situation of the Roots of an Algebraic Equation 151



Vlll CONTENTS

CHAPTER V

LINEAR ORDINARY DIFFERENTIAL EQUATIONS
WITH CONSTANT COEFFICIENTS

PART I. General Properties
Art. page
5 1 Systems of Simultaneous Differential Equations 156
5-2 Equivalent Systems 158
5'3 Transformation of the Dependent Variables 159
5-4 Triangular Systems and a Fundamental Theorem 160
5-5 Conversion of a System of General Order into a First-Order

System 162
5-6 The Adjoint and Derived Adjoint Matrices 165
5-7 Construction of the Constituent Solutions 167
5»8 Numerical Evaluation of the Constituent Solutions 172
5*9 Expansions in Partial Fractions 175

PART I I . Construction of the Complementary Function
and of a Particular Integral

5-10 The Complementary Function 178
5-11 Construction of a Particular Integral 183

CHAPTER VI

LINEAR ORDINARY D I F F E R E N T I A L EQUATIONS
WITH CONSTANT COEFFICIENTS (continued)

PART I . Boundary Problems

6*1 Preliminary Remarks 186
6«2 Characteristic Numbers 187
6-3 Notation for One-Point Boundary Problems 188
6-4 Direct Solution of the General One-Point Boundary Problem 191
6-5 Special Solution for Standard One-Point Boundary Problems 195
6-6 Confluent Form of the Special Solution 198
6-7 Notation and Direct Solution for Two-Point Boundary

Problems 200



CONTENTS IX

PART II. Systems of First Order
Art. page
6«8 Preliminary Remarks 202
6«9 Special Solution of the General First-Order System, and its

Connection with Heaviside's Method 203
6-10 Determinantal Equation, Adjoint Matrices, and Modal

Columns for the Simple First-Order System 205
6-11 General, Direct, and Special Solutions of the Simple First-

Order System 206
6-12 Power Series Solution of Simple First-Order Systems 209
6-13 Power Series Solution of the Simple First-Order System for a

Two-Point Boundary Problem 211

CHAPTER VII
NUMERICAL SOLUTIONS OF LINEAR ORDINARY

DIFFERENTIAL EQUATIONS WITH
VARIABLE COEFFICIENTS

71 Range of the Chapter 212
7-2 Existence Theorems and Singularities 212
7-3 Fundamental Solutions of a Single Linear Homogeneous

Equation 214
7« 4 Systems of Simultaneous Linear Differential Equations 215
7-5 The Peano-Baker Method of Integration 217
7« 6 Various Properties of the Matrizant 218
7« 7 A Continuation Formula 219
7« 8 Solution of the Homogeneous First-Order System of Equations

in Power Series 222
7«9 Collocation and Galerkin's Method 224
7-10 Examples of Numerical Solution by Collocation and Galerkin's

Method 228
7-11 The Method of Mean Coefficients 232
7-12 Solution by Mean Coefficients: Example No. 1 233
7-13 Example No. 2 237
7-14 Example No. 3 240
7-15 Example No. 4 243



X CONTENTS

CHAPTER VIII

KINEMATICS AND DYNAMICS OF SYSTEMS

PART I. Frames of Reference and Kinematics
Art. page
8 • 1 Frames of Reference 246
8-2 Change of Reference Axes in Two Dimensions 247
8-3 Angular Coordinates of a Three-Dimensional Moving Frame

of Reference 250
8-4 The Orthogonal Matrix of Transformation 251
8-5 Matrices Representing Finite Rotations of a Frame of Refer-

ence 251
8-6 Matrix of Transformation and Instantaneous Angular Velo-

cities Expressed in Angular Coordinates 255
8-7 Components of Velocity and Acceleration 256
8-8 Kinematic Constraint of a Rigid Body 259
8-9 Systems of Rigid Bodies and Generalised Coordinates 260

PART II. Statics and Dynamics of Systems

8-10 Virtual Work and the Conditions of Equilibrium 262
8-11 Conservative and Non-Conservative Fields of Force 263
8-12 Dynamical Systems 266
8-13 Equations of Motion of an Aeroplane 267
8-14 Lagrange's Equations of Motion of a Holonomous System 269
8-15 Ignoration of Coordinates 272
8-16 The Generalised Components of Momentum and Hamilton's

Equations 274
8-17 Lagrange's Equations with a Moving Frame of Reference 277

CHAPTER IX

SYSTEMS WITH LINEAR DYNAMICAL EQUATIONS

9»1 Introductory Remarks 280
9-2 Disturbed Motions 280
9-3 Conservative System Disturbed from Equilibrium 281
9-4 Disturbed Steady Motion of a Conservative System with

Ignorable Coordinates 282



CONTENTS xi

Art. page
9*5 Small Motions of Systems Subject to Aerodynamical Forces 283
9-6 Free Disturbed Steady Motion of an Aeroplane 284
9*7 Review of Notation and Terminology for General Linear

Systems 288
9-8 General Nature of the Constituent Motions 289
9-9 Modal Columns for a Linear Conservative System 291
9-10 The Direct Solution for a Linear Conservative System and the

Normal Coordinates 295
9*11 Orthogonal Properties of the Modal Columns and Rayleigh's

Principle for Conservative Systems 299
9«12 Forced Oscillations of Aerodynamical Systems 302

CHAPTER X

ITERATIVE NUMERICAL SOLUTIONS OF
LINEAR DYNAMICAL PROBLEMS

10-1 Introductory 308

PART I. Systems with Damping Forces Absent

10-2 Remarks on the Underlying Theory 308
10-3 Example No. 1: Oscillations of a Triple Pendulum 310
10-4 Example No. 2: Torsional Oscillations of a Uniform Canti-

lever 314
10*5 Example No. 3: Torsional Oscillations of a Multi-Cylinder

Engine 316
10-6 Example No. 4: Flexural Oscillations of a Tapered Beam 318
10*7 Example No. 5: Symmetrical Vibrations of an Annular

Membrane 320
10-8 Example No. 6: A System with Two Equal Frequencies 322
10-9 Example No. 7: The Static Twist of an Aeroplane Wing under

Aerodynamical Load 325

PART II . Systems with Damping Forces Present

10-10 Preliminary Remarks 327
10*11 Example: The Oscillations of a Wing in an Airstream 328



Xll CONTENTS

CHAPTER XI

DYNAMICAL SYSTEMS WITH SOLID FRICTION
Art. page
111 Introduction 332
11-2 The Dynamical Equations 335
11-3 Various Identities 336
11«4 Complete Motion when only One Coordinate is Frictionally

Constrained 339
11-5 Illustrative Treatment for Ankylotic Motion 344
11-6 Steady Oscillations when only One Coordinate is Frictionally

Constrained 345
11-7 Discussion of the Conditions for Steady Oscillations 348
11-8 Stability of the Steady Oscillations 350
11-9 A Graphical Method for the Complete Motion of Binary

Systems 354
CHAPTER XII

ILLUSTRATIVE APPLICATIONS OF FRICTION
THEORY TO FLUTTER PROBLEMS

12-1 Introductory 358

PART I. Aeroplane No. 1
12-2 Numerical Data 362
12-3 Steady Oscillations on Aeroplane No. 1 at V =260. (Rudder

Frictionally Constrained) 363
12*4 Steady Oscillations on Aeroplane No. 1 at Various Speeds.

(Rudder Frictionally Constrained) 367
12-5 Steady Oscillations on Aeroplane No. 1. (Fuselage Friction-

ally Constrained) 369

PART II. Aeroplane No. 2
12-6 Numerical Data 369
12-7 Steady Oscillations on Aeroplane No. 2. (Rudder Friction-

ally Constrained) 370
12-8 Steady Oscillations on Aeroplane No. 2. (Fuselage Friction-

ally Constrained) 372
12-9 Graphical Investigation of Complete Motion on Aeroplane

No. 2 at V = 230. (Rudder Frictionally Constrained) 372

PART III. Aeroplane No. 3
12-10 Aeroplane No. 3 380



CONTENTS Xlll

CHAPTER XIII
PITCHING OSCILLATIONS OF A FRICTIONALLY

CONSTRAINED AEROFOIL
Art page
131 Preliminary Remarks 382

PART I. The Test System and its Design

13-2 Description of the Aerofoil System 383

13-3 Data Relating to the Design of the Test System 384

13-4 Graphical Interpretation of the Criterion for Steady Oscilla-
tions 387

13-5 Alternative Treatment Based on the Use of Inertias as
Parameters 389

13-6 Theoretical Behaviour of the Test System 392

PART II. Experimental Investigation

13*7 Preliminary Calibrations of the Actual Test System 395

13-8 Observations of Frictional Oscillations 395

13-9 Other Oscillations Exhibited by the Test System 398

List of References 399

List of Authors Cited 403

Index 404

ADDENDA ET C O R R I G E N D A

Additional Definitions.
The trace of a square matrix is the sum of the elements in the principal

diagonal. It is equal to the sum of the latent roots.
Characteristic vector or proper vector is equivalent to "modal column" or

"modal row", though less explicit. The term "eigenvector" is sometimes used
but is to be strongly deprecated.

p. 33. Special types of square matrix. Add
"Matrix is unitary when u~1 = u'.
A real unitary matrix is orthogonal but an orthogonal matrix need not be

real.
All the latent roots of a unitary matrix have unit modulus.
Matrix is persymmetric when the value of u^ depends only on {i+j)."

p. 110. Insert dagger f against footnote.



XIV ADDENDA ET CORRIGENDA

p. 120, 2nd table, 2nd row, for " r 6 - 2 r 9 " read " r 6 - 3 r 9 " .

p. 121, line 1. Delete "method of",

p. 121, § 4 12, lines 2, 3. For " the first or the third" read " a n y " .

p. 144, para, beginning at line 8 should read
"I f there are p distinct dominant roots A1A2...AJ) and if K1K2...KV are the

corresponding modal rows, the procedure is as follows. Partition the (p, n)
matrix {K19 K2, ..., KP} in the form [a, /?], where a is a (p, p) submatrix, assumed
to be non-singular (rearrangement of the rows of u and columns of [a, /?] may be
necessary to satisfy this condition). In this case the required matrix w is con-
structed in the partitioned form

w=VI, a-1/?"!

U 0 J
and then v = u(I — w) = uF0, — a"1/?"] •

U i J
Evidently v has p zero columns and hence p zero latent roots. If rearrangement
has been required, u must be in the corresponding rearranged form.

The choice of a non-singular submatrix a is a generalization of the choice of
a non-zero element Krl in the elimination of a single dominant root.

This process is in effect that which is applied in the numerical example on
p. 330."

p. 150, § 4*21, line 9. For "a machine could no doubt be" read "machines
have been" and in line 10 delete "most of".

p. 152, line 5. For "changed" read "reversed".

p. 176, equation (4), denominator of third fraction, for
"A^(Ar) (A-A,)" read " ^ ^ ( A , . ) (A-Ar)".

p. 195, § 6-5, line 7. For "intial" read "initial".

p. 252, equation at bottom, interchange first and third matrices on the right-
hand side.

p. 277. The symbol a stands for a set of parameters and for the components
of the total acceleration of P. One of these should be represented by /?, say.

p. 291, § 9-9. The following is a simple alternative proof of the reality of the
roots of the determinantal equation Am(z) = 0 when A and E are real and
symmetrical.

Let z, Jc respectively denote any root and its associated modal column, and
let z, k be the corresponding conjugates (see § 1-17). Then

zAk = Ek. (1)
Premultiplication by k' yields

z¥Ak = k/Ekf (2)
and by transposition

zk'A1c = k'Ek.
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The conjugate relation is
(3)

Comparison of (2) and (3) gives z = «, which shows that z is real. Thus by (1)
k is real, and by (2) z is positive when the potential energy function is positive
and definite.

p. 296, equation (7). An alternative is Q = k'0Eq.

p. 309, equation in (6). We may replace k'rA by k'rE which may be simpler.

p. 310, § 10*2 (e), second sentence should read "The principle shows that first
order errors in the mode yield only second order errors in the frequency as
calculated by the equation of energy".

Also line 10 should read "used, and when U happens to be symmetrical, a
convenient. . ." .

p . 315, line 9 from bottom, for "Rayleigh's principle will next be applied"
read "Since U is symmetrical, the extension of Rayleigh's principle given in
§ 10-2 (e) can be applied. . ." .

p. 363, § 12-3, line 4, for "given" read "are given"

p. 396, line above the diagram. For "0*84 degree" read "84 degrees per
lb.ft."





PREFACE

The number of published treatises on matrices is not large, and so far
as we are aware this is the first which develops the subject with special
reference to its applications to differential equations and classical
mechanics. The book is written primarily for students of applied
mathematics who have no previous knowledge of matrices, and we
hope that it will help to bring about a wider appreciation of the
conciseness and power of matrices and of their convenience in com-
putation. The general scope of the book is elementary, but occasional
discussions of advanced questions are not avoided. The sections con-
taining these discussions, which may with advantage be omitted at the
first reading, are distinguished by an asterisk.

The first four chapters give an account of those properties of
matrices which are required later for the applications. Chapters I
to in introduce the general theory of matrices, while Chapter iv is
devoted to various numerical processes, such as the reciprocation
of matrices, the solution of algebraic equations, and the calculation
of latent roots of matrices by iterative methods.

The remainder of the book is concerned with applications. Chapters
v and vi deal in some detail with systems of linear ordinary differential
equations with constant coefficients, and Chapter vn contains ex-
amples of numerical solutions of systems of linear differential equations
with variable coefficients. The last six chapters take up the subject
of mechanics. They include an account of the kinematics and dynamics
of systems, a separate discussion of motions governed by linear dif-
ferential equations, illustrations of iterative methods of numerical
solution, and a treatment of simple dynamical systems involving solid
friction. The part played by friction in the motions of dynamical
systems is as yet very incompletely understood, and we have con-
sidered it useful to include a very brief description of some experi-
mental tests of the theory.

A considerable number of worked numerical examples has been
included. It is our experience that the practical mathematician,
whose requirements we have mainly considered, is often able to grasp
the significance of a general algebraic theorem more thoroughly
when it is illustrated in terms of actual numbers. For examples of
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applications of dynamical theory we have usually chosen problems
relating to the oscillations of aeroplanes or aeroplane structures.
Such problems conveniently illustrate the properties of dissipative
dynamical systems, and they have a considerable practical importance.

A word of explanation is necessary in regard to the scheme of
numbering adopted for paragraphs, equations, tables, and diagrams.
The fourth paragraph of Chapter I, for example, is denoted by § 1*4.
The two equations introduced in § 1*4 are numbered (1) and (2),
but when it is necessary in later paragraphs to refer back to these
equations they are described, respectively, as equations (1-4-1) and
(1-4-2). Tables and diagrams are numbered in each paragraph in
serial order: thus, the two consecutive tables which appear in § 7-13
are called Tables 7-13-1 and 7-13-2, while the single diagram intro-
duced is Fig. 7-13-1.

The list of references makes no pretence to be complete, and in the
case of theorems which are now so well established as to be almost
classical, historical notices are not attempted. We believe that much
of the subject-matter—particularly that relating to the applications
—presents new features and has not appeared before in text-books.
However, in a field so extensive and so widely explored as the theory
of matrices, it would be rash to claim complete novelty for any
particular theorem or method.

The parts of the book dealing with applications are based very
largely on various mathematical investigations carried out by us
during the last seven years for the Aeronautical Research Committee.
We wish to express our great indebtedness to that Committee and to
the Executive Committee of the National Physical Laboratory for
permission to refer to, and expand, a number of unpublished reports,
and for granting many other facilities in the preparation of the book.
We wish also to record our appreciation of the care which the Staff of
the Cambridge University Press has devoted to the printing.

Our thanks are also due to Miss Sylvia W. Skan of the Aerodynamics
Department of the National Physical Laboratory for considerable
assistance in computation and in the reading of proofs.

R. A. F.
W. J. D.
A. R. C.

March 1938



CHAPTER I

FUNDAMENTAL DEFINITIONS AND
ELEMENTARY PROPERTIES

1*1. Preliminary Remarks. Matrices are sets of numbers or
other elements which are arranged in rows and columns as in a double
entry table and which obey certain rules of addition and multiplication.
These rules will be explained in §§ 1-3, 1-4.

Rectangular arrays of numbers are of course very familiar in geo-
metry and physics. For example, an ordinary three-dimensional
vector is represented by three numbers called its components arranged
in one row, while the state of stress at a point in a medium can be
represented by nine numbers arranged in three rows and three columns.
However, two points must be emphasised in relation to matrices.
Firstly, the idea of a matrix implies the treatment of its elements taken
as a whole and in their proper arrangement. Secondly, matrices are
something more than the mere arrays of their elements, in view of the
rules for their addition and multiplication.

1-2. Notation and Principal Types of Matrix, (a) Rectangular
Matrices. The usual method of representing a matrix is to enclose the
array of its elements within brackets, and in general square brackets
are used for this purpose.* For instance, the matrix formed from the
array 2 1 2 0

5 6 1
is represented by fl 12 01.

|5 6 lj

The meaning of other special brackets will be explained later. If a
matrix contains lengthy numbers or complicated algebraic expressions,
the elements in the rows can be shown separated by commas to avoid
confusion.

The typical element of a matrix such as

* Some writers employ thick round brackets or double lines.
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can be denoted by Aip where the suffices i and j are understood to
range from 1 to m and from 1 to n, respectively. A convenient abbre-
viated notation for the complete matrix is then [A^], but in cases
where no confusion can arise it is preferable to omit the matrix brackets
and the suffices altogether and to write the matrix simply as A.

The letters i, j are generally used in the sense just explained as
suffices for a typical element of a matrix. Specific elements will
generally have other suffices, such as m, n, r, s.

(b) Order. A matrix having m rows and n columns is said to be of
order m by n. For greater brevity, such a matrix will usually be re-
ferred to as an (m, n) matrix; the bar shows which of the two numbers
m, n relates to the rows.*

(c) Column Matrices and Bow Matrices. A matrix having m elements
arranged in a single column—namely, an (ra, 1) matrix—will be called
a column matrix. A column of numbers occupies much vertical space,
and it is often preferable to adopt the convention that a single row of
elements enclosed within braces represents a column matrix. For
instance, c ^ =

\xl9 x2, x3} =

A literal matrix such as the above can be written in the abbreviated
form {xt}.

In the same way a matrix with only a single row of elements will be
spoken of as a row matrix.f When it is necessary to write a row matrix
at length, the usual square brackets will be employed; but the special
brackets [ J will be used to denote a literal row matrix in the abbreviated
form. For example, [y j j - iy u y t ,y j .

In accordance with the foregoing conventions, the matrix formed
from the rth column of an (ra, n) matrix [Ai:l] is

{Alr, A2r,...,Amr},

and this can be represented as {Air}, provided that i is always taken to
be the typical suffix and r the specific suffix. In the same way the
matrix formed from the 5th row of [A^] is

[Asi,As2, ...,Asn],

and this can be expressed as \A8j\.

* An alternative notation, which is in current use, is [^1] .̂
f A row matrix is often called a line matrix, a vector of the first kind, or a 'prime; while a

column matrix is referred to as a vector of the second kind, or a point.
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The most concise notation for column and row matrices is, as with
matrices of a general order, by means of single letters. The particular
type of matrix represented by a single letter will always be clear from
the context.

(d) Transposition of Matrices. The transposed Ar of a matrix A is
defined to be the matrix which has rows identical with the columns
of A. Thus if A = [A^], then A' — [A^]. In particular the transposed
of a column matrix is a row matrix, and vice versa.

In this book an accent applied to a matrix will always denote the
transposition of that matrix.

(e) Square, Diagonal, and Unit Matrices. When the numbers of the
rows and columns are equal, say n, the matrix is said to be square and
of order n: the elements of type Au then lie in the principal diagonal.
If all the elements other than those in the principal diagonal are zero,
the matrix is called a diagonal matrix. The unit matrix of order n is
defined to be the diagonal matrix of order n which has units for all its
principal diagonal elements. It is denoted by In, or more simply by /
when the order is apparent.*

(/) Symmetrical and Skew Matrices. When A^ = Ait the matrix A
is said to be symmetrical, and it is then identical with its transposed.
If A^ = —An, whereas the elements of type Au are not all zero, the
matrix is skew; but if both A^ = —A^ and Au = 0 the matrix is skew
symmetric or alternate. Both symmetrical and skew matrices are
necessarily square.

(g) Null Matrices. A matrix of which the elements are all zero is
called a null matrix, and is represented by 0.

E X A M P L E S

(i) (3,2) Matrix. [ 1 21.
- 1 0

. 3 - 1 J

(ii) Bow Matrix. [0, 1, - 3 , 0].

(iii) Column Matrix. {2, - 1 , - 3 , 1}.

(iv) Symmetrical Square Matrix.
p 2 <n.
2 0 - 1

Lo - l - 2 J
* On the Continent the symbol commonly used for the unit matrix is E.



2"
0

- 1 .

{0,0,0}

then

0
0

.0

A'

0
0
0

=

0"
0
0.

4 SUMMATION 1-2-1-3

(v) Diagonal Matrix.

(vi) Unit Matrix J2.

(vii) Transposed Matrices.

ri - i
-io L2

3 - l j
(viii) Null Matrices.

1*3. Summation of Matrices and Scalar Multipliers. Opera-
tions with matrices involve operations with the elements of which they
are composed. Unless the contrary is stated, these elements will always
be understood to be numbers, real or complex, which obey the laws of
ordinary algebra (i.e. scalars). It is, however, sometimes useful to
consider matrices the elements of which are not ordinary numbers.
For example, the elements may themselves be matrices (see § 1-7).

(a) Equality of Matrices. Equal matrices are necessarily of the same
order and have their corresponding elements equal. Thus A = B if

The equality of two matrices of order m by n implies by definition
the satisfaction of mn ordinary equations between their elements.
Conversely, a set of ordinary equations can always be represented by
a single equation between matrices.

(6) Addition and Subtraction of Matrices. These operations can only
be performed on matrices of the same order.

The sum of two such matrices A and B is defined to be the matrix C
the typical element Oy of which is Ay + By. Then

A + B= C. (1)
The difference of A and B is similarly the matrix D the typical

element Dy of which is Ay — By. Then
A-B = D. (2)

Since any element in a matrix sum is equal to the algebraic sum of the
corresponding elements in the summed matrices, we see that the addi-
tion of matrices is subject to the same laws as the addition of scalars.
Thus the associative and commutative laws of addition hold good.
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(c) Scalar Multipliers. HA = B, it is natural to write equation (1)
as 2A = C, with C{j — 2Aij. More generally, the convention is adopted
that multiplication of a matrix by a scalar coefficient, say Z, written
either before or after the matrix, is equivalent to multiplication of
every element by I. Thus, if

IA = Al = C,

then Cy = lAtj.

The foregoing definitions and conventions are sufficient for the
interpretation and reduction of any expression which is linear and
homogeneous in a set of matrices of the same order.

EXAMPLES

(i) Matrix Equation Expressed as Scalar Equations. The single
matrix equation r ^ r . . ^

fan «ul = pn M
[a21 a22] [b21 b22\

yields the four scalar equations

a n = bn; a12 = 612; a21 = b21; a22 = b22.

(ii) Scalar Equations Expressed as Matrix Equation. The four
scalar equations

ax = bx; a2 = b2; az = 63; a4 = 64

are contained in each of the matrix equations

fai

(iii) 0/ Matrices.

ri 2
[2 3

a2,c

a2,c

a-
t3, a4}

hf4

Is

=
=

5
6

Pi ,

{61,

=

63,

63,

I?

hi
64}.

7
9

91.
l l j

(iv) Difference of Matrices.
["I 0 - l l - f - l 1 21 = p - 1 - 3 1 .
[ 2 - 7 3j [ 1 - 2 Oj [ l - 5 3J

(v) Scalar Multipliers.

2HL 21 + 3T-2 0 1 - 5 T - 2 71 = T 6 - 3 1
[ [ j I j [4

p
HL 21 + 3T-2 01-5T-2 71 = T
[3 4j [ 0 - l j I 2 lj [-
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1*4. Multiplication of Matrices. With matrix multiplication
two essential facts must be borne in mind. Firstly, matrices are in
general not commutative in multiplication. Secondly, two matrices
can only be multiplied in a given order provided that a certain con-
dition is satisfied. If the number of columns in B is equal to the number
of rows in A, the two matrices are described as conformable, and they
can then be multiplied in the order BxA. Specifically, if B is a (q, n)
matrix and A is an (n, p) matrix, then the product BA is a (q, p) matrix.
A scheme which expresses this rule very simply is

(q,n)x(n,p) = (q,p). (1)

The product BA is referred to either as A premultiplied by B, or as
B postmultiplied by A.

We may now define the process of multiplication. To obtain the ith
element in the Jth column of the product P — BA, select the ith row
of B and the jth column of A, and sum the products of their corre-
sponding elements, beginning at the left-hand end and the top,
respectively: thus

p v 7? A (9\
r=l

As a particular case assume in (1) that q = 1 and p = 1, so that the
first matrix has merely a single row, say [Bjl, of n elements, while the
second has a single column, say {-4 J, of n elements. The product
[Bj\ {Ai} in this case is a (1,1) matrix, or a scalar*, which is given by
(2) as the sum of the products of the corresponding elements in [Bj\
and {<4 J. The general process of multiplication of two matrices may
accordingly be interpreted as follows: To obtain the typical element
P^ of the product BA, postmultiply the ith row of B by the jth column
oiA.

From (1) it is seen that two matrices B and A can be multiplied in
both the orders BA and AB only provided they are of the types
(p, n) and (n,p): the products are then of the types (p,p) and (n, n),
respectively. In particular this condition is satisfied for square matrices
of equal order: however, even in this case the two products are usually
not the same. Two matrices having the special property that BA = AB
are said to commute or to be permutable. The unit matrix I, for instance,
commutes with any square matrix of the same order.

* The caution should be added that, although a (1,1) matrix can always be treated
as a scalar, the converse is only true when conformability allows.
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EXAMPLES

(i) Product of Rectangular Matrices.

14 2 - 1 21 [" 2 3
3 - 7 1 - 8 - 3 0
2 4 - 3 l j 1 5

- 3 1J

(4 x 2) - (2 x 3) - (1 x 1) + (2 x 3), (4 x 3) + (2 x 0) - (1 x 5) + (2 x 1)"
(3 x 2) + (7 x 3) + (1 x 1) - (8 x 3), (3 x 3) - (7 x 0) + (1 x 5) - (8 x 1)

_(2 x 2) - (4 x 3) - (3 x 1) + (1 x 3), (2 x 3) + (4 x 0) - (3 x 5) + (1 x 1)

7 9"
4 6

- 8 - 8

The rule (1) here gives (3,4) x (4,2) = (3,2). The matrices are not
conformable when taken in the reverse order.

(ii) Products of Square Matrices.

I" 3 41 Tl 21 = T (3xl ) + (4x2), (3x2)+ (4x5)1 = I" 11, 261.
[-2 - l j [ 2 5J [ - ( 2x l ) - ( l x2 ) , - ( 2x2 ) - ( l x5 ) J [-4, -9J

When the matrices are multiplied in the reverse order the product is

Tl 21 [ 3 41 = I"(lx3)-(2x2), ( Ix4)-(2xl) l = [ -1 21.
[2 5 j [ - 2 - l j L(2x3)-(5x2), (2x4)-(5xl)J [-4: s\

Another illustration is provided by the pair of products

= I" 21 21 21
- 9 - 9 - 9

[-12 -12 -12

= 0.

(iii) Products of Permutable Matrices.

"0
0

_0

- 1
1
3

1"
- 1
- 3 .

= 0
0
0

- 1
1
3

1"
- 1
- 3 .

0
2
2

- 3
- 1
- 1

1
1
1.

[a 6] [1 0] = [1 0] Ya bl = \a bl.
[c d\[0 lj [0 lJU d\ [c d\
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(iv) Column Matrix Premidtiplied by Bow Matrix.
[5 2 -3]{2 - 1 4} = [5 2 - 3 ]

1-4

•—4

The rule (1) here gives (1,3) x (3,1) = (1,1); hence the product is a
scalar.

(v) Row Matrix Premultiplied by Column Matrix.

{2 - 1 4}[5 2 - 3 ] = 2] [5 2 - 3] = 10 4 - 6 1 .
- l l 1-5 - 2 3

4j L 20 8 -12J
In this case the rule (1) gives (3,1) x (T, 3) = (3,3). Note that the

product here is of a very special type. The elements in any row (or
column) are proportional to the corresponding elements in any other
row (or column), so that the product has in fact only a single linearly
independent row (or column). Examples (ii) and (iii) contain other
illustrations of square matrices with this property. More generally,
an (m, n) matrix with only a single linearly independent row (or column)
is always expressible as a product of the form {At} [B^, where {A^ is a
column of m elements and [B^ is a row of n elements. For instance,

[10, - 5, 20] = [51 [2, - 1, 4] EE{5, 2} [2, - 1 , 4].
L 4,-2, 8j [2\

(vi) Square Matrix Postmultiplied by Column Matrix.

ax== a l l tt12

#21 «22

#33 J

Xo

a n x1 + a12 x2 + #13 x3

21 1"' 22 2 *~ 23 3

The system of linear algebraic equations

a11x1 + a12x2 + a13x3 = bv

= b2,

is accordingly concisely expressible as the matrix equation

ax = b.

(vii) Abbreviated Rules for Products of Special Matrices.

Matrix x column = column,

Row x matrix = row,

Row x column = scalar,
Column x row = matrix with proportional rows and proportional

columns.
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1-5. Continued Products of Matrices, A continued product of
matrices, such as CBA, is to be interpreted as follows. First pre-
multiply A by B, and then premultiply the product BA by C. This
process will of course not be possible unless B is conformable with A
and C with BA.

In the foregoing definition of a continued product a specific order of
multiplication is laid down. However, it will now be shown that the
associative law holds good for matrix multiplication, so that the
factors in a product may be grouped in any convenient manner,
provided that the order of multiplication is not altered.

The associative law requires that if Y = OB and X = BA, then
CBA = YA = CX. (1)

To prove formally that this is a consequence of the definitions of § 1-4,
we note firstly that equation (1-4-2) gives for the typical element of X

n
Xij = 2 BirArp

r=l

where n is the number of columns in B and of rows in A. Hence the
(&,j)th element of CX is

2 ^ki^ij = 2 2 ^ki^ir^rp (2)
i=l i=lr=l

where m is the number of columns in O. Similarly, since

the (k,j)th element of YA is
n m n
2 YkrArj = 2 2 @ki BirArp (3)

in agreement with (2). This proves the truth of (1).
In view of the associative law, it will now be clear that a continued

product, or product chain, such as

will only have a meaning provided that adjacent matrices A8, A8_x in
the chain are conformable. Thus, if rs and cs denote, respectively, the
number of rows and columns in As, the conditions to be satisfied are

cs = *V-i
for s = m, m — 1,..., 2. The scheme of multiplication in this case may be
represented by

' rrn ' m—ll * V m—V ' m—2/ ^ •' • ^ V' 2 > ' 1 / ^ V' 1> ^ 1 / V' m> ^ 1 / *

The product, accordingly, is a matrix having rm rows and c± columns.
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For brevity, the product of two equal square matrices A is written
A2, and a similar notation is adopted for the other positive integral
powers.

The distributive law also holds good for matrix multiplication. For

example, E(A + B)F = EAF + EBF. (4)

The correctness of this follows at once from the formula (2) and the
definition of addition.

E X A M P L E S

(i) Associative Law. Compare

r 3 4i ri 2i x p - i i = r i i 261 p - I I = r 22 671
[ -2 — l j [2 5J [0 3J [-4: -9JL0 3J [ -8 -23J

(5)
with

[ 3 41 x ri 21 p -11 = I" 3 41 p 51 = [ 22 671.
[-2 - l j [2 5j[o 3j [-2 - lJU 13j [-8 -23J

(6)

(ii) Rule for Product. With

P = {2 - 1 4}[5 2 -3]{1 0 2 } [ - l 2], (7)

the rule for the product gives
(3,l)x(T,3)x(3,l)x(T,2) = (3,2).

The product thus exists, and is a matrix with three rows and two
columns. To evaluate P, note that the part-product [5 2 - 3] {1 0 2}
yields the scalar — 1, which may be brought to the front: hence

P = - I x { 2 - 1 4 } [ - l 2] =

(iii) Positive Powers of a Square Matrix.

r 3 4 1 - . r 3 4ir 3 41 - r 1 iei ,
L-2 l j [-2 lJL~2 l j [~8 ~7J
r 3 4i3 = r 3 41 r 1 i6i = r 1 i6ir 3 4i = r-29 201.
[_2 lj [-2 lJL-8 -7j [-8 -7j[-2 lj [-10 -39J
Note that positive integral powers of a square matrix are permutable.

(iv) Computation from'' Right to Left". In this method the complete
product is evaluated by successive premultiplications. For instance,
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if the product required is (7),

{1 0 2 } [ - l 2]= | " -1 2
0
4

11

0
- 2

[5 2 - 3 ] - 1
0

. - 2

2"
0
4.

= [1 - 2 ] ,

and finally P = {2 - 1 4}[1 - 2 ] =

Equation (6) is a further simple illustration of computation from
right to left.

(v) Computation from "Left to Right". Here successive post-
multiplications are used. Thus, if the complete product is (7),

{ 2 - 1 4}[5 2 - 3 ] = f 10 4 - 6 1 ,
- 5 - 2 3

L 20 8 - 1 2 .

{1 0 2} = {-2 1 - 4 } ,

2 -4"
- 1 2

4 - 8

10
- 5
20

4
- 2

8

- 6
3

- 1 2

and lastly, P = {-2 1 - 4 } [ - l 2] =

Equation (5) provides another example.

(vi) Use of Subproducts. In this treatment the complete product
chain is first split into a convenient set of subproducts, which are
separately computed. The calculation is completed by multiplication
of the chain of subproducts, or by separation into further subproducts.
For instance,

= r 11 261 x [ 2 - 9f 2 -9][0 5]
[-1 4j[l 4j

11 261 T — 9 - 2 6 ]
_4 -9J[ 4 llj

- 9 -261 = 5/9.
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Some of the methods of numerical solution of differential equations
to be described in Chapter VII involve the computation of lengthy
product chains of square matrices. With such product chains it is often
preferable to adopt the method of subproducts rather than to compute
the complete chain directly from left to right, or right to left; the use
of subproducts facilitates the correction of errors. For instance, sup-
pose the second matrix from the left, namely f~l 21, to have been

incorrectly entered as |~1 21. The rectification of this error involves
1.2 3j

a recalculation of the first subproduct but no recalculation of the
other subproducts. On the other hand, if the chain is computed from
left to right, the correction is much more troublesome.

A further important case is that in which a chain of square matrices
is postmultiplied by a column matrix. For instance, consider the

Here computation from right to left obviously requires the least
labour, since at each stage merely the postmultiplication of a square
matrix by a column matrix is involved.

1*6. Properties of Diagonal and Unit Matrices. Suppose A
to be a square matrix of order n, and B to be a diagonal* matrix of the
same order. If p — RA

then Ptj = S BirArj = BuAip (1)
r=l

since in the present case Bir — 0 unless r = i. Hence premultiplication
by a diagonal matrix has the effect of multiplying every element in any
row of a matrix by a constant. Similarly, postmultiplication by a
diagonal matrix results in the multiplication of every element in any
column of a matrix by a constant.

Diagonal matrices are clearly permutable with one another, and the
product is always another diagonal matrix. In the particular case
where Au = BTi\ BA = AB = L

These relations are characteristic of reciprocal or inverse matrices (see
§i-n).

• For definition of diagonal matrix see § 1-2 (e).
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From the definition of the unit matrix it follows that if A is any
square matrix IA „ AI = ^ (2)

and that Im = I. (3)
It is on account of the properties expressed by (2) and (3) that the
name unit matrix is justified.

A diagonal matrix whose diagonal elements are all equal is called a
scalar matrix. I t is equal to the unit matrix multiplied by a scalar.

E X A M P L E S

(i) Premultiplication by Diagonal Matrix.
2 0 7
4 - 1 6 - 2 0
9 3 6

(ii) Postmultiplication by Diagonal Matrix.

1
0
0

0
- 4

0

o-
0
3.

2
- 1

3

0 71
4 5
1 2j

(iii) Commutative Properties.

1
0
.0

0
- 4

0

0"
0
3.

"2
0
0

0
4
0

0"
0
2_

(iv) Reciprocal Diagonal Matrices.
0-1 0 01
0 -0-2 0
0 0 - 4 j

(v) Scalar Matrices.
T-2 0

0 - 2
0 0 - 2 |

rio o o
0 - 5 0
0 0 -0-25

[3 0 0] = - 6 / 3 ,
0 3 0
0 0 3|

1-7. Partitioning of Matrices into Submatrices. The array of
a given matrix may be divided into smaller arrays by horizontal and
vertical lines, and the matrix is then said to be partitioned into sub-
matrices. The partitioning lines are usually shown dotted, as in

3! 0 2 ] .
- 2 i - i - 1
-11-3 5\
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Each of the submatrices in a partitioned matrix may be represented
by a single symbol, and the original matrix becomes a matrix of
matrices; in this case the partitioning lines will usually be omitted, or
perhaps indicated by commas. With certain fairly obvious restrictions
partitioned matrices can be added and multiplied as if the submatrices
were ordinary matrix elements, and the result of any such operation
is the same as if the operation were performed on the original un-
partitioned matrices.

Suppose two matrices of the same order to be partitioned in a corre-
sponding manner. Then the submatrices occupying corresponding
positions will be of the same order, and may be added. Since each
element in the sum is the sum of the individual elements, it is clear that
the sum of the partitioned matrices is equal to the sum of the original
matrices.

Multiplication of partitioned matrices requires more detailed con-
sideration. Let BA = P, where B is of type (m,p) and A of type (p, n).
Suppose now that B is partitioned by, say, two vertical lines into three
submatrices Bl9 B2, J53; thus B = [Bl9 B2, BZ]. Then since B now has
three (matrix) elements arranged in a line, conformability requires that
A shall be partitioned into three (matrix) elements Al9 A2, As arranged
in a column; also the products B±Al9 B2A2, BZA3 must be conformable.
Hence the p columns of B and the p rows of A must be correspondingly
partitioned by vertical and horizontal lines, respectively. Clearly the
values of P given by BA and by B1A1 + B2A2 + B3A3 will be identical,
for the partitioning has only the effect of splitting the typical sum

p

2 BirArj into three portions which are subsequently added. Since

the numbers of rows in B and of columns in A are quite unrelated,
any horizontal partitioning of B and vertical partitioning of A may
be quite arbitrary: the conformability of the submatrices will not be
affected.

In general, for the multiplication of two partitioned matrices, it
is necessary and sufficient that for every partitioning line between
columns of the matrix on the left there shall be a partitioning line
between the corresponding rows of the matrix on the right, and no
further horizontal partitioning on the right.
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EXAMPLES
(i) Addition.

2 0 4
0 2 7

L-3 8 - l J

(ii) Multiplication,

2/2

L-3 8

4"
7

+ r T3/ ,

L8 - 3

- 2
= 5

LI 1 U

3
- 2

2

0
- 1

- 3

2"
- 1

5-

"1
2

.5

- 1
3
0

4"
0
2-

== r 3j Oj 2

L - l i - 3 ! 5J
= {3, -2 , -1}[1 , - 1 , 4] +{0, -1,-3}[2, 3, 0] + {2, - 1, 5}[5, 0, 2]

0 0 0
- 2 - 3 0
- 6 - 9 0

Another scheme of partitioning for the same product is

3 0! 2]
2

3
- 2

j

13
- 9
18

- 3
2
1

- 3
- 1
- 8

12"
- 8
- 4 .

-

16-
- 1 0

6.

- 2 — 1; — 1
- 1 - 3 ! 5-

1 - 1 41
2 3 0
5 0 2j

"I" 3 01 Tl - 1 41 +I" 21 [5 0 2]'
L-2 - l J U 3 OJ L-lJ

.5

[-1 -3] ri - 1 41+ 5[5 0 2]
L2 3 Oj

3 - 3 121 + f 10 0 41
[-5 0 -2J

1 3 - 3 16
- 9 - 1 -10
18 - 8 6_[_7 _g -4] + [25 0 10

The convenience of partitioning when the matrices include many zero
elements is illustrated by

5
2

0
0

2
1

0
0

0
0

8
5

0~
0

3
2_

1 -
- 2

0

0

- 2

si
1

0i

0
0

2

- 5

0
0

- 3
8

0
0L2, lJL-2, 5ji 0

i

311" 2,-31
.5,2JL-5, 8j.

0
0

0
0
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1-8. Determinants of Square Matrices. The determinant of a
square matrix A is the determinant whose array of elements is identical
with that of A, and it is represented by | A |. It is shown in treatises
on determinants that the product of two determinants | B | and | A \
of the same order m can be represented by another determinant of
order m. The multiplication rule for determinants can be expressed in
several different ways, but one of them is as follows:

\B\x\A\ = \C\, (1)
TO

if Ctj = 2 BirATj.

The array of the elements in \ C \ is thus identical with that in the
matrix product BA. Hence the determinant of the product of two
matrices equals the product of their determinants. It should be noted
particularly that if c is a scalar and A is a square matrix of order m,
then I A I __ m I A I ,n\

| CJL | — C | Ji | . (4)

Square matrices are also associated with minor determinants and
cofactors. It may be recalled that the first minor of the determinant
| A |, corresponding to the element A{j, is defined to be the determinant
obtained by omission of the ith row and the jih column of | A |; while
the cofactor of A^ is this minor multiplied by (— l)i+t If | A | is of
order m, any first minor is of order m— 1. Similarly, the determinant
obtained by omission of any s rows and s columns from | A \ is called
an 5th minor, or a minor of order m — s.

Methods for the computation of determinants and cofactors by the
use of matrices are described in Chapter iv. A few special properties
of determinants to which reference will be made later are given in the
examples which follow.

E X A M P L E S

(i) Differentiation of Determinants. Suppose A(A) to denote a deter-
minant of order m, the elements of which are polynomials of a para-
meter A: for instance,

A ( A ) = /n(A)

2i(A) /22(A) ... /2m(A)

/miW /m2(A) ... /mm(A)

Then by the usual rule for the differentiation of determinants -ry is the
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sum of the determinants obtained when any one column is differentiated
and the remaining columns are taken as they stand. Since each such
determinant is expansible in terms of first minors of A(A), it follows that

-rr-is a linear homogeneous function of the first minors A± of A(A).

d2A
Hence also -^ is a similar function of the second minors A2 of A(A),

and more generally -yr— is linear in the pth. minors Ap.

(ii) Determinants whose Minors of a Certain Order all Vanish.
Suppose that, when A = Ag, at least one of the qth minors Aq of A(A)
does not vanish, whereas all the (q— l)th minors Aq_1 do vanish, so
that A-As is a factor of every minor Aff-1. Now, by the theorem

proved in example (i), —pr^ is linear in the first minors of Aa_2—that is,
a/K

in the minors Aq_± of A(A). Hence A - As is certainly a factor of
dX

so that (A — X8)
2 at least is a factor of every minor Ag_2. In the same way

Q~s is linear in the minors Ag_2, and thus contains the factor (A — As)
2.

Accordingly (A — As)
3 at least is a factor of every minor Aff_3. Proceeding

in this way we see finally that (A — A^"1 at least is a factor of every
first minor Ax of A(A), while (A - Xs)

q at least is a factor of A(A) itself.
For instance, suppose

A(A) = 1
0
0
0

0
A
0

0

0
0

A
0

0
0
0

A

A(A) =

Here, when A = 0, all the second minors of A(A) are zero, but one third
minor is not zero. Clearly A2 is a factor of every first minor, while A3

is a factor of A(A).

Again, if

we see that as before, when A = 0, all second minors vanish whereas
one third minor does not. In this case A3 is a factor of every first minor
and A6 is a factor of A(A).

1
0

0
0

0
A
0

0

0
0

A2

0

0
0
0

A3
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1 *9. Singular Matrices, Degeneracy, and Rank. In general the
rows of a square matrix are linearly independent, but examples have
already been given of matrices which do not satisfy this condition.
If the determinant of a square matrix vanishes—so that the rows are
not linearly independent—the matrix is said to be singular.

The rows of a singular matrix may be linearly connected by only a
single relation, in which case the matrix is said to be simply degenerate,
or to have degeneracy* I, If the rows are linearly connected by more
than a single relation, the matrix is multiply degenerate, and in fact the
degeneracy is q if there are q such relations. In accordance with this
definition the rows of a square matrix of order m and degeneracy q will
all be expressible as linear combinations oim — q linearly distinct rows
of elements. The quantity m — q is usually spoken of as the rank of the
matrix. The preceding considerations are, of course, true equally for
the rows and the columns. The formal definitions of degeneracy and
rank are as follows: A square matrix of order m is of degeneracy q when
at least one of its gth minor determinants does not vanish, whereas
all its (q— l)th minor determinants do vanish. The rank then is m — q.

From the preceding remarks it will be clear that the question of the
degeneracy of a square matrix a of order m is intimately bound up
with the number of linearly independent sets of quantities x which
can satisfy the m homogeneous scalar equations contained in the
matrix equation ax = 0 (see example (vi) of § 1-4). Here x denotes a
column of m unknowns. When a is non-singular x = 0 is the only
solution. When a is simply degenerate a non-zero column, say x — x,
can be found to satisfy the equation, and the most general solution
then is an arbitrary multiple of a?. Again, when a is doubly degenerate
two distinct non-zero columns can be found, say x(l) and x(2), and
the most general solution is an arbitrary linear combination of these.
More generally, when a has degeneracy q there are q linearly inde-
pendent non-zero solutions.

EXAMPLES

(i) Non-Singular Matrix. The matrix

a= I 1
- 1

0

2
0
1

3"
2
0.

* Also called nullity by some writers.
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is non-singular, since | a | 4= 0. Also x = 0 is the only solution of the
matrix equation ax = 0, i.e. of the three scalar equations

-xt +2^3 = 0,
x2 = 0.

(ii) Simply Degenerate Matrix. The matrix

a = T l 2 9]
2 0 2

|_3 - 2 - 5 J

is of degeneracy 1 (or rank 3—1 = 2), since at least one first minor of
| a | does not vanish whereas \a\ = 0 . Hence a single linear relation
connects the rows (or the columns). In fact

[1, 2, 9]-2[2, 0 ,2] + [3, - 2 , - 5 ] = 0,

and {1, 2, 3} + 4{2, 0, - 2} - {9, 2, - 5} = 0.

From the second of these relations we see that, in the present
case, the equations ax = 0, or

2xx + 2#3 = 0,

have the particular solution x = {1, 4, — l}=a?, and the general
solution x = ex, where c is an arbitrary constant.

(iii) Multiply Degenerate Matrices. The matrix

"0 0 0 0"
0 0 0 0
0 0 1 0

.0 0 0 l J

is of degeneracy 2 and rank 2. The equations ax = 0 can here be satisfied
by x(l) = {1,0,0,0} and x(2) = {0,1,0,0}, and the most general
solution is x = c1x(l) + c2x(2).

As another illustration we may take

' 1 2 3 - 1 "
2 4 6 - 2

- 1 - 2 - 3 1
. 0 0 0 OJ
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This matrix is of degeneracy 3 and rank 1. The equations ax = 0 are
satisfied by the three columns

as(2) = {3, 0 , - 1 , 0 } ,

05(3) = {1, 0, 0, 1},

and the most general solution is

x =

(iv) Singular Matrices Expressed as Products. A square matrix a
which has proportional columns and rows is of rank 1, and conversely.
Such a matrix has effectively one linearly independent column and
one linearly independent row, and is expressible as a product of the
type {6jL/?/J. For instance, the second matrix in example (iii) can be
written as the product

{1,2, - 1 , 0} [1,2, 3 , - 1 ] .

In the same way a square matrix a of rank 2 is expressible as a product
of the type 6p, in which 6 consists of two independent columns and
P consists of two independent rows. The columns of a are all linear
combinations of the two columns of 6, and the rows of a are all linear
combinations of the rows of p. For instance, the first matrix in example
(iii) can be written as

0
0
1

.0

0
0
0
1.

r°
|o

0
0

1
0

while similarly the matrix a of rank 2 in example (ii) can be represented
in the following ways:

ri o i i=|p in T5 ~i ii.
[0 1 4j 2 2 M0 1 4J

L3 - 7 j

More generally a square matrix a of order n and rank r can be repre-
sented by

a 6p
in which 6 is an (n, r) matrix with linearly distinct columns and (3 is
an (r, n) matrix with linearly distinct rows.
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l'lO. Adjoint Matrices. If [a^] is a square matrix and A{j is the
cofactor of a{j in | a \, the matrix [A^] is said to be the adjoint of [a^].
It should be noted carefully that the adjoint of a matrix a is the
transposed of the matrix of the cofactors of a.

Since by the properties of determinants

and

it follows that
Similarly,

From equations (1

2 UirAjr =
r=l

n

•8-2) and (1) we

1^1 =

= 0

= \a

1 =
1 =
see

= | a

if i+j,

1,
|a|/.

|a|7.

also that

I " - 1 .

(1)
(2)

(3)
The properties of the adjoint matrix expressed by equations (1) and

(2) are of great importance. In the special case where a is singular, so

that|a|=0, aA=Aa = 0. (4)

Anticipating results given in § 1-12 regarding square matrices having
a null product, we can deduce from (4) that the adjoint of a simply
degenerate matrix a necessarily has unit rank. If a has multiple
degeneracy, the adjoint is by definition null.

EXAMPLES

(i) Adjoint of Non-Singular Matrix.

K ] = f 2 0 7;
- 1

. 3
4
1

The product of these two matrices in either order is

"-85
0
0

0
- 8 5

0

0
0

- 8 5

= - 8 5 / 3 = 2
- 1

3

0
4
1

(ii) Adjoint of Simply Degenerate Matrix.

[%] = f 2 0 2] ; [An] = f 13 2 - 8 " .
1-1 4 31 I 13 2 - 8
L 3 1 4j L-13 - 2 8.

In this case both products aA and Aa vanish, and A has unit rank.
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(iii) Adjoint of Multiply Degenerate Matrix.
" O O O O "
0 0 0 0
0 0 1 0

.0 0 0 2.
Note that here a is of rank 2 and degeneracy 2, and that A is null.

I ' l l . Reciprocal Matrices and Division. If a is a non-singular
square matrix, the elements of the adjoint A may be divided by \a\.
The matrix so obtained is called the reciprocal or inverse of a, and is
written a*1. By (1-10-1) and (1-10-2) it follows that

aa x = a xa = 1. (1)
It is easy to see that if a is given, the reciprocal of a is the only square
matrix x which satisfies the equation ax = / . Similarly, a~x is the only
matrix which satisfies xa = I.

If a square matrix is not singular it possesses a reciprocal, and
multiplication by this reciprocal is in many ways analogous to division
in ordinary algebra. In conformity with the terms adopted for matrix
multiplication, we may refer to b~xa (when it exists) as a predivided
by b9 and to ab~x as a postdivided by 6.

Methods for the computation of reciprocal matrices will be described
in Chapter iv.

E X A M P L E S
(i) Reciprocal Matrices.

a = "3 - 2 0 - 1 "
0 2 2 1
1 _ 2 - 3 - 2

-0 1 2 1J
The product of these two matrices can be verified to be 74.

(ii) Predivision and Postdivision.
fl=F 1 21; 6=T2 5

1 1

0 1

- 1 - 1

2 1

- 2
0
3

- 6 -10J

- 1
6

[-: a1
Predivision of a by 6 gives

Postdivision of a by 6 gives

u: ai-i3 - 5 i =
2

n-:-a-
n-1-.a-

-a;]•

21 =
3
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1*12. Square Matrices with Null Product. In scalar algebra
the equation ab = 0 can only be satisfied when at least one of the
factors a and b vanishes. However, if a and b are matrices, their pro-
duct can be null even though neither factor is null. If one factor is
null, then obviously the other is arbitrary; but if neither factor is null,
then both factors must be singular.

Let ab = 0, where the matrices are square and of order n. Since all
the elements in the^pth column of the product vanish, it follows that

anblp + a12b2p +. . . + alnbnp = 0,
bnp = 0,

Firstly, suppose that | a | is not zero. Then the foregoing equations
can only be satisfied if all the elements of the ^th column of b vanish.
Hence b is null, i.e. it is of rank 0. The rank of a is n, so that in this case
the sum of the ranks of a and b is n. Next suppose that | a | vanishes,
while the cofactors of its elements are not all zero, i.e. let a be of rank
Ti—1. The equations can now be satisfied by non-zero values for some,
at least, of the elements bip, and the ratios of these elements are
uniquely determined. But the elements biQ in the qth column of 6 must
also satisfy the equations and must therefore be proportional to the
corresponding elements of the pth column. Hence b is of rank 1.
Evidently 6 can also be null, i.e. of rank 0; hence the sum of the ranks
of a and of b is in this case either n or n — 1.

More generally it can be shown that if the product of two square
matrices is null the sum of their ranks cannot exceed their order.
This is a particular case of Sylvester's law of degeneracy,* which states
that the degeneracy of the product of two matrices is at least as great
as the degeneracy of either factor, and at most as great as the sum of
the degeneracies of the factors (see example (ii)). This law is illustrated
in a simple way when both matrices concerned are diagonal, with
certain diagonal elements zero. Suppose the degeneracies of a, b are
p, q, respectively; this implies that p diagonal elements of a, and q of
6, are zero. Evidently if p ^ q and all the q diagonal ciphers of b are in
positions corresponding to ciphers in the diagonal of a, then the product
will contain only p diagonal ciphers, i.e. the degeneracy of the product
is p. On the other hand, if none of the q ciphers in 6 is in a position

* Often called Sylvester's law of nullity. A short proof is given on p. 78 of Ref. 1.
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corresponding to a cipher in a (which will be possible provided# + q > n),
then the product will contain p + q ciphers; i.e. the degeneracy will be
p + q.

EXAMPLES

(i) Square Matrices with Null Product. Let

a 1 0 0 0
0 1 0 0
0 0 0 0

L0 0 0 0J

"0 0 0 0"
0 0 0 0
0 0 1 0

.0 0 0 1-
Here ab = 0, both matrices are of rank 2, and 2 + 2 > 4. Note that if
the rank of either matrix is increased by the addition of a further unit
in the principal diagonal, the product cannot vanish.

Again, if a = VI 1 1] , b = f" 3 4 21,
2 2 2 - 2 - 1 - 1

|_5 5 5J L—1 —3 — l j

then ab = 0. Here a is of rank 1, b is of rank 2, and 1 + 2 > 3.

(ii) Sylvester's Law of Degeneracy. The validity of this law is
illustrated by the following considerations. Let a, b have degeneracies
p, q, respectively. Then it is possible to represent a by a product Ace,
where A, a are (n,n— p)9 (n—p,n) matrices, respectively (see §1-9,
example (iv)). Similarly, b can be expressed as BjS, where B, JS are
(n, n — q), (n — q,n) matrices, respectively. Moreover, the columns in A
and in B, and the rows in a and in /?, severally, will be linearly indepen-
dent. Hence we may write

ab = AaBfi = Ay,
where y = otBfi.

For definiteness suppose p >q. Then since A has only n—p linearly
independent columns, and since the rows of y may not be linearly
independent, the product has at most n— p linearly independent rows
and columns, and its degeneracy is thus at least p. Similarly, if q >p,
the degeneracy is at least q.

Next consider the product in the form aBfi. Since a has degeneracy
p, there are p relations connecting the columns of a; i.e. there are p
columns x such that ax = 0 (see § 1*9). In the extreme case, therefore,
it is possible for p of the n — q columns of B to give null columns when
premultiplied by a, and the remaining n-p-q columns will in fact
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be linearly independent. Hence aB has n—p — q linearly independent
columns, and the degeneracy of the product ab in this extreme case is
therefore p + q.

1-13. Reversal of Order in Products when Matrices are
Transposed or Reciprocated, (a) Transposition. Let A be a (p, n)
matrix and B an (m,p) matrix. Then the product P = BA is an (m, n)
matrix of which the typical element is

Pu=^BirArj.

When transposed, A and B become, respectively, (n,p) and (p,m)
matrices; they are now conformable when multiplied in the order A'B'.
This product is an (n, m) matrix, which is readily seen to be the trans-
posed of P, since the typical element is

r=l
Hence when a matrix product is transposed, the order of the

matrices forming the product must be reversed. Similarly, if
CBA = CP = B, then R = P'C = A'B'C.

It is evident that the reversal rule holds for any number of factors.

(6) Bedprocation. Suppose that in the equation P = BA the
matrices are square and non-singular. Premultiply both sides of the
equation by A^B'1 and postmultiply by P"1; then A~XB~X — P"1.
Similarly, if B = CBA, then B'1 = A^B'W-1. The reversal rule
again applies for any number of factors.

E X A M P L E S

(i) Transposition ofProduct of Square Matrix and Column. If ax = b,
then x'ar = b'. For example, if

T211,

then = [21 14 10].

Both of these matrix equations represent the same set of three scalar
equations.
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(ii) If A, B are Symmetrical, then the Continued Product ABA ... BA
is Symmetrical. For if ABA ... BA = Q, then

Q' = A'B'...A'B'A' = AB...ABA = Q.
For example

p 1] T5 21 p 1] = T12 51 p 11 = p9 171.
[l lj [2 lj [l lj L 7 3j [l lj [l7 loj

(iii) The Bedprocal of a Symmetrical Matrix is also Symmetrical. If
a is the reciprocal of a symmetrical matrix A, then AOL = I. By the
reversal rule a!A' = at!A = I' = / , and postmultiplication by a yields
a = a': hence a is symmetrical. For example,

- 1 __

(iv) The Bedprocal of a Skew Symmetric Matrix of Even Order is
also Skew Symmetric. If A is a skew symmetric matrix of order n,
t h e n A = - A ' . H e n c e \ A \ = (-l)n\A'\ = (-l)n\A\. W h e n rc is
odd, then | 4̂ | = 0, so that a skew symmetric matrix of odd order has
no reciprocal. When A is of even order, let Aoc = I. By the reversal
rule ad A' = —ex! A = / ' = / . Postmultiply by a: then ex! = — a, so
that a is also skew symmetric. For example,

r 0 n-i = ro _ „ .
L-i oj U oj

(v) The Product of any Matrix and its Transposed is Symmetrical.
If P = u'u, then P' = u'u = P . For instance,

11 T4 11
- 3 j 2 7

LI - 3 _

= [21 151.
59j

An obvious extension is that if a is a symmetrical matrix, then the
product ufau is symmetrical.

1-14. Linear Substitutions. Suppose that

Vi =

2/2 = + ^2 + • • • + ̂ 2

Vn = Unl

Then the set of variables y is said to be derived from the set # by a
linear transformation, and the equations are also said to define a linear
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substitution. The whole set of equations can be represented by the
single matrix equation __ ,,x

where x and y are column matrices. The square matrix u is called the
matrix of the transformation.

Now suppose that a third set of variables z is derived from the set y
by the transformation whose matrix is v. Then z = vy = vux. Thus the
transformation of x into y and the subsequent transformation of y
into z is equivalent to a certain direct transformation of x into z. This
is called the product of the transformations, and its matrix is the
product of the matrices of the successive transformations taken in the
proper order.

When u is non-singular, equation (1) may be multiplied by w1 to

&Ye x = u~*y. (2)

The matrix of the inverse transformation is therefore the reciprocal
of the matrix of the transformation. If the quantities xi in (1) are
regarded as unknowns, then their values are given explicitly by (2).
Hence the solution of a set of linear equations may be found by the
calculation of the reciprocal of the matrix of the coefficients, provided
this matrix is not singular.

E X A M P L E S

(i) Linear Substitutions. If

and

xs

+ 2yZ9

then z = 1
0
2

0
- 1

3

2"
1
4

P1
1

- 2
1
3

3"
1

- 1

x = " 4
0

11

4
2

11

1
2

5

(ii) Solution of Linear Algebraic Equations. If
3xx — 2x2 — #4 = 7,

x±= 5,

a;4 = 6 ,
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then "3 - 2 0 - 1 "
0 2 2 1
]L - 2 - 3 - 2

-0 1 2 lJ

Hence (see example

"*i"
x2

xs

> (i) of §M1)

" 1 1 - 2
0 1 0

- 1 - 1 3
. 2 1 —6

~x{
x2

-z4-

= -

-

- 4 "
- 1

6
10-

" 7"
5
2
6-

FORMS

7"
5

-1
6.

= "-10"
- 1
21

. - 3 5 -

>

or 21,

1*15. Bilinear and Quadratic Forms. If x, y are two sets of n
variables, a function A(y,x) which is linear and homogeneous in the
variables of each set separately is called a bilinear form. Evidently-
such a function has n2 coefficients and can be written

r = l

a
22

ln

2n

-a nl

A bilinear form can therefore be expressed concisely as

A(y,x) = yax = x'a'y',

in which y is a row matrix and x is a column matrix.
When the sets of variables are identical, so that y = x\ the bilinear

form becomes a quadratic form, i.e. a homogeneous function of the
second degree. The coefficient of xtx^ (i=¥j) in the quadratic form is
aij + aji> a n ( i ^ s will b e unaltered if atj and ajH are both changed to
\{a>ij + a>ji). Hence a convenient expression for a quadratic form is

A(x,x) = #'a#,

where a is a symmetrical matrix.
If we make the substitution x = hz, where h is a non-singular square

matrix of constants, then

A(x,x) = z'h'ahz = z'bz,

where b is the symmetrical matrix h'dh. When two square matrices
a and b (not necessarily symmetrical) are related by an equation
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of the type b = p'ap, where p is non-singular, they are said to be
connected by a congruent transformation.

The representation of bilinear and quadratic forms* by matrices
has two great advantages. It is concise, and it emphasises the fact that
any special properties of the form correspond to special properties of
the matrix of its coefficients. Examples of its use in relation to
dynamics will be given in Chapter VIII.

E X A M P L E S

(i) Bilinear Forms having Unequal Numbers of Variables. If there
are n variables y and m variables x the appropriate bilinear form is
A(y, x) = yax = x'a'y', where a is an (n, m) matrix. For instance,

(ii) Partitioning of Bilinear Forms. The usual rules for the par-
titioning of matrices can be applied with bilinear forms. As an illustra-
tion suppose

A(, x) = [yv y2,2/3] |"an a12 a13"|

U 3 1 a%2 azz\
v 2/2] = y a n d {xi> ^2} = x>we m a y write

an
a 2 1

a l 2

a 2 2

a32

a 2 3

a33

[:)•

or say

As a further example consider a quadratic form

A(x,x) = xfax.

* A simple account of the properties of bilinear and quadratic forms is given in Chaps,
vm to xi of Ref. 1.
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Then if we suppose x to be divided into m variables y and k variables
rj, so that x = {y, TJ), we may write

Since a is symmetrical, the submatrices a, 8 are square and symmetrical,
and are of the orders m and k, respectively. Further, the rectangular
submatrices ft, y are, respectively, of the types (m, k) and (k, m), while
ft' = y. The expanded expression is

[yy + Sy]
= y'oty+y'fiy + rfyy + rfSri

3'+y)y+v'Sy

1*16. Discriminants and One-Signed Quadratic Forms. If
A (x, x) = x'ax is a quadratic form of m variables x, then the determinant
Am = | a | is usually termed the discriminant of the form. The conditions
that a given quadratic form A (x, x) shall be one-signed* (say positive)
for all real values of its variables are of great importance in dynamics,
and they are connected with the signs of Am and of the discriminants
of the forms derived from A(x,x) by omission of any number of the
variables x. A brief discussion of this question follows.

For simplicity assume, firstly, that none of the discriminants in
question is zero. This implies, in particular, that none of the principal
diagonal elements au of a vanishes. In this case all the terms involving
the variable xx can be collected together as a perfect square, and the
quadratic form can be rewritten as

A(x,x) = a

where B is a quadratic form involving all the variables with the
exception of xv Treating B in a similar manner, and continuing the
process, we finally express A(x,x) as the sum of m perfect squares.
Thus, say, ^ ^ = ^ g . + ̂ g . + ^ . + j . ^ g g / ^ (1)

where E is a diagonal matrix the elements of which are all clearly
rational functions of the elements of a. Moreover, the variables £t- and

• A quadratic form which is positive or zero for all real values of the variables is spoken
of as a positive definite form.
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xi will be connected by a linear transformation of the special "tri-
angular" type

ux u12

1
0

_0 0 0 ... 1

and a will be derived from E by the congruent transformation a = u'Eu
(see § 1-15). Since | u | = | u' | = 1, it follows that

ExE2...Em = Am.

Suppose next that xm = 0, so that also £m = 0. Then, as previously,
we can prove that

where Am-1 is the discriminant of the quadratic form obtained from
A(x,x) when xm = 0. More generally, if xm = xm^1 = ... = xj+1 = 0,
then

Hence we find that

1 1 ' 2 A ' 3 A ' • • • > m A " • • • V /

Prom (1) it is clear that the necessary and sufficient conditions that
A (x, x) shall be a positive function are that all the coefficients E shall
be positive. Hence by (2) all the discriminants Am, Am_x, ..., Ax must
be positive. We could, of course, have reduced A(x,x) to a sum of
squares such as (1) by collecting together the variables in quite a
different order. Each such method of reduction would lead to a different
set of discriminants, but the final criteria are in fact all equivalent.

The argument given above requires modification if any of the dis-
criminants is zero. For example, if an = 0 the first step in the reduction
of A (x, x) would fail. In this case, leaving xx and xr general and choosing
the remaining variables to be zero, we have A(x} x) = arrx* + 2alrx1xr.
This expression will not be one-signed for all values of xx and xr unless
alr = 0. Since this conclusion applies for all elements alr, we see that
if an = 0 the form cannot be one-signed unless xx is completely absent
from A (x, x). More generally, we may immediately rule out all quadratic
forms having any zero principal diagonal elements.

Suppose next that, while axl 4= 0, yet B contains some zero principal
diagonal elements. By the same argument as before B (and therefore
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A) will not necessarily be positive unless the variables in B corre-
sponding to its zero principal diagonal elements are all absent. It is
easy to show that in order that, say, x8 may be completely absent from
B the sth row (or column) of elements in a must be proportional to the
first row (or column). The procedure then is to retain the first row and
first column of a and all other rows and columns not proportional to
the first. The discriminants actually to be used are then constructed as
before from the matrix a as thus reduced. In these circumstances the
totalnumber of squares involved in (1) will be less than m. Illustrations
of some of the possible cases which can arise are included in the
examples which follow.

E X A M P L E S

(i) Discriminants all Positive.

Air? Y\ — XT T T r l

Here we may take A1 = 1 and-

1 - 1
- 1 3

= 2;

1 - 1
- 1 3

2 0

1 - 1 2 1
- 1 3 0 - 3

2 0 9 - 6
1 - 3 - 6 19J

1 - 1 2
- 1 3 0

2 0 9

x9

= 6;

2 1
0 - 3
9 - 6

= 24.

1 - 3 - 6 19

These particular discriminants are all positive, and A(x,x) is accord-
ingly a positive function. It can be verified that A (x, x) is expres-
sible as

A (x, x) = {x1 -x2 + 2xs + #4)
2 + 2(x2 + xs- xtf

(ii) Case of Proportional Rows and Columns.

J±(X,X) — 1 - 1 2 1
- 1 1 - 2 - 1

2-2 7 - 4
1 - 1 - 4 17J

x3

Since the second row of a is proportional to the first, the variable x2

will be absent from B. Omitting the second row and column, and
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distinguishing the discriminants for the modified matrix by clarendon
type, we have

1 2
2 7

3; 1 2 1
2 7 - 4

= 12.

1 - 4 17
The form in question is accordingly positive and expressible as the
sum of three squares. It can be verified that

A (z, x) = (x± -x2 + 2xs + #4)
2 + 3(#3 - 2#4)

2 + ±x\.

(iii) If a — u'u, where u is Real, the Discriminants of x'ax are all
Positive. Let y = ux, where x, y are real columns. Then

x'ax = x'u'ux = y'y.

The product y'y is a sum of squares and is therefore always positive.
Hence x'ax is a positive form and the discriminants are all positive.

More generally, if d is a diagonal matrix of positive quantities, the
discriminants oix'u'dux are all positive.

1-17. Special Types of Square Matrix. For convenience of refer-
ence the formal definitions of one or two particularly important types
of square matrix will now be given. Some of these types have already
been referred to incidentally, and exemplified, in preceding pages. In
the list which follows the matrix concerned is denoted simply as u, and
as usual an accent means transposition. If the elements of u are complex
numbers, the matrix with the corresponding conjugate complex
elements—that is to say the conjugate* of u—is denoted as u.

u = u' ... ... Symmetrical
u = —u' ... ... Skew Symmetric, or Alternate

W1 = u' ... ... Orthogonal
u = v! ... ... Hermitian

A few additional properties! are given in the examples which follow.

E X A M P L E S

(i) Symmetrical Matrices and Determinants. I t is to be noted that the
product of two symmetrical matrices is, in general, not symmetrical.
For instance

[2 3j[5 6J [23 28J

* The term "conjugate" is used by some writers as meaning "transposed".
f For a more complete account see, for example, Chap, rv of Ref. 2.
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If [ai:j] is a symmetrical matrix of order n, the adjoint [Ait] is also
n n

symmetrical. Since 2 airA*T = 0 and 2 a%rAir = \a\, we have by
r=l r=l

direct multiplication

1 0 0 .
0 1 0 .

0
0

a32

A i l

i J = A21 A2

•^22 ""-3

0 \a

0 0 MJ
Moreover, j An | = | aI1*-1. Hence

#'43

%4

a4 4

^3 an4 — am

I t follows from this equation that if An = 0 the two determinants
on the left have opposite signs. Again, if both | a | and An vanish,
then also A12 = 0: similarly, all other first minors of type Alr vanish.
Accordingly, if a symmetrical determinant and its leading first minor
both vanish, then the first minors of all elements in the first row (or
column) also vanish. An application of this property to dynamics is
given in §9-9.

(ii) Orthogonal Matrices. The matrix of the direction cosines of
three mutually perpendicular axes OXV OX2, OX3 referred to three
fixed axes is orthogonal. For, let (Zn, l12, llz), (l21, h* hz)> (hv h* hz) be
the direction cosines of the three axes, respectively. Then

I hi

hi

.hi

hi

h%
hi

^23

^33_

and V = "11 "91 I".hi

hi

hi hi

'9.9. ':^22 32

Now by the properties of direction cosines

JlZ ^23 ^33j

1 7 7 1 7 7 1 7 7 — (\ A^T*, 1̂1 ̂ 21 "• 12 22 ^^ 13 23 ~~ 9 \su\j.)

so that IV = / . Hence I"1 = V, and I is therefore orthogonal. The
appKcation of orthogonal matrices to the subject of kinematics will
be considered in Chapter vm.
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(iii) Matrices Corresponding to Complex Scalars and Quaternions. If
/ denotes the second order unit matrix, and if/is the orthogonal matrix

* = [ 0 11, (2)
L-i oj

then evidently I2 = /, /2 = - / , / / = / / = /. Moreover, if

where a, a', b, b' are scalar multipliers, then a = a' and b = b'. The
algebra of matrices of the type al + bl, where a and b are scalars, is thus
identical with that of the scalar complexes a + ib. The complex quan-
tity a + ib is in fact here replaced by the real matrix F a 61. It will[ a 6]. It -

L-6 a\
be seen later that the "latent roots " (see § 3*6) of this matrix are a ± ib.

Next suppose / to denote the fourth order unit matrix, and in
addition introduce the orthogonal matrices

0
- 1

0
0

1
0
0

0

0
0
0
1

o-
0

- 1
0_

0 0
0 0

- 1 0
0 - 1

01
1
0
oj

0
0
0

L-i

Then I2 = J 2 = K2 = IJK= -
IJ = JI = J, IK

—\—/
K = -I, \

o o n
o - i o
1 0 0
o o oj

(3)
/ 2 = / ,
II = II = I,

These relations provide a basis for the algebra of matrices of the type
wI + xI+yJ+zK, in which w, x, y, z are scalars.

The calculus of quaternions* is concerned with expressions of the
type \w + ix +jy + kz, in which 1 is the scalar unit and i, j , k are three
mutually perpendicular unit vectors. The laws of combination postu-
lated for 1, i, j , k are precisely those given by (4), so that the two
algebras considered formally correspond. A quaternion is thus com-
pletely represented by the real matrix

w
— X

-y

x y z
w —z y
z w —x

- - z -y X

The "latent roots" of q are w ± iV#2 + y2 + z2, repeated. If

w2 + x2 + y2 + z2 = T2, then q'q = qq' = T2I.

* See, for example, Ref. 3.
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In the algebra of quaternions q and qr would be described as "con-
jugates", while T would be called the "tensor" of q and q'.

It may be noted that the four matrices of fourth order used in the
preceding representation of a quaternion can, when partitioned, be
expressed in terms of the second order unit matrix and the matrix /
defined by (2). Hence a quaternion can also be represented as a linear
combination of the four second order matrices

[p i j |o -%\ [ - 1 oj [» oj
where i = V— 1.



CHAPTER II

POWERS OF MATRICES, SERIES, AND
INFINITESIMAL CALCULUS

2-1. Introductory. In the present chapter we shall consider some
of the properties of matrices which are expressible as functions of a
given matrix or which have elements functionally dependent on real
or complex parameters. In the latter connection the ideas of differen-
tiation and integration of matrices will be developed. We shall also
deal with certain types of infinite series of matrices (e.g. that
defining the exponential function) which are of importance in the
infinitesimal calculus.

2*2. Powers of Matrices. If u is a square matrix of order n, then
the continued product uuu ...utom factors is written um. In addition
u° is interpreted to mean the unit matrix In. By the associative law
of multiplication, 7 m m 7 „,,,

U X VL == U X U = = M *~

and (um)1 = (ul)m = /^m/.

Hence in the multiplication of powers of matrices the usual index
laws of scalar algebra hold for positive integral and zero indices.

The reciprocal matrix u~x exists provided u is not singular, and the
higher negative integral powers of u are then defined as the powers of
the reciprocal. Thus _m __ tn,-\\m

u — [u j •

It readily follows that, provided u is not singular, the index laws are
applicable for all integral indices.

E X A M P L E S

(i) Integral Powers. If ^ = [3 - 4 ] , (1)

then

Hence also
v? = uH = uu2 =[5 - 8

and u* = (u

u2=[3 -41 p -4] = T5 - 8 1 .
|_1 -lJLl - i j [2 - 3 |

p -81 p -41 = p -41 p -81 = T7 -121,
[2 -3JL1 - l j L1 -1JL 2 - 3 j [3 -5J
p - 1 2 ] p -121 = [13 - 2 4 1 .
[3 — 5J [3 -5J L 6 — l l j
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Again, the reciprocal of u is [~ — 1 41, so that
[ -1 3j

L-i 3JL-1 3JL-1 3J

L-2 5JL-1 3j [-3 7j
= r-3

I t is easy to verify by induction, or otherwise, that when s is any

integer us=Ul + 2s), - 4 s ] . (2)

L », (1-2»)J
(ii) Fractional Powers. If ra is an integer and if v is any square

matrix such that vm = u, then we may write v = ullm and refer to v as
an rath root of u. The number of rath roots which a given square matrix
possesses depends on the nature of the matrix, and in special cases
there may be an infinite number corresponding to any assigned value
of ra. Two simple illustrations will make this clear. Firstly, suppose
u to be the unit matrix 72, and assume a square root to be

Then we require
= pi 01,

or fiy = 1 - a 2 = 1 -S2 with y(a + S) = 0, fta + 8) = 0.

The possible square roots are readily seen to be +12 and

\y -t

with a, fl, y related by the condition fly = 1 — a2 but otherwise arbi-
trary. Hence in this case there is a doubly infinite number of square
roots.

Next let u= [3 - 4 1 .3 - 4 1
l - l j

Then it can be verified by a similar method that the only possible
distinct square roots of u are the two matrices

±T2 - 2 1 .
Ll Oj

It may be noted that one of these square roots is given by the formula
(2) with s = %.
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A fractional power of a matrix is commutative with any other
power, and the usual index laws are applicable to non-singular matrices
for all real indices. The subject of fractional powers will be discussed
further in example (iv) of § 3-9.

2*3. Polynomials of Matrices. The typical polynomial of a
square matrix u of order n is

In, (1)

where m is a positive integer (the degree of the polynomial) and the
coefficients p are scalar constants. It is to be noted that the final
coefficient pm is multiplied by the unit matrix. The corresponding
polynomial of a scalar variable x may be denoted by

(2)

Evidently an identity such as

P1(a)P,(a0sP,(a0, (3)
involving scalar polynomials, necessarily implies a corresponding
matrix identity „ , x r > / x n , x ,A.

J P^P^uj^P^u), (4)
for all the coefficients of the powers of # in the expanded form of (3)
can be identified term by term with the coefficients of the corre-
sponding powers of u in (4), on account of the properties given in § 2-2.
As a corollary, the multiplication of expressions containing only a
single matrix is commutative. It therefore appears that the algebras
of scalar polynomials of a single variable and of polynomials of a single
square matrix are completely analogous.

E X A M P L E S

(i) Factorised Form of a Matrix Polynomial. If al9 a2,..., am are the
roots of P(x) — 0, then P(x)==po(x — a±) (# —a2)... (x — ocm). The corre-
sponding matrix polynomial may accordingly be written in the
factorised form P(u) =^0(w —o^/) (u — a2l)...(u — aml).

For instance, let u = [~3, - 4] and suppose

jryvuf — ocv «

= 3r5,-81-9r3,-< n, 0] = [-6,121.
|0,lJ L-3, 6j
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In this case P(x) = Sx2 - dx + 6 = S(x - 1 ) (x - 2). Hence also

= 3[2, -2, -41 Tl, -41 = 3r-2,41 = r-6,121.

l, — 2jU, —SJ L - 1 , 2 ] L~3, 6J

(ii) Theorem on Factorisation of P(A)I-P(u). If P(x) is the poly-
nomial (2) and if A is any constant, then

P(X)-P(x)= ^PriX™-'-:

The expression on the right is exactly divisible by (X — x), so that

P(X)-P(x) = (X-x)8(X,x),

where S is of degree m — 1 in both x and A. It follows that

P(A) I - P(u) = P(A J) - P(u) = (XI - u) 8(XI, u).

Hence XI —u is a, factor of P(A) / — P(u).

(iii) Lagrange's Interpolation Formula. If al9a2, ...,an are distinct
but otherwise arbitrary constants, then, provided that the degree of
P(x) does not exceed n— 1,

This scalar identity is usually known as the Lagrange interpolation
formula. It gives rise to the corresponding matrix identity

n KI-u)
P(u)^^P(ar)

s^ (5)
11 ( « a W

which holds good for all distinct values of the constants ar provided
that the degree of P(u) does not exceed n — 1.

2*4. Infinite Series of Matrices. Let there be a sequence of
matrices uOi uv u2,...,ad inf., which are all of the same order, and let

p oo

#D = 2 ur- Then the infinite series 2 ur *s defined to be convergent
r=0 r=0

if every element in the matrix Sp converges to a not infinite limit as
p tends to infinity.

An important case is that in which the series is of the type

£=2a r < (1)
r=0
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where u is a given square matrix of order n, and the coefficients a are
all scalar. Methods for the discussion of the convergence of such power
series and for their summation will be given in §3-9. Sufficient, but
not necessary, conditions for the convergence can readily be deduced
from elementary considerations as follows. Suppose U to denote the
greatest modulus of any of the elements of u. Then clearly the modulus
of an element of u2 cannot exceed nU2. Similarly, n2Uz is an upper
bound for the modulus of any element of uz, and generally nr~1Ur is
an upper bound for the modulus of every element of ur. Hence the
series whose terms are the moduli of any homologous elements in the
successive terms of the power series (1) is not greater than

where 6 = nU, and Ar is the modulus of ar. Accordingly, the matrix
series (1) will certainly converge if the corresponding scalar series (2)
converges.

E X A M P L E

u=Y 0-15,-0-011,
L-0-25, 0-15J

Suppose

and S =
Here n = 2 and U = 0-25, so that

2<r =
= l + ( l -0-5)-1 = 3.

Hence no element of S can exceed 1-5. The exact sum is evidently
given by 8{I — u) = I, or

8 = (I-u)-1 = TO-85 0-011-1 = 1 [ 0-85 -0-011.
[0-25 0-85J (K72 [-0-25 0-85J

The greatest element in this is 85/72 (< 1-5).

2*5. The Exponential Function. The exponential function of a
square matrix is defined by the same power series as the exponential
function of a scalar. Thus

ii2 v?

and
u2 u3
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On application of (2-4«2) it is seen that a dominant series for each of
the series which constitute the elements of exp u is

71—I 1 __
<r = h - exp me/),

n n

where U is the greatest modulus in u. The exponential series thus
converges for all square matrices u.

The scalar exponential function has the property
ex+y _ exey^

which is proved by direct multiplication of the two series on the right
and identification of the product with the series on the left. Clearly,
the result of the multiplication of the matrix exponentials exp u and
exp v will correspond to that given by the multiplication of the scalar
functions provided that u and v are permutable in multiplication.
H e n c e e ¥ = e ¥ = eu+v (2)

whenever u and v commute. In particular, this condition will be
satisfied if u and v are polynomials of a given matrix. It should be
noted, however, that (2) will not be valid if u and v are general matrices
of the same order.

From (2) it follows that
eue-u = e-ueu = i

Hence exp u and exp (— u) are reciprocal.

E X A M P L E

Remainder after s Terms. An expression for the remainder after s
terms of the exponential series can be derived from the known scalar
identity ^ x x

ex= l + a; + r - + . . .+r—- + -, (\-z
[ l 1 ~ " J °

+ a; + r + . . . + r

The corresponding identity for a matrix of order n is

u* w
8-1

= ElJo(1-Su8 C1

where* Rs = i r (1 - z)8-1 emdz.

If U is the greatest modulus of any of the elements of u, and if [1]
denotes the square matrix of order n having all its elements unity, then

* See § 2-10 for definition of the integral of a matrix.
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clearly exjy(nU) [1] >exjy (uz) for all values of z within the range of
integration z = 0 to 1. Further, ^S~1!7S is an upper bound for any
element of u8. Hence an upper bound for the value of Rs is

^ i [ 1 ] e ^ [ 1 ] , o

2*6. Differentiation of Matrices. The elements of a matrix are
often functions of a variable, say t. When it is necessary to exhibit the
functional dependence of u on t, the matrix is written u(t) and the
typical element is u^t). However, the simpler notation u and u^ is
usually sufficient, since the functional nature of the matrix will be
clear from the context.

If t receives the increment 8t, there will be corresponding increments
of the elements of u, and the matrix of the increments may be written
8u. The differential coefficient (or derivative) of u with respect to t is
then defined by the equation

du ,. 8u

Hence the elements of dujdt are the differential coefficients of the
corresponding elements of u. An immediate deduction is that

d dux du2

Iiw = uxu2i then

w + 8w = (u1 + Sux) (u2 + 8u2)

and on neglect of the second order term, this gives

More generally the derivative of a continued product is formed as for
scalar expressions, except that the original order of the factors must be
preserved throughout. For instance,

d 3 du 2 du <du
dt ~~ dt dt dt'

and there is a similar expression for the derivative of any positive
integral power of a matrix. Again u~xu = / , and it readily follows that

du~x , du
~ u

i—X



44 NOTATION FOR DERIVATIVES 2*6

As for scalar functions, the symbol D will sometimes be used as an

abbreviation for a differential operator such as -y-. Thus -7- = Du, and
at at

dsu
more generally -=-- = D8u.

d t (8)

The 5th derivative will also often be denoted by u, and in particular
(i)

Du = u. The accent notation for derivatives will be avoided, as it might
be confused with the operation of transposition.

In the multiplication of matrix products which involve the differ-
ential operator D, care should always be taken to make sure which of
the matrix products concerned are subject to the differentiation. For
instance, both sides of the matrix equation Du = v can be premultiplied
by a conformable matrix w to give wDu = wv. On the other hand, if
both sides are postmultiplied by w, the result should be written
(Du) w — vw and not Duw = vw.

EXAMPLES

(i) Differentiation of a Product. Let
ui = [cos a, sin a] and u2 = fcostf, cosal.

[cost, suit] i&int, sinaj
(i) (i)

Then ux = f" 0, 0 1 and w2 = r - s in^Ol .
[ — sin£, cosJj [ cos£, 0J

Hence, ifw = u±u2, we have

(i) (i) (i)
w= uxu2-\-uxu2

— fcos a, sin al f" — sin t, 01 + f" 0, 0 1 fcos t, cos al
[cos t, sin 2J [ cos t, Oj [ ~ sm ̂  cos d L s m ̂ > sm a\
in(a-^), 01 + TO, 0 1 = /sin(a-£).

0, Oj [o,sin(a-*)J
This may be verified by differentiation of

w = fcosa, sinal Fcos ,̂ cosal = |~cos(a — t), 1 1.
[cos t, sin £j [sin t, sin a] [ 1, cos (a — £)J

(ii) Taylor's Theorem for Matrices. Ifu and v are permutable square
matrices, the algebra of polynomials involving no other matrices than
these (and the unit matrix) is formally identical with scalar algebra.



2*6-2-7 TAYLOR'S THEOREM 45

In this case if P(u) is a polynomial of degree m,
(1) V2 (2) vm (m)

P(u + v) = P(u) + vP(u) + 1 P(tt) +... + | - P(u),

where P(^) is the usual ith derived function of P(u), namely, the
matrix polynomial obtained by substitution of u for x in the scalar

polynomial -=—: P(x). In particular, if h is a scalar
ax

(1) £2 (2) -km (m)

P(u M P ^P ^P

(iii) Differentiation of a Function of a Matrix with respect to the
Matrix. The differentiation of a matrix function f(u) with respect to u,
which has already been illustrated in example (ii), can be defined more
generally as

where v is permutable with u and A is a scalar. If Taylor's theorem can
be applied, then

7l->0

r (l) hv2 (2) -l
= lim # ) + ¥/(tt) + ... tr

(1)

2-7. Differentiation of the Exponential Function. If t is a
scalar variable (real or complex) and u is a matrix of constants, the
function exp (ut)} defined similarly to (2-5*1), is

u2t2

z- + .... (1)

An application of the formula (2-4-2) shows that the foregoing series
is absolutely and uniformly convergent for all values of t. Now the
series obtained by differentiation of (1) term by term with respect to t is

uH2

-w- + ... ^ue**.
If

Since this series is absolutely and uniformly convergent, it repre-
sents the differential coefficient of exp (ut). Hence

^ t ) = ue^ = eutu. (2)
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More generally Dmeut = umeut = eutum, so that if P(D) is any polynomial
of the differential operator D,

P(D) eut = P(u) e^ = eutP{u).

In the calculus of scalar functions

P(D) (e^X) = e^PiD + a) X,

where P{D) is any polynomial of D, and X is any function of t. I t will
be useful to consider whether a similar rule is applicable for matrices.
Suppose v(t) to be a matrix, not necessarily permutable with u. Then

D(euiv) = e^Dv + e^uv = eut(ID + u)v.

Again, D^v) = Deut(ID + u)v = eut{ID + u) {ID + u) v.

The result may be written

Similarly, D^e^v) = eut(ID + u)m v,

and more generally P(D) (eutv) = eutP(ID + w) v.

This result is valid when u is a matrix of constants, and v(t) is a matrix
not necessarily permutable with u. When the order of the matrices is
reversed to give P{D) (veut) there is no corresponding simple formula.

2-8. Matrices of Differential Operators, The use of matrices of
differential operators is often a valuable aid to conciseness. As examples
of branches of mathematics which naturally invite treatment by
operational matrices we may refer to the theory of linear differential
equations (see Chapters v, vi, vn) and to analytical dynamics (see
Chapters vin, ix).

To show how such matrices arise, let us suppose that we have to
deal with a pair of first-order linear ordinary differential equations
such as , 7

ay, dy9

y
^ - ^ + ^222/2 = V*>

in which the coefficients v^-, u^ are given constants and r/v y2
 a r e

functions of t. These equations can be expressed without ambiguity as
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The operational matrix on the left may be denoted simply by f(D),
and the equation can be abbreviated to

Similarly, if the differential equations were of order higher than the
first, the appropriate matrix f(D) would have for elements polynomials
of the operator D.

Matrices of partial differential operators often arise in connection
with problems involving several independent variables. If the in-
dependent variables are denoted by xvx2, ...,xn, the simplest opera-
tional matrices of this type are the column

\dxj~\dx1'dx

andtherow |

2A
''"'dxj'

E X A M P L E S

(i) Matrix Differentiation of a Matrix Product. As an illustration of
the matrix differentiation of a matrix product, suppose ^>{D) to be an
operational square matrix of order 2, and let

k s p u jfe12l and M(t) s ["eAi< 0p u jfe12l and M(t) s ["eA

where A1? A2, and the elements k^, are constants. Then

By the usual properties of differential operators this product reduces to

Hence

0(2)) (kM) =

A generalisation of this formula will be used in § 6-4 to obtain the
solution of a system of linear differential equations with constant
coefficients.
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(ii) Differentiation of Bilinear Forms. In applications to dynamics
it is often necessary to differentiate bilinear or quadratic forms partially
with respect to their variables. Let the bilinear form be (see § 1-15)

A(y>x) = vax = x'a'y', (i)
in which there are n variables y and m variables x, and a is an (n, m)
matrix.

Firstly, differentiate A(y, x) with respect to one of the variables y}

say yv Then

^ - = [1,0,0,..., 0]ax = aua;1+a12a;2 +. . . +almxm.

Hence {7̂ —IA = ax and Ur— \A = x'a'.

Similarly, I ̂ — A = a'y' and ^— \A = ya.

Again, suppose A to be the quadratic form

A(xix) = x'ax, (2)

in which the square matrix a is now assumed symmetrical (see § 1-15).
Then

If the variables x, y and the coefficients atj in (1) are all functions of
a parameter t, and if the differentiation is with respect to t} then

dA dy da dx

while if A is the quadratic form (2)

dA dxf .da , dx ^dx' ,da
- a x + x x + x a = 2 a x + x

2*9.* Change of the Independent Variables. The usual
formulae of the differential calculus for the change from a set of n
independent variables x to another set y are

dxi jssidxidy:j
9

in which i = 1,2,..., n. These relations can be expressed conveniently as
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in which a' is the transposed of the matrix

dxx dx2

dy2 dy2

dx± dx2

dx2

Similarly, U-\ = b'UJA, (2)

where b is t he mat r ix obtained when x and y are interchanged in a.

F r o m (1) and (2) i t follows immediately t h a t lw—\ = a ^ ' l a i >
\vxi) \axi)

so t h a t a'b' = I; hence ba = / = ab. These yield the familiar rela-
t ion l a I 161 = 1 between t he Jacobians l a ] = _, 2?"*? n and

I N I i i d(xvx2,...,xn)

I 6 I gg j f r> *»"•>**») I t f o U o w s a i s o that the adjoints

respectively, have the properties

AB =

of a, 6,

.(3)

A further property is given by a theorem due to Jacobi, which
states in effect that

4 J 4 = 0 and L i l B -
For instance, if n = 3, and if A1V A12, A13 are the cofactors of the

elements in the first row of a, then ^— {A1V A12, A1Z} gives

9^x9^2 9̂ 3 dx2dxj 9#2\9o;3 9a;1 dxzdxj

and this vanishes identically. In the same way it can be shown that

the other columns of A are annihilated by the operator ^— . The
LdxjJ

truth of the general theorem can be verified on similar lines.
In the transformation of expressions which are quadratic in the

differential operators, it is necessary to use in addition to the sub-
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stitution (1) a substitution for the operational row ^— . Now a

direct transposition of equation (1) leads to the substitution

where the cipher suffix indicates the restriction that a is to be un-
affected by the differentiations djdyj. This restriction, which is very
inconvenient, can be removed by the following elegant modification
of the substitution due to Smith.*

Let {Bri} denote the rth column of the adjoint matrix B, and suppose
(f> to be any scalar function of the variables. Then by (4) and (2)

Since bB = \b\I, and therefore also B'b' = | b \ I, the last expression
7)rh

reduces to | b \ —-. Accordingly by (3)
oxr

|_3?/.

s o t h a t

Since <p is arbitrary and | a \ \ b \ = 1 we obtain, as an equivalent to
(5), Smith's transformation

EXAMPLES

(i) Linear Partial Differential Equation of the First Order. If the
given differential equation is

Ref. 4.
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where uvu2i...,un and ifr are given functions of the n variables x,
the matrix equivalent is

When transformed to new variables y the equation becomes by (1)

ua'

(ii) Transformation of the General Laplacian Operator V2. The general
Laplacian operator in n variables is defined to be

0X{ OX2 dXn

After transformation to new variables y this operator becomes by (6)
and (1) . d . , d]

v.-|«lL4Jl»l-<»'{|;)-
In the important special case where y1 = const., y2 = const., etc.

are orthogonal, the product aa' reduces to a diagonal matrix.
As an illustration let us consider the transformation of the usual

92 32 92
2 = TT-S + ^-S + ^-S to spherical polar

ox* dy2 dz2
three-dimensional operator

coordinates r, 6, <fi. The relations between the variables are here

x = r&indcostfi; y = rsin#sin§J; 2 = rcos#.

Assuming x, y, z and r, 6, <j> to correspond, respectively, to xv x2, x3

and yl9 y2i yz, we have

sin d cos §S r cos d cos <]> — r sin 6 sin (f>
sin 6 sin <j> r cos 6 sin (j> r sin # cos (j)

0

6 = J~3# dx dx'
dr dd d(f>

dy dy ty
dr dd d(j>

dz dz_ dz_

dr dd d(f>

This readi ly yields \b\ = \ a I"1 = r 2 s i n # , a n d

a = 6-1 =

so that

1 r2 sin2 d cos <f> r2 sin2 d sin 0 r2 sin d cos #

r2sin# cos^ cos56 rs in# cos^ sin(j> —rsin2#

r cos §S 0

r2sin20 0 0"

0 sin26> 0

0 0 1
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The transformed operator is accordingly

a a r2sin0 0 0

0 sin0 0
0 0 l/sin#_

i 8 / j \ i a / . . a \ I
= IT2 — IH : 1 sin6 — I -\ —

T2 dr \ drj r2 sin 6 dd\ dd) r2 sir

2*10. Integration of Matrices. When the elements of u are
functions of a variable t, the integral of u with respect to t taken between
the Hmits t0 and t is defined to be the matrix which has for its (i, j)th

rt
element u^dt. The integrated matrix is often written Ql

hu. When
J to

no uncertainty can arise as to the range of integration, Q\a may be
abbreviated to Q.

In defining the integrated matrix Qu we have tacitly assumed that
the elements utj are continuous functions of a real variable t. The
definition applies equally to a complex variable t, but in this case the
variable must be viewed as represented in an Argand diagram (£-plane),
and the integrations of the elements must be performed along a suitable
path or curve connecting t0 and t in that diagram. The path of in-
tegration can be chosen arbitrarily, apart from the restriction that it
does not encounter certain "barriers" which can be constructed from
a knowledge of the singularities of the elements. These barriers may
be taken as the straight line continuations to infinity of the radii
joining the point £0 to the singularities.*

An upper bound to the elements of an integrated matrix can readily
be found as follows. Suppose U to be the greatest modulus of all the
elements in u(t), so that for all points t of the range (or path) of integra-
tion, I utj(t) I < U. Then, if t is a real variable, by a known property
of integrals „ t

u{j(t)dt^i \ utj(t) I dt< U(t-10).
J to J to

Hence Qt.u<U(t-to)[l],

where [1] is here used to denote the square matrix of order n having
units for all its elements. More generally, if t is complex, let r be a

* The singularities of any element are the points at which that element ceases to be an
analytic function of t, i.e. at which the element fails to satisfy the conditions of being single-
valued, continuous, and of having a unique derivative. The system of "barriers" referred
to is spoken of as a "Mittag-Leffler star" (see for instance § 16*5 of Ref. 5).
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current point on the path of integration, <r the arc of the curve up to
the point t, and s the total arc from t0 to t. In this case

I %(r) dr < I | U^T) dr \ <, UI * dcr < Us,
Jto Ju Jo

so that Qf
fou^U8[l].

2* 11. The Matrizant. A brief discussion will now be given of series
of a special type which are built up by means of repeated integrations
of a given matrix u{t). These series have their origin in the theory of
systems of linear differential equations of the first order (see §7-5),
and to illustrate how they arise naturally, we shall begin by con-
sidering the single scalar linear differential equation

For simplicity assume the variables to be real, and suppose that a
solution is required such that y = y0 at t = t0. Direct integration with
respect to t yields ~t

y(t) = yo+\ /(rJyWdT!, (i)

in which rx is a subsidiary variable. For the particular value t = TV

this equation gives /%Ti

Vfri) = Vo+ Xf(Tt)v(r2)dT29 (2)
J t0

where the subsidiary variable is now written r2. On substitution for
y(r^) from (2) in (1) we obtain

y(t) = 2/o + 2/o f / ( r 1 )d r 1 + f f{Tx) \Tlf(T2)y(T2)dT2dTv
Jto JU JU

and continued applications of (2) lead to the result

y(t) = voW),
where
#.(/)= 1+ f'/(T1)*l+ f /(Tj fT/(Tl) &•,(&•!

J t0 J t0 J t0

+ f / fa ) P/fo) {T'f(rz)dT3dT2dT1+....
Jt. Jt. JU

In the notation of § 2-10, this series would be written more concisely
a s

or even more simply as

- i + « /+ QfQf+ QfQfQf+ ••••
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A correct interpretation of this series is important. The meaning of
the first integral Q/is obvious. To obtain the next term QfQfwe first
form the product fQf, and then, treating t in that product as a current
variable, integrate between the limits t0 and t. The succeeding terms
QfQfQfj etc. are formed in a similar manner. The series formally
satisfies the given differential equation and the assigned condition
V = Vo a^ t = tQ. However, before it can be accepted as a genuine
solution, its convergence must be established. The proof is very simple.
It is assumed that, for all values of t concerned, a positive number A
can be chosen such that | f(t) | <-4. Then Qf^A(t — t0), so that

and so on. Hence

[2
...

This shows the series to be absolutely convergent.
Suppose now that we had commenced with a system of n simul-

taneous first-order linear differential equations instead of with a single
equation. Such a system of equations can be written concisely as

Here y denotes the column of n dependent variables, and u is a square
matrix of order n having for elements given functions of t. Direct
integration gives ^

y{t) = yih) + U(TI) y(Ti) dTVJu
where y(t0) is the column of values assigned at t = t0. A process of
repeated substitution and integration, precisely analogous to that
already described, leads to the formal solution

= Q(u)y(t0),

in which Cl(u) is the matrix series

Q(u) = In + Qu+QuQu+QuQuQu+ (3)

This expression is called* the matrizant of u. Care should be taken to
interpret the meaning of the series correctly. The first term is the unit

* The term is due to Baker; see p. 335 of Ref. 6.
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matrix of order n, and the second term is the integral of u taken between
the limits t0 and t. To obtain Qu Qu, we multiply u and Qu in the order
uQu, treat t as current in the product matrix, and again integrate
between the limits t0 and t. The remaining terms are formed in succes-
sion in the same way.

The proof of the convergence of the matrizant follows the lines
adopted for the scalar series. The variable t will be assumed to be
complex, as no additional complication is thereby involved. The
integrations are then supposed effected along paths in the Argand
diagram (£-plane) which do not encounter any of the barriers referred
to in § 2*10. In the region of the £-plane under consideration let U^ be
an upper bound for the modulus of the typical element u^(t)9 so that
I uij l^Uip further, let U be a positive number such that Uy ̂  U for
all the elements. Then, in the first place,

where s is the arc of integration from t0 to t. Similarly,

Or QQ

f
JO

In general, for m repeated integrations
/fl 77i—1 TTm oi

YfYV

Hence Q W < / ^ £

[1].

Each of the series comprising the elements of £l(u) is accordingly
less than

o n-l + enU8

n

It follows that the series in question are absolutely and uniformly
convergent in the part of the £-plane under consideration.

By differentiation of the series (3) it follows that

Q() Q(). (4)

Other properties of the matrizant are given in § 7-6.
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E X A M P L E

The Matrizant of a Matrix of Constants. Suppose u to be a matrix of
constants. Then

Qu = u[ dt = u(t-t0); QuQu = u*[ (t-to)dt = M ^ , 7 ^ , etc.
Ju Jto If,

Hence in this case

Q(u) = ^ ^ 2

If.
Equation (2-7-2) is a particular case of (4).



CHAPTER III

LAMBDA-MATRICES AND CANONICAL FORMS

3*1. Preliminary Remarks. Part I of the present Chapter gives
an account of some of the properties of matrices which have for their
elements polynomials of a parameter. The study of matrices of this
type may be regarded as preparing the way for the applications to
linear differential equations considered in Chapters v and vi. In Part II
the important conception of the equivalence of matrices is explained,
and a brief review is given of some of the canonical forms to which
matrices can be reduced.

P A R T I. L A M B D A - M A T R I C E S

3-2. Lambda-Matrices. A square matrix* /(A)—or more briefly
/—the elements /#(A) of which are rational integral functions of a
scalar parameter A, is referred to as a X-matrix. If N is the highest
degree in A of any of the elements, then / is said to be of degree N.
Such a matrix can evidently be expanded in the form

where Ao, Al9 etc. are matrices independent of A. A A-matrix is accord-
ingly a polynomial in A with matrix coefficients. The matrix Ao will
be spoken of as the leading matrix coefficient.

The rank of a A-matrix is defined as follows: If at least one of the
minor determinants of/ of order r is not identically zero, whereas all
the minors of order greater than r do vanish identically, then / is of
rank r.

It should be noted that in the foregoing definition the stated con-
ditions must be satisfied for a general value of A. If particular values
of A are assigned, a A-matrix having rank r in accordance with the
definition may actually acquire a rank less than r in accordance with
the definition of § 1-9.

* Rectangular A-matrices will not be considered here.



58 LAMBDA-MATRICES 3-2-3-3

EXAMPLES

(i) Non-Singular A-Matrices.

Order 3,

/ =

Order 2,

degree

'2A-2,
3A-1,

. - 1 ,

degree

1:

A + 2,

A,
4A-3,

2:

- 3 "
- 1

-A+l_

= "2,

3,

.0,

1,

1,

4 , -

0"

0

-1

A + " - 2 ,

- 1 ,
. - 1 ,

2,

o,
- 3 ,

— 3

- 1

1

/ = pA2 - 34A + 102, 3A2 - 6A + 281.
l_3A2-18A + 50, 2A2-2A+15J

(ii) Singular \-Matrices.
Order 3, degree 3, rank 2:

/ = T A, A, A2+l
A 2 - l , A2+l, A

A3, A3 + 2A,2A2+1_

Here | / | = 0 , but the first minors do not all vanish identically.

Order 3, degree 2, rank 1:
A2,2A2,3A2"
A, 2A, 3A

. 1, 2, 3 .

3-3. Multiplication and Division of Lambda-Matrices. Let
/ , g denote two A-matrices of equal order and of degrees N and M,
respectively. If their typical matrix coefficients are Ai9 Bp respectively,
the product gf formed by the usual rules is

/ M \ i N \ M+N
gf = I S B.XM-A s AiAN-i\ = s ckx*+»-*,

\j = 0 / \i=0 / fc=0

where

and generally

CQ —

Ck=

The product is therefore a A-matrix of degree N + M provided Co is
not null. A similar conclusion is valid for the product fg.

The reciprocal matrix f-1—the elements of which are obtained by
division of the appropriate cofactors in / b y | / |—is not, in general, a
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A-matrix. A special case of importance in applications to differential
equations (see Chapter v) is where | /1 is independent of A and not zero.
The reciprocal/-1 then is a A-matrix.

From the preceding remarks it is seen that normally a product such
as g~xf, where both/ and g are A-matrices, will not be a A-matrix. We
shall now show that, if BQ is not singular, it is possible to express the
result of this predivision in the form

<rxf=Q+rxR, (i)
where the quotient Q and the remainder R are A-matrices, and the
degree of R is lower than that of g. A convenient alternative to (1) is

f = gQ+R- (2)

To establish (1) we note firstly that if the degree M of g exceeds N, a
solution of (2) which satisfies all the stated conditions is Q = 0 and
R — f. Dismissing this trivial case we proceed on the assumption
that M4;N. The identity to be satisfied is then of the form

Equating the coefficients of the successive powers of A we thus require

A = BoQo>

^1 = 0̂ 01 + ^100.

AN-M = A) QN-M + Bl QN-M-1 + • • • + BN-M Qo>,

together with

AN_M+1 = Bx QN-M + ^2 QN-M-I + • • • + BN-M+I QO

-A-N-M+2 = B2 QN-M + ^3 QN-M-1 + • • • + BN-M+2 QO + Rl>

•(4)

Provided BQ is not singular, the matrix coefficients Qi of the quotient
are uniquely determinable in succession by (3), and those Rj of the
remainder are then given uniquely by (4).

In a similar way it can be proved that, if Bo is not singular, a unique
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quotient Q and a unique remainder R of degree less than that of g
can be found such that f — O +R (5)

The operations expressed by equations (2) and (5) are sometimes
referred to as division on the left and division on the right, respectively.*

EXAMPLE

Division on the Left and on the Right. Suppose
/=F2A — 2, A+ 21 and g=\

L 3 A - 1 , A J
The degrees of/ and g are respectively 1 and 2. The identities corre-
sponding to (2) and (5), with / placed on the left of the equation in
each case, are both trivial, since M>N. On the other hand, if/ and g
are interchanged, the appropriate identities are respectively

£=n2+i,Al .
L 3, J

3, l

3, l

r2A-2,A + 2l |"-A + 7, - I l + r59, - 8 1 ,
L3A-1, A JL3A-22, 3J L10, 0 J
r-A+10,A-71 r2A-2,A + 21 + ri4, -201.
L 0, 0 JL3A-1, A J L 3, 1 J

3*4. Remainder Theorems for Lambda-Matrices. Let/be as
defined in § 3*2, and suppose u to be a square matrix of the same order
with elements independent of A. Write

so that fW-A(u) = i

Now
(A/)^-* - ux-i = (XI - u) (JA^-*-1 + ta^-*-2 +... + u*-*-1).

Hence XI — u is a factor (on the left) of/(A) —fx{u), and we can therefore

where Q(X) is a certain A-matrix. Accordingly fx(u) is the remainder
when/(A) is divided on the left by XI —u.

Similarly, it can be shown that when/(A) is divided on the right by
XI — u the remainder is

An important application of these remainder theorems is given in
§3-7.

• See §2-03 of Ref. 7.
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3-5. The Determinantal Equation and the Adjoint of a
Lambda-Matrix. Let A(A) denote the determinant of a A-matrix /(A)
of order m, so that

A(A) = /u(A) /U(A)

/n(A) /M(A)

Then A(A) = 0 is termed the determinantal equation, and its roots are
denoted by A1? A2,..., An, where n is the degree of A(A) in A. These roots
are not necessarily all distinct, but it is convenient to specify them by
n distinct symbols.

The adjoint F{\) of /(A) is itself a A-matrix. It has the properties

and differentiation p times with respect to A gives

dp

(1)

The products in (1) can if necessary be expanded in terms of F(X) and
(1) (2)

the derived adjoint matrices F(A), F(A), etc.
The following theorems are of importance:
(A) The matrix f(Xs) obtained by substitution of any root As for A

in /(A) is necessarily singular. When As is an unrepeated root, /(Ag) is
necessarily simply degenerate.

(B) When/(AS) has degeneracy q, at least q of the roots A1? A2, ...,
An are equal to As.

(C) The matrix/(As) is not necessarily multiply degenerate when Ag

is a multiple root.
(D) When /(As) is simply degenerate, the adjoint F(AS) is a matrix

of unit rank and is expressible as a product of the form

where Jcis, Kis are constants appropriate to the selected root, and at
least one constant of each type is not zero. For conciseness the fore-
going relations will often be written

When this abbreviated notation is used the column matrix k8 and the
row matrix K8 will be understood to be appropriate to the root As.
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(E) When/(AS) has degeneracy q, where q> 1, the adjoint matrix
(a-2)

F(\) and its derivatives up to and including F(A) at least are all
null for A = As.

Theorems (A) and (B) follow at once from the results given in
(i)

example (i) of § 1 • 8. Since A(AJ 4= 0* for an unrepeated root As, and since
(i)

A(A) is linear and homogeneous in the first minors of A(A), these minors
cannot all be zero for A = As. Hence/(Ag) is simply degenerate (Theorem
A). When/(Ag) has degeneracy q, so that all the (q — l)th minors of /(A)
vanish when A = As, then all the derivatives of A(A) up to and including
(<z-i)
A(A) are zero for A = As. This implies that As is at least a g-fold root
of A(A) (Theorem B).

(i)
With regard to Theorem (C) it is obvious that A(A), for instance, can

vanish for A = As without all the first minors in A(A) being zero
Theorem (D) is easily proved on reference to § 1-12. For if /(As) is

simply degenerate, F(XS) by definition cannot be null. Hence, since
the product f(As) F(\8)—which equals A(Ag) /—is null, F(AS) must be
a matrix of unit rank. It is therefore expressible as a product of the
form stated (see example (iv) of § 1-9).

Lastly, Theorem (E) is obvious from the results given in example
(ii) of § 1*8, which show at once that if /(As) has degeneracy q then
(A — AJ2"1 at least is a factor of every first minor of A(A), and is thus a
factor of .F(A). Clearly in this case the derived adjoint matrices up to

(a-2)
and including F(A.) at least are null when A = Aa.

^ . . ^ T« E X A M P L E S
(I) Distinct Boots. If

/(A)= TA-1 0 0 1,
0 A - 2 0

L 0 0 A-3J
then A(A) = (A - 1) (A - 2) (A - 3), so that Ax = 1, A2 = 2, A3 = 3. Here
/(A) is simply degenerate for each root (Theorem A). The adjoint, for
a general value of A, is

JF(A)= r(A-2)(A-3) 0 0 1.
0 (A-3)(A-1) 0

L 0 0 (A-1)(A-2)J

* A(X8) is an abbreviation for J( Jl )
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Hence
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JP(A1)= p 0 0] ={2,0,0} [1,0,0].
0 0 0

lo o ol
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Similarly, F(X2) = {0,1,0} [0, - 1 , 0],

^(A3) = {0,0,2}[0, 0,1].

These results illustrate Theorem (D).

(ii) Repeated Roots and Simple Degeneracy. Let

/(A)= TA-2 - 1 0 1 .
0 A - 2 0

L 0 0 A-3J

Then A(A) = (A - 2)2 (A - 3), giving Ax = 2, A2 = 2, A3 = 3, and for each
root/(A) is simply degenerate. The adjoint is

F(A) = [(A - 2) (A - 3) (A - 3) 0
0 (A-3) (A-2) 0

L 0 0 (A-2)2_

so that F(\±) = F(\2) = TO - 1 0
0 0 0

Lo o o.

= {1,0,0} [ 0 , - 1 , 0 ] .

The results exemplify Theorems (C) and (D).

(iii) Repeated Roots and Multiple Degeneracy. Suppose

A - 5 0 0
0 A - 2 0

. 0 0 A - 3 .

which again yields A(A) = (A-2)2(A-3) and Ax = 2, A2 = 2, A3 = 3.
However, in this case/(A2) has degeneracy 2 and the adjoint F(X2) is
obviously null. This exemplifies Theorems (B) and (E).

As a further simple illustration assume

1
0
0

-0

0
A
0
0

0
0
A2

0

0
0
0
A3.
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Then A(A) = A6, and/(A) has degeneracy 3 for the sextuple root A = 0.
With A left general the adjoint is

.F(A) = A3[A3 0 0 0
0 A2 0 0
0 0 A 0

L0 0 0 1J
j jp J^ Tp

so that F(X), -jr- and -pr^ are all null when A = 0.

3-6. The Characteristic Matrix of a Square Matrix and the
Latent Roots. If u is a given square matrix of order n with constant
elements, then the matrix «.. x . T ,, x

/(A)=Ai -u (1)
is called the characteristic matrix of u. This very simple and important
type of A-matrix has a natural origin in applications of linear sub-
stitutions relating to the conditions under which a set of transformed
variables y is proportional to the original set of variables x. If the
linear substitution is given by y = ux, and if this relation is to be
satisfied by, say, y = A#, where A is a scalar factor of proportionality,
then we require , . r . ./1N /ox

^ (Ai — u) x =/(A) x = 0. (2)
In order that this equation may be satisfied by a column x which is not
null, it is necessary that

A(A) = | A / - ^ | = 0 . (3)
The determinant A(A) in this special case is usually referred to as the
characteristic function of the matrix u, and A(A) = 0 is the characteristic
equation. Moreover, the n roots A1? A2, ..., Xn of A(A) = 0 are called
the latent roots* of u. Theorems (A) to (E) of §3-5 are, of course,
directly applicable to the characteristic matrix /(A) and its adjoint

Suppose now that the latent roots have been found, and let a solution
of (2) appropriate to the typical root A8 be denoted by

Such a column of quantities will for convenience be spoken of as a
modal column appropriate to As.

Now equation (2) requires that

x(A8) = 0. (4)

* Sometimes also called the characteristic numbers of u.
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If f(\8) has degeneracy q, this equation will have q linearly distinct
solutions (see § 1-9).

Firstly, assume Afi to be a simple root. Then by Theorems (A) and
(D) of § 3-5 f(X8) is simply degenerate and F(X8) is a matrix product of
the type k8K8 in which neither the column k8 nor the row K8 is null.
But since/(As) F(X8) = F{\8)f(\8) = 0, it follows that/(A8) k8K8 = 0 and
k8K8f(X8) = 0, and these obviously require that

M ) * . = - 0 , (5)

K,f(K) = 0. (6)

On comparison of (4) and (5) we see that the modal column x(Xa) can
here be taken proportional to any non-zero column of the adjoint

Next suppose As to be one of a set of 8 equal latent roots. Then if
/(A8) is simply degenerate the modal column can again be chosen pro-
portional to a non-vanishing column k8 of the adjoint, and this will be
the only solution corresponding to the whole set of 8 equal roots. If,
on the other hand, /(As) has degeneracy q > 1, the adjoint F(X8) is null
by Theorem (E). The q linearly distinct solutions must then be obtained
from columns of such of the derived adjoint matrices as are not null.
To illustrate the method suppose/(As) to have degeneracy s, in which

(8-2)

case the derived adjoint matrices up to and including F(A) are all
null for A = A8. Putting p = s — 1 in (3*5-l), expanding the first pro-
duct, and substituting A = As, we have

(8-1)

(8-1)

It can be shown that the matrix F(X8) is in this case of rank 8 and
therefore a matrix product of the type fesx8, where the s columns of
the rectangular matrix k8 and the 8 rows of K8 are all distinct (see § 1-9).
The s columns of ks can be chosen as the required modal columns.

In the important special case where all the latent roots of u are
distinct, there is a distinct modal column ks and a corresponding row
K8 appropriate to each root. The n modal columns, taken for all the roots
A1? A2,..., An, form a square matrix

•(7)
#22 • • * <S
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which will be termed the modal matrix. Since the modal columns can
be taken in arbitrary multiples, the matrix k is indeterminate to the
extent that it can always be postmultiplied by a non-singular diagonal
matrix of constants. It can be shown without difficulty that k is
necessarily non-singular.

In the same way the n rows K8 can be arranged to form a square
matrix*

7c11 V21 (8)

By means of the modal matrix the n matrix equations (As / — u) ks = 0,
taken for all the latent roots, can be combined into the single matrix
equation ,

ufc —
... \nk2n

••• KKJ
This can be written concisely as

uk = kA,
where A s Ax 0 ... 0

0 A2 ... 0

(9)

(10)

L0 0 ... AJ
denotes the diagonal matrix of the latent roots. Since k is non-singular,
equation (9) gives _ hAk_x (n)

When two square matrices, say u and v, are related by an equation

of the type u = pvp~\

where p is a non-singular square matrix, they are said to be connected
by a collineatory transformation. Equation (11) states that a square
matrix which has all its latent roots distinct is reducible by a col-
lineatory transformation to the diagonal matrix of its latent roots.
This particular transformation is often very useful. For instance,
when u is expressed in the form (11),

f%tm — MA f\ A*—~J- MA f\ iA'~~X. — i/* /\ dt£/*~~X.
UU — A/a i-A/ A/-Z \.A/ — ft/1 A. ft/ •

* For convenience the second suffix of the elements ki8 and 'K18 indicates the particular
latent root with which the elements are associated. With this convention the suffices in
the square matrix K appear transposed.
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Similarly,
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Mm = = k
0

LO 0 ,

and more generally, if P(u) is any polynomial of u9

0 ... 0
P(A2) ...0 0

. 0 0 ... P(AjJ

(12)

In particular, we may choose P(A) to be the characteristic function
A(A) = | XI — u |. Then, since A(A) vanishes when A is any latent root,
equation (12) reduces to A(u) = 0. The matrix u thus has the im-
portant property that it satisfies its own characteristic equation.
In §3-7 it will be shown that this holds generally for any square
matrix.

If there are s roots equal to As, and if f(Xs) is simply degenerate,
equation (4) yields only a single modal column corresponding to the
whole set of s roots. It is not then possible to reduce u to the diagonal
form. However, the reduction to the form (11) still holds good if for
every set of s equal roots Xs the degeneracy of/(As) is s, i.e. if/(As) has
"full degeneracy" for every set of repeated roots. For in that case
there are s distinct modal columns for each set of repeated roots—
namely, those of the (m, s) matrix k8—and the modal matrix k is
composed, as before, of the n modal columns taken for all the latent
roots. Similarly, there is a matrix K composed of the rows of the
matrices xs.

E X A M P L E S

(i) Latent Roots all Distinct. Suppose

u = [2 - 2 3
i i i

U 3 - 1

Then the characteristic matrix is

) = XI-u= [A-2

: !
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The characteristic equation is
A-2 2 - 3 = A3-2A2-5A + 6 = (A-l) (A+ 2) (A-3) = 0.
- 1 A - l - 1
- 1 - 3 A+l

The latent roots are therefore Ax = 1, A2 = — 2, A3 = 3.
When A = Ax in/(A), we have

/ ( A 1 ) = r - 1 2 - 3 ] with F(\1)=T-3 5 - 2 1 .
- 1 0 - 1 3 - 5 2

[_i _3 2j L 3 - 5 2J
Hence we may choose k± = {— 1,1,1}.

Similarly k2 = {11, 1, — 14} and ks = {1,1,1}. The modal matrix
may accordingly be taken as

Equation (11) then is

(ii) Repeated Latent Roots and Simple Degeneracy. If

u

then
A(A) = A - 2

- 1 0
- 5

2

A + 4
4

— 3
- 5

A - 6

2 - 2
10 - 4
5 - 4

The latent roots are Ax = 1, A2 = 1, A3 = 2. For the repeated root,
/(A2)= I" - 1 2 - 3 ] ,

-10 5 - 5
. -5 4-5.

which is simply degenerate. The adjoint is
^(A2)= [ ~5 - 2 5] ,

-25 -10 25
[-15 - 6 15_

and this yields the single modal column {1,5,3} for the two roots
Xv A2. In this case the matrix u is not reducible to the diagonal form.
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(iii) Repeated Latent Roots and Multiple Degeneracy. Let

u = [ 7 4 - 1 "
4 7 - 1

I _ 4 _ 4 4

69

so that

A(A) (A-3)2(A-12).A - 7 - 4 1
- 4 A - 7 1
4 4 A - 4

Denoting the latent roots as Ax = A2 = 3 and A3 = 12, we obtain

/(A2)= r - 4 - 4 1] ,
- 4 - 4 1

. 4 4 - 1 J

which has degeneracy 2. The adjoint -F(A2) is null, but

- 5
4

- 4

4
- 5
- 4

- 1 "
- 1
- 8

= " - 5
4
4.

4"
- 5
- 4 .

ri 0
|o 1

in.

Hence we may choose the two modal columns corresponding to the
double root to be k± = {5, — 4, 4} and k2 = {— 4, 5, 4}. The modal
column appropriate to the simple root A3 is found to be {— 1, — 1, 1},
so that

0 11
1 1

- 4 - 4 ll

(iv) Latent Roots of Matrices Connected by a Collineatory Trans-
formation. If u = pvp-1, then XI— u = p(\I — v)p~1. Hence

\\I-u\ = |AI-t>|,

so that u and v have the same latent roots. When u is reducible to the
diagonal form icAk'1 we can write v = p^kAk^p. The modal matrix
of v then is p~xk.

(v) Latent Roots and Modal Matrix of P(u). Applying the theorem
of example (iv) to the transformation (12), we see that when u is
reducible to the diagonal form, P(AX), P(A2), ..., P(An) are the latent
roots of P(u), and that u and P(u) have the same modal matrix k.
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The matrix P(u) can have repeated latent roots even when Al3 A2,...,
Xn are all distinct. In this case if P(u) has s latent roots equal to X8,
then its characteristic matrix will have degeneracy s for the root As.

3-7. The Cayley-Hamilton Theorem. In § 3-6 it was incident-
ally shown that a square matrix whose latent roots are all distinct
satisfies its own characteristic equation. The Cayley-Hamilton theorem
states that this property holds good generally for any square matrix u.
T h u s A(«) = 0. (1)

Since A(A) = ( - l)n {Xx — A) (A2 — A)... (Xn - A), the theorem may also
be written in the factorised form

{XxI-u) (A2/--a).. . (XnI-u) = 0,

or /(A1)/(A2).../(AJ = 0.

The proposition follows immediately from the remainder theorems
of § 3-4. For, if F(X) is the adjoint of the characteristic matrix, then

/(A)^(A) = A(A)7. (2)

Now A(A) 7 is a A-matrix, and the last equation shows that it has zero
remainder when divided on the left by XI — u. Hence by the remainder
theorem A(u) = 0.

In the foregoing proof no restriction has been placed on the nature
of the latent roots. The theorem thus holds for matrices with repeated
latent roots. However, if there are any repeated roots for which /(A)
is multiply degenerate, the theorem admits some extension. Suppose
all the first minors in /(A) to have a common factor 6(X). This will be
a factor of A(A) so that we may write A(A) = 6(X) A/0(A), and 6(X) will
evidently also be a factor of all the elements of F(X), so that, say,
JP(A) = d(X)Fp(X). Hence in place of equation (2) we can now use

By the same argument as before it follows that

A » = 0. (3)

In the special case where 6(X) is chosen to be the highest common
factor of the first minors of A(A), written with unity as the coefficient
of the highest power of A, then Ap(A) = A(A)/0(A) is spoken of as the
reduced characteristic function. It can be shown* that A/0(w) then is the
vanishing polynomial of u of lowest possible degree.

* See, for instance, Chap, v of Ref. 2.



3-7 THE CAYLEY-HAMILTON THEOREM 71

E X A M P L E S

(i) Latent Roots all Distinct (see example (i) of § 3-6). If

u =

then

Hence v? - 2u2 - 5u + 6/ = 0.

The factorised form of the theorem is

which yields the identity

ri - 2
i o

3 - 2

4 - 2 3
1 3 1
1 3 1

[*-l - 2 3
1 - 2 1
1 3 - 4

= 0.

(ii) Repeated Latent Roots and Simple Degeneracy (see example (ii)

then A(A) = A3 - 4A2 + 5A- 2 = (A-1)2 (A- 2).

Hence u* - 4^2 + 5u - 2 / = 0.

In this case/(A) is simply degenerate for the repeated root A = 1, and
the ordinary characteristic function is the vanishing polynomial of
lowest degree.

(iii) Repeated Latent Roots and Multiple Degeneracy (see example (iii)
of§3-6). Let . - r 7 4 _n

4 7 - 1
.-4 -4 4.

u =

so that

A(A) = A-7 , - 4 , 1
- 4 , A-7 , 1
4, 4, A - 4

The normal form of the theorem gives

= A3-18A2 + 81A-1O8 = (A-3)2(A-12).

= 0.
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However, /(A) has degeneracy 2 for the double latent root A = 3.
Extracting from A(A) the common factor (A- 3) of the first minors, we
obtain the reduced characteristic function

Ap(A) = (A - 3) (A -12) = A2 - 15A + 36.

Hence the reduced form of the Cayley-Hamilton theorem gives
u2- 15^ + 36/ = 0, or alternatively

r - 4 - 4 i
- 4 - 4 1

4 4 - 1

5 - 4 1
- 4 5 1

4 4 8

= 0.

(iv) Computation of Positive Powers of a Matrix. Since A(w) = 0,
we have uk(u) = 0, u2A(u) = 0, and so on. By successive applications
of these equations any positive integral power of u is linearly expressible
in terms of the unit matrix and of the first n — 1 powers of u, where n
is the order of u.

For instance, suppose u to be as for example (i). Then

-6/ ,

u 2u + 5w 6u 22w + 33w - 54/,
and so on.

(v) Computation of Negative Powers of a Matrix. If u is not singular
the method of example (iv) can also be used to evaluate the negative
powers, and in particular, the reciprocal, of a matrix. Thus, if u is as
for example (i),

12/ + ZOu-1 = -
and so on.

(vi) Reduction of Polynomials. Since any positive integral power of
u is linearly expressible in terms of / and of the first n - 1 powers of u,
so also is any polynomial P(u). Thus

P(u) = AzU^ + A^^+.-.+A^u + A^J,

where the coefficients At are scalars.
By a similar process the corresponding scalar polynomial P{\) is

reducible to

However, this expression would not be valid for a general value of A.
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The argument also applies for expressions P(u) involving negative
powers, provided that u is not singular,

(vii) Linear Difference Equation Satisfied by the Powers of a Matrix.
If the characteristic equation is

A(A) - An+p1A
n-1 + ...+pn = 0,

then u8A(u) = 0. Hence if Y(s)=us+n, the sequence of matrices Y(s),
Y(s— 1), etc. satisfies the difference equation

This implies that a sequence formed by any corresponding elements
taken from Y(s), Y(s— 1), etc. also satisfies the difference equation.
Let Es denote the value in Y(s) of the selected element. Now it is
known from the theory of difference equations that

Es = S e,X% (4)

where the coefficients ei are constants and A1? A2,...,Xn are the roots
of A(A) = 0, here assumed all distinct. Hence also

Ys = S e,X%Ys

where the coefficients ei are matrices of constants. The last result is
a particular case of Sylvester's theorem (see §3-9).

3-8. The Adjoint and Derived Adjoints of the Character-
istic Matrix. Simple expressions for the adjoint and derived adjoints
of the characteristic matrix will now be obtained.

Firstly, it will be convenient to construct certain identities in-
volving merely scalars. Write the expanded form of A(A) = | /(A) | as

A(A) = \n+p1\
n-1+p2\

n-2+...+pn-.1X+pn = n (A-A,).

Then identically ^

A — X

= <f>{\,x), say. (2).

If x = Ar, where Ay is a typical simple root of A(A) = 0, the preceding
formula gives } = A ( A ) / ( A _ ; g = n ( A_A, ) ( 3 )
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Next, suppose A(A) = 0 to have two equal roots, say Ax = A2. On
differentiation of (2) with respect to x, we obtain

Hence when # = A2 = Ax,

^ ^ = (A^A3)(A--A4)...(A-A7l), ...(4)

(i)
since A(A2) and A(A2) both vanish.

More generally, suppose there to be a set of s equal roots A1? A2,..., As,
(i)

so that A(AS) = 0 for i = 0,1, . . . , s — 1. Differentiating (2) p times with
respect to x, where p < s — 1, and substituting x = As, we obtain

^ J ^ A > A,) = (

The formulae (3) and (5) are scalar identities which are true for all
values of A, and when A is replaced by the square matrix u corresponding
matrix identities are derived. Thus (2) and (3) yield

while, if there is a set of s equal latent roots, equation (5) gives

(6)
in which 0 ̂ p O — 1.

Now replace A by u and x by XI in the identity (2). Then, since
A(w) = 0, we obtain

This shows that <f>(u9 A) is the adjoint matrix of /(A), for general values
of A. Hence

.F(A) = $(u, A) = un-1

+ (Xn-1+p1X
n-2 + ...+pn-1)I (7)

In particular, when A = Ay, we have
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More generally, if there are s equal roots we obtain from equation (6)

for
The results may be summarised as follows: If F(A) is the adjoint

of the characteristic matrix/(A), then for any latent root Ay

(9)

while for any set of s equal roots A1} A2,..., Ag, and for 0 <p < 5 — 1,

OP) (dpF
in which F(X8) is, as usual, an abbreviation for I -jr—

\aAp

(10)

EXAMPLES

(i) Latent Boots all Distinct (see example (i) of §3*6). Suppose

u =

and

2 - 2 3 ] , with Ax = 1, A2 = - 2 , A3 = 3,
1 1 1
1 3 - l j

/(A)

Then, by (9),

A - 2 , 2, - 3
- 1 , A - l , - 1

L - 1 , - 3 , A+lJ

U l -3 - l j
= f-3 5 -2

3 - 5 2
L 3 - 5 2J

1 2 -31
- 1 2 - 1
- 1 - 3 4j

Similarly, "0
0

.0

•5

5
5

11
1

- 1 4

1 4
1 4
1 4

- 1 1
- 1
14

1.
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(ii) Repeated Latent Roots and Simple Degeneracy (see example (ii)
of §3-6). Let

u = I" 2 - 2 31, so that Ax = 1, A2 = 1, A3 = 2,
10 - 4 5

L 5 - 4 6J
and

By (9),

while (10) gives, for n =

1 <*>
^ )

/(A) =

(-i)V(

A - 2 ,
-10,

L-5,
l)/(2)

2 , - 3 1
A + 4, - 5

4, A-6-

= ' - 5 - 2
- 2 5 - 1 0
- 1 5 -- 6

5"

25
15_

3, s = 2, # = 1,

(i)
We may note that F(l) and F(l) here jointly contain only two linearly
independent columns. Thus F(l) is of unit rank and yields only one
distinct column, proportional to {1,5,3}. Again, the first column of

(i)
F(l) is proportional to {0,2,1}, and the property to be particularly

(i)

noted is that the remaining two columns of F(l) are linear combina-
tions of {1,5,3} and {0,2,1}. Thus

{_2, - 6 , -4} = -2{1, 5, 3} + 2{0, 2, 1},
{3,5,4}= 3{1,5, 3}-5{0,2, 1}.

The general rule is that if As is a latent root of multiplicity s, then s
(and only s) linearly distinct non-vanishing columns will be included

(1) (8-1)

amongst the s matrices JP(AS), F(AS), ..., F(\s).

(in) Repeated Latent Roots and Multiple Degeneracy (see example
(iii)of§3-6). Take

with Ai = 3, A2 = 3, A3 = 12,u = [" 7 4 - 1 ] , wit
4 7 - 1

[-4 _4 4J
and /(A)
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Then

= (-1)7(3)/(12) = 0; F(i) = (-1)/(12) = f - 5 4 - 1 ] .
4 - 5 - 1

_4 _4 _gj

Here the adjoint F(3) corresponding to the double root is null, while

F(3) has only two linearly independent columns.
(P)

(iv) Matrices F(\) and /(A) Permutable. Since in the case of the

characteristic matrix -j^ = I while -j^- = 0 if p> 1, equation (3-5-1)
ctA dAr

(p) (p-1) (p) (p-1) (p)

gives f{\)F(\)+pF(\) = F(\)f(\)+pF(\) =/A(A).
(p) (p)

Hence /(A) F(A) = i^(A)/(A).

(v) Properties of Modal Columns. In (3-5-1) put p = 1 and A = A,,
where Ay is an unrepeated latent root. Then

(i)

which, on premultiplication by Ffa) and use of the relation

a)
yields ^ ( A J = A(/y F (A,).

In the notation of § 3-5

^(A,) = * ^ r f c ^ r = Krhr

since /cr kr is a scalar. Hence (1)

Krkr - A(Ar).
Again, from (9) it is obvious that F(Xp) F(\q) = 0 provided that Ap

and Afl do not belong to a common set of equal roots. In particular, if
Ap and Afl are both simple roots

Kpkq = 0. (11)
These results show that when the latent roots are all distinct the

modal matrix k and the matrix K of § 3-6 are connected by the relation
/C* = d ' o r I r * - I * - * , (12)

(i)

where d is the diagonal matrix of the quantities A(Ay). If u, and there-
fore every adjoint F^), is symmetrical we can choose Kr = k'r, so that
K = k'. In this particular case k'k = d, and the modal matrix thus has
a generalised orthogonal property (compare § 1*17).
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(vi) Partial Fractions Formulae. In the present example use is made
of the familiar method of resolution of a rational fraction into partial
fractions.

For simplicity all the latent roots of u are assumed distinct. Then
since (XI - u) F(X) = A(A) / , we may write

TO

Now every element of the matrix .F(A)/A(A) is a rational fraction, which
can be expressed by the methods of ordinary algebra in simple partial
fractions. Hence, noting that the elements of JF(A) are of degree n — 1
at most in A while A(A) has degree n9 we may assume for the complete
matrix an expansion of the form

F(X) _ Ax A2 An

A(A) ~ A - A 1
 + A--A2

+'*' + A--An'

The coefficients Av A2, etc. are determinable by the usual methods.
Thus to find Ar, multiply the equations throughout by (A —Ay) and
then substitute A = A,.. This gives

(i)
Ar =

Hence we derive the identity

« ) - i = £ (1)
 F{K) (13)

This result is also deducible from Sylvester's theorem (see §3-9). The
matrix (XI—u)'1 is usually called the resolvent of u.

3*9. Sylvester's Theorem. This important theorem states that
if the n latent roots of u are all distinct and P(u) is any polynomial of
u9 then n

P(u) = IlP(Xr)Z0(Xr)9 (1)

where Zo(\)»F(Xr)/A(Xr)EE
( 1> (dA

and A(Ar) denotes I -JT-
The matrices Z which appear as coefficients of the scalar polynomials

P(Xr) are here given a cipher suffix in order to distinguish them from
the more general coefficients which are introduced when repeated
latent roots occur (see § 3*10).
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To prove the theorem* we note firstly (see example (vi) of § 3*7)
that P(u) and P(Ar) are reducible to the similar forms

P(u) = Aou

P{Xf) = A^

Now use formula (2-3-5), with Ar substituted for ar. This formula
becomes applicable since P(u) is here expressed as an equivalent
polynomial of degree not exceeding n—1, and it immediately gives (1).
The theorem is also valid if P(u) contains negative integral powers of
u, provided that u is not singular.!

The matrices Zo have the properties

Zo(Ar)Zo(\p) = O ifr*p, (2)

andj Z™{\) = Zo(K), (3)

where m is any positive integer. Also

izo(\r) = I. (4)

Equations (2) and (3) are obtained from results given in example (v)
of § 3-8, while (4) follows on substitution of / for P(u) in (1).

E X A M P L E S

(i) Third Order Matrix. Suppose

u = [2 - 2 3] , with Ax = 1, A2 = - 2, A3 = 3.
i i i

U 3 - l j
From the results of example (i), § 3-8,

(i)
F(-2) = {11, 1, -14}[0, 1,-1]; A(-2) = 15;

(i)
^(3) ={1,1,1} [5, 1,4]; A(3)=10.

Hence 30P(u) = P(l){-1, 1, 1}[-15, 25,-10]

+ P(-2){11, 1, -14}[0, 2, -2]

+ P(3){1, 1, 1}[15, 3, 12], (5)

* An alternative proof can be based on the identity (3-6-12) and the relation (3-8-12).
*|" Note that if u is not singular no latent root can be zero.
$ On account of the property (3) the matrices Zo are said to be idempotent.
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which can be written

i i i n r P ( i )
1 1 1 0
1 - 1 4 lJL 0

0
P(-2)

0

0 "
0

P(3)_

- 1 5
0

15

25
2
3

-10"
- 2
12.

This should be compared with the last equation in example (i) of § 3-6.
If P(u) = um

9 and m is large, equation (5) gives the approximation

1,1} [15,3,12] 3™.

Here A3 (= 3) is the dominant latent root, namely, the root having the
largest modulus. A similar approximation for a high power of a matrix
holds good in all cases where there is a single dominant root.

(ii) Fourth Order Matrix. Suppose

u = f 7 4 3 2
- 3 - 2 - 5 2
- 6 - 4 0 - 4

L - 6 - 4 1 - 5 J

In this case A(A) = | A/ — u | = (A2-1) (A2 —4), giving the latent roots
Ax = 1; A2 = — 1; A3 = 2; A4 = — 2. The corresponding adjoint matrices

(i)
and values of A(A) are

6;

12;

-12.

F(-l) = 6{1, 1, - 2 , -3}[0, 0, 1 , -1]; A(- l )

^(2) = 12(1,0, - 1 , -1 } [3, 1, 2, 0]; A(2)

1P(_2) = - 1 2 { - 1 , 1, 1, 1}[1, 1, 1,0]; A(-2)

Hence P(u) = { - 1 , - 1 , 2, 2} [1, 0, 2, - 1 ] P(l)

+{1, 1 , - 2 , - 3 } [0,0, 1 , -1]P(-1)

+ { 1 , 0 , - 1 , - 1 } [3, l,2,0]P(2)

+ {-1, 1, 1, 1}[1, l , l , 0 ]P( -2 ) .

If P = um, and m is large, the value of um is approximately given by

2-mu
m = {1, 0, —1, — 1}[3, 1, 2, 0] + ( —l)m{—1, 1, 1, 1}[1, 1, 1, 0].

In this case the two latent roots A3 and A4 have equal moduli and are
dominant. The two corresponding matrices must be retained in the
approximate expression for um.
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(iii) Summation of Infinite Power Series (see §2-4). Conditions for
the convergence of an infinite power series in u can be found by the
use of Sylvester's theorem. Thus if

S(u) = £

where the coefficients a are all scalar, it is seen at once that the series
will converge to a finite limit provided that all the corresponding
scalar series 8 (A,) are convergent.

As a simple example of the summation of a series by Sylvester's
theorem we may assume

u= I" 0-15 -0-011,
[-0-25 0-15J

and S(u) = I + u + u2 + v? + ....

Here /(A) = TA-0-15 0-01 1; F(X) = fA-0-15 - 0 - 0 1 ] ,
[ 0-25 A-0-15J [ -0-25 A-0-15J

and A(A) = A2 - 0-3A + 0-02.

The latent roots are Ax = 0-1 and A2 = 0*2, and these give

F(0-l) = ["-0-05 -0-011; .F(0-2) = [" 0-05 -0-011,
[ [ 0-05J

(i) (i)

with

Again ^ ^

Hence finally (see also example, § 2-4)

L-o
( i )

A(0-

•25

1) =

- 0 -

= - 0

05J

•1 and

L
( i )

A(0-2)

-0-25

= 0-1.

r-o-05 -0-011 jg(o-i) r 0-05 -0-011^(0-2)
W ~ L-0-25 -0-05J(-0-l) + [-0-25 0-05J 0-1

= ^ T 85 - 1 1 .
[ -25 85J

(iv) Fractional Powers of a Matrix (see §2-2). Sylvester's theorem
has only been proved for rational integral functions P(u), but it
suggests that if, for example, u is a second order square matrix, then

[AtZ0(A1) + AtZ0(A,)]«-«. (6)

Now by direct multiplication

1) Z0(A2) + Z0(A2) Z0(A
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On account of the properties (2) and (3) the right-hand side of this
equation reduces to A1Z0(A1) + A2Z0(A2), i.e. to u. Hence (6) is verified.

Evidently by the foregoing method four possible square roots of u
can be obtained, namely ± Af ZO(AX) ± A|Z0(A2), the signs being here
associated in all possible combinations. More generally, if u is a square
matrix of order n with distinct latent roots, then 2 AJ/mZ0(A,.) is an mth
root of u, and since AJ/m has m distinct values and there are n latent
roots, it will be possible to construct mn such roots. The foregoing
argument would, of course, require modification if some of the latent
roots were repeated.

(v) The Matrices Zo as Selective Operators. Suppose we have to
deal with sets of objects which are drawn from n mutually exclusive
classes 1,2, ...,n— 1,n. Let U represent a set, and Ur the subset of U
which belongs to the class r. Then obviously

7T "V TT (H\
U — 2* Ur. (7)

r=l
Again, let 8r denote the operation of selecting from U all the objects
belonging to the class r; then

SrU = Ur. (8)
n

Accordingly, U = 2 8rU,

or 2 / S r = l . (9)

Next, apply 8r to both sides of (8). Now clearly 8rUr = Ur, since Ur

consists entirely of members of the class r. Hence

so that 8* = 8r. (10)

Further, Sp Ur = 0 if p 4= r, for Ur contains no members of the class p.
Apply 8P to equation (8). The result is 8p8rU= 0, or

SpSr = 0 (p+r) . (11)

Operators which possess the properties given by (9), (10) and (11) are
said to form a spectral set.* From the present standpoint the interest
lies in the fact that the matrices Z^X^ can be regarded as selective
operators of this type.

* For a simple account see, for instance, Chapter xn of Ref. 8.
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3-10.* Confluent Form of Sylvester's Theorem. The theorem
given in § 3-9 requires modification if two or more of the latent roots
are equal. Before discussing this modification we shall give an alter-
native proof of the theorem for the case of distinct roots.

Since P(A) I — P(u) is exactly divisible by XI — u, it follows that

where Q^X) is a polynomial of A and u which need not be determined.
This equation may be written

The first matrix on the right can be resolved into partial fractions, as
illustrated in example (vi) of § 3-8. Since the degree in A of P(A) F(X)
will in general exceed that of A(A), the correct form to assume in the
present case is ^/AV ^,^x
F P ( A ) # ( A ) " ArA(A) - ,£<A=A
and the typical coefficient Ar is given by

It follows that

r " 1 A(Ar)(A-Ar)

Evidently, since P(u) is independent of A, the quotient Qx + Q2 must
be zero. Hence p / n p / n

# ^ ^ ( 1 )
r"1A(AP)(A-Ar)

Similarly, replacing P(w) by ^P(t^) we have

>^> (2)

Multiply (1) throughout by A and subtract (2). Then

r = 1 A(Ar)
which is the theorem of § 3*9.

To extend the theorem to cover the case of multiple latent roots, it
is only necessary to modify appropriately the expansion involving the
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partial fractions, and it will be enough to consider those terms which
arise from a typical set of s equal roots Ax, A2,..., Afl. Thus assume

A(A) ifi(A-A8

where R includes the quotient and the partial fractions arising from
the remaining roots. Then by the usual methods of algebra

P(A)P(A)-|
°-i AS(A) JA=A/

where A8(A) = (A - A8+1) (A - As+2)... (A - A J .

The terms in the right-hand side of the equation corresponding to (1),
due to the set of equal roots considered, are then

Similarly, those contributed to the equation corresponding to (2) are

f; *i
(AA)« '

_ 1
where Bt = -, :)s-i[d\*-* A,(A) JA=As

Hence the terms contributed to the equation corresponding to (3) are

But Bi = AgAi + Aj+v so that the last summation reduces to

The term in the expression for P(u) due to the roots As is accordingly

A8(A)

The confluent farm of Sylvester's theorem may thus be stated as

, (4)

where AS(A) = (A — Ag+1) (A - As+2)... (A - AJ, and the summation is
taken for all distinct values As of the latent roots.
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The typical term T(\8) is expressible in the expanded form
(1) (a-D

•nwh,ch

for i = 0,1, . . . , 5 - 1 , and P ( \ ) denotes

An alternative is
(s-l) (1) (s-2) (2) (s-3) (s-1)

JA r v w

(*) (i)

where F(A) = P(A)/AS(A) and Y(A.S), F(X8) have meanings similar to

P(A3). On application of (3-8-10) the last equation may be written also
^ (i) <2>

(8-1)

If/(As) has degeneracy q, then the highest power of/(As) present in the
foregoing expression will be 8 — q. This also follows from a consideration
of the reduced characteristic function (see § 3-7).

E X A M P L E S

(i) Matrix with Latent Roots all Equal. If the latent roots of u are
all equal, so that s = n, then As = 1, Y = P(AS). Hence

(2)

P(u) = P(AB)-P(An)(AJl/-u) + ̂ ( A 1 l J - t t ) « + ...

(n-l)

+ ( i ) r
\n—

In particular
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This result is verified immediately by the identity

3'10

and an application of the Cayley-Hamilton theorem, which in this
case gives (AnI—u)n = 0.

(ii) Sylvester's Expansion for Matrix u itself. If P(u) = u} then

u = X^Z^ + X^Z^AJ + Z^Jl (5)

where the first summation includes all unrepeated roots and the second
is taken for all distinct values X8 of repeated roots.

In the particular case where the characteristic matrix has full
degeneracy s for every set of s repeated roots, the derived adjoint

(s-2)

matrices up to, and including, F(X8) are all null (see Theorem (E) of

§3-5). Hence Z8_2(X8) = 0 and Z ^ A , ) = F(X8) /\s-lA8(\8). Equation
(5) may then be written in the notation of § 3-6

u= 2

where the summation is for all distinct values of the latent roots.
A comparison of this with the equation u = kAic*1, in which the modal
matrix k is now composed of all the columns of the matrices k8 (see
§ 3*6), readily yields the identity

Kk = d or Jc-i^d-i/c, (6)

where d is a diagonal matrix which is expressible in partitioned
form as

I 0 ... 0
0 0

0 0

and a,b,...,p are the multiplicities in the sets of equal roots. Equation
(6) is a generalisation of (3-8* 12).

(iii) Two Equal Latent Boots and Simple Degeneracy. If

u =
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then A(A) = (A- I)2(A-2) and Ax = A2 = 1, A3 = 2. The confluent
form of Sylvester's theorem gives

d
(A-2) -n*(2-1)

Using results obtained in example (ii) of § 3-8, we obtain

_(D
P(u) = 5 4 - 8 P ( l ) + 5 2 - 5

2 5 10 - 2 5
15 6 - 1 5 J

8] P(2).

20j

(iv) Two Equal Latent Roots and Multiple Degeneracy. If

u = 7
4

4 - 1
7 - 1
4 4

the latent roots are Ax = A2 = 3, A3 = 12, and on reference to the
results of example (iii) of § 3*8, we find

9P(u) = 5
- 4

4
(i)

-4
5
4

4 4
L-4 - 4

4 -11
4 - 1

1

The term involving P(3) is absent since F(3) = 0.

PABT II. CANONICAL FORMS

3*11. Elementary Operations on Matrices. An important
conception relating to matrices is that of equivalence, but before
defining equivalent matrices we shall consider certain elementary
operations which are, in fact, extensively used in the reduction of
determinants. These operations are:

(I) Interchange of two rows, or of two columns.
(II) Addition to a row of a multiple of another row, or addition to

a column of a multiple of another column.
(Ill) Multiplication of a row or of a column by a non-vanishing

constant.
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It will now be shown that the performance of any one of these
operations upon a square matrix u is equivalent to premultiplication
or postmultiplication of u by a non-singular matrix.

Operation of Type I. Let J denote the unit matrix / with the ith
and the jth. rows interchanged. Then it is easy to see that the product
Ju is the matrix obtained when the ith and jth rows of u are inter-
changed. Similarly uJ is the matrix obtained from u by interchange
of the ith andjth columns.

The determinant of J is — 1.

EXAMPLES

(i)

(ii)

II 0 01
0 0 1
0 1 Oj

\u 11 u12 u13

^21 ^22 U2

U 3 1 U32 <H33J

un

"%1 %2 ^islF1 °
u,21 ^«9 U9<> 0 0 1

.%1 %2 ^33J LO 1 0.

Operation of Type II. Let L be the unit matrix modified by the
introduction of the element I in the ith row and Jth column, where i
and j are unequal. Then Z>M is the matrix obtained from u by addition
of I times the jth row to the ith row. Similarly ML is the matrix obtained
from u by addition of I times the ith column to the^'th column.

The determinant of L is 1.

EXAMPLES

(i)

(ii)

1
0
0

0
1
I

0-
0
1.

« 2 2

12?

22 >

13

23

1 1 ,

U,23

Operation of Type III. Let H denote the unit matrix with h (4= 0)
substituted for unity in the ith element in the principal diagonal. Then
Hu equals the matrix u with its ith row of elements multiplied by h,
and uH is the matrix u with its ith column multiplied by h.

The determinant of H is h.
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EXAMPLES

(i)

(ii)

wn, u12, ulz'

™2X> ^ 2 2

Jiuzl, huZ2, M

= run u12 hulzl

\u21 u22 hu2Z\
U 3 1 uZ2 huzz\

3-12. Equivalent Matrices. Two matrices are said to be equi-
valent if one can be derived from the other by any finite number of
operations of the types specified in §3* 11. It is easy to see that the
relation of equivalence is of a reciprocal character, since the inverse
of any one of the three elementary operations is another operation of
the same type.

Since any elementary operation upon a matrix u is equivalent to
premultiplication or postmultiplication of u by a non-singular matrix,
it follows that any matrix v which is equivalent to u must be related to
« b y the equation v

where P and Q are non-singular matrices. It can in fact be proved*
that if v = PuQ, where P and Q are non-singular, then u and v are
necessarily equivalent in accordance with the definition already given.

It is important to note that, since the rank of a matrix is clearly
unaltered by any of the elementary operations referred to in §3-11,
equivalent matrices have the same rank.

3-13. A Canonical Form for Square Matrices of Rank r.
We shall now show that any square matrix u of rank r is equivalent to
a canonical (or standard type) matrix C, whose elements are all zero
with the exception of r units occupying the first r places in the prin-
cipal diagonal.

If the matrix is null, its rank is zero, and it is already in the canonical
form. If it is not null, then bring a non-zero element to the top place
in the principal diagonal by operations of type I (§3*11), and reduce
this element to unity by an operation of type III . Next reduce all the
other elements of the top row and of the first column to zero, by opera-
tions of type II. If the elements lying below the first row are now not

* See, for instance, Bef. 1.
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all zero, bring a finite element to the second place in the principal
diagonal: this can always be done without alteration of the first row
or column. The element in question can then be reduced to unity, and
the remaining elements of the second row and second column reduced
to zero, in the same way as before. It is evident that in this way u can
always be reduced to a matrix C of the canonical form, with say t con-
secutive units in the principal diagonal. Since C is equivalent to u, and
thus has the same rank as u (see § 3-12), it follows that t = r.

E X A M P L E S

(i) Non-Singular Matrix. In the trivial case where u is non-singular
the canonical matrix C is simply / . Hence in equation (3-12-1) we may
choose P = vr1 and Q = I.

(ii) Singular Matrix. Suppose
u= [" 1 2 - 3 ] ,

- 1 2 - 1
. - 1 - 3 4J

which is of rank 2. Then by combined operations of type II
1 2 - 3

-1 2 - 1
L - l - 3 4.

and by further elementary operations

[1
0

Lo

I
I
I

0

f
I.

= l
0

.0

0
0
0

0"
2
5

"""2-

1 0 0
0 0 1

Lo i i l
These relations yield

c=ri o o
0 1 0

LO 0 0

ri o o
0 0 2

= "1
0
1

0
- 1

*

0"
1

i-

1 0 0]
0 0 1
P - f oj

1 2 - 3
- 1 2 - 1
- 1 - 3 4

3-14. Equivalent Lambda-Matrices. Two A-matrices are equi-
valent when one can be derived from the other by means of the three
elementary operations defined in §3-11. The elements of the matrix
multipliers which correspond to the performance of an operation may
depend on A, but the restriction is introduced that the determinants
of these matrices must be independent of A, and as before they must not
vanish. If g(A.) is equivalent to/(A), then

(1)
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where P and Q are, in general, A-matrices whose determinants are
non-vanishing constants. Conversely, if g and / are related as in
equation (1), and if | P | and | Q | are non-vanishing constants, then
g and/are equivalent in accordance with the definition given.

Clearly if g is equivalent to / , and h is equivalent to g, then h is also
equivalent t o / : this is a transitive property of equivalence.

3-15, Smith's Canonical Form for Lambda-Matrices, A
canonical diagonal form for A-matrices was established by Smith in
accordance with the following theorem.*

Any A-matrix/(A) of order n and rank r can be reduced to an equi-
valent diagonal form

0,

0,

0,

0,
...,0'

0, 0, ...,Er(\),...,0

0, 0, ..., 0, .. . ,0j
containing r isolated elements EV(X) in the principal diagonal. The
elements Ev(\) are such that

(1)

8V

(2)

where each 8 is a unit or a polynomial in A having unity for the co-
efficient of its highest power. Moreover, this diagonal form is unique,
and is the same for all matrices equivalent to the given A-matrix.
The elements Ep(X) are called the invariant factors of /(A). Each
invariant factor is a factor of all those that follow it in the sequence.

Let Dp(X) be the greatest common divisorf of the ^-rowed minor
determinants of/(A), written with unity as coefficient of the highest
power of A, and adopt the convention that D0(A) = 1. Then it can be
shown that the invariant factors are given by

iyA) = lyAj/zv^A). (3)
Suppose tha t Ep(X) = (A - Ax) V (A - A2)e^.. . . (4)

* For proofs see Refs. 1 or 2.
f The criterion of divisibility is absence of a remainder. A zero determinant is therefore

divisible by any polynomial of A.
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Then those factors (A — X^)ew which are not mere constants are called
the elementary divisors of /(A), while (A-A^, (A—#A2), etc. are the
linear factors. The invariant factors, elementary divisors, and linear
factors are invariant: that is to say, they are the same for all matrices
equivalent to/(A).

Since E = PfQ, it foUows that \E\ = | P | | / | | Q | . But \P\ and
| Q | are independent of A. Hence the roots of A(A) = | /(A) | = 0 are the
same as the roots of | E | = 0, and these are the numbers A1? A2, etc.
which appear in (4). The total multiplicity of the root Ag is S^ps- If

v
the roots are not repeated, it follows that Ep(X) = 1 when p #=n, while
En(\) is A(A) divided by the coefficient of the highest power of A in
A(A).

E X A M P L E

Canonical Form for a Lambda-Matrix. I t can readily be verified
t h a t i f /(A)=rA -A

then

where P(A)

Here | P(A) | = 1 and | Q(A) | = 1, so that both determinants are non-
vanishing constants. Smith's canonical form for/(A) is

E(X) = TA 0 0 ] s
0 A(A-l) 0

LO 0 A(A2-1)J

Note that here A(A) = A3(A-1)2(A+1), that the 2-rowed minor
determinants of /(A) have A2(A— 1) as a common factor, and that the
1-rowed minor determinants have A as a common factor. Hence (see
(3)), Z>8(A) = A3(A-1)(A2-1); D2(A) = A2(A-1); D^A) = A; and the
invariant factors are

1): JB1(A) = A.

The linear factors are A, A— 1 and A+1.
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3*16, Collineatory Transformation of a Numerical Matrix
to a Canonical Form. I t has been shown in § 3-13 that an arbitrary
numerical* matrix u is equivalent to a certain diagonal matrix 0, so
that

where p and q are not singular. When the matrices p and q in this
equation are reciprocal, then u and G have the same latent roots (see
§ 3-6, example (iv)). Moreover, if P(u) is any polynomial of u, then

as illustrated by equation (3-6-12). The usefulness of this collineatocry
transformation is so obvious, and the ease of calculation with a
diagonal matrix so great, that it is natural to consider whether such
a transformation can always be effected.

It has already been shown in §3-6 that the collineatory trans-
formation is always possible when the latent roots of u are all distinct.
However, the transformation is not always possible when there are
repeated latent roots. It is foundf that the general canonical form is a
diagonal matrix with a certain number of unit elements added in the
superdiagonal. $ The rule is that the unit element is certainly absent
if the place in the superdiagonal is adjacent horizontally and vertically
to distinct elements in the principal diagonal, but that it may be
present when the adjacent elements in the principal diagonal are the
same. Thus the typical canonical form is

1

a 1
a

a 1
a

p
p

P

• The adjective "numerical" is added in order to emphasise that a A-matrix is not
intended. \ For a full discussion of this question see Chap, vi of Ref. 2.

% The elements immediately to the right of the principal diagonal are the superdiagonal
elements.
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where the elements in the principal diagonal are, of course, the latent
roots. It is clear that the canonical matrix can be partitioned into
a diagonal matrix of square submatrices whose rows and columns
do not overlap, and which are all of the simple classical type

1
a 1

a 1
a_

The order of the simple classical submatrix can range from 1 (the
elementary case) to n, the order of the matrix itself.

The exact type of the canonical matrix is conveniently specified by
means of its Segre characteristic. This consists of a set of integers which
are the orders of the classical submatrices; those integers which corre-
spond to submatrices containing the same latent root are bracketed
together. For example, the Segre characteristic of

1

a
fi

fi
fi

is [(21) 31 (21)]. In the elementary case where the latent roots are all
distinct the Segre characteristic consists of n unbracketed units.

The essential point in the proof that (1) really is an irreducible form
consists in showing that a unit in the superdiagonal adjacent to a pair
of equal elements in the principal diagonal cannot be removed by a
collineatory transformation. This can be illustrated by a simple
example. Suppose that it were required to transform

to the diagonal form by a collineatory transformation. Let

P
c d
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SO that -p-l^-lf^ ~ 6 1 ,

where 8 = od-6c#0. Then

d(Xxa + c) -A26c,

If both the non-diagonal elements are to vanish,

and (A2 - A2) ac + c2 = 0.

When AX4=A2 these equations can be satisfied without violation of
the condition 8+0, but when Ax = A2 the only solution is d = c = 0,
which is not permissible, for then 8 = 0.



CHAPTER IV

MISCELLANEOUS NUMERICAL METHODS

4*1. Range of the Subjects Treated. This chapter is divided
into three sections. Part I deals with the computation of determinants,
reciprocal matrices, and adjoint matrices, and with the numerical
solution of systems of linear algebraic equations. Part II is concerned
with the limiting forms of high powers of matrices and with the
approximate calculation of latent roots. In this connection iterative
methods are developed which are applied in Chapter x to the solution
of dynamical problems. The approximate solution of algebraic equa-
tions of general degree and the computation of Sturm's functions and
test functions for stability are briefly considered in Part III.

P A R T I. D E T E R M I N A N T S , R E C I P R O C A L AND A D J O I N T

M A T R I C E S , AND SYSTEMS OF L I N E A R ALGEBRAIC

E Q U A T I O N S

4*2. Preliminary Remarks. Before describing the actual methods
of computation we shall deal briefly with their underlying principles.

A system of n linearly independent linear equations in n variables
x may be represented by 7

ax = n,
where a is a given non-singular square matrix of order n, and h is a
column of n constants. The formal solution of the equations is

x = a^h.

If a*1 can be determined, the values of x corresponding to any set
of constants h can be found immediately. Now a'1 = Aj\ a |, where A
is the adjoint of a, and it is therefore possible to obtain a~x by a com-
putation of the determinant | a | and of its first minors. Unless the
matrix a is of low order this process is very laborious, and it is usually
preferable to build up the reciprocal matrix in stages by elementary
operations on the columns or the rows of a.

One possible procedure is as follows. Postmultiply the equation
arxa = I by a non-singular matrix M1 to give a~1(aM1) = IMV The
postmultiplication of a by Mx represents some operation performed
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on the columns of a, while the postmultiplication of / by M1 represents
the same operation on the columns of the unit matrix. A succession
of 8 operations of this kind would give

where <r = aM1M2... M8. Hence if <r is such that its reciprocal can be
found easily, then a~x is calculable by the formula ar1 = MXM2... M8<r~x.
Again, if the determinant | cr | can be evaluated easily, and if each of
the multipliers M has unit determinant, then

An alternative is to apply to the equation aarx = / a succession
of premultipliers, representing operations performed on rows. The
choice of rows, or of columns, for the operations is in fact decided by
convenience only.

The derivation of suitable types of matrix or and of the appropriate
multipliers will now be considered.

4-3. Triangular and Related Matrices. A matrix having only
zero elements either to the right or to the left of its principal diagonal
will be referred to as a triangular matrix. If the matrix is non-singular,
none of its principal diagonal elements can be zero. Simple examples
of non-singular triangular matrices are

2
3
4

0
3
5

0"
0
1

4
0
0

5
3
0

1
3
2

A non-singular matrix can always be reduced to a matrix of triangular
form by operations on columns only, or on rows only, in an indefinitely
large number of ways. One possible scheme of reduction, by operations
on columns only, will be described.

Firstly, choosing any convenient non-zero element of the top row,*
say the ith, we reduce to zero all the other elements of the top row by
subtracting suitable multiples of the ith column from the other
columns in turn, and leave the ith column unchanged. Next, choosing
any convenient non-zero element of the second row of the new matrix,
say the jth (where j + i), and leaving both the ith and the Jth columns
unchanged, we can in the same way annul all the elements of the
second row other than the ith and the jth. By a continuation of this

* Each row of a non-singular matrix must contain at least one non-zero element.
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process we are ultimately led to a matrix which, if not immediately
triangular, is a triangular matrix with its columns deranged.

The operations described can conveniently be represented by a
sequence of postmultiplications of the given matrix a. To avoid
unwieldy general formulae the process will be illustrated with reference
to a matrix of order four.

Dealing firstly with the simplest case where the chosen element of
the first row is a n (shown "starred" below), we have

1 - # 1 2 / # n -# i 3 /#u -i

0 1 0

0 0 1

0 0 0

~ (1)
where btj are new elements which need not here be specified. The post-
multiplier in this equation is the unit matrix /4 augmented by a first
row of elements derived from the first row of a in the manner shown.
Next, if 6 n (shown starred below) is the chosen element of the new
second row,

#21

#31

La41

#11 #12 #13 #14

#21 #22 #23 #24

a31 a32 #33 #34

L#41 #42 #43 «44J

iJan
0

0

1

= "#ii

# 2 1

# 3 1

# 4 1

0

611

fe21

631

0

612

622

632

0 "

613

hz
633

0

6*

hi

hi

0

612

h*
632

0
613

hs
633.

1
0

0

0

0
1

0

0

0

-612/61

1

0

0

1 - 6 1 3 / 6 n

0

1

=

#21

#31

.#41

0

611

621

631

0

0

<hi
c21

0

0

<a
c2

(2)
where c^ are new elements. Lastly, if c n (shown starred below) is the
chosen element of the third row,

alx

#21

#31

-#41

0

621

0

0

cn

C21

0

0

C 1 2

C22_

1

0

0

_0

0
1

0

0

#21

#31

0

6l

62

6,

0 0

0 0

Cn 0

0 0 "

0 0
1 -<Wcu

0 1 -
" (3)

Denoting the postmultipliers in equations (1), (2), (3), respectively,
by Mv M2, Mz, and the final triangular matrix by r, we obtain

aMxM2M3 = r.

Since each of the multipliers M has unit determinant, it follows that

\u\ = T = #11 On Ci-ia-i-i.



4-3 REDUCTION TO TRIANGULAR FORM 99

It is easy to show that the product Mx M2MZ is itself a triangular matrix.
Thus

-<h2Ahi ~(

1

0

0

- ^ A h l
I

0

0

*11

0
1

0

1

0

0

0

1

0

1

0

1

0

0

0

1

0

0 "

-613/611

0

1

where <xv oc2 are new elements. Hence

MXM2MZ = 1 -a12jaxl

0 1

0 0

0 0

1 -a12/an

0 1

0 0

0 0

1

0

-612/6;

0

n

0

1

A
Pi

0

1

0

0

0

0

1

0

0

0

in which fiv fi2 are new elements. The product M1M2M3 in this case is
triangular and "opposite-handed" to the triangular matrix r.

The particular method of reduction given would fail if any one of the
starred elements were zero. A more general treatment is possible in
which the rows are taken in any order and the starred elements are
not necessarily in the principal diagonal. In this case the final matrix
will, in general, not be triangular, but will be a triangular matrix with
its rows in some way interchanged, and possibly with its columns
also in some way interchanged. To illustrate the rule for the con-
struction of the multipliers, suppose a32 to be the first starred element;
then

~an a12

a2i a22

^31 ^32

a4 1 a42

aiz

a23

a14"

«24

a 3 4

a44

1

- « 8 i / a
0

0

0

32 1 ~<

0

0

0

W%2
1

0

0

-«34 /«32

0

1

= "6u a
b21 a

0 a

631 a

i 2 6 1 2

22 6 2 2

32 0

42 632

613"

623

0

633-
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The multiplier is here constructed similarly to that in (1), except that
its second row now contains the elements derived from the third row
of a. More generally, if the starred element in a lies in the ith row and
j'th column, the elements derived from the ith row of a are entered in
the Jth row of the multiplier. The process of reduction will be clear
from the numerical examples which follow.

E X A M P L E S

(i) Rows and Columns taken in Consecutive Order. If

a = Tl 4 1 3"
0 - 1 3 - 1
3 1 0 2

.1 - 2 5 1.

then the scheme of reduction, with the starred elements in the prin-
cipal diagonal, is

"1*
0
3

.1

"1
0
3

.1

1

0
3
1

4 1
- 1 3

1 0
- 2 5

0

- 1 *

- 1 1 -

- 6

0
- 1

- 1 1

- 6

0
3

-3
4

—.

3"
- 1

2
1.

—
—

-

0
0

36*
14

(

(

L(
0"
1
7
2_

0"
0
4

4.

L - 4 -
) 1
) 0
) 0

"1 0
0 1
0 0

.0 0

ri o
0 1
0 0

Lo o

• 1

0
1

0

0

3
1
0

0
0
1

0

— 3

0

0

1.

0"
- 1

0

1.

0"
0
• I

1.

=

• 1

0
3

-1

"1

0

3

-1

"1

0

3

.1

0
2

- 1 1

- 6

0
- 1

- 1 1

- 6

0
- 1

- 1 1

- 6

0
3

- 3
4

0

0

- 3 6
- 1 4

0

0
- 3 6

- 1 4

0
- 1

- 7

- 2 -

0"

0
4

4 .

0

0

0
22-or

Hence \a\ = 1 x ( -1) x (-36) x (

The product of the multipliers works out as

= 88.

"1
0

0

_0

- 4
1

0
0

- 1 3
3
1
0

-r
2

~-"3

h
l .

(ii) Bows, but not Columns, taken in Consecutive Order. With a as
for example (i), another possible scheme of reduction is
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"1
0
3

.1

4
- 1

1
- 2

1*
3 -
0
5

3"
1
2
1-

0 0 1 0 "
-3*-13 3 - 1 0
3 1 0 2

-4 - 2 2 5 -14J

1 0 0 0
0 1 0 0

- 1 - 4 1 - 3
0 0 0 lJ

1 —TT ° "¥•'
0 1 0 0
0 0 1 0

Lo o o l

0 0 1 0
-3 0 3 0
3 - 1 2 0 - 8 *

-4 - J * 5 - * J

1 0 0 0"
0 1 0 0
0 0 1 0

Lo - f o i.

0 0 1 0
- 3 - 1 3 3 - 1 0

3 1 0 2
. - 4 - 2 2 5 -14J

0 0 1 0
- 3 0 3 0

3 - 1 2 0 - 8
L-4 - ^ 5 -fJ

0 0 1 0 "

- 3 0 3 0

3 0 0 - 8

. - 4 - ^ 5 -f.

By three interchanges of its columns the final matrix can be brought
to the triangular matrix

1 0 0 0
3 - 3 0 0
0 3 - 8 0

L5 - 4 - f - ^ U

Hence | a | = 1 x ( -3) x ( -8) x ( - ^ ) x ( -1) 3 = 88, as before. The
product of the multipliers in the present case is

x M2 Jf3 = 0 1 - / |"
0 0 0 1

1 - 1 i -I
Lo o l - I .

This matrix has unit determinant. It can be represented as a triangular
matrix by a rearrangement of its rows, but not by a rearrangement
of its columns.

(iii) Columns, but not Bows, taken in Consecutive Order. With a
again as for example (i), an illustrative sequence of operations is

1 6 - 4 2
0 - 1 3 - 1
3 7 - 1 5 - 1

Ll 0 0 0J

1
0 -
3
1 * -

4
1
1
2

1
3
0
5

3"
- 1

2
1.

"1
0
0

.0

2
1
0
0

- 5
0
1
0

- 1
0
0
1.

=
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1 6 - 4 2
0 - 1 * 3 - 1
3 7 - 1 5 - 1

. 1 0 0 0J

1 6 1 4 * - 4
0 - 1 0 0
3 7 6 - 8

Ll 0 0 OJ

"1
0
0

.0

0
1
0
0

0
3
1
0

0
J

0
1.

=

1
0
0
0

0
1
0
0

0
0
1
0

0
0
2
7

=

1 6 1 4 - 4
0 - 1 0 0
3 7 6 - 8

Ll 0 0 OJ

1 6 14 0
0 - 1 0 0
3 7 6 - ^
.1 0 0 OJ

If the rows of the final matrix are taken in the order 4, 2, 1, 3—
corresponding to the row order chosen for the starred elements—the
result is the triangular matrix

"1 0 0 0 '
0 - 1 0 0
1 6 14 0

L3 7 6 - ^ J

From this it is seen tha t \a\ = 1 x ( - 1) x 14 x ( - ^ ) x ( - I)4 = 88.

4-4. Reduction of Triangular and Related Matrices to
Diagonal Form. The reduction of a triangular matrix to the diagonal
form is a simple matter. If the given non-singular matrix is

T = r r n 0 0 0 - j , (1)
r«i To'22
r31 T32

LT41 T42

then by operations on columns only

0
T 3 3

Tn 0

32

T42

0
0

^43

0
0
0

T*T44

1
0
0

0
1

0

0
0
1

T44 T44

43 -I

'11

'21

'31

0

T 2 2

Too

0

0

Too

0

0

0

0 0 0 ' 4 4

The result of the postmultiplication is that all the elements of the last
row with the exception of r44 are annulled, but the matrix is otherwise
unaltered. Clearly, by a succession of such operations r is reducible to
the diagonal form

8 = n

0
0

o

0
^22

0
0

0
0

T33

0

0 -
0
0

TAM

(2)
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If the given matrix is a triangular matrix with its rows interchanged,
a similar method may be adopted. For instance, if

cr =

32

0
0 1
0

41 0 0 0

then by three successive postmultiplications this matrix is reducible to
0 0 <r13 0
0 <r22 0 0
0 0 0

-^41

' 3 4

0 0 0 J

4*5, Reciprocals of Triangular and Related Matrices. The
reciprocal of the triangular matrix r (see (4-4-1)) can be obtained as
follows. Consider the system of linear equations

Vi

= h2,

'11 ' 2 2 ' 3 3

in which hv h2, h3i A4 are arbitrary. These equations are equivalent to
TS~xy = h (where S is the diagonal matrix (4-4-2)) and their solution
can be written y = ^

where d)~x = r^"1 or r"1 = S^o). Hence r"1 can be obtained by multi-
plication of the successive rows of co by l/rn, l/r22, l/̂ 33> 1/T44> r e"
spectively.

Now the elements in the first column of o) are the values of y when
h = {1,0,0,0}: similarly, the elements in the second column are the
values of y when h = {0,1,0,0}; and so on. But when h = {1,0,0,0}

-[-£]•"•

f T41 T42 T

L T l l T22 T
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This suggests the following scheme of computation. The scalar multi-
pliers by which the rows of 0) have to be multiplied to give r"1 are
written on the extreme right.

(l/Tll)—

T l l

_ I 3 J L

T l l

_ _ _ _ _

_ _ _ _ —

- 1 3 2 , - -

T42 T43

^22 ^33

1 0

co21 1

<o42

0

0

1

0

0

0

1

X y (matrix to)

Rules: (i) To form the left-hand array (X) enter blanks in, and to the
right of, the principal diagonal. Derive the remaining elements from
r as shown.

(ii) Commence the right-hand array (Y) by entering units in the
principal diagonal, and ciphers to the right of that diagonal.

(iii) Calculate the remaining elements of o) in succession by the
following method. To obtain w^ postmultiply the row of (X) level with
(Ojj by the part-column of (Y) standing a]bove (o^. Blank elements of
(X) are to be disregarded.

(iv) To find r"1, multiply the rows of 0) respectively by the scalar
factors on the extreme right.

Column No. 1 of (Y), for instance, is completed as below:

^21 = I -

^3i = l — - . —

tt\ — 1 __ x __ __
4 1 ™ T ' T ' '

L T l l T22

A similar procedure is possible if the given matrix, say cr, is derived
from a triangular matrix r by interchange of its rows, but the con-
struction of the arrays (X) and (Y) in this case requires care. The
simplest and safest method is to convert cr first to the triangular form
by actual interchange of the rows. Suppose for example

cr = 0

a
32

13

0

r33

o
0

0 0
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The stars indicate the last non-zero elements of the rows. If the rows
are taken in the order 4, 2, 1, 3 to bring the starred elements into the
principal diagonal, the resulting matrix is triangular. This process can
be represented by

0

0

1

0

0

1

0

0

0

0

0

1

1

0

0

o

G i l

0*21

0*31

(T*

<T*2

0*32

0

0

0

0

0 0
11

0

12

32

0

0

0

0

0

For brevity denote this as
Then the reciprocal of cr is given by

1 = r- (2)
The appropriate multiplier N in any given case is found by the following
rule: N is the transposed of <x with its starred elements replaced by
units and all other elements replaced by ciphers.

If a is derived from a triangular matrix r by interchange of its
columns, then the equations corresponding to (1) and (2) are crM = r
and cr"1 = Jfr"1. In this case the first non-zero elements of the
columns of cr are starred, and the multiplier M is then derived as before.

E X A M P L E S

(i) Reciprocal of Triangular Matrix. Suppose (see example (i) of § 4- 3)

r = p 0 0 0"
0 - 1 0 0
3 - 1 1 - 3 6 0

.1 - 6 - 1 4 ^

The first step is to prepare the following scheme in accordance with
rules (i) and (ii).

1 (i)
(-1)

(A)
X Y (matrix to)

To complete the first column of o), we calculate in succession

!,<), - 3 } = * .

0
- 3
- 1

— — —

- 1 1 — —
- 6 - T

75 —

1 0
1

0
0
1

0
0
0
1

= [-1,-6, -



106 RECIPROCALS OF TRIANGULAR MATRICES 4'5-4-6

Similarly, OJ32 = [ - 3 , -11] {0, 1} = - 1 1 , and so on. The results are
entered in (Y) as they are obtained, and give

(0 =

Hence

1
0

- 3

. i
"1

0

3
_44

0
1

- 1 1
__ 31

0

- 1

| i

31
""44

0
0

1
7

0

0

-£>
- A

0
0

0

1

0"

0

0
9

22^

(r=

(ii) Reciprocal of Triangular Matrix with Rows Interchanged.

Suppose - = T 3 - 1 1 -36* 0

0 - 1 * 0 0

1 - 6 - 1 4 ^

1* 0 0 0

Taking the rows in the order 4, 2, 1, 3 to bring the starred elements
into the principal diagonal, we have the triangular matrix already
considered in example (i). The appropriate multiplier N is here

"0 0 0 1"
0 1 0 0
1 0 0 0

.0 0 1 OJ
Hence, by the result of example (i),

1 0 0 0

0 - 1 0 0

0 0

0 - 1

7
4 4

0

0

0

0
9

& & —

1

0

T2~

7_
_ 44

0

0

0
1

4-6. Computation of Determinants. The abridged schemes
of computation of determinants now to be described are based on the
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theorems given in §§ 4-2 and 4*3. The treatment is applicable generally,
but for brevity the given determinant will be assumed to be of order 4.
Thus A = | a |, where

a =
^22

*43

The process consists effectively in the reduction of the matrix a to a
triangular form. Many methods of computation of determinants are
of course based on the same principle, but the reductions will here be
expressed by means of matrices.

A convenient abridged scheme of computation, which corresponds
to the sequence of postmultiplications represented by equations
(4-3-1, 4-3-2, 4-3-3), is as foUows:

(AO(A) a 2 1 tt22 a2S a2i

^41 ^42 ^43 ^44

(B) b21 b22 623

hi h2 633

(C) Cl1* Cl2

o21 c2 2

(D) rfn*

1

0

0

1

0

1

0

1

0

0

1

0

0

1

(BO

(CO

The value of A = | a \ is given by the product dubnC^d^.
The top left-hand array (A) is the array of the elements in the given

determinant A. The leading element an (shown "starred") is divided
into the remaining first row elements, and the results with their signs
changed form the first row of the top right-hand array (A'); this array
is completed by the elements of the unit matrix /3. To obtain the array
(B), the starred row is omitted from (A), and the remaining rows are
postmultiplied by (A'), in accordance with (4-3-1). The array (C) is
derived from (B), and (D) from (C), in a similar manner.

In the preceding arrangement the starred element on the left is in
each case the leading element of the corresponding array. However,
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by slightly generalising the scheme, we can remove this restriction and
star any convenient element in any left-hand array. The rule in this
connection is as follows:

Rule: If the chosen starred element in any left-hand array (say B)
lies in the ith row andj'th column of that array, then the corresponding
right-hand array (B') is constructed from the ith row of (B) and from
a unit matrix as previously, except that the elements derived from (B)
must be entered as the jth row of (B'). The value of A is then the product
of the starred elements multiplied by the factor ( — 1)^ where N is
the total number of interchanges required to bring the starred elements
into the leading places of their arrays.

E X A M P L E

Evaluate the determinant
A = 559-2

0
0-21

0
601-3
1-899

24-0
0

- 1

0
117-2
1-862

174
0

0-21
1-258 0-005 0-669 - 1 0-580
0-008 0-832 0-008 0-670 - 1

559-2 0
0 601-3
0-21 1-899
1-258 0-005
0-008 0-832

240
0

- 1 *
0-669
0-008

0
117-2

1-862
- 1

0-670

174
0
0-21
0-580

- 1

1
0
0-21
0
0

0
1
1-899
0
0

0
0
1-862
1
0

0
0
0-21
0
1

564-24 45-576
0 601-3
1-39849 1-27543
0-00968 0-847192

44-688
117-2

0-245678
0-684896

17904
0
0-72049

-0-99832*

1 0 0
0 1 0
0 0 1
0-009696 0-848618 0-686049

565-976 197-513
0 601-3
1-40548 1-88685

167-518
117-2*

0-739969

0
1

-513055

565-976 -661-946
1-40548* -1-90960

1-35868
1

107034*
Hence

A = ( - 1) x ( - 0-99832) x 117-2 x 1-40548 x 107-034 x ( - 1 ) 1 4

= 17601-3.

4-7. Computation of Reciprocal Matrices. Three different
methods will be described. They will be dealt with under separate
headings, and will be referred to as (i) the method of postmultipliers,
(ii) the method of submatrices, and (iii) the method of direct operation
on rows.
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In the first two methods definite rules for procedure must be learnt.
In the third the operations are extremely simple, and are left to a large
extent to the judgment of the computer.

4-8. Reciprocation by the Method of Postmultipliers. It has
been shown in §4-3 that by the application of n— 1 successive post-
multipliers, MVM2, ...,Mn_v each of unit determinant, a given non-
singular matrix a of order n can be reduced to a matrix a*, which if not
immediately triangular is a triangular matrix with its rows inter-
changed. The reciprocal of or can be found readily by the methods of
§4-5, and then ^ = ^ ^ j ^ ^

The construction of <r and of the product M1M2... Mn_1 can be effected
simultaneously by a slight extension of the scheme already described
in §4*6 for the computation of determinants. To avoid unnecessary
complication the starred elements will be restricted to lie in the first
columns of their arrays, although they need not necessarily lie in the
first rows. A representative abridged scheme of computation, appro-
priate to a matrix of order 4, is as follows.

(A')(A)

(B)

(C)

a a a
12 13 14

z z z
<*« aa a«

— — _

ba. bn 618

if: 632 633

c21 c22

(D) «

« 3 2

«31

1
0
0

a l

_ 6 3 _ 2

1
0

1

« 3 3

« 3 1

0
1
0

a2

0

1

« 3 4

« 3 1

0 1
0
1

(B')

(CO

Rules: (i) Proceed as for the computation of determinants (see
§4-6), but introduce blank upper rows on the left as necessary, so as
to preserve a constant number of rows. Temporarily leave empty
rows on the right opposite the blank rows on the left.
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(ii) After calculation of d±1 fill the empty rows on the right in
succession. To find [a1? a2] premultiply the two part-columns of (B')
already determined by the top row of (A'). Similarly, to find {JSVJ32}
premultiply the part-column of (C) already determined by the two
top rows of (B').f

(iii) To form the matrix cr, set down in succession the first columns
of the left-hand arrays (disregarding places filled by blanks), and
always write ciphers to the right of each starred element.

(iv) To form the product (MXM2M^), write down the successive
first columns of the right-hand arrays, and precede them by the column
{1,0,0,0}.

In the particular case taken the matrices cr and M1M2MZ formed in
accordance with the rules given would be

cr — *11

*21

0

0 0 0

6* 0 0

0 1 -

0 0 1

0 0 0

Moreover,

The reciprocal cr"1 can now be found by the methods given in §4*5,
and then .,

If required the adjoint of a can also be deduced by use of the relation
A = ar11 a \. I t may be noted that, since <r~1 necessarily contains a
column proportional to {0,0,0,1}, one column of arx—and therefore
of the adjoint A—will be proportional to the last column of M1M2MZ.
Accordingly, the adjoint has a column proportional to the last right-
hand array of the abridged scheme.

E X A M P L E

Suppose a = f l 4 1 3"
0 - 1 3 - 1
3 1 0 2

.1 - 2 5 1.

More generally, to complete any right-hand array {K')9 premultiply the submatrix
of K' already determined by the appropriate submatrix taken from the top of the com-
pleted preceding right-hand array.
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The abridged scheme which follows should be compared with the
calculations given in extenso in example (iii) of § 4-3.

Hence

cr =

1 4
(A) I "J

1* - 2

—

(B) 6
V ' - 1 *

7

(C)

1
3
0
5

—

- 4
3

- 1 5

14*
6

3
- 1

2
1

—

2
- 1
- 1

- 4
- 8

--y-*

2
1
0
0

1

3
1
0

~Y

- 5 -
0
1
0

- 3

- 1
0
1

(C)

(B')

1 6 14* 0

0 - 1 * 0 0

3 7 6 - ^k

1* 0 0 0

and M1M2MZ = 1 2 1

0 1 3

0 0 1

0 0 0

Also | a | = 1 x ( - 1) x 14 x (-±$) x ( - I)4 = 88.

Note that the array (B') is completed by

[2 - 5 - 1 ] [3 -1] =[1,-3],
1 0
.0 ll

and that (C) is then completed by

f

To find cr-1 the method already illustrated in example (ii) of § 4-5 can
be used. Thus

0

0

1

0

0
1

0

0

0

0

0

1

1

0

0

0

and 1* 0 0 0

0 - 1 * 0 0

1 6 14* 0

.3 7 6 - ^
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The scheme for the computation of a) is here

4-8-4-9

—
0

- 1
- 3

— — —
— — —

6 — —
7 - f —

1
0

- 1

-V-

0
l
6

V-

0
0
l

0
0
0
1

(1)
(-1)

Hence
x
1

0

Y (matrix <o)

0

- 1

t

0

0

Finally,

1

3

1

0

2,

1

2

1

0

0

- 5

9

4 10 - 2

3 - 3 1 - 7

0 0

0 - 1

h f

0

0

0

1

0

0

0 -

1"

0

0

0_

1

0

-tt
15

17

19 - 8 "

1 - 1 2

2

18

If required, the adjoint of a can now be deduced by use of the relation
A =a~1\a\, and the known value \a\ =88. One column of the
adjoint is proportional to {19, 1, —2, —7}, or to column (C) in the
abridged scheme.

4-9. Reciprocation by the Method of Submatrices. This is an
independent method based on the properties of partitioned matrices.

Suppose a to denote a non-singular square matrix of order m. Then
OL can be partitioned as below into four submatrices:

a = an(f,r), a12(f,«)l.
a21(S,r), cc22(s,s)\

The orders of the submatrices are as indicated, and r + s = m.
Let the reciprocal / J sa" 1 be correspondingly partitioned; thus
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Then, since /?a = /m, we have the four relations

113

These equations may now (in general) be solved to give the submatrices
of/? explicitly. The results may be expressed as follows. Let

X =

Then

Y = oc21a{1
1; 0 = a2 2 - Ya12 = a 2 2 - a 2 1 X .

/?n = a^1 + Xd-17,

These formulae serve to determine /? provided the reciprocals a^1 and
5-1 exist. If aĵ j1 is known, the quantities X, Y, 6 can be calculated,
and /? can then be deduced. An arrangement of the numerical work
which is convenient and self-explanatory is suggested below:

X. — an ai2

o-1

a21

an1

Y = a21a{"1
1

a22

«12

^ = a 2 2 - Za12

•xe-1

d-1

In the simplest application r = m - 1 and s = 1: then a21 is a single row,
a12 is a single column, a22 is a single element, and 0 is a scalar. More-
over, since in this case d~x is the last diagonal element of or1, namely
I a n I/I a l> w e n a ve the relation

d=\<x\ (i)
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The general procedure in dealing with a given numerical matrix
will now be explained. Suppose the matrix to be

a =

*21 a9 2n

a*>

Then a sequence of matrices 8l9 82, S3, etc., progressively including
more and more of the principal diagonal elements of a, can be formed
as follows:

89

s*

L#41 ^42 ^43 ! a 44J

and so on.
Commencing with the second of these, we can write down the

reciprocal of 82 immediately; thus

a22 -a

Using the value of S^1, we can now apply to Sz the scheme of computa-
tion just described, and so obtain S^1. Next, using Sj1, and applying
the scheme to $4, we derive S^1. Proceeding in this way, we finally
obtain 8~x or a~x.

In the exceptional case where a singular matrix, say 8i9 is en-
countered (as indicated by 6 = 0), the simplest procedure is to transfer
the ith row of a to last place, and then to continue as normally. This
rearrangement of the rows will be equivalent to premultiplication of a
by N9 where N is the unit matrix with its ith row transferred to last
place. The final reciprocal matrix as computed will then have to be
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postmultiplied by N to give a"1 (compare (4-5-2)). More generally,
if several rows of a are transferred in the foregoing way during
the computations, the appropriate multiplier N can readily be con-
structed.

If 6i denotes the value of 6 obtained in the construction of Sj1,
then by (1) . . (

Hence

EXAMPLES

(i) Normal Case (Matrices 8 all Non-singular). Suppose the given
matrix to be (see example, § 4-8)

a = 1 4 1 3
0 - 1 3 - 1
3 1 0 2

Ll - 2 5 1J

Then s2 = ri 4]
Lo-iJ

The scheme for the computation of

— &2 •

is as follows:

X

e-1

13
- 3

- A

3 1

1 4
0 - 1

3 11

0

1
3

- 3 6

Hence

Proceeding to S^1, we have

re

1 -

-*

A

1 - 2 5

- TV A it
i -A -A
A U -A

-J- fi A

1

3
- 1

2

V e

• A j

= r-A
-A «• A
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Hence (compare result of example in § 4-8)

"-ft H
ft 17

44
10
44 "A

3
44" ft

The determinant |

= 4^ - 5
9
4

. 3
a | is here given

15
17
10

- 3 1

by
^ (.

(ii) Case of Singular Matrix 8. Suppose

Here S2

a = 1 1
1 2
1 0
3 - 1

= fl 11 and
[l 2j

Proceeding to £3, we find that d = 0

2
4
0
1

si*

: thus

1"
3
2
5.

[_

19
1

- 2
- 7

-11

2

- 8
- 1 2

2
18

-a-
1 0

2 - 1
- 1 1

2 - 1

0

2
4

0 = 0

This result indicates that 8S is singular. Transferring the third row of
a to last place, and continuing as normally, we have

o-1

0
2

i

3 - 1

2 - 1
- 1 1

7 - 4

1

2
4

3

=ro on.
Lv- -iJ

Lastly,

- 1

-Y-
V

i

l

2

V-

2

0

- 1

-1
t

- 1

0

0

-1
i
0

2

1
3
5

3

-t *
-¥- ¥
-V- -V
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The required reciprocal matrix is accordingly

117

— ¥

* -

f
12

5

- 1

- 6

1
* -

i
- 6

- 1

2

3

0

•t

0

—

14

-¥
i-

3

14 -

10

3

0

6

3

0

1 0 0 0'

0 1 0 0

0 0 0 1

0 0 1 0

(iii) Specimen Calculation for Sixth Order Matrix. In the preceding
examples the successive steps have been explained in some detail.
To illustrate the compactness of the method, we shall now compute
the reciprocal of a symmetrical sixth order matrix, omitting all un-
essential steps. The given matrix is

a = 10-472
0-506

0
-3-935
-0-521

0

0-506
11-016
5-000

-0-521
-1-046
3-750

0
5-000

26-000
0
0

-3-935 -0-521 0
-0-521 -1-046 3-750

0
6-322
0-536

-1-050 0-355

0
0-536
2-737

0

-1-050
0-355

0
3-881

and the computations begin with S21 bordered (see next page).

To illustrate the accuracy, the product of the given matrix a and
the computed reciprocal is given below:

0-999995, 0-000000,
0-000000, 1-000003,
0-000000, 0-000003,
0-000002, 0-000000,
0-000000, 0-000000,
0-000000, 0-000001,

0-000000, 0-000003, 0-000000, 0-000000"
-0-000001, 0-000001, 0-000001, -0-000002
0-999999, 0-000001, 0-000002, -0-000006
0-000000, 0-999996, 0-000000, 0-000000
0-000000, 0-000000, 1-000000, 0-000000
0-000000, 0-000000, 0-000000, 0-999998.
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-00219802
0-454895

0-0421487

0 5000

00957052, -0-00439604
-0-00439604, 0-0909790

-0-0219802, 0-454895

26-000

0
5000

23-7255

-0-374170
-0-0329874

000634371

0-206934

-3-935 -0-521 0

0-0957256, -0-00481747] 0-000926437
-0-00481747, 00997008 ] -00191732

0-000926437,-0-0191732 ! 00421487

-0-374170, -0-0329874, 0-00634371

6-322

-3-935
-0-521

0

4-83245

-0-0210980
-0-0996846

00191701
00634362

0-386438

-0-521

0124697,
-000226331,

0000435253,

0-0774285,

-0-0210980,

- 1 0 4 6

-000226331,
0-0999260,

-0-0192165,

0-00682621,

-0-0996846,

0

0000435253
-00192165

0-0421570

-000131273

00191701,

0-536

0-0774285
000682621

-000131273.

0-206934

00634362

2-737

-0-521
- 1 0 4 6

0
0-536

2-58774

00215710
0-411631

-0119544
00913330

0143533

0-458833

0 3-750

0-124869, -0-00145057,
-0-00145057, 0-103766,

0-000278958, -0-0199550,
0-0769113, 0-00438252,

0-00815307,

00215710,

0-0385219,

0-411631,

- 1 0 5 0

0-000278958,
-0-0199550,

0-0422990,
-0-000842790,

-000740806,

-0119544,

0-355

00769113
000438253

-0000842790
0-208489

-00245142

00913330,

0

0-00815307
00385219

-0-00740806
-00245142

0-386438

0143533

3-881

0
3-750

- 1 0 5 0
0-355

0

217944

0-125082,
000262354,

-0-000904232,
00778153,
000957369,

-0-00989749,

000262354,
0181511,

-00425333,
00216326,
0-0656310,

-0-188870,

-0-000904232,
-00425333,

0-0488561,
-0-00585247,
-0-0152809,

0-0548507,

00778153,
00216326,

000957369
00656310

-0-00585247, -0-0152809
0-212316,

-0-0184992,
-0-0419066,

-0-0184992
0-395891

-0-0658577

-0-00989749
-0-188870

0-0548507
-0-0419066
-0-0658577

0-458833
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4*10. Reciprocation by Direct Operations on Rows. This
method offers the great advantage that no formulae have to be
memorised.The underlying principle is the reduction of the given matrix
a to a triangular form and then to the unit matrix by a succession of
simple operations on rows. These operations are simultaneously per-
formed on the unit matrix, which is ultimately transformed into the
required reciprocal. The process is thus essentially the same as that
given in § 4-8, but with premultipliers used instead of postmultipliers.
However, the actual scheme of numerical calculation is considerably
different.

A simple example will make the procedure clear. Suppose the given
matrix to be

a = 36
15
6

16
9
4

4
3
2

Then the required reciprocal is such that

16
9
4

4"
3
2_

a"1 = 1
0
0

0
1
0

0"
0
1.

The symbols ri are used in this and in subsequent equations merely to
identify the rows. Now operate on the left-hand and right-hand rows
of the equation in the manner indicated below:

Operation New Row No.

u-u

The last column of the matrix on the left now contains only one non-
zero element (namely the unit), and one further operation completes
the reduction to a triangular form. Thus

Operation

L3
"6
2
.3

4
3
2

2
1
2

r
l

i_

0"
0
1

a~x = ri
0
.0

ri
0
.0

0

i
0

0

0

0"
0

i
- 1 -

-i
il

New Row No.

r6

[1
2

1.3

0
1
2

0"
0
1.

a-1 = f| - i
0 I

1Lo o

I
-\

\
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The foregoing reduction to triangular form can conveniently be
arranged as below:

Operation

—
—

**•
fr,

—
—
—

Row No.

U

U
r7

r8

r9

r9

r8

U

Left Array

36
15
6

9
5
3
6
2
1

1
2
3

16
9
4

4
3
2
2
1
0

0
1
2

4
3
2

1
1
1
0
0
0

0
0
1

Right Array

1
0
0

i
0
0
i
0

i
i
0
0

0
1
0

0
*
0
0
i

- i
- i

i
0

0
0
1

0
0
i

- i
- i

i
i

-*

The value of | a |, if required, is now given by

The operations on rows can be continued to effect the reduction of a to
the unit matrix. Thus

Operation

r8-2r9

U ~ 2r9
*ii-2r10

—

—

—

Row No.

fio
r n
'12

r9

r10

Left

0
0
0

1
0
0

Array

1
2
0

0
1
0

0
1
1

0
0
1

Right Array

- i
-f

*
i

-*

1 - 1

1 ~i
-1 i

-i i
1 - 1

-1 i

The final right-hand array gives the required reciprocal.

4*11. Improvement of the Accuracy of an Approximate
Reciprocal Matrix. If an approximate reciprocal matrix has been
obtained, and greater accuracy is required, the following method is
usually effective. Let a be the given matrix, p the approximate re-
ciprocal, and p + Sp the exact reciprocal. Then a(p + Sp) = / , or

aSp = I — ap.

Premultiplication by p gives, approximately, 8p = p(I-ap). Hence
the next approximation to the reciprocal is

p(2I-ap).
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The conditions for the convergence of this method of approximation
are readily obtained. If p = p0 and p + 8p = pv the last equation gives

/-«/?! = I-apo(2l-apo) = (I-ap0)
2.

Similarly, for a second approximation,

I-ap2 -(J-api)2 = (I-apo)\

and generally I-apr = (I-apo)
2r.

Hence provided that p0 is such that the latent roots of / — ap0 all have
moduli less than unity, / — apr will tend rapidly to zero as r increases,
i.e. pr will tend rapidly to a~x. In particular, this condition is satisfied
if p0 is a fairly accurate reciprocal of a, so that the elements of I —ap0

are all small. In practice, if a very accurate reciprocal of a matrix is
required, it is probable that labour will be saved and the possibility
of error reduced by a preliminary calculation of an approximate
reciprocal and a subsequent application of one or two corrections
according to the above scheme.

E X A M P L E

If a = P7 31, then the exact reciprocal is
[2 lj

a-1*!" 1 -31.

[-2 7j
Suppose a known approximate reciprocal to be

p = I" 0-998 -3-0051.
[-1-994 7-013J

Then 2 J - a / > = p 01-["1-004 0-0041 = I" 0-996 -0-0041.
[0 2J [o-OO2 1-003J [-0-002 0-997J

Hence the next approximation to a"1 is

/>(2/-ap) = r 0-998 -3-0051 I" 0-996 -0-0041
[ _ 1.994 7-013J [ - 0-002 0-997J

= 1" 1-000018 -2-9999771.
[-2-000050 6-999937J

4-12. Computation of the Adjoint of a Singular Matrix. The
adjoint A of a non-singular matrix a can be obtained by the first or
the third of the methods of reciprocation already described, and use
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of the relation A = \ a | a~x. Attention will here be restricted to the
computation of the adjoint of a singular matrix. It will be remembered
(see §§ 1-10, 1-12) that the adjoint of a simply degenerate matrix has
proportional rows and proportional columns, while the adjoint of a
multiply degenerate matrix is null. For many purposes it is sufficient
to obtain a column of numbers proportional to a non-vanishing column
of the adjoint, if such a column exists.

A numerical example will sufficiently explain the procedure, which
is an adaptation of the method of §4-10. Suppose the given singular
matrix to be

a = 2
3
4

4
9

16

6
15
28

Let any convenient element, say a23 (= 15) be given a small increment
e. Then

2 4 0
3 9 e
4 16 0

where A23 denotes the cofactor of a23. Hence, if the increment of the
adjoint due to e is eB,

2
3
4

4
9

16

6
15 + e

28

= 2
3
4

4
9

16

6
15
28

["2 4 6 "
3 9 15 + e

|4 16 28

(A + eB) = "1
0
0

0
1
0

0"
0
1.

Direct operations on the rows of this equation are now performed, as
in § 4-10, until a row is obtained on the left containing only one non-zero
element which is proportional to e. Thus

Operation

Jr.

u-u
tor7-r9

Row No.

?i

?2

r3

U
U
U
r7

r8

r9
r i o

2
3
4

1
1
1
0
0
0
0

Left Array

4
9

16

2
3
4
1
2
1
0

6

28

3
5+c/3

7
2+<r/3

4
2

e/3

Right

1
0
0

*
0
0

- *
- i
- J
- J

Array

0
1
0

0
i
0

i
0
0

0
0
1

0
0
J
0
i
*

- i
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The last row obtained yields on division by e/3 (see (1)),

[0, 0, 1] (A + eB) = A2Z[-l 1, - f ] .

Hence when e is made zero

[0, 0, I] A = [An, A2Z, A3Z] = ^ 2 3 [ - | , 1, - £ ] .

Since A has unit rank, it follows that each row is proportional to
[-!, i, -f]-

In practice it is not necessary to introduce the increment e explicitly.
The operations are performed simply on the matrix a, and are con-
tinued until a null row is obtained on the left. The corresponding row
on the right will then be proportional to the rows of the adjoint.

Next, if the transposed of a is taken for the initial left-hand array,
and the process is repeated, a row will be derived on the right which,
when transposed, is proportional to the columns of A, The adjoint is
then determined apart from a scalar multiplier. If required, this
multiplier can be obtained by evaluation of a non-vanishing first
minor of a: the calculation is usually simple, since by the preceding
operations some of the first minors will already have been reduced to
a triangular form.

A caution should be added. If during the evaluation of the adjoint
it is found possible to derive on the left two or more null rows from a,
corresponding to linearly independent rows on the right, then a is
multiply degenerate and the adjoint is null. Accordingly, when one
null row has been obtained it is always advisable to ascertain whether
another can be derived independently.

The scheme of computation described can also be viewed as follows.
Suppose r1?r2, ...,rn to be the rows of the given matrix a. Since a is

n
degenerate, there will be one or more relations of the type 2 ^%ri = 0
between the rows, where the multipliers Ai are scalars; the number of
such relations will equal the degeneracy of a. When a is simply degen-
erate, the row [Av A2,..., An] is proportional to the rows of the adjoint

n
of a, and in the general case the relation 2 ^%r% = 0 is equivalent to

[AVA2, ...,An]a = 0. Evidently the process described, in which
various multiples of the rows of a are added until the sum total
vanishes, amounts simply to a determination of the coefficients At.
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E X A M P L E S

(i) Simply Degenerate Matrix. The complete calculations for the
matrix already considered are summarised below:

Matrix as Given

Left Array

2
3
4

1
1
1

0
0

0

0

4
9

16

2
3
4

1
2

1

0

6
15
28

3
5
7

2
4

2

0

Right Array

1
0
0

•
0
0

-i
-I
-i

-i

0
1
0

0
i
0

i
0

0

i

0
0
1

0
0
i
0
i

i

-i

Matrix Transposed

Left Array

2
4
6

1
1
1

0
0

0

0

3
9

15

*
*
*

1
1

1

0

4
16
28

2
4
V-
2
f

f

0

Right

1
0
0

*
0
0

-i
-i

-t
i

Array

0
1
0

0
i
0

i
0

i

-i

0
0
1

0
0
i
0

i
0

Hence A = c{^, — \, ^}[ — | , |-, — i] , where c is an unknown constant.
Also the cofactor of a33 is, in the fourth and seventh rows of the above
table, reduced to triangular form. Hence

Alternatively, from the operations on the transposed matrix,

Hence c = — 6 x 48 and

4 = {1,-2,1} [12,-16, 6].

Note that the row and the column determined have the properties

(ii) Multiply Degenerate Matrix. If

a = 2
3
1

. - 4

- 1
2

- 4
- 5

3
__ i

7
5

5
4
6

- 3 .

the computations are as follows:
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2
3
1

- 4

1
1
1
1

0
0
0

0
0
0

0
0

Matrix

Left Array

- 1
2

- 4
- 5

*
- 4

f

*
-i

i

1
1
1

0
0

3
- 1

7
5

t
- J

7
- 1

- ¥ •

V-
-V-

-v-
-v-
-v-

0
0

5
4
6

- 3

*
4

6
*

_ 7

-I
- 1
- 1
- 1

0
0

as Given

Right Array

1
0
0
0

*
0
0
0

- i

f

0
1
0
0

0
*
0
0

*
0
0

*
0
0

- 2

" T

0
0
1
0

0
0
1
0

0
1
0

0

0

0

0
0
0
1

0
0
0

-i

0
0

- i
0
0

-I
0

-T

2
- 1

3
5

1
1
1
1

0
0
0

0
0
0

0
0

Matrix Transposed

Left Array

3
2

- 1
4

*
- 2

- \

-v-
-*

1
1
1

0
0

1
- 4

7
6

*
4
1
*
7.

-v-
- 1
- 1
- 1

0
0

- 4
- 5

5
- 3

- 2
5
|

7
V-
7

2
2
2

0
0

Right Array

1
0
0
0

£
0
0
0

-i
-i
-i

1

T3I

f

n

0
1
0
0

0
- 1

0
0

- 1
0
0

0
0

- f

0
0
1
0

0
0
i
0

0
i
0

0
- A

0

- A
0

0
0
0
1

0
0
0
i

0
0
i
0
0

"I
0

The process yields two null rows from a, corresponding to linearly-
independent rows on the right, so that the adjoint A is null. The
following four relations, derived from the rows corresponding to the
null rows of the left-hand arrays, may be noted:

[2, - 1 , - 1 , 0]a = 0,

[1, - 2 , 0, - l ] a = 0,

a{5, - 1 1 , - 7 , 0} = 0,

a{2, - 1 , 0, - l } = 0.

4-13. Numerical Solution of Simultaneous Linear Algebraic
Equations.

(a) Preliminary Remarks on the General Nature of the Solution.
Before dealing with methods of solution we shall briefly consider the
general nature of the solution.

Suppose the given system of m equations in m unknowns x to be
ax = h. Then, if a is non-singular, the equations have a unique solu-
tion. On the other hand, if a is singular, the m equations are either
incompatible or not linearly independent. To make this clear, let us
suppose a to be of rank r. Then a is equivalent to a canonical matrix C
which has units in the first r places of the principal diagonal and zero
elements elsewhere (see § 3-13). We may therefore substitute pCq for a
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(where p and q are non-singular matrices) and write the given equations
a s pCqx = h.

Hence if y = qx and^p-1A = I, we obtain the equivalent set of equations

Cy = l. (1)

From the form of the canonical matrix C it is seen at once that the m
scalar equations contained in (1) are incompatible unless

and that when these conditions happen to be satisfied the solution is
yi = li for i^r, with yr+v yr+2, *..,ym arbitrary. The corresponding
values of x are in this case given by

X =

The most general solution of the original equations in x is accordingly
the sum of a unique column and of arbitrary multiples of m — r other
columns. For instance, if the equations are

T2 2
6 1
4 - 1
.2 0

5
5
0
1

3"
4

1
1.

x2

x3

= "5"
5
0

. 1 -

(2)

the matrix a is of rank 2, and the most general solution is found to be

x = {h 2, 0, 0} + a { - i , - 2 , 1, 0} + / ? { - i - 1 , 0, 1},

where a and /? are arbitrary constants.
When a is non-singular and the solution of a system of equations

ax = h is required with the numbers h left general, the methods of
reciprocation given in §§ 4*8-4-10 can be used immediately to give the
required solution x = a~xh. In the discussion which follows it is
assumed that the numbers h have assigned values.

(6) Solution by Method of Postmultiplication. In this method
operations are performed on columns, and it is necessary to assume the
equations to be given in the form xa = h, where x and h now denote
row matrices, and a is a given square matrix. When postmultiplied
by the n— 1 matrices Mi (see § 4-8), this equation becomes

x M2... M^.= x<r =

Hence x = h(M1M2... Mn_1) o—1.
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The following representative scheme of computation for a system of
four equations is an obvious modification of the scheme given in § 4-8.
The essential difference is that, whereas formerly a computation of
the matrix product M1M2...Mn_1 was necessary, now only the row
hM1 M2... Mn_x need be obtained. The calculation of this row is effected
simultaneously with the reduction of a to or.

1 2 3 4

alx a12 alz

&2\ ®22 ^23

^31 ^32 ^33

^41 ^42 ^43

K K

K b22

3̂*1 &32

K

• u

« 2 4

« 3 4

%

K

hi

hz
&33

Cl2

C22

0 3 2

1
0
0
_

.A*
1
0

—

- S i

l

, 0 3 3

0
1
0

—

-A3

0
1

—

0
0
1

These calculations give the result

xcr =

0
0

0
0

Commencing with the last column of o* and working backwards to the
first, we can now derive the values of x2, xv x± and xs in succession. Thus

or

Xl 2 C21 = ~~ C2Xl C l l + X2 C21 = ^3 O r ^1 == (^3 ~~ C21
, c l l

and so on.
If the entire first column of any left-hand array—for instance

{A3, cn, c21]—is null, the given equations are not linearly independent.
On the other hand, if such a column is null with the exception of its
first element (for instance, if A3 4=0 but c n = c21 = 0), then the equa-
tions are incompatible.
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EXAMPLES

(i) Equations Linearly Independent, As a simple illustration sup-
pose the given equations to be

/y» I Q/y» I P\/y» — __ "I

r ^4 — o,

or x 4 1
0 - 1 3 - 1
3 1 0 2

.1 - 2 5 1-

The calculations which follow should be compared with those in the
example to §4-8:

= [2,1,-1,3] .

2

1

0

3

1*

1

4
- 1

1

- 2

5 .

6

— 1 *

7

- 1

1

3

0

5

- 1 1

- 4

3

- 1 5

4

14*

6

3

3
- 1

2

1

1

2

- 1

- 1

- 4

- 4

- 8

-y-
--V-*

—
2
1

0

0

—

3
1

0

—

1

—

- 5

0
1

0

—

- 1

0

1

—

- 1

0

0

1

Hence [xv x2, xz, 1 6 14* 0
0 - 1 * 0 0

6 - ^ -

= [2, 5, 4, —2^

Accordingly ^ 3 ( -^) = _
1* 0 0 0 J

or x3

or X,= 4 -

or #2 = -

or 4̂ =
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(ii) Equaticns not Linearly Independent. As an illustration we may
take the set of equations (2), which can be expressed as

"2 6 4 2'
2 1 - 1 0
5 5 0 1
3 4 1 1

= [5,5,0,1].

Then 5
2*

2

5

3

5
6
1

5

4

- 1 0

- 5 *

- 1 0

- 5

0
4

- 1

0
1

- 1 0

- 5

- 1 0

- 5

0

0

0

1
2

0

1
1

- 4

- 2

- 4

- 2

0

0

0

—
- 3

1

0

0

—

- 1

1

0

—
- 2

0

1

0

—

- f
0
1

—
- 1

0

0
1

Hence [xv x2, xz, a j "2* 0 0 0' = [5,-10,0,0],
2 - 5 * 0 0
5 - 1 0 0 0

.3 - 5 0 0.
so that two unknowns are arbitrary (say xs = oc and #4 = /?), while

The solution is accordingly
x = [i, 2, 0, 0] + a [ - i , - 2 , 1, 0 ]+ /? [ - | , - 1 , 0, 1].

(iii) Equations Incompatible. Suppose
1 2 1
1 3 4

- 2 - 1 7

= [4,1,3].

Then 4

1*

1

- 2

1

2

3

- 1

- 7

1*

3

3

1

4

7

- 1

3

9

20

0*

—

- 2

1

0

—

- 3

1

—

- 1

0
1
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The given equations are thus equivalent to
= [4,-7,20],[xlyx2,x3]r 1* 0 0

1 1* 0
[ -2 3 0*.

and they are therefore incompatible.

(c) Solution by Direct Operations on Rows. For the application of
this method, which is a variant of that described in §4-10, the equations
are taken in the form ax = h. The initial right-hand array can be taken
to be the column h, and only single elements are written below on the
right. If during the process a null row can be formed on the left corre-
sponding to a non-zero element on the right, the equations are incom-
patible ; however, if this element also is zero, the equations are consistent
but not linearly independent. If q null rows with corresponding zero
elements on the right can be formed, the general solution will contain
q arbitrary constants.

EXAMPLES

(iv) Equations Linearly Independent. The equations are assumed to
be those given in example (i), and the computations follow the scheme
of §4-10.

Operation

r2-4rx

'3-'i

'4-3*1

3r5 + r6

' 7 - ' 5

9r9+r8

i*V'io

i'9~'n
r7+2ru

'i~'n

'i3 + ?'i2
r 1 4 -3r1 2

- ' i s

' l 2

' n

Row No.

' i

' 2

' s

' s
'e
' ?

' 8

' 9

' l 0

' n

' 1 2

' l 3

' 1 4

' 1 5

' 1 6

—

—

—

—

1
4
1
3

0
0
0

0
0

0

0

0
0
1

0
1

1
0
0
0

Left Array

0
- 1

3
- 1

_ i

3
- 1

0
0

0

0

0
- 1

0

- 1
0

0
1
0
0

3
1
0
2

- 1 1
- 3
- 7

- 3 6
4

0

0

1
- 7

3

0
0

0
0
1
0

1
- 2

5
1

- 6
4

- 2

- 1 4
4

22

1

0
0
0

0
0

0
0
0
1

Column

2
1

- 1
3

- 7
- 3
- 3

- 2 4
4

12

T T

- I !
T l

T T

TV

TV

- T !

T T
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Hence {xv x2, x3, x^ = {&, - ^ , T
5
T, T

6
T}.

(v) Equations not Linearly Independent. If the equations are those
of example (ii), the scheme of computation is

Operation

r2-3r!

U-rx

U~r5
5r7-2r5

Row No.

rx

u

r8

2
6
4
2

0
0
0

0
0

Left Array

2
1

— 1
0

- 5
- 5
- 2

0
0

5
5
0
1

- 1 0
- 1 0

- 4

0
0

3
4
1
1

- 5
- 5
- 2

0
0

Column

5
5
0
1

- 1 0
- 1 0

- 4

0
0

Since two null rows are derived, only two of the original equations are
linearly independent, and these may be chosen to correspond to rx

and r5. Thus p 2 5 3] {^ *„«,,*,} = [5].
Lo 1 2 i j L2J

Two of the unknowns may be assigned arbitrarily, say xs = a and
#4 = /?. The equations can then be written

and the calculations are continued as previously.

Operation

irio ~ r n

Row No.

ru

*12

Left Array

2 2
0 1

1 0
0 1

Column

5-5a-3j8
2-2a-j3

2-2a-j3

Hence
or {*!,

{xv x2) = {J, 2}-a{J, 2} -/?{£, 1},
= {J, 2, 0, 0} + a { - i , - 2 , 1, 0}+/?{-f, - 1, 0, 1}.

(vi) Equations Incompatible. Taking the same equations as those in
example (iii), we obtain

Operation

^2-2^

^ 3 - ^ 1

r5-3r4

Row No.

^2
^3

r*
r5

n

Left Array

1 1 - 2
2 3 - 1
1 4 7

0 1 3
0 3 9

0 0 0

Column

4
1
3

- 7
- 1

20

Row /6 shows that the equations are incompatible.
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(d) Iterative Methods of Solution. In certain cases it may be possible
to apply successfully an iterative method of solution. Denote the
equations as ax = h, and let a = v + w, where v is chosen to be a non-
singular matrix which readily admits inversion. The exact solution
then is

17x = a^h
If/ = — v~xw and g = v~xh, the solution may be developed as

provided that this matrix series converges. The conditions for con-
vergence are satisfied if the moduli of the latent roots of /—namely,
the roots of the equation | XI —f \ = 0—are all less than unity. This
equation can be written alternatively as

|vA + w| = 0.

When the foregoing conditions for convergence are satisfied, the suc-
cessive approximations to x, say #(0), #(1), x(2), etc. may be taken as

x(0) = g,

= g+fx(0),

and generally x(r+ 1) = g+fx(r).

If an approximate solution is already known, this will naturally be
used as the first approximation in place of x(0) = g\ the computations
are thereby shortened.

Two methods of solution based on this principle have been developed.
A tabular method due to Morris is effectively the same as that
described, with the matrix v chosen to have zero elements to the right
of its principal diagonal and the same elements as a elsewhere; thus w
has zero elements in and to the left of its principal diagonal, and the
same elements as a elsewhere. Since v is triangular, its reciprocal can
readily be found as in § 4-5. Morris has applied his method successfully
to the solution of sets of linear equations such as arise in certain struc-
tural problems.* In these problems the matrix a is symmetrical, and
has its origin in a quadratic form which has all its discriminants
positive. It may be noted that it is possible to convert any system
of linearly independent algebraic equations ax = h to a system of the
foregoing type by premultiplication by the matrix a' (see §§ 1-13, 1-16).

* Ref. 9. For such problems the method is always convergent.
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In the second method the matrix v is chosen to be diagonal or more
simply the unit matrix. In certain types of statical problem the
equations arise naturally in the form x = g+fx, and provided the
latent roots of / are all less than unity, the process described, with
v = / , provides the solution. An illustration is given in § 10-9.

E X A M P L E

(vii) Morris9 Type of Solution. Let the equations be

25
2
1

2
10
1 x.

"25
2
1

0
10
1

0
0
4

for which the exact solution is x = {2, 5, 9}. Then
v = T25 0 01; ir1 = f 0-04, 0,

- 0-008, 0-1,
.-0-008, -0-025,

/ = — v-hv = [0, -0-08, -0-04 ] ; g = v~xh =
0, 0-016,-0-092
.0, 0-016, 0-033.

Hence the iterative process yields

2-760
5-748
8-623

-0-7013
0-3765

x(l)

50467
8-9995

-0-7472
0-3777

x(2)

5-0008
9-0007

/*(2)

-0-7481
0-3770

x(3)

4-9999
90000

/*(3)

-0-7480
0-3770

*(4)

5-0000
9-0000

M*)
-0-7600
-0-7480
0-3770

x{5)

2-0000
50000
90000

It may be noted that until the final step is reached it is unnecessary to
compute the leading element in x(r), since this is always multiplied
by a cipher in the iteration.

P A R T II. H I G H P O W E R S OF A M A T R I X
AND THE L A T E N T R O O T S

4*14. Preliminary Summary of Sylvester's Theorem. A high
power of a matrix in general approximates to a relatively simple form,
and the dominant latent roots—namely, the roots of greatest modulus
—can be found from this limiting form. The method of calculation* is
based on simple applications of Sylvester's theorem. For convenience
of reference the simple and the confluent forms of this theorem will
first be restated from §§ 3-9 and 3-10.

* Refs. 10, 1L
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Simple Form of Sylvester's Theorem. If P(u) denotes any polynomial
of a square matrix u of order n, and if all the latent roots A1? A2,..., Xn

of u are distinct, then n

where Z0(Xr) denotes the square matrix

J7(Ar)/A(Ar) = fer/cr/A(Ar)= n ftjl-u)l II ftj~-K)>

(i) /^A\
and A(Ar) is an abbreviation for I-TH

Confluent Form of Sylvester's Theorem. If the latent roots are not
all distinct, the terms contributed to P(u) by a typical set of s equal
roots A1? A2,..., As are given by

:-* P(A)i^(A)l
I*-1 AS(A) JA_A'

where AS(A) = (A — As+1) (A — As+2) ••• (A —Aw). An alternative is
(1) (3-D

(1)

m which ^ J

for i = 0,1, . . . , 5 -1 , and

j A = A ;
Any matrix coefficient of the type ZQ(XS) either has unit rank or is

null. It is of unit rank, and therefore expressible as a matrix product
JCSKS, when the characteristic matrix/(A) = XI — u is simply degenerate
for A = As. In other cases it is null.

4*15. Evaluation of the Dominant Latent Roots from the
Limiting Form of a High Power of a Matrix. The limiting
form of a high power of a matrix depends upon the number and the
nature of the dominant latent roots (see also examples (i) and (ii) of
§ 3-9). Some of the possible cases are discussed below.

(i) Single Dominant Real Root. If there is a single dominant root,
say Al5 the general form of Sylvester's theorem shows that when
P(u) = um and m is large

* AlV^AJ (1)
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I t will be convenient to express this as

^ = Af£0(Ai),
where = denotes approximate equality. If Em is an element occupying
a particular position in um, it follows that

Em+JEm^Av (2)

(ii) Repeated Dominant Real Root. Next, let the roots of greatest
modulus consist of a set of s equal roots A1? A2,..., A3. Choose

P(u) = u™P0(u),

where P0(u) is a polynomial of u independent of m. When m is large

If P0(u) = (As I — u)s, all the terms in the expanded form of the expres-
sion on the right of (3) vanish, so that

Accordingly, if again Em is an element having a selected position in
um, then for m large As will be given approximately by the equation

= 0.

(4)
Only one of the roots of this equation is the true value of As. The true
root is readily determinable, since it will be common to (4) and the
similar equations which can be obtained from elements having other
selected positions in um.

When the characteristic matrix has multiple degeneracy for A = As,
equation (4) can be replaced by one of lower degree. Suppose the
degeneracy to be q( > 1): then F(A) and the derived adjoint matrices

up to and including F(A) are all null for A = As (see Theorem (E) of
§ 3-5). Accordingly, if in (3) we choose P0(u) = (As I - u)s~*+1, the terms
in the expanded form of the expression on the right again vanish, and
the final equation for As is

In particular, when q = s, the root As is given by

Em\~Em+1 = 0.



136 COMPLEX DOMINANT LATENT ROOTS 4*15

(iii) Dominant Roots a Conjugate Complex Pair. Suppose the roots
of greatest modulus to be Xx = /i + io) and A2 = /i — io).. Then if as
before P0(u) is a polynomial independent of m,

umP0(u) = AfP0(A1) ^o(^i) + 2̂*̂ 0(̂ 2) ^0(^2) (5)

When

(5) gives ^m(Ax I - u)

or, approximately,

-u) = 0,

= 0. (6)

The values of /i and (0 can be found from (6) and a companion equation
which is either the next equation in the same sequence or the corre-
sponding equation for some other element of the matrix.

Other possible cases arise when the dominant roots embrace several
distinct roots or several distinct sets of equal roots. When required,
the formulae appropriate to such cases can be constructed by the
methods already exemplified. The nature of the dominant root or
roots is in general disclosed by the manner in which Em+1/Em varies
with m. If this ratio quickly converges to a constant, then the dominant
root is real and equal to this constant. If the ratio does not change sign
but is very slowly convergent, there are two or more equal or nearly
equal dominant roots. On the other hand, if the ratio does show
changes of sign when m is large, then the dominant roots are complex.

Simplified methods for obtaining the latent roots are given in § 4*17.

E X A M P L E S

(i) Single Dominant Real Root. Suppose

u = [2 4 6
3 9 15
.4 16 36

Here, by direct multiplication,

u* = f 72220 264188 557820
173289 633957 1338633
[.388448 1421248 3001248.

u° = 3168284 11591692 24477660"
7602981 27816897 58739877

.17045632 62364992 131694336
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The ratios of the elements of u5 to the corresponding elements of u* are

43-8699, 43-8767, 43-8809,
43-8746, 43-8782, 43-8805,
43-8814, 43-8804, 43-8799.

By (2) these ratios, whose mean is 43-8781, should give an approximate
value for the dominant root. The actual latent roots are 43-8800,
2-71747, and 0-402541, so that although the powers of u employed
are very low, the approximation to the dominant root is quite
good. The separation of this root from the adjacent root is, however,
unusually great in the present example. Generally, the approximation
is not so rapid.

(ii) Once Repeated Dominant Real Root. The typical equation giving
the latent root in this case is (see (4))

Suppose u = 1 2
4 - 3
1 3

of which the latent roots are 5, 5, 1. It is found that

us = f 952149 625000 63476"
-463868 -234375 -161132

952148 625000 63477.

uv = 5249024 3515625 219726
-2807618 -1562500 -708007

5249023 3515625 219727.

u10 = T 28686524 19531250 610351"
-16479493 -9765625 -3051757

28686523 19531250 610352

The leading diagonal elements give

952149A2-2(5249024) A+ 28686524 = 0,

so that A = 5-000008 or 6-025628.

Similarly the last diagonal elements yield

A = 4-999966 or 1-923078.
Hence A = 5.
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(iii) Unrepeated Conjugate Complex Dominant Boots. Let

u= V26 - 54 4

Here

v? =

ulo =

13 - 2 8 3
.26 - 5 6 5

of which the latent roots can be shown to be 1 and 1 ±

•-2280668 4933944 -372606

-1184118 2645932 -277695

.-2372214 5117340 -372911.

-4843852 5871576 38161301,

-3610022 5407196 1812849

_4847830 5697052 3998609.

"49609716 -116539400 17319970"

23567050 -57979844 10845745

.51981930 -121656740 17692881.

If E is the first element in the top row, equation (6) becomes

-2280668(/*2 + o>2) + 2(4843852) ̂  + 49609716 = 0,

while if E is the second element in the top row

4933944(/*2 + w2)-2(5871576)/*- 116539400 = 0.

These equations yield JLC2 + (O2 = 25-999977, and 2/i = 1-999979. Hence
fi = 1 and (o = 5 with an error of less than 1 in 104.

4-16. Evaluation of the Matrix Coefficients Z for the
Dominant Roots, It is sometimes required to calculate not only the
latent roots but also the corresponding matrix coefficients Z in Syl-
vester's expansion for P(u). In dynamical applications, for instance,
these coefficients effectively determine the modes of the constituent
motions. It will now be shown how the matrices Z appropriate to the
dominant root or roots can be found, once these roots have been
determined.

(i) Single Dominant Real Root. If Ax is the dominant root, then by

(ii) Repeated Dominant Real Root. Suppose firstly that the dominant
roots consist of two equal roots A1? A2. In this case, when P(u) = um

and mis large, (4-14-1) gives

) . (1)
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The next relation of the sequence is

so that - A2"mum(X2I-u)-> Z0(X2), (2)

and A2" ™~H™[\21 + m(A21-u)]-> Z±(X2) (3)

When A2I — u is doubly degenerate, Z0(X2) is null, and then (1) gives
a t O n C e ^ - "Ht -^Z^) .

The derivation of the appropriate formulae is rather more trouble-
some if the roots of greatest modulus consist of s equal roots A1; A2,...,
Ag. In this case, taking P(u) = umP0(u) and assuming m large, we obtain
by (4-14-1)

To isolate any particular matrix coefficient, say ̂ (Ag), it is necessary

to choose P0(u) in such a way that -7^- (AmP0(A)) vanishes when A = As

CLAP

and p=\=s — i— 1, but does not vanish when A = As and p = s — i—1.
It can be verified that the appropriate polynomial P0(u, i) in this case
is given by

+ (AsJ

where i ̂  s — 1. The matrix Zt(Xs) is then given by the formula

As for the once repeated dominant root, the formulae can be
simplified if As/ — u is multiply degenerate.

(iii) Dominant Roots a Conjugate Complex Pair. In this case, when
P0(u) = A2I-u in (4-15-5),

^(A2/-^)/AT(A2-A1)->Z0(A1). (4)

In general ZQ{X^) is complex, and Z^(X2) is its conjugate.
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E X A M P L E S

(i) Single Dominant Real Boot. Assuming u to be as for example (i)
of § 4*15, and applying (4-15-1) with m = 5 and Ax = 43-8781 (the mean
computed dominant root), we obtain the approximation

= ["0-0194799 0-0712705 0-150499"
0-0467463 0171030 0-361157

LO-104804 0-383446 0-809711.
(i)

The value of ZO(XX) computed directly from #(A1)/A(A1) for the true
root is

["00194753
0-0467356
0104781

0-0712545
0-170992
0-383361

0-150466
0-361078
0-809532

(ii) Once Repeated Dominant Real Root. Suppose u to be the matrix
in example (ii) of §4-15, and apply formulae (2) and (3), with m = 8
and A2 = 5. The approximate results work out as

" 1-249994 1-000000 -0-249994"
-1-249992 -1-000000 0-249992

1-250004 1-000000 -0-250004.

and 2?i(A2) = [0-437511 0 0-562489'
0-812485 1-0 -0-812485

Lo-437492 0 0-562508

while the accurate values are

^<As) = f 1 2 5 1 0 -0-251
-1-25 - 1 0 0-25

L 1-25 1-0 -0-25J

and Zx{\2) = TO-4375 0 0-5625
0-8125 1-0 -0-8125
0-4375 0 0-5625J

4*17. Simplified Iterative Methods. It has been shown in
§§4-15 and 4-16 that the dominant latent roots of a matrix u and the
corresponding matrix coefficients Z can be evaluated by raising u to
a high power. The same result can be achieved, and usually with less
labour, by repeated premultiplications of an arbitrary column by u, or
alternatively by repeated postmultiplications of an arbitrary row by u.



4-17 SIMPLIFIED ITERATIVE METHODS 141

To illustrate the method, consider firstly the simple case where
there is a single real dominant root Av Let x(0) be an arbitrary column
of n elements. Then by (4-15-1)

This may be written as
(i)

umx{0) = A f i 1 / c / A
(i)

or, if <J> denotes the scalar factor /c1o;(O)/A(A1), as

Accordingly, unless x(0) happens to be so chosen that O vanishes, Ax

is given by the ratio of corresponding elements in um+1x(0) and umx(O).
The formula (4-15-2) is therefore still applicable if Em represents one
of the elements of umx(0). Moreover, the modal column kx is propor-
tional to umx(0).

Again, if y(0) denotes an arbitrary row of n elements, then

where Y = y(0) kJ

Hence continued postmultiplication of y(0) by u yields a row, the
elements of which are proportional to the corresponding elements of
KV Also Ax can be derived as before.

A further case of importance is where the dominant roots are
conjugate complex and unrepeated. Equation (4-15-6) is clearly still
applicable if Em is interpreted to mean an element of the column
Cm==umx(0), and in this case by (4-16-4)

(i)
W i ) *(<>) = *i/c1^(0)/A(A1) = (X2Cm - Cm+1)/Af (A2 - Ax).

The modal column k± is thus proportional to

Similarly, if Em is an element of the row Rm == y(0) um, the row K± is
proportional to > p p

Another application of the iterative method, which may be
mentioned here, is to the construction of the characteristic equation
of a matrix u. If this equation is written

An+p1\
n-1+p2A.n-*+...+pn = 0,
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then by the Cayley-Hamilton theorem

un+p1u
n-1+p2u

n~2+...+pnI = 0.

Postmultiplying this equation by an arbitrary column x(0) and writing
ux(0) = x(l), u2x(0) = ux(l) = x(2), etc., we obtain

x(n)+p1x(n-l)+p2x(n-2) + ...+pnx(0) = 0.

This yields n simultaneous scalar equations for the n unknown
coefficients p.

E X A M P L E S

(i) Determination of the Dominant Latent Root. Consider the matrix u
of example (i) of §4-15. If {0,0,1} is chosen as an arbitrary column,
the first premultiplication gives

"0"
0

.1.

= • 6"

15
.36,

It is convenient, as each new column is obtained, to extract a scalar
factor so as to reduce a certain element (say the last) to unity. The
iterative process can then be tabulated as follows:

Initial
column

0
0
1

Iteration number

1

6
15
36

01667
0-4167
10

2

8-00
19-25
43-33

0-1846
0-4443
1-0

815
19-55
43-85

3

0-1859
0-4458
10

816
19-57
43-88

4

0-1860
0-4460
10

5

, 8-16
19-57
43-88

01860
0-4460
10

The fifth iteration repeats the fourth. Hence

4
9

16

6"
15
36.

"0
0

_1

•I860"
•4460

•o

= 43-88

and 43-88 is therefore the dominant latent root, and {0-1860,0-4460,1-0}
is the associated modal column.

(ii) Construction of the Characteristic Equation. The characteristic
equation of the matrix used in example (i) can be found by the direct
iteration f . r .

u{0, 0,1) = (6,15, 3b),

^{6,15, 36} = {288, 693,1560},

u{288, 693,1560} = {12708, 30501, 68400}.



"12708"
30501
_68400.

+Pi ' 288-
693

.1560.

" 288, 6,0-
693,15,0

.1560, 36,1_

r
1

+ P2 • 6"

15
.36.

PI] = r-
p. 1-
Pz\ L -

•o

0
.1

• 12708"

30501
• 68400_
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Hence

or

The solution, which is readily found by any of the methods of § 4*13, is

{PvPvPs} = {-47, 138, -48}.

The characteristic equation of u is therefore

A3-47A2-H38A-48 = 0.

4*18. Computation of the Non-Dominant Latent Roots.
When the dominant latent root or roots have been found, the remaining
roots can be obtained successively in the order of their moduli by an
extension of the methods already explained. The essence of the exten-
sion consists in the construction of a modified matrix v which possesses
all the latent roots of u except the dominant roots.

For simplicity, suppose there to be a single dominant root Al9 and
assume that Ax and the corresponding row KX have already been
calculated. Then, if As is any other root, we have by (3-8-11)

(1)

Let Krl be any non-zero element of KV and denote as w the square matrix
which has K /̂ZC^ for its rth row and its remaining n — 1 rows all null.
Then in view of (1) we can write ks = (I — w) ks. But (As/ — u) ks = 0:
hence also , . r w ^ /rtX

(A8I — v)ks = 0, (2)

where v = u(I — w)=u iuir\ K,. (3)
V ; Krl

From (2) it is clear that A2, A3,...,Xn are latent roots of v, and that
k2, k3,..., kn are the corresponding modal columns* of v. The remaining
latent root of v is A = 0: this follows from the fact that the rth column
of v is null, as is obvious from (3). When v has been obtained, the
dominant latent root of this matrix (which is necessarily the sub-
dominant latent root of u) can be calculated by the methods of §§4-15

* It is also easily shown that the 5th row of the matrix K appropriate to v is given by — — - .
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or 4-17. Evidently all the latent roots of u can be found successively
by a continuation of the process.

An alternative procedure in the calculation of the subdominant root
is to omit the rth column and the rth row of v, and to apply the iterative
method to the matrix of reduced order so derived. When this treatment
is adopted the typical modal column ks will be determined apart from
the element krs, which will have to be calculated independently from (1).

If there are two distinct dominant roots Ax and A2, and if Krl, Kq2 (r =(= q)
are, respectively, non-zero elements of /cx and K2, the matrix w must be
constructed to have KxJKrl and K2/Kq2 for its rth and qth rows respectively,
and to have its remaining n — 2 rows all null. The matrix v = u(I — w)
in this case has its rth and qth columns null, and has therefore two zero
latent roots. The remaining latent roots are A3, A4,..., An, and the
corresponding modal columns are ks, &4,..., kn. The method of extension
to cases of three or more distinct dominant roots will be obvious.

It may be noted that in the special case of a complex pair of dominant
roots A1? A2, since KX is proportional to the row X2Rm — Rm+V and
similarly K2 is proportional to the row A1i2m--.Rm+1 (see §4-17), the
two equations corresponding to (1) yield Rmks = 0 and Rm+1k8 = 0.
Hence the elements E can be used directly in place of the elements K
in the construction of the matrix v.

E X A M P L E

Computation of the Subdominant Latent Root. The method will
be used to determine the subdominant latent root of the matrix u of
example (i) of §4*17.

Firstly, repeated postmultiplication of an arbitrary row by u yields

[0-1294,0-4736,1-0] [2 4 61 = 43-88 [0-1294,0-4736,1-0].
3 9 15
4 16 36J

Hence KX = [0-1294,0-4736,1-0], and choosing r = 1 in (3), we obtain

v = [1, 3-660, 7-728]

10, -3-320, -9-456
0,-1-980,-8-184
0, 1-360, 5 088.
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The results of the iterative process, with v as premultiplier and {0,0,1}
as an arbitrary column, are given below. It should be noted par-
ticularly that, except in the last step, the top elements of the columns
need not be calculated.

Initial
column

0
0
1

Iteration number

1

-8-184
5-088

-1-608
1-0

2

-5-000
2-901

-1-724
1 0

3

-4-770
2-743

-1-739
1-0

4

-4-741
2-723

-1-741
10

Iteration number

5

-4-737
2-720

-1-742
1-0

6

-3-673
-4-735

2-719

-1-351
-1-742

1-0

Since the sixth iteration repeats the fifth, the top element is computed,
and the value 2-719 is deduced for the latent root. The corresponding
modal column is proportional to { —1*351, —1-742, 1-0}.

4*19. Upper Bounds to the Powers of a Matrix. Formulae
giving upper bounds to the powers of a matrix are sometimes required,
and we shall now obtain some simple formulae of this type. For
definiteness, suppose u to be a square matrix of order 3 with real or
complex elements, and write the typical element of u8 as

where U^s) is the essentially positive modulus, and a has unit modulus.
The value of a in each case will not be required, so that the suffices
which should strictly be associated with this symbol are omitted.
Further, denote as ri} c$ the sum of the moduli of the elements in the
ith. row and the jth column, respectively, of u, and let Ri9 Cj be, re-
spectively, the greatest modulus in the ith row and^th column.

Then

= Un(l)aUn{l) a + U12(1)*U21(1)*+ «713(1) <xU31(l) a,

so that Un(2) ^ ££(1) + C712(l) ?721(1) + *713(1) *731(1).

Hence ^ ( ^ ^ f i C i and also ^ i ? ^ . The remaining elements of u2

may be treated on a similar basis. It follows that the moduli of the
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elements of v? are all less than the corresponding elements of both
the matrices

and

Proceeding next to uz, and using A} we have

R7u(l)a a Ulz(l)a
a Un(l)a

where J3 represents a quantity of modulus not exceeding unity. Hence,
for instance, ?7U(3) < (G1 + G% + C3) rxCl9 and U21(S) < ( ^ + C2 + C3) r 2 C r

This shows that the moduli of the elements of v? are dominated by the
corresponding elements of (C^ + Cg + Og)^, or briefly uz is dominated

RxcJ

Again, using B> we obtain

Un(l)oc
U21(l)a U22(l)oc a R2c3fi

Consequently UX1(3) < (R± + R2 + Rz)R1c1 etc., so that uz is also domi-
nated by (R± + R2+Rz) B.

The argument can be extended to show that u8 is dominated by the
two matrices

The corresponding theorem for a square matrix u of general order n
is as follows: Let ri9 fy be the sum of the moduli in the ith row and the
jth column of u, respectively, and Ri9 Q be the greatest modulus in
the ith row, and in the jth column, respectively. Then the moduli of
the elements of u8 will not exceed the corresponding elements in the
two matrices

= (R1+R2+...+Rn)°-*{R1,R2,...,Rn}[cvc2,...,cnl



4-19 BOUNDS TO POWERS OF MATRICES 147

where O 2. Clearly, for the upper bound to the modulus of any specific
element of u8 the smaller of the two corresponding values given by
As and B8 can be selected.

From these results another upper bound can be derived which,
though considerably cruder, is often sufficient in the discussion of the
convergence of a matrix series. Thus, if U is the greatest modulus in
u, then ri<nU and Cj<nU, Hence u8 is a fortiori dominated by

, U,..., U].

An upper bound to the modulus of any element of u8 is therefore

EXAMPLES

Take

Then

u =

Hence
Ae = 84{3, 7,3} [3,3,2] = T36864 36864 245761,

86016 86016 57344
L36864 36864 24576J

JB6 = 74{2, 3, 2} [4, 5,4] = T19208 24010 192081 .
28812 36015 28812
L19208 24010 19208J

In this case Be offers the smaller bounds to the moduli of the elements
in%6. In actual fact

u* = F 553, - 948, 600
-2322, 4123,-2670

1422,-2496, 1627

It may be noted that the bounds given by B6 are much lower than
the value 177,147 (= 3536) obtained from n^U8,
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PART III. ALGEBRAIC EQUATIONS OF GENERAL DEGREE

4*20. Solution of Algebraic Equations and Adaptation of
Aitken's Formulae. It is easy to verify that the equation

= 0 (1)

is the characteristic equation of the matrix

u = o,
o,

1,

o, 1,
..., 0,
..., 0,

0

0

0, 0, 0, ..., 0, 1

The methods of Part II can be used to obtain the latent roots of u,
and therefore the roots of (1).

It has been shown in example (vii) of § 3-7 that, for any square matrix
u whose characteristic equation is (1), the elements E having a specified
position in the matrices Y(s) = u8+n satisfy the difference equation

E(s)+p1E(s-l) + ...+pnE(s-n) = 0 (2)

Consider firstly the simple product ux(0), where x(0) is a column of
arbitrary elements xv x2,..., xn. This yields

ux(0) = {x2,xZ9 ...,xnixn+i},

Where -X*+i=PiXn+Pt*n-l+---+P»-lx*+Pn*l (3)

The value of xn+1 given by (3) is precisely the value of E(s) given by the
difference equation (2) if

E(a-1) = xn, E(s-2) = xn__v ..., E(s-n) = xv

A second premultiplication by u leads to {xz,x±, ...,xn+2}, where
xn+2 is obtained from xn+1,xn, ...9x2 in the same way that xn+1 is
obtained from xn,xn_v ...,xv Hence repeated premultiplication of
xi®) by u generates a single sequence of elements x which are the
successive terms in that solution of the difference equation which
begins with the set of numbers xl9 x2,..., xn. The theory given in Part II
shows that the dominant root or roots of (1) can be obtained from the
members of this sequence. When the dominant root Axis real its value
is the limit of xv+1jxp when p is large. This is the method of solution
invented by Daniel Bernoulli in 1728.
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Bernoulli's method of solution of algebraic equations in its original
form is only applicable when the dominant root is real, but an extension
has been developed by Aitken in which this restriction is removed.*
Aitken gives a number of useful formulae, and, as these are all con-
sequences of the fact that xs is given by an expression of the form (3),
they can be immediately adapted to the case where the sequence of
elements results from repeated premultiplication of an arbitrary
column by any square matrix u. The most useful of these formulae can
be written % % > T\ IT\

(4)

where Es's+p-1

Js+1 Eg+2 E,'s+p

. -Us+p-1 -^s+p ••• A

and Er represents the value of an element in some arbitrary fixed
position in ur, urx, or yur. I t is assumed that the latent roots are
arranged in the descending order of their moduli, and that s is so large
that the contributions to the elements E due to the roots following Ap

are negligible. Aitken gives a scheme based on this formula for succes-
sive approximations to the values of A1? A^a, ^i^2^3> e^c- (see a l s o

§10-11).
The formula (4) can be proved as follows. By equation (3-7-4) the

expression for the general element is approximately

,K-
Accordingly

and

Hence

A!
AI+1

Af—

= Af+i

AJ+2

X

AI+1

A!**

A|+*

••

••

L

. . .

. . .

. . .

• K

• W

A|,+ 1

\°+*>

/A = A
* Ref.

X

12.

X e i

e2

eP

6^ A-ĵ

«2 A2

ep A p

, . . . A , .

Aiex

A2e2

Xpep

ex ...

e2 ...

ep ...

. . . XP~X€ 1

... Af-^a

... X^ep

Af-^e2

K-^P
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When p = 2 and Ax and A2 are conjugate complexes ju, ± ico, the for-
mula becomes

Es+i

Es+2

Es1s+2

rs+3
(5)

This can also be deduced from (4-15-6) and a consecutive equation
obtained by substituting m + 1 for m. Another useful formula, which
is deducible by a similar method, is

^s+3

A's+l
(6)

When Ax and A2 are conjugate complex quantities, this equation yields
a value for 2/i which agrees with that given by equation (4-15-6) and
the consecutive equation.

4-21. General Remarks on Iterative Methods. The latent
roots of a matrix are normally calculated by expansion of the cha-
racteristic function and solution of the resulting algebraic equation
by the usual methods. However, when the order of the matrix is high,
this process is excessively laborious, and the methods given in pre-
ceding sections become advantageous, more especially when only a
few of the roots with greatest moduli are required.* Repeated multi-
plications by a matrix are readily performed with any ordinary
calculating machine, and a machine could no doubt be devised to
perform most of the necessary operations automatically.

The rapidity of the convergence in the matrix method depends
acutely on the separation of the moduli of the latent roots. This can
obviously be increased by using some positive power of the matrix in
place of the matrix itself, but this does not always result in a saving of
labour. For example, when the original matrix is of a simple form, the
simplicity will probably not be wholly preserved in its powers. The
modal columns derived from a power of the matrix are the same as
those appropriate to the matrix itself, and the latent roots are the
corresponding powers of the original latent roots (see example (v),

* The latent roots with least moduli can be obtained by use of the reciprocal of the
matrix in place of the matrix itself.
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§3-6). The ambiguities which arise in extracting the true value Xs of
a latent root from a power may be resolved by substitution of the
known elements of the corresponding modal column k8 in one of the
n scalar equations represented by (As J — u) ka = 0.

When the chief object is to obtain the latent roots, and little interest
attaches to the modal columns, it is preferable to use the process of
repeated postmultiplication of a row matrix rather than repeated
premultiplication of a column, for the first process leads to the evalua-
tion of the matrix K required in the determination of the subdominant
latent root (see §4-18).

It may be well to point out that in general Aitken's formula (4-20-4)
will fail to give the values of more than a very few of the latent roots
unless extremely high accuracy is preserved in the calculations. On
the other hand, equation (4-20-4) is of considerable value when there
is a set of latent roots with nearly equal moduli which are considerably
larger than the moduli of the other roots. The values of a pair of such
roots with nearly equal moduli can be obtained as the roots of a quad-
ratic by means of equations (4-20-5) and (4-20-6).

4-22. Situation of the Roots of an Algebraic Equation. For
the sake of completeness a brief reference may be made to certain
further methods of computation which, though not directly relevant
to the subject of matrices, are of considerable value in investigations
on stability. The first method is based on the process described by
Routh* as cross-multiplication. This process is most simply defined as
follows: Let ao,ava2, ...,an and bo,bvb2, ...,bn be any two sets of
n + 1 numbers, some of which may be zero. Then by cross-multiplica-
tion we shall mean the derivation of a set of n numbers c0, cv ..., cn_t

such that

[c0, cv ..., cn_x] = bo[av a2,..., an] - ao[bv 62,..., 6J .

A convenient scheme of entry is represented by

Bow No. 1 an
2 6(

3 Cft

0 63 64

C2 C 3

Any member of row 3 is here derived by cross-multiplication by b0

and a0 of the two numbers situated above and one step to the right.
For instance, n _ h _ _ h

Og — ^0 4 — ^0 4*

* See p. 226 of Ref. 13.
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(a) Number and Situation of the Real Boots of an Equation (Sturm's
Functions). Sturm's theorem may be stated as follows :f Let f(x) — 0
be the given algebraic equation, and denote by fx(x) the first derived
function of f(x). Denote by/2(#),/3(#), ...,fn(x) the remainders, with
their signs changed, which occur in the process of finding the highest
common factor off(x) and fx{x). Let N(x) be the number of changes
of sign in the sequence /(#),/i(#), ...,fn(x): then the number of real
roots off(x) = 0 between x — a and x = b is N(a) — N(b).

The presence of equal roots is indicated by the vanishing of one or
more of the auxiliary functions. If fr(x) is the last of these functions
not to vanish identically, then the difference between the number of
changes of sign when a and b are substituted in f,fl9 ...,/r is equal to
the number of real roots between a and 6, each multiple root counting
only once.

A convenient scheme for the calculation of the coefficients of the
auxiliary functions is as follows: Write

f(x) = pox
n +p1x

n~1 + . . . +pn_xx +pn9

f2(x) = po(2) x"-* +Pl(2) x"-* +... +pn-2(2),

and so on. Enter the coefficients of f(x) and of f±(x) respectively as
rows 1 and 2, and derive in succession by cross-multiplication row 3
from rows 1 and 2, and row 4 from rows 2 and 3. Then the numbers in
row 4 will differ by a constant positive factor from the coefficients of
/2(#). The presence of this positive factor is immaterial, since in forming
Sturm's functions positive numerical multipliers common to any row
can be introduced or suppressed at convenience. The process is then
continued to give the coefficients of fs(x), by the adoption of the
coefficients of fx(x) and f2(x) as new initial rows. A representative
scheme of computation is set out below:

Row No. 1 p0

2
*3
4

*5
6

etc. etc.

Pi P2 Pz

X

X

etc.
t §96ofRef. 14.
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Each starred row is constructed by cross-multiplication of the two
immediately preceding unstarred rows. Each unstarred row (sub-
sequent to row 2) is formed by cross-multiplication of its two immediate
predecessors. To reduce labour any convenient positive multiplier
may be extracted from any row: the resulting row is then entered
immediately below, and the original row is of course completely ignored.
The process will be clear from the appended example.

E X A M P L E

Assume the equation to bef

f(x) = x* - 2x* - 3x2 + lOz - 4 = 0,

so that fx(x) = 4#3 - 6x2 - 6x + 10,

or, on suppression of the positive multiplier 2,

fx{x) = 2xz -3x2

The scheme is as follows:

/
h
•

/ l
*

/ .

/ .
•

A

1
2

- 1
9

27
-288

- 8
243

-1433

- 2
- 3
- 3

- 2 7
- 4 9

-108
- 3

- 8 8

- 3
- 3
15
11
45

10 - 4
5

- 8

Hence Sturm's functions may be taken as f(x) and/1(a;) together with

f2 = 9x2-27x+U; / 8 = -&*?-3; / 4 = -1433.

The signs are as tabulated below:

X

00

1
0

- 2
- 3

— oo

+
+
_
—
+

+
+
+
_

-

+

+
+
+
+

AW
_
—
—
+
+
+

AW
_
—
_
—
—
-

N(x)

1
1
2
2
3
3

There are thus two real roots, one situated between 0 and 1, and the
other between — 2 and — 3.

f Example selected from § 96 of Ref. 14.
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(6) Number of Roots whose Real Parts are Positive. The rules as
given by Routh* in this connection may be stated as follows. Let
the given equation be

pox
n+p1x

n-1 + ... +pn-1x+pn = 0,

and assume p0 to be made positive. A sequence of test functions R$
may now be derived as follows. Commence with RQ = p0, and derive
2?! from Ro, R2 from Rl9 and so on, by writing the lower element for
the upper element in the columns of the schedule

Po

Pi

Pi

Pi

p*

PB

Pz etc.

etc.

A cipher is to be written for any letter when the suffix exceeds the
degree of the equation. For instance, in the case of a biquadratic,
Pb> P%> e^c. are zero, and the test functions as constructed on the
foregoing basis are

R =<n • R = • 2? = p PoPz-
0 0> 1 V 2 2 ^ >

PiP* P1P2PS -

V2
Pi

For an equation of general degree the number of roots with their
real parts positive equals the number of changes of sign in the sequence
of test functions J?i.

Routh's test functions can be expressed conveniently in terms of
the sequence of test determinants

21 =

To

Pi

Pa

Ps

= Po>

Po

Pz
Pi

Ti = Pl> T2 =

0

Pi

P&

; Tt =

Pi

Pz

Pi Po

Pa Pz
P5 Pi

Pi Pt

Po

Pz

9

0

Pi

Pa

Ps

0

Po
Pz
Pi

and so on. As before, a cipher is to be substituted for any coefficient
with a suffix exceeding n. I t can be shownf that Routh's substitution,

• §§ 297-301 of Ref. 13. f Ref. 15.
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as given above, converts the determinant Tr of the sequence into
Tr+ilPv Hence

etc.

The penultimate test function is Tn_1jTn_2, and the final one is TJTn_l9

which reduces to pn. An equivalent set, which offers the advantage
that no member becomes infinite when its immediate predecessor
vanishes, is

p/ m . p' m . p' m m . p' m rp .
• ^ 0 — •*()> • " ' I — -*1> J*2 — • X 2 - 4 1 » - " ' 3 — - £ 3 - £ 2 > * • * >

Rn-l = Tn-lTn-2> K = Pn-

The necessary and sufficient condition for the real parts of all the
roots to be negative is that all the test functions, or all the test deter-
minants, shall be positive. This is the condition for stability of a linear
dynamical system.

It may be noted that the vanishing of Tn_x indicates either a pair of
purely imaginary roots or else a pair of equal and opposite real roots.

(c) Situation of the Latent Roots of a Matrix. The following theorems*
relating to the situation of the latent roots of a matrix u with real or
complex elements may be noted. The typical latent root is denoted as

(i) If u is Hermitian (see § 1*17), and in particular if u is real and
symmetrical, the latent roots are all real.

(ii) If u is general, /i lies between the greatest and least latent root
of the Hermitian matrix \{u + u'), and o) lies between the greatest and
least latent root of the Hermitian matrix li(u — uf)»

* For proofs and historical references, see Chap, v m of Ref. 2.



CHAPTER V

LINEAR ORDINARY DIFFERENTIAL EQUATIONS
WITH CONSTANT COEFFICIENTS

P A R T I. G E N E R A L P R O P E R T I E S

5*1. Systems of Simultaneous Differential Equations. An
important field of application of the theory of matrices will now be
considered, namely, the solution of systems of linear ordinary differen-
tial equations. Such systems arise in many branches of mathematical
physics, but the majority of the illustrative problems discussed in later
Chapters will relate to dynamics. Hence it will be convenient to regard
the independent variable as representing time, and to denote it by t.

The most general system of linear ordinary differential equations
with constant coefficients consists of a set of m equations connecting
the m dependent variables xv x2, ...,xm with t. These equations may be
expressed as

)x1 +f12(D)x2 +...+flm(D)xm -&(*) = 0,

1 +f22(D)x2 + ...+f2m(D)xm -Ut) = 0,

Here D denotes the differential operator d\dt\ fij(D) is a polynomial
of D having constant coefficients; while ^(t), etc. are given functions
of t. The set of equations is expressible as the single matrix equation

or, when no ambiguity can result, even more concisely as

U=fa-£ = 0. (2)
It may be referred to simply as the system / .

If the elements of the matrix f(D) are polynomials of degree N at
most in D, the system is said to be of order N. It is sometimes con-
venient to express equations (2) in the alternative form

(A0B"+A1B"-i + ...+AN_1D + AN)x = £ (3)

Each of the coefficients Ao, Av etc. is a square matrix of order m
having constant elements. In particular cases one or more of these
elements may be zero, but one element at least of Ao must not be zero.
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The system / is said to be homogeneous when the functions £$) are
all absent: if one or more of these functions is present, the system is
non-homogeneous. The general solution of a non-homogeneous system
is the sum of the complementary function, namely, the general solution
of the homogeneous system obtained by omission of all the functions
1;$), and of any particular integral of the complete system.

The theory is intimately bound up with the properties of the matrix
f(D), which are obviously closely analogous to those of A-matrices (see
Chapter in). The usual process of construction of the complementary
function practically amounts to a substitution of A for the operator D
in f(D). The method, which is well known, is to assume a constituent of
the complementary function to be x = extk9 where eM is a scalar multi-
plier, and k is a column of constants to be found. Then A and k must
be such that y(jD) extk = eAy(A) k = 0#

The condition of consistency requires the index A to be a root of the
algebraic equation A ( A ) s | / ( A ) | = 0> ( 4 )

while the column kr of constants corresponding to any given root A,,
is determined to an arbitrary common multiplier by /(Ay) kr = 0. This
process yields the complete complementary function in the standard
simple case where all the roots of A (A) = 0 are distinct.

Both the purely operational determinant | f(D) | and the corre-
sponding algebraic determinant | /(A) | are sometimes referred to as
the "characteristic determinant". Although in most cases this can
cause no confusion, it is preferable to adopt terms which distinguish
between operators and algebraic quantities. It is also common practice
to speak of equation (4)—sometimes also written in the quite meaning-
less form | f(D) | = 0—as the "characteristic equation". However, this
term already has an established meaning in relation to A-matrices of the
special simple type XI — u. The following definitions will be adopted
here: y ^ the Z>-matrix.

/(A) the A-matrix.
A(D) = | f(D) | ... the D-determinant.
A(A) = | /(A) | ... the A-determinant.
A(A) = 0 the determinantal equation.

The degree in A of A(A) is assumed to be n, and the roots of the deter-
minantal equation are denoted by A1? A2,..., An. A distinct symbol is
therefore used to represent each root, even when multiple roots occur.
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5*2, Equivalent Systems, From a given system/ of linear differ-
ential equations it is possible to form new systems by operations with
polynomials of D on one or more of the equations Uv U2, etc., and addi-
tion. New complete systems g may thus be derived which will have
the form

MD)(f£) = o. (l)
The square matrix fi(D) here applied as a premultiplier to the system
/ i s of order m, and its elements are given polynomials of D. The deter-
minant | fi(D) | will be assumed not to vanish, but it may be constant
in the sense that it is independent of Z>.

In (1) the dependent variables are denoted by y whereas in (5-1-2)
they are denoted by x. This distinction must usually be made since the
derived system g normally contains greater generality than the parent
system/. Clearly, every solution of/ satisfies g, but every solution of g
does not necessarily satisfy / . However, the important case is where
both conditions are satisfied, so that every solution of/satisfies g, and
conversely. The two systems are then equivalent, and the variables x
and y can legitimately be identified. The condition for equivalence is
that the determinant | /i(D) | shall be independent of D and not zero.
In this particular case the elements of the reciprocal matrix / ^ (D)
are clearly also all polynomials of D; and since fy - £ = 1*>~X(D) (gy-~V)>
it follows that every solution of g then satisfies / , as required. The
condition | fi(D) | = const, is necessary and sufficient for the equi-
valence of the two systems. I t is evident that the D-determinants of
equivalent systems can only differ by constant multipliers.

E X A M P L E

Suppose/to be the system

V .

= cos t)Dxx + (2Z>2 - 1 ) z2

Then if /i(D) is chosen to be f" 1, —D 1, the derived system g is

A 2Z>2-lJ|y2j l-D,D*+l\lco8t

o r • " • " " ' - — • ; (3)
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Since | ji{D) | = 1 (a non-zero constant), the two systems are equivalent.
The solution of (3) is here obvious by inspection. Evidently

and hence yx = sin £ — ĉ  e* + c2 e~*,

where cv c2 are arbitrary constants. Thus the solution of (2) is also

xx =

x2 =

1,}
\)

The important point to note is that equations (2) can be derived from
(3) purely by operations with polynomials of D, just as (3) were derived
from (2) by such operations. To obtain/from g the premultiplier to be
used would be

When | fi(D) | is not a constant, then although g can be derived from/
by steps involving only differentiations, yet / cannot be constructed
from g without operations of integration and the attendant introduc-
tion of further arbitrary constants.

5*3. Transformation of the Dependent Variables. In the
preceding section attention was restricted to the use of matrices
/i{D) as premultipliers to the equations. However, Z>-matrices are
applied as postmultipliers when a direct transformation of the depen-
dent variables a; to a new set, say X, is effected such that

The following systems are then evidently the same:

£ = o, (2)
£ = o. (3)

If the general solution of (3) in the variables X can be found, then the
corresponding values of x are given uniquely by (1), even when
| fi(D) | is not a constant. On the other hand, if the solution of (2) in
the variables x is known, the most general values of X will not
usually be deducible from (1) without operations of integration and
the introduction of further arbitrary constants. The exceptional case,
again, is when the determinant | /i(D) | is a constant other than zero:
the values of X are then determinable uniquely by means of the inverse
relation X = fi^iD) X.
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E X A M P L E

If in (5-2-2) we substitute

the system is converted into

1, 22)3 -I r 2jD, 2D*~ 1] [ Z J =

L J U J
)3 -I r 2jD, 2D*~

- 1 J L - 1 , - D

or

[
L A 2ZP

2DXt + (2)2 - 1 ) Z 2 = 0,

Xx = cos £.

Hence X2 = — sin^ + c1e
<+cae~', so that

cos t

0 1 ,

^ i = r 22), 2D2 - ii r cos
x2\ [ - 1 , - 2 ) J [-sin^ + Ci

This solution is effectively the same as (5-2-4). Conversely, if the values
of x just obtained are supposed known, then the corresponding values
X would be given uniquely by

2D, 22)*- r i - i r^ i = r A 22)
- l , - D J U J L - l , -

22)*- i
22)

5-4. Triangular Systems and a Fundamental Theorem.
A system, say hx — £ = 0, is commonly called a "diagonal" system
when h(D) has the special triangular arrangement

h12(D) ... h-

0 0 hmm(D)

I t is preferable to describe such a system as triangular, since with
matrices the term "diagonal" implies that only the principal diagonal
elements are present.

The first equation of the system here involves x± and (in general) all
the remaining variables, the second equation involves all the variables
with the exception of xv and so on, until finally the last equation
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involves xm only. In this case the variables are said to be in the
diagonal order xv x2,..., %m.

I t can be shown* that any system of linear differential equations
with constant coefficients is reducible to an equivalent triangular
system in which the dependent variables have any assigned diagonal
order (e.g. that adopted above). The number of arbitrary constants
involved in the solution of any triangular system is clearly the sum of
the degrees in D of the diagonal coefficients, and it therefore equals
the degree in D of the product hlxh22... hmm. This product, however,
is equal to the D-determinant of the triangular system, and is thus
merely a constant multiple of the D-determinant of any equivalent
system. The fundamental theorem follows, that the number of arbitrary
constants entering into the solution of any linear system with constant
coefficients equals the degree in D of the determinant A(D) = | f(D) |.

EXAMPLES

(i) A Given System Expressed as an Equivalent Triangular System.
Suppose the system/to be

(1)

Use as premultiplier
= O.J

- i , -A
0, - 1 ,

the constant determinant of which is — 1. Then the result is

0, - 1 , (Z»2-2Z)+1)

- 0, 0, -*t,3J

= 0, (2)

or - xx - D2x2 + (D3 - Z>2 - 1 ) x3 = 0,

= 0.

* A formal proof is given in § 6*5 of Ref. 5.
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Triangular systems of the type (2), in which all the principal diagonal
coefficients with the exception of the last are independent of D, are of
special simplicity, and may be referred to as simple triangular systems.

(ii) The Fundamental Theorem. The number of arbitrary constants
entering into the general solution of (2) is evidently four (the degree of
the last coefficient). Hence four arbitrary constants appear in the
general solution of (1). This equals the degree in D of | f(D) |.

5*5. Conversion of a System of General Order into a First-
Order System. If the system fx — g = 0 is not already of first order,
suppose it to be expressed in the form (see (5-1-3))

(A0D"+A1D
N-i + ...+AN_1D + AN)x = £, (1)

in which the coefficients A are square matrices of order m with constant
elements, and N> 1. One element at least of Ao is assumed not to
be zero.

Case I. Leading Coefficient Not Singular. Suppose firstly that
|̂ 40|=f=0, so that the reciprocal matrix AQ1 exists. In this case,
equation (1) can be premultiplied by A^1 to give

x + t;, (2)

where

and

Now write

so that

* i

DX,

= x,
= Xo,

X2 = Dx, .

DX2 = X3,

%

.., XN = D»-*x,

..., DXN_X = XN, ......(3)

while equation (2) becomes

DXN = -aNX1-aN_1X2-...-a1XN + £ (4)

If the N sets Xl9X2, ...,Xm—each containing m variables—are
regarded as a single set of mN new variables y defined by

y = {X,} = {xv ...,xm, Dxv ...,Dxm, ..., D^xv ...,D»-*xm},

the mN scalar equations satisfied by the variables y are represented
by (3) and (4). This first-order system will be denoted by

Dy = uy + 7i,

where y = {0,0,..., 0, £},
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and where u is a square matrix of order mN which can be partitioned
as below into square matrices of order m:

u= r 0, Im, 0, ..., 0, 0

0, 0, /m, ..., 0, 0

0, 0, 0, ..., 0, Im

A system of differential equations of general order can usually be
converted into a first-order system in an indefinitely large number of
different ways. The special method given above has the advantage of
simplicity.

Case II. Leading Coefficient Singular. Next, let Ao be of rank r.
Then (see §3*13) non-singular square matrices P, Q, of order m, with
constant elements, can be found such that

where a0 has zero elements with the exception of r units occupying the
first r places in the principal diagonal. Now replace the m variables x
in equation (1) by a set x such that x = Qx, and premultiply the
resulting equation by P. Then

or say a,0D
Nx = —aNx — aN_1Dx-...—a1D

N-1x + £ (5)

The system of scalar equations represented by (5) resembles (2) except
that the left-hand side of the ith equation is equal to DNxi when i < r,
but is zero when i > r. Hence if a new set of dependent variables y is
introduced such that

{y} = {xv ...,xm, Dxv ...,Dxm9 ..., D»-*xv ...,D^xm},

the equations (5) will be reducible to a system oimN equations of first
order similar to (3) and (4), except that the last m — r equations will
consist purely of linear algebraic relations connecting the mN variables
y. These m — r linear relations can be used to eliminate m — r of the
variables y from the remaining equations of the system. The final
system will then consist of only mN — m + r independent equations.

In practice, when Ao is singular the conversion to a first-order
system can usually be effected by a judicious manipulation of the
equations, without actual determination of the matrices P and Q.
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E X A M P L E S

(i) A Single Equation of Order n. Let the given single equation be

Dnz+p1D
n-lz+... +pnx = £.

Then if {yvy2, ...,yn} = {x,Dx, ...,D^x},

the equivalent system of first order is

D o,
o,

o,
-pn,

1,

o,

o,
-Pn-V

o, .
1, .

o, .
~Pn-2> •

.., o,

.., o,

... o,

.., -Pi

o •

0

1

. -Pl-

y{

2/2

. . .

.yn~

0

0

(ii) Linear Dynamical Equations ofLagrangian Type, The Lagrangian
equations for the small free motions of a dynamical system in m
generalised coordinates qv q2,*.*,qm are of the type

Aq + Bq +Cq = 0,

where | A | 4= 0, They can be replaced by the system of 2m first-order
equations represented by n _

where y = {q,q}

and u = r o, im
L-A-W, - ^ -

(iii) The Matrix Ao Singular. Consider the system

3 2 l l i ) 2 a ;+r0 0 11 Dx +
2 1 - 1 "
1 1 2J

Here Ao is of rank 2. Subtraction of the sum of the second and third
equations from the first yields

0, (6)

which can be used to express D2xz in terms of D2xx and D2x2 and lower
derivatives. By this means, the first two equations may be replaced by

x - l4Dx2
(7)
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Hence, if {yv y2, yz, y^ y5, y6} = {xv x2, x3, Dxv Dx2, Dx3}, (8)

then Dy1 = y^

and from (7) and (8)

^2/5 = - f 2/4 + ¥2/5 ~ %e - iVx - %2 + i 2/3-
Also (6) is equivalent to

0 =

These equations can be used as they stand, or reduced to a system of
five equations by elimination of one variable, say yQ. The final system
would then be

D 2/1

2/2

2/3

2/4

-2/5-

" 0

0

1

1

- — 3̂

0

0

- 2

- 1

2

0

0

1

- 1

\

1

0

1

2

0"

1

1

- 2

f-

~2/i

2/2

2/3

2/4

-2/5

5-6. The Adjoint and Derived Adjoint Matrices. For con-
venience of reference a number of important definitions and theorems
relating to A-matrices will now be recalled.

If

L/«1(A),/m8(A),...,/mm(A)J
the adjoint of/ is defined to be

where F{j is the cofactor of fti in the determinant A(A) = | /(A) |. Thus
F is the transposed of the matrix of the cofactors of/. The two matrices
/, F have the property
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dpF <&
The pth derived adjoint matrix -yr- is denoted by F(A), and for

cLAP

( dPF\
-7r—I , where Ay is any root of A(A) = 0, is

_ dAPJkwmXr

represented by .F(Ay).
Theorems (A) to (E) of § 3-5 may be summarised as follows:

(a) Simple Roots. If Ay is a simple root of the determinantal equation,
/(Ay) is simply degenerate and .F(Ay) is expressible as a matrix product

in which kir, Kir are constants appropriate to the chosen root and at
least one constant of each type is not zero.

(b) Multiple Roots. If As is a multiple root and if f(Xs) is simply
degenerate, then the adjoint can be represented as for case (a) by
F(\S) = JCSKS. On the other hand, if f(X8) has degeneracy q>l, the

(3-2)

adjoint and the derived ad joints up to and including .F(A8) at least are
all null. The root has multiplicity q at least when/(As) has degeneracy q.

The columns hr and the rows Kr have the properties (compare (3-6-5),
( 3 ' 6 ' 6 ) )

_. L A , A*+2 J
Then

= 0. (2)

EXAMPLES

(i) Simple Roots. Assume
TA + 2 , ,

[A2,

A(A) = -2(A-2)(A+1) and F(X) = |"A4 + 2, - A 3 - 2 A 2 - 2 1 .
L-A2, A + 2 J

The roots, say Ax = 2 and A2 = — 1, are here both simple. They give
JO ( A i ) = 1 l o — l o = l y \ L ) — L \

L-4 *J i-2j
and F(\2) = 1" 3 - 3 1 = T 31 [1, - 1 ] .

(ii) Multiple Boots. Suppose
'11A2+14A+15,8A2+14A+14,5A2+11A+10"
11A2+1OA+H,8A2+1OA+1O, 5A2 + 8A+7

7A2+2A + 7, 5A2+3A + 6, 3A2+3A+4
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In this case A(A) = A(A- 1)2(A+ I)2, giving Ax = 0, A2 = A3 = 1, and
A4 = A5 = — 1. Substitution of the roots in /(A) gives

/(Ax) = 15
11
7

14
10
6

10
7
4

; /(A,) = 40
32
16

36
28
14

26
20
10

; /(A6)

The first two of these are simply degenerate, while/(A5) has degeneracy
2. The corresponding adjoints are

F(X±) = - 2 4 - 2
5 - 1 0 5

- 4 8 - 4

[ - 2 [1, - 2 , 1],

F(X5)

5-7. Construction of the Constituent Solutions. I t will now
be shown how the constituent solutions of a system of homogeneous
differential equations f(D) x = 0 can be obtained. For clarity the con-
stituents appropriate to simple roots and to multiple roots of the deter-
minantal equation are considered under separate headings.

(a) Simple Roots. Let
s i n c e

denote any simple root of A(A) = 0. Then

= 0,

it follows that every column of the matrix exJ F(Xr) satisfies the given
differential equations. But by §5-6 the columns of Ffa) are all pro-
portional to Jcr. Hence the constituent solution corresponding to the
given simple root can be chosen to be an arbitrary multiple of e***kr.

(b) Multiple Roots. Let As be a multiple root, and for simplicity
suppose, firstly, X$ to be only once repeated. Consider the two matrices

The first matrix W0(t, Ag) is similar to that already considered and all
its columns thus satisfy f(D) x = 0: this conclusion remains true, but
is nugatory, when F(XS) happens to be null. We shall now show that
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all the columns of Wx(t, X8) also satisfy the differential equations. By
the usual properties of differential operators

. (1)

Since As is assumed to be a double root of A(A) = 0, both A(A) and

^ v a n i s h when A = A,. Hence
oA

It can be proved by exactly the same method that, if As is an 5-fold
root of A(A) = 0, then every column of every member of the family of
matrices W0(t,Xs), W^t, As), ...,T^_1(£, As) satisfies the differential equa-
tions, where the typical matrix of the family is defined to be*

It will be convenient to write Wp(t, As) = ex^ Up(t, As), so that
(P)

Since there are 5 matrices Uo, Uv...9U8^1 corresponding to the 5-fold
root, and since each matrix has m columns, the total number of con-
stituent solutions (including possibly some null solutions) obtained in
this way would be ms. However, corresponding to any 5-fold root, only
5 linearly independent solutions are to be expected. It follows that the
ms columns concerned are necessarily connected by s(m— 1) linear
relations.

In view of the theorems summarised under heading (b) of § 5-6 it is
seen that when f(Xs) has degeneracy q the matrices Wp(t, As) and
Up(t, As) are null for values of p up to and including q — 2 at least.

* More generally, if W^t, X8) = [~|^ eA«~

where T is an arbitrary constant, then every member of the family Wo, Wlf ..., W8_x also
satisfies f(D) x = 0.
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EXAMPLES

(i) Simple Case of a Diagonal System. Suppose f(D) x = 0, where

f(A-a), 0, 0
0, (A-a) (A-/?), 0
0, 0, (A-a)(A-/?)(A-7)J

= (A-a) 1, 0, 0
0

_0, 0, (A-/?)(A-y)_

and a =t=/?*y. Here A(A) = (A-a)3(A-/?)2(A-y), and

[-(A-/?)(A-y), 0, 0"
0, (A-y),0
0, 0, 1.

For the simple root A = y the matrix W0(t, y) = e ĵP(y) contains a
non-zero column proportional to {0,0,1}. The one constituent corre-
sponding to y may thus be taken as e^{0,0,1}.

The degeneracy of /(A) is 2 for the root /? and 3 for the root a, and for
each of these roots F(\) is null. Now

(i)

), 0, 01,

|_0, 0, 1.

and this contains two non-zero columns, which lead to the two distinct
constituents e^{0,1,0} and e^{0,0,1}.

Again, F(a) = 0, but
(2)

F(oc) = 2(a - yfl) T(a - /3) (a - y), 0, 0"
0, (<%-y),0
0, 0, 1_

which yields the three independent constituents eat{l, 0,0}, eat{0,1,0}
and eat{0,0,1}.

Next consider the modifications when y = /?. In this case

= (A-a) 1,
0,(

o,

o,
X-fi)

o,

0

. o
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and A(A) = (A —a)3 (A — /?)3, which yields two triple roots a and /?.
As before, the matrix /(A) has degeneracy 2 for the root JS and 3 for
the root a, while F(A.) is null for each root. The three constituents
corresponding to A = a have the same forms as before. However,

which yields only one non-vanishing column. To obtain the full
number of constituents corresponding to the triple root /? it is necessary
to proceed to (2)

F(P) = 2(fi- 0"0

0 (/?-<

0 0

The three independent constituents required are now given by the
(i)

third column of the matrix ePF(P) and the third and second columns of
(2) (1)

efit[F(/3) + 2tF(/2)]. They may be taken as e^{0,0,1}, e#{0,0,*} and

Lastly, suppose a = ft = y, so that

/ ( A ) - ( A - a ) 1, 0, 0
0,A-a, 0

[0, 0, (A-a)2J

with A(A) = (A — a)6. Here a is a sextuple root, and/(a) has degeneracy

3. Then ĵ (A) = (A-a)3f(A-a)2, 0, 0" .

0, A-a ,0
0, 0, 1_

The derived adjoint matrices which are not null are
(3)

F{oC) "0

0

_0

0

0

0

0"

0

6

0

0

0

0

24

0

0

0

0_

(5)
120 0 0"

0 0 0
0 0 0

while the matrices whose non-vanishing columns yield possible con-
stituents are

(3) (4) (3) (5) (4)
eat[F(oc) + 4tF(a)]9 and e«l[F(oc) + 5tF(oc

(3)
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The six independent constituents may clearly be chosen as the six
columns of the matrix

'0 0 0 1 0 01
0 1 0 0 * 0
1 0 t 0 0 t2

- A
- A

2 - A

(ii) A more General System. Suppose

[A3-A2-2A,A3-A2 + A,
A3-3A, A3,

A3 + 2A2-A, -A2,

Here A(A) = -2A3(A- 1)2(A+1), giving the roots A
A = 1 (double), A = — 1 (single). In this case

A(A+1)2, _(A3 + A2+1), 1
),(A3 + A2-2A-1), -

(A3 + 3A2+1), - 3 _

This is null for A = 0 and A = 1, and for A = — 1 it reduces to

["0-1 1

0 (triple),

1 - 1
3 - 3

The constituent corresponding to the single root A = — 1 may thus
be taken as e~'{l, — 1, — 3}.

Since F(A) is null for the double root A = 1, the two constituents
corresponding to this root will be given by two of the columns of

(i)
e'J^l). By direct differentiation of the expression for F(A), it is seen
that (i)

[" 4 - 3
0 - 1 - 1

- 8 5 - 3 _

The three columns of this matrix are not linearly independent: the
sum of the first two yields the third.

Lastly, it is evident that F(Q) = F(0) = 0, and that
(2)

^0 - 1 1
2 - 1 - 1
0 1 - 3
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The three independent constituents corresponding to the triple
root A = 0 may therefore be taken proportional to the three columns
of this matrix.

It should be noted that the arithmetical work involved in the
evaluation of the derived adjoint matrices for the multiple roots is
often greatly simplified by the extraction, as a scalar multiplier, of any
factors common to the elements of F(X) (e.g. the extraction of A2(A — 1)
as a common factor in this example).

5#8, Numerical Evaluation of the Constituent Solutions.
As explained in § 5*7 the constituent solutions appropriate to any given
root As of A(A) = 0 are found from the independent columns of the
family of matrices Wp(t, As), which are linear in F(\s) and its derivatives.
A possible method of computation of the constituents is to construct
F(A) from the cofactors in /(A), and to obtain the necessary derived
adjoint matrices by direct differentiation with A kept general. The
value A = Ag is then inserted. However, in practice, the construction
of F(X) for a general value of A is extremely laborious when the order
of/(A) is even moderately large. A simpler treatment, which is actually
an extension of the methods given in §4-12, will now be described.

When X$ is a simple root, the corresponding constituent can be
taken proportional to any non-zero column of the matrix W0(t,\s).
A column proportional to the columns of F(AS) can be calculated at
once by the method of § 4-12.

When As is a double root, the constituent solutions are to be chosen
proportional to any two linearly independent columns of Wo and Wv

More generally, the required columns can be chosen from the matrices
aW0 5 e^[aF(Xs)]9

(i)
and aWx + bW0 = e^[aF(As) + bF(Xs) + taF(Xs)],

in which a and b are arbitrary scalars. But since f(\s) F(XS) = 0 and

^r-/(As) F(X8) = 0 when As is a double root, we have also

) [aF(l8) + bF(AJ] +f(i) [aF(As)] = 0.
Hence, if §S denotes a column of aF(As), and fa the corresponding

(i)
column of aF(\8) + bF(As), ^ ^ = ^ ( 1 )

(i)

O. (2)
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Equation (1) when treated by the method of § 4-12 yields <f>, and if the
column so determined is substituted in (2), <f>x can be found by

(i)
operation on the rows of /(As) and /(As) <j> in a way similar to that
described in § 4-12. If/(Ag) is doubly degenerate F(X8) is null, and the
equation to be solved then is

This yields two linearly independent solutions.
When As is an 5-fold root, an extension of the foregoing process

yields successive columns which may be used directly to construct the
constituent solutions.

E X A M P L E S

(i) First-Order System. As a very simple first example, suppose

/(Z>)*srz)+i, -
L 1, D - 3 J

The determinantal equation A(A) = 0 has a double root A = 1, and

U-2J |0,lJ
The method of §4-12 shows at once that the columns of the adjoint
F(\) are proportional to {2,1}, and we may therefore choose <f> = {2,1}.
Then r o A~\ J. \ n m ron _ Qri,o]r2-|

|0,lJLlJ
Since/(I) is singular, the equations contained here are not linearly
independent (see §4-13). Writing ^i = {a,/?}, we obtain the single
equation a — 2/?+1 = 0, so that

The column multiplied by ft is an arbitrary multiple of <f> and can be
disregarded. Thus 0X can be taken to be {1,0}, and the constituents
can be chosen as e'{2,1} and e'{l, 0} + tel{2,1}. (1)

The first columns of the actual adjoint F(l) and of F(l) are { — 2, — 1}
and {1,0}.

(ii) Second-Order System. Next consider the system for which

T2A2-4A+1, A 2 -A+l , 2A-1"

A2-3A+1, A2-2A+1, 2A-1

_A2-6A + 3, 2A2-6A + 3,5A-3_
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Here A(A) = A2(A—I)3, and/(A) is doubly degenerate for the double
root A = 0 and simply degenerate for the triple root A = 1.

The method of §4-12 at once yields the two constituent solutions
corresponding to A = 0. The rows of the transposed of/(0) are combined
as follows:

1
1

- 1

0
0

1
1

- 1

0
0

3
3

- 3

0
0

1
0
0

1
0

0
1
0

0
1

0
0
1

1
1

Hence the two constituents may be chosen as {1,0,1} and {0,1,1}.
For the triple root A = 1 we have

- 1 1 1
- 1 0 1
- 2 - 1 2

0
- 1

- 4

1
0

- 2

2"
2

5

(2)

, /(I) = "4
2

2

2
2

4

0"
0

0

A column of F(l) is found by the previous method to be §S = {1,0,1}.
The equation determining <fix is

/ (I )& = 0; or, if ^

- 1
- 1

- 2

1
0

- 1

1
1

2

a = - 2
- 1

- 1

If we reject the last scalar equation represented here, and regard y as
arbitrary, we can write

in acnra
the solution of which is readily found to be

emu
Hence & EE {a, fi, y} = y{l, 0,1} + {1, - 1 , 0}.

Here, again, an arbitrary multiple of <j) is present.
To determine the next independent column (f>2 = {^,ij,Q we can

assign y at convenience; but for illustrative purposes the value will be
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kept general. The equation for 02 is then

175

(1) (2)

or - 1 1

- 1 0

- 2 - 1

T
V

X

= y " - 4 "

- 2

_ - 2 _

+ "2"

2

4

+ " — 4"

- 2

- 2

= 7 - 4 "

- 2
2

+ " - 2 "
0

2

Rejecting the last scalar equation, and keeping £ general, we write

which gives rg] = m i + yr 2] +

UJ [J LUJ
oi,

—2j

or <j>2 = {£, 9/, Q = £{1,0,1} + 2y{l, - 1, 0} + {0, - 2, 0}.

In this solution arbitrary multiples of <p and ^x are present, but it is
legitimate to choose y — £ = 0, and then 02 = {0, — 2, 0}. Hence the
constituent solutions may be chosen to be

and

e<{l,0,l}, e<{l, - 1 ,

e<{0, - 2, 0} + 2fe*{l, - 1 , 0} + «V{1,0,1}.

is {1,0,1}; while the first columnsActually the first column o
(1) (2)

of F(l) and F(l) are, respectively,

and

{4, - 1 , 3 } = 3(1,0,1} + {1,-1,0},

{8, - 8 , 2} = 2{l,0,1} + 6{1, - 1 , 0} + {0, - 2 , 0}.

5*9. Expansions in Partial Fractions. We shall next consider
certain identities which will be used extensively later.

Suppose (?(A) to denote an arbitrary (q, m) A-matrix, and let A(A),
.F(A) be, respectively, the A-determinant and the adjoint matrix of/(A).
Then each element of the matrix product 6?(A) JF(A)/A(A) can be
developed in partial fractions by the usual methods of algebra, and
a similar type of expansion can therefore be assumed for the complete
matrix product. The precise form of the expansion depends on the
nature of the roots of A(A) = 0.

Case I. Roots of A(A) = 0 all Distinct. In this case the correct form

to assume is Q{X)F(X) • A
(1)

Q{X)F(X) At

£ —
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Here £?(A), if present, is a A-matrix, while Al9 A2, etc. are matrices of
constants which are determinable by the usual rules. Thus to find Ar,
multiply (1) throughout by A —Ay and put A = A,.. This gives

Hence < ™ = GMTW = Q(A)+ £ ™ ^ <D
A(A) ^A(KHA-K)

If the product 0(X) F(X) is of degree less than n (the degree of A(A)),
then Q(A) = 0.

As a particular case assume 6r(A) = Im. Then (2) gives

(»)•
,)

When the degree of .F(A) does not exceed that of A(A), the quotient in
(3) will be a matrix of constants (or ciphers), say Q = C. To determine
G put A = 0 in (3): then

A(0) ~ r

and substitution for C in (3) yields

^(A) F(0) , »

This is the matrix equivalent of a well-known identity due to Heaviside. *
Case II. Roots of A(A) = 0 Repeated. When repeated roots occur, a

set of s roots equal to X8 will give rise in (1) to a set of s terms of the form

Writing A(A) = (A — Ag)
s Ag(A), we obtain in the usual way

A.(A)
The preceding formulae are all identities in A, and following the usual

operational methods for scalar differential equations, we may replace

A by the differential operator D = —, and so derive corresponding
at

"operational" identities. Such operational identities are particularly
convenient in the solution of systems of differential equations with
given initial conditions (see, for instance, §6*9).

* For remarks on Heaviside's method of solution see § 6*9.
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E X A M P L E S

(i) Operational Formulae for the Case of Distinct Roots. In (2)
substitute A = Z>, and postmultiply both sides by f(D)x{t) — E,{t)i

where x(t) and £(£) are columns of any sets of ra quantities dependent
on t. Then, using the property F(\)f{\r) = 0, we can write the resulting
identity as

G(D)x(t) = Q{D) {f(D) x(t) - )} ^ jj

+ A(D) m * 1 D =

Since f(D) —/(A,.) is divisible by D — Xy, the first summation in (6) is
rational and integral in the operator D.

If x(t) is now assumed to satisfy the differential equations

4U /fll , , f(D)x(t)-£(t) = O, (?)
then (6) reduces to

(8)-
It should be noted that (8) holds good for arbitrary columns x(t) and

£(t) only when Q = 0 in (2). If Q does not vanish, then (8) is only true
in conjunction with (7). The formula will be used in § 6-5 to obtain a
special form of solution of a system of differential equations.

(ii) Operational Formulae for Case of Repeated Roots. The modifica-
tions to (6) and (8) when repeated roots occur will next be considered
briefly. The terms contributed to the right-hand sides of these equa-
tions due to a set of s roots equal to X3 are clearly

It is possible to substitute for the first summation in (9) another
summation, each term of which is rational and integral in D. Thus it
can be shown that

in which

(11)
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By expansion of f(D) =/(As + D - Xs) in a Taylor's series it is at once
seen that ft^D, Ag) is rational and integral in D. To establish (10) it is
only necessary to collect together the separate powers of (D — AJ"1

and to show that the total coefficients of these terms vanish: use
should be made of the relation #(A)/(A)/AS(A) = (A- XS)

SI. The actual
proof can be left to the reader.

The terms contributed to the right-hand sides of (6) and (8) may
thus be taken as

P A R T II. CONSTRUCTION OF THE COMPLEMENTARY

F U N C T I O N AND OF A P A R T I C U L A R I N T E G R A L

5*10. The Complementary Function. The notation and ter-
minology summarised in the present section should be carefully noted
as it will hereafter be adopted as the standard.

The number of the dependent variables is m and the n roots of
A(A) = 0 are A1? A2,..., An. These roots are not necessarily all distinct,
but different suffixes are used to specify the full set of roots. Generally
\ denotes a typical simple root, and As represents a typical member of
a set of s equal roots.

The complete complementary function of the differential equations
f(D) x — £ = 0 is constructed as the sum of arbitrary multiples of the n
independent constituents corresponding to the n roots A1? A2,...,Xn.
Subject to the conventions just explained regarding the notation for
roots, each root will contribute one constituent.

(a) Simple Roots. The constituent appropriate to the typical simple
root Ar is denoted by

x = {Jclr,k2r, . . ^ y e V s ^ e M ,

and the column of constants kr can be chosen proportional to any non-
vanishing column of the adjoint F(Xr) of/(Ay). This matrix will be a
product of the type JcrKr.

(b) Sets of Equal Roots. If As is one of a set of s equal roots, the con-
stituent appropriate to As is written
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and the s columns of the type Jcs(t) appropriate to the whole set of
equal roots may be chosen proportional to any s linearly independent
columns of the set of matrices (see § 5-7)

U2(t,\s) =
(2) (1)
A) F(A

(8-1)

A
(*-2) (s_l\(s_

The elements ki8(t) are thus polynomials in t of degree s — 1 at most. In
the particular case where 5 = 1 (and the root concerned is thus simple)
they are constants, and the brackets indicating their dependence on t
may be omitted.

The columns ks(t) define, as it were, the modes of the constituents in
their relation to purely exponential laws. The column appropriate to
the typical root As (whether simple or multiple) will be spoken of as the
modal column corresponding to the root As, and any element of a modal
column will be referred to as a modal coefficient.

Since ks(t)e^ by definition satisfies the differential equations
f(D) x = 0, it follows that the modal columns have the property*

The (m, n) matrix formed from the modal columns is of great importance
in the further theory. It will be spoken of as the modal matrix and it
will be denoted by

11W %2Vr/ ••• Kln\l) • V1)

Ail(') KS) -

In view of the remarks in the footnote to § 5-7 it is seen that in the set
of s modal columns appropriate to any set of s roots equal to As it is
always legitimate to replace t by (t — r), where r is arbitrary. Hence
in particular a modal matrix k(t) may always be replaced by k(t — r).

* Equation (5-6-1) is thus the particular case of this equation for s = 1.
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If M(t) represents the (n> n) diagonal matrix

5-10

M(t) 0 0

0

(2)

0 0 ... eA

and c is a column of n arbitrary constants cvc2, ...,cni the complete
complementary function is expressible as

x = k(t)M{t)c.

With regard to the matrices C£($,Aa), it will be noted that F(XS)
appears as the coefficient of the highest power of t in every matrix of
the set. Hence if U0(t, As) contains any one column—say the first—
which is not null, then the corresponding (first) columns in each of the
succeeding matrices Ul9 U2,..., U^x must contain t,t2,..., t8'1 for highest
powers. I t is evident therefore that these s columns must be linearly
distinct, and they will accordingly yield the required s modal columns
appropriate to the whole set of 8 equal roots.

If, on the other hand, F(X8)ia null (i.e. if/(Ag) is multiply degenerate),
then the last term will be absent from U^t, Ag), and the coefficient of

t*"1 (now the highest power of t) will be F(AS). By the same argument
(i)

as before, any one non-vanishing column of F(X8) will then give rise
to 5—1 modal columns; and the additional modal column required
must then be sought from the first other non-zero column of the family
U2, U3, etc. which is linearly distinct from the 5—1 columns already used.
The extension to more complicated cases will be obvious.

E X A M P L E S

(i) Second-Order System. Suppose

= 0.

Here A(A) = -9(A+1)(A-1)3, and

F(\) = r - A 2 - A + 3, -<
[ - 2 A 2 + A, ,

The roots of A(A) = 0 are denoted by Ax = — 1 and A2 = A3 = A4 = 1.
The first column o£F(\1) is {3, — 3}, so that we may choose kx = {1, — 1}.
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Again, 1T(A2) contains the non-zero (first) column {1, - 1 } , and the
(1) (2)

corresponding (first) columns of F(X2) and JF(A2) are {- 3, - 3} and
{ — 2, — 4}, respectively. Hence we may choose

* , (« ) -{1 , -1} ,

*»(*) = {-3, - 3 } + <{l, - 1 } ,

kt(t) = {-2, - 4 } + 2<{-3, -3}-M2{l, - 1 } .

The complementary function is accordingly

—1, —1, —3 — *, —4 —« —

re-t
0

o
o

o o o "
el 0 0

0 e* 0

0 0 et

If this result be denoted by x(t) = k(t) M(t) c, the reader can readily
verify that other possible forms of the complementary function are
x(t) = k{t-r)M(t)c' and x(t) = k(t-T)M(t-T)c", where c! and c" are
new sets of constants, and r is arbitrary.

(ii) Form of Solution when A(A) Vanishes Identically. If A(A) reduces
to a constant, other than zero, so that the degree in A of A(A) is zero,
no arbitrary constants can enter into the solution of f(D)x = 0. The
general solution then is x = 0. On the other hand, if A(A) vanishes
identically, the degree in A of A(A) is indeterminate, so that the presence
of arbitrary constants in the solution is not precluded. This case, which
arises when the m equations of the system f(D) x = 0 are not distinct,
is abnormal. I t corresponds to the case in which one or more ciphers
are present in the principal diagonal in Smith's canonical form for
A-matrices (see §3-15).

A simple example is the system

h(D)x = D,

o,
. 0 ,

0,
D(D-

0,
1),

0
0

0_

x{ = 0,

for which A(A) = 0. The general solution is clearly

xi =

arbitrary, say
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Consider now an equivalent system f(D)y = 0, say

510

in which | A | and | B | are assumed to be non-zero constants. For this
new system A(A) = 0 as before, and (as can be directly verified) all the
first minors of | /(A) | contain A2(A — 1) as a common factor. The general
solution of f(D) y — 0 will accordingly contain one arbitrary function,
arising from the fact that | /(A) | = 0. In addition there will be three
constituents, not included under the arbitrary function, and involving
three arbitrary constants in all, originating from the common factor
of the first minors of | /(A) |.

More generally, if the A-matrix/(A) is of rank r, the general solution
contains n — r arbitrary functions. Further, if the common factor of
the minors of order r is of degree p in A, then there are p additional
constituents of normal type corresponding to this common factor. As
an illustration, consider the system for which

A, A, A2+l
2 - i , A2+l, A
A3, A3 + 2A,2A2+1_

Here /(A) is of rank 2, and the first minors in | /(A) | have no common
factor. The general solution contains one arbitrary function and no
constituents of normal type, and may in fact be written

The differential operators are here respectively the cofactors of the
elements in the first row of | f(D) |.

As a second illustration, take

" - 1 , A2(A2-1), A3(A2-1)
- 1 , A(A2-1) (A+1), A2(A2 - 1 ) (A+1)

_ A, A3(A2-1), A4(A2-1)

This matrix is also of rank 2, but the first minors contain A(A2— 1) as
a common factor. The general solution is
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5-11. Construction of a Particular Integral. Suppose the
differential equations to be f(D) x — £(t) = 0, and denote a particular
integral as P(t). Then evidently we can choose

(«). (1)

The interpretation of this symbolic solution will now be considered.
(a) Functions £(£) Exponential. A simple case frequently arising is

where £(t) can be represented over the range of t under consideration
by a sum of the type ^ =

The indices 6, and the columns of m constants p, may be real or complex.
The part of the particular integral arising from the typical term of
the series then is

A(D)6 P~

This solution fails in the exceptional case where 6 is a root of A(A) = 0
(e.g. resonant forced oscillations of an undamped dynamical system).
Suppose 6 — Ay, where for simplicity A? is assumed to be an unrepeated
root of A(A) = 0. The equations of which a particular integral is
required are now ^D) x = ^ ( 3 )

Assume P(t) = Wx(t, Xr)b, where Wx is the matrix defined in §5-7, and
6 is a column of constants left free for choice. On substitution of this
value for P(t) in (3) and application of (5-7-1), we obtain the condition

m
Now A(Ar) = 0, but since A, is here assumed not repeated A(A )̂ #= 0.

()
Hence b = pjA^). The particular integral sought is accordingly

A(AJ
eetF(d)

Since by (2), ^ p satisfies the differential equations

f{D)x-eetp = O,

it follows by differentiation with respect to 6 that the particular integral
of the equations f(D) x _ ̂ p = 0

is
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(b) Functions g(t) General. When the functions £(t) are general, the
usual procedure is to make use of certain expansions in partial fractions.

For example, if the roots Ar are all distinct, we can use the simple
identity n

— y I
~~ CD '

and express (1) as

P(t) = F(D)

The particular integral given by this method is thus

P(t) = F(D) S TV" e

The lower limit of integration gives rise to terms which can be included
in the complementary function, and it is often omitted for convenience.

When repeated roots of A(A) = 0 occur, the part of the expression
for 1/A(Z>) in partial fractions arising from a root As of multiplicity 8

8
 OL

is of the form 2 tT\ \ \n> where the quantities a are constants which
i(Lf-Ar

are readily found by the usual methods. The corresponding terms of
the particular integral are then

where Qq denotes q repeated integrations with respect to t.
Another possible treatment is to express the complete operator

F(D)I&(D) in partial fractions. In the special case where the degree
in D of F(D) does not exceed that of A(Z>), the operational form of the
expansion corresponding to (5-9-4) can conveniently be used for this
purpose. This yields

But 5 ? A ; g W = lKQ)l()

- f W + A.ewf 'e -MgW*. (5)
Jto

so that

A(0) r=n !\\v r-l iH v Jt0
/VZX(/V) ^('V) (6)
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If (5-9-4) is applied to evaluate JF(OO)/A(OO), equation (6) can be written

P(t) = 2JL22gft)+ 2 -^— F(/L) e-Wg(t)dt (7)
A ( c o ) - ' $ , ) J<«

As a particular appKcation of (7) suppose £(£) = eotp. Then

A(oo)

The terms involving eV may be included under the complementary
function and therefore omitted from (8). The particular integral can
then, with a little reduction, be identified with (2). However, with
regard to (8) and the more general formula (7), it may be noted that if
(as normally) the degree in D of F(D) is less than that of A(D), then
F(co)/A(ao) = 0. In this case the particular integral as given has the
convenient property that P(t0) = 0.



CHAPTER VI

LINEAR ORDINARY DIFFERENTIAL EQUATIONS
WITH CONSTANT COEFFICIENTS (continued)

P A R T I. BOUNDARY P R O B L E M S

6*1. Preliminary Remarks. In Chapter v it has been shown
that the general solution of a system of linear differential equations
f(D) # — £ = 0 in m dependent variables contains n arbitrary constants,
where n is the degree in A of the determinant A(A) = | /(A) |. We shall
now consider the question as to how the values of these constants are
to be determined in order that the solution may satisfy any assigned
supplementary conditions. *

A " supplementary" or "boundary" condition usually consists of a
linear relation connecting the values of the dependent variables x, and
possibly their derivatives up to a certain order, at one or more given
points t0, tv etc. of the range of variation of t. The problem is said to
be a one-point boundary problem, a two-point boundary problem, and
so on, according to the number of different points t0, tv etc. concerned.
Attention will here be restricted to one-point and two-point boundary
problems.

E X A M P L E S

(i) Simple One-Point and Two-Point Boundary Problems. If the
differential equations are

(1)1 Tx{\ = 0,
J [x2\

the general solution, which involves four arbitrary constants, is

{x&lxS)} = Cie'{l, - 3} + c26-'{l, - 2 } + c3e
2<{7, -20} + c4e*{8, -21}.

If the values otxv x2 and of their first derivatives xl9 x2 at say t = 0 are
assigned, we have a simple one-point boundary problem; whereas if
the values of xl9 x2 at t = 0 and t = 1 are given, we have a two-point
boundary problem. In either case the four constants of integration
<>v C2> C3> C4 a r e uniquely determinable.

• The differential equations, considered in conjunction with the supplementary con-
ditions, are sometimes referred to as a "linear differential system". The differential equa-
tions themselves are then spoken of as the "system of linear differential equations".
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(ii) General One-Point Boundary Problems, The supplementary

conditions are not always of the simple form given in example (i). As
an illustration of a rather more general class of one-point boundary
problem we may suppose the differential equations to be (1) and the
supplementary conditions to be

(2)

It is of course possible here to solve these algebraic equations and
to derive explicitly the initial values ofxl9 x2i xv x2. The problem is then
reduced to the simple type already considered in example (i). However,
this process, which amounts to a conversion of a given set of boundary
conditions to an equivalent simpler set, may not always be convenient.
It is sometimes preferable to deal directly with the boundary con-
ditions in their original form. To express (2) concisely, we introduce
the symbol Do to mean the differential operator

The conditions can then be written as
3Z>0-2, - 2 "I la^o)] = T 7"] (3)

2, 2D0+l \x2(t0)\ 5

D 0 - 2 , - 3 Z > 0 - 2 - 1

1, 2D0-fl J L 6.
With a more general one-point boundary problem the elements of the
(4,2) matrix on the left of (3) would be replaced by given polynomials
in Do, and a given column would be assigned on the right. Methods of
solution with the boundary conditions in the unreduced form are
given in § 6«4.

6#2. Characteristic Numbers, In §6-1 it was assumed that the
number of the supplementary conditions exactly equals the number n
of the free constants in the general solution. It was also tacitly assumed
that in such cases the values of those constants would be uniquely
determinable. However, if the differential equations themselves con-
tain one or more variable parameters, free for choice, it may be possible,
for particular values of these parameters, to obtain solutions in which
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all the free constants are not uniquely fixed, even though just n supple-
mentary conditions are assigned. Alternatively, it may be possible—
for special values of the parameters—to satisfy more than n supple-
mentary conditions. The study of these particular values, which are
known as characteristic numbers, is of fundamental importance in many
physical applications, such as the determination of the natural fre-
quencies of vibration of dynamical systems.

E X A M P L E

Consider the transverse oscillations of a string stretched between the
points y = 0 and y = I. Let fi denote the mass per unit length of the
stretched string and T the tension: then the transverse displacement
z at any time t satisfies the differential equation

where a2 = fi/T. Now assume a free vibration of the string to be
z — Z sine^, where o) is a parameter left free for choice and Z is a func-
tion of y only which satisfies the equation

^ 0 (1)

and the two supplementary conditions Z = 0 at y = 0 and y = I.
The general solution of (1), which contains two arbitrary constants, is

Z = c1e
ia(ov + c2e-iaa>v,

and the supplementary conditions require that

O.J
In general, the only solution of equations (2) is cx — c2 = 0. However,
in the present case (o is free for choice, and whenever it is a root of
sin (ao)l) = 0, equations (2) are satisfied provided c1 = — c2. The char-
acteristic numbers o) are accordingly n/al, 2njal, etc., and the solution
corresponding to the rth of these numbers is Z = c sin (rny/1), where c
is a free constant.

6*3, Notation for One-Point Boundary Problems. Attention
will here be restricted to the type of boundary problem in which no free
parameters occur in the dijBferential equations and the number of the
assigned conditions exactly equals the number of the free constants
in the general solution.
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The simplest, and normal, type of problem is where the differential
equations are of order N and the determinantal equation A(A) = 0
has Nm roots, so that n = Nm. In a one-point boundary problem it is
then usual to have assigned the initial values of the m variables x and
of their derivatives up to, and including, the order N— 1. The problem
will be said to be of standard type when the differential equations and
the boundary conditions have the foregoing special features.

In the general one-point boundary problem the assigned conditions
consist of n independent linear combinations of the values at t = t0 of
the dependent variables x, and (or) of the derivatives of these variables
up to a given order s. Such a general set of n conditions may be repre-
sented by (see example (ii) of § 6-1)

<f>(D0)x(t0) =

(1)
The (n9 m) matrix §J(Z)0) has for elements polynomials* of Do of degree
s at most, while Ol5 O2, etc. are given constants.

The set of conditions (1) may be expressed alternatively as
(B0D

8
0 + j^Dg-1 +. . . + B8^D0 + Bs) x(t0) = O,

in which JB0, Bl9 etc. are (n, m) matrices of given constants. Such a set
of boundary conditions may conveniently be referred to as being of
order s. If s > N — 1, it is clearly always possible to reduce the order of
the supplementary conditions to N — 1 by successive substitutions
from the differential equations.

When the problem is of standard type <f>(D0) is an (Nm, m) matrix,
which can be partitioned into square matrices of order m and con-
veniently represented by

<f>(D0) = {Im,ImD0, ...JmD»-i}. (2)
In §6-4 a direct solution of the differential equations will be

obtained which is applicable to the general one-point boundary
problem. When the problem is of standard type a special form of
the solution can be used which is often more convenient than the
direct solution (see §§ 6»5 and 6-6).

* In connection with boundary problems of this general type it is important to observe
that the choice of the polynomials </>ij{D0) and of the constants Ot- is not altogether unre-
stricted. The boundary conditions must be compatible with the differential equations.
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E X A M P L E S

(a) Problems of Standard Type

(i) Single Differential Equation. If the given differential equation is

Dnx+p1D
n-1z+...+pnx = £(t),

then m = 1 and N = n. Hence (1) and (2) give

(ii) Linear Dynamical Equations of Lagrangian Type (see example
(ii) of § 5-5). If there are m generalised coordinates q, then N = 2 and
n = 2m. Hence, assuming given initial values O for the sets of
quantities q and q, we have

(b) Problems of General Type

(iii) -4 System of Fourth Order. Consider the homogeneous equations

f(D)x=rD + 2,D* + 2D*-nYx1\ = 0 (3)

[ D\ D*-l J UJ
Here m = 2 and N = 4: but A(A) = A 2 - A - 2 , so that n = 2( + mN).
Only two boundary conditions can be assigned in this case, and the
problem is not of standard type. The simplest set of supplementary
conditions here would be x^t^) = Ox and x2(t0) = O2, corresponding
to <fi(D0) = I2. For a standard problem with m = 2 and N = 4, we
should require % = 2 x 4 = 8, and the values of x and of its first seven
derivatives at t = t0 would be assigned.

(iv) Change of Order of Boundary Conditions. The formulae of § 5*9
can be applied to change the order of a set of one-point boundary con-
ditions <f>(D0)x(t0) = O. In (5-9-8) write 0 for G, t0 for t, Do for D: then

r = l

r l o V
(1)

where 0. = ^ ^ ) jP(Ar)/A(Ar). Since f(D0) -/(Ar) is exactly divisible by
Do - A,, and the quotient is of degree N — 1 in Do, the given boundary
conditions are expressed by (4) as an equivalent set of order N— 1.
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For example, let the differential equations be (3). Here Ax = 2 and
A2 = — 1, and it is readily verified that (4) yields the relation

<f>(D0)x(t0) = W(2){15, - 4 } [ - D 0 - l , -Z>g-D§]s(g
- W ( - l ) { 0 , - l}[ -Z> 0 + 2, -B*0 + 2Dl]z(t0) (5)

With equations (3) only two supplementary conditions can be assigned.
If the order of these exceeds 3, they are reducible by (5) to an equivalent
pair of order 3. Suppose, however, that the given conditions are simply
x^to) = Ox and x2{t0) = O2, corresponding to <j>{D0) = /2. Equation (5)
would then lead to an increase in order of the boundary conditions.
Thus, with <f) = / in (5), we obtain at t = tQ

or 5D0x1 + 6^ + 5Dgx2 + 5D*x2 = 0,
D0a;1 + 2^1 + i)ga;2 + 2i)§a;2-a;2 = O.J

I t is an instructive exercise to show that these equations are a necessary
consequence of the differential equations (3). As already explained in
§ 5'9, equation (5* 9*8) is not an identity unless the quotient Q is absent
in (5-9-2). In the present example such a quotient would arise because
the degree in D of F{D) exceeds that of A(2)): and it would actually
give rise on the right-hand side of (5) to an additional term

pg + Z>0 + 3, ~ D 0 - 3 i p 0 + 2,i)g+2Dg~n^(g (7)
L - 1 , 0 JL D% D$-l J

The relation (5), as thus modified, would have been an identity for
all values of x. On the other hand, the matrix product (7) contains
f(D0) x(t0) as its last two factors, and this is null by (3): for this reason
the product is omitted from (5). The conditions that the fully expanded
product (7) shall be null are precisely the equations (6).

6-4. Direct Solution of the General One-Point Boundary
Problem. Before obtaining the direct solution in its most general
form, we shall consider a simple case. Suppose the differential equations
to be given by

representing the small free motions of a dynamical system with m
generalised coordinates q. Let the n( = 2m) roots ^ of

= 0
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be all distinct, and let the values q(t0), q(t0) be assigned. Now the
most general solution of the foregoing equations is expressible as

= kM(t)c, (1)

where k and M are as defined in §5-10, and c is a column of n arbitrary-
constants. Moreover, since in the present case the roots Ay are assumed
to be all distinct, the (m,n) modal matrix k contains only constant
elements.

On differentiation with respect to t, equation (1) gives

= kAM(t)c,

where A is the diagonal matrix of the roots A,.. Hence when t = t0 we
have q(t0) = kM(t0) c and q(t0) = kAM(t0) c. These two relations can be
combined into the single matrix equation

c, (2)

where I is the square matrix of order n defined by

Solution of (2) for c yields

c = M(-to)l~i{q(to),q(to)},

and substitution of this value for c in (1) gives the direct solution

= kM(t-to)l-*{q(to),q(to)}.

The corresponding solution for a non-homogeneous system of general
order, and for a general one-point boundary problem, can be obtained
by a similar method. Assume the equations to be

= 0, (3)

and let the boundary conditions be

The general solution may be written

(5)
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The first term on the right is the complementary function obtained in
§5-10, while P(t) denotes any particular integral as found by the
methods of §511. On premultiplication of both sides of (5) by 0(Z>)
it is readily proved that

<f>(D)x(t) = l(t)M(t)c + <f>(D)P(t), (6)

where l(t) is the square matrix of order n

(7)

the «th column of which is given by

In (6), which is true for all values of t, substitute t = t0 and premultiply
throughout by M( — t0) f"1^). Then using (4), we obtain

Substitution of this value for c in (5) yields the direct matrix solution*

x(t) = k(t)M(t-to)l-*(to){<I>-<f>(Do)P(to)} + P(t) (9)

A more symmetrical equivalent is

x(t)-P(t) = Ht)M(t-to)l-Hto)<f>(Do){x(to)-P(to)}. ...(10)

When the boundary problem is of standard type,f so that <fi(D0) has
the special form (6-3-2), the matrix I is expressible in the partitioned
form

hit),
(Xn+D)kn{t)

(11)

where each element is a column matrix. Iffurther the roots of A(A) = 0
are all distinct, the elements lis(t) are all constants, and the brackets

* Other forms of this solution can be obtained by replacing k(t) by k(t - T), where T is
arbitrary, and defining the matrix l(t) to correspond (see remarks following equation
(5-10-1)).

f For an alternative method of solution for problems of standard type see § 6-5.
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indicating the dependence of these coefficients on t can be omitted.
The formula (11) then reduces to

Z k2, ..., kn (12)

E X A M P L E S

(i) .4 System of Fourth Order. Consider the homogeneous equations
(6*3'3) f(D) x m YD + 2, D3 + 2D* -1] r^] = 0.

L D\ D*-l JUJ
Here, with Ax = 2 and A2 = — 1,

j-[_rT[-T-I]i

2) = r o oi = r on[i,-i],
L-i iJ L-iJ

15 01.
- 4 - l j

giving

If the initial conditions are x1 = Oiand^g = O2at^0 = 0, corresponding
to <p(D0) = I2, then by (7) I = k and

[-4 -lj [ 4 151
Hence the solution is

15 01 He*

- 4 — l J L o
oire- o i r - i o i ro j .
j dL 4 J I J

(ii) Linear Dynamical Equations of Lagrangian Type. If the values
at t = 10 of the m generalised coordinates q and of the m generalised
velocities q are assigned, then

T _
In this case
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(iii) A Modified Form of the Direct Solution. If the value of c
given by (8) is introduced in (6) instead of in (5), the result is

4>{D) x(t) = lit) M(t -10) l-\t0) {O - $(D0) P(t0)} + $(D) P(t),

which, on premultiplication by i~1(f) and rearrangement, gives

H ( 0 $(D) {x(t) - P(t)} = M (t - y l~Ht0) 0(Z>O) {x(t0) - P(t0)}.
(13)

Now choose as new dependent variables the set of n functions a(t)

and put /?(*) = H(<) <}>(D) P(t).

Then the solution (13) is expressible in the simple form

*{t)-p(t) = M(t-to){<x(to)-fi(to)}.

In the case of the Lagrangian equations considered in example (ii)
x = q and $(D) = {Im, ImD}\ hence

In dynamical applications considered in Chapter xi the quantities a(£)
are referred to as the reducing variables, since by the choice of these
variables the equations of motion are reduced to a simple diagonal form.

6*5. Special Solution for Standard One-Point Boundary
Problems. In numerical applications of the direct matrix solution
the principal difficulty lies in the calculation of the inverse matrix
Z~1(̂ o). When the differential equations and the boundary conditions
are of standard type, the direct inversion of this matrix can be avoided
by an alternative method of solution, which will be referred to as the
special form of solution. The intial conditions in this case are expressed

0, ...,ImD»-i}x(t0) = 0, (1)

and if the roots of A(A) = 0 are all distinct (as will here be assumed)
the special solution is

&(K) ° (2)

Since [/(J?o) -f(K)]l(Do - A,.) is a polynomial of degree N -1 in Do, the
initial values required for an application of (2) will all be known.
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To prove the formula, assume a column of m quantities y(t) to be
defined by the relation

y(t)-P(t) = i ^F(K) [ / ( ^ o ) ~{ { K ) ] W-P(t 0 ) } ,
^('V) (3)

in which P(t) = X7^r^(0- The right-hand side of (3) is identical with

that of (2). Now, since every column of the matrix exitF(Xr) is anni-
hilated by the operator/(D), it follows that

Hence the functions y(t) satisfy the given differentia] equations. Next,
premultiply both sides of (3) by the operator <j>(D) and after differen-
tiation put t = t0. The result can be expressed as

gm_ £ o
(1)

where Cr = (̂A,.) jF(Ar)/A(Ar). But by (6-3-4) the right-hand side of (4)
is equal to <f>(D0) x(t0), or to O. Hence the functions y(t) satisfy the
required boundary conditions. This establishes (2).

With a problem of standard type the degree of F( A) in A is less* than
that of A(A). Hence a convenient form for the particular integral such
that P(t0) = 0 is (see (5-11-7))

rt
F(K) e-P(t) = S ~^-F(K) e-***Z(t)d* (5)

1 Jt

If, further, we write ^(A,.) = krKr and

f(D) - AODX+A^-1+..

the special solution may be expressed as

x(t)-P(t)= £ ^[A0A?
1

x{x(to),Dox(to), ...,I^-i*(g}eVMrf (6)

* Since f(X)F(A) = A(A)I and /(A) is of degree N, while A(A) is of degree n = mN, it follows
that .F(A) has degree N(m -1).
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The special solution, when applied to homogeneous equations, is
essentially the same as the "method of isolation" given by Routh.*
In § 6-9 it will be shown that (2) is also the matrix equivalent of the
well-known solution obtained by Heaviside and others by operational
methods.

E X A M P L E S

(i) Single Homogeneous Equation of Order n. Let the given differential
equation be

f{]))x = {AoD* + AiD*-i + m9m+Ajx „ 0 .

In this case A(A) =/(A) and the "adjoint" F(X) = 1. Hence (6) gives

(ii) Linear Dynamical Equations of Lagrangian Type. If there are
m generalised coordinates q and i£f(D) = AD2 + BD+C, the formula

q(t)-P{t) = S • § ^

(iii) Various Identities. When the roots of A(A) = 0 are all distinct and
P{t0) = 0 the direct solution (6-4-10) equivalent to the special solution is

x(t)-P(t) = kM(t-to)l-^x(to),Doz(to),...,DF-iz(tQ)}9 (7)

in which I is given by (6-4-12). Comparison of (6) and (7) yields the
identity

kM(t-to)l-i = iJ$±[A0X?-1 + A1X?-*+...+Alf_1,...,
~lA(*) (8)

Expanding the exponentials on both sides of (8) and identifying the
terms involving the different powers of t — t0, we can deduce that

k 0

0

0
0

0 0 ...

I-1

in which ^(A) is any polynomial of A.

* See Chap, vm of Ref. 13.

(9)
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6*6.* Confluent Form of the Special Solution. We shall next
indicate briefly the modifications to the special form of solution due to
the presence of a set of s roots equal to As. For simplicity the discussion
will be restricted to homogeneous systems.

As for (5-9-5), write A(A) = (A -A8)«A8(A), and denote by Yi the family
of matrices i

for i= 1, 2, ...,s. Then it can be shown that the contribution to the
special solution arising from the set of s equal roots is given by the
column s

y(t) = s v#-t*,

where d-i is as defined by (5-9-11).
To prove this result, we note firstly that, as for the family of matrices

W(t, X8) defined in § 5-7, every column of every matrix of the family Vi

satisfies the differential equationsf(D) x(t) = 0. Hence y(t) satisfies the
same differential equations. Again, premultiplication of (2) by <j>{D)
yields

l*
so that, when t = t0,

On application of (5-9-8) and (5-9-12) with £ = 0, O = <f>, t = t0, and
D — Do, it is now easy to verify that the functions y(t) given by (2)
correctly contribute to the satisfaction of the boundary conditions.

E X A M P L E

Lagrangian Equations of Motion of a Linear Conservative System.
The dynamical equations in this case are of the special type

0, (3)

in which A and E are both symmetrical matrices.
I t will be shown in § 9-9 that for such a system, if A(A) = 0 has s roots

equal to As, then the corresponding derived adjoint matrices up to and
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including F(AS) are all null. Accordingly (see (1)), Vi(t-t09X8) = 0 if

t iJ A . A

Moreover, putting i = 1 in (5-9-11), and using (3), we find

The special solution is thus

(4)

where 2 denotes summation for all distinct values of the roots of
A(A) = 0.

It is to be noted that with the present system of equations the
matrices Wt(t, As) appropriate to the roots As (see § 5-7) are all null with

(s-l)

the exception of Wg^t, As) = ex^F(X$), so that the corresponding s
constituent solutions are all obtained from Ws__v The modal columns
are thus independent of t, even when multiple roots occur. The derived

(s-l)

adjoint matrix F(X8) will here be of rank s, and will be expressible as
a matrix product of the type

where fe(A8) is an (m, s) matrix with s linearly independent columns,
which can be taken to be the modal columns appropriate to the roots
Ag, and x(As) is an (s, m) matrix with s linearly independent rows.

As a numerical illustration suppose

*2A2 + 48, -16A2, 4A2

-16A2, 32A2 + 48, 4A2

4A2, 4A2, 11 A2+12

and for simplicity take t0 = 0. Then

A(A) = 3 x 482(A2 +1) 2 (A2 + 4)

and .F(A) = 48(A2+1) 7A2+12, 4A2, - 4 A 2

4A2, 7A2+12, - 4 A 2

_4A2, -4A2, 16A2 + 48_
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Denoting the roots of A(A) = 0 as Ax = A2 = + i, A3 = + 2i, A4 = A5 = — i,
A6 = - 2i, we have A2(A2) = - 36 x 482 and A^Ag) = 108 x 48% while

(i)
.F(A2) = 2 x 48i

and

The required solution, on cancellation of some numerical factors, is thus

5 - 4
- 4 5

4 4

" -16 -
- 1 6 -

16

4"
4

32

16

16

16 -

16"

16

-16

q()~ 18x48

ie™
+ 108

5 -
- 4

4

• - 1 -

- 1 -
1

This reduces to

q(t) = £ " 5 - 4
- 4 5

4 4

Note that F(X2) J

" 4
4

- 4

-4

5

4

-1

-1

1

1"

1

8_

4

4

- 4

Ls expressible

4
4

32

1"

1

- 1

fe(0

- 1 "

- 1

1

32 -
- 1 6

4

" 32 -
- 1 6

4

+ the

-16

32

4

-16

32

4

4"
4

11

4"

4

11

{iq(0) + ̂ (0)}

(2i?(0) + j(0)}

corresponding conjugates.

fO)si

{2g(0)cos2£-

as the matrix

n*}

product

)sin2#.

96i 5 - 4
- 4 5

4 4

r i o 4 i .
LO 1 4J

6*7.* Notation and Direct Solution for Two-Point Boun-
dary Problems.

(a) Notation. In the case of a two-point boundary problem the
supplementary conditions consist of n independent linear relations
connecting the values at two points t = t0 and t = t± of the m variables
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x and of their derivatives up to order s. Such a set of relations may be
denoted by

= <S>, (1)

w h e r e D0 = l—I a n d 2 ^ = = / — I , a n d <f>, \]r a r e (n,m) m a t r i c e s o f
\dt/t=t0 vtt/t-ti

polynomials in their respective operators.
Suppose, for example, the differential equations to be of second order,

and let there be n = 2ra roots A. Then if the values of the m variables
x at both t = t0 and t = tx are assigned, we have <f>(DQ) = {Im, 0} and

(b) Direct Matrix Solution. The treatment follows the same lines
as for the one-point boundary problem (see §6'4). Thus commencing
with the general solution (6-4-5) we construct equation (6-4*6) as
before, and the additional relation

f(D)x{t) = l(t)M(t)c+r/r(D)P(t), (2)

in which l(t) is a square matrix of order n, similar to l(t) but having for
its «th column

Substituting t = t0 in (6-4-6) and t = tx in (2) and adding, we obtain

= Ptto)
c = i-

where L denotes the square matrix of order n

This yields
c = i - i O - 2/-K0(J>o) ^ o ) + ^ P i ) P(«i)}, (3)

Substitution of the value for c given by (3) in (6-4-5) yields the
solution

x(t) = Ht)M{*)L-1{9-^(D0)P(t0)-^{D1)P(tl)} + P{t) (4)
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PART II. SYSTEMS OF F I R S T ORDER

6-8. Preliminary Remarks. The case where the differential
equations are of first order is of particular importance not only on
account of its comparative simplicity but also because special methods
can be used which are not directly applicable to systems of higher
order. Further, as shown in § 5-5, a system of general order can always
be converted into a system of first order by a suitable choice of new
variables.

The general first-order system in n dependent variables yl9 y<&.-.,yn

will be written ./TM . ~ x ,_. /1X

f(D)y = (vD-u)y = y(t), (1)
where v and u are square matrices of order n having constant elements.
It will be assumed throughout that the matrix v is not singular, and
that consequently the determinantal equation A(A) = | vA — u\ = 0
has n roots. If v were singular, say of rank r, then n—r of the equations
(1) could be replaced by purely algebraic relations. These could be
used to eliminate n—r of the variables y, and the system would then
be reduced to one involving only r equations and having for the
coefficient of D a non-singular matrix (compare § 5-5).

In the special case where v is the unit matrix, equation (1) simplifies to

.,....(2)

Such a system will be described as being of simple first-order form.
A system of the type (1) is always reducible to the simple form by
premultiplication of the equation by v1.

In equation (1) there are n dependent variables y, whereas in
presenting the theory of differential equations of general order we
assumed m variables x. It is useful to preserve this distinction in the
notation because in actual applications it often happens that the
first-order system for solution in the variables y is derived (by methods
such as those described in §5-5) from a system of higher order but
containing a fewer number m of variables x. The number of the new
variables y will generally equal the degree n in A of the determinantal
equation of the system of higher order.

Attention will be restricted mainly to methods applicable to simple
first-order systems. However, at the outset we shall apply the special
method of solution given in § 6-5 to the general first-order system, and
trace its connection with the method of Heaviside.
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6*9. Special Solution of the General First-Order System,
and its Connection with Heaviside's Method. In the present
application of (6-5-2) there are n dependent variables y and n roots A,,
(assumed all distinct); moreover, f(D) = vD — u. Hence, if the form
(6-5-5) is adopted for the particular integral, the special solution is

ft

We shall now briefly relate this solution to that obtained by Heavi-
side and others.* The first rule in the application of Heaviside's
method to the solution of the system (vD — u)y = ri is to treat D
temporarily as a constant, and to solve for yv y2, etc., the purely
algebraic system of equations

When expressed by matrices the result of this preliminary operation
is clearly

The next step in the method is to reinstate the operational significance
of D on the right-hand side of each of the equations contained in (2),
and to expand the operators concerned in powers of D~x or Q, which
is now interpreted to mean integration with respect to t between the
limits t0 and t. To evaluate the results use is made of the identity
(compare (5-9-4))

h(D) _ h(0) *= + 2
in which h(D) is a typical polynomial in D of degree not exceeding
that of A(D).

So far as concerns its final outcome, this treatment is equivalent to
a direct application to (2) of the two matrix expansions

and

* See, for example, Refs. 16 and 17.



204 THE SPECIAL SOLUTION 6*9

which are obvious deductions from (3).* When used in conjunction
with (2), these identities yield

y(t) = i

Noting that D/(D — A,), when applied as an operator to unity, yields
= 1), and using (5-11-6), we derive the solution

(4)y(t) - 2
r~X A(A,)

This agrees with (1), since in (4) the form of particular integral adopted
is such that P(t0) = 0.

EXAMPLE

Special Solution of a System of Four Equations. Suppose the
differential equations to be

3
0
1

0

- 2
2

- 2
1

0
2

- 3
2

-r
1

- 2

1_

33 20 18 7"
- 2 4 - 1 6 - 9 - 9

43 28 11 20
_21 - 1 4 - 4 - 1 1

2"
0
3

- 1
(5)

with y = {1,0,0,0} at t0 = 0. Here

/(A) = p A - 3 3 , - 2 A - 2 0 , - 1 8 , - A - 7 "
24, 2A+16, 2A + 9, A+9

A-43, - 2 A - 2 8 , - 3 A - 1 1 , - 2 A - 2 0

21, A+14, 2A + 4, A + l l
and on reduction

A(A) = A* - 5A2 + 4 = (A2 - 4) (A2 - 1 ) .

The roots are accordingly A = ± 2 and ± 1, and these give

A(2) = 12; A(-2) = - 1 2 ; A(l) = - 6 ; A ( - l ) = 6.

The corresponding adjoint matrices are found to be

^(2) = 12{1, 0, - 1 , - 1 } [1, 2, 0, - 1 ] ,

^ ( - 2 ) = 12{1, - 1 , - 1 , - l } [ 0 , 1, 1, 1],

F(l) = 6{1,1, - 2 , - 2 } [ -3 , - 2 , 10, 18],

F(-l) = 6{1, 1, - 2 , - 3 } [ - 3 , - 2 , 9, 16].

• Note that with a first-order system the degree in D of DF(D) cannot exceed that of
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Since vy(t0) = {3,0,1,0}, the part of the special solution (1) independent
of 7j(t) can be written down at once as

l, 0 , - 1 , - l } + e-a{- l , 1, 1, l} + e<{-l, - 1 , 2, 2}.
c(3-Ar)/_ Ift c(3-Ar)/_

\^e-Vv(t)dt = {-2,0,3,-1} gNext

Hence, after a little reduction
4 C A ^ ft

\

= (-e?+e*){lf o, - 1 , - l } + (0-4e*-0-4e-*){-l, 1, 1, 1}

+ (9e3 '-9e'){-l , - 1 , 2, 2} + (4-25e3<-4-25e-0{l, 1, - 2 , - 3 } .

The required complete solution is accordingly

y(t) = (4e*-e*){l, 0, - 1 , - l } + (0-6e-2< + 0-4e^){-l, 1, 1, 1}

+ ( -8e '+9e 3 0{- l , - 1 , 2, 2} + (-4-25e-' + 4-25e30{l, 1, - 2 , - 3 } .
(6)

6*10. Determinantal Equation, Adjoint Matrices, and
Modal Columns for the Simple First-Order System.

(a) Determinantal Equation. The determinantal equation corre-
sponding to (6-8-2) is

which is the characteristic equation of the matrix u. Moreover, the
n roots Al9 A2,..., Xn are in this case the latent roots of u. Hence many
of the results obtained in Chapter m bear intimately on the theory
of the simple first-order system.

(6) The Adjoint and Derived Matrices. The adjoint matrix corre-
sponding to any simple latent root (say Ax) is given by (see (3-8-9))

Further, if Ax = A2 = ... = A8, then (see (3-8-10))

where p < 5—1.
For general values of A, the adjoint matrix is given by the formulae

(see (3-8-7) and (5-9-3))

... + (A""1

- i ( 1 )

r-1(A-Ar)A(Ar)



206 THE SIMPLE FIRST-ORDER SYSTEM 6'10-6*ll

(c) Matrices Up(t,Xs) of §5-10(6). The formula (1) can be used to
derive expressions for the matrices Uo, Uv U2, etc., which give the modal
columns when repeated roots occur. If, as above, A8 represents a root
of multiplicity s (so that Ax = A2 = ... = As), then

[= [4
where n = f(As+1)/(A8+2) .../(AJ
a,nd p^s — 1.

(d) Modal Columns. The s modal columns appropriate to a set of s
roots equal to X8 are given by any s linearly independent columns of
the set of matrices Uo, Uv ..., Us_v The typical modal column satisfies
the relation [ / ( j D + ^ __ u] ^ ( Q = 0?

from which it follows that the modal matrix k(t) has the property
dk(t)

dt
where A is the diagonal matrix of the latent roots. The last equation
can be written dklt)

u = k(t)Ak~1(t) + —jL^k~1(t). (2)

In the particular case where the latent roots of u are all distinct, the
modal matrix is independent of t, and (2) then gives the usual col-
lineatory transformation u = kAk~x.

6*11. General, Direct, and Special Solutions of the Simple
First-Order System.

(a) General Solution. When the expression on the right of (6-10-2) is
substituted for u in (6-8-2) the resulting equation can be written briefly

dy 7 dk

On premultiplication by M(— t) k*1 this gives

and direct integration yields the general solution

y(t) = k{f)M{t)\c+^M(-t)l<r\t)ri{t)diS, (1)
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where c denotes a column of n arbitrary constants. I t should be noted
that the particular integral in (1) vanishes at t = t0. When the latent
roots of u are all distinct an alternative form of the particular integral is

(2)

(b) Direct Solution. The direct solution for general one-point and
two-point boundary problems can be obtained from (6-4-10) and (6-7-4).
When the values of y at t = t0 are assigned (standard one-point boun-
dary problem) a convenient form of the direct solution is (compare (1))

y(t) = Ht)M{t)\M(-Qk-\tQ)y{Q+^^

(3)

If, further, the latent roots of u are all distinct, the modal matrix will
be constant, and its reciprocal can readily be calculated by use of
(3-8-12).

(c) Special Solution (Standard One-Point Boundary Problem). The
special solution appropriate to the case of distinct latent roots is at
once deducible from (6-9-1). The formula can be written

y(t)=
r = l

, (4)

(1)
A
()

in which Z^X,) = F(Xr)IA(Xr) (see also § 3-9).

E X A M P L E

Direct Solution. If the equations (6-9-5) are premultiplied by

0-1 =

the result is Dy —

1, 1,-2, -4"

0, 1, 0, - 1

- 1 , - 1 , 3, 6

2, 1,-6,-10

y =7, 4, 3, *\V=\ - 4
- 3 , - 2 , - 5 , 2 1
- 6 , - 4 , 0,-4 5

- 6 , - 4 , 1,-5J | _ - 1 2 .
The direct solution (3) of this simple first-order system will now be

obtained for the initial conditions y = {1,0,0,0} at ta = 0.
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The latent roots of u in this case are A = ± 2, + 1, and

A(2) = 12; F(2) = 12{1, 0, - 1 , - 1} [3, 1, 2, 0];

A(l) = - 6; F(l) = 6{1, 1, - 2, - 2} [1, 0, 2 , -1] ;

A(-1) = 6; F(-1) = 6{1, 1, - 2 , -3}[0, 0, 1,-1];

A(-2) = -12; F(-2) - 12{1, - 1 , - 1 , - 1 } [ 1 , 1, 1, 0].

Hence k = f 1, 1, 1, 1"
0, 1, 1,-1

-1 , -2 , -2 , -1
_ l ,_2 , -3 , - l

' 3, 1, 2, 0"
-1, 0,-2, 1

0, 0, 1,-1
-1 , -1 , -1 , 0

The term independent of t](t) in (3) is thus

611

and by (3-8-12) Jtr1

1, 1, 1, 1
0, 1, 1,-1

-1 , -2 , -2 , -1
-1 , -2 , -3 , -1

3, i, 2, o
-1, 0,-2, 1

0, 0, 1,-1
-1 , -1 , -1 , o

-ef

1"
0
0
0_

(5)

en, 0, 0, 0 "
0, e', 0, 0
0, 0,e~', 0
0, 0, 0, e-a

1, 1, 1, 1
0, 1, 1,-1

- 1 , - 2 , - 2 , - 1 0
-1 , -2 , -3, -lJL-e-

To evaluate the particular integral, we note firstly that
k-hj{t) = {-1, -18, 17, -2}e3/.

On premultiplication by M( — t) and integration

VM(-t)k-hj(t)dt = I {-€', -18ea, 17e«, -2e<*}dt

= { - c' + 1 , - 9ea + 9, 4-25e4< - 4-25, - 0-4eM+0-4}

H e n c e M(t)\*M(-, , , ,
Jo _ 9 e M + 9 e '
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Addition of this column to the column postmultiplying k in (5) gives
the complete solution

0, 1, 1 , -1

- 1 , - 2 , - 2 , - 1

- 1 , - 2 , - 3 , - 1

This agrees with (6-9-6).

6-12. Power Series Solution of Simple First-Order Systems.
The great attractions of this method are its simplicity and the fact that
it altogether avoids the generally troublesome problem of solution of
the determinantal equation. On the other hand, in numerical applica-
tions, the process often has the disadvantage of slow convergence.

In § 2-7 it was shown that the matrix series

J 2 " 1 - -
is absolutely and uniformly convergent, and that Deut = ue^. I t im-
mediately follows that the complementary function of the differential
equations (6-8-2) is given by _ ̂  ,,.

where c is a column of n arbitrary constants.
To obtain a particular integral premultiply (6-8-2) by e~ut and write

the result as D(e~uty) = e~^?/(£). A particular integral which vanishes
at t = t0 is accordingly »t

P(t) = e«t\ e
Ju

This leads to the general solution
ft

(2)- I
In a one-point boundary problem* where the values y(t0) are assigned,

we have n
y(t) = e*<M>>2/(y+ e"< er^(t)dt. (3)

In particular if 7/(t) = eetp, the last equation yields

y(t) = e^ - ' o^g + e^4eW-<o> _ c*M>>) (QIn - u)-*p.

The following identity, obtained by comparison of (3) and (6-11-3),
may be noted: _ g = mM{t_to)k-i{to) ( 4 )

* The case of a two-point boundary problem is dealt with in § 6-13.
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E X A M P L E

Computation of a Series Solution. As a very simple illustration of
the method of computation, we assume the system to be

0, 1

and take for initial conditions yx = 0 and y2 = 10 at t0 = 0. The exact
solution in this case is evidently yx = sin lOt with y2 = 10 cos lOt: this
will provide a comparison with the series solution.

Applying (3), with 7j{t) = 0, we have

0,10},

where

If t = 0-01,

u= r o,
iooi

i,oi + r o, o-oii+ | r -o-oi , o i+Jro, -o-oooii
0,1J L - 1 , 0 J L 0, -0-OlJ [o-Ol, 0 J

0, 0-0000011 + ...
L0, 0-OOOlJ [-0-0001,0 J

= [" 0-9950042,0-00998331.
L- 0-9983341,0-9950042J

Hence y(0-01) = e°'01u{0,10} = {0-099833,9-950042},

y(0-02) = eooluy(O-Ol) = {0-198669,9-800667},

and so on. The results of this iterative process may conveniently be
summarised in tabular form as follows:

t

y*(t)

t

Vi(t)
y&)

0

0
10

001

0099833
9-950042

006

0-564641
8-253363

002

0-198669
9-800667

0-07

0-644216
7-648430

003

0-295519
9-553367

0-08

0-717354
6-967077

004

0-389417
9-210614

009

0-783325
6-216112

005

0-479424
8-775831

010

0-841469
5-403037

The results for t = 0-1 agree to five figures with the values for sin 1-0
and 10 cos 1-0 as given by standard Tables.

As an alternative, a smaller interval might have been used at the
outset. For instance, if t = 0-001,
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eo-ooiw = n , 01 + r o, o-ooi i+ | r - o-oooi, o i
[o,ij L-o-i,o J [ o, -o-oooij

+±ro, -o-ooooooii+ ...
[o-ooooi, o J

= [" 0-9999500,0-00100001.
[ - 0-0999983,0-9999500J

Forming the tenth power of this matrix, we obtain

e oo i w = r 0-9950041,0-00998351,

L-0-9983339, 0-995004lJ

which agrees well with the value obtained above.
The choice of step is a matter for judgment, and will depend largely

upon the magnitudes of the elements of the matrix u.

6* 13.* Power Series Solution of the Simple First-Order
System for a Two-Point Boundary Problem. The solution of the
simple first-order system in power series, given in §6-12, can be ex-
tended to two-point boundary problems as follows. For simplicity
assume the equations to be homogeneous (y = 0) and let the assigned
values be { ^ ( g , ^ ) , . . ^ . ( y j a n d ^ i y , ^ ^ ...,^(*i)}- Arrange
the n dependent variables into the corresponding subsets

and express the matrix e^-'o) in the partitioned form

where a, /?, y, S are, respectively, submatrices of types (s,s), (5,71—5),
(n — s,s), (n — s,n — s). Then equation (6-12-3), with 9/ = 0, gives

r r.w ] = p*(Mo),AMo)ir W i, (i)

so that, in particular

Yn-s(h) = Y(h, t0) Ys(t0) + S(tv y Yn_s(t0).

This yields Yn_s(t0) = S~\tv t0) {rn_A) - 7(h, U ^(*o)}, (2)

which expresses the unknown set of values Yn_s(t0) in terms of the
known values ^(£0) and 3^_s(^). The solution required is then given
by (1) in conjunction with (2).



CHAPTER VII

NUMERICAL SOLUTIONS OF LINEAR ORDINARY DIFFER-
ENTIAL EQUATIONS WITH VARIABLE COEFFICIENTS

7*1. Range of the Chapter. The general theory of linear ordinary-
differential equations with variable coefficients covers an immense field
which is quite beyond the scope of this book. In the present chapter
our principal purpose will be to indicate how matrices can be applied
usefully in the approximate solution of such differential equations.

Amongst the various special methods discussed, those described in
§ 7-9 and exemplified in § 7-10 are particularly powerful: one important
field of application is to problems in mechanics which involve the
determination of natural frequencies. The method of mean coefficients,
described in § 7-11, is somewhat laborious, but it leads to good approxi-
mations even when the true solution is highly oscillatory. Examples
of the use of this method are given in §§ 7-12-7-15.

7-2. Existence Theorems and Singularities. Linear differ-
ential equations with variable coefficients are rarely soluble by exact
or elementary methods, and it is usually necessary to resort to numerical
approximations. In a one-point boundary problem, for example,
where the values of the dependent variable (or variables) and of the
derivatives up to a certain order are specified at some datum point, say
t = t0, the normal procedure is to try a development of the solution in
the form of a series of ascending powers of t —10. It is obviously of great
assistance to know beforehand whether such a form of solution is
justified, and, if so, the range of convergence. This information is
supplied by "existence theorems", which specifically concern the
conditions to be satisfied in order that solutions of differential equations
may exist, and the ranges of validity of such,solutions.*

In connection with any given linear differential equation, it is usual
to describe as the singularities or the singular points those points for
which the conditions necessary for the establishment of the relevant
existence theorem are violated. All other points are generally referred
to as ordinary points.

* For a detailed discussion of these questions the reader should consult a standard work
on differential equations, e.g. Ref. 5. For an elementary exposition Ref. 18 may be
recommended.
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EXAMPLES

(i) Single Homogeneous Linear Differential Equation of Order n.
Let the given equation be

<f>0(t) D»x + <f>±(t) D^x + . . . + <!>„_&) Dx + $n(t) x = 0,
where D = d/dt.

Suppose firstly that we are concerned with real quantities only
(equation in real domain). Then the existence theorem for this equation
states that if the coefficients ^(t) are continuous functions of t in the
interval a^t^b, and <fio(t) does not vanish in that interval, a unique
solution expressible in power series exists which is continuous in (a, b)

(1) (n-l)

and which yields assigned values for x(t0), x(t0), ...,x(t0) at any given
point t0 of (a, 6). If the coefficients are all finite, one-valued and con-
tinuous throughout (a, b), the only singular points which can occur
in (a, 6) are the zeros of <j>0{t): all other points are ordinary.

When the variables are complex, let t0 be a point of the Argand
diagram (£-plane), other than a zero of <fio(t), in the neighbourhood of
which all the coefficients ^(t) are analytic* functions of t. Then a
unique series solution in powers of t — t0 exists which satisfies the given
conditions at t = t0. This series converges absolutely and uniformly at
least within the circle having t0 for centre and passing through that
singularity of the set of coefficients (fijifio, ^2/^0* •••> 0n/0o which lies
nearest to t0.

(ii) The Standard System of First-Order Equations, If the system of
equations Dy — u(t)y + 7/(t) is in the real domain, and the elements
u^t) and ijj(t) are continuous in the interval (a, b), then a continuous
solution y(t) exists which is unique in (a,b) and which yields given
values y(t0) at a given point t0 of the interval. Moreover, if the elements
concerned are continuous for all positive and negative values of t (e.g.
when Uy and 7ji are polynomials in t), then the solution will be con-
tinuous for all real values of t.

Problems frequently arise in which the elements u^ and r\i satisfy
the condition of continuity in (a, b) and are at the same time functions
of a parameter, say K, real or complex. If K is complex, we shall
assume it to be restricted to such a region R of the Argand diagram
that Uy and rr\i are analytic functions of K at each point of i?. In this

* That is, the coefficients are single-valued, continuous, and admit a unique derivative—
namely, a derivative independent of the direction of approach.
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case a unique solution y(t, K) exists which is continuous with respect
to t and analytic in K. For example, if the coefficients are integral
functions (or polynomials) of K, the solution will itself be integral in
K and uniformly convergent for all values of K when a^t^b. This
solution will accordingly be of the type

y(t, K) = U0(t) + US) K + US) & +...,

and if the assigned conditions at t = t0 do not themselves involve K,
the first term U0(t) of the series must alone satisfy the appropriate
initial conditions, while the remaining terms US), U2(t), etc. vanish at
t = t0. This often provides a powerful method of solution.

7-3. Fundamental Solutions of a Single Linear Homo-
geneous Equation. Let the given equation be

4>S) Dnx + 4>S) D71-1* + . . . + $n-S) Dx + <f>n{t) x = °>

and consider firstly the solution relative to an ordinary point, namely,
(1) (n-l)

a point t0 other than a zero of <J>S)* If ^ e values x(t0), x(t0), ..., x(t0)
are assigned, the required solution may be taken as

( ()
x(t) = XS)x(to) + XS)x(t0) + ...+ Xn_S)x(t0) ,

in which XQ(t), XS)> •••> ̂ nS) a r e n special solutions, known as the
fundamental solutions. These solutions satisfy the n distinct sets of
initial conditions

(1) (2) (n-l)

xo(g = i, xo(g = o, xo(g = o, ..., xo(g = o;
(1) (2) (n-l)

x^g^o, z^g^i , xx(g = o, ..., x1(g = o;

and so on. The fundamental solution Xr will be a series of the form

Xr(t) =
The ordinary procedure is to substitute this series in the given equa-
tion, to arrange in ascending powers of t —10, and to equate to zero the
coefficients of the successive powers. The constants arn, arn+1, etc. are
then found from recurrence relations.

In dealing with a singularity, it is usual as a preliminary step to
transform the independent variable in such a way that the singularity
is brought to the origin t = 0; for example, in the discussion of a
singularity at infinity, the appropriate substitution is t = 1/r. This
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procedure clearly involves no loss of generality. Proceeding then by
the well-known method of Frobenius we assume a series solution

„=<)
in which the exponent p is not necessarily a positive integer. The trial
solution is substituted in the differential equation, and in the first
place the coefficient, say P(p), of the term of lowest degree in t is equated
to zero. The nature of the singularity depends on the nature of the
roots of the indicial equation

P(P) = 0.
If the indicial equation has n roots, the singularity is said to be regular.
On the other hand, if P(p) is of degree less than n, or is independent of
p, the singularity is classed as irregular.

If, as will be assumed, the singularity is regular, it will be possible
to write the differential equation in the form

f(D) x = tnDnx + P^P^t) Dn~xx + . . . + tPn_x{t) Dx + PJt) x = 0,

where the functions P^t) are all finite, one-valued and continuous in an
interval embracing t = 0 if t is real, or else are analytic near t = 0 if
t is complex.

In the case of a regular singularity, provided that no two of the n
exponents differ by zero or an integer, there will be n fundamental
solutions of the assumed type, and the coefficients of each series will
be determinable directly by recurrence relations. If there are multiple
roots, or roots differing by integers, there will still be n fundamental
solutions, but some of them will involve logarithmic elements.*

7-4. Systems of Simultaneous Linear Differential Equa-
tions. Adopting a notation similar to that used in § 5-1, we may write
a system of m linear differential equations of order N connecting the
m dependent variables xl9 x2,..., xm with t as

($0D» + <f>1D»-i + ... + <t>N_xD + $N)x = g(Q.

The coefficients <{>i are square matrices of order m, having for elements
assigned functions of t. A system of the foregoing type is clearly
reducible (in an indefinitely large number of ways) by methods similar
to those illustrated in § 5-5 to a system of, say, n differential equations
of the first order. In accordance with the notation of §6-8, the most

* For a description of the treatment in these cases see § 16-3 of Ref. 5.
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general system of n linear equations of the first order may be expressed
a s (vD-u)y = ri{t). (1)

Here v and u are square matrices of order n whose elements are given
functions of t. When v = In the system is referred to as simple. For
ranges of t in which v is not singular (1) can be reduced to a simple
system by premultiplication throughout by v*1.

E X A M P L E

Reduction of a Single Linear Equation to a First-Order System, To
illustrate the methods of reduction, consider a single linear equation
of order n

Writing (as for example (i) of § 5*5)

we derive the system of n first-order equations

1 0

0 1

0 0

0 0

0 0

0 0

1 0

0 6n

0

0

1

0

0

1
0

0
y+

0

0

-«*)J
For all ordinary points (i.e. for all points other than the zeros of <fio(t))
this equation can be replaced by the simple system

0

0

1
0

0

1

0

0
y+ o

o

The following is an alternative scheme of transformation which has
been used by Baker* in relation to the Peano-Baker method of
integration (see §7-5). Retaining his notation, we suppose the given
(homogeneous) equation to be

Dnx =
p

0n
and put yx = x; i Dx; . . . ; y n = ^ i ^ 2

* See p. 343 of Ref. 6.

-X,
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This transformation of the variables yields the first-order system

0

0

0

0 0

0

H2

0

0

0

0

0

0

0 H
n_2

in which

For instance, if
simplifies to

n pjfa ... pn_2/<f>n i
8 (1)

= . . . = <j)n = §S, t h e n Hs =

y,

0 1
(i)

0

0 $ 1
(i)

0 0 20 1

0

0

0

(i)

P I

0

0

0

(2)

5, and (2)

0 0 0 0
(1)

L •* 2 x 3 x n - 2 •*• n-1

An important special case is where <f> = t and the functions Pn^l9 Pn-^
etc. are polynomials in t. The given differential equation then is

tnDnx = Prh_1t
n-1Dn-1x + Pn_2t

n-*Dn-2x +... •

and the equivalent first-order system is

0 1 0 0 ... 0 0

0 1 1 0 ... 0 0

0 0 2 1 ... 0 0

0 0 0 n-2

-Po - 1

0
p p p p

r \ r2> r 3 • . . ^71-2

7-5. The Peano-Baker Method of Integration, This method
of integration of the simple first-order system of differential equations
was introduced by Peano in 1888, but the more recent developments
are due to Baker.* The principle of the method is extremely simple.

* Historical notes are given in Ref. 19: see also Ref. 20 and § 16-5 of Ref. 5.
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Considering firstly homogeneous systems, we suppose the given
equations to be Dy = u(t)y,

and assume a set of values for y to be assigned at t = t0. Now it has
been proved in §2-11 that the matrizant Ofto(u) has the fundamental
property

Further, when t = t0, Q.'0(u) reduces to In. Hence

satisfies the given system of equations and yields the required values
y(t0) at t = t0. This is the Peano-Baker form of solution. A feature of
the solution is the wide range of its validity when t is complex; it
extends to all paths of integration which do not encounter any of the
barriers referred to in §2-10. On the other hand its usefulness for
practical computation is apt to be limited by slow convergence.

The matrizant method of solution can readily be applied to the
non-homogeneous system

D
For, when premultiplied throughout by Cl-^u), this equation can be
expressed as D(Q-^y) = Q-fy

Hence a particular integral which vanishes at t = t0 is

The solution required is accordingly

y(t) = a{u)y(tQ) + a{

By expression of the matrizant in the appropriate partitioned form
and a treatment similar to that adopted in § 6-13, it is possible also to
obtain a formal solution for the case of a two-point boundary problem.
The detailed construction of these formulae may be left to the reader.

7-6. Various Properties of the Matrizant. A useful property*
of the matrizant is immediately deducible from equation (7-5-1).
Suppose tx to be any point of the interval (t0, t). Then

and similarly y(t) —

It follows that Q}o(u) = Q?ti(u) ty](u).

* Equation (1) was originally given in Ref. 21. Equation (2) is due to Baker (Refs. 6
and 20); and equation (3) is equivalent to one given by Darboux (Ref. 22).
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More generally, if the complete interval (to,t) is divided into any

number of smaller intervals (£0>*i)> (h'h)* •••> (ts-i>t)>tnen

) (1)

(2)

A further property is expressed by the identity

in which V = Q"1 ) vil{u).

To prove this, consider the system of equations Dy = (u + v) y, and
let the values y(t0) be assigned. Then if y = Qf{o(u) Y, the system reduces
to DY = VY. Since y(t0) = Y(t0), the solution of this last system of
equations can be written Y(t) = Q.(V)y(tQ), or y(t) = £}(w)£i(F)2/(£0).
On comparison of this with the solution y(t) — Q,(u + v)y(t0), obtained
from the equations in their original form, the required result follows.

Finally, it may be noted that

log A = K i
Jto

+ u22+...+unn)dt, (3)

where A = | Q(u) \. The method of proof is general, but for brevity
assume u to be a square matrix of order 2. By differentiation of A
with respect to t,

(i) (i)()

A =
( i )

a12

(1)

(1)
Since Q, = u£l, the preceding equation can be written

A =

^ 22

a

rt
This yields on integration log A = (u1± + u22) dt.

7*7. A Continuation Formula, Suppose the solution of a
system of linear differential equations to be required over the interval
(£0,£). If all points of the interval are ordinary, it is theoretically
possible to obtain the solution by use of the fundamental series solu-
tions relative to the initial point £0. On the other hand, for purposes of
practical computation, it may sometimes be preferable to employ the
series relative to £0 only up to some intermediate point of the range,
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say tv and to continue the solution thereafter by the use of series
appropriate to the point tx or to some other point of the interval (tl91).
More generally, if n— 1 successive intermediate points tl912,..., tn_x are
taken, so that the whole interval (t0, t) is divided into n steps, it is
possible to base the computation in a typical step on the series rela-
tive to a suitable point of that step. The solution is carried over
from step to step by identification of the initial conditions for any
step with the end conditions for the preceding step. This fitting
together of a sequence of solutions will be referred to as the method of
continuation. We shall now obtain a matrix formula which expresses
the process in a concise form.

The treatment is applicable in principle to linear differential equa-
tions of any order, but for simplicity we shall consider specifically the
simple system of first-order homogeneous equations,

Dy = u(t)y. (1)

A solution of the equations, valid in each step, will be assumed
known. If T8 denotes some chosen point of the 5th step (ts_l9ts),
then the solution appropriate to that step may be supposed ex-
pressed either as a series of powers of t — Ts, or in terms of the matrizant,
or in any other convenient form. The solution to be used in the 5th
step will be denoted by

y(t) = HJftyit^). (2)
Here Hs is a square matrix of order n9 which is assumed to reduce to the
unit matrix In when t = ts_v In the particular case where the point
Ts is chosen at the initial point t8^1 of the step, the ^'th column of
H would represent the fundamental solution appropriate to the special
set of conditions y^t^ = 1 and yv(t8_-^ = 0 for v+j. On the other
hand, if T8 is situated elsewhere in the step, the columns of Hs are
suitable linear combinations of the fundamental solutions relative
toTs.

On application of (2) to the n assumed steps, we have the
sequence of relations

y(h) =

y(t) = HJ
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Hence y(t) = HJt) H^t^) Hn_z(tn_2) ...

or, say,* y(t) = U (Hs)y(t0). (3)
n

The process of continuation adopted is thus represented by a chain of
matrix multiplications. The reader should particularly note that the
individual matrices of the chain will in general differ from step to
step.

In the construction of the formula (3) it has been supposed that no
singularity is encountered in the interval of t under consideration,
but this restriction is not essential. The point T8 of the typical step can
be chosen to be a singularity, provided the set (or sets) of solutions
appropriate to that singularity are used.

In applications, the method of computation will depend to some
extent upon the problem. For example, if the values of y(t0) are numer-
ically assigned, the least laborious procedure is to compute the matrix
chain U(H) from right to left; for then the product H^t^y^) can be
calculated as a single column, which on premultiplication by H2(t2)
again yields a single column, and so on. Hence in this case multi-
plications of square matrices can be avoided. On the other hand, if—
as often happens—the solution is required for arbitrary values of
y(t0), the direct multiplications of the square matrices must be effected.
If many matrices are involved, it is wise to compute subproducts in
the manner described in example (vi) of § 1*5. This greatly facilitates
the correction of errors, and is also valuable if a possible increase of
the number of steps in certain parts of the range of integration is in
view.

Some simple examples of the continuation formula follow.

EXAMPLES

(i) Linear Equations with Constant Coefficients, Assume the equa-
tions (1) to have constant coefficients, and choose Tb = ts_x in every
step. Then H8(t) = expu^ — tg^) (which is consistent with the con-
dition H^tg^) = In). Hence the solution (3) is

y{t) = exp u(t - tn_i) exp u(tn_1 - tn_2)... exp u{tx -10) y(t0).
(4)

* The notation n (H8) is used to imply a product taken in the order Hn Hn_x ... Hv
n
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If T8 = t8 —18_1 denotes the total difference of t in the sth step, the
formula may be written

y(t)

or y(t) = I
1

If the steps are all equal and very small, this leads to the theorem

exp ut = lim ll-\— I .
W->00\ ^ I

(ii) Matrizant Continuation. Assume the equations to have vari-
able coefficients and as before choose T8 = t8_x in every step. Then,
adopting the matrizant form of solution, we have H8(t) = Qfit_x(u) with
J2s(*s-i) = In. The formula corresponding to (3) is thus

If the steps are so small that only first-order terms in r8 = ts — t8_1

need be retained, then approximately

The solution is thus exhibited as the limiting value, when the number
of steps is indefinitely increased, of the matrix product

7*8. Solution of the Homogeneous First-Order System of
Equations in Power Series. Let the given system of equations be

v(t)Dy = u(t)y, (1)
and assume that over the range (£0, t) of integration concerned the
elements of the matrices v(t) and u(t), if not polynomials in t — to = T,
are at all events expansible in Taylor's series, so that

(1) T 2 (2)
( t ) + ( t )

(1) T 2 (2)

(t) + (t

Unless the matrix v(t0) is singular, these expansions may be written
alternatively as v-i{to)v{t) = In+Vl

in which Vt and TJi are matrices of assigned constants.
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As a trial solution assume

y(t) = S(T)y(to) = (In + A1T + A2T* + ...)y(to) (3)

Here Av A2, etc. are square matrices of constants to be determined,
and the values y(t0) are regarded as arbitrarily assigned. On pre-
multiplication of (1) by v-1^) and substitution from (2) and (3),
we obtain

This must be identically satisfied for all sets of values y(t0). Equating
to zero the total coefficients of the separate powers of r, we therefore
derive a set of recurrence relations from which the matrices Ai can
be calculated. Thus

3AS = (UQ - 2FX) Az + (Ux - V2) A1 + U2,
and so on.

If v(t) — In, so that (1) is a simple system, there is the simplification
VX = V2 = VZ = ...= 0. The recurrence relations then give

and so on.
It should be noted that the columns of the matrix 8(T) give the

fundamental solutions relative to the point t0. The jth column of that
matrix will be the fundamental solution appropriate to the special set
of initial conditions yj(t0) = 1 and yv(tQ) = 0 for v #= j.

EXAMPLE

Solution of a Single Equation. Consider the general solution of the
equation D2x + tx = 0 in the vicinity of t = 0. If x = yl9 and Dx = y2)

the equivalent first-order system is

where Uo = [0 1] and

Dy =
[0 1] and Ux = [ 0 0].
L0 Oj [ -1 oj
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Hence

[o oj
2A2 = vo i]2+r o oi = r o on,

Lo oj [-i oj [-i oj
3A3 = uo n r o oi+K o oiro i] = f r - i o],

Lo oJL-i oj L-i oJLo oj [ o - 2 \
and so on. This yields

S(t) = ri oi + ro i i t + r o oi t2 + r - I oi tz + ro -211±
[O lj L° OJ L - l OJ [2 L 0 -2j{3 L° 0j]4

+ ro oi t5 + [4 oi tQ + ro 10117 + r o oi t8

I* 0JJ5 [0 10j{6 Lo OJ]7 L ~ 2 8 °J[S
+ [-28 oi^9 + ro -8oi^lo + r 0 oi ^n+... .

L 0 -80JJ9 L° °J | I? L 2 8 0 OJ [IT
The fundamental solution appropriate, for instance, to the initial
conditions y±(0) = 1 and y2(0) = 0 is thus

180

^ ^ t * t11

U2 [2 [5 jS [11 "" 2 30 1440 142560 " "

7*9, Collocation and Galerkin's Method. These methods of
approximation* are powerful and relatively simple, and they are
particularly valuable for problems involving the determination of
characteristic numbers (see §6-2).

A single differential equation of order n without variable parameters
will first be considered, namely

in which f(D) = $0(t) D
n + ^(t) Dn~x + . . . + <fin(t).

I t will be supposed that an approximate solution of (1) in the interval
t = 0 to t = T is required. The boundary conditions must be such as
to render the solution unique, and they may be assumed to consist of
n non-homogeneous linear equations connecting the values of x, Dx,

• For a fuller discussion of the methods, see Refs. 23 and 24. The original papers by
Galerkin describing his method are not readily accessible, but brief accounts are contained
in various Russian publications, e.g. Refs. 25 and 26.
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D2x, etc. appropriate to, say, p specified points of the interval (0, T).
These p-point boundary conditions are thus of the type

Bt = bt, (2)

for i—l,2, ...,n, where the expressions Bi are linear and homo-
geneous in the values of #, Dx, D2x, etc. corresponding to the boundary
stations, and the constants bi are not all zero.

The «sth approximation to the solution, say x, is assumed to have
the form x

where Xo is any function of t which satisfies the conditions (2), Xv X2,
etc. are any convenient functions each of which satisfies the simpler
conditions Bi = 0 for i= 1, 2, ..., w, and cv c2, etc. are constants left
free for choice. When the functions X are chosen in this way, x neces-
sarily satisfies the conditions (2) for all values of the constants c. The
methods of approximation to be described only differ in the way in
which these constants are determined. The approximate representation
of the solution can be written concisely as

(3)

where X denotes the row of the s functions Xv X2,..., Xs, and c denotes
the columns of the s constants cl9 c2, ..., cs.

Let e(t) denote the function obtained when the expression (3) is
substituted for x in the left-hand side of (1), so that

e(t) =/(Z>) X(t) c +f(D) X0(t) - g(t).

The quantity e(t) is the error in the differential equation due to the
approximation, and for a good approximation this error should be
small throughout the interval (0, T).

In the first and more obvious method, which will for convenience
be termed collocation, the constants c are determined to give zero error
at s selected points tl912, ..., t8 of the interval. HYi(t)^f(D)Xi(t) and

0 =

Y2(t2) ... Ys(t2)

7i(t8)

the s equations for the constants in this case are given by

0c = {£(««)-Fofo)}. (4)
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In an alternative method, due to Galerkin, the constants c
are chosen so that s distinct weighted means of the error, namely

T
e(t)XAt)dt, for j= 1, 2, ..., $, are zero. The equations for the con-

o
stants may then be expressed as

(Q$X'f{D)X)c = Q$X'(Z-f(D)X0) (5)
It can be shown that as s is increased the values of the constants c

determined by equations (4) and (5) tend to equality.* Hence, when
(as normally) the sequence of representations x obtained by either
method converges, then also the sequence given by the other method
converges to the same limit. From the computational standpoint the
method of collocation has the advantage of great simplicity, since it
avoids the labour of evaluation of integrals: on the other hand,
Galerkin's method is generally the more rapidly convergent.

If the differential equation contains a variable parameter and is
homogeneous, and if in addition the boundary conditions are homo-
geneous, so that bi = 0 in (2) for i— 1, 2,..., n, there may be charac-
teristic values of the parameter for which solutions of the equation
exist other than y = 0. With such problems the function Xo will be
absent from (3), and g(t) = 0. The terms on the right of (4) and (5)
accordingly vanish, and the approximations to the characteristic
numbers are given in each case by the condition of compatibility of 8
homogeneous linear algebraic equations. It may be noted that, in
exceptional cases, even when the true characteristic numbers are
wholly real, the earlier approximations to these numbers may be
complex. However, if the representations of the solution are con-
vergent, the imaginary parts in the approximation will either vanish
or tend to zero as s is increased.

To illustrate the application of the methods to problems involving
characteristic numbers, consider the single homogeneous differential
equation of order n, f(D)x + Kf(D)x = 0, (6)

where K denotes the variable parameter. The form of approximate
solution assumed in this case is x = Xc, and each of the s functions in
X is chosen to satisfy the n homogeneous boundary conditions B — 0.
The Galerkin equations, for instance, then are

(QZX'f(D)X)c + K(Q*X'iJr(D)X)c = 0,
or, say, (v + Kw) c = 0,

* For a formal proof, see Ref. 23.
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in which v, w are square matrices of order s. Accordingly, the set of
permissible values Kv K2,..., K8given by the assumed approximation
are the latent roots of the matrix u, where

u = —vr1v. (7)

The methods can also be applied for the approximate solution of
systems of linear ordinary (or even partial) differential equations.
In such applications an approximate representation of the type
x = Xo + Xc, involving s constants c, is assumed for each of the m
dependent variables. The leading term Xo in each case must be a
function of the independent variable (or variables), chosen to satisfy
the boundary conditions B = b completely, and the remaining func-
tions X must satisfy 2? = 0. In the collocation method the complete
domain of integration (assumed finite) is divided into s regions
av oc2, ..., as, and a convenient point in each region is adopted for
collocation. The assumed expressions for the dependent variable are
then substituted in the differential equations, and the errors in the
differential equations are made zero at each of the collocation points.
The final outcome is a system of ms simultaneous linear algebraic
equations for the m sets of s unknown constants c. If Galerkin's method
is employed, the error et corresponding to the ith differential equation
is multiplied in turn by the functions X appropriate to the ith depen-
dent variable, and the integrals of these products, taken over the
domain of integration, are equated to zero. This process again yields
ms algebraic equations for the unknown constants.

Consider, for example, the system of m homogeneous second-order
ordinary differential equations f(D) x + Kx = 0, where f(D) is now
assumed to be a square matrix of order m, the elements of which are
quadratic functions of D with variable coefficients. The scalar para-
meter K will be determined so that the m variables xi vanish at both
t = 0 and t = T: this defines a set of boundary conditions appropriate
to a second-order system. In this case the approximate form of
solution adopted can be expressed by partitioned matrices as

x = Xlt 0, ..., 0

0, X2, ..., 0

o, o, ..., xn
where Xt now denotes a row of s linearly independent functions each
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of which vanishes at t = 0 and t = T, and ci is a column of s arbitrary
constants. Now the column of the errors in this case is

{ei}=f(D)Xc + KXc,

and Galerkin's equations may be expressed as

(Q$X'f(D)X)c + K(Q$X'X)c = 0,
or say (F + KW) c = 0, in which V, W are square matrices of order ms.
Hence the numbers K are the latent roots of — W~XV.

It should be noted that the approximations given by collocation
will (normally) be unaffected by multiplication of the differential
equations by arbitrary factors, but that this is not true for the
Galerkin method. However, in mechanical problems, there is an
optimum way of applying Galerkin's method which renders it equi-
valent to the use of Lagrange's equations (see Ref. 24).

7*10. Examples of Numerical Solution by Collocation and
Galerkin's Method. The examples will be restricted to simple differ-
ential equations with known exact solutions, so that in each case tests
of the accuracy of the approximate solutions will be possible.

(i) First-Order Equation with Constant Coefficients. Suppose the
differential equation to be (D— \)x = 0 with the boundary condition
x = 1 at t = 0. The exact solution is x = exp£.

For the approximate solution in the interval (0,1) assume

so that Xi = tf and Yj=f(D)Xj =jP~1-P. Hence, if the method of
collocation is used, the equations for the constants are (see 7'9-4)

where 0i;- = Y^fa) = jtff1 —1{. If s = 4, and if the points chosen for collo-
cation are tx = 0, £2 = \, t3 = f, tA = 1, then

1 0 0

8
9" If

0
11
8T

I?
3

c i

c3

= 1

1

1

10 1 2

These yield ct = 1, ca = 0-5078, c3 = 0-1406, c4 = 0-0703.
The corresponding equations by Galerkin's method are (see 7-9-5)

f)lff /2 /3 /4\ f l / O/ /2 q/2 /3 /I/3 /41 /» / l l / / /2 /3 /4\
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and these reduce to
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1
12

JL
10
7

To

20 30
13 11
3*0 2T
5 25

14 ^6

5~6 T8_

V
C2

C 3

. C 4 .

= ¥
1

i
_5\_

giving c1 = 0-9975, c2 = 0-5149, c3 = 0-1325, c4 = 0-0732.
The two different approximate solutions, and the approximation

given by the terms in Taylor's series for exp t up to £4, are compared
below. The results given by Taylor's series are the least accurate.

Fourth Approximations to True Solution

Collocation: 1 + 1-0000J + 0-5078£2 + 0-1406£3 + 0-0703J4

Galerkin's method: 1 + 0-9975£ + 0-5149£2 + 0-1325J3 + 0-0732£4

Taylor's Series: 1 + 1-0000* + 0-5000*2 + 0-1667*8 + 0-0417*4

t

exp 2
Collocation
Galerkin
Taylor

0

1-0
10
10
10

Comparison

0 1

1105
1105
1105
1105

0-2

1-221
1-221
1-221
1-221

0-3

1-350
1-350
1-350
1-350

of Numerical Values

0-4

1-492
1-492
1-492
1-492

0-5

1-649
1-649
1-649
1-648

0-6

1-822
1-822
1-822
1-821

0-7

2014
2014
2014
2012

0-8

2-226
2-226
2-225
2-222

0-9

2-460
2-460
2-459
2-454

1 0

2-718
2-719
2-718
2-708

(ii) Perfect Flow Across an Annulus. A simple problem of perfect
fluid flow in two dimensions will next be considered. The space between
two concentric circular cylinders is assumed filled with fluid: the inner
boundary r = 1 is at rest, while the outer boundary r = 2 is (instan-
taneously) moving with velocity U in the direction of the coordinate
axis OX. If \js denotes the stream-function, the mathematical problem

d2ilr d2ilr
is defined by the equation —^ + -^ = 0, in conjunction with the

boundary conditions ^ = 0 at r = 1 and iff = — Uy at r = 2.
For the approximate treatment it will be convenient to write

p = logr and a = log 2, and to express the differential equation as

^ 2 + " p ^ = ®' Hence if we write — i/r/U = Bsin6, where E is a func-

tion of p to be found, we require

dp
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and the conditions to be satisfied are R — 0 at p = 0 and R = 2 at
p — a. The exact solution is R — § sinhp, and this will be compared
with approximate results given by collocation and b.y the Galerkin
method.

For the approximate solution R we shall assume
2

R

Then, if the collocation method is applied, and the three positions for
collocation are chosen to be p = 0, p = a/2 and p = a, the values of
the constants are readily found to be

cx = 0-314268, c2 = 0-453391, c3 = 0-039681.

The corresponding values given by Galerkin's method work out as

ct = 0-316111, c2 = 0-448040, c3 = 0-039563.

The two approximations are compared below with the exact
solution R = § sinhp.

p

Exact Solution
Collocation
Galerkin

0

0
0
0

0 1

0-26712
0-26718
0-26711

0-2

0-53691
0-53698
0-53691

0-3

0-81205
0-81208
0-81206

0-4

109533
1-09529
109533

0-5

1-38960
1-38949
1-38958

0-6

1-69774
1-69766
1-69775

0-69315

2
2
2

(iii) Symmetrical Vibrations of an Annular Membrane. The methods
will next be applied to find rough values for the frequencies of vibration
in the fundamental mode and the first and second overtones in the
case of a uniform membrane bounded by the concentric circles r = 1
and r = 2.

Let T denote the tension per unit length, m the mass per unit area,
and z the normal displacement at radius r and time t. Then the
equation of vibration is

d2z T id2z 1 dz\
ft? =m\dr~2 + rdr)'

Assume a normal mode of vibration to be z = R sin (ot, and write
K = (i)2m/T; then (see equation (7-9-6))

^ + ±^ + KR = 0, (1)

and K is to be determined by the condition of compatibility of the
solution of (1) with the boundary conditions R = 0 at r = 1 and r = 2.
The exact general solution in terms of Bessel functions is
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and in order that the boundary conditions may be satisfied K must be
a root of the equation

The three lowest roots are found from tables of Bessel functions to be
Kt = 9-753, K2 — 39-35, iTg = 88-72, corresponding to the fundamental
and the first and second overtones.

For the approximations, the form of solution assumed is

and it should be noted that whereas this is a polynomial expression
in r, the exact solution involves Y0(r) and therefore the logarithmic
element logr which itself is not expansible by a Taylor's series in r.
In the case of the collocation method the positions for collocation are
chosen to be equally spaced in the interval (1,2) and to include the
extremes, so that for instance rx — 1, r2 = 1-5, r3 = 2 when 5 = 3.
When Galerkin's method is used the equations can be treated con-
veniently as explained for (7-9-6). Some of the results obtained by the
two methods compare as follows:

Characteristic Numbers for Vibrating Membrane

Method

Exact Solution

Collocation

Galerkin

5=3
5=4

5=2
5=3

9-753

9-51
9-721

9-87
9-752

39-35

36-1

41-6
41-79

88-72

—

101-5

I t was pointed out in §7-9 that the approximations given by the
Galerkin method will be affected to some extent if the differential
equation is multiplied throughout by an arbitrary function. To
illustrate this, a few additional results obtained by Galerkin's method
may be cited. A different representation is taken, with 5 = 2, namely

and the differential equation (1) is assumed to be multiplied throughout
by a function/(r). The results for different functions/(r) are as follows:

fix) 1

9-86

42-2

r2

9-73

43-6

r*

9-49

46-2

r6

9-24

51-8

H-2-25r2

13-6

42-2

Correct
values

9-753

39-35
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7-11. The Method of Mean Coefficients. The method to be
described is applicable in principle to systems of equations of any
order, but for simplicity it will here be assumed that the equations
have been reduced to the simple first-order form

Dy = u(t)y.
An approximate solution will be obtained valid for the range (to,t)
and for an arbitrary set of initial values y(t0).

If tvt2, ...,£n_i denote any n—\ successive intermediate points of
the range (t0, t), then the exact solution is (see example (ii) of § 7-7)

y(t) = Q L W Q l b M - O$l(u)Qll(u)y(l0).
As an approximation we shall now substitute for each variable element
of u in the typical interval rp = tp — tp_1 an average value taken over
that interval, and determine the matrizant ^^_x on the assumption
that the elements of u have these constant values. Thus let U(p)
denote the matrix of these average values in the ^th interval; then
since U(p) is a matrix of constants (see example, § 2-11)

Hence the complete approximate solution is
y(t) = [exV(t--tn_1)U(n)][exVrn_1U(n-l)]...[exVr1U(l)]y(t0).

For conciseness we shall write this as
y(t) = En{t-tn_1)En_1{Tn_1)En_2{Tn_2)...E1{r1)y{tJ (1)

The choice of the average values for the elements of u in any interval
can to some extent be left to the judgment of the computer. If the
intervals are small, sufficiently accurate values may often be found
by inspection. In general, however, a good average value for u^ in
the interval (tp_1} tp) is provided by the arithmetic mean

i r*p

The integration may be carried out analytically or by Simpson's rule,
according to convenience.

The individual matrices of the product (1) may themselves be
evaluated approximately by expansion in power series (see example,
§6-12), or they may be computed exactly by the use of Sylvester's
theorem or by (6-12-4). For instance, if the latent roots of the typical
matrix U are all distinct, then

exprtf = ^
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As a simple example suppose the system to consist of only two
equations, so that

If the latent roots of U are complex, say Ax = fi + io) and A2 = /i — ico,
then (see §6-10(6))

TT U-X2I , U-XJ ,
Ax — A2 A 2 — A 1

which reduces to
T( TJ-pi . \

~e \ 0OS0)T ^ smorrj. ( )

The case of real roots can be dealt with by writing ico for o) in the
preceding formulae.

The numerical solution of differential equations by the method of
mean coefficients is illustrated in some detail in §§7-12-7-15.* The
equations chosen are also soluble in terms of known functions, so that
the accuracy of the approximate solution can in each case be verified.
Some equations with highly oscillatory solutions are included, and
these provide a particularly severe test of the method.

7-12. Solution by Mean Coefficients: Example No. 1. The
equation is assumed to be

(1)

and a rough solution is required for the interval t = 0 to t = 4, the
assigned conditions being x = 1-0 and Dx = 0-5 at t = 0.

In this first example the successive stages in the work will be ex-
plained in some detail.

Write x = y1 and Dx = y2\ then (1) is equivalent to the simple
first-order system

Dy=[0
U21

in which u21 = \ — 16n2e-2t. Here u21 is the only variable element of u,
and its mean values in the successive steps will be obtained from the
formula

1 r*p
= ~f ~.

The examples are taken, in revised form, from Ref. 21.
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For the step (tp_v tp), the equation to be used is

0 lly=U(p)y,
j

7*12

oj
the solution of which is (see (7-11-1))

^ ) = ^ - ^ _ 1 ) 2 / ( ^ _ 1 ) . (2)

The exponential can be evaluated easily since the latent roots
fi ± io) of U(p) are + *JU21(p), and are either both purely imaginary or
both real according as U21(p) < 0 or > 0. Hence in the formula (7-11-2)
we write /i — 0, and ico = *JU21(p), so that o) may be either real or
imaginary. The solution (2) thus reduces to

cos (o(t — ^_x — sinG)(t — tv_^)
0)

cos co(t — tp_^)

y(tP-i).

The solution for the first step (0, t±) is y(t) = Ex{f) y(0), and the terminal
conditions, which are the initial conditions for the second step, are
therefore y(t^) = E^t^yfi). Hence in the second step the solution
is y(t) = E2(t-t1)y(t1) = E^t-t^E^yiO). Proceeding in this way,
we find for the complete solution in the nth step

y(t) = En(t - tn_±) E^tn-i ~ tn-2) - -. E2(t2 - tj Eyfh) y(0).

The computations are summarised in Tables 7-12-1 and 7-12-2.
The choice of the steps is a matter for judgment: obviously, the
more rapid the rate of variation of the coefficients, the closer should
be the spacing. Steps of 0-1 have been adopted from t — 0 to t = 1,
steps of 0-2 from t = 1 to t = 2, and steps of 0-5 from t = 2 to t = 4.
Table 7-12-2 gives the matrices E and the initial and terminal values
of y appropriate to the successive steps. For the first step, the initial
conditions are y = {1*0,0-5}. The initial conditions for the second step
(i.e. the values of yx and y2 at t — 0-1) are found by computing the
product

T 0-36673 0-077831 Tl-01 = j" 0-
L- 11-1202 0-36673J [o-5j |_- 10-

and so on.
The computations actually given yield the values of yx and y2

(i.e. the original x and Dx) at the end-points of the steps. If inter-

-40561,

-9368J
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mediate values for the pth. step are required, these can be calculated
from (2), y{tv_^) being now known.

The exact solution of (1) corresponding to the assigned conditions

The graph of this function is shown in Fig. 7-12-1 and the isolated
points marked are the approximate values of y± (= x) as computed in
Table 7-12-2 (i.e. the upper figures in the third column). The accuracy,
even in the present rough application, is seen to be very satisfactory.

0

f
o

X

2

.\ AV
-2

A/
/

t 2

Fig. 7-12-1

Table 7-12-1. Example No. 1

Computation of Elements of Matrices Ep

Step

0 -0-1
01-0-2
0-2-0-3
0-3-0-4
0-4-0-5
0-5-0-6
0-6-0-7
0-7-0-8
0-8-0-9
0-9-1-0
1-0-1-2
1-2-1-4
1-4-1-6
1-6-1-8
1-8-2-0
2-0-2-5
2-5-3-0
3-0-3-5
3-5-4-0

U21(p)

-142-88
-116-93
-95-69
-78-30
-6406
-52-41
-42-86
-35044
-28-646
-23-409
-17-368
-11-553
-7-665
-5055
-3-306
-1-5783
-0-4225
+ 00025
+ 0-1589

CO

11-953
10-813
9-782
8-849
8-004
7-239
6-547
5-920
5-352
4-838
4167
3-399
2-7685
2-2484
1-8183
1-2563
0-6500

-0-0505*
-0-3986*

COS COT

0-36673
0-47015
0-55851
0-63339
0-69644
0-74922
0-79326
0-82983
0-86016
0-88523
0-67229
0-77770
0-85058
0-90059
0-93460
0-80911
0-94764
1-00032
101993

sin COT

0-93033
0-88259
0-82950
0-77383
0-71762
0-66231
0-60889
0-55800
0-51003
0-46517
0-74029
0-62864
0-52584
0-43467
0-35570
0-58765
0-31933

-0-02525*
-0-20063*

1 .
— sin CUT
CO

0-07783
0-08162
0-08480
0-08745
0-08966
0-09149
009301
009426
0-09529
0-09614
0-17763
0-18495
0-18994
019332
0-19562
0-46776
0-49125
0-50000
0-50334

— co sin COT

-111202
-9-5438
-8-1142
-6-8473
-5-7437
-4-7945
- 3-9862
- 3-3032
- 2-7298
-2-2506
- 30851
-21368
-1-4558
-0-97727
-0-64677
-0-73828
-0-20758
+ 0-00127
+ 0-07997
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Table 7-12-2.

Computation of the Matrix

Example No. 1

Chain EpEp_1Ep_2...E1y(0)

Step

0-0-0-1

0-1-0-2

0-2-0-3

0-3-0-4

0-4-0-5

0-5-0-6

0-6-0-7

0-7-0-8

0-8-0-9

0-9-1-0

1-0-1-2

1-2-1-4

1-4-1-6

1-6-1-8

1-8-2-0

2-0-2-5

2-5-3-0

3-0-3-5

3-5-4-0

—

Matrix EV{TJ

0-36673 0-07783
-111202 0-36673

0-47015 0-08162
-9-5438 0-47015

0-55851 0-08480
-81142 0-55851

0-63339 008745
- 6-8473 0-63339

0-69644 0-08966
-5-7437 0-69644

0-74922 009149
-4-7945 0-74922

0-79326 009301
-3-9862 0-79326

0-82983 0-09426
- 3-3032 0-82983

0-86016 009529
-2-7298 0-86016

0-88523 0-09614
- 2-2506 0-88523

0-67229 017763
-3-0851 0-67229

0-77770 0-18495
-21368 0-77770

0-85058 0-18994
-1-4558 0-85058

0-90059 0-19332
-0-97727 0-90059

0-93460 0-19562
-0-64677 0-93460

0-80911 0-46776
-0-73828 0-80911

0-94764 0-49125
-0-20758 0-94764

1-00032 0-50000
000127 100032

1-01993 0-50334
0-07997 1-01993

— —

Column 2/(̂ _i)

10
0-5

0-4056
-10-9368

-0-7019
-90134

-11564
0-6617

-0-6746
8-3373

0-2777
9-6811

1-0938
5-9218

1-4184
0-3374

1-2088
-4-4053

0-6200
- 7-0890

-01327
- 7-6708

-1-4518
-4-7476

-2-0071
-0-5900

-1-8193
2-4201

-11706
3-9575

-0-3199
4-4558

1-8254
3-8414

3-6169
3-2613

5-2487
3-2670

6-9977
3-7518
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7*13. Example No . 2. Assume the equation to be

D2x + tx = 0, (1)

and let the solution be required for the interval t = 0 to t = 8-4, the
conditions at t = 0 being arbitrary.

The given equation is equivalent to the first-order system

Dy = f 0 Y\y = uy,\ 0 lly

L - * oj
where y — {x, Dx}. In this case the series solution already computed
in the example, § 7-8, will be used from t = 0 to t = 1-8. From t = 1-8
to t = 8-4 the method of mean coefficients will be applied.

Table 7-13-1, which gives details of the computation of the elements
of the matrices Ep, is similar to Table 7-12-1, but in Table 7-13-2 the
arrangement differs somewhat from that of Table 7-12-2. Since the
initial conditions are here not numerically assigned, the continued
product of the square matrices Ep is computed, and the result is
multiplied by the (arbitrary) column matrix y(0). The individual
square matrices Ep are given in the second column of Table 7-13-2,
while the continued products of these matrices, taken up to the
beginnings of the successive steps, are entered in the third column.
Thus, the first matrix in the third column is the unit matrix; the
second is the product of the first matrix in the second column and this
unit matrix; the third matrix in the third column is the product of the
second matrices in the second and third columns, and so on. The last
matrix in the third column is the continued product of all the matrices
Ep from t= l-8to* = 8-4.

The values of yx and y2 at the beginning of the steps, corre-
sponding to known values at t = 1-8, can now be written down. For
instance, if y — {£,?/} at t = 1-8, the value of y at t — 6-8 is

y = r - 0-53939, -0-397681 ["£1.
L 1-24864, -O-9333oJL?/J

As a particular case suppose that y = {1,0} at £ = 0. The series
solution computed in §7-8 then gives 2/(1-8) = {0-2023, -1-0623}.
These values in turn provide the terminal values for yx as given in the
last column of Table 7-13-2.
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The exact solution of (1), with the initial conditions {x, Dx} = {1,0}
at t = 0, is expressible in terms of Bessel functions as

1-230* =

The true and approximate solutions are compared in Fig. 7-13*1.

1-2

0-8

0*4

r-0'4

-0-8

\

\ /

\ /

A

\ \

A

/ \

/ \
/

4 t
Fig. 7-13-1

Table 7-13-1. Example No. 2

Computation of Elements of Matrices Ep

Step

1-8-1-9
1-9-2-0
2-0-21
2-1-2-2
2-2-2-4
2-4-2-6
2-6-2-8
2-8-3-0
3-0-3-4
3-^-3-8
3-8-4-2
4-2-4-8
4-8-5-4
5-4-6-0
6-0-6-8
6-8-7-6
7-6-8-4

-1-85
-1-95
- 2 0 5
- 2 1 5
-2-3
-2-5
-2-7
-2-9
-3-2
-3-6
- 4 0
-4-5
- 5 1
-5-7
-6-4
-7-2
-8-0

CO

1-36015
1-39642
1-43178
1-46629
1-51657
1-58114
1-64317
1-70294
1-78885
1-89737
2 0
212132
2-25832
2-38747
2-52982
2-68328
2-82843

COS CUT

0-99077
0-99027
0-98976
0-98927
0-95436
0-95042
0-94649
0-94255
0-75473
0-72556
0-69671
0-29361
0-21413
013787

-0-43772
- 0-54453
-0-63804

sin CUT

013559
0-13919
014269
014610
0-29868
0-31099
0-32275
0-33404
0-65603
0-68816
0-71736
0-95592
0-97680
0-99045
0-89911
0-83874
0-77000

1 .
- sin cur
cu

0-09969
0-09968
0-09966
009964
019694
0-19669
019642
019615
0-36673
0-36269
0-35868
0-45062
0-43253
0-41485
0-35540
0-31258
0-27224

— co s i n CUT

-0-18442
-019437
-0-20430
-0-21422
-0-45297
-0-49172
-0-53033
-0-56885
-117354
-1-30569
-1-43472
-202781
- 2-20593
-2-36467
-2-27459
- 2-25058
-2-17789
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Table 7-13-2. Example No. 2

Computation of the Matrix Chain EpEp_l.

Step

1-8-1-9

1-9-2-0

2-0-2-1

2-1-2-2

2-2-2-4

2-4-2-6

2-6-2-8

2-8-3-0

3-0-3-4

3-4-3-8

3-8-4-2

4-2-4-8

4-8-5-4

5-4-6-0

6-0-6-8

6-8-7-6

7-6-8-4

8-4

Matrix Ep

0-99077
-0-18442

0-99027
-0-19437

0-98976
-0-20430

0-98927
-0-21*22

0-95436
-0-45297

0-95042
-0-49172

0-94649
-0-53033

0-94255
-0-56885

0-75473
-117354

0-72556
-1-30569

0-69671
-1-43472

0-29361
-2-02781

0-21413
-2-20593

013787
-2-36467

-0-43772
-2-27459

-0-54453
-2-25058

-0-63804
-217789

—

0-09969
0-99077

0-09968
0-99027

009966
0-98976

0-09964
0-98927

019694
0-95436

019669
0-95042

019642
0-94649

019615
0-94255

0-36673
0-75473

0-36269
0-72556

0-35868
0-69671

0-45062
0-29361

0-43253
0-21413

0-41485
0-13787

0-35540
-0-43772

0-31258
-0-54453

0-27224
-0-63804

—

Product Ev

10
0

0-99077
-018442

0-96275
-0-37520

0-91550
-0-56805

0-84908
-0-75807

0-66103
-1-10808

0-41031
-1-37818

011765
-1-52203

-0-18766
-1-50151

-0-69228
-0-91301

-0-83343
0-24146

-0-49405
1-36397

0-46958
1-40231

0-70709
-0-73558

-0-20767
-1-77345

-0-53939
1-24864

0-68401
0-53402

-0-29104
-1-83042

EP_1...E1

0
10

0-09969
0-99077

0-19748
0-96175

0-29131
0-91156

0-37901
0-83937

0-52702
0-62938

0-62468
0-33903

0-65785
-0-01040

0-61802
-0-38402

0-32561
-101510

-013192
-116166

-0-50857
-0-62007

-0-42874
0-84922

0-27551
112761

0-50577
-0-49603

-0-39768
-0-93330

-0-07518
1-40322

0-42998
-0-73158

Column 2/(̂ _i)

0-2023
-10623

00945

-0-0150

-01243

-0-2309

-0-4261

-0-5806

-0-6750

-0-6945

-0-4859

-0-0285

0-4403

0-5504

-01496

-0-5793

0-3133

0-2182

-0-5156
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7*14. Example No . 3. As a more complicated example we shall
next choose the equation

D2x + (16 cos ̂ \ Dx + U±n2 + 64 cos2 ̂  - 4*r sin ̂ j\ a; = 0,

and obtain the solution for the interval t = 0 to t = 4.
The equivalent first-order system is

Dy=T 0, 1 ~\y = uy,

-647T2-64cos2^ + 47rsin^, - 1 6 c o s ^
L 2 2 2 J

where y = {x> Dx}.

In the present case the method of mean coefficients will be used
throughout. The matrix u here has two variable elements u21 and u22,
and the latent roots are found to be complex, say A = /i ± ia). The
formula (7-11-2) gives

— — sin o)T + cos o)T,
1 .
— sin (or
0)

or
y(tp) = — — S i n 0)T + COS (OT,

(O

(O

1 .

- SUl (OT + COS (OT

—sin (OT, — sin (OT + cos GJT
(0 (O

since J72i
 = "" (/̂ 2 +(s)2) a n ( l 2̂2 = 2/J.

The computations, which are otherwise similar to those for Example
No. 2, are summarised in Tables 7-14-1 and 7-14-2. The fourth column
of Table 7-14-2, headed IIe^T, represents the contributions to the matrix
chain EpEp_x ...Ex arising from the scalar multiplier e^T which appears
in the solution. It is obviously convenient to effect these particular
multiplications independently.

Table 7-14-2 may be regarded as completing the formal numerical
solution. When any initial conditions y(0) are assigned, the values of
y at the ends of the steps are at once deducible as explained in
connection with Example No. 2. For instance, at t = 2-8,

2/(2-8) = 127-0•Or 0-5890, 0-
L-20-54, 0-

03761] 2/(0) =

3859 J
I" 74-79,

[-2608,
4-77612/(0).

49-OOj
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The calculations have been completed in detail for the particular case
y(Q) = {1, - 8}. I t can be verified that the exact solution appropriate
to these initial conditions is

x = y1 = exp I sin — I x cos Snt,

and the graph of this function is given in Fig. 7-14-1. I t oscillates
throughout the time range and the amplitude varies considerably.

1-2

0-8l

Table 7-14-1. Example No. 3

Computation of Elements of Matrices Ep

Step

0 -0-2
0-2-0-4
0-4-0-6
0-6-0-8
0-8-1-0
1-0-1-2
1-2-1-4
1-4-1-6
1-6-1-8
1-8-2-0
2-0-2-2
2-2-2-4
2-4-2-6
2-6-2-8
2-8-3-0
3-0-3-2
3-2-3-4
3-4-3-6
3-6-3-8
3-8-4-0

-691-6
-676-5
-654-8
-6340
-621-4
-621-4
-6340
-654-8
-676-5
-691-6
-695-5
-687-8
-672-5
-656-3
-6461
-6461
-656-3
-672-5
-687-8
-695-5

-15-74
-14-20
-11-27
-7-23
-2-49
2-49
7-23
11-27
14-20
15-74
15-74
14-20
11-27
7-23
2-49

-2-49
-7-23

-11-27
-14-20
-15-74

-7-87
-710
-5-63
-3-62
-1-25
1-25
3-62
5-63
710
7-87
7-87
710
5-63
3-62
1-25

-1-25
-3-62
-5-63
-710
-7-87

w

2509
2502
24-96
24-92
24-90
24-90
24-92
24-96
2502
2509
25-17
25-25
25-31
25-36
25-39
25-39
25-36
25-31
25-25
2517

eMT

0-2072
0-2417
0-3240
0-4853
0-7796
1-2827
20606
30864
41371
4-8259
4-8259
41371
30864
20606
1-2827
0-7796
0-4853
0-3240
0-2417
0-2072

u .
- - sinoor

CO

+ CO8WT

00030
00160
00594
01286
0-2152
0-3120
0-4084
0-4930
0-5594
0-6010
0-6129
0-5959
0-5525
0-4857
0-4028
0-3108
0-2185
01347
00651
00197

- sina>T
CO

-003799
-003827
-0-03850
-003866
-003875
-003875
-003866
-003850
-003827
-003799
-003769
-003738
-003710
-003691
-003680
-003680
-003691
-003710
-003738
-003769

—^Binarr
CO

26-27
25-89
25-21
24-51
24-08
24-08
24-51
25-21
25-89
26-27
26-21
25-71
24-95
24-22
23-78
23-78
24-22
24-95
25-71
26-21

-sina>r
CO

+ cos cor

0-6010
0-5594
0-4930
0-4084
0-3120
0-2152
01286
00594
00160
00030
00197
00651
01347
0-2185
0-3108
0-4028
0-4857
0-5525
0-5959
0-6129
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Computation of the Matrix Chain EpEp_x ...E±

Step

0 -0-2

0-2-0-4

0-4-0-6

0-6-0-8

0-8-1-0

1-0-1-2

1-2-1-4

1-4-1-6

1-6-1-8

1-8-2-0

2-0-2-2

2-2-2-4

2-4-2-6

2-6-2-8

2-8-3-0

3-0-3-2

3-2-3-4

3-4-3-6

3-6-3-8

3-8-4-0

—

Individual Matrices

00030 -0-03799
26-27 0-6010

00160 -003827
25-89 0-5594

00594 -003850
25-21 0-4930

01286 -0-03866
24-51 0-4084

0-2152 -0-03875
2408 0-3120

0-3120 -0-03875
24-08 0-2152

0-4084 -0-03866
24-51 0-1286

0-4930 -003850
25-21 00594

0-5594 -003827
25-89 00160

0-6010 -0-03799
26-27 00030

0-6129 -0-03769
26-21 0-0197

0-5959 -0-03738
25-71 00651

0-5525 -003710
24-95 01347

0-4857 -003691
24-22 0-2185

0-4028 -0-03680
23-78 0-3108

0-3108 -003680
23-78 0-4028

0-2185 -0-03691
24-22 0-4857

01347 -003710
24-95 0-5525

00651 -003738
25-71 0-5959

00197 -0-03769
26-21 0-6129

__ _

Matrix Product

1-0 0
0 10

0-0030 -003799
26-27 0-6010

- 1 0 0 5 3 -002361
14-77 -0-6474

-0-6284 002352
- 1 8 0 6 -0-9144

0-6174 003838
-22-78 0-2030

1-0156 000039
7-76 0-9875

00162 -003814
2613 0-2219

-1-0036 -002416
3-76 -0-9063

-0-6395 002298
-25-08 -0-6629

0-6021 003822
-16-96 0-5843

1-0062 0-00077
15-77 10058

00223 -003744
26-68 00400

-0-9840 - 0-02381
2-31 -0-9600

-0-6294 002246
-24-24 -0-7234

0-5890 0-03761
-20-54 0-3859

0-9931 0-00095
7-62 10143

0-0282 -0-03703
26-69 0-4312

-0-9790 -002401
13-65 -0-6874

-0-6383 002227
-16-88 -0-9788

0-5894 0-03804
-26-47 -00107

1-0093 000115
-0-78 0-9905

1 0

0-2072

0-05008

001623

0007874

0006139

0-007874

001623

0-05008

0-2072

1 0

4-826

19-96

61-62

1270

162-9

1270

61-62

19-96

4-826

1 0

y(V-i)

10

006359

-0-04089

-001325

000244

0-00622

0-00253

-001315

-004123

0-06139

1-000

1-553

-15-84

-49-86

36-58

160-5

4119

-48-49

-16-30

1-376

1-000
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Between t = 0 and t = 2, the ordinate is small: on the other hand, it
grows to large values of the order ±150 between t = 2 and t = 4.
Consequently, in order to obtain a reasonable graphical representation,
the scale has been magnified 200 times for the first half of the range.
The approximate results computed by postmultiplication of the matrix
chain by {1, - 8 } are marked in the diagram, and they accord well
with the curve.

7*15. Example No . 4. We shall next solve by the method of
mean coefficients the problem treated by other methods in example
(iii) of §7-10.

The first-order system equivalent to (7-10-1) is

where yx= R and y2 = dRjdr. To obtain a preliminary estimate of
the characteristic numbers K a constant mean value for 1/r, namely f,
will be assigned throughout the interval r = 1 to r = 2. The solution
of the equation is then (see (7-11-2))

fi . 1 .
— — sin (o + cos to, — sin OJ

0) 0) 2/(1),

smw, (%+fi) suiG) + cos a)

(1)
where /i ± io) are the latent roots of u. The boundary conditions are
y±(2) = yx(l) = 0, and the first of the two equations implicit in (1)
therefore yields e/l

0 = -

whence sin a) = 0 or co = nn. But the latent roots of u, with 1/r = | ,
are —l±i^K — ̂ . Hence co = nn —*jK — \, or K = n2n2 + ̂ , and
rough approximations for K are therefore n2, 4:n2, 9TT2, etc.

Proceeding next to a more refined approximation, we assume the
membrane to be divided into five sections by circles of radii 1-2,1-4, 1-6
and 1-8 and use an average value for the radius of each section. If also
trial values for K are adopted, namely 9-8 and 9-9, 39-4 and 39-5, 88-8
and 88-9, then for each value of K the elements of the successive
matrices corresponding to the five sections are all numerically deter-
minate. The value of y2 at r = 1 is arbitrary: hence we may adopt as
initial conditions y(l) = {0,1} and deduce the end conditions y(2).
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Computation of j/1(2) for various values of K

Step

1-0-1-2

1-2-1-4

1-4-1-6

1-6-1-8

1-8-2-0

.2-0

# = 9-8

Matrix

0-8211 01713
-1-6784 0-6670

0-8195 01737
-1-7021 0-6875

0-8184 01753
-1-7183 0-7027

0-8174 01767
-1-7321 0-7149

0-8166 0-1778
-1-7425 0-7241

— —

{Vi> Vz)

0
1

01713
0-6670

0-2562
01670

0-2389
-0-3229

01382
-0-6446

-0-0018

# = 9-9

Matrix

0-8193 01712
-1-6947 0-6652

0-8177 01736
-1-7186 0-6858

0-8166 01752
-1-7349 0-7009

0-8156 01767
-1-7489 0-7131

0-8148 01776
-1-7584 0-7225

— —

0
1

01712
0-6652

0-2555
0-1620

0-2370
-0-3297

01350
-0-6496

-00054

Step

1-0-1-2

1-2-1-4

1-4-1-6

1-6-1-8

1-8-2-0

2-0

K = 39-4

Matrix

0-3847 01386
-5-4626 0-2238

0-3429 01405
-5-5359 0-2362

0-3387 01419
-5-5915 0-2451

0-3354 01430
-5-6327 0-2525

0-3328 0-1438
-5-6666 0-2580

— —

0
1

01386
0-2238

0-0790
-0-7144

-00746
-0-6168

-01132
0-2645

0-0004

K = 39-5

Matrix

0-3472 01386
-5-4728 0-2225

0-3415 01404
-5-5463 0-2348

0-3374 01418
-5-6020 0-2438

0-3340 01429
-5-6433 0-2511

0-3314 01437
-5-6773 0-2566

— —

0
1

0-1386
0-2225

0-0786
-0-7165

-00751
-0-6150

-01130
0-2694

00013

Step

1-0-1-2

1-2-1-4

1-4-1-6

1-6-1-8

1-8-20

2 0

K = 88-8

Matrix

-0-2387
-8-2050

-0-2491
-8-3207

-0-2568
-8-3960

-0-2629
-8-4634

-0-2675
-8-5144

—

00924
-0-3219

00937
-0-3203

00945
-0-3191

00953
-0-3182

00959
-0-3175

—

0
1

0-0924
-0-3219

-00532
-0-6657

-0-0492
0-6591

00757
0-2067

-00004

K = 88-9

Matrix

-0-2396
-8-2061

-0-2501
-8-3218

-0-2578
-8-3971

-0-2638
-8-4645

-0-2686
-8-5155

—

00923
-0-3228

00936
-0-3213

0-0945
-0-3202

0-0952
-0-3191

0-0958
-0-3183

—

{Vi> 2/2}

0
1

0-0923
-0-3228

-00533
-0-6644

-0-0490
0-6603

0-0758
0-2041

-0-0008
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Linear interpolation between the values of K can then be used to
give the value of K for which y1(2) = 0.

The results are summarised in Table 7-15-1. The actual computations
of the elements of the matrices Ep are not tabulated; they are similar
to those of Example No. 3 for each value of K adopted, except that
in this case the scalar factor e0'2*1 is absorbed into the matrices for
convenience. Since the initial conditions y(l) are prescribed, the
columns y are computed in succession until y±(2) is deduced. This
differs slightly from zero for each approximate value of K chosen.
Interpolation to make yx{2) = 0 gives the values K = 9-750, 39-36,
88-70, which agree very closely with the values 9-753, 39-35, 88-72
found from the tables of Bessel functions.

The mode of displacement, which is given by y^l), yi(l*2), 2/i(l*4),
2^(1-6), y^l-S) and ^(2), can be deduced by interpolation, or by re-
calculation using the more exact values of K.



CHAPTER VIII

KINEMATICS AND DYNAMICS OF SYSTEMS

PART I. FRAMES OF REFERENCE AND KINEMATICS

8*1. Frames of Reference. Before taking up the subject of
dynamics, we shall first deal with changes of reference axes, and with
the analysis of motion quite apart from the question of the causation
of the motion.

The positions which the points of any geometrical system, or the
particles of any material system, occupy at any instant, relative to a

Fig. 8-1-1

datum body (e.g. the earth) can be specified by the Cartesian co-
ordinates of these points or particles referred to a system of rectangular
axes Oxv Ox2, Oxs—or frame of reference O(xvx2,x3)—fixed in
that body. In usual practical applications the specification of position
with reference to such a fixed frame of reference is treated as absolute;
and it is convenient to regard the time-rates of change of the co-
ordinates as defining "absolute velocity " and "absolute acceleration".

It is frequently helpful to adopt in conjunction with the fixed axes
one or more auxiliary frames of reference, such as 0(xv x2, xs) in Fig.
8-1-1, the absolute positions of which are changing in some specified
manner with time. For the sake of definiteness we shall suppose all
sets of axes used to be right-handed, as represented in the diagram.
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The conventions regarding the signs of rotations are as follows. An
axis of rotation is regarded as possessing a definite sense, and the
convention is adopted that the positive sense of rotation about the
axis would appear clockwise to an observer looking along the axis in
the positive sense. For example, the positive sense of Oxx is from 0 to
xl9 and a positive rotation about Oxx would move x2 towards xs.

The Cartesian coordinates of a general point P, referred to the fixed
axes, will hereafter be denoted as xv x2i xs; while those of the same
point, relative to the auxiliary axes, will be xl9 x2, xz. At the outset we
shall consider the simple case of two-dimensional motion.

8*2. Change of Reference Axes in Two Dimensions. Here
the position of the auxiliary frame of reference at any instant t can be
specified completely by the Cartesian coordinates (al9 a2) of 0 referred
to the fixed axes, and by the inclination ^ of Oxx to Oxv

Fig. 8-2-1

If % = {̂ 1? %2} and £ = {£l5 £2} denote, respectively, the columns of the
components of any vector V in the plane, measured parallel to the
fixed and the auxiliary axes, then

i = i%, (i)
in which I = If~ cos ̂  sin <f>~].

L — s in (f> cos <j)\

The matrix I is orthogonal (see § 1-17) since

I"1 = [~cos<$ —sin <j>\ = V.
COS(

Also
dl-1 _ dl
dt ~ dt

[COS
.

sm <p

cos (j) sin_ ; I" cos (j) s i n 0 1 f — s in <j> — cos <jj
\_ — s in <fi cos ^ J [ cos <j> — s i n

(2)
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where p = <f> denotes the angular velocity of the moving frame. For
brevity we shall write rA

On differentiation with respect to t equation (1) yields

whence by (2) and (1)

dg = d% dl
dt dt eft**

Now by (1)1-^ represents the components of the time-rate of change

of the vector F, measured in the directions of the moving axes at time t.
In other words the components of the time-rate of change of any
vector measured in the directions of the moving axes are obtained
from the components £ of the vector itself in the same directions by the
operation ID + m performed on £. For instance, if F represents the
absolute position of a general point P of the plane, then x = l(x — a),
or Ix = la + x. Hence the components of the velocity of P measured
parallel to the axes Oxx and Ox2 are given by

. (3)

In particular, if the components of the velocity of 0 in the same direc-
tions are denoted by u, then u = (ID + m) la, so that (3) may be written

v = u + (ID + m)x.

Similarly, if the components of the acceleration of P measured parallel
to the moving axes are a, then

a = (ID + m)v.

These formulae can, of course, also be established by quite elementary
methods, but the treatment adopted has certain attractions when
generalized to three dimensions.

E X A M P L E S

(i) Matrices Representing Finite Rotations. If $ is increased to
<j> + o), then I becomes

l± = f cos (<j) + (o) s in (<{> + (o)~] = I" cos o) s in of] I.

L - s in (<j> + (o) cos (<j) + (o)\ L ~ sin o> cos co\
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Hence premultiplication of I by the matrix
p((o) = [" cos a) sin of]

[ — sin o) cos o)\

is equivalent to a rotation of the frame 0(xv x2) through an angle o)
about the normal axis through 0. More generally, any succession of
such rotations (ol9 w2,...,ww will be represented by

If G>n = fc^..! =... = o)± — 2sn/n, where s is any integer, then after the
complete cycle of rotations the frame is returned to its original position
and [p(2sn/n)]n = /2. Hence the matricesp(2sn/n) are all nth roots of/2.

(ii) Determination of the Axes of a Central Conic. The equation of
a conic referred to axes O(xvx2) through the centre may be written
x'ax = 1, where a is a symmetrical square matrix. When referred to
any other frame of reference O(xv x2) through O the equation becomes
x'bx = 1, where b denotes the symmetrical matrix lal*1 or laV (see
also § 1-15). If I is chosen so that 6 is a diagonal matrix, say

6 = r i / « i o n ,
L 0 1/«|J

then oc± and a2 will be the semi-axes. In this case

a = /oct 0 II,
0 I/all

so that 1/af = Ax and l/a| = A2 are the latent roots of a (see §3-6).
Moreover ln and l12 will be proportional to the elements in any column
(or row) of the adjoint of X^ — a. The directions of the axes are then
given by cot <j> = ln/l12.

For instance, if the given conio is

3x1 + 2x^ + 3x1 = 8,

then a =

Ii tJ
and the latent roots of this matrix are found to be Ax = | and A2 = J.
Hence the semi-axes are ax = *J2 and a2 = 2. Again, the adjoint of
A / - a i s i [8A-3 1 1,

[ 1 8A-3J
and the rows are proportional to [1,1] for Ax = | and to [— 1,1] for
A2 = J. Hence, if the axis Oxx is taken to correspond to Ax = \, we
have cot^ = 1. The inclination of the minor axis is thus 45° to Oxv



250 ANGULAR COORDINATES 8-3

8-3. Angular Coordinates of a Three-Dimensional Moving
Frame of Reference* To specify the (absolute) orientation of a
frame of reference in three dimensions three independent parameters
are required. These may be chosen in various ways. The method
which is usual in investigations concerning the motion of aeroplanes*
is a modification of the system of "angular coordinates" originally
introduced by Euler.

As we are at present concerned only with the question of orientation,
we may temporarily suppose O and 0 in Fig. 8-1-1 to be coincident.

N
\

Fig. 8-3-1

With O as centre, draw a sphere of unit radius to intersect the fixed
and the moving sets of axes in Xv X2, Xz and Xv X2, Xs (see Fig. 8-3-1).
In the original system of Eulerian coordinates the frame O(Xl9 X2, Xz)
is viewed as displaced to the position O(X1, X2, X3) by three successive
rotations which are not actually represented in Fig. 8-3-1. Firstly, a
rotation about OXS brings X2 to some intermediate position X2; a
rotation about OX2 next brings Xz to X3; lastly a rotation about OXZ

brings the frame to its final position. In the modified system (specified
in Fig. 8-3-1) the successive rotations are §J3, <f>2, <f>l9 respectively, about
the successive carried positions of the axes OXZ, OX2, OXr For brevity

* See, for instance, p. 251 of Ref. 27.
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a succession of rotations such as that represented in Fig. 8-3-1 will be
called a sequence of rotations 03, ^2, ^x about the carried axes taken
in the order OX3, OX2, OXV

8-4. The Orthogonal Matrix of Transformation. The com-
ponents 5D ?2> ?3 a n ( i £i> £2* £3 °f a n y vector measured respectively
parallel to the fixed axes and to the moving axes in Fig. 8-1-1 will be
connected by the linear substitution

£ = !?, (1)
in which 1 = *12

*22

*«
and lsl, ls2, lsZ denote the direction cosines of the typical moving axis
0Xs referred to the fixed axes. More generally, if M is a (3, n) matrix
representing the components of any n vectors parallel to the fixed
axes, and if M is the corresponding matrix of vector components
parallel to the moving axes, then M = IM. In particular, suppose M
to be the unit matrix J3 corresponding to the three unit vectors parallel
to the moving axes. Then it is easy to see from Fig. 8-1-1 that M = V,
so that 73 = IV. The matrix of transformation is accordingly ortho-
gonal. Particular properties to be noted are that 11 \ = 1, and that,
since V is also the adjoint of I, every element of I equals its own cofactor.

8*5. Matrices Representing Finite Rotations of a Frame of
Reference* Suppose the frame O(x1,x2,x3) in Fig. 8-1-1 to be rotated
about the axis 0xx through an angle wtoa new position O(xvx$9xg)9

and let I become = VI

Then since 0x$ is perpendicular to 0xl3 and inclined at angles o) and
\n — (o to 0#2 and 0x3, respectively, we have by the properties of
direction cosines fn# i*

and similarly

It follows that

} = {°> C0S W> }
= {°> - s i n a ) , cos(o}.

Hi Hi Hi

^32

J l 3

0 0

cos o) — sin (o

sin w cos (o
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whence by transposition and use of the orthogonal property,

8-5

1 0
0 COS G>

0 — sin a)

0 "

sin to

COS to

I.

Writing this relation as lx = p^o)) I, (1)

we see that the premultiplication of I by px{o)) corresponds to the
rotation of the frame O(xl9 x2, x3) through an angle to about the axis
0xv Similarly, the premultipliers

"cos to 0 — sin to"

0 1 0

sin to 0 cos to

and cos to

-sin to

0

sin to

cos to

0

0
0

- 1

0
0

0

1
0

0

correspond to rotations to of the frame about Ox2 and Oxs, respectively.
The matrices p l 9 p 2 , p s have the characteristic orthogonal property
p - 1 = / / ; also it can be verified that

dpi

...(2)

If the frame is given a sequence of three rotations w3, (i)2, (ov the first
being about Oxz and the others being about the successive carried
positions of Ox2 and Oxl9 then

h = PiK) P2M PsM h (3)
where l± now is the matrix of transformation for the final position.
The order of these rotations is, of course, not commutative in general.
However, in the special case where the angles of rotation are infinitesi-
mally small, say 8o)3, 8(o2, 8o)v then the last equation gives

"0
0

0

0
0

1

Pz

0"
- 1

0_

dp'3

'd(o^
'0

1

.0

Pzd(o

- 1

0

0

0'

0

0.

1 + 81 = 8o)3

1

0

0
0

1

1
0

8(o2

0
1

0

-8o)2

0

1

1
0

_0

0
1

-So).

0
tftoi

1

I,



dt dt "" say, (4)
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or 81 = r 0 8(oz

h 0
8o)2 — 8o>i 0

The order in which such infinitesimal rotations are performed is thus
immaterial. If the total time of the operation is 8t, then in the limit
(see also (8-2-2))

0 - j

Pz ° -Pi
—p2 Pi 0

in which pl9 p2, pz are the instantaneous angular velocities of the
moving frame about the axes Oxl9 0x2, OxZ9 respectively.

E X A M P L E S

(i) A Property of the Matrix w. I t can at once be verified that, if
Vi> V& Vz a r e arbitrary, then

0 -Pz p% 1 r.vii + r o - i / a yi\ r^ii = o.

Pz 0 "Pi
—p2 Px 0

(5)
This identity will be useful later.

(ii) Postmultiplications Representing Rotations. Equation (1) can be
written alternatively as lx = Icr1((o)9 where

Direct multiplication of the product Vp^o))! yields the somewhat
cumbrous expression

cr^co) = cos o) Iz + (1 - cos co) {In, l12,113} [Iu, l12, llz]
0

\Vi

y%
+ " 0

Vz
-Vz

0

i Vi

y*

-Vi

0

"Pi

P2

JPz.

-l13 0 I
n

A more elegant form, whose verification may be left to the reader, is

where B = f 1 hz ^ a n Jw ~ '12 ̂ a n 4W

— llz t an \o) 1 llx t an \o)
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(iii) Rotation of Frame O(xl9 x29 xs) about a General Axis through 0.
Suppose the given general axis to be 0Xv and let OX29 OX2 be any
two further axes which together with 0Xx form an orthogonal frame
whose matrix is [L#]. Now imagine the frame O(xx, x2, x3) to be rigidly
attached to the frame O(XV X2,XZ), and take points on the axes
Oxv Ox2, Ox3 at unit distance from 0. Then denoting the columns of
the coordinates of these points relative to the frame 0(Xv X2, Xs) as
£> V> £> we have by an obvious application of (8-4-1)

But the sets of coordinates £, rj, £ are unchanged when the frame
O(XV X2i X3) is given a rotation o) about OXV Hence also

where lx is the matrix appropriate to the new position of the frame
0(xv x2, xs). I t follows that IX = p^o^Ll'^ which gives

Hence on application of (6) and (7)

B, (9)

where B = (10)1 X/13tan£a> — j
— X/13tanJw 1 L
L12 tan \(o — Z/xl tan ^OJ 1

Note that if the frame O(XVX2,XS) coincides with O(xvx2,x3), so
that L = I, then the formula (8) immediately reduces to (1).

(iv) Rodrigues7 Formula. This formula states that if a rigid body is
turned through an angle co about an axis through the origin O whose
direction cosines are (Ln,L12,Lls), and if (xl9x2,x3) and (xf,x^9x*)
are the coordinates, referred to fixed axes, of any point P of the body
before and after the rotation, then

B'x =

where B is as defined by (10). This formula can be deduced as follows.
Suppose (xl9 x2, xz) to be the coordinates of P referred to any orthogonal
frame of reference fixed in the body and passing through O. Then if I
is the matrix of this frame, we have by (8-4-1) and (9)

x = lx = l ^
Rodrigues' formula immediately follows.
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8-6. Matrix of Transformation and Instantaneous Angular
Velocities Expressed in Angular Coordinates. We shall next
apply (8-5-3) to the particular sequence of rotations represented by
Pig. 8-3-1. If I now denotes the matrix for the final position, then clearly

and

The product (1) yields

C253>

2 C3,

(2)

(3)

where ct-, 5̂  are abbreviations for cos 9 ,̂ sin §^. This formula gives the
direction cosines of the moving axes explicitly in terms of the angular
coordinates of the frame.

Corresponding formulae for the instantaneous angular velocities
Pv P2> Pz (see §8*5) can be obtained as follows. Using (8-5-4) in con-
junction with (1) and (2), we have

w " dt

which on application of (8-5-2) gives

TJJ = = 0*0-\ Po 0 — 1 0 P%P'i~^~ T

1 0 0
0 0 0

After some reduction this yields

0

0

- 1

0

0

0

1"

0

0

p'l+<pl "0

0

0

0

0

1

0"
- 1

0

w = 0,

Hence on comparison of (4) and (8-5-4)
-(4)

p2 = (f>2 cos fa + ^ 3 sin ̂ x cos <j>2

p3 = —$2 sin <j)1 + <pz cos (pi cos

These relations may be written conveniently

P = R<f>,

.(5)

.(6)
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where

VELOCITIES AND ACCELERATIONS

" 1 0 — sin 02

0 cos 0! sin 0j cos 02

0 — sin 0! cos 0! cos 02

8-6-8-7

The reciprocal of R is

R~ = sec 0o cos 02 sin 0* sin 02 cos 0* sin 02

0 cos ©i cos (ba — sin ©1 cos ©o

0 sin 0X cos 0X

Similar methods may be used with any other system of angular
coordinates.

8-7. Components of Velocity and Acceleration. As in § 8-4
let 5 and £ represent, respectively, the components of any vector
measured parallel to the fixed axes Oxv Ox2, Ox3 and to the moving
axes Oxv Ox2, Oxz. Then by differentiation of (8-4-1) with respect to t
and application of (8-5-4) it is seen exactly as in §8-2 that the com-
ponents of the time-rate of change of the vector, measured in the
directions of the moving axes at time t, are given by the operation
ID + m performed on £.

In particular, let the column x denote the coordinates of a general
point or particle P at any instant relative to the moving axes; let u,
v denote respectively the components of the absolute velocity of 0
and of P ; and let a denote the components of the acceleration of P,
all measured in the directions of the moving axes. Then as in § 8-2

v = u + (ID + m)x (I)
and a == (ID + w) v = (ID + vj)u + (ID-\-m)2x. (2)

If P is a point of a rigid body and the axes O(xv x2, xz) are fixed in
the body (i.e. are body axes), then the coordinates x do not change as
the body moves, and equations (I) and (2) reduce to

v = U + TUX, (3)

Equation (3) can be written alternatively as (see (8-5-5))

where 0 —x*
0 -x
x, 0

Expressions for the matrices I and w in terms of the angular co-
ordinates 0 of the moving axes are given in § 8-6.
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E X A M P L E S

(i) Kinetic Energy of a Rigid Body. The kinetic energy T is given by

2T = Lom(i£ + i/l + i£) = 20mt/'i/,
where m is the mass of a typical particle and So denotes summation
for all the particles. If the moving axes are fixed in the body, then by (5)

2T = 20m(u'-p'x!)(u-xp)

since x' = — # an(* u'XP = X>'x!u- I t further, 0 is the centre of mass,
so that Sotnx = 0, then

2T = Mu'u+p'Jp,
where Mis the total mass and J denotes the symmetrical square matrix

— So mx2 xx So m(x\ + x{) — So tnx2

(6)
(ii) Angular Momenta. If hv h2, hs are the angular momenta about

body axes 0(xv x2, x3) through the centre of mass, then it is readily
shown that ^ __ j

where J is given by (6). The components of the time-rate of the angular
momentum are accordingly

& = (ID + m)Jp. (7)

(iii) The Principal Axes and Moments of Inertia. Suppose the
moments and products of inertia of a rigid body appropriate to the
axes Oxv Ox2, Ox3 (see Fig. 8-1-1) to be known. It is required to find
the corresponding constants for another set of axes Oxl9 Ox29 Oxs,
derived by the matrix of transformation I. In particular it is required
to find the principal axes, for which all the products of inertia vanish.
Write „

and let O be the corresponding matrix with the coordinates x sub-
stituted for x. Then

0 = 20mxx' =
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If the new axes are principal axes, G reduces to the diagonal matrix

~20ma;f 0 0
0 2 0m#i 0
0 0 2

'\(At+Az-Ax) 0 0
0 ^(A3 + A1-A2) 0
0 0 \(AX + Ati

where Av A2, A3 are the moments of inertia about the principal axes.
Hence the diagonal elements in the last matrix are the latent roots
A1? A2, A3 of G, so that Ax = A2 + A3, A2 = Ag + A-,̂  and A3 = Ax + A2.
Moreover, the first row of elements in I (which yield the direction
cosines of the principal axis corresponding to Ax) will be proportional
to any row of the adjoint of ̂ I — G. The other two rows of I are
given similarly.

A similar method can be used to find the axes of a central quadric
(see also example (ii) of § 8-2). As a numerical illustration suppose the
given quadric to be x'ux = 1, where

u=r 1 0-5 0-51
0-5 1

0-5 0-5

0-5

1

The latent roots of u are Ax = 0-5, A2 = 0-5 and A8 = 2, so that the
equation represents an ellipsoid the semi-axes of which are ^/2, ^2 and

The direction cosines of the short principal axis are (1/^3,
1/^3), which are taken proportional to the first row of the

adjoint of A3 J — u. For the equal roots Xx and A2, the adjoint AI — u
is null, and the directions of the corresponding equal axes are obviously
indeterminate.

(iv) Homogeneous Strain. Let x represent the coordinates of a point

* f l d w r i t e X = ax. (8)

where a is a square matrix of given constants. Then the field of points
X is said to be derived from the field x by a homogeneous strain. An
equivalent statement is that X is a linear vector function of a?.

Take three points at unit distance from the origin, and let the three
lines joining the points to the origin be at right angles. Then the three
columns formed by the coordinates of the points ban be combined into
a single orthogonal square matrix S(x). A problem which sometimes
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arises is to find 8(x) so that the square matrix 8(X) of the trans-
formed points shall have the general orthogonal property

S'(X)S(X) = d, (9)
where d is a diagonal matrix. In other words, it is required to find a set
of three mutually perpendicular directions which remain mutually
perpendicular after the strain.

By equation (8) it follows that S(X) = aS(x). Hence the condition
(9) becomes s>{x) a'aS(x) = 8~\x) bS(x) = d,

where 6 is the symmetrical matrix a'a. Accordingly S(x) can be
identified with the modal matrix k of b, and d is the diagonal matrix
of the latent roots of b.

In the special case where a is symmetrical, 6 = a2, and then b and a
have the same modal matrix. Hence X = Xx, if x is identified with a
column of k, and A is the corresponding latent root. Thus the lines
joining the points x and X to the origin have the same directions, so
that the set of three mutually perpendicular lines have the same direc-
tions before and after the strain. In this case the strain is said to be
pure. In general (8) represents a pure strain combined with a rotation.

8*8. Kinematic Constraint of a Rigid Body. The position of
a rigid body at any instant is defined uniquely by the position of any
convenient rectangular frame of reference 0(xv x2,xs) fixed in that
body. Now the position of the body axes can be specified by six para-
meters—for instance, the Cartesian coordinates a of 0, referred to fixed
axes, and three angular coordinates <fi. Hence, unless definite relations
are assigned between the six parameters, the rigid body has six degrees
of freedom. These degrees of freedom may be taken to correspond to
the positional coordinates just mentioned, or to any other equivalent
set. If, on the other hand, relations are assigned between the posi-
tional coordinates, the body will be subject to geometric or kinematic
constraint, and it will then have less than six degrees of freedom.

A very simple example of constraint would be fixture of one point
of the body. Again, a point might be restricted to lie on a fixed surface,
or to lie on a surface or curved guide which is itself forced to move in
a prescribed manner. These constraints can all be represented by
functional relations connecting the positional coordinates and possibly
also the time variable t.

More general types of constraint can occur in which sliding or rolling
contact is imposed between the body and fixed or movable guides.
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The restricting conditions may then consist of relations involving the
time-rates of change of the positional coordinates. When these relations
can be integrated without further knowledge of the motion, so that
they may be replaced by equivalent conditions explicitly connecting
the positional coordinates and possibly the time variable, the con-
straint is said to be holcmomous.* When the kinematic conditions are
not explicitly integrable the constraint is non-holonomous.

E X A M P L E

Non-Holonomous Constraint. Suppose a sphere of radius R and
centre 0 to roll (without sliding) on the fixed plane xz =» JB. Choose
auxiliary rectangular axes O(x1,x29x3) carried by the sphere and
initially coincident with the fixed frame of reference O(xvx2,xz).
At time t let 0 be at (av a2,0) and let the angular coordinates of
the sphere be $l9 <j>2,03 (see Fig. 8-3-1). Then if x and x denote the
columns of the coordinates of a general point P of the sphere at time
t, referred to the fixed axes and the body axes respectively, we have by
(8-4-1) x = l(x — a), where I is given by (8-6-3). Moreover, since P
moves with the sphere we have by differentiation 0 = l(x - d) + l(x - a).
Now if the point considered is in contact with the plane at time t,
then x = {av a2, B}. Moreover, since there is no slip at the point of
contact, the total velocity components of P must vanish, so that
x = 0. Hence the equation of constraint is

^ , ^ , 0 } = 1(0,0,2?}.
If (8-6-3) is used to express I and I in terms of the angular coordinates,
the last equation yields the two independent conditions

dx cos §53 + d2 sin <fiz = — R<p2,
d± sin 5S3 — d2 cos <f>s = — R<j)1 cos 02.

These are non-integrable, so that the constraint imposed is nbn-
holonomous. The sphere has three degrees of freedom so long as it
remains in contact with the plane and no slipping occurs. If there were
nothing to prevent the sphere from leaving the plane on one side, the
constraint would be described as "one-sided".

8*9. Systems of Rigid Bodies and Generalised Coordinates.
The conception of positional coordinates can be generalised to apply
to any system of rigid bodies or particles. Such a system may include

* Also holonomic. The term was introduced by Hertz to denote a constraint expressed
by integral—as distinct from differential—relations.
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certain bodies which, though possibly kinematically constrained,
nevertheless have no direct geometric linkage with other members of
the system: more usually the various bodies will be connected together
in some way. It is evident that any possible configuration of the whole
system can be specified completely by means of a suitable set of
parameters or generalised coordinates, whose number will depend on
the number of the bodies and of the kinematic constraints.

The equations which represent the constraints mathematically will
in general consist of a set of relations between the generalised co-
ordinates, and the time-rates of change of these coordinates. We shall,
however, be mainly concerned with cases in which these equations are
directly integrable, so that they yield an equivalent set of relations
explicitly connecting only the generalised coordinates and possibly
also the time variable t. Restricting attention to such holonomous
systems, we see that the configuration at any instant can be com-
pletely specified by a set of s generalised coordinates, in conjunction
with, say, r independent relations connecting these coordinates and
possibly also involving t. The total number of effectively independent
generalised coordinates will thus be m = s — r, and will equal the total
number of degrees of freedom of the system.

In the case of the single rigid body considered in § 8*7, a typical point
P of the body was identified by means of its Cartesian coordinates x,
referred to a set of axes carried by the body. The Cartesian coordinates
x of P , referred to the fixed frame of reference O(xv x2, xs), were then
expressible in terms of x and the positional coordinates a and <j) of
the body. Similarly, with a system of rigid bodies, it will be possible
to identify a particular point or particle P of the system by a set of
parameters (corresponding to x) and to express the Cartesian co-
ordinates x of P, referred to fixed axes, in terms of those parameters
and the generalised coordinates of the system. Suppose the set of
parameters relevant to P to be denoted for convenience by the single
symbol a, and as usual let qv q2,..., qm be the m effectively independent
generalised coordinates of the system. Then the functional dependence
of x on a, q (and possibly also t) will be expressible as

or more briefly as x = f(qvq2, ...,qm,t,a), (1)
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where x, f denote column matrices. These equations will be referred
to as the geometrical equations of the system.

Since the parameters a are assumed to be invariable with time,
equation (1) yields on total differentiation with respect to t

The quantities qt are termed the generalised components of velocity or
simply the generalised velocities. Similarly, the quantities qt are spoken
of as the generalised accelerations.

PART II. STATICS AND DYNAMICS OF SYSTEMS

8-10. Virtual Work and the Conditions of Equilibrium.
The conditions of equilibrium of a system are most conveniently
obtained by an application of the principle of virtual work.

If a system of forces which act on a single particle is in equilibrium,
then no work will be done in any displacement of the particle, provided
that the forces remain constant in magnitude and direction during
the displacement. Conversely, if the work done, as calculated on the
foregoing assumption, is zero in any possible displacement of the
particle, then the forces acting on the particle must be in equilibrium.
It is true that in most actual cases the forces do vary as their point of
application is moved, but for the purpose exclusively of a test for
equilibrium they must be supposed to remain constant. Any actual
changes in the forces due to motion of the point of application affect
stability, but not equilibrium.

Next consider a system of particles, connected or unconnected. It
would be possible to test the equilibrium of each particle separately
by a calculation of the work done in an arbitrary displacement. Since
in such a calculation the forces, if any, between the particles them-
selves would have to be included, the method would offer no practical
advantage. However, suppose all the displacements considered to be
infinitesimal and such that they do not violate any of the rigid con-
nections or frictionless constraints of the system: then it is easily
shown* that the forces corresponding to such connections or constraints
do not enter into the expression for the virtual work of the system
as a whole.

* See, for instance, p. 167 of Ref. 28.
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The time variable does not enter into the discussion of static
equilibrium. Any given configuration of the system is assumed to be
completely specified by the m generalised coordinates q, and our object
is to decide whether that particular configuration satisfies the con-
ditions of equilibrium. Suppose Xv X2, X3 to represent the com-
ponents of a force applied at the point whose coordinates are xl9 x2, x3

and let X, x denote the corresponding columns. Then the total work
done in the displacement is given by

8W = I,0X'8x,

where So denotes summation extending to all the particles and applied
forces. If the virtual displacement given corresponds to increments
8qt of the generalised coordinates, then by (8-9-1)

and the total work can accordingly be expressed as

8W = P'8q = (Sqf) P,

where 8q denotes the column of the increments 8qi9 and P represents
the column of the quantities

P — X X' ^

For equilibrium 8W must be zero for all possible virtual displacements,
i.e. for all ratios of the increments 8q^ The condition for equilibrium
is thus p _ Q

It is usual to call P̂  the generalised component of force (or more briefly
the generalised force) corresponding to qt, but it should be noted that
Pi has not necessarily the physical dimensions of a force. For instance,
if qi denotes an angle, Pi has the dimensions of a moment.

8-11. Conservative and Non-Conservative Fields of Force.
Certain of the forces applied to the system may have the distinctive
property that the work done by them when the system is given a
displacement depends solely on the initial and the final configurations.
Such forces are said to be conservative.

Suppose the generalised coordinates q to have the values Q for some
datum configuration. Then the work done by the conservative forces
when the system is displaced from q to Q will be a definite function V
of the coordinates q which is termed the potential energy. I t follows
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that the work done by such forces in an arbitrary infinitesimal dis-

placement Sq is given by SW = - (8q') j ^ - , where 1̂ —! denotes the

(dV dV dV)
column {-£—, ^—,..., ^ — } . Hence if the part of the typical generalised

[dq1 dq2 dqj
force arising from the non-conservative forces be Pi9 then the total
generalised force will be given by

* - ' « - ! £ • (1)

If the field of force is wholly conservative, then the conditions of

equilibrium are |̂ — \ = 0. These require the potential energy to be
stationary. If further the potential energy is a minimum for the
equilibrium position, this position is stable.f

An important special case is that in which V is a homogeneous
quadratic function of the coordinates q. The potential energy will be
expressible in this way when the values of the coordinates appropriate
to the position of equilibrium under zero external load are chosen to
be zero and the displacements from this position are always small. Then

where E is a symmetrical square matrix. Hence (compare (2-8-3))

so that the conditions of equilibrium are briefly

Eq = P.

In systems where aerodynamical forces play a part, it usually happens
that, while these forces are not conservative, yet they are linearly
expressible in terms of the displacements by means of aerodynamical
derivatives.% Suppose the contribution of these forces to P to be
written — Wq + w, and let P* be the part of P due to the remaining
forces, if any. Then the typical condition of equilibrium is

where (7== W + E. The square matrix G (which is not in general sym-
metrical) is termed the stiffness matrix, and its elements are the
stiffness coefficients, or simply the stiffnesses. Each stiffness is the sum
of two terms, namely an aerodynamical stiffness which originates from
the air forces, and an elastic stiffness which actually represents the

t See, for instance, § 86 of Ref. 29. % See also § 9-5.
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influence of all the conservative forces. Provided G is not singularf
the last equation may be premultiplied by O = O"1 to give

The matrix O is called the flexibility matrix, and its elements are the
flexibility coefficients, or the flexibilities.% I t will be noted that w
represents the generalised wind forces appropriate to the configuration
for which the coordinates q are zero.

E X A M P L E S

(i) Reciprocal Theorem for a Conservative System. Suppose any two
external load systems ^J(l) and $(2) to be applied, and let the corre-
sponding displacements be q{\) and q(2). Then the conditions for

equilibrium after either displacement are *($ — \ ~— [ = 0. Hence by

(2), since E is symmetrical,

ff'(l)*(2) = ^ ( 1 ) ^ ( 2 ) = q'{2)Eq{\) = tf(2)$(l).

These reciprocal relations are valid for any number of degrees of
freedom, and the theorem is in fact true for a continuous elastic body.

(ii) Principal Directions of Loading at a Point of an Elastic Body or
Structure. A principal direction at a point P is such that a load applied
to P in that direction displaces P in the same direction. Let unit
force applied in the direction Oxx give component displacements
8U, 821, 831: and similarly, let the displacements due to unit forces
parallel to Ox2, Oxs be respectively 812, 822, 832 and 813, 823, 833. By
Hooke's law a force with components Xv X2, Xs will produce a dis-
placement whose components dl9 d2, ds are given by {efJ = [8#] {XJ,
or say d = 8X. Now for a load in a principal direction we require
d = AX, where A is a scalar multiplier: hence

(M-8)X = 0.
I t can be shown that the principle of the conservation of energy will
be violated unless 8 is symmetrical. For example, if the point P be
made to describe a closed rectangular path with its sides parallel to
Oxx and Ox2, then the whole work done in the cycle of displacement
will not be zero unless 812 = 821. It then follows from the orthogonal
property of the modal matrix of a symmetrical matrix (see example

f When C is singular there is no position of equilibrium unless w+P* = 0, in which case
the system is neutral.

J The flexibilities are also referred to as influence numbers in the theory of beams.
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(v) of §3*8) that there are three mutually perpendicular principal
directions at any point of the structure. The proof given shows that
this conclusion follows merely from Hooke's law and thfe principle of
the conservation of energy.

8#12. Dynamical Systems. By a dynamical system is meant
one or more rigid bodies, which, ideally, may be mere particles. The
bodies may be quite independent, or they may be subject to constraints
of the types already discussed in Part I of this chapter. They may
also influence one another by direct communication of momentum by
impact, or by communication of momentum at a distance by gravi-
tational or electro-magnetic forces. In the last category may also be
included the effects of ideal massless elastic links, and—with certain
restrictions—the reactions of a perfect fluid in which the bodies are
immersed.

A continuous elastic body is not a dynamical system according to
the foregoing definition. Nevertheless it is possible to consider such
a body as the limit of a dynamical system having an indefinitely large
number of particles with ideal massless elastic links between the
particles. Moreover, it is often convenient to suppose a continuous
elastic body to be replaced by a body having only a finite number of
definite modes of deformation. Such a body is said to be semi-rigid: it
is a true dynamical system possessing a finite number of degrees of
freedom. For example, a semi-rigid cantilever beam capable of bending
according to a given law of flexural curvature can be imagined as a
system of infinitesimal rigid rods so geared together that their dis-
placements accord with the given law; such a semi-rigid beam would
have one degree of freedom. Naturally a semi-rigid body will not
behave in the same way as its elastic counterpart in all circumstances,
but its behaviour may sometimes be exactly the same, provided that
the modes of distortion are properly chosen. The chief value of the
conception of the semi-rigid body is that it permits approximate
calculations of reasonable accuracy in cases where exact treatment is
not mathematically feasible. For instance, the differential equations
governing the oscillations of an aeroplane wing moving through the
air are extremely complicated, but the stability of the wing can be in-
vestigated approximately on the supposition that the elastic wing is a
semi-rigid body possessing only two degrees of freedom corresponding
to flexure and torsion.*

* See p. 7 of Ref. 30.
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8-13. Equations of Motion of an Aeroplane. Before con-
sidering dynamical systems comprising several bodies, we shall express
in matrix form the equations of motion of a single rigid body. The
method of construction of the equations is quite general, but for the
sake of definiteness we shall suppose the body to be a (rigid) aeroplane
in flight. The notation differs in some respects from that which is
standard in aerodynamics,* but the necessary scheme of conversion
will be stated at the end of the section.

#2

'X*
Fig. 8-13-1

In Fig. 8-13-1 the frame O(xl9x29xs) is fixed relative to the earth
with Oxs vertically downwards, while Oxv 0x2, Ox3 are body axes
through the centre of mass 0 of the aeroplane. The reader should
imagine that he is viewing the aeroplane in the diagram from below.
The axis Oxx is longitudinal and directed forwards, Ox2 is drawn
laterally to starboard, while Oxs is in the plane of symmetry and
downwards. The six parameters used to describe the position of the
aeroplane at any instant are to be regarded as the three rectangular
coordinates of 0 referred to the fixed axes, and the three angular
coordinates <f>v <fi2, <p3 defined in § 8-3.

Let m denote the total mass of the aeroplane, and let mG, mX
denote, respectively, the columns of the components of the weight
and of the total remaining applied forces, measured in the directions

* Chap, v of Ref. 27.
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of the body axes. Also let L be the column of the moments about the
same axes, and u, p the columns of the components of the linear and
the angular velocities.

Applying (8*7*4) and (8*7*7), and remembering that 0 is the centre
of mass, we obtain the six equations of motion in the form

, (1)

(2)

where w and J are as defined in §§ 8-5 and 8-7, respectively.
The expression for O in terms of the angular coordinates* <f> is

given immediately by equations (8-4-1) and (8-6-3). Thus, if g is the
acceleration due to gravity,

mG = l{0,0,mg}, (3)

or 0 = gn,

where n± = — sin 02; n2 = cos <fi2 sin <j>x\ n3 = cos <f>2 cos <f>v

Lastly, the angular velocities p are themselves given by

P = Rj, (*)
where R is as defined in § 8-6.

As a special case assume the aeroplane to be in steady motion. Then
u, p, X and L are columns of constants, and equations (1) and (2)
reduce to wu (5)

(6)

From (5) it follows that n is a column of constants, so that <j)2 and (j>1

are constant. Equation (4) accordingly simplifies to

p = Cln, (7)

where 03 = ii also is a constant. Hence in steady motion

p'p = QVn = Q?.

The simplest type of steady motion, of course, is that of steady
rectilinear symmetrical flight. Then with Cl = 0 and fa = 0, the
conditions (5) and (6) reduce to

X = 0{sin 02,O, cos 02},

* In relation to the present problem the angular displacements </>z, <f>2, <f>x represent
rotations in yaw, pitch and roll, effected successively about the carried positions of the
body axes.
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Addendum. The scheme of conversion to standard aeronautical
symbols is as below:

Matrices Equivalent in
SUsed

u

x
L

P

q
Standard Symbols

{#,2/,z}
. {u,v,w}

{X,Y,Z}

{L,M,N}

W 0
r

. - s r
A

-F

-E

— r
0

P
-F

B

-D

a
-P
0

-E~

-D

C

8*14. Lagrange's Equations of Motion of a Holonomous
System. Suppose x to represent the Cartesian coordinates, referred
to fixed axes, of a typical particle of mass m . The system will be
assumed holonomous, so that these coordinates will be expressible
in terms of the generalised coordinates qi9 and possibly also the time
variable t, by the geometrical equations (8-9-1). If X denotes the
column of the components of force acting on m, then the equations
of motion for the particle are expressed by

mx = X. (1)

This equation states that the applied force is in equilibrium with the
reversed effective force.*

Premultiply equation (1) by the row matrix

3/2

(2)

and sum for all particles of the system. Then

/ i - fit/ X = = 2jr\ A. = = 2ur\ A. .

where So denotes summation for all the particles.

• In engineering it is common to speak of the reversed effective force as the inertia force.
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Consider, firstly, the expression on the right of this equation. This
is formally identical with the quantity Pi which was derived in § 8-10
by an application of the principle of virtual work-and which was
termed the generalised component of force, provided it is understood
that in the virtual displacements of the dynamical system the time
variable t (which may enter explicitly into the geometrical equations
of the system) is not varied. Forces which do no work* in the type of
displacement contemplated, and which therefore do not appear in Pi9

include forces between the particles of a rigid body, pressures or
tensions in inextensible connecting members, the reactions at fixed
pivots or fixed smooth (or in some cases perfectly rough) guides, and
lastly the reactions at any smooth guides which provide kinematic
constraint and are moved in some prescribed manner. These last
forces, in particular, will be absent from Pif since the guides concerned
are not moved in the virtual displacement.

The expression on the left of equation (2) represents the appropriate
generalised component of the effective forces on the system. In
Lagrange's method it is very conveniently expressed in terms of the
kinetic energy function. The essential step is that the total kinetic
energy of the system, namely

T = Xoi<mx'x, (3)

must first be expressed as a function of the generalised velocities q, the
generalised coordinates q, and the time variable t. This can be done
immediately by use of the relations (8-9-2). The resulting expression
for the kinetic energy will clearly be quadratic (though not necessarily
homogeneous) in the quantities, so that, say,

The symmetrical square matrix A, the column matrix A, and the
scalar Ao depend in general on the coordinates q and on t, but if the
geometrical equations do not contain t explicitly A and Ao will be
absent. In this special case T will be a homogeneous quadratic
function of the variables g, and its coefficients will depend only on
the coordinates q.

Now by (3), -p- = Sotnflfe'^-r. But equations (8-9-2) give on differ-

entiation —- = -^-, where the generalised velocities are treated for

3ft 3ft
* Forces which do no work are sometimes referred to as constraints.
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the present as distinct variables, independent of the generalised
coordinates. Hence ^m g*

9& d?<
d i d m 9

Again, since obviously the differential operators -=-( = ~- + S #î —
at \ at i = i dg

and — are permutable, it follows that

Hence finaUy 20mf «= | ( | ? ) - | ^ .

Lagrange's equations of motion are thus derived in the form

^ ( 4 )

If, as in § 8* 11, V denotes the potential energy of the conservative
applied forces, and P is the contribution to P due to the non-con-
servative forces, then (4) may be written

in which L = T — V. The quantity L, namely the difference of the
kinetic and potential energies, is referred to as the Lagrangian function
or the kinetic potential.

EXAMPLES

(i) Expanded Form of Lagrange's Equations. For simplicity assume
the constraints to be independent of time. Then if, for instance, there
are two degrees of freedom,

2T =
dT

and on differentiation — = -4u?i + A12q2, so that

d [dT\ dTy
On rearrangement this gives the first dynamical equation in the
explicit form

94
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Similarly, noting that A12 = A2V we have

More generally, if there are m degrees of freedom, the rth dynamical
equation will be m

S

in whicht ^ f t

(ii) Discriminants of the Kinetic Energy Function, In the case of a
holonomous dynamical system with constraints independent of time
the kinetic energy function is a homogeneous quadratic function of
the type T = \q'Aq. Since the kinetic energy is necessarily positive,
it follows that T is a positive quadratic form, and that its discriminants
are all necessarily positive (see §1-16). It should be noted that no
discriminant of the kinetic energy can vanish, unless the system has
the unusual property that all its particles can be at rest while some of
the generalised velocities are not zero.

8#15.* Ignoration of Coordinates. It sometimes happens that
certain of the generalised coordinates do not appear explicitly in the
Lagrangian function of a conservative system though the corre-
sponding generalised velocities are present. Such coordinates are said
to be ignorable.%

I t will be convenient to suppose that the system has m non-ignorable
coordinates ql9q29 •••>?»» a n ( l i n addition k ignorable coordinates
yi>V2>--*>yk- Then by definition the function L=T— V is explicitly
dependent only on the sets of quantities q, q and rj. If the constraints
are independent of time, the kinetic energy will be a homogeneous
quadratic function which can be represented by means of partitioned
matrices as (see example (ii) of § 1-15)

(1)

The symmetrical square matrices a and 8 are of the orders m and k
respectively, while J3 and y are respectively of the types (m, k) and

| The quantity C$ is sometimes denoted by a "Christoffel's symbol" L but this

symbol is here avoided as it might lead to confusion with matrices.
X Other terms in use are cyclic, absent or kinosthenic. See § 38 of Ref. 31, and § 84 of

Ref. 29.
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(k, m) with y' = /?. All these matrices are independent of the co-
ordinates 7].

The k equations of motion appropriate to the ignorable coordinates

are here simply —1̂ --> = 0. These can be integrated immediately to
at {orji)

give

where cr denotes a column of k constants of integration. The velocities
rj can now be expressed in terms of q and q. Thus

(3)
or, alternatively, since 8 is symmetrical and y' = /?,

(4)

Next consider the m equations of motion appropriate to the non-
ignorable coordinates, namely

These equations contain explicitly not only the non-ignorable
variables but also the quantities rj and T\. However, by means of (3)
and (4) it is possible to eliminate i\ and i), and so to derive a set of m
differential equations involving only the non-ignorable coordinates.
In this way the dynamical system is effectively reduced to one having
only m degrees of freedom. We shall now show how the equations
appropriate to the reduced system can be constructed directly. Let

jB = y i _ ^ V - F , (6)

where T± is the function T expressed in terms of the variables q and q,
and 7j is expressed in terms of the same, variables. Then

where -^~ = {-^-r\ it' is an (m. k) matrix. But

_(d\ ra

Hence by (2) and (7) {||} = {fj-
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Similarly,
ffl = m - \m „-. m = i± {T_V)\W W) UJ W lag/-7 yr

The required reduced form of the equations (5) is accordingly
d \

The explicit expression for R in terms of q and q is readily found as
follows.- By direct substitution for Hj from (2) in (1) and use of (6)
and (4) we have

R+V = Mo4 + \i\'yq - fficr

= Wai+W*-1 - i'PS-1) (74 - *).

Hence i? = ^ ' (a -£*-1y) ff + g'^"1^ - lcr/*-1<r - F.
It should be noted that although equations (8) are similar in general
form to Lagrange's equations, yet the function R is not constructed
in the usual way as the difference of a kinetic energy function and a
potential function. It may contain terms which are linear in the
velocities q.

8-16.* The Generalised Components of Momentum and
Hamilton's Equations. The kinetic energy of a single particle is
T = \mx'x9 and the three components of momentum, say pv p2, p3,
are given by

Further, the kinetic energy, when expressed as a function of the
components of momentum, takes the form

while the equations of motion of the particle (see (8* 14*1)) become
p = X in conjunction with (1). These equations illustrate in a very
simple way Hamilton's equations of motion, which make use of the
momenta—or in effect the generalised velocities—as auxiliary depen-
dent variables. The construction of Hamilton's equations for a
holonomous dynamical system will now be considered.

By analogy with (1) the m generalised, momenta for a dynamical
system are defined by ^mx
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If the kinetic energy function is

T = iq'Aq + q'A+Ai, (3)

then p = Aq + A. (4)

When, as is normally the case, the symmetrical matrix A is non-
singular, the preceding equation gives by inversion

q = A-*(p-A). (5)

By the use of (5) and its transposed the kinetic energy (3) can be written
explicitly as a quadratic function of the variables p. Thus, if the
function when so expressed is distinguished as Tv we have

T± = \{p'~A')A-\p-A) + {p'-A')A-iA+AOi (6)

which is the generalisation of (2).
In Hamilton's equations the generalised momenta p and the

coordinates q are used as dependent variables instead of q and q.
Moreover, the Lagrangian function L is replaced by the Hamiltonian
function H defined as R = ^ _ T+ y ( 7 )

As with the kinetic energy, the function H may be expressed either in
te'rms of p or of q, In the first case, if (5) and (6) are used in conjunction
with (7), H

A')A-HP-A)-AO + V (8)

Similarly, if (3) and (4) are used in conjunction with (7),

H = T-q'A-2A0+V.

From the last equation it is seen that if the constraints are independent
of the time (so that 4̂ = 0 and Ao = 0), then H reduces to the total
energy T + F .

To obtain the dynamical equations in Hamilton's form, we note
firstly that the Lagrangian equations (8-14-5) may be written

•o ^ , / n , dT , ., dA . ., BA dA0

But by (3) _ - i f l ' _ f f + a ' _ + _ . ,

which on application of (4) and use of the relation
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may be expressed as*

4 ' ) 4 1 + *

Hence the first set of equations isf

The second set of equations, obtained by differentiation of (8) and use
of (5), is (dH]

A 1 ( A ) 4

The relations (10) and (11) jointly are the complete Hamiltonian
equations.

EXAMPLES

(i) Reciprocal Property ofa Dynamical System. If the kinetic energy
is a homogeneous quadratic function of the generalised velocities, then
by (̂ ) P = -^?* Suppose q(l) and q(2) to represent two different sets
of generalised velocities of the system in one of its configurations, and
let p(l) and p(2) be the corresponding .momenta. Then since A is
symmetrical

g'(l)l»(2) = q'(l)Aq(2) = ^'(2)^(1) = q'(2)p(l).

This reciprocal property should be compared with another given in
example (i) of §8-11.

(ii) Equation of Energy. If the constraints are independent of the
time and the system is conservative, (10) and (11) give

Hence for such a system the total energy is constant.

* If, as is usual in aerodynamical applications, the generalised forces contain parts P
dependent on the generalised velocity components q, then these parts must be expressed in
terms of the variables p, q and t by use of (5) before they are introduced in the Hamiltonian
equations (10).

t The reader should be careful to note that in the differentiation «— on the left of equa-

dH
tion (9) T is expressed as a function of q, q and t, whereas in the differentiation ^- on the

right of the equation, H is a function of p, q and t.
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8-17.* Lagrange's Equations with a Moving Frame of
Reference. In some applications it is convenient to refer the displace-
ments of the system to a base which is itself in motion. This moving
frame of reference (not necessarily fixed in any body of the system)
will as usual be denoted by O(xvx2yXs)i and the Cartesian coordinates
of a typical point P relative to the frame will be represented by x.
Then in place of the geometrical equations (8-9-1) we shall have for
the typical point _ f( . v

x — j{ql9q2, ...,qm,i,a).
The coordinates of P referred to a fixed base O(x1,x2,x3) will as
previously be denoted by x, while v and a represent respectively the
components of the total velocity and total acceleration of P, measured
in the directions of the moving axes. Finally, u denotes the velocity
components of 0, measured in the same directions. The actual expres-
sions for v and a in terms of u, x and of the angular velocities p of the
moving base are given by equations (8-7-1) and (8-7-2).

Now consider the respects in which the analysis of §8-14 requires
modification to allow for the motion of the base of reference. The
equations of motion of the typical particle P may in the present case
be taken as moc = X, where X represents the column of the components
of force in the directions of the moving axes. A treatment similar to
that adopted with (8-14-1) leads to an equation which it will be con-
venient to write as w ^f

S o m ^ - a = S o Z ' ^ . (1)

The quantity on the right is as before denoted by P^ and is referred to
as the generalised force corresponding to q^ If the system is given an
infinitesimal virtual displacement involving a variation Sqt of qi only,
the work done by the external forces will be PiSq^ In this hypothetical
displacement the frame of reference 0(xv x2, x3) is regarded as fixed.

To evaluate the quantity on the left of equation (1), first substitute
for oc from (8-7-2). The result is somewhat cumbrous, but it can be
reduced conveniently by the introduction of a centrifugal potential
function defined by

Fo = \lLQrnxfw2x + ^mx'wu +

Partial differentiation of this function yields

where N = w2x + wu + u.
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If further J$ = So tn -*— wx

the left-hand side of (1) can be written

The last term in this formula is expressible in terms of the kinetic
energy of the motion relative to the base—namely, JEom#'x—by the
method of § 8* 14. The quantity Ji represents an inertia effect dependent
on the displacements, but it cannot be derived from a potential since
the matrix VJ is not symmetrical. Finally, the quantity Gi depends on
x and is therefore a linear function of the generalised velocities. If the
coefficient of q^ in Gi is denoted by G^, then

or on substitution for w from (8-5-4)

G - - 2 2Gtj- i ^

Hence G^ = — Gii9 and in particular Gu = 0. The quantities Gy are
spoken of as the gyrostatic coefficients, and it is to be noted that on
account of the properties just stated they do not appear in the expres-
sion for the total energy.

When the centrifugal potential Vo is a homogeneous quadratic
function, say Vo — \q'crq, the coefficients cr^ are referred to as the
centrifugal stiffnesses. They play exactly the same part as the gravi-
tational and elastic stiffnesses.

E X A M P L E

Suppose O to be always at rest, and let p± = p2 = 0, while pz = Cl
(a constant). Then

"0, - Q , 0
I, 0, 0
>, 0, 0
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The typical generalised component of centrifugal force is thus

and the typical centrifugal stiffness is

Finally, the typical gyrostatic coefficient is

and Ji = 0.



CHAPTER IX

SYSTEMS WITH LINEAR DYNAMICAL EQUATIONS

9*1. Introductory Remarks. The present Chapter deals with
motions governed by linear ordinary differential equations with con-
stant coefficients. The language of the dynamics of material systems
will be used throughout, but the treatment can, for instance, be applied
equally well to electrical systems. The discussion and exemplification
of approximate numerical methods of solution is reserved for Chapter x.

9*2. Disturbed Motions. Except with very special systems or
types of motion the differential equations which arise in dynamics are
non-linear and do not admit exact solution. It is, however, sometimes
possible to obtain particular solutions, such as those corresponding
to equilibrium or steady motion. Then, if the system is supposed to
be slightly disturbed from this known condition, the resulting small
motion of deviation will be given by a set of linear differential equations.
In the special case where the undisturbed state of the system is one
of equilibrium or steady motion, the equations of disturbed motion
will have constant coefficients and will be soluble by the methods of
Chapters v and vi. In more general cases the equations will have for
coefficients given functions of time, and they will thus be of the types
considered in Chapter VEI.

The disturbances just referred to may be of two kinds. They may
be merely temporary, and represented by a set of initial conditions
of motion which differ slightly from those corresponding to the un-
disturbed motion. The motion of deviation is then said to be free. On
the other hand the disturbances may consist of small persistent forces
which vary in some assigned way with time. In this case the motion
of deviation is said to be forced.

The usual method of construction of the equations of deviation is,
briefly, as follows. Let the set of values of the generalised coordinates
corresponding to the undisturbed state of the system be represented
by Q: these values are to be regarded as assigned functions of t (or
possibly given constants). In the disturbed motion let the deviations
(i.e. the increments of the generalised coordinates) be q. Then to form
the equations of disturbed motion substitute in Lagrange's equations
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the values Q + q for the coordinates, Q + q for the velocities, and so on,
neglect all terms involving products of the quantities q or of their deri-
vatives, and introduce the persistent disturbing forces, if any. In this
way a set of linear differential equations in the deviations q is derived.
These equations are, of course, only valid for the representation of
deviant motions which are "small" in the sense implicit in the
approximations used.

9*3. Conservative System Disturbed from Equilibrium, The
simplest problem of the class just considered is that in which a con-
servative holonomous system with constraints independent of time
receives a small disturbance from equilibrium. If, as will be assumed,
the generalised coordinates are measured from this position of equi-
librium, the quantities Q will all be zero.

Now use the expanded form of Lagrange's equations (see example (i)
of § 8-14), and reject all the terms involving products of the deviations
q or their derivatives. If there are no permanent disturbing forces, the
equations are simply

where the elements of A are all constants. Further, since q = 0 is a
position of equilibrium, the terms which are linear in q will be absent
from F, so that this function may (to the order of approximation
considered) be taken as T7 w , , „

V = &o + M &q>
Hence the required equations of free disturbed motion are

O9 (1)

in which A and E are both symmetrical matrices of constants.

If the disturbed motion is forced, the equations are of the more

general type Aq + Eq = !-{t),

in which g(t) represents the column of the disturbing forces.
The principal diagonal elements of A, which obviously play a part

analogous to ordinary moments of inertia, may for convenience be
spoken of as the generalised moments of inertia. For a similar reason it
is natural to refer to the elements of type A4i (i+j) as generalised
products of inertia. Finally, the elements Eu are described as the
direct elastic stiffnesses, while those of type Eit (i+j) are called elastic
cross stiffnesses.
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E X A M P L E

Transformation of the Coordinates, In the discussion of the Lagran-
gian equations of small motions it is sometimes convenient to transform
the m generalised coordinates q to a new set, say q. Suppose the two
sets to be connected by the linear substitution q = uq, where u is a non-
singular square matrix of order m with given constant elements. Then

T = iq'Aq = iq'u'Auq
and V = Eo + \q'u'Euq.
The equation corresponding to (1) is accordingly

(u'Au)q + {u'Eu)q = 0.
It should be noted that u'Au and u'Eu are both symmetrical.

9*4.* Disturbed Steady Motion of a Conservative System
with Ignorable Coordinates. The state of steady motion considered
is that in which all the non-ignorable coordinates, and the generalised
velocities corresponding to all the ignorable coordinates, have con-
stant values. It has been shown in §8-15 that when a system has
ignorable coordinates the dynamical equations are reducible to a
simpler set which involves only the non-ignorable coordinates. The
final equations are similar in general form to Lagrange's equations,
but the Lagrangian function L is replaced by a function R which may
contain terms linear in the generalised velocities. It is the presence of
these linear terms in the "modified" Lagrangian function R which
distinguishes this problem of disturbed steady motion from that of
disturbed equilibrium.f

As in § 8*15 we shall suppose that there are m non-ignorable co-
ordinates q, and k ignorable coordinates TJ. Then if the kinetic energy
function is represented by

the h dynamical equations appropriate to the ignorable coordinates
give on integration (see (8* 15-2))

yg + ty = cr, (1)
while the remaining m equations for the system in its reduced form are
(see (8-15-8)) d ,g

\
in which B = ltf(

t Compare p. 195 of Ref. 31.
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In steady motion the velocities v\ are all constant. Moreover, the
non-ignorable coordinates also have constant values which, without
loss of generality, may be taken to be zero. The quantities q then
represent the deviations of the non-ignorable coordinates in the
disturbed motion. Again, corresponding to the constant values of rj
and of q in the steady motion there will be a set of constants given by
(1). These same constant values for <r are assumed to hold good for the
disturbed motions to be considered, f

To derive the equations of free disturbed motion, neglect all terms
in the expanded form of R which are above the second degree in the
variables q and q. To this order of approximation R is quadratic in the
variables q and q. It will be convenient to write

R =

in which now 91, 93, (£, etc. are all matrices of constants. The square
matrices % and (£ are symmetrical, but 95 is in general not symmetrical.
Then /gp^ /g™

Up = ^ + 93<z + (£ and I ^ J = 93'?--(
Hence equation (2) becomes

Since this is satisfied by q = 0, we require $ = 0. Hence finally

This equation is of a rather more general form than that corresponding
to disturbed equilibrium, in that it contains terms dependent on the
generalised velocities. The elements of the skew symmetric matrix
95 — 93' are spoken of as gyrostatic coefficients (compare also § 8-17).

9*5. Small Motions of Systems Subject to Aerodynamical
Forces. The aerodynamical forces acting on a system will not, in
general, be conservative, and will, strictly speaking, depend on the whole
previous history of the motion. When such a system is disturbed from
a known condition (e.g. equilibrium or steady motion) it is usual to
assume as an approximation that the differences between the values
of the air forces in the disturbed and undisturbed states of the system
depend linearly on the sets of quantities q, q, q, at most, where q
denotes the deviations of the generalised coordinates. Hence, if *£f
and ^ represent respectively the typical generalised aerodynamical

f This implies that the disturbances do not introduce generalised forces corresponding
to any of the ignorable coordinates.
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forces for the disturbed and undisturbed states, then according to the
foregoing approximation

The constant coefficients - ^ , - ^ , - ^ may be referred to as the
dqj dqj dq^

generalised aerodynamical derivatives. If the column of the generalised
aerodynamical forces is expressed as

then W - d^' B - **<• A -
then ^ - - ^ 7 ' ^ - " ^ A « - -

To obtain the equations of disturbed equilibrium of an aerodynamical
system the method of § 9-3 is followed, but the generalised forces ̂ 5*
are included. The final equations may be written

The elements of A, with their signs reversed, are called the acceleration
derivatives. They are generally small, and are either treated as negli-
gible or are assumed to be of such a nature that they can be absorbed
into the generalised moments and products of inertia without destruc-
tion of the symmetry of the inertia matrix A. On this understanding
it is usual to write the last equation as

Aq + Bq+Cq = £(t), (1)

where C = E -h W. The elements of B are described as the damping
coefficients, while those of W are the aerodynamical stiffnesses. In
general neither the damping matrix B nor the total stiffness matrix C
will be symmetrical. The principal diagonal elements of C are spoken
of as the direct stiffnesses, while the remaining elements are cross
stiffnesses; similarly, the principal diagonal elements of B are direct
dampings, while the remainder are cross dampings. The coefficients
of type Ai:j, Btp Ci3- (i^j) are collectively called the couplings.

9-6. Free Disturbed Steady Motion of an Aeroplane.
The equations in this case can be deduced directly from the equations
of general motion of an aeroplane given in § 8-13. The symbols have the
same meanings as before, except that they now represent incremental
values in the disturbed motion: the corresponding values in the
given steady motion are denoted by the same symbols with a cipher
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suffix. As is usual in the treatment of aeroplane stability, * the body axes
are assumed to be principal axes, so that the inertia matrix J will have
the diagonal form T — r T

0
0

.0 0
The scheme of conversion to standard aeronautical symbols will be
considered later.

Equations (8-13-1) and (8-13-2) give immediately for the disturbed
motion

= X + X0+G + G0,

vo)J(P+Po) = L + Lo-
Omitting the terms which arise only in the steady motion and neg-
lecting squares and products of the deviations, we obtain for the deviant

= X+G, (1)

= L. (2)

Now (see example (i) of § 8-5) xuu0 = — aop, where

0 -u30 u2

Uon 0 — U+

m o t i o n

10

Similarly,

where 60 = 0 {Jz-J^Pzo (^2-^3)^20

(Js-Jx) #30 ° {Jz-Ji)Pio
020

Again, expressing X and L in terms of aerodynamical derivatives, and
neglecting acceleration derivatives, we may write

in which O n , O12, O21, O22 are square matrices the (i, j)th elements of
which are respectively the derivatives

dXj vX{ dLf 92ŷ
dUj* dpj' duj' dpf

Next, by differentiation of the expression (8-13-3) for the com-
ponents of the weight in a general motion, it readily follows that in

* See, for instance, Chap, x of Ref. 27.
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the present deviant motion

where

9*6

c o —

O = gco<f>,

0 —c o s 020
cos §52O cos 01O - sin 02O sin 01O 0

— cos 02O sin ^10 - sin 02O cos 01O 0

On making these substitutions in (1) and (2) we derive the equations

+ a 0 )^ + 9rc0^ = 0, (3)

2 + J-*bo-ID)p = 0 (4)

It remains, finally, to connect the deviations p with the deviations <f>
and? their rates of change. The necessary relation, which is deducible
by differentiation of (8-13-4) and use of (8-13-7), may be written

where c0 is as defined above, and Ro is the matrix in (8-6-6) with the
values <fi0 appropriate to the steady motion substituted for <fi. A rather
more convenient form is

in which e 0 = — = sec '20

— ID) q

0

— c o s 2

0

> = o,

D

sir

1

0

0"

0

o.
The required equations of deviant motion are (3), (4) and (5). They
may be written concisely by partitioned matrices as

(6)

with

Bo1

The scheme of conversion to standard aeronautical symbols is as
given in the addendum to §8-13, with the simplifications D = E = F = 0.

^, ^—-, etc. correspond in the standard notation
cu2

The derivatives

to -x—, -^—, etc., and these are usually abbreviated to Xu, XV9 etc.

The A-determinant of the system of equations (6)—after extraction
of a factor A indicating neutrality of the aeroplane with respect to
the angle i/r—can be expressed in standard symbols as follows:
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9-7. Review of Notation and Terminology for General
Linear Systems. The few special problems already considered show
how linear differential equations with constant coefficients arise
naturally in dynamics. We shall now briefly summarise the essential
formulae connected with the solution of such systems of dynamical
equations.*

The Lagrangian equations for a linear system having m generalised
coordinates ql9 g 2 , . . . , j m will be of the type

f(D)q = (AB* + BD+C)q = Z(t), (1)
where A, B, C are respectively the inertia, damping and stiffness
matrices, and £(t) denotes a column of assigned "forcing" functions.
In a free motion of the system £(£) = 0.

The determinantal equation

A(A) EE | /(A) | =pQ\n+piXnr-l+ ... +pn_1\+Pn = 0

is in general of degree n = 2m, and the n roots (not necessarily all
distinct) are denoted by A1? A2,..., An. The constituent solution appro-
priate to an unrepeated root A, is denoted by

and the column of constants kr is referred to as the rth modal column.
This column may be chosen proportional to any non-vanishing column
of the adjoint J?7(Ar) of the matrix /(A,.). On the other hand, if Ag

represents a member of a set of s equal roots, the constituent solution
appropriate to Ag is written

In this case the s modal columns relevant to the complete set of roots
equal to As may be chosen proportional to any s linearly independent
columns of the family of matrices

(8-1) (s-2) /« lWo_0\ (s-3)

U^t, As) = F(AS) + (s - 1)tF(X8) +[S X j ; t*F(A8) + .

The modal coefficients k^t) will be polynomials in t of degree s — 1 at
most.

* For the detailed exposition see Chaps, v and vi.
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When £(£) = 0 the most general solution of equations (1), derived
as a linear superposition of arbitrary multiples of the constituent
solutions, is q = Ck{t)ex1t + C -...+cnkn(t)eW,

in which cv c2, etc. are arbitrary constants, real or complex. This
solution may be written more concisely as

q = k(t)M(t)c.

Here k(t) denotes the (m, n) modal matrix

#n(£), k^yt),

KM
hn(t)'

and Jf(*)s 0,

o,

Knit).
0

0

0, 0,

while c represents the column of the arbitrary constants.
It is sometimes convenient to substitute for the Lagrangian equa-

tions (1) an equivalent set of equations of the first order,* obtained
by the use of auxiliary variables. If the generalised momenta p = Aq
are adopted as the auxiliary variables (see § 8-16), then the complete
set of equations in the Hamiltonian form is

[IT' ^lfiTl"
LPJ L-C, -BA-I\\2\ [ml

A convenient alternative scheme is to adopt the generalised velocities
q as the auxiliary variables. The equivalent linear system then is (see
example (ii) of § 5-5)
where y = M ; 0 u= 0,

9-8. General Nature of the Constituent Motions, (a) Real
Boots. The modal column obtained from each real (simple or multiple)
root of the determinantal equation of the set of equations (9'7*1) will

* For special methods of solution of first-order systems of equations, see Part II of
Chap. vi.
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consist of real elements. The corresponding constituent motion will
be a subsidence or a divergence according as the root concerned is
negative or positive. A zero root, if unrepeated, yields a constant con-
stituent representing neutral equilibrium. On the other hand, a
repeated zero root in general gives rise to a constituent involving
polynomials in t, and thus to a growing motion.

\b) Complex Roots. The modal column derived from a complex root
is, in general, complex. I t is customary in dynamics to associate
together the conjugate complex constituents obtained from conjugate
complex pairs of roots, and so to derive equivalent pairs of real con-
stituent motions. Suppose As = ju, + io) to be a root of multiplicity s,
where i denotes V — 1: then the conjugate complex root A8 = [i — ico
also has multiplicity s. Hence for every modal column obtained from
the set of s roots equal to As there will be a corresponding conjugate
complex modal column derived from the set of s roots equal to Ag.
If ks(t) = a(t) + ij3(t) and Jcs(t) = a(t) - i/3(t) are, respectively, the
modal columns appropriate to Ag and Xs, and if peiT is a complex
arbitrary constant, then the most general real linear combination of
the two constituents concerned will be expressible as

q = pe^ cos (<ot + r) a(t) - peJ11 sin (cot + r) J3(t).

I n the special case where the roots Ag and Ag are unrepeated, the
elements of oc and /? are constants, and then the last equation may be
written tr t x.

q = pevtyj cos (o)t + e^ + r)},
where {y,« eiej} = ot + ifi.

The motion in this case may be regarded as effectively a single oscil-
latory constituent having an arbitrary amplitude p and an arbitrary
epoch r. The motion will ultimately die away, or grow to an indefinitely
large amplitude, according as the real part ju, of the root Ag is negative
or positive.*

(c) Purely Imaginary Roots.'f If damping forces are present in the
system (i.e. if B 4=0), the modal column corresponding to a purely
imaginary root will as a general rule contain complex elements. The

* The general character of the roots of A(A) = 0 can be ascertained by the use of the
test functions (see § 4-22 (&)).

| The important case in which B = 0 and C is symmetrical is discussed separately
in § 9-9.
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real constituents appropriate to such a root and its conjugate imaginary
will thus be of the types considered in (6) with the simplification /i = 0.
Simple imaginary roots give rise to pure sinusoidal oscillations, while
repeated imaginary roots will in general yield oscillations whose
amplitudes grow in proportion to a polynomial in t.

The dynamical coefficients sometimes depend on one or more
variable parameters. If the values of these parameters are such that
one or more of the constituent motions of the system are simply
sinusoidal, the state of the system is said to be critical, and the para-
meters have critical values. The critical state requires that ± io) shall
be roots of A(A) = 0, so that

J7
n_1 = 0, (1)

where Tn_x is the penultimate test determinant (see § 4-22 (6)). When the
parameters are such that (1) is satisfied, they are either critical ac-
cording to the definition, or else A(A) = 0 has equal and opposite roots.
The transition from a completely stable state of a system to oscillatory
instability is always indicated by the vanishing of Tn_x. A simple
illustration of a critical parameter is the critical speed for flutter of an
aerodynamical system (see § 12-1).

9-9. Modal Columns for a Linear Conservative System,
I t is a well-known theorem* that if the dynamical equations are of

the type f(D)q^(AD* + E)q = 0, (1)

in which A and E are both symmetrical, the roots of A(A) = 0 are
either real or purely imaginary (i.e. they cannot be complex): they are
all purely imaginary if the potential energy V = \q'Eq is a positive
function.

The usual proof is as follows. Write A2 = — z and

A^z-Eu, A12z-E12, ..., Almz-Elm, 0

A21z-E2V A22z-E22, ..., A2mz-E2m, 0

ml*--®ml» Am2Z-Em2, ..., AmmZ-Emm, 0

0, 0, ..., 0, 1
(2)

Also, let Am_1(z) be the determinant obtained when the first row and
first column of Am are erased, Am_2(z) be the determinant formed when

* For historical notes see p. 183 of Ref. 31.
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the first two rows and columns of Am are erased, and so on until finally
Ao = 1: the degrees in z of these determinants are represented by the
suffices. Since the discriminants of the kinetic energy function are
all necessarily positive (see example (ii) of §8-14), the determinants
Ao, A1? ...,Am are alternately positive and negative when z = — oo,
but are all positive when z = + oo. From example (i) of § 1-17 it is seen
that when z passes through a root of any intermediate determinant
of the series, say Â  (0=H=t=m), then A _̂x and Ai+1 necessarily have
opposite signs. Now Ao has the constant value 1, while the one root of
the equation Ax = 0 is obviously real. Hence for this root A2 < 0. But
A2 > 0 when z = + oo, so that the equation A2 = 0 has two real roots
which are separated by the root of Ax = 0. Similarly, it follows that
A3 = 0 has three real roots separated by the roots of A2 = 0, and more
generally the roots of Â  = 0 are all real, and separate those of Ai+1 = 0.
Since z = — A2, it follows that the 2m roots of the original determinantal
equation are either real or purely imaginary.

If the potential energy is a positive function, the discriminants of V
are all positive. Accordingly the signs of the determinants A0(z), Ax(z),
..., Am(z) are alternately positive and negative when z = 0, so that
all the roots of Am = 0 are positive. By the same argument as before
it follows that the roots of A(A) = 0 in this case are all purely imaginary.

Since the roots of A (̂z) = 0 separate those of Ai+1(z) = 0, it is seen
that if Am(z) = 0 has s equal roots zs, then Am-1(z) has 5—1 equal roots
zs, Am_2(z) = 0 has 5 — 2 equal roots z8, and so on, until finally zs is a
simple root of Am_s+1(z) = 0. Moreover, these conclusions are true for
any other arrangement of the principal diagonal elements in (2). Now
refer to example (i) of § 1-17. If the two determinants on the left of
equation (1* 17* 1) contain respectively the factors (z — zs)

8 and (z — zs)
s~2,

and if the first two on the right each contain (z — z^)8"1, then obviously
the non-diagonal minor (there called A12) must also contain the factor
(z — Zg)8*1. This shows that if zs is an 5-fold root of Am(z) = 0, then
(z — ZgY'1 is a factor of every first minor of Am(z). It follows that if
As, and therefore also — As, are 5-fold roots of A(A) = 0, then (A2 — A2)**-1

is a factor of every first minor of A(A). The adjoint matrix F(X) ac-
cordingly contains the same factor, so that F(XS) and all the derived

(s-2)

adjoint matrices up to and including F(XS) are null. In this case also
the matrices U^t, As) are all null with the exception of /7S_1(̂ , As), which

(8-1)

reduces to the constant matrix F(AS) . Hence the following important
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theorem: When a conservative system is disturbed from equilibrium the
modal columns are (in general) all independent of t even when multiple
roots of A(A) = 0 occur.

The exception to the foregoing theorem arises when E is singular
and As = — Ag = 0, so that there are in all 2s zero roots of A (A) = 0.
In this case A2s~2 is a factor of every first minor of A(A), so that the
adjoint matrix is of the form A2s~2(?(A2). Here all the derived adjoint

(2s-2)

matrices involved, with the exception of F(X8) , are null, and the 2s
modal columns corresponding to the 2s zero roots are obtained from

(2s-2) (2s-2)
U2s_2 and U2s_l9 which reduce respectively to F( Ag) and (25 — 1) tF( As) .

(2s-2)

If ki is any one of the s linearly independent columns of F(A.S) , the
corresponding two constituent motions are (ai + bit)ki, where at and
bi are arbitrary constants. This exceptional case, in which E is singular,
will hereafter be assumed to be excluded.

When A,, is a simple root the appropriate modal column kr is given as
usual by any non-vanishing column of the adjoint matrix F(X,.).
Since the elements of this matrix are polynomials in A2, and since A2 is
real, the modal column corresponding to Ay is real, and is the same as for
the root — Ar. If there are s roots equal to As, the corresponding s modal
columns are given by the s linearly independent columns which the

(s-D

matrix F(A.S) necessarily contains. It is easy to see that, as for simple
roots, the modal columns appropriate to the set of roots As can always
be taken to be real and equal to those for the roots — As. Hence in
all cases, if the roots are + Ax, ± A2, ..., ± Am, and if k0 is the square
matrix of order m formed from the m modal columns appropriate to
Al5 A2, ..., Am, then k0 also gives the modal columns appropriate to
— A-L, — A2, ..., — A m .

EXAMPLES

(i) Boots all Distinct. Suppose

~44A2+108 -8A 2 0

-8A 2 35A2 + 54 12A2

0 12A2 28A2 + 36

Then A(A) = 16 x 27 x 81(A2 + l)(A2 + 2) (A2 + 3), so tha t the roots of
A(A) = 0, sayAx = + i , A2 = +i*j2, A3 = +iAy3,andA4 = — i, A5 = —i^2f

A6 = — i^/3, are all distinct.
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The adjoint matrices corresponding to Ax, A2, A3 are

11) = 8{1, - 8 , -12}[1, - 8 , -12] ,

= - 1 6 ( 4 , - 5 , 6 } [ 4 , - 5 , 6],

= 72(4,4,-3} [4, 4 , - 3 ] ,

so that we may choose
* - 1 4 4

- 8 - 5 4
- 1 2 6 - 3

(ii) Repeated Roots. An illustration is provided by the system
already considered in the example to § 6-6, for which

/(A) 32A2 + 48 -16A 2

-16A 2 32A2 + 48

4A2 4A2

4A2 "
4A2

11A2+12

and A(A) = 3x482(A2+l)2(A2-

If the roots of A(A) = 0 are denoted by Ax = A2 = + i, A3 = + 2i,
A4 = A5 = - i, A6 = — 2i, then

F(X2) = 0 with F(A2) = 2 x 48i 5 - 4

- 4 5

4 4

ri o 4i,
LO 1 4J

while .F(A3) = 3 x 48 x 16{1, 1, - 1} [1, 1, - 1].

Hence we may choose 5 - 4 1
- 4 5 1

4 4 - 1

(iii) Matrix E Singular. Suppose

/(A) = 3A 2 +1, 2, 3
2, 12A2 + 4, 6

3, 6, 27A2 + 9

Then A(A) = 12 x 81A4(A2 + 1) and

F(A) = 3A2 108A2 + 72,
- 1 8 ,

- 1 2 ,

- 1 8 ,
27A2+18,

- 6 ,

- 1 2
- 6

12A2 + 8
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= A2 = A3 = A4 = 0, the three matrices

= 12 " 3
- 3

1

6
3

— 4

re - 3 <n.
L3 0 -1J

For the quadruple zero root A
(1) (3)

JF(A4), .F(A4) and .F(A4) are nuU, but
(2)

= 6f 72 - 1 8 -12"
- 1 8 18 - 6
- 1 2 - 6 8.

Hence the constituent motions appropriate to the four zero roots may
be taken as (a + bt) {3, - 3, 1} and (c + dt) {6, 3, - 4}.

9* 10. The Direct Solution for a Linear Conservative System
and the Normal Coordinates. From the discussion of §9-9 it
follows that if the roots of A( A) = 0 are denoted by ±A1? ±A2, ..., ±Am>
the complete motion of the system is represented by

q(t) = Jc0M0(t)a + k0M0( — t)b, (1)

where a and b are two columns each containing m arbitrary constants
of integration, k0 is the matrix of the m modal columns appropriate to
the roots Ax, A2,..., Am, and M0(t) is the diagonal matrix

eAi' 0 . . . 0

0 eA»* ... 0

0 0 ...

If the values of the generalised coordinates and velocities at t = 0 are
assigned, and if Ao denotes the diagonal matrix of the roots Ax, A2, ...,
Am, the direct solution is easily verified to be

q(t) = \K[M0(t) + Mo( -1)] k-oiq(O) + \ka[M0{t) - Mo{ -«)] A^k^q{0).

The corresponding special form of the solution has already been
obtained in equation (6-6-4).

If new generalised coordinates Q are adopted given by

q = k0Q,

the general solution (1) reduces to

Q = M0(t)a + M0(-t)b, (2)

while the equations Aq + Eq = 0 transform to (see example to § 9-3)

(%Ako)Q + (%Eko)Q = O. (3)

From (2) it is seen that when the generalised coordinates are chosen
in this way a disturbance of the system restricted to any one of its
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coordinates Qr produces motion in that particular coordinate only;
in other words, the motions in the several degrees of freedom are un-
coupled. The coordinates Q are usually termed the normal or principal
coordinates.

Evidently, if d0 denotes an arbitrary non-singular matrix, the
system of differential equations

O (4)

(5)

will be satisfied by (2). Choosing

we then have also, by (3) and (4),

Now k'0Ak0 and Jc'0Ek0 are both symmetrical; hence by (5) and (6),
di;j — dtf and — d^A| = — d^Af, where d^ denotes the typical element
of d0. Accordingly, if the roots of A(A) = 0 are all distinct,
d^ = djir = 0, and d0 will therefore be a diagonal matrix. The normal
coordinates, which can clearly be taken in arbitrary multiples, may
in this case be chosen to be

Q = dokQ1q>

or, on application of (5), Q = k'0Aq. (7)

When A(A) = 0 has multiple roots, the matrix d0 need not be
diagonal. For instance, if Ax = A2, then d12 = d21, but these elements
do not necessarily vanish. The diagonal matrix d0 is in this case
replaced by

d n

d21

0

d12

d22

0

0 ..
0 ..

d» ..

0
. 0

0

0 0 0

More generally, if the m roots A1? A2,..., Am consist of a roots equal to
Aa, b roots equal to A6, and so on up to p roots equal to Xp, where

...+p = m, then
da, 0,

0, db,

Lo, o,
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where the typical square submatrix di is symmetrical, non-singular,
and of order i. It is easy to see that the normal coordinates can be
defined in accordance with the formula Q = k'QAq even when multiple
roots occur. For k-lq = M{f) a + M{_t)b}

and since d0 is obviously permutable with M(t), it follows that

dok^q = M(t)doa + M{-t)dQb.

Hence Q = M(t) oc + M(-t)fi,

where a and /? are columns of arbitrary constants. The coordinates Q,
defined in accordance with the formula, are thus normal.

EXAMPLES

(i) System with Boots all Distinct. Suppose the given equations to be

44
-8

0

g
35

12

0
12

28

q + 108
0

o

0
54

o

0
0

36

Then, if the modal columns are chosen as in example (i) of § 9-9,

1 4 41

- 8 - 5 4

- 1 2 6 - 3

Hence the normal coordinates may be taken as

Q = k'0Aq = 1 -

4 -

4

108

216

144

8
5

4

—

—

-12
6

-3_

432 -

135

72

44
-8

0

-4321

108

-36

- 8 0"

35 12

12 28

As a verification of (5) and (6)

0^0 = 108
216

144

"8748

0

0

-432

-135

72

0

2187

0

-432

108

-36

0 "

0

972

1
-8

-12

= d0.

4
-5

6

4
4

-3
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Similarly it is easily shown that

T8748 0 0
0 4374 0

2916

9-10

k'0Ek0 =

0 0

(ii) System with Multiple Boots. If the equations are

3 2 - 1 6
- 1 6 32

4 4

4
4

11

48
0

0

0
48

0

0
0

12

the roots of A(A) = 0 are Ax = A2 = + i, A3 = + 2i, A4 •
A6 = — 2i. As in example (ii) of § 9-9

jfco= I" 5 - 4 - r

- 4 5 - 1

4 4 1

and the normal coordinates may be taken as

: A5 = — i, and

In the present case

while ¥nEka =

5 -4

-4 5

-1 -1

240 -

-192

-12 -

" 2160

-1728

0

2160 -

1728

0

4
4

1

192

240

-12

32
-16

4

48"

48

3_

-1728 0"

2160 0

1728

2160

0

0 27

0 "

0

108

-16
32

4

=

= —

4
4

11

A 2/7

(iii) The Matrix E~XA. Since k0M0(t) is a solution of Aq + Eq •
it follows that Ako Ag 4. Ek(> = 0 .

When E is non-singular this may be written

0,

so that the canonical form of E~XA is always diagonal, even when
repeated roots occur. Hence E~XA has the modal matrix k0 and the
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latent roots — Af, — A|, ..., — A^. This result will be used in Chapter x
in connection with the solution by iterative methods of the dynamical
equations in the form E~xAq + q = 0. The matrix E~XA is there re-
ferred to as the dynamical matrix.

9-11. Orthogonal Properties of the Modal Columns and
Rayleigh's Principle for Conservative Systems. If A,, and Xs are
any two different roots of A(A) = 0, then, since kre^ and kse^1 are
solutions of f(D) q = (AD2 + E)q = 0,it follows that

K = o. (2)
Hence also KfiK) K = °> (3)

Kf(Xs)ks = 0. (4)
But, since in the case of a conservative system /(Ar) and /(As) are
symmetrical, (3) may be transposed to give

Kf(K)K = o. (5)
On subtraction of (4) from (5) we have the result

Hence if A,.* ±A8, k'rAks = 0, (6)

so that also k'rEk8 = 0. (7)

Equations (6) and (7) express the orthogonal properties of the modal
columns.*

On premultiplying equation (1) by k'r we have

\*k'rAkr = -k'rEkr. (8)

Equation (8) can be regarded as defining Ay as a function of the ele-
ments kir of the modal column kr. On differentiation of (8) with respect
to each of the elements kir in succession we derive the set of equations

A, £ p \K Akr = - A*Akr - Ekr = -/(A,) kr = 0.
\o/cir)

Since k'rAkr is an essentially positive function, it follows that

= 0. (9)

The value of Ay as defined by equation (8) is accordingly stationary for
small variations of the modal columns from their true values. This

* See § 92 of Ref. 29.
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constitutes Rayleigh's principle,* and by its aid very accurate values
of frequencies of oscillatory constituents can be obtained from rather
rough approximations to the corresponding modal column. If in (8)
we regard kr as defining an approximate mode, the frequency nr will
be given by the formula

* = k'rEkT\k'rAkr.

EXAMPLES

(i) Orthogonal Properties of the Modal Columns, Referring to the
system considered in example (ii) of § 9-9, we have

32
- 1 6

4

- 1 6
32

4

4
4

11

; E = 48
0

0

0
48

0

0
0

12

The two modal columns appropriate to the double roots + i are here
kx = {5, —4, 4} and k2 = { — 4, 5, 4}, while the column appropriate to
the simple roots ± 2i is ks = {1, 1, — 1}.

Applying equations (6) and (7) we have

k'zAk2 = [1,1,-1] 32 -16
-16

4
1, -1 ]

32 4
4 11
0'
0
1

-4"
5
4

= [12,12,-3] - 4
5
4

= 0,

- 4
5
4

= 12[4, 4, - 1 ] -4"
5
4

= 0.

Similarly, k'zAkx = [12, 12, - 3 ] {5, - 4 , 4} = 0,

k'zEkx = 12[4, 4, -1]{5, - 4 , 4} = 0.

On the other hand

k'u r 4, 5, 4] 32

- 1 6

4

- 1 6

32

4

4"

4

11

" 5"
- 4

4

= [-4, 5, 4] " 240
-192

48_

4=0.

(ii) A Generalisation of Rayleigh's Principle for Dissipative Systems
of Special Type. In the case df dissipative systems the equations of
free motion have the form

* For a fuller discussion of Rayleigh's principle see Ref. 32.
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If Ar is a simple root of A(A) = 0, and if kr is the corresponding modal
column, then f{Xr)kr = 0. On premultiplication of this equation by
K the result is \\kf

rAkr + \VrEkr + k'r Ckr = 0.

As for equation (8) we may now differentiate with respect to the
elements kir of kr in succession. When A, B, C are symmetrical the
equations so obtained can be written

v = o.

Hence in this special case \i^r-\ = 0.

(iii) Relations between Modal Columns for Dissipative Systems. If
kr, ks denote two modal columns distinct from kt, then by appropriate
premultiplication of the equation/(A^) kt = 0 we have

3kt + k'rCkt = 0, (11)

3kt + k'8Ckt = 0. (12)

Elimination of Â  from (11) and (12) yields a relation between the modal
columns kr, ks, kt. Two similar relations can be obtained by interchange.

If r and t are interchanged in (11), then

Xfk'tAkr + Ark'tBkr + k'tCkr = 0, (13)

and in the special case where A, B, C are all symmetrical the coeffi-
cients in (11) and (13) will be identical. Thus Ar and Â  will be the roots
of the quadratic equation

A. rC s \ n I J\ 7/« J<7/» I J/> CJJc —— C\ (14)

As a numerical illustration suppose

/(A) = T2 0lA2+ri 21A+T1 01,
[o lj [2 2j [o 3J

with A(A) = (A2+1) (2A + 3) (A+1)

and ^(A) = [A2 + 2A + 3, - 2A 1.
[ -2A, 2A2 + A+1J

If Ax = - 1 , A2 = - 1 , A3 = + i, A4 = - i, then

Hence, using kx and k2, we have

k[Ak2 = 10, k[Bk2 = 25, k[Ck2 = 15.

Equation (14) is accordingly 10A2 + 25A+ 15 = 0, the roots of which
are A = — 1 and A = — f.
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9-12. Forced Oscillations of Aerodynamical Systems. The
general theory of the forced oscillations of aerodynamical systems is
rather complicated, and only a brief discussion can be attempted
here. In recent years the subject has assumed importance in relation
to such questions as the mass-balance of control surfaces of aeroplanes
and the prediction of the critical speeds for wing flutter.f

A dynamical system can be forced either by the application of
known small periodic forces or by the imposition of known small
periodic movements at one or more given points of the system. The
method of construction of the equations of motion will be sufficiently
illustrated if we assume that a simply sinusoidal force or movement is
imposed at a single point Q and in the direction of the fixed reference
axis Ox±. Let the Cartesian coordinates of Q, referred to the fixed
axes, be xv x2, xs at any instant of the motion, and be xf, x%, x%
when the system is in its mean position. Then if the generalised co-
ordinates are measured from the mean position, the first geometrical
equation (see §8-9) yields, to the first order of small quantities, a
relation of the type

Xl-X* = Vl$l + V2<l2+ ~-+Vm<lm = V'$>

where the coefficients 7ji are constants dependent on the position of
Q in the system, and TJ, q denote column matrices.

Firstly, assume that a known force Fx sin (ot acts at Q in the direction
Oxl9 and that no constraints are applied at Q in the directions Ox2

and Oxz. Then the corresponding set of generalised forces is
P = F-^TJ s in o)t,

and the equations of motion are therefore
f(D)q = (AD2 + BD+C)q = psinG)t, (1)

where p = F^.
Next suppose that Q is given a known motion d^incot in the

direction Oxv and that as before no constraints are imposed in the
directions Ox2 and Oxs. Then the generalised forces corresponding to
the unknown reaction X± at Q are given by P = X^ , while on account
of the imposed motion at Q the generalised coordinates will be con-
nected by the condition ^ = diSino)t (2)

In this case the differential equations of motion are represented by
(3)

f See, for example, Refs. 33, 34, 35. The discussion given in this section is based on
Ref. 36.
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On elimination of the unknown reaction X± we obtain m — 1 differential
equations connecting the m generalised coordinates q. These, taken in
conjunction with (2), suffice to determine the motion. The elimination
can be effected conveniently as follows. Write

0,

0,
1,
0,

0,

1,

0

0

L o, o, o, ..., l .
Then (2) is readily seen to be contained in the relation

idi • *g = u{—sin.(i)t,<7»,ffo,...,(

Substituting this expression for q in (3), and premultiplying the
equation throughout by u', we obtain

\ = {XlVl,0, ...,0}.
W

The last m — 1 of the scalar differential equations in (4) are in-
dependent of Xl9 and they involve all the generalised coordinates with
the exception of qv They can evidently be represented by a matrix
equation similar in form to (1), except that in general there are present
forcing terms in quadrature with the imposed sinusoidal displacement
o£Q.

From the preceding discussion it will be clear that both of the cases
considered will be covered if we assume the equations of motion to be
of the type (AD* + BD + C)q = p sin cot+ p cos (ot, (5)
where p and p are columns of assigned constants.

The complete motion which follows any given initial conditions may
be regarded as the superposition of a free motion and of a forced
motion. If the real part of any root of A(A) = 0 is positive, the free
motion will in time-completely mask the forced motion. On the
other hand, if the real parts of all the roots are negative, the forced
motion will ultimately predominate. In the discussion which follows
only the forced motion is considered. For simplicity the roots of
A(A) = 0 are assumed to be all distinct.

Let the forced motion in the coordinate qs be

qs = Rssi( )
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and write ^^{R^e^i} with If— {ffje"^}, where i denotes V— 1. Then,
on substituting this trial solution in (5), we see that the constants cr
must be such that fC \ — 4- * l

f(-ico)cr = p-ip.J ( 6 )

Provided ± i(o are not roots of A(A) = 0, the 2m scalar equations con-
tained in (6) give the values of cr and or uniquely. On solution of these
equations the forced amplitude corresponding to qs is given by

R8 = mod(E8/A(i(o)), (7)

where E8 is the determinant obtained when the 5th column of A(io))
is replaced by p + ip. To obtain the expression for the forced amplitude
in an explicit form, suppose the expanded form of the determinant
A(A) to be

where n = 2m. Then

where Q==G)2, and the coefficients are conveniently expressible as

A = [PO>P2>PA\{P*>P2>PO}-[PI>PS\{P3>PI}>

and so on. In the same way, if Es denotes the conjugate of E8, we can

ESE8 = 6 0 n -2

where the coefficients e are real. Hence

n_2

P K ]

An alternative expression can be obtained if the roots A1? A2,..., Xn of
A(A) = 0 are known. For then

and on resolution into partial fractions, this gives
1 n a

where ccr - n_2n(A?-A?)
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Since the expressions on the right of equations (8) and (9) are identical,
and since the numerator in (8) is of degree n — 2 in co2 while the denomin-
ator is of degree n, it follows that 2 <zr = 0.

If the forcing frequency is regarded as a variable parameter, there
will usually be certain values of this frequency for which the forced
amplitude of the motion in any given coordinate q8 is stationary.
The equation which gives these frequencies can be obtained by differ-

entiation of (8) or (9) with respect to o) and use of the condition -^ — 0.

Hence n a^

This yields, apart from the trivial solutions co = 0 and <o = oo,

£ = 0. (10)
r = l j

Since 2 otr = 0, equation (10) is in general of degree 4m — 3 in co2: only
real positive roots co2 of this equation yield real values of the frequency.
The maxima and the minima of forced amplitude necessarily occur in
alternation, and since (o = oo corresponds to a minimum (Rs = 0), it
readily follows that there can be at most 2m — 1 maxima for a system
having m degrees of freedom.

If two conjugate roots of A(A) = 0, say /ir ± io)r, have their real
parts /ir small, it is obvious from (9) that a pronounced peak value of
Rs will be obtained for some value of o) close to (or. If the roots are
actually critical, so that fir = 0, Rs becomes infinitely great for OJ = wr#

This is the familiar phenomenon of resonance. For this condition the
assumed form of solution fails, and in fact the forced motion is no
longer simply sinusoidal but is constructed of constituents of the type
t cos a)t (see §5-11 (a)). The amplitude of oscillation then grows without
limit.

E X A M P L E

Forced Oscillations of a Model Aeroplane Wing. Consider the forced
flexure-torsion oscillations of a cantilever wing. The laws of bending
and twisting are assumed to be invariable for the range of airspeeds
to be considered, and the wing is accordingly treated as semi-rigid
(see §8-12). Fig. 9-12-1 is a diagram of the system. The generalised
coordinates qv q2 are chosen to be respectively the downward linear
displacements at the points L, T of the wing tip which lie on the
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leading and trailing edges. It is supposed that the wing is given forced
sinusoidal oscillations by means of an oscillator K connected through
a spring of stiffness cr0 to the point L.

If the imposed motion at Q is d sin (ot, the dynamical equations in
the present simple case are readily shown to have the form

(AD* + BD + C){qvq2} = d<r0sma)t{l,0}9

and the amplitudes Rl9 R2 of the motions in ql9 q2 are given respectively

and

These formulae are applied in Ref. 36 to a light aeroplane wing of
span 9 feet and chord 3 feet, for which the numerical data are as
follows. The spring stiffness er0 is chosen to be 4 pounds per foot, and
the terms independent of the airspeed V in the damping coefficients
By represent an allowance for elastic damping.

Dynamical Coefficients for Light Aeroplane Wing

Coefficient

* u
Ou
-^12

Ou

Value x 92

5-443
0-4466 V + 29

- 0-633 F2 + 2502-7
2-907

0-8076F-9
0-633 F2-614-7

Coefficient

Ai
B21
On
^ 2 2

^ 2 2

^ 2 2

Value x 92

2-907
- 0 - 3 4 5 6 F - 9

- 0-144 F2 -614-7
4-743

0-8064F + 9
0-144 F2 +1487-7

The results are given in Fig. 9-12«2, which shows the influence of
forcing frequency v = W/2TT and airspeed V on R2. The critical speed
for flutter of the wing works out at 67-8 feet per second, and the
corresponding critical frequency is 3-2 cycles per second. It is seen
that R2 tends to become infinite for this frequency as the critical speed
is approached.



CHAPTER X

ITERATIVE NUMERICAL SOLUTIONS OF
LINEAR DYNAMICAL PROBLEMS

10 • 1. Introductory. In the present Chapter the iterative methods
described in §§4-17 and 4-18 will be applied to obtain approximate
solutions of problems relating to the small oscillations of dynamical
systems. Iterative methods are particularly advantageous when the
number of degrees of freedom is large, since the solution is obtained
without expansion of the Lagrangian determinant. Moreover, they
often lend themselves well to the approximate treatment of continuous
systems such as tapered beams.

Conservative systems are considered in Part I, and the extension
to dissipative systems is briefly dealt with in Part II .

P A R T I. SYSTEMS WITH D A M P I N G F O R C E S A B S E N T

10*2. Remarks on the Underlying Theory. With a conservative
system the Lagrangian equations of free motion have the form (see

§9'3)

in which both the inertia matrix A and the stiffness matrix E are
symmetrical. It will be assumed that both A and E are non-singular,
as is usually the case. In §9-9 it has been shown that the typical
constituent motion may be taken as

and that A2 and all the elements of the modal column kr are real.
Moreover, (A\* + E)Jcr = 0. (1)

For the application of the iterative method it is convenient to write
— A2 = z = TZJ"1, and to express (1) in the alternative forms

(mrI-U)Jcr = 0, (2)
(zrI-U-i)Jcr = O, (3)

where TJ = E~XA. The matrix U will be spoken of as the dynamical
matrix.* From (2) and (3) it follows that wr is a latent root of U9 and
that zr is a latent root of J7"1.

* Note that this matrix is, in general, not symmetrical.
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Equation (2) could be treated in the usual way by the direct solution
of the characteristic equation of U. However, the iterative method is
often preferable, more especially when the constituents are known
to be all oscillatory and only the fundamental mode (which corresponds
to the dominant root wr) is required. If the mode of highest frequency
is required, the iterative method should be applied to equation (3). The
details of the process of solution are amply explained in the examples*
given later, but some preliminary general remarks may be useful.

(a) To construct the dynamical matrix U it is often advantageous
to form the flexibility matrix O = E~x directly rather than to derive
it by inversion of the stiffness matrix. The displacements q due to a
set of generalised static loads W are given by

Hence to find the element O .̂ it is only necessary to obtain the value of
qi when Wj = 1 and all the remaining generalised loads are zero. This
direct method for the construction of O is particularly valuable in
problems on the vibrations of beams (see §§ 10-4, 10-6).

(6) When merely the fundamental frequency and mode are required,
the solution is directly obtained by repeated premultiplications of an
arbitrary column by U. If the frequencies and modes in the overtones
are required, it is necessary to evaluate modified matrices by the
methods of § 4-18, and to use these matrices for the iterations instead
of U. The required row Kr can be found very simply from the corre-
sponding column Jcr when the system is conservative. For equation (2)
can be written <l>Akr = inrJcr9 which yields on premultiplication by A
and transposition

Hence Kr may be chosen to be WrA. This conclusion accords with the
orthogonal properties of the modes discussed in § 9-11.

(c) The work of iteration will be considerably shortened if by ex-
perience or intuition an initial column can be chosen which is not very
different from the true mode.

(d) The case of equal roots, which is somewhat unusual in dynamics,
requires special consideration. The form of a high power of a general
matrix u which possesses a dominant latent root of multiplicity s has
been given in §4-15, and it is easy to see how such a root may be

* The examples in §§ 10-3, 10-4 and 10-6 are taken from Ref. 10, and that in § 10*11
from Ref. 11.
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obtained from umx0, where x0 is arbitrary. However, in the case of the
dynamical matrix U of a conservative system, there is a considerable
simplification. It can readily be deduced from the results of § 9-9 that
if ws is a latent root of U of multiplicity s, the derived adjoint matrices

(s-2)

of wsl— U up to F(ms) all vanish. Hence the only term arising from
the multiple root ws in Sylvester's expansion of Um is proportional

(s-l)

to wfF{ms). Accordingly, the usual iterative method gives ws as
though it were a simple root, and the s modes are proportional to the s

(«-D
linearly independent columns of F(xus). If s different arbitrary columns
are repeatedly premultiplied by U, s different possible modes will, in
general, be obtained. It may also be noted that the canonical form of
U is diagonal (see example (iii), § 9-10).

(c) When an accurate value of the fundamental frequency is re-
quired, but no great interest attaches to the mode, an application of
Rayleigh's principle (see (9-11-9)) may be found advantageous. The
principle states that small changes in the mode do not affect the
frequency. Hence an approximate mode, given for instance by an
uncompleted application of the iterative method, can be used to deduce
a relatively accurate frequency. When the equations of motion are
in the form (1), equation (9-11-10) may be applied. On the other
hand, if the iterative method is being
used, a convenient modification is ob-
tained by premultiplication of (2) by k'r.
This yields

mr = KUKIKK (4)
An illustration is given in § 10-4.

//////////////y//////

10-3. Example No. 1: Oscillations
of a Triple Pendulum. To provide a
simple example we shall first consider
the oscillations of a triple pendulum
under gravity in a vertical plane (see
Fig. 10-3-1). The three coordinates qv q2,
q3 will be taken to be the small horizontal
displacements of the masses mv ra2, m3, respectively, from the equi-
librium position. Let unit force be applied horizontally to mx\ then
the three masses will each be displaced a distance a = I1/g(m1 + m2 + ms),
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so that {a, a, a} = <I>{1, 0,0} = {<3>1V O21,031}. When unit force is applied
horizontally to m2, m1 will again be displaced a distance a, but m2 and
m3 will each move a distance a + 6, where b =
manner the matrix <J> is readily found to be

<D = a, a, a
a, a + b, a + b
a, a + b, a + b + c_

where c = l
If TT denotes a set of horizontal forces applied to the masses, the

displacements are given by q = OTF. Suppose now that W represents
the inertia forces. Then

As.

a,
a,

la,

a,
a + b,

a
a + b

a + b + c.

m2a,
(a + b) ?2

ms(a + b + c)_

The dynamical equations have here been constructed directly in the
form q = — Uq.

When the system is oscillating in a single mode, we may take q
proportional to kre

x^, and then

or (mrI—U)kr = 0. (1)

As a numerical example suppose that m1 = m2 — m3 = m and
l^ = Z2 = £3 = I. Then j

[2 2 21
2 5 5
2 5 11

If the scalar factor is absorbed into w, so that now w is taken to
mean —SgjXH, equation (1) becomes

wh = uk,

where u is the numerical part of U. This last equation is readily solved
by the method of iteration. The dominant value of w and the associated
column lc, which correspond to the fundamental oscillation, are quickly
obtained when an arbitrary column, say {1,1,1}, is repeatedly pre-
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multiplied by u. Thus
^{1,1,1} = {6,12,18} = 18{0-3,0-6,1},

^{0-3,0-6,1} = {4,9,15} = 15(0-26,0-6,1},
^(0-26,0-6,1} = 14-53(0-25688,0-58716,1},

and after nine steps in all,

^{0-254885,0-584225,1} = 14-4309(0-254885,0-584225,1}.

10-3

The fundamental frequency is given by

approximation to its value is thus

and a close

j_ r
2n V 14-43091 = °-10262V?-

Moreover, the corresponding modal column kx is proportional to
(0-254885,0-584225,1}. It will be observed that at each step in the
iteration a homologous element in the column is for convenience
reduced to unity.

If the overtones are required, the methods of § 4-18 may be applied.
I t is necessary in the first place to find the row K19 where tz^/q = KXU.
Since A is here a scalar matrix, we deduce at once that (see § 10-2(6))

Kl = k[ = [0-254885,0-584225,1].

Now in any oscillation from which the fundamental is absent K± q = 0.
Hence we may write

0-254885^ + 0-584225^ + ^3 = 0,
or qx = - 2-29211^2 -3-92334g3. (2)
Accordingly, when the fundamental is absent

"0 -2-29211 -3-92334] r^"
0 1 0 q2

0 0 1 JUd
Substitution in the right-hand side of the equation mq = uq yields
ijjq = vq, where

v = 2
5
5

2"
5

11

0 -2-29211 -3-92334"
1
0

0
1

0, -2-58422, -5-84668'
0, 0-41578, -2-84668

_0, 0-41578, 3-15332
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This matrix is, of course, identical with that given by the formula

(4-18-3) with r = 1, namely v = u {un}Kv
K l i

We now proceed by the iterative method, starting with an arbitrary
column, say {1,1,1}. In the process of approximation it is evidently
unnecessary to compute the leading element of any column, since
this is always multiplied by a cipher in the succeeding step. In this
way we find

v{l, 1,1} = {—, -2-4309,3-5691} = 3-5691{—, -0-68110,1},

v{—, -0-68110,1} = {—, -3-1299,2-8701}

= 2-8701{—, -1-09049,1},

and after fifteen approximations the column repeats itself, the scalar
factor being 2-6152. A computation of the leading element then gives

v{- 0-95670, -1-29429,1} = 2-6152{-0-95670, -1-29429,1}.

Hence in the first overtone the mode is {-0-95670, - 1-29429,1}, and

the frequency is = 0-24107 / ? .

To determine the second overtone we note that the condition for
absence of the first overtone is Jc'2Aq = 0, or

[-0-95670, - 1-29429, l]q = 0,

whence qx = - l-35287g2+ l-04526g3. (3)

Elimination of qx between (2) and (3) yields

0 = 0-93924^2+ 4-96860g3,

or* q2 = -5-2900g3.

Hence for a motion in which the fundamental and the first overtone
are both absent we may write

1,

o,
o,

o,
o, -
o,

0
-5-2900

1

* This result could also have been obtained by repeated postmultiplication of an
arbitrary row by v, which yields [0,1, 5-2899] v = 2-6152[0,1, 5-2899]: see also footnote
to § 4-18.
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and making this substitution on the right-hand side of the equation
mq = vqf we obtain mq = wq, where

w = o,
o,
o,
o,
o,
o,

-2-
0-

0-

o,
o,
o,

58422, -5-
41578, -2-

41578, 3-

7-8238"

-5-0461

0-9539

84668]
84668

15332J

1,

o,
0, 0
0, -5-2900
0, 1 .

The iterative process here yields, in one step, the result

w{8-2019, -5-2900, 1} = 0-9539(8-2019, -5-2900, 1}.

The mode is thus proportional to {8-2019,-5-2900,1} and the

frequency is found to be 0-39916 \%.
N I

The second overtone could alternatively have been deduced directly
from the inverse of the matrix u. I t is readily found that

5 - 2 01
- 2 3 - 1

0 - 1 1

and the iterative process when applied to this matrix yields the result

^~1{8-20180, -5-28994,1} = 1-048323(8-20180, -5-28994,1}.

The mode agrees well with that found previously, while the frequency
works out as

2nN
6 x 1-048323?

I
= 0-399157 /f.

10-4. Example No. 2: Torsional Oscillations of a Uniform
Cantilever. An illustration will next be given of the use of the method
in relation to continuous systems. As an approximation the given
system is replaced by a finite system of rigid or semi-rigid* units,
suitably interconnected. In order that this finite system may reproduce
closely the behaviour of the continuous system, the number of such
units must usually be large.

Suppose the given uniform cantilever to be divided into ten equal
sections. These sections are assumed to be rigid, and to be inter-
connected by torsion springs, the stiffnesses of which are so chosen that

* For definition of "semi-rigid" systems see § 8*12.
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the torsional stiffness for the complete finite system measured at the
middle of each section agrees with that for the continuous beam at the
corresponding position. The coordinates q are taken to be the angular
displacements of the segments from the equilibrium positions. Let s
be the span of the beam, G the torsional stiffness per unit length and P
the polar moment of inertia for unit length.

The flexibility matrix is easily found to be

"0-05 0-05 0-05 0-05 0-05 0-05 0-05 0-05 0-05 0-05'
0-05 0-15 0-15 0-15 0-15 0-15 0-15 0-15 0-15 0-15
0-05 0-15 0-25 0-25 0-25 0-25 0-25 0-25 0-25 0-25
0-05 0-15 0-25 0-35 0-35 0-35 0-35 0-35 0-35 0-35
0-05 0-15 0-25 0-35 0-45 0-45 0-45 0-45 0-45 0-45
0-05 0-15 0-25 0-35 0-45 0-55 0-55 0-55 0-55 0-55
0-05 0-15 0-25 0-35 0-45 0-55 0-65 0-65 0-65 0-65
0-05 0-15 0-25 0-35 0-45 0-55 0-65 0-75 0-75 0-75
0-05 0-15 0-25 0-35 0-45 0-55 0-65 0-75 0-85 0-85

.0-05 0-15 0-25 0-35 0-45 0-55 0-65 0-75 0-85 0-95.

and the inertia matrix is evidently 0-lsP times the unit matrix 710.

The dynamical matrix U is thus simply the numerical matrix u = I — IO

multiplied by the scalar 0-ls2P/C. Hence the iterative process, when
applied to the matrix u, will yield the dominant value of

w = - 10C/s2A2P.

To illustrate the convergence, the initial mode chosen in Table 10-4-1
differs widely from the true fundamental mode. For the purpose of
comparison, the exact solution for the continuous beam is tabulated
beside the solution obtained for the segmented beam.

Rayleigh's principle will next be applied to determine the frequency
from an approximate mode. Assume the third column of Table 10-4-1
to be the approximate mode kr\ then the fourth column is UJcr. Hence

lc'r Ukr = (0-0752 x 0-3139) + (0-2241 x 0-9342) + ... + (1-0 x 4-0100),

and Jc'rkr = 0-07522 + 0-22412+... + 1-02.

Accordingly
wr = k'rUJcrIJc'rkr = 19-8630/4-8916 = 4-0606.

This value for wr is identical with that found in the eighth column, and
is very accurate for the segmented beam.
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Table 10-4-1

Fundamental Torsional Oscillation of a Uniform Cantilever

Initial
column

0-05
015
0-25
0-35
0-45
0-55
0-65
0-75
0-85
0-95

w

0-25
0-745
1-225
1-68
210
2-475
2-795
305
3-23
3-325

3-325
0-95

1

00752
0-2241
0-3684
0-5053
0-6316
0-7444
0-8406
0-9173
0-9714
10

-3 -50

Iteration number

2

0-3139
0-9342
1-5321
2-0932
2-6037
30511
3-4240
3-7129
3-9100
4-0100

00783
0-2330
0-3821
0-5220
0-6493
0-7609
0-8539
0-9259
0-9751
10

4010

3

0-3190
0-9492
1-5562
21249
2-6414
30930
3-4685
3-7586
3-9561
40561

0-0786
0-2340
0-3837
0-5239
0-6512
0-7626
0-8551
0-9267
0-9753
10

4056

4

0-3196
0-9508
1-5587
21281
2-6452
30972
3-4729
3-7631
3-9606
40606

0-0787
0-2342
0-3839
0-5241
0-6514
0-7627
0-8553
0-9267
0-9754
10

4061

Exact
solution
for con-
tinuous
beam

0-0787
0-2342
0-3839
0-5241
0-6515
0-7628
0-8553
0-9267
0-9754
1 0

4053

10-5. Example No. 3: Torsional Oscillations of a Multi-
Cylinder Engine. In this example a multi-cylinder engine is supposed
to be coupled to an airscrew of very great inertia. The rate of revolution
of the airscrew is assumed constant and the system can therefore be
treated as though the airscrew were fixed. The problem is now very
similar to that dealt with in § 10-4 except that the stiffnesses and
inertias of the segments may be variable along the shaft.

Je

\\\\\\\\\\\
ct

J\

Cz

Jz

c3

Jz

c* cs

Fig. 10-5-1

Let the moments of inertia of the rotating masses, augmented by an
allowance for the reciprocating masses,* be Jl9 J2, ...,«/n, and let the
stiffnesses of the sections of the crankshaft be Cv C2,..., Cn, as shown in
Fig. 10-5-1 for the case n — 6. The n coordinates q are again chosen to
be the angular displacements from the equilibrium positions. Suppose
unit torque to be applied at J±; then qx = q2 =... = qn = l/C^ =/1 ?

say. If unit torque is applied at J2 the displacements are q± = fx and

* This allowance corresponds to half of the reciprocating mass supposed situated at the
centre of the crankpin.
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find that

O =

which gives
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qn = fi +/2, where /2 = 1/C2. Proceeding in this way we

Jv fv fv

fv A+U A+U
A

A+h

.A. A+U A+A+U -> A+A+-+L.

JnA

Ufx+ft),

As a numerical example assume » = 6; Jx = J2 = . . . = J6 = J; and
C2 = C3 =. . . = C6 = C, with Cx = 0-5C Then

U = = Q<U, say.
J 2 2 2 2 2 2"
C 2 3 3 3 3 3

2 3 4 4 4 4
2 3 4 5 5 5
2 3 4 5 6 6
2 3 4 5 6 7

Table 10-5-1

Fundamental Torsional Oscillation of a Six-Cylinder Engine

Initial
column

0
0
0
0
0
1

Iteration number

1

2
3
4
5
6
7

0-29
0-43
0-57
0-71
0-86
10

7-72
11-29
14-43
1700
18-86
19-86

I

0-389
0-568
0-727
0-856
0-950
10

3

8-980
13081
16-614
19-420
21-370
22-370

0-4014
0-5848
0-7427
0-8681
0-9553
1 0

4

91046
13-2555
16-8216
19-6450
21-6003
22-6003

0-40285
0-58652
0-74431
0-86924
0-95575
10

Iteration number

5

9-11734
13-27316
16-84246
19-66745
21-62320
22-62320

0-40301
0-58671
0-74448
0-86935
0-95580
10

6

911870
13-27504
16-84467
19-66982
21-62562
22-62562

0-40303
0-58673
0-74450
0-86936
0-95580
10

7

911884
13-27523
16-84489
19-67005
21-62585
22-62585

0-40303
0-58673
0-74450
0-86936
0-95580
1 0
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G
Hence if w = — Y5~T ^ e equation to be solved is vjq = uq. The com-

A J
putations in the iterative process, with {0,0,0,0,0,1} chosen as the
initial column, are summarised in Table 10-5-1.

It will be seen that seven iterations are sufficient to determine the
mode to five significant figures, and the value of w is then 22-626.

In a treatment of the same problem by Carter* an equation equi-
valent to the characteristic equation of u is given with certain terms
kept general. With the data chosen for the present example his
equation can be written

w* - 27VJ5 + 105T?74 - 140TZJ3 + 81TU2 - 21m + 2 = 0,

and it can be verified that the dominant root is the value of w just
computed by the iterative process.

10-6. Example No. 4: Flexural Oscillations of a Tapered
Beam. We shall next find the fundamental mode and frequency of
flexural oscillation of a cantilever beam which closely resembles an
untwisted airscrew blade. The beam chosen is such that the differential
equation governing the flexural oscillations has a known exact solu-
tion, which will be compared later with the solution given by the
iterative method. The symbols to be used are as follows:

A = sectional area at a current point,
B = flexural rigidity at a current point,
a = constant density of the material,
s = span of the beam,

r/s = distance of a current point from the root,
q = amplitude of oscillation,

Ao, Bo = values of A, B at root.
The beam is specified by the equations

A=AO(1-V),
(1 - T?)2 (184 + 2589? + 222T/2 + 767?3-757/4)

0 184(1 + 159/)
The displacement in the true fundamental mode is proportional to

and the corresponding frequency is given by

- A 2 = 13-6956|

• Ref. 37.
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For the iterative treatment the beam is supposed to be divided into
ten segments of equal length. Each segment is replaced by a particle
of mass equal to that of the segment and situated near the appropriate
centroid, the position being chosen to provide round numbers for the
fraction of the span, namely 0-05, 0-15, 0-25, 0-35, 0-45, 0-55, 0-65, 0-75,
0-84, 0-93. The particles are assumed to be interconnected by springs
in such a manner that their displacements under a system of static
loads are identical with the displacements of the continuous beam at
the corresponding positions under the same conditions of loading.
Since the flexibility matrix is symmetrical, it is sufficient to consider
the case where the load is external to the point at which the displace-
ment is measured. Let unit load be applied at a point L distant STJL

from the root; then the bending moment at a current point P distant
S7) from the root (where TJ < TJL) is S(T/L — TJ). The curvature at P is there-
fore s(i)L — 7i)/B. The bending of an element of length sdrj at P causes
a rotation of the part of the beam external to P of amount s\r)L — 7))d7]IB,
and the resulting displacement of a point D distant srjD from the root
is sz{r)L — 7i) {yB — ri)d7ilB. The total displacement at D due to the unit
load at L is thus rVl)

Jo L D

where 7I<TJD<TJL. This integral is computed with the aid of Simpson's
rule to give the flexibility coefficients.

The mass of any segment is given at once by crAsdrj taken over the

segment, and the inertia matrix consists simply of the diagonal matrix
of the masses. The dynamical matrix is finally given by

s*aAn

where
"0-0048
0-0200
0-0351
00494
00646
0-0798
0-0950
01102
01235
_01368

u =
u is the numerical matrix
00179
0-1539
0-3281
0-5032
0-6774
0-8509
1-0260
1-2002
1-3574
1-5139

0-0278
0-2895
0-8018
1-3725
1-9440
2-5148
30855
3-6570
41700
4-6838

00338
0-3848
11895
2-3550
3-5990
4-8431
6-0872
7-3307
8-4500
9-5700

00374
0-4383
1-4256
30453
51304
7-3172
9-5029
11-6902
13-6570
15-6250

u -

0-0378
0-4504
1-5089
3-3530
5-9868
91962
12-5311
15-8666
18-8680
21-8691

'9

0-0350
0-4224
1-4399
3-2778
60473
9-7464
141421
18-6956
22-7941
26-8919

0-0290
0-3530
1-2190
2-8195
5-3138
8-8148
13-3540
18-7320
23-7555
28-7782

00195
0-2396
0-8340
1-9500
3-7247
6-2893
9-7689
14-2533
190581
24-0587

0-0072-
0-0890
0-3122
0-7361
1-4204
2-4299
3-8417
5-7557
8-0196
10-8837,

If w = — 10zB0ls*crA0 A2, the equation for solution is wq = uq, in which
q here represents the column of the displacements of the ten particles.
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The solution by iteration is shown in Table 10-6-1, where the
arbitrary initial mode is chosen to be parabolic. Since the amplitudes
near the tip are liable to rather larger errors than elsewhere for highly
tapered beams, the amplitude at 0-75 of the span is chosen as the
standard of reference, and is reduced to unity at each step. The funda-
mental mode and the corresponding value of xu are determined in five
steps, and compare well with the exact solution for the continuous
beam.

Table 10-6-1
Fundamental Flexural Oscillation of a Tapered Beam

005
0-15
0-25
0-35
0-45
0-55
0-65
0-75
0-84
0-93

Initial
column

0-004
0040
0111
0-217
0-360
0-537
0-75i
10000
1-2544
1-5376

]

01358
1-5916
5-5129
12-4446
22-8059
36-7092
540074
74-2962
94-5355
115-9423

Iteration number

L

000183
002143
007420
0-16749
0-30696
0-49410
0-72692
1-00000
1-27243
1-56055

74-296

<

0-1288
1-5502
5-2631
11-9308
21-9603
35-5004
52-4388
72-3938
92-3589
113-5088

I

0-00177
002142
0-07271
016481
0-30325
0-49037
0-72436
1-00000
1-27578
1-56794

72-394

3

01284
1-5458
5-2493
11-9025
21-9144
35-4370
52-3618
72-3097
92-2751
113-4305

000177
002138
0-07260
016460
0-30307
0-49007
0-72413
1-00000
1-27610
1-56868

72-310

IterationL number

4

01284
1-5455
5-2483
11-9004
21-9110
35-4325
52-3565
72-3043
92-2702
113-4266

000177
002138
0-07259
016459
0-30304
0-49005
0-72412
1-00000
1-27615
1-56875

72-304

5

01284
1-5455
5-2482
11-9003
21-9109
35-4324
52-3564
72-3044
92-2705
113-4272

0-00177
002138
0-07259
016459
0-30304
0-49004
0-72411
1-00000
1-27614
1-56875

72-304

Exact
solution
for con-
tinuous
beam

000177
002126
007221
016381
0-30182
0-48853
0-72279
1-00000
1-27964
1-57935

73016

10#7. Example No. 5: Symmetrical Vibrations of an
Annular Membrane. The transverse vibrations of an annular
membrane have already been discussed in example (iii) of § 7-10 and in
§ 7*15. The same problem will now be solved by the iterative method.
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If the annulus is bounded by the radii rl9 r2, and if unit load is dis-
tributed evenly round a circle of radius r, then for p ^ r the small
displacement q of a circle of radius p is readily shown to be

* 2nTlog(r2lr1) '

where T is the tension per unit length of the membrane. In the
problem previously considered rx = 1, r2 = 2: hence

_log(2/r)log/)
(1)

Suppose the membrane to be divided into ten annuli of equal width,
having mean radii 1-05, 1-15, 1*25, etc. Let each annulus be replaced
by a massive circular ring at the mean radius of the annulus, and
let these rings be interconnected by springs in such a manner that
the displacements under a static load system equal the displace-
ments of the continuous membrane under the same load system.
The flexibility matrix is then determinable from the equation (1):
the case p ^ r need only be considered since the matrix is symmetrical.
The inertia matrix is again the diagonal matrix of the masses and
is easily found. The final equation is xup = uq, in which u x 103 is
the matrix

and

6-226
5-347
4-541

3-798

3107

2-463
1-859

1-290
0-753
0-245

1

5-856
16-776
14-248

11-915

9-748

7-727
5-832

4-048

2-363
0-768

5-406
15-487

24-727

20-678

16-918

13-410
10121

7025
4102
1-332

4-883
13-987
22-332

30034

24-574

19-477
14-700

10-204

5-957
1-935

4-291
12-292

19-625

26-394

32-679
25-902

19-548

13-569
7-922

2-573

10/

3-636
10-415
16-628

22-363

27-688
32-658

24-647

17108

9-989
3-244

2-921
8-367

13-359

17-967

22-245

26-237

29-980

20-810
12150
3-946

2150
6160

9-835

13-227

16-377

19-316
22072

24-665

14-400
4-677

1-327
3-802

6070
8164

10-108
11-922

13-623

15-223
16-735
5-435

0-454
1-301
2-078

2-794

3-460

4-081

4-663
5-211
5-728

6-219

' W log, io'
where m denotes the mass per unit area of the membrane.

In Table 10-7-1 the initial arbitrary column chosen is parabolic, and
yields zero displacement at the edges of the membrane. The funda-
mental mode is proportional to the last column in the Table, and the
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corresponding value of w is 0-13514. To provide a comparison with the
results of §§ 7-10 and 7-15, make the substitution

w loge10*

Then the value of K works out as 9-674, in comparison with the
figure 9-753 obtained from tables of Bessel funotions.

Table 10-7-1

Fundamental Transverse Vibration of an Annular Membrane

Initial
column

0-19
0-52
0-76
0-92
1-00
1-00
0-92
0-76
0-52
019

Iteration number

1

xlO"3

25-85
71-69

107-18
130-38
140-32
136-95
12112
94-55
59-79
20-25

0184
0-511
0-764
0-929
1-000
0-976
0-863
0-674
0-426
0144

2

xlO-3

25-24
70-02

104-65
12701
13605
131-85
115-54
89-24
55-83
18-76

0186
0-515
0-769
0-934
1-000
0-969
0-849
0-656
0-410
0138

3

xlO"3

25-203
69-875

104-362
126-523
135-320
130-887
114-454
88-213
55-090
18-494

0-1862
0-5164
0-7712
0-9350
1-0000
0-9672
0-8458
0-6519
0-4071
0-1367

Iteration number

4

xlO-3

25-200
69-864

104-326
126-437
135174
130-685
114-223
87-996
54-937
18-438

0-1864
0-5168
0-7718
0-9354
1-0000
0-9668
0-8450
0-6510
0-4064
01364

5

xlO~3

25-202
69-867

104-326
126-425
135147
130-644
114173
87-947
54-903
18-426

0-1865
0-5170
0-7719
0-9355
1-0000
0-9667
0-8448
0-6508
0-4062
01363

6

xlO~3

25-203
69-869

104-326
126-423
135140
130-633
114161
87-935
54-893
18-423

0-1865
0-5170
0-7720
0-9355
1-0000
0-9667
0-8448
0-6507
0-4062
01363

10-8. Example No. 6: A System with Two Equal Frequencies.
Consider the system of light rigid rods shown in Fig. 10-8-1. The rods
AB, CD, EF, each of unit length, swing about the axis AE under the
constraint of springs of stiffnesses J, f, J, respectively, and are also
jointed to the rigid rod BF. The lengths AC, CE, BD, and DF are all
equal. Lastly, the rod DG, which is of unit length, swings about the
axis BF under the constraint of a spring between CD and DG of
stiffness J. Masses 4, 4, 1 are carried at B, F, G, respectively.
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Take as generalised coordinates ql9 q2, ft the linear displacements
of B, F, G, respectively. Then the displacement of D is i(<h + ft). I*1

a general static displacement of the system, the elastic moments at
A,C, E, D, will be $qv § (q± + q2), \q2, ±(qd-qx-q2), and since the lever
arms are all of unit length, the vertical forces at B, D, F, G are also
3#i> f(#i + ft)> ift> i ( f t -£ i - f t ) - T o ^ d the flexibility matrix, apply
unit load at B, F, G in succession. When unit load is applied at JB, we
have by moments about AE,

while by moments about AB,

or

Fig. 10-8-1

Hence qx = 2, q2 — — 1, and since the moment at D is zero,
ft = 2i + ft = !• The displacements are thus { 2 , - 1 , 1}. Similarly,
when unit load is applied at F, the displacements are { - 1,2,1}. When
unit load is applied at G, we have by moments about AE9

2 — tei + §(#i + ft) + ift = Q.1 + ft >
and, since the displacement is symmetrical, gx = q2 = 1. Moreover, by
moments about BF9

1 = J(ft ~-(Zi~- ft) or ^3=11 .

Hence in this case the displacements are {1,1,11}. The flexibility

2 - 1 1"
1 2 l

1 1 l l j
The inertia matrix is evidently

A =

matrix is thus

"4

0
0

0

4

0

0"

0

1_
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Hence the dynamical matrix is

8 - 4 1"
8

10-8

- 4

4

1

4 11

If the initial column for the iterative solution of wq = Uq is chosen to
be {0,0,1}, the results are as tabulated below.

Initial
column

0
0
1

Iteration number

1

1
1

11

0091
0091
10

2

1-364
1-364

11-728

0116
0116
10

3

1-464
1-464

11-928

0123
0123
10

Iteration number

4

1-492
1-492

11-984

0124
0124
10

5

1-496
1-496

11-992

0125
0125
10

6

1-500
1-500

12000

0125
0125
10

The corresponding mode is thus {0*125,0-125,1*0}, while w = 12.
On the other hand, when {0,1,0} is adopted as the initial column,
the results are as follows:

Initial
column

0
1
0

Iteration number

1

- 4
8
4

- 1 0
2-0
10

2

-150
210
150

- 1 0
1-4
10

-12-6
16-2
12-6

3

- 1 0
1-286
10

4

-12144
15-288
12144

- 1 0
1-259
1-0

Iteration number

5

-12036
15072
12036

- 1 0
1-252
10

6

-12-008
15016
12008

- 1 0
1-250
10

7

-120
150
120

- 1 0
1-250
10

Hence again m= 12, but the mode is now {-1-0,1-250,1-0}. The
system therefore has two equal frequencies given by w = 12, and the
two corresponding modes may be arbitrary linear combinations of
{0-125,0-125,1-0} and {-1-0,1-250,1-0}. Subtraction of the second of
these columns from the first yields {1-125, —1-125, 0}, so that the
modes may conveniently be taken as {1, — 1, 0} and {1, 1, 8}. The first
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represents a torsional motion about the undeflected axis CDG, while
the other is a pure flexural motion having the same frequency. From
physical considerations it is now clear that the third mode is purely
flexural and has a different frequency. This mode and frequency can
readily be found from the conditions for absence of the two funda-
mentals, namely (see § 10-2 (6))

k[Aq^[l, - l,0]Aq = [4, - 4 , 0 ] ? = 0,

k'2Aq = [l, 1, S]Aq = [4,4, S]q = 0.

Hence q1 = q2 = — qz, or the mode in the overtone is k3 = { — 1, — 1,1}.
The relation Ukz = wzkz now gives at once ms = 3. I t can in fact be
verified that

T8

12™

- 1 - 1
1 - 1
0 1

1 - 1

1 1

8 0

12™

0

0

L-9 9

0

0

oJ

0
0

3 m

3m "

1 1
- 9 9

[-8 -8
- 1 "

- 1

1.

[ - 8

2
0

2_

- 8 2],

and it will be observed that the canonical form of U is diagonal.

10-9. Example No. 7: The Static Twist of an Aeroplane
Wing under Aerodynamical Load. An illustration of the iterative
solution of a statical problem may be useful. Suppose an aeroplane
wing to be subjected to an aerodynamical twisting moment which
varies with the angle of twist. It is required to determine the equi-
librium configuration of the wing.

Suppose the wing to be divided into n segments. Let ocr be the
initial mean incidence of the rth segment, measured from the position
corresponding to zero aerodynamical moment, and let ar + dr be the
incidence under load. The aerodynamical twisting moment is assumed
to be Mr = -Wr(ar + dr), where —Wr is a positive coefficient depending
on chord, wind speed, etc. The flexibility matrix of the wing will be
denoted by O, and O"1 = E. Hence if the set of aerodynamical loads
M is applied to the wing, and if W denotes the diagonal matrix of the
coefficients Wr, the twists 6 will be given by

6 = Oifcf = -<&W(a+d) = g+fd, (1)

where g = -OTTa a n d / = -OIF .
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This equation can be solved at once by means of the iterations
d(s+ 1) = g+fO(s) as described in §4*13(d), provided that the latent
roots of/all have moduli less than unity. It will now be shown that if
the equilibrium position is stable, this condition is satisfied.

Equation (1) can be written

(E+W)d+Woc = O.

Choose new coordinates <j> given by

(E+W)<f> = (E+W)6+Wa,

so that <j> is measured from the equilibrium position. In any displace-
ment <f> the change in the potential energy is given by %<f>'(E+ W) <]>\
and if.the energy is to be a minimum in the equilibrium position, which
is the condition for stability (see §8' 11), then the quadratic form
<j>'(E+ W) (f> must always be positive. In this case the arguments of
§ 9*9 can be applied to the determinant | EX+ W\. When A = 0, since
W is a diagonal matrix of negative quantities, the determinants Ai of
§ 9*9 are alternately positive and negative. When A = 1, they are by
hypothesis all positive. It follows that the roots of | EX+ W | = 0,
which are the latent roots of - E~XW = - 0 W = / , are all real, positive,
and less than unity. Hence if the equilibrium position is stable, the
iterative process converges.

As a simple numerical example, imagine a wing to be divided into
three sections. Let unit torque applied at sections 1, 2, 3, respectively,
produce corresponding angular deflections (in degrees) of {1,1,1},
{1,2,2}, {1,2,3}. Further, let the chord and wind speed, etc., be such
that Wx = - 0 - 1 , W2 = - 0 - 1 , W3 = -0-05 unit of torque per degree.
Finally let the uniform initial incidence be one degree. Then

*
"1 1
1 2
1 2

-OJFa

11
2

3j

0-1
0

0

0-1

0-1

0-1

0
0-1

0

0-1

0-2

0-2

0

0

0

0

•05_

05"

0*1

0 15

=

"1"

1
1

"0-1

0-]

0-]

=

L

L

I

"0-

0-

0-

0

0

0

1

2

2

4

4*

0-

0-

0-

05"

1

15.

Choosing 0(0) = g, and calculating in succession the values of

we obtain the following results:
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0(0) =9

0-25
0-4
0-45

fO(0)

0-087
0150
0172

6(1) =
9+fO(0)

0-337
0-550
0-622

Mi)

0120
0-206
0-237

0(2)

0-370
0-606
0-687

M2)

0132
0-227
0-261

6(3)

0-382
0-627
0-711

/0(3)

0136
0-235
0-270

0(4)

0-386
0-635
0-720

/0(4)

0138
0-238
0-274

0(5)

0-388
0-638
0-724

M5)

0139
0-239
0-275

0(6)

0-389
0-639
0-725

/0(6)

0-139
0-239
0-275

0(7)

0-389
0-639
0-725

Hence the solution is

0 = {0-389,0-639,0-725}.

It may be noted that the latent roots of/are 0-373,0-050, and 0-027.

PART II. SYSTEMS WITH DAMPING FORCES PRESENT

10*10. Preliminary Remarks. The methods of Part I can be
extended to the case where damping or "motional" forces are present.
The first step is to replace the La^rangian equations by an equivalent
system of the first order. Usually the most convenient scheme of
reduction is that given at the end of § 9-7. If the original equations are

and if y = {q, q}, the reduced equations of free motion will be

Dy = uy, (1)

in which u = F 0, /

Ify = ex^ks denotes the typical constituent of (1), then

and this equation can be treated, as before, by the iterative method.
The modes of motion are obtained successively in descending order of
the moduli of the latent roots of u (i.e. of the roots As). If the modes
are required in ascending order of the moduli, then the process should
be applied to the equation (A71/-w-1) ks = 0.

Since the latent roots of u will frequently be complex, it may be
necessary to apply the formulae given in § 4-20. If a pair of conjugate
complex roots Ax, A2 = /i ± iof are dominant, then /i and co can be
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determined from the relations

a2 . 0)2 _ Es+lEs+3-Eh2

HMO-10-11

2/» =

where E8, JE^+1, etc. are consecutive values of a homologous element of
the column or row used in the iteration, and s is sufficiently large.

10-11. Example: The Oscillations of a Wing in an Air-
stream. The system to be considered is a model aeroplane wing
placed at a small angle of incidence in an airstream. The three degrees
of freedom assumed are wing flexure, wing twist, and motion of the
aileron relative to the wing. When the wind speed is 12 feet per second
the matrices of the dynamical coefficients are as follows:*

17-6 0-128 2-89 ] x 10~3,
0-128 0-00824 0-0413

2-89 0-0413 0-725 .

7-66 0-245 2-10 1 x 10~3,

0-0230 0-0104 00223

0-600 0-0756 0-658 _

121 1-89 15-9 ixlO"3.

0 0-0270 0-0145

11-9 0-364 15-5

<7 =

It is found that

Hence
u -

0-1709
1-063 176-5

-0-7417 -14-29

1-063 -0-7417
-14-29

5-150

xlO3.

0

0

0

- 1 1

41

28

•85

•43

•46

- 0

- 1

- 0

0

0

0

•08172

•573

•08696

0

0

0

8

202

- 6 7

•764

•0

•82

- 0

- 3

2

1

0

0

•8885

•628

•920

0-

- 1 -

- 0 -

0

1

0

003147

016

05901

0

0

1

0-1054

3-235

-1-512

* Numerical data extracted from Table 24 of Ref. 30.
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When the initial arbitrary column is chosen to be

2/(0) = {0,0,0,0,0,1},

the iterative process yields

y{\) = Uy{0) = {0,0,1,0-1054,3-235, - 1-512},

y(2) = uy(l) = {0-1054,3-235, -1-512,8-521,193-4, -65-42},

and so on. We now choose a homologous element from the successive
columns, and derive (for instance) the Table given below. The method
of tabulation is a modification of a scheme due to Aitken (see § 4-20).

No. of
column

s

1
2
3
4
5
6
7
8
9

10
11

Last element E8

1
-1-512
-6-542 xlO

2-176 xlO2

4-294 xlO3

-2-318 xlO4

-2-681 xlO5

2144 xlO6

1-552 xlO7

-1-819 xlO8

- 0-7962 xlO9

EEF*=E*
S+2 8+1

-67-71
-46-09 xlO2

-32-83 xlO4

-23-48 xlO6

-16-89 xlO8

-12-16 xlO10

-8-758 xlO12

- 6-309 xlO14

- 4-545 xlO16

—
—

= /X2+O>2

68-07
71-23
71-52
71-93
72-00
7202
72-04
72-04

—
—

E8+lE8+2

—
—
—
—

1-116 xlO16

—
—

—
—
—
—
—

-1-769
—
—
—

Accordingly, ju,2 + (o2 = 72-04 and 2/i = — 1-769, so that the dominant
latent roots of the matrix u are X1 and its conjugate A2, where

- 0-885 + i 8-443.

The modal column, say kx==^ + iijy corresponding to the root
Aj, is readily found. Since kx is arbitrary to a complex scalar multi-
plier, we may choose for instance the rth column in the iteration to be
half the sum of the conjugate complexes § ± iij, i.e., £. Then the (r + l)th
column will be fi^ — ojrj, and hence £ and rj are obtained. The first three
elements of £ + irj define the amplitudes and epochs of the generalised
coordinates q, and the last three those of the generalised velocities q.
Actually, since q = \q, the last three elements in any column are iden-
tical with the first three elements in the succeeding column; hence q
may be determined from one column only. In the present instance,
the 10th column is

106{-2-412, -39-00, 15-52, 26-65, 528-8,-181-9}.
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On omission of the factor 106 this gives

{£i,&>6J = {-2-412, -39-00, 15-52},

while 7j is defined by

-0 -885{ - 2-412, -39-00, 15-52} -8-443(7/!, 7/2,%}

= {26-65, 528-8, -181-9}.
Hence

hx = {-2-412-i2-904, -39-00-i58-55, 15-52 + H9-92},

or, since a scalar multiplier may be extracted,

kx = {1-0, 18-53 + t 1-961, - 6-686-i 0-2085}.

This value can be verified by substitution in the equation

Af.4£1 + A1.BJfc1 + Ckx = 0.

The remaining modes of motion can be found as usual by the use of
the condition for absence of the dominant mode. If Rm and Rm+1 are
two successive rows obtained by repeated postmultiplication of an
arbitrary row by u, then (see § 4-18) the conditions for absence of the
dominant mode are Rmy = 0 a,nd Rm+1y = 0. In the present example,
if [0,0,0,0,0,1] is used as an initial row, then the 9th and 10th rows
found by the iterative process may be written

8-273 x 107[l, -0-000781, -1-910, -0-004369, -0-001575, 0-1877],

44-09 x 107[l, -0-002531, -2-456, 0-2924, -0-001927, -0-4126].

If these rows are used in the above conditions, and yx and y4 ( = y1)
are then expressed in terms of the remaining coordinates, we find

y4 = 0-005896i/2+

We may therefore write

+ 0-001 lS6y5 + 2-023t/6.

0, 0-000807, 1-918, 0, 0-001580, -0-1789

o,
o,
o,
o,

-0,

1,

o,
0-005896,

o,
o,

o,
1,

1-840,

o,
o,

o,
0,
0,
0,
0,

0,

o,
0-001186,

1,

o,

0
0

2023
0
1

y*

2/4

2/5

L2/6-J
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Introducing this condition on the right-hand side of the equation
Xy = uy, we obtain a modified equation Xy = vy, where

v =
o,
o,
o,
o,
o,

0-005896,
o,
o,

-0-09652,
-1-561,
-0-04678,

1-840,
o,
o,

-15-60,
274-8,
-7-861,

o,
0,

0,

0,

0,

0,

0-001186,
1,
0,

-0-01663,
-0-9548,
-0-01058,

2023
0

1

0-4279
-11-52
-0-6963.

This matrix possesses properties similar to those of u except that
zero latent roots have been substituted for the original dominant roots
fi±io)= — 0-885 ± i 8-443. Hence the iterative process, when applied
to v, would yield the subdominant latent root or roots of u and the
associated mode of motion.



CHAPTER XI

DYNAMICAL SYSTEMS WITH SOLID FRICTION

11*1. Introduction, (a) General Eange of the Theory. The theory*
to be given relates solely to dynamical systems which, apart from the
presence of solid friction, obey linear laws. The term solid friction is
interpreted to mean a resistance between two bodies, due to tangential
surface actions, which follows the simple idealised law that its magni-
tude has a constant value so long as relative motion between the bodies
occurs. Whenever the forces tending to produce relative motion fall
short of the foregoing value, the resistance adjusts itself to balance
these forces, and no relative motion results. These simple laws, which
are adopted as a mathematical convenience, take no account of the
difference between static and dynamic friction, and thus only approxi-
mately represent true conditions.

The influence of friction on the oscillatory behaviour of a dynamical
system is often somewhat unexpected. For instance, the introduction
of friction may cause an otherwise stable system to develop maintained
oscillations.

(6) Experimental Illustration of the Influence of Friction. Some
wind tunnel experiments! carried out at the National Physical
Laboratory in connection with tail flutter of an aeroplane illustrate
some of the effects of solid friction. The model used had a rigid front
fuselage but a flexible rear fuselage and tail unit, and it was suspended
by a sling of wires from a turn-table locked to the roof girders of the
wind tunnel. Occasionally the locking bolts of the turn-table worked
slack under the tunnel vibration, with the result that the whole model
became capable of angular displacement in yaw, but only under con-
siderable frictional constraint. The degrees of freedom of the dynamical
system, when tested under such conditions, can (for simplicity) here be
taken as angular displacement of the rudder, lateral bending of the
rear fuselage, and yawing of the whole model resisted by a considerable
frictional moment. At moderate airspeeds the motion of the model was
of a peculiar spasmodic type, which gave the impression that increas-
ing and decreasing oscillations were occurring in succession.

* Chaps, x i and x n are based on investigations originally described in Refs. 38 and 39.
t See pp. 233 and 260 of Ref. 40.
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The explanation is probably as follows. At the wind speeds which
gave rise to the spasmodic motion, the binary system composed of the
rudder and the fuselage was unstable, whereas the addition of the
freedom in yaw rendered the system stable. A very small initial im-
pulse was incurred, and this was sufficient to start growing rudder-
fuselage oscillations. It was, however, too small to overcome the
friction opposing yawing movement, so that meanwhile the model
remained gripped in yaw. However, ultimately, a yawing moment
due to the growing oscillations developed, which was sufficiently large
to overcome the friction. All three degrees of freedom then cooperated
in the motion, but since the system was then stable, the yawing moment
eventually decreased and the model again became effectively gripped.
The cycle of changes then repeated. Briefly, the phenomenon is
attributable to the successive "sticking" and "unsticking" of a
frictionally constrained member of the system.

A feature of importance in the illustration is the fact that the system
would have been definitely stable had the friction been absent. Clearly
then the state of stability of a system when friction is completely
removed is no sure guide to the behaviour of that system when friction
is present.

(c) Ankylosis. The effect just described as the "sticking" of a
degree of freedom is known as ankylosis* Whenever the system is
moving without its full complement of degrees of freedom the motion
is said to be ankylotic, and the particular generalised coordinates which
are arrested are the ankylosed coordinates.

(d) Types of Oscillation. When solid friction is operative the
oscillations which occur in a given degree of freedom can be of three
different general types, namely:

(i) Decaying oscillations, in which the coordinate concerned either
tends to a constant value or becomes permanently ankylosed.

(ii) Unbounded oscillations, in which the coordinate tends to attain
indefinitely great values.

(iii) Bounded oscillations, which are defined to be any oscillations
other than those of types (i) and (ii).

(c) Linear and Non-linear Systems. When friction is taken into
account we have to deal with forces whose functional dependence on

* The term * ankylosis' is used by Poincare, Jeans and others to denote loss of one or
more degrees of freedom in a dynamical system.
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the generalised velocities is not linear. Strictly speaking, therefore,
the problem must be classed (though as a very special case) under the
general subject of non-linear dynamics. In the case of a linear system
the values of the generalised coordinates and velocities at any instant
of motion are all changed proportionally when the initial values are
changed proportionally. In other words, so far as concerns similar
disturbances, the motion may be said to be proportional to the magni-
tude of the initial disturbance. With a non-linear system the motion
will depend in a very much more complicated way on the initial
disturbance.

(/) Effects of Very Large Disturbances. If the system is linear in
all respects apart from the friction, two general propositions are self-
evident:

(i) No disturbance, however large, can produce unbounded oscilla-
tions when friction is present if these cannot occur when friction is
absent. For even if increasing oscillations are possible, yet the growth
necessarily ceases when the movements become so large that the
frictional forces are insignificant in comparison with the other applied
forces.

(ii) A sufficiently large disturbance (in general) produces unbounded
oscillations when friction is present if such oscillations are possible
with the frictionless system.

(g) Effects of Arbitrary Disturbances. The ultimate type of motion
which results from a disturbance of arbitrary magnitude will depend
upon the number of sets of bounded oscillations which are possible and
upon the question as to whether these particular motions are stable
when slightly disturbed. Suppose, for instance, that a very large dis-
turbance gives rise to unbounded oscillations and that a small similar
disturbance produces decaying oscillations leading to ankylosis and
ultimately to complete rest of the system. Then it may be inferred that
for one magnitude at least of the disturbance the oscillations must be
bounded. If these are the only possible bounded oscillations, they
must obviously be unstable, and they will therefore not be realisable in
practice. However, more generally there may be an odd number of sets
of bounded oscillations, alternately unstable and stable, the largest
and smallest being unstable. In these cases, for a certain range of the
initial disturbance, the resulting motions will tend to one or other of
the stable sets of oscillations.
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11-2. The Dynamical Equations. The m generalised coor-
dinates q are supposed to be measured from the mean configuration,
and the system is taken to be linear except for the friction. The
dynamical equations are then of the type

f(D)q^(AD* + BD+C)q = p, (1)

where p denotes the generalised frictional forces. When the friction is
applied in a general manner the precise specification of p is com-
plicated, and as a simplification attention will be restricted to systems
in which each degree of freedom has its own independent frictional
constraint. Thus, it is assumed that the typical generalised frictional
force Pi has a constant magnitude Bi when qt + 0, and that the sign is
such that the force always opposes the motion in qf hence pi = — Rt if
qt > 0, and pi = + Rt if qt < 0. On the other hand, if qt = 0, the value
of Pi lies between the limits ± Bi9 and is determined by the other
circumstances of the motion.

The motion in any time interval may be such that continuous
movements occur in all the degrees of freedom, or it may be such that
throughout the interval one or more of the generalised coordinates are
arrested by friction. In the first case the motion will be described as
complete in the interval, and in the second case as ankylotic* If a gene-
ralised velocity happens to vanish in the interval without becoming
stationary, the motion will still be classed as complete. On the other
hand, if the velocity which vanishes is also stationary, the motion at
that stage will be viewed as ankylotic.

For brevity, any stage of the motion throughout which qt is con-
tinuously positive, and never actually zero, will be described as an
upstroke in q^. similarly, if ^ is continuously negative and never zero,
the motion is a down-stroke in q^ Hence Pi — — Ri or + i ^ according
as the stroke in qi is upwards or downwards. The two instants at which
a given stroke begins and ends will be referred to as the terminal
instants for that stroke: when a distinction between the two terminal
instants is necessary the one which relates to the beginning of the
stroke will be called the starting instant and the other the stopping
instant.

Throughout any time interval in which no generalised velocity
vanishes the values of the forces p are constant both in sign and

* Note that the definition of ankylotic motion would require generalisation if the
frictional constraints in the several degrees of freedom were not independent.
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magnitude. The solution of the dynamical equations for such an
interval will now be given. For simplicity it is assumed in the analysis
that the n (= 2m) roots Ax, A2,..., An of A(A) = 0 are all distinct.

Write Cf-1/> = ^, (2)

and let 0 denote the column formed from the m constants 6 and from
m ciphers, so that in the partitioned form

© = {0,0}. (3)

Also put y(t) = {q(t),q(t)}- (±)
Then if M(t), k, A and I are matrices as defined in §§ 5*10 and 6*4, and
if r denotes some datum instant in the interval, the direct matrix
solution is readily verified to be

y(t) - 0 = lM(t - r) J-% (r) - 0}.

Alternatively, if n reducing variables a(t) (see example (iii) of § 6*4)
and n quantities /? are introduced such that

a(0 = l-*y(t), (5)

fi = l-1Q, (6)
the solution is expressible as

a(t)-fi = M(t-T){a(r)-fi}. (7)

Matrices formed from particular columns or rows of the (m,n)
modal matrix k will often be used in the sequel. The matrix {kir}
formed from the rth column of k (namely, the rth modal column) will
as hitherto be written in the abbreviated form kr. Similarly the matrix
[kPj\ formed from the^th row of k (namely, the pth modal row*) will be
denoted for brevity by lp (see also remarks in § 1-2 (c)).

11*3. Various Identities. Certain identities, which will be of use
later, will now be obtained.

(a) The Redwing Variables a(t). The relation (11-2-5) gives im-
mediately by definition of the matrix I

so that q(t) = ka(t)9 (1)

(2)

• Note that whereas the rth modal column kr is naturally associated with the rth root
Xf of A(A) = 0, the pth modal row is associated with the pth generalised coordinate qP. The
modal rows must not be confused with the rows of the matrix K defined by (3*6*8).
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Again, differentiation of (2) yields q(t) = kAoc(t), while differentiation
of (11-2-7) leads to

a(t) = AM(t-T){a(T)-j3} = A{a(t)-fi}.

Accordingly, q(t) = JcA2{ot(t) - /?}. (3)

When the expressions for q, q and q given by (1), (2) and (3) are sub-
stituted in (11-2-1), the result is

(AJcA* + BkA + Oh) a(t) - AkA*]3 = />.

But on account of the properties of the modal columns

Hence, writing a = A~1
9 we have

M2/? = - a p . (4)

Equation (3) may be therefore expressed as

q(t) = JcA2ot(t) + ap. (5)

It is to be noted that since the discriminants of the kinetic energy
are positive the principal diagonal elements of the matrix a are all
positive.

The relations (1), (2) and (5) give the displacements, velocities and
accelerations in terms of the reducing variables.

I t .will be seen later that the reducing variables and the quantities
J3 usually occur multiplied by a modal constant. Formulae to aid the
calculation of these products can be derived by use of the identity
(6-5-8), which for the present second-order equations reduces to

n FIX )
JcM(t-r)l-1= S -^[X.A + B.Ale^-^.

r = 1 A(Ar)
Since this is true for all values of t, the matrix coefficients of e^~T) on
the right and on the left can be identified. Hence

(6)

in which Er is the null square matrix of order n with a unit substituted
in the rth principal diagonal place. On postmultiplication of both sides
of (6) by y(t) and application of (11-2-5) we readily obtain the identity

(7)
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where kr denotes the rth modal column. This can be written alter-
natively as JPYAJ

t - O, (8)
ArA(A,)

(6) The Quantities /?. From equations (11-2-3) and (11-2-6) it follows
that {0,0} = {k, kA}p, so that

iCJj == Uy . . . . . . \*SJ

kAfi = 0. (10)

Again, on postmultiplication of both sides of (6) by © and use of the
relation GO = p, we readily find

wcx \ *
(ii)

An alternative to (11) can be deduced from the relation

A(A) =/u(A)^u(A) +. . . +/n(A) *i.(A) +. . . +AJA)iPlm(A).

The only term on the right of this equation which involves the stiffness
coefficient Gl8 is evidently / l s . Hence on total differentiation with
respect to Cls we have

If in the variation considered A is chosen to correspond to the root

so that A(Ay) = 0 and ^7T-A(Ar) = 0, we obtain

We may accordingly write

where

A*

If
3 C 1 2 '

3A,

C'Ool

C'/v—

0V2m •"' scmm

and on substitution in (11) this gives the identity

.(12)
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By performing the differentiations with respect to the damping
coefficients Bii or the inertial coefficients A^ instead of the stiffness
coefficients, we can derive the relations

d\ _ 1 3A, _ 1 3A,
3/T~ ~" T" 2 z? "" T2 sTl * . . . , . . \ A O ;

The application of the preceding formulae to systems having only
a single frictionally constrained coordinate will now be considered.

11*4. Complete Motion when only One Coordinate is
Frictionally Constrained. The frictionally constrained coordinate
will be assumed to be qm. In this case all the frictional forces pi are
zero with the exception of pm, and pm = ± Rm according to the sense
of the stroke. If §J denotes the column of m constants fa such that

then clearly 6 = —Rm<f> for an up-stroke and 6 = +Rm<f> for a down-
stroke. Further, if O is defined similarly to © as the column of m values
fa followed by m ciphers, and if y is such that y = I*1®, then fi = — Rmy
for an up-stroke and ft = +Rmy for a down-stroke. Equations (11*3-11)
and (11-3-12) may in this case be expressed as

* «, h fJ!^L 9/V dK \ _l_fjp / i \ w ex w
ArYrKr = i^nT~> zn~> •••> %P—I = ""H)—i^mlV'V)* • • • >-tmm\Ar)S>\0Oml COm2 0Umm) w

"AV/V) (1)

while (H-3-9), (11-3-10), and (11-3-4) yield respectively

ky = fa (2)

0, (3)

- K m } . (4)

Let the initial disturbance, assumed imposed at t = r, be given by
the values y(r) or a(r), and denote as t0, tv etc. the successive terminal
instants at which—while the complete motion is in progress—the
velocity qm vanishes. If qm{r) =# 0, the sign of this velocity will fix the
sign of pm in the first stage of the motion. For the sake of definiteness
we shall assume that qm{r) > 0, so that the first motion in qm is upwards
andpm = - i ? m (see Fig. 11-4-1).

On application of (11-2-7) we have for the solution in the first time
i n t e r v a l «(t) + R7 =M(t-r){a(r)+Rm7} (5)
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Hence the displacements, velocities, and accelerations at any time
are given by

q(t) = k*(t) - hM(t-T){a{T)+Rmy)-Bm<j>,

q(t) = kAa(t) - kAM(t-T){oc(T)+Rmy},

q(t) = kA*{a(t) + Rm7) = kA*M(t-T){cc(T)+Rmy} (6)

In particular the velocity qm vanishes when

where !m denotes the mth modal row. The stopping instant will be
that root t = 10 of this equation which exceeds, and lies nearest to,
the value r.

9m

r

\ Stroke No.7
n Y (down)

I
( Ankylosis

h 1 U

No.4

Fig. 11-4-1

To determine the general nature of the next stage of the motion,
assume firstly that ankylosis does not occur, and that the motion in
qm continues with a down-stroke in accordance with Fig. 11-4-1. On
this hypothesis the solution in the interval (£0, t±) is given by

ot(t)-Rm7 = M(t-to){a(to)-Rm7} (7)

This yields for the starting acceleration qm(t0) the value

tmA*{a{t0)-Rmy},

which, on application of (4), can be written

lmA*x(t0) + ammRm. (8)

If this expression is negative, the motion in qm obviously continues
Trith a down-stroke as assumed.

Alternatively, suppose that an up-stroke in qm ensues at time t0.
The solution in this case would be given by an equation similar to (5),
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but with r replaced by t0. The necessarily positive starting acceleration
for the up-stroke in qm would then be

But on application of equation (6) this expression is seen to be equal
to the stopping acceleration for the previous partial up-stroke in qm,
which is negative Hence the possibility of the stroke being upwards
is excluded. We may thus conclude that if the expression (8) is negative
the motion remains complete and continues with a down-stroke in qm,
but that otherwise the coordinate qm remains arrested.

If ankylosis does not occur, the motion proceeds in accordance
with (7) until qm again becomes stationary. This occurs when

lmAM(t-t0){<x(to)-Rmy} = 0,

and the corresponding stopping instant tt is that root of this equation
which exceeds, and lies nearest to, the value t0. The reducing variables
then have the values given by

and the condition that a second up-stroke in qm is realised is readily
shown to be * A 2̂ /7 \ n 7? ^ o

A continuation of this process formally determines the whole motion
until ankylosis occurs. The sequences of relations which provide the
step-by-step solution will now be summarised. The formulae are suited
to the case where qm{r) > 0, so that the first motion in qm is upwards.*

(A) Successive Stages of Motion. After the first partial up-stroke
in qm the down-strokes and up-strokes in qm occur in alternation. The
motion in the typical down-stroke in qm commencing at time t2r is

a(t) -Rmy = M(t- t2r) {a(t2r) - Rmy}, (9)

while that in the typical up-stroke in qm commencing at time t2r+1 is

a(t) + Rmy = M{t- t2r+1) {oc(t2r+1) + Rmy} (10)

(B) Recurrence Relations for the Reducing Variables. These maybe
written conveniently as

M(-to){a(to) + Bm7} = M(-r){a(T) + Rmy},

M{ - tj {*&) -Rmy} = M(-10) {<x(t0) - Rmy},

M( -12) {a(*2) + Rmy} = M( - «x) {a(f1) + Rmy},

* The formulae can be adapted at once to the case where <?m(r) = 0.
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and generally for O 1

(11)
Direct addition of these relations gives

(12)

where r(s) = M(ts-ts_1)-M(ts-ts_z) +... + (-iy-1M(ta-t0).

(C) The Terminal Equations. These fix the terminal instants t0) tv

etc. at which the successive stationary values of qm occur. The first
equation of the sequence is explicitly

while for s > 1 the typical equation is qm(ts) = 0, or
ImAa(0 = 0. (13)

On substitution for oc(ta) from (12) this gives explicitly

2 A^e^-i^rJe-V + i^j^,^) = 0} (14)
r=l

where
E(s, Ar) = 2e"A^-i - 2c-^-2 +... + 2( - 1 f-1 e"Vo + ( -1 )s e"^.

The terminal instant t8 must be that root of the 5th terminal equation
which exceeds, and lies nearest to, the value ts_v It may be noted that
if the roots of A(A) = 0 are complex then each terminal equation
necessarily has an infinite number of roots.*

(D) Criterion for Ankylosis. Ankylosis will occur (with the co-
ordinate qm arrested) at the first stopping instant ts for which

( - l ) 1 f f l A H ) + « , » ^ > 0 . (15)
This criterion is valid for s^O.

EXAMPLE

System with a Single Degree of Freedom.^ With m — 1 the equation
for complete motion is

•^ll^l + ^llffl + Cll?! = + Rl>

leading to a single constant ̂  = 1/G1V The two roots A are assumed
* If ts is large the least damped exponential will predominate in equation (14). It readily

follows that this equation necessarily has an infinite number of large real roots,
f Some aspects of this problem are discussed in Ref. 41.
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to be complex, so that, say, Ax = /i + ico and A2 = /i — io). The modal
matrix may be taken as [1,1], and we may accordingly write

Z=f l 1] and 2i(ol-1=\-\21 1] and 2iwi-1=['-A2 1].
Ax A2j [ Ax - l j

HencG {ax, a2} = l~x{c[x, <?i} = ^

If the initial disturbance is assumed to be imposed at the starting
instant t0 of a down-stroke, then

and the motion in the first down-stroke is given by

<x(t)-Rmy = M(t-to){a(to)-Rmy}.

Further, the equation for the stopping instant t± is explicitly

AiK(«0)-^i7i)e^-^i + A2(a2(g-i?ir2) eft-**. = 0.

This reduces to

n /
of which the lowest root is t1 — t0 = njco. Since this time interval is
independent of the starting displacement ^(^Q)? the time for any
stroke is clearly T = njo).

The formula (12), with the simplifications r = t0 and ts — t0 = sT9

may now be applied to determine the displacement at the end of the
5th stroke. In the present case

M(sT) = \e^T 0
[ 0 eA

and equation (12) therefore reduces to

(-lY{oh.{t.),«t(t.)} = ^ ^ ^ ^ - ^ ( e ^ ^ - ^ c o t h ^ ^ A , , -AJ.

Since
i i

1 'IN'Ax A2J L«J
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we obtain finally

(16)

The condition that the motion can actually begin is (see (15) with

which reduces to (Zi^o)> TT"

If this inequality is satisfied, and if /i is positive, it is evident from (16)
that the motion will grow to an indefinitely large amplitude.

It should be noted that with systems having more than a single
degree of freedom, growing oscillations strictly analogous to the
simple type (16) cannot occur. With such systems, oscillations having
a constant semi-period are also (in general) necessarily steadily main-
tained (see example to § 11-6).

11*5. Illustrative Treatment for Ankylotic Motion. For the
sake of simplicity attention will again be restricted to the case where
only a single coordinate qm has frictional constraint. The analysis is
thus supplementary to that of § 11-4.

Suppose, then, that at some particular stopping instant ts ankylosis
occurs. Since the coordinate qm now remains arrested, the dynamical
equations for the special case under consideration become

fu(D) <Zi + • • • +fi,m-i(D) qm-x = - Clmqm(ts),

.x = - Cm_lsmqm(ts),

while the value of the frictional force pm at any stage of the ankylotic
motion is given by

fml(D) ?!+... +fm,m-l(D) Vm-1 + Cmmqjt8) = Pm.

To render the previous analysis immediately applicable to equations
(1), without the introduction of new symbols, the convention will
now be made that any symbol originally used in relation to the m
degrees of freedom qv q^^^qm will, if shown in clarendon type, have
a similar significance in relation to the m — 1 degrees of freedom
(Zi> ?2> • • • J ?m-i« Thus y(t) denotes the column of the m — 1 displacements
?i>?2> •••»?m-i a n d m~~ ^ velocities qvq2, ---Am-i (^ —2 quantities in
all); while M(t) and I are square matrices of order n — 2 involving the
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fundamental constants of the system (1) and the n — 2 roots Xl9 X2,...,
Xn_2 of the appropriate determinantal equation.

The solution of equations (1) then is

y(«)-6 = lM(t-t8)l-i{y(t8)-0}. (2)

The column matrix 0 has n - 2 elements, of which the last m - 1 are
ciphers and the first m — 1 are the constants 8 defined by the relations

_ 1 6 W _ 1 = -Clmqm(t8),

The motion will continue in m — 1 degrees of freedom in accordance
with (2) until pm>Rmoi<- Rm.

11*6. Steady Oscillations when only One Coordinate is
Frictionally Constrained. As a relatively simple application of the
theory the conditions will now be examined under which the oscilla-
tions of a system having only a single frictionally constrained co-
ordinate qm are steady. Oscillations will be said to be steady when they
are of the special type in which the displacements and velocities in all
the degrees of freedom at the stopping instant of any stroke in qm are
exact reversals of the corresponding displacements and velocities at
the starting instant of the stroke.

Suppose that a typical down-stroke in qm commences at time t = t0

and ends at time t = tv Then the solution during that stroke is given by

oc(t)-Rmy = M(t-to){ot(to)-Rmy}, (1)

and the displacements and velocities at time t = tx are exact reversals
of those at time t = t0 provided a(^) = —a,(t0), so that

- a ( g - i ? m y = M(T){<x(to)-Rmy},
where T = t± —10.

The last equation may be written
[M (T) + / ] a(*0) = RJ_M (T) - / ] y,

er 1
whence ar(t0) = Rmyr -^X^\ (2)

for all values r = 1,2,..., n.
The condition that qm shall be stationary at time tx is !mAa(^) = 0.

Since by hypothesis ar(^) = — otr(to), and ar(t0) is given by (2), this
condition requires that



346 CONDITIONS FOR STEADY OSCILLATION l l - 6

This equation fixes the semi-period T, and the appropriate initial
conditions at time t = t0 are then given by (2). On substitution for
ocr(to) from (2) in (1), the solution during the typical down-stroke in
qm is explicitly

= S KKrIm
r= l r=l

where 5 = 1,2,...,m, and

The acceleration #w(£) at any instant in the down-stroke is readily
seen to be given by

UtWm - S A"*W7nfl*-*o»Ar)+«W

The conditions for steady oscillation will now be summarised.

(A) The semi-periodic time must be a real positive root T of the
equation

(B) The necessary initial disturbance, which is assumed to occur
at the starting instant t = £0 of a down-stroke in qm, is given by

n
= 2^7,--

where s = 1,2,..., m, and i?m is to be taken definitely with the positive
sign.

(C) The initial displacement qm(t0) must be positive* and the initial
acceleration qm(t0) negative: thus

n pTXr __ 1

KrYr ^ A ^ l > 0.

and qm(to)IRm=^KKr7r^X^l+amm<O (6)

* If ^(^o) were negative and <im(t0) also negative, the first stroke would still be down-
wards (as postulated), but the displacement qm at the end of that stroke would then neces-
sarily be negative, and not the reverse of qm{t0).
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(D) The velocity qm(t) must not vanish within the interval (t0, to + T).
Hence the equation n 2/M>)M

( ^ (7)

must have no positive real root (other than t —10 = 0) less than the
selected root t - 1 0 = T of (3).

E X A M P L E

Oscillations with a Constant Period are (in general) also Steady. If
T is the given constant period, the successive terminal instants for
the strokes in qm may be taken as t0 — 0, t±= T, ..., ts = sT. The
recurrence relations for a may be written

a(T)-Rmy = M(T){x(0)-Rmy},
x(2T) + Rmy = M(T){x(T) + Rmy},
a(ST)-Rmy = M{T){a(2T)-Rmy),

and so on. Addition of the equations in successive pairs gives

ot(2T) = M(T){a(0) + a(T)},

(3T) = M(T){a{T) + a(2T)} = M(2T){<z(0) + a(T)},

and generally
a(sT) + a(s+lT) = M(sT) (a(0) + oc(T)}.

Premultiplication of the last equation by !mA, and use of the con-
ditions qm{sT) = qm(s + 1T) = 0 yields the relation

0 = ^esT^Ari (8)

where Ar==Arkmr(ar(0) + ocr(T)). Taking (8) for any n consecutive
values of s, we derive a set of n equations, which will be compatible
either if a(0) + a(T) = 0 (in which case the motion is steady and T is
a root of (3)), or if

1 1 . . . 1 = 0.

_ e(n-l)T\n

This last equation would require T = n/o), where ju, ± ico are any two
conjugate complex roots of A(A) = 0, say Ax and A2; and equations (8)
would then be satisfied if in addition

and A3 = A^ = ...=An = 0.
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I t can be shown without difficulty that the particular value T = n/co
would in this case still have to be a root of (3), and unless m = 1 this
would demand a special relationship between the dynamical coeffi-
cients of the system. Hence, if the periodic time is constant, and if the
system has more than a single degree of freedom, the motion is in
general also steady.

11 -7. Discussion of the Conditions for Steady Oscillations.
The nature of the roots of the "semi-period equation" (11*6-3) will be
considered first. Denote by £,r + i7)r the complex value of Ar&mryr

corresponding to a complex root Ar = ju,r + io)r. Then

nJfo (1)
r=l

IT/ m\ - e^+^ - 1 _ efiT cos o)T - 1 -f i&T sin o)T
where * (Al ) = -^+ia))T+ x - e*T CO8(l)T+l+iefT8in«)T'

(i) Case of Two Purely Imaginary Roots of A(A) = 0. Suppose now
that two, and not more than two, of the roots A are purely imaginary,
so that for this pair /i = 0. Then for the one root (say + io)),

F(i(oT) = (co8G)T-l+i8mG)T)!(co8Q)T+l + ism(t)T) (2)

If o)T = (2s + 1) n — e, where s is an integer and e is small, equation (2)
gives to first order F(io)T) = 2ije. The two terms of (1) corresponding
to the two roots + ico combine at this value of T into — 4?//e. Hence
unless 7i — 0 the function Q(T)/7/ changes from — oo to + oo on passage
of T through each of the values (2s + 1) TT/G).* It follows that when two
(and not more than two) of the roots A are purely imaginary and the
corresponding value of 7/ is not zero, the semi-period equation has an
infinite number of real roots T separated by the values n/o), 3TT/G>,

STTJG), etc. A diagrammatic representation of the graph of Q>(T) for the
case considered, with TJ positive, is curve No. 1 of Fig. 11-7-1: the
possibility of any odd number of roots T between successive asymp-
totes is not excluded. If TJ is negative, the sense of approach to the
asymptotes is the reverse of that shown in the diagram.

On application of the identity (11-4*4) it is readily shown that the
slope of the graph O.(T) at T = 0 has always the negative value
— amm/2. It follows that when TJ < 0, an odd number of real roots T
exists between the origin and the first asymptote.

* For brevity, the symbol T is here temporarily used in two senses; it signifies a root
of the semi-period equation, and also the current variable associated with the function
Q(T).
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(ii) Case of Two Conjugate Roots of A(A) = 0 with Real Parts Small.
Next suppose the real part of one pair of roots [i ± ico to be numerically
very small but not actually zero. Then for the root fi + io) the value of
F(A.T) corresponding to GJT = (2s + l)n — e is approximately

F(XT) = 2((2s+ l)^ + ie , (3)

so that the terms in (1) corresponding to the two roots /i ± ico contribute

Fig. 11-7-1

This remains always finite, but changes from a large quantity of one
sign to a large quantity of opposite sign as e passes through the value
(2s + l)fi7r£/(O7i. The graph of Q(T) in the case where £, rj and /JL are all
positive will therefore be as represented by curve No. 2 in Fig. 11-7-1.
Hence a new group of real roots T has been gained, situated close to
the values n/a), Sn/co, etc. If T8+1 denotes the (s + l)th of the new set of
roots, then with e = (2s+l)/in^lo)7j this root is approximately

8+1 (4)

The corresponding value of F(A.TS+1) given by (3) reduces to
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and, if the important terms only are retained in (11-6-4), the initial
displacement in qm is approximately given by

Similarly, the initial acceleration is approximately given by

It follows that the conditions (C) of § 11-6 for a positive initial dis-
placement and a negative initial acceleration are both satisfied if

Vlft>0. (5)

It is to be noted that when /i is very small (and 7] 4= 0) the initial dis-
placement qm(t0) is very large.

With regard to condition (D) of §11-6, when the selected semi-
periodic time is T8+1 equation (11-6-7) contains only two important
terms and reduces approximately to

and the lowest root is thus t —10 = n/o). I t may be concluded that
equation (11-6-7) necessarily possesses a root t —10 lower than any of
the set Ts+1 except when s = 0. Hence, as regards this particular set
of roots, the lowest—namely Tx—is the only one which actually leads
to steady oscillations.

11-8. Stability of the Steady Oscillations. The stability of the
steady oscillations when slightly disturbed can be investigated as
follows. Let T denote the semi-periodic time for the undisturbed
oscillations: thus T is assumed to be a root of (11-6-3). Also let Ar be
the value of the typical reducing variable at the starting instant of any
down-stroke in qm in the steady oscillations, so that (see (11-6-2))

for r = 1,2, ...,n.
For simplicity adopt t0 = 0 as the datum starting instant and assume

this to be appropriate to a down-stroke in qm. Then in the undisturbed
motion the successive terminal instants are 0, T, 2T, ..., sT.

.Now assume a small disturbance to occur at t = 0, and in the dis-
turbed motion let the successive terminal instants for the strokes
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become tx = T + el9 t2 = 2T + e2, ..., t3 = sT + e8. Lastly, let 2Rmyr8r

be the increment of the typical initial reducing variable in the dis-
turbance, so that for the disturbed motion

Only first-order terms in e and 8 will be retained in the analysis.
The formulae obtained in § 11-4 may now be used with the simpli-

fications T = to = 0. To illustrate the treatment, consider firstly the
equation which gives the terminal instant tx in the disturbed motion
(see (C) of § 11*4). This is in the present case

S KkmreWJ(-Ar-2Rm7r8r+Rm7r) = 0,
r= l

and on substitution for Ar from (1) and expansion of the exponential
we have approximately

(^Sr) = 0.

The terms independent of e and 8 may be omitted in view of (11*6'3)
and (ll*4-3). If we write for brevity

the equation gives to first order

where the summations are taken for all the n roots A,..
A similar treatment of the more general equation (11*4*14) yields

in which <j>t = ea—ea_1 for « > 1 and <p1 = e1. The * relations which serve
to determine the values of $v <f>2,---,i>a

 a r e accordingly

(2)
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These can be solved by the following artifice. Let zv z2,..., zn_1 denote
the roots of the algebraic equation in z,

P T

{z + xjiz + xj... (z + ajJS-^-O.

Then, for a general value of the variable z, we have

S Qrxr/(z + xr) ^ (z + xx) (z + x2)... (z + xn) S Qray/(z + xr)
Const, x (z - zx) (z-z2)...(z- zn_x)

The numerator and the denominator of the rational fraction on the
right are both of degree n — 1 in z, and by resolution of the fraction into
simple partial fractions we can therefore derive an identity of the form

* * > ( 3 )
Z + X

where E0,El9 ...,En_1 are constants which we shall not require to
determine in the present discussion of the stability. Now if the modulus
of z is assumed sufficiently great, the expressions on the left and on the
right of (3) can legitimately be expanded in powers of 1/z to give

Hence, on collecting together the coefficients of the separate powers of
1/z and equating the results to zero, we obtain the sequence of relations

and so on. A comparison with (2) shows immediately that <f>± = Eo,
and that for s > 1 n_1

# ,^ -^ i = s tf,*r2. (4)

I t may be concluded from (4) that if every modulus | zi \ is less than
unity, then <f>8 tends to zero as s increases indefinitely; but that if any
modulus exceeds unity, then <fi8 tends to grow large. Now the time
interval for the sth stroke in the disturbed motion is T + <j)6. In the
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first case therefore the motion regains its original constant semi-
period T, whereas in the second case the motion is unstable. The results
of this investigation may be summarised as follows: Let zl9 z2,..., zn_1

denote the roots of the equation
n eTXr
2 ^r^mrYr TT XI (̂ J + eT^s) = 0. (5)

Then the steady oscillations corresponding to the semi-periodic time T
will be stable or unstable according as every modulus \ zt \ < 1 or as any
modulus | zi | > 1.

EXAMPLE

Case of Complex Pair of Roots with Real Part Small. A case of
interest is that considered under heading (ii) of § 11-7, where the real
part /JL of one pair of conjugate roots Ax = /i -f io) and A2 = /i — ico is
numerically small. It was there shown that the lowest root of the

series T8+1, namely that root having the value Tx = — 11 — — I, may
(0 \ M7J/

be expected to lead to genuine steady oscillations provided that rjj/i > 0.
If this value for T is adopted in (5), the equation contains only two
important terms and reduces to

(z + eTiA3) (z + eTiA4)... (z + eT^) W = 0,

where W = (fi + io)) (£ + irj) I T ( +i(o) I e
T^+i(t]!) + conjugate.

Now to first order eT^+^ = - 1 + ̂  ( - TJ + i£),

e ^ ^ i(Jt)7j

Hence after some reduction we find

/ITT

The approximate values of the roots zi for the case considered are
accordingly ^A, ^

Consequently, if the real parts of all the roots A other than Ax and A2

are negative, then the motion is stable or unstable according as
/i < 0 or > 0.
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11-9. A Graphical Method for the Complete Motion of
Binary Systems. The computation of the motion which follows any
given disturbance is, in general, a matter of considerable difficulty. In
the special case of a system having two coordinates q1,q2, of which q2,
say, is frictionally constrained, the solution can be greatly simplified
by the use of a graphical treatment, provided that only rough results
are required. Some remarks follow regarding the underlying principles
of the method.

The problem for solution is the description of the complete motion
which results from any given initial disturbance. For simplicity we
shall assume that this disturbance is imposed at the starting instant
t0 of a down-stroke in q2, so that initially q2(t0) = 0. Attention will be
restricted to the case in which the four roots of A(A) = 0 are complex.
For the purpose of the graphical method it is convenient to denote
these roots by > „ , • > > „ • %

J A1 = fl + Id), A2 = fl —10),

A3 = [i' + i(o', A4 = /i' — iu)',
and to write Ax k21 oc1(ts)/R2 = Xs + iYs = Zs,

A2&22a2(g/i?2 = Xa - iYs = Zs,

together with Axh2 1 y ^

Then if r8 = ts — ts_x denotes the time interval for the 5th stroke in q2, the
recurrence relation (11-4-11) yields for the special system considered
the four scalar equations

(1)

while the condition (11*4-3) requires that

O. (2)

Further, since q2(ts) = 0 it follows from (11-4-13) that

0. (3)
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The foregoing relations may be interpreted geometrically by the use
of two pairs of diagrams. Figs. 11-9-1 (a) and (b) represent the pair
appropriate to the unaccented symbols, while two similar diagrams,

Fig. 11-9-1 (a)

Increasing
time

Fig. ll-9-l(6)

referred to hereafter as Figs. 11-9-1 (a') and (&') but not actually drawn,
would relate to the accented symbols. A description of Figs. 11-9-1 (a)
and (6) follows.

In Fig. 11-9-1 (a) the points D and U have respectively the co-
ordinates (£,?/) and ( -£ , — ij), and are respectively marked "down"
and "up" ; while the points Po, Pl9 etc. have the coordinates (X0,Y0),
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(X^Yj), etc. Now the equations (1) corresponding to the first down-
stroke are Zx - £ = (Zo -

Hence, in the diagram, DP1 = DP0^Ti and the angle P0DPi =
Again, the equations corresponding to the ensuing up-stroke are

so that UP2 = UP1eJlT* and the angle Px £/P2 = 6>r2.
More generally, -DP2s+i = DP^^+i with the angle P2sDP2s+1

= 0)T28+i
for the typical down-stroke, while UP2s+2 = UP2s+1 ê

T +̂2 with the
angle P^+i ^As+2 = Ct)T2s+2 f°r the typical up-stroke. These rotations
and expansions of the successive radii can be effected conveniently by
the use of the supplementary diagram Fig. 11-9-1 (6), which depends
solely upon the first pair of roots A1? A2. The diagram consists of one
or more complete turns of the logarithmic spiral

x + iy = e{ti+i(l))t

or r = &*,

d = (ot,

where t (time) is regarded as a variable parameter. The number of
turns of the curve, and the choice of the scale, must be such that the
radius vector r in Fig. 11-9-1 (b) embraces the range of values of the
radii DP and UP to be covered in Fig. 11-9-1 (a). A scale for the time
parameter t is marked along the arc of the spiral.

The complementary pair of diagrams Figs. 11-9-1 (a') and (6')
would be similar to the two just described, but would relate to the
accented symbols. In view of the condition (2) the abscissae for the
homologous centres D, D' (or U, V) in the two displacement diagrams
Figs. 11-9-1 (a) and {a') will have equal magnitudes but opposite signs.
Again, the condition (3)—which is equivalent to the sth terminal
equation—requires that the abscissae of the homologous points
Ps, P'8 shall also be equal and opposite.

The actual manipulation of the two pairs of diagrams may now be
explained. For the two displacement diagrams Figs. 11-9-1 (a) and (af)
transparent graph paper is used; whereas the two spiral diagrams
Figs. 11-9-1 (6) and (6') are preferably prepared in ink on white unruled
paper. I t should be noted that the positions of the centres D, U and
D', U' in the two displacement diagrams are fixed by the dynamical
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constants and are independent of the initial disturbance. The first step
in the actual solution is to mark in Figs. 11-9-1 (a) and (a') the positions
Po, P

f
0, corresponding to the chosen disturbance: since the disturbance

is assumed to occur at the starting instant of a down-stroke in q2,
the abscissae of the initial points will be equal and opposite. To find
the positions of Px and P[ hold sheet 11-9-1 (a) superposed on sheet
11-9-1 (6) with D registered on the pole Q, of the first spiral and Po on
the arc of the curve; similarly, hold sheet 11-9-1 (a') superposed on
sheet 11-9-1 (&') with Df registered on Q' and P'Q on the second spiral.
Then travel continuously in the anticlockwise direction along the
spirals to the first positions Pl9 P'x for which the increments of the
parameter t are the same (T^) in the two diagrams, and the abscissae
are again equal and opposite. To findP2, P2 from Pl9 P'v the procedure
is similar, but the up-centres U, U\ instead of the down-centres D, D',
are in this case registered on the poles of the spirals. Two observers—
one for each pair of diagrams—are necessary.

It is possible to obtain the full history of the complete motion
resulting from an arbitrary disturbance by the use of the foregoing
method. The velocities and displacements at any time t, not neces-
sarily a terminal instant, can clearly be deduced by expressing the
formulae (11-4-9) and (11-4-10) in terms of the current coordinates of
the points P(t), P'(t) along the spirals. In particular, the value of the
velocity q2(t)/R2 at any stage is given by twice the sum of the current
abscissae. A numerical illustration is given in example (iv) of § 12-9.

It should be noted that the condition (11-4-15) for ankylosis at the
terminal instant ts is expressible in the present modified notation as

where po = AUA22-A12A2V

This inequality can if necessary be tested from time to time as the
work proceeds. An indication of the occurrence of ankylosis is, however,
provided by the graphical method itself. For, in any genuine down-
stroke, the starting acceleration in the frictionally constrained co-
ordinate must be negative, while in any genuine up-stroke it must be
positive. At the starting instant itself the velocity is zero. Hence, if,
for instance, a down-stroke is due, and if after one time step, or fraction
of a step (say St) the sum of the current abscissae of P and P' is negative,
then 8q2jdt is negative and the stroke is realisable: whereas, if SqJSt is
positive, ankylosis is indicated.



CHAPTER XII

ILLUSTRATIVE APPLICATIONS OF FRICTION
THEORY TO FLUTTER PROBLEMS

12*1. Introductory, (a) Flutter of Frictionless Aeroplane Struc-
tures. In the simple theory of flutter* it is assumed that no solid
friction is present in the aeroplane structure and that linear laws remain
applicable throughout the motion. In this ideal case the ordinary
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critical speed for flutter of any given type is defined to be the lowest
forward speed of the aeroplane for which free oscillations of that type
are steady (see § 9-8). For any speed below this critical value the oscil-
lations resulting from any given small initial disturbance eventually
die away; at the actual critical speed the motion tends to become

* See for instance Ref. 30.
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simply sinusoidal; while for all speeds over a certain range whose
lower limit is the critical speed, oscillations occur which increase to
an indefinitely large amplitude, however small the initial disturbance
may be. The term critical speed will in the present chapter be used
with the foregoing significance, and will, without further specific
qualification, always refer to the ideal frictionless aeroplane. It is
clear that at the critical speed for flutter the determinantal equation
will have at least one pair of conjugate purely imaginary roots. I t
will be convenient to refer to one or other of these particular roots as
the critical root.

The flutter characteristics of an aeroplane can be represented by
means of two diagrams, showing respectively the variation of damping
factor /i (the real part of A = fi ± ico) and frequency (o/2n with airspeed,
for the several constituents of the motion. Figs. 12-1-1 and 12-1-2 are ex-
amples of a pair of such diagrams.* They relate to the rudder-fuselage
flutter of an aeroplane which is referred to as aeroplane No. 1 in the
sequel. The curves marked fi and CJ correspond to an oscillatory
constituent which is damped for all speeds less than the critical value
Vc = 240 feet per second, and grows indefinitely for all higher speeds.
The second constituent ju,', o)f remains a decaying oscillation through-
out the range of speeds covered by the diagrams.t

It is possible for an aeroplane to be free from flutter throughout the
range of its flying speeds, but to have a very small margin of stability
in the vicinity of a particular flying speed. Fig. 12-1-3, which is purely
diagrammatic, illustrates this condition.

(6) Flutter in Practice. In the practical sense "flutter" means an
oscillation which grows, and finally either breaks the structure or
remains bounded at some amplitude whose value is dependent upon the
departures from linear laws. As pointed out in § 11-1 (e), solid friction
introduces a very special departure from linearity.

(c) Applications to be Considered. The numerical examples to be
given are restricted to tail oscillations involving angular displacement
of the rudder and torsion of the fuselage. Moreover, they relate mainly
to the simplest aspect of the theory—namely, the question of steady
oscillation with either the rudder or the fuselage frictionally con-
strained.

* The curves drawn are based on data given in Chap, v of Ref. 42.
f At a speed of about V = 580 this constituent in fact degenerates into a pair of sub-

sidences.
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I t will be useful to review briefly the conditions for the existence and
stability of steady oscillations in these applications.

In accordance with the notation of § 11-7 we shall suppose the fric-
tionally constrained coordinate (rudder or fuselage) to be q2, and
£, + irj to be the value of Ar&2ryr for the critical speed, where Ar is the
critical root. If this root becomes JJL + ia> when the airspeed is slightly
changed, then ju, will be small and will be positive or negative according
as the airspeed is above or below its critical value. It follows from
equations (11-7-5) and (11-8-6) that if TJ > 0, then for a certain range of
the speed above the critical steady oscillations will be possible, but
will be unstable and therefore not realisable in practice. On the other
hand for speeds below the critical, since /i<0, stable steady oscillations
will be possible provided that rj < 0. The particular oscillations here
considered are those appropriate to the root Tx of the semi-period
equation which lies adjacent to the first asymptote (see Fig. 11-7-1).

Unfortunately, the numerical data available for the calculations are
very scanty. The first example given is that of an actual aeroplane
(aeroplane No. 1), for which, when solid friction acts either on the
rudder or the fuselage, steady oscillations are theoretically possible
only at speeds above the critical; as already explained, these oscilla-
tions are unstable. Aeroplane No. 2 is an artificial system, in the sense
that its dynamical constants have been derived from those of aeroplane
No. 1 by a transformation which changes the dynamical constants of
the tail system, but leaves the roots of the determinantal equation
unaltered at all speeds. Hence the tail flutter characteristics of the
two aeroplanes are effectively identical. Nevertheless, when friction
is present, the behaviour of aeroplane No. 2 is different from that of
No. 1. On the modified aeroplane, if the friction acts on the rudder
only, stable steady oscillations can occur at speeds below the critical.
The graphical method of § 11-9 is applied to provide a description of
the complete tail oscillations under representative initial disturbances.
The final example relates to another artificial system (aeroplane No. 3)
which is completely stable at all speeds when frictionless, but which is
shown to admit bounded oscillations at a particular speed when friction
is introduced.

A rather more detailed summary follows of the main conclusions
for the three different aeroplanes considered.

(d) Characteristics of Aeroplane No. 1 (see Part I). The numerical
data for this case are appropriate to a full scale aeroplane, the tail
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flutter characteristics of which have in fact been investigated by
means of a model in a wind tunnel. From Fig. 12-1-1 it will be seen
that the critical speed is about 240 feet per second.

The results when the friction acts on the rudder only are as follows:

(i) Speeds below the critical. The motion dies for all disturbances.

(ii) Speeds above the critical. Large disturbances produce flutter and
small ones decaying motion. Steady oscillations (constant amplitude
and frequency) could result from a special initial disturbance, which
varies with the airspeed and is directly proportional to the limiting
friction. The steady oscillations appropriate to any particular speed
are unstable, so that any slight variation from the correct initial
disturbance will give rise either to a decaying motion or to flutter.
Figs. 12-3-2 and 12-4-1 show the steady oscillations for the airspeeds
260 feet per second and 500 feet per second, respectively.

When the frictional moment is applied to the fuselage only, the
results are similar.

(e) Characteristics of Aeroplane No. 2 (see Part II). Aeroplanes
Nos. 1 and 2 have the same damping-factor and frequency diagrams,
and therefore effectively the same flutter characteristics. But their
responses to disturbances at speeds below the critical are quite
different in the case where the friction acts on the rudder. On
aeroplane No. 1, if the airspeed is less than the critical value 240, the
oscillations decay. This also occurs with aeroplane No. 2, provided the
airspeed is less than about 215. On the other hand, for any speed
within the range 215-240 two distinct sets of steady oscillations are
possible, one (small amplitude) of unstable type and the other (large
amplitude) of stable type. Consequently, very small disturbances
produce motions which die; moderate ones give rise to oscillations
which grow and finally tend to the large amplitude stable steady motion:
still greater disturbances result in oscillations which decrease to the
same stable motion.

The histories of the motion due to three different initial disturbances,
for an airspeed of 230, are represented in Fig. 12-9-2. Curve B is the
unstable (small amplitude) steady motion, the angular amplitude of
the rudder in this motion being about 0-039 degree per foot-pound of
(limiting) frictional hinge moment applied to the rudder. The corre-
sponding amplitude for the stable steady oscillations (not actually
shown in the diagram) is 0-278 degree per foot-pound of friction. Any
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disturbance similar to, but less than, that required to initiate oscilla-
tions B, gives rise to a motion which decays (e.g. oscillations A):
whereas any similar disturbance greater than that corresponding to
motion B produces oscillations which increase to a limiting amplitude
of 0*278 degree per foot-pound of friction (e.g. oscillations C). A maxi-
mum amplitude increase of about 7:1 is thus to be expected at the
particular airspeed considered.

The theory shows that the amplitude of the stable steady oscillations
increases very rapidly as the critical speed is approached. On the
other hand, the amplitude of the unstable set is not greatly affected.
Hence the effect of the friction in the present instance virtually amounts
to a slight, and somewhat indefinite, reduction of the critical speed.

(/) Characteristics of Aeroplane No, 3 (see Part III). This aeroplane
is free from tail flutter at all airspeeds, but its margin of stability is low.
The feature of interest is the fact that at an airspeed of 230, its oscil-
latory characteristics, when friction is present, are identical with those
of aeroplane No. 2. This shows the possibility of bounded free oscilla-
tions occurring on an aeroplane which has no true critical speed.

P A R T I. A E R O P L A N E N O . 1

12-2. Numerical Data. The system here considered is the aero-
plane of which the tail flutter characteristics are discussed in Chapter v
of Ref. 42. The two degrees of freedom* correspond to angular dis-
placement q1 of the tail unit in torsion (measured positively when the
starboard tailplane moves downwards) and angular displacement q2

of the rudder (measured positively when the rudder trailing edge moves

Table 12-2-1

Dynamical Coefficients for Aeroplane No, 1

Fuselage (gx)

Coefficient

i11

c11

°ii

c1 2

Value

44-7
1-77F

33,700
- 1 1 5
-0-186F
- 0-101F2

Rudder (q2)

Coefficient

I21

Ba
A
B22
C22

Value

- 1 1 5
0-041V
0
0-745
0-034 F
0-00358 F2

* The coordinates qlf q2 correspond respectively to Q, and ( of Chap, v of Ref. 42.
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to port). The dynamical coefficients appropriate to the frictionless
aeroplane are reproduced in Table 12-2-1 from Table 43 of Ref. 42:
for simplicity the gravitational cross stiffness is neglected.

Except where otherwise stated angles are assumed to be measured
in radians, moments in pounds feet, stiffnesses in pounds feet per
radian, and airspeeds V in feet per second.

The determinantal equation for a general airspeed F is

PoM+PiW+PtW+Psl+P* = 0, (1)
where p0 = 31-979,

px = 2-6717F,
p2 = 25106-5 + 0-111682F2,
p3 = 1145-8F + 0-0104776F3,
Pt = 120-646F2.

Table 12-2-2 gives the calculated roots for a number of different air-
speeds: the four roots are denoted by

Ax = fi + io)9 A2 = /i — io), A3 = [ir + ico', A4 = fi' — ia)'.

Table 12-2-2

Boots of Determinantal Equation for Aeroplane No. 1
(Also applicable to Aeroplane No. 2)

V

0
100
200
230
239-807
260
280
300
400
500

0
-1-6932
-1-3826
-0-3590
00
0-6868
1-2684
1-7600
31912
3-7493

CO

280195
27-3904
25-5809
25-4747
25-5811
25-9749
26-5275
27-1810
31-2253
35-9271

0
- 2-4838
-6-9719
-9-2487
-100174
-11-5477
-12-9647
-14-2929
-19-9002
-24-6357

a/

0
6-6277
13-4658
14-8973
15-2049
15-6327
15-8515
15-9176
14-7198
10-7665

The critical speed for flutter is thus 239-8.

12*3. Steady Oscillations on Aeroplane No . 1 at F = 260.
(Rudder Frictionally Constrained.) The calculations for this case
will be explained in some detail. The dynamical coefficients, as deduced
from Table 12-2-1 with F = 260, given in Table 12-3-1.

Further (see Table 12-2-2),

A1,A2 = ju,±id) = 0-6868 ±25-9749i,
A3, A4=/i' ± io)' = - 11-5477 ± 15-6327i.
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Table 12-3-1

Dynamical Constanta for Aeroplane No. 1 at V = 260.

Fuselage (q^

Coefficient

Ai

G11

A11

B
o 1 2

Value

44-7
460-2
33,700
- 1 1 5

-48-36
-6827-6

Rudder {q2)

Coefficient

B21

^21
^22
B
C 22

Value

- 1 1 5
10-66
0
0-745
8-84

242-008

The values of the constants \.Jc2ryr are given by (11-4-1), and the
following formula is typical:

(1)(1)

The results are

= (7-81516 + 9-38083i)10-3, (2)

i7/' = (-7-81516+ 35-23619i)10-3, (3)

while A2&2272 a n ( i ^4^2474 a r e respectively the conjugates of (2) and (3).
It should be noted that an immediate check of the accuracy is here
provided by the condition (see (11-4-3))

S KKYr = 0.
r=l

(4)

The next step is the solution of the semi-period equation (11-6-3),

Now
6 T A i + 1 ~ cosh cos

and the expression appropriate to the root A3 is similar. Hence (5)
is reducible to

£' sinh Tfi' - TJ' sin T<or _
+ h T' + T' "cosh Tju, + cos To) + cosh Tfi' + cos To)'

Curve No. 2 of Fig. 12-3-lis partofthe graph of £}(T) plotted against T.
The lowest root of the set discussed in §11-7 works out, on close
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approximation, to Tx = 0-11856. Hence

= 15-56 +11-8H,

= -1-0136 + 0-5293&*.

The initial displacement q2(0)/R2 and initial acceleration q2(0)/R2 are
next calculable by the formulae (11-6-5) and (11-6-6), namely

.(6)
R2

0-15

0-10

-0-10

-0-15

From (2) and (3)
lc21y1 = (368-847-291-122i)10"6,

&23T3 = (1697-198-753-774i) 10"6,

X\k21yx = - 0-238299+ 0-20944H,

= - 0-460581-0-529072i.

2-^ulPo = 1*39779.

(8)

(9)

Again a22 = A^

At this stage several checks on the accuracy are possible. Firstly, from
(11-4-2) and the definition of the constants <fi it follows that

4

(fi2 = Cnlp± = 2
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The value of Cn/p4 works out as 4132-09 x 10~6, which is in exact
4

agreement with the value of 2 k2rYr given by equations (8) and (9).

Secondly (see (11-4-4)),
4

S KK7r = -«22 = -AllP0>
and the calculated values are — a22 = —1*39779 and

/r = - 1*39776.

The numerical checks are thus satisfactory.

4

2
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-0-01

-0-02
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0 0-04 t 0-08

Fig. 12-3-2

From equations (6) and (7) we find that

= +0-015712,

= -9-4713.

0-12

Hence conditions (C) of §11-6 are satisfied. Conditions (D) require
that the velocity q2(t) shall not vanish within the interval t = 0 to t = T.
To decide this question we shall determine the actual motion of the
rudder (q2) during the first stroke. The displacement at any time t
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during this stroke is

367

where T = 0-11856; while the velocity is given by the formula

The results, which are shown plotted in Fig. 12-3-2, show that all the
required conditions are satisfied. The dotted curves correspond to a
simple harmonic motion, and are added for comparison.

Equation (11-8-5) reduces in the present case to the cubic
17-0109z3- 19-9916z2 + 2-50234z - 1 = 0.

There is one real root z± = 1-0897, and two conjugate complex roots
having the modulus 0-2322. Since | zx \ > 1, the oscillations are unstable.
I t may be noted that the value of z± agrees quite well with the approxi-
mate value 1-083 given by the formula (11-8-6).

12-4. Steady Oscillations on Aeroplane No. 1 at Various
Speeds. (Rudder Frictionally Constrained.) A summary of results
for other airspeeds will now be given. Table 12-4-1 gives the values of
the constants X1k21y1 and

Table 12-4-1

Values of X1k21y1 and XsJc2Sy2for Aeroplane No. 1
{Rudder Frictionally Constrained)

V

239-807 (critical)
260
300
500

9-6379+ 6-8777*
7-8152+ 9-3808*
4-0923 + 11-2649*

-2-5033+ 9-8069*

^3^2373 x l ( ) 3

-9-6379+40-7463*
-7-8152 + 35-2362*
-4-0923+28-7984*
+ 2-5033+25-5891*

The graph of the function £l(T) appropriate to the critical speed
Vc = 239-8 is curve No. 1 of Fig. 12-3-1, and it has asymptotes
situated at the values T = njo), STT/O), etc., where n/a) = 0-12281.
The lowest non-zero root of the semi-period equation in this case is
T = 0-32848, but the oscillations corresponding to this root can be
proved to be spurious, since q2(0) and #2(0) are both positive.

For a speed, say Vc + e, very close to the critical valu^, the lowest
non-zero root lies adjacent to the first asymptote of curve No. 1 and
its value is approximately

T = 0-12281 -0-00023e.
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In this case, if terms in 1/e only are retained,

12-4

e T A i+ l

ft(O) 0-

e
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Hence steady oscillations can occur if e is positive (i.e. for speeds just
above the critical). However, if e is very small, the initial disturbance
required will be correspondingly large, and the oscillations themselves
will approximate closely to the sinusoidal type.

Curve No. 2 has already been discussed in § 12-3, while curves No. 3
and No. 4 relate respectively to V = 300 and V = 500. It may be
noted that all the curves have the same slope (— |a22) at the origin
T = 0. The calculated values of q2(0)/R2

 a n d o f M®)IR2 f o r t h e lowest
root T in the several cases considered are as follows.
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Table 12-4-2

V

239-8 (critical)

260
300
500

Lowest
root T

0-32848

0-11856
011340
009111

0.(0)/*.

+ 0005675

+ 0015712
+ 0006801
+ 0-002851

M0)/B2

+ 1-4624

-9-4713
-3-6527
-1-7573

Remarks

Condition (C) of
§ 11-6 violated

) Theoretically
V possible, but
j unstable

The first down-strokes in the rudder motion corresponding to the
two cases V = 260 and V = 500 are shown compared against sinusoidal
oscillations in Figs. 12-3-2 and 12-4-1. It will be seen that the deviation
from the sine curve is quite appreciable in the case V = 500.

12-5. Steady Oscillations on Aeroplane No. 1. (Fuselage
Frictionally Constrained.) The oscillations when the fuselage is
frictionally constrained have not been investigated in detail. To
render the formulae of §11*6 directly applicable, the coordinate q2

must in this case be chosen to refer to the fuselage and the coefficients
in Table 12-2-1 must be correspondingly transposed. The value of
^i^2i7i appropriate to the critical speed works out as

£ + iv = ( - 128-28 + 329-55i) x 10"6.
Since rj > 0, the steady oscillations occur at speeds above the critical.

P A R T II. A E R O P L A N E N O . 2

12#6. Numerical Data. The complete set of dynamical coefficients
required for an application of the theory to rudder-fuselage oscillations
has only been measured for the one aeroplane already considered. In
order to provide an illustration of a system which exhibits steady
oscillations below the critical speed, it has been necessary to adopt
rather arbitrarily a new set of coefficients. These have been derived
by postmultiplication of the inertial, damping, and stiffness matrices
appropriate to aeroplane No. 1 by a non-singular matrix u of suitable
constants. In this case, if A, B, C refer to the modified system, we shall
have

and the roots of the determinantal equation for each airspeed will
accordingly be unchanged by the transformation. The elements of u
must, of course, be chosen such that the symmetry of the inertial and
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elastic stiffness matrices is preserved and that the discriminants of the
kinetic energy for the modified system are all positive. Moreover, in
order that steady oscillations shall be possible on the modified system
at speeds below the critical, we require 7/ < 0. By an application of
(12-3*1), it is easy to show that this last condition can be expressed as

(Cu - Ano)2) {/if* + G>'2 - (o2) - 2o)YBn < 0.

By trial a suitable po^tmultiplier is found to be

u= \ 1-0 0 ] .
L-10-0 7-47826J

The dynamical coefficients for the modified system are summarised
in Table 12-6-1. _ _, n

Table 12-6-1
Dynamical Coefficients for Aeroplane No. 2

Fuselage fa)

Coefficient

i11

c11

A11

B
o 1 2

Value

56-2
3-63 F

33,700 + 1 0 1 F 2

-8-60
-1-39096 F
- 0-75530 F2

Rudder {q2)

Coefficient

Aa
Ba

T
R
O22

Value

-8-60
- 0-299 F
- 00358 F2

5-57130
0-25426 F
0-026772 F2

The coefficients of the new determinantal equation are the same as
those for equation (12-2-1), multiplied by the constant factor 7-47826.

12-7. Steady Oscillations on Aeroplane No. 2. (Rudder
Frictionally Constrained.) For the critical speed Vc = 239-8 it is
found that

-irj = (7-88129- l-41363i) 10~3,
j sg ' + ay = (_ 7-88129 + 15-29856i) 10"3,

and since 7/ < 0 stable steady oscillations are possible below the critical
speed.

Curve No. 1 of Fig. 12-7-1 shows the graph of Cl(T) corresponding
to the critical speed. The lowest non-zero root of the semi-period equa-
tion is T = 0-09608, and this leads to the values q2(0)/R2 = 0-000551
and q2(0)/R2 = -0-3474. The corresponding steady oscillations can be
shown to be unstable.

With V = 230, the calculated constants are

£ + iv = (7-51056-2-1030H) 10~3, \
iri' = (-7-51056+ 15-96533*)1/wa ' ( '
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and the semi-period equation is found to have for two of its roots the
values Tx = 0-09937 and T2 = 0-11607 (see curve No. 2 of Fig. 12-7-1).
The initial displacement and acceleration corresponding to the lower
root Tx are

q2(0)/R2 = 0-000681 and q2(0)[R2 = - 0-4385;

while those appropriate to T2 are

q2(0)/R2 = 0-00485 and q2(0)/R2 = - 3-312.
In both cases condition (D) of § 11-6 is also satisfied.* An application
of the criteria for stability shows that the first set of oscillations are
unstable and the second set stable. This suggests that with aeroplane
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No. 2, for a certain range of the airspeed below the critical speed, a
moderately large disturbance may produce oscillations which grow
to a relatively large constant limiting amplitude, but that a smaller
disturbance will produce decaying oscillations leading ultimately to
ankylosis. The limiting amplitude to be expected from growing
oscillations will increase continuously the closer the speed approaches
the critical value.

From Fig. 12-7-1 it is seen that at a speed as low as V = 200 (curve
No. 3), the two real roots corresponding to Tx and T2 have disappeared,
so that steady oscillations are no longer possible. Hence at this speed
the oscillations due to any disturbance eventually die away.

* This is confirmed by the graphical method in § 12-9.
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12*8. Steady Oscillations on Aeroplane N o . 2. (Fuselage
Frictionally Constrained.) The particular transformation used to
derive the dynamical coefficients for aeroplane No. 2 from those of aero-
plane No. 1 is such that the coefficients A22, B22 and C22 in Table 12-6-1
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0-01

are all proportional to the corresponding coefficients A22, B22 and C22 in
Table 12-2-1. Since also the roots of A(A) = 0 appropriate to the critical
speed are the same in the two cases, it readily follows that the conclu-
sions drawn in § 12-5 are equally applicable to aeroplane No. 2. Hence
when the fuselage is frictionally constrained, the steady oscillations on
aeroplane No. 2 occur above the critical speed, and are unstable.

12*9. Graphical Investigation of Complete Motion on Aero-
plane No. 2 at V = 230. (Rudder Frictionally Constrained.)
In § 11-9 a method is given for the graphical description of the com-
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plete motion of a binary system. This method will now be applied to
aeroplane No. 2 for V = 230, which is about 10 feet per second below
the critical speed. Throughout, the friction is assumed to be applied
to the rudder only.

f\ no
0 Uz

0-01

fi.fli

ft.ft?

(

-

, /

H

/
/ /
X/

X

/

\
\

\

\
r Vi

0'

/

/

k

\\
1

i
r
1

f

/ / 1
//

/
/

X'

-0-01 ' 0-01

Fig. 12-9-1 (a')

The appropriate values of ^rk2ryr are (see (12-7-1))
^1*2171 = (7-51056-2-1030K) 10~3,
^3^2373 = (-7-51056+ 15-96533i) 10~3.

Hence, in displacement diagram No. 1 (Fig. 12-9-1 (a), corresponding
to Fig. 11-9-1 (a)),thedown-centreDandup-centre U have, respectively,
the coordinates (+ 7-51 x 10~3, - 2-10 x 10~3) and ( - 7-51 x 10"3,
-f 2-10x 10~3); while in displacement diagram No. 2 (Fig. 12-9-1 (a'))
D' is the point (-7-51 x 10~3, 15-97 x 10~3) and U' is ( + 7-51 x 10"3,
-15-97 x 10~3).
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Spiral No. 1 (Fig. 12-9-1 (6), corresponding to Fig. 11-9-1 (6)) is the
curve r ^ / w

where 6 is the angle of rotation of the radius r in radians, and 6 = a)t.
For convenience, the arc is divided into equal steps 6 = 10 degrees

1 I I 1 I 1 11 1 C

111
Yosq

^ y /

V\ 1 1 1 1 1 1 1 1 1

——4—^^\/

r J ^
Fig. 12-9-1 (6) Fig. 12-9-1 (b')

or TT/18 radians, so that each step represents a time interval of
t = TT/18O> = 0-0068512 sec. Spiral No. 2 (Fig. 12-9-1 (6')) is the curve

g-0-620830'

where d' = co't, and its arc is divided into steps representing the same
time intervals as for No. 1. Thus d'\d = o)rjo), so that a step in 6
amounting to 10 degrees corresponds to a step in d' amounting to
5-8479 degrees.
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E X A M P L E S

(i) Steady Oscillations Corresponding to 2^ = 0-09937. This is one of
the cases discussed in § 12-7. The relevant data are

V r - 1 \ == (5-1738+ 24-1772i)10~3,

Hence the positions of Po, P'o (which are fixed by the initial conditions
for the first down-stroke) are

Po = (5-17 x 10-3, 24-18 x lO"3),

P'o = (-5-17X10-3, - 15-75x lO"3).

These points are marked on the displacement diagrams Nos. 1 and 2,
respectively, and the description of the motion is then begun. The first
operation is to superpose displacement diagram No. 1 on spiral No. 1,
with D and Po registered, respectively, on the pole and on the curve;
the second pair of diagrams is superposed in a similar manner. The
two observers (one for each pair of superposed diagrams) now follow
the spirals with pointers, proceeding by equal time steps in the
positive sense, so that in each case the radius vector DP is shrinking.
In the early stages the abscissae of P, P' (initially numerically equal,
although of opposite signs) begin to diverge; but after about 14-5
steps (i.e. about 145 degrees on diagram No. 1 and 85 degrees on
diagram No. 2), they again become equal and opposite. At this stage
the velocity again vanishes, and the first down-stroke is complete.
It is found that the new positions of P and P' (namely Px and P[) are
such that O lies on and bisects P0Pl9 while similarly 0' lies on and
bisects P'OP'V This shows that the motion is steady. Further, the angle
of rotation 6 amounts to 145 degrees, and this corresponds to a semi-
period Tx = 0-0993 sec, in good agreement with the value obtained by
direct calculation.

(ii) Steady Oscillations Corresponding to T2 = 0-11607. Here the
points Po, PQ have, respectively, the coordinates

Po = (4-11 x 10-3, 82-14 x 10-3),

P'o = ( -4 - l lx lO" 3 , -19-OOxlO-3).
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The procedure is similar to that described for the previous case. It is
found that the stroke is complete after 16*9 steps, and that the motion
is steady. The value of the semi-period derived by this method is
T2 = 0-116.

(iii) Growing Oscillations following a Particular Disturbance. The
initial displacements and velocities are here all assumed to be 50 per
cent in excess of those appropriate to the (unstable) steady oscillations
considered in example (i).* Thus

Po = (7-76 x lO"3, 36-27 x 10~3),
P'o = ( - 7-76 x 10-3, - 23-62 x 10"3).

Table 12-9-1

Synopsis of Results for Example (iii) (Growing Oscillations)

Stroke
no.

1
2
3
4
5
6
7
8
9

10

Type

Down
Up
Down
Up
Down
Up
Down
Up
Down
Up

of
time
steps

15-7
1615
15-6
15-75
15-7
15-85
15-85
15-9
15-95
160

Time
of

stroke

01076
01105
0-107
0-108
01076
01086
0-1085
0109
01095
0-1096

X9*

Initial

7-75
-7-2

4 0
-4-75

4-75
-4-75

4-75
-4-75

4-65
-4-6

Coordinates of Z8

10s

Final

-7-2
4 0

-4-75
4-75

-4-75
4-75

-4-75
4-65

-4-6
4-6

Y8 x 103

Initial

36-25
-35-9

36-7
-37-5

38-4
-39-25

39-9
-40-7

41-5
-42-5

Final

-35-9
36-7

-37-5
38-4

-39-25
39-9

-40-7
41-5

-42-5
43-7

Coordinates of Z

X'$ x 103

Initial

-7-75
7-2

- 4 0
4-75

-4-75
4-75

-4-75
4-75

-4-65
4-6

Final

7-2
- 4 0

4-75
-4-75

4-75
-4-75

4-75
-4-65

4-6
-4-6

s

Y\ x 103

Initial

-23-6
16-3

-16-9
17-5

-17-5
17-5

-17-5
17-6

-17-6
17-6

Final

16-3
-16-9

17-5
-17-5

17-5
-17-5

17-6
-17-6

17-6
-17-5

The results obtained at the terminal instants of the first 10 complete
strokes of the rudder are given in Table 12-9-1. To obtain a more
detailed description of the motion it is necessary, as explained in
§ 11-9, to note the current positions of P and P' on the spirals for a
number of the individual time steps. The value of the velocity q2(t)/R2

at any stage is then twice the sum of the current abscissae, while the

corresponding displacement q2(t)jR2 is twice the real part of -y-^ -f —^.
Ax A3

Alternatively, the displacement can be deduced by integration of the
graph of the velocity. Curve C of Fig. 12«9*2 shows the complete motion
determined by the first method for the first nine strokes of the rudder:

* Note that if the displacements and velocities in any initial disturbance are all increased
proportionally, then the initial reducing variables will also all increase proportionally.
Hence, in the present case the vectors OP0 and O'Po will be 50 per cent in excess of those
appropriate to example (i).
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the growth of the oscillations is obvious. However, this growth cannot
continue indefinitely, and it is clear that the ultimate motion will be
the stable steady oscillations discussed in example (ii). The initial
angular displacement of the rudder is in the present case 0-0585 degree
per foot pound of frictional moment B2, while the maximum displace-
ment is 0-278 degree per foot-pound. The ratio of initial to final ampli-
tude is thus about 1:5.

2

(iv) Decaying Oscillations leading to Ankylosis. For this example the
initial displacements and velocities are assumed to be only three-
quarters of those appropriate to the (unstable) steady oscillations of
example (i). The resulting motion is found to be complete for four
strokes of the rudder; temporary ankylosis then occurs, and eventually
permanent ankylosis.

The initial data for the first stage of the motion are
Po = (3-9 x 10"3, 18-1 x 10-3),
P'o = (-3-9X10-3, - l l -8x lO- 3 ) ,

corresponding to a rudder displacement q2(0)/R2 of about 0-51 x 10~3.
The displacements at the stopping instants of the first four strokes are
found by the graphical method to be respectively

-0-215 x 10-3, 0-305 x 10~3, -0-131 x 10~3, and 0-087 x 10"3,
while the variation of velocity #2/^2 during each stroke is determined
by addition of the abscissae of P, P ' for corresponding positions along
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the spirals. A graphical integration of the velocity diagram, controlled
by the known values of the displacements at the terminal instants,
yields the final graph of the rudder displacement (see Fig. 12*9»3)
during the first four strokes.

An attempt to continue the graphical operations, with the down-
centres D, Dr registered on the poles of the spirals on the supposition
that complete motion continues with a down-stroke, leads immediately
to the contradictory result that the starting acceleration for the fifth
stroke is positive. This indicates ankylosis. The measured positive
starting acceleration does not here mean that complete motion ensues
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with an up-stroke. A genuine up-stroke would be realisable only if
the acceleration happened to be positive with the up-centres U, U'
registered on the poles of the spirals: this is not true for the present case.

In order to determine the ankylotic motion we may use either an
analytical or a graphical method. The analytical treatment will be
illustrated here. The differential equation for the ankylotic motion is
(see §11-5) An4l + Bll41 + Cilql = -C12<?2(*4), (1)
where q^) ^s ̂ e constant value of the ankylosed rudder coordinate.
Further, ankylosis will persist so long as the quantity

(A21q± + B21qx + <721?1 + C22q2(t^))IR2 (2)

is numerically less than unity.
The first step is to derive the initial displacements and velocities of

the fuselage in the ankylotic motion from the corresponding known
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values of the reducing variables: for this purpose the formulae (11-3-1)
and (11-3-2) can be used. The values of Z, Z' appropriate to the
stopping instant £4 of the fourth stroke in the complete motion are
Z4 x 103 = 5-8+ ll-8i and Z\ x 103 = - 5-8- 12-2i. Hence

AiiaiOifo)/** = (5-8+ ll-8i) 10~3,
= ( - 5 - 8 - 12-2

Also ^ = -T^TTI = 0-64057 - 0-09874*,
# f i a )
h* = - ^ 4 = 0-49702 + 0-05452i.
^23 /ll(^3)

The required initial values, which can now be calculated, are

q1(t4)/R2 = 0-058 x 10~3 and qSiWz = 5-32 x 10"3.

Next, on substitution of the numerical data, equation (1) becomes

^+14-856^+1550-34^ = 62 x 10-3i22.

The solution appropriate to the initial values just determined is

103 x q1(t)/R2 = 0-040 -0-142e-7*428' cos 0,

where (j> (assumed expressed in degrees) has the value 2215-52+ 97-3,
and t = 0 is temporarily adopted as the starting instant for the an-
kylotic motion. At t = 0 the quantity (2) has the value 0-5674; this
confirms the occurrence of the ankylosis. However, at t = 0-0093
the value is + 1-0, so that at this instant complete motion is resumed.
The positive sign for (2) indicates that the ensuing stroke in q2 will be
downwards.

To proceed again by the graphical method for complete motion a
preliminary conversion to the reducing variables is necessary. The
formula appropriate to the root A1 may be written (see 11-3-8)

and the numerical data actually required for the computation of

X1k21a1 are Cq-XxAq = 10~3i?2 f 5493-1 - 5824-0i ] ,

[-82-52+ 891-23iJ
-/2i(^i) = -3710-82+1594-58i,

^ ( A J = 5036-94 + 20240-78i,

\x) = (0-11394-0-08755i)10-6.
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Hence X^aJR^Z = (2-469 + ll-299i) 10"3;

and a similar calculation gives

Ask23<xsIR2==Z' = ( - 2-469 -9-869i) 10"3.

These results fix the positions of the initial points in the displacement
diagrams, and the next stroke can now be followed out in the usual
manner. The velocity throughout the stroke is found to be negative,
but always very small, and at the conclusion of the stroke permanent
ankylosis is readily proved to occur.

The full history of the behaviour of the rudder is represented in
Fig. 12-9-3.

Comparison between Types of Motion in Examples (i), (iii) and (iv).
A comparison between three types of rudder motion on aeroplane
No. 2 at V = 230 is given in Fig. 12-9-2. Graph A shows the decreasing
motion just described in example (iv); graph B corresponds to the
steady unstable oscillations, with the semi-period T = 0-0994, con-
sidered in example (i); lastly graph G relates to the growing oscillations
discussed in example (iii). The initial disturbances appropriate to the
three types of motion can for brevity be referred to as 0-75JT, X, and
l*5X respectively. Here X denotes the complete disturbance required
to produce the steady oscillations, and is specifically

q1(0)/R2 = 0-0004865, q2{0)/R2 = 0-000681,)
> (o)

^(0)/J?2 = 0-007977, q2(0)/R2 = 0. j
As already remarked, the motion C cannot grow indefinitely. It tends
ultimately to the steady stable oscillations with the semi-period
T = 0-116.

P A R T III. AEROPLANE NO. 3

12*10. Aeroplane No. 3. A final example is given to show that
solid friction can produce bounded oscillations of a dynamical system,
even when the frictionless system is always stable.

To derive a simple illustration we shall retain all the dynamical
coefficients appropriate to aeroplane No. 2 (see Table 12-6-1) with the
exception of the stiffness coefficient C1V If the new stiffness coefficient
is chosen to be 33,700+ l-0lF2 + a ( F 2 - 2302), and a is arbitrary, then
evidently all the dynamical coefficients for the new system—which
we shall call aeroplane No. 3—will agree with those for No. 2 when
V = 230. Hence at this particular speed the oscillatory characteristics
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of the two aeroplanes, with or without friction, will be identical. In
particular, the bounded oscillations already shown to be possible on
aeroplane No. 2 will also be possible on aeroplane No. 3, irrespective
of the value of a. It only remains to choose the constant a in such a
way as to render aeroplane No. 3 stable at all airspeeds. A value for a
which renders all the coefficients of the determinantal equation and
the test function Tz positive at all speeds is 0-6. The approximate values
of the roots of A (A) = 0 for a few representative airspeeds are tabulated
below.

Table 12-10-1
Roots of Determinantal Equation for Aeroplane No. 3

V

0
100
230
350
500

H-

0
-0-59
-0-36
-0-32
-0-33

CO

6-76
12-40
25-47
3816
54-21

/*'

0
-3-59
-9-25

-14-30
-20-55

to

0
6-70
14-92
22-51
3201

It will be noted that, although the aeroplane is completely free from
flutter, yet it is only slightly stable at all speeds. Naturally no actual
aeroplane would have such characteristics, but it is quite possible for
an aeroplane which is immune from flutter to approach very close to
flutter at particular flying speeds (see Fig. 12-1-3). From the examples
already worked out it seems clear that at such speeds the development
of much friction in the controls might sometimes result in the occurrence
of bounded oscillations.



CHAPTER XIII

PITCHING OSCILLATIONS OF A FRICTIONALLY
CONSTRAINED AEROFOIL

13*1. Preliminary Remarks. The theory given in Chapters xi
and xn indicates that with particular aerodynamical systems possessing
solid friction, steady oscillations can occur at airspeeds less than the
critical speed for flutter. If the system has two degrees of freedom
represented by the generalised coordinates ql9 q2, and if q2 only is
subject to frictional constraint, then stable steady oscillations are
possible below the critical speed provided that (see §§ 11*7, 11*8, and
equations (11-3-13), (11-4-1)) Q m

where g+^Vfa* = ̂  = JJJ±. (2)

and Ax denotes the critical root.* If Ax = io) at the critical speed, and
if 8/1 is the increment of the real part of the root when the speed is
slightly increased from the critical value, then the criterion (1) can be
expressed as 2

- ^ = i>0. (3)

This inequality has a simple physical significance. It requires that
instability of the frictionless system shall develop if, while the airspeed
is maintained at its critical value, the direct damping coefficient
appropriate to the coordinate q2 is given a small positive increment.

Steady oscillations of the type just referred to have been demon-
strated in a wind tunnelf at the National Physical Laboratory. The
system chosen for these experiments consisted of a single rigid aerofoil
capable of pitching motion about two separate axes, and it was
designed entirely from theoretical considerations. Part I of the present
Chapter deals with some problems connected with the design of the
apparatus, and Part II gives a brief description of the experiments.

* For the definition of critical root see § 12-1. f R e f- 4 3 .
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PART I. THE TEST SYSTEM AND ITS DESIGN

13 -2. Description of the Aerofoil System. The system as finally
constructed is shown in Figs. 13-2-1, 13-2-2, 13-2-3. The two vertical
axes about which pitching movements are allowed are A A and BB:
these will be referred to as the "frame axis" and the "aerofoil axis",

Fig. 13-2-2

Fig. 13-2-3

respectively. The rigid frame A ABB consists of a steel rod A A of dia-
meter 0-5 inch, two arms of square channel section if, and a steel rod BB
of diameter 0-25 inch. The frame is pivoted about AA as an axis. At
the bottom is a point and cup support F, with a locking point G carried
on a small bridge; the top support is a simple journal bearing H. The
rod BB carries a pair of ball-bearings which support a rigid wooden
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aerofoil of symmetrical section. Screwed to each end of the aerofoil
is a metal plate E, and attached to each plate by metal screws is a
circular steel disc C in the centre of which is the spherical ball-race.
The attachment between C and E is such that it is possible to adjust
the position of the aerofoil with respect to the axis BB; for this purpose
the hole in the aerofoil, through which the rod BB passes, is of elongated
section (Fig. 13-2-3).

Bearing against the rims of the two discs C are two steel levers D
(Fig. 13-2-2). These are operated by threads J which pass through small
holes in the supports F, H and on the axis AA, and so to the outside
of the wind tunnel. Small release springs L are also attached to the
levers D. The arrangement is such that the motion of the aerofoil with
respect to the frame can be constrained by solid friction applied
externally; but any tension in the threads does not affect the motion
of the frame relative to earth.

The actual aerofoil used was made of yellow pine, and had a span of
nearly 4 feet, a chord of 6 inches, and a maximum thickness of 0-75
inch: the profile is shown in Fig. 13-2-3. The distance between the axes
AA, BB was chosen to be 8 inches, and the axis BB was at 0-9 inch
(i.e. 0-15 chord) behind the leading edge of the aerofoil. Stability for
the frame was provided by attaching springs in pairs to the arms K,
which were provided with hooks at various radii. These arms were also
extended backwards so that, if necessary, the frame could be cross-
braced and given additional inertia.

For the measurement of small or moderately large angular displace-
ments a small mirror was fixed to the shaft A A and used in conjunction
with a spotlight and scale. Very large angular displacements were read
directly on a quadrant. A second mirror attached to the aerofoil near
the shaft BB was used in experiments with the frame locked.

13-3. Data Relating to the Design of the Test System. The
preceding description applies to the test system as constructed, but
the final design depended on much preliminary theoretical work. The
aerofoil itself, and the position of the aerofoil axis BB at 0-9 inch behind
the leading edge, were treated as definitely assigned from the outset.
However, certain of the inertias and spring stiffnesses, and the position
of the frame axis AA, were left free to be varied. The calculations
relating to the aerodynamical derivatives and to the inertias will now
be summarised.
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(a) The Aerodynamical Derivatives. The derivatives appropriate
to coupled pitching and normal oscillations are deduced from the
theory of the accelerated motion of an aerofoil in Ref. 44. The
generalised coordinates corresponding to these two degrees of freedom
are 6 (inclination in pitch) and z (linear displacement of the pitching
axis normal to the chord). The senses of these coordinates are indicated
in Fig. 13-3-1.

The derivatives given by the theory depend through a parameter
on the frequency of oscillation. We shall see later that in relation
to the application in view this frequency parameter, which is defined
as o)c/V (where W/2TT is the frequency, c the chord, and F the airspeed),
can be chosen at convenience: the value OJCJV = 0-4 will be adopted.

BIBECTION
OF WIND

Fig. 13-3-1

If Z denotes the normal force and M the pitching moment about the
aerofoil axis BB (prescribed at 0-15 chord behind the leading edge),
the appropriate derivatives are as follows:*

Damping Matrix. Sd=\-Zz -Zjl = 10-3Fp-34 1-40
[-Mz -ifcfc] [0-467 0-470

Aerodynamic Stiffness Matrix.

gng = r__^ -Z0~\ = 10-3F2[0 9-34 1.

[-Mz -Me\ [0 0-467J

For the investigation of the effects due to friction it is convenient
to adopt for the generalised coordinates the angle of rotation qx

about A A of the frame relative to earth and the angle of rotation
q2 about BB of the aerofoil relative to the frame (see Fig. 13-3-1).
If I denotes the distance AB, these coordinates are connected with
z, Q by the linear substitution

* Since the aerofoil spanned the wind tunnel no corrections for aspect ratio were
attempted. However, a slope of 2*7 was assumed for the lift coefficient curve instead of the
usual theoretical value TT.
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or say {z, 6} = uq. The aerodynamical damping and stiffness matrices
B, W appropriate to the coordinates qv q2 are then given by (compare
example to §9-3)

B = u'S&u = 10~W[ -1 11 [9-34

= 10-3F2["-

T-l 11T9-34 1-40 "I F —I 0 ] ,
[ 0 l j [0-467 0-470j [ 1 l j

r - z i i ro 9-34 "i r—z 01.
[ 0 l j [o 0-467J [ 1 l j

In particular, if I = f foot (as in Fig. 13-2-1), these yield

B= 10-3Ff3-38 -0-461 and W = 10-3F2[~-5-76 -5-76 1.
[ 0-467 0-467J

T3-38 -0-461
[0-16 0-47J

Fig. 13-3-2

(6) The Inertias. The contour adopted for the aerofoil is a blunt-
nosed quartic oval.* The half-thickness t at a distance £c behind the
leading edge is

where d- is the maximum thickness-chord ratio. Hence if s is the
span, y the material density, and K = |^5c4y(4)*, the inertias are given
by (see Fig. 13-3-2)

P = A
12

= A21 = Z f V ( l -
Jo

in which he, he are respectively the distance between the leading edge
and AA9 and the distance between A A and BB.

* Defined in Ref. 45.
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For the test system as finally constructed, $ = 4 ft., c = 0-5 ft.,
& = 0-125, y = 0-75 slug/ft.3, h = 0-15, and k = 1-3333. The numerical
values of the inertias for the aerofoil alone are then*

An= 19-1 xlO~3 slug ft.2,

P = A12 = A21 = - 3-3 x 10-3 slug ft.2,

A22 = 1-8 xlO~3 slug ft.2

For the complete system, the moment of inertia of the frame about
the axis A A must be added to the value of AX1 appropriate to the
aerofoil only, while the values of P and A22 are also modified by the
metal attachments to the aerofoil. Any addition of mass to the frame
will increase Axx without altering P or A22. Hence A1X is a separately
variable parameter.

13-4. Graphical Interpretation of the Criterion for Steady
Oscillations. In connection with the design of the apparatus, two
methods were developed for the discussion of the criterion (13-1-3).
The first, a graphical method, is based on the use of a test conic, f and
it will be illustrated with reference to the following particular binary
system.

Table 13-4-1
Dynamical Coefficients for Illustrative Binary System No. 1

Coefficient

A i
Bn
Cu

Value x 103

350
3-74F

S - U P + IO"*!
4 1
M 7 F
5-14 F2

Coefficient

B21

cnA2B22

o22

Value x 103

4 1
0-703 V
0-467 Fa

2-3
(0-47 + a) V

0-467 F2 + 103a2

These dynamical constants were estimated for an aerofoil system
identical with that described in § 13-2, except that the framfe axis AA
was situated 6 inches forward of the aerofoil axis BB. The coordinates
qx and q2 are as defined in § 13-3 and the frictionally constrained co-
ordinate is assumed to be q2. The spring stiffnesses crv cr2 are regarded
as parameters temporarily left free for choice, while a in Table 13-4-1
is a parameter ultimately to be made zero.

* The slug is the unit of mass commonly adopted in aeronautics. A force of one pound
applied to a mass of one slug produces an acceleration of one foot per second per second.

t For a fuller description of the use of test conies in relation to flutter problems the
reader should consult Chap, m of Ref. 30.
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If we write C n x 103 = 5- 14F2 + lO3^ == XV2,

C22 x 103 = 0-467F2 + 103<r2 = YV\

the coefficients of the determinantal equation are

= 63-69,

= 17-3727 + 35-0a,

l06p2/V
2 = 2-3X + 35-07+ 3-74a- 2205341,

106i?3/F
3 = (0-47 + a )X + 3-747-4-15981,

106#4/F
4 = X 7-2-40038.

13-4

(1)

(2)

11

7
I
7
A -

^ ^

^ - "

CONIC No.1
»» -*

OQ2V7C iVb. 2 \

y
10 20 30 X 40

Fig. 13-4-1
50

The test function Tz for stability (see (9-8-1)) is given by

and when a = 0 the vanishing of Ts defines the following quadratic
relation between X and 7 :

0 = X 2 - 9-60548(2X7) + 293-629 7 2

-10-3213(2X)- 210-211(27) + 258-154.

If X, 7 are regarded as rectangular coordinates in a plane, this equation
represents a test conic, which is shown as conic No. 1 in Fig. 13-4-1.
Elimination of F2 between (1) and (2) gives the stiffness line

0^(7-0-467) = <r2(X- 5-14),

which always passes through the stiffness point Z = (5-14,0-467), and
has the positive slope o'Jo'i' I t is seen from the diagram that Z happens
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to lie very nearly on the conic. The horizontal stiffness line (cr2 = 0) is
shown as ZB. When crl9 cr2 are known, the intersection of the corre-
sponding stiffness line with the conic fixes the critical speed for the
system.

The second curve (conic No. 2) shown in Fig. 13-4-1 represents the

condition I -^ I = . _ = 0, which reduces to

0 = X 2 - 5-79196(2X7) + 255-613F2

- 14-5159(2X) - 215-904(27) + 326-922.

It is easy to see that points lying inside curve No. 1 correspond to
T3<0 and hence to instability, and that points inside curve No. 2
satisfy the condition dTz/dB22 < 0. Now consider any point on curve
No. 1 which lies within curve No. 2. For such a point T3 = 0 and
dT3/dB22 < 0, so that an increment in B22 leads to a negative value of
T3, i.e. to instability. Hence d/i/dB22 > 0, which is the condition (13-1-3).

There are two separate arcs of curve No. 1, namely ABC and DEF,
which lie inside curve No. 2 and which thus satisfy the foregoing
condition. The slope of the stiffness line must, however, be positive.
Hence only those portions of the two arcs for which X>5-14 and
Y > 0-47 yield permissible values of the stiffnesses. The horizontal line
ZB excludes the portion AB of ABC, while a very small portion of
DEF is excluded by the vertical line ZG. Stable steady oscillations will
therefore occur at speeds below the critical when friction is present,
provided the stiffnesses <rl9 cr2 are such that the stiffness line lies within
either of the angles BZC or DZG.

A system of the type discussed, with the frame axis A A forward of
the aerofoil, was found to be open to certain practical objections and
was not put into construction.

13*5. Alternative Treatment Based on the Use of Inertias
as Parameters. The spring stiffness <r2 is here assumed to be zero,
and the stiffness <xx (and therefore On) and the inertias are left free for
choice. The coefficients of the determinantal equation are

n = AlxA22^P\

\ (1)
Pz = U22 C n + -Bu C22 - B12 Cn - B21C129

P\ =: QLI C22 - £12 C2V
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At a critical speed, Ax = ico, and

(3)

On substitution of the expressions (1) for the coefficients in (2) and (3)
two equations are obtained from which Gn can be eliminated. The result
of this elimination, which is found to be independent of An, is

0 = ̂ {P^B^-PA^B^ + B^+A^B^}

+ <o*[P{C22(B12 + B21) - B22(C12 + C21)}

+A22{B12G21 + B21G12 - 2BnC22}]

+ {o)2B22(B11 B22 — B12 B21) + B22C12C21

Cl,} (4)

Since in this equation the four damping coefficients B{j and the three
stiffness coefficients C{j are proportional to V and F2 respectively, the
equation effectively involves only the unknowns P, A22, and the ratio
G)/V. If the frequency parameter o)c/V, and therefore (o/V, is arbitrarily
assigned, a relation between P and A22 results.

Again, the formula (12-3-1) gives
(i)

and in the critical case, if X1 = ico, this can be reduced to

-p2). ...(5)

The numerator in (5) can be expressed in a form independent of Allf

for on substitution from (1) in (3) we obtain

It follows that the expression (5) can be written

a + ifi

where a, /?, a, b, c, and d are all independent of A n and G1V The condition
(13-1-1) requires t ha t , , rt , //M 7V
v ' H A11(otc-j3a)>(/3b-ad). (6)

The procedure is to assign at convenience the critical frequency
parameter OJC/V, to choose a series of values of P, and to determine a
corresponding value of A22 from (4). These values of P and ^422 are
then used to determine a, /?, a, 6, c, and d. Any value of Alx which
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satisfies (6) and which exceeds P2/A22 can then be assumed, and the
system so defined will exhibit stable steady oscillations below the
critical speed.

For example, suppose the dynamical coefficients to be as given
in Table 13-5-1.

Table 13-5-1
Dynamical Coefficients for Illustrative Binary System No. 2

Coefficient

Ai
* u
0 i i

ell

Value x 103

Alt x 103

3-38 V
-5-76F2 + 103<rt

P x l O 3

-0-46F
-5-76F2

Coefficient

Ai (sP)
B21
On

A*
# 2 2

Value x 103

PxlO3

016F
0-467 Fa

^2 2 x 103

0-47 V
0-467 F2

The aerodynamical derivatives are here appropriate to the actual
test system described in § 13-2. Since for that system c = 0-5 and the
frequency parameter (oc/V is assumed to be 0-4, we have a) = 0-8F.

I f C n x 103 = - f rTBP+lOVisXF*, (7)

the formulae (1) yield

p0 = A1±A22- P\

V = 0-47 J . n + 3-38^22 + 0-30P,
2 = 0-467^n + A22X + 5-293P + 0-0016622,

103jp3/F
3 = 0-47Z +2-71488,

106jp4/F
4 = 0-467Z +2-68992,

while equations (2) and (3) become

0-4096#0 F
4 - 0-64p2 F

2 +p 4 = 0,

Equation (4), which is derived by substitution for the coefficients p
and elimination of X, now becomes

0 = 409600P2 +261447^422 P +2945634412

+ 3196-745P- 5846-251^22+ 1-07144.

The values of A22 corresponding to a range of values of P, and the
appropriate minimum values of Au as calculated from equation (6),
are given in Tables 13-5-2 and 13-5-3. In the case P = 0, only the
greater value of A22 is used.
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Table 13-5-2

PxlO 8

(slug ft.2)

0
- 2 0
-4-0
- 6 0

A22 x 103 (slug ft.2)

First value

1-780419
2-636547
2-936515
2-909695

Second value

0-204299
Negative

>>
»»

Table 13-5-3

PxlO 3

a x F
j3xF

a
6xlO8

c
dxlO8

(jS&-ad)FxlO8

(ac-jSa)F
Minimum Au x 108

0

2-41813
2-704
0-60J6
7-70280
107594

-9-54798

43-917
0-9570

45041

- 2 0

5-54148
2-704
0-6016

10-63875
1-95262

-17-29053

124-582
91937

13-551

- 4 0

6-10508
2-704
0-6016

1116854
2-25979

-30-23657

214-796-
121695
17-650

-6-0

516462
2-704
0-6016

10-28450
2-23233

-49-61866

284071
9-9024

28-687

From the results it is seen that quite a wide range of the inertial
constants is permissible. A rough estimate of the inertias for the
wooden aerofoil and some of its attachments indicated that the value
P = — 4 x 10~3, and the corresponding value of A22, would be realisable
in practice. The actual value of An was expected to exceed greatly the
minimum required by Table 13-5-3, and a round figure of 40 x 10~3

was adopted for the further discussion of the test system.

13*6. Theoretical Behaviour of the Test System. In accord-
ance with the conclusions drawn in § 13-5 the dynamical coefficients
were chosen as follows:

Table 13-6-1
Dynamical Coefficients for Theoretical Test System

Coefficient

ellA2(=P)

Value x 108

40-0
3-38 V

1 0 8 ( T 1 - 5 - 7 6 F 2

- 4 0
-0-46F
-5-76F2

Coefficient

A21(=P)
B21

c*\
A22
B2i

c2i

Value x 103

-4-0
0-16F
0-467 F2

2-936515
0-47 F
0-467 F2

(i) Behaviour at a Critical Speed. The critical value of X (see
(13-5-7)) leading to simply sinusoidal oscillations of the frictionless
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system is readily found to be Xc == 31-7051, and the critical speed Vc

is then fixed in terms of cr1 by the relation

lO3^ = 37-4651 V%

The coefficients of the determinantal equation for the same condition
work out as ^ = 1 0 1 . 4 6 0 6 x 10-6?

p± = 27-5254^ x lO"6,

p2 = 92-2727F*xl0-6,

p3 = 17-6163F?xlO"6,

p±= 17-4962F*xl0"6.

Further, the real and imaginary parts of the roots ^ and of the con-
stants Ar&2ryr are given by

[i = 0, o) = 0-8^,

li' = -0-135646^, <o' = 0-501041^,

VJ = 0-077728 x 103, VC7/ = - 0-055964 x 103,

V£ = - 0-077728 x 103, VC7/' = 0-503823 x 103.

Lastly, the equation which determines the semi-period T is

ZsinhT/i-T/smTa) % sinh TpJ - rf sin T<o'
2 ( }~ cosh Tju, + cos To) cosh T/i'+ cos To)' *

It is found that Cl(T) vanishes when TVC = 3-6563, and that the graph
of Q(T) has an asymptote at TVC = 3-9270. The first value of TVC

corresponds to an unstable steady oscillation which, if disturbed, either
dies to ankylosis or grows indefinitely.

(ii) Behaviour at a Speed Less than the Critical. If we next assume
the airspeed to be reduced to V = 0-975T£, the coefficients of the
determinantal equation become

p0 = 101-4606 x lO"6,

px = 26-83731^ xlO"6,

ps= 17-1755F3xl0"6,

p 4 = 16-6323F*xl0"6,

while [i = - 0-008895^, 0) = 0-817539^,

fi' = -0-123360^, a)' = 0-4796051^,

Ycg = 0-052411 x 103, VCTI = - 0-051047 x 103,

yeg = -0-052411 x 103, VC7)' = 0-510530 x 103.
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In this case the lowest non-zero roots of the semi-period equation are
given by TVC = 3-6692 and TVC = 3-7714. The first of these corresponds
to the unstable oscillations referred to in the critical case, and the
second (which develops from the asymptote) corresponds to stable
steady oscillations. The characteristics of this stable motion will now
be examined.

With TVC = 3-7714, it is found that

^ 7 ? = -14-826+ 25-764i,

-̂  = -0-55144+ l-11135i.

Moreover VlKiYi = ( - 0-063130 -0-06342U') 103,
= (1-024789 -0-154307i) 103,
= (0-041267+ 0-043302i)103,

A§&23y3 = ( - 0-238388- 0-088116i) 10s,

while a22 = -4u/p0 = 0-394242 x 103.
Hence (see (11-6-5) and (11-6-6))

= 4-3527 x 103/Ff,
4

= -2-6019 xlO3.
These expressions confirm that the oscillations are possible. Again,

using equation (11-4-1), we find that

= ( - 0-038914 -0-021948i)103,
= (0-203520 -0-014215i) 103,

and the motion of the frame is then given by

A graphical examination shows that the coordinate qx lags in phase
by 54° behind q2, and that its maximum value is 2350i?/Fc.

If the critical speed is chosen to be 40 feet per second (corresponding
to a spring stiffness ox of 59-94 pounds feet per radian), the results
obtained under the present heading are applicable at a speed of 39 feet
per second. The amplitude of steady oscillations for the aerofoil then
is 2-72 radians per foot pound of frictional couple, while that for the
frame is 1-47.
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PART II. EXPERIMENTAL INVESTIGATION

13-7. Preliminary Calibrations of the Actual Test System.
The system as described in § 13-2 was mounted vertically for test in a
wind tunnel. The following preliminary calibrations of the apparatus
were made:

(i) Frictional Couple. The frictional couple applied to the aerofoil
by the discs C and D (see Figs. 13-2-1 and 13-2-2) was varied in the
wind tunnel experiments by the addition of masses to the scale-pan
M outside the tunnel. A direct calibration was made of the couples
required to overcome the "stick friction" and the "slip friction" due
to a given mass in M: the frame was locked centrally in these tests.
In the measurements of slip friction the aerofoil was given a small
angular velocity, and the couple required to keep it just moving was
determined. The slip friction was about 60 per cent of the stick friction.

The frictional couple appeared to be directly proportional to the
outside load in the scale-pan, so that the weight of the latter balanced
the tensions in the release springs L to within the limits of observation.
The final result gave a slip frictional couple on the aerofoil of 0-0157
pound foot for 1 pound of outside load.

(ii) Constants of Inertia. These were determined by preliminary
oscillation tests of the apparatus under gravity, with the axes A A and
BB horizontal. The measured constants (in slug ft.2) were

A22 = 2-3 x 10-3, P = - 3-0 x 10-3, and An = 41-1 x 10"3.

(iii) Spring Stiffnesses. To provide stability four springs were
attached to the frame, one pair to the top arm K and one pair to the
bottom arm. A direct calibration with the four springs in place gave
a stiffness cr1 of 61-6 pounds feet per radian.

13-8. Observations of Frictional Oscillations. The observed
critical speed, as indicated by the occurrence of definitely growing
oscillations, was about 37 feet per second.* At speeds ranging from
V = 31 to V = 36 steady oscillations were observed, the amplitudes of
which could be increased by an increase of the frictional moment; and
the frequency parameter of these oscillations had a constant value of
0-41. To this extent the experimental results accorded satisfactorily
with the theory.

* If the measured values of the inertial constants and of ax are substituted for the values
given in Table 13-6-1, the calculated critical speed is almost exactly 37 feet per second.
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The measured amplitudes of the frame during the steady oscillations
are summarised in Table 13-8-1 and Fig. 13-8-1. For a given wind speed
they should, according to the theory, increase linearly with the fric-
tional moment, but this is only borne out by the experimental results
for a restricted range of the friction. Within this range*, the measured
increase of amplitude for an additional frictional moment of 0-01
pound foot is roughly 0-5 degree at V = 35. No exact comparison with
theory is possible here, but it may be noted that for the system dis-
cussed in § 13-6 the calculated increase of amplitude is 0-84 degree at

\

4

v

\

\

1
1

X I
0-0) 0-02 0-03

Frictional couple applied (lb. ft.)
Fig. 13-8-1

a wind speed of 1 foot per second less than the critical speed. The
behaviour of the actual system differed from that of the theoretical
system in that its oscillations developed spontaneously from the small
natural disturbances in the wind tunnel: the theory requires the initial
disturbance to be at least comparable with the final motion.

Among the possible causes which might well account for the differ-
ences of behaviour just mentioned, reference may be made to the
following:

(i) Departures of the actual aerodynamical forces from linear laws.f

* Beyond this range ankylosis occurred, as indicated by "A" in Table 13-8-1 and by
dotted lines in Fig. 13-8-1.

t The non-linearity of these forces was to some extent confirmed by measurements of
the aerodynamical stiffnesses for a static condition of the wing.
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(ii) The presence of some friction in the ball-bearings, and increase
of this internal friction with the amplitude of oscillation.

(iii) Departures from constancy of the externally applied friction
during each stroke of the aerofoil.

A very close correlation between theory and experiment was, in
fact, found impossible owing to the susceptibility of the actual test
system to three other types of oscillation which were almost certainly
attributable to the departures of the aerodynamical forces from linear
laws. A brief description of these oscillations is given in § 13-9.

Table 13-8-1

Amplitudes of Frame during Steady Frictional Oscillations

V

31
32
33
34
35
36

Frictional Couple Applied (lb. ft.)

0

01°
0-25°
0-55°
0-85°
0-95°

B

5-25 x 10~3

0-4°
0-55°
0-85°
11°
1-2°

—

10-5 x 10~3

A
A

11°
1-25°
1-5°

15-75 x lO"3

—
A

1-45°
1-9°

—

21 x10-3

—

A
215°

—

26-25 x 10~3

—
—

2-2°
—

Remarks on Table 13-8-1. " A " indicates ankylosis. The method
adopted was to increase the friction slowly, so that the amplitude could
build up slowly to the steady value. If the friction was suddenly
applied, the existing oscillation did not represent, in general, a suffi-
cient disturbance to give rise to the new and larger oscillation; con-
sequently the motion would die and the friction would then ankylose
the aerofoil. Owing, presumably, to aerodynamical non-linearities, it
was in practice impossible to build up the amplitude indefinitely, even
slowly; and ankylosis would occur as indicated in the table.

" B " indicates the most curious of all the oscillations obtained. At
V = 36 and with zero frictional load, the oscillations grew to an
amplitude of about 2-5°. Then, quite abruptly, the frequency dropped,
and the amplitude immediately started to decrease. When it reached
about 1°, the oscillation reverted to the frictional type, and the
amplitude again increased, and so on. The result was a "hunting"
oscillation which grew on one frequency and died on another. The
decreasing oscillation was recognised to correspond to a sustained
oscillation discussed in § 13-9, and there referred to as oscillation No. 1.
Its existence was attributed to aerodynamical non-linearities.
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13-9. Other Oscillations Exhibited by the Test System.
(i) Oscillations with the Frame Locked. Two types of sustained

oscillation of the aerofoil were observed when the frame was locked
in the central position. They will be referred to as oscillations Nos. 1
and 2. No. 1 was a smooth oscillation of half angle about 5 degrees, and
characterised by a low value of the frequency parameter. No. 2 was
a much larger oscillation, the half angle being about 20 degrees, and
it was of a very jerky nature and profusely embroidered with overtones;
the frequency parameter was appreciably higher than that of No. 1.
To generate No. 2 it was always necessary to give the aerofoil a very
large displacement (50 degrees or higher) and to allow it to swing down
to the sustained state: the stability of the oscillation thus appeared to
depend on the establishment of a turbulent oscillatory wake.

At low wind speeds, the equilibrium configuration was spontan-
eously unstable (i.e. growing oscillations would result from the natural
disturbances present in the wind tunnel), and the oscillations increased
to No. 1. Following a large initial disturbance, the motion decreased
to No. 1, although there was a tendency for No. 2 to appear. Between
V = 10 and V = 24 both oscillations were realisable; between V = 24
and V — 30 only No. 2 occurred. From V = 30 upward, all disturbances
gave rise to decreasing oscillations, the equilibrium position being
ultimately reached. The effect of friction was in all cases to reduce the
amplitude, and ultimately, as the friction was increased, to cause
ankylosis.

(ii) Oscillations with the Frame Constrained by Springs. In this
condition it was possible to obtain three different types of maintained
motion other than the frictional type. Up to V = 25 oscillations similar
to Nos. 1 and 2 were again realisable. Oscillation No. 3 occurred at
speeds above about 33 feet per second, and was very violent. Its
amplitude was roughly 60°, and on several occasions it developed so
suddenly that it broke the safety grab of the apparatus. Between
V = 30 and V = 37 it could be produced by releasing the aerofoil from
a large displacement. At V = 37, if the oscillation corresponding to
the internal friction only was allowed to become sustained and if
external friction was then applied impulsively, the motion jumped
almost instantly to oscillation No. 3. At a speed just above 37 feet per
second the spontaneous oscillations rose directly to No. 3. This was
the critical speed for nutter.
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Abbreviated rules for matrix products, 3
Absent coordinates, see Ignorable co-

ordinates
Absolute velocity and acceleration, 246
Acceleration derivatives, 284
Addition and subtraction of matrices, 4
Adjoint matrix,

defined, 21
derived, see Derived adjoint matrices
for simple first-order system, 205
of characteristic matrix, 65, 70, 73-78
of lambda-matrix, 61-64, 165-167
of multiply degenerate matrix, 21, 62, 63,

65, 123, 125, 173, 174
of simply degenerate matrix, 21, 61, 62,

63, 65, 68, 76, 123, 124
of singular matrix, 21, 121-125, 172-175

Aerodynamical derivatives,
defined, 264
for aeroplane, 285, 286
for coupled oscillations of aerofoil, 385,

386, 391
generalised, 284

Aerodynamical forces, departures of, from
linear laws, 397

Aerodynamical stiffness, 264, 284, 385
Aerodynamical systems,

critical speed for flutter of, 291, 358
equilibrium of, 264
forced oscillations of, 302-307
small motions of, 283-284

Aerofoil,
frictional pitching oscillations of, 382-397
non-frictional pitching oscillations of, 397,

398
Aeroplane,

diagram for flutter characteristics of, 359
free disturbed steady motion of, 284-287
mass-balance of control surfaces of, 302
motion of, 267-269
stability of, 285
steady motion of, 268

Aeroplane tail,
ankylotic motion of, 378-379
critical speed for flutter of, 359, 363
decaying oscillations of, 359, 361
diagrams relating to flutter of, 359, 361
influence of friction on flutter of, 360, 362
steady oscillations of, 360-372, 375, 380
wind tunnel experiments on flutter of,

332, 333, 361

Aeroplane wing,
critical speed for flutter of, 302, 307
forced oscillations of, 305-307
free oscillations of, 266, 328-331
semi-rigid, 266, 305
stability of, 266
static twist of, 325-327

Aileron, oscillations of wing with, 328-331
Airscrew blade, oscillations of beam resem-

bling, 318-320
Aitken's formulae, 149, 151
Algebraic equations of general degree,

expressed as characteristic equation, 148
number and situation of real roots of,

152-153
numerical solution of, 148-150
test functions for, 154-155

Algebraic equations, linear, 27, 96-97, 125-
133

Alternate, or skew symmetric, matrix, 3, 33
Analytic function, 213
Angular

coordinates, 250, 255-256, 259, 267
momenta, 257
velocities, 248, 253, 255

Ankylosed coordinates, 333
Ankylosis,

criterion for, 342, 357, 378
defined, 333
experimental observations of, 333, 397

Ankylotic motion,
defined, 333, 335
equations for, 344-345, 378

Annular membrane, vibrations of, 230-231,
243-245, 320-322

Annulus, flow across, 229-230
Approximate reciprocal matrix, improve-

ment of, 120-121
Associative law, 4, 9, 35
Axes,

body, 256, 257
carried positions of moving, 250
moving, in three dimensions, 250-258
moving, in two dimensions, 247—249
of central conic, 249
of central quadric, 258
principal, 257-258

Beams,
flexural vibrations of, 318-320
torsional vibrations of, 314-316
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Bernoulli's method of numerical solution of
algebraic equations, 148

Bilinear form,
denned, 28
differentiated, 48
partitioned, 29-30

Binary systems with friction, graphical
method for, 354-357, 372-380

Body axes, 256, 257
Boundary conditions, order of, 189, 190, 191
Boundary problems, 186-211, see also One-

point boundary problem, Two-point
boundary problem, Linear ordinary
differential equations with constant
coefficients

Bounded oscillations, 333, 334
Bounds for moduli of elements,

of an integrated matrix, 52, 55
of powers of a matrix, 41, 43, 145-147

Brackets, special use of, for matrices, 1, 2

Canonical form,
for lambda-matrices, 91-92, 181
for square matrices, 89-90, 93-95
of dynamical matrix, 298, 310

Cantilever, torsional oscillations of uniform,
314-316

Carried axes, 250
Cayley-Hamilton theorem, 70-73
Centrifugal

potential function, 277
stiffnesses, 278, 279

Change of reference axes,
in three dimensions, 250-256
in two dimensions, 247-249

Characteristic
determinant, 157
equation, 64, 67, 70, 157, 205
equation, constructed by iterative

method, 142
function, 64
function, reduced, 70, 72
matrix, 64
matrix, adjoint and derived adjoints of,

64, 73-78
Characteristic numbers,

calculated by collocation and Galerkin's
method, 224, 226-228, 230-231

denned, 187-188
for annular membrane, 230-231, 243-245,

320-322
for stretched string, 188
of a square matrix, 64, see also Latent

roots
Characteristic, Segre, 94
Christoffel's symbol, 272
Classical submatrices, 94
Coefficients, method of mean, 232-245
Cofactors, 16

Collineatory transformation, 66, 69, 93, 94,
206

Collocation, solution of differential equa-
tions by, 224-232

Column matrix, 2
Columns, modal, see Modal columns
Commutative law of addition, 4
Commute, matrices which, 6, see also

Permutable matrices
Complementary function, 157, 178-182
Complete motion,

denned, 335
graphical method for discussion of, 354-

357, 372-380
with one coordinate frictionally con-

strained, 339-344
Complex scalars represented by matrices, 35
Confluent

form of Sylvester's theorem, 83-87, 134
special solution of differential equations,

198-200
Conformability,

of matrices, 6, 9, 25
of partitioned matrices, 14

Congruent transformation, 29, 31
Conic,

axes of, 249
test, 387-389

Conjugate
matrices, 33
quaternions, 36

Conservative and non-conservative forces,
263-265

Conservative system,
conditions for equilibrium of, 264
disturbed from equilibrium, 281-282,

291-300
disturbed from steady motion, 282-283
iterative method for linear, 308-310
modal columns for linear, 199, 291-295,

299, 300, 308
normal or principal coordinates for linear,

295-298
orthogonal properties of modes for linear,

299, 300, 309
Rayleigh's principle for linear, 299, 300,

310, 315
reciprocal theorem for, 265
with equal frequencies, 198-200, 292-295,

309, 310, 322-325
with ignorable coordinates, 272-274,

282-283
Constituent motions of linear dynamical

systems, general nature of, 289-291,
359

Constituent solutions,
numerical evaluation of, 172-175
of linear differential equations, 167-175
of linear dynamical equations, 288
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Constraint,
geometric or kinematic, 259-260, 261,

270
one-sided, 260

Constraints, 270
Continuation formula for differential equa-

tions, 219-222
Continued products of matrices,

computed by use of subproducts, 11-12
computed from left to right or right to left,

10, 11, 12, 221
rules for construction of, 9-10

Control surfaces of aeroplanes, mass-balance
of, 302

Convergence,
of matrix exponential series, 42, 45
of matrizant, 55, 218
of series of matrices, 40, 81

Coordinates,
angular, 250, 255-256, 259, 267
ankylosed, 333
generalised, 261
ignorable, 272-274, 282-283
normal or principal, 295—298

Couplings, 284
Crankshaft, torsional oscillations of, 316-318
Critical

frequency, 307
parameters, for dynamical systems, 291
root of determinantal equation, 359, 382
speed for nutter, 291, 302, 358, 359, 389

Cross
dampings, 284
stiffnesses, 281, 284

Cross-multiplication, 151, 153
Cyclic coordinates, see Ignorable coordinates

Damping
coefficients, 284, 339
diagram for tail oscillations, 359, 361
matrix, 284, 288, 385

Dampings, direct and cross, 284
^-determinants,

denned, 157
of equivalent systems of differential

equations, 158
Decaying oscillations, 333, 334, 359, 361
Degeneracy,

full, 67, 86
multiple, 18, see also Multiply degenerate

matrices
of a square matrix, 18
simple, 18, see also Simply degenerate

matrices
Sylvester's law of, 23, 24

Degrees of freedom, 259, 261, 273
Derivatives,

acceleration, 284
aerodynamical, 264, 285, 286

for coupled oscillations of an aerofoil,
385, 386, 391

generalised aerodynamical, 284
of matrices, 43-44

Derived adjoint matrices,
for simple first-order system, 205
of characteristic matrix, 73-77
of lambda-matrix, 61, 62, 64, 166

Determinantal equation,
critical roots of, 359
defined, 61, 157
for first-order system of differential

equations, 205
for linear dynamical equations, 288
general theorems on roots of, 61, 166
multiple roots of, 61-64, 166-181, 184,

198, 199, 206, 288, 292-295, 296, 298
nature of roots of, for linear conservative

system, 291-295
notation for roots of, 61

Determinants,
cofactors of elements of, 16
computation of, 106-108, 110, 115, 120
differentiation of, 16
minor, 16
of square matrices, 16
symmetrical, 34
test, 154, 291
whose minors of a certain order all

vanish, 17
Deviation, equations of, 280
Diagonal, principal, 3
Diagonal

matrix, 3, 12-13, 23, 66, 89, 91, 93
order, 161
systems of linear differential equations,

160
Difference equation, linear, 73, 148
Differential equations, linear, see Linear

ordinary differential equations,
Linear partial differential equations

Differential operators,
change of variables in, 48-52
matrices of, 46-51, 156
transformation of quadratic, 51-52

Differentiation,
notation for, 44
of bilinear or quadratic forms, 48
of determinants, 16
of matrices, 43-52
of matrix exponential function, 45-46

Direct
dampings, 284
elastic stiffnesses, 281
solution of linear ordinary differential

equations, 191-195, 201, 207-209,
295

stiffnesses, 284
Direction cosines, matrix of, 34, 247, 251
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Discriminants,

defined, 30
of kinetic energy function, 272
of quadratic form, 30-33

Displacement diagram, for graphical dis-
cussion of friction problems, 355-
357, 373-374

Distributive law, 10
Disturbances,

effects of arbitrary initial, 334
effects of large initial, 334, 361, 398

Disturbed
equilibrium of conservative system, 281
motions, 280-281
steady motion of aeroplane, 284-287
steady motion of conservative system,

282-283
Divergence, 290
Division,

of lambda-matrices, 58—60
of matrices, 22
on the left and on the right, 60

Divisors, elementary, 92
D-matrix, 157, 159
Dominant latent roots,

calculation of, 134-143
defined, 80

Down-stroke, 335
Dynamical equations,

for systems with solid friction, 335—345
Hamilton's, 274-276, 289
Lagrange's, 269-272, 277-279
linear, see Linear dynamical equations

Dynamical matrix,
canonical form of, 298, 310
constructed by use of flexibility matrix,

309
defined, 308
modal matrix of, 298

Dynamical systems,
conservative, see Conservative system
constituent motions of linear, 289-291
defined, 266
forced oscillations of, 302-307
geometrical equations of, 262
holonomous, 260, 261, 269-272
non-holonomous, 260
non-linear, 334
reciprocal property of, 276
with ignorable coordinates, 272-274,

282-283
with solid friction, see Solid friction

Elastic stiffnesses, 264, 281
Element, of matrix, 1
Elementary

divisors, 92
operations on matrices, 87-89, 90, 96,

97

Energy,
equation of, 276
kinetic, 257, 270, 272, 275, 282
potential, 263, 264, 271, 326

Equality of matrices, 4
Equation,

algebraic, of general degree, 148-155
characteristic, 64, 67, 70, 142, 157, 205
determinantal, see Determinantal equa-

tion
indicial, 215
semi-period, for steady frictional oscilla-

tions, 346, 348-350, 364, 370, 393
Equations,

dynamical, for frictional systems, 335-345
geometrical, of a dynamical system, 262,

277
Hamilton's dynamical, 274-276, 289
Lagrange's dynamical, 164,194,195,197

269-272, 277-279, 289
linear algebraic, 27, 96-97, 125-133
linear difference, 73, 148
linear dynamical, see Linear dynamical

equations
linear ordinary differential, see Linear

ordinary differential equations
linear partial differential, 50-52, 227
terminal, 342

Equilibrium,
conditions for, 262-265
conservative system disturbed from, 281

Equivalent
lambda-matrices, 90-92
matrices, 89
systems of differential equations, 158,

159, 161
Existence theorems, 212-214
Exponential function of square matrix,

applied in method of mean coefficients, 232
defined, 41-43
differentiation of, 45-46
solution of differential equations by,

209-211, 221, 333

Factors,
invariant, 91-92
linear, 92

Fields of force, conservative and non-
conservative, 263-265

Finite rotations, matrices representing,
248-249, 251-254

Flexibilities, 265
Flexibility matrix,

defined, 265
used to calculate dynamical matrix, 309

Flexural oscillations of tapered beam, 318-
320

Flexure-torsion oscillations of aeroplane
wing, 266, 305-307, 328-331
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Fluid flow across annulus, 229-230
Flutter,

critical speed for, 291, 302, 307, 358, 359,
389

experimental observations of, 332,333,395
influence of solid friction on, 360, 362
practical meaning of, 359
simple theory of, 358

Forced motion of deviation, 280
Forced oscillations,

of aerodynamical systems, 302-307
resonant, 183, 305

Forces,
conservative, 263-265
generalised, 263-265, 270, 277

Forms, bilinear and quadratic, 28-30
Fractional powers of matrices, 38, 81, 82
Frame of reference,

angular coordinates of a three-dimen-
sional, 250, 255, 256

angular momenta referred to a moving,
257

angular velocities of a moving, 248, 253,
255

defined, 246
kinetic energy referred to a moving, 257
Lagrange's equations with a moving,

277-279
moving, in two dimensions, 247-248
velocities and accelerations referred to a

moving, 248, 256
Free

disturbed steady motion of an aeroplane,
284-287

motion of deviation, 280
Freedom, degrees of, 259, 261, 273
Frequencies,

calculated by iterative methods, 308-331
calculated by Rayleigh's principle, 300,

310, 315
conservative system with equal, 198-200,

292-295, 309, 310, 322-325
Frequency

diagram, for tail oscillations, 359, 361
parameter, for aerofoil oscillations, 385

Friction, solid, see Solid friction
Frobenius, method of, 215
Fundamental solutions of linear differential

equations, 214-215, 219, 220, 223,
224

Fuselage, oscillations involving torsion of,
359-381

Galerkin, method of, 224r-231
Generalised

aerodynamical derivatives, 284
coordinates, transformation of, 282
coordinates, velocities, and accelerations,

260-262

forces, 263-265, 270, 277
momenta, 274-276
moments and products of inertia, 281,

284
Geometric constraints, 259-260, 261,

270
Geometrical equations, for a dynamical

system, 262, 277
Graphical treatment

of binary frictional systems, 354-357,
372-380

of conditions for steady oscillations, 387-
389

Gyrostatic coefficients, 278, 279, 283

Hamiltonian
equations of motion, 274-276, 289
function, 275

Heaviside,
identity of, expressed by matrices, 176
method of, 197, 203-204

Hermitian matrix, 33, 155
High powers of a matrix, 80, 133-145
Holonomous, or holonomic, systems,

defined, 260
generalised coordinates of, 261
Hamilton's equations for, 274-276
Lagrange's equations for, 269-272, 277-

279
Homogeneous

strain, 258
system of differential equations, 157

Idempotent matrices, 79
Ignorable coordinates,

defined, 272
disturbed steady motion of systems with,

282-283
dynamical equations for systems with,

272-274
Independent variables, change of, 48-51
Index law for matrices, 37-38
Indicial equation, 215
Inertia,

generalised moments and products of,
281, 284

principal axes of, 257-258
Inertia

force, 269
matrix, 284, 288

Infinite series of matrices, 40-41, 53, 81
Influence numbers, 265
Integration of matrices, 52-56
Interpolation formula, Lagrange's, 40
Invariant factors, 91-92
Inverse matrices, see Reciprocal, Reciproca-

tion
Irregular singularity, 215
Isolation, method of, 197
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Iterative methods,
for coefficients in Sylvester's expansion,

138-141
for construction of characteristic equa-

tion, 142
for frequencies, 308-331
for latent roots, 134-138, 140-145, 148-

151
for linear algebraic equations, 132-133
for linear dynamical problems, 308-331
general remarks on, 150-151, 309-310
modal columns calculated by, 141-145,

150, 151, 308-310
overtones calculated by, 309, 312-314,

325, 330-331
twist of aeroplane wing calculated by,

325-327

Jacobians, relations between, 49

Kinematic constraints, 259-260, 261, 270
Kinetic energy,

discriminants of, 272, 337, 370
expressed by generalised coordinates and

velocities, 270, 282
expressed by generalised momenta and

velocities, 275
expressed by submatrices, 272, 282
expressed for moving axes, 257

Kinetic potential, 271
Kinosthenic coordinates, see Ignorable

coordinates

Lagrange's equations,
constructed, 269-271
expanded form of, 271-272, 281
for systems referred to moving axes, 277-

279
linear, direct solution of, 194, 195
linear, expressed as first-order system,

164, 289, 327
linear, special solution of, 197, 198-200
modified for ignorable coordinates, 272-

274, 282-283
Lagrange's interpolation formula, 40
Lagrangian function,

defined, 271
modified, for ignorable coordinates, 272—

274, 282
Lambda-determinant, 157
Lambda-matrices,

equivalent, 90-92
multiplication and division of, 58-60
Smith's canonical form for, 91-92, 181

Lambda-matrix,
adjoint of, 61-64, 165-167
defined, 57, 157
degree of, 57
derived adjoints of, 61, 62, 64, 166

determinantal equation of, 61, see also
Determinantal equation

elementary divisors of, 92
invariant factors of, 91-92
leading matrix coefficient of, 57
linear factors of, 92
rank of, 57, 91, 182
reciprocal of, 58
remainder theorems for, 59, 60, 70

Laplacian operator, transformation of,
51

Latent roots,
calculated by iterative methods, 134-138,

140-145, 148-151
classical submatrices containing, 94
defined, 64
diagonal matrix of, 66
dominant, 80, 134-143, 148, 309
equal, 65, 67-71, 75-77, 83-87, 93, 135,

137, 138, 140
non-dominant, 143-145, 331, see also

Overtones
of Hermitian matrix, 155
of matrices connected by collineatory

transformation, 69
of polynomial of a square matrix, 69
of symmetrical matrix, 155
situation of, 155

Leading matrix coefficient, of a lambda-
matrix, 57

Line matrix, 2
Linear algebraic equations,

expressed as matrix equation, 8, 18
solution of, 27, 96-97, 125-133
solution of, by direct operation on rows,

130-131
solution of, by iterative methods, 132-133
solution of, by post-multiplication, 126—

130
Linear difference equation, 73, 148
Linear differential equations, see Linear

ordinary differential equations,
Linear partial differential equations

Linear dynamical equations,
confluent special solution of, 198-200
direct solution of, 191-192, 194, 195,

295
for conservative system disturbed from

equilibrium, 281-282, 291-300, 308
for conservative system disturbed from

steady motion, 282-283
iterative solutions of, 308-331
notation and terminology for, 288—289
reduced to first-order system, 164, 289,

327
reducing variables for, 195
special solution of, 197
transformation of coordinates in, 282

Linear factors, 92
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Linear ordinary differential equations with
constant coefficients,

adjoint matrices for first-order system of,
205

boundary problems with, 186
change of order of boundary conditions

for, 190-191
characteristic numbers for, 187—188
complementary function of, 157, 178-182
confluent special solution of, 198-200
constituent solutions of, 167-175
conversion of, to first-order system, 162-

165, 202
"diagonal" systems of, 160
direct solution of, for one-point boundary

problem, 191-195, 207-209, 295
direct solution of, for two-point boundary

problem, 201
equivalent systems of, 158, 159, 161
fundamental theorem for systems of, 161
general solution of simple first-order

system of, 206-207
Heaviside's method for, 203-204
homogeneous and non-homogeneous sys-

tems of, 157
method of isolation for, 197
notation for one-point boundary prob-

lems with, 188-189
notation for two-point boundary prob-

lems with, 200-201
notation for systems of, 156-157,178-180
order of, 156
particular integral of, 157, 183-185, 196,

209
simple first-order system of, 202,209-211
solution of, when A(A) vanishes iden-

tically, 181-182
special solution of, for standard one-point

boundary problems, 195-200
special solution of general first-order

system of, 203-205
special solution of simple first-order

system of, 207
standard one-point boundary problems

with, 189, 190
transformation of dependent variables in,

159-160
triangular systems of, 160-162

Linear ordinary differential equations with
variable coefficients,

characteristic numbers for, 224, 226-228,
230-231

continuation formula for systems of,
219-222

existence theorems for, 212-214
first-order systems of, 213-214, 216-218,

220-224, 232-233
fundamental solutions of, 214-215, 219,

220, 223, 224

indicial equation for, 215
irregular singularities of, 215
notation for system of, 215
ordinary points of, 212
Peano-Baker method for first-order

system of, 217-218
power series solution for first-order

system of, 222-224
regular singularities of, 215
simple first-order system of, 216, 217-218,

220-222, 232-233
singularities of, 212-215, 221
solution of, by collocation and Galerkin's

method, 224-231
solution of, by mean coefficients, 232-245
solution of, by method of Frobenius, 215
system of, reduced to first order, 215-217

Linear partial differential equations,
change of variables in, 50-52
methods of collocation and Galerkin for,

227
Linear substitution, 26-27, 64
Linear transformation,

defined, 26
matrix of, 27
triangular, 31

Linear vector function, 258
Loading, principal directions of, 265-266

Mass-balance of aeroplane control surfaces,
302

Matrices,
addition and subtraction of, 4
conformable, 6, 9, 14, 25
conjugate, 33
continued products of, 9-12, 221
differentiation of, 43-52
division of, 22, 58-60
elementary operations on, 87-89,90,96,97
equal, 4
equivalent, 89, 90-92
fractional powers of, 38, 81, 82
infinite series of, 40-41, 53, 81
integration of, 52-56
inverse, 22, see also Reciprocal,Reciproca-

tion
multiplication of, 6-12
notation for, 1-3
of differential operators, 46-51, 156
partitioned, 13-15
permutable, 6, 7, 42, 44
predivision and postdivision of, 22
products of, 6-12
reciprocal, 22, see also Reciprocal, Reci-

procation
representing complex scalars and quater-

nions, 35-36
representing finite rotations, 248-249,

251-254
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Matrices (cont.)
Taylor's theorem for, 44-45
which commute, 6, 39, 42
with null product, 23-24

Matrix,
adjoint, 21, see also Adjoint matrix
aerodynamical stiffness, 284, 285
alternate, 3, 33
characteristic, 64
column, 2
D-, 157
damping, 284, 288, 385
definition of, 1
degeneracy of a square, 18, see also

Degeneracy
derived, 43-44
determinant of a square, 16
diagonal, 3, 12-13, 23, 66, 89, 91, 93
dynamical, 308, 309, 310
exponential function of a square, 41-43,

45-46, 209-211, 221, 222, 232
flexibility, 265, 309
Hermitian, 33, 155
idempotent, 79
inertia, 284, 288
integrated, 52-56
lambda-, 57, see also Lambda-matrices,

Lambda-matrix
line, 2
modal, 66, 179, see also Modal matrix
multiply degenerate, 18-20, 23, 61, 62,

65, 67, 70, 85
non-singular, 18
null, 3, 23
order of, 2
orthogonal, 33, 34, 35, 247, 251
of a linear transformation, 27
of direction cosines, 34, 247, 251
of transformation, orthogonal, 247, 251,

255
polynomial of a square, 39-40, 45, 67, 69,

78-80, 83-87
powers of a square, 10, 37-38, 67, 72, 73,

80, 133, 145
rank of a square, 18, 23, 57, 89-90,

91
rectangular, 1
resolvent of a square, 78
row, 2
scalar, 13
simply degenerate, 18, 61, 65, 71, 86
singular, 18
skew, 3
skew symmetric, 3, 26, 33
square, 3
stiffness, 264, 284, 288, 308
Sylvester's expansion for a square, 86
symmetrical, 3, 26, 33-34, 77
total stiffness, 284

transposed, 3, 25
triangular, 97-106
unit, 3, 13, 35

Matrizant, 53-56, 218-219, 222, 232
Mean coefficients, method of, 232-245
Membrane, vibrating annular, 230-231,

243-245, 320-322
Minor determinants, 16
Mittag-Leffler star, 52
Modal coefficient, 179
Modal columns,

calculated by iterative methods, 141-145,
150, 151, 308-310

connected with the characteristic matrix,
64-69

denned, 64, 179
for general linear dynamical system, 288-

290, 327, 329, 330
for linear conservative system, 199, 291—

295, 299, 300, 308-310, 312-314, 324,
325

for simple first-order system, 206
for systems with solid friction, 336
orthogonal properties of, for conservative

systems, 299, 300
properties of, 77
relations between, for dissipative systems,

301
Modal matrix,

denned, 66, 179
for linear dynamical system, 289
for simple first-order system, 206
for systems with solid friction, 336
of dynamical matrix, 298
of polynomial of a matrix, 69
of symmetrical matrix, 77, 259, 265
reciprocal of, 77, 86

Modal row, 336
Moments of inertia,

generalised, 281, 284
principal, 257-258

Momentum,
angular, 257
generalised, 274-276

Morris, method of, for solution of linear
algebraic equations, 132

Moving axes,
angular velocities of, 248, 253, 255
angular momenta referred to, 257
carried positions of, 250
defined, 246
in three dimensions, 250-256
in two dimensions, 247-249
kinetic energy expressed for, 257
Lagrange's equations referred to, 277-279
velocities and accelerations referred to,

248, 256
Multi-cylinder engine, torsional oscillations

of, 316-318
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Multiplication,
of lambda-matrices, 58
of matrices, rules for, 6
of partitioned matrices, 14

Multiply degenerate matrices,
adjoints of, 21, 62, 63, 65, 123, 125, 173,

174
corresponding to multiple latent roots,

65, 67, 69, 70, 71, 85, 87
corresponding to multiple roots of deter-

minantal equation, 61, 63
denned, 18
expressed as products, 20
products of, 23

National Physical Laboratory, experiments
at the, 332, 333, 382, 395-398

Non-holonomous systems, 260
Normal coordinates, 295-298
Null

matrices, 3
product, square matrices with, 23-24

Nullity,
denned, 18
Sylvester's law of, 23

One-point boundary problem,
confluent special solution for standard,

198-200
denned, 186
direct solution of, 191-195, 207-209, 295
notation for, 188-189
order of conditions for, 189, 190-191
power series solution of, 209—211
special solution for standard, 195-197,

203-205, 207
standard, 189-190

One-sided constraint, 260
One-signed quadratic forms, 30
Operational formulae connected with partial

fractions, 177-178, 184, 190, 196,
203, 204

Operators,
matrices of differential, 46-51, 156
selective, 82

Order,
of matrix, 2
of one-point boundary conditions, 189,

190-191
of system of linear differential equations,

156
Ordinary differential equations, linear,

see Linear ordinary differential equa-
tions

Ordinary points of linear differential equa-
tions, 212

Orthogonal
matrix, 33, 34, 35, 247, 251
property, 77, 259, 299, 300

Oscillations,
bounded, 333, 334
decaying, 333, 334, 359, 361
flexural, of tapered beam, 318-320
forced, of aerodynamical systems, 302-

307
of aeroplane tail, see Aeroplane tail
of aeroplane wing, 266, 305-307, 328-331
of beams, 309, 314-316, 318-320
of systems with solid friction, see Solid

friction
of triple pendulum, 310-314
pitching, of an aerofoil, 382-398
resonant forced, 183, 305
spasmodic, 332, 333
steady, see Steady oscillations
torsional, of multi- cylinder engine, 316—

318
torsional, of uniform cantilever, 314-316
transverse, of annular membrane, 230-

231, 243-245, 320-322
transverse, of stretched string, 188
unbounded, 333, 334, see also Flutter

Oscillatory instability, conditions for, 291
Overtones, calculation of, by iterative

methods, 309, 312-314, 325, 330-331

Parameters, critical, 291
Partial

differential equations, linear, 50-51, 227
differential operators, matrices of, 47-51
fractions, matrix formulae dependent on,

78, 83, 175-178, 184, 190, 196, 203,
204

Particular integral, 157, 183-185, 196, 209
Partitioning,

of bilinear and quadratic forms, 29-30, 272
of matrices, 13-15

Peano-Baker method of integration, 216,
217-218

Pendulum, oscillations of a triple, 310-314
Permutable matrices, 6, 7, 42, 44
Pitching oscillations of an aerofoil,

conditions for steady frictional, 387-394
derivatives appropriate to, 385-386, 391
design of apparatus for, 384-394
experiments on, 382-384, 395-398

Point, or column matrix, 2
Polynomial of a square matrix,

constructed by collineatory transforma-
tion, 67

defined, 39
evaluated by Sylvester's theorem, 78-80,

83-87
factorisation of, 39, 40
latent roots and modal matrix of, 69
reduction of, by Cayley-Hamilton

theorem, 72
Taylor's theorem for, 44-45
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Positional coordinates, of a rigid body, 259,

see also Angular coordinates, General-
ised coordinates

Positive definite quadratic form, 30
Postdivision, 22
Postmultiplication, 6
Potential,

centrifugal, 277
kinetic, 271

Potential energy, 263, 264, 271, 326
Powers of a square matrix,

constructed by collineatory transforma-
tion, 67

defined, 10, 37
fractional, 38, 81, 82
high, 80, 133-145
linear difference equation satisfied by, 73,

148
reduction of, by Cayley-Hamilton

theorem, 72
upper bounds for moduli of elements in,

41, 43, 145-147
Predivision, 22
Premultiplication, 6
Prime, or row matrix, 2
Principal

axes, 257-258
coordinates, 295-298
diagonal, 3
directions of loading, 265-266

Product chain, or continued product, of
matrices, 9-12, 221

Products of inertia,
elimination of, by conversion to principal

axes, 257
generalised, 281, 284

Products of matrices,
abbreviated rules for, 8
continued, 9-12, 221
defined, 6

Pure strain, 259

Quadratic differential operators, 49-52
Quadratic form,

defined, 28
differentiation of, 48
discriminants of, 30-33, 272
one-signed, 30
partitioned, 29-30, 272
positive definite, 30

Quadric, axes of a central, 258
Quaternions, represented by matrices, 35-36

Rank,
of a lambda-matrix, 57, 91, 182
of a square matrix, 18, 23, 89-90
of equivalent matrices, 89-90

Rayleigh's principle,
for conservative systems, 299-300,310,315

generalised for special dissipative sys-
tems, 300-301

Reciprocal,
improvement of an approximate, 120-

121
of lambda-matrix, 58
of matrix, 22
of modal matrix, 77, 86
of skew symmetric matrix, 26
of symmetrical matrix, 26
of triangular matrix, 103-106

Reciprocal
property of a dynamical system, 276
theorem for conservative systems, 265

Reciprocation,
by direct operation on rows, 119-120
by method of postmultipliers, 109-112
by method of submatrices, 112-118
reversal rule for, 25

Rectangular matrix, 1
Reduced characteristic function, 70, 72
Reducing variables,

denned, 195
displacements, velocities, and accelera-

tions expressed in terms of, 336, 337,
340, 379

for system with solid friction, 336, 337
recurrence relations for, 341, 342

Reference axes, see Axes, Frame of reference
Regular singularity, 215
Remainder theorems for lambda-matrices

59, 60, 70
Resolvent, of a square matrix, 78
Resonance, 183, 305
Reversal of order in products, 25
Rodrigues' formula, 254
Roots,

latent, 64-87, see also Latent roots
of algebraic equations, see Algebraic

equations of general degree, Linear
algebraic equations

of determinantal equation, see Deter-
minantal equation

of matrices, 38, 81, 82
Rotations,

convention regarding sign of, 247
matrices representing finite, 248—249,

251-254
Routh's test functions for stability, 154
Row matrix, 2
Rudder-fuselage flutter, see Tail flutter

Scalar
equations, expressed as matrix equation,

5
matrix, 13
multipliers, 4, 5

Segre characteristic, 94
Selective operators, 82
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Semi-period equation, for steady fractional
oscillations, 346, 348-350, 364, 370,
393

Semi-rigid
body, 266
cantilever, 266
wing, 266, 305

Series of matrices, infinite, 40-41, 53, 81
Simple first-order system of differential

equations,
adjoint matrices for, 205
continuation formula for, 220-222
defined, 202, 216
determinantal equation for, 205
direct solution of, 207, 208
general solution of, 206
modal columns for, 206
power series solution of, 209-211
special solution of, 207

Simply degenerate matrices,
adjoints of, 21, 61, 62, 63, 65, 68, 76, 123,

124
corresponding to simple or multiple

latent roots, 65, 66, 68, 71, 86
corresponding to simple or multiple roots

of determinantal equation, 61, 62, 63
defined, 18

Singularities, of linear differential equations,
212-215, 221

Singular matrices,
defined, 18
expressed as products, 20
see also Multiply degenerate matrices,

Simply degenerate matrices
Skew

matrix, 3
symmetric matrix, 3, 26, 33

Slug, definition of, 387
Small motions,

construction of equations of, 280-281
of aerodynamical systems, 283-284

Smith's canonical form for lambda-matrices,
91-92, 181

Smith's transformation, for an operational
row, 50

Solid friction,
dynamical equations for systems with,

335-345
graphical method for systems with, 354-

357, 372-380
influence of, on critical speed for flutter,

362
influence of, on oscillations of systems,

332, 333
measurements of, 395
oscillations of aeroplane tails with, 359-

381
pitching oscillations of an aerofoil con-

strained by, 382-398

static and dynamic, 332
steady oscillations of systems with, see

Steady oscillations
system with single degree of freedom and,

342-344
Spasmodic oscillations, 332, 333
Special solution,

confluent form of, 198-200
for general first-order system, 203-205
for simple first-order system, 207
for standard one-point boundary pro-

blems, 195-197
Spectral set, of operators, 82
Sphere, rolling on a fixed plane, 260
Spiral diagrams, for graphical discussion of

friction problems, 356-357, 374
Square matrix, definition of, 3
Stability,

of an aeroplane, 285
of an aeroplane wing, 266
of equilibrium of a conservative system,

264
of steady frictional oscillations, 350-353,

360, 361, 362, 382
test functions and determinants for, 154-

155, 291, 388, 389
Standard one-point boundary problem,

defined, 189
special solution for, 195-200, 203-205,

207
Starting instant, 335
Steady motion,

aeroplane disturbed from, 284-287
conservative system with ignorable

coordinates disturbed from, 282-283
disturbance from, 280
of an aeroplane, 268

Steady oscillations,
conditions for, when only one coordinate

is frictionally constrained, 345-350
graphical treatment of conditions for,

387-389
of aerofoil with solid friction, 382, 387-

397
of aeroplane tails with solid friction, 360-

372, 375
semi-period equation for, 346, 348-350,

364, 370, 393
stability of, 350-353, 360, 361, 362, 382
treatment of conditions for, based on

inertias, 389-392
Stiffness,

aerodynamical, 264, 284, 385
centrifugal, 278, 279
cross, 284
direct, 284
direct elastic, 281
elastic, 264
elastic cross, 281
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Stiffness
coefficient, 264, 338
line, 388, 389
matrix, 264, 284, 288, 308
point, 388

Stopping instant, 335
Strain,

homogeneous, 258
pure, 259

String, oscillations of a stretched, 188
Structural problems, linear algebraic equa-

tions in, 132
Sturm's functions, 152-153
Subdominant latent roots, calculation of,

143-144, 151
Submatrices,

bilinear and quadratic forms expressed
by, 29-30, 272

denned, 13-15
of simple classical type, 94
reciprocation by method of, 112-118

Subproducts, use of, in calculation of con-
tinued products, 11

Subsidence, 290
Substitution, linear, 26-27, 64
Summation,

of infinite series of matrices, 41, 81
of matrices, 4

Superdiagonal elements, 93
Sylvester's expansion,

coefficients in, calculated by iterative
methods, 138-141, 310

confluent form of, 83-87, 134
constructed, 78-79
dominant latent roots calculated by, 80,

133-138
fractional powers of a matrix obtained by,

81
infinite series of matrices summed by,

81
properties of coefficients in, 79, 82

Sylvester's law of degeneracy, 23, 24
Symmetrical

determinants, 34
matrices, products of, 26, 33

Symmetrical matrix,
adjoint of, 34
defined, 3
latent roots of, 155
modal matrix of, 77, 259, 265
reciprocal of, 26

Tail flutter,
critical speed for, 359, 363
damping and frequency diagrams relating

to, 359, 361
influence of solid friction on, 360, 362
wind tunnel experiments on, 332, 333,

361

Tail oscillations,
friction theory applied to, 359-381
steady, 360-372, 375, 376, 380

Taylor's theorem for matrices, 44r-45
Tensor, 36
Terminal

equations, 342
instant, 335

Test
conic, 387-389
determinants and functions for stability,

154-155, 291, 388, 389
Torsional oscillations,

of aeroplane fuselage, see Tail oscillations
of multi-cylinder engine, 316-318
of uniform cantilever, 314-316

Total stiffness matrix, 284
Transformation,

colhneatory, 66, 69, 93, 94, 206
congruent, 29, 31
linear, 26-27, 64
matrix of a linear, 27
of generalised coordinates, 282
orthogonal matrix of, 247, 251
Smith's, for an operational row, 50

Transposition of matrices, 3, 25
Transverse oscillations,

of an annular membrane, 230-231, 243-
245, 320-322

of a stretched string, 188
Triangular matrix,

defined, 97
reciprocal of, 103-106
reduced to diagonal form, 102-103
reduction of non-singular matrix to, 97-

102
Triangular systems, of linear ordinary

differential equations, 160-162
Triple pendulum, oscillations of, 310-314
Twist of an aeroplane wing, static, 325-327
Two-point boundary problem,

defined, 186
direct solution of, 201
notation for, 200-201
power series solution of, 211

Unbounded oscillations, 333, 334
Unit matrix, 3, 13, 35
Upper bounds,

for an integrated matrix, 52, 55
for powers of a matrix, 41, 43, 145-147

Up-stroke, 335

Vector,
components of, referred to moving axes,

247-248, 251, 256
of first kind, or row matrix, 2
of second kind, or column matrix, 2

Vector function, linear, 258
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Vibrations, see Oscillations free oscillations of, 266, 328-331
Virtual work, 262-264, 270, 277 forced oscillations o£ 305-307

semi-rigid, 266, 305
Wind tunnel experiments, stability of, 266

on pitching oscillations of aerofoil, 382, static twist of, 325-327
395-398 Work, virtual, 262-264, 270, 277

on tail flutter, 332, 333, 361
Wing, Yaw, angular displacements in, 268, 332,

critical speed for flutter of, 302, 307 333
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