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LECTURE I

I. We shall begin with quite elementary and

general notions.

First, let us recall the properties of a sum

This operation is both associative and com-

mutative, that is,

(a+ l) + c = tt-r(i + ?)

and
# + i = I + tf .

Now we can pass from a sum to an integral

by a well-known limiting process. For the

sake of simplicity, we shall make use of the

definition of Riemann: Given a function /(#)

which is defined over an interval ab, we sub-

divide the interval ab into n parts hi, h, Jt B ,

h ...... hn . Corresponding to every in-

terval h
l we then take some value f t of /(#)

lying between the upper and lower limits of

f(cc] onh,, and we form the sum
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Now suppose we allow hi9 hz, &3 , h n to

become indefinitely small. Then if a unique

limit is approached by the sum regardless of

the way in which the subdivision of ab is made,

we have

Urn Si/j 7*
z
=

Necessary and sufficient conditions for the

existence of this limit are well known. In

particular, if the function /(#) is continuous

over the interval ab or has at most a finite

number of discontinuities, the limit and hence

also the integral exists.

2. Now let us form the product

This operation is associative and commutative,

that is to say,

(aV) c = a (be)

and

ab = la .

It is not worth our while to consider the oper-

ation which could be obtained from a product

by a limiting process such as the one employed
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in defining an integral. We should be led to

logarithmic integration.

3. However, let us consider a limiting pro-

cess which leads us to something more than

these elementary operations.

Let us choose a set of numbers m isJ where

i, s = 1, 2, . . g ,
which may be written in

an array

mn m12 .... m
lg

m2l m22 .... m$g

m
ffl
m

g2
.... mgg

and numbers n is ,
where i

9
$= 1

? 2, . . g ,

that is,

nLl n12 . . . . n
lg

n
gl

n
g2
.... n

ffg
.

We then consider the operation

(1) XT, ^ w^ r

which we shall call composition of the second

type. This operation is associative, for if we
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also introduce a set of numbers jp l89 where

i, s=I, 2 . .
(j ?

and write the sum

I I

the expression which we thus obtain is equiv-

alent to either of the forms

which proves that the associative law is sat-

isfied.

Making use of the notation

we shall have

which ma}
r be written without the parenthesis,

thus,

K n
> p\s -

The commutative law will in general not

be satisfied. When it is, the quantities under

consideration are called permutable, and we
have
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(m, n) Lr
=

(n, m) ir
.

We can at once give an example involving

permutable quantities. All that is necessary

is to consider

(m, m) ir which maj
r be written (m

2

) lr

(m, m, m) ir which may be written (m*) tl
.

and so on. And it is clear that

(m
j

\ mk
) ir
= (m

k
,
mh

) ir ,

since the associative law is satisfied.

4. We shall consider also another operation

similar to the last, namely
s I

(2) 27l
m lh % s

H-l

which will be called composition of the first

type. The sum (I) previously considered re-

duces to this one if we suppose that the num-

bers are zero unless the second subscript is

greater than the first. In other words, we

have in this case

m^ m 1B
. . . m

lg

000 ... m
g000 . . . .
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Let us represent the sum (2) by

O ? W] ts

This expression vanishes if s is less than or

equal to i + 1. Moreover, if we write

[[m, n] jp] lg

we shall have

, , ia

which vanishes if s is less than or equal to

2 + 2, and so on.

In general, it is not true that

[m,n] l8
=

[n,i] t8

but when this condition is satisfied, the two

quantities are called permutable. To distin-

guish this sort of pennutability from that

which we defined in section 3, we shall say that

the new and the old are of types one and two

respectively. In other words, if

ff 9

(3) 2^ m th nhg
= 2* nlh mhg

we have pennutability of the second type,

whereas if

5-1 Sl
%h mih nhs

= 2^ nih mhs
*+l i-rl
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we have permutability of the first type.

Clearly, if we put

[^<U = [wS<| w ,

we at once obtain an example of permutability

of the first type like the one mentioned in the

last section, Nevertheless, we shall give an-

other example which is of interest. Let us

suppose that nlh
= 1. Then the condition for

permutability becomes

,s i s-1

2h M th =2fc M hs .

1+1 i-rl

Putting s = i + 2, we have

1}l
i, i+l

^
^i+l,i+2 ?

and putting 5 = 2 + 8, we have

?%, H-l + MI, i+2
=

^i+l, +3 + m
i+2, i+3 9

whence

W^,i+2
=

W+l, l+8

and so on. Owing to the above, we have

m rjr+g
= mltl+g

for all values of r, s, and g. From this it fol-

lows that the matrix of the m*s is of the follow-

ing type :
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#j a> ^3 ... tf^

a
L

//
2

. . . a
g
_9

U ^i . . . tt%

0000...^
... .

The law for this matrix may be expressed by

m is wis i )

which puts into evidence the fact that the val-

ue of m, depends upon the difference between

the two subscripts s and i.

5. Now what do we find when we pass to

the limit by a process analogous to the one

employed in the integral calculus in going
from a sum to an integral? We there passed
from a set of quantities /i, f-2 , /s, , f n

with single subscripts to a function f(oo] of

one independent variable oc3 the variable taking
the place of the subscripts. Here, we have in-

stead a set of quantities m l8
with double sub-

scripts; hence, we must replace them by a

function of two variables
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where the two variables take the place of the

double subscripts. Moreover, we also have

another set of quantities n s
which must be re-

placed by a different function of two variables

(j>($,y). Finally, 27l
m%h nhs must be replaced by

We thus obtain two operations :

Composition of the first type:

Composition of the second type:

The condition for permutability of the first

type is

, y) d

for permutability of the second type,

// (x, f) * (g, jj) d =/V (*, I ) /& y) *t .

a a

The associative property is always satisfied.

6. Let us begin by examining peraiuta-
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bility of the first type. The most important
facts are here summarized :

1. All of the functions which can be ob-

tained by the composition of permutable func-

tions are permutable with one another and

also with the original functions.

2. All of the functions which can be ob-

tained by the addition or the subtraction of

permutable functions are permutable with one

another and with the original functions.

'Now, let us see how the following problem

may be solved: To determine all the func-

tions which are permutable with unity.

We can readily solve this problem if we re-

call a question which has already been

answered. For before passing to the limit, we
saw that if the functions m ls

were permutable
with unity, the condition

MIS
= m,^

was satisfied. Now since, in the limit, the sub-

scripts are replaced by the variables x and y9

we are led to infer that

This we can prove immediately. For if
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f"f(z,

it must follow that

.

3 y % x J l ' JJ

Hence $ and / are of the forms $>(y 00} and

f(y OB) respectively.

Moreover, all of the functions of the type

f(y oo) are permutable with one another; for

as can be verified at once. The functions of

type f(y oo) form a group of permutable

functions which is of especial interest. We
have called it the group of closed cycle.* How-

ever, we shall not go into an examination of

it here.

7. We have used several different notations

representing the operation of composition.

The simplest scheme where no confusion with

multiplication is liable to arise, is merely to

write

f<f> or

*Leons sur les equations integrates et integro-differentielles.

Paris: Gauthier-Vfflars. 1913. P. 150.
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to represent the resultant of the composition

of two function / and
<f>

. But in a case where

confusion might arise, we may place a small

star over the letters, thus

f'4--

We may also put the letters in square brackets

[f,<R,

just as in the above we wrote [M ? n\ Jik
to rep-

resent the composition of the quantities m th

and m lk .

To indicate the composition of / with itself,

the composition of the resultant thus obtained

with f, and so on, we shall write

* *

f'2 f8J J J ?

respectively, and if no confusion with multi-

plication is liable to arise, we may even omit

the small stars and write

f2 fSJ ? J ?

8. The notation in certain cases demands

particular examination. Thus, to indicate the

product of a constant a by f, we write af; and

if 6 is also a constant and
<f>

a function which is
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permutable with /, then b
(f>

is permutable with

af and the composition of the two gives us

* *

a 6 f <f>
.

Moreover, if we have two polynomials made

up of permutable functions with constant co-

efficients, these polynomials will also be pre-

mutabie with one another, and to effect their

composition all that is necessary is to apply
the same rule which is used when polynomials
are multiplied together.

But if a and 5 are constants, then a + /

and & +
<j>

will not in general be permutable
with one another. Nevertheless, we shall ex-

tend the definition so as to have in this case

(a+f) (b+ )
= ab +

a<f>

9. Before going further, let us consider

what takes place in the case of composition

of the second type.

All that we have said above concerning per-

mutability of the first type can be established

for permutability of the second type barring

the remarks on permutability with unity.

With this exception, all of the properties just

mentioned may be extended to this case at once.
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10. Let us pass in review some of the most

interesting properties which can be derived

from the operation of composition. We
shall return once more to the finite case and

consider the operation of composition for the

numbers m is . We saw above that if we com-

posed the mj
s with the ris, the resultant thus

obtained with the p
j

s and so on, then after

s--I compositions, the resultant would be zero.

In a like manner, all of the symbolic powers
of mi8 beginning with [m*"*"

+1
] te have a value

zero.

Having seen this, let us consider any ana-

lytic function

00

2 A -7l

n ^n*

which converges within a certain circle, and

let us write

2, An [m^ls *.

This new expression is evidently an integral

rational function of #, that is, a polynomial.

Moreover, this result may be generalized.

Consider the analytic function
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of more than one variable,, and write

We again obtain a polynomial.

11. Now, what does the above theorem

become when we pass by a limiting process to

the composition of functions? This we pro-

ceed to investigate.

Consider

We shall prove that if f (x, y) is finite, this

expression is always an entire function of z,

whatever may be the absolute value of f (x, y )
.

To prove this theorem, we notice that

\A \<M
\

A
n\<-Jn

where M is some finite quantity and where R
is less than the radius of convergence of the

series. Moreover, let /x be a quantity which

is larger than the absolute value of /. Then

we shall have
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H~& d =
t#J

\ 3 J

* *

and so on, whence

Li
n

t xY~l M

which proves that the series is convergent for

all values of 2 and is thus an entire function

of z.

This theorem may also be generalized. Let

us consider the series

which represents the expansion of a function

F (zl9 2, 83,. .%e )
about a point, and which

converges If the absolute values of z^ z2j zBj

z e do not exceed certain limits. Then

the series

-n ^ i }i, fi si fF = 2 ij . . . 2 t
e
A i i ff- f^ . . . fe

l
e sf . . . 0je

o o
e

Is always an entire function of g^ zz, %2j . . .zn .
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The proof is made in the previous case. Thus,

if fij /2j /3> / e are each less than p, in abso-

lute value, then

1/1 /e
l t ...

and hence the theorem may be verified im-

mediately. We may also demonstrate another

property besides the one just shown. Indeed,

we have up to the present regarded the func-

tion F (z^. . . .ze) x, y] as a function of zl9 z2y

s3 , 4 , .... z e , but it is also a function of oo

and y. Regarded as a function of these two

variables, the function is permutable with the

functions /x ____ f e . This may be seen at

once; for owing to the uniform convergence
of the series, the operation of composition

may be performed term by term, and since

each term of the series is permutable with /i,

/2> /a? . . . . fe 5 so also must be the sum.

To sum up, we have the following theorem:

... ., ... e
...

is the expansion of an analytic function about

a point, then
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where fi, f2 fsj-.-.fe are permutable func-

tions^ is an entire function of Zi, z^ z35 . . . .ze?

tf/zd as a function of x 0?zd y is permutable

with the functions fi? f2 , fs fe.

Now If in F (z^ z2j ---- ze
\

oc, y] we put

Zi
=

z^
= z = .... ze

=
1, we obtain a series

which Is convergent for all values of the fs.

12. The theorems which we have been de-

riving above suggest a method for investigat-

ing to a considerable extent the properties of

permutable functions and for carrying out the

operations of composition.

Thus, let us consider any analytic expression

ffr...*.)

which can be expanded about the point z-i

%2
=

ZB
=

4
nr _ _ g e

=: o in powers of %19

z2j ZB, ---- ze . If we replace z^ z2j z& , ---- z e

In the series by fl9 /2 , /8 , ---- f e respectively,

and write the operation of composition wher-

ever we previously had multiplication, we shall
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always obtain a series which converges for all

values of fl9 /2 , /3 , .... fe9 and which repre-

sents a function permutable with /i, /2 , f$,....

fe . We may represent it by

Thus, every algebraic expression takes on a

new meaning for the operation of composition.

For example,

1+0
is a series which converges within the unit cir-

cle. But if we write

we obtain a series which converges for all

values of / and which is permutable with /.

Consequently, a meaning has been ascribed to

the expression on the left hand side of the

equation.

Moreover, if we take two expressions

and
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- * % , >.- ,-y~-r/"-...

then to make the composition of the two left-

hand members, It Is only necessary to apply

the rules for finding their algebraic product

and we shall have

Hence, all the rules of ordinary algebra re-

main valid when we pass from the field of mul-

tiplication to the field of composition.

Some of the consequences which can be de-

rived from this fact will be seen shortly.

13. Now let us see what takes place for

the second type of composition.

Let

(4) jFte)
=_M_

be the ratio of two entire functions
<f> (z) and

1 4- $ (z) which are such that <(0) =
= 0.

Then we shall have an expansion
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F(s) =AlS + A2 2* + AS # + . . .

which converges in general within a certain

circle having the point z = as center.

ISTow let us consider the expression

FL*(Z)
= A h* % + A2 (m

2

) z ,
+ . . .

We shall prove that this new series is the quo-

tient of two entire functions.

14. Let us first write

<(*)
= Si* + R2 + ...

and determine a quantity

h,(*)=S l m l8 * + *(?)** + ...

We say that <
is (3) is an entire function of z.

For let ^ be greater in absolute value than tn ls

We then have (3)

JMoreover,

\B, \tiz + \B, \p* ff
# + |z?8 \(f/^+ . . .

converges for all values of 2, and the theorem

is proved.

For the same reason, if

$(e)
=

Ci s + Cs + .. .

then the series

i/fu (0)
= d m is z + Ct(m*) ts z

2 + . . .

is an entire function.



54 THEORY OF PERMUTABLE FUNCTIONS

Bearing these facts in mind, let us consider

the system of algebraic linear equations

Xt8+ I ^ Xa
=

j* d, *= 1, 2, 9) -

1

If we replace the unknowns Xls by Fts we
can verify without trouble that these equa-
tions are identically satisfied. But if we solve

for the unknowns Xis in the above system, the

solution will be expressed as the quotients

of rational entire functions of
\ftis

and
<j>is and

hence the quantities X19 are quotients of entire

functions of z.

It is clear that the determinant which con-

stitutes the denominator of these quotients

cannot vanish identically, and hence the theo-

rem is proved.

It is not difficult to generalize this. Thus

instead of the quotient (4), let us write

where <^ and
\j/

are entire functions of the

variables z^ z2j z^ ze which vanish for

Zl
= 32

=
2s =...** = 0. If

X7/^ \ "O v* A
<f.

JL \ iCi . . . JC g ) <^r ... ^/ XI * ^i.B.^fi

is the expansion of F about the point for which
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1 ^2
==

3

~
.... = z<i Q, and if we write

P (?. y }=^ ^A (m ll w l* r/
l
e\ ? il ?'l

e
is\*l ? %e) ^.,.Z,ri

fl> t%e
\m it ...(/ )ai...Ze

e

where m , n , .... q are permutable, then

the function F (zl9 z2 , ^ . . . . % e
\

&9 y) will be

the quotient of two entire functions of z^ z&

%$j .... %e .

To make the proof in this case, it is only

necessary to repeat the argument given above.

We may add that F^ is permutable with miS7

Wts,. ?

15. Let us now pass to the limit, that is,

let us consider permutable functions of the

second type*. All of the theorems remain

valid. In other words, we have the theorem

that

F&, ...*
| x,y)

= 2 . . . 24
lt . . ^tf . . ./>^ . . . *,S

where f^ f2, fs? ---- fe are permutable func-

tions of the second type, is the quotient of two

entire functions. Also,

* To indicate composition of the second type, we shall make

use of a double star thus:
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is a function which is permutable with /i, /2,

1z, ..-./,.

We shall study some applications of these

fundamental theorems in the second lecture.
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I. We shall begin by classifying integral

equations into several categories. First, let

us examine those which are linear. The sim-

plest ones which we run across are the

following :

(1)

known as Volterras equation of the second

kind., and

(!') / (y) +/o /(*) F(x,y] dx = i(y),

Fredholm's equation of the second kind.

We shall also consider certain other kinds fur-

ther on.

Let us look at equation (
1

)
. If we multi-

ply both sides by <& (y>z) and integrate with

respect to y between the limits and , we

obtain

,e} dy
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If now the function * be so chosen that

(A)
f^Fiz.tf

it will follow that

|>, s) f\y } dy l(*, *) A?)

- *

Far. s) fix) dx = J^ <f>(y) Q(y, z) dy

which is reducible by (I) to

, z) dy,

so that the difficulty has been narrowed down

to the solution of (A). In the symbols for

composition of the first kind, this equation

ma be written as follows:

(2) $0^) + F(x.y) + J>(x,y)
=

.

If we apply a similar argument to equation

(!') we find that the solution will be given in

the form

where
** **

2. Let us first see how equation (2) may
be solved. If we write
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we shall obtain

__

the solution being valid if
|

z < I.

But suppose we write

Then, in this case, we have an expansion which

converges for all values of F and which satis-

fies equation (2) by what we have proved.

Hence we shall have

and the integral equation (2) is solved.

If we replace F (oc, y] by uF (at, y) in equa-
tion (2) we obtain

<(#, y] + u F(x, u] +

which series is always an entire function of u.

3. Turning to equation (2
X

), let us replace

F by uF as in the previous case. We shall

then have



32 THEORY OF PERMUTABLE FUNCTIONS

3> - u F - u F =
.

and as a consequence of the last theorem of

the first lecture, we have that 3> can be ex-

pressed as the quotient of two entire functions

of u.

4. As soon as we have stated the fun-

damental problems in this form, it is easy to

see that they are only special cases of other

classes of problems of a much more general

nature.

Indeed, let us consider any analytic func-

tion F(ZI, zz> 3 , . . . . zn ) whatsoever and write

the equation

(3) JK^^-.-.^O.
Furthermore, let us suppose that this equation

is satisfied by Zi
= z2

=
3
=

. . . .
= zn 0, and

let us regard z n as a function dependent upon
Si, 2? 3? 2n-i- If the point zI

= %2
= ^3

=
. . . .

= z n
= is not a critical point, we may de-

velop zn as a power series in zi9 %2, - - %n-i and

the expansion will be convergent within some

region. We shall thus have

. . .

== V '
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Now suppose we replace zi9 z2 , . . . . z n in equa-
tion (3) by the permutable functions /i, f2) . .

.... f n respectively and regard the operations

as compositions of the first type. Then, in

terms of our notation, we shall have

The equation which we have just found will

no longer be algebraic or transcendental but

will be an integral equation, since the oper-

ation of composition is an operation of integra-

tion. Nor will the equation in general be

linear as was equation (2), but of any degree

whatsoever. Nevertheless, if we regard f n as

the unknown function, we shall be able to find

its solution by the same process which we used

in solving equation (8). Indeed, it is only

necessary to replace zi9 s2? 23? .... % n in the

series (4) by f^ f^ fz , ---- fn respectively and

to treat the operations as operations of com-

position. In this manner, we find

(5) /n = SS...Sl
l ... v^/l*.../,,V.

An interesting fact to be noticed is that

whereas the expansion (4) is in general con-
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vergent over a limited region only, the solution

(5) Is valid for all values of f^ /2, . . . . fn-i>

Evidently problems of integration are of a

more complicated nature than algebraic or

transcendental problems, yet we have the sur-

prising and interesting result that the solu-

tions of the former are much more simple in

the sense that the regions over which they are

valid is infinite.

We may also replace z^ z.2 , ^ - % n-i

In equation (8) by zj, Zsf29 .... 3 w_i/ n_i res-

pectively and write the equation

^(*l/l, *8/8, ' - - *n-l /-!, fn)
=

.

Then the solution will be

f = V V J -.11 %n-\ A ynlJn Z . . , 2, A.
^ _ ^^^ ^ . . . *_! fi ... /_!

which is of the form

//ifel ? ---*n-lK^) -

The series will be an entire function of z^ %2j

z^ .... zn^i , and with respect to os and yy

f n (%ij Z& 28,. . . .s n !
j
#, 2/) will be permutable

with the functions /15 /2 , /3? .... /n_ x .

5. We might also start with a system of

equations, as
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(6)

which are satisfied when ^ = ^ = z2 = u 2
=

.... = s nt
= 0. Now let us suppose that we

can define

(7)

Up = 2 2... ..
z
l * * l n

as implicit functions of *15 ^2? ^ ____ a n which
have no critical point at z = z2

= ____ %n = o.

Then if we write the integral equations

where /Xj /2^ /3j ---- /n are permutable func-

tions, the solution of the system will be
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and the functions thus obtained will be entire

functions of zly z2 , r3s .... z tl
for all values of

/ij /2 /c> /* Moreover, these solutions

will be pennutable with the given functions,

All of the equations which we have been con-

sidering involve only integrals for which the

limits of integration are x and y; that is to

say, they are equations with variable limits.

Let us see what the situation is when the limits

are constant. Returning to the set of equa-

tions (6)5 we shall suppose that the solutions

(7) are quotients of entire functions. Then

let us examine the integral equations

* * ** **

1
-

=

jy.?i /;, . . . snfn , <?i,
. . . $p)

= o

where fl9 /25 /3 , f n are permutable func-

tions of the second type. In these equations

the limits of integration are constant, since we
are concerned with composition of the second

type.
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If now we put

the functions thus obtained

1) satisfy the preceding system of equa-

tions,,

2) are quotients of entire functions, and

3) have permutability of the second type
with the original functions /15 /2 , .... /n ,

Thus we see that linear equations are only

a very special type of integral equations and

that we can pass from their study to that of a

more general class.

6. Let us prove certain important proper-

ties about functions which may be found by
a process like the one above outlined. More

precisely, let us show what certain algebraic

properties become when we pass from multi-

plication to composition. We shall begin by

giving an example:
We consider the exponential function
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2 ~3
z _ 1 i

,

A
i

"
_L

1 rf-r^fTg-fi
...

Associated with It is an addition theorem

e^^ = r- ^ ^

Suppose we put

f(s)
= e*-l .

We then have

(8) /(*+ *i) =/(^/(^J +/(^) +/(^i) .

Keeping the above in mind, let us write the

function

We can see at once what the relation (8)

becomes. Indeed, we have only to replace

multiplication by composition. We shall

therefore have

that is

In other words, the theorem of algebraic ad-
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dition for the exponential function becomes for

this new function a theorem of integral addi-

tion as we have called it.*

7. To go from the particular case to the

general involves no difficulty. Consequently,

we may state the theorem: To every theorem

of algebraic addition, there corresponds a the-

orem of integral addition,

Thus, for example,, if we consider elliptic

functions, we can pass from these to entire

functions by the process of II of the

preceding lecture. To the addition theorems

for elliptic functions, there correspond new

addition theorems for new functions. In a like

manner, let us consider the cr function of

Weierstrass. Suppose we examine for a mo-

ment the expansion of this function and replace

u in the expression by uf(x, y] where the

powers of / represent operations of composi-

tion. The three-term equation for <r leads us

to a three-term equation for the new function

* Evans has studied In a systematic manner an Algebra of

permutable functions. (Memorie Lincei, S.V. Vol. VIII,

1911; also Rendiconti del Circolo di Palermo, Vol. XXXIV,
1912.)
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which is of the integral type since we have

replaced products by compositions.

8. What we have said about compositions
of the first type may be repeated for composi-
tions of the second. Returning once more to

the example involving the exponential func-

tion, let us put

This function is also an entire function and

we shall have

W(s
-

gl
;
x, y)

= W(z
\ x, y)

-
W(z,

\
z; y)

+ fr(*|*,y)fFk| ar,y),
or in other words,

+Sa
W(g \x,S) W(*\e,y)d.

It is hardly necessary to prove that the above

is true in the general case.

9. A similar theorem may also be stated

for the case of more than one variable ; hence,

all the theorems about AbeHan functions may
be carried over to the domain of integration by
a process like the one which we have indicated.
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10. Let us now return to linear Integral

equations. As indicated, equations (1) and

(!') are of the second kind. Those of the first

kind of the Volterra and Fredliolm types re-

spectively may be written

(9)

(9')

Leaving out of consideration equations (9
7

)

which can only be attacked by methods of a

different sort, let us consider equations (9).

The latter may be reduced to equations of the

second kind. For we can differentiate and

obtain

If F (y, y} does not vanish, we can divide

by F(y,y) and get an equation of the second

kind.

If F (y, y} vanishes identically, the last

equation is still of the first kind. But if

is not zero, then by a second differentiation, we
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shall get an equation of the second kind, and

so on.

If F(jc,y) is such that F(x,os) $ 0, we shall

call it a function of the first order. If F (x, #)

= and ( )^0 , we shall call it a function of
xsy'W

the second order, and so on. Hence, if the

order of the function F (xf y) in equation (9)

is determinate, the equation can always be re-

duced to one of the second kind by a finite

number of differentiations, and hence can be

solved by the method which we have indicated.

But the order of F (x, y) may not be deter-

minate. A case in point is where F (a?, OB) is in

general different from zero but vanishes for

certain values of x. Then the nature of the

problem changes, and to solve it, new methods

must be used. To develope these would lead

us too far afield. The solution of this question

has been the goal of numerous enquiries. We
were the first to take up the matter and since

then Lalesco and others have studied it.*

Instead of considering equation (9) which

*See: Lalesco, Introduction d la theorw des equations inte-

grates. Paris: Hermann, 1913. Troisi&me partie I.
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Is of the first kind, we may consider the

equation

where we can regard F and
*|/

as the known
functions and <I> as unknown. For we have

only to suppose that x is a constant, when the

equation reduces at once to equation (9) .

If we take the equation of the first kind In

this form, we may also write It

that is to say, the problem Is of the following

nature: Given a function
\jt

which Is the re-

sultant of the composition of F and 4>, and

given one of the factors F of the composition,

to find the other factor 4>. If for the moment
we were to replace the operation of composi-
tion by that of multiplication, the problem.

would reduce to that of finding the inverse

operation; that is, we are dealing with a

problem which is analogous to the problem of

division.

Now it is necessary to observe that certain

conditions must be satisfied if the problem is
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to have finite solutions. The order of $ must

be greater than the order of F by at least

unity. For when oc=y, $ vanishes to a higher

order than F. If F Is of order m and ^ is of

order n, then $ must be of order m-n. More-

over, two cases may arise according as the

functions F and \b are or are not pennutable
with one another. Clearly In the latter case,

<E> cannot be pennutable with F, otherwise the

resultant of the composition of the two would

be permutable with either. But if F and $
are pennutable, will * be permutable with JF

and i/f'?

We shall prove that this property is actually

realized. In fact, we have

F^F =
ijf F, F F =

Hence

and since this integral equation has but one

solution,

<$>F= F
,

and the theorem Is proved.

II. Furthermore, when the problem of



LECTURE II 45

linear Integral equations of the first kind has

been put in the form

F <&==$

other problems suggest themselves at once.

Thus, if F, <i> and ^ are known functions, we

may set the problem of determining a quantity

such that

(10) PX+X3> = $;

or again the following problem: given the

known quantities J?lf F2j F^ F4 ,
and

*|/
to

calculate a quantity $ such that

(11) F, <l> + * F2 -f ^3 * F4
=

\ff
.

The above are new equations which up to the

present have never been studied and with which

we shall now concern ourselves.

First, let us consider equation (10) which

we can write

X,

Let us put
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Then we shall have

where we have put

c^ c^
F

l
=

, 3>2
=

.
1 c .r

- ^
r //

From the first equation, we derive

and from the second

cy

where / and ^ are two kno\\Ta functions which

one can obtain from F and <I> and where

is also a known function. Then by subtracting

the second equation from the first, we have at

once
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(.y>y) ^y F\x.'x) dx

and Integration by parts gives

-

Thus we are led to the following result : To
solve the Integral equation (10) we must solve

the problem which presents itself in the shape

of the last equation. This problem Is nothing

more than the integration of an Integra-differ-

ential equation. Indeed, equation (12) is both

of the type of an integral equation and of a

differential equation.

The above problem admits of a solution,

but we shall not go into details of the solu-

tion. The interesting point to notice Is that

integro-differential equations arise in a great
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variety of problems. We have examined these

equations in a number of forms and have made

a particular study of the Integra-differential

equations of the second order and of the ellip-

tic or hyperbolic types which arise In connec-

tion with certain problems of mathematical

physics.*

The problem we were considering is of a

different type. It Is of the first order, and

since two dependent variables appear, it cor-

responds to problems Involving partial deriva-

tives, The case of equation (II) may be

handled in a similar manner.

12. We wish to demonstrate certain inter-

esting results which are closely connected

with the problems we have been discussing.

Let us go back to equation (9). In certain

cases, this equation has a finite number of solu-

tions, while in others the number of solutions

Is infinite and the solutions Involve an arbitrary

function.

To see this, we need only to consider the

equation

*
Lemons sur les fonctions de lignes. Paris: GantMer.Villars.

1913.
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and to determine under what conditions x =
is the only solution and under what conditions

solutions other than exist.

To simplify matters, we shall assume that

the functions F and <!> are of the first order

and shall determine under what circumstances

the equation has a solution of the first order.

Suppose we write our equation in the form

r>(*,|)x&;/)#+ rJ X J X

Then by differentiation with respect to y, we

have

^

+fx x(*> **&*)# = Q

and when as = y,

which gives us a necessary condition.

Moreover, by suitable transformations of a

simple sort, we are always led to the case where

(12) F(x, x)
= -

*(*, *)
= 1

,

(120 ^fos)^^,^ ,

where the subscripts 1 and 2 denote partial
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differentiation -with respect to x and y res-

pectively; that is

For we can first write

Then if we take

we clearly see that the equation (B) becomes

where

Hence we can suppose at the outset that con-

ditions (12) are satisfied.

The above having been established, equation
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(B) may be written

If we put

we shall have

But we can make use of the arbitrariness of a

and /3 to choose

F\(x, x)
= Ff

%(x, x)
=

Qf&x, x]
=

^2(37, x)
=

,

which shows that we can always assume that

condition (I2
7

)
is satisfied.

Now let us write

^= - pj
/ a;

We shall have
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whence we derive

? ^ . A . / /-^ ^
X'-''. U)

= -
/,<-*: f)-,

where

and therefore (see Lecture II, 1)

}\(z, a:)
=

<^2(,r, .*)
=

.

Hence, integrating by parts, we have

where

and therefore



LECTURE II 53

This integro-differential equation may be in-

tegrated.

If we write

we have

(16) $(x,y)
=

6(v)
-

where is an arbitrary function and

%-ry
v = ~~ 9

The solution of the equation (16) is obtained

by the method of successive approximations.

Applications of the above will be brought
out in the next lecture.
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Ill

I. We shall begin with some applications

of the work developed in the last lecture.

We have solved the problem of finding the

function x (# ?/) which satisfies the equation

JV(s, |) x&#)& +/*Xto ^ * (*'^ /7*=

on the hypothesis that F and <!>' are of the first

order. Now suppose we put

(*,!l)
=

-F(x,i/) .

Then the condition

<(#, #) + jFfo x)
=

is clearly satisfied, and hence we shall be able

to calculate all of the functions x (^ y) which

satisfy the relation

in other words, all of the functions which

have permutability of type one with a given
function. However, in the last lecture (12)
this problem was solved only in the special case

where the given function is of the first order.

If the function is of higher order, the method

breaks down.
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We have seen that the problem may be re-

duced to the solution of an integro-differential

equation of the first order. If the given func-

tion is of the second order, the integro-differ-

ential equation which we must solve is of the

second order and admits of a solution. An

arbitrary function always enters in.

As we increase the order of the given func-

tion, the problem becomes more and more com-

plicated, hence we shall not go into details on

this question as we should be led too far afield.

In the general case where the functions are

analytic the question has been answered by
M. Peres.*

2. We wish to present some of the prop-

erties of permutable functions. The very
method which enables us to calculate all of the

functions that are permutable with a given

function also leads us to the result that if

F and $ are permutable and if P is of the

first order, then we must have

<(# X)
,

* = const.
F(x. x)

We shall give a rigorous proof of this fact.

* RendlcontI del Lincei. 1913-14.
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We write

Differentiating with respect to y, we have

=
$(ar,^) F(y,y) + *(*, I) ^(1,^) ^ ,

and differentiating this last expression with

respect to x,

-
*(a;, x] Ffc, y~] +

Suppose we put x = y. We shall then have

=
*i(^, y) F(y,

that is

Moreover, if we put

F(y,y}=f(i/},
we have
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and consequently

whence the theorem.

3. It is a simple matter to find the expan-
sion of any function \b which is permutable
with a function F of the first order.

For b the last theorem

where c is a constant. The expression

i/rU\^i
~

cl F(x,t/)

will be of higher order than F and permut-
able with F .

Now by one of the theorems which we proved
in the last lecture, we may write

where *! will be permutable with F, Then
there will be a constant c*2 such that

*! c2 F = F$*

and consequently we shall have

$ = clF+ 2F2 + ...

If this process can be carried on indefinitely,
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we shall have under certain conditions an ex-

pansion of
\ff

in terms of F, P2

,
....

4. We shall give a short survey of the

results which can be obtained by the intro-

duction of a new symbol. If we put

we can write

F= i"1

^,
where F~ l and O^ 1 are merely symbols which do

not represent functions but which may be

treated as If they did. If the functions are

permutable, we can write

and If

= -!$ -1 = $-1 ~1
?

hence the symbols ^ and F~ l

are themselves

permutable.

Let us assume that we have pennutability.

We wish to determine
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111 other words, let

We shall then have

and owing to the property of permutability,

/7

<!>(!+ 2 )

= (.F-f

whence

!
+ 2

= (/>r
1

(J
T^

- (/V*)!/'*
and we ma write

that is, rte rZ^ /or the sum of teo fractions

may be applied.

Thus we see that we can develop as it were

an arithmetic for the symbol .F"
1

quite anal-

ogous to the theory of fractions.

5. We have seen
( I) that if <1> and

\jj

are of the first type and if

<3>(.r ? T)
=

^I(T, .r) ?

then a function
.*|i (oc^y) may always be found

such that
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Hence we can write

And by solving the equation

x
L * = ix

l

,

we shall have that

(2) * = x'-
1

xf.
Therefore the two functions -* 1 and

t|i

*

can

always be obtained the one from the other by

a transformation through the functions x or x'-

In particular, if

$(x,x)
=

1,

we shall always be able to find

(3) xtX-
1 = I-

The relations (I) and (2) may be obtained

even if <3> and $ are permutable. In this case,

X and x' do not belong to the group of func-

tions which are permutable with the given

ones. In particular, equation (3) may hold

even if
tji

is permutable with unity.

6. We shall bring these lectures on per-

mutable functions to a close by extending some
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of the results which were obtained in the first

lecture.
( 11.)

A function which depends upon all the val-

ues of a certain function f(cc) between the

limits a and b admits of an expansion

r 6

(4) -flo-rl f(2\) FI(J\) th\
*J a "

Jb
~b

f( j.\ ] f ( j:2 } F*( ^1? .r2 ) th\ cfa.2 + . . . ,

a J a

provided certain conditions are satisfied;

where F 2 (x^ <r2 )
and F z (oc^ x^ #3), etc., are

symmetric functions. The expansion in ques-

tion corresponds to Taylor's expansion (or to

a power series) in ordinary analysis.*

With these facts before us ? let / (#, y \
a)

be a set of permutable functions of type one,

that is of such a sort that if a be given any
two values 0,1 and a 2 , the two functions thereby
obtained will be permutable with one another.

As an example, we give

/U"-V/ja)
which has the above properties.

*See: Lecons sur les equations integrals et integro-dif-

ferentielles. *Paris: Gauthier-Villars. 1913. Chap. I, VIII.

Lecons sur les fonctions de lignes. Paris: Gauthier-Villars.

1913. Chap. II. Lectures delivered at Clark University,

Worcester, Mass., 1912. Third lecture, IV.
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, let us write

f
'

/V<ia) f(%*/J\fi) <-% =/lr,//,a,j8) .

*/
?

The function f($J y) a, j8) is permutable with

the original ones.

Again let us write

/U%fW(^i a^

and so on, and let us suppose that the series (4)

is convergent when
| f(tf) \

is less than a cer-

tain quantity. Then if we write the series

a
-

+ f f f(x^j\xl^J a J a

it will converge no matter what the absolute

value of /(#, y \ a) may be.

Moreover, let us consider the series

(5) *(f) =/(f)
+ f

"

/(2V) Fifa, I) dx,J a

+ f f f(^f(xt) Fsfci, x,\ } dxidxt + ...
*^ a *J a,

If the determinant of the linear integral
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equation which we obtain by taking into con-

sideration only the first two terms does not

vanish, we can derive / ( fr) as a function of

*(l) from equation (5), provided ! $() |

does not exceed a certain value.*

But let us examine the series

Then if < is known, we can derive f(a},y

in the form of a series which converges no

matter what the absolute value of $ (#, y \ %}

may be.

This is the latest theorem which we have de-

rived in the field of research we have been

developing.

"
Lecons sitr Us equations integrates et integro-diferentielles.

Paris: Gauthier-VUlars. 1913. Chap. Ill, XVI.
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