• русский
    • українська
    • English
    • Deutsch
    • español
    • italiano
  • English 
    • русский
    • українська
    • English
    • Deutsch
    • español
    • italiano
  • Login
View Item 
  •   DSpace Home
  • Genofond
  • Libgen
  • View Item
  •   DSpace Home
  • Genofond
  • Libgen
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

О математической индукции

Thumbnail
View/Open
1312b73144e34c02a34be67cd9f1f364.djvu (3.203Mb)
Date
1967
Author
Соминский И. С., Головина Л. И., Яглом И. М.
Metadata
Show full item record
Abstract
О математической индукции КНИГИ,НАУКА и УЧЕБА,НАУЧНО-ПОПУЛЯРНОЕ Автор: Илья Самойлович Соминский, Лидия Ивановна Головина, Исаак Моисеевич Яглом Название: О математической индукцииИздательство: НаукаГод: 1967 Формат: DJVU Размер: 2,91 МБ Из предисловия:В 1950 г. в издаваемой Гостехиздатом—Физматгизом — издательством «Наука» серии небольших книжек «Популярные лекции по математике», рассчитанных в первую очередь на учащихся средней школы, появилась брошюра И. С. Соминского «Метод математической индукции». Эта брошюра доступно излагала содержание метода индукции, широко применяющегося в самых разнообразных разделах математики, начиная от вопросов, входящих в курс средней школы, и до самых продвинутых ее частей. Книжка такого рода была очень нужна, и брошюра И. С. Соминского заслуженно пользовалась большим успехом; в последующие годы она выдержала несколько переизданий и была переведена на многие иностранные языки. Некоторым недостатком брошюры И. С. Соминского можно было считать почти полное отсутствие в ней примеров и задач геометрического содержания.Конечно, метод математической индукции, по самому существу своему связанный с понятием числа, имеет наибольшие применения в арифметике, алгебре и теории чисел. Но понятие целого числа является основным не только в теории чисел, специально занимающейся изучением его свойств, но и вообще во всей математике. Поэтому метод математической индукции применяется в самых разнообразных областях математики. В частности, применения этого метода в геометрии особенно интересны и эффектны; они легко могут заинтересовать начинающего математика. СОДЕРЖАНИЕПредисловиеВведениеЧасть I. Индукция в арифметике и в алгебреДоказательства тождеств; задачи арифметического характера (примеры 1—13; задачи 1—16)Тригонометрические и алгебраические задачи (приме¬ры 14—18; задачи 17—23)Задачи на доказательство неравенств (примеры 19—24; задачи 24—27)Доказательство некоторых теорем элементарной алгебры методом математической индукции (теоремы 1-7)Часть II. Индукция в геометрииВычисление по индукции (примеры 1—5; задачи 1—3)Доказательство по индукции (примеры 6—15; задачи 4-11)Построение по индукции (примеры 16—19; задачи 12—14).Нахождение геометрических мест по индукции (при¬меры 20—21; задачи 15—21)Определение по индукции (примеры 22—23; задачи 22-32)Индукция по числу измерений (примеры 24—33; задачи 33—40)Вычисление и нахождение геометрических мест с помощью индукции по числу измерений (примеры 24—25; задача 33).Определение и доказательство с помощью индукции по числу измерений (примеры 26—33; задачи 34—40)О. А. Гастев. ПослесловиеУказания и решения 85 1 2 3 4 5
URI
http://ir.nmu.org.ua/handle/GenofondUA/32222
Collections
  • Libgen [81666]

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV