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PREFACE.

5 OR the past few years the writer of this book has given
a course of lectures on the elementary theory of experimental
electricity to a class of students at Trinity College, Cambridge.
Experience, together with an occasional study of lecture note-
books, has indicated that, to supplement the lectures, some definite
and permanent statement is required—some book of reference,
to which the students may turn for further elucidation of points
not clear to them.

Thus the alternatives arose either of adapting the lectures
to the lines of treatment of an existing book, or of writing a book
which should correspond with the stage mow reached in the
evolution of teaching, which has extended over some ten years.

The great shift in the chief points of interest of experimental
electricity, due to recent development in physical science, has
changed the proportion of the various branches of the subject, and
has put out of date many of the older standard text-books. To
the phenomena of electrolysis, of conduction through gases, and
of radio-activity, the physicist will now turn for knowledge newly
acquired, for knowledge in the making, and for unsurveyed
territory ready and waiting for the explorer. The writer has a
firm belief in the advantage of giving to University students, even
to those who confine themselves to an elementary study of their
subjects, some insight into methods of research, together with
some idea of recent results, and of unsolved problems ripe for
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v1 PREFACE

examination. In this way interest is aroused, and natural science
is presented in its true light, as a living and growing branch
of knowledge—imperfect indeed and incomplete as all human
creations must be, but more fascinating by reason of its very
faults and limitations, and the consequent possibility of unexpected
and beneficent development.

In the opinion of the writer, education in physical science may
proceed profitably on two lines only—either by keeping in close
touch with the advance of pure knowledge or by instruction
which brings into prominence the application of science to technical
industry. Unless one or other of these courses be followed, the
study of natural science by adult students is in danger of becoming
dead and unprofitable both to teacher and learner. If the teacher
be in touch both with the practical problems which arise in the
technical application of his science and with the investigations
into the unknown which are extending the bounds of pure
knowledge, so much the better for himself and for his pupils;
but, at least, let him try to keep in sight of one of them.
Let him train his students as though all were to become engineers
or investigators: those who end by becoming teachers will be all
the better for the misunderstanding. The state of a science
in which the instruction is only fit to train each succeeding
generation to become the teacher of the next recalls the economic
condition of the famous island where the inhabitants lived by
taking in each other’s washing.

Of those who approach physics from the experimental side,
a large majority study simultaneously the kindred science of
chemistry. From their point of view, it is an advantage that the
branches of the subject of electricity now developing most rapidly
are those in which the connexion with chemistry is most intimate.

Here, again, the comparatively small space allotted to electrolysis,
 conduction through gases, and radio-activity in the usual text-
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books is unsatisfactory. The unity of nature is best impressed
on the observer by leading him to see the connexion between the
different aspects in which, for the sake of convenience, our mental
model of the world is presented. The fact that certain phenomena
meet the student in his chemical work, is an argument, not for
omitting their consideration from a course on physics, but for
studying them with exceptional care, and for tracing their physical
relations in the light of chemical knowledge.

In the following pages no attempt has been made to present
a complete treatment of the science of electricity. The book is
meant to be suggestive rather than exhaustive, to be an impres-
sionist sketch rather than a finished picture. It aims at bringing
into prominence those features which strike the writer as essential,
without wearying the reader with a mass of unnecessary detail. An
educational work is better too short than too long; better when
in some points leaving curiosity unsatisfied than when attaining
an ill-digested completeness. The object of the present under-
taking has been to implant a thorough and clear knowledge of
those physical principles necessary for an appreciation of the
newer parts of the subject. All digressions, though interesting
perhaps to the mathematician or experimenter, have been cur-
tailed. The book is meant as an organic structure, each part of
which has a definite and inevitable relation with the whole, each
section its bearing on the plot of the story. To some extent,
even a scientific text-book perforce must be a piece of literature
and a work of art. Whether that necessity be welcomed or not,
nothing is lost by keeping it clearly in mind.

The writer wishes to thank his wife, whose help, as always,
has been freely given. Mr Norman Campbell, Fellow of Trinity
College, has read the proof-sheets of the book. Mr G. F. C. Searle,
of Peterhouse, has given his advice on several points; while
the influence and inspiration of Professor J. J. Thomson will be
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CHAPTER I
GENERAL PRINCIPLES OF ELECTROSTATICS.

Early History. Frauvklin’s work. Electric induction, Fluid theories of
electricity. Variation of electric forces with distance. Quantity of
electricity.  Electric force or electric intensity. Electric potential.
Electric capacity. Distribution of electricity on the surface of con-
ductors. Specific inductive capacity or dielectric constant.

1. It was known to many in ancient Greece and Rome that
amber and some other substances possessed, when
rubbed, the power of attracting light bodies. More-
over, the shocks received on touching the fish called the torpedo
were described by Pliny, and had been used to cure gout; though
it is safe to surmise that no connexion was suspected between
these apparently unrelated phenomena, or between either of them
and the thunderbolts of Jove. Lucretius, who commented on the
latter phenomena, hesitated to ascribe them to Divine interposi-
tion, observing that temples, even of Jove, far from being exempt,
were especially liable to the visitation.

Though references to these facts, and speculations as to their
nature, are scattered throughout the writings of the Middle Ages,
no real advance on the knowledge of the ancients was made till
Dr Gilbert (1540—1603) repeated the experiments with a view
to finding some explanation.

William Gilbert, a native of Colchester, Fellow of St John’s
College, Cambridge, and sometime President of the College of
Physicians, was one of the earliest and most distinguished of our
English men of science—a man whose work Galileo himself thought
enviably great. He was appointed Court physician to Queen

Early History.
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2 ELECTRICITY [cH.

Elizabeth and James I, and a pension was settled on him to set
him free to continue his researches in Physics and Chemistry.

It is to Gilbert that we owe the name electricity, which he
derived from the Greek word # exTpov, amber. By investigating
the forces on a light metallic needle, balanced on a point, he
extended the list of electric bodies, and found also that many
substances, including metals and natural magnets, showed no
attractive forces when rubbed. He noticed that dry weather
with north or east wind was the most favourable atmospheric
condition for exhibiting electric phenomena—an observation liable
to misconception till the difference between conductor and insu-
lator was understood.

Gilbert’s work was followed up by Robert Boyle (1627—1691),
the famous natural philosopher who was once described as “father
of Chemistry, and uncle of the Earl of Cork.” Boyle was one of the
founders of the Royal Society when it met privately in Oxford, and
became a member of the Council after the Society was incorporated
by Charles IL. in 1663. He worked frequently at the new science of
electricity, and added several substances to Gilbert’s list of electrics.
He left a detailed account of his researches under the title of
Ezpervments on the Origin of Klectricity.

The first to note that light and sound accompanied strong
electric excitation was Otto von Guericke (1602—1686) of Mag-
deburg, who mounted a sulphur ball on a revolving axis and
rubbed it with the hand. With this primitive electric machine
he repeated the earlier experiments on a larger scale, and made
the important discovery that, when once a light body had touched
an electrified substance, it was thereupon repelled till it had
touched some other object, when attraction again supervened.

In 1729 Stephen Gray discovered the electric properties of
conductors and insulators, and, in conjunction with Wheeler,
conveyed the electricity from a piece of rubbed glass over a
distance of 886 feet, through a packthread suspended by silk loops.
He found that the experiment failed if loops of hemp or wire were
used, and also noted the conducting power of fluids and of the
human body. Desaguliers added to these results the observation
that conductors appeared not to be electrified by friction, a con-
clusion he would not have reached had he supported the conductors
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on insulating supports. Desaguliers’ observation led to conductors
being called non-electrics, a name they kept for many years.

About the same time Dufay, working in France, showed that
two bodies electrified by contact with rubbed glass, or two bodies
electrified from resin, repelled each other, while one of the first
named would attract one of the latter. He was thus led to
recognise two kinds of electricity—vitreous and resinous. Gray,
who repeated his experiments, had already noted that the body
used as rubber acquired as intense an electrification as did the
object rubbed ; and also, supported by some of his fellow-workers,
suggested the identity of the electric fire with lightning.

The electric machine was now improved and increased in
power, mainly by German and Dutch philosophers. A prime
conductor, to collect the electric charge as formed, was added,
and sparks of sufficient intensity to ignite spirits of wine were
obtained.

The condenser originated in consequence of observations on the
leakage of charge. This leakage, which always took place in open
air and especially in damp air, gave rise to the notion that the
charge might be preserved if surrounded by a non-conductor. The
condenser seems to have been invented by more than one person.
From Muschenbroech of Leyden it
took its name of the Leyden jar,
and by him its properties were dis-
covered in the attempt to electrify
water in a glass bottle held in the
hand. Dr Bevis suggested coating the
outside of the jar with a metallic
covering, and such a jar filled with
water seems to have been used by
Franklin and others. When both in-
side and outside had been coated with
tin-foil, at the suggestion of Sir William Watson, the Leyden
Jar was complete. (Fig. 1.)

Watson directed a series of experiments for the Royal Society
with a view to measuring the velocity of electricity. The velocity
was of course much too great to be answerable to the experimental
appliances of the: time, and, even through more than 12,000 feet

1—2

Fig. 1.
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of wire, propagation was pronounced to be instantaneous. With
reference to these experiments, Watson remarks “that when the
observers have been shocked at the end of two miles of wire,
we infer that the electrical circuit is four miles, viz. two miles
of wire and the space of two miles of the non-electric (conducting)
matter between the observers, whether it be water, earth, or
both.” This seems to be the first occasion when the earth was
used and recognised as a return circuit.

2. Watson suggested that the two kinds of electrification
Franklin’s might represent the excess and defect in a single
bk kind of electricity, and this “single fluid theory,”
with its positive and negative charges, was elaborated and made
more definite by Dr Benjamin Franklin of Philadelphia (1706-
1790), journalist, philosopher, and statesman. Franklin showed
that the two coatings of a Leyden jar were oppositely electrified,
and that, in the terms of the one fluid theory, as much electricity
escaped from the outer coating as entered the inner coating. “The
phial will not suffer what is called a charging unless as much fire
can go out of it one way as is thrown in by another. A phial
cannot be charged standing on wax or glass, or hanging on the
prime conductor, unless a communication be form’d between its
coating and the floor.

“ When a bottle is charged in the common way its inside and
outside surfaces stand ready, the one to give fire by the hook, the
other to receive it by the coating; the one is full and ready to
throw out, the other empty and extremely hungry; yet as the
first will not give out, unless the other can at the same instant
recetve vn, so neither will the latter receive in, unless the first can
at the same instant give out. When both can be done at once
’tis done with inconceivable quickness and violence.”

The ideas prevalent at that time regarded the electricity stored
in the jar as analogous to a liquid stored in a bottle; but Franklin,
setting himself to determine the essential features of the jar,
found that similar effects could be obtained by placing two sheets
of lead, one on each side of a plane sheet of glass. By gilding
the glass in front of a picture of the King, Franklin was able,
by means of a violent electric shock, to frustrate the efforts of
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“the conspirators” who endeavoured to take off a little moveable
gilt crown from the King’s head. In after years he may have
remembered this playful experiment when, his efforts to prevent
a quarrel having failed, Franklin, both in his own Jand and as
ambassador to France, did much to remove from the King’s crown
the bright jewel of the American colonies.

Franklin found that a sharp point near an electrified body
caused it to lose its charge, and noticed the glow which such a
point presents in a darkened room. From experiments like these
he reached the conception of ‘an electric atmosphere surrounding
charged bodies, and concluded that the charge resided on the
surface. The Leyden jar, moreover, showed phenomena which
indicated that the charge resided, not on the coatings, but in the
glass itself.

“The whole force of the bottle, and power of giving a shock, is
in the GLASS ITSELF; the non-electrics in contact with the two
surfaces serving only to give and receive to and from the several
parts of the glass; that is, to give on one side, and take away from
the other.

“This was discovered here in the following manner. Purposing
to analyse the electrified bottle, in order to find wherein its
strength lay, we placed it on glass, and drew out the cork and wire
which for that purpose had been loosely put in. Then taking the
bottle in one hand, and bringing a finger of the other near its
mouth, a strong spark came from the water, and the shock was as
violent as if the wire had remained in it, which showed that the
force did not lie in the wire. Then to find if it resided in the
water, being crowded into and condensed in it, as confin’d by the
glass, which had been our former opinion, we electrified the bottle
again, and placing it on glass, drew out the wire and cork as
before ; then taking up the bottle we decanted all its water into
an empty bottle, which likewise stood on glass; and taking up
that other bottle, we expected if the force resided in the water to
find a shock from it; but there was none. We judged then that
it must either be lost in decanting or remain in the first bottle.
The latter we found to be true: for that bottle on trial gave the
shock, though filled up as it stood with fresh unelectrified water
from a teapot. To find, then, whether glass had this property
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merely as glass, or whether the form contributed anything to it,
we took a pane of sash glass and laying it on the stand placed a
plate of lead on its upper surface; then electrified that plate, and
bringing a finger to it, there was a spark and shock. We then
took two plates of lead of equal dimensions, but less than the glass
by two inches every way, and electrified the glass between them,
by electrifying the uppermost lead ; then separated the glass from
the lead, in doing which what little fire might be in the lead was
taken out and the glass being touched in the electrified parts with
a finger, afforded only very small pricking sparks, but a great
number of them might be taken from different places. Then
dexterously placing it again between the leaden plates, and
completing a circle between the two surfaces, a violent shock
ensued.— Which demonstrated the power to reside in glass as
glass, and that the non-electrics in contact served only, like the
armature of a loadstone, to unite the force of the several parts
and bring them at once to any point desired: it being a property
of a non-electric that the whole body instantly receives or gives
what electrical fire is given or taken from any one of its parts.”

In the last sentence Franklin clearly shows that he understood
the essential nature of the then-called non-electrics as conductors
of electricity. The experiment with the Leyden jar makes plain
the paramount part played in electrical phenomena by the non-
conductor, or, as it was then termed, the electric per se.

This experiment is of fundamental importance, for the modern
theory of electricity, as we shall see, regards the dielectric as the
essential seat of electrical manifestations. On this foundation
Faraday and Maxwell laid the corner-stones of electrical science.

As soon as the spark and noise of an electric discharge were
noticed, their resemblance to lightning and thunder was recog-
nised, and the identity in nature of the two phenomena suspected.
The problem of the establishment of this identity seems to have
possessed a fascination for the mind of Franklin, and many of his
later letters are filled with the description of experiments repeating
on a small scale, with the charges of Leyden jars, the effects of
lightning in fusing metals, rending materials, &c. The discharging
action of points suggested to Franklin the idea of the lightning-
conductor.
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“May not the knowledge of this power of points be of use
to mankind, in preserving houses, churches, ships, &c. from the
stroke of lightning, by directing us to fix on the highest parts of
those edifices upright rods of iron made sharp as a needle, and
gilt to prevent rusting, and from the foot of those rods a wire down
the outside of the building into the ground, or down round one of
the shrouds of a ship, and down her side till it reaches the water ?
Would not these pointed rods probably draw the electrical fire
silently out of a cloud, before it came near enough to strike, and
thereby secure us from that most sudden and terrible mischief 2”

Franklin then goes on to suggest that in order “to determine
the question whether the clouds that contain lightning are
electrified or not” an iron rod should be erected on some high
tower or steeple. When thunder-clouds passed, sparks might be
drawn from the lower end of the rod.

The letters containing this suggestion led to its adoption in
France, England, and other countries, with complete success—
a suceess, too complete indeed in the case of Professor Riehmann
of St Petersburg, who was killed by a shock from an iron rod
erected on his house. Meanwhile Franklin himself had safely
carried out a similar experiment by means of a kite.

“To the top of the upright stick of the kite is to be fixed
a very sharp pointed wire, rising a foot or more above the wood.
To the end of the twine, next the hand, is to be tied a silk ribbon,
and where the silk and twine join a key may be fastened. This
kite is to be raised when a thunder-gust appears to be coming on,
and the person who holds the string must stand within a door or
window, or under some cover, so that the silk ribbon may not be
wet; and care must be taken that the twine does not touch the
frame of the door or window. As soon as any of the thunder-
clouds come over the kite the pointed wire will draw the electric
fire from them, and the kite, with all the twine, will be electrified,
and the loose filaments of the twine will stand out every way and
be attracted by an approaching finger. And when the rain has
wet the kite and twine, so that it can conduct the electric fire
freely, you will find it stream out plentifully from the key on the
approach of your knuckle. At this key the phial may be charged;
and from electric fire thus obtained spirits may be kindled, and all
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the other electric experiments be performed, which are usually
done by the help of a rubbed glass globe or tube, and thereby the
sameness of the electric matter with that of lightning completely
demonstrated.”

During the eighteenth century, many experiments were made
on the electrification produced by heating certain minerals and
crystals, such as tourmaline ; and attention was drawn once more
to the benumbing power of shocks given by the torpedo and certain
other fish. Their electrical organs were examined, and the shocks
they inflict were ascribed definitely to electrical manifestations.

3. While Franklin pursued his researches in America, an
ek English philosopher and schoolmaster, John Canton
o n v o (1718—1772), born at Stroud in Gloucestershire, was
working on parallel lines in London. In 1750 he received a medal
from the Royal Society in recognition of his improvements in
artificial magnets, and in 1752 he was the first in England to
verify his friend Franklin’s demonstration of the identity of light-
ning and electricity.

But perhaps the greatest of Canton’s discoveries was the process
of electrification by induction, which he explained in terms of the
theory of electrical atmospheres. If an insulated conductor, let us
say of a cylindrical form, is placed in the neighbourhood of a
charged body, the nearer end of the cylinder acquires a charge of
the opposite sign, and the farther end a charge of the same sign
as that on the body. The charges may be demonstrated by fitting
the cylinder with vertical metal stands, from which hang linen
threads carrying pith balls. An electric charge repels the balls

from the stands (Fig. 2).
If the cylinder, still insu- ‘4 l\5
lated, be removed from the (+ ~)
neighbourhood of the ori-
ginal charge, the charges on

the cylinder neutralize each

other. If, however, while Fig. 2,

under the influence of the electrified body, the cylinder be touched
with the finger or otherwise connected with the earth, the charge
of the same name as that of the inducing body escapes, and the
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cylinder retains the charge of the opposite name. As long as the
electrified body is near, this induced charge remains fixed or bound :
1t will not escape even along a conductor. When, however, the
electrified body and the cylinder are separated, the induced charge
becomes free; the cylinder acts as an ordinary charged system—it
will share its charge with any other insulated conductor in contact
with it, and lose its charge to earth if a passage be opened. These
phenomena admit of an obvious explanation in terms of the attrac-
tion between unlike charges and the repulsion between those of
the same name, the original uncharged cylinder being imagined to
contain equal and opposite quantities of “vitreous and resinous” or
of “ positive and negative” electricity.

Electrostatic induction gives us the best means of obtaining
a continuous series of electric charges, and on this principle all
modern electric machines are based.

The simplest influence machine is the electrophorus of Volta,
invented in 1775. It consists of a plate of resin or vulcanite which
is electrified by rubbing it with cats’ fur. A brass plate, held on
an insulating handle, is then placed upon it, and touched with the
finger. The negatively electrified vulcanite induces a positive
charge on the lower surface of the brass plate and repels the
corresponding negative charge to earth. The finger is then

N

Fig. 3. Fig. 4.

removed, leaving the brass plate insulated with its positive charge.
If it be now raised from the cake of vulcanite, work is done against
the electric forces, the positive charge is set free, and can be
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communicated to other conductors. The energy of the electric
charge obviously is derived from the work of electric separation
performed in raising the charged plate from the oppositely
electrified vulcanite; as long as the two charges are in close
proximity, they are unavailable, and possess no energy. The
charge on the vulcanite is not sensibly affected by the working
of the instrument, since the brass plate touches it at a few points
only. Thus the brass plate can be replaced, and the process
repeated till the original charge is lost by leakage. A continuous
series of charges is obtained at the expense of manual labour.

Similar principles are applied in the powerful influence machine
invented by Wimshurst and now used extensively in physical
laboratories (Fig. 5). Two shellac-coated glass plates are made to
revolve in opposite directions by means of a hand-wheel or motor.
Sectors of thin brass or tin-foil are fixed to the outer surfaces
of the plates as indicated in the figure. These sectors are touched
as they revolve by wire brushes on the ends of two uninsulated
diagonal conductors. To start the machine, a charged ebonite rod
is held opposite one of these brushes. The negative charge on the
rod, acting through the two glass plates, induces a positive charge
on the sector, the corresponding negative charge escaping through
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the brush. The positively charged sector passes on, till it comes
opposite the brush on the other side of the machine. Here it
induces a negative charge on one of the sectors of the other plate
then in contact with the brush, and finally gives up its charge to
one of the collecting combs which are connected with the terminals
of the machine. Thus, each charged sector acts as an inducing
agent for sectors on the opposite plate before rendering up its
charge. Once started, the machine increases its own charges, till
leakage or discharge between the terminals prevents further
accumulation. Large Wimshurst machines, with several pairs
of plates, are now often -worked by electric motors, and give
a constant stream of opposite charges of very great intensity.

4. As we have seen, the phenomena of electricity known in
Fluid theories the middle of the eighteenth century were explained
of electricity. by the single fluid theory of Watson and Franklin.
An alternative explanation was, however, suggested by other
physicists. According to this second view, the two kinds of
electrification were to be explained as the manifestation of two
imponderable fluids, co-existent but with opposite properties,
which neutralized each other. But the age was not ready for such
fundamental and detailed theories of electricity; in fact, even now
we are not in a position to accept finally any theory as to its
ultimate nature, and we still do not certainly know whether
electricity is two or one. Nevertheless, the single and double
fluid theories were most useful working models, and played the
true part of scientific hypotheses in enabling observers to describe
and coordinate the phenomena, and to find new and profitable
fields of research.

At the period we are now considering, the knowledge already
acquired might be summarized by saying that, in unelectrified
bodies, equal quantities of the opposite electric fluids existed, and
that, by the friction of certain substances, a separation between the
fluids might be effected. The fluids passed easily through the
interstices of conductors or non-electrics, substances which, when
held in the hand, could not be electrified by friction, but only
moved with great difficulty through electrics or non-conductors.
Each electric fluid tended to spread over the surface of any
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conductor; the different portions of the fluid seemingly exerted
a repulsive force on each other. Moreover, two bodies similarly
electrified repelled each other. On the other hand, opposite
electricities on the same conductor tended to approach and
neutralize each other, while two bodies oppositely electrified
were subject to a force of attraction. Electric charges at rest
were found only on the surface of conductors, but in motion they
used the whole substance of the conductor and not merely its
surface. Those doubtful on this point might, according to Franklin,
be convinced by the passage of an electric shock through the
substance of their bodies.

The properties of condensers or Leyden jars were explained by
the attraction of the opposite charges collected or condensed on
their coatings ; though, as we have seen, Franklin had already shown
that the glass itself played the more essential part in the process.

As soon as we attempt to deal with the fluids of the two-fluid
theory as other than mathematical abstractions, the difficulty of
the conception becomes manifest. We have to suppose that the
mixture of two fluids in equal proportions gives us something so
devoid of properties that it cannot be detected. The one-fluid
theory, as developed by Franklin, avoids this difficulty. In his
view, portions of the single positive fluid attract ordinary matter
and repel other portions of electricity. Unelectrified matter is
supposed to be associated with so much of the electric fluid that
the attraction of external electricity for the matter is just
balanced by the repulsion for the normal charge associated with it.
Excess of the fluid beyond the normal charge means positive
electrification, defect means negative electrification. There is
much in Franklin’s theory which resembles modern conceptions
of electrical phenomena, though there is now reason to suppose
that what is called negative electrification should have been given
the positive sign.

5. At this stage of the science, the most important phenomena
I were the attractions and repulsions between electrified
Variation of p y 5 5
electric forces  bodies, and the investigation of these forces became
with distance. ; i Y z
the immediate object of experimenters. The New-
tonian law of gravitation must have suggested the possibility that,
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in electric phenomena also, we are dealing with forces which
vary inversely as the square of the distance. It was shown
by Apinus, a German philosopher who lived from 1724 to 1806,
that the force diminished as the distance increased, but a
satisfactory demonstration of the truth of the inverse square
law was first published by Robison and soon after by Charles
Augustin Coulomb of Montpellier (1736—1806), a distinguished
military engineer in the service of France, and a member of the
Académie des Sciences. Coulomb’s researches were carried on by
means of an instrument of his own invention, known as the torsion
balance. Nevertheless, as we shall see presently, a more accurate
method than that of Coulomb had been worked out and used
previously by Cavendish, though with characteristic reticence
he had not thought fit to give his discovery to the world.

The original idea of measuring small forces by balancing
them against the torsion of a
wire seems to have been due to
the Rev. John Michell, whose
method was applied by Cavendish
in 1797 to determine the
gravitational attraction between
balls of lead. Coulomb, probably
unaware of Michell’s suggestion,
investigated experimentally the
couple required to twist a wire ; !
through a given angle, and found ; La—
that it varied as the angle and as
the fourth power of the diameter ' *
of the wire. He then constructed = @55‘" =
a balance, such as is illustrated in - ——— R
Fig. 6, and used it to investigate i
electric forces. Fig. 6.

To the centre of the top of a cylindrical glass case a vertical
glass tube is fixed. At the upper end of the tube is fitted a
graduated torsion head from which hangs a fine silver wire. The
wire carries a thin straw, covered with sealing-wax, with a small
pith ball at one end and a vertical disc of oiled paper (not
shown in the figure) at the other. The disc acts as a damper of
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the oscillations of the bar, and as a pointer by means of which the
position of the bar is ascertained on a graduated circle surrounding
the middle of the glass case. A second hole, towards the side
of the top of the case, admits a vertical rod of shellac, suspended
by a clip and carrying a second conducting ball, which is thus
placed in a fixed position within the case, such that the centre of
the ball lies between the zero of the graduations on the case and
the lower end of the hanging wire. The fixed ball being removed,
the torsion head is adjusted till the suspended ball lies with its
centre at the same point. The fixed ball is then reinserted, and,
when the moveable ball has come to rest in contact with it, both
are electrified by means of a small metal ball carried on an
insulating handle. The moveable ball is repelled, and takes up
a position of equilibrium under the electric repulsion and the force
of torsion. Its position on the graduated circle is then noted.
The torsion head is now turned round so as to force the moveable
ball nearer to the other, and a note is made of the angle through
which the torsion head is turned and the new position of equi-
librium of the suspended arm.

Knowing the two angular positions of equilibrium, it is easy
to calculate in each case the distances between the balls. The
angles of torsion are determined by observing the graduations on
the torsion head and on the glass case. The torsional couple
being proportional to the angle of twist in the wire, a relation
between electric force and distance is obtained. If the balls are
small compared with the distance between them, the relation is
found to be approximately that of the inverse square.

As a simple example of the method, let us imagine that, after
the moveable ball has been repelled through an angle «, the
torsion head is turned through an angle B till the original
distance d between the balls is halved. The angular deviation

of the moveable arm is now less than a, ¢

let us suppose «, and the total twist in A it

the wire is ¢ + B instead of a, as at first. . 7 F """""
It will now be found that v+ 23 is ap- 0 2 "
proximately four times a, showing that clé‘

halving the distance has increased the
force in the ratio of 1 to 4. In a similar
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manner, diminishing the distance to one-third will be found to
increase the torsional and electric forces in the ratio of 1 to 9.

While such experiments serve to show that the law of inverse
squares is not far from the truth, they are not susceptible of any
great accuracy. The law, as we shall see later, is only exact if the
dimensions of the charged bodies are infinitely small compared
with the distance between them, or if the bodies consist of spheres
uniformly electrified. Now, although the bodies in Coulomb’s
apparatus are spheres, they are not uniformly electrified, for the
repulsive action between the charges concentrates them on the
farthest parts of the spheres. Besides this difficulty, the unavoid-
able leakage of charge during the course of the measurements
renders the experiment uncertain in result. The torsion balance,
in less experienced hands than those of Coulomb, is very far from
being an instrument of precision.

Fortunately we are not dependent on the torsion balance for an
exact verification of the law of inverse squares, and, as already
stated, another method had been devised and carried out for his
own satisfaction by Henry Cavendish some years before the publi-
cation of Coulomb’s results. Cavendish discovered many things
which are now associated with the names of other men, for it was
only when his unpublished manuscripts, belonging to the Duke of
Devonshire, were edited by Clerk Maxwell in 1879, that the world
understood to' what an extent he had anticipated the conclusions
of more recent times. As Maxwell says, “ Cavendish cared more
for investigation than publication. He would undertake the most
laborious researches in order to clear up a difficulty which no one
but himself could appreciate, or was even aware of, and we cannot
doubt that the result of his enquiries, when successful, gave him a
certain degree of satisfaction. But it did not excite in him that
desire to communicate the discovery to others which, in the case of
ordinary men of science, generally ensures the publication of their
results. How completely these researches of Cavendish remained
unknown...... is shown by the external history of electricity.” In
the present age of publicity we may perhaps overrate the ec-
centricity of Cavendish’s character, but, even in his own more
leisurely days, that eccentricity seems to have arrested attention.

Cavendish’s method of examining the law of force depends on
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the experimental proof that there is no electric force within a
charged sphere. Newton in his Principia had demonstrated that,
on the assumption of an inverse square law, the gravitational
force would vanish within a uniform spherical shell of gravitating
matter. It is easy to transfer the proof to the case of uniform
electrification, which is mathematically similar.

Let us consider the resultant force at the point P within the
sphere. With P as common apex, draw two "
small equal-angled cones with their axes in
the same straight line on opposite sides of
P. The bases of these two small cones
being very small, we may take the area
A of one base to be at a constant distance
from P, and to act as an electrified
particle. By hypothesis, therefore, its
charge will act at P with a force pro-
portional to 1/(PA); similarly the charge
on a will act with a force proportional to 1/(Pa)®. But, the sphere
being uniformly electrified, the charges on these areas 4 and «
will be proportional to the areas. Now, the bases being equally
inclined to the axes of the cones, they will possess areas directly
proportional to the squares (PA4)* and (Pa)’. Thus, the forces at P
due to the charges on 4 and a will increase with distance as
much as they diminish, and will be the same as though the charges
were at the same distance from P, when obviously the forces they
exert are equal and opposite. The force at P due to the two
elementary cones, then, vanishes; and by dividing the whole surface
of the sphere into elementary areas by similar pairs of cones, it
is clear that the force due to each pair of cones must vanish also,
so that there is no-resultant force.

We have now shown that the assumption of the law of inverse
squares leads to the disappearance of electric e
force within a uniformly charged sphere. It o
remains to prove that no other law is consistent
with this result. Through a point P, inside a
sphere with centre O (Fig. 9), draw a plane at
right angles to OP. If the charge on the part
of the sphere above this plane produces an Fig. 9.

Fig. 8.
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attraction in the direction OP, that below the plane will
act in the direction PO. When the law is that of the
inverse square, these two forces balance each other. If the
force decrease with increase of distance at some rate higher
than the square, the force due to the electrification of the larger
area below the plane will fall off at a rate too fast to be
compensated by the greater effect of the larger area. The
resultant force will therefore act in the direction OPF towards the
smaller area. On the other hand, if the force diminish less fast
than the square of the distance increases, the greater distance from
P of the larger area will be overcome by the effect of the larger
charge, and there will be a resultant force in the reverse direction.

It follows, therefore, that no power of the distance other than
the inverse square is consistent with no electric force within
the uniformly charged sphere. Maxwell pointed out that the
experimental fact, which was known to Cavendish, that the
distribution of electricity was similar on similar figures, irrespective
of size, shows that the law of force must involve some power of the
distance and no other mathematical function. If, then, it can be
shown experimentally that there is no electric force within a
uniformly charged sphere, it must follow that the inverse square
i1s the only possible law of force. This result was first given
in a general form by Laplace, though, as we have stated, owing
to the known experimental properties of similar bodies, Cavendish’s
assumption of some power of the distance does not sacrifice the
generality of his proof.

Whenever an electric force acts on a conductor, as we have
seen above, electric separation occurs, and parts of the conductor
become electrified differently to other parts. If we find that,
within a charged conductor, no separation of electricity occurs, it
shows that no electric force exists.

To examine this point, Cavendish says, “I took a globe
121 inches in diameter, and suspended it by a solid stick of glass
run through the middle of it as an axis, and covered with sealing-
wax to make it a more perfect non-conductor of electricity®’. I
then inclosed this globe between two hollow pasteboard hemi-

1 Glass is hygroscopic, and in damp weather becomes covered with a conducting
film of moisture.
\BRAR
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spheres, 13'3 inches in diameter...in such manner that there could
hardly be less than ; of an inch distance between the globe and
the inner surface of the hemispheres in any part, the two
hemispheres being applied to each other so as to form a complete
sphere, and the edges made to fit as close as possible, notches
being cut in each of them so as to form holes for the stick of glass
to pass through.

“By this means I had an inner globe included within a
hollow globe'in such a manner that there was no communication
by which the electricity could pass from one to the other.

“I then made a communication between them by a piece of wire
run through one of the hemispheres and touching the inner globe,
a piece of silk string being fastened to the end of the wire by
which I could draw it out at pleasure.

“ Having done this I electrified the hemispheres by means
of a wire communicating with the positive side of a Leyden phial,
and then, having withdrawn this wire, immediately drew out the
wire which made a communication between the inner globe and
the outer one, which, as it was drawn away by a silk string, could
not discharge the electricity either of the globe or hemispheres.
I then instantly separated the two hemispheres, taking care in
doing it that they should not touch the inner globe, and applied
a pair of small pith balls, suspended by fine linen threads, to the
inner globe, to see whether it was at all over or undercharged?,

“The result was that though the experiment was repeated
several times I could never perceive the pith balls to separate or
show any signs of electricity......

“Hence it follows that the electric attraction and repulsion
must be inversely as the square of the distance, and that when a
globe is positively electrified the redundant fluid in it is lodged
entirely on its surface....... :

“In order to form some estimate how much the law of the
electric attraction and repulsion may differ from that of the inverse
duplicate ratio of the distances without its having been perceived
in this experiment” Cavendish tested the sensitiveness of his
apparatus by communicating to the inner sphere an amount of
electricity which was just appreciable with the pith balls, and was

1 j.e. positively or negatively electrified.
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equal to a known fraction of that communicated to the outer
sphere in the experiment described. “We may conclude that the
electric attraction and repulsion must be inversely as some power
of the distance between that of the 2+ Z;th and that of the
2 —Jsth, and there is no reason to think that it differs at all
from the inverse duplicate ratio.”

A similar experiment was carried out, using a hollow rect-
angular box instead of the folding hemispheres, with a similar
result. Whatever the form of the conductor, as long as it is
completely closed, there is no electric force within it.

Truly this research is no less remarkable as a model of
scientific method, than for the importance of the results obtained.

The pair of pith balls used by Cavendish do not constitute a
sensitive electroscope. A more delicate instrument, invented by
Bennet, consists of two gold-leaves suspended from a wire placed
within a glass jar. When electrified, the leaves repel each other
and diverge at an angle which roughly indicates the intensity of
electrification. In recent years the gold-leaf electroscope has
become an instrument of accurate research, and is employed for

Fig. 11.

measuring the electrical conductivity of air and other gases under
the influence of Rontgen rays, radio-active substances, etc. In
its modern form, a single strip of gold-leaf C is attached to
a brass plate D (Fig. 11), from which the leaf is repelled when
electrified.
With a gold-leaf electroscope, it has been possible to obtain a
2—2



20 ELECTRICITY [cH.

much more exact confirmation of the law of inverse square than
was effected by Cavendish. Faraday, for instance, constructed a
wooden cube covered with tin-foil, large enough to contain himself
and his electroscopic instruments. The cube was supported on
insulating feet, and intensely electrified. Even when brush and
spark discharges were darting from the outside, no electrification
could be detected within.

Using Lord Kelvin’s quadrant electrometer (§ 20) Maxwell,
about the year 1870, repeated Cavendish’s experiment, and came
to the conclusion that the power of the distance involved in the
law of force cannot differ from 2 by more than the 1/21600th part.

The fact that the
charge on a system re- /
sides on the outside only
may be demonstrated
roughly in many ways,
one of which is a modi-
fication of Cavendish’s
experiment with the
separable hemispheres
(Fig. 12).

=
Besides itaghiat in, =
terest as a means of A
verifying the law of
Fig. 12.

inverse square, the fact
that there is no electric force inside a closed conductor of any
form, carrying any distribution of electricity, shows that such a
conductor serves to screen points within it from electrostatic
disturbances due to outside electrification. For effective screening,
it is not necessary to have a continuous conductor. A cover of
wire-gauze, as shown in Fig. 10, or even strips of tin-foil pasted
on a glass shade, are usually sufficient protection to electric
instruments placed within. The indications of such instruments
are not affected by charges without the screen.

6. In order to acquire the power of measuring definitely any
Quantity of physical quantity, it is necessary to find some satis-
Sleotticity: factory method of defining the unit of the quantity,
and to show that, in certain conditions at all events, the quantity
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we are dealing with does not arbitrarily increase or decrease—
that, in certain circumstances, it is a conservative quantity. Thus,
mass and energy are quantities. Units can be devised, and two
masses or two quantities of energy can be added together so that
the joint mass or energy is the sum of the parts. The temperature
of a mixture of two volumes of water, on the other hand, is not the
sum of those of the two before junction. In this sense, temperature
is not a physical quantity.

A knowledge of the laws of electric attraction and repulsion,
and of their variation with the distance, enables us to define a
convenient unit for quantity of electricity. In terms of this unit,
it is found that all known phenomena are consistent with the
supposition that electricity may be treated as a real physical
quantity. Two quantities of electricity of the same kind can be
given to the same insulated conductor, and, as measured by its
external electric forces, that conductor, allowing for the loss by
leakage, will then possess a charge represented by the sum of the
two charges communicated. Should the two charges be of opposite
kinds, the same statement describes the facts if by the sum, the
algebraic sum be understood.

The use of the term “quantity of electricity” is justified and the
phenomena of induction are well illustrated by some experiments
of Faraday, who used a pewter ice-pail to represent anearly closed
conductor. The ice-pail was
placed on an insulating stand
and connected with an electro-
scope by means of a wire. A
brass ball, suspended by a long
thread of white silk, was electri-
fied, and gradually lowered into
the pail. As it approached, the
leaves of the electroscope di-
verged, and the divergence
increased till the ball was well
inside the vessel, some few
inches below the top. The
divergence of the leaves then
became constant, however the
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ball was moved about within the pail. If its charge were
shared with another ball, no change appeared in the indications
of the electroscope. TFinally, if the ball touched the inside
surface of the vessel, again the divergence of the gold-leaves
was unaffected. The whole of the charge on the ball now had
passed to the outside of the surrounding vessel, and this was
verified by removing the ball, when the leaves maintained their
deflection, and the ball was shown to be unelectrified.
Two chief conclusions may be drawn from these facts:

(1) The deflection of the electroscope depends on something
which remains constant however the charged ball be moved, when
that ball is once fairly within the vessel, and however the charge
be distributed ; we may call this something a quantity of electricity,
the quantity remalmng constant, and not depending on the nature,
position, or size of the charged body.

(2) Let us then accept the idea of a quantity of electricity,
and the fact that, on contact with the inside, the whole of the
charge on the ball passes to the outside. It follows from the
constancy of the deflection on contact that the quantity of electricity
distributed on the inside of the vessel at first, owing to induction,
must be equal and opposite to the charge on the ball, since, when
they coalesce, they leave the charge on the outside unaffected.
Touching the inside of the vessel with the ball only leaves the
deflection unaltered if the charge is effectively surrounded on all
sides by the vessel. Thus, for the induced charge to be equal as
well as opposite to the inducing charge, the outside conductor
must completely surround the charged body.

In the light of our knowledge of the laws of electric force, the
electrostatic unit of quantity of electricity may be defined con-
veniently as that quantity which, when placed on a small particle at
unit distance from a similarly electrified particle, repels it with
unit force when the two particles are separated by air. In the
system of units usually adopted, the unit of distance is the centi-
metre, and the unit of force the dyne. Now, it can be shown
experimentally, by means of the torsion balance for instance, that
two such units in conjunction produce a doubled force on the
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repelled unit—the electric forces vary as the product of the
quantities of electricity and inversely as the square of the distance
between them. Writing e, and e, for the two quantities of elec-
tricity, and r for the distance, we have

e,

F= ;72— ,
for the force between them when separated by air. We shall see
presently that, in the general case, when any insulating medium lies

between the charges, another factor must enter into this expression.

7. In the equation given above, F denotes the mechanical
Electric force force acting between two simi'larly electrified pax:ticles.
or electric It must not be confused with another quantity, of
ensity: different physical dimensions, which is called the
electric force or the electric intensity. Let us suppose that, in
some way or other, an electric field is set up. An electrified body
placed in that field is subject to forces, but the amount of force it
suffers depends on the charge on the body. It is convenient to
have some quantity to express the state of the field independently
of any charge used to explore it. The electric intensity at any
point of the field is defined as the mechanical force which would
be exerted on a particle, charged with unit quantity of positive
electricity and placed at the point. If we denote the electric
intensity by f, the mechanical force on a body carrying a
charge e is

F=fe,
so that the dimensions of f are those of mechanical force divided
by those of quantity of electricity.

Electric intensity, like mechanical force, is a vector quantity—
1t involves the idea of direction. A line drawn through an electric
field so as always to coincide in direction with the electric intensity
is known as a line of force. In another place we shall have much
to say about lines of force.

8. The early experimenters soon found that it was impossible
Electric to electrify a system without limit. As the process
fprentiel, continued, leakage increased, and eventually luminous
discharges appeared, which carried away the charge as fast as it
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was imparted to the system. With a given source of electricity,
this stage was reached sooner with small systems than with large
ones. Hence arose the ideas of quantity of electricity, of the
electric capacity of the receiving system, and of the degree of
electrification, or what we now term the potential.

Cavendish seems to have been distinguished from his pre-
decessors and contemporaries by a clear grasp of the meaning of
the phrase “degree of electrification” and by an exact definition
of it. In terms of his fluid theory, he boldly gave it a physical
meaning as the pressure of the fluid. The relative degrees of
electrification determine in which direction electricity will pass
when two bodies are connected by means of a conductor, and, when
equilibrium has been attained, the potential of the bodies must be
the same: all parts of a conducting system must be at the same
potential when its charge is at rest. In this sense electric
potential is analogous to temperature in heat, or to pressure in
hydrodynamics. ]

The difference of electric potential between two points may be
defined as the work done against the electric forces in bringing
one positive unit of electricity from one point to the other, the
movement of the unit charge being supposed to produce no
appreciable change in the potential. The electric potential of any
single point in space then is best defined as the amount of work it
is necessary to do against the electric forces in bringing up to the
point a particle charged with one unit of positive electricity from
a point at an infinite distance from all charges, where, by
arbitrary definition, we may suppose the potential to be zero.

As the simplest and most useful case, let us calculate the
electric potential due to an isolated positive charge e at a distance
r from it.

Let O denote the position of the point-charge e. At a point P

(4 ® & & ¢ o o
(o] PQR S
Fig. 14.

the electric intensity, 7.e. the force on a unit positive charge, is
¢/(OP)* and at a neighbouring point @ it is ¢/(0Q)*. If P and Qare
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taken very near together no sensible error will be made if the force
throughout the distance P is taken as the geometrical mean
e/OP . 0Q.

The work done in bringing a positive unit from @ to P is then

e e 1 1
PRop 09 =(09-0D) gpgo=" (OP - OQ)'

Similarly, the work from R to  is e( and from

1 1
S to R, e(OR ()S)

Now, the total work done from S to P is the sum of the

\0Q UR) ’

elements of work given above, and is therefore e( 0P 01b>

This process could be continued from as far as we please. If
we imagine it begun at an infinite distance, the expression for the
work done throughout, or the electric potential, becomes

V_e(L_ 1>__e__f
““\OP «,) OP r’

This method of proof is known as integration, and, in the
notation of the integral calculus, may be written

Thus the potential due to a point-charge is proportional to
that charge, and, since any distribution of electrification may be
supposed to be made up by a collection of point-charges, it follows
that, if all the charges in a system vary together, the potentials
and the charges are always proportional to each other.

If the electric intensity be constant over a certain length [,
then the work done in carrying a positive unit over the distance {
is f1, and this is the difference of potential V. That difference is
proportional to [, and thus, if the force be constant, the rate V/I
of change of potential per unit length in the direction of the
force is constant also, and equal to the electric intensity.

If the electric intensity be not constant, its value at any point
will be equal to the rate of change of the potential at that point;
that is, to the difference of potential over a small distance divided
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by that distance, when the distance taken is so small that the
force is sensibly constant over it.

The potential diminishes as we pass away from a positively
electrified body, and the force on a positive unit is also directed
away from such a body. Thus the resultant electric intensity
acts in the direction in which the potential decreases. In general
terms, the electric intensity in any direction is equal to the rate
of fall of potential in that direction.

In terms of the differential calculus

Jo=—dWVfdz ...t (3)
9. The charge on an isolated conductor is proportional to
Electric its potential, and the constant ratio between them,
- o or the quantity of electricity needed to raise the

potential by unity, is defined as the electric capacity of the
conductor. Here the system is really made up of the conductor
and the far-off surrounding conductors, which are taken to be at
zero potential. We are, in fact, concerned, not with an isolated
body, but with a system made up of the body, the dielectric field
surrounding it, and the conducting boundaries of that field with
an equal and opposite charge residing on them. The capacity C'
of this system is then given by
e

where e is the charge on one boundary of the field, and V, -V,
denotes the difference of potential between the boundaries. A
similar expression gives the definition of the capacity for systems
such as condensers, which are essentially the same as the case
just considered.

Cavendish again appears as the first to possess a clear idea of
this quantity, and to make definite measurements of the capacity
of different bodies. He constructed condensers by pasting tin-foil
on each side of glass sheets, and arranging them in sets of three,
so that one of the second set had the same capacity as three of
the first set, and so on. As we shall see hereafter, the capacity
of an isolated conducting sphere placed in air is numerically
equal to its radius, and Cavendish used the diameter of a

C=
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sphere possessing the same amount of charge as the given body,
when at the same degree of electrification, as the measure of its
capacity. Thus when he says that a certain body contains n
“inches of electricity” we may interpret his result as meaning
that its capacity is 4n inch.

The electric capacity of an insulated conductor is not a
property of the form and dimensions of that conductor alone.
It depends on the neighbouring conductors, and, as will be shown
later on, on the nature of the dielectric or insulator separating it
from the neighbouring conductors. The effect of one conductor
on the capacity of another can be demonstrated easily by means of
a gold-leaf electroscope. The divergence of the leaves measures
the degree of electrification, 7.e. the potential. If an uninsulated
brass plate be held in the hand, and moved nearer to the plate at
the top of the electroscope, the divergence of the leaves decreases,
showing that their potential is diminished. No electric communi-
cation with the gold-leaf system has been made ; hence the charge

is unaltered and the capacity must have been increased.

10. Having given the laws of force and induction, the
Distribution of calculation of the distribution of charge on the
glectricity of  surface of a conductor of any form is a question
Eonductorss of mathematics.

For an isolated sphere, everything being symmetrical, the
distribution is clearly uniform, the' charge, as we have seen,
residing on the outside of the sphere. As we pass over the
surface of a conductor, places of great curvature will be found to be
the most highly electrified. On sharp points, the surface density
of electrification becomes very great; hence the power possessed
by points of discharging a conductor.

The cases of an isolated ellipsoid, and of two spheres mutually
influencing each other, were solved by Poisson, but it was reserved
for Green to develop a more general method by means of which
the distribution of charge on many other figures could be
determined.

The next step was made by Lord Kelvin, who invented a new
method—the theory of electrical images. When an otherwise
isolated point-charge is placed in front of a plane or spherical
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conducting surface, Lord Kelvin showed how to find the distri-
bution of induced charge on the surface. The resultant electric
intensity at points in the space in front of the plane conductor is
the same as though the induced charge on the plane were replaced
by a point-charge placed behind the plane in the position of the
optical image of the original point-charge.

While such investigations are of great interest in the mathe-
matical theory of electricity, they do not bear directly on the side
of the subject considered in this book. With this brief reference
we shall pass on.

11. Cavendish observed that coated plates of glass contained
more charge than would be expected from their

Specific . . L.
inductive thickness and area when compared with similar
capacity or a
dielectric systems of two metal plates separated by air. In

Aty ¢ . .
EPRERT certain cases, he gave numerical values for the ratio

between the observed and the calculated charges, glass giving
a value of about 8, and shellac about 4}. This
phenomenon was rediscovered and investigated
carefully by Faraday. Faraday wused the
apparatus shown in Fig. 15, consisting of two
concentric spheres, the space between which
could be filled with air or any other fluid. Solid
dielectrics such as shellac and glass were exam-
ined in the form of hemispheres, which could be
placed in the lower half of the space between the
spheres of the apparatus.

Two arrangements of this kind were made, -
exactly similar to each other. One was charged
by connecting the inner sphere with a Leyden
jar, and the degree of electrification tested by °
means of a torsion balance. The charge was then
shared with the other apparatus, and the common potential again
tested with the torsion balance. If the capacity of the two pieces
of apparatus be the same, the potential of the doubled capacity will
be half that of the single one with the same charge. This was
found to be the case when both were filled with air, but, when
a hemisphere of glass or shellac was interposed, the final potential

NN @
N &
I
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Fig. 15.
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was less than half the original potential, showing that the
final capacity was more than twice the capacity of the single
apparatus filled with air. Allowing for the fact that only about
half the inter-spherical interval was filled with the solid dielectric,
Faraday calculated what the capacity would have been if the space
had been filled completely. The ratio of this capacity to that of
the apparatus when it contained air, was defined as the specific
inductive capacity of the solid dielectric. In these experiments,
Faraday discovered, with certain solids, a slow creep of electric
charge into the substance of the dielectric. The result of measure-
ments of the capacity of condensers thus depends on the time
during which the condenser remains charged, and differences exist
between dielectric constants as determined by long-charge methods,
like that of Faraday, and short-charge methods such as will be
described later (§ 69).

Dielectric Constants. Specific Inductive Capacities’.
Long-Charge Values.

The value for air is taken as unity.

Glass, light flint- 657 Petroleum oil 2:10

»  very dense flint- 101 Ozokerite 213

,,  hard crown- 696 Turpentine 223

,»  plate- 845 Benzene 2:38
Sulphur, non-crystalline  3-84 Carbon bisulphide  2:67
Mica 664 Ether 475
Ebonite 315 Distilled water 75 to 80
Resin 2:55

Faraday could detect no difference between the specific in-
ductive capacity of air at ordinary pressure and that of air at the
lowest pressure he could reach. Electric forces act across the best
vacuum we can obtain; exact experiments show that, taking the
dielectric capacity of a vacuum as unity, that of air at atmospheric
pressure is about 1:00059. For practical purposes, then, the value
of the constant for air still may be considered to be unity.

It is easy to show, by direct experiment, that the force exerted
by an electrified body on, for instance, a pith ball, is diminished by

1 Taken from Prof. J. J. Thomson’s Recent Researches in Electricity, p. 468.






CHAPTER II.
SOME THEOREMS OF ELECTROSTATICS.

Total normal induction. Gauss’ theorem. Electric force outside a uni-
formly charged sphere. Electric intensity outside a uniformly charged
infinite plane. The electric capacity of an isolated sphere. Capacity
of two concentric spheres. Capacity of two parallel planes. The
mechanical force on a charged conductor. Energy of electrified systems.
The quadrant electrometer. '

12. IN deducing the mathematical theory of electrostatics
Total Normal  from the result of experiment as formulated in the
gﬂ‘;ﬁfim‘ laws of force, we shall find the following theorem,
[EEcrchy due to Gauss, of great assistance.

Let us draw an imaginary closed surface, surrounding any
quantity of electricity distributed in any manner. Then let us
divide that surface into an immense number of very small ele-
ments of area, one of which is a, and calculate the value of the
electric intensity (or the electric force) N normal to each element
of area. Assuming that the dielectric constant of the medium
is k, we shall show that the value of the sum of all the areas
multiplied by their corresponding normal forces, or Sak, is equal
to 4ar/k times the total quantity of electricity e enclosed within
the surface. We may state this result in the form

SalNk = dre.

The quantity ZaNk is called the total normal induction over
the surface.

To simplify the equations, let us first take the medium to be
alr, for which % is unity.
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Hence SaN=N.3a=N.47w (0A)
=4
( (OA} A) A (OA ) = 4mre.
This holds for the original surface also, and we establish Gauss’
theorem, SalN = 4re.

If the only electric charge in the field lies outside the surface,
it is easy to see that the
total normal induction must
vanish.

For each of the areas pg
and PQ, the product alN" is
the same as for a sphere
drawn round O as centre,
and, in this case, the force
at pq acts outwards from Fig. 16.
the surface while that at P acts inwards. With reference to the
surface, then, they have opposite signs, and, since they are equal,
must cancel each other. In a similar manner, the forces due to
other pairs of elements of area cancel, and thus the total normal
induction due to the charge outside the surface must vanish also.

If the charge inside or outside the surface be distributed,
instead of being concentrated at a point, it may be shown that
similar results hold good. Any electric distribution can be repre-
sented as made up of a number of point-charges e,, e, ¢;... etc.
with electric intensities, normal to one single element of area,
equal to N}, N,, N,...... etc. The sum of these components is equal
to &V, the resultant component of the electric intensity normal to
the area. Thus

SaN=3(N,+ N, +N;+...... Ya
=3Noa+SN,a+3SNa+.....
=dare, + dme,+ dmes+ ... =4 (e + €+ 65+ ...) = dre.
Therefore the total normal induction is equal to 47 times the total
charge within the surface however that charge be distributed.

If, instead of air, we have an insulating medium with dielectric

constant %, the result becomes

SalN = i;? ,
or SalNk=4de.
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13. Let us find the electric intensity at a point P outside a
Electric force  Uniformly electrified sphere, of which O is the centre.
}’cﬁ_tms‘g,e;,;';:d With centre O and distance OP, describe an im-
aphere: aginary spherical surface, and to this surface apply
(Gauss’ theorem,

SalN = 4re.

The surface being spherical, and the charged sphere within
it being uniformly electrified,
everything is symmetrical, and
the normal force must every-
where be equal to the total
force. Thus 3alV =fZa where

J is the electric intensity at
the point P. g
Hence f.47 (OP) =4me
Fig. 17.

e
or f=(—O——P)2.

It follows, therefore, that a uniformly electrified sphere exerts
an electric force without it equal to that which the same quantity
of electricity would produce if concentrated at the centre of the
sphere.

We have supposed the sphere to be surrounded by air. In the
general case, if it be immersed in a medium with a dielectric
constant k, the intensity at the point P, without it, is seen
to be

e
T=ropy
Let us call the charge per unit area on the surface of the
sphere the surface density of electrification, and denote it by the
symbol o.
The electric intensity just outside a sphere of radius 7, t.e.
indefinitely near its surface, is

e darric 4mo

f=®s= o =
For a point indefinitely near it, the form of the surface does
not matter, and this result therefore gives the electric intensity
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just outside a charged surface of any form. It is known as
Coulomb’s law, and can be deduced directly from Gauss’ theorem.

14. Let AB denote a part of a uniformly charged plane of
infinite area. Outside the plane, with its axis

Electric inten- . .

sity otside - normal to the plane, describe the cylinder PQ.
a uniformly . 0

charged in- From symmetry, the intensity must everywhere be

finite plane. . .
normal to the plane, and uniform in any plane

parallel to the charged one. There is
thus no normal force over the curved Ai
sides of the cylinder, and the force is
uniform and normal over the flat ends. o I |
If £, and f; be the intensities at the
ends P and @ respectively, by Gauss’ s——1—T
theorem,
SalN =(area P x f,) + (area @ x f,)=0.
Thus f,=f,, since area P = area @.
The intensity is therefore constant at
all distances from the plane.

Describe another cylinder TS, with axis normal to the plane,
enclosing an area a of the plane, on which the total charge is ca.
By Gauss’ theorem

Fig. 18.

(Area T x f,)+ (Area S x f5) = 4771:-0‘.
But Area T'=Area S=a;
thus 2af = dzree
k
2o

or f=T

It should be noted here that o is the total amount of electricity
on both sides of the plane per unit area. If o be taken as the
charge on one side of the plane only, then, for an isolated plane,

4drro
=%

In this book we shall adopt the former convention, and use ¢ to
denote the charge on unit area, counting in the charge on both
sides of the plane. L

3—2
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15. We defined the capacity € of an isolated conductor, or
P heiceiila rather the capacity of the system formed of that

S conductor and of the far-off boundaries of the di-
sphere, electric medium surrounding it, as the charge e

required to increase the potential ¥V by unity. Hence

e
C= 7

The potential V is the difference of potential between the
conductor and the far-off boundaries of the medium, which are
defined to be at the zero of potential.

Since an isolated sphere is itself symmetrical and is affected
equally on all sides by the action of other charged bodies, it must
be electrified uniformly, and will therefore act at points outside as
though its charge were concentrated at its centre. Thus the
potential (§8) at its surface will be

e
V= o
where r is its radius, and % the specific inductive capacity of the
surrounding medium.

Hence C kr.

LW RCTRC
“elkr
Thus, in air, the capacity of an isolated sphere is numerically
equal to its radius.

16. The capacity of two concentric spheres, with radii », and
ee r,, and a dielectric with constant £ between them, is
two concentric & quantity of practical as well as of historical interest.
e Let us suppose that a charge +e¢ be given to the
inner sphere, and that the outer sphere is connected with the
earth. A charge —e will then be induced on it, since it
surrounds the inner sphere completely. With regard to points
outside both of them, each sphere acts as though its charge were
concentrated at its centre. But the spheres have the same centre,
and the charges are equal and opposite. Thus the potential just
outside the outer sphere, and therefore the potential of its surface,
must be zero.
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The inner sphere, being a conductor, is an equipotential
surface, and, since it is closed and contains no charge within it,
there is no electric force inside, and the potential is everywhere
the same. We may therefore find the potential of the inner
sphere by calculating the value at the centre. Here the charge
+ e on the surface of the inner sphere is at a uniform distance of

r,, and the potential due to it is consequently 7:7. The charge
1

— e on the outer sphere is at a uniform distance of 7,, so that the
total potential of the inner sphere is )
e e e[l 1)
Vl—k?l—k;‘;_/o<r1 ry) "
The capacity of the double system is, by what was said in § 9,
e/(V,—V,), and we have seen that V, the potential of the outer
sphere 1s zero. Thus

=

e e ok

Vl—f’;=e<1 1>—r2—7"1'

k

LT

17. Let AB and CD represent portions of two parallel planes
- of infinite extent. ILet the area of each portion
twoparallel  considered be a. Let one plane be insulated and
o charged with a quantity of positive electricity till
the surface density is o. If the other plane be connected with
earth, a negative charge will be induced on it. If we
imagine the planes to be small portions of two con- A c
centric infinite spheres, we see that the charge on the
part of the sphere CD) which lies opposite the area AB,
will acquire a charge numerically equal to that on the
area AB. Thus the surface-density on CD will be — o.
Owing to the attractive forces between the opposite
charges, the whole electrification on each plane will
reside on the side nearest to the other plane.

Each plane will produce an electric intensity outside
it equal to 27o/k (§ 14). A positive unit placed. be-
tween them will be repelled from one and attracted B D
towards the other, so that the forces are in the same
direction, and the total electric intensity between the

Fig. 19.
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planes is 4mo/k. Since we consider parts of infinite planes, every-
thing is symmetrical, and the intensity is uniform. Thus the
difference of electric potential V,— V, =ft = 4wat/k where t is
the thickness of the dielectric stratum between the planes.
Now the capacity
C=

e _ oak ok
Vo=V, 4mot 4wt

This result is of great practical importance. As it stands, it
gives an approximate value for the capacity of all condensers, in
which a thin layer of dielectric lies between two conducting
surfaces. If the dielectric is thin, the form of the surfaces is
immaterial. Thus the capacities of Leyden jars, as well as those
of plate condensers, may be calculated approximately from this
formula.

Such arrangements, however, do not give us portions of infinite
planes, and, if accurate results are needed, a correction must be
applied to allow for the effects of the free edges of the system.
This correction requires complicated mathematical treatment. In
certain pieces of apparatus, however, it is possible to use a device
due to Lord Kelvin, which makes the edge-correction unneces-
sary. '

The insulated .plane, let us suppose in the form of a circular
plate, is surrounded by an annular disc,
or guard ring, lying in the same plane,
and separated only by a narrow air-gap
from the central plate. The central
plate and the ring can be connected by
means of a fine wire, and then form
part of the same conductor. In this
state they are charged, and, since the
irregularities due to the edges are con-
fined to the guard ring, the electric
distribution on the central plate ab is
uniform. The wire is then removed, so that the central plate ab
is insulated. We can thus deal with the charge on the central
plate alone, and this charge is that calculated by the elementary
theory of capacity given above. The use of a guard ring enables
us to employ what are, in essence, portions of infinite planes.

A B

|
a

e-‘
&

Fig. 20.
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18. At a point indefinitely near the surface of a conductor,
the neighbouring surface appears as a large plane;
The mechani-

cal force on hence the electric intensity is normal to the surface
a charged
conductor.

>

so that the mechanical force on a small area of the
electrified surface will act along the normal

The electric intensity f at a point P in the small area
may be considered to be composed of a part £, due to the charge
on the small area, and of a part f, due to the charges on the rest
of the conductor and on other conductors in the field. Thus

f=f+fe

As we pass from @ to S, points just without and just within
the surface respectively, we change the sign -
of f; the intensity due to the charge on the R
small area round P. Neither the sign nor
the value of f, will change, for, with respect
to the more distant parts of the conductor, and
to other conductors, ) and S are practically
coincident points. Inside a closed charged
conductor the intensity must vanish (§ 5).
Hence at S the total intensity

So=fi=0.
Thus Hi=fa=1/

where f is the total intensity outside the surface at Q.

Now the mechanical force on the small area a in the direction
of the normal is fiao, where o is the surface density of electrifica-
tion; for f;, the intensity due to the charge on the area itself,
cannot tend to move the area.

If, then, ¥ be the mechanical force per unit area along the
normal,

Fig. 21.

Fo = fa0 =} fao,
and F=1fo.
Since (§ 13) by Coulomb’s law f=4wo/k,

F=27‘raz=ﬁ'
8w

k

In the case of two parallel planes separated by a dielectric
layer, the mechanical force on the central plate (ab, Fig. 20)
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surrounded by a guard ring is of practical importance. The
electric intensity due to the other opposite plane is 2wa/k, if the
dielectric constant of the separating medium is & (§14). The
charge on the plane ab produces no force on itself normal to its
plane, thus 27a/k is the force on a positive unit of charge placed
on the plane ab. The actual charge is oa, and the mechanical
force is 2mac?/k.

It is more useful to express this force in terms of the difference
of potential V,— V, between the planes. The total intensity f
between the planes, due to the charges on both, is 47k, and the
intensity is uniform, so that V; — V,=ft, where ¢ is the distance
between them. We may therefore write

V,— V,=dmot/k

L_=Vak

3 4t

The mechanical force on the area a of ab is

_2mast_,  (Vi= VPR _ak(Vi— V)

£ k 1672tk 8mt?

It is interesting to compare this equation with the expression
(§ 11) for the mechanical force between two charges, viz. e.e,/kr®.
In any system, when the charges are constant, the forces are in-
versely proportional to k,and the substitution for air of a dielectric
of high specific inductive capacity diminishes the forces. On the
other hand when the potentials are kept constant, an increase of
dielectric constant increases the mechanical forces between the
parts of the system.

The expression for the force between two parallel planes is used
in Lord Kelvin’s Absolute

or Trap-door Electrometer. L_<‘:>_ I
A S —B

In one form of this instru-
ment, the moveable disc S

1]

is attached to three light ¢ u o
springs, of which two are X
shown in Fig. 22. The disc oy S

usually lies rather above the plane of the guard ring 4 B. The plate
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OD is screwed up, till the attractive force pulls S into the plane of
AB, as shown by a fixed sighting lens and a cross wire attached
to S. The force then has a certain value, known from previous ex-
periments on the weight needed to bring S to its sighted position.
Hence the difference of potential between S and C'D is determined:

v, - V2=t\/87;F,

the dielectric being air.

19. If no loss of energy occur, the energy of an electrified
hesioh system must be equal to the work done against the
electrified electric forces during the process of charging. By
systems. the definition of electric potential, we know that,
when unit positive charge is brought up to a conductor at a
potential V,the work done against the electric forces is V, provided
no appreciable change is thereby produced in the potential. Simi-
larly if e units be brought up, the work done is e V. If ¢ be small
enough, the supposition of constant potential will be justified.
Now we can imagine the process of charging an isolated conductor
to be carried out by the successive addition of very small charges,
and thus the electric work done may be written

W=eV.+eV,+eV,+.........

Let us represent this process graphically as in Fig. 23, where
the ordinates represent po-
tentialand the abscissa charge.
The successive terms in the 74P
series just given are repre-
sented in the figure by the VAFA
areas of the successive vertical
strips, and the total electric
work done is represented by
the sum of these areas. If
the magnitude of each suc-
cessive charge be reduced g M e
without limit, this sum ap- Fig, &
proximates to the area of the figure OPM.

Now by § 8 it follows that the potential of an isolated con-

A
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ductor is proportional to the charge. Thus the curve OP is a
straight line, and the figure OPM is a triangle. Its area is there-
fore eV, where e is the final charge, and V the final potential.
The electric work done in charging, and the electric potential
energy stored in the conductor by virtue of its charge, are each
iven b

= g W=1eV.

An important case is that of the two parallel planes. The
electrical energy is

W=i}e(V.— V),

since this is the electrical work done in carrying a charge e from
one plane to the other, producing thereby the difference of
potential.

We can express this energy in terms of the dimensions of the
apparatus, and either the potentials or the charges:

(i) Since the intensity f between the plates is uniform,
Vi-Vi=1t, |
where ¢ is the distance. Now f is 4wa/k, if k& be the dielectric
constant of the medium between the plates. Thus o is %, and
W=4%ca(V,-V,)

= (-

Vi—V, k
= ga(V,—Vz)

(V A ] SR R ().

(i) Again, we may express the energy in terms of the charge
on one plate.

W=3e(V,-V))
=le.ft= e@t
dre
B i
2me?t
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Now by equation (1) we see that, if the potentials be kept
constant, by connecting the plates to the poles of a battery or
in some similar way, the energy of the system is inversely as the
distance between the planes, and will therefore be increased if the
distance be diminished. The attracting force between the op-
positely charged planes tends to diminish the distance between
them, but, if the potentials be kept constant, the system draws the
necessary energy from the battery.

On the other hand, if the plates be insulated, so that the
charges are constant, the system has no source of energy to draw
upon, and thus the action which tends to occur under the natural
forces, namely, an approach of the plates, must involve a decrease
of available energy. This is also seen from equation (2), which
shows that, in this case, the energy diminishes with the distance
between the plates.

In the first case, where the potentials are kept constant, the
effect on the energy of a small displacement of one plane towards
the other is the difference between the energies before and
after the displacement. Before the displacement, the energy is

ak(V,—V,)y i . akV?
T 8t or writing V for V,— V,, the energy is oyl After
the displacement, the energy is 8 a(l:V 55’ when &8¢ denotes a small

change in the thickness ¢ of the dielectric.
Since 8¢ is a small quantity, this expression is equivalent to
akV?

(1 + 8t) and the increase in the energy of the system during

8t
2
the displacement is ];th 5
Putting V =4wot/k, and o =e/a, we see that this expression

b 27re? 8t
ecomes ——, .
ak

Now in the second case, when the charges are constant, the
energy is 2we*t/ka, and, after the same displacement, it becomes
2me? (t — 6t)/ka. Thus the decrease in energy of the system is
2mwe?dt/ak. It follows that for a small displacement of the kind
indicated, the increase of electrical energy, when the potentials are
kept constant, is equal to the decrease of energy when the charges
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are constant, and this, by the principle of the conservation of
energy, when the system has no actual energy to draw upon, is
equal to the external work which the system can do during the
displacement. A general investigation shows that this result holds
good for any kind of small displacement to which the system is
subjected.

20. For many purposes, the best and most sensitive form
The quadrant  Of electrometer is the quadrant instrument invented
clectrometer.  hy Tord Kelvin. A light spindle-shaped needle of
aluminium or silvered paper is suspended by a fine wire or quartz
fibre within a shallow box divided into four quadrants. The
quadrants are supported on insulating pillars, which, in one recent
form of the apparatus, are made of amber. Opposite quadrants
are connected together by fine wires, and, in its position of
equilibrium, the needle lies over the junction line between two
quadrants. '

The needle is charged to a high potential, and, if there be no
difference of potential between the quadrants, the needle still lies
in its median position. If, however, the opposite pairs of quadrants
be connected with the terminals of a voltaic eell, or other source
of potential-difference, the needle is deflected towards that pair of
quadrants with the lowest potential, that is, with a relative electric
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charge opposite to that on the needle. A mirror is attached to
the needle, and the deflection measured by one of the usual
optical methods.

~SCIENTIFIG NS co-Lm-

Fig. 24 a.

In the form of electrometer shown in Fig. 24 a, the design of
which is due to Dr F. Dolezalek, the suspension is a very fine quartz
fibre, and is made into a conductor by coating it with a trace
of a hygroscopic substance like calcium chloride, which always
remains moist. The needle is of very light silvered paper, and the
sensitiveness is so great that the needle need only be kept at
a potential of 50 to 200 volts. A constant potential can be secured
by connecting the fibre with one pole of a battery or dry pile, the
other pole of which is put to earth. In older forms of the
instrument, in which much higher potentials were necessary, the
needle was charged initially by means of an electric machine or
electrophorus, and was kept at a moderately constant potential
by allowing a wire from it to dip in some sulphuric acid placed
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in a little vessel coated with tin-foil. This vessel served as a
Leyden jar, and its large capacity greatly retarded the fall of
potential due to leakage from the needle.

The relation between the potentials and the deflection can be
found by examining a simpler case consisting of a large plane

>
G

Fig. 25.

surface G moveable in its own plane over the two parallel
co-planar surfaces £ and F. If I be the width of the planes
at right angles to the plane of the paper, X! may be taken to
denote the force tending to move G in the direction of the arrow.
When G moves through a small distance #, the work done is Xlz.
If the electrical system is isolated, so that the charges are constant,
this work is equivalent to the decrease in the electrical energy of
the system, while, if the potentials are kept constant, as is more
usual in practice, it is equivalent to the increase in the electrical
energy of the system (§ 19).

When G is moved through a distance , the area of G opposite
to F will be increased by iz, and the energy will be increased by

lx
e (Y =V

where V denotes the potential of the needle @, and V,, that of
one quadrant F.

At the same time, the area of G opposite to £ is decreased,
also by lz, and a corresponding decrease of energy occurs equal to

lx
oy (Vy=Var

Thus the  total increase in electrical energy at constant
potential is

(V= Vel ~ (V=TV}









CHAPTER IIL

THE DIELECTRIC MEDIUM.

The importance of the dielectric medium. Lines and tubes of force. The
energy in the dielectric medium. Analogy with a strained medium.
Dielectric currents.

21. THE conspicuous success of Newton’s formulation of the
laws of gravitation suggested similar relations for
neethoa” electric forces, and, when the law of inverse squares
e was verified for electric forces also, it was inevitable
that the analogy should be pushed as far as, or
farther than, the case warranted. The gravitational attraction
between two masses is independent of the nature of the inter-
vening medium ; and, forgetful or in ignorance of the experiment
of Cavendish to which we have referred in § 11, natural philo-
sophers till the time of Faraday assumed that electric forces also
were not affected by the insulating medium across which they
acted.

With an obstinate disbelief in the idea of action at a distance,
Faraday set himself to examine the influence of the dielectric field.
Guided by the hypothesis that the forces were somehow trans-
mitted by the medium, he rediscovered the existence of specific
inductive capacity, and, as we have seen, measured its value for
several substances. He also showed by many experiments that
electrostatic induction might occur in curved lines, whereas, on the
theory of direct action at a distance, it should act in straight
lines only. As a final result of his work, he framed a new theory
of electric phenomena. He regarded them all as depending “on
induction being an action of the contiguous particles of the

W. E. 4
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dielectric, which, being thrown into a state of polarity and tension,
are in mutual relation by their forces in all directions.”

Faraday’s experimental researches in these subjects not only
confirmed his original hypothesis, but still serve as an excellent
example of the advantage, perhaps the necessity, of hypothesis as
an aid to physical investigation even in the early stages of a course
of experiment.

The centre of interest in electric science was thus shifted from
the conductors to the dielectric or insulating medium. In Fara-
day’s eyes, the essence of the phenomena was to be found in a
state of strain set up by the action of the electric machine in the
dielectric, the so-called electric charges on neighbouring conductors
being merely the free surfaces of the strained medium. -

22. In order to study the phenomena of the dielectric field,
P Faraday made use of the ideas of lines and tubes of
tubes of force.  foree, conceptions which seem to have been suggested
by the pattern assumed by iron filings when scattered on a card in a
magnetic field (Fig. 27). Each filing, under the inductive action

Fig. 7.

of a magnet placed below the card, becomes a little temporary
magnet ; the filings set, each in the direction of the local magnetic
force, and cling together to form chain-curves, the tangent to a
curve at any point being in the direction of the resultant magnetic
force at that point.

The corresponding lines of electric force, due to electrostatic
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charges, cannot be demonstrated experimentally in such a simple
manner, but their forms can be calculated from the law of force,
and thus maps of the lines constructed for any simple case.
A line of force is to be defined as a curve drawn so that, at each
point, the tangent to the curve is in the direction of the resultant
electric intensity at the point.

Two charges, equal in amount but opposite in sign, produce a
simple field of force. Placed between them, an isolated unit point-
charge of positive electricity will be repelled by one and attracted
by the other. One line of force, then, must run straight from one
of our charges to the other. At a point in the median plane, the
vertical components due to the two charges will balance each
other, and the horizontal components will again be in the same
direction. Thus all lines of force cross the median plane in a
horizontal direction. If we make the convention that a single line
of force shall spring from one positive unit of electricity and end
on one negative unit, the number of lines crossing any small area
in the dielectric field normal to the lines will, as we shall see, be
proportional to the resultant force at the area. We then arrive at
the general picture of the lines shown in Figure 28, in which the
resemblance to the corresponding case for magnetic lines is shown.

Fig. 28.

Figure 29 shows the distribution of the lines for two opposite
charges, A being four times as great as B. Here, only part of the

4—2
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At the point marked C in Figure 29, and at a point midway
between the charges in Figure 30, there is no resultant force.

If a tubular region of space be imagined as bounded by lines
of force, it may be called a tube of force or a Faraday’s tube. It
must start from a positively charged conductor, and, according to
our present convention, end on one negatively electrified. We
may, if we please, suppose that each line of force in Figures 28
to 30 represents the axis of a Faraday’s tube. It is usual to imagine
one tube of force to spring from each positive unit of electricity.
It will then end on a corresponding negative unit. By an
application of Gauss’ theorem, we may show that the normal
induction over any cross-section of the tube is constant along
its length.

In a future chapter we shall examine the effects of electric
tubes of force in motion. From the magnetic field which then
arises, we shall see some reason to modify our present conception of
tubes of force. To explain the phenomena, we must then suppose
that the positive tubes proceeding from positive charges, and the
negative tubes springing from negative charges, all run off into
space. Opposite tubes attract each other, and like tubes repel;
and, as far as electrostatics is concerned, the result is exactly
equivalent to that given by the more usual way of regarding the
tubes. The usual method is somewhat more simple, and will be
adhered to in this chapter.

The deduction of the exact distribution of the lines or tubes
of force for complex cases requires mathematical analysis, but
Faraday was able to investigate the general results by noticing
that the lines behaved in every case as though they tended to
shorten their length and spread as far from each other as possible—
as though, that is to say, they were in a state of longitudinal
tension and repelled each other laterally. It is well to reconsider
Figures 28 to 30 from this point of view, and to learn to regard a
resultant force, acting on a charged body, as due to the unbalanced
effect of a one-sided excess of electric tubes in a state of tension.

We proved (§18) that on each unit area of a charged conductor
there existed a mechanical force equal to fo/2, f being the
resultant electric intensity, and o the surface density of electrifica-
tion. Now each line or tube of force is drawn from one unit
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charge, so that o denotes also the number of tubes of force
proceeding from unit area. Hence the mechanical force on the
surface is the same as though each tube exerted a pull equal to
f/2. Thus the mechanical forces in the field are the same as
though the tubes of force were in a state of tension, the tension in
a tube at each point being measured by one-half the electric
intensity at that point.

The electric intensity f just outside a charged surface is
4aro [k, and, since o also denotes the number N of tubes of force
per unit area, the electric intensity at any point of the field is

4 NE.

Thus N =ﬁ.
4
Hence the tension due to the tubes of force across unit area 1is
Sk
INf= 8 -

If the tensions were the only stresses in the field, the tubes of
force obviously would all tend to gather together, and run in
straight lines from the positive to the negative charges. In order
to represent completely the state of the dielectric medium, in cases
where the tubes of force are not straight, we must also suppose
that the tubes repel each other, so that a lateral pressure exists at
right angles to the lengths of the tubes. It may be shown by
mathematical analysis that the requisite pressure also has the
numerical value f%k/8mw, which is equal to the tension along the
length of the tubes per unit area of cross-section.

23. As an example of a simple system, let us consider
g to p.atjallel planes .c}}arged with equal and 0ppos1te
the dielectric  quantities of electricity. The total energy is, ac-
medium. .

cording to § 19,

W=3e(Vi=V),
where e is the charge on one plane, and V, —V, the difference of

potential between the planes.
Since the electric intensity f between the planes is uniform,

Vl Sy Vz =ft:
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where ¢ is the distance between them. Now, if o be the surface
density, f is 4mwa/k, and o is therefore fk/4m. Thus the energy

W=3cAft
Sk
o At
But 4%, the arca of one plane multiplied by the distance between
the planes, represents the volume of the dielectric stratum. Thus
the energy per unit volume is f%k/87; and this expression has
a form which is independent of the particular limitations of the
system chosen. At any point in a dielectric field, then, the energy
residing in a surrounding volume, small enough for the intensity
throughout it to be uniform, is f*k/8= per unit volume.

24 An elastic mechanical system, such as a spiral spring
aitors stre’.oched by a load, possesses potgntial energy when
;thrls:;ed strained, and one of the essential features of the

electric theory, as formulated by Faraday and
developed mathematically by Clerk Maxwell, consists in tracing
the analogy between a dielectric medium subject to electric
forces and a medium strained mechanically.

An elastic system, where the force ¥ is proportional to the
displacement z, possesses potential energy equal to the work done
in stretching, which is }Fz. The expression for the electric energy
per unit volume of insulator, f%/8m, may be written as

b

when its analogy with the mechanical energy
P .z

is manifest. Corresponding to f the electric force, we have # the
mechanical force, and corresponding to #, the mechanical displace-
ment, we have the quantity fk/4ar, which, on this analogy, was
called by Maxwell the electric displacement, though it is perhaps
better described by Faraday’s older name of dielectric polarization.

The view which locates the energy of an electric system in the
dielectric medium must be regarded as one of the most important
and fundamental -conceptions in modern physical science. The
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germ of the idea is to be found in Franklin’s work, by which he
showed that the charge of a Leyden jar or other condenser resided
in the glass or other insulator which separated the two coatings.
Cavendish, too, clearly recognised the effect of the dielectric on
the capacity of his condensers.

But it is to the instructive genius of Faraday that we owe the
first definite formulation of the new theory. As we have already
stated, Faraday regarded induction as “an action of the contiguous
particles of the dielectric, which, being thrown into a state of
polarity and tension, are in mutual relation by their forces in all
directions.” It is not too much to say that this hypothesis was
the guiding star in all Faraday’s researches in electrostatic fields.
The wonderful relations between apparently unconnected phe-
nomena discovered by Faraday, Maxwell, and their followers, are
the best evidence in favour of the trustworthiness of their faith.

Faraday had no facility in mathematical analysis, and his
1deas, though fruitful indeed in his own case, only dominated the
work of others when translated into definite mathematical form by
his great successor Clerk Maxwell. If, as indicated above, the
energy of the electric system resides in the dielectric medium,
there should be an exceedingly minute fraction of a second
required for an electric impulse to pass from one body to another—
a time, during which, short though it may be, the energy is passing
through the dielectric medium, and is unconnected in any way
with conducting bodies. Such ideas led Maxwell to the theory of
electromagnetic waves, and enabled him to calculate their velocity
by methods we shall study hereafter. The concordance of the
theoretical value of this velocity with the observed velocity of
light, led directly to the theory that light is a series of electro-
magnetic waves in the dielectric luminiferous medium.

These ideas we shall examine in future chapters; here we are
concerned chiefly with electrostatic phenomena. But, even in these
phenomena, Faraday’s views lead to modifications in our funda-
mental conceptions. Instead of fixing our attention on the charges,
and forcing us to frame theories of incompressible fluids to explain
the ideas in our minds, Faraday asks us to ignore the charges, and
seek an explanation of electrostatic manifestations in the concep-
tion of energy residing in the dielectric medium, by virtue of stresses
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and strains therein. The so-called charges on conductors in the
electric field are but the free ends of the strained intervening
substance. The charges serve to demonstrate the state of strain, as
a spring balance, inserted into the middle of a stretched india-
rubber cord, may be used to show the tension.

Electric forces can act across a vacuum, hence material media
are not necessary. We are led to refer the stresses and strains
here described to some all-pervading medium, which may be
modified, but not excluded, by the presence of ordinary matter.
We shall see later that the medium it is necessary to conceive in
order to explain electric and magnetic phenomena is identical in
properties with the medium required to explain light.

Faraday’s tubes of force, and Maxwell’s electromagnetic equa-
tions, fixed the centre of interest in the dielectric, till the work
of the last few years has made it necessary to ask what happens
at the ends of the tubes of force, and again to examine into the
nature of the electric charges. To such points we shall return
later.

25. Fig. 31 represents the system of tubes of force which
Dielectric connect the opposite plates of a parallel plane con-
Grrreats: denser. Most of these tubes run straight from one
plate to the other, but, near the edges, tubes leak out, and some
few join the back of the plates.

Now let us suppose that the two plates are connected together

(@

Fig. 31.
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suddenly by means of a metallic wire. In a minute fraction
of a second the condenser is discharged, and the whole system
of tubes of force, representing the state of strain in the dielectric
medium, vanishes.

In order to trace the process of their disappearance, three
things must be borne in mind: (1) the tubes are in a state
of tension, and thus tend to contract; (2) they repel each other
laterally ; (3) they end on conductors, the free ends of the tubes
representing charges of positive and negative electricity.

While the condenser remains charged, the tubes of force are
in equilibrium under their own tensions and pressures. When,
however, a metallic connexion between the plates is established,
the charges near the ends of the wire are free to move. That is
to say, the ends of the tubes which are anchored to the charges
(or, rather, which themselves constitute the so-called charges) drag
their anchors. A tube of force with its ends at different points on
the same wire will contract under its own tension, and its opposite
ends will approach each other. The tube will shut up, and be
obliterated.

The disappearance of one tube leaves the medium in a state
of unstable equilibrium; the lateral pressure of that tube is
removed, and neighbouring tubes will be pushed by the unbalanced
pressure of other tubes successively into the wire. In this way
the diclectric field is relieved of strain, and the tubes of force
are destroyed.

During this process, a current of electricity is said to flow
along the conducting wire. On the view we are now considering,
that current is represented by the process of the tubes of force
dragging the charges to which their ends are anchored along the
wire under the tension of the tubes. The heat developed by the
current is the result of the friction produced by the resistance of
the conductor to the drag of these anchors.

In a later chapter we shall see that an electric current
possesses something analogous to inertia, and that the process
of discharge consists of a series of oscillations. The current
alternates, and passes first in one direction and then in the
other; it diminishes gradually in intensity till it dies away
and the charges are dissipated.
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The electric current is measured by the amount of charge
passing per second, and, considering unit area of the planes, the
current entering it is measured by the rate of change of & the
charge per unit area. Now, as we saw on p. 37, ¢ is equal to
fk/Aar, which itself (p. 55) represents the strain in the dieclectric
medium, or the dielectric polarisation.

Thus an electric current is represented by a change in the
dielectric polarisation, and a circuit such as that we have been
considering is completed by the diclectric medium. On the
older view, the process of charging the condenser is imagined as
the flow of the opposite charges along the two wires on to the
plates, somewhat as two separate streams of water might be
supposed to flow along two pipes into two reservoirs. On the
theory of Faraday and Maxwell, we must imagine this process to be -
similar to a transient current flowing round a closed circuit till,
owing to the strains in the dielectric medium, the opposing electro-
motive force set up in one part of the circuit becomes sufficient
to produce equilibrium. In this part of the circuit no slip occurs,
and all the energy put In remains as the potential energy of
dielectric strain. In the wires, slip occurs with consequent friction,
and the energy which enters sets up no opposing strain: it is all
dissipated in the friction of electric resistance, and appears as heat
in the conductor.
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CHAPTER 1V.
MAGNETISM.

Early history. Principal magnetic phenomena. Variation of magnetic force
with distance. Interaction of two short magnets. Magnetic potential.
Terrestrial magnetism. Magnetic induction. Experiments on magnetic
induction., Theories of magnetism.

26. THE lodestone (or leading stone), a magnetic oxide of iron,
was known to the ancients, and, since 1t was first
found near the town of Magnesia in Lydia, received
the name payvys. Lucretius appears to have known that the
lodestone attracts iron, and that iron itself, when in contact with a
lodestone, acquires magnetic properties.

The first practical application of magnetic properties was the
invention of the mariner’s compass, and, as so often happens, the
interest aroused by a practical application led to a great develop-
ment of the theoretical side of the subject.

It has been stated that the magnetized steel needle or mariner’s
compass was early known to the Chinese, but, however this may
be, descriptions of it seem first to have appeared in European
literature about the 12th century, coming probably from Saracenic
sources, though the references indicate that it had been known for
some time.

A compass-needle points not directly north and south, but in
a magnetic meridian making an angle, called the declination or
variation, with the geographical meridian.

Stephen Burrowes discovered that this angle changed in the
course of a voyage; and, in 1683, Halley showed that the differences
in the declination observed at sea were not due to the effect of
neighbouring land, but must depend on the magnetic properties

Early history.
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of the earth as a whole. In 1698 he was appointed captain of an
exploring ship, and, with this command, undertook a voyage which
lasted two years, for the purpose of elucidating the phenomena
of terrestrial magnetism. Halley, who afterwards succeeded
Flamsteed as astronomer royal, also pointed out the importance
of the slow secular change in the declination, which between 1580
and 1692 had changed from 11° 15" east to 6° west. The existence
of smaller variations, both annual and daily, was noted by Graham
about 1719.

About 1544 Georg Hartmann, vicar of St Sebaldus, Nuremberg,
observed that a needle, pivoted to move freely in a vertical plane,
dips down towards the north when magnetized by a lodestone. This
dip was rediscovered in 1576, and carefully investigated by Robert
Norman, a mariner, and in his own words, a hydrographer. Norman
found that at London the angle of dip was 71° 50°. This angle too
is subject to periodic change. .

From 1540 to 1603 lived William Gilbert, of Colchester, who,
besides the electrical researches to which we have referred in the
first chapter, in his great work De Magnete, collected all that was
then known on the subject of magnetism, and added many new
and valuable observations. To Gilbert we owe the conception of
the earth as a huge magnet, and the first exact studies which
virtually founded magnetism as a science.

27. A steel needle, magnetized by stroking with a lodestone,
] and pivotted so as to be free to turn horizontally,
magnetic sets in the magnetic meridian—its ends or poles
ERTST point, one towards the north and one towards the
south. The line joining these poles is known as the magnetic axis,
and, for a thin needle, coincides with the geometrical axis. A
magnetized mass of steel of whatever shape, however, still possesses
a magnetic axis, which, if the mass were free to turn both vertically
and horizontally, would always lie in the magnetic meridian.

With two pivoted compass-needles, it is easy to show that two
north-seeking or two south-seeking poles repel each other, while
two unlike poles attract each other. Here there is an obvious
analogy with electric phenomena, but, unlike electric forces, mag-
netic effects are observed to any great extent with iron only, and
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act with equal intensity across the intervening medium whatever
be its nature, provided it is not of iron. Screens of paraffin,
ebonite, copper and all other non-magnetic bodies, produce no
change in the force with which one magnet acts on another,
though, as we have seen (p. 20), such screens diminish or destroy
electric action. Again, an electric conductor can be given an
1solated charge of positive or negative electricity, but a magnet
must acquire an equal south-seeking pole when north-seeking
magnetism is impressed upon it. In this respect, the substance
of the magnet is more nearly analogous to the dielectric medium,
at the boundaries of which equal and opposite electric charges are
always to be found. _

Just as electric charges are induced on conductors by the
presence of charges in their neighbourhood, so magnetic poles
appear on pieces of iron placed near a permanent magnet. A
permanent north-seeking pole will induce a south-seeking pole on
the nearer portions of a block of iron, and a north-seeking pole on
the further portions. This explains the attractions observed
between a permanent magnet and pieces of iron originally un-
magnetized. Filings, for instance, will cling to the poles of a
magnet and even form long chains: poles are induced on each
filing and the opposite poles of neighbouring filings cling together.

A difference in behaviour between soft iron and steel becomes
apparent at this stage of our experiments, and is of importance.
The readily-induced magnetism on soft iron is temporary. If the
inducing magnetic force be removed, the induced magnetism is
destroyed by a very slight shake or shock, or by a small magnetic
force in the reverse direction. With steel, on the other hand,
while the induced magnetization is less intense for a given mag-
netizing force, it is much more permanent, and a considerable
fraction of its intensity will survive even rough usage. Heating,
however, will destroy all magnetization in any case. At a critical
temperature of about 700° to 900° Centigrade, both iron and steel
cease to be magnetic substances. On cooling, they regain their
magnetic properties, but any actual magnetism they possessed
before the heating will have disappeared.

The clinging filings to which we have referred, indicate
clearly the points from which the forces originate, that is, the
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poles of the magnet. The poles are not situated quite at the ends
of the bar, but at points some little distance from the ends. Like
the lines of electric force, magnetic lines of force may be defined as
curves drawn through the magnetic field, so that, at each point of
their length, the tangent to the curve gives the direction of the
resultant local magnetic force. If filings are sprinkled over a card,
below which a magnet is placed, pictures of the lines of force are
readily obtained. A figure showing these lines has already been
given to illustrate the idea of electric lines of force, and will be
found on p. 50 (Fig. 27).

28. As in the case of gravitation and electric force, the

magnetic force of a single pole is found by experi-
Variation

D e ment to vary inversely as the square of the distance.
i So general is this form of law for all kinds of force

acting from a point-source, that, from this group of
experiences alone, we might almost conclude that the inverse
square law is a general property of our conception of space, rather
than'a relation depending on the nature of the particular forces.

A modification of the torsion balance enabled Coulomb ap-
proximately to establish the law in the case of magnetic poles, as
well as in that of electric charges. The disturbing effects of the
opposite poles, which must necessarily exist, and can only be
removed to moderate distances, make the experiment somewhat
inaccurate, and has led to the development of better methods.

All such methods depend on the measurement of the magnetic
force at a point by means of the
deflection of a magnetic needle from !
its normal position of equilibrium.

Let NS denote the magnetic meri- 4

dian of the earth and let a magnetic
force F be applied along the magnetic
east and west line, at right angles = =
to the horizontal component of the \
earth’s force, which we will denote
by H.

The magnetic needle ab is thus

deflected into the position shown,
at an angle ¢ with the meridian.

b

Fig. 32.
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If m be the strength of each pole, the horizontal force on it due to
the earth is Hm, and if [ be the half distance between the poles of
the needle, the couple due to the earth is 2Hmisin 6. The couple
due to the applied magnetic force F is 2Fmlcos §. The quantity
2ml constantly recurs in magnetic problems, and is known as the
magnetic moment of the magnet. We shall denote it by the
symbol M. It may be defined as the strength of one pole
multiplied by the distance between the poles, and is clearly
measured by the couple exerted on the magnet when placed at
right angles to the magnetic force in a field of unit intensity.

When the magnetic needle we are considering is in equi-
librium, we get

FM cos 8§ = HM sin 6,

or F=H tan 6.

It will now be clear that we can compare two magnetic forces
by comparing the deflections of the same compass-needle produced
successively by the forces. For in each case

F=H tan 6.

If H be the same, the forces will be proportional to the tangents
of the angles of deflection.

The most accurate verification of the law of force due to a
magnetic pole is given by a 0
method due to Gauss.

Let us assume the inverse
square law, and compare some
of its consequences with ex-
periment. Let m denote the
strength of either pole of a
short bar magnet AB, and [
the half length between its
~poles. At a point P on its

axis produced, at a distance r 4 B
from O the centre of the mag- g iy
net, the total force iz, 5
gl M, _m{(r+1p—(r-1)]
=l (r+lp (=0 +lp
dmlr

SECoe
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Neglecting terms involving the squares and higher powers of the
comparatively small quantity I, we have

2Mr 2M
e =

Now let us calculate the force at a point @ on the normal to
the axis through the centre of the magnet. Let 0@ be made
equal to OP in the former experiment, and be denoted by ». The
forces due to the two poles act along 4@ and BQ respectively, and
the resultant evidently acts from € parallel to the axis of the
magnet AB. The value of this force is the sum of the resolved
components; thus

m OA m l
B=2grag=2mre oy
_ 2ml M
- 3 [
('r2 + lz) 73 (1 + g)

Again neglecting terms involving /2/7%, we have

F=2

It follows, then, as a consequence of the law of inverse squares
for the force due to a magnetic pole, that the force produced by a
short magnet in the first, or so-called end-on position, is double
the force in the second or broad-side-on position. Moreover, in
each position, the force due to the whole magnet varies inversely
as the cube of the distance from its centre. Both these results,
it is evident, depend on the assumption that the force due to a
single pole is that of the inverse square. If the force of a single
pole varied as the inverse nth power of the distance, it is easily
seen that the force due to the whole magnet, when it is short,
would diminish in the ratio of the (n + 1)th power, and the force
in the end-on position would be n times that in the broad-side-on
position. We should have
M

and F2=7m

72 nM
17 pnt1
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In order to compare the magnetic forces produced by a magnet
at equal distances in the two standard
positions, a light mirror, with three or
four pieces of magnetized watch-spring
fixed behind it, may be suspended in a
small glass case in the earth’s field by a
fine fibre of unspun silk. Its position of
equilibrium is noted by reflecting a spot
of light on to a scale. A short bar magnet
is then placed successively east and west of
the magnetometer mirror in the end-on ]
position, and the mean deflection measured. Fig. 34.

The magnet is then placed with its centre

successively north and south of the mirror in the broad-side-on
position. The distance from the centre of the magnet to the
centre of the mirror is in each case made as nearly as possible
the same. It will be found that the tangent of the angular
deflection in the first position is very nearly indeed twice the
tangent of the angular deflection in the second position. More-
over, by changing the distance, it will be found that the tangent of
the deflection varies inversely as the cube of the distance. We
thus obtain an independent verification of the law that the
magnetic force of a pole varies inversely as the square of the
distance.

29. For the sake of example, let us consider two short

: magnets in the end-on position relatively to each
Interaction of 3 .

two short other. Let r be the distance between their centres.

e The magnet 4B produces a magnetic force 2M/r® at

the part of the field where lies the magnet CD, and, if M’ be the

T8 L C L) e—

A B ¢ D
Fig. 35.

moment of the magnet CD, the couple acting on it when deflected
through an angle 6 is clearly

2MM

r3

C= sin 6.
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If, instead of the couple, we wish to find the force of transla-
tion when the two magnets lie end-on to each other as in
Figure 35, we may proceed as follows. The force which 4B exerts
at a distance 7 from its centre is 2M/r%. The total force it exerts
on the two poles (m’ and — m’) of the magnet CD is

_ 2Mm’  2Mw
S =ty (r+0ly
(r+p—(@=1y
(r=p(r+ly
And, neglecting squares and higher powers of the small quantity {,

6r.l _ 6ﬂ12ml

=2Mwn/

F=2Mm'

_GMM
===,

Thus the forces vary inversely as the fourth power of the
distance, while the couples vary inversely as the third power.
These results hold whatever be the relative positions of the two
magnets, though of course the absolute values of the couples and
forces depend on the inclination of the magnets to each other.
Similar investigations may be made for other positions.

30. The difference in magnetic potential between two points
A is defined as the quantity of work required to carry
potestial an isolated north-seeking magnetic pole of unit
strength from one point to the other. The absolute potential of a
point is then the amount of work required to bring such a pole
against the magnetic forces from a place of zero potential (or from
infinite distance) to the point considered, on the assumption that
the strength of the pole is small enough not to affect the magnetic
field.

The investigation given in § 8 for the electric potential of a
point in air, at a distance » from an electric charge e, applies, with
the necessary cha.nge of symbols to the case of the magnetic
potential of a point in air or any other non-magnetic medium.
The magnetic potential is m/r, where m is the strength of an
isolated magnetic pole at a distance  from the point.

5—2
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To find the potential due to a short complete magnet, we must
consider the combined effect of its two
poles at a point P outside it. Join
P with O the centre of the magnet,
and let the angle between OP and
A B, the magnetic axis of the magnet,
be . From A and B draw straight
lines AM and BN at right angles to
OP or OP produced. &y
The potential at P due to the 4S5 2
pole B is m/BP, and that due to the ¥
pole Bis —m/AP. Thus,if OP be
denoted by 7, and OA or OB by I, the potential V at P due to the
magnet is given by

r

Fig. 36.

m m m

PN PM™ r=lcos@ r+lcos@’
or, neglecting terms involving the squares of the small quantity ,
2mlcos 6 _ M cos 0

V=

Ve

#3 r?
31. The investigation of the
Rerresteial distribution of the ' 1
magnetism, earth’s magnetic force

can now be described. The total
force, at any place on the earth’s
surface, acts at a certain angle
with the horizontal known as the
dip, and at a certain angle with
the geographical meridian called
the declination. The total magne-
tic force can be determined in
magnitude and direction by mea-
suring these two angles and the -
absolute value of the horizontal
component.

Figure 37 shows a declinometer.
The magnet consists of a hollow
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tube, at one end of which is placed a piece of plane glass with
a scale on it, and at the other a lens with a focal length equal to the
length of the magnet-tube. Light from the scale will then emerge
from the lens as a parallel beam. The magnet is suspended by a
single torsionless fibre of unspun silk. The position of the geo-
metrical axis of the magnet is determined on the glass scale. The
magnet is then turned upside down and resuspended. The mean of
the two positions of the geometrical axis, as observed in the
telescope, gives that of the magnetic axis, and its direction relative
to that of some external object is found by means of the scale at
the foot of the instrument.

A dip-circle is shown in Figure 38. The plane of the circle
is set in the magnetic meridian, and the dip observed. To
eliminate the error arising from the axle of the needle not

e

5

Fig. 38.

coinciding with the centre of the circle, the positions of both ends
of the needle are read; to avoid the érror due to the magnetic axis
not coinciding with the line joining the ends of the needle, the
needle is reversed, so that the face originally pointing east now

[y
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turns to the west; to avoid the error due to the centre of gravity
not falling in the line of the axle, the needle is remagnetized, its

' Fig. 39.
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poles reversed, and a fresh set of observations made. The mean
of all these results is taken as the true dip.

Both the declination and the dip vary from place to place over
the surface of the earth, and the results of such measurements as
we have described may be exhibited by maps, on which places of
equal declination and places of equal dip are joined by isogonic
and isoclinic lines respectively. Another series of lines may be
drawn through places of equal horizontal magnetic force. These
lines, together with isogonic and isoclinic lines are shown in
Figure 39.

A different system of directional lines is due to Duperrey, and
consists of a series of lines traced by starting from any point and
following the direction of the compass-needle.

The slow secular changes in the magnetic angles at London
are shown in the subjoined table:

Date Declination Dip
1576 71° 50
1580 11° 15’ E.

1600 72° 0
1622 6° O E.

1657 0° 0

1672 2° 30’ W.

1676 73° 30
1723 14° 17 W. 74° 42
1773 21° 9'W. 72°19
1787 23° 19’ W. 72° 8
1802 24° 6 W, 70° 36’
1820 24° 34) W. 70° 3
1860 21° 39’ 51”7 W. 68° 19
1893 17° 27 0" W. 67° 30/
1900 16° 52’ 40" W.

Besides these slow secular changes, diurnal variations of several
minutes of angle are observed. Moreover, rapid and irregular
changes, known as magnetic storms, frequently occur, often simul-
taneously with the formation of a sun-spot, and the occurrence of
brilliant auroral displays. Such variations are recorded at mag-
netic observatories by means of suspended needles, which, through
the use of mirrors, are made to record photographically the mag-
netic changes.
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By examining the relation which exists between the hori-
zontal and vertical components of the earth’s magnetic force, it
has been shown that the mean values of the magnetic elements
are determined by causes below the surface of the earth, but that
the diurnal variation and magnetic storms are due principally to
changes going on above the surface—perhaps to electric currents
in the rarefied upper regions of the atmosphere.

Having determined the angles of declination and dip, we still
require to measure the magnitude of the horizontal component H
of the earth’s magnetic force, in order to be able to specify
completely the magnetic state of a given place.

We showed in § 28 that, at a point on its axis at a distance r
from the centre of the magnet, a short bar magnet produced a
magnetic force equal to 2M/r%.  If, then, such a magnet be placed
with its axis east and west, it will deflect a small compass-needle
placed on its axis through an angle 6, given by the relation

2M

7=Ht}an9 ........................... (1).

The angle 6 may be determined accurately by fixing the
compass-needle to a mirror, and observing the deflection of a spot
of light.

We thus obtain one relation between M, the magnetic moment
of the deflecting magnet, and H, the horizontal component of the
earth’s force. To get a second relation, the bar magnet may be
suspended by a torsionless silk fibre in an instrument resembling
the declinometer of Figure 37 on page 68. The magnet is then
set oscillating through a very small angle about a vertical axis,
and its time 7, of complete oscillation, measured with a chrono-
meter. The restoring couple is HAM sin 6, and, since 6 is small,
the couple for unit angular displacement is HM. Hence, from
the usual formula for harmonic vibrations, we have

T =27 \/% ........................ (2).

The moment of inertia K may be calculated from the mass and
dimensions of the magnet, and we then obtain the value of H
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from the following expression, which may be deduced from equations
(1) and (2) given above,

8w K
B*= pistan e’

while M, the magnetic moment of the bar
magnet, is given by the relation

o 2K

M= 7

Having thus found H, the horizontal

component of the earth’s magnetic force, by
observing ¢ the angle of dip, we know the
total magnetic intensity 1 and the vertical
component V, for

7% tan 6.

A

Fig. 40.
H

~cost’

and V=1Isin?=H tanx.

32. It is well known that magnetic substances like iron, when
Magnetic subjected to a magnetic force, themselves become
oHetion: magnetized. Nickel and cobalt show similar pro-
perties, though to a much smaller degree. In all these cases,
a north-seeking pole, presented to one end of a bar of the metal,
induces a south-seeking pole on the nearer end. Attraction
results, and the magnetized bar tends to move into the stronger
parts of the field.

If we examine a bar of bismuth in the same way, using a very
powerful electromagnet to produce an intense magnetic force,
these phenomena are reversed. A pole of the same name as the
inducing pole appears on the nearer end of the bismuth bar, and
repulsion follows. Bismuth always tends to move into the weaker
parts of the field; it is called a diamagnetic substance, while iron
and its like are known as paramagnetic substances.

By the use of the intense magnetic fields produced by powerful
electromagnets, all bodies may be shown to possess some slight
trace of magnetic properties. It is remarkable, however, that iron
shows these phenomena to a very much greater degree than any
other material known ; unless an exception be made at some future
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time, in favour of certain rare metals such as erbium and others,
which, should they be obtained in a pure form, seem likely to equal
or exceed the susceptibility of iron.

Conditions of temperature exercise a determining influence in
all cases of substances which respond to magnetic forces. Iron
at ordinary temperatures is in many respects a different substance
from the non-magnetizable metal into which it is transformed above
its critical temperature ; its magnetization, however intense, almost
entirely disappears within a range of a few degrees’ increase of
temperature, and very marked alterations then take place also in
many of its other properties, such as its specific heat and electrical
conductivity. Nickel and cobalt are also affected by tempera-
ture in varying degrees; and certain alloys, notably those of iron
and nickel, exhibiting two critical temperatures, have shown such
great changes in magnetic properties with a change of temperature
that they may be said to exist in two conditions, one of which is
magnetic and the other not. In short, the magnetic properties
of any substance depend on the quality of the substance itself, the
amount of magnetization, and on the temperature.

The magnetization induced on a given bar of iron is evidently
measured by the resulting magnetic moment ; but it is convenient
to have a unit which depends on the material only, and not on the
shape or dimensions 0f a particular bar. Hence we form the
conception of ntensity of magnetization, and define it as the
magnetic moment per unit volume. The ratio of the intensity of
magnetization to the magnetic force producing it is called the
magnetic susceptibility. It should be said that the magnetic force
of this definition is the magnetic force actually effective within the
substance of the iron. Owing to the magnetism induced at the
ends of a piece of iron the effective magnetic force is less than
that applied externally, and depends on the shape of the iron.
This result is considered below in § 33. The magnetic suscepti-
bility is not a constant, but depends upon the value of the
magnetizing force.

The magnetic force is defined as the mechanical force on a unit
north-seeking magnetic pole, and, as long as the force is measured
in air or other non-magnetic substance, this definition is free from
ambiguity. When, however, the force is to be measured in iron,
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it is necessary to imagine that we cut a cavity in which to insert
the measuring pole, and the resultant force on the pole will depend
on the shape of the cavity. Where the lines of force leave iron
and enter the cavity, a north-seeking pole is induced, and where
they re-enter the iron, a south-seeking pole. If the cavity is a
cylinder with its axis along the lines of force and its breadth
very small compared with its length (Fig. 41), the effect of the
ends is negligible, and the force within the cavity is still defined
as the magnetic force.

7 Z
iz

Fig. 41. Fig. 42.

If we take the other extreme case, and imagine the cavity in
the form of a narrow thin crevasse, with its plane normal to the
lines of force (Fig. 42), the effect of the induced poles on the
opposite faces of the crevasse becomes very marked. The intensity
I of magnetization is defined as the magnetic moment per unit
volume of the iron. If we consider a certain volume of the iron in
the form of a rectangular block with one face on the side of the
crevasse, we have

M

=7

where L is the length of the block, M its magnetic moment,
and a the area of its face on the crevasse. But the magnetic
moment of the block is defined as the strength of one of its poles
multiplied by its length. Thus

I

St P
a result which shows that, in such a case, where the magnetism of
the pole may be regarded as uniformly distributed over the end
of the iron, the intensity of magnetization is equal to the strength
of pole per unit area, that is, to the surface density of the

magnetism,
o

ks
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The analogy between the crevasse in the iron and two parallel
metallic plates charged with opposite kinds of electricity to a
surface density o, will now be apparent, and by § 17 we see that
the magnetic force between the two faces, due to the magnetism
on them, is 4w/, The total force on a unit pole in the crevasse
will be the sum of this quantity and the original magnetizing
force H, and this total force is defined as the magnetic tnduction,
and usually written as B. If the direction of the magnetic in-
duction coincides with that of the original magnetizing force, as we
have supposed, we get the relation

B=H + 4=l

We have already defined the quantity known as the magnetic
susceptibility & as the ratio J/H. Thus

B=H + 4 Hk,
= H (1 + 4ak).

The ratio of the magnetic induction in the iron to the
magnetizing force is a useful quantity, and is called the magnetic
permeability, . Therefore w is B/H, and we get

mw=1+4dk

as the relation between the permeability and the susceptibility.

We have considered already the general form of the lines of
magnetic force, and traced their analogy with the corresponding
lines of electric force. On page 53 we developed the idea of lines of
force into that of tubes of force, and agreed to imagine one tube
of force as springing from one unit of positive -electricity and
ending on one negative unit.

With regard to lines of magnetic force, a different convention
is adopted. Instead of drawing one line or tube of magnetic force
from each unit of magnetism, we draw through unit area in the
field, normal to the direction of the magnetic force, a number of
lines of force equal to the numerical value of the magnetic force at
that position. Throughout regions of the field in which there are
no magnetic substances, the lines of force will be continuous.
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When magnets, or magnetic substances, are present, further
consideration is necessary.

The laws of magnetic force are similar to those of electric force,
and Gauss’ theorem, § 12, and the deductions from it, hold equally
in the case of magnetism. Moreover, as we shall see presently,
the magnetic permeability p corresponds with the dielectric
constant k. Let us draw round an isolated magnetic pole an
imaginary sphere. By analogy with the electric case considered
in §12, we then have the relation

SaHup = 4mm,

where H is the normal magnetic force on each element of area of
the sphere, and m the quantity of magnetism within the sphere,
that is, the strength of the magnetic pole.

Now the quantity Hy is, by definition, equal to B the mag-
netic induction in the medium,and hence Zafy is ZaB, a quantity
which clearly represents what we must call the total magnetic
induction over the surface of the sphere.

If we imagine the magnetic pole to be placed in air, and
surrounded by a hollow spherical shell of iron, we could still
apply Gauss’ relation to the external surface of the shell in the

form
SaB3 =4mm.

Drawing tubes of induction from the pole to inclose ‘proper
elements of area, we see that the quantity B, the induction, is
continuous throughout such a tube whether it passes through one
medium or through more than one. This shows the importance
of the conception of magnetic induction: it is the vector quantity
which is continuous throughout any magnetic field.

If we draw through unit cross area surrounding a point
a number of tubes of induction equal to the value of the
magnetic induction at the point, in accordance with the usual
convention, it should be noticed that the number of tubes through
an area o is aB. Hence, the total number of tubes proceeding
from a pole of strength m is 47rm, and, from a pole of unit strength,
the number is 47. This result should be compared with the
electrical convention, by which one tube of electrostatic induction
Jis imagined to spring from unit charge of electricity.
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These relations may be considered profitably from another

point of view, by supposing a narrow gap cut

in an iron circuit otherwise continuous. Let

us take, for instance, the case of a ring of

iron, round which a continuous magnetizing

force is exerted by the action of an electric

current circulating in coils wound over the

ring. Across a thin cut in the iron, the

lines of force will run from one side to

the other, and, if the cut be indefinitely

thin, an indefinitely small number of lines

of force will escape at the edges of the cut.

All the lines may then be imagined to run

straight from one side to the other. The Fig. 43.
magnetic induction in the cut is

B=pH=H (1+ 4mk).

But, as we have seen above, of this induction, H is due to’ the
magnetizing force, and 4wkH, or 4arl, is due to the induced mag-
netism on the faces of the cut. But J is measured by the quantity
of magnetism m per unit area, and thus from each unit of area
the amount of induction is 47m. Now, as.stated, the con-
ventional mode of drawing magnetic lines of force is to draw
through unit area, normal to their direction in the field, a naumber
- of lines equal to the force at that place. Thus, in the case now
under consideration, from each unit of area of the cut, 4mrm lines
proceed. From a unit pole, then, the number of magnetic lines of
force is 4ar, in accordance with the result already obtained.

The lines crossing unit area of such an ideal cut represent the
magnetic induction across the cut, and, also by what was said on
page 75, the induction in the iron across any section of the ring,
for it is possible to imagine an indefinitely thin crevasse cut
anywhere round it. Thus continuous lines of magnetic induction

1 In practice there would always be considerable leakage of lines, for a cut
of any finite thickness would throw back the poles some little distance from the
faces of the cut. This, however, does not affect the reasoning given in the text,
which is based on ideal conditions.
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may be imagined to pass round the ring, and across the intervening
gap. In air, these lines are also lines of force, but in iron the
lines of force would be wx times less in number than the lines of
induction, and, in crystalline media, need not necessarily coincide
with them in direction.

The induction B in the air gap is the force acting on a unit
north-seeking magnetic pole placed therein. In the iron the
induction is also B, since it is continuous. But B is ufl, and thus
the magnetic force in the iron is u times less than in air,

The permeability 4 in magnetism is now seen to be analogous
to the specific inductive capacity or dielectric constant k£ in
electrostatics. Just as the electric force in paraffin is & times
less than in air, so the magnetic force in iron is p times less than
in air, and the complete expression for the force between two
magnetic poles separated by a distance r is

F=m1m2
pr "

While, however, the dielectric constant does not vary when the
electric force is changed, the permeability, as we shall see, depends
on the applied magnetic force.

Another analogy, between the magnetic permeability of iron
and the specific electric conductivity of an electric conductor, is
useful in the theory of electromagnetic machinery, and will be
considered in § 57, Chap. VIL

The conception of lines of magnetic induction is of great
importance in electromagnetic theory, and will be used largely
in Chapter vi1. It should be noted that while electric or magnetic
lines of force begin and end on electric charges or magnetic poles,
magnetic lines of induction have neither beginning nor end, but
form continuous closed curves.

The induction, by one pole of a permanent magnet, of an
opposite pole on a piece of iron in its neighbourhood will cause
the lines of force from the one pole to concentrate on the other,
Just as the lines of force from the north-seeking pole of a magnet
in Figure 27 on page 50 concentrate on the south-seeking pole.
It follows that a piece of soft iron, placed in a uniform magnetic
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field, deflects the lines of induction so that they crowd through
the iron. For certain cases it is possible to calculate this effect,
and Figure 44, derived from Lord Kelvin’s Reprinted Papers, shows
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Fig. 44.

the distribution of lines of electric force in the analogous system
of a sphere of some dielectric substance, with a specific inductive
capacity greater than unity, placed in air in a uniform electric field.
The figure represents equally well the magnetic lines of induction
through a paramagnetic substance such as iron, placed in a uniform
magnetic field. When the permeability is very great, the magnetic
induction inside the sphere is 3/, where H is the magnetic force
in the undisturbed uniform field outside, while the magnetic force
in the iron is 3H/u—a value very small compared with that
without.

Owing to this concentration of the lines of induction in para-
magnetic substances, thick iron screens may be used to protect
galvanometers or other magnetic instruments from the influence
of an external field. The shielding effect is much less complete
than the electrostatic shielding of conducting screens (p. 20), for
an electric conductor is analogous to a substance of infinite
magnetic permeability.

33. In order to examine the magnetic properties of a sample
: of iron, certain precautions are necessary. When a bar
Experiments 3 . . . .
on Magnetic  of iron is placed in a magnetic field, poles are induced
Induction. . .
near its ends, and these poles will themselves exert a
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magnetic force on the substance of the bar. It is evident from
Figure 45 that the force due to
the induced poles acts in the
iron in the direction opposite to
that of the inducing force, and
thus a demagnetizing effect is
produced. With a short, thick bar this effect is considerable. The
magnetizing force which really acts on the iron is less than that
applied externally, and the resultant induced magnetization is less
than would be expected. The results of many early experiments
are useless from this cause.

The effect of the ends can be eliminated in several ways. We
may, if we please, use an endless ring of iron, and observe its
influence on the electromagnetic induction of currents in coils
wound over it by methods that will be described in Chapter vi1.

We may, however, in certain cases, use iron rods, apply a
constant magnetizing force, and measure the resultant magnetiza-
tion by the usual deflection methods. If a bar in the form of an
elongated ellipsoid is used, it is possible to calculate the reverse
effect of the induced poles near the ends, or, by taking a long,
thin wire, with a length two or three hundred times the diameter,
the effect of the ends is so small that, in ordinary work, it may be
neglected.

We shall show in the next chapter that inside a long helical
coil of wire, called a solenoid, the magnetic field of force is uniform,
and equal in strength to 47nc, where n is the number of turns of
wire per unit length, and ¢ is the electric current flowing in the
coil measured in electromagnetic units.

An iron wire, or bundle of iron wires, placed inside a solenoid
so that the coil well covers the ends, will therefore be subject to
a uniform magnetic force of known and controllable strength.

At a considerable distance from the solenoid, at a point on its
axis produced, is placed a magnetometer, consisting of a suspended
needle and mirror as shown in Figure 34 on page 66.

The current is passed in series through the solenoid, and
through a small coil which is moved about till, whatever current
be passed, it just balances the effect of the empty solenoid on the
magnetometer needle. The iron is then inserted in the solenoid,

N S N S

Fig. 45.

W. E. 6
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and a small current passed round the coils. The deflection of the
needle is due to the iron alone, and the magnetic moment M of
the iron is given by the relation deduced on page 72, namely

@i iy

M=

where H is the horizontal component of the earth’s magnetic force,
r the distance of the needle from the centre of the iron, and € the
deflection of the needle. By determining the length and diameter
of the iron wire, its volume V is known, and the intensity / of
magnetization may be calculated, for I is M/V. The susceptibility
k of the iron is the ratio of the intensity of the magnetization to
the magnetizing force H, the permeability w is 1+ 4ork, while the
magnetic induction B is the product of x and H.

Another method, already referred to, which in some cases is
more convenient, depends on the induction of a secondary electric
current in one coil of wire by a variation of a primary current in
another coil in the neighbourhood. If both coils are wound over
an iron core, the induced electromotive force, being proportional
to the rate of charge of the magnetic induction, gives a means of
measuring the properties of the iron. This method is explained
in § 53, Chapter VIL

The results of such experiments, by whichever method con-
ducted, can be represented graphically by plotting abscisse
proportional to the magnetizing force H, and ordinates pro-
portional either to the magnetic induction B, or to the intensity
of magnetization 1.

Figure 46 shows a curve, obtained by Prof. Ewing, giving the
magnetic induction. When the magnetic force is small, less than
about one-tenth of the earth’s horizontal force, the induction in
demagnetized iron increases nearly in proportion to the force, as
shown near O in the figure. Then it rises much more quickly, but
finally increases from A onwards more and more slowly, till, at the
highest forces possible, the induction is only increased very slowly
by the farther increase of magnetic force, as from G to P in the
figure; here the intensity of magnetization becomes nearly constant,
and the iron seems to approach a state of magnetic saturation.

The existence of this state of saturation has been confirmed by
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subjecting iron to very much stronger fields than can be obtained
in coils carrying currents, where the field cannot much exceed
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2000 units. By placing small iron bars in the concentrated fields
obtained between the poles of powerful electro-magnets, Ewing
and Low subjected them to fields approaching 20,000 units of
strength. The induction was measured by suddenly withdrawing
the iron and observing the induced current in a coil of wire
wound over it.

If, after reaching the point of saturation, the magnetic
force be decreased steadily, and measurements taken for differ-
ent forces, the curve of magnetization or induction does not
return along its old course. The iron exhibits magnetic reten-
tiveness, and, even when the magnetizing force is wholly
removed, keeps a large proportion of its total magnetization.
If the force be reversed, the induction falls rapidly, as shown
by the part EK of the curve. As the reversed force is increased,
the iron becomes saturated with the magnetization in the other
direction. On decreasing this force, retentiveness is again shown,
and the reversed magnetization is only removed when the force
is once more reversed; the curve then soon rises to L. A new
cycle of magnetic force does not cause the magnetization to pass
along the original path OA, but along the curve rising from L.
Iron may be demagnetized by heat, or by an alternating magnetic
field, the intensity of which is diminished gradually to the vanish-
ing point. ' \

6—2
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The general lagging of the induced magnetization behind the
magnetizing force has been named by Ewing hysteresis. The
particular curve shown in Figure 46 must be regarded merely as
typical ; the exact form depends on the sample of iron, and on the
treatment to which it is subjected. Curves are sometimes drawn
between the magnetic force H and the intensity of magnetization 1.
Such curves may be obtained from the curves giving the magnetic
induction B, as in Figure 46, by considering the relation

B=H+4~I.

From the ordinates of Figure 46, the value of H must be subtracted,
and the result must be divided by 47, in order to get the curve
of intensity of magnetization. It is also evident that the area of
the closed curve in the induction diagram of Figure 46 will be
4qr times the area of the magnetization curve.

The areas of these curves have an important physical signi-
ficance, which will become apparent if we consider the work done
in putting a piece of iron round the cycle of changes represented
in the diagram.

We may imagine that we magnetize a magnet by separating
a series of very small equal and opposite quantities of magnetism
at one end, and carrying one of the separated quantities along the
magnet to form the other pole. If the magnet be indefinitely
short compared with its breadth, or if we imagine it to be cut
out of a solid block of material, the magnetic force H between
its poles will be uniform, and the work done in separating the one
small quantity of magnetism &m from the other over the length
21 of the magnet is 21Hém.

This infinitesimal shift of magnetism involves an infinitesimal
change 81 in the intensity of magnetization. If a be the area of
cross section of the magnet, we have (p. 75)

81 = émja.
Hence the work done during the process we have described is
2laHSI.

But 2la is the volume of the magnet. Hence, measured in
ergs, the work done per unit volume is

W=H3I.
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By a process similar to that used on page 41, it follows
that, in a magnetization curve corresponding to the induction
curve in Figure 46, while the magnetization of the iron passes
along the curve from O to P, the total work done, or ZHé&I,
is represented by the area OPB; while, throughout a complete
cycle of changes, the excess of the work done in magnetizing over
the work returned while demagnetizing, for unit volume of the
irom, 1s represented by the area of the hysteresis loop in a magneti-
zation diagram drawn between H and /. This work is dissipated
in the iron and appears as heat.

The area of the hysteresis loops on the B and H curves is, as
we have seen, 47 times the area of the corresponding loops on the
I and H curves. Hence the work done in ergs is represented by
1/47r times the area of the B and H loops in Figure 46.

When iron is to be used in electromagnetic machinery, it is
important that a knowledge of the magnetic properties of different
samples should be obtained. For most purposes it is desirable
that the permeability should be high and the hysteresis small.

Practical instruments have been devised, whereby the permea-
bility may be estimated quickly by the tractive force exerted on a
standard block of iron by the sample to be tested when forming
the core of an electromagnet. The hysteresis effect may be
determined by an instrument invented by Ewing, in which the
lagging of the magnetization in the sample bar is made to exert a
force on a permanent magnet, in front of which the bar revolves.

The permeability (u=B/H) is not constant as the magnetic
force changes, as is seen from the varying slope of the curve in
different parts of the BH diagram, or from the following table of
experiments on strips of steel.

H B i
1 1580 1580
2 4930 2465
3 7000 2333
10 11800 1180
20 13840 692
50 15800 316
100 16600 166

160 17980 112
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The permeability is greatest for moderate fields, where the curve
rises most rapidly, and falls off rapidly as the field increases and the
iron approaches saturation. At ordinary temperatures, for good soft
iron, it may vary from 2000 to 4000 c.G.s. units. For small values
of H, it increases considerably with the temperature, till a critical
temperature of 700° to 900° is reached, when the permeability falls
rapidly to unity, and the susceptibility vanishes, iron becoming a
non-magnetic substance till recooled. -That this is connected with
the internal structure of the iron is shown by the fact that, at the
same critical temperature, the phenomenon known as recalescence
appears. If a piece of iron be heated above this temperature
till nearly white hot and allowed to cool, it changes to a dull,
almost 1nvisible redness, and then brightly glows again as it
passes the critical temperature. This behaviour probably means
that a change in the crystalline structure of the iron occurs
about the temperature in question—a change which involves
the absorption of latent heat. As the iron loses heat it may
become undercooled, just as water kept without disturbance
may be cooled below its freezing-point. ~When the structural
change sets in, it will then proceed rapidly, and a large amount of
latent heat will be evolved; thus the temperature may rise
considerably. It is likely that some such structural change
produces the marked alteration in magnetic properties which
iron displays at the temperature of recalescence. The rise of
temperature is actually shown in the cooling curves given in

Figure 72, § 46.

34. If a magnetized steel knitting-needle be broken in halves,
Tl oriea of each half will be found to act as a permanent
aenetisn magnet ; the strength of the individual poles being
then the same as the strength of the poles of the original needle.
This process may be repeated as long as the fragments of iron are
large enough to be broken—each fragment retains its magnetic
properties. If the fragments were put together again, it is
evident that the intermediate poles would neutralize each other,
leaving the original poles of the whole magnet effective at the
ends of the chain. Such observations and considerations have
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suggested that magnetism may be an atomic or molecular
property, the individual atoms or molecules, or groups of molecules,
being imagined as diminutive magnets.

An explanation of the phenomena of gradual magnetization
was given by Weber, who suggested that, in an unmagnetized
iron bar, the axes of the individual molecular magnets lie in
all sorts of irregular and arbitrary directions. As a magnetic
force is applied, more and more of the molecules set so that
their axes point in the same direction. Contiguous poles of the
molecular magnets neutralize each other except at the ends of
the bar, where the effective poles of the whole magnetic system
appear.

That some rearrangement of the molecules is involved in the
process of magnetization seems indicated by the changes in volume
which then occur. Joule observed that the elongation of a bar of
of iron or soft steel on magnetization was, up to a certain point,
proportional to the square of the intensity of the magnetizing
force; but that it failed to comply with this relation some time
before the saturation point was reached. It has since been shown
that, if the inagnetizing force be pushed beyond the strength with
which Joule experimented, the extension of the bar ceases, and it
gradually returns, first to its original length, and ultimately
recedes within that limit. Cobalt, on the other hand, contracts
in the early stages of magnetization and afterwards recovers its
original length, and increases rapidly with increasing intensity.
A bar of nickel appears to diminish in length throughout the
whole process of magnetization.

In order to explain the fact that the state of magnetic satura-
tion 1s not reached at once on the application of a small magnetic
force, Weber supposed that the motion of the molecular magnets
was opposed by a frictional resistance. But this does not explain
the phenomena of residual magnetization, and Ewing showed that
the supposition of friction was unnecessary as well as insufficient.
Ewing suggested that a collection of little magnets, turning
without friction, would, even in the absence of a magnetizing
force, set themselves in stable groups under the influence of their
own mutual forces. The groups will have all sorts of configura-



88 ELECTRICITY [cH.

tions throughout the volume of the iron; the bar will possess
therefore no resultant magnetic moment. On the application
of a magnetic force of gradually increasing intensity, the first
effect is to deflect slightly some of the magnets from their
original position. This deflection will, for small angles, be
proportional to the magnetic force, and, if the magnetic force
be removed, the molecules will revert to their original state.
These relations explain the first stage in the actual magneti-
zation of iron—the first part of the curve in the neighbourhood
of O, in Fig. 46.

As the magnetic force is increased, some of the groups of
molecular magnets become unstable and break up. More and
more of the little magnets set in the direction of the impressed
force. When nearly all of them are so arranged, the iron ap-
proaches its state of saturation.

Ewing constructed a model, consisting of a number of small
compass-needles pivoted and placed on a board. The board was
fixed within a solenoidal coil of wire, through which an electric
current could be passed. In this way a hysteresis curve was
obtained—a curve which reproduced in a very striking manner the
phenomena of the magnetization of iron.

The structure of the individual molecular magnets remains to
be considered. As we shall see in the next chapter, an electric
current flowing in a closed circuit acts as a magnet. Long ago
Ampére suggested that the conception of electric currents flowing
in minute circuits, round or within the individual molecules, might
furnish a more fundamental explanation of magnetic phenomena.
And, of recent years, this hypothesis has gained added significance.
As we shall see in the sequel, Prof. J. J. Thomson sees reason to
believe that the properties of atoms may be explained by the
supposition of negatively electrified corpuscles, which perhaps con-
stitute isolated electric charges, revolving in orbits within a sphere
of uniform positive electrification, whatever may be the exact
meaning to be attached to this expression. It has been shown
experimentally, by Rowland and others, that a moving charge of
electricity is equivalent to an electric current. The requirements
of Ampére’s hypothesis are thus satisfied by the latest theory of
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35, THE different forms of apparatus for the production
) . of electricity, hitherto discussed, are all intended
iscovery o R . .
the electric primarily to enable us to give a static charge of
current. . . . . .
electricity to some insulated conducting body. It is
true that, if a conducting circuit be formed, connecting the
collecting apparatus of an electric machine with the rubber or
with the earth, a more or less continuous flow of electricity must
proceed along the circuit. Even in the most elaborate form of
influence machine, however, the amount of electricity passing in a
second is so small that it is difficult to detect the current in the
conducting wires; though, if an air gap be interposed, the high
differences of electric potential produced by the machine result in
visible sparks and the attendant phenomena.

At the beginning of the nineteenth century, a new field of
research was opened up by the discovery of the galvanic or voltaic
cell. This arrangement gave rise to a series of phenomena
grouped originally under the name of galvanism, which, by the
efforts of many observers, was gradually brought into relation with



CH. V] THE ELECTRIC CURRENT 91

the older electricity. Faraday may be said to have established
finally the identity of the two manifestations. He showed that a
galvanic current was nothing more nor less than a flow of electricity,
enormous in quantity compared with that given by an electric
machine, but driven along by potential differences many thousand
times less than those involved in the older type of apparatus.
Since no accumulation of electricity can be detected at any point
in the circuit, it follows that the current may be represented
figuratively by the flow of an incompressible fluid along rigid and
inextensible pipes. We define the strength of the electric current,
as we shall see later, by means of the magnetic force it produces,
and therefore we must not define it by means of the quantity of
electricity passing. We must reverse this procedure, and make
a new definition of quantity of electricity. Unit quantity of
electricity passes any cross-section of a circuit when a current of
unit strength flows round that circuit for unit time. The relation
of this definition of unit quantity of electricity with the statical
definition based on the mechanical forces between charged bodies
will be considered in a future chapter.

The discovery of the voltaic cell was due to a chance observa-
tion, which seemed at first to lead in a different direction—an
experience not uncommon in the history of scientific investigation.
About the year 1786, an Italian named Galvani noticed that the
leg of a frog contracted under the influence of a discharge from an
electric machine. Following up this discovery, he observed the
same contraction when a nerve and a muscle were connected with
two dissimilar metals, placed in contact with each other. Galvani
attributed these effects to a so-called animal electricity, and it was
left for another Italian—Volta, of Pavia—to show that the essential
phenomena did not depend on the presence of an animal substance.
In 1800 Volta invented the pile known by his name, which, in the
opening years of the following century, provided a means of
investigation yielding results of intense interest in the hands of
the discoverer and his contemporary workers in other countries.
The scientific journals of the time are full of the marvels of the
new science, the study of which was taken up with an ardour little
short of that shown a century later in the elucidation of the
phenomena of radio-activity.
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36. Volta’s pile consisted of a series of little discs of zinc,
copper, and paper moistened with water or brine,
placed one on top of the other in the order—zine,
copper, paper, zine, etc....finishing with copper. Such an arrange-
ment is really a primitive primary battery, each little pair of discs
separated by moistened paper acting as a cell, and giving a certain
difference of electric potential, the differences due to each little
cell being added together and producing a considerable difference
of potential (or electromotive force as it is now called) between the
zinc and copper terminals of the pile. Another arrangement was
the crown of cups, consisting of a series of vessels filled with brine
or dilute acid, each of which contained a plate of zinc and a plate
of copper. The zinc of one cell was fastened to the copper of the
next, and so on, an isolated zinc and copper plate in the first and
last cell respectively forming the terminals of the battery. Volta
thought that the origin of the effects was to be sought at the
junctions of the two metals; hence the order of the discs in the
pile and the terminal metal plates in air in the crown of cups.
These plates, and the corresponding discs in the pile, were soon
found to be useless, though they figure extensively in early
pictures of the apparatus.

If a current be taken from Volta’s pile or crown of cups, that
current rapidly diminishes in intensity; this is due chiefly to a
film of hydrogen which forms on the surface of the copper plate.
In a later chapter we shall study the theory of such phenomena
under the head of electrolytic polarization. Here we are concerned
merely with the practical means adopted to eliminate its effects in
voltaic cells. Cells can be classed in three groups, according as the
depolarizing action is mechanical, chemical, or electrochemical.
The following examples may be given:

Cells mechanically depolarized. Smee’s cell, where a silver
plate is covered with crystals of platinum, the sharp edges of which
aid the escape of the hydrogen.

Cells chemically depolarized. 1. The bichromate battery. The
zinc and carbon plates are surrounded with an oxidizing mixture of
sulphuric acid and a strong solution of potassium bichromate.
The hydrogen, instead of being evolved as gas, is oxidized to
water.

Voltaic cells.
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2. The Leclanché cell, consisting of zine in a solution of
sal-ammoniac, and carbon surrounded with a mixture of broken
carbon and manganese dioxide.

3. Grove’s cell, where one plate is zinc in dilute sulphuric
acid, and the other is platinum in strong nitric acid contained in a
porous pot.

Cells electrochemically depolarized. 1. Daniell’s cell, in which
zine is placed in dilute sulphuric acid or a solution of zinc sulphate,
and a porous pot contains copper immersed in a strong solution of
copper sulphate. Copper is deposited on the plate instead of
hydrogen.

2. Latimer Clark’s cell, used as a standard of electromotive
force. Here a zinc rod is placed in a solution of zinc sulphate;
and mereury is covered with a paste of mercurous sulphate, which
deposits mercury when an electric transfer occurs.

37. As we have said, the discovery of the galvanic current
- was made by the detection of its physiological effects
ects of the
galvanic on the leg of a frog. As soon as the invention of the
current. . . .
voltaic cell placed a more powerful instrument in the
hands of investigators, it was found that striking chemical changes
accompanied the flow of the current through water and aqueous
solutions. To these phenomena the early experimenters chiefly
directed their attention. A detailed study of this important
branch of our science will be found in the chapter on electrolysis,
and we shall now pass to other subjects.

It was soon found that, when passing through a conductor of
any kind, the current evolved heat, the amount of which depended
on the nature of the conductor. This thermal effect also will be
considered later. In this place we shall depart from the chrono-
logical order of development, and pass to another property of the
current, namely, its power of deflecting a magnetic needle. This
power was discovered by Oersted of Copenhagen in 1820. Its
importance for our present purpose lies in the fact that, by the
magnetic force which a given current will produce, the strength
or intensity of that current is, by general agreement, defined and
measured. Moreover, the magnetic effects of minute currents give
the most sensitive means of detecting them in metallic conductors.

By a convention universally adopted, we agree to suppose that
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an electric current flows in the direction of the positive electricity,
that is, from the zinc to the copper (or carbon) plate within the
battery, and from the copper to the zinc along the wire outside.
In accordance with this convention, the copper plate is called the
positive, and the zinc plate the negative terminal of the battery.

If a wire, along which a current is passing from south to north,
be placed over and parallel to a compass-needle, the north-seeking
pole is deflected towards the west. If the wire be placed below
the needle, with the current still passing from south to north, this
deflection is reversed. Thus, if the wire be wound in a coil, so
that the current passes in one direction above the needle and
returns in the other direction below, the effects on the needle are
of the same sign, and the deflection is multiplied greatly. Such
an arrangement is known as a galvanometer. Except in special
cases, the chief use of a galvanometer is to detect the presence and
direction of electric currents; hence the object in designing a
galvanometer is to increase the sensitiveness; it is not usually
necessary to know the relation between the strength of the current
and the deflection of the needle.

A very sensitive galvanometer, invented by Lord Kelvin, is
shown in Figure 47. It consists of a coil of
wire closely surrounding a small suspended
mirror, on the back of which are fixed several
pieces of magnetized watch-spring, as in the
magnetometer illustrated in Figure 34 on
page 66. As we have seen, the deflection of
a needle produced by a magnetic force F,
applied at right angles to the original position
of the needle, is given by NN

F=H tan §,

where H is the strength of the field (due to

the earth or other magnetic system) in which Fig. 47.

the needle hangs. The deflection produced

by a given force, that is, by a given current, will thus be inversely
proportional to H, the strength of field. The sensitiveness of the
galvanometer therefore will be much increased by the use of a
control steel magnet, which can be moved into such a position that
it counteracts and nearly balances the earth’s horizontal field of force.
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The sensitiveness has been increased still further by fixing to

a light rigid glass fibre two systems
of light steel strips with their poles
inoppositedirections. Thestrengths
of these magnets are adjusted care-
fully till they are nearly equal as
well as opposite, and the astatic
system is then suspended by a
quartz fibre so that each half lies
within a coil. The current flows
in opposite directions in the two
coils, and the deflection is read
with a telescope and mirror. A
current of 107 ampere may thus
be detected.

Since a current produces a mag-
netic force, it will itself experience
a force when placed in a magnetic
field, whether that field is due to
permanent magnets or to other
currents. The phenomena of at-
traction and repulsion between cir-
cuits of wire, freely suspended and
carrying currents, were investigated

experimentally by Ampere, and the deflection of coils, placed in

the strong field of permanent
magnets, is now extensively
used in galvanometers of the
moving-coil type (Fig.49). Such
instruments, while not quite so
sensitive as those already de-
scribed, have important advan-
tages. One of the chief ad-
vantages of these galvanometers
is their freedom from disturb-
ance when the external field of
magnetic force is liable to some
amount of variation, owing to
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the movement of masses of iron, etc. The field produced by the
permanent magnets is so very strong, compared with that of
the earth and other external objects, that a small variation in the
external field is inappreciable. In the d’Arsonval galvanometer,
the current is led into the coil by a phosphor-bronze strip, which
also acts as a means of suspension, and is taken out by a torsionless
coil of fine silver wire,

In practical ammeters and voltmeters, the moving coil is

Fig. 50.

mounted on pivots between jewels, and carries a pointer which
moves over a scale divided so as to read amperes or volts directly.
Fig. 50.

38. The experiments of Ampere and Weber showed that

coils of wire carrying currents acted in the same

Relations . Ianner as magnets of the same size and shape, and
e of appropriate magnetic strength.

A long helical coil, which is called a solenoid,
will, for instance, produce an external magnetic field exactly
similar to that due to a bar magnet of the same shape and
dimensions as the coil, and, if balanced on two points, as shown in
Figure 51, will set like a magnet in the magnetic meridian of the
earth. As the length of the solenoid is decreased, the equivalent
magnet becomes shorter also, and, if the coil be imagined as
reduced to a single circle of wire, the equivalent magnet must be
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represented by a circular disc of steel, magnetized in a direction
at right angles to its plane, so that one face of the disc is a large
flat north-seeking pole, and the other face a similar south-seeking
one. Such a disc is known as a magnetic shell. A magnetic
shell may be imagined as made up of a number of very minute
bar-magnets placed side by side, with all the poles of one name
pointing the same way.

Fig. 51.

If a small circuit be equivalent to a corresponding magnetic
shell, it must follow that the same relation holds for circuits and
shells of any size. A large shell may be imagined to be resolved
into a number of small shells of equal strength. Each of these
may be replaced by its equivalent current flowing round the edge
of the little shell; and, since the currents too must be of equal
strength, the currents along each internal junction line will cancel,
and we are left with one continuous current flowing round the
external edge of the large shell.

It will be evident that a closed electric circuit of any size and
form is equivalent to a magnetic shell of the same size and form,
with its edge coinciding with the wire carrying the current.
This equivalence between magnets and currents extends only to the
external magnetic fields which they produce. Inside the coils and
magnets the conditions are different.

As we have seen in § 28, the effect of a magnet at outside
points depends on a quantity known as the magnetic moment.
In the case of magnetic shells, it is convenient to use a correspond-
ing quantity which does not depend on the size or shape of the
shell. Hence we define the strength of a magnetic shell as the
magnetic moment per unit area. From the experimental equi-
valence between currents and magnetic shells, it follows that the

W. E. 7
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electromagnetic unit of current may be defined theoretically as that
current which is equivalent to a magnetic shell of unit strength.

If two circular currents be placed parallel to each other, it is
clear that, if the currents circulate in the same direction in each
circuit, the equivalent magnetic shells will have poles of opposite
name facing each other. Thence follows a result readily verified by
experiment, namely, that currents flowing in the same direction
attract each other, while currents flowing in opposite directions
repel each other.

In § 30, we found that the magnetic potential of a short bar-
magnet at a point at a distance r from the centre of the magnet
was M cos @/r?, where 6 is the angle between the magnetic axis of
the magnet and the line joining its centre to the point considered.
If we imagine the magnet shortened till it becomes vanishingly
short, we get a small magnetic shell, and the same expression
still gives the potential at -an external point.

We defined the strength S of a shell as the magnetic moment
per unit area. Thus S is M/a, and the potential V is given by

a cos @

V=8— g

Now a cos 6/7* measures the solid angle & which the shell subtends
at the point P. Hence

V=_8w=."

For a large shell, the potential is the sum of the potentials due
to the small shells of which we may suppose it to be constituted.
Thus, if Q be the solid angle subtended by a magnetic shell of any

. size at an external point P, the potential at that point is equal to
the strength of the shell multiplied by the solid angle which it
subtends at the point, for the strength of the shell is uniform all
over its surface, and

V=328% =82= =80Q.

Since currents are equivalent to magnetic shells, a similar
expression gives the magnetic potential at a point due to a current
c. If Q denote the solid angle subtended at the point by the
circuit in which the current flows,

V=cQ,
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unit current, in accordance with our definition, being taken as
equivalent to a shell of unit strength.

Let us imagine a circuit of wire of any form through which
passes a current c. Its magnetic effect on points outside it will
be the same as that of the equivalent magnetic shell. At a point
indefinitely near the plane of the shell, the solid angle which the
shell subtends is half that of the whole surrounding sphere, or 27.
The potential at that point due to the equivalent current is
therefore 27e. At a corresponding point on the opposite side of
the plane of the shell or current the solid angle is — 27, and the
potential is —2m¢. Thus the difference of potential between
these two points is 4re.

The difference of magnetic potential between two points 1s
defined as the work done against the magnetic forces in carrying a
unit north-seeking magnetic pole from one to the other. Thus,
if we take a unit north-seeking magnetic pole from a point just
outside the plane of a shell or current to a corresponding point on
the other side, the path being in air round the edge of the shell or
current, the work done is 4rc.

To pass through the shell, and regain the original point, we
must suppose the pole taken up through a hole in the shell.
Here the work is clearly reversed, and, when we regain the original
point, the total work done vanishes, as, indeed, follows from the
principle of the conservation of energy. But here appears a differ-
ence between currents and shells. In completing the path round the
current, there is no steel to pass. The path is completed through
air, and there is clearly no discontinuity of force. Thus the work
done in taking a unit north-seeking magnetic pole completely
round from one side of the current to the other is not appreciably
added to by taking it through the indefinitely short path required
to complete the circuit and return to the original point: the
total work is still 4are.

This difference between magnets and currents is significant.
It depends on the fact that in the current we have a source of
energy maintained elsewhere, from which we may draw when
moving a magnetic pole in the neighbourhood. In a magnet
we have no such source of energy, and no work can be gained
or lost by moving a pole so that in the end it returns to its

7—2
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starting-point. The equivalence between shells and currents
does not hold when we deal with points within
them—it applies to external points alone.
But, it will be noticed that the magnetic force
due to the current is everywhere equivalent
to the magnetic induction due to the shell;
magnetic force is continuous in air, but mag-
netic induction 1s continuous in any field,
simple or complex, magnetic or non-magnetic.

If we suppose that the two points on opposite
sides of the plane of the current lie very
near one edge, the work done against the
magnetic forces must be due entirely to that
portion of the current in the neighbourhood. Thus, whenever
a unit north-seeking magnetic pole is made to eirculate once
round a current ¢, work to the amount of 4ar¢ is done.

Fig. 52.

39. An application of this result enables us to deduce the
SMingtic value of the magnetic field inside a solenoid, that is,
s inace a helical coil of wire through which passes a current.

" Let us imagine that an isolated magnetic pole of
unit strength is carried along a path AB inside and parallel to the
axis of a portion of a very long
solenoid (Fig. 53). Let the \“n H \
pole be then brought out be- ,)))j/\jlu 7]
tween the wires of the coil,
taken outside along the path £ )
DE, and returned to the inside Fig. 53.
of the coil between the wires
along the path £A4. By § 38, the work done is 4mc for each
turn of wire surrounded by the path, and, if » be the number of
turns of wire per unit length of the coil, the total work done is
4arnc . AB.

The lines of force of the solenoid will be similar to those of
a bar-magnet, except that, instead of ending on the poles, they
form continuous curves by running back along the inside of the coil.
Thus, inside the coil, all the lines of force are crowded into a small
space, but outside, the same number are spread throughout the




V] THE ELECTRIC CURRENT 101

whole field. If the coil be very long, then the number of lines in
the region DE is vanishingly small compared with the number inside
the coil.  Along DE the force is negligible, and the work done when
the pole is taken along it is negligible also. The portions BD and
EA4 of the paths run at right angles to the lines of force, and, along
them also, the force vanishes, and no work is done. The whole of
the work throughout the path is concentrated into the length A B,
and, throughout that length, the magnetic force is, by symmetry,

uniform. Writing this magnetic force as H, the work is H . 4B and

H.AB=4wnc. AB.
Thus
H = 47rne.

Nothing has been said about the distance of the line AB from the
axis of the coil, and the result holds for all places inside the
solenoid. The field of force, then, is uniform everywhere inside
the solenoid, and acts in the direction parallel to the axis.

This result has been used already in describing the experi-
mental method of determining the magnetization of iron, and is of
great importance in the theory and manufacture of electromagnetic
machinery.

40. The expression 4rc for the work done in carrying a unit pole
P round a current enables us also to calculate the force
duetoalong,  due to a long, straight current. Since the magnetic
straight cur- o
rent. Ampere's force of the equivalent shell must act normally to
kit the surface, it follows that the lines of force due to
the current are circles surrounding the wire with their planes at -
right angles to its length. These circular lines
of force may be mapped out by a compass-
needle, or by sprinkling iron filings over a
card threaded by the wire. By carrying a unit
magnetic pole round the wire once, an amount
of work equal to 4mc is done. The length of
path of the pole is 27r, where » is the radius
of its orbit. The force is uniform over such
a circular orbit by symmetry, and the magnetic

m current

D e g
e
oY

Fig. 54.
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force, which is defined as the force on a unit north-seeking
magnetic pole, at a distance r from the wire, is given by

dmo_ 2
2rr

It was shown by Ampeére that the magnetic effects of complete
currents were the same as though each element of length &/ of
~ the current produced its own magnetic force at a point equal to
¢dl sin 6/r%, where 6 is the angle made by the elementary length
with the line joining it to the point at a distance r. The
conception of an isolated length of current is not in accordance
with modern views of the electric current, which is now regarded
as essentially a flow round a complete circuit. Mr Heaviside,
however, has evaded this difficulty by the conception of what he
calls the “rational current element.”

Let us imagine that a circuit is formed of a short straight
element of current &/, and of lines of current-flow in the sur-
rounding space; the lines being those mapped out by the lines of
magnetic induction of a short bar-magnet. The current all passes
along the element 8/ in one direction, and returns by many paths
spreading through the neighbourhood to form a closed circuit.
This system constitutes Heaviside’s rational current element. We
must trace two properties of such elements:

(1) If two elements be placed together, the lines of current
flow which formerly diverged from each end of one element will
now pass along the second element before diverging, just as do the
lines of induction if two short magnets be placed together to form
a longer one. And, as a long magnet may be made up of any
number of short ones, all poles disappearing except those at the
ends, so current elements may be joined together, and all the lines
of flow will pass through the elements in series before diverging
from the ends of the chain. If we carry this process to its
conclusion, and form a closed ring of current elements, all current
will flow round the ring, and none will spread through the sur-
rounding space—we have, in fact, the analogue of a complete ring
of iron, when the lines of induction circulate round the ring and
never leave the iron. We see, then, that a closed chain of rational
current elements forms a closed circuit of the kind actually known
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in practice, when all the current flows within the circuit, and none
spreads through the neighbouring medium.

(2) The second important property of the rational current
element is the production of a
magnetic force in accordance K P
with Ampere’s formula. Let 4B Q
(Fig. 55) be the short length
of the current element. Lines of
return flow spread out from 4
and converge again to B. These g A
lines are, by hypothesis, co-
incident with the lines of in-
duction given by a short magnet
lying at 4 B.

With its centre at O, a point
on the axis of AB produced,
describe a circle, the plane of the circle being normal to the axis
of AB. Let us calculate the total magnetic induction through
this circle due to a magnet at AB. The number of lines of
induction through 4B is equal to ¢ the strength of current, and
from each end of the element AB, the lines diverge uniformly.
The number which threads the circle round O is measured
by c/4m per unit solid angle, 47 being the measure of the solid
angle which-a complete sphere subtends at its centre. If w, and
wp denote the solid angles subtended by the circle at 4 and B
respectively, the total induction through the circle is

Fig. 55.

c
B (04— op),

and, by analogy, this denotes also the amount of current passing
through the circle when the hypothetical magnet is replaced by
the hypothetical rational current element.

Now join A and B to any point P on the circumference of the
circle, and parallel to BP draw AQ to meet the radius OP of
the circle in Q. Draw QK perpendicular to AP. The quantity
w4 —wp is the solid angle subtended at 4 by the annular ring
described by the revolution of P round the circle, and this solid
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angle is sensibly equal to that subtended by the ring described by
QK. Hence
QK
.P 7 F)

—wp=27.0

where r denotes the distance AQ), which is sensibly equal to 4P.
Draw AN perpendicular to BP ; we then have

—wp=2T. OP—A

OP%me

where 6 is the angle between AB and BP, and &l is written for
the element of length 4 B.

We are now in a position to calculate the magnetic force H at
the point P due to the rational current element. By symmetry,
the lines of magnetic force due to the current must coincide with
the circumference of the circle OP, and we know that the work
done in taking a unit magnetic pole round that circle is measured
(1) by 27. OP . H and (2) by 4o times the current enclosed by the
path. Thus, we get the equation

2. OP. Hmtr (2 0P8l8m9>,

¢8l sin 8

or H=
/r2

in accordance with Ampere’s formula.

By the two properties (1) and (2) of Heaviside’s rational
current element, we have justified the use of Ampere’s formula in
calculating the magnetic forces due to complete current circuits of
any size and shape. The resultant magnetic force of any circuit is
equal to the sum of the forces due to its individual rational current
elements.

We may therefore use Ampere’s formula to calculate the
magnetic effects of different currents, whether those currents be
continuous ones carried in conductors, or the flights of charged
particles which have become recently of so much importance.

Ampere’s formula may also be applied to calculate the mechanical
forces between circuits, or circuits and magnets. The magnetic
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force due to the current element being c¢é/sin 8/r? and that due
to a magnetic pole of strength m being m/r?, it follows from
the principle of equivalence between currents and magnets that
¢8lsin @ is equivalent to m. Now
if a pole m be placed in a magnetic
field where the induction is B, the
mechanical force on it is Bm. Thus
on the current element the me-
chanical force 1is Becdl sin 8, the
direction of the force being at right
angles both to the current and to
the lines of induction, and € de- «

noting the angle between the lines Fig. 66.

of induction and the direction of the current.

A long straight current produces at a distance r a magnetic
force 2¢c/r. If a second long straight current ¢’ be brought near
and parallel to the first, the mechanical force on a length I must
be 2¢c’l/r. Since this force acts at right angles both to the current
and to the induction, 1t is a direct force of attraction between the
currents if they flow in the same direction, and a direct repulsion
if they flow in opposite directions.

mechanical force

&

R
o
gt

41. For a circle of wire carrying a current ¢, Ampere’s formula
A circular for the magnetic force due to an element of current
current. leads to a very simple result. The distance from the
centre is everywhere uniformly r, and sin @ is everywhere unity.
For each element of current the magnetic force at the centre of
the circle is therefore ¢8l/r% and, for the whole circumference,

2mwer  2me
r? r

This result gives a convenient means of putting our definition
of unit current (p. 98) into a more practical form. Unit current
is evidently that current which, when flowing in a circle of radius
r, produces at the centre a magnetic force of 27/r.

The importance of this result makes it desirable that the mag-
netic force at the centre of a circular current should also be
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derived directly from the idea of the equivalence of currents and
shells, without the use of Ampeére’s hypothesis.

Let AB represent a circular current, and O its centre. We
will calculate the magnetic force at P, a
point on the axis of the circle. The
magnetic potential at P is by § 38 equal
to ¢, where ¢ is the current in electro-
magnetic units, equivalent to the units g
of strength of magnetic shell, and Q the
solid angle subtended at the point by
the circle.

The solid angle is measured by the 8
area of the spherical cap, drawn through SRR
A B with P as centre, divided by the square of the distance 4 P.
The area of the cap is equal to that of a cylindrical ring of equal
depth, cut from the cylinder which touches the sphere, of which the
cap forms part, by two parallel planes, one containing the circle
AB, and the other touching the top of the cap at (), a point on
PO produced. Thus, the area of the cap is 2rAP. 0Q, and the

solid angle which it subtends at P is 2r4A P . 0Q/A P~
The magnetic potential at the point P is given by the
relation '

A

AP

_Pz

8

V =2m¢

Thus, if we denote the distance OP by z, and 04, the radius of
the current, by r, we have e
e AP (AP -1)

V— 2me T
x
Now the magnetic force F in any direction « is, by the definition

of potential (§ 8), equal to the rate of decrease of the magnetic
potential per unit distance in that direction, or —dV/dz. Thus,
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and this result gives us the magnetic force at any point on the
axis of a circular current. It may also be derived directly from
Ampere’s formula. We can find the magnetic force at the centre
O by putting z =0, when

_ 2me

04 ,

T

in accordance with our previous result.

If the current be made to pass n times round the circle, the
force will be n times as great; the magnetic force at the centre of

a coil of n turns of wire is given by

27ne
o

F

The mechanical force between two circular currents requires
mathematical analysis, except in simple cases. One such case
consists of two circles of equal radius », placed parallel with a
distance d between their planes, d being very small compared with
r. We may then apply our result on page 105 for two long
parallel currents, and obtain at once the expression 47rrec’/d for the
mechanical force between the two circles, ¢ and ¢ being the
respective currents.

42. We are now in a position to measure a current of

electricity in absolute electromagnetic units, and it

s pafgent  will be useful to consider exactly the meaning of such
e a measurement.

The proportionality between a current and the
magnetic force it produces is a matter of definition. We do not
prove that the magnetic force is proportional to the current, but
we agree to define the strength of a current as the strength of
the hypothetical magnetic shell, which may be imagined to replace
the current, and to produce the same magnetic field. Then, in one
of the two ways we have given, we calculate the magnetic force of
the shell which is equivalent to a current flowing in a circular coil

of wire.
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We may now suspend a compass needle at the centre of such a
coil, and place the plane of the coil in
the magnetic meridian, so that the needle
lies in that plane when no current passes.
If the coil is large and the needle short,
its ends will never be far from the centre
of the coil, and the needle may be con-
sidered to lie in a uniform magnetic field,
the direction of which is normal to the
magnetic meridian and the plane of the
coil. For convenience in observing, a
light and long pointer is fixed to the
needle at right angles to its length,
or a mirror arrangement may be
used. In accordance with the principles
described on p. 64, the needle will be deflected by this magnetic
field F through an angle 6, which is given by the relation

F=Htan,

H being the horizontal component of the earth’s magnetic force.
Thus, if a current ¢ flow round » turns of wire arranged in a
large circular coil of radius r, we have

Fig. 58.

27nce

= H tan 6,

_Hrtan @

or
27mn

For accurate work, it is necessary to take account of the fact
that all the turns of wire do not lie in a single circle. For rough
work, » may be put equal to the mean radius of the coil.

The quantity 27n/r depends only on the dimensions of the
galvanometer, and, if we call this quantity the galvanometer-
constant and denote it by @, we get

c=%;Htan9.

If we keep the instrument always fixed in one position in the
laboratory, and no masses of iron are moved in the neighbourhood,
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the local value of H can be found once for all, and we may write
all the constants of our equation as a single reduction factor k, and
obtain the useful formula

¢=ktané.

It is interesting to calculate the percentage error involved in
assuming, as we have done, that the needle lies in a uniform
magnetic field.

A small pattern tangent galvanometer is often seen in ele-
mentary laboratories. The diameter of the coil is about 20 centi-
metres, and the length of the needle about 2 centimetres. If in
such a case the needle were deflected through 90°, its ends would
lie each 1 centimetre from the centre of the coil.

At a point on the axis of a circular coil, at a distance z from
the centre, we have seen (p. 106) that the magnetic force is
27rer®/(r® + #*)}, while at the centre it is 2rc/r.

Now 72/(r*+ a?)}, in this case, is equal to 100/(101)! or about
100/1015, while 1/r is 1/10. Thus the percentage difference is
about 1'5, and we see that, with the rough instrument we have
described, results accurate to about one and a half per cent. should
be obtained if the coils may be assumed to lie in a single circle.

The accuracy can of course be increased by using larger coils
or shorter needles. Still more exact results can be obtained by
placing two or three coils parallel to each other so that the coils
lie on the surface of a sphere at the centre of which the needle is
suspended.

The tangent galvanometer gives us our first practical means
of measuring a current in absolute, electromagnetic units. As a
practical unit, a current equal to one-tenth of the electromagnetic
unit is chosen, and called the ampere.

It is sometimes necessary to measure, not the strength of a
steady current, but the whole quantity of electricity which passes
during the time of flow of a transient current, such as is obtained
by the discharge of a condenser, or by electromagnetic induction.
A galvanometer adapted for this purpose must have a small needle,
so that it lies in a uniform field of force. The moment of inertia
of the suspended system must be high, and the time of swing
great, so that all the current has passed before the needle has
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moved appreciably from its position of equilibrium. An impulse
is thus given to the needle, and, by the usual mirror arrangement,
the extreme limit of its first swing or throw may be observed.
The instrument is called a ballistic galvanometer, and the following
investigation gives the theory of its action.
Let ACB be the posmon of equilibrium of the magnet, and
A’CB’ the limit of its swing through an angle B
(Fig. 59). Draw A’'D, B'E at right angles to A
ACB. Then the lengths 4D and BE represent
the equal distances through which the poles of
the needle are moved against the direction of the
horizontal magnetic force H of the earth. If m
and —m are the pole strengths, the work done is
2mH .AD. But if I be the half length of the
needle,

' A

D

AD=CA4 - CD =11 —cosp), E

i ) ) B
and thfe quk done by the earth’s field in stopping Fig. 59.
the swing is

2mHl (1 —cos B)=MH (1 —cos B),

where M is the magnetic moment of the needle. This work must
be equal to the kinetic energy of the needle at starting on its
swing, t.e. to 3K =% where K is the moment of inertia, and = the

initial angular velocity. Hence

=M{W}

Now the moment of the force produced on the needle by the
action of the current ¢ is MGc, where G is the galvanometer
constant, and, if the current last for a time &, the impulse is
MG@Gcét. For the whole time of flow of the transient current, the
total impulse is then MGfedt. Now ¢t is the amount of electricity
passing during the time &, and fedt is the total amount ¢ of
electricity passing through the galvanometer. Thus the impulse
on the needle is MGq, and this must be equal to the moment of
momentum K= of the needle. Hence = is equal to MGq/K.

We now have

o et
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and thus
_2sin}B HK )
S ( i)

If there be no appreciable friction on the needle, and conse-
quently no appreciable damping of the swing, the period 7' of one
complete oscillation is

7
T=2m/ pn
Hence, substituting for K/M in the equation for ¢ we get
_nr
1= Gn

If the damping be appreciable, the complete mathematical
investigation shows that

sin 18.

HT AN .
q=%(l +§> sin 8,
where A is the so-called logarithmic decrement, that is, the natural
logarithm of the ratio of the amplitudes of successive swings.

43. In dealing with the phenomena of electrostatics, we had
Electromotive  OCCasion to introduce the conception of electric
fones. potential, and we defined the difference of potential
between two points as the work done against the electric forces
when unit quantity of electricity was carried from one point to
the other.

When an electric current flows along a wire, we conceive that
electricity is passing, and thus the two points along the wire must
be maintained by some means at a permanent difference of
potential. We may, if we please, consider the maintenance of this
potential-difference as the function of the electric battery or other
source of current.

In the science of current-electricity, it is usual to call a
difference of potential an electromotive force. The name is not a
happy one, for an electric force f should have the physical dimen-
sions [force/quantity of electricity], and be related to potential-
difference V, or [work/quantity of electricity], by the equation

F=—dV/da.
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The use of the name, however, is established firmly, and the
convention will be accepted in this book.

The electromotive force between two points in a circuit, then,
is defined as the work done against the electric forces when one
electromagnetic unit of electricity passes from one point to the
other.

To connect the electromotive force with the current, another
definition is needed. On the conception of a current by which we
regard it as analogous to the flow of an incompressible fluid, in § 35,
we have already defined the electromagnetic quantity of electricity
as that quantity which we must suppose to pass each cross-section
of a circuit when unit current flows round the circuit for unit time.
Thus it follows that our definition of the electromotive force
between two points is equivalent to saying that the electromotive
force is represented by the work done against the electric forces
when unit current passes between the two points for unit time.

On the system of units based on the centimetre, gramme and
second (c.G.s. system) the unit of work is the erg. The unit
electromotive force, then, is the difference of potential which
exists between two points if one erg of work is done when one
electromagnetic unit of current flows between the points for one
second. We shall consider the experimental determination of this
unit in the sequel. It will be found to be inconveniently small
for ordinary purposes, and a practical unit called a wolt, which is
108 absolute or electromagnetic units, is employed.

Differences of potential, or electromotive forces, can be
compared by electrostatic means. If the potential differences
are great, they may be demonstrated by a gold-leaf electroscope,
and even the small electromotive force of a voltaic cell may be
measured fairly accurately in arbitrary units by means of a
quadrant electrometer.

The electromotive force of a cell as thus measured will be
found to depend on the materials and nature of the cell only, not
on the dimensions of the plates or the amount of liquid used. If
several cells be joined together in series, with the zinc plate of
one cell clamped to the copper of the next and so on, the plates
clamped together must be at the same potential. Thus, if the
negative terminal of the first cell be joined with the earth, and
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taken as at zero potential, the negative pole of the second cell
must be at the potential of the positive pole of the first, that is,
at a potential e, where ¢ is the effective electromotive force of
each cell. The difference of potential between the plates of each
cell being the same, in passing from the negative to the positive
pole of the second cell the potential again rises by e, and the
potential of the positive pole of the second cell is 2e. Similarly,
if n cells be joined together in series, the potential of the positive
terminal of the nth cell is ne, and this is the value of £ the
effective electromotive force of the battery of cells. The con-
clusion may be confirmed by experiments with a quadrant
electrometer. We now see that, by increasing the number of
cells in series, any required electromotive force may be applied
to a given circuit.

44, The first to introduce exact ideas on this subject was
ohms Law. DT G- S. Ohm, who in 1827 replaced the prevalent
Electric vague notions of “quantity ” and “intensity ” by the
resistance. definite conceptions of current-strength and electro-
motive force. He also stated the law called by his name, which
expresses the experimental result that the current-strength
between two points of a circuit is directly proportional to the
applied electromotive force. Ohm verified his ideas by ex-
periments with voltaic cells and thermoelectric piles (see § 52),
and found that, along a homogeneous linear conductor, the rate of
fall of potential is constant.

Ohm’s law, that the current ¢ varies as the applied electro-
motive force £, may be stated in the form

c=kE,

where £ is a constant known as the conductivity of the conductor.
Another mode of statement, more usually adopted, is to say that

c=112E,
or E =R,

where R is a constant which, like the conductivity, depends only
on the nature, dimensions and temperature of the conductor. This
constant R is called the resistance.

W. E. 8
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Lightning is well known to melt conductors which it strikes,
and these effects were imitated on the small scale by the sparks
from electric machines by Franklin and others. At an early date
in the history of current electricity, it was noted that heat was
developed in wires connected with the two poles of voltaic
batteries, and in 1821 Sir Humphry Davy described to the
Royal Society experiments which showed that the amount of
heat liberated varied greatly with the nature of the metal. The
development of heat was referred to the resistance offered by the
wire to the passage of the current, and the relative amounts of
heat produced by the same current in different conductors were
taken as inversely proportional to their relative conducting powers.
In 1826 similar experiments were made by Sir W. Snow Harris
with discharges of statical electricity obtained from a battery of
Leyden Jars.

The definite conceptions of current and electromotive force
introduced by Ohm, led to an equally definite idea of electric
resistance, as a constant depending only on the nature, dimensions
and temperature of the conductor. It became possible to compare
two resistances by applying to them the same electromotive force,
and measuring the relative strengths of the resulting currents.

The unit of resistance is evidently to be defined as the
resistance through which unit electromotive force will maintain
unit current. If electromagnetic units of current and electro-
motive force be used, the electromagnetic unit of resistance
follows. With practical units, through unit resistance, one volt
will maintain a current of one ampere. This resistance is called
the ohm, and is 10° absolute electromagnetic units.

With the limit of accuracy at present possible, the ohm has
been found to be equivalent to the resistance of a column of
mercury of 1 square millimetre in cross section and 1063
centimetres in length, the temperature being that of melting ice.

This conducting system is easily reproduced, and, for con-
venience, a practical definition of the international ohm has been
adopted on these lines. To avoid certain difficulties of measure-
ment, the definition runs thus:—A column of mercury of uniform
cross section, 1063 centimetres in length, and of mass 14:4521
grammes, at the temperature of melting ice, has a resistance of
one ohm.
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Even should increased accuracy of experiment show differences
between the true theoretical ohm and this definition, it is probable
that the definition will
still be kept as describing et P
the practical unit. o O

Standard coils of one /§
or more ohms are now
made, and their error
determined by the Board
of Trade or the Nation-
al Physical Laboratory.
Figure 60 shows a good
form of standard ohm coil.
The wire is bare, and
made of a platinum-silver
alloy. It is wound on
a mica frame, and im-
mersed in an insulating
oil, of which the temperature is observed with a thermometer.
This arrangement insures the coil being at the indicated tempera-
ture, and, in this respect, is much better than the more common
method of coating resistance coils with silk, paraffin or other
solid insulator, which are bad thermal conductors. The leads
connected with the ends of the coil are made of thick copper
bars, which may be joined to an electric circuit by means of
mercury cups or, still better, cups filled with fusible alloy.

The conception of electric current as a continuous flow of
electricity through the substance of the conductor, combined
with the experimental relation known as Ohm’s law, enables us
to predict the resistances of systems of two or more conductors
arranged in different ways.

scmrmnc INSTRUMENT Crie.

MBRIDGE.

If a series of conductors, A B, CD, EF, ... (Fig. 61) be connected
together in series,
the end B of AB } | }
t la H
will be at the ' .D g A
same potential as Big 01
the end C of CD clamped to it, and similarly with the ends D

8—2
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and £, etc., provided, always, that the conductors are made of
the same material. The current ¢ must, since no accumulation
of electricity occurs, be the same throughout the series of
conductors, and, if %,, E,, ... be the potential-differences between
the ends of the different conductors, and r;, r,, ... their respective
resistances,

o=t Sl

st T

Considering the whole series as one conductor, with a resistance R
and a potential difference of E, equal to the sum of the potential
differences £, E,, ... etc., between its ends, we have also

-
R
Now E=E+E,+~E,+....
Thus cR=cri+cry+cry+ ...,
or R=ri+r+r+...

Another important case occurs when the conductors have all
their beginnings connected to-
gether and all their ends L
connected together, as in °
Fig. 62. With this arrange-
ment, the conductors are said A ‘ 8
to be in parallel or multiple
arc. The current ¢ flowing in
at 4 must, by our principle, be the sum of the currents c,, c,, ... in
the branches C, D,.... The difference of potential £ between the
ends of each branch is obviously the same. We have

Fig. 62.

c=C+cC+c+ ...

=E(l+—1-+3+...).

L Te T3

Considering the whole system between A and B, we have

cC=—=.

R
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Thus l=~1+1+l+....
R r 7, n

The reciprocal of the resistance of a conductor may be called
its conductivity, and we may express our last result by saying that
the conductivity of a series of conductors arranged in parallel is
the sum of their individual conductivities.

These results for conductors in series and parallel may be
verified experimentally, and thus a confirmation be obtained of
Ohm’s law and of the justness of the conception of the current
as analogous to the flow of an incompressible fluid through the
conductors.

By measuring the resistances of wires of different diameters
but of the same material, it is found that, with direct continuous
currents, the resistance of a wire varies inversely as its area of
cross section. This follows also theoretically if we imagine the
wires first arranged in parallel and then to coalesce. It follows
that the current flows through the substance of the conductor
and not over its surface. This result, however, does not hold for
rapidly alternating currents.

The principles of continuous current-flow which we have now
established may conveniently be applied to complex circuits and
networks of conductors in the form of two statements known as
Kirchhoff’s laws.

1. The algebraical sum of the currents which meet at any
point is zero.

2. In any closed circuit the algebraical sum of the products
of the current and resistance in each of the conductors in the
circuit is equal to the electromotive force in the circuit.

The first of these laws expresses the result that there is no
accumulation of electricity anywhere in the circuit, the second
follows from Ohm’s law as applied to each complete circuit to be
found throughout the network.

45. A very exact method of applying Ohm’s law to the
Wheatstone's  comparison of resistances was introduced by Christie
Bridee. and Wheatstone about 1843. The apparatus is
known as Wheatstone’s bridge.
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The circuit of a voltaic cell (Fig. 63) is made to branch at 4
into two arms 4 CB and
ADB,which rejoin each
other at B. Let the
current flow from 4 to
B, so that the potential
V4 at the point A is
higher than the poten-
tial V at the point B.

As we pass along
the arm ACB, the potential falls from V, to V3, and the potential
Vo at C must have some value intermediate between V, and V5.
But, along the lower area ADB the same fall of potential occurs,
so that there must be some point D in the lower arm which has
the same potential as the point ' in the upper arm.

If one terminal of a galvanometer be connected with C, and the
wire from its other terminal be moved along ADB till it comes
to D, the terminals will then be at the same potential, and no
current will flow through the galvanometer. When this is the
case, then, we know that V is equal to V7.

When no current flows along the cross connexion CD, the
current ¢, in the arm AC must all pass out along the arm OB,
and the currents in these arms be the same. The current ¢, in
the arm AD must be equal to the current in the arm DB.

Let P, Q, R, and S denote the resistances of the four conductors
AC, CB, AD, and DB respectively. Then, by Ohm’s law, we know
that, for each conductor, the electromotive force is equal to the
product of the current and the resistance, and we get the relations

V4—=Ve=Pc, and V;—Vz=Qq,

Fig. 63.

vk e of

i V=T @
5 V.-V, R
Slml].arly —m = g q

and, since V=V, when no current passes through the galvano-
meter, we have

B R

Q8
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Thus, if we know S and the ratio P/Q, we can calculate the
value of the resistance R. If S be constituted to be a definite
number of ohms, R is known in ohms also.

The practical application of these principles is effected in one
of two ways. In the wire bridge, a long thin uniform wire,
preferably of platinum-silver or some similar alloy, is stretched
alongside a scale, as shown in Figure 64. The ends of this wire
are soldered to thick copper bars of negligible resistance, and a
coil of known resistance is inserted in the gap in the bar at R.
The coil to be compared with R is inserted in the gap S. A
galvanometer is connected with the screw D, between R and S,
and with a travelling jockey, which, by the pressure of a key,

|

[
S

4 ] /rr‘r‘rT
D (@ o] ) C
A
<] 7Z = —Ts
/ bl

Fig. 64.

P

makes sharp contact with the wire at C. The position of the
jockey is varied till, on pressing the key, no current flows through
the galvanometer. When this is the case, S is given by the
quantity RQ/P. It is easy to show that the sensitiveness of this
arrangement is greatest when R and S are equal, and the jockey
consequently near the middle of the bridge wire. Thus, a coil
should be selected for insertion in R of approximately the same
resistance as the coil to be compared with it.

For the second type of mea-
surement, an arrangement of coils
known as a resistance box is re-
quired. The brass blocks 4 and B
in Figure 65 are connected inside the
box through a coil of wire of known
resistance. The coil is doubled on
itself and wound on an insulating
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bobbin in this way in order to avoid the effects of self-induction
(§ 55). The resistance of the coil may be cut out of the circuit
by inserting a brass plug as shown between 4 and B. With a
series of such coils any required resistance can be thrown into or
taken out of the circuit.

One arrangement of coils, sometimes known as a Post-office
box, is shown in Fig. 66. Plugs are taken out of P and @ so as to

'D’D’Cfi:}'t}t}“ iy

DDDDDC}

Fig. 66.

give a convenient ratio, and S is then adjusted till the bridge is
balanced, when R can be calculated. By making the ratio of
Q to P equal to 10 to 1, a single ohm coil in S is equivalent to 01
of an ohm in R. Thus fractions of an ohm may be measured.

A second, and in some ways, more convenient arrangement of
coils is the dial box, shown in Figure 67. The ratio arms are

[ Q@ \/ g

1lr4,. ﬂ 2L !
=7 =
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< =
-'l=7l_ Nmes N we

Fig. 67.

similar to those of the Post-office box, but the arm S is made up
of coils placed in groups of units, tens, hundreds, and thousands.
In the unit dial, single ohm coils join the sectors marked 1, 2, 3,
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ete. to each other in series. By inserting the plug opposite 3, for
instance, three ohm coils are put between the central brass core of
the dial, and the zero sector, which forms the other terminal.
Any resistance up to 9999 ohms can be taken out of the arm S by
changing the position of the four plugs in the dials.

A modification of the wire-bridge arrangement, due to Professor
Carey Foster, enables us to
find the difference in re-
sistance between two coils
with extreme accuracy. A
stretched wire (Fig. 68) is
soldered to copper bars as in
the usual form of bridge, but,
mstead of two gaps in the
bars, there are four. In the
two middle ones, on each
side of the galvanometer con-
nexions, are placed two equal
coils K, E’, kept in the same conditions and at the same
temperature. In the two outer gaps, beyond the battery con-
nexions, are placed the two coils the difference of which is
required ; let us call their resistances X and ¥. Let us adjust
the jockey along the wire till the bridge is balanced. Let the
length of wire to the left of the jockey then be such that its
resistance is . Now suppose that we interchange the two coils
X and Y, and find a new position of balance for the jockey, such
that the resistance of the wire to the left of the jockey is y. The
two equal arms, which form one pair of arms for the bridge, being
unchanged, the resistances of the other two arms of the bridge
must be unchanged also, and thus the new arm to the left, namely
Y +y, must be identical with the old arm in the same position,
namely X +«. Thus

Fig. 68.

X—Y=y-—uz,
or the difference of resistance between the two coils is equal to the
resistance of the length of wire between the two positions of
equilibrium of the jockey. This resistance can be found with great
accuracy by measuring the total resistance of the whole length of
the wire, and calibrating it throughout.
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46. The resistance of a conductor as hitherto considered
SHeGine depends on the shape and dimensions of the con-
rriniages ductor as well as on its nature and temperature. It
is evidently convenient to form the conception of some quantity
which depends only on the nature and temperature of the substance
conducting, and not on the particular shape or dimensions of the
particular specimen employed. It is usual to take the resistance
between opposite faces of a cube of the substance, with a length of
side of one centimetre, as the specific resistance of the material.
It would, of course, usually be impossible, and always inconvenient,
to measure the resistance of such a body directly. Its resistance
can, however, be calculated from that of wires, or other convenient
masses of the substance, by the aid of the results given on
page 117, which show that the resistance of a wire or other
conductor of regular form is directly proportional to its length,
and inversely proportional to its area of cross section.

The following table of specific.resistance is taken chiefly from
results given by Fleming and Dewar in 1893. The specific
resistances are expressed in microhms per centimetre cube, a
microhm being the millionth, or 107, of an ohm. A second column
gives the resistance in ohms of a column of the material 1 metre in
length and 1 square millimetre in cross section.

Specific resistance  Resistance in ohms  Mean temperature
in microhms per of column 1 metre coefficient per degree

centimetre cube by 1 sq. mm. between 0° and 100° C.

Silver, annealed 1-468 ‘01468 ‘00400

»»  hard drawn 1615 01615
Gold, annealed 2:036 02036 00377
Zinc 5751 *05751 ‘00406
Copper, annealed 1:562 01562 00428

»  hard drawn 1603 01603
Iron 9065 ‘09065 00625
Platinum 10-917 10917 00367
Mercury 94073 ‘94073 00072%

The resistance of alloys is, in general, much higher than that
of pure metals, the effect of a very small admixture being some-

* This figure gives the approximate temperature coefficient of mercury near
20°C., ag determined by Matthiessen.
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times surprisingly great. The temperature coefficients of alloys
are usually lower than those of pure metals, which is an advantage
for the construction of resistance-coils, etc., though it is seldom
worth while to obtain a low temperature coefficient at the cost of
permanence in properties, a quality in which some alloys seem to
be deficient. Fleming and Dewar give the following figures.

Temperature
d Compositions in Specific coefficient
Alloys per cents. resistance at 15° C.
Platinum-silver Pt 33, Ag 66 31-582 000243
Platinum-iridium Pt 80, Ir 20 30896 *000822
Platinum-rhodium Pt 90, Rd 10 21-142 ‘00143
German-silver Cu 50, Zn 31, Ni 19 29-982 ‘000273
Platinoid German-silver with a
little tungsten 41731 *00031
Manganin Cu 84, Mn 12, Ni 4 46678 0000

It should be stated here that the resistance of all metallic
bodies depends not only on their chemical composition, but also on
their physical state. Differences in processes of annealing, ete.,
which affect the crystalline structure of the metal, are found also
to change the specific resistance. Tables of specific resistances
and temperature coefficients, then, should only be regarded as
strictly applicable to the particular specimens used by the experi-
menters, though, as approximate guides, such tables may be of
general use.

The resistance of metallic conductors, unlike that of electro-
lytes to be studied hereafter, increases with rising temperature.
The most recent and complete experiments on the resistance of
metals throughout a wide range are those of Dewar and Fleming,
who carried their observations to very low temperatures by the
use of liquid air and other liquefied gases. The diminution of re-
sistance at these low temperatures is very marked, and, when curves
were drawn, it seemed as though the resistance of all pure metals
would vanish in the neighbourhood of the absolute zero. Further
experiments, however, at the extreme cold of liquid hydrogen,
indicate that, before such temperatures are reached, the curves
tend to become parallel to the axis—the resistances to approach a
limiting value.

The resistance of wires of pure platinum, and its variation with
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temperature, have been the subject of many experiments. It was
shown by Callendar that, if such coils of wire be placed in
porcelain tubes or protecting cases made of glass, and carefully
preserved from all strain by loose winding, the resistance was a
function of the temperature only. At a given temperature, the
resistance always had a definite value, irrespective of the treat-
ment to which the wire had been subjected previously. This
property of consistency is the first and last essential for a
trustworthy thermometer, and platinum resistance thermometers
are now used extensively not only for high and low temperatures,
where other methods are impossible, but also at ordinary tempera-
tures, in cases when the difference of two temperatures is required
with extreme accuracy.

Figure 69 shows a platinum thermometer, and Figure 70
shows the form of wire-bridge which is now usually
employed to measure its resistance. The electrical
arrangements are a modification of those of Carey
Foster’s bridge, and will be understood by a reference
to Figure 68 on page 121. K and E’ are two equal arms
‘as before. The platinum thermometer is placed in the
position marked X, and in the position marked Y is
inserted a coil of wire made of some substance with a
negligible temperature coefficient, or else a coil kept at
a constant temperature. In order to allow for the
variation with temperature of the conducting leads in
the platinum thermometer—a variation impossible to
calculate—a pair of dummy leads are fixed alongside
the real leads in the tube. These compensating leads
are connected together below by a short piece of plati-
num wire. Whatever irregular heating or cooling
happens to the real leads, happens also to the dummy
leads, which consequently suffer a change of resistance
equal to that of the real leads. The dummy leads are inserted in
the arm ¥ of the bridge, and thus compensate automatically the
variations of resistance of the real leads in the arm X. As the
temperature of the thermometer is raised, the position of equi-
librium of the bridge moves along the stretched wire from left to
right. The range of the instrument can be increased by adding
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to the left part of the bridge-wire the resistance coils shown in
Figure 70. From the theory of Carey Foster’s bridge, it follows

that equal increases of resistance of the platinum coil correspond
with equal movements in length along the bridge-wire. Thus, by
dividing the wire into equal lengths, we obtain a scale of
temperature degrees, which we may call the platinum scale. The
possibility of thus dividing the wire into equal lengths, correspond-
ing to equal increments of temperature, constitutes the advantage
of this form of bridge for the present purpose. If the platinum
thermometer were inserted in the arm S of the original form of
Wheatstone’s bridge, shown in Figure 64 on page 119, no such
possibility would exist.

Callendar has shown that the platinum temperatures as thus
obtained may be reduced to the scale of the gas thermometer
by means of the following empirical parabolic formula for the
difference between the two scales:

C88(6—100) ([ t \? t}
"=t =""10000 ‘8{(10_0) ~ 100/’

where ¢ is the temperature on the gas scale, ¢, the temperature on
the platinum scale, both expressed in centigrade degrees, and 8 is
a “difference-constant” the value of which for pure platinum is
about 1'5, but varies slightly for different specimens. It can be -
determined by standardizing an instrument in ice, steam, and the
vapour of sulphur, which, at normal atmospheric pressure, boils at
a temperature of 444:5° C. on the scale of the gas thermometer.



126 ELECTRICITY [cH.

The use of the platinum thermometer is extending rapidly
both for technical application and also for research-work in
physical laboratories. For technical purposes, its advantages
comprise the possibility of measuring the temperature from a
distance, the extended range of the scale, and the permanent
record of varying temperatures which it is now possible to obtain.
For scientific research it has been used both at high and low
temperatures: for determining the melting points of metals and
the boiling points of liquefied gases. The extreme sensitiveness
of modern null methods of measuring resistance renders the
platinum thermometer by far the most delicate instrument for
estimating the differences between two neighbouring tempera-
tures—a difference of the ten-thousandth part of a centigrade
degree may be detected with some ease, while careful experiments
by Mr E. H. Griffiths have shown that the hundred-thousandth
part of a degree may be estimated.

For research purposes, as well as for industrial applications,
the possibility of obtaining an automatic and permanent record of
changing temperatures is of the utmost importance. This may
now be done by the aid of Callendar’s Recorder, illustrated in
Figure 71. In this instrument, which is a self-adjusting Wheat-
stone’s bridge, a wire-bridge, essentially the same as that shown in
Figure 70, is used. The moveable jockey is always in contact with
the bridge-wire. The galvanometer is of the moving-coil type, and
to the coil is attached a light arm of aluminium, which carries a fork
with its prongs lying one on each side of the two metal rims of an
ebonite wheel, which, by means of clockwork, is made to revolve
slowly. If the bridge is balanced, the fork does not touch the wheel,
but, if the resistance of the thermometer changes, the fork makes
contact with one rim or other of the wheel. It is necessary to keep
the wheel revolving and its rims passing over cleaning brushes, for
experience shows that it is impossible otherwise to secure electrical
contact between the rims of the wheel and the fork. Contact with
the wheel completes an independent electrical circuit—a relay, as
it is called—which sets in motion a train of clockwork in one
direction or the other, according as the fork touches one rim or
the other of the wheel.

A pen, attached to the jockey of the ‘bridge-wire, is moved by
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this clockwork train over a cylinder of paper, which is itself kept
revolving by clockwork. The jockey is thus shifted till the bridge
is balanced once more. As long as the temperature is constant, a
vertical line is drawn, but, as soon as the thermometer is heated
or cooled, the pen moves horizontally. By this means, a continu-

ous curve is obtained, showing the variations of temperature for
24 hours or any other required time. As examples of the use of the
recorder the two curves of Figure 72 are given, showing in platinum
temperatures. the rates of heating and cooling of two blocks of
steel. The points of recalescence are well marked. By the aid of
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this instrument, experiments have been made by Mr C. T. Heycock
and Mr F. H. Neville on the points of solidification of many com-
plicated alloys, and results obtained which could never have been
reached without an automatic recorder. '
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47.  As already stated, electromotive forces may be compared
Comparison electrostatically, roughly by a gold-leaf electroscope,
of electro- more accurately by a quadrant electrometer. But,
motive forces in practice, it is usually more convenient to employ
some means based on the application of Ohm’s law.

The currents produced successively in the same high resistance
circuit by two electromotive forces may be estimated by the
deflections of a galvanometer or of a voltmeter, which is essentially
a moving-coil galvanometer of high resistance. By a second
arrangement, the resistance of two circuits may be varied till the
same deflection is produced in each case. In these methods,a current
1s allowed to flow through the cell or other source of electromotive
force, and, to obtain the total electromotive force acting round the
circuit, the resistance of the cell must be added to that of the rest
of the circuit.

A method, which does not involve a knowledge of the resistance
of the cell, is based on

the use of an instrument s

known as the potentio-

meter. A long, thin wire, P, P PN.g
of high resistance, is e ’ i
stretched by the side of &\//‘\.K,K

a scale (Figure 73). /Ea&/'(u 4

Through this wire passes Fig. 73.

a constant current, main-

tained by a battery of accumulators or constant primary cells.
The potential rises uniformly as we pass along the wire from the
end A to the end B. Thus, if one of the cells to be compared be
connected with A as shown, and its other terminal be connected
through a galvanometer with different points along the wire, some
point can be found at which the potential is the same as that of
the applied pole of the cell. When this is the case, no current
flows through the galvanometer, and the potential-difference
between A and the point P is equal to the electromotive force
of the cell. If the second cell be now inserted in place of the
first, a new position of equilibrium will be found, the travelling
wire being applied at the point P,. The electromotive force of
this second cell must then be equal to the potential-difference

W. E. 0)
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between the points 4 and P,. But, by applying Ohm’s law to
the main circuit AB, we see that the differences of potential
between AP and AP, respectively, are proportional to the re-
sistances of the two lengths of wire AP and AP,. If the wire be
uniform, these resistances are proportional to the lengths, and thus
the ratio between the electromotive forces of the two cells is equal
to the ratio of the two lengths AP and 4P,.

It is, comparatively speaking, easy to construct a standard
resistance-coil having a resistance equal to the practical unit or
ohm; but we cannot construct at will a cell having an electro-
motive force of one volt. We can only take the most constant
cell we know, measure once for all its electromotive force in
volts, and use the cell thereafter as an arbitrary standard of
electromotive force.

One such standard cell is that invented by Latimer-Clark
and shown in Figure 74. It consists es-
sentially of mercury in contact with a paste
of mercurous sulphate, on which rests a solu-
tion of zinc sulphate kept saturated by the
presence of crystals of the salt. In this
solution dips an amalgamated rod of pure
zine. This cell must not be used to yield a H sl
current; but its electromotive force is very '
constant when no current is taken, and has
the value of 1433 or 1434 volts at 15°C.
The electromotive force diminishes by 000077
volt for each centigrade degree the tempera-
ture rises above 15°.

The Weston cell consists of the arrange- Fig. 74.
ment :

4 ZINC SULPHATE
CRYSTALS

] Mercurous
| SuLpraTE

mercury/mercurous sulphate/cadmium sulphate solution/cadmium.

Its electromotive force is 1°018 volt, at 15° C., and its temperature
coefficient is considerably less than that of the Clark cell.

The principle of the potentiometer is applicable to a number
of different purposes. It may, for instance, be used to measure a
heavy current in the following manner. The current is passed
through a strip of metal of known small resistance R (Fig. 75).
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Between the ends of the strip a difference of potential ¢R must
then exist, and this potential-difference may be compared with the
electromotive force of a standard cell, along the wire of the
potentiometer AB. Thus ¢ may be determined.

L=

CLARK CELL

Fig. 75.

A simpler method, more convenient in practice, consists in
connecting the terminals of a voltmeter to the ends of the metal
strip R. The resistance of the voltmeter is adjusted to be a known
multiple of that of the strip, and, by shunting the current through
the voltmeter in this way, its readings may be made to give directly
the number of amperes of current flowing through the strip of metal.
The voltmeter is thus converted into an ampere-meter or athmeter.

A similar process enables us to compare two resistances which
are too small to be examined accurately by the usual means. The
same current is passed through the two resistances in series, and
the differences of potential between their ends compared by the
potentiometer or voltmeter. These potential-differences will be
proportional to the two resistances.

48. By the definition of electromotive force, it follows that
o the work done by a current ¢, when it flows for ¢
eating effect 3 L
ofanelectric ~ seconds through a conductor with a potential-
et difference £ between its ends, is Kct. If the current
be doing mechanical work by driving a motor, or chemical work by
decomposing some compound, part of the total work is thus
absorbed. If no such work is being done, the whole of the work
of the current must appear as heat in the conductor. If H be the
quantity of heat developed, measured in thermal units, and J the
mechanical equivalent of one thermal unit, then, on the assump-

tions we have made, we have the relation

HJ = Ect,
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But, by Ohm’s law, £ is equal to cR, where R is the resistance of
the conductor, at the temperature of the experiment. Thus,

HJ=c¢Rt.

If we measure the current in electromagnetic units, as, for
instance, by the use of a tangent galvanometer, and observe the
heat developed in an insulated coil of wire immersed in a calori-
meter, the first equation, which, as we have seen, is an immediate
consequence of the definition of electromotive force, enables us to
determine experimentally the electromotive force between the
ends of the coil in absolute electromagnetic units. In the same
way, the second equation leads to a knowledge of the resistance
of the coils, also in absolute electromagnetic units.

On the other hand, if we know these electrical units from other
experiments, the equations enable us to find a value for J, the
mechanical equivalent of the thermal unit. Many experiments
have been made for this purpose by Joule, who established the ¢?R2
relation by direct observation, by Griffiths, and by other observers.
In the latest experiments by Callendar and Barnes, instead of
heating a mass of water in an ordinary calorimeter, the current was
passed along a platinum wire stretched along the axis of a glass tube
through which flowed a stream of water. Observations were made
on the temperature of the water before and after passing the tube,
and, when a steady state was reached, a value was thus obtained
for the rate of heat development. The electromotive force E be-
tween the ends of the wire was measured, and also the electromotive
force between the ends of a standard resistance coil of thick wire
placed in series with the wire in the calorimeter. The latter -
observation, with a knowledge of the resistance of the standard
coil, which was not appreciably heated by the current, gave the
current-strength through the apparatus. Thus the value of Ect
was estimated.

In the equation

HJ =c¢Rt
the electrical quantities are expressed in absolute electromagnetic
units, based on the centimetre, the gramme, and the second. To
express our results in practical units, we must remember that the
ampere is one-tenth of the absolute unit of current, and the ohm
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49. THE heating effects of currents, due to the resistance of
Theraal the material of the conductor, have been considered
electricity, already. There is, however, between thermal and elec-
trical phenomena another connexion, which was discovered in 1821
by Seebeck. He found that, in a closed circuit consisting of two
different metals, if the two junctions were kept at different
temperatures, a permanent current flowed. Thus, if one junction
of a copper-iron circuit be kept in melting ice and the other in
boiling water, it will be found that a current passes from copper to
iron across the hot junction. If
however, the temperature of the hot
junction be raised gradually, the
electromotive force in the circuit
slowly reaches a maximum, then
sinks to zero, and finally is reversed.
The currents thus obtained can, of
course, perform work, and hereafter
we must look for the source of their
energy. _

In the year 1834, Peltier dis-
covered that, when a current is passed
across the junction between two
different metals, a reversible evolu-
tion or absorption of heat takes place.
This effect may be demonstrated by Fig. 76.
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fixing the junction, preferably of bismuth and antimony, in an
air-thermometer, as shown in Figure 76. The rate of heat-pro-
duction is proportional to the first power of the current, and thus
the total heat developed may be expressed by Ilct, where ¢ is the
strength of the current, ¢ the time, and II the coefficient of the
Peltier-effect. Unlike the Joule-effect, which depends on the
square of the current, the Peltier-effect is reversible, heat being
evolved when the current passes one way across a junction, and
absorbed when the current passes in the other direction. With large
current-densities, the Peltier-effect is usually small compared with
the Joule-effect, but, since the Joule-effect depends on the square of
the current, it may be diminished in relative importance by
reducing the strength of the current. In ideal conditions, then,
when we may imagine that an indefinitely small current passes,
the Joule-effect may be neglected compared with the Peltier-effect.

50. It is important to notice the relation between the

o direction of the thermo-electric current and the sign
Application of o .
Thermo- of the Peltier-effect. Seebeck showed that, in a
Rl copper-iron circuit at moderate temperatures, the
thermo-current passes from copper to iron across the hotter
Junction. Peltier found that, if a current be forced by means of
an external battery from copper to iron across a junction, the
junction is cooled. In general, if a current be forced across a
junction in the same direction as the thermo-electric current flows
at a hot junction, the junction is cooled, that is, heat is absorbed.
Conversely, a current passing in the normal direction across the
cold junction of a thermo-electric circuit evolves heat.

In a thermo-electric circuit, then, the passage of the thermo-
electric current absorbs heat at the hot junction, and gives up heat
at the cold junction. Lord Kelvin recognised that these were the
characteristics of a heat-engine, and applied the principles of
thermo-dynamics, so largely his own creation, to the elucidation
of the problem of the thermo-electric circuit.

In order to apply quantitatively the results of thermo-
dynamical reasoning, it is necessary to be sure that the processes
involved are truly reversible. Now, in the present case, two
irreversible processes are known to occur: firstly, the frictional
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heat developed by the current as investigated by Joule, and
secondly the conduction of heat along the metals from hotter
to colder places. As indicated above, however, by imagining the
currents to be restricted to indefinitely small values, the Joule-
effect becomes negligible compared with the reversible heat-effects.
The conduction of heat may also be ignored if it proceeds in-
dependently of the current, except for the reversible Thomson-
effect considered below. This independence it is necessary to
assume, though the assumption seems reasonable.

Let us, then, treat the thermo-electric circuit as a reversible
heat-engine, which, when unit quantity of electricity passes round
the circuit, absorbs a quantity II, of heat at an absolute temperature
T,, gives up a quantity II, of that heat to a refrigerator at an
absolute temperature T, and converts the rest of it into electrical
work, which, when unit quantity of electricity passes round the
circuit, is measured by E, the total electromotive force of the
system. By the well-known laws of reversible heat-engines, we
now see, firstly, that

L, _1
T, 7,
I, 1L,
or Tl—_.T;_O’

heat evolved, that is leaving the circuit-system, being taken as
negative.

Secondly, by the law of the efficiency of a reversible heat-
engine, we have

E_T-1,
T
i I
or = (1= T) =7 (T, - T

Thus, on the assumption that the Peltier-effects represent the
only reversible heat-changes in the system, we see that, if one
junction of a thermo-electric circuit be kept at constant tem-
perature, the total electromotive force round the circuit should
increase uniformly with the difference of temperature between the
junctions. But, as stated above, in- certain circuits, the electro-
motive force is found to rise to a maximum, decrease and then
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reverse, as the temperature of one junction is raised continuously.
This observation led Lord Kelvin to conclude that the Peltier-
effects were not the only reversible heat-changes in a thermo-
electric system. He suggested that other reversible heat-effects
might be found in the substance of the individual metals, where
temperature gradients existed along them, and, by a series of
careful experiments, he confirmed this idea experimentally. In a
copper bar, heat is carried with the electric current when it flows
from hot regions to cold ones, and, on the other hand, when the
current flows from cold regions to hot ones, these hot parts of the
bar are cooled. In iron these effects are reversed. On the analogy
of the flow of a fluid along a channel, we may describe these results
by saying that the specific heat of electricity is positive in copper,
but negative in iron. If o denote this specific heat of electricity,
and 67 the small difference between the temperatures of two
points on a bar, then the heat absorbed, when unit quantity of
electricity passes from one point to the other, may be expressed as
08T, and this relation serves to define the quantity o.

The essential difference between the evolution of heat due to
this Thomson-effect, and that due to the Joule-effect, should be
noted. The frictional heat varies as ¢*R, and vanishes in the ideal
condition of a very small current. The Thomson-effect varies as
the first power of the current, and thus is reversed and becomes a
heat-absorption when the current is reversed. The Thomson-
effect, then, like the Peltier-effect, is an integral part of the
reversible heat-engine which is constituted by a thermo-electric
circuit. As the current passes from a region of temperature 7' to
one of temperature I'— 87, heat to the amount of 087 is absorbed.
Figuratively we may represent the wire as composed of a number
of little elements of volume, at the junctions between which occur
reversible heat-effects, similar to the Peltier-effects at the junctions
between the wires of different metals. Thus, in passing along a
wire from one end where the absolute temperature is 7} to the
other end where it is 7,, an amount of heat is absorbed equal
to the sum of all the small quantities ¢87' or, in the notation of the
integral calculus, f :ga—dT. Along the other wire of the circuit,
where, as we pass with the current, the change of temperature is
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T,
reversed, the absorption of heat is, in like manner, f a’dT or

T,
T,
- / o’dT.

Instead of a simple heat-engine, with one source and one re-
frigerator, we have in the thermo-electric circuit a complex engine,
with a number of sources from which heat is absorbed, and a
number of refrigerators to which heat is given up. Some of these
sources and refrigerators are the main junctions, where Peltier-
effects occur; others are the hypothetical junctions between the
little elements of volume in the individual wires, where, owing to
a temperature gradient, Thomson-effects are found. But all these
heat-effects are reversible; they all are involved in the working of
the thermo-electric engine.

When one unit of electricity passes round the circuit, the work
done at each junction, or between each pair of volume elements, is
the electrical equivalent of the heat there absorbed, somewhat as
the work done by expansion in contact with the hot body in
Carnot’s theoretical heat-engine, when using an ideal gas as
the working substance, is the mechanical equivalent of the
heat then absorbed into the cylinder. And, as in Carnot’s
engine, some of this work is reconverted into heat when the
working substance is compressed in contact with the cold body,
s0, in our thermo-electric engine, part of the electrical energy is
reconverted into heat at the other Peltier-junction and at the
interfaces, if any, between volume-elements in the wires, where
the sign of the Thomson-effect requires an evolution of heat.

Again, in Carnot’s engine, according to the principle of the
conservation of energy, the balance of useful work is the equivalent
of the excess of the heat energy obtained from the source over that
given up to the condenser. So here, the balance of electrical
energy, obtained per unit electric transfer, is the equivalent of
the excess of the heat absorbed at some places in the circuit over
that given up at other places. But, this quantity of electrical
energy is the effective electromotive force E acting round the
circuit, and thus we get

T, E
E= nl-n2+f (c — ') dT.
T
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towards the total electromotive force, as a local potential-difference
at the junction. These two aspects of the Peltier-effect should be
remembered. On the theory here given, the Peltier-effect at
a junction is the thermal equivalent per unit electric transfer of
the local step of potential at the interface. But it is also measured
by the product of the absolute temperature of the junction and
the rate of change with temperature of the total electromotive
force of the circuit (not the local electromotive force at the
junction).

51. The properties of a thermo-electric circuit may be
illustrated by means of a diagram in a manner due
Thermo- o o . .
electric originally to the late Prof. Tait. The diagrams are
SigEeyms: based on two experimental principles:

(1) The electromotive force round a circuit when the junctions
are kept at temperatures 7 and T} is the sum of the electromotive
forces when the junctions are kept first at 7} and T}, and then
at T, and 7.

(2) The electromotive force round a circuit of the two metals
A and C is the sum of the electromotive forces round two circuits,
one composed of the metals 4 and B, and another composed of the
metals B and C, the temperature limits being the same for all the
circuits.

It was found by Le Roux that in lead the Thomson-effect is
inappreciable. Hence it is convenient to take lead as the standard
metal, and draw the thermo-electric diagram of another metal with
reference to lead. By the second of the experimental results
enunciated above, it follows that the relative position of two
curves drawn to represent the thermo-electric properties of two
metals with reference to lead, represents the thermo-electric pro-
perties of those two metals with reference to each other.

The most obvious method of plotting the results of thermo-
electric measurement is to take the temperature of one junction
as abscissa and the electromotive force round the circutt as ordinate,
the temperature of the other junction being kept constant. Curves
approximating to parabolas may thus be obtained. A more con-
venient and usual method, however, consists in taking as abscissae
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the absolute temperatures, and as ordinates a quantity called the
thermo-electric power, which is defined as the electromotive force
round the circuit when the junctions are kept half a degree above
and below the temperature in question. It is clear that this
definition comes to making the thermo-electric power equal to the
quantity d&/dT. In general, when the diagrams are drawn with
reference to the standard substance lead, these curves are found
to be straight lines.

In Figure 77, let OL, be taken as the axis to represent the

H
A
A
s E
u G
T — B
o o ™

Fig. 77.

standard metal lead. Let FG and EH be the curves for the
thermo-electric power of two metals A and B with reference to
lead. Then it follows that the thermo-electric power of 4 with
reference to B is represented by the difference-ordinate FE at a
temperature of L, and by GH at a temperature of L,.

Since the length of the ordinate L, ! denotes the electromotive
force round a circuit composed of lead and the metal B per degree
difference of temperature, it follows that, for a small temperature
difference 87, the electromotive force is represented by the area of
a narrow strip of height L,F, and of breadth 87. Thus, for the
considerable temperature-difference L,L,, the total electromotive
force round the circuit is represented by the sum of the areas of
the corresponding strips, that is, by the area L,FG'L,. Similarly,
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for the two metals A and B, the electromotive force round the
circuit is represented by the area FEHG.

Now let us consider the Peltier-effect at the hot junction at the
temperature OL,. We have shown on page 139 that the Peltier-
effect is equal to TdE/dT, and the difference-ordinate GH is the
thermo-electric power or dE/dT. Thus the electrical equivalent of
the Peltier-effect is represented by the area HGUVH. Similarly,
the Peltier-effect at the cold junction at the temperature OL, is
represented by the area EFTSE.

Our expression for the total electromotive force, obtained from
the principle of the conservation of energy, namely

To
E=H1—H2+f (o — o) dT,
T,

shows that the electromotive force round the circuit is the algebraic
sum of the thermal equivalents of the Peltier- and Thomson-effects.
The total electromotive force is represented by the area HGFEH,
the positive Peltier-effect at the hot junction by the area HGUVH,
and the negative Peltier-effect at the cold junction by the area
EFTSE. - Now the electromotive force area HGFEH may be
made up thus:

Area HGFEH =area HGUVH +area GFTUG — area EFTSE
—area HESV.

Identifying the areas HGUVH and EFTSE with the Peltier-
effects in the equation for Z, we see that the Thomson-effect in
the metal 4 must be represented by the area HESVH, and the
Thomson-effect in the metal B by the area GFI'UG. Thus all
the properties of the thermo-electric circuit are represented on
the diagram.

Figure 78 shows a thermo-electric diagram for a number of
metals. The abscissae represent temperatures measured on the
centigrade scale, and the ordinates the thermo-electric powers in
microvolts per degree. From what has been said, it will be clear
that the thermo-electric behaviour of any pair of metals may be
tabulated completely on such a diagram, in a form convenient for
future use. It is seen that the Peltier-effect for iron and copper
vanishes at a temperature of about 280°C. When the hot
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junction reaches that temperature, called the neutral point, the
total electromotive force of a copper-iron circuit, with its cold
junction kept at a constant temperature, is a maximum; beyond
that temperature the area between the two lines is to be reckoned
negative, and subtracted from the area to the left of the neutral
point.
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52. Thermo-electric currents, which are often an inconvenience
Fr— in delicate measurements of resistance, have been
electric applied with advantage in two ways. A thermo-couple
SRAEEt is used sometimes as a practical thermometer, and a
thermo-couple, or series of thermo-couples, is employed to detect
and measure incident radiation of small intensity.

As a thermometric instrument, the thermo-couple is chiefly of
use where high temperatures are to be estimated approximately,
as in many manufacturing operations. The couple is generally
made of wires of platinum and of an alloy of either platinum and
iridium, or platinum and rhodium. All these metals are very in-
fusible, and very high temperatures may be measured. To the
usual order of accuracy required, it is enough to keep one junction
at the temperature of the atmosphere, and place the other in the
furnace or other enclosure to be examined. The temperature may
be read off directly by proper graduation of a millivoltmeter. An
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apparatus of this kind is illustrated in Figure 79. The thermo-
couple is enclosed in an infusible porcelain tube.

Fig. 79.

An instrument which was long used to detect the incidence of
radiation is shown in Figure 80. It is known as the thermopile,

Fig. 80.

and consists of a number of bars of bismuth and antimony soldered
together in series, and placed so that all similar junctions, where a
current passing round the circuit would flow from bismuth to
antimony, are collected together at one face of the pile. If this
face becomes slightly hotter than the other, an electromotive force
is set up at each junction in the face. These electromotive forces
are in the same direction, and will drive a current through a
galvanometer placed in the circuit. By using a very low resistance
galvanometer, and keeping all the circuit of low resistance, the
apparatus will be found to be moderately sensitive.






CHAPTER VIL
ELECTROMAGNETIC INDUCTION.

Faraday’s experiments. Quantitative Laws of Induction. Coefficients of
induction. Analogy between self-induction and inertia. Electrical
oscillations.  Electromagnetic machinery.  Dynamos and motors.
Transformers and Induction Coils.

53. THE induction of statical charges of electricity by other
L A— charges, and the similar action exerted by magnets
experiments.  on goft, iron, suggested to the early experimenters
that like effects should be obtained with the steady currents given
by voltaic cells. Faraday, for instance, wound two helices of
insulated wire on the same wooden cylinder, but could observe no
deflection of a galvanometer inserted in one coil when a steady
current was maintained through the other by a powerful voltaic
battery.

His first successful experiment, which opened a new era in the
history of electrical science, was thus described to the Royal
Society by Faraday on November 24, 1831.

“Two hundred and three feet of copper wire in one length was
wound round a large block of wood ; other two hundred and three
feet of similar wire were interposed as a spiral between the turns
of the first coil, and metallic contact everywhere prevented by
twine. One of these helices was connected with a galvanometer,
and the other with a battery of one hundred pairs of plates four
inches square, with double coppers, and well charged. When the
contact was made, there was a sudden and very slight effect at the
galvanometer, and there was also a similar slight effect when
the contact with the battery was broken. But whilst the voltaic
current was continuing to pass through the one helix, no galvano-
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metrical appearances nor any effect like induction upon the other
helix could be perceived, although the active power of the battery
was proved to be great, by its heating the whole of its helix, and
by the brilliancy of the discharge when made through charcoal.

“ Repetition of the experiment with a battery of one hundred
and twenty pairs of plates produced no other effect; but it was
ascertained, both at this and the former time, that the slight
deflection of the needle occurring at the moment of completing
the connexion, was always in one direction, and that the equally
slight deflection produced when the contact was broken, was in the
other direction.

“The results which I had by this time obtained with magnets
led me to believe that the battery current through one wire, did,
in reality, induce a similar current through the other wire, but
that it continued for an instant only, and partook more of the
nature of an electrical wave passed through from the shock of a
common Leyden jar than of the current from a voltaic battery,
and therefore might magnetize a steel needle, though it scarcely
affected the galvanometer.

“This expectation was confirmed ; for on substituting a small
hollow helix, formed round a glass tube, for the galvanometer,
introducing a steel needle, making contact as before between the
battery and the inducing wire, and then removing the needle
before the battery contact was broken, it was found magnetized.

“When the battery contact was first made, then an un-
magnetized needle introduced into a small indicating helix, and
lastly the battery contact broken, the needle was found magnetized
to an equal degree apparently as before; but the poles were of a
contrary kind.”

With the much more delicate galvanometers we now possess,
it is easy to repeat Faraday’s experiments with the primary
current derived from a single voltaic cell, and to show that similar
transient currents are produced by moving the primary and
secondary circuits relatively to each other, or by moving a
permanent magnet relatively to a coil connected with a galvano-
meter.

In all such cases it will be seen that the number of tubes of
magnetic induction passing through the secondary circuit is altered,

10—2
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and, in general, we may say that a current is induced in the same
direction as the primary current (or in the same direction as the
current equivalent to the inducing magnet) whenever the number
of tubes of magnetic induction threading the secondary circuit is
diminished, and in the contrary direction when the number of
magnetic tubes is increased.

Since currents flowing in the same direction attract each other,
it follows that, when a circuit carrying a current is moved nearer
to a second circuit, the inverse current induced therein causes the
two circuits to repel each other. When the primary recedes, the
two similar currents attract each other. Thus, in each case, the
induced current is in that direction which tends to stop the motion
producing it. This result, which is known as Lenz’s law, is an
example of the universal physical principle whereby any external
change acting on a system produces within the system a change
which tends to resist the effects of the external change. This
principle is sometimes called the law of least action. In the form
of Lenz’s law, the principle is often of use in enabling us to see at
a glance the direction of an induction current.

Faraday’s experiments led him at once to an explanation of the
action of the apparatus known as Arago’s disc. If a copper dise
be rotated in its own horizontal plane beneath a compass-needle,
which is shielded from the air draughts of the disc by an inter-
posed glass screen, the needle will be found to be dragged round
with - the disc. Explanations of this phenomenon had been
offered, referring it to “induced magnetism” in the copper disc.
Faraday saw that, by motion in the magnetic field of the
needle, secondary eddy currents were set flowing in closed curves
in the substance of the disc. These currents will be in directions
such that they tend to stop the relative motion of the needle and
disec. 'The needle, therefore, follows the disc as i1t rotates.

The current induced in one coil by starting or stopping a
current in another is much greater if the coils be wound on an
iron core, the effect being proportional to the magnetic permeability.
This shows that it is the change in the magnetic induction, and
not that in the magnetic force, which is involved.

By winding a primary coil over an iron ring, and using as a
secondary a few turns of wire surrounding both primary and iron,
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1t is possible to investigate the magnetic properties of the iron, and
to obtain hysteresis curves similar to those given in § 33, Chapter 1v.
In many cases this is the most convenient method to adopt.

54. Faraday showed that the induced currents were greater in
Quantitative proportion as the rate of change of the magnetic field
laws of was increased, but the exact quantitative magnitude
induction. . : o

of the induced electromotive force was first given by
F. E. Neumann in 1845.

We may deduce by dynamical principles the laws of induction
of currents from the known mechanical forces on currents placed in
magnetic fields. Ampere’s formula for the mechanical force ' on
an element of current ¢ of length &/, when placed in a magnetic
field at an angle € with the direction of the magnetic induction B,
is (p. 105)

F=c3lBsin 0,
the force acting at right angles both to the current and to the
magnetic induction.

Let us imagine that the element ab of the circuit in Figure 81
moves with constant velocity through
a distance éz at right angles to itself
in the direction of the force. To a—b
maintain the continuity of the cir-
cuit we may suppose that ab slides
along parallel rails, or that its ends
float along mercury troughs.

The work done by the circuit is
measured by the force into the dis-
tance or

cBsin 081 68a.

Now 618z is the area between the
rails moved over by the current-element; that is, it is the increase
of area of the circuit. The magnetic induction B denotes the
number of tubes of induction per unit area normal to their
direction. Thus Bsin 68léx is equal to 3N, the increase in the
number of tubes of induction through the circuit produced by the
movement of the cwirent-element ab, and the work done during
the movement may be written as ¢6.V.

Fig. 8l.
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Now let us suppose that the current in the circuit is main-
tained by a battery with an electromotive force £. During the
time 8t of the movement of the element ab, the battery will do
a quantity of work equal to Ecdt. By the principle of the con-
servation of energy, part of this energy is used in doing work c8V
against the magnetic forces,and the rest is expended in the circuit
as a quantity of heat ¢?Rd¢. Thus

Ecdt=c*R&t +cON,

- e E —dN/dt
gy
Hence there is an additional electromotive force in the circuit
equal to the rate of decrease of the number of tubes of induction
which thread the circuit. We may imagine that the original
current and electromotive force are made as small as we please—
the result still holds. It follows that, even in a circuit with no
original current, one must be induced by a change in the flux of
induction through the circuit, though in this case the work must
be done by some external agency, instead of by a battery in the
circuit. Thus, in general, we obtain the following result :—When
the magnetic induction through any circuit is changed, an induced
electromotive force is set up, equal to the rate of decrease of the
number of lines of induction which thread the circuit.
This result, which we have deduced from the known magnetic
forces of currents, may be verified or established by direct ex-

Fig. 82.
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periment. Two coils of wire are placed near each other, as shown
in Figure 82. In circuit with one coil is connected a battery, a
resistance box, a tangent galvanometer, and a reversing key. In
circuit with the other coil is placed a second resistance box and a
ballistic galvanometer (see page 109). When a steady current
passes through the first or primary coil, there is no current in the
secondary, but, if the primary current be started suddenly, stopped
or reversed, a throw of the ballistic galvanometer indicates a rush
of current through the secondary circuit.

The primary current produces a magnetic field, and some of the
tubes of magnetic induction from it pass through the secondary
coil. If the number of these tubes be altered as described above,
a transient current will be observed. Suppose, for instance, that
we reverse the primary current. Then all the tubes of induction,
which at first threaded the secondary coil in one direction, will
be reversed suddenly, so that, if N be the number of tubes
originally passing through the secondary coil, the number finally
passing is — IV, and the sudden change in the number is 2¥. The
magnetic field, and therefore N, is proportional to the strength of
the primary current; thus any required change in N can be
obtained by altering the strength of the current which is to
be reversed ; the current used can be measured by the tangent
galvanometer. By such experiments we can show that the total
quantity of electricity passing in the secondary current:is pro-
portional to the total change in the number of tubes of magnetic
induction threading the secondary circuit, and inversely proportional
to the total resistance of the secondary circuit. Therefore, if,
owing to a change 6N in the number of tubes of induction through
the circuit, a current ¢ pass In a circuit of resistance R for a small
time &8¢, we may write

8t o %V
By Ohm’s law, the product of ¢ and R is the electromotive force £
in the circuit, thus \
SN
Ex W 3

or the electromotive force must be proportional to the rate of
change in the number of tubes of induction,
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In order to obtain a quantitative relation, we must use two
coils placed in such a position that it is possible to calculate the
number of tubes of induction which threads one coil when unit
current passes in the other. With two large coils placed parallel
to each other as shown in Figure 82, it would be difficult to
calculate the number of tubes. To avoid this difficulty, a form
of apparatus may be used in which the magnetic field of the
primary current is uniform. For instance, the field due to a
current ¢ in a large circular coil with n, turns of wire of radius
is nearly uniform near the centre, and equal to 27n,c/r, (page 107).
In air, this expression represents the number of tubes of induction
per unit area normal to their direction; and the number of tubes
through a small coil of n, turns with radius 7, placed at the centre
of the large coil with the planes of the two coils coincident, is
i TN, OF bl

1 . a
large coil.

Again, the field within a long solenoid is 47rnc, where n is the
number of turns of wire per unit length. When placed coaxially
within the solenoid, a small circular coil of n, turns with radius
r, wWill be threaded by a number of tubes of induction equal to
darn . mngry® or 4anngr,? when unit current passes through the
solenoid. By either of such pieces of apparatus the laws of
induction may be verified quantitatively by the use of formule
obtained in this book. The result of the experiments shows that
the total electric transfer round the circuit is, when expressed in
absolute electromagnetic units, with proper attention to signs,
equal to the total decrease in the number of tubes of induction
divided by the resistance of the circuit. Thus, as before,

, when unit current flows round the

cSt=—%Y,
dN
and E=—%.

It should be noted that this induced electromotive force acts in
the primary coil as well as in the secondary, for all its own
lines of induction must pass through the primary circuit. On
making a current in a coil, a transient electromotive force acts in
the negative direction, and the current is prevented from reaching
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instantaneously its full value. So also on breaking the circuit, the
positive induced electromotive force tends to prolong the current.
In either case, the result is that no abrupt change can occur in the
total number of tubes of induction which thread the circuit.

It should be noticed that, with two circuits, the induced
secondary current will itself induce a tertiary electromotive force
in the primary coil. When a primary current in what we will call
the positive direction is started, a secondary current is produced in
the negative direction. The starting of this will re-induce an
electromotive force in the positive direction in the primary. It
will thus help the primary current to start, and to increase towards
its maximum value. The presence of a second circuit then, will
diminish the effect of self-induction in any circuit; it will enable
an applied electromotive force sooner to establish its current, and
make it easier for that current to cease when the electromotive
force is removed. This effect is of great practical importance.

55. The number of tubes of magnetic induction, which thread
Coefficients a circuit when unit current is flowing round it, is
ofinduction.  a]led the coefficient of self-induction of the circuit,
and the number of tubes which thread one circuit when unit
current is flowing round another is called the coefficient of mutual
induction between the two circuits. The importance of these
coefficients will be clear if we notice that the total number of
tubes threading a circuit, when a current ¢ passes, is L¢, where L is
its coefficient of self-induction. Thus the induced electromotive
force in the circuit, — dN/dt, is equal to — Ldc/dt. Similarly the
induced electromotive force in one circuit, due to a change in the
current through another, is — Mdc/dt, where M is the coefficient
of mutual induction. Hence, if we know the coefficient of induc-
tion and the rate of change of the primary current, we can find
at once the secondary electromotive force.

We have seen already that it is possible to calculate the
coefficient of mutual induction in simple cases. An arrangement
of practical importance consists of two co-axial solenoids of equal
length . Let 7, and n, denote respectively the radius and the
number of turns of wire per unit length of the inner coil, and
7, and n, the corresponding quantities for the outer coil. If unit
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current flow round the inner coil, the field of magnetic induction
within it is 4arn;, which measures the number of tubes per unit
area. The total area of the inner coil is 7?2 and the total
magnetic flux through the inner coil is 47?n,r2  All these tubes
of induction must pass through each turn of wire of the outer
solenoid, which surrounds the inner solenoid. The number of
such turns is n,l, and therefore the coefficient of mutual induction
1s 4rtlnnyr®. Now let us suppose that the current is sent through
the outer coil. When the current is unity, the magnetic field
within is 47n,, and the number of tubes of induction which pass
through the total area (counting that of each turn of wire) of the
inner coil, which only fills part of the area of cross-section of the
outer coil, is 4mngnlmrr? or 4d7ilnn,r?. It follows that the number
of tubes of induction passing through the outer coil when unit
current flows through the inner is equal to the number which
passes through the inner when unit current flows round the outer.
This justification of the term “mutual induction” will be shown
later to apply to every case.

From what has been said, it follows that the coefficient of
self-induction of a single solenoid is 4mwn.nlmr® or 4welnire

For a small circular coil with n, turns of radius r, placed at
the centre of a large circular coil with », turns of radius r;, the
planes of the coils being parallel, the coefficient of mutual induction
must, by the last section, be 2mn,n,r?/ry.

Other simple cases may be solved by the aid of more compli-
cated mathematical analysis, but it is often only possible to
determine coefficients of induction by direct experiment. The
apparatus shown in Figure 82 on page 150 may be used, and the
number of tubes of magnetic induction threading the secondary
coil when unit current passes round the primary may be calculated
from a measurement of the total electric transfer round the
secondary when a known current in the primary is reversed.
Here we assume the laws of induction which, on page 151,
we used the apparatus to verify.

We have shown above, for one particular case, that the
coefficient of mutual induction between two coils is the same
whichever coil is used as primary. It is possible to establish
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this result in a general form by a method which brings out other
points of interest.

Let us calculate the mutual potential energy of two currents,
by supposing them to be replaced by their equivalent magnetic
shells.

The potential at a point due to a magnetic shell of strength S,
is, as we saw on page 98, equal to 5,0, where Q is the solid angle
which the shell subtends at the point. The work done in bringing
up from infinity a pole of strength m to the point is S,Qm.

The second shell, of strength S, and thickness 8z, may be
resolved into a number of minute magnets, each of length 8z and
area of cross-section da. Now, the strength of a shell is the
magnetic moment per unit area, or mT_iw' Therefore m is S, —8% :

The potential energy of the first shell and one pole of the
elementary magnet in the second shell is

Oat

A Sz )2

Now, as we pass from one end of the elementary magnet of
the second shell to the other, the solid angle subtended by the
first shell changes. Its rate of change as we pass along the axis

of the elementary magnet is dﬂ, and the total change is %% dx.

Thus the new value of the solid angle is  — %% éxz. The pole at

the other end of the elementary magnet has a strength —m or

da
-5, iy
work done in bringing it to its proper position from an infinite
distance, or

, and its mutual potential energy with the first shell is the

— 8,8, g—: (Q,- ‘fi—‘; Sx).

For both poles of the element of the second shell the work
done is

Sa df) dOE

SIS‘Z 'S; % Oz = 8132 l_j; Sa.
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To extend the result to the whole of the second shell, we must
integrate this expression over the whole area, and write

S.S, Z—(x) da.

But, by principles similar to those used on page 26, it follows
that the magnetic induction in any direction is measured by the rate
of fall of magnetic potential in that direction. Hence, the normal
induction at any point on the second shell due to the first shell is

-85 g—i} This measures the number of tubes of magnetic indue-
tion passing through unit area, and through an area 8a the

number will be — S, 8a. Therefore, the total magnetic flux,

dax

or the total number N, of tubes of magnetic induction, through
the whole area of the second shell due to the first shell will be

- dQ

N=-8 |

Hence, the work done in bringing the second shell to its

position against the magnetic forces of the first, that is, the mutual

potential energy of the two shells, is — S,V the product of the

strength of the second shell and the magnetic flux passing through

it from the first shell.

By calculating in a similar manner the work done in bringing

up the first shell while the second is fixed, we obtain, as a new

expression for the same mutual potential energy, —S;V,, and hence

SiV,= S, N,.
Finally, let us replace the shells by two currents of equivalent
strengths ¢, and ¢, We have
NS =GN
If unit current be flowing in one circuit, the magnetic flux
through the other is defined as the coefficient of mutual induction ;
and since, when both currents are of unit strength, N, is equal to
N, the fluxes are equal, that is, the number of tubes of magnetic
induction passing through the second circuit when unit current flows
round the first, is equal to the number of tubes passing through
the first when unit current flows round the second.
We see also that the coefficient of mutual induction between

da.
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two circuits measures their mutual potential energy when unit
current circulates round each.

56. Since the induced electromotive forces in a coil through

Analogy which passes a varying current are in the oppo-
?,f;‘;":g::ig& site direction to the current when it is increasing,
inertia. and in the same direction as the current when it is

diminishing, the effect of self-induction is to tend to check the
change in current strength. Now the inertia of a dynamical
system tends to retard its being set in motion when at rest, and to
keep 1t in motion when once started. Thus, just as inertia tends
to prevent a change in velocity, so self-induction tends to prevent
a change in current-strength.

If the self-induction of a coil be very high, as it is in coils of
many turns of wire, especially if wound on iron cores, the effect of
self-induction will be so great that a rapidly alternating electro-
motive force will produce hardly an appreciable current. A rapidly
alternating current, then, will pass along a straight short path,
even if of high resistance, rather than through a low resistance
circuit of high inductance, through which a steady current passes
readily. A coil which, in this way, is nearly impassable to rapidly
alternating currents while allowing direct currents to flow through
it readily is often of practical use, and is called a choking coil.

The quantitative investigation of this effect needs the solution
of a differential equation; but, even if the proof cannot be followed,
the result is of great interest. Let an external electromotive force,
which varies harmonically with the time ¢ and is represented by
E cos pt, be applied to a circuit with a coefficient of self-induction
L and a resistance R. This electromotive force makes p/2m
complete alternations per second, changing direction p/m times per
second. If ¢ be the current through the coil, the primary electro-
motive force is Rc, while the secondary is Ldc/dt. Thus

de

L%+Rc=Ecospt.

The solution of this equation is
. _Ecos(pt—a)
- (Bt Dpp
where tan a= Lp/R.



158 ELECTRICITY [cH.

The maximum value of the electromotive force is £, while that
of the current is £/{R?+ L*p*}}. Now, if a steady electromotive
force K were acting, the steady current would be Z/R. Thus the
inertia of the circuit, due to its self-induction, makes the effective
resistance greater for alternating currents than for steady currents,
and equal to {R*+ L*p?}t. This effective resistance is called the
impedance of the circuit.

The equation for the current shows that the phase of the
current lags behind that of the electromotive force. When the
alternations are so rapid that Lp is large compared with R, tan a
is very large, and hence a approaches a right angle or /2. The
current in the coil will now be greatest when the electromotive
force is zero, and will vanish when the electromotive force is a
maximum. Allowance must often be made for this lag of the
current in electromagnetic machinery.

The subject of alternating currents has now become of great
industrial importance, and many theoretical investigations have
been made thereon. From the experimental side, much light has
been thrown on the phenomena by the use of an instrument known
as the oscillograph, which, first described by M. Blondel, is, in its
present form, the invention of Mr Duddell. In its essence, this
instrument is a galvanometer of the moving-coil type, the moment
of inertia of the coil being so much reduced, and the restoring
couple so much increased, that the natural period of vibration is
reduced to the 1/5000 or the 1/10000 of a second. By the friction
of a viscous oil the motion of the coil is made “dead-beat,” that
is, the system moves at once to its position of equilibrium, and no
series of swings follows a displacement. In consequence of these
arrangements, the apparatus will follow the alternations of a
current with a frequency of 100 or more per second. The apparatus
is represented diagrammatically in Fig.83. The coil is replaced by
a loop of two delicate phosphor-bronze strips, ss, arranged parallel
to each other and stretched by a light spring so as to lie vertically
between the poles of a powerful permanent or electro-magnet. The
strips run through minute gaps in the magnetic circuit, and these
gaps are filled with viscous oil. When a current passes round the
loop, one strip moves forward and the other back, just as the coil of
a d’Arsonval galvanometer turns through an angle. The relative
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the current C, and the applied electromotive force or potential
difference V. In Figure 83 a are shown two such curves, given by
an alternating current machine. The lag of the current, referred
to above, is well seen.

We have supposed that a periodic electromotive force may be
represented by a simple harmonic function of the time—that it
varies as the cosine of an angle proportional to the time. Such
a curve would somewhat resemble the curve marked V in
Figure 83 a. Often, however, the actual variations of current

Fig. 83a.

or potential-difference are much more complicated, and peaked
curves, such as the curve C in the figure, are common. For some
purposes—arc lighting for instance—a flat topped wave-form is
most efficient, while in other cases—such as that of transformers—
a peaked curve has advantages. Hence arises the importance of
the oscillograph, which enables us to follow the wave-form, and
actually trace out its curve.

In the chapter on the properties of the dielectric medium, we
learnt that the path of the energy by which a current is main-
tained lies through the dielectric medium. The line of the
current represents merely the path along which that energy is
degraded into heat by something analogous to a frictional slip.
Hence, when the energy is alternating in character, successive
currents spread into the conductor in opposite directions—spread
in with a finite velocity, just as heat is conducted into the ground
under the alternating temperatures of day and night, summer and
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winter. Moreover, just as the quick alternations due to day and
night become insensible at a small distance from the surface of
the ground, while the slower alternations due to the varying
seasons penetrate deeper, so a quickly alternating current will
only reach a small distance into the substance of a conductor.
This limitation of an alternating current to the outer layers of the
conductor may be regarded as an explanation of the increased
effective resistance of the conductor when a continuous is replaced
by an alternating current.

The quantitative theory of the subject may be investigated by
observing that the self-induction of a current flowing along the
outer strata of a conductor is less than that of a current flowing
within. The magnetic force inside a cylindrical tube carrying
a current may be shown to vanish. Hence currents flowing down
the outside of a wire produce no magnetic field within, and no
induced currents. Thus the inertia of the current will be less if
the current flows through the outside layers only.

The analogy between self-induction and inertia may be pushed
farther than we have yet indicated. The dynamical inertia of
a body, which measures its mass m, tends to prevent any change
in the velocity ». The self-induction L of a circuit tends to
prevent any change in the strength ¢ of current. Hence work
must be done in starting or stopping a current, just as it is in
starting or stopping a moving body. The work in the latter case
is equal to the kinetic energy $mv®. Thus, on the analogy we are
considering, an amount of work 4Lc* is needed to start or stop a
current ¢ in a circuit possessing self-induction L, and the current,
when flowing, must consequently possess an amount of kinetic
energy equal to 4Lc%

A still more complete analogy may be traced by writing down
the equations of motion of a body with a velocity accelerating under
the action of a force F', and retarded by a frictional resistance which
is proportional to the velocity. If » be the velocity, and R the
resistance for unit velocity, we have

dv

F=m 7

+ Rw.
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Now let us compare this equation with that for an electromotive
force K applied to a circuit of resistance R and self-induction L.

If ¢ be the current,

E LM+R

Thus the analogy appears to be complete.

56 . Important results follow from the analogy between self-
Electrical induction and inertia. If a mass m hanging by a
oscillations.  gnira] spring be pulled down from its position of
equilibrium and let go, it performs a series of vertical oscillations,
till the resistance to its motion brings it to rest. If the resistance
be small, the oscillations will continye for some time ; they will be
1sochronous, and have a periodic time of 2 n—z/F’], where F,
denotes the force of restitution exerted by the spring when the
displacement of the body is unity. Now, as the body oscillates
from the middle of its path to one of the ends, the energy changes
from the kinetic form to the potential. If x be the final displace-
ment, the final force of the spring is Fw; the mean force
throughout the extension is }F,z, and the work done, or the
final potential energy of the spring, is 4F,4%

Now let us consider the analogous case of two parallel plates
charged with opposite kinds of electricity. If connexion be
made between the plates by means of a conductlng wire, an
electromotive force acts along it, and a current is set up. If
the circuit of the wire possesses appreciable self-induction, the
current will possess inertia, and, unless the frictional resistance is
very great, the current will tend to flow on, after the condition of
equilibrium is reached. The plates will thus acquire reversed
charges; the electromotive force will act in the other direction;
and electric oscillations will result.

The potential energy of the charged plates is $eV, where V is
the difference of potential, and e the charge on one plate. If C be
the electrostatic capacity of the system, C'=¢/V, and the potential
energy is 4¢?/C. Now on the analogy of the oscillating spring,
the displacement of electricity from its condition of equilibrium,
that is the charge on the plate, corresponds with the displacement
from its position of equilibrium of the body hanging by the spring.
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Corresponding with Fj, the coefficient of 44* in the expression for
the potential energy of the spring, we have 1/C, the coefficient of
1e* in the expression for the potential energy of the charged plates.

We may now use our analogy to write down the expression for
the period of oscillation of the clectric system. - The self-induction
L of the circuit is analogous to m, and 1/C to F',. The period of the
spring is 27r/m/F,, and the corresponding expression is 2./ LC.

If the resistance exceed a certain limit, no oscillations will
arise. The charges will neutralize each other by means of a
steady current, just as the body on the end of the stretched spring
will creep slowly to its position of equilibrium if the whole system
be immersed in some very viscous liquid.

The interest of these electric oscillations is very great. The
discharge from a Leyden jar, the lightning flash itself, will, it is
evident, in the right circumstances, produce, not a direct current,
but a series of electric oscillations. The periods of such oscillations
will be very rapid, perhaps rising to hundreds of thousands per
second, and rapidly alternating currents, as we have seen, show
preferences for different paths very unlike the preferences shown
by steady currents. A lightning flash or a discharge from a jar
may take a short cut through air rather than go round a metallic
circuit of appreciable self-induction. Hence the necessity of
avoiding bends and turns in lightning rods.

The oscillations in the spark from a Leyden jar were first
verified by direct experiment by Feddersen in 1857, who analysed
the spark by viewing it in a mirror rotating very rapidly. The
image was drawn out into a band with bright and dark spaces.
On placing a high resistance in circuit, the alternations disappeared,
and the image became a band gradually fading away at one end.

The periodic character of the discharge from a Leyden jar may
also be demonstrated by another beautiful experiment, due to
Professor J. J. Thomson. The discharge is made to pass round a
coil of a few turns of insulated wire within which is placed a glass
bulb containing air at a low pressure. The alternating currents in
the coil induce high electromotive forces in the exhausted air, just
as they would do in a secondary circuit in the neighbourhood. By
this means the resistance of the air is broken down, and a circular

current passes in the form of a luminous ring discharge within the
11—2
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bulb. The method has been of service in eliminating the effects
of the electrodes in the spectroscopic study of electric discharge
through gases.

57. Faraday’s discovery of electromagnetic induction has proved
13 1) to be the foundation of a vast industrial development :
magnetic almost all electrical machinery of practical importance
machinery. 5 .

depends on the induction of currents.

An analogy, of great use in designing electromagnetic machinery,
may be traced between the permeability of iron and the specific
conductivity of an electric conductor. If a bar of iron of uniform
cross-section 4 be placed in a uniform field of magnetic force of
intensity H, the total number of lines of induction through the iron
is HAp. This quantity is known as the flux of induction, and may

be written as V.
Hl

Now = —-
.17
and we may compare this equation with that expressing the
strength of an electric current ¢, which is equal to the electro-
wotive force &£ divided by the resistance R of the conductor, or
L=

In these two equations, the quantity H{ corresponds with the
electromotive force, and may be called the magnetomotive force;
the quantity !/Ap corresponds with the electric resistance, and
may be called the magnetic reluctance.

The electric resistance is equal to the specific resistance of the
material into the length of the conductor divided by the area of
cross-section, and, if the reciprocal of the specific resistance, or the
specific conductivity, be denoted by y, we have for the total
resistance I/Ay. Thus p is analogous to ¥, except in so far as u is
not constant, but depends on the magnetomotive force.

The total resistance of an electric circuit is the sum of the
individual resistances of its parts, and the total reluctance of a
magnetic circuit is the sum of the reluctances of the different
parts, whether iron or air, which together complete the circuit.

When the approximate value of w which corresponds with the
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magnetic fields to be used in a machine is known, this law of the
magnetic circuit enables us to calculate the number of “ampere-
turns” needed in winding and exciting the electro-magnets.

58. In dynamos, coils of wire wound on iron shuttles or rings
Dynamos ana  are rotated in the fields of strong electro-magnets,
moters: excited either separately by an independent machine,
or by the current they themselves induce in the rotating coils.

The principle ot the dynamo is best explained by a diagram
such as Figure 84. Let CC’ be A
a circular coil of wire, spinning
in a magnetic field where the '
lines of induction run in the
direction of the arrow 4 B. When
the plane of the coil lies along g
AB, no lines of induction pass
through it. As the coil spins
clockwise through 90°, the num-
ber of lines threading it con-
tinually increases and reaches a i
maximum at £F. From EF on-
wards through 90°, the number
decreases.  Consequently, the
induced electromotive force is reversed as the coil passes through
the position ZF, at right angles to the lines of induction. When
the coil again lies along AB, no lines thread it, and, as it rotates
through the third quadrant, the number again increases. But
now they enter the other face of the coil, and must be counted as
negative. The present increase, then, produces an electromotive
force in the same sense as did the decrease in the second quadrant,
and no change of sign occurs in the electromotive force when the
coil passes the line AB, that is, when its plane lies along the
direction of the lines of induction. The negative lines, however,
will begin to decrease when EF is again passed. Thus the
electromotive force in the coil changes sign whenever the coil passes
the position where its plane is normal to the magnetic field.

By connecting the ends of the coil with brass pieces on an
insulating drum which rotates with the coil, the currents may be

%
B
Fig. 84,
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led away through wire brushes to the external circuit. By proper
arrangements, either alternating currents may be obtained, or the
alternating currents in the coil may be commutated and passed
always in the same direction round the external circuit. In
practice, many coils are wound on the same armature, so that
nearly continuous currents may be obtained; and the substance
of the armature is iron, so that the induction through it is
increased in the ‘ratio of the magnetic permeability of iron to
that of air.

An elementary and simplified theory of the dynamo enables us
to obtain a quantitative expression, approximately accurate, for
the average value of the current. Let N denote the total number
of lines of magnetic induction which traverse the coil when normal
to the lines of force. Then — N must be the number through it
when turned through 180°, so that it lies again normal to the field
with its faces reversed. The total change of induction is thus 2§
during one half-revolution. If ¢ be the time occupied in this half-
revolution, the average rate of change of induction is 2N/¢, and
this measures the average induced electromotive force. If we
neglect the change of sign of the current, or if we commutate the
current so that it always passes in the same direction in the
external circuit, we may calculate its average value by dividing the
average electromotive force by I the total resistance of the circuit,
including both that in the coil and that without. If z be the
number of revolutions of the coil per second, ¢, the time of one
half-revolution, is 1/2, and thus the average current ¢ is given by

SERTRT
If the total area of the coil, including the area of each of its
windings, be 4 ; and if B be the magnetic induction in the field,

assumed uniform, then
44 Bz

c= 77 il
In alternating current machines, the field-magnets must be
excited separately. In direct current dynamos,-they may be
excited by the current of the machine, by connecting the coils
of the field-magnets either in series (Fig. 85) or as a shunt
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(Fig. 86) with the external circuit. In the shunt-wound machine,
an increase of external resistance throws more current through the

T

Fig. 85. Fig. 86.

magnet coils, and thus increases the induced electromotive force.
In series wound machines, by increasing the external resistance we
diminish the current everywhere, and thus decrease the induced
electromotive force. By a proper combination of shunt and series
coils on the field magnets, it is possible to secure a constant
electromotive force, whatever be the resistance of the external
circuit.

The mechanical force acting on a current in a magnetic field is .
used to obtain mechanical power in electric motors, If a current
be passed through the armature of a dynamo in the reverse
direction to that of the current the machine itself will yield, it
is evident that the armature will tend to rotate. At starting, a
large current will pass, but, as the speed increases, a back electro-
motive force is set up by the usual action of the machine, and the
current taken by the motor diminishes. Any dynamo will act
as a motor, though the most convenient mechanical arrangements
usnally differ for the two purposes.
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59. The power conveyed by an electric circuit, that is, the
0 g e worl'< done per second, is the product of the electro-
i:gsi'nducﬁon motive force and the current, or Zc. Thus, by

increasing E, it is possible to convey a large amount
of power by the use of a small current. The conductor required to
carry the current with a certain percentage of heat-loss must
possess an area of cross-section proportional to the current, and
copper is very expensive. Hence it is economical to generate the
current by a high tension dynamo, and convert the power into
currents of a safe voltage near the consumer by means of an
apparatus called a transformer.

In this instrument, two coils, one of few turns of thick
wire, and one of many turns of thin wire, are wound on a core
of iron wires or strips, which may either be straight or in the
form of a continuous ring. An alternating current of high voltage
is passed round the coil of many turns. The magnetism of the
core is continually reversed by the alternating current, and the
lines of induction through the other coil are reversed continually
also. An induced electromotive force, proportional to the number
of turns of wire, is obtained, and, as the resistance is low, a large
current results. It is obvious that the power of the secondary
current cannot exceed that of the primary, and we have as the
limit of efficiency

E, = Ep,.

If the circuit of the secondary coil be not completed, no current
flows round it, and no power is taken from the transformer. We
should suspect that in these conditions less power is taken from
the primary circuit. This is found to be the case, and the reason
- is clear in the light of what was said on page 153. The presence
of a closed secondary circuit in the neighbourhood decreases the
effects of self-induction in the primary, and enables more current
to pass through it. When the secondary circuit is broken, the
primary acts as a choking coil (p. 157), and very little current
flows, owing to the reverse electromotive force of self-induction.

The induction coil, invented by Ruhmkorff, may be classed as
a transformer (Fig. 87). It enables us to obtain an intermittent
current of high electromotive force from the direct current given
by a few voltaic cells. Two coils are wound on an iron core made
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of a bundle of soft iron wires to reduce the loss by eddy currents,
which would circulate extensively in a solid core. The ix_mer coil
is made of a few turns of thick wire, and the outer coil of an
immense number of turns of very fine wire wound in sections,

Fig. 87.

most carefully insulated, and so arranged that turns with high
differences of potential are separated widely from each other.
The primary current, which passes round the inner coil, is inter-
rupted at frequent intervals of time. As a simple means of
effecting this, the arrangement used in electric bells may be
adopted. The primary current is made to pass from a platinum
stud fixed to a spring into a platinum point in contact with it. To
the end of the spring is attached a piece of soft iron, which lies near
one end of the iron core of the coil. When the current passes, the
core is magnetized, and attracts the piece of soft iron. The spring
is pulled away from the point, and the circuit is broken. The
spring then flies back, making contact with the point, and the
current is established once more.

An electrolytic interruptor was invented by Wehneldt, who
found that, if the primary current were passed through a solution
of dilute sulphuric acid, the electrodes being a platinum point and
a platinum plate, rapid interruptions occurred spontaneously. The
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action of this apparatus is not fully understood. It may depend
on sudden evolutions of gas at the electrodes.

By some such automatic arrangement, the primary current is
made and broken rapidly, and a series of alternately directed
electromotive forces are set up in the secondary coil. Since all
the tubes of magnetic induction produced by the primary current
must thread all the turns of the secondary circuit, the induced
electromotive force is very large. Such a coil, then, would furnish
an alternating current in the secondary circuit. By the use of
a condenser, however, we may increase the electromotive force
which arises in the secondary circuit when the primary current
is broken. The condenser is made of intervening sheets of
tin-foil and paraffined paper, the alternate sheets of foil being
connected together. Its opposite systems of plates are connected
one with each side of the contact-breaker: in the usual form, one
with the platinum point and one with the spring. When the
point 1s in contact with the spring, the condenser is discharged
and the core is magnetized. When the point separates, the
condenser is charged through the primary coil, the process taking
place by a series of electric oscillations which rapidly demagnetize
the iron core. By this means the flux of induction through the
coil is destroyed much more sharply than it would be in the
absence of a condenser, and the electromotive force on breaking
the current is increased greatly. ;

The use of induction coils has extended considerably of late,
owing to their employment in hospitals for the production of
Rontgen rays, and their application to many of the more recent
branches of physical research.
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CHAPTER VIIL

ELECTRICAL UNITS.

The units of physical measurement. Electrostatic and electromagnetic units.
The determination of a current in absolute measure. The determination
of a resistance in absolute measure. The determination of an electro-
motive force in absolute measure. Other practical units.

60. PHYSICAL science is based on the perceptions of our senses,
| and the quantities with which we deal in studying
The units of
physical that branch of knowledge are based, more or less
MEAUIEMER  directly, on such sense-perceptions. In measuring
a physical quantity, two factors are necessary. We must choose
and define some unit of the quantity, and we must determine how
many times that unit is comprised in the quantity we wish to
measure.

The ideas of length and time may be regarded as primary—
length as the simplest form of our conception of space, time as
a recognition of sequence in our states of consciousness. It is
usual to take mass as a third fundamental quantity. Whether
mass is to be considered as truly a primary conception, is still
a matter of controversy. In the view of the present writer, the
third primary conception is that of force, which we derive from our
muscular sense when pushing or pulling. Equal masses are then
defined as masses in which equal forces produce equal accelerations,
and unequal masses are in the inverse ratio of the accelerations so
produced. ,

The conception of mass, whether it is primary or derived from
that of force, is soon found necessary in the mental picture which
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the study of dynamics enables us to make of the world around us.
The great convenience of the conception of mass arises from the
fact that, in any system, the quantity so named is found to remain
constant throughout a series of dynamical changes. On account
of this principle of the conservation of mass, it is well to take
mass as the third fundamental physical quantity, and base our
system of units on those of length, time and mass.

These fundamental units must be selected arbitrarily. In
civilised countries, the unit of length is taken as the length
between two marks on a certain standard metallic bar. In
England there is a standard yard, and in France a standard
metre. In point of fact, both these units are selected arbitrarily
for their convenience, though the original idea of the metre was
derived from a connexion with the supposed dimensions of the
earth. For scientific purposes, the hundredth part of the metre,
or centimetre, is taken as the unit of length.

Like the unit of length, the unit of time is arbitrary, and for
the convenience of daily life the obvious unit to select is the day,
while the sequence of the seasons suggests another equally
arbitrary unit, the year. The exact relation between these two
units can only be determined by careful astronomical observa-
tion. Again, for laboratory use, a smaller unit is convenient,
and the second, a certain fraction of the astronomical unit, is
chosen.

The unit of mass, whether pound or kilogramme, likewise, is
fixed arbitrarily, and defined as a mass equal to that of a standard
kept at some Government Office, though the original kilogramme
was made as nearly equal as was then possible to the mass of one
cubic decimetre of water. Once more, a smaller unit is convenient
in the laboratory, and the thousandth part of the kilogramme, or
gramme, has been chosen. The system of units based on the
centimetre, the gramme, and the second, is in almost universal
use for scientific purposes, and may be referred to as the c.c.s.
system.

All other dynamical units may be derived from these three
fundamental units of length, time, and mass. Thus, the unit of
velocity is the velocity of one centimetre per second, and that of
acceleration means unit increase of velocity per second, or the
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acceleration of one centimetre per second per second. The
definition of mass (p. 171) gives us the relation

mass = force/acceleration,

and, therefore, taking mass as our fundamental unit for the sake
of using a constant quantity, we see that the unit of force, in the
C.G.s. system called the dyne, is that force which produces unit
acceleration when acting on unit mass. We may express this
result in the form

[Force]= M[a]=MLT,

a relation that gives us the physical dimensions of force in terms
of the three fundamental units. Also we see that the dimensions
of work or energy are given by the relation

[Work] = MLeT-,

61. When we pass to the consideration of electrical quantities,
Electrostatic  We find that, in the present state of science, we cannot
eeneo”  express them completely in terms of dynamical units.
nitsy It is possible that some day this may be done, but,
when the necessary relation has been discovered, it will not follow
that it is better to express electrical quantities in terms of those
of dynamics. It may turn out to be quite as correct philosophically
to express dynamical units in terms of electricity, though the
absence of any special electrical sense may make such a proceeding
less convenient and satisfying to the human mind. It should be
pointed out, however, that, to the electrical fish or torpedo, electric
intensity may be a direct sense-perception, and quite as real as
mechanical force.

On the electrostatic system of units, we ought strictly to define
unit charge of electricity by means of the experimental relation
given on page 23,

- M €6,
F = Tre?
where F is the mechanical force between two quantities ¢, and e,
of electricity, which as point-charges, are placed in a medium of
dielectric constant k at a distance r from each other.
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Hence, the dimensions of quantity of electricity on the electro-
static system are

[¢] = M} LA T},

and involve the unknown dimensions of the specific inductive
capacity or dielectric constant of the medium, though the con-
ventional unit is defined on the supposition that this unknown
quantity has no dimensions.

In a similar manner, we may deduce the dimensions of the
other electrostatic units, and tabulate them as follows:

Dielectric constant k k

Quantity of electricity e MELET-1ph
Electric intensity i at bt
Potential difference V Mrrirpd
Capacity G, Lk

Electrostatic polarization J I DAY BV
Current (=e/time) ¢ MYIPT-2ph

Strength of magnetic pole
(=force/current) m M £/ 0 2k

Magnetic force H Myphr-ph
Magnetic permeability P L= AR St

The electromagnetic system of units should, in like manner, be
based on the expression for the force between two magnetic poles
placed in a medium of magnetic permeability u, at a distance r
from each other:

_mymy
oy

though, in our conventional definitions we agree to ignore the
unknown dimensions of the magnetic permeability of the medium.

Unit current is defined as equivalent to magnetic shell of unit
strength, which itself has unit magnetic moment per unit area.
The derivation of the other units which are tabulated below will

be clear.
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Magnetic permeability w ©
Strength of magnetic pole m MY IF 71 Fé
Magnetic force H M-t po 3
Magnetic potential v a Ld I 3
Magnetic induction B ) L0 A I ! ’Lé
Current c Mt p 3
Quantity of electricity

(=current x time) e MY LA p 3

Electric potential-difference

or electromotive force ~ VorE MY LE 7-2 ,L'l‘
Electric capacity @ 8 7B m=n
Dielectric constant (3 L-2T2%yu-1

Thus, in each system of units, the unknown dimensions of
a property of the dielectric medium are involved—its specific
inductive capacity on the one side, and its magnetic permeability
on the other. The accepted definitions of the various units ignore
these unknown quantities, and treat & and p as numbers having no
dimensions—as mere ratios, giving the value of the quantity
in terms of that of air. The unit of electric charge, for instance,
is defined as that quantity of electricity which repels an equal
similar quantity with the force of one dyne when each of the two
quantities is placed as a point-charge in air, at a distance of one
centimetre from the other.

We now see that, by ignoring the unknown dimensions of &
and u, it is possible to arrive at a definition of any electrical or
magnetic quantity by two distinct methods. Two distinct units
result—units different in dimensions and different in magnitude,
the difference arising from the assumption that & and x have no
dimensions. Let us take for example, the unit of current. On
the electrostatic system, the idea of current is derived from that of
electric charge—unit current flows through a conductor when
unit charge passes through it at a uniform rate in unit time. On
the electromagnetic system, on the other hand, a current is
detected, defined and measured by means of its magnetic effects;
the conception of a quantity of electricity is now derived from that
of current. The electromagnetic unit of current is the current
which is equivalent to a magnetic shell of unit strength, or the
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current which produces a magnetic force equal to 2/r at the
centre of a circular path of radius ». By either of these definitions,
we obtain a unit of current different from that derived from the
electrostatic system. The electrostatic dimensions of current, as
usually defined, are those of quantity of electricity divided by time,
or MYLiT-2 while the electromagnetic dimensions are M*LiT—1,
Thus, the units of current as ordinarily defined, possess different
dimensions on the two systems, and the ratio of the dimensions of
the electrostatic to those of the electromagnetic unit is

ME[AT-2

wpr—= I

Now, LT~ is the dimensions of a velocity. Hence, the ratio of
the electrostatic to the electromagnetic unit of current involves
the dimensions of a velocity.

Again, on the electrostatic system, the dimensions of capacity,
namely, quantity of electricity divided by potential-difference, are
simply those of length, L, while, on the electromagnetic system,
they are L—'T? Here the ratio of the units, electrostatic to
electromagnetic, involves L*T'~?, that is, the square of a velocity.

These discrepancies between the units of one and the same
quantity depend, as we have seen, on the assumption that the
specific inductive capacity and the magnetic permeability of the
electromagnetic medium are mere ratios—quantities of no physical
dimensions, expressing the property of the medium simply as
compared with the same property of air. If, instead of thus
ignoring the dimensions of 4 and u, we keep these symbols,
unknown as they are, in our definitions, we may assume that the
same quantity, however defined, will possess the same dimensions.
Taking for instance the two definitions of unit current, we have

MYDAT—[kP = MYLET[p] %
Thus, (el{ult = LT,

and a similar result is reached whatever pair of units we

consider. ,
Hence, although the individual dimensions of the two quantities,
the dielectric constant and the magnetic permeability, remain
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unknown, it follows that the dimensions of their product are
determined, and are given by the relation

Tl

(kul =~

To this important result we shall return later; our immediate
concern is with the methods of determining experimentally the
values of different electrical quantities in the absolute electrostatic
or electromagnetic units defined on the assumption that k and w
are quantities having no dimensions.

62. The definition of unit current as equivalent to a magnetic

™ shell of unit strength has been shown in § 41,
e deter-

mination of Chapter V, to lead to the same results as a more
absolute practical definition, which makes the unit current

mea: 4 - . .
casure that current which, when flowing round a circle of

radius 7, produces a magnetic force of 27/r at the centre. From
this definition we deduced the theory of the tangent galvanometer,
and showed that, with proper precautions, that instrument gave a
fairly accurate means of determining the electromagnetic value of
a current. Unfortunately, this method involves a knowledge of the
horizontal component of the earth’s magnetic force; and, not only
is the accurate determination of this quantity a long and laborious
undertaking, but the continual variations of its value make it
necessary to record its changes throughout the time of the
experiments. This objection applies, it is true, to some of the
further methods now to be discussed, but others, less affected by
the difficulty, have been devised.

One such method depends on the measurement by weighing
of the force between circuits when currents flow round them.
Practical instruments have been devised by Lord Kelvin and others
for the measurement of currents by means of such forces. In
these instruments, two small moveable coils are attached one to
each end of the beam of a balance. Each of the moveable coils
lies between and parallel to two larger fixed coils of approxi-
mately equal size, round which the currents pass in such a
direction that the force on one moveable coil acts upwards and

W. E. 12
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the force on the other coil acts downwards (Fig. 88). A

pointer at the end of

the beam shows when 5

it is horizontal, and a ey e\@

sliding weight can be @

adjusted to bring the

beam back to this posi-

tion when it is deflect-

ed. The couple tend- Fig. 88.

ing to deflect the beam

varies as the square of the current, while that tending to restore

the beam to its position of equilibrium varies as the displacement

of the sliding weight. Hence the current is proportional to the

square root of the distance between the weight and the fulcrum.
The beam is graduated according to this square root scale, and,

if we know the absolute value of the graduations, the instrument

may be used as a standard of reference. It is called an ampere-
balance.

For our present purpose of investigating the absolute electro-
magnetic value of some current which can afterwards be recovered,
we must calculate the couple on the moveable coils from the
dimensions and arrangement of the apparatus. We have seen, § 41,
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that the magnetic force on the axis of a large circular current not
far from its centre is fairly uniform over a considerable space, and
equal to 27mer?/(r? + 2°)! where ¢ is the current, n, the number of
turns of wire, r, the radius of the coil, and x the distance of the
point on the axis from the centre of the coil. We may use this
result to calculate the coefficient of mutual induction between a
large coil and a small coil with parallel planes, the two coils being
co-axial. The coefficient M is the number of tubes of magnetic
induction threading the total area nymry® of the small coil when
unit current circulates in the large coil. It will therefore have the
value
nmrry? . 27 /(ry? + 2%)}
or 27ty mary 2 (ry? + a?)i.

Now we have seen that the mutual potential energy of two
circuits, when unit current passes through both, is measured by
their coefficient of mutual induction. The force on a body in any
direction is equal to the rate of decrease of the potential energy as
the body moves in that direction. Hence, the mechanical force ¥
on the small coil in the position we have described, tending to
move it towards the large coil when a current ¢ flows round both
coils, is —¢*dM/dz. Thus

— 2, 290 2 & 2
F = 6mn,nyr?r (r12+x2)’?c :

If the plane of the small coil coincide with that of the large
one, so that x is nothing, there is no force tending to change «,
while at a great distance also the force vanishes. Hence there is
some position for the small coil where the attraction is a maximum ;
the force is then independent of small errors in the value of .
In these circumstances, there 1s a fixed relation between x and r,
and the result may be shown to depend on the ratio of the
effective radii of the large and small coils, not on the absolute
values of those radii. Now the ratio of the radii may be found
by measuring electrically the ratio of the galvanometer-constants
of the two coils, a quantity which can be obtained much more
accurately than the effective radius of a number of turns of wire
wound in a coil. '

12—2
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The approximate theory of the subject given above assumes
that each coil may be treated as a circle, the dimensions of the
channel for the wires being supposed negligible compared with the
radius of the circle. This, of course, is very far from being the
case, and the exact theory of the apparatus is somewhat com-
plicated. Nevertheless, the investigation we have given serves to
illustrate the principles involved.

The method was used by Lord Rayleigh and Mrs Henry
Sidgwick in 1884 for the determination of a current in absolute
measure. The small coil was suspended from one arm of a
balance, the current being taken in by means of flexible leads
of fine copper wire. The large coil, as in the ampere-balance
described above, was doubled; one large coil was placed on each
side of the small coil, and the current was sent opposite ways
round the two large coils. The force was thus doubled, and
the magnetic field of force made more uniform.

When a resistance has been determined in absolute measure,
it is possible to construct a standard resistance coil and keep it for
future reference. No such possibility, however, exists in the case
of a current. To determine a certain current in absolute measure
might be of interest to the experimenter at the time, but it would
be of no use for future reference. It is necessary, at the time of
the absolute determination, to measure the same current in some
practical way, which may afterwards be repeated with other
currents, in order to obtain an indirect measurement of those
currents in absolute units.

One property of a current, which has often been used for this
purpose, is its power of depositing a metal from the solution of
one of its salts. This process will be studied in the chapter on
electrolysis. Here it is enough to say that the amount of silver
deposited from a solution of silver nitrate by a given current
flowing for a given time, that is, by the passage of a given
quantity of electricity, is a quantity which, within the limits of
experimental accuracy, seems to be quite constant. The mass of
silver deposited, then, may be used as a measure, not directly
indeed of the current passing at any particular instant, but of
the total electric transfer round the circuit during the time of
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the observation. If however, the current be maintained constant
throughout, its value at any instant will be proportional to the
mass of silver divided by the time.

The experiments of Lord Rayleigh and Mrs Sidgwick went to
show that one electromagnetic unit of electricity, when passed
through a solution of silver nitrate from a plate of silver to the
surface of a platinum bowl, deposited 0:0111795 gramme of silver.
Many later experiments have been made, with the result that the
mean of the best observations indicates that the true figure is
probably between 001118 and 0:01119. The ampere, or practical
unit of current, is one-tenth of the electromagnetic unit, and has
been defined for practical purposes by the International Congress
which met at Chicago in 1893 as that current, which, flowing
through a solution of silver nitrate, deposits 0°001118 gramme of
silver per second. This is now the legal definition of the ampere,
and 1t 1s possible that, even should future research show that the
electromagnetic unit is appreciably different from the value taken
at present, no change would be made in the practical definition of
the ampere. The supposed dimensions of the earth, assumed for
the original construction of the standard metre by the reforming
zeal of the first French Republic, have been shown by later
determinations to be erroneous; but the distance between two
marks on the French standard bar then made continues to be
the legal metre.

Another method, for the determination of currents in absolute
measure, depends on the use of an instrument known as Weber’s
electrodynamometer. Two large circular coils are mounted with
their planes parallel and vertical, the coils being coaxial. They
may be looked upon as part of a double-coil tangent galvanometer.
Instead of the needle, however, a smaller coil is hung by a bifilar
suspension at the middle of the line joining the centres of the
two coils. The plane, of the small coil when in its position
of equilibrium, lies at right angles to the planes of the two
large coils. A current is passed in series through the two large
coils, and, by means of the bifilar suspension, through the
small suspended coil, which then tends to set with its plane
parallel to those of the large fixed coils, as may be seen by
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considering the direction of the axis of the equivalent magnetic
shell.

The “couple of restitution due to the bifilar suspension is
approximately proportional to the sine of the angle of deflection,
and may be determined by experiment: for a deflection 6 let us
call it b sin 6. The couple due to the current is

27rn,

¢M cos 0,
1

where M is the magnetic moment of the suspended coil. The
strength of the current is measured by the strength of the
equivalent magnetic shell, and the strength of a shell is the
magnetic moment per unit area. Thus, the effective area of the
suspended coil being 7r1.n,, its magnetic moment is 7. We
therefore have

2mn .
2 L cmrr2n,e cos @ =0 sin 6,
1
br
or =5 — tan 6.
2w 2nm,

When a current flows in the suspended coil, the coil tends to
set in the earth’s field, and the couple due to this tendency must
be added to that of the bifilar suspension. Corrections are also
necessary for the finite size of the windings, and other differences
between the practical apparatus and the simplified form of it
contemplated by the elementary theory given above.

It should be noted that the deflection depends on ¢? so that
the electrodynamometer may be employed for alternating currents.

63. The three quantities, current, electromotive force, and
o resist.aance, are connected together by the well-known
nation of a relation described by Ohm’s law. Hence the electri-
resistance in e . .
absolute cal quantities involved in the passage of a steady
measure. . .
current are all determined in absolute electromag-
netic measure if the values of two of these three quantities are
known. We have described methods of determining the strength

of a current, and it remains to consider the second type of experi-
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ment, whereby the solution of the problem is completed. The
experiments give values both of the electromotive force and also
of the resistance, since, when the current is known, there is a
necessary relation between them. But, since permanent resistance
coils are easy to-construct, it is usual to regard the experiments as
an investigation of a resistance in absolute measure, or, as the
phrase goes, the determination of the ohm.

The first determination of the resistance of a wire in absolute
electromagnetic measure was made by Kirchhoff, who calculated
from their dimensions the coefficient of mutual induction of two
coils when in a certain relative position, and observed the throw
of a galvanometer when one coil was moved quickly into a position
where the mutual induction was zero.

Joule’s calorimetric experiments on the heat developed by a
current (see page 132) give a value for the work done by a current
when passing through a certain resistance. The current may be
measured in electromagnetic units by means of a tangent galvano-
meter or otherwise, and the observed thermal effect then gives
the absolute value of the electromotive force and the resistance
between the ends of the coil immersed in the calorimeter.

The first determination, on which was based an extensive
manufacture of resistance coils, was undertaken at the instance
of the British Association, and was carried out by Balfour Stewart,
Fleeming Jenkin, and Clerk Maxwell in 1863.

In order to understand the principles involved, let us consider
the case of a coil of wire, spinning round a vertical axis in the
earth’s magnetic field of force. The plane of the coil being
vertical, the vertical magnetic component will not be involved, and
may be neglected ; the horizontal component alone need be taken
into account. As we saw in § 58, when considering the theory of
the dynamo, a periodic electromotive force is set up in the coil,
the direction being reversed twice in each complete revolution,
when the plane of the coil lies at right angles to the lines of
induction. An alternating current will circulate in the coil; it
will have a periodic time equal to that of the electromotive force,
and, owing to the small self-induction of the coil, will not lag
appreciably behind the electromotive force in phase.
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An alternating current of quick period will not affect an
ordinary galvanometer. By leading off the current into an
external circuit through a rectifying commutator, as described
on page 165, its average value might be determined by a
tangent galvanometer. But such a measurement could give only
a roughly accurate result, and another method was adopted.

If a compass-needle be suspended at the centre of the coil
itself, the position of the coil relative to that of the needle will be
reversed periodically in time with the reversals of the current.
Thus the couple on the needle due to the current will act always
in the same direction, and the needle will suffer a permanent
deflection, which is constant if the coil rotate at a constant rate,
of which the period is rapid compared with the time of vibration
of the needle itself. i

The average couple on the needle due to the varying current
in the coil may be calculated, and thus its observed deflection may
be used to determine the average current in electromagnetic units.
It will be noticed that the horizontal component of the earth’s
magnetic field comes into each side of the equation of equilibrium
of the needle; it determines the induced electromotive force in the
coil, and the couple tending to deflect the needle; but also it
determines the couple tending to return the needle to its original
position of equilibrium. Therefore, to a first approximation, the
indications of the apparatus are independent of the value of the
earth’s field. A correction has to be applied, however, for the
magnetic field of the needle itself, which of course produces an
electromotive force in the spinning coil.

The electromotive force in the coil being thus calculated, and
the current being deduced in electromagnetic units from the
observed deflection of the needle, the resistance of the coil can
be calculated in absolute units, and, by comparison with it,
resistance coils of any required value may be constructed. The
ohm coils based on the results of these experiments—the B.A.
units, as they are often called—for long were the usual standards
of resistance. Of recent years, however, more accurate determina-
tions of the ohm, both by the use of spinning coils and by other
methods now to be described, have led to the construction of new
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standards. The old B.A. unit is 09863 of the new or “inter-
national ohm.”

Perhaps the method which is capable of determining a
resistance in electromagnetic units with the greatest precision
is that due to Lorenz, and used by him, by Lord Rayleigh and
Mrs Sidgwick, and by others, for the redetermination of the ohm.

We have seen (page 149) that, if part of a circuit is moveable,
it will tend to travel under the influence of a magnetic field so
that the total induction through the circuit is increased. Let us
imagine that a metallic disc is mounted to rotate on its axis so
that its plane is normal to a magnetic field of known intensity,
and that two brushes touch the disc, one at its axis and one at its
circumference. If a current be passed through the disc between
these brushes, the magnetic force will so act on each element of
current that it tends to move in the direction of the circumference
of the disec. Thus, on the disc as a whole, there acts a force with
a moment about the axis tending to make the disc rotate in its
own plane.

Hence it follows that, in the converse case, when no external
current is passed through the disc, but the disc is made to rotate
by external means in the magnetic field, an electromotive force
will be set up in the circuit, consisting of the disc, the brushes,
and an external wire joining the brushes.

We may calculate the electromagnetic value of this electro-
motive force, by considering the work done by the battery which
we imagined to maintain the current in the first case; or, more
simply, by reckoning the number of magnetic lines of induction
cut by the lines of current-flow in the disc when it is made to
rotate as supposed in the second case. If n denote the number of
revolutions made by the disc per second, and r its radius, the area
swept out per second by any radius of the disc, and therefore by
any line of current-flow, whether straight or curved, will be nmr?;
and, if B be the magnetic induction, that is, the number of lines
of induction through unit area, the total change of induction per
second through the circuit, which measures the induced electro-
motive force K, is given by the relation

E=nmr*B= nh,
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The value of M, the coefficient of mutual induction between
the two coils and the disc, can be calculated from their dimensions
and relative positions, and hence we obtain the resistance R in
electromagnetic measure.

In a method used by Mr Glazebrook for the determination
of the ohm, the mutual induction between two coils is calculated
from their dimensions and relative position, and then determined
experimentally by observing the throw of a ballistic galvanometer.
The galvanometer is standardised by passing through it a steady
current furnished by the electromotive force between two points
in the primary circuit.

On the mean result of the best determinations, the International
Congress of 1893 re-defined the ohm. One ohm is 10° electro-
magnetic €.G.S. units, and, for practical purposes, may be taken as
the resistance at the temperature of melting ice, of a column of
mercury of uniform cross-section, which, at the same temperature,
has a length of 106'3 centimetres, and a mass of 14:4521 grammes.
Such a column is, as nearly as possible, one square millimetre in
cross-section,

64. As we have pointed out already, when the absolute values
The determi.  ©F & standard current and of a standard resistance are
:;tcl;r;;i o, known, that of an electromotive force can be deduced.
force in abso-  One method of doing this, used by Mr Glazebrook
futemeasare and Mr Skinner, may briefly be described. The
current from a battery of accumulators is passed through a silver
voltameter to measure its value in absolute units by reference to
the standard determinations. The current also passes through
two resistance boxes in series, of which the resistances are known
in terms of the standard ohm. The sum of the resistances in the
two boxes is maintained constant, so that, if resistances are taken
out of one box, equal resistances are put into the other. The "
current is thus kept constant. If R be the resistance between
the terminals of one box, and ¢ the current through it, the
electromotive force between its terminals is Re, and this electro-
motive force may be balanced directly against that of some constant
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cell, such as that of Latimer Clark, by introducing them in opposite
directions into the same circuit of a high resistance reflecting galva-
nometer, and adjusting the resistances in the boxes till there is no
deflection. The electromotive force of the Clark’s cell is then
equal to Re, and thus its value is obtained in absolute measure.
The cell may afterwards be used as a standard, and the electro-
motive forces of other cells determined by comparison with it.
The comparison may be effected by means of the potentiometer.

The volt is 10° electromagnetic units, and the Congress of 1893
defined the International Volt as the electromotive force, which,
steadily applied to a conductor with a resistance of one interna-
tional ohm, will produce a current of one international ampere,
and represented sufficiently well for practical use by 1000/1434
of the electromotive force at 15° C. between the poles of a Clark’s
cell prepared according to a standard specification. Since the
date of the Congress several new investigations have been made,
and it seems possible that the true electromotive force of a Clark’s
cell 1s lower by one or two parts in a thousand, and more nearly
equal to 1432 or 1433 of a volt.

65. When the absolute measure of the practical units of
Otherpractical CUITent, resistance, and electromotive force are once
site; determined, the values of the practical units of the
other electrical quantities follow by definition, and may be de-
termined experimentally by ordinary electrical methods without
new absolute measurements. The following definitions were
adopted in 1893.

Quantity. The International Coulomb is the quantity of
electricity transferred by a current of one international ampere
in one second.

Capacity. The International Farad is the capacity of a
condenser charged to a potential of one international volt by one
" international coulomb of electricity.

Work. The Joule is equal to 107 units of work in the c.G.s.
system, and is represented sufficiently well for practical use by the
energy expended in one second by an international ampere in an
international ohm.






CHAPTER IX.

ELECTROMAGNETIC WAVES.

The electromagnetic medium. The propagation of an electromagnetic dis-
turbance. The ratio of the electrostatic and the electromagnetic units.
The relation between dielectric constants and optical refractive indices.
The experiments of Hertz. Wireless telegraphy. The origin and mode
of propagation of waves of light. The energy of the electromagnetic
field. The momentum in the electromagnetic field. Magnetic forces as
due to the motion of electrostatic tubes of force,

66. FARADAY was the first to fix his attention on the dielectric
medium as the essential seat of electrical processes.
The electro- . .
magnetic As we saw in Chapter III, it was to Faraday’s
SRl “obstinate disbelief” in action at a distance that we
owe most of his researches. Faraday had no skill in mathematical
analysis, and his conceptions were much in advance of the general
knowledge of his time. As was said by the great German
physicist von Helmholtz in his Faraday Lecture for 1881, “ Now
that the mathematical interpretation of Faraday’s conceptions
regarding the nature of electric and magnetic forces has been given
by Clerk Maxwell, we see how great a degree of exactness and
precision was really hidden behind the words, which, to Faraday’s
contemporaries, appeared either vague or obscure.”

Taking up Faraday’s ideas, and developing them in new
directions, Maxwell pointed out that, if the energy of an electro-
magnetic system resided in the dielectric medium, it was probable
that the energy passed through that medium with a finite velocity.
When, for instance, an alternating current in one circuit is inducing
a secondary alternating current in another circuit at a distance,
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the energy must pass through the intervening space in some alter-
nating form also. A wave motion of some kind is thus suggested,
and a medium is required to carry the waves—to supply what the
late Lord Salisbury once called “a nominative case to the verb ‘ to
undulate.””

In the chapter of his great book on Electricity and Magnetism,
wherein Clerk Maxwell gave to the world his complete theory
of electromagnetic waves, he writes:

“In several parts of this treatise an attempt has been made to
explain electromagnetic phenomena by means of mechanical action
transmitted from one body to another by means of a medium
occupying the space between them. The undulatory theory of
light also assumes the existence of a medium. We have now to
show that the properties of the electromagnetic medium are
identical with those of the luminiferous medium.

“To fill all space with a new medium whenever any new
phenomenon is to be explained is by no means philosophical, but
if the study of two different branches of science has independently
suggested the idea of a medium, and if the properties which must
be attributed to the medium in order to account for electro-
magnetic phenomena are of the same kind as those which we
attribute to the luminiferous medium in order to account for the
phenomena of light, the evidence for the physical existence of the
medium will be considerably strengthened.

“But the properties of bodies are capable of quantitative
measurement. We therefore obtain the numerical value of some
property of the medium, such as the velocity with which a dis-
turbance is propagated through it, which can be calculated from
electromagnetic experiments, and also observed directly in the
case of light. If it should be found that the velocity of propagation
of electromagnetic disturbances is the same as the velocity of light,
and this not only in air, but in other transparent media, we shall
have strong reasons for believing that light is an electromagnetic
phenomenon, and the combination of the optical with the electrical
evidence will produce a conviction of the reality of the medium
similar to that which we obtain, in the case of other kinds of
matter, from the combined evidence of the senses.”

As we shall see, this identity of velocity has been demonstrated
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by experiment, and, as Maxwell says, the evidence for the existence
of a luminiferous and electromagnetic medium—an @ther—is the
same in kind, perhaps as strong in degree to those capable of
judgment, as the evidence for the existence of other kinds of
matter which we can touch and handle. The question whether
this evidence is enough to demonstrate the real physical existence
of entities corresponding to our conceptions of the aether or a
table remains an inquiry for that branch of philosophy known as
metaphysics. Natural science demands the conceptions of aether
and table to bring order into our mental picture of the universe,
but natural science alone is unable to decide whether definite and
ultimate realities exist, corresponding to our conceptions. The
unity and simplicity which these conceptions introduce into our
model of phenomena are valid metaphysical arguments in favour
of their ultimate existence, but the arguments are metaphysical
arguments, not scientific ones, in the limited sense of that word.
Most men of science are realists, but their beliefs on such questions
are metaphysical hypotheses or philosophic dogmas, not the definite
conclusions of natural science.

67. Let us now consider a simple electric system by the

PP agaE properties of which we may investigate the pro-

Hepiotoan pagation of an electromagnetic disturbance through
electro- . . .

magnetic an isotropic medium. Let 4 and B represent two
disturbance.

vertical metallic plates, forming a condenser charged

with equal and opposite quantities of electricity uni-

formly distributed over each plate. The dielectric

medium between the plates is in a state of strain, and .

straight horizontal Faraday’s tubes of force may be

supposed to run from the one plate to the other. 5 3
If the top of the plates be connected by means of

a wire of high resistance, the plates are discharged.

There is a flow of positive electricity up one plate, and

of negative electricity up the other. Corresponding with

this process, the electric tubes of force move vertically upwards

towards the wire, in which they contract and disappear, as

described on page 58. .
While the tubes are moving upwards between the plates, let

Fig. 91.
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their velocity be . One tube of force is supposed to proceed from
each unit charge, so that the number of tubes per unit area of
each plate is equal to o, the surface density of electrification
over it.

Now let us consider the magnetic force due to the two current-
sheets which pass up one plate and down. the other. By an
investigation similar to that adopted in the case of the solenoid on
page 100, it follows that the magnetic force is 4are,, where ¢, is the
current across unit length normal to the line of flow. The
magnetic force, it will be seen, acts in a direction normal to lines
of current-flow and normal to the electric tubes of force,—that is,
in a direction perpendicular to the plane of the paper in the figure.

But the current across unit length is measured by the product
of the charge per unit area into the velocity with which the
charge moves. Thus ¢, may be replaced by ov, and the magnetic
force between the plates is 4wov.

As shown on page 55, the dielectric polarization P in the
dielectric medium, is measured by fk/4m, where f is the electric
intensity, and & the dielectric constant. This quantity fk/4m is
also equal to o, the surface density on the plates, and therefore to
the number of Faraday’s tubes per unit cross area. We thus have,
for the magnetic force,

H =47 Pv,
and, for the magnetic induction,
B =47 Pup.

Now the essence of Maxwell’s theory consists in the recognition
of the magnetic effects of dielectric currents: that is, the recogni-
tion that a magnetic force is produced by a change in the dielectric
polarization, a change which is equivalent to a motion of Faraday’s
tubes of electrostatic force. Let us, then, dismiss all ideas of
conductors, and of ordinary electric currents in them, and fix our
attention on a region of the dielectric medium through which are
passing a succession of Faraday’s tubes. According to the theory
of Faraday and Maxwell, the existence of a magnetic force means
the motion of electric tubes, and the magnetic force is 47 times
the product of the number of tubes per unit cross area, a number
which gives us P in the above equation, and of the velocity of the

W. E. 13
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tubes at right angles to their length. The direction of the
magnetic force is at right angles both to the length of the electric
tubes, and to the direction of their motion.

Let us now return to the consideration of the propagation of
a disturbance through the electromagnetic field, and approach the
question from another side. Let us imagine that part of a
circuit consisting of a long straight current is moved in a magnetic
field at right angles to its length and at right angles also to the
direction of magnetic induction B. The rate of change of induc-
tion through the circuit is Blv,, where [ is the length of the
moving wire, and ¢ its velocity. Hence the electromotive force
in the wire, or the difference of potential set up between its ends,
is Blv'. Exactly the same effect is produced if we suppose the
wire to be at rest, and the magnetic induction to be propagated
through the field with the same velocity v".

Once more let us suppose that we eliminate from our minds
the idea of a conductor, and imagine the equivalent processes to
occur in the field alone. The current is replaced by a change in
the dielectric polarization, that is, by a movement of the electric
tubes of force. Along the length [ of the line of the motion there
exists an electromotive force £, and thus at each point there is

an electric intensity
E

f= 7= By

But we have shown already that the motion of the electric
tubes of force sets up a magnetic induction at right angles both
to their length and to their direction of motion, and that

B = 47 Pup.

Thus, in the direction of motion of the electric tubes, a wave
of magnetic induction is propagated with the same velocity. This
represents an electromagnetic disturbance, and, putting v equal
to v, we obtain a second relation between the quantities from
the equation

. f=Buv.

On page 37 it was shown that the electric intensity between

two charged planes was given by the relation

4o

i
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Hence, since the surface density of electrification o is numeri-
cally equal to P the dielectric polarization, we have

47 P
S= T
a result which is true from point to point in the medium, and
therefore is independent of the particular system considered in
establishing it.
We now have two equations for B,
B=47Puu

and B=Z‘=4_7£

v vk

Therefore,

4 Py = il%:,cf ,

or V2=
and R

and this result, on Maxwell’s theory, gives the velocity of an electro-
magnetic disturbance propagated through an isotropic medium
possessing a dielectric constant & and a magnetic permeability .

68. In the last chapter on electrical units we saw that the

dimensions of the electrostatic units, as ordinarily
The ratio of

the electro- defined, were different from. those of the usual electro-
static and . . D Py

ey Aot magnetic units for corresponding quantities. We
e S also found that the ratio of any pair of units involved

a velocity or some power of a velocity, and that the
velocity in question was measured by 1/Vku. Thus it follows that,
by comparing the numerical values of some one pair of units, we
may determine the velocity with which an electromagnetic dis-
turbance is propagated through the medium.

Much experimental skill has been devoted to the measurement -
of the number of electrostatic units in one electromagnetic unit
of some electrical quantity. Weber and Kohlrausch found that
one electromagnetic unit of quantity of electricity contained

13—2
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31074 x 10" electrostatic units. Lord Kelvin compared the two
units of potential, and found a value for v of 2:93 x 10" centi-
metres per second. Clerk Maxwell balanced a force of electrostatic
attraction against one of electromagnetic repulsion, and obtained
2-88 x 10,

On the whole, however, the most convenient pair of units to
deal with are those of capacity; and experiments have been made
by Ayrton and Perry, J. J. Thomson and Searle, and others, by this
method. The electrostatic capacity of a condenser of regular form
may, as we have seen, be calculated in simple cases from a
knowledge of its form and dimensions. The same quantity, or
the capacity of another condenser which may be compared with
the first one, may be determined in electromagnetic measure in
one of several ways. The most obvious method consists in charging
the condenser to some known potential-difference by means of a
standard voltaic cell, and then discharging it through a ballistic
galvanometer, of which the constant is also determined. By this
method Ayrton and Perry estimated v to be 2980 x 10* centi-
1metres per second. Another arrangement, suggested by Maxwell
and used by J. J. Thomson and Searle, consists in placing a
condenser in one arm of a Wheatstone’s bridge, and continually
charging and recharging it by means

of a vibrating tuning fork (Fig. 92). F
A series of electric charges is thus \/
conveyed through the arm of the g
bridge, and, if the period of the . R a
fork is very rapid compared with \
the swing of the needle of the |
. ; B %) G
galvanometer, the discontinuous y
Fig. 92.

electric transfer through the con-
denser-arm is equivalent to a continuous current. The charge
conveyed . by each vibration of the fork is CV, where (' is the
capacity of the condenser, and ¥V the difference of potential
between its plates. If » be the number of complete vibrations
of the fork, or the number of charges per second, the effective
current is nCV. Now a steady current would be given by V/R,
where R is the resistance. Hence, the effective resistance of the
arm of the bridge in which the condenser is inserted is 1/nC.
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From such considerations it is possible to calculate the capacity
of the condenser by applying Kirchhoff’s laws to the bridge.
Thomson and Searle compared the capacity of the bridge-condenser
with that of two concentric cylinders. By calculating the latter
quantity in electrostatic units, they found that v was 2:9958 x 10*
centimetres per second.

The mean of the determinations of the quantity v is thus very
near the value 8 x 10" centimetres per second. Now, within the
narrow limits of experimental error, the observed velocity of light
is also 3 x 10" centimetres per second. In Maxwell’s words, “we
have strong reasons for believing that light is an electromagnetic
phenomenon.”

69. Another consequence of the theory may be submitted to
Therelation  eXperimental examination. The velocity of an electro-
e con. INagnetic wave through air should bear to its velocity

stants and through some other transparent medium the ratio
optical refrac-

tiveindices. ] .1 /Wky or ¥ku: 1. The magnetic permeability of
ordinary transparent media is sensibly equal to that of air, and
this ratio becomes 4/k : 1. But the ratio of the velocity of light
in air to its velocity in another medium measures, on the
undulatory theory and in practice, the refractive index r of that
medium. We should look, then, for a connexion between the
optical index of refraction and the dielectric constant of different
transparent substances; the theory indicates that the refractive
index should be equal to the square root of the specific inductive
capacity.

The specific inductive capacities tabulated on page 29 are
obtained by measuring the relative capacities of condensers when
their charges are retained for some considerable time—a time, at
all events, comparable with a second. But the refractive index
depends on the properties of the medium with respect to the
exceedingly rapid vibrations of light, the periods of which are
of the order 2 x 107 seconds. The quantities are not strictly
comparable. An attempt to-secure comparable results has been
made by determining the refractive indices for a series of vibration
frequencies, and estimating their values for a frequency corre-
sponding with an infinite wave length, by some such equation as
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that of Cauchy. But there is some doubt as to the accuracy of
the values so obtained. Cauchy’s formula does not contemplate
any anomalous dispersion, and Maxwell’s equations take no account
of dispersion at all. Any comparison by such methods of the
dielectric constants and the refractive indices still remains un-
satisfactory.

Substance Nk r

Paraffin 1-51 1-42
Benzene 1:54 150
Carbon bisulphide 1-63 164
Flint glass 3-18 171
Quartz 213 1-55
Distilled water 872 1-33

Thus, with certain substances, great discrepancies exist,
though the considerations we have advanced above more than
explain any such want of concordance. We are unable to produce
electric alternations of periods comparable with those of light,
but the electrical vibrations of systems of small capacity have
frequencies rising to some hundreds of millions per second, and
use has been made of these vibrations to determine some dielectric
constants.

As we have seen, electromagnetic disturbances travel with a
velocity which, in non-magnetic media, varies inversely as the
square root of the dielectric constant, By observing the inter-
ference between two parts of an electromagnetic wave which have
passed over paths of equal length in air and some other medium
respectively, comparisons of velocity have been made. M. Blondlot
and Prof J. J. Thomson independently found that, in rapidly
changing fields, the specific inductive capacity of glass was less
than in steady fields, and had a value of about 2:8. This gives
vk a value of 17, in agreement with the optical measurements of
refractive index. '

70. Clerk Maxwell published his electromagnetic theory of
light in the year 1865. For twenty years the direct

The z 5 o
experiments evidence in its favour was almost confined to the
it considerations we have given—the concordance of
the value of the velocity involved in the ratio of the electrical
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units with the observed speed of light, and the agreement, more
or less exact, between the indices of refraction of transparent media
and the square roots of their dielectric constants. Maxwell’s
theory, although generally accepted in England, was but im-
perfectly known on the Continent, and its merits as a successful
means of representing and co-ordinating electrical phenomena
were hardly realized.

In 1888, the physical world was startled by the announcement
that electromagnetic waves had been produced, and their passage
through space demonstrated, by Professor Heinrich Hertz, then of
the Carlsruhe Polytechnie, who had found moreover that the waves
moved with a speed which, at all events, did not differ much from
the velocity demanded by Maxwell’s theory—the velocity of light.

In the chapter on electromagnetic induction, it was shown that,
on the analogy between self-induction and inertia, the discharge of
an electrified system of capacity ¢' through a circuit of small
resistance and of self-induction L, gave rise to electrical oscillations

with a period of 27V LC.

One form of electric oscillator used by Hertz consisted of two
metallic plates in the shape of squares with sides 40 centimetres
in length. The plates were con-
nected by rods about 30 centi-
metres long with two small highly ——e0——
polished gilt balls placed 2 or
3 centimetres apart. The plates
were connected with the opposite LBk
terminals of the secondary circuit of an induction coil. Each time
the plates became charged to a certain difference of potential
a spark is produced, and electric oscillations are set up. With the
apparatus used by Hertz, the period of alternation was about
1:85 x 10~® seconds. The resistance is high and the self-induction
low ; consequently very few oscillations occur at each discharge,
the energy being partly radiated as waves, and partly dissipated
as heat in the spark.

To detect the presence of the electromagnetic waves in the
space surrounding the oscillator, Hertz made use of the principle
of resonance. When any physical system, possessing a natural
period of vibration of its own, is subjected to periodic impulses
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which coincide with the natural period of the system, violent
oscillations are set up. This principle is illustrated by the timing
of the impulses given to a child’s swing, and by the sounding of a
piano wire of one particular frequency of vibration when a note in
unison with its own is sung near it.

Hertz’s resonator was formed of a circle of wire about 35 centi-
metres in radius, separated at one part of its
circumference by a spark gap made of two small
knobs. By means of a screw, working in an
ebonite frame, the knobs could be adjusted at
any small distance from each other. We may
regard an uncharged conductor as possessing Fig. 94.
equal charges of the opposite kinds of electricity;
and, when properly timed impulses fall on it, electric surgings of
these charges will be set up. As the positive charge swings one
way and the negative the other, the knobs become oppositely
electrified, and their potential-difference may become so great,
owing to the kinetic energy of the oscillating charges, that a
spark passes.

A circle of this size possesses a natural period of electric
oscillation about equal to that of the oscillator used by Hertz, and
thus, if it be moved about in front of the spark-gap of the
oscillator, resonance effects may be observed by the presence of
minute sparks, the length of which depend on the position of the
plane of the resonator and on the position of the air gap therein.

The electric waves given by Hertz’s apparatus may be reflected
by metal surfaces, focussed by parabolic mirrors of sheet zine, and
refracted by large prisms of pitch. A frame of parallel wires
1s. transparent to the waves when the wires are perpendicular to
the line of the spark, and opaque when the wires are parallel to the
spark. In all these respects, the electromagnetic waves show the
properties of plane polarized light, in which, according to the
undulatory theory, the vibrations occur in straight lines in a plane
at right angles to the direction of propagation.

When the waves of the sea impinge directly on a straight wall,
they are reflected. Interference results between the direct and
reflected waves, and a system of what are called stationary un-
dulations is set up. The motion of the water in front of the wall is



IX] ELECTROMAGNETIC WAVES 201

such that no waves appear to be moving forward ; any point on the
water simply rises and falls periodically. At certain intervals this
motion ceases, and we get points called nodes, where the water
is stationary. Another illustration of the same principle is given
by the transverse vibrations of a stretched string or wire. If both
ends be fixed, the fundamental mode of vibration gives a node at
each end, and an internode or loop at the middle. This arrange-
ment may be considered to be due to the successive reflection of
the waves at the ends of the string. If the string be held
lightly at the centre, it may be made to vibrate in halves, and, if
it is emitting a sound, the note will be the octave of the first.
Other modes of vibration, giving higher overtones, may also be
produced, the string being more subdivided. The analogy between
the vibrations of the string and the electric waves we have now to
consider 1s best seen if we imagine the vibrations of the string to

Fig. 95.

be set up by connecting one end to a tuning fork, the vibrations
of which are maintained electrically, and keeping the other
end of the string fixed. Waves pass out from the fork, and,
if the length of the string is an exact multiple of the half wave-
length of the undulations travelling along it, stationary waves
are seen, owing to the persisténce of visual impressions, the string
being visibly divided into a series of nodes and loops. This system
again may be regarded as due to the interference of the direct and
reflected trains of waves, and from the figure it will be evident
that the distance between two nodes is equal to half the complete
wave-length of the undulations travelling along the string. We
may point out that, if we know the number of waves per second
emitted by the source, and the length of each wave, the product of
these two quantities gives us the distance from the source reached
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by the first wave in one second-—that is, the velocity of the
disturbance.

In front of an oscillator such as that described above, Hertz
placed a large sheet of zinc to act as a reflector, and set up a system
of stationary electric undulations. When he explored the space
between the oscillator and the reflector, he found that, at certain
places, the length of the sparks obtained in his resonator was a
maximum, while, at other intermediate places, the spark-length
was a minimum. Thus we obtain by direct experiment the wave-
length of electric oscillations of known period, and can deduce an
approximate value for the velocity. Within the limits of experi-
mental error, it proves to be the same as that of light. Maxwell’s
theory receives a direct confirmation, of the most striking kind.

Hertz used a resonator constructed to have as nearly as possible
the same period of vibration as the oscillator, and the wave-lengths,
as measured by him, are those of the undulations which synchronize
both with the vibrations of the oscillator and of the resonator. In
repeating his experiments with a series of resonators, Sarasin and
de la Rive found that the wave-length indicated by the distance
between the successive nodes was the wave-length of the vibrations
of the resonator, not of the oscillator. The explanation of this
result is found in the fact that a system like the oscillator is a very
good radiator of electromagnetic energy, and soon loses its ampli-
tude of oscillation. The amplitude of the tenth swing has been
shown to be only about the 1/14 of the first. On the other hand,
the resonator has been shown to be a very slow radiator;
oscillations once set up in it maintain their energy for a con-
siderable time, and more than a thousand swings are needed to
reduce the amplitude to 1/10 of its original value. When the
disturbance from the oscillator falls on the resonator, electric
surgings are set up, even though the tuning be incomplete; the
first few impulses being almost the only effective ones. The
resonator goes on vibrating long after the train of waves from the
oscillator has ceased ; and, although its energy of radiation is much
less, it is the direct and reflected waves from the resonator which
form the persistent stationary wave-system investigated in the
region in front of the reflector in the experiments of Hertz and in
those of Sarasin and de la Rive.
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We have seen that the energy of an electric current passes
through the dielectric medium, the current in a wire being merely
the line of dissipation of the energy into heat. But, just as a wire
serves to direct the flow of energy in a steady current, so the
energy of electromagnetic waves may be guided along wires.
Here again, the waves pass through the surrounding medium, and
must travel with the velocity of light in air, and with the velocity
1/Vuk through other substances. While in the field surrounding
a long straight steady current, Faraday’s tubes will be parallel to
the current, and will be moving into the wire at right angles to
their length, with rapidly alternating disturbances, the electric
tubes will be radial to the wire and will move backwards and
forwards along the wire with one end slipping along in its
substance.

71. The theory of Clerk Maxwell and the experiments of
SR Hertz have borne practical fruit in their application
telegraphy. to the problems of telegraphy. The resonator used
by Hertz is not a convenient means of detecting the incidence of
electromagnetic waves passing through free space, and better
arrangements were necessary before technical use could be made
of the new discoveries.

Sir Oliver Lodge, adapting an observation of M. Branly,
introduced a form of detector known as the coherer. If a glass
tube have two platinum wires sealed into its ends, and be filled
with metallic filings, the electrical resistance between the wires is,
in the normal state of the tube, very great. If, however, electro-
magnetic radiation is falling on the tube, the resistance is much
diminished, and a current will pass through a relay circuit including
a battery, a galvanometer, and the coherer. If the coherer be kept
constantly tapped, so as to shake the filings, it returns to its initial
state of high resistance when the waves cease, and the current
through 1t is stopped.

Receivers of still more recent date are founded on the effect or
electromagnetic waves in demagnetizing iron. If a piece of iron
be rotated in a magnetic field, its magnetization lags behind the
magnetizing force owing to hysteresis. Thus, a compass-needle may
be deflected through an angle which depends on the hysteresis of
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the iron. When electromagnetic waves arrive, the iron follows the
magnetizing force more closely, the hysteresis effect is diminished,
and the deflection of the needle changed. Instruments of this
type have been used by Marconi and by Ewing and Walter.

Another type of receiver has been described by Lodge and
Muirhead. It depends on the effect of electromagnetic radiation
on the resistance between a small revolving metallic wheel and
a quantity of mercury covered with a film of oil; the rim of the
wheel dips into the mercury.

For long-distance signalling, large quantities of energy are
necessary, and as much of that energy as possible must be collected
at the receiving station. Hence it was only when Marconi intro-
duced the use of an insulated vertical wire 100 or 150 feet in
height to collect the radiation, that it became possible to telegraph
over great distances. The arrangement of a simple form of apparatus
for wireless telegraphy is shown in Figure 96. The induction coil
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Fig. 96.

I is connected with a spark-gap S, the opposite sides of which are
joined, one to the earth, and the other to the long aerial wire 4.
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At the receiving station, another aerial wire is connected with one
terminal of the coherer, the other being put to earth. The coherer
1s also in a relay circuit, consisting of a battery, a bell, and two
coils LL' possessing self-induction.

In more recent forms of apparatus the oscillations are induced in
the aerial wire of the transmitting station by other oscillationsin a
primary circuit of larger capacity and energy-storing power. This
plan increases greatly the effective range. The receiving station is
also furnished with two circuits, and oscillations are induced in the
coherer circuit by those set up in the sky-wire. By adjusting the
periods of vibration of the four circuits, it has been found possible
to prevent, to some extent, the responding of the receiver to other
oscillations than those intended.

72. It is interesting to consider how a wave of light must
s i start and be propagated through the ether. If
and mode of  light is an electromagnetic wave, it must have an
propagation 5 o 9 . :
of waves of electrical origin. And, indeed, as we shall see in a
T future chapter, cumulative evidence of overwhelming
strength indicates that the atoms of bodies, from the vibrations of
which light must arise, are composed of aggregations of corpuscles
each associated with, or identical with, a negative electric charge.

Now let us consider,in a manner suggested by Prof. J. J. Thomson,
an isolated charged body, shown in figure 97.

The lines of electric force must evidently be radial, as shown
in the region near the particle O,
-where Op represents one such
line of force proceeding from the
electric charge at 0. If the elec-
trified particle be travelling for-
wards, in the direction of the
arrow, 1t carries its lines of force
with 1t; and, unless the particle
be moving with a velocity very
nearly equal to the velocity of
light, the distribution of the lines
is unaltered; they still are uni-
formly spaced radii, proceeding

Y
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from the particle as centre. Whenever electric tubes of force are
moving, there exists a magnetic force at right angles, both to their
length and to their direction of motion, and therefore a magnetic
field must be produced by the moving particle O.

Now let us imagine the moving particle to be stopped suddenly.
If a change could be propagated instantaneously throughout all
space, the lines of force would stop at once also. But a change in
electromagnetic properties can be propagated only with the speed
of an electromagnetic wave, that is, with the velocity of light.
Thus, when a moving electrified particle is arrested, a pulse of
electromagnetic force starts from the particle as its centre, and
spreads out in circles, rectifying the distribution of the lines of
force as it goes. The effect is shown in Fig. 97. If the particle
had not been stopped, at the end of an interval of time, ¢, it would
have reached some new position O, and the lines of force would
be radii from this point as centre. Beyond the sphere reached by
the rectifying pulse, the lines of force will still be moving parallel
to the direction of motion of 0, and, at the instant considered, will
be radii of the point O’, while, behind the spherical pulse, the lines
will be at rest, and will be radii of the point at which the particle
is stopped. The lines of force must be continuous; and therefore,
in the pulse itself, the lines must run in some direction such as pq
in the figure. The electric force near pg has then a component at
right angles to the direction of propagation of the disturbance, that
is, at right angles to the radial lines. Whenever a Faraday tube
of electric force moves, it produces a magnetic force at right angles
both to its length and to its direction of motion, and thus the line
of force pq within the pulse produces a magnetic force at right
angles to the plane of the paper. Now the waves of light, and, to
pass to much greater wave-lengths, the waves used in wireless
telegraphy, are wthereal waves of electromagnetic force so
arranged that the electric and magnetic forces are at right angles
to each other, and both at right angles to the direction of propaga-
tion of the waves. It follows that the pulse, indicated by our figure
as spreading out, consequent on its arrest, from a moving electrified
particle, is a pulse of the same nature as the waves of light, with
this exception, that, instead of a series of regular periodic waves,
it consists of a single expanding shell of electromagnetic force.
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But, if, instead of imagining the moving corpuscle suddenly
brought to rest, we suppose that it is reversed in its path, and that
this reversal occurs periodically, so that the corpuscle performs
simple harmonic vibrations, we get, instead of a single thin pulse, a
series of less abrupt but regularly recurring alternations propagated
out from the corpuscle as centre. Each Faraday’s tube is set into
oscillation at its inner end, and transverse waves travel outwards
along it, just as waves travel along a stretched cord, when one end
is oscillated periodically by the hand. The distribution of electric
and magnetic force in the advancing wave-front is exactly the same
as in the case of the sudden pulse already studied: we get, in fact,
a series of regular sthereal waves, in which there are electric and
magnetic forces, both in the plane of the wave-front and at right
angles to each other in that plane. But such an arrangement is
precisely that required to explain the phenomena of light.

In the simple case we have taken, the corpuscle oscillates
backwards and forwards in a straight path: the vibrations travel
as tremors along the tubes of force in one plane only; the resultant
light is plane polarised. In the more general case, we must
suppose that the corpuscle oscillates in a circular, or elliptical
orbit, and the tubes of force will be displaced in corresponding
motions ; the tremors running along them will no longer be simple
to and fro movements; points on the tubes will describe curved
paths. These paths change continually as the orbit of the corpuscle
changes, and we get a complete model of the propagation of
common, non-polarised light.

Faraday’s tubes, it is clear, give a very powerful and convenient
method of studying the phenomena of the electromagnetic field,
and indications are not wanting that they represent something
more than a useful mathematical fiction. If the structure of the
electric field be discontinuous in reality, as our tube-picture of it
indicates; if the electric and magnetic effects of a charge of
electricity are in reality exerted throughout the surrounding space
by means of discrete tubes of force—vortex filaments in the sther,
or whatever they may actually be—an advancing wave of light
must be discontinuous also. Could we look at such a wave from
the front, and magnify it millions of millions of times, we should
see, not a uniform field of illumination, but a number of bright
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specks scattered over a dark ground. Each tube of force would
convey its own tremors, and these would constitute light, but
between them would lie undisturbed seas of @ther.

Such an idea about the nature of a wave-front of light is very
unexpected and surprising. We are inclined at once to relegate
our tubes of force to a museum of conceptual curiosities. But it
is a remarkable thing that certain evidence in favour of the
discontinuous nature of a wave-front of light really does exist.
This evidence depends on electric conduction through gases, the
phenomena of which will be described in a future chapter.

73. The laws of force are, as we have seen, of the same form
The energy of fOr magnetism as for electrostatics, when pole-strength
e e replaces charge, and magnetic permeability is put
L instead of specific inductive capacity. The energy of
the electrostatic field (§ 23) is f%/87 per unit volume, where
J denotes the electric intensity ; and it must follow, by a similar
method of proof, that the energy per unit volume of a magnetic
field is H?u/8m, where H is the magnetic force.

Now, in terms of Faraday’s tubes of electric force, we explain
a magnetic force as due to the motion of the electric tubes at right
angles to their length, and thus, if the tubes move with a velocity
v, we have, as in § 67,

H = 47N,

when the number of tubes per unit cross area is &V, and the tubes
move at right angles to their length. If the direction of their
motion makes an angle 8 with their length,

H =47Nvsin 6.

We may now write the magnetic energy per unit volume of
the field in terms of the number and velocity of Faraday’s tubes of
electrostatic induction. 'The magnetic energy has the value

By _ g nr ooy
et (47 Nv sin 6)
= 1 4mpN*%? sin? 6.
If we regard this energy as the kinetic energy of the tubes,
and the expression for the energy as analogous to the familiar
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formula {my?, we see that the energy is that of a mass 4rulN?
moving with the velocity of the tubes in a direction at right
angles to their length.

The kinetic energy of a freely moving body does not depend
on the direction of motion, but a dynamical analogy with the
magnetic energy of the tubes is found in the kinetic energy of
a cylinder moving through a liquid.

A body travelling through a liquid drags some of the liquid
with it, and thus the effective mass of the body is increased. If
the body be a sphere, the added mass is evidently independent of
the direction of motion ; but, if a cylinder be made to travel, it
will carry more liquid when going sideways than when proceeding
in the direction of its length. If its length be very great
compared with its breadth, it will, when moving in the direction
of its length, simply glide through the liquid, and, if that liquid
possesses no viscosity, none of it will be dragged forwards with the
cylinder. Moving sideways the cylinder will be accompanied by
a certain mass M of the liquid, and moving at an angle  with
its length, it will have momentum Mwv sin 6 at right angles to its
length, the energy due to the liquid in motion being $Mv*sin? 6.

Our analogy is now clear. The magnetic energy of the field
is 4 dmuN*v*sin? 6 ; and thus we may say that the energy is the
same as the kinetic energy which would exist if real tubes moved
through a material frictionless liquid, and carried with them a mass
of that liquid, the total mass being equal to 47muN? when the
tubes moved at right angles to their length. We may imagine, in
fact, that Faraday’s tubes are portions of the ®ther differentiated
from the rest, perhaps by vortex motion, and that these vortex
filaments carry with them a total mass of @ther equal to 47uN2

The mass of &ther bound to each tube is 47ulN, and therefore
depends on the number of tubes per unit cross area. This result
increases the completeness of the analogy with a moving eylinder,
for a system of many cylinders fixed together would drag forward
more liquid than would the same number of cylinders if moving
independently.

The electrostatic potential energy per unit volume of the field
is f*k/8w, and, as we saw in § 22, the number N of Faraday’s tubes

W. E. 14
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per unit area, which measures the electrostatic polarization, is
Jk[4a. Hence the potential energy per unit volume is fN/2,
or, since f is 4w N/k, the energy is 2w N?/k.

The bound mass M of mther is 47wuN? and therefore the
potential energy per unit volume is

1
W= guT,

where V is the velocity of light in the medium. Hence the electro-
static potential energy of the field is equal to the kinetic energy
which the bound mass would possess if moving with the velocity of
light.

The energy of a charged condenser is the potential energy of
-electrostatics. When the condenser is discharged by means of a
wire, the statical energy changes suddenly into the kinetic energy
of moving Faraday’s tubes, and, in the end, this energy is con-
verted into heat in the conducting wire. Meanwhile, oscillation
may be set up, alternations of potential and kinetic energy occur,
and electromagnetic waves be emitted.

In wave motion, we are accustomed to look for changes in
energy from the kinetic to the potential form; hence, on our
present analogy, we should regard the energy of an electromagnetic
wave as alternating from the magnetic to the electric form.
When all the energy is kinetic, its value per unit volume is
H*u/8m, and when potential, f%k/8r.

74. If we refer the energy of the magnetic field to the kinetic
e TaD: energy of moving tubes of electric force, it follows
Heniaminthe that the field must contain momentum—the mo-
netic field. mentum, in fact, of the tubes and the bound @ther
which we may imagine to be dragged along with them.

The energy of the magnetic field is §4muN*?sin® g, with the
same notation as above, and the effective mass M of the tube and
its attendant sther is 47wuN?. The momentum Mv is thus
4aruN?v sin 6, or, if we take the simplest case, when the tubes move
at right angles to their length, 47uN*. Since the magnetic force
H is 4w Nv, we may write this momentum as uwHN or BP, where
B is the magnetic induction and P the electrostatic polarization of

the medium.
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Now it is important to understand that this @thereal mo-
mentum has an existence quite as real as the momentum of an
ordinary moving body. Momentum can pass freely from sether to
matter, and from matter back again to sther. If this were not
so, we could not extend Newton’s laws of motion to a system
consisting of a charged body and a medium through which passes
an electric pulse. The body would be set in motion, and, unless
we take into account the momentum in the medium, action and
reaction would not be equal and opposite.

Another important case is that of an electromagnetic wave
falling normally on an absorbing surface. Here we have energy
alternating between the kinetic and potential forms, and, in any
given volume of the medium, we may take half the energy at any
instant to be the kinetic energy of moving tubes. The energy per
unit volume of the medium is }47wuN%? and; on the average, half
of this is kinetic. The average momentum, then, is half that
corresponding with steady motion, or $4muN? per unit volume.

The radiation in v units of volume of the medium reaches unit
area of the receiving surface in one second. Hence, the momentum
communicated to unit area of the surface per second, that is, the
pressure on the surface, is $4muN*%? which, it will be noted, is
equal to the total energy, kinetic and potential, contained in unit
volume of the medium.

We have supposed the surface to absorb the radiation. If we
use a reflector, the momentum is returned to the medium in the
reverse direction, so that the change of momentum is doubled, and
the pressure of radiation is doubled with it.

A body exposed to electromagnetic radiation of any kind,
including light, will be pushed in the direction of the incident
beam by a pressure which is calculable if we know the amount of
energy received per second and the velocity of light. For instance,
the heat received per square centimetre by surfaces exposed
normally to bright sunlight on the earth is about 2 thermal
(gramme-degree-centigrade) units per minute, or 1/30 heat unit
per second. In dynamical units of energy, this is equal to
42 x 107/30, or 1'4 x 10° ergs per second. This quantity of energy,
received on one square centimetre in one second, is, at the
beginning of the second, spread out through space, occupying a

14-—2
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column one square centimetre in cross section, and 186,000 miles,
or 3 x 10* centimetres, in length. The energy per unit volume,
then, is, at any instant,
L4 x 10
3 x 10v
This number must also represent the force per unit area, in dynes

per square centimetre. Hence, on one square metre of an absorbing
surface, exposed to bright sunlight, the force is

=47 x 10—% ergs per cubic cm.

047 dyne =046 milligram-wéight.

This pressure, which we have calculated from the conception
of the momentum of moving tubes of force, was originally deduced
by Maxwell as a consequence of the electromagnetic theory.
Larmor has shown that it is necessary on any theory of undula-
tions, and Bartoli has deduced it on thermo-dynamical principles
by an application of Carnot’s idea of the reversible cycles of a heat
engine.

As we have seen, on a reflecting surface the pressure is twice
as great as on an absorbing surface, and, by seeking for the differ-
ence between the forces on the absorbing and reflecting surfaces
of light suspended vanes, Professor Lebedef of Moscow has demon-
strated experimentally the existence of this minute radiation-
pressure, and his results have been confirmed and extended by
Professors Nichols and Hull in America.

75. An electrostatic charge is the origin of Faraday’s tubes of

Magnetic electric force, and thus, on Maxwell’s theory, the

f a ;
to the motion Motion of a charged conductor should produce a

¥ iipae magnetic field like that due to a current.
static tubes of 3 R y
force. This conclusion has been confirmed experimentally

by Rowland, Pender, and others. Two circular plates, divided into
sectors by insulating divisions, are fixed parallel to each other, on
one axis, which passes through their centres and is normal to their
planes. When the sectors are similarly electrified and set in
rotation, a magnetic force is produced, equivalent to that which
would be caused by circular currents flowing in the direction of
motion of the electric charges. The magnetic field can be detected
by the deflection of a needle suspended between the plates.
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A permanent steel magnet is accompanied by a steady magnetic
field in its neighbourhood. On our present theory, that field must
be due to the motion of Faraday’s tubes of electrostatic force, and
hence the magnet must be the centre of a whirlpool of electric
tubes. The work done in magnetizing a steel bar must include the
energy needed to set this whirlpool in motion, and, once established,
the whirlpool must be regarded as inseparable from the magnet
itself. If we move the magnet, we move with it its attendant
system of rotating electric tubes.

In a steady magnetic field there are no electromotive forces—
no induced currents are found unless the magnetic field is changing.
But a single tube of electrostatic force implies an eleetric intensity,
which tends to move electricity, and thus to set up a current. We
are driven to conclude, therefore, that, in a steady magnetic field,
negative as well as positive tubes of electric force must exist
in motion, and that as many negative as positive tubes enter any
element of volume per second.

Another aspect of this problem is seen if we remember that
positive electric charge induces negative charge on a metal plate
in its neighbourhood. If the positive charge be set in motion, it
produces a magnetic force, which acts through the metal plate
unless that plate be made of thick iron. On the usual view of
electrostatic tubes of force, we should imagine them as springing
from the positive charge, and ending on the induced negative
charge, and it is difficult to see how their motion could then cause
a magnetic field beyond the metal screen. For reasons such as
these, Professor J. J. Thomson now conceives the electrostatic
tubes of force to start from both positive and negative units of
charge, and to run from these charges out into space. If we
imagine, as above, that the nature of the electric tubes may be
represented mentally by some such idea as that of vortex filaments
in the sether, it is easy to picture positive and negative tubes as
oppositely circulating vortices.

These tubes will attract each other if of opposite kind, and will
repel each other, as Faraday supposed, if of the same kind. As far
as electrostatic action is concerned, Thomson’s new conception is
equivalent to the older ideas, but it has the advantage of being
applicable also to electrodynamic phenomena. The exact meaning
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of positive and negative electricity remains, however, uncertain.
In a future chapter, we shall return to the question of the relation
between them.

Whether Faraday’s tubes of force are ultimate realities remains,
like all similar questions, a problem of metaphysics. But, if we
hold the realist creed at all, it is difficult to deny a physical basis
to ideas which enable us to explain and co-ordinate so many and
different sense-perceptions.

If we grant them provisionally a real existence, the nature of
the tubes remains to be investigated. The idea of vortex filaments
in the @ther, which we have used above to give definiteness to our
conceptions, may possibly represent some true relation; at present
it is no more than a useful working hypothesis.
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76. Ix Chapter V. on the Electric Current, we described the
Early origin of the voltaic cell and the change it effected in
il the direction of the main stream of electrical research.
The attention of physicists, who had been occupied with the phe-
nomena of electrostatics and of the disruptive discharge of electric
machines and Leyden jars, was turned to the new field of inquiry,
and the opening years of the nineteenth century witnessed a rapid
development of knowledge, particularly in the chemical effects of
the so-called galvanic or voltaic currents.

The fundamental observation, from which arose the science
of electro-chemistry, was made in the year 1800, immediately on
the news of Volta’s discovery reaching England.

Using a copy of Volta’s original pile, Nicholson and Carlisle
found that when two brass wires leading from its terminals were
immersed near each other in water, there was an evolution of
hydrogen gas from one, while the other became oxidised. If
platinum or gold wires were used, no oxidation occurred, but
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oxygen was evolved as gas. They noticed that the volume of
hydrogen was about double that of oxygen, and, since this is the
proportion in which these elements are contained in water, they
explained the phenomenon as a decomposition of water. They
also noticed that a similar kind of chemical action went on in the
pile itself, or in the cups when that arrangement was used.

Soon afterwards, Cruickshank decomposed the chlorides of
magnesia, soda and ammonia, and precipitated silver and copper
from their solutions—an observation which afterwards led to the
process of electroplating. He also found that the liquid round the
pole connected with the positive terminal of the pile became
alkaline and the liquid round the other pole acid.

In 1806 Sir Humphry Davy proved that the formation of the
acid and alkali was due to impurities in the water. He had
previously shown that decomposition of water could be effected
although the two poles were placed in separate vessels connected
together by vegetable or animal substances, and established an
intimate connexion between the galvanic effects and the chemical
changes going on in the pile.

The identity of “galvanism” and electricity, which had been
maintained by Volta, and had formed the subject of many investi-
gations, was established in 1801 by Wollaston, who showed that
the same effects were produced by both, while in 1802 Erman
measured with an electroscope the potential differences furnished
by a voltaic pile.

In 1804 Hisinger and Berzelius stated that neutral salt solu-
tions could be decomposed by electricity, the acid appearing at one
pole and the metal at the other, and drew the conclusion that
nascent hydrogen was not, as had been supposed, the cause of the
separation of metals from their solutions. Many of the metals then
known were thus prepared, and in 1807 Davy decomposed potash
and soda, which had been considered to be elements, by passing
the current from a powerful battery through them when in
a moistened condition, and so isolated the metals potassium and
sodium.

The decomposition of chemical compounds by electrical means
indicated a connexion between chemical and electrical forces.
Davy “advanced the hypothesis that chemical and electrical
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attractions were produced by the same cause, acting in one case on
particles, in the other on masses.” This idea was developed by
Berzelius, who regarded every compound as formed by the union of
two oppositely electrified parts—atoms or groups of atoms. The
exact dualistic formulation of his theory given by Berzelius was
afterwards abandoned, but the essence of the idea—the ex-
planation of chemical forces in terms of electrical conceptions—
remains to this present.

The remarkable fact that the products of decomposition appear
only at the poles was perceived by the early experimenters on the
subject, who suggested various explanations. Grotthus in 1806
supposed that it was due to successive decompositions and recom-
binations in the substance of the liquid. Thus, if we have a
compound 4 B in solution, the molecule next the positive pole is
decomposed, the B atom being set free. The A atom attacks the
next molecule, seizing the B atom and separating it from its
partner, which attacks the next molecule and so on. The last
molecule in the chain gives up its B atom to the 4 atom separated
from the last molecule but one, and liberates its A atom at the
negative pole.

Fig. 98.

A new terminology, which is still used, was introduced by
Faraday in 1833. Instead of the word pole, which implied the old
idea of attraction and repulsion, he used the word electrode, and
called the plate of higher electric potential, by which the current
is usually said to enter the liquid, the anode, and that by which it
leaves the liquid, the cathode. The parts of the compound
which travel in opposite directions through the solution he
called ions—cations if they went towards the cathode, and
antons if they went towards the anode. He also introduced
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the words electrolyte, electrolyse, etc., which we have already
used.

Faraday pointed out that the difference between the effects
of a frictional electric machine and of a voltaic battery
lay in the fact that the machine produced a very great
difference of potential, but could only supply a small quantity
of electricity, while the battery gave a constant supply, much
larger in quantity, but only produced a very small difference
of potential.

77. If we connect together in series a single Daniell’s cell, a
galvanometer, and two platinum electrodes dipping
into acidulated water, no visible chemical decomposi-
tion ensues. At first a considerable current will be indicated by the
galvanometer ; the deflection soon diminishes, however, and finally
becomes very small, though this small current seems to leak through
permanently.

If, instead of using a single Daniell’s cell, we employ some
source of electromotive force which can be varied as we please, and
gradually raise its intensity, we shall find, when it exceeds a
certain value, about 1'7 volt, that a permanent current of consider-
able strength flows through the solution, and, after the initial
period, shows no signs of decrease. This current is accompanied
by chemical decomposition.

Now let us disconnect the platinum plates from the battery,
and join them directly with the galvanometer. A current will
flow for a while in the reverse direction; the system of plates and
acidulated water through which a current has been passed, acts
- as an accumulator, and will itself yield a current in return.

These phenomena are explained by the existence of a reverse
electromotive force at the surfaces of the platinum plates. Only
when the applied electromotive force exceeds this reverse force of
polarization, will a permanent steady current pass through the
liquid, and visible chemical decomposition proceed.

Recent experiments, by Le Blanc, Oberbeck, and others, have
shown that the reverse electromotive force of polarization is due to
the deposit on the electrodes of minute quantities of the products of
chemical decomposition. Differences between the two electrodes

Polarization.
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are thus set up,and, if disconnected from the external electromotive
force, the arrangement would act as a source of current, just as
does a primary cell. When acted on by the external electromotive
force, the effect of the deposits is to oppose a reverse electromotive
force to that in the external circuit. As the primary current
continues to pass, the densities of the deposits increase, and with
them grows the reverse electromotive force, till a continuous film
of deposit is formed. This film has, by calculation from the total
electric transfer needed to produce it, a thickness of the order
of 10~® centimetre—a new measurement of the thickness of a layer
of molecular dimensions. The reverse electromotive force of
polarization then reaches its maximum value. If the primary
external electromotive force be not as great as this maximum
reverse force, the maximum value is, of course, not reached ; the
polarization grows till the reverse electromotive force is sensibly
equal to that applied, and the current nearly stops. The slight leak-
age current which remains is probably due to the gradual diffusion
away from the electrodes of the products of the decomposition. If
the applied electromotive force be greater than the maximum force
of polarization, a permanent current flows, but the effective
electromotive force of the circuit is only the excess of the applied
force E over the reverse force E’, the current being (£ — £")/R.
In the case we have chosen, hydrogen and oxygen are evolved
from acidulated water at the surfaces of bright platinum electrodes.
In contact with these two gases respectively, the system will act
as an accumulator, and continue to give a reverse current till the
gases are exhausted. Now the maximum reverse force of polariza-
tion, about 1'7 volt, is greater than the electromotive force which
the polarized plates themselves exhibit when used as a source of
current. It seems that the process is not reversible in the
thermodynamic sense of the word, If, however, the electrodes be
covered by a deposit of platinum black, by previously passing a
current backwards and forwards between them through a solution
of platinum chloride, Le Blanc has shown that the minimum
decomposition point is 1'07 volt, which is equal to the electromotive
force of the oxyhydrogen gas battery. In this case, then, the
process is reversible. If an external electromotive force of 1-07
volt be applied, the system is in equilibrium ; while, if the applied
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force exceeds or falls short of that value by an infinitesimal amount,
an indefinitely small current will pass one way or the other, and
the gases are slowly evolved or absorbed. The platinum black has
a very large surface, and, owing to the well-known occluding power
of platinum, the gases are probably absorbed in the electrodes as
fast as they are produced. They diffuse through the substance of
the electrodes, and dissolve in the liquid or escape into the atmo-
sphere. On the other hand, when bright plates are used, the exposed
surface is too small to absorb the gases, which must therefore be
evolved directly as bubbles at the plates. In this process a certain
amount of irreversible work is done, and the applied electromotive
force rises to 17 volts before it can overcome the opposing force.

By methods we shall describe later, it is possible to separate
the potential-differences at the anode and the cathode, and,
although some doubt remains as to the trustworthiness of the
absolute values, the results may fairly be used when absolute
values are not necessary. It has been concluded from several
series of experiments that, in the case of all substances examined,
the deposition and solution of metals in contact with solutions of
their salts, are reversible processes—the decomposition voltage is
equal to the reverse electromotive force which the metal itself
gives when going into solution.

78. During the early investigation of the subject, it was
The nature of  thought that, since hydrogen and oxygen were
thidons. usually evolved, the electrolysis of solutions of acids
and alkalies was to be explained as a direct decomposition of water,
the function of the acid or alkali being imagined simply to be to
give conductivity to the otherwise non-conducting solvent. When
salt solutions are examined, other substances, such as metals, are
deposited at the electrodes, and it is necessary to suppose that the
solute itself takes part in the process of conduction. During the
electrolysis of a solution of copper sulphate, copper is deposited at
the cathode, and copper is dissolved from a copper anode, or oxygen
and sulphuric acid liberated if the anode be of platinum. These
phenomena are explained readily by the hypothesis that the ions
are a positively electrified copper atom, which may be written as
Cu+, and the negatively electrified acid group SO,—, which
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combines with copper, or, if no dissolvable metal be present,
attacks water to form H,SO, and oxygen. No facts are known in
this case inconsistent with such a view of the process; but, in
solutions in some other solvents, a similar supposition seems
insufficient. Tt is well to remember that the simple case of copper
sulphate is also explicable on the theory that the ions result from
the dissociation of a complex molecule formed by the combination

of the salt and the water. The ions C-il (H,0) and SO, (H,0) would
produce exactly the same phenomena as those to be expected from
the action of the simpler structures, and the same effects would
result if the charged particles were associated with a number of
of water molecules.

A study of the products of decomposition alone does not lead
necessarily to a knowledge of the ions involved in the passage of
the current through the electrolyte. The electric force is active
throughout the whole solution; all the ions must come under its
influénce and therefore move, but some may need a smaller electro-
motive force than others for their evolution at the electrode, and
consequently, as long as any quantity of all the ions of the solution
remains in the layer of liquid next the electrode, only these ions
will be evolved.

The issue is obscured in another way also. When the ions are
set free at the electrodes, they may unite with the substance of
the electrode or some constituent of the solution and form second-
ary products. For instance, there is reason to suppose that, in a
dilute solution of sulphuric acid, the ions either are or contain
hydrogen and the acid group SO, The ion SO,, however, when it
reaches the anode attacks the water, produces a molecule of H,SO,,
and liberates oxygen.

An interesting example of secondary action is furnished by the
common technical process of electroplating with silver from a bath
of potassium silver cyanide. The operation has been studied by
Hittorf among others, who holds that the cation is potassium, and
the anion the group AgCy,. Each K ion, as it reaches the cathode,
precipitates silver by reacting with the solution in accordance with
the equation

K + KAgCy,=2KCy + Ag,



222 ELECTRICITY [cH.

while the anion AgCy, dissolves an atom of silver from the anode,
and re-forms the complex cyanide KAgCy, by combining with the
2KCy produced in the reaction described by the above equation.
If the anode consist of platinum, cyanogen gas is evolved thereat
from the anion AgCy,, and the platinum becomes covered with
the insoluble silver cyanide AgCy, which soon stops the current.
The coating of silver obtained by the process described above is
coherent and homogeneous, while that deposited from a solution
of silver nitrate, as the result of the primary action of the current,
is crystalline and easily detached.

The corresponding cyanide process in the case of gold is now
extensively used for the extraction of gold from its ores. The rock,
containing small quantities of gold in a state of very fine division,
is treated with potassium cyanide, and the solution of the double
cyanide obtained in this way is electrolysed between steel anodes
and lead cathodes. Prussian blue, which is again worked up into
potassium cyanide, is formed on the anodes, and the gold is
removed from the lead cathodes by cupellation.

Many organic compounds can be prepared synthetically by
taking advantage of secondary actions at the electrodes, such as
reduction by the cathodic hydrogen, or oxidation at the anode.

The injurious effects of polarization in primary batteries led to
many attempts to overcome it. The methods in use in the common
form of cell are well known, and have been described in §36,
Chapter V.

79. Davy had shown previously that there was no accumulation
iy of electricity in any part of a voltaic eircuit, and that
i a uniform flow or current existed throughout. Faraday
set himself to examine the relation between the strength of this
current and the amount of chemical decomposition. He first
proved by observations on the decomposition of acidulated water,
that the amount of chemical action in each of several cells was the
same when the cells were joined together and a current passed
through them all in series, even if the sizes of the platinum plates
were different in each. The volume of hydrogen was unchanged,
even if electrodes of different materials—such as zinc or copper—
were used. He then divided the current after it had passed
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through one cell into two parts, each of which passed through
another cell before being reunited. The sum of the volumes of the
gases evolved in these two cells was equal to the volume evolved
in the first cell. The strength of the acid solution was then varied,
so that it was different in the different cells in one series, but the
chemical action still remained the same in all. Thus the induction
known as Faraday’s first law was made :—

The amount of decomposition is proportional to the quantity of
electricity which passes.

An apparatus for the decomposition of water can therefore be
used to measure the total quantity of electricity which has passed
round a circuit. Such instruments are termed voltameters,

The same law was then shown to be true for solutions of various
metallic salts, and also for salts in a state of fusion—the weight of
metal deposited being always the same for the same quantity of
electricity. When the relative masses of the deposits of different
substances by the same current were examined, a most important
result appeared, which may be formulated as Faraday’s second
law :—

The mass of any substance liberated by a definite quantity of
electricity is proportional to the chemical equivalent weight of the
substance. In the case of elementary ions, this equivalent weight
is the atomic weight divided by the valency, and, in the case of
compound ions, it is the molecular weight divided by the valency.

It was then proved that the amount of zinc consumed in each
cell of the battery was identical with that deposited by the same
current in an electrolytic cell placed in the external circuit.

Faraday’s work laid the foundations of the modern quantitative
science of electrolysis. His results can be gathered into one
statement, as follows :—

The quantity of a substance which separates at an electrode is
proportional to the whole amount of electricity which passes, and
to the chemical equivalent weight of the substance.

80. An accurate confirmation of Faraday’s law for solutions of
silver salts has been effected incidentally in the course

Electro- . . .
chemical of many experimental determinations of the electro-
CAHWEER Chemical equivalent of silver. If the value obtained
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for the silver deposited by unit quantity of electricity be the same
when the strength of current and the other conditions of the ex-
periment are varied, the quantity of electricity and the mass of
silver deposited must be proportional to each other. An exact
knowledge of the electrochemical equivalent of silver is of great
importance, since, given this constant, a silver voltameter can be
used as a means of measuring accurately the total quantity of
electricity, or the average current, which has passed through a
circuit.

In order to determine the electrochemical equivalent, a constant
current, which is measured simultaneously in absolute electromag-
netic units (see § 62, Chapter VIII), is passed for a measured time
through a solution of some silver salt. The most constant results
are obtained when a neutral solution of the nitrate is used, con-
taining about fifteen parts of salt to one hundred of water, and the
current has an intensity of about one hundredth of an ampere
to the square centimetre. The silver may be deposited on a
platinum bowl used as cathode, the anode being a silver plate
wrapped in filter paper to catch any particles disintegrated. The
electrochemical equivalent is expressed as the number of grams of
silver deposited by a current of one ampere in one second.

The mean result of the best determinations is about 0001118
or 0001119 gram per ampere-second. As we have stated (p. 181),
the practical definition of the ampere assumes the value 0:001118.

The corresponding constant for other elements or compounds
can be calculated from this number by dividing it by the chemical
equivalent of silver, viz. 1079, and multiplying by the chemical
equivalent of the substance required. The value of hydrogen thus
comes out 1'044 x 1079, its atomic weight being taken as 1-008,
when oxygen is 16.

It will be noticed that the chemical constant involved is the
equivalent, and not the atomic weight. Therefore, in the case of
substances like iron, which form two series of salts, the amounts
deposited will be different when solutions of the different salts are
used. The two amounts will be in the proportion of the two
chemical equivalents; if a current be sent through solutions of a
ferric and a ferrous salt in series, the resultant weights will be as
56/3 : 56/2.
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With no substance other than silver have such accurate experi-
mental results been obtained, though many observations have been
made on other bodies, solid and gaseous. In all cases, Faraday’s
laws have been found to be true within the limits of experimental
error, and we may calculate electrochemical equivalents from the
measured value for silver and the known chemical equivalents of the
different ions. Kohlrausch and Holborn, in their book ¢Das
Leitvermogen der Elektrolyte,” give a list of equivalent and electro-
chemical equivalent weights, the experimental value for silver
being taken as 1118 mg./amp.-sec.

Equivalent weights A (0 =8:00), and electrochemical equivalents
B in mg.[(amp.-sec.) of mono- and di-valent ions.

f

! Cations | Anions.
4 E “ E
| — 1 001036 l ’ 3545 | 03673
" 1008 | 001044 Br 7996 | 08283
K 3914 04055 | I 126:86 | 13142
Na 2305 02388 Fl 1905 | 01973
Ii 7:03 00728 OH 1701 | 01762
Ag 107-92 1-118 ON 2604 | 02698
NH, 1807 01872 NO, 5 6204 | 06427
1Ba | 6870 07117 (10, 8345 | 08645
. Isr 4381 04539 BrO, | 12796 | 13256
- 1Ca 2002 02074 10 17486 | 18115
Mg | 1217 | ol261 cHo, 4501 | 04663
\ 17Zn 327 0-3388 C,H,0, 5902 | 06114
L Ica 5605 05807 b 800 | 008288

l
Cu 318 0-3294 S | 1603 | 01661
Fe 28:01 0:2902 SO, 4803 | 04976
Mn 27°5 0-2849 CrO, ] 5807 | 06016
Ni 29-35 0:3041 CO, 3000 | 03108
. iPb 103-46 10718 C,0, | 4400 | 04558
| iCr 2607 02704 Si0; | 3820 | 03957

Solvents other than water, for example acetone, pyridine,
liquified hydrogen chloride, ete. have also been used. Faraday’s
laws hold good in such cases, and the electrochemical equivalents
seem to be identical with those obtained when the solvent is water.
Faraday’s laws have also been demonstrated for fused salts, many
of which are good electrolytes, with conductivities of the same order
as those of aqueous solutions.

W. E. 15
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Again, in recent years it has been shown that, in certain cases,
the discharge of electricity through gases is an electrolytic process
accompanied by chemical decomposition. Here also the correspond-
ing amount of electric transfer is accompanied by the same amount
of chemical separation—the electrochemical equivalents are the
same for gaseous electrolytes as for solutions.

In every case of electrolysis, Faraday’s laws seem to apply, and
the amount of a given substance liberated by a given transfer of
‘electricity appears to be the same under all conditions. This
result leads to an exact view as to the nature of the process.
Since the amount of substance deposited is proportional to the
quantity of electricity which passes, it follows that a definite charge
of electricity is associated with a definite mass of the substance.
We are thus led to look on the passage of an electric current
through a solution as due to the carriage by moving parts of the
electrolyte of opposite electric charges in opposite directions through
the liquid. Each ion carries with it a fixed charge of electricity,
positive or negative, which is given up to the electrode under the
influence of an electromotive force above a certain limit. It is
clear that, on this convective view of electrolysis, the conductivity
of a solution must be proportional to the charge on each ion, to
the number of ions, and to the velocity with which they move
through the solution.

Whenever one gramme-atom or gramme-molecule of any mono-
valent ion is separated at an electrode, the same quantity of
electricity passes round the circuit; when the ion is divalent, the
quantity is twice as great, and so on. All monovalent ions must
therefore be associated with the same charge, all divalent ions with
twice that charge, ete.

The quantity of electricity involved is easily calculated by
considering an example. If a current of one ampere flows for one
second, experiment shows that 0001118 of a gramme of silver is
liberated from the solution of one of its salts. Thus, when the
«equivalent weight in grammes is deposited, the quantity of electricity
passing is 107-92/0:001118 or 96530 ampere-seconds or coulombs.
The same result is of course true for the gramme-equivalent of
any other substance, the gramme-equivalent being the gramme-
molecule or gramme-atom divided by the valency. Whenever a
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gramme-equivalent of a substance is decomposed, therefore, 96530
coulombs of electricity pass round the circuit, and, as we shall
prove later, this is the amount of charge actually transported
through the electrolyte by one gramme-equivalent of any ion.

It is possible to calculate approximately the absolute electric
charge carried by a single monovalent ion, since the number of
molecules in a given volume of gas can be estimated by aid of the
kinetic theory. As a mean value,at 0° C. and normal atmospheric
pressure, there exist about 6 x 10* molecules in one cubic centimetre
of any gas.

As we have seen, one electromagnetic unit of electricity evolves
1-044 x 10~ gramme of hydrogen, which at normal temperature and
pressure fills a volume of 1-16c.c., and therefore contains about
7 % 10* molecules or 1-4 x 10* atoms, and yields the latter number
of ions when dissolved as a hydrogen salt. Each ion is then
associated with 7-1 x 10~ electromagnetic units. The ratio between
the units of electric quantity being 3 x 10%, the ionic charge is
about 2'1 x 107 electrostatic units.

In a future chapter on the conduction of electricity through
gases, we shall describe experiments by which the absolute charge
on a gaseous ion may be estimated. The value obtained is about
34 x 107" electrostatic units—identical within the limits of error
with the absolute charge on an ion in liquid electrolytes.

Thus, the electric charge on a single monovalent ion seems to
be a true natural unit, and the results we have summarized lead to
an atomic theory of electricity. As von Helmholtz has said, « If
we accept the hypothesis that the elementary substances are
composed of atoms, we cannot avoid concluding that electricity
also is divided into definite elementary portions, which behave like
atoms of electricity.”

81. The current through a metallic conductor is, to a very
great degree of accuracy, proportional to the electro-
The con- . . . .
ductivity of motive force applied. As we have seen, this relation,
electrolytes. o o
known as Ohm’s law, may be expressed in the form
that ¢ = E/R, where R is a constant for any given conductor under
fixed conditions, and is called its resistance. The law is verified if
the resistance be shown to be independent of the current passing

156—2
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through it. The early experimenters, in the course of their
investigations, made efforts to discover whether electrolytes also
conformed to Ohm’s law. It was known that, owing to the reverse
force of polarization, no permanent current of moderate intensity
could be maintained through an electrolyte unless the electromotive
force exceeded a certain limit; but polarization occurs, primarily
at any rate, at the electrodes, and it remained to see, when all
reverse forces at the electrodes were eliminated, whether the flow of
the current in the body of the liquid was in accordance with the law.
Eventually Prof. F. Kohlrausch, who is now the Director of the
German National Physical Laboratory—the great Physikalische
Reichsanstalt at Charlottenburg near Berlin—proved that solutions
have a real resistance, which remains constant when measured with
various currents and by different methods.

The current in a circuit containing a electrolytic cell can
therefore be calculated by Ohm’s law, if, from the total electro-
motive force of the circuit, be subtracted the reverse electromotive
force due to the polarization of the electrodes and to any changes
produced by the current in the nature and concentration of
different parts of the solution.

82. Owing to the difficulties introduced by polarization, the
Experimental  Tesistance of an electrolyte cannot be measured by
meghods, the continuous current methods adopted in the case
- of metallic conductors; it is necessary, in some way, to eliminate
the effects of the reverse electromotive force at the electrodes.
Many attempts were made before a satisfactory mode of experi-
ment was devised, and developed into a convenient method.

If, instead of using continuous currents, we pass currents which
alternate in direction through a solution, the products of the
decomposition deposited on the electrodes by the passage of the
current in one direction are removed by the reversed current which
follows immediately. If the alternations be rapid enough, the
quantity of substance deposited during each rush of current is
very small. Moreover, when deposition first begins, and we are
still far from the limiting value of the polarization, the reverse
electromotive force is proportional to the surface density of the
deposit. It may therefore be diminished again by increasing the
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area of the electrodes, and spreading the products of the decom-
position over larger areas. The area of a platinum plate is
increased enormously if we coat it with platinum black. In
order to do this, a current is passed backwards and forwards
between two electrodes through a solution of platinum chloride.
By using currents which alternate rapidly, and electrodes coated
with platinum black, the effects of polarization may be made
insensible in our measurements of resistance.

With the usual form of Wheatstone’s bridge, alternating
currents would give no deflection of the galvanometer, and some
modification is required. Kohlrausch used a telephone as indicator
in place of the galvanometer; a rapidly alternating current gives
a buzzing sound in the telephone, and the bridge is adjusted till
this sound disappears, or is a minimum. The alternating currents
may be obtained by the use of a small induction coil, or by passing
the current of an alternating electric supply system through a
suitable transformer to give an electromotive force of a few volts at
most. The most usual form of apparatus is shown in Figure 99.
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Fig. 99.

The metre bridge is adjusted till no sound is heard in the
telephone, when the well-known relation between the resistances
of the four arms of the bridge holds good.

The telephone is not a very pleasant instrument to use in this
way, and a modification of the method is more rapid and also more
accurate. The current from one or more dry cells is led to an ebonite



230 ELECTRICITY [cH.

drum, turned by a motor or a hand-wheel. On the drum are fixed
brass strips with wire brushes touching them in such a manner
that the current is reversed several times in each revolution. The
wires from the drum are connected with an ordinary resistance box
in the same way as the battery wires of the usual Wheatstone’s
bridge. A moving coil galvanometer is used as indicator, and on
the other end of the drum there is another set of strips, arranged
to reverse periodically the connexions of the galvanometer, so that
any residual current which flows through it is direct and not alter-
nating. These strips are rather narrower than the first set, and
thus the galvanometer circuit is made just after the battery circuit
is made, and broken just before the battery circuit is broken. The
high moment of inertia of the galvanometer coil makes its period
of swing very slow compared with the period of alternation of the
current, and therefore the slight residual effects of polarization and
other periodic disturbances are prevented from sensibly affecting
the galvanometer. When the measured resistance is not altered
by increasing the speed of the commutator, or changing the ratio
of the arms of the bridge, the disturbing effects may be considered
to be eliminated.

The form of vessel chosen to contain the electrolyte depends on
the order of resistance to be measured. For dilute solutions the
shapes of Figures 100 and 101 will be found convenient, while for
more concentrated solutions those indicated in Figures 102 and
103 are suitable.

s

Fig. 100. Fig. 101.

The absolute resistances of certain solutions have been deter-
mined by Kohlrausch by comparison with mercury, and, by using
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one of these solutions in any cell, the constant of that cell can
be found once for all. From the observed resistance of any given

i i

C 1]

Fig. 102.  ~ Fig. 103.

solution in the cell, the resistance of a centimetre cube, or the
specific resistance, can then be calculated. The reciprocal of this,
or the conductivity, is a more generally useful constant; it is
conveniently expressed in terms of a unit equal to the reciprocal
of an ohm.

As the temperature coefficient of conductivity is large, usually
about two per cent. per degree, it is necessary to place the resist-
ance cell in a paraffin or water bath, and observe its temperature
with some accuracy.

83. Kohlrausch expressed his results in terms of equivalent
Experimental  cOnductivity, that is, the conductivity % divided by
Josuits. the number n of gram-equivalents of electrolyte per
litre. As the concentration of solutions of monovalent salts, such
as potassium chloride, sodium nitrate, etc., diminishes, the value of
k/n approaches a limit, and, if the dilution be carried far enough
in water distilled repeatedly, becomes constant, that is te say, at
great dilution the conductivity is proportional to the concentration.

The general result of these experiments can be represented
graphically by plotting k/n as ordinates, and n* as abscisse; n? is
a number proportional to the reciprocal of the average distance
between the molecules, to which it seems likely that the equivalent.
conductivity will be related. The general forms of the curves
for the neutral salt of a monovalent acid and for a caustic alkali or
monovalent acid (like hydrochloric acid) are shown in Fig.104. The
curve for the neutral salt comes to a limiting value, while that for
the acid or alkali attains a maximum at a certain very small con-
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centration, and falls again when the dilution is pushed to extreme
limits. The meaning of this fall still remains to be elucidated. In
some solvents the form of both these curves is entirely different.

P~

Fig. 104.

The values of the equivalent conductivities of all neutral salts
dissolved in water are, at great dilution, of the same order of
magnitude, while those of acids at the maximum are about three
times as great.

Passing to salts of divalent acids and other more complicated
electrolytes, we find it impossible to reach such definite limiting
values for the equivalent conductivity as are given by monovalent
salts. Moreover, the influence of increasing concentration is more
marked, the curves sloping at much larger angles. These changes
in the phenomena are still greater when, as in copper sulphate,
both metal and acid are divalent, and greatest of all in such
substances as ammonia and acetic acid, which have very small
conductivities when dissolved in water.

84. As we saw in the last chapter, the experimental relations

Sl ; S .
The migration Summarized in Faraday’s laws indicate that electrolysis

of the ions g g 3 g
ond trameport 18 to be considered as a process resembling convection,
Birs a constant stream of cations moving with the current,

and a stream of anions in the opposite direction. The quantity of
electricity thus conveyed will be proportional th the number of
carriers and to the speed with which they travel.

If we pass a current between copper plates through a solution
of copper sulphate, the colour of the liquid in the neighbourhood of
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the anode becomes deeper, and in the neighbourhood of the cathode
lighter in shade. This is well seen if the electrodes be arranged
horizontally with the anode underneath. When the electrodes are
of copper, the quantity of metal in solution remains constant, since
it is dissolved from the anode as fast as it deposited at the
cathode, but, if we use platinum electrodes, the amount in solution
continually becomes less. More salt is taken from the neighbour-
hood of the cathode than from the anode, and the colour of the
solution becomes pale more rapidly near the cathode than near
the anode.

This subject was first investigated systematically by Hittorf,
who examined many solutions in a manner which enabled the
liquid round the two electrodes to be analysed separately after
the passage of the current.

We will assume at first that the ions are simple, or, at all events,
that the opposite ions are associated with equal amounts of solvent
or salt. If the opposite ions move with equal velocities, the result of
the passage of the current will be that, while the composition of
the middle portion of the solution remains unaltered, the products
of the decomposition, which appear at the electrodes, are taken in
equal proportions from the solution surrounding the anode, and
from that round the cathode. If however, one of the ions travels
faster than the other, it will get away from the portion of the
solution whence it comes more quickly than the other ion enters.
When the electrodes are of non-dissolvable material, therefore, the
concentration of the liquid in this region will fall faster than in
that round the other electrode.

Let us assume that the cation drifts to the right with a velocity
u, and the anion to the left with a velocity v. The velocity of the
cation can be resolved into 4 (u +v) and } (v —v), and the velocity
of the anion into 4 (v+w) and § (v—wu). On pairing these com-
ponents, we have a drift of the two ions right and left, each with a
speed % (u+v), involving no accumulation at the electrodes, and a
uniform flow of the electrolyte itself without separation with a
speed % (v —v) to the right.

Thus at the cathode there is a gain of electrolyte equal to
4 (u—v), and a loss, due to electrolytic separation, of § (u 4 v): a total
loss of ». At the anode there is a loss of ¥ (v —v) and a loss of
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% (u+v), a total loss of w. The initial losses of eclectrolyte at the
two electrodes, then, before diffusion sensibly affects the result, are
in the same ratio as the velocities of the ions travelling away from
them.

The process can be illustrated clearly by a method due to
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Fig. 105.

Hittorf. In Fig. 105 the black dots represent the one ion, and the
white circles the other. If the black ions move to the left twice
as fast as the white ions move to the right, the black ions will move
over two of our spaces while the white ones move over one. Two
of these steps are represented in the diagram. At the end of the
-process it will be found that six molecules have been decomposed,
six black ions being liberated at the left and six white ions at the
right. Looking at the combined molecules, however, we see that
while five remain on the left side of the middle line, only three are
still present on the right. The left-hand side, towards which the
faster 1ons moved, has lost two combined molecules, while the
right-hand side, towards which the slower ions travelled, has lost
four—just twice as many. Thus we see that the ratio of the
masses of salt lost by the two sides is the same as the ratio of the
velocities of the ions leaving them. Therefore, on the assumption
that no unsymmetrical complex ions are present, by analysing the
contents of a solution after a current has passed, we can calculate
the ratio of the velocities of its two ions. Hittorf called the
phenomenon the “migration of the ions,” and expressed his results
in terms of a transport number, or migration constant, which gives
the amount of salt taken from the neighbourhood of the cathode
as a fraction of the whole amount that disappears. If there be no
unsymmetrical complex ions, it also expresses the ratio of the
velocity of the anion to the sum of the opposite ionic velocities.
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The following table gives the transport numbers for some few
salts; the concentration of the solutions being expressed as the
number of gramme-equivalents per litre.

Transport Numbers.

n = 001 01 10 20
KC1 0506 0508 0-514 0515
AgNO, 0528 0528 0501 0476
NaOH — 082 0:825 —
HCI — 0172 0176 0185
10dr, 056 071 112 1-22
1CuS0, — 0-632 0696 0720
$H,80, — 0191 0174 0168

The transport numbers for cadmium iodide, which, for solutions
of more than half normal concentration, are greater than unity,
show that the cathode vessel loses more salt than the whole
solution does. It follows that some unaltered salt must travel
through the solution towards the anode, and this result at once led
to the conception of complex anions of the type I (CdL). The
changes with concentration in the transport number of many other
substances, such as calcium chloride and copper sulphate, seem too
great to be explained by a different rate of variation of the quasi-
frictional resistance which the solution offers to the passage of the
two ilons, and suggest that similar unsymmetrical complex ions
may exist in many solutions.

85. A further step was taken in the year 1879 by Kohlrausch,
Mobility of who showed that a knowledge of the conductivity
b of a solution enables the sum of the opposite
ionic velocities to be calculated. We have seen that we can
represent the facts by considering the process of electrolysis to be
a kind of convection, the ions moving through the solution and
carrying their charges with them. Each monovalent ion may be
supposed to carry a certain definite charge, which we can take to
be the ultimate indivisible unit of electricity ; each divalent ion
carries twice that amount, and so on.

Let us consider, as an example, the case of an aqueous solution
of potassium chloride, of which the concentration is m gramme-
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equivalents per cubic centimetre. There will then be m gramme-
equivalents of potassium ions and the same mumber of chlorine
ions in this volume. Let us suppose that on each gramme-
equivalent of potassium there reside + e units of electricity, and
on each gramme-equivalent of chlorine ions — e units. If » denote
the average velocity of the potassium ions, the positive charge
carried per second across unit area normal to the flow is meu.
Similarly, if » be the average velocity of the chlorine ions, the
negative charge carried in the opposite direction is mev. But
positive electricity moving in one direction is equivalent to nega-
tive electricity moving in the other, so that the total current is
me (u—+v).

Now let us consider the amounts of potassium and chlorine
liberated at the electrodes by this current. At the cathode, if the
chlorine ions were at rest, the excess of potassium ions would be
the number arriving in one second, viz. mu. But, since the chlorine
ions move also, a further separation occurs, and mv potassium ions
are left without partners. The total number of gramme-equivalents
liberated therefore is m (u + »). Now, by Faraday’s law, the
liberation of one gramme-equivalent of any ion involves the passage
of a definite quantity @ of electricity round the circuit. Thus,
the total quantity passing in one second, that is the current, is
m@Q(w+v). On comparing this result with the first expression for the
same current, it follows that the charge, e, on one gramme-equivalent
of either ion is equal to the quantity of electricity passing round
the circuit when the gramme-equivalent is liberated.

We know that Ohm’s law holds good for electrolytes, so that
the current is also given by — kdV/dx, where k& denotes the con-
ductivity of the solution, and —dV/dz the potential gradient, 7.e.
the fall in potential per unit length along the lines of current
flow.

Thus me(u+v)=—Fk (fl::’
E dV
or W= G i e etk
me " dz

an equation in which everything may be expressed in centimetre-
gramme-second units. By measuring 1/k in ohms (an ohm being
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10° c.¢.8.), e in coulombs (107*), and writing n for the number of
gramme-equivalents of solute per litre instead of per cubic centi-
metre, we get i

237

utv=—10"° —Zb— (ﬂf
ne  dw
Now e is 96530 coulombs ; so that for a potential gradient of 1 volt
per centimetre (10° c.G.s. units), we have

u; + v, =1036 x 1072 x %

which gives the relative velocity (or the sum of the opposite
velocities) of the two ions in centimetres per second under unit
potential gradient. These numbers, «, and v, measure what we
may call the mobilities of the two ions.

Since the transport numbers give us the ratio of the ionic
velocities if no unsymmetrical complex ions are present, we can
deduce the absolute values of u, and », from this theory. Thus,
for instance, the conductivity of a solution of potassium chloride,
containing one-tenth of a gramme-equivalent per litre, is 001119
of a reciprocal ohm at 18° C. Therefore

u,+ v, =1037 x 1072 x 01119
= 0001165 cm. per sec.

Hittorf’s experiments show us that the ratio of the velocity of
the anion to that of the cation in this solution is 51 : *49. The
absolute velocity of the chlorine ion under unit potential gradient
is therefore 0000595 cm. per sec., and that of the potassium ion
0000570 cm. per sec. Similar calculations can be made for solutions
of other concentrations and of other salts. An examination of the
results shows that, in general, the velocities of the ions increase as
the concentrations of the solutions diminish, and, at great dilution,
the velocity of an ion in the solution in water of a simple binary
salt is independent of the nature of the other ion present. From

K 67 x 1075 | Cl 70 x 105
Na 45utscr 1 70 s
Li 36, NO, 65
NH, e OH SRS
H 323 C,H,0, S G
Ag 58 ” CSHGOZ 33 »
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this result we may deduce the existence of specific ionic mobilities,
the values of which are given in the table for different monovalent
ions in centimetres per second per volt per centimetre.

86. Sir Oliver Lodge was the first to measure directly the
Experimentat  Velocity of transport of an ion. In a horizontal glass
Sasurements  tube connecting two vessels filled with dilute sulphuric
TRt acid he placed a solution of sodium chloride in solid
agar-agar jelly. This solid solution was made alkaline with a
trace of caustic soda to bring out the red colour of a little phenol-
phthalein added as indicator. A current was then passed from one
vessel to the other along the tube. The hydrogen ions from the
anode vessel of acid were thus carried along the tube, and decolorized
the phenolphthalein as they travelled. By this method the velocity
of the hydrogen ion through a jelly solution under a known potential
gradient could be observed. The results of three experiments gave
0-0029, 0-0026, and 00024 cm. per sec. as the velocity of the
hydrogen ion for a potential gradient of one volt per centimetre.
Kohlrausch’s number is 00032 for the dilution
corresponding to maximum conductivity. %

The velocities of other ions have been deter- :
mined directly in another way by the present writer. F :
Two solutions, having one ion in common, of equi- : r
valent concentrations, different densities, different
colours, and nearly equal specific resistances, were
placed one over the other in a vertical glass tube.
An improvement on the original apparatus is
shown in Fig. 106. The lighter solution is placed
in the U tube, and the denser solution then run in
below it. We may use, as an example, decinormal
solutions of potassium carbonate and potassium
bichromate. The colour of the latter is due to
the presence of the bichromate group, Cr,O,.
When a current is passed across the junction, the
anions CO; and Cr,0, travel in the direction
opposite to that of the current, and their velocity
may be determined by measuring the rate at
which the colour boundary moves. The mobility Fig. 106.
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of an ion is found to be very little less in a solid jelly than in an
ordinary liquid solution. The velocities may be measured therefore
by tracing the change in colour of an indicator, or the formation of
a precipitate. Thus decinormal jelly solutions of barium chloride
and sodium chloride, the latter containing a trace of sodium
sulphate, may be placed in contact. Under the influence of an
electromotive force, the barium ions move up the tube, and their
presence is shown by the trace of insoluble barium sulphate
formed. By keeping the conductivities of the two solutions
nearly the same, discontinuity of potential gradient may be
avoided, and the gradient may then be calculated from the
area of cross-section of the tube, the conductivity of the
solution, and the strength of the current as measured with a
galvanometer.

These methods have been improved and extended by Orme-
Masson and B. D. Steele. The general results confirm the results
of Kohlrausch’s theory for simple binary salts. In solutions of more
complicated electrolytes, the presence of unsymmetrical complex
ions 1s suggested by other evidence, and the concordance of the
direct measurements with Kohlrausch’s theory is less exact.

As the concentration of dilute aqueous solutions increases, the
conductivity falls, and the calculated ionic velocities with it. The
direct measurements confirm this decrease of velocity and verify
the calculation in the case of simple binary electrolytes. The
diminution of conductivity may be due to an increase of the
frictional resistance offered by the liquid to the passage of the
ions, to part of the solute failing to be ionized, or to a combination
of these causes. If we assume that the second cause alone is
involved, the fraction « of the electrolyte ionized will be given by
the ratio between the equivalent conductivity A of the solution,
and its value N, at infinite dilution. But it is important to
remember that, only on the assumption named, may we write

e
Ao
87. When two metallic conductors are placed in an electrolyte,
Soliald a current will flow through a wire connecting them
cells. provided that a difference of any kind exists between
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the two conductors in the nature either of the metals or of the
portions of the electrolyte which surround them. A current can
be obtained by the combination of two metals in the same
electrolyte, of two metals in different electrolytes, of the same
metal in different electrolytes, or of the same metal in solutions of
the same electrolyte at different concentrations.

In order that the current should be maintained, and the
electromotive force of the cell remain constant during action, it
1s necessary to insure that the changes in the cell, chemical or
other, which produce the current, should neither destroy the
difference between the electrodes, nor coat either electrode with a
non-conducting layer through which the current cannot pass. As
an example of a successful cell of fairly constant electromotive
force, we may take that of Daniell, which consists of the electrical
arrangement

zine / zine sulphate solution / copper sulphate solution / copper,
the two solutions being usually separated by a pot of porous
earthenware. When the zinc and the copper plates are connected
through a wire, a current flows, the conventionally positive
electricity passing from copper to zinc in the wire and from zine
to copper through the cell. Zinc dissolves, and zinc replaces
an’ equivalent amount of copper in solution, copper being
deposited simultaneously on the copper electrode. The internal
rearrangements which accompany the production of a current do
not cause any change in the original nature of the electrodes,
and, as long as a moderate current flows, the only variation in
the cell is the appearance of zinc sulphate on the copper side
of the porous wall. While the supply of copper sulphate
1s maintained, copper, being more easily separated from its
solution than zine, is deposited alone at the cathode, and the
cell remains constant. On the other hand, if no current be
allowed to flow, slow processes of ‘diffusion, unchecked by migration
in the opposite direction, will cause copper to appear in the
anode vessel, and finally to be deposited on the zinc. Little
local galvanic cells are thus formed on the surface of the zinc,
which then dissolves, even though the circuit of the main cell is
not completed. Till this deposition occurs, the cell can be left
no open circuit without waste, and no zinc will dissolve if it is
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chemically pure. If, however, commercial zinc, which contains
iron, be used, local action 1s again set up. This action can be
. prevented by amalgamating the zinc; probably because that
process produces a uniform surface, iron being insoluble in
mereury.

88. Considered thermodynamically, galvanic cells must be
Reversible divided into reversible and non-reversible systems.
cetls: If the slow processes of diffusion be ignored, the
Daniell cell already described may be taken as a type of a
reversible cell. Let an electromotive force exactly equal to that of
the cell be applied to it in the reverse direction. When the
applied force is diminished by an infinitesimal amount, the cell
produces a current in the usual direction, and the ordinary
chemical changes occur. If the external electromotive force exceeds
that of the cell by ever so little, a current flows in the opposite
direction and all the former chemical changes are reversed,
copper dissolving from the copper plate, while zinc is deposited
on the zinc plate. The cell, together with this balancing electro-
motive force, is thus a reversible system in true equilibrium, and
the thermodynamical reasoning applicable to such systems can be
used to examine its properties.

Cells from which gas is lost into the atmosphere, such as Volta’s
original couple, zinc /dilute acid / copper, and others in which
irreversible processes of reduction occur, such as the Grove
arrangement, zinc / dilute suphuric acid / nitric acid / platinum,
form essentially irreversible systems. Moreover, it does not follow
that, because an accumulator can be used to give a current in the
reverse direction to the charging current, it is, in the thermodynamic
sense, a reversible cell. This is only the case when an electromotive
force greater by an indefinitely small amount than the secondary
electromotive force of the cell will reverse the current through it
and the chemical actions in it also. For this to be possible, it is
necessary that the whole of the energy of the charging current
should be put into available energy of chemical separation, which
can all be regained when the cell is discharged.

Let us imagine that a reversible cell, balanced by an equal and
opposite electromotive force, is put through a thermodynamic cycle

W. E. 612
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of changes, after the manner of Carnot’s engine. Let us draw an
indicator diagram with ordinates denoting the electromotive force
E of the cell, and absciss® representing the electric transfer through
the system. Let the system be placed in a chamber at a tempera-
ture 7, and the balancing electromotive force be reduced infinitesi-
mally, so that a quantity e of electricity passes reversibly through
the cell. The electrical work done is Ke. In the indicator diagram

>

E

Fig. 107.

Fig. 107, we travel along the isothermal line 4 B, and the cell absorbs
a quantity A of heat to keep its temperature constant.

Let us suppose that the system is thermally isolated, and
that a further infinitesimal electric transfer occurs in the positive
direction. The cell will either heat or cool; let us suppose
that it cools to a temperature 7'— &1, If its electromotive force
be continually balanced, the process will be reversible. Now let
us place the system in an isothermal chamber at a temperature
T — 8T, and make the balancing electromotive force infinitesimally
greater than that of the cell. An electric current flows in the
negative direction, and the chemical changes of the cell are
reversed. The indicating point in the diagram passes from C to D,
and a certain amount of electrical work is done on the cell. If, then,
the system be thermally isolated, a further infinitesimal negative
electric transfer will heat the cell reversibly to its original tem-
perature 7.

Now, if 87 is a very small temperature interval, the area of the
figure ABCDA in the indicator diagram—the area which gives
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the balance of electrical work done by the cell during the cycle—is
independent of the particular shape of the ends, and is measured
by the product of the length of the figure and its breadth. What-
ever exact reversible operations are needed to take the cell from
one isothermal line to the other, the electrical work is therefore
given by the product of the length and breadth of the figure. The
length is e—the total electric transfer through the cell during
either isothermal process—and the breadth is given by the difference
in the electromotive forces at the two temperatures. This difference
8E is clearly measured by the product of the temperature difference
87T and the rate of change dE/dT of electromotive force with tem-
perature. Hence the useful electrical work gained from the cell
during the cycle, or the area of the figure A BCDA, is
ar
edE =edT ar

By the well-known expression for the efficiency of a reversible
heat-engine, the ratio of the external work done to the heat X
absorbed from the source during the hotter isothermal operation is
equal to the ratio of the temperature range over which the engine
works to the absolute temperature of the source. Thus

mdlE
h = 11)
dE
and h——-eTﬂ,.

This equation gives us the value of the reversible heat absorbed
by the cell during the isothermal production of a current; that is,
the heat which must be supplied at a temperature 7' in order to
prevent the temperature changing when an amount e of electricity
passes through the cell in the direction of its own electromotive
force. If the temperature coefficient of the electromotive force be
positive, that is, if the electromotive force of the cell increase with
increasing temperature, & is positive also, and heat must be taken
into the cell to keep it isothermal. Left to itself, then, such a cell
will cool when giving a current. On the other hand, if dZ/dT
be negative, the cell will be heated by an electric transfer. Both

16—2
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these effects are, of course, independent of the non-reversible Joule
effect, by which an amount of heat ("Rt is developed by the passage
of a current. If the current be made very small, the Joule effect
may be neglected compared with the reversible effect.

The analogy of this reversible effect with that discovered by
Peltier at the junction of two different metals (§ 49) is mani-
fest, and suggests that the site of the present phenomenon is to
be sought at the interfaces between the electrodes of the cell
and the liquids contained therein. This conclusion has been
verified experimentally by Jahn and by Gill, who find the local
thermal effects are in accordance with theory.

When a reversible voltaic cell is giving a current, the source of
the energy is clearly the chemical action. If the same amount of
chemical action were to take place in a calorimeter, without the per-
formance of external work, the system might be brought to the same
final state, with the same internal energy. In this case,all the energy
goes into heat, and the calorimetric heat H evolved is a measure
of the change in internal energy. When used to drive a current, the
same decrease in internal energy must supply the electrical energy
Ee, and also any reversible heat evolved at the junction in the
circuit. “Heat evolved” means heat leaving the system, and
thermodynamically is to be reckoned negative. But, as we have
seen, the reversible heat % is equal to erE/dT Hence we
have

dE

H=Ee—el — P
If A denote the calorimetric heat evolved by an amount of
chemical action corresponding with unit electric transfer, H may

be replaced by Ae, and we obtain the relation

dE
A=FE— TdT’
or E= 7&+TdT,

an expression for the electromotive force of a voltaic cell, which
was obtained by von Helmholtz, and, in a different way, by
Willard Gibbs.
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This equation is a particular example of the general equation
connecting the change in the internal energy of a system with
what is known as the free or available energy. The available
energy A 1s the amount of external work obtainable by an
infinitesimal, isothermal, reversible change in the system—in the
case considered, obviously the electromotive force £ multiplied by
the electric transfer e. The change 7 in the internal energy is e,
and we may write our equation in the general form

dA
A=I+T%,

which is applicable to any reversible physical or chemical system.

Returning to the consideration of the equation for the
electromotive force, it will be noticed that, if dE/dT be zero, the
electromotive force is measured by the heat of reaction per unit
electrochemical change. The earliest formulation of the subject,
due to Lord Kelvin, assumed that this relation was true in all
cases; as, calculated in this way, the electromotive force of
Daniell’s cell, which happens to possess a very small temperature
coefficient, agreed with observation.

When one gramme of zinc is dissolved in sulphuric acid, 1670
thermal units are evolved. Hence for the electrochemical unit,
or 0003388 gramme, the thermal evolution is 566 calories.
Similarly, the calorimetric heat corresponding to the electro-
chemical unit of copper is 3:00 calories. Hence, the thermal
equivalent of the unit of electro-chemical change in Daniell’s cell is
266 calories. The dynamical equivalent of the calorie is 418 x 107
ergs, and the electromotive force should be 1:112 x 108 c.G.s. units
or 1'112 volts—a close agreement with the experimental result
of about 1-08 volts.

For cells in which the electromotive force changes with
temperature, the accuracy of the equation of Helmholtz and Gibbs
has also been confirmed experimentally.

89. As stated above, an electromotive force is produced
Concentration  Whenever there is a difference of any kind at two
St electrodes immersed in electrolytes. In ordinary cells
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the difference is secured by using two dissimilar metals, but an
electromotive force exists if two plates of the same metal are placed
in solutions of different substances, or of the same substance at
different concentrations. Another method is to use in the same
solution electrodes of different concentration. Such electrodes
can be constructed by taking hydrogen in contact with platinized
platinum, and making the pressure different at the two ends. In
all such cells the electrical energy is not obtained from chemical
changes, but from the energy of expansion of substances from
greater to smaller concentrations.

Let us take as an example of a concentration cell the
arrangement

silver / dilute silver nitrate / concentrated silver nitrate / silver.
Here metal dissolves in the more dilute solution, and is
deposited from the more concentrated solution, and this process
will continne, since it involves a decrease of available energy, till
the concentrations are equalized.

When one electrochemical unit of electricity passes, one gramme-
equivalent of silver dissolves at the anode, and an equal quantity
is deposited at the cathode. In this manner, the anode vessel
must gain one gramme-equivalent of salt and the cathode vessel lose
the same amount. Now let us consider the motion of the ions
through the solution. The current, which is exclusively carried by
silver 1ons at the electrodes, is shared between silver ions and NO,
ions in the body of the liquid. If the ionic velocities were the same,
therefore, half a gramme-equivalent of each ion would pass across the
surface of contact of the solutions. In the general case, when the
transport ratio of the anion is r, and that of the cation 1 —r, the
anode vessel will, on the whole, gain 1—(1—7) or r gramme-
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