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EDITOR’S NOTE.

O apology is needed for the publication of the present new
edition of ke Study and Difficulties of Mathematics,—a
characteristic production of one of the most eminent and lumi-
nous of English mathematical writers of the present century. De
Morgan, though taking higher rank as an original inquirer than
either Huxley or Tyndall, was the peer and lineal precursor of
these great expositors of science, and he applied to his lifelong task
an historical equipment and a psychological insight which have
not yet borne their full educational fruit. And nowhere have these
distinguished qualities been displayed to greater advantage than in
the present work, which was conceived and written with the full
natural freedom, and with all the fire, of youthful genius. For the
contents and purpose of the book the reader may be referred to
the Author's Preface. The work still contains points (notable
among them is its insistence on the study of logic), which are in-
sufficiently emphasised, or slurred, by elementary treatises; while
the freshness and naturalness of its point of view contrasts strongly
with the mechanical character of the common text-books. Ele-
mentary instructors and students cannot fail to profit by the gen-
eral loftiness of its tone and the sound tenor of its instructions.
The original treatise, which was published by the Society for
the Diffusion of Useful Knowledge and bears the date of 1831, is
now practically inaccessible, and is marred by numerous errata
and typographical solecisms, from which, it is hoped, the present
edition is free. References to the remaining mathematical text-

books of the Society for the Diffusion of Useful Knowledge now

609772
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out of print have either been omitted or supplemented by the men-
tion of more modern works. The few notes which have been
added are mainly bibliographical in character, and refer, for in-
stance, to modern treatises on logic, algebra, the philosophy of
mathematics, and pangeometry. For the portrait and autograph
signature of De Morgan, which graces the page opposite the title,
The Open Court Publishing Company is indebted to the courtesy
of Principal David Eugene Smith, of the State Normal School at
Brockport, N. Y.

Tuomas J. McCORMACK.
La Sarvrg, I11., Nov. 1, 1898.



AUTHOR’S PREFACE.

N compiling the following pages, my object has been to notice
particularly several points in the principles of algebra and
geometry, which have not obtained their due importance in our
elementary works on these sciences. There are two classes of men
who might be benefited by a work of this kind, viz., teachers of
the elements, who have hitherto confined their pupils to the work-
ing of rules, without demonstration, and students, who, having
acquired some knowledge under this system, find their further
progress checked by the insufficiency of their previous methods
and attainments. To such it must be an irksome task to recom-
mence their studies entirely; I have therefore placed before them,
by itself, the part which has been omitted in their mathematical
education, presuming throughout in my reader such a knowledge
of the rules of algebra, and the theorems of Euclid, as is usually
obtained in schools.

It is needless to say that those who have the advantage of
University education will not find more in this treatise than a little
thought would enable them to collect from the best works now in
use [1831], both at Cambridge and Oxford. Nor do I pretend to
settle the many disputed points on which I have necessarily beea
obliged to treat. The perusal of the opinions of an individual,
offered simply as such, may excite many to become inquirers, who
would otherwise have been workers of rules and followers of dog-
mas. 'They may not ultimately coincide in the views promulgatéd
by the work which first drew their attention, but the benefit which
they will derive from it is not the less on that account. I am not,
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however, responsible for the contents of this treatise, further than
for the manner in which they are presented, as most of the opin-
ions here maintained have been found in the writings of eminent
mathematicians.

It has been my endeavor to avoid entering into the purely
metaphysical part of the difficulties of algebra. The student is, in
my opinion, little the better for such discussions, though he may
derive such conviction of the truth of results by deduction from
particular cases, as no & pr7or7 reasoning can give to a beginner.
In treating, therefore, on the negative sign, on impossible quanti-
ties, and on fractions of the form §, etc., I have followed the
method adopted by several of the most esteemed continental writ-
ers, of referring the explanation to some particular problem, and
showing how to gain the same from any other. Those who admit
such expressions as —a, \/———a, 9, etc., have never produced any
clearer method; while those who call them absurdities, and would
reject them altogether, must, I think, be forced to admit the fact
that in algebra the different species of contradictions in problems
are attended with distinct absurdities, resulting from them as
necessarily as different numerical results from different numerical
data. This being granted, the whole of the ninth chapter of this
work may be considered as an inquiry into the nature of the differ-
ent misconceptions, which give rise to the various expressions
above alluded to. To this view of the question I have leaned,
finding no other so satisfactory to my own mind.

The number of mathematical students, increased as it has
been of late years, would be much augmented if those who hold
the highest rank in science would condescend to give more effective
assistance in clearing the elements of the difficulties which they
present. If any one claiming that title should think my attempt
obscure or erroneous, he must share the blame with me, since it is
through his neglect that I have been enabled to avail myself of an
opportunity to perform a task which I would gladly have seen con-
fided to more skilful hands. Avgustus DE MORGAN.
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CHAPTER 1.

INTRODUCTORY REMARKS ON THE NATURE AND
OBJECTS OF MATHEMATICS.

HE OB]JECT of this Treatise is—(1) To point
out to the student of Mathematics, who has not
the advantage of a tutor, the course of study which it
is most advisable that he should follow, the extent to
which he should pursue one part of the science before
he commences another, and to direct him as to the
sort of applications which he should make. (2) To
treat fully of the various points which involve difficul-
ties and which are apt to be misunderstood by begin-
ners, and to describe at length the nature without
going into the routine of the operations.

No person commences the study of mathematics
without soon discovering that it is of a very different
nature from those to which he has been accustomed.
The pursuits to which the mind is usually directed be-
fore entering on the sciences of algebra and geometry,
are such as languages and history, etc. Of these,
neither appears to have any affinity with mathemat-
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ics; lyet, in order to see the difference which exists be-
tween these studies,—for instance, history and geom-
etry,—it will be useful to ask how we come by knowl-
edge in each. Suppose, for example, we feel certain
of a fact related in history, such as the murder of
Casar, whence did we derive the certainty? how came
we to feel sure of the general truth of the circum-
stances of the narrative? The ready answer to this
question will be, that we have not absolute certainty
upon this point; but that we have the relation of his-
torians, men of credit, who lived and published their
accounts in the very time of which they write; that
succeeding ages have 1eceived those accounts as true,
and that succeeding historians have backed them with
a mass of circumstantial evidence which makes it the
most improbable thing in the world that the account,
or any material part of it, should be false. This is
perfectly correct, nor can there be the slightest ob-
jection to believing the whole narration upon such
grounds; nay, our minds are so constituted, that,
upon our knowledge of these arguments, we cannot
help believing, in spite of ourselves. But this brings
us to the point to which we wish to come ; we believe
that Caesar was assassinated by Brutus and his friends,
not because there is any absurdity in supposing the
contrary, since every one must allow that there is just
a possibility that the event never happened: not be-
cause we can show that it must necessarily have been
that, at a particular day, at a particular place, a suc-
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cessful adventurer must have been murdered in the
manner described, but because our evidence of the
fact is such, that, if we apply the notions of evidence
which every-day experience justifies us in entertain-
ing, we feel that the improbability of the contrary
compels us to take refuge in the belief of the fact;
and, if we allow that there is still a possibility of its
falsehood, it is because this supposition does not in-
volve absolute absurdity, but only extreme improb-
ability.

In mathematics the case is wholly different. It is
true that the facts asserted in these sciences are'of a
nature totally distinct from those of history ; so much
so, that a comparison of the evidence of the two may
almost excite a smile. But if it be remembered that
acute reasoners, in every branch of learning, have
acknowledged the use, we might almost say the neces-
sity, of a mathematical education, it must be admitted
that the points of connexion between these pursuits
and others are worth attending to. They are the more
so, because there is a mistake into which several have
fallen, and have deceived others, and perhaps them-
selves, by clothing some false reasoning in what they
called a mathematical dress, imagining that, by the
application of mathematical symbols to their subject,
they secured mathematical argument. This could not
have happened if they had possessed a knowledge of
the bounds within which the empire of mathematics
is contained. That empire is sufficiently wide, and
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might have been better known, had the time which
has been wasted in aggressions upon the domains of
others, been spent in exploring the immense tracts
which are yet untrodden.

We have said that the nature of mathematical dem-
onstration is totally different from all other, and the
difference consists in this—that, instead of showing
the contrary of the proposition asserted to be only im-
probable, it proves it at once to be absurd and impos-
sible. This is done by showing that the contrary of
the proposition which is asserted is in direct contra-
diction to some extremely evident fact, of the truth of
which our eyes and hands convince us. In geometry,
of the principles alluded to, those which are most
commonly used are—

I. If a magnitude be divided into parts, the whole
is greater than either of those parts.

II. Two straight lines cannot inclose a space.

ITI. Through one point only one straight line can
be drawn, which never meets another straight line, or
which is parallel to it.

It is on such principles as these that the whole of
geometry is founded, and the demonstration of every
proposition consists in proving the contrary of it to be
inconsistent with one of these. Thus, in Euclid, Book
I., Prop. 4, it is shown that two triangles which have
two sides and the included angle respectively equal
are equal in all respects, by proving that, if they are
not equal, two straight lines will inclose a space, which
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is impossible. In other treatises on geometry, the
same thing is proved in the same way, only the self-
evident truth asserted sometimes differs in form from
that of Euclid, but may be deduced from it, thus—

Two straight lines which pass through the same
two points must either inclose a space, or coincide
and be one and the same line, but they cannot inclose
a space, therefore they must coincide. Either of these
propositions being granted, the other follows imme-
diately; it is, therefore, immaterial which of them we
use. 'We shall return to this subject in treating
specially of the first principles of geometry.

Such being the nature of mathematical demonstra-
tion, what we have before asserted is evident, that
our assurance of a geometrical truth is of a nature
wholly distinct from that which we can by any means
obtain of a fact in history or an asserted truth of meta-
physics. In reality, our senses are our first mathe-
matical instructors; they furnish us with notions
which we cannot trace any further or represent in any
other way than by using single words, which every
one understands. Of this nature are the ideas to
which we attach the terms number, one, two, three,
etc,, point, straight line, surface; all of which, let
them be ever so much explained, can never be made
any clearer than they are already to a child of ten
years old. ‘

But, besides this, our senses also furnish us with
the means of reasoning on the things which we call
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by these names, in the shape of incontrovertible prop-
ositions, such as have been already cited, on which,
if any remark is made by the beginner in mathemat-
ics, it will probably be, that from such absurd truisms
as ‘‘the whole is greater than its part,’” no useful re-
sult can possibly be derived, and that we might as
well expect to make use of ¢“two and two make four.”
This observation, which is common enough in the
mouths of those who are commencing geometry, is
the result of a little pride, which does not quite like
the humble operation of beginning at the beginning,
and is rather shocked at being supposed to want such
elementary information. But it is wanted, neverthe-
less; the lowest steps of a ladder are as useful as the
highest. Now, the most common reflection on the
nature of the propositions referred to will convince us
of their truth. But they must be presented to the un-
derstanding, and reflected on by it, since, simple as
they are, it must be a mind of a very superior cast
which could by itself embody these axioms, and pro-
ceed from them only one step in the road pointed out
in any treatise on geometry.

But, although there is no study which presents so
simple a beginning as that of geometry, there is none
in which difficulties grow more rapidly as we proceed,
and what may appear at first rather paradoxical, the
more acute the student the more serious will the im-
pediments in the way of his progress appear. This

necessarily follows in a science which consists of rea-
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soning from the very commencement, for it is evident
that every student will feel a claim to have his objec-
tions answered, not by authority, but by argument,
and that the intelligent student will perceive more
readily than another the force of an objection and the
obscurity arising from an unexplained difficulty, as
the greater is the ordinary light the more will occa-
sional darkness be felt. To remove some of these
difficulties is the principal object of this Treatise.

We shall now make a few remarks on the advan-
tages to be derived from the study of mathematics,
considered both as a discipline for the mind and a key
to the attainment of other sciences. It is admitted by
all that a finished or even a competent reasoner is not
the work of nature alone ; the experience of every day
makes it evident that education develops faculties
which would otherwise never have manifested their
existence. It is, therefore, as necessary to Zearn to
reason before we can expect to be able to reason, as it
is to learn to swim or fence, in order to attain either
of those arts. Now, something must be reasoned
upon, it matters not much what it is, provided that it
can be reasoned upon with certainty. The properties
of mind or matter, or the study of languages, mathe-
matics, or natural history, may be chosen for this pur-
pose. Now, of all these, it is desirable to choose the
one which admits of the reasoning being verified, that
is, in which we can find out by other means, such as
measurement and ocular demonstration of all sorts,
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whether the results are true or not. When the guid-
-ing property of the loadstone was first ascertained,
and it was necessary to learn how to use this new dis-
covery, and to find out how far it might be relied on,
it would have been thought advisable to make many
passages between ports that were well known before
attempting a voyage of discovery. So it is with our
reasoning faculties : it is desirable that their powers
should be exerted upon objects of such a nature, that
we can tell by other means whether the results which
we obtain are true or false, and this before it is safe
to trust entirely to reason. Now the mathematics are
peculiarly well adapted for this purpose, on the fol-
lowing grounds :

1. Every term is distinctly explained, and has but
one meaning, and it is rarely that two words are em-
ployed to mean the same thing.

2. The first principles are self-evident, and, though
derived from observation, do not require more of it
than has been made by children in general.

3. The demonstration is strictly logical, taking
nothing for granted except the self-evident first prin-
ciples, resting nothing upon probability, and entirely
independent of authority and opinion.

4. When the conclusion is attained by reasoning,
its truth or falsehood can be ascertained, in geometry
by actual measurement, in algebra by common arith-
metical calculation. This gives confidence, and is
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absolutely necessary, if, as was said before, reason is
not to be the instructor, but the pupil.

5. There are no words whose meanings are so
much alike that the ideas which they stand for may
be confounded. Between the meanings of terms there
is no distinction, except a total distinction, and all
adjectives and adverbs expressing difference of de-
grees are avoided. Thus it may be necessary to say,
““4 is greater than B,;” but it is entirely unimportant
whether 4 is very little or very much greater than 5.
Any proposition which includes the foregoing asser-
tion will prove its conclusion generally, that is, for all
cases in which 4 is greater than B, whether the dif-
ference be great or little. Locke mentions the dis-
tinctness of mathematical terms, and says in illustra-
tion: ¢“The idea of two is as distinct from the idea of
‘‘three as the magnitude of the whole earth is from
¢¢that of a mite. This is not so in other simple modes,
¢¢in which it is not so easy, nor perhaps possible for us
¢¢to distinguish between two approaching ideas, which
‘“yet are really different; for who will undertake to
“find a difference between the white of this paper,
‘‘and that of the next degree to it ?”

These are the principal grounds on which, in our
opinion, the utility of mathematical studies may be
shown to rest, as a discipline for the reasoning pow-
ers. But the habits of mind which these studies have
a tendency to form are valuable in the highest degree.
The most important of all is the power of concentrat-
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ing the ideas which a successful study of them in-
creases where it did exist, and creates where it did
not. A difficult position, or a new method of passing
from one proposition to another, arrests all the atten-
tion and forces the united faculties to use their utmost
exertions. The habit of mind thus formed soon ex-
tends itself to other pursuits, and is beneficially felt
in all the business of life.

As a key to the attainment of other sciences, the
use of the mathematics is too well known to make it
necessary that we should dwell on this topic. In fact,
there is not in this country any disposition to under-
value them as regards the utility of their applications.
But though they are now generally considered as a
part, and a necessary one, of a liberal education, the
views which are still taken of them as a part of edu-
cation by a large proportion of the community are
still very confined.

The elements of mathematics usually taught are
contained in the sciences of arithmetic, algebra, geom-
etry, and trigonometry. We have used these four di-
visions because they are generally adopted, though,
in fact, algebra and geometry are the only two of them
which are really distinct. Of these we shall commence
with arithmetic, and take the others in succession in
the order in which we have arranged them.



CHAPTER II.

ON ARITHMETICAL NOTATION.

HE first ideas of arithmetic, as well as those of
other sciences, are derived from early observa-
tion. How they come into the mind it is unnecessary
to inquire; nor is it possible to define what we mean
by number and quantity. They are terms so simple,
that is, the ideas which they stand for are so com-
pletely the first ideas of our mind, that it is impossible
to find others more simple, by which we may explain
them. This is what is meant by defining a term; and
here we may say a few words on definitions in general,
which will apply equally to all sciences.

Definition is the explaining a term by means of
others, which are more easily understood, and thereby
fixing its meaning, so that it may be distinctly seen
what it does imply, as well as what it does not.. Great
care must be taken that the definition itself is not a
tacit assumption of some fact or other which ought to
be proved. Thus, when it is said that a square is ¢‘a
four-sided figure, all whose sides are equal, and all
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whose angles are right angles,” though no more is
said than is true of a square, yet more is said than is
necessary to define it, because it can be proved that
if a four-sided figure have all its sides equal, and one
only of its angles a right angle, all the other angles
must be right angles also. Therefore, in making the
above definition, we do, in fact, affirm that which
ought to be proved. Again, the above definition,
though redundant in one point, is, strictly speaking,
defective in another, for it omits to state whether the
sides of the figure are straight lines or curves. It
should be, ¢“a square is a four-sided rectilinear figure,
all of whose sides are equal, and one of whose angles
is a right angle.”

As the mathematical sciences owe much, if not all,
of the superiority of their demonstrations to the pre-
cision with which the terms are defined, it is most es-
sential that the beginner should see clearly in what a
good definition consists. We- have seen that there
are terms which cannot be defined, such as number
and quantity. An attempt at a definition would only
throw a difficulty in the student’s way, which is already
done in geometry by the attempts at an explanation
of the terms point, straight line, and others, which
are to be found in treatises on that subject. A pointis
defined to be that ‘“which has no parts, and which
has no magnitude”; a straight line is that which
¢‘lies evenly between its extreme points.” Now, let
any one ask himself whether he could have guessed
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what was meant, if, before he began geometry, any
one had talked to him of ‘that which has no parts
and which has no magnitude,” and ¢“the line which
lies evenly between its extreme points,” unless he had
at the same time mentioned the words ¢¢ point” and
¢¢straight line,” which would have removed the diffi-
culty? In this case the explanation is a great deal
harder than the term to be explained, which must
always happen whenever we are guilty of the absurd-
ity of attempting to make the simplest ideas yet more
simple.

A knowledge of our method of reckoning, and "of
writing down numbers, is taught so early, that the
method by which we began is hardly recollected.
Few, therefore, reflect upon the very commencement
of arithmetic, or upon the simplicity and elegance
with which calculations are conducted. We find the
method of reckoning by ten in our hands, we hardly
know how, and we conclude, so natural and obvious
does it seém, that it came with our language, and is
a part of it; and that we are not much indebted to
instruction for so simple a gift. It has been well ob-
served, that if the whole earth spoke the same lan-
guage, we should think that the name of any object
was not a mere sign c/osen to represent it, but was a
sound which had some real connexion with the thing ;
and that we should laugh at, and perhaps persecute,
any one who asserted that any other sound would do
as well if we chose to think so. We cannot fall into
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this error, because, as it is, we happen to know that
what we call by the sound ¢‘horse,” the Romans dis--
tinguished as well by that of ¢‘eguus,” but we commit
a similar mistake with regard to our system of nume-
ration, because at present it happens to be received
by all civilised nations, and we do not reflect on what
was done formerly by almost all the world, and is done
still by savages. The following considerations will,
perhaps, put this matter on a right footing, and show
that in our ideas of arithmetic we have not altogether
rid ourselves of the tendency to attach ideas of mysti-
cism to numbers which has prevailed so extensively
in all times.

We know that we have nine signs to stand for the
first nine numbers, and one for nothing, or zero. Also,
that to represent ten we do not use a new sign, but
combine two of the others, and denote it by 10, eleven
by 11, and so on. But why was the number Z¢z chosen
as the limit of our separate symbols—why not nine,
eight, or eleven? If we recollect how apt we are to
count on the fingers, we shall be at no loss to see the
reason. We can imagine our system of numeration
formed thus:—A man proceeds to count a number,
and to help the memory he puts a finger on the table
for each one which he counts. He can thus go as far
as ten, after which he must begin again, and by reck-
oning the fingers a second time he will have counted
twenty, and so on. But this is not enough ; he must
also reckon the number of times which he has done
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this, and as by counting on the fingers he has divided
the things which he is counting into lots of ten each,
he may consider each lot as a unit of its kind, just as
we say a number of sheep is oze flock, twenty shillings
are one pound. Call each lot a fen. In this way he
can count a ten of tens, which he may call a hundred,
a ten of hundreds, or a thousand, and so on. The
process of reckoning would then be as follows :—Sup-
pose, to choose an example, a number of faggots is to
be counted. They are first tied up in bundles of ten
each, until there are not so many as ten left. Suppose
there are seven over. We then count the bundles of
ten as we counted the single faggots, and tie them up
also by tens, forming new bundles of one hundred
each with some bundles of ten remaining. Let these
last be six in number. We then tie up the bundles
of hundreds by tens, making bundles of thousands,
and find that there are five bundles of hundreds re-
maining. Suppose that on attempting to tie up the
thousands by tens, we find there are not so many as
ten, but only four. The number of faggots is then 4
thousands, 5 hundreds, 6 tens, and 7.

The next question is, how shall we represent this
number in a short and convenient manner? Itis plain
that the way to do this is a matter of choice. Suppose
then that we distinguish the tens by marking their
number with one accent, the hundreds with two ac-
cents, and the thousands with three. We may then

represent this number in any of the following ways :—



16 ON THE STUDY OF MATHEMATICS.

T6'5"4™, 6'75"4™, 6'4""5"7, 4'5"6'7, the whole num-
ber of ways being 24. But this is more than we want ;
one certain method of representing a number is suffi-
cient. The most natural way is to place them in order
of magnitude, either putting the largest collection first
or the smallest ; thus 4”'5”6'7, or 76’54, Of these
we choose the first.

In writing down numbers in this way it will soon
be apparent that the accents are unnecessary. Since
the singly accented figure will always be the second
from the right, and so on, the place of each number
will point out what accents to write over it, and we
may therefore consider each figure as deriving a value
from the place in which it stands. But here this diffi-
culty occurs. How are we to represent the numbers
33, and 4'2'7T without accents? If we write them
thus, 33 and 427, they will be mistaken for 3'3 and
4"2'7.  This difficulty will be obviated by placing cy-
phers so as to bring each number into the place al-
lotted to the sort of collection which it represents;
thus, since the trebly accented letters, or thousands,
are in the fourth place from the right, and the singly
accented letters in the second, the first number may
be written 3030, and the second 4027. The cypher,
which plays so important a part in arithmetic that it
was anciently called the ar? of cypher, or cyphering,
does not stand for any number in itself, but is merely
employed, like blank types in printing, to keep other
signs in those places which they must occupy in order
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to be read rightly. We may now ask what would
have been the case if, instead of ten fingers, men had
had more or less. For example, by what signs would
4567 have been represented, if man had nine fingers
instead of ten? We may presume that the method
would have been the same, with the number nine rep-
resented by 10 instead of ten, and the omission of the
symbol 9. Suppose this number of faggots is to be
counted by nines. Tie them up in bundles of nine,
and we shall find 4 faggots remaining. Tie these
bundles again in bundles of nine, each of which will,
therefore, contain eighty-one, and there will be 3 bun-
dles remaining. These tied up in the same way into
bundles of nine, each of which contains seven hundred
and twenty-nine, will leave 2 odd bundles, and, as
there will be only six of them, the process cannot be
carried any further. If, then, we represent, by 1, a
bundle of nine, or @ zine, by 1” a nine of nines, and
so on, the number which we write 4567, must be writ-
ten 6" 2”3 4. In order to avoid confusion, we will
suffer the accents to remain over all numbers which
are not reckoned in tens, while those which are so
reckoned shall be written in the common way. The
following is a comparison of the way in which num-
bers in the common system are written, and in the
one which we have just explained :

COUNTING BY
Tens...1 2
Nines..1 2

345 6 7 8 9 10 11 12 13
3 4 5 6 7 81011 12 1'3 1'4
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COUNTING BY

e mnSh s 14 15 16 17 18 19 20 30 40 50
Nines...... 's 1'6 1'7 1'8 2'0 2'1 2’2 3'3 44 55
SRS Baaooho 60 70 80 90 100
Nines...... 66 77 88 171'0 1"2'1

We will now write, in the common way, in the
tens’ system, the process which we went through in
order to find how to represent the number 4667 in
that of the nines, thus:
9) 4567
9) 507 —rem. 4.
9) 56-—rem. 3.
9) 6 —rem. 2.

. 6.

0—rem Representation required, 6”'2"3"4.

The processes of arithmetic are the same in prin-
ciple whatever system of numeration is used. To
show this, we subjoin a question in each of the first
four rules, worked both in the common system, and
in that of the nines. There is the difference, that, in
the first, the tens must be carried, and in the second

the nines.
ADDITION.
636 ™Te
987 AR 20
403 4787
2026 R Pl
SUBTRACTION.
1384 18"0'7
w97 10”75

587 722



ON ARITHMETICAL NOTATION. Ig

MULTIPLICATION.

297 37 6 0

136 1”6 1
1782 36 0
891 2 4 00
297 3 6 0
40392 63T 6 0

DIVISION.

633) 79125 (125 707 3) 1v 3V 0W4i T 6% (1748
633 773
1582 4217
1266 3423

3165 6846
3165 68 4 6
VO 0

The student should accustom himself to work
questions in different systems of numeration, which
will give him a clearer insight into the nature of arith-
metical processes than he could obtain by any other
method. When he uses a system in which numbers
are counted by a number greater than ten, he will
want some new symbols for figures. For example, in
the duodecimal system, where twelve is the number
of figures supposed, twelve will be represented by 1'0;
there must, therefore, be a distinct sign for ten and
eleven: a nine and six reversed, thus ¢ and ¢, might
be used for these.

*To avoid too great a number of accents, Roman numerals are put in.

stead of them; also, to avoid confusion, the accents are omitted after the
first line,



CHAPTER 0L

ELEMENTARY RULES OF ARITHMETIC.

S SOON as the beginner has mastered the notion

of arithmetic, he may be made acquainted with

the meaning of the algebraical signs -+, —, X, =, and
also with that for division, or the common way of rep-
resenting a fraction. There is no difficulty in these
signs or in their use. Five minutes’ consideration will
make the symbol 5 -+ 3 present as clear an idea as the
words ‘“5 added to 3.” The reason why they usually
cause so much embarrassment is, that they are gener-
ally deferred until the student commences algebra,
when he is often introduced at the same time to the
representation of numbers by letters, the distinction
of known and unknown quantities, the signs of which
we have been speaking, and the use of figures as
the exponents of letters. Either of these four things
is quite sufficient at a time, and there is no time more
favorable for beginning to make use of the signs of
operation than when the habit of performing the ope-
rations commences. The beginner should exercise
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himself in putting the simplest truths of arithmetic in
this new shape, and should write such sentences as
the following freqliently:
24 7=9,
| i
IR R T W
2% 2412%12=14% 1012 % 2X 2.

These will accustom him to the meaning of the signs,
just as he was accustomed to the formation of letters
by writing copies. As he proceeds through the rules
of arithmetic, he should take care never to omit con-
necting each operation with its sign, and should avoid
confounding operations together and considering them
as the same, because they produce the same result.
Thus 4 X 7 does not denote the same operation as
7% 4, though the result of both is 28. The first is
four multiplied by seven, four taken seven times; the
second is seven multiplied by four, seven taken four
times; and that 4 X 7="7 X 4 is a proposition to be
proved, not to be taken for granted. Again, 1 X4
and 4 are marks of distinct operations, though their
result is the same, as we shall show in treating of
fractions. i

The examples which a beginner should choose for
practice should be simple and should not contain very
large numbers. The powers of the mind cannot be
directed to two' things at once: if the complexity of
the numbers used requires all the student’s attention,
he cannot observe the principle of the rule which he
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is following. Now, at the commencement of his ca-
reer, a principle is not received and understood by
the student as quickly as it is explained by the in-
structor. He does not, and cannot, generalise at all ;
he must be taught to do so; and he cannot learn that
a particular fact holds good for a// #numéers unless by
having it shown that it holds good for some numbers,
and that for those some numébers he may substitute
others, and use the same demonstration. TUntil he
can do this himself he does not understand the prin-
ciple, and he can never do this except by seeing the
rule explained and trying it himself on small numbers.
He may, indeed, and will, believe it on the word of
his instructor, but this disposition is to be checked.
He must be told, that whatever is not gained by his
own thought is not gained to any purpose; that the
mathematics are put in his way purposely because
they are the only sciences in which he must not trust
the authority of any one. The superintendence of
these efforts is the real business of an instructor in
arithmetic. The merely showing the student a ruie
by which he is to work, and comparing his answer
with a key to the book, printed for the preceptor’s
private use, to save the trouble which he ought to
bestow upon his pupil, is not teaching arithmetic any
more than presenting him with a grammar and dic-
tionary is teaching him Latin. When the principle
of each rule has been well established by showing its
application to some simple examples (and the number



ELEMENTARY RULES OF ARITHMETIC. 23

of these requisite will vary with the intellect of the
student), he may then proceed to more complicated
cases, in order to acquire facility in computation. The
four first rules may be studied in this way, and these
will throw the greatest light on those which succeed.

The student must observe that all operations in
arithmetic may be resolved into addition and subtrac-
tion; that these additions and subtractions might be
made with counters; so that the whole of the rules
consist of processes intended to shorten and simplify
that which would otherwise be long and complex. For
example, multiplication is continued addition of the
same number to itself—twelve times seven is twelve
sevens added togethér. Division is a continued sub-
traction of one number from another; the division of
129 by 3 is a continued subtraction of 3 from 129, in
order to see how many threes it contains. All other
operations are composed of these four, and are, there-
fore, the result of additions and subtractions only.

The following principles, which occur so continu-
ally in mathematical operations that we are, at length,
hardly sensible of their presence, are the foundation
of the arithmetical rules:

I. We do not alter the sum of two numbers by
taking away any part of the first, if we annex that
part to the second. This may be expressed by signs,
in a particular instance, thus:

(20—6) + (32 4 6)=20 + 32.
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II. We do not alter the difference of two numbers
by increasing or diminishing one of them, provided
we increase or diminish the other as much. This may
be expressed thus, in one instance:

(45 4 T)— (22 + Ty =45 —22.
(456 —8)—(22 —8)=45—22.

ITI. 1f we wish to multiply one number by another,
for example 156 by 29, we may break up 156 into any
number of parts, multiply each of these parts by 29
and add the results. For example, 156 is made up of
100, 50, and 6. Then

156 % 29 =100 X 29 4 50 X 29 - 6 X 29.

IV. The same thing may be done with the multi-
plier instead of the multiplicand. Thus, 29 is made
up of 18, 6, and 5. Then

156 % 29 =156 % 18 4+ 156 x 6 + 156 X 5.

V. If any two or more numbers be multiplied to-
gether, it is indifferent in what order they are multi-
plied, the result is the same. Thus,

106X 4 X 3=3X 10X 44X 6=6x10x 44X 3, etc.

VI. In dividing one number by another, for ex-
ample 156 by 12, we may break up the dividend, and
divide each of its parts by the divisor, and then add
the results. We may part 156 into 72, 60, and 24;
this is expressed thus:

156 72 60 24

T Trte
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The same thing cannot be done with the divisor. It

is not true that

(=71

156 15 15 156
i AR Lol S T

=7}

The student should discover the reason for himself.

A prime number is one which is not divisible by
any other number except 1. When the process of di-
vision can be performed, it can be ascertained whether
a given number is divisible by any other number, that
is, whether it is prime or not. This can be done by
dividing it by all the numbers which are less than its
half, since it is evident that it cannot be divided into
a number of parts, each of which is greater than its
half. This process would be laborious when the given
number is large; still it may be done, and by this
means the number itself may be reduced to its prime
Jactors,* as it is called, that is, it may either be shown
to be a prime number itself or made up by multiply-
ing several prime numbers together. Thus, 306 is
34% 9, 0or 2X 17X 9, or 2% 17X 3X 3, and has for
its prime factors 2, 17, and 3, the latter of which is
repeated twice in its formation. When this has been
done with two numbers, we can then see whether
they have any factors in common, and, if that be the
case, we can then find what is called their greatest

common measure or divisor, that is, the number made

*The factors of a number are those numbers by the multiplication of
which it is made.
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by multiplying all their common factors. It is an evi-
dent truth that, if a number can be divided by the
product of two others, it can be divided by each of
them. If a number can be parted into an exact num-
ber of twelves, it can be parted also into a number of
sixes, twos, or fours. It is also true that, if a number
can be divided by any other number, and the quotient
can then be divided by a third number, the original
number can be divided by the product of the other
two. Thus, 144 is divisible by 2 ; the quotient, 72, is
divisible by 6 ; and the original number is divisible
by 6 X 2 or 12. It is also true that, if two numbers
are prime, their product is divisible by no numbers
except themselves. Thus, 17X 11 is divisible by no
numbers except 17 and 11. Though this is a simple
proposition, its proof is not so, and cannot be given
to the beginner. From these things it follows that
the greatest common measure of two numbers (meas-
ure being an old word for divisor) is the product of all
the prime factors which the two possess in common.
For example, the numbers 90 and 100, which, when
reduced to their prime factors, are 2 X 5X 3 X 3 and
2% 2% 5X 5, have the common factors 2 and 5, and
are divisible by 2 X 5, or 10. The quotients are 3 X 3
and 2% 5, or 9 and 10, which have no common factor
remaining, and 2 X 5, or 10, is the greatest common
measure of 90 and 100. The same may be shown in
the case of any other numbers. But the method we



ELEMENTARY RULES OF ARITHMETIC. 27

have mentioned of resolving numbers into their prime
factors, being troublesome to apply when the num-
bers are large, is usually abandoned for another. It
happens frequently that a method simple in principle
is laborious in practice, and the contrary.

When one number is divided by another, and its
quotient and remainder obtained, the dividend may
be recovered again by multiplying the quotient and
divisor together, and adding the remainder to the pro-
duct. Thus 171 divided by 27 gives a quotient 6 and
a remainder 9, and 171 is made by multiplying 27 by
6, and adding 9 to the product. That is, 171=
27x649. Now, from this equation it is easy to
show that every number which divides 171 and 27
also divides 9, that is, every common measure of 171
and 27 is also a common measure of 27 and 9. We
can also show that 27 and 9 have no common meas-
ures which are not common to 171 and 27. Therefore,
the common measures of 171 and 27 are those, and no
others, which are common to 27 and 9; the greatest
common measure of each pair must, therefore, be the
same, that is, the greatest common measure of a di-
visor and dividend is also the greatest common meas-
ure of the remainder and divisor. Now take the com-
mon process for finding the greatest common measure
of two numbers; for example, 360 and 420, which is
as follows, and abbreviate the words greatest common

measure into their initials g. c. m.:
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360)420 (1
360
60)360(6
360

0

From the theorem above enunciated it appears
that

g ¢. m. of 420 and 360 is g. ¢. . of 60 and 360 ;
g. ¢. m. of 60 and 360 is 60 ;

because 60 divides both 60 and 360, and no number
can have a greater measure than itself. Thus may be
seen the reason of the common rule for finding the
greatest common measure of two numbers.

Every number which can be divided by another
without remainder is called a multiple of it. Thus,
12, 18, and 42 are multiples of 6, and the last is a
common multiple of 6 and 7, because it is divisible both
by 6 and 7. The only things which it is necessary to
observe on this subject are, (1), that the product of
two numbers is a common multiple of both ; (2), that
when the two numbers have a common measure greater
than 1, there is a common multiple less than their
product; (3), that when they have no common meas-
ure except 1, the least common multiple is their pro-
duct. The first of these is evident; the second will
appear from an example. Take 10 and 8, which have
the common measure 2, since the first is 2 X 5 and
the second 2X 4. The productis 2 X 2X 4 X 5, but
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2% 4 5 is also a common multiple, since it is divis-
ible by 2 4, or 8, and by 2 5, or 10. To find this
common multiple we must, therefore, divide the pro-
duct by the greatest common measure. The third
principle cannot be proved in an elementary way, but
the student may convince himself of it by any number
of examples. He will not, for instance, be able to
find a common multiple of 8 and 7 less than 8 X 7
or 56.



CHAPTER 1IV.

ARITHMETICAL FRACTIONS.

HEN the student has perfected himself in the
four rules, together with that for finding the
greatest common measur.e, he should proceed at once
to the subject of fractions. This part of arithmetic is
usually supposed to present extraordinary difficulties ;
whereas, the fact is that there is nothing in fractions
so difficult, either in principle or practice, as the rule
for finding the greatest common measure. We would
recommend the student not to attend to the distinc-
tions of proper and improper, pure or mixed fractions,
etc., as there is no distinction whatever in the rules,
which are common to all these fractions.

When one number, as 56, is to be divided by an-
other, as 8, the process is written thus: 58, By this
we mean that 56 is to be divided into 8 equal parts,
and one of these parts is called the quotient. In this
case the quotient is 7. But it is equally possible
to divide 57 into 8 equal parts; for example, we can
divide 57 feet into 8 equal parts, but the eighth part
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of 57 feet will not be an exact number of feet, since
57 does not contain an exact number of eights ; a part
of a foot will be contained in the quotient 57, and this-
quotient is therefore called a fraction, or broken num-
ber. If we divide 57 into 56 and 1, and take the
eighth part of each of these, whose sum will give the
eighth part of the whole, the eighth of 56 feet is 7
feet ; the eighth of 1 foot is a fraction, which we write
1, and 82 is 7+ 1, which is usually written 7. Both
of these quantities 57, and 7}, are called fractions; the
only difference is that, in the second, that part of the
quotient which is a whole number is separated from
the part which is less than any whole number.

There are two ways in which a fraction may be
considered. Let us take, for example, 3. This means
that 5 is to be divided into 8 parts, and 3 stands for
one of these parts. The same length will be obtained
if we divide 1 into 8 parts, and take 5 of them, or find
1% 5. To prove this let each of the lines drawn be-
low represent } of an inch; repeat } five times, and

repeat the same line eight times.

RERNEEE

|
NERRRRN

|
NERREER

In each column is ith of an inch repeated 8 times;
that is one inch. There are, then, 5 inches in all,
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since there are five columns. But since there are 8
lines, each line is the eighth of 5 inches, or §, but
each line is also }th of an inch repeated 5 times, or
3 X 5. Therefore, =1 X 5; that is, in order to find
& inches, we may either divide ffve inches into 8 parts,
and take one of them, or divide one inck into 8 parts,
and take fize of them. The symbol § is made to stand
for both these operations, since they lead to the same
result.

The most important property of a fraction is, that
if both its numerator and denominator are multiplied
by the same number, the value of the fraction is not
altered ; that is,  is the same as 12, or each part is
the same when we divide 12 inches into 20 parts, as
when we divide 3 inches into 5 parts. Again, we get
the same length by dividing 1 inch into 20 parts, and
taking 12 of them, which we get by dividing 1 inch
into 5 parts and taking 3 of them. This hardly needs
demonstration. Taking 12 out of 20 1s taking 3 out
of 5, since for every 3 which 12 contains, there is a §
contained in 20. Every fraction, therefore, admits of
innumerable alterations in its form, without any altera-
tion in'its value. Thus, i=2=%—¢—F, ete.;
F=1fr=sr=qp et

On the same principle it is shown that the terms
of a fraction may be divided by any number without
any alteration of its value. There wiil now be no diffi-
culty in reducing fractions to a common denomina-
tor, in reducing a fraction to its lowest terms ; neither
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in adding nor subtracting fractions, for all of which
the rules are given in every book of arithmetic.

We now come to a rule which presents more pe-
culiar difficulties in point of principle than any at
which we have yet arrived. If we could at once take
the most general view of numbers, and give the be-
ginner the extended notions which he may afterwards
attain, the mathematics would present comparatively
few impediments. But the constitution of our minds
will not permit this. It is by collecting facts and
principles, one by one, and thus only, that we arrive
at what are called general notions ; and we afterwards
make comparisons of the facts which we have acquired
and discover analogies and resemblances which, while
they bind together the fabric of our knowledge, point
out methods of increasing its extent and beauty. In
the limited view which we first take of the operations
which we are performing, the names which we give
are necessarily confined and partial ; but when, after
additional study and reflection, we recur to our former
notions, we soon discover processes so resembling one
another, and different rules so linked together, that
we feel it would destroy the symmetry of our language
if we were to call them by different names. We are
then induced to extend the meaning of our terms, so
as to make two rules into one. Also, suppose that
when we have discovered and applied a rule and given
the process which it teaches a particular name, we
find that this process is only a part of one more gen-
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eral, which applies to all cases contained under the
first, and to others besides. We have only the alter-
native of inventing a new name, or of extending the
meaning of the former one so as to merge the particu-
lar process in the more general one of which itis a
part. Of this we can give an instance. We began
with reasoning upon simple numbers, such as 1, 2, 3,
20, etc. We afterwards divided these into parts, of
which we took some number, and which we called
fractions, such as 2, Z, 3, etc. Now there is no num-
ber which may not be considered as a fraction in as
many different ways as we please. Thus 7is 1% or
21, etc.; 12 is 142, 72, etc.  Our new notion of frac-
tion is, then, one which includes all our former ideas
of number, and others besides. It is then customary
to represent by the word number, not only our first
notion of it, but also the extended one, of which the
first is only a part. Those to which our first notions
applied we call whole numbers, the others fractional
numbers, but still the name number is applied to both
2 and }, 3 and §. The rule of which we have spoken
is another instance. It is called the multiplication of
fractional numbers. Now, if we return to our mean-
ing of the word multiplication, we shall find that the
multiplication of one fraction by another appears an
absurdity. We multiply a number by taking it several
times and adding these together. What, then, is
meant by multiplying by a fraction? Still, a rule has
been found which, in applying mathematics, it is ne-
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cessary to use for fractions, in all cases where multi-
plication would have been used had they been whole
numbers. Of this we shall now give a simple exam-
ple. Take an oblong figure (which is called a rect-
angle in geometry), such as 48CD, and find the mag-
nitudes of the sides 48 and BC in inches. Draw the

B &G

A D
line £F equal in length to one inch, and the square
G, each of whose sides is one inch. If the lines 45
and BC contain an exact number of inches, the rect-
angle 4BCD contains an exact number of squares,

Y e /7 G

each equal to G, and the number of squares contained
is found by multiplying the number of inches in 48
by the number of inches in ZC. In the present case
the number of squares is 3 X 4, or 12. Now, suppose
another rectangle A4'Z'C’'0’, of which neither of the
sides is an exact number of inches ; suppose, for exam-
ple, that 4’7’ is % of an inch, and that B'C’ is § of an
B C

A!I—J D
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inch. We may show, by reasoning, that we can find
how much 4'B'C'D’ is of G by forming a fraction
which has the product of the numerators of 2 and 2
for its numerator, and the product of their denomina-
tors for its denominator; that is, that 4'8'C'D’ con-
tains 19 of G. Here then appears a connexion be-
tween the multiplication of whole numbers, and the
formation of a fraction. whose numerator is the pro-
duct of two numerators, and its denominator the pro-
duct of the corresponding denominators. These ope-
rations will always come together, that is whenever a
question occurs in which, when whole numbers are
given, those numbers are to be multiplied together;
when fractional numbers are given, it will be neces-
sary, in the same case, to multiply the numerator by
the numerator, and the denominator by the denomina-
tor, and form the result into a fraction, as above.
This would lead us to suspect some connexion be-
tween these two operations, and we shall accordingly
find that when whole numbers are formed into frac-
tions, they may be multiplied together by this very
rule. Take, for example, the numbers 3 and 4, whose
product is 12. The first may be written as %5, and
the second as §. Form a fraction from the product
of the numerators and denominators of these, which
will be 128, which is 12, the product of 3 and 4.
From these considerations it is customary to call
the fraction which is produced from two others in the
manner above stated, the product of those two frac-
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tions, and the process of finding the third fraction,
multiplication. We shall always find the first meaning
of the word multiplication included in the second, in
all cases in which the quantities represented as frac-
tions are really whole numbers. The mathematics are
not the only branches of knowledge in which it is cus-
tomary to extend the meaning of established terms.
Whenever we pass from that which is simple to that
which is complex, we shall see the necessity of carry-
ing our terms with us and enlarging their meaning,
as we enlarge our own ideas. This is the only method
of forming a language which shall approach in any
degree towards perfection; and more depends upon
a well-constructed language in mathematics than in
anything else. It is not that an imperfect language
would deprive us of the means of demonstration, or
cramp the powers of reasoning. The propositions of
Euclid upon numbers are as rationally established as
any others, although his terms are deficient in analogy,
and his notation infinitely inferior to that which we
use. It is the progress of discovery which is checked
by terms constructed so as to conceal resemblances
which exist, and to prevent one result from pointing
out another. The higher branches of mathematics
date the progress which they have made in the last
century and a half, from the time when the genius of
Newton, Leibnitz, Descartes, and Hariot turned the
attention of the scientific world to the imperfect mech-
anism of the science. A slight and almost casual im-
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provement, made by Hariot in algebraical language,
has been the foundation of most important branches
of the science.* The subject of the last articles is of
very great importance, and will often recur to us in
explaining the difficulties of algebraical notation.

The multiplication of § by  is equivalent to divid-
ing § into 2 parts, and taking three such parts. Be-
cause § being the same as 19, or 1 divided into 12
parts and 10 of them taken, the half of 19 is 5 of those
parts, or 5. Three times this quantity will be 15 of
those parts, or 13, which is by our rule the same as
what we have called, § multiplied by §. But the same
result arises from multiplying $ by %, or dividing §
into 6 parts and taking 5 of them. Therefore, we find
that § multiplied by 4 is the same as § multiplied by
3, or § X 5=3X $. This proposition is usually con-
sidered as requiring no proof, because it is received
very early on the authority of a rule in the elements
of arithmetic. But it is not self-evident, for the truth
of which we appeal to the beginner himself, and ask
him whether he would have seen at once that § of an
apple divided into 2 parts and 3 of them taken, is the
same as § of an apple, or one apple and a-half divided
into six parts and 5 of them taken.

An extension of the same sort is made of the term
division. In dividing one whole number by another,

*The mathematician will be aware that I allude to writing an equation
in the form
22 4+ ax—&=o0; instead of
224+ ax=>b.
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for example, 12 by 2, we endeavor to find how many
twos must be added together to make 12. In passing
from a problem which contains these whole numbers
to one which contains fractional quantities, for exam-
ple § and 2, it will be observed that in place of find-
ing how many twos make 12, we shall have to find
into how many parts ¢ must be divided, and how many
of them must be taken, so as to give 3. If we reduce
these fractions to a common denominator, in which
case they will be 15 and .8;; and if we divide the sec-
ond into 8 equal parts, each of which will be 3, and
take 15 of these parts, we shall get 33, or 3. The
fraction whose numerator is 15, and whose denomina-
tor is 8, or X2, will in these problems take the place
of the quotient of the two whole numbers. In the
same manner as before, it may be shown that this pro-
cess is equivalent to the division of one whole number
by another, whenever the fractions are really whacle
numbers ; for example, 3 is 42, and 15 is 32. If this
process be applied to 32 and 12, the result is 129,
which is 5, or the same as 15 divided by 3. This pro-
cess is then, by extension, called division : 1% is called
the quotient of 3 divided by 2, and is found by multi-
plying the numerator of the first by the denominator
of the second for the numerator of the result, and the
denominator of the first by the numerator of the sec-
ond for the denominator of the result. That this pro-
cess does give the same result as ordinary division in
all cases where ordinary division is applicable, we can
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easily show from any two whole numbers, for exam-
ple, 12 and 2, whose quotient is 6. Now 12 is 38, and
2 is 10, and the rule for what we have called division
of fractions will give as the quotient 182, which is 6.

In all fractional investigations, when the beginner
meets with a difficulty, he should accustom himself to
leave the notation of fractions, and betake himself to
their original definition. He should recollect that §
is 1 divided into 6 parts and five of them taken, or the
sixth part of 5, and he should reason upon these sup-
positions, neglecting all rules until he has established
them in his own mind by reflexion on particular in-
stances. These instances should not contain large
numbers, and it will perhaps assist him if he reasons
on some given unit, for example a foot. Let 45 be
one foot, and divide it into any number of equal parts
(7 for example) by the points C, D, E, F, G, and 4.

4 | B

He must then recollect that each of these partsis }
of a foot ; that any two of them together are 2 of a
foot; any 3, 2, and so on. He should then accustom
himself, without a rule, to solve such questions as the
following, by observation of the figure, dividing each
part into several equal parts, if necessary; and he
may be well assured that he does not understand the
nature of fractions until such questions are easy to
him.
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What is } of 2 of a foot? What is 2 of } of $ of a
foot? Into how many parts must § of a foot be di-
vided, and how many of them must be taken to pro-
duce }# of a foot? Whatis 4} of a foot? and so on.



CHAPTER V.

DECIMAL FRACTIONS.

T is a disadvantage attending rules received without

a knowledge of principles, that a mere difference

of language is enough to create a notion in the mind
of a student that he is upon a totally different subject.
Very few beginners see that in following the rule
usually called practice, they are working the same
questions as were proposed in compound multiplica-
tion ;—that the rule of three is only an application of
the doctrine of fractions ; that the rules known by the
name of commission, brokerage, interest, etc., are the
same, and so on. No instance, however, is more con-
spicuous than that of decimal fractions, which are
made to form a branch of arithmetic as distinct from
ordinary or vulgar fractions as any two parts of the
subject whatever. Nevertheless, there is no single
rule in the one which is not substantially the same as
the rule corresponding in the other, the difference
consisting altogether in a different way of writing the
fractions. The beginner will observe that throughout
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the subject it is continually necessary to reduce frac-
tions to a common denominator : he will see, there-
fore, the advantage of always using either the same
denominator, or a set of denominators, so closely con-
nected as to be very easily reducible to one another.
Now of all numbers which can be chosen the most
easily manageable are 10, 100, 1000, etc., which are
called decimal numbers on account of their connexion
with the number ten. All fractions, such as 77,
5%, 178820, which have a decimal number for the
denominator, are called decimal fractions. Now a
denominator of this sort is known whenever the num-
ber of cyphers in it are known ; thus a decimal num-
ber with 4 cyphers can only be 10,000, or ten thou-
sand. We need not, therefore, write the denominator,
provided, in its stead, we put some mark upon the
numerator, by which we may know the number of
cyphers in the denominator. This mark is for our own
selection. The method which is followed is to point
off from the numerator as many figures as there are
¢yphers in the denominator. Thus 17334 is represented
by 17.334 ; 22% thus, .229. We might, had we so
pleased, have represented them thus, 173343, 2293;
or thus, 173345, 229;, or in any way by which we
might choose to agree to recollect that the denomina-
tor is 1 followed by 3 cyphers. In the common method
this difficulty occurs immediately. What shall be done
when there are not as many figures in the numerator
as there are cyphers in the denominator? How shall
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we represent ;88 -2 We must here extend our lan-
guage a little, and imagine some method by which,
without essentially altering the numerator, it may be
made to show the number of cyphers in the denom-
inator. Something of the sort has already been done
in representing a number of tens, hundreds, or thou-
sands, etc.; for 5 thousands were represented by 5000,
in which, by the assistance of cyphers, the 5 is made
to stand in the place allotted to thousands. If, in the
present instance, we place cyphers at the beginning of
the numerator, until the number of figures and cyphers
together is equal to the number of cyphers in the de-
nominator, and place a point before the first cypher,
the fraction 88 will be represented thus, .0088 ; by
which we understand a fraction whose numerator is
88, and whose denominator is a decimal number con-
taining four cyphers.

There is a close connexion between the manner of
representing decimal fractions, and the decimal nota-
tion for numbers. Take, for example, the fraction
217.3426 or 2173426, You will recollect that 2173426
is made up of 2000000+ 100000+ 700004 3000 4
4004204 6. If each of these parts be divided by
10000, and the quotient obtained or the fraction re-
duced to its lowest terms, the result is as follows:

2173426 6
ST e e +10+100+1000+10000

We see, then, that in the fraction 217.3426 the first
figure 2 counts two hundred; the second figure, 1,
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ten, and the third 7 units. It appears, then, that all
figures on the left of the decimal point are reckoned
as ordinary numbers. But on the right of that point
we find the figure 3, which counts for 3;; 4, which
counts for 145; 2, for 1 %4; and 6, for ;855 Itap-
pears therefore, that numbers on the right of the de-
cimal point decrease as they move towards the right,
each number being one-tenth of what it would have
been had it come one place nearer to the decimal
point. The first figure on the right hand of that point
is so many tenths of a unit, the second figure so many
hundredths of a unit, and so on.

The learner should go through the same investiga-
tion with other fractions, and should demonstrate by
means of the principles of fractions, generally, such
exercises as the following, until he is thoroughly ac-
customed to this new method of writing fractions:

68342 = .6 + .08 +.003 4 .0004 00002

68342 6 8 3 4 2
°T 160000 — 10 T 100 T 000 T 10000 T 100000
00012 —. 0001 4 .00002 — -~ 4 _ >
(00915=. 0001 +- 00992 = 15500 T 100000
163429 420 1634 29
163.429 = —5a5- =163 1556 = 15~ + 1000 =
6342 9
100 T 1000’ ¢

The rules of addition, subtraction, and multiplica-
tion may now be understood. In addition and sub-
traction, the keeping the decimal points under one
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another is equivalent to reducing the fractions to a
common denominator, as we may show thus: Take
two fractions, 1.5 and 2.125, or 13 and 2225, which,
reducing the first to the denominator of the second,
may be written 1390 and 2325, If we add the nume-
rators together, we find the sum of the fractions 3§23,
or 3.625

2125 . 2.125
1500 1.5
3625 3.625

The learner can now see the connexion of the rule
given for the addition of decimal fractions with that
for the addition of vulgar fractions. There is the
same connexion between the rules of subtraction. The
principle of the rule of multiplication is as follows:
If two decimal numbers be multiplied together, the
product has as many cyphers as are in both to-
gether. Thus 1003 1000 =100000, 10 < 100 =1000,
ete. Therefore the denominator of the product, which
is the product of the denominators, has as many cy-
phers as are in the denominators of both fractions,
and since the numerator of the product is the product
of the numerators, the point must be placed in that
product so as to cut off as many decimal places as are
both in the multiplier and the multiplicand. Thus:

% G 1% = 1175066, or.13x 1.2=.156;
4 6 24
1000 * T00 — 100000’
or .004 % .06 =.00024, etc.
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It is a general rule, that wherever the number of fig-
ures falls short of what we know ought to be the num-
ber of decimals, the deficiency is made up by cyphers.

It may now be asked, whether all fractions can be
reduced to decimal fractions? It may be answered
that they cannot. It is a principle which is demon-
strated in the science of algebra,—that if a number
be not divisible by a prime number, no multiplication
of that number, by itself, will make it so. Thus 10
not being divisible by 7, neither 10 X 10, nor 10 10
% 10, etc., is divisible by 7. A consequence of this
is, that since 5 and 2 are the only prime numbers
which will divide 10, no fraction can be converted into
a decimal unless its denominator is made up of pro-
ducts, either of 5 or 2, or of both combined, such as
5X 2, 65X DHX2 BXHXDH, 2X2, etc. To show that
this is the case, take any fraction with such a denomi-

13 .
nator ; for example, EX5%5" Multiply the numera-

tor and denominator by 2, once for every 5, which is
contained in the denominator, and the fraction will
then become

18X 2% 2% 2 2% 2% 2% 13
B OXOXZx2x2 T T0x 10x 10’

which is %%, or .104. In a similar way, any fraction
whose denominator has no other factors than 2 or b,
can be reduced to a decimal fraction. We first search
for such a number as will, when multiplied by the de-
nominator, produce a decimal number, and then mul-
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tiply both the numerator and denominator by that
number.

No fraction which has any other factor in its de-
nominator can be reduced to a decimal fraction ex-
actly. But here it must be observed that in most
parts of mathematical computation a very small error
is not material. In different species of calculations,
more or less exactness may be required; but even in
the most delicate operations, there is always a limit
beyond which accuracy is useless, because it cannot
be appreciated. For example, in measuring land for
sale, an error of an inch in five hundred yards is not
worth avoiding, since even if such an error were com-
mitted, it would not make a difference which would
be considered as of any consequence, as in all prob-
ability the expense of a more accurate measurement
would be more than the small quantity of land thereby
saved would be worth. But in the measurement of a
line for the commencement of a trigonometrical sur-
vey, an error of an inch in five hundred yards would
be fatal, because the subsequent processes involve
calculations of such a nature that this error would be
multiplied, and cause a considerable error in the final
result. Still, even in this case, it would be useless
to endeavor to avoid an error of one-thousandth part
of an inch in five hundred yards; first, because no in-
struments hitherto made would show such an error:
and secondly, because if they could, no material dif-
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ference would be made in the result by a correction of
it. Again, we know that almost all bodies are length-
ened in all directions by heat. For example: A brass
ruler which is a foot in length to-day, while it is cold,
will be more than a foot to-morrow if it is warm. The
difference, nevertheless, is scarcely, if at all, percept-
ible to the naked eye, and it would be absurd for a
carpenter, in measuring a few feet of mahogany for a
table, to attempt to take notice of it; butin the meas-
urement of the base of a survey, which is several miles
in length and takes many days to perform, it is neces-
sary to take this variation into account, as a want of
attention to it may produce perceptible errors in the
result: nevertheless, any error which has not this ef-
fect, it would be useless to avoid even were it pos-
sible. We see, therefore, that we may, instead of a
fraction, which cannot be reduced to a decimal, sub-
stitute a decimal fraction, if we can find one so near
to the former, that the error committed by the substi-
tution will not materially affect the result. We will
now proceed to show how to find a series of decimal
fractions, which approach nearer and nearer to a given
fraction, and also that, in this approximation, we may
approach as near as we please to the given fraction
without ever being exactly able to reach it.

Take, for example, the fraction {%. If we divide
the series of numbers 70, 700, 7000, etc., by 11, we
shall obtain the following results:
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19 gives the quotient 6, and the remainder 4, and is 6%

z00 ‘ 63 “ 7 6377,

19490 g0 636 £ 4 6364

20000 ‘ 6363 ‘ 7 63637
etc. elc etc:

Now observe that if two numbers do not differ by
so much as 1, their tenth parts do not differ by so
much as 4, their hundredth parts by so much as 134,
their thousandth parts by so much as 1%, and so on;
and also remember that ;% is the tenth part of 7, the
hundredth part of 792, and so on. The two following
tables will now be apparent:

70 does not differ from 6 by so much as 1
ZTOfQ 6 63 “ 1
2990 54 636 64 1
zaggg ‘ 6363 T 1
etc ete: etc.
Therefore

71 does not differ from ; or.6, by somuch as 45 or.1

1:7_1_ ‘¢ (33 ‘¢ 63 13 ’1‘(176'“'01
636 it

T ‘e 163’0"6 34666 « i 1o - 001

7 6 3 1

&= ¢ OO G0 (B8] a3t O Toboo <¢-0001

ElC etc. etc.

We have then a series of decimal fractions, viz., .6,
.63, .636, .6363, .63636, etc., which continually ap-
proach more and more near to %, and therefore in
any calculation in which the fraction {4 appears, any
one of these may be substituted for it, which is suffi-
ciently near to suit the purpose for which the calcula-
tion is intended. For some purposes .636 would be a



DECIMAL FRACTIONS. 51

sufficient approximation; for others .63636363 would
be necessary. Nothing but practice can show how
far the approximation should be carried in each case.

The division of one decimal fraction by another is
performed as follows: Suppose it required to divide
6.42 by 1.213. The first of these is §£2, and the sec-
ond 1218 The quotient of these by the ordinary rule
is 842000 or €429, This fraction must now be reduced
to a decimal on the principles of the last article, by
the rule usually given, either exactly, or by approxi-
mation, according to the nature of the factors in the
denominator.

When the decimal fraction corresponding to a com-
mon fraction cannot be exactly found, it always hap-
pens that the series of decimals which approximates
to it, contains the same number repeated again and
again. Thus, in the example which we chose, {4 is
more and more nearly represented by the fractions .6,
.63, .636, .6363, etc., and if we carried the process on
without end, we should find a decimal fraction con-
sisting entirely of repetitions of the figures 63 after the
decimal point. Thus, in finding 1, the figures which
are repeated in the numerator are 142857. This is
what is commonly called a circulating decimal, and
rules are given in books of arithmetic for reducing
them to common fractions. We would recommend
to the beginner to omit all notice of these fractions,
as they are of no practical use, and cannot be thor-
oughly understood without some knowledge of alge-
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bra. It is sufficient for the student to know that he
can always either reduce a common fraction to a deci-
mal, or find a decimal near enough to it for his pur-
pose, though the calculation in which he is engaged
requires a degree of accuracy which the finest micro-
scope will not appreciate. But in using approximate
decimals there is one remark of importance, the ne-
cessity for which occurs continually.

Suppose that the fraction 2.143876 has been ob-
tained, and that it is more than sufficiently accurate
for the calculation in which it is to be employed. Sup-
pose that for the object proposed it is enough that
each quantity employed should be a decimal fraction
of three places only, the quantity 2.143876 is made up "’
of 2.143, as far as three places of decimals are con-
cerned, which at first sight might appear to be what
we ought to use, instead of 2.143876. But this is not
the number which will in this case give the utmost
accuracy which three places of decimals will admit
of; the common usages of life will guide us in this
case. Suppose a regiment consists of 876 men, we
should express this in what we call round numbers,
which in this case would be done by saying how many
hundred men there are, leaving out of consideration
the number 76, which is not so great as 100 ; but in
doing this we shall be nearer the truth if we say that
the regiment consists of 900 men instead of 800, be-
cause 900 is nearer to 876 than 800. In the same
manner, it will be nearer the truth to write 2.144 in-
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stead of 2.143, if we wish to express 2.143876 as nearly
as possible by three places of decimals, since it will
be found by subtraction that the first of these is nearer
to the third than the second. Had the fraction been
2.14326, it would have been best expressed in three
places by 2.143; had it been 2.1435, it would have
been equally well expressed either by 2.143 or 2.144,
both being equally near the truth; but 2.14351 is a
little more nearly expressed by 2.144 than by 2.143.
We have now gone through the leading principles
of arithmetical calculation, considered as a part of
general Mathematics. With respect to the commer-
cial rules, usually considered as the grand object of
an arithmetical education, it is not within the scope
of this treatise to enter upon their consideration. The
mathematical student, if he is sufficiently well versed
in their routine for the purposes of common life, may
postpone their consideration until he shall have be-
come familiar with algebraical operations, when he
will find no difficulty in understanding the principles
or practice of any of them. He should, before com-
mencing the study of algebra, carefully review what
he has learnt in arithmetic, particularly the reasonings
which he has met with, and the use of the signs which
have been introduced. Algebra is at first only arith-
metic under another name, and with more general
symbols, nor will any reasoning be presented to the
student which he has not already met with in estab-
lishing the rules of arithmetic. His progress in the
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former science depends most materially, if not alto-
gether, upon the manner in which he has attended to
the latter ; on which account the detail into which we
have entered on some things which to an intelligent
person are almost self-evident, must not be deemed
superfluous.

When the student is well acquainted with the prin-
ciples and practice of arithmetic, and not before, he
should commence the study of algebra. It is usual
to begin algebra and geometry together, and if the
student has sufficient time, it is the best plan which
he can adopt. Indeed, we see no reason why the ele-
ments of geometry should not precede those of alge-
bra, and be studied together with arithmetic. In this
case the student should read some treatise which re-
lates to geometry, first. It is hardly necessary to say
that though we have adopted one particular order,
yet the student may reverse or alter that order so as
to suit the arrangement of his own studies.

We now proceed to the first principles of algebra,
and the elucidation of the difficulties which are found
from experience to be most perplexing to the begin-
ner. We suppose him to be well acquainted with
what has been previously laid down in this treatise,
particularly with the meaning of the signs +, —, X,
and the sign of division.



CHAPTER VI.

ALGEBRAICAL NOTATION AND PRINCIPLES.

HENEVER any idea is constantly recurring,

the best thing which can be done for the per-

fection of language, and consequent advancement of
knowledge, is to shorten as much as possible the sign
which is used to stand for that idea. All that we have
accomplished hitherto has been owing to the short
and expressive language which we have used to rep-
resent numbers, afid the operations which are per-
formed upon them. The first step was to write simple
signs for the first numbers, instead of words at full
length, such as 8 and 7, instead of eight and seven.
The next was to give these signs an additional mean-
ing, according to the manner in which they were con-
nected with one another; thus 187 was made to rep-
resent one hundred added to eight tensadded to seven.
The next was to give by new signs directions when to
perform the operations of addition, subtraction, mul-
tiplication, and division ; thus 5+ 8 was made to rep-
resent 8 added to 5, and so on. With these signs
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reasonings were made, and truths discovered which
are common to all numbers; not at once for every
number, but by taking some example, by reasoning
upon it, and by producing a result; this result led to
a rule which was declared to be a rule which held
equally good for all numbers, because the reasoning
which produced it might have been applied to any
other example as well as to the one which was chosen.
In this way we produced some results, and might have
produced many more ; the following is an instance:
half the sum of two numbers added to half their differ-
ence, gives the greater of the two numbers. For ex-
ample, take 16 and 10, half their sum is 13, half their
difference 1s 3; if we add 13 and 3 we get 16, the
greater of the two numbers. We might satisfy our-
selves of the truth of this same proposition for any
other numbers, such as 27 and 8,_15 and 19, and so
on. If we then make use of signs, we find the follow-

ing truths:
16—2|—10 4 16;10 — 16,
27;--8 + 272—8 o1,
15;—9 4 152—9 15,

and so on. Iif, then, we choose any two numbers,
and call them the first and second numbers, and call
that the first number which is the greater of the two,

we have the following :
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First No. -+ Second No. g First No. — Second No.
2 2, 2 S

First No.

In this way we might express anything which is true
of all numbers, by writing First No., Second No., etc.,
for the different numbers which enter into our propo-
sition, and we might afterwards suppose the First
No., the Second No., etc., to be any which we please.
In this way we might write down the following asser-
tion, which we should find to be always true:

(First No. + Second No.) X (First No.— Second No.)
= First No. X First No. — Second No. X Second No.

When any sentence expresses that two numbers or
collections of numbers are equal to one another, it is
called an equation,* thus 74 5 =12 is an equation, and
the sentences written just above are equations.

Now the next question 1s, could we not avoid the
trouble of writing First No., Second No., etc., so fre-
quently? This is done by putting letters of the alpha-
bet to stand for these numbers. Suppose, e. g., we
let x stand for the first number, and y for the second,
the two assertions already made will then be written :

=
F+NXE—y) =2 Xx—yXJ.
By the use of letters we are thus enabled to write

sentences which say something of all numbers, with a

*As now usually defined an eguation always contains an unknown quan-
tity. See also p. g1.—Z&d.
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very small part only of the time and trouble necessary
for writing the same thing at full length. We now
proceed to enumerate the various symbols which are
used.

1. The letters of the alphabet are used to stand
for numbers, and whenever a letter is used it means
either that any number may be used instead of that
letter, or that the number which the letter stands for
is not known, and that the letter supplies its place in
all the reasonings until it is known.

2. The sign + is used for addition, as in arithme-
tic. Thus x - z is the sum of the numbers represented
by x and z. The following equations are sufficiently
evident:

xtytr=xtsty=y+ita

If a=2¢, then a+c=b+¢, atct+d=b-+c+d,
etc.

3. The sign — is used for subtraction, as in arith-
metic. The following equations will show its use:

x+a—b—cte=x+tat+e—b—c
=a—c+e—b+ x.

lfa=é a—c=b—¢c, a—c+d=b—c-d etc.

4. The sign X is used for multiplication as in
arithmetic, but when two numbers represented by let-
ters are multiplied together it is useless, since a X &
can be represented by putting ¢ and 4 together thus,
ab. Also aX & ¢ is represented by abe; aX aX a,
for the present we represent thus, aae. When two
numbers are multiplied together, it is necessary to
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keep the sign X ; otherwise 7 X 5 or 35 would be mis-
taken for 75. It is, however, usual to place a point
between two numbers which are to be multiplied to-
gether; thus 7X 5% 3 is written 7.5.3. But this
point may sometimes be mistaken for the decimal
point: this will, however, be avoided by always writ-
ing the decimal point at the head of the figure, viz.,
by writing 23461 thus, 234761,

5. Division is written as in arithmetic; thus, g—
signifies that the number represented by « is to be di-
vided by the number represented by 4.

6. All collections of numbers are called expres-
sions; thus, a4, a+b6—c¢, aa+ bb—d, are alge-
braical expressions.

Iod

7. When two expressions are to be multiplied to-
gether, it is indicated by placing them side by side,
and inclosing each of them in brackets. Thus, if
a-+ b+ ¢ is to be multiplied by 7+ ¢+ /, the product
is written in any of the following ways:

@46+ 0) @+ e+ 1),

[e+ b+ ) [+ e+71,
{atb+chid+et sy,

atbtc.dte+f
a-{—b—}—f] - d+ e+ f).

8. That e is greater than 4 is written thus, a> 4.

9. That a is less than 4 is written thus, a < 4.
10. When there is a product in which all the fac-
tors are the same, such as xx xxx, which means that
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five equal numbers, each of which is represented by
x, are multiplied together, the letter is only written
once, and above it is written the number of times
which it occurs, thus xxxxx is written 2% The fol-
lowing table should be carefully studied by the stu-
dent:

x X x or xx is written x2,

and is called the square, or second power of x.

x X x X x or xxx 1s written x3,

and is called the cube or third power of x.

x X x X x X xor xxxx is written x4,

and is called the fourth power of x.

x2X x X xXaxXxor xxxixx is written x5,

and is called the fifth power of x,

etcy), etchs EtCS

There is no point which is so likely to create con-
fusion in the ideas of a beginner as the likeness be-
tween such expressions as 4x and x*. On this account
it would be better for him to omit using the latter ex-
pression, and to put xxxx in its place until he has
acquired some little facility in the operations of alge-
bra. If he does not pursue this course, he must re-
collect that the 4, in these two expressions, has differ-
ent names and meanings. In 4x it is called a coefii-
cient, in x* an exponent ox index.

The difference of meaning will be apparent from
the following tables:
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2x=x-+x RSO ——"2C

3x=x+ax-t}x SIS e A A C T

dx=xtx+t+x+tx B S R e S TS CHG 0K,
ete:, ete:

Ifx=3 2x= 6 «?= 9,
Bler—— MO S=—01
4x=—=12 x4=81,
The beginner should frequently write for himself
such expressions as the following:
4P —=aaabb+taaabdb+taaabb+taaabdd.
Satx—=aaaax+aaaax-+t+aaaax+t+aaaax+aaaax.
9a203 +4ad*=9aabbb+4abbbb.
a2 44! aea+tbb  aa + b6
a?—80  aa—bb  aa—0bb ' aa—bb
aa—cc bbb+ cc
aa—bb ' aa—bd
@ —8  aaa—bbb  aad-ab+bd
@ —8" aa—bb T~ a+b
With many such expressions every book on algebra
will furnish him, and he should then satisfy himself
of their truth by putting some numbers at pleasure

instead of the letters, and making the results agree
with one another. Thus, to try the expression

3__ 73

"a_& —atab+

or, which is the same,

—bb

aaz;_bé i =aa-tab-t-bb.

Let @ stand for 6 and 4 stand for 4, then, if this ex-
pression be true,
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000tk oy 0 yyas

which is correct, since each of these expressions is
found, by calculation, to be 76.

The student should then exercise himself in the

solution of such questions as the following: What is

) ab

o

I. when a stands for 6, and 4 for 5, 1I. when ¢ stands

a
i

for 13, and 4 for 2, and so on. He should stop here
until he has, by these means, made the signs familiar
to his eye and their meaning to his mind; nor should
he proceed to any further algebraical operations until
he can readily find the value of any algebraical ex-
pression when he knows the numbers which the letters
stand for. He cannot, at this period of his course,
write too many algebraical expressions, and he must
particularly avoid slurring over the sense of what he
has before him, and must write and rewrite each ex-
pression until the meaning of the several parts forces
itself upon his memory at first sight, without even
the necessity of putting it in words. It is the neglect-
ing to do this which renders the operations of algebra
so tedious to the beginner. He usually proceeds to
the addition, subtraction, etc., of symbols, of the
méaning of which he has but an imperfect idea, and
which have been newly introduced to him in such
numbers that perpetual confusion is the consequence.
We cannot, therefore, use too many arguments to in-
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duce him not to mind the drudgery of reducing alge-
braical expressions into figures. This is the connect-
ing link between the new science and arithmetic, and,
unless that link be well fastened, the knowledge which
he has previously acquired in arithmetic will help him
but little in acquiring algebra.

The order of the terms of any algebraical expres-
sion may be changed without changing the value of
that expression. This needs no proof, and the follow-
ing are examples of the change:

a+t+béb+abtc+ac—d—e—de—f=
a—d+b—etab—detc—f+tac=
a+b—d—e—de—f+actct+ab=
ab+tac—det+a+b+c—e—f—d.
When the first term changes its place, as in the fourth
of these expressions, the sign -+ is put before it, and
should, properly speaking, be written wherever there
is no sign, to indicate that the term in question in-
creases the result of the rest, but it is usually omitted.
The negative sign is often written before the first
term, as in the expression —« -+ 4: but it must be re-
collected that this is written on the supposition that
a is subtracted from what comes after it.

When an expression is written in brackets, with
some sign before it, such as a—(4—¢), it is under-
stood that the expression in brackets is to be consid-
ered as one quantity, and that its result or total is to
be connected with the rest by the sign which precedes
the brackets. In this example it is the difference of &
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and ¢ which is to be subtracted from a. If a=12,
6=6, and ¢=4, this is 10. In the expression a—2&
made by subtracting 4 from a, too much has been sub-
tracted by the quantity ¢, since it is not 4, but —¢,
which must be subtracted from @. In order, therefore,
to make a—(6—~¢), ¢ must be added to ¢—4, which
gives a—b+¢. Therefore, a—(b—c)=a—0b+c.
Similarly ]
atb—(c+d—e—f=a+b—c—d+e+f
(ax?—bx+c)—(da?—ex+ )=
ax?—bx+c—dx? 4 ex—f.

When the positive sign is written before an ex-
pression in brackets, the brackets may be omitted
altogether, unless they serve to show that the expres-
sion in question is multiplied by some other. Thus,
instead of (a4 06+ ¢) 4 (d+e+f), we may write
a+b+4c+d+ e+ f, which is, in fact, only saying
that two wholes may be added together by adding to-
gether all the parts of which they are composed. But
the expression a (& ¢) (- ¢) must not be written
thus: e} 64 ¢(d+¢), since the first expresses that
(64 ¢) must be multiplied by (¢ ¢) and the product
added to @, and the second that ¢ must be multiplied
by (4 ¢) and the product added to a} 4. Ifa, 4, ¢,
d, and ¢, stand for 1, 2, 3, 4, and 5, the first is 46 and
the second 30.

When two or more quantities have exactly the
same letters repeated the same number of times, such
as 4a?%%, and 6 a? 4%, they may be reduced into one by
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merely adding the coefficients and retaining the same
letters. Thus, 2a-+3a is e, 66c—4bc is 20¢,
3(x+»+2(x+y) is 5(x+y). These things are
evident, but beginners are very liable to carry this
farther than they ought, and to attempt to reduce ex-
pressions which do not admit of reduction. For ex-
ample, they will say that 344 4? is 44 or 442, neither
of which is true, except when 4 stands for 1. The ex-
pression 34+ 4%, or 34+ 44, cannot be made more
simple until we know what 4 stands for. The follow-
ing table will, perhaps, be of service:

6a25% 4 3a®2? is not 9ad4°

6a®—4a? is not 2a

2ba+ 36 is not Saé.
Such are the mistakes which beginners almost uni-
versally make, mostly for want of a moment’s consid-
eration. They attempt to reduce quantities which
cannot be reduced, which they do by adding the ex-
ponents of letters as well as their coefficients, or by
collecting several terms into one, and leaving out the
signs of addition and subtraction. The beginner can-
not too often repeat to himself that two terms can
never be made into one, unless both have the same
letters, each letter being repeated the same number
of times in both, that is, having the same index in
both. When this is the case, the expressions may be
reduced by adding or subtracting the coefficients ac-
cording to the sign, and affixing the common letters
with their indices. When there is no coefficient, as
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in the expression a? 4, the quantity represented by 424
being only taken once, 1 is called the coefficient.

Thus,
3ab+4ab+6ab—ab—Tab=5ab

6x)?2+3x3?—Hxy?+ xp? =0 x)2.

The student must also recollect that he is not at lib-
erty to change an index from one letter to another, as
by so doing he changes the quantity represented.
Thus a*/ and e/* are quantities totally distinct, the
first representing @¢eaaé and the second ab444. The
difference in all the cases which we have mentioned
will be made more clear, by placing numbers at pleas-
ure instead of letters in the expressions, and calculat-
ing their values; but, in conclusion, the following re-
mark must be attended to. If it were asserted that the
P 2ab

T is the same as a_{_b—fd:&’ and

we wish to proceed to see whether this is always the

expression

case or no, if we commence accidentally by supposing
4 to stand for 2 and «a for 4, we shall find that the first
is the same as the second, each being 3}. But we
must not conclude from this that they are always the
same, at least until we have tried whether they are so,
when other numbers are substituted for ¢ and 4. If
we place 6 and 8 instead of ¢ and 4, we shall find that
the two expressions are not equal, and therefore we
must conclude that they are not always the same.
Thus in the expressions 3x—+ and 2x +- 8, if x stand
for 12, these are the same, but if it stands for any
other number they are not the same.



CHAPTER VIIL.

ELEMENTARY RULES OF ALGEBRA.

HE student should be very well acquainted with
the principles and notation hitherto laid down
before he proceeds to the algebraical rules for addi-
tion and subtraction. He should then take some sim-
ple examples of each, and proceed to find the sum
and difference by reasoning as follows. Suppose it is
required to add ¢—4 to @a—4. The direction to do
this may either be written in the common way thus:

a—ob

c—d

Add
or more properly thus: Find (¢ —2)+ (¢—a).

If we add ¢ to a, or find ¢+ ¢, we have too much ;
first, because it is not @ which is to be increased by
¢—d but @— 4 ; this quantity must therefore be de-
creased by 4 on this account, or must become a-+c—4;
but this is still too great, because it is not ¢ which was
to be added but c—4; it must therefore be decreased
by & on this account, or must become ¢+ c— 6—4a or
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a—©b+c—d. From a few reasonings of this sort the
rule may be deduced ; and not till then should an ex-
ample be chosen so complicated as to make the stu-
dent lose sight for one moment of his demonstration.
The process of subtraction we have already performed.
and from a few examples of this method the rule may
be deduced.

The multiplication of @ by c— & is performed thus:
@ is to be taken ¢—4& times. Take it first ¢ times or
find ac. This is too great, because @ has been taken
too many times by 4 From ac¢ we must therefore
subtract & times a, or ad, and the result is that

a(c—dy=ac—ad.
This may be verified from arithmetic, in which the
same process is shown to be correct; and this whether
the numbers a, ¢, and & are whole or fractional. For
example, it will be found that 6(14—9) or 6 X 5 is
the same as 6 X 14—6 X 9, or as 84 —54. Also that
§(3—+%), or X 1}5 is the same as X 3—5 X 4,
or as % —4%. Upon similar reasoning the following
equations may be proved:
a(b+c—dy=ab+ac—ad.
(2+2p9—aryxz=pxz+tpgxz—arxz.
(a2 +26%)02% or (aat+260)bb=aabb-+2bbb0
=a? %+ 2 4L

Also when a multiplication has been performed, the
process may be reversed and the factors of it may be

given. Thus, on observing the expression
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ab—ac+ a?,
or ab—ac-+taa,
we see that in its formation every term has been mul-
tiplied by « ; that is, it has been made by multiplying
b—c+abya,
ora by b—c+a.
There will now be no difficulty in perceiving that

actadtbetbd=alc+d)+é(c+d)=
(@+8)(c+d),

a’—ab?+2abc—dc+3a=
a(la—b8+3)+c(2ab—4d).

It is proved in arithmetic that if numbers, whether
whole or fractional, are multiplied together, the pro-
duct remains the same when the order in which they
are multiplied is changed. Thus 6)X4X3=3X6xX4=
4X6x3, etc.,, and 2 X $=4# X %, etc. Also, that a
part of the multiplication may be made, and the par-
tial product substituted instead of the factors which
produced it, thus, 3 X4 X5x 6 is 125X 6, or 15X 46,
or 90x4. From these rules two complicated single
terms may be multiplied together, and the product
represented in the most simple manner which the case
admits of. Thus if it be required to multiply

6234 c, which is 6aaabbbbc
by 124?25 A d, which is 12aabbbcced,
the product is written thus:
6aaabbbbcl2aabbbcecad,
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which multiplication may be performed in the follow-
ing order

6x12aaaaabbbbbbbccccd,
which is represented by T2a%47¢*d. A few examples
of this sort will establish the rule for the multiplica-
tion of such quantities which is usually given in the
treatises on Algebra.

It is to be recollected that in every algebraical
formula which is true of all numbers, any algebraical
expression may be substituted for one of the letters,
provided care is taken to make the substitution wher-
ever that letter occurs. Thus from the formula:

a*— b= (a+ ) (a—10b)

we may deduce the following by making substitutions
for . If this formula be always true, it is true when
a is equal to g ¢, that is, it is true if - ¢ be put
instead of ¢ wherever that letter occurs in the form-
ula. Therefore,

P+ —8=(2+9+6(2+¢—5.
Similarly, (&4 m)?— 62 = (26 + m)m,
(4N —(x—)P=E+y+r—y) (@+y—2—))
—=4xy, and so on.
We have already established the formula,
(p—9a=ap—ayg.

Instead of @ let us put »—s, and this formula be-
comes

(p—(r—=(r—35)p—(r—15)9.
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But
(r—s)p=pr—ps, and (r—8)g=gr— 2
Therefore

(=) (r—)=pr—ps—(gr—gs)
—=pr—ps—qr-+gs.
By reasoning in the same way we may prove that
P—(r+s)=pr+ps—gr—ygs

A few examples of this sort will establish what is
called the rule of signs in multiplication; viz., that a
term of the multiplicand multiplied by a term of the
multiplier has the sign -+ before it if the terms have
the same sign, and — if they have different signs.
But here the student must avoid using an incorrect
mode of expression, which is very common, viz., the
saying that -+ multiplied by - gives +; — multiplied
by -+ gives —; and so on. He must recollect that
the signs 4+ and — are not quantities, but directions
to add and subtract, and that, as has been well said
by one of the most luminous writers on algebra in our
language, we might as well say, that take away multi-
plied by take away gives add, as that — multiplied by
— gives +.*

The only way in which the student should accus-
tom himself to state this rule is the following: ¢¢In

*Frend, Principles of Algebra. The author of this treatise is far from
agreeing with the work which he has quoted in the rejection of the isolated
negative sign which prevails throughout it, but fully concurs in what is there
said of the methods then in use for explaining the difficulties of the negative
sign.
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multiplying two algebraical expressions, multiply each
term of the one by each term of the other, and wher-
ever two terms are preceded by the same sign put -}
before the product of the two; when the signs are
different put the sign — before their product.”

If the student should meet with an equation in
which positive and negative signs stand by them-
selves, such as

+ab X —c=—abe,

let him, for the present, reject the example in which
it occurs, and defer the consideration of such equa-
tions until he has read the explanation of them to
which we shall soon come. Above all, he must reject
the definition still sometimes given of the quantity
—a, that it is less than nothing. It is astonishing that
the human intellect should ever have tolerated such
an absurdity as the idea of a quantity less than noth-
ing;* above all, that the notion should have outlived
the belief in judicial astrology and the existence of °
witches, either of which is ten thousand times more
possible.

These remarks do not apply to such an expression
as — & + a, which we sometimes write instead of a—8,
as long as it is recollected that the one is merely used
to stand for the other, and for the present ¢ must be
considered as greater than 4.

*For a full critical and historical discussion of this point, see Duhamel.

Des méthodes dans les sciences de vaisonnement, zme partie, chap. XIX. (third
edition, Paris, Gauthier-Villars, 1896).—Edtor.
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In writing algebraical expressions, we have seen
that various arrangements may be adopted. Thus
ax*—px -+ ¢ may be written as ¢+ ax?—bx, or —bx
+ ¢+ ax? Of these three the first is generally chosen,
because the highest power of x is written first; the
highest but one comes next; and last of all the term
which contains no power of x. When written in this
way the expression is said to be arranged in descend-
ing powers of x; had it been written thus, c—éx 4 ax?,
it would have been arranged in ascending powers of
«; in either case it is said to be arranged in powers
of x, which is called the principal letter. It is usual
to arrange all expressions which occur in the same
question in powers of the same letter, and practice
must dictate the most convenient arrangement. Time
and trouble is saved by this operation, as will be evi-
dent from multiplying two unarranged expressions to-
gether, and afterwards doing the same with the same
expressions properly arranged.

In multiplying two arranged expressions together,
while collecting such terms into one as will admit of
it, it will always be evident that the first and last of
all the products contain powers of the principal letter
which are found in no other part, and stand in the
product unaltered by combination with any other
terms, while in the intermediate products there are
often two or more which contain the same power of
the principal letter, and can be reduced into one.
This will be evident in the following examples :
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It is plain from the rule of multiplication, that the
highest power of x in a product must be formed by
multiplying the highest power in one factor by the
highest power in the other, or when the two factors
have been arranged in descending powers, the frs/
power in one by the first power in the other. Also,
that the lowest power of «x, or should it so happen,
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the term in which there is no power of x, is made by
multiplying the last terms in each factor. These be-
ing the highest and lowest, there can be no other such
power, consequently neither of these terms can ‘co-
alesce with any other, as is the case in the intermedi-
ate products. This remark will be of most convenient
application in division, to which we now come.
Division is in all respects the reverse of multipli-
cation. In dividing « by é we find the answer to this
question: If ¢ be divided into & equal parts, what is
the magnitude of each of those parts? The quotient
is, from the definition of a fraction, the same as the

o a o .
fraction 7 and all that remains is to see whether that

fraction can be represented by a simple algebraical
expression without fractions or not; just as in arith-
metic the division of 200 by 26 is the reduction of the
fraction 290 to a whole number, if possible. But we
must here observe that a distinction must be drawn

between algebraical and arithmetical fractions. For

at+0o . . . .
is an algebraical fraction, that is, there

a—b
is no expression without fractions which is always

a6

equal to—— . But it does not follow from this that

example,

. b . .
the number which ;L_tb represents is always an arith-

metical fraction; the contrary may be shown. Leta

sstand for 12, and  for 6, then Z_tg T
@+ @b is a quantity which does not contain algebrai-
cal fractions, but it by no means follows that it may

not represent an arithmetical fraction. To show that
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it may, let ¢=} and 4=2, then a®+2b=1} or §.
Other examples will clear up this point if any doubt
yet exist in the mind of the student. Nevertheless,
the following propositions of arithmetic and algebra,
which only differ in this, that ¢“whole number” in the
arithmetical proposition is replaced by ‘‘simple ex-
pression”* in the algebraical one, connect the two
subjects and render those demonstrations which are

in arithmetic confined to whole numbers, equally true

in algebra as far as regards simple expressions:

The sum, difference, or pro-
duct of two whole numbers, is a
whole number.

One number is said to be a
measure of another when the
quotient of the two is a whole
number.

The greatest common meas-
ure of two whole numbers is the
greatest whole number which
measures both, and is the pro-
duct of all the prime numbers
which will measure both.

When one number measures
two others, it measures their
sum, difference, and product.

In the division of one number
by another, the remainder is
measured by any number which
measures the dividend and di-
visor.

The sum, difference, or pro-
duct of two simple expressions
is a simple expression.

One expression is said to be a
measure of another when the
quotient of the two is a simple
expression

The greatest common meas-
ure of two expressions is the
common measure which has the
highest ‘ exponents and coeffi-
cients, and is the product of all
prime simple expressions which
measure both.

When one expression meas-
ures two others, it measures
their sum, difference, and pro-
duct.

In the division of one expres-
sion by another, the remainder
is measured by any expression
which measures the dividend
and divisor.

* By a simple expression is meant one which does not contain the princi-
pal letter in the denominator of any fraction.
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A fraction is not altered by A fractional expression is not
multiplying or dividing both its altered by multiplying or divid-
numerator and denominator by ing both its numerator and de-
the same quantity. nominator by the same expres-

sion.

In the term simple expression are included those
quantities which contain arithmetical fractions, pro-
vided there is no algebraical quantity, or quantity rep-
resented by letters in the denominator ; thus 1ed+}
is called a simple expression. We now proceed to
the division of one simple expression by another, and
we will take first the case where neither quantity con-
tains more than one term. For example, what is
42 q* 5% ¢ divided by 6424 ¢? that is; what quantity must
be multiplied by 6a?é¢, in order to produce 424*43c.
This last expression written at length, is42aeaabdbc,
and 42 is 6 X7. We can then separate this expression
into the product of two others, one of which shall be
Ga?bec, or Gaabe; it will then be 6aadbc X Taabbd,
and it is Taa$é which must be multiplied by 6eaédc
in order to produce 424*43¢. A few examples worked
in this way, will lead the student to the rule usually
given in all cases but one, to which we now come.
We have represented ce, cce, ccce, etc., by 2, 8, o4,
etc., and have called them the second, third, fourth,
e’tc., powers of ¢. The extension of this rule would
lead us to represent ¢ by ¢!, and call it the first power
of ¢. Again, we have represented ¢-¢, ¢+ c-to,
¢+ c-Fc+ ¢, etc. by 2¢, 3¢, 4¢, and have called 2, 3,
4, etc., the coefficients of c¢. The extension of this
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rule would lead us to write ¢ thus, 1l¢, or, rather, if we
attend to the last remark, 1¢1. This instance leads us
to observe the gradual progress of our language. We
begin with the quantity ¢ by itself ; we proceed in our
course, shortening by new signs the more complicated
combinations of ¢, and the original quantity ¢ forces
itself anew upon our attention as a part of the series,
GN2IE, o6, G retciandiz Sei e et e tcy,
in each of which, except the first, there is a distinct
figure, which is called a coefficient or exponent, ac-
cording to its situation. We then deduce rules in
which the terms coefficient or exponent occur, but
which, of course, cannot apply to the first term in
each series, because, as yet, it has neither coefficient
nor exponent. Among such rules are the following :
I. To add two terms of the first series, add the co-
efficients, and affix to the sum the letter ¢. Thus
4¢+3c="T¢. 1I. To multiply two terms of the sec-
ond series, add the exponents, and make this sum the
exponent of ¢. Thus ¢*X#=¢". III. To divide a term
of the second series by one which comes before it, sub-
tract the exponent of the divisor from the exponent
of the dividend, and make this difference the exponent
of c. Thus, 7

These rules are intelligible for all terms of the
series except the first, to which, nevertheless, they
will apply if we agree that 1¢! shall represent ¢, as
will be evident by applying either of them to find
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4
4c+¢, A Xe, or f[ We therefore agree that 1¢! shall

stand for ¢, and although ¢ is not written thus, it must
be remembered that ¢ is to be considered as having
the coefficient 1 and the exponent 1, which is an
amendment and enlargement of our algebraical lan-
guage, derived from experience. It may be said that
this is all superfluous, because, if ¢? stand for ¢¢, and
e for ccc, what can ¢! stand for but ¢? But it must
be recollected that, since the symbol ¢! has not yet re-
ceived a meaning, we are at liberty to make it stand

1+4¢

for anything which we please, for example, for —

or ¢c—¢?, or any other. If we did this, there would,
indeed, be a great violation of analogy, that is, what
¢! stands for would not be as like that which ¢? has
been made to stand for, as the meaning of ¢® is to
that of ¢%; but, nevertheless, we should not be led to
any incorrect results as long as we remembered to
make ¢! always stand for the same thing. These re-
marks are here introduced in order to show the man-
ner in which analogy is followed in extending the lan-
guage of algebra, and to prove that, after a certain
period, we may rather be said to discover new symbols
than to make them. The immense importance of this
branch of the subject makes it necessary that it should
be fully and early understood by all who intend to
pursue their mathematical studies to any depth. To
illustrate it still further, we subjoin another instance,
which has not been noticed in its proper place.
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The signs 4 and — were first used to connect one
quantity with others, and to show what arithmetical
operations were performed on other quantities by
means of the first. But the first quantity on which
we begin the operation is not preceded by any sign,
not being considered as added to or subtracted from
any previous one. Rules were afterwards deduced for
the addition and subtraction of the total result of sev-
eral expressions in which these signs occur, as follows:

To add two expressions, form a third, which has
all the quantities in the first two, with the same signs.

To subtract one expression from another, change
the sign of each term of the subtrahend, and proceed
as in the last rule.

The only terms in which these rules do not apply
are those which have no sign, viz., the first of each.
But they will apply to those terms, and will produce
correct results, if we place the sign -+ before each of
them. We are thus led to see that an algebraical
term which has no sign is equivalent in all operations
to one which is preceded by the sign 4. We, there-
fore, consider this sign as prefixed, though it is not
always written, and thus we are furnished with a
method of é_ontaining under one rule that which would
otherwise require two.

From these considerations the following appears
to be the best and most natural course of proceeding
in the invention of additional symbols. When a rule
has been discovered which is not quite general, and
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which only fails in its application to a few instances,
annex such additional symbols to those already in use,
or change and modify these so as to make the rule
applicable in all cases, provided always this can be
done without making the same symbol stand for two
different things, and without any violation of analogy.
If the rule itself, by its application to any case, should
produce a new symbol hitherto unexplained, it is a
sign that the rule has been applied to a case which
was never intended to fall under it when it was made.
For the solution of this case we must have recourse
to first principles, but when, by these means, the re-
sult has been found, it will be best to agree that the
new symbol furnished by the rule shall stand for the
result furnished by the principle, by which means the
generality of the rule will be attained and the analogy
of language will not be injured. Of this the following
is a remarkable instance :

To divide ¢8 by ¢ the rule tells us to subtract b
from 8, and make the result the exponent of ¢, which
gives the quotient A. If we apply the same rule to di-
vide ¢® by (%, since 6 subtracted from 6 leaves 0, the
result is ¢%, a new symbol, to which we have attached
no meaning. The fact is that the rule was formed
from observation of different powers of ¢, and was
never intended to apply to the division of a power of
¢ by the same power. If we apply the common prin-
ciples to the division of ¢ by (%, the result is 1. We,
therefore, agree that ¢° shall stand for 1, and the least
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inspection will show that this agreement does not af-
fect the truth of any result derived from the rule. If,
in the solution of any problem, the symbol ¢° should
appear, we must consider it is a sign that we have, in
the course of the investigation, divided a power of ¢
by itself by the common rule, without remarking that
the quotient is 1. We must, therefore, replace ¢° by
1, but it is entirely indifferent at what stage of the
process this is done.

Several extensions might be noticed, which are
made almost intuitively, to which these observations
will apply. Such, for example, is the multiplication
and division of any number by 1, which is not con-
templated in the definition of these operations. Such
is also the continual use of 0 as a quantity, the addi-
tion and subtraction of it from other quantities, and
the multiplication of it by others, neither of which
were contemplated when these operations were first
thought of.

We now proceed to the principles on which more
complicated divisions are performed. The question
proposed in division, and the manner of answering it,
may be explained in the following manner. Let 4 be
an ekpression which is to be divided by #, and let Q
be the quotient of the two. By the meaning of divi-
sion, if there be no remainder 4 = QA since the quo-
tient is the expression which must multiply the di-
visor, in order to produce the dividend. Now let the
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quotient be made up of different terms, a, 4, ¢, etc.,
let it be a+4—c-+d. Thatis, let
A= O 1))
Q=a+t+b—c+ad. €))
By putting, instead of Q in (1), that which is equal
to it in (2), we find
A=(a+b—c+dYH=aH+ bH—cH+dH (3)
Now suppose that we can by any method find the
term a of the quotient, that is, that we can by trial or
otherwise find one term of the quotient. In (3), when
the term ¢ is found, since A is known, the term a4
is found. Now if two quantities are equal, and from
them we subtract the same quantity, the remainders
will be equal. Subtract ¢/ from the equal quantities
A and e+ b H—cH+ dH, and we shall find
A—aH=0H—cH+dH=(—c+d)H. (4)
If, then, we multiply the term of the quotient found
by the divisor, and subtract the product from the divi-
dend, and call the remainder B, then
B=(b—c+d)H. )
That is, if B be made a dividend, and A still continue
the divisor, the quotient is é—c¢ + @, or all the first
quotient, except the part of it which we have found.
We then proceed in the same manner with this new
dividend, that is, we find 4 and also 4/, and subtract
it from B, and let B—bH be represented by C, which
gives by the process which has just been explained
C=(—c+dYH=—cH+ dH. (6)
We now come to a negative term of the quotient.
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Let us suppose that we have found ¢, and that its sign
in the quotient is —. If two quantities are equal, and
we add the same quantity to both, the sums are equal.
Let us therefore add ¢/ to both the equal quantities
in (6), and the equation will become

C-+cH=dH; ©)
or if we denote C+ ¢A by D, this is

D=dH.

There is only one term of the quotient remaining, and
if that can be found the process is finished. But as
we cannot know when we have come to the last term,
we must continue the same process, that is, subtract
dH from D, in doing which we shall find that Z# is
equal to 0, or that the remainder is nothing. This
indicates that the quotient is now exhausted and that
the process is finished.

We will now apply this to an example in which
the quotient is of the same form as that in the last
process, namely, consisting of four terms, the third of
which has the negative sign. This is the division of

xt—pt—3a2y2 L 23y 4 2293 by x—y.
Arrange the first quantity in descending powers of x
which will make it stand thus:

attaby—3atyt+2xy3—pt (A)
One term of the quotient can be found immediately,
for since it has been shown that the term containing
the highest power of x in a product is made up of
nothing but the product of the terms containing the
highest powers of x which occur in the multiplier and
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multiplicand, and considering that the expression (A)
is the product of x—y and the quotient, we shall re-
cover the highest power of x in the quotient by divid-
ing x4, the highest power of x in (A), by «, its highest
power in x—y. This division gives «® as the first
term of the quotient. The following is the common
process, and with each line is put the corresponding
step of the process above explained, of which this is
an example:
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The second and following terms of the quotient
are determined in exactly the same manner as the
first. In fact, this process is not the finding of a quo-
tient directly from the divisor and dividend, but one
term is first found, and by means of that term another
dividend is obtained, which only differs from the first
in having one term less in the quotient, viz., that
which was first found. From this second dividend
one term of its quotient is found, and so on until we
obtain a dividend whose quotient has only one term,
the finding of which finishes the process. It is usual
also to neglect all the terms of the first dividend,
except those which are immediately wanted, taking
down the others one by one as they become necessary.
This is a very good method in practice but should be
avoided in explaining the principle, since the first
subtraction is made from the whole dividend, though
the operation may only affect the form of some part
of it.

If the student will now read attentively what has
been said on the greatest common measure of two
numbers, and then examine the connexion of whole
numbers in arithmetic and simple expressions in alge-
bra with which we commenced the subject of division,
he will see that the greatest algebraical common meas-
ure of two expressions may be found in exactly the
same manner as the same operation is performed in
arithmetic. He must also recollect that the greatest

common measure of two expressions 4 and 27 is not
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altered by multiplying or dividing either of them, 4,
for example, by any quantity, provided that quantity
has no measure in common with B. For example,
the greatest common measure of ¢> —x? and 6a®— 6 3
is the same with “that of 242 —2x% and 43 —ux3, since
though a new measure is now introduced into the first
and taken away from the second, nothing is introduced
or taken away which is common to both. The same
observation applies to arithmetic also. For example,
take the numbers 162 and 180. We may, without
altering their greatest common measure, multiply the
first by 7 and the second by 11, etc. The rule for
finding the greatest common measure should be prac-
tised with great attention by all who intend to proceed
beyond the usual stage in algebra. To others it is not
of the same importance, as the necessity for it never
occurs in the lower branches of the science.

In proceeding to the subject of fractions, it must
be observed that, in the same manner as in arithmetic,
when there is a remainder which cannot be further
divided by the divisor, that is, where the dividend is
so reduced that no simple term multiplied by the first
term of the divisor will give the first term of the re-
mainder, as in the case where the divisor is a?x - 4 x?
and the remainder ex -+ 4; in this case a fraction
must be added to the quotient, whose numerator is
this remainder, and whose denominator is the divisor.
Thus, in dividing @*+4* by e+ 4, the quotient is
@ —a’b+ab?—4, and the remainder 244, whence
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at bt 24
a+t+b at b

The arithmetical rules for the addition, etc., of frac-

=a—a’b+tal?— P

tions hold equally good when the numerators and de-
38 1
nominators are themselves fractions. Thus 2 and—%

7
are added, etc., exactly in the same way as % and $,

the sum of the second being

and that of the first

The rules for the addition, etc., of algebraic fractions
are exactly the same as in arithmetic; for both the
numerator and denominator of every algebraic frac-
tion stands either for a whole number or a fraction,
and therefore the fraction itself is either of the same

form as § or Nevertheless the student should at-

s [eolvs

tend to some examples of each operation upon alge-
braic fractions, by way of practice in the previous
operations. As the subject is not one which presents
any peculiar difficulties, we shall now pass on to the
subject of equations, concluding this article with a
list of formula which it is highly desirable that the
student should commit to memory before proceeding
to any other part of the subject.
(@-+0)+ (a—b)=2a @
(a4 0)—(a—b)=25 (2)
a—(a—b)=0b 6}
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(a+&)?=a®+2ab+ 8
(a—&)2=a?—2ab+
(Rax4 b2 =4a?a? - dabx + 52
(a+ &) (a—b)=a>—?*

(x+a)(x+ 5 =ar?+(a+ &) x+ab }
(x—a)(xa—b)=x?—(a+&)x+al

a__ma
b mb
¢ ad-tc¢ ¢ ad—:c
“+ 7 d T dT T 4
a_{_c__aa’-{-/w a ¢ ad—b¢
5 T 4T bd b AT bd
a _ac_a a ¢ __ac
TXTETY 7 X7 a
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CHAPTER VIII.

EQUATIONS OF THE FIRST DEGREE.

E have already defined an equation, and have
come to many equations of different sorts. But

all of them had this character, that they did not de-
pend upon the particular number which any letter
stood for, but were equally true, whatever numbers
might be put in place of the letters. For example, in

the equation
a?—1

the truth of the assertion made in this algebraical sen-
tence is the same, whether ¢ be considered as repre-
senting 1, 2, 21, etc., or any other number or fraction
whatever. The second side of this equation is, in
fact, the result of the operation pointed out on the
first side. On the first side you are directed to divide
a®>—1 by a+1; the second side shows you the result
of that division. An equation of this description is
called an identica/ equation, because, in fact, its two

sides are but different ways of writing down the same
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number. This will be more clearly seen in the iden-
tical equations
a+a=2a, Ta—3a -+ b—4a— 35+ 45, and-Z—)( Ve

The whole of the formula at the end of the last
article are examples of identical equations. There is
not one of them which is not true for all values which
can be given to the letters which enter into them, pro-
vided only that whatever a letter stands for in one
part of an equation, it stands for the same in all the
other parts.

If we take, now, such an equation as @ +1=28, we
have an equation which is no longer true for every
value which can be given to its algebraic quantities.
It is evident that the only number which @ can repre-
sent consistently with this equation is 7, as any other
supposition involves absurdity. This is a new spe-
cies of equation, which can only exist in some partic-
ular case, which particular case can be found from
the equation itself. The solution of every problem
leads to such an equation, as will be shown hereafter,
and, in the elements of algebra, this latter species of
equation is of most importance. In order to distin-
guish them from identical equations, they are called
equations of condition, because they cannot be true when
the letters contained in them stand for any number
whatever, and their very existence makes a condition
which the letters contained must fulfil. The solution
of an equation of condition is the process of finding
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what number the letter must stand for in order that
the equation may be true. Every such solution is a
process of reasoning, which, setting out with suppos-
ing the truth of the equation, proceeds by self-evident
steps, making use of the common rules of arithmetic
and algebra. We shall return to the subject of the
solution of equations of condition, after showing, in a
few instances, how we come to them in the solution
of problems. In equations of condition, the quantity
whose value is determined by the equation is usually
represented by one of the last letters of the alphabet,
and all others by some of the first. This distinction
is necessary only for the beginner; in time he must
learn to drop it, and consider any letter as standing
for a quantity known or unknown, according to the
conditions of the problem.

In reducing problems to algebraical equations no
general rule can be given. The problem is some prop-
erty of a number expressed in words by which that
number is to be found, and this property must be
written down as an equation in the most convenient
way. As examples of this, the reduction of the fol-
lowing problems into equations is given :

I. What number is that to which, if 56 be added,
the result will be 200 diminished by twice that num-
ber?

Let x stand for the number which is to be found.

Then x -+ 56 =200 — 2u.

If, instead of 56, 200, and 2, any other given num-
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bers, a, 4, and ¢, are made use of in the same man-
ner, the equation which determines x is
Xx+a=b—cx.

I1. Two couriers set out from the same place, the
second of whom goes three miles an hour, and the
first two. The first has been gone four hours, when
the second is sent after him. How long will it be be-
fore he overtakes him ?

Let x be the number of hours which the second
must travel to overtake the first. At the time when
this event takes place, the first has been gone x4 4
hours, and will have travelled (x+4)2, or 2x+48
miles. The second has been gone x hours, and will
have travelled 3 x miles. And, when the second over-
takes the first, they have travelled exactly the same
distance, and, therefore,

3x=2x-8.

If, instead of these numbers, the first goes @ miles
an hour, the second 4, and ¢ hours elapse before the
second is sent after the first,

bx—ax-tac.

Four men, A4, B, C, and D, built a ship which
cost £2607, of which A paid twice as much as 4, C
paid as much as 4 and B, and D as much as C and
B. What did each pay?

Suppose that 4 paid x pounds,
then B paid 2x . . .
Cpaildx+2xo0r3x. ..
D paid 2a+3xo0rbx. ..
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All together paid x +2x 4+ 3x + Hx, or 11 x, there-

fore
11 x =2607.

There are two cocks, from the first of which a cis-
tern is filled in 12 hours, and the second in 15. How
long would they be in filling it if both were opened
together?

Let x be the number of hours which would elapse
before it was filled. Then, since the first cock fills
the cistern in 12 hours, in one hour it fills 3 of it, in
two hours %, etc., and in x hours . -Similarly, in
x hours, the second cock fills ;% of the cistern. When
the two have exactly filled the cistern, the sum of
these fractions must represent a whole or 1, and,

therefore,
57

5 T

X

5:1.

[
[u—y

If the times in which the two can fill the cistern are «
and & hours, the equation becomes

X X
Z42=1

A person bought 8 yards of cloth for £3 2s., giving
9s. a yard for some of it and 7s. a yard for the rest;
how much of each sort did he buy?

Let x be the number of yards at 7s. Then 7Tx is
the number of shillings they cost. Also 8—ux is the"
number of yards at 9s., and (8—x)9, or 72—9ux, is
the number of shillings they cost. And the sum of
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these, or Tx 4 72—9x, is the whole price, which is
£3 2s., or 62 shillings, and, therefore,
Tx4+T72—9x=062.

These examples will be sufficient to show the
method of reducing a problem to an equation. As-
suming a letter to stand for the unknown quantity, by
means of this letter the same quantity must be found
in two different forms, and these must be connected
by the sign of equality. However, the reduction into
equations of such problems as are usually given in the
treatises on algebra rarely occurs in the applications
of mathematics. The process is a useful exercise of
ingenuity, but no student need give a great deal of
time to it. Above all, let no one suppose, because he
finds himself unable to reduce to equations the conun-
drums with which such books are usually filled, that,
therefore, he is not made for the study of mathemat-
ics, and should give it up. His future progress de-
pends in no degree upon the facility with which he
discovers the equations of problems; we mean as far
as power of comprehending the subsequent sciences
is concerned. He may never, perhaps, make any con-
siderable step for himself, but, without doing this, he
may derive all the benefits which the study of mathe-
matics can afford, and even apply them extensively.
There is nothing which discourages beginners more
than the difficulty of reducing problems to equations,
and yet, as respects its utility, if there be anything
in the elements which may be dispensed with, it is
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this. We do not wish to depreciate its utility as an
exercise for the mind, or to hinder all from attempt-
ing to conquer the difficulties which present them-
selves ; but to remind every one that, if he can read
and understand all that is set before him, the essen-
tial benefit derived from mathematical studies will be
gained, even though he should never make one step
for himself in the solution of any problem.

We return now to the solution of equations of con-
dition. Of these there are various classes. Equations
of the first degree, commonly called simple equations,
are those which contain only the first power of the un-
known quantity. Of this class are all the equations
to which we have hitherto come in the solution of
problems. The principle by which they are solved is,
that two equal quantities may be increased or dimin-
ished, multiplied, or divided by any quantity, and the
results will be the same. In algebraical language,
f a=b, at+c=b+¢, a—c=b—¢, ac=0bc, and
a

i In every elementary book it is stated that

any quantity may be removed from one side of the
equation to the other, provided its sign be changed.
This is nothing but an application of the principle
just stated, as may be shown thus: Let a +4—c=4d,
add ¢ to both quantities, then

at+b—c+c=d+cor atb=d+tec

Again subtract 4 from both quantities, then a4 4—
c—b=d—b, or a—c=d—b. Without always re-
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peating the principle, it is derived from observation,
that its effect is to remove quantities from one side of
an equation to another, changing their sign at the
same time. But the beginner should not use this rule
until he is perfectly familiar with the manner of using
the principle. He should, until he has mastered a
good many examples, continue the operation at full
length, instead of using the rule, which is an abridg-
ment of it. In fact it would be better, and not more
prolix, to abandon the received phraseology, and in
the example just cited, instead of saying ‘‘bring the
term & to the other side of the equation,” to say ‘“sub-
tract & from both sides,” and instead of saying ¢‘bring
¢ to the other side of the equation,” to say ‘“add ¢ to
both sides.”

Suppose we have the fractions £, 1, and . If we
multiply them all by the product of the denominators -
4% 7 14, or 392, all the products will be whole num-

92 ‘392 392
bers. They will be f?,<43 , 1><73 o 5>1<43 ’

and since 392 is measured by 4, 3 X 392 is also meas-

3 92 |
ured by 4, and X43— is a whole number, and so on.

But any common multiple of 4, 7, and 14 will serve
as well. The least common multiple will therefore be
the most convenient to use for this purpose. The
least common multiple of 4, 7, and 14 is 28, and if the
three fractions be multiplied by 28, the results will be
whole numbers. The same also applies to algebraic

fractions. Thus 2 L d 5 nd f’ will become simple
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expressions, if they are multiplied by bXdexX bdf, or
6*d?ef. But the most simple common multiple of 5,
de, and bdf, is bdef, which should be used in pref-
erence to 42d%e¢f.

This being premised, we can now reduce any equa-
tion which contains fractions to one which does not.
For example, take the equation

x 2x 7 3—2x

RN e g
If we multiply both these equal quantities by any
other, the results will be equal. We choose, then,
the least quantity, which will convert all the fractions
into simple quantities, that is, the least common mul-
tiple of the denominators 3, 5, 10, and 6, which is 30.
If we multiply both equal quantities by 30, the equa-
tion becomes

30x  60x 210  30(3—2x)

R s | et T @

But ?ig—x is ? X %, or waGOTx is 950 X x, or 12 x, etc.;
so that we have

105+ 124=21—5 (3—2x), @)

or 10x+412x=21— (15—10x), 3

or 10w+ 125=21—15-+10ux. €))

Beginners very commonly mistake this process, and
forget that the sign of subtraction, when it is written
before a fraction, implies that the whole result of
the fraction is to be subtracted from the rest. As
long as the denominator remains, there is no need to
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signify this by putting the numerator between brack-
ets, but when the denominator is taken away, unless
this be done, the sign of subtraction belongs to the
first term of the numerator only, and not to the whole
expression. The way to avoid this mistake would be
to place in brackets the numerators of all fractions
which have the negative sign before them, and not to
remove those brackets until the operation of subtrac-
tion has been performed, as is done in equation (4).

The following operations will afford exercise to the
student, sufficient, perhaps, to enable him to avoid

this error :

b—ctd—e aff-b—ctd—e
e = 7 ’
a__b—c—l—tz’—e_af—&—l—c—d—{—e
S o S ’

(a—56)? 2424272

%ot a+éb — at+b

(a—6)?  4abd

P a+d  a+b

We can now proceed with the solution of the equa-
tion. Taking up the equation (4) which we have de-
duced from it, subtract 10x from both sides, which
gives 10x +12x — 1020 =21—15, or 12x=26: divide

ans q . 12
these equal quantities by 12, which gives 1—; =%

a=1. This is the only value which x can have so as

, or

to make the given equation true, or, as it is called, to
satisfy the equation. If instead of x we substitute 3,
we shall find that
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T AT Sy | WO e
'9' ? 2 RS e S i it
+254 It et ’°rb'+ 510 6
this we find to be true, since
AT B T 2 22 11 22
§+75 i g5 mnd 15— 5 — g and gy =0

In these equations of the first degree there is one un-
known quantity and all the others are known. These
known quantities may be represented by letters, and,
as we have said, the first letters of the alphabet are
commonly used for that purpose. We will now take
an equation of exactly the same form as the last, put-
ting letters in place of numbers:

g E? d —ox
2+7:7"L}“

The solution of this equation is as follows: multi-
ply both quantities by aceZ, the most simple multiple
of the denominators, it then becomes:

acehx al;ce/zx acdeh ace/l(f—gx)
+ 7 )

a ¢ e
or, cehx+tabehx—=acdh—ace(f—gx),
or, cehx+taberx—acdh—acef+ acegx.
Subtract acegx from both sides, and it becomes
cehx+tabehx—acegx—acdh—acef,
or, (ceh+tabeh—aceg)x=acdh—acef.
Divide both sides by ce/k+ aberi—aceg, which gives

- acdh—acef
T cehtabeh—aceg

The steps of the process in the second case are ex-

actly the same as in the first; the same reasoning es-
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tablishes them both, and the samie-€170rs éi‘éitéjbg-'.{ oL

avoided in each. If from this we wish to find the so-
lution of the equation first given, we must substitute
3 for a, 2 for &, b for ¢, 7 for 4, 10 for ¢, 3 for f, 2 for
g, and 6 for %, which gives for the value of x,
3XBEXTX6—3XD5X10%X3
BX 10X 6F3X2X 10X 6—3Xbhx10x 2
3XbHx12 180
or, 373(—2};(—3%—)2—6, O, Zem

which is }, the same as before.

If in one equation there are two unknown quanti-
ties, the condition is not sufficient to fix the values of
the two quantities; it connects them, nevertheless, so
that if one can be found the other can be found also.
For example, the equation x - y=28 admits of an in-
finite number of solutions, for take x to represent any
whole number or fraction less than 8, and let y repre-
sent what x wants of 8, and this equation is satisfied.
If we have another equation of condition existing be-
tween the same quantities, for example, 3x—2y=4;
this second equation by itself has an infinite number
of solutions: to find them, y may be taken at pleasure,

412y

and r=—p— Of all the solutions of the second

equation, one only is a solution of the first; thus there
1s only one value of x and y which satisfies both the
equations, and the finding of these values is the solu-
tion of the equations. But there are some particular
cases in which every value of x and y which satisfies
one of the equations satisfies the other also; this hap-
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pens whenever-one of the equations can be deduced
from the other. For example, when x4 y=38, and
4x—29=3-—4y, the second of these is the same as
4x+44y=3-429, or 4x4 4y=232, which necessarily
follows from the first equation.

If the solution of a problem should lead to two
equations of this sort, it is a sign that the problem
admits of an infinite number of solutions, or is what
is called an indeterminate problem. The solution of
equations of the first degree does not contain any pe-
culiar difficulty; we shall therefore proceed to the
consideration of the isolated negative sign.



CHAPTER IX.

ON THE NEGATIVE SIGN, ETC.

F we wish to séy that 8 is greater than 5 by the
number 3, we write this equation 8—5=3. Also

to say that ¢ exceeds & by ¢, we use the equation a—4&
=¢. As long as some numbers whose value we know
are subtracted from others equally known, there is no
fear of our attempting to subtract the greater from
the less; of our writing 3—8, for example, instead of
8—3. But in prosecuting investigations in which let-
ters occur, we are liable, sometimes from inattention,
sometimes from ignorance as to which is the greater
of two quantities, or from misconception of some of
the conditions of a problem, to reverse the quantities
in a subtraction, for example to write «a—4& where &
is the greater of two quantities, instead of 4—a. Had
we done this with the sum of two quantities, it would
have made no difference, because ¢+ 4 and 4 4 a are
the same, but this is not the case with a— 4 and 6 —a.
For example, 8—3 is easily understood; 3 can be
taken from 8 and the remainder is 5; but 3—8 is an
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impossibility, it requires you to take from 3 more than
there is in 3, which is absurd. If such an expression
as 3—8 should be the answer to a problem, it would
denote either that there was some absurdity inherent
in the problem itself, or in the manner of putting it
into an equation. Nevertheless, as such answers will
occur, the student must be aware what sort of mis-
takes give rise to them, and in what manner they af-
fect the process of investigation.

We would recommend to the beginner to make
experience his only guide in forming his notions of
these quantities, that is, to draw his rules from the
observation of many results, not from any theory.
The difficulties which encompass the theory of the
negative sign are explained at best in a manner which
would embarrass him: probably he would not see the
difficulties themselves; too easy belief has always
been the fault of young students in mathematics, and
it is a great point gained to get them to start an ob-
jection. We shall observe the effect of this error in
denoting a subtraction on every species of investiga-
tion to which we have hitherto come, and shall de-
duce rules which the student will recollect are the re-
sults of experience, not of abstract reasoning. The
extensions to which he will be led have rendered Al-
gebra much more general than it was before, have
made it competent to the solution of many, very many
questions which it could not have touched had they
not been attended to. They do, in fact, constitute
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part of the groundwork of modern Algebra and should
be considered by the student who is desirous of mak-
ing his way into the depths of the science with the
highest degree of attention. If he is well practised in
the ordinary rules which have hitherto been explained,
few difficulties can afterwards embarrass him, except
those which arise from some confusion in the notions
which he has formed upon this part of the subject.
For brevity’s sake we hereafter use this phrase.
Where the signs of every term in an expression are
changed, it is said to have changed its form. Thus
+a—b4 and + b—a are in different forms, and if @
be greater than 4, the first is the correct form and the
second incorrect. An extension of a rule is made by
which such a quantity as 3—8 is written in a different
way. Suppose that +3—8 is connected with any
other number thus, 56 +-3—8. This may be written
56 43— (3+5), or 56 43 —3—5, or 56—5. It ap-
pears, then, that 4 3—8, connected with any number
is the same as —5 connected with that number; from
this we say that +3—8, or 3—8 is the same thing
as —5, or 3—8=_—"5. This is another way of writ-
ing the equation 8—3 =5, and indicates equally that
8 is greater than 5 by 3. In the same way, a—4=
— ¢ indicates that & is greater than « by the quantity
¢. If a be nothing, this equation becomes —é=-—c¢,
which indicates that é=¢, since if the equation ¢—&
—-—¢ be written in its true form &é—a=c¢, and if
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a=0, then /=¢. We can now understand the follow-
ing equations:

a—b+tc—d—=—e, oY b4 d—a—c=k¢,
20— — P =—d—e, or A2+ P—2ab=d4}e.

We must not commence any opérations upon such
an equation as ¢— & =—¢, until we have satisfied our-
selves of the manner in which they should be per-
formed, by reference to the correct form of the equa-
tion. This correct form is d—a=c. This gives
d+b—a=d+c¢, or d—(a—b)=d+ ¢ Write in-
stead of @—¢ its symbol —¢, and then d—(—¢)=
d-+-c¢. Here we have performed an operation with
a— b, which is no quantity, since « is less than 4, but
this is done because our present object is, in applying
the common rules to such expressions, to watch the
results and exhibit them in their real forms. The first
side #—(—¢) is in a form in which we can attach no
meaning to it, and the second side gives its real form
d+ ¢. The meaning of this expression is, that if with
a— b, which we think to be a quantity, but which is
not, since @ is less than 4, we follow the algebraical
rule in subtracting ¢—¢ from &, we shall thereby get
the same result as if we had added the real quantity
b—a to d. 1f we make use of the form /—(—), it
1s because we can use it in such a manner as never to
lose sight of its connexion with its real form & ¢,
and because we can establish rules which will lead us
to the end of a process without any error, except those
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which we can correct as certainly at the end as at-the
beginning.

The rule by which we proceed, and which we shall
establish by numerous examples, is, that wherever
two like signs come together, the corresponding part
of the real form has a positive sign, and wherever two
unlike signs come together, the real form has a nega-
tive sign. - Thus the real form of d—(—~¢) is d-+}c.
Again, take the real form é—a—=—c¢ of the equation
a—b=—¢, and it follows that d—(6—a)=d—¢,
or d—b+t+a=d—c¢, or d+a—b=d—c¢, or d+
(e—&)=d—c. This is d+ (—c)=d—¢, another
case in which the rule is verified. Again, multiply
together a—4 and m-—un, the product is am—an—
bm-+4bn. This is the same product as arises from
multiplying 4—a by n—m, written in a different or-
der. If, then, —a=¢, and n—m=p, or a—b=
—¢, and m—n=—p, we find that (—c) X (—p)=
c¢p. By which result we mean that a mistake, in the
form of both ¢— 4 and m — », will not produce a mis-
take in the form of their product, which remains what
it would have been had the mistake not been made.
Again

(n—m)(b—ay=bn—bm—an-tam

(n—m)(a—b)y=an—am-—bn-+bm.

If the first product be real and equal to 2, the second
is represented by — 2. The first is ¢p, the second is
(—¢) X #, which gives
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(—o)Xp=—cp.

That is, 2 mistake in the form of one factor only alters
the form of -the product. To distinguish the right
form from the wrong one, we may prefix -+ to the
first, and — to the second, and we may then recapit-
ulate the results, and add others, which the student
will now be able to verify.

The sign + placed before single quantities shows
that the form of the quantity is correct; the sign —
shows that it has been mistaken or changed.

(Z-]—(-!—b):(l—l—b a+(—hH=a—20

a—(+0)—=a—0b a—(—by=a-+b
(X (+o)=—+ab  (+ayxX(—b)=—ab
(—a)X (—b)=—+ab=(+a) X (+5)

far T a

Fe=Ts

SRA e s Tt

—b5" b ¥

—a a

iy Y
—aX—a = -+ a?
— @S —@ K —@ =4 alx —a =—0a3
—aX—aX—aX—a=—a*X—a =-tat

etc. etc.

We see, then, that a change in the form of any
quantity changes the form of those powers whose ex-
ponent is an odd number, but not of those whose ex-
ponent is an even number. By these rules we shall
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be able to tell what changes would be made in an ex-
pression by altering the forms of any of its letters. It
may be fairly asked whether we are not changing the
meaning of the signs + and —, in making -} a stand
for an expression in which we do not alter the signs,
and —a« for one in which the signs are altered. The
change is only in name, for since the rule of addition
is, ‘annex the expressions which are to be added
without altering the signs of either,” or ¢“annex the
expressions without altering the form of either;” the
quantity @+ &, which is the sum of the two expres-
sions ¢ and 4, stands for the same as + a4, in
which the new notion of the sign - is used, viz., the
expressions ¢ and 4 are annexed with unaltered forms,
which is denoted by writing together + ¢ and - 4.
Again, the rule for subtraction is, ¢¢change the sign
of the subtrahend or expression which is to be sub-
tracted, and annex the result to the other expression,”
or ‘‘change the form of the subtrahend and annex it
to the other, which, the expressions being ¢ and 2, is
written a— 4, which answers equally well to the sec-
ond notion of the sign —, since -+ ¢—4 indicates that
a and b are to be annexed, the first without, the sec-
ond with a change of form. These ideas of the signs
-+ and — give, therefore, in practice, the same results
as the former ones, and, in future, the two meanings
may be used indiscriminately. But when a single
term is used, such as -+ & or —a, the last acquired

notions of + and — are always understood.
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This much being premised, we can see, by num-
berless instances, that, if the form of a quantity is to
be changed, it matters nothing whether it is changed
at the beginning of the process, or whether we wait
till the end, and then follow the rules above men-
tioned. This is evident to the more advanced stu-
dent, from the nature of the rules themselves, but the
beginner should satisfy himself of this fact from expe-
rience. We now give a proof of this, as far as one
expression can prove it, in the solution of the equa-

tions,
2 2
% taox= ‘% ta—b

2 2
a alx
and - —ax = —= —a—1¢

b b

which two equations only differ in the form in which

a appears. For, if the form of ¢ in the first equation
ax
b
comes —ax, and -+ a becomes —a. We now solve

2
be altered, that of% and is unaltered, 4 ax be-

the two equations in opposite columns.

a? ax a? (A3

— —_ — — —-— — = —aq—0b
7 +ax 7 +a—2b J ax 3 a
A2t abx=alx+ab—8 AEd—abx=alx—ab—~5

Ad—abt+br=a’x—abx a’*tabt+=d’x+tabx

=(a*—ab)x =(a?+ab)x
_ar—ab+ P _attab4 P
A Ry wTE a4 ab

The only difference between these expressions
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arises from the different form of ¢ in the two. If, in
either of them, —a be put instead of + a, and the
rules laid down be followed, the other will be pro-
duced. We see, then, that a simple alteration of the
form of @ in the original equation produces no other
change in the result, or in any one of the steps which
lead to that result, except a simple alteration in the
form of @. From this it follows that, having the so-
lution of an equation, we have also the solution of all
the equations which can be formed from it, by altering
the form of the different known quantities which are
contained in it. And, as all problems can be reduced
to equations, the solution of one problem will lead us
to the solution of others, which differ from the first in
producing equations in which some of the known
quantities are in different forms. Also, in every iden-
tical equation, the form of one or more of its quanti-
ties may be altered throughout, and the equation will

still remain identically true. For example,

3___ )3
LAY SIS

a—ob
Change -4 into — 4, and this equation will become
@+ 2 2
N’;—"Fé =a®—ab+ 82,
which last, common division will show to be true.
Again, suppose than when @, 4, and ¢ are in a

given form, which we denote by +«a, +4, and +¢,
the solution of a problem is,
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e é2—4a:_
AR )

The following table will show the alterations which

X

take place in x when the forms of a, 4, and ¢ are
changed in different manners, and the verification of
it will be an exercise for the student.

FORMS OF &, &, AND ¢, VALUES OF X,

2—4dac
+a, 48, +¢ P

P+ 4ac
a—c—0b
M+ 4dac
a—c+0b
M2—4dac
b+a+tc
N2—4dac
b= g —la

+a +6, —c¢
~+a, —b, —¢
—a, + b, —c¢ -
—_—a, —b, —¢

Also, the expression for x may be written in the
following different ways, the forms of «, 4, and ¢ re-
maining the same :

P —4ac $*—4dac dac— dac—p
atc—b’ b—a—c¢’ atc—b’ b—a—c

We now proceed to apply these principles to the
solution of the following problems :

| | I 1D
4 B o :

Two couriers, 4 and B, in the course of a journey
between the towns C and D, are at the same moment

ql
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of time at 4 and B. A goes m miles, and B, » miles
an hour. At what point between C and D are they
together? It is evident that the answer depends upon
whether they are going in the same or opposite direc-
tions, whether 4 goes faster or slower than B, and so
on. But all these, as we shall see, are included in
the same general problem, the difference between them
corresponding to the different forms of the letters
which we shall have occasion to use. After solving
the different cases which present themselves, each
upon its own principle, we shall compare the results
in order to establish their connexion. Let the dis-
tance 425 be called a.

Case first.—Suppose that they are going in the
same direction from C to D, and that  is greater than
n.  They will then meet at some point between B and
D. Let that point be Z, and let 44 be called «.
Then A travels through A4, or x, in the time during
which B travels through BA, or x—a. But, since 4
goes m miles an hour, he travels the distance «x in

x . : . X—a
— hours. Again, B travels the distance x—a in =———
m n

hours. These times are the same, and, therefore,

X X —a ma
—_—— or x — —AH
m n m—n
na
and x—a = =ABH.
m—1n

The time which elapses before they meet is

X a

— (0}¢ ———g¢
m m—n
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Case second.—Suppose them now moving in the
same direction as before, but let B move faster than
A. They never will meet after they come to 4 and
B, since B is continually gaining upon 4, but they
must have met at some point before reaching 4 and
B. Let that point be A, and, as before, let AH —x.

e s o
Then since A4 travels through #A4 or x in the time
during which B travels through B, or x + a, in the
same manner as in the last case, we show that

X X a nma
—_ = + Or X= :AH
m ”n n—ram
na
and x+a= —=BH.
n—m
a

The time elapsedis . . .

n—m’

Case third.—If they are moving from D to C, and
if B moves faster than 4, the point A is the same as
in the last case, since, if having in the last case ar-
rived at 4 and B, they move back again at the same
rate, they will both arrive at the point Z together.
The answers in this case are therefore the same as in
the last.

Case fourth.—Similarly, if they are moving from D
to C, and 4 moves faster than B, the answers are the
same as in the first case, since this is a reverse of the
first case, as the third is of the second. We reserve
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for the present the case in which they move equally
fast, as another species of difficulty is involved which
has no connexion with the present subject. We shall
return to it hereafter.

Case jifth.—Suppose them now moving in contrary
directions, viz.: A4 towards 2 and B towards C.
Whether 4 moves faster or slower than B, they must
now meet somewhere between 4 and B; as before let
them meet in /A, and let AH—x.

;T - A

cl D
Then 4 moves through 4 A, or x, in the same time as
B moves through BH, or a—x. Therefore

X a—Xx
—_— = , Or
m n

ma

X = —
m-4n

na
m-+n
a
‘mtn

a—X =

The time elapsed is. .

Case sixth.—Let them be moving in contrary direc-
tions, but let 4 be moving towards C, and B towards
D. They will then have met somewhere between 4
and B, and as this is only the reverse of the last case,
just as the fourth is of the first, or the third of the
second, the answers are the same. We now exhibit
the results of these different cases in a table, stating



116 ON THE STUDY OF MATHEMATICS.

the circumstances of each case, and also whether the
time of meeting is before or after the instant which

finds them at 4 and B. .
Circumstances of the case. Phiere;;ii:: 1";_ o‘;alz“;]. o‘t{alls:fl. Time of meeting
§ Both move from Cto D, Between ma maiy e d fel s
| 4 moves faster than B. Band D. |m—n|m—n|m—n ;
{ Both move from Cto D, Between ma | ra et
A moves slower than B. AandC. n—m | n—wn | n—m *
% Both move from D to C, Between ma na el s atier
* {4 moves slower than B, AandC. |n—m{n—m|n—m 3
{ Both move from D to C, Between ma na 2l etore
* 4 moves faster than B. Band D. |m—n|m—n|m—n 3
{ A moves towards D and Between ma na .
5 1B towards & Aand B. mtn|mtn|m+tn :
% A moves towards C and Between ma rna a betére
B towards D. AandB. |m+n|m+n|m4n !
a a ' . . .
Now —— and are the same quantity written in

m—n n—7m
different forms, for #n—m is —(m—=n); and accord-

ing to the rules

. a a
n—m  m—n
Similarly
ma ma
n—m  m—n
and so on.

We see also, that in the first and second cases, which
differ in this, that 44 falls to the right in the first,

and to the left in the second, the forms of 44 are

. . L ma
different, there being % _in the first, and — ———
m—n m—n
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in the second. Again, in the same cases, in the first
of which the time of meeting is af?e7, and in the sec-
ond before the moment of being at 4 and B, we see a
difference of form in the value of that time; in the

first it is —a—, and in the second — , .

m—mn m—n = n—m
The same remarks apply to the third and fourth ex-
amples. Again, in the first and fifth cases, which only
differ in this, that B is moving towards D in the first,
and in the contrary direction towards C in the fifth,
the values of A/, and of the time, may be deduced
from the first by changing the form of #, and writing
-+ n, instead of —».  The expression for BH in the

first, if the form of » be likewise changed, becomes
"%_ which is the value of B in the fifth, but in

a d?:ﬁf;tezt form. But we observe that BA falls to the
left of B in the fifth, whereas it fell to the right in the
first. Again, in the first and sixth examples, which
differ in this that 4 moves towards D in the first and
towards C in the sixth, the value of A A in the sixth
may be deduced from that of 4/ in the first by

changing the form of 7, which change makes 4 A be-
—ma _—ma  ma
—m—n  —(m+n)Y  m-+tn
value of the time in the first, in the same manner, it

come . If we alter the

becomes a , Of — @ , which is of a different
—m—n m—+tn

form from that in the sixth; but it must also be ob-

served that the first is after and the other before the

moment when they are at 4 and B. In the fifth and

sixth examples which differ in this, that the direction
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in which both are going is changed, since in the fifth
they move towards one another, and in the sixth away
from one another, the values of 44 and BH in the
one may be deduced from those in the other by a
change of form, both in 7 and », which gives the
same values as before. But if = and » change their
forms in the expression for the time, the value in the

o o a a o 5
sixth case is , Of — . Also the time in
—m—n m-+t+n
Circtvxmstances of the case. ?hi;e;tt)ii(r’:t‘ [‘5_ 0‘;“}‘;;_ o‘{all;“;l_ Time of meeting
{ Both move from Cto D, Between ma na N tTee
* { 4 moves faster than B, Band D. |m—n|m—n|m—n '
{ Both move from Cto D, Between ma na a Yefore
A moves slower than B. A and C. n—m|n—min—m 5
{ Both move from D to C, Between ma na a atter
3 1 4 moves slower than B. A and C. n—m|n—m|n—m .
{ Both move from D to C, Between ma na SNy
4 1 4 moves faster than 3. Band D. |\m—n|m—n|m—n 2
{ A moves towards D and Between ma na G e
5 B towards C. A and B. mynimt+n|min ¥
6 { A moves towards C and Between mae na % befor
* U B towards D, AandB., |m4n|m+tn|m+n 3

(TABLE OF PAGE 116 REPEATED.)
the fifth case is after the moment at which they are
at 4 and B, and in the sixth case it is before. From
these comparisons we deduce the following general
conclusions:

1. If we take the first case as a standard, we may,
from the values which it gives, deduce those which
hold good in all the other cases. If a second case be

taken, and it is required to deduce answers to the
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second case from those of the first, this is done by
changing the sign of all those quantities whose direc-
tions are opposite in the second case to what they are
in the first, and if any answer should appear in a neg-

a .
, when 2 is less than =,
m—n

. . ma oa C .
which may be written thus — o, it is asign that

ative form, such as

the quantity which it represents is different in direc-
tion in the first and second cases. If it be a right
line measured from a given point in all the cases,
such as 4 H, it is a sign that 4 A falls on the left in
the second case, if it fell on the right in the first case,
and the converse. If it be the time elapsed between
the moment in which the couriers are at 4 and B and
their meeting, it is a sign that the moment of meeting
is before the other, in the second case, if it were after
it in the first, and the converse. We see, then, that
these six cases can be all contained in one if we apply
this rule, and it is indifferent which of the cases is
taken as the standard, provided the corresponding
alterations are made to determine answers to the rest.

This detail has been entered into in order that the
student may establish from his own experience the
general principle which will conclude this part of the
subject. Further illustration is contained in the fol-
lowing problem :

A workman receives « shillings a day for his labor
or a proportion of « shillings for any part of a day
which he works. His expenses are 4 shillings every
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day, whether he works or no, and after » days he
finds that he has gained ¢ shillings. How many days
did he work? Let & be that number of days, » being
either whole or fractional; then for his work he re-
ceives ax shillings, and during the 7 days his expen-
diture is & shillings, and since his gain is the differ-
ence between his receipts and expenditure:
ax—bm=c
bm+ ¢
a

or x —

Now suppose that he had worked so little as to lose ¢
shillings instead of gaining anything. The equation
from which « is derived is now

bm—ax=c,
which, when its form is changed, becomes

adx—bm——zq,

an equation which only differs from the former in hav-
ing — ¢ written instead of ¢. The solution of the equa-
tion 1s

_bm—c

= 2

a

which only differs from the former in having —¢ in-
stead of 4 ¢. It appears then that we may alter the
solution of a problem which proceeds upon the sup-
position of a gain into the solution of one which sup-
poses an equal loss, by changing the form of the ex-
pression which represents that gain; and also that if
the answer to a problem which we have solved upon
the supposition of a gain should happen to be nega-
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tive, suppose it —¢, we should have proceeded upon
the supposition that there is a loss and should in that
case have found a loss, c.  When such principles as
these have been established, we have no occasion to
correct an erroneous solution by recommencing the
whole process, but we may, by means of the form of
the answer, set the matter right at the end. The
principle is, that a negative solution indicates that
the nature of the answer is the very reverse of that
which it was supposed to be in the solution; for ex-
ample, if the solution supposes a line measured in
feet in one direction, a negative answer, such as —¢,
indicates that ¢ feet must be measured in the opposite
direction; if the answer was thought to be a number
of days affer a certain epoch, the solution shows that
it is ¢ days before that epoch ; if we supposed that 4
was to receive a certain number of pounds, it denotes
that he is to pay ¢ pounds, and so on. In deducing
this principle we have not made any supposition as
to what — ¢ is; we have not asserted that it indicates
the subtraction of ¢ from 0; we have derived the re-
sult from observation only, which taught us first to
deduce rules for making that alteration in the result
which arises from altering + ¢ into —¢ at the com-
mencement ; and secondly, how to make the solution
of one case of a problem serve to determine those of
all the others. By observation then the student must
acquire his conviction of the truth of these rules, re-
serving all metaphysical discussion upon such quanty
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ties as 4 ¢ and —c to a later stage, when he will be
better prepared to understand the difficulties of the
subject. 'We now proceed to another class of difficul-
ties, which are generally, if possible, as much miscon-
ceived by the beginner as the use of the negative sign.

. a :
Take any fraction 7 Suppose its numerator to

remain the same, but its denominator to decrease, by

which means the fraction itself is increased. For ex-

5
ample, 5 is greater than —25—0 or the twelfth part of 5

; ! : =2 21 .
is greater than its twentieth part. Similarly, 4—f 1s
§

21 Sl
greater than 2%, etc. If, then, 4 be diminished more
5 a

% becomes greater and greater,

and there is no limit to its possible increase. To show

and more, the fraction

; g a
this, suppose that 4 is a part of @, or that 5= —. Then
a a . : o v

5 or T ism Now since 4 may diminish so as to be
equal to any part of @, however small, that is, so as

a e
to make m any number, however great, = which 1is
=—m may be any number however great. This dimi-
. : a
nution of 4, and the consequent increase of 7 may be

carried on to any extent, which we may state in these
words: As the quantity 4 becomes nearer and nearer
to 0, the fraction %— increases, and in the interval in
which 2 passes from its first magnitude to 0, the frac-
tion % passes from its first value through every pos-
sible greater number. Now, suppose that the solution

. NN
of a problem in its most general form is 5 but that
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in one particular case of that problem 4is =0. We
have then instead of a solution %, a symbol to which

we have not hitherto given a meaning.

To take an instance : return to the problem of the
two couriers, and suppose that they move in the same
direction from C to D (Case first) at the same rate, or

that m=»We find that 4H— -~ ma

ma
il =
result we find that it becomes =

or
m—mn n—mn

On looking at the equation which produced this
x—a

——; Of x=x—a,
which is impossible. On looking at the manner in
which this equation was formed, we find that it was
made on the supposition that 4 and 5 are together at
some point, which in this case is also impossible, since
if they move at the same rate, the same distance which
separated them at one moment will separate them at
any other, and they will never be together, nor will
they ever have been together on the other side of 4.

The conclusion to be drawn is, that such an equation

a. .. o c
as ¥ = indicates that the supposition from which «

was deduced can never hold good. Nevertheless in
the common language of algebra it is said that they
meet at an infinite distance, and that%—is infinite.
This phrase is one which in its literal meaning is an
absurdity, since there is no such thing as an infinite
number, that is a number which is greater than any
other, because the mind can set no bounds to the
magnitude of the numbers which it can conceive, and



124 ON THE STUDY OF MATHEMATICS.

whatever number it can .imagine, however great, it
can imagine the next to it. - But as the use of the
phrase is very general, the only method is to attach a
meaning which shall not involve absurdity or con-
fusion of ideas. The phrase used is this: When

7_‘_27 = g and is infinitely great. The student

should always recollect that this is an abbreviation of

=5

the following sentence. ¢¢The fraction becomes

greater and greater as ¢ approaches more and more
near to 4; and if ¢, setting out from a certain value,
should change gradually until it becomes equal to 4,

the fraction

a 3 :
s setting out also from a certain value,

"__—
will attain any magnitude however great, before ¢ be-

comes equal to 4.” That is, before a fraction can as-

S . : et
sume the form ok it must increase without limit. The

symbol o is used to denote such a fraction, or in gen-
eral any quantity which increases without limit. The
following equation will tend to elucidate the use of

this symbol. In the problem of the two couriers, the
. : ma X x—a
equation which gave the result —— was — = , or
0 m m

x =& —a, which is evidently impossible. Neverthe-

less, the larger «x is taken the more near is this equa-
tion to the truth, as may be prov<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>