Richard Mollier

Neue Tabellen und Diagramme für Wasserdampf

Neue

Tabellen und Diagramme für Wasserdampf.

Von

Dr. R. Mollier,

Professor an der technischen Hochschule Dresden.

Mit zwei Diagrammtafeln.

Anastatischer Neudruck 1919.

Springer-Verlag Berlin Heidelberg GmbH

1906

ISBN 978-3-662-23250-7 ISBN 978-3-662-25272-7 (eBook) DOI 10.1007/978-3-662-25272-7

Alle Rechte, insbesondere das der Übersetzung in fremde Sprachen vorbehalten.

Additional material to this book can be downloaded from http://extras.springer.com

Einleitung.

Im vorigen Jahre habe ich in der Zeitschrift des Vereins deutscher Ingenieure¹) unter der Bezeichnung IS-Diagramm eine neue graphische Darstellung veröffentlicht, welche in der Anwendung auf Wasserdampf weite Verbreitung gefunden hat. Besonders trug dazu auch die Beigabe des Diagrammes zur 2. und 3. Aufl. von A. Stodolas Werk über Dampfturbinen bei.

Jenes Diagramm war auf den bis heute allgemein gebräuchlichen Regnault-Zeunerschen Dampftabellen und auf der Annahme unveränderlicher spezifischer Wärme für den überhitzten Dampf $(c_p = 0,48)$ aufgebaut. Diese Grundlagen sind in den letzten Jahren durch die Veröffentlichung neuer Versuche in wachsendem Maße unsicher geworden, so daß ich mich nicht entschließen konnte sie neuerdings einer Sonderausgabe des IS-Diagrammes zugrunde zu legen.

Als neuer Ausgangspunkt schien mir eine Zustandsgleichung, welche Callendar²) auf Grund von Drosselversuchen aufgestellt und eingehend begründet hat, sehr brauchbar. Auf dieser Grundlage hatte ich die Berechnung der folgenden Dampftabellen und die Aufzeichnung des IS-Diagrammes bereits vollendet, als die ausgezeichneten Versuche des Münchner Laboratoriums für technische Physik³) veröffentlicht wurden und die durch die Callendarsche Gleichung gewonnenen Ergebnisse in unübertrefflicher Weise bestätigten.

Die früher erwähnten Bedenken gegen die üblichen Annahmen über das Verhalten des Wasserdampfes richten sich hauptsächlich gegen Regnaults lineare Formel für den Wärmeinhalt (Gesamtwärme) des gesättigten Wasserdampfes und gegen die Unveränderlichkeit der spezifischen Wärme für konstanten Druck. Die Regnaultschen Versuchswerte für die Gesamtwärme stimmen unter sich keineswegs so gut überein,

¹ Mollier, "Neue Diagramme zur technischen Wärmelehre". Jg. 1904, S. 271.

²) "On the Thermodynamical Properties of Gases and Vapours as deduced from a Modified Form of the Youle-Thomson Equation, with Special Reference to the Properties of Steam." Proc. Roy. Soc. Bd. 67, 1900, S. 266. Sowie auch die Artikel "Thermodynamics" und "Vaporisation" in der Encyclop. Brit.

³) Knoblauch, Linde, Klebe: "Die thermischen Eigenschaften des gesättigten und überhitzten Wasserdampfes zwischen 100[°] u. 180[°]. I. u. II. Teil. Mitteilungen über Forschungsarbeiten herausgeg. vom Verein deutscher Ingenieure, Heft 21.

daß sie nur durch die lineare Formel wiedergegeben werden können, im Gegenteil wurde wiederholt versucht die Versuchswerte durch andere Gleichungen besser darzustellen (Wüllner¹), Eckholm²) und hierbei wurden stets Gleichungen gefunden, für welche die Zunahme der Gesamtwärme mit der Temperatur stetig geringer wird. Da die Gesamtwärme noch unter der kritischen Temperatur (365^o) ein Maximum erreichen muß, so sind derartige Formeln von vornherein wahrscheinlicher als die 'lineare Gleichung.

Mit der linearen Formel von Regnault und der Unveränderlichkeit von c_p muß natürlich auch die bequeme Zeunersche Zustandsgleichung für überhitzten Dampf verlassen werden, denn sie ist auf jenen beiden Annahmen aufgebaut und von ihnen unzertrennlich.

Von den übrigen Versuchswerten Regnaults, welche die Dampftabellen enthalten, kommt der Spannungskurve sicher ein sehr hoher Genauigkeitsgrad zu, und es besteht keinerlei Ursache sich von ihr zu entfernen.

Ebenso ist im folgenden die Formel Regnaults für die Flüssigkeitswärme des Wassers beibehalten. Wenn auch diese Formel das Verhalten das Wassers zwischen 0° und 100° nicht richtig wiedergibt, so kommt doch die Größenordnung der Abweichungen für unsere Zwecke nicht in Betracht. Nach Vollendung der Diagramme und Tabellen sind die neuen schönen Versuche von Dieterici") über die Flüssigkeitswärme des Wassers erschienen; die Ergebnisse derselben weichen jedoch im Gebiet der folgenden Tabellen und Diagramme so wenig von der Regnaultschen Formel ab, daß eine Umrechnung gar nicht in Frage kommen kann.

Die Zustandsgleichung von Callendar.

Es bezeichnet in der Folge:

- v das Volumen von 1 kg in cbm,
- P den Druck in kg/qm.
- p den Druck in at (kg/qcm),
- t die Temperatur,
- T die absolute Temperatur (t+273),
- i den Wärmeinhalt (Gesamtwärme) in WE,
- u die Energie (u = i A P v) in WE,
- s die Entropie,
- c, die spezifische Wärme für konst. Druck,
- *Ŕ* die Gaskonstante,
- $A = \frac{1}{197}$ das Wärmeäquivalent bezogen auf die 15° WE.

Die Zustandsgleichung von Callendar lautet:

¹) Lehrbuch der Physik.

²) Fortschr. d. Phys., Bd. 46, 11, S. 371.

³) "Die kalorischen Eigenschaften des Wassers und seines Dampfes." Zeitschr. des Vereins deutscher Ingenieure. Jg. 1905, S. 362.

Den Konstanten geben wir folgende Werte:¹)

$$R = 47,00$$
 $AR = 0,1100$ $C = 0,075$
 $n = \frac{10}{3}$ $v' = 0,001$ (Vol. des flüss. Wassers).

Für viele Rechnungen ist es bequem für die Größe

$$4P(v-v') = \psi$$

ein besonderes Zeichen einzuführen.

Das Volumen v' = 0,001 kann für alle praktischen Rechnungen vernachlässigt werden, wenn dadurch eine Vereinfachung gewonnen wird.

Die Konstanten C und n wurden von Callendar auf Grund von eigenen (noch nicht veröffentlichten) Drosselversuchen bestimmt.

Ableitung des Wärmeinhaltes, der Energie, der Entropie und der spezifischen Wärme aus der Zustandsgleichung.

Aus der allgemeinen Wärmegleichung:

$$Tds = di \quad AvdP \quad \dots \quad \dots \quad (I)$$

folgt die Beziehung:

$$c_{p} = f(t) - A T \int \left(\frac{d^{2} v}{dt^{2}}\right)_{r} dP \qquad (11)$$

Da jede Zustandsgleichung für hohe Temperaturen und kleine Drücke in die Gasgleichung

Pv = RT

übergehen muß, wobei $\left(\frac{d^2 v}{dt^2}\right)_p = 0$ wird, so bedeutet

 $f(t) = c_{\rho}^{o}$

die spezifische Wärme des Stoffes im vollkommenen Gaszustand.

Ålle neueren Versuche deuten mit Sicherheit darauf hin, daß c_p^{0} mit der Temperatur wächst, wenigstens bei Gasen mit mehr als zwei Atomen. Da jedoch für Wasserdampf diese Veränderlichkeit für die hier in Betracht kommenden Temperaturen noch nicht durch Versuche festgestellt ist, so soll im Interesse der Einfachheit c_p^{0} im folgenden konstant gesetzt werden. Mit Gleichung 1 folgt dann:

$$c_{p} = c_{p}^{0} + n(n+1) AC \left(\frac{273}{T}\right)^{n} \frac{P}{T}$$
 (2)

 c_p wächst also mit dem Druck und nimmt mit der Temperatur ab; diese Veränderlichkeit ist durch die Nähe des Sättigungsgebietes bedingt, sie

¹) Callendar (Enc. Brit.) setzt: $n = \frac{10}{3}$, C = 0.07443, AR = 0.11030 bezogen auf die 20°WE. = 4180 Joules = 426,1 mkg, damit ist R = 47.00. Nach den besten neuen Beobachtungen (Zusammenstellung von Nernst, Z. f. El. Chennie 1905) ist die allgemeine Gaskonstante für cbm u. kg/qm = 848 und das Mol.Gew. von Wasser = 18.016 ($O_2 = 32$), und daher $R = \frac{848}{18.016} = 47.07$, hiermit steht in guter Chereinstimmung der Wert 47.1, der sich aus den Münchner Versuchen (s. a. a. O.) ergibt. Der abgerundete Wert 0,11 bietet große Erleichterung für die Rechnung.

verschwindet im Gaszustand, d. h. bei hohen Temperaturen und kleinen Drücken, und ist ganz unabhängig von der eben erwähnten Abhängigkeit des Grenzwertes c_n^0 von der Temperatur.

keit des Grenzwertes c_p^0 von der Temperatur. Den Grenzwert c_p^0 hat Callendar (s. a. a. O.) auf Grund von eigenen Messungen, welche später erwähnt werden sollen, gesetzt:

$$c_p^0 = (n+1) A R = \frac{13}{3} 0.11 = 0.477.$$

Durch diese Annahme wird:

$$\frac{c_p^0}{c_v^0} = x = \frac{1}{n} + 1 = 1,3, \quad n = \frac{1}{x-1}, \quad n+1 = \frac{x}{x-1};$$
$$c_v^0 = c_p^0 - AR = c_p^0 - 0,11$$

ist der Grenzwert der spezifischen Wärme für unveränderliches Volumen.

Für den Wärmeinhalt folgt aus der allgemeinen Wärmegleichung I der Ausdruck:

$$i = \int c_p^0 dt - AT^2 \int \left(\frac{d(v/T)}{dt}\right)_P dP + \text{konst.} \quad . \quad . \quad (\text{III})$$

oder wenn wir $c_{n}^{0} =$ konst. setzen und Gl. 1 anwenden:

$$i = c_p^0 t - (n+1) AC \left(\frac{273}{T}\right)^n P + Av'P + \text{konst.}$$
 (3)

oder:

 $i = (n+1)\psi + Av'P + \text{konst.}$ (3a)

Für die Entropie liefert Gl. I folgenden allgemeinen Ausdruck:

$$s = \int \frac{c_p^0}{T} dt - A \int \left(\frac{dv}{dt}\right)_P dP + \text{konst.} \quad . \quad . \quad . \quad (\text{IV})$$

welcher für unsere Annahmen übergeht in:

$$s = c_p^{0} \ln T - AR \ln P - nAC \left(\frac{273}{T}\right)^n \frac{P}{T} + \text{konst.} \qquad (4)$$

oder:

$$s = \text{konst.} - ARln\left(\frac{P}{\overline{T^{n+1}}}\right) - nAC 273^{n}\left(\frac{P}{\overline{T^{n+1}}}\right).$$
 (4a)

Daraus folgt für die Adiabaten

$$\frac{P}{T^{n+1}} = \frac{P}{T^{\frac{\kappa}{\kappa-1}}} = \text{konst}$$

genau wie bei den vollkommenen Gasen. Da sich die Zustandsgleichung 1 auch schreiben läßt:

$$\frac{P(v-v')}{T} = R - C 273^{n} \left(\frac{P}{T^{n+1}}\right)$$

so ist ersichtlich, daß für die Adiabaten auch die folgenden Beziehungen gelten:

$$P(v-v')^{\frac{n+1}{n}} = P(v-v')^{\times} = \text{konst.}$$

$$T(v-v')^{\frac{1}{n}} = T(v-v')^{*-1} =$$
konst.

also auch hier mit Vernachlässigung des sehr kleinen v' die Gleichungen der Gase.

Aus dem Wärmeinhalt läßt sich leicht die Energie ableiten, da

$$u = i - APv$$

ist. Es ergibt sich:

und
$$u = c_v^0 t - nAC \left(\frac{273}{T}\right)^n P + \text{konst.}$$
 (5)

Ferner ist noch wichtig die Größe:

d. i. die Temperaturabnahme beim Drosseln des Dampfes, mit Gl. 1 wird:

Anmerkung: Die Callendarsche Gleichung 1 ähnelt in mancher Beziehung der bekannten Zeunerschen Zustandsgleichung. Unter Vernachlässigung von v' können beide Gleichungen geschrieben werden:

$$\frac{Pv}{T} = RT - C \left(\frac{P}{T^{n+1}}\right)^a T$$

In beiden Fällen ist $n + 1 = \frac{c_p^0}{AR}$, und damit i = (n+1)APv + konst. und u = nAPv + konst. Ebenso gelten in beiden Fällen für die Adiabaten die einfachen Gleichungen der vollkommenen Gase. Der Exponent a ist oben nach Callendar - 1 gesetzt. Zeuner setzt: $a = \frac{1}{n+1}$.

Bestimmung der Konstanten in den Gleichungen für *i* und *s* und ihre Beziehung zur Spannungskurve.

Setzt man in die Gleichungen von v, i u. s die Drücke und zugehörigen Temperaturen nach der Spannungskurve ein, so erhält man das Volumen, den Wärmeinhalt und die Entropie des gesättigten Dampfes v'', i'', s'', während für das flüssige Wasser im Grenzzustand nach unserer Annahme die Regnaultschen Werte gelten sollen, also:

$$v' = 0,001, \quad i' = q + APv', \quad s' = \int_{0}^{t} \frac{dq}{T},$$

oder mit den entsprechenden Konstanten:

$$u' = q = t + 0,00002 t^{2} + 0,0000003 t^{3}$$
$$s' = 2,431889 \log \frac{T}{273} - 0,000206 t + 0,00000045 t^{2}.$$

Für die Verdampfungswärme r des Wassers lassen sich zwei Ausdrücke bilden, nämlich:

$$r = i'' - i'$$
, und $r = (s'' - s') T$.

Setzen wir beide einander gleich:

$$i'' - i' = (s'' - s') T$$
. (VI)

und führen wir für i", s" und i und s' die entsprechenden Formeln ein, so erhalten wir eine Gleichung zwischen p und t_i und das ist die Spannungsgleichung des Wasserdampfes. Dadurch erhalten wir einen ausgezeichneten Anhalt zur Beurteilung der gemachten Annahmen, denn sind diese richtig, so muß Gleichung VI die Regnaultsche Spannungskurve ergeben. Dies ist nun, wie später zahlenmäßig gezeigt werden soll, mit unübertrefflicher Genauigkeit der Fall.

Um in den Formeln für i und s die noch unbestimmten Konstanten zu ermitteln, würde im allgemeinen ein einziger Versuchswert des Wärmeinhaltes bzw. der Verdampfungswärme und ein Punkt der Spannungskurve genügen. In unserem Falle sind die Konstanten so gewählt, daß unter Berücksichtigung der wahrscheinlichen Genauigkeit ein möglichster Anschluß an das gesamte in Betracht kommende Versuchsmaterial erreicht wird.

Zusammenstellung der Hauptformeln.

Um die Formeln in eine für die Rechnung bequeme Form zu bringen, schreiben wir besondere Zeichen für einige Größen:

10

$$0,075\left(\frac{273}{T}\right)^{\frac{5}{3}} = \Re \qquad \frac{10\,000}{427}\left(\frac{13}{3}\,\Re - 0,001\right) = \Im$$
$$\frac{10\,000}{427}\,\frac{10\,\Re}{3}\,T = \Im.$$

Hiermit und unter Einführung der eben erwähnten Konstanten ergeben sich folgende Ausdrücke:

$$i = 594,7 + 0,11 \frac{13}{3}t - \Im p^{1}$$
. (8)

$$s = 0,11 \left(\frac{13}{3} \ln T - \ln p \right) - \mathfrak{S}p - 1,0544 \qquad (9)$$

(0)

oder

oder

$$s = 0,477 \ln T - 0,11 \ln p - \Im p - 1,0544$$
 . . . (9a)

$$= 564,7 + \frac{10}{3}(0,11t - A \, \mathfrak{B} \, P) \qquad . \qquad . \qquad . \qquad . \qquad . \qquad (10)$$

$$u = 564,7 + 0,367 t - \frac{10}{3} A \mathfrak{B} P$$
 (10a)

U

¹) Die Tabellen sind mit 594,735 gerechnet.

oder

oder

oder mit Vernachlässigung von v':

$$\left(\frac{d t}{d p}\right)_i = 10\,000\,\frac{A\,\mathfrak{B}}{0,11+\mathfrak{S}p} \quad . \quad . \quad . \quad . \quad . \quad . \quad (12b)$$

für p = o wird:

Für die Adiabate gelten:

m /

$$\frac{p}{T^{\frac{13}{3}}} = \text{konst.}$$

0.001108 1....

$$n(v - 0.001)^{1,3} = \text{konst.}$$

Die Tabellen im Anhang.

Die Tabelle V enthält die Hilfsgrößen \mathfrak{B} , \mathfrak{F} und \mathfrak{S} für Temperaturen von 5 zu 5°, Zwischenwerte können ausreichend genau durch Schätzung entnommen werden.

Die Tabellen I bis IV geben alle wichtigen Größen des Sättigungsgebietes, und zwar ist I und II nach Drücken, III und IV nach Temperaturen geordnet.

Die letzte Reihe in Tabelle I stellt die spezifische Wärme für konstanten Druck an der Grenzkurve dar und kann zu Berechnungen in unmittelbarer Nähe der Grenzkurve Anwendung finden. Neben der Reihe der Werte von i'' ist deren Zuwachs von 10° zu 10° angegeben, um einen raschen Vergleich mit der linearen Formel von Regnault zu ermöglichen, für welche der entsprechende Zuwachs 3,05 ist.

Alle übrigen Größen der Tabellen sind ohne weitere Erklärung verständlich, und alle Rechnungen im Sättigungsgebiet erfolgen genau so wie bisher bei Benutzung der Zeuner-Regnaultschen Tabellen.

Näherungsformeln im Sättigungsgebiet.

Für das Verhalten von gesättigtem Wasserdampf haben sich in der Technik einige bequeme Näherungsformeln eingebürgert, so die von Zeuner aufgestellte Beziehung:

 $p^m v'' = C$ m = 0.9393 C = 1.70213

Diese Gleichung kann auch für die hier benutzten Annahmen verwendet werden, wenn man den Konstanten etwas veränderte Werte gibt, nämlich:

$$m = \frac{15}{16}$$
 $C = 1,7235$

Sehr viel gebraucht wird ferner eine gleiche Formel für die Adiabate :

 $pv^{\mu} = \text{konst.}$

nach Zeuner kann gesetzt werden:

 $\mu = 1,035 + 0,1x$

für x = 0,7 bis 1. Für x soll der Anfangswert der spezifischen Dampfmenge gesetzt werden.

Diese Formel gilt mit ähnlicher Genauigkeit auch für unsere Annahmen, denn der Exponent μ ist in der Hauptsache nur von der Spannungskurve abhängig und diese ist ja unverändert beibehalten.

Überhitzter Dampf.

Für überhitzten Dampf kommen die S. 8 zusammengestellten Gleichungen nebst der Hilfstabelle V zur Anwendung.

Gegenüber dem bisher gebräuchlichen Rechnungsvorgange ist zu bemerken, daß der Wärmeinhalt nicht dadurch bestimmt wird, daß man zu dem Betrage i'' im Sättigungszustand die Überhitzungswärme hinzufügt, sondern i folgt gleich im ganzen aus Formel 8 oder 8a.

Wünscht man die Überhitzungswärme zu kennen, so ist von i einfach der dem Druck entsprechende Tabellenwert i'' abzuziehen. Ähnliches gilt für die Bestimmung der Entropie des überhitzten Dampfes.

Die Diagramme.

Tragen wir die Entropie als Abszisse und den Wärmeinhalt als Ordinate auf, so entsteht das IS-Diagramm. Sein großer Vorzug liegt hauptsächlich darin, daß alle Wärmemengen, welche bei gleichem Druck zu- oder abgeführt werden, sowie die wichtige Arbeitsgröße:

$$A\int vdP$$
 für $s =$ konst.

als Strecken erscheinen und daher unmittelbar durch Abmessen im Diagramm bestimmt werden können. Um einen großen Maßstab zu erreichen, ist in dem beiliegenden IS-Diagramm das Sättigungsgebiet auf die Nähe der Grenzkurve beschränkt.

Im Sättigungsgebiet sind die Linien gleichen Drucks Gerade, da ja nach der Gleichung I S. 5

$$\left(\frac{di}{ds}\right)_P = T$$

ist. In das Gebiet des überhitzten Dampfes gehen diese Linien, auf Grund derselben Beziehung, ohne plötzliche Richtungsänderung über. Die Kurven gleicher Dampfmenge findet man genau so, wie im PVoder TS-Diagramm, d. h. man teilt die geraden Isothermenstrecken zw schen den Grenzkurven in gleiche Teile und verbindet entsprechende Punkte. Außerdem ist im Gebiet des überhitzten Dampfes noch eine Schar von Isothermen eingezeichnet.

Die Arbeit einer verlustfreien Dampfmaschine oder Dampfturbine für 1 kg Dampf für gegebenen Anfangszustand und für gegebenen Gegendruck ist:

$$AL = A \int_{P_0}^{P} v dP = i - i_0$$

unter der Voraussetzung, daß $s = s_0$ ist. Um diese Arbeit zu ermitteln, hat man im Diagramm nur den senkrechten Abstand des Punktes, welcher dem Anfangszustand entspricht, von der Gegendrucklinie abzumessen.

Dieselbe Strecke stellt gleichzeitig in WE. die kinetische Energie $\frac{A w_0^2}{2g}$

eines Dampfstrahles dar, der unter den gleichen Bedingungen reibungsfrei zustande kommt. Um die Ausströmungsgeschwindigkeit w_0 selbst noch rascher zu erhalten, kann man die Strecke gleich mit dem beigefügten "Geschwindigkeitsmaßstab" messen.

Wird Dampf gedrosselt, so bleibt sein Wärmeinhalt *i* unveränderlich. Drosselkurven sind daher im Diagramm wagrechte Gerade, und die Zustandsänderungen, welche durch Drosseln eintreten, lassen sich leicht ablesen.

Neben dem IS-Diagramm bietet für zahlreiche Aufgaben das dieser Schrift ebenfalls beigegebene IP-Diagramm ein sehr brauchbares Hilfsmittel. Es hat zu Koordinaten den Wärmeinhalt und den Druck, zwei Größen, die jedem Ingenieur besonders geläufig sind. Außerdem hat es den Vorzug, daß für unsere Formeln die Isothermen sowohl wie die Linien gleichen Volumens gerade Linien ergeben, dadurch wird das Diagramm sehr übersichtlich und ist sehr leicht aufzuzeichnen. Es ist besonders brauchbar zur raschen und genauen Bestimmung des Wärmeinhalts und der Überhitzungswärme des Dampfes und zur Verfolgung von Volumänderungen. Der Wärmemaßstab ist doppelt so groß gewählt wie im IS-Diagramm.

Im Sättigungsgebiet sind die Linien gleichen Volumens keine Geraden, doch unterscheiden sie sich in dem dargestellten beschränkten Gebiet nur wenig davon.

Einige Ergebnisse der Formeln und Vergleich mit Versuchsresultaten.

Zahlentafel 1 gibt einen Vergleich der aus der Callendarschen Formel 1 folgenden Volumina mit jenen nach Regnault und nach den Münchner Versuchen. Unter 50° geben die Regnaultschen Formeln größere Volumina als das Gasgesetz und mithin unmögliche Werte, darauf ist schon häufig (zuerst von Wüllner) aufmerksam gemacht worden und gezeigt worden, daß dies nicht in den Versuchen selbst, sondern nur in der sie mangelhaft darstellenden linearen Gleichung der Gesamtwärme begründet liegt. Abgesehen von diesem Gebiet unterscheiden sich unsere Werte von denen Regnaults bis zu etwa 1 Prozent. Von denen der Münchner Versuche weichen unsere Werte um höchstens 0,4 Prozent ab im Mittel jedoch beträchtlich weniger. Hierbei ist noch zu bemerken, daß die Werte v''_{M} und v_{M} der Tafel keine unmittelbaren Versuchwerte sind, sondern mittels einer Interpolationsformel berechnet sind.¹) Wie schon erwähnt, konnten die Münchner Versuche bei der Wahl unserer Formeln nicht mehr berücksichtigt werden, sonst wäre es leicht gewesen, durch eine ganz geringfügige Änderung der Konstanten den Anschluß nahezu fehlerfrei zu machen.

t	v″	v ″	t	V"R	v"	oben v, unten v _m			
					v″	p == 2	p = 4	p = 6	p = 8
0	212 17	204,97	100	1,662	1,670 1,674				
10	109,29	106,62	110	1,200	1,207 1,211				
20	59,14	58,15	120	0,8825	0,8894 0,8922	0,9023 0,9033			
30	33,51	33,13	130	0,6605	0,6664 0,6690	0,9276 0,9288			
40	19,79	19,65	140	0,5022	0,5071 0,5091	0,9527 0,9543			
50	12,14	12,09	150	0,3876	0,3917 0,3921	0,9777 0,9794	0,4806 0,4807		
60	7,709	7,695	160	0,3032	0,3065 0,3078	1,0025 1,0045	0,4937 0,4941	0,3241 0,3236	
70	5,051	5,050	170	0,2402	0,2429 0,2430	1,0272 1,0294	0,5066 0,5073	0,3331 0,3329	0,2464 0,2454
80	3,404	3,409	180	0,1933	0,1945 0,1943	1,0517 1,0542	0,5194 0,5203	0,3420 0,3421	0,2532 0,2527
90	2,352	2,359	190	0,1559	0,1575				
100	1,662	1,670	200	0,1276	0,1288				

Tafel 1. Volumina.

 \mathbf{V}'', \mathbf{V} nach Tafel IV des Anhangs und der Formel 1. $\mathbf{v}''_{\mathbf{B}}$ nach Regnault mit $A = \frac{1}{427}$. $\mathbf{v}''_{\mathbf{m}} \mathbf{v}_{\mathbf{m}}$ nach den Münchner Versuchen. S. a. a. O.

Tafel 2 vergleicht die Verdampfungswärme r nach unseren Formeln mit den Werten nach Regnault r_R und mit den Werten r_M , welche sich aus Münchner Versuchen mit der Regnaultschen Spannungskurve ergeben. Die verhältnismäßigen Abweichungen untereinander müssen natürlich nahezu gleich jenen der Volumina sein, und es zeigt

¹) Die Werte sind einer Zusammenstellung der Zeitschr. d. Ver. deutsch. Ing. 1905, S. 1704 entnommen.

sich daher auch hier die vorzügliche Übereinstimmung unserer Werte mit den Münchnern. Zur weiteren Bekräftigung unserer Ergebnisse mögen noch einige neuere Versuchswerte der Verdampfungswärme angeführt werden. Für 100⁹ fand Joly¹) 539,6, bei 40⁹ fand Griffiths²) 572,8, beide Werte in 15⁹ WE., bei 0⁹ Dieterici³) 594,8 in mittl. WE., die sich wahrscheinlich von der 15⁹ WE. nicht wesentlich unterscheidet.

t	r _R	r	t	r _R	r	r _m
0	606,5	594,7	100	536,5	539,1	540,2
10	599,5	589,4	110	529,4	532,9	534,2
20	592,6	584,I	120	522,3	526,6	527,6
30	585,6	578,8	130	515,2	520,0	520,8
40	578.6	573,4	140	508,0	513,2	514,0
50	571,7	567,9	150	500,8	506,2	506,9
60	564,7	562,4	160	493,6	498,9	499,6
70	557,6	556,8	170	486,3	491,4	491,8
80	550,6	551,0	180	479,0	483,7	483,3
90	543,6	545,2	190	471,7	475,7	-
100	536,5	539,I	200	464,3	467,5	

Tafel 2. Verdampfungswärme.

Tafel 3 gibt für überhitzten Dampf von 200 und 300° einen Vergleich des Wärmeinhalts aus unserer Formel *i* mit den Werten i_{K} , welche sich aus der Formel Regnaults in Verbindung mit konstanter spezifischer Wärme ($c_p = 0,48$) ergeben. Die Tafel zeigt, daß nach unserer Berechnung der Wärmeinhalt bis zu 2 Prozent höher erscheint.

Tafel 3. Wärmeinhalt.

p =	0,1	0,2	0,5	I	2	4	8	12	16
$t = 200 \begin{cases} i = 1 \\ i_R = 1 \end{cases}$	690,0	689,8	689,5	688,9	687,7	685,3	680,5	675,7	671,2
	694,6	692,0	688,5	685,2	681,6	677,5	672,6	669,8	667,6
$t = 300 \begin{cases} i = \\ i_R = \end{cases}$	737,7	737,6	737,4	737,1	736,5	735,2	732,7	730,2	727,8
	742,5	740,0	736,4	733,1	729,6	725,6	720,9	717,8	715,5

Tafel 4 zeigt die Veränderlichkeit der spezifischen Wärme nach unseren Annahmen. Callendar (a. a. O.) fand durch unmittelbare elektrische Heizung, bei Atmosphärendruck und zwischen 103° und $113^{\circ} c_{\mu} = 0,497$ in 20°WE. oder 0,496 in 15°WE. Der mittlere Regnaultsche Wert $c_{p} = 0,4805$ gilt ebenfalls für Atmosphärendruck und für das Temperaturgebiet von etwa 130 bis 220. Für dieses Gebiet findet sich nach unseren Formeln die mittlere spezifische Wärme zu 0.488, also nur wenig höher wie der Regnaultsche Wert.

Mit den Versuchen von Lorenz⁺) stehen unsere Werte der spezi-

¹⁾ Nach Berechnung von Griffiths Phil. Trans. 1895, S. 322.

²) Proc. Roy Soc, Dec. 1894.

³) Wiedem. Ann. 1899, S. 504, auch Zeitschr. des Ver. d. Ing. 1905, S. 362.

⁴⁾ H. Lorenz: Die spezifische Wärme des überhitzten Wasserdampfes. Mitteil. über Forsch. Arb. aus dem Geb. des Ing. Wesens, herausg. v. Ver. deutscher Ing., Heft 21.

fischen Wärme in Bezug auf die Art der Veränderlichkeit in Übereinstimmung; die von Lorenz gegebene Formel:

$$c_p = 0,43 + 3600000 \frac{p}{T^3}$$

ist sogar von ganz gleichem Bau wie unsere Gl. 2, S. 5. Der Größe nach weichen allerdings die Ergebnisse beider Formeln sehr weit von einander ab, und es ist nicht wohl möglich die Lorenzschen Werte in Übereinstimmung mit den Ergebnissen der Drosselversuche und der Münchner Versuche zu bringen.

t=	1 50	200	250	300	350	400
p = 1 2 6	0,491 0,504 0.561	0,485 0,494 0.528	0,482 0,488 0,510	0,481 0,484 0.499	0,479 0,482 0,492	0,479 0,480 c,488
IO		0,563	0,532	0,514	0,501	0,495
14 18	_	0,597	0,555	0,529	0,511	0,503

Tafel 4. Spezifische Wärme.

Um zu zeigen, wie groß die mittlere spezifische Wärme bei der Überhitzung von gesättigtem Dampf auf verschiedene Endtemperaturen ist, ist die Tafel 5 berechnet, sie enthält demnach die Größe:

$$[c_p]_{\theta}^{t} = \frac{\text{Uberhitzungswärme}}{\text{Temperaturerhöhung}} = \frac{i - i''}{i - \vartheta}$$

und kann zu Überschlagsrechnungen Anwendung finden.

р = d =	0,1 45,6	0,5 80,9	1 99,1	2 119,6	4 142,8	6 157,9	8 169,5	10 178,9	12 187,0	14 194,0	16 200,3
t= 100	0,480	0,490	0,501	_			_		_	_	_
150	0,479	0,488	0.495	0,513	0,533	-	-	-		-	-
200	0,479	0.486	0.491	0,505	0,523	0.538	0,558	0,573	0,588	0,601	-
250	0,479	0,484	0,489	0,500	0,514	0.528	0,543	0,556	0.569	0,578	0,583
300	0,479	0,483	0,487	0,496	0,508	0,519	0,531	0,541	0,551	0.562	0,569
350	0.479	0,482	0,485	0,493	0,503	0.513	0,522	0.531	0.539	0,547	0,555
400	0,478	0,482	0,484	0,491	0,500	0.508	0.517	0.523	0.531	0,538	0.545
450	0,478	0,482	0,483	0,489	0,497	0,505	0,513	0.519	0,525	0,531	0,537

Tafel 5. Mittlere spezifische Wärme für die Überhitzung von ϑ^3 auf t^9 .

Einen Vergleich der Ergebnisse unserer Formeln mit den Drosselversuchen gibt die nebenstehende Figur, welche für p u. t als Koordinaten die Drosselkurven (i =konst.) enthält. Die stark ausgezogenen Linien sind nach den Versuchen von Grießmann¹). die stark gestrichelten

¹) Grießmann, Beitrag zur Frage der Erzeugungswärme⁻des überhitzten Wasserdampfes. Mitteilungen über Forsch.-Arb. auf dem Geb. d. Ing. Wosens. Herausg. v. Verein deutscher Ingenieure, Heft 13.

nach jenen von Grindley¹) gezeichnet. Die schwach ausgezogenen Kurven entsprechen unseren Formeln; bezeichnen wir mit t_0 die dem Drucke p=0 entsprechende Temperatur, so wird die Gleichung dieser Kurven:

Die Übereinstimmung aller 3 Kurvensysteme ist sehr gut. Hierbei ist noch hervorzuheben, daß Callendar den Exponenten n der Gl. 1 mit

¹) Grindley: An Experimental Investigation of the Thermodynamical Properties of superheated Steam. — On the Cooling of Saturated Steam by Free Expansion. Phil. Trans. A. Bd. 194. 1900. S. 1.

Rücksicht auf eigene (leider unveröffentlichte) Drosselversuche bestimmt hat, und daß er erwähnt, daß den Grindleyschen Versuchen ein etwas höherer Exponent noch besser entsprechen würde.

Die drei schwachgestrichelten mit Z bezeichneten Kurven sind nach der bekannten Zeunerschen Zustandsgleichung

$$Pv = 50,933 T - 192,5 \sqrt[4]{P}$$

eingezeichnet, welche mit $c_p = 0.48$ für die Drosselkurven die folgende Gleichung ergibt:

$$t - t_0 = 37,696\sqrt[4]{p}.$$

Sämtliche Kurven sind danach kongruent.

Die Figur zeigt, daß für ein mittleres Temperaturgebiet und in der Nähe der Grenzkurve diese Gleichung der Wirklichkeit sehr gut entspricht, darüber hinaus aber und besonders bei kleinen Drücken zu ganz abweichenden Ergebnissen führt. Endlich ist noch oben in die Figur eine mit T bezeichnete Gerade gezogen, welche aus der Zustandsgleichung von Tumlirz folgt, wenn wir die Konstanten mit R. Linde (s. a. a. O.) wie folgt bestimmen:

$$Pv = 47,1 T = 0.016 P.$$

Aus dieser Gleichung folgt mit $c_p = 0,48$ die Drosselgleichung:

$$t - t_0 = 0,78 \cdot p,$$

also parallele Gerade. Die Abweichung dieser Geraden von den Versuchskurven ist seh groß, obwohl die zugrunde liegende Zustandsgleichung mit den Münchener Versuchen sowie mit den Ergebnissen der Gl. 1 bis auf weniger als 1 Prozent übereinstimmt. Dies zeigt, welche Vorsicht geboten ist, wenn man aus einer Zustandsgleichung weitergehende Schlüsse ziehen will, die auf den Differentialquotienten aufgebaut werden müssen.

Schließlich soll noch zahlenmäßig die vortreffliche Übereinstimmung unserer Formeln mit der Spannungskurve von Regnault gezeigt werden. Wie schon S. 8 erwähnt, stellt die Gleichung

$$i'' - i' = T(s'' - s')$$
 (VI)

die Spannungskurve dar, da die vier Größen durch Gleichungen zwischen p und t gegeben sind. Bei der Berechnung unserer Tabellenwerte (Tafeln im Anhang) wurden jedoch in die Formeln für i'' und s'' die Werte der Regnaultschen Spannungskurve eingesetzt; stimmt nun diese mit der durch obige Gleichung gegebenen nicht überein, so wird nach Einführung der Tabellenwerte sich ein Fehler ergeben; es wird sein:

$$i'' - i' - T(s'' - s') = \triangle i =$$
Fehler;

je geringer derselbe. desto besser die Übereinstimmung beider Spannungskurven. Der Fehler ist durch folgende Tafel veranschaulicht, wobei wegen seiner Kleinheit eine Dezimale mehr als in den Tabellen für i" verwendet ist.

t	\triangle I	t	∆ı	t	ΔI
0	+ 0,22	70	- 0,01	140	- 0,02
10	0	80	— 0,0I	150	- 0,03
20	0,10	90	+ 0,03	160	- 0,02
30	- 0,14	100	+ 0,01	170	- 0,02
40	0,11	110	+ 0,02	180	- 0,02
50	— 0,07	120	0,01	190	- 0,0I
60	- 0,03	130	— 0,0I	200	+ 0,02

Tafel 6.

Der Fehler kann aber auch sehr leicht in Druckeinheiten ausgedrückt werden. Wenn wir beachten, daß der Fehler nur von jenen Gliedern von i'' und s'' herrührt, welche den Druck enthalten, und wenn wir den aus der Gl. VI sich ergebenden Druck, welcher den Fehler zum Verschwinden bringt, mit p, hingegen den Druck nach Regnault mit p_R bezeichnen, so folgt:

$$\Delta i = \text{Fehler in WE.} = \Im \left(p_R - p \right) - \Im \left(p_R - p \right) + ART \ln \frac{p}{p_R}.$$

Da der Fehler sehr klein, also p/p_R sehr nahe = 1 ist, können wir lnp/p_R durch das erste Glied der Reihe und $p + p_R$ durch $2p_R$ ersetzen; drücken wir noch den Fehler in Entropieeinheiten aus, $T \triangle s = di$, so erhalten wir schließlich mit AR = 0,11:

$$\frac{p_R - p}{p_R} = \frac{\bigtriangleup p}{p_R} = \frac{\bigtriangleup s}{0.11 - \frac{3}{10} \Im p_R}$$

Für kleine Drücke verschwindet der Einfluß des zweiten Gliedes im Nenner, für höhere Temperaturen (über 60°) ist überhaupt $\triangle s$ verschwindend klein. Die folgende kleine Tafel zeigt deutlich die außerordentliche Kleinheit der Abweichungen von den Spannungswerten Regnaults.

t	p ^{mm} Hg	<u>∧</u> s	<u>∆p</u> P _R	(p _R — p) ^{mm} Hg
0	4,6	+ 0,00080	0,0073	+ 0,032
10	9,17	0	0	0
20	17,39	— 0,00034	0,0031	0,054
30	31,55	0,00046	0,0042	- 0,13
40	54,91	0,00035	0,0032	- 0,17
50	91,98	0,00022	0,0020	0,18
60	148,79	0,00009	0,0008	0,12
70	233,08	0,00003	0,0003	0,07
180	7546	0,00004	0,0004	- 3,0

Tafel 7.

Um die Rechnung auch für einen höheren Druck auszuführen, ist in der Tafel noch t = 180, $p \sim 10$ at angefügt.

Die ausgezeichnete Übereinstimmung der Spannungskurven läßt erwarten, daß selbst deren Differentialquotienten sich nur wenig unter-Mollier. Tabellen und Diagramme. 2 scheiden werden, abgesehen etwa in der Nähe von 0° . Wir können dies leicht anschaulich machen, wenn wir aus unseren Dampftabellen die Werte:

$$\frac{r}{\psi} = \frac{T}{p} \frac{dp}{dt}$$

bilden und mit den entsprechenden Werten der Zeunerschen Dampftabellen vergleichen. Die folgende Tafel 8 gibt unsere Werte r/ψ und daneben ihre Abweichung von jenen nach Regnault-Zeuner:

		the second s			
t	$\frac{\mathbf{r}}{\psi} = \frac{\mathbf{T}}{\mathbf{p}} \frac{\mathrm{d}\mathbf{p}}{\mathrm{d}\mathbf{t}}$	$\left(\frac{\mathbf{r}}{\psi}\right) - \left(\frac{\mathbf{r}}{\psi}\right)_{R}$	t	$\frac{r}{\psi} = \frac{T}{p} \frac{dp}{dt}$	$\frac{\mathbf{r}}{\psi} - \left(\frac{\mathbf{r}}{\psi}\right)_{\mathbf{R}}$
0	19,810	-+ 0,290	100	13,348	+ 0,004
10	18,946	+0,147	110	12,904	+ 0,007
20	18,146	+ 0,055	120	12,486	+ 0,008
30	17,391	0,009	130	12,092	+ 0,005
40	16,698	- 0,032	140	11,717	+ 0,006
50	16,039	- 0,044	150	11,362	+ 0,003
60	15,436	- 0,035	160	11,026	0
70	14,859	0,020	170	10,707	0,004
80	14,324	0,005	180	10,406	0,004
90	13,819	- 0,001	190	10,111	- 0,013
100	13,348	+ 0,004	200	9,829	- 0,022

Tafel 8.

Schlußbetrachtungen.

In den letzten Abschnitten ist deutlich gezeigt, daß die Annahmen und Formeln dieser Schrift in ausgezeichneter Übereinstimmung mit allen bekannten Versuchsergebnissen stehen. Unter sich stehen alle Formeln in gesetzmäßigem Zusammenhang und sie sind frei von jenen inneren Widersprüchen, welche dem älteren Rechnungsverfahren anhaften. Unter den gemachten Annahmen ist jedoch, wie schon erwähnt, eine, welche wahrscheinlich nicht ganz richtig ist, nämlich die Unveränderlichkeit des Grenzwertes der spezifischen Wärme ($c_p^0 = 0,477$). Ich möchte daher noch ganz kurz erörtern, welchen Einfluß das wahrscheinliche Wachstum von c_p^0 mit der Temperatur auf unsere Ergebnisse haben würde.

Zu diesem Zwecke setzen wir, ohne in der Zustandsgleichung etwas zu ändern, für c_p^0 den von Langen¹) gefundenen Wert:

$$c_p^0 = 0.439 + 0.000238 t.$$

Dadurch wird der Wärmeinhalt *i* gegenüber den früheren Werten um: $\triangle i = \text{Konst.} + 0,000119 t^2 - 0,038 t$

größer, nach entsprechender Wahl der willkürlichen Konstanten (=2,3) erhalten wir:

¹) A. Langen: Untersuchungen über die Drücke, welche bei Explosionen von Wasserstoff und Kohlenoxyd in geschlossenen Gefäßen auftreten. Mitteil. über Forsch. Arb. auf dem Geb. des Ing. Wesens. Herausg. v. Ver. deutscher Ing., Heft 8.

Die Zusammenstellung zeigt. daß in dem technisch wichtigen Temperaturgebiet die neue Annahme von recht geringem Einfluß auf die Berechnung von i ist. Da für die Verdampfungswärme die gleichen Abweichungen gelten, so bleibt die ausgezeichnete Übereinstimmung mit den Münchner Versuchen erhalten. Erst bei starker Überhitzung wächst der Unterschied rasch und würde dann besonders bei der Bestimmung der Überhitzungswärme verhältnismäßig hoch sein.

Auffallender ist natürlich der Einfluß der neuen Annahme auf die Werte der spezifischen Wärme c_p . Da im Ausdruck für diese ein mit twachsendes Glied hinzutritt, so wird c_p bei einer bestimmten Temperatur einen kleinsten Wert erreichen und von da ab wachsen. Es wird:

$$c_p = 0,439 + 0,000238 t + \frac{13}{3} \odot p.$$

Hieraus kann leicht die Temperatur für das erwähnte Minimum bestimmt werden, angenähert in sehr einfacher Weise aus der Tabelle für S im Anhang. Es folgt in runden Zahlen das Minimum bei:

$$t = 110$$
 165 250 320
für $p = 1$ 2 5 10at.

Die Werte von c_p in der Zahlentafel 4, S. 14 ändern sich um den Betrag:

$$\triangle c_n = 0,000238 t - 0,038;$$

danach ergeben sich die folgenden Werte:

and the second se						
t ==	150	200	250	300	350	400
p= 1	0,488	0,494	0,501	0,514	0,524	0,535
2	0,501	0,503	0,509	0,517	0,527	0,536
6	0,558	0,537	0,531	0,532	0,537	0,544
10		0,572	0,554	0,547	0,546	0,551
14		0,606	0,576	0,562	0,556	0,559
18			0,598	0,577	0,567	0,566

Tafel 9. c_p .

Die neue Annahme über c_p^0 beeinflußt den Verlauf der Drosselkurven nur in sehr geringem Maße, so daß auch hier die gute Übereinstimmung mit den Versuchen vollständig erhalten bleibt.

Endlich ist noch zu erwähnen, daß auch die vorzügliche Übereinstimmung mit der Regnaultschen Spannungskurve durch die neue Annahme nicht leidet. Das Fehlerglied:

$$\bigtriangleup i = i'' - i' - T(s'' - s')$$

bleibt mit Ausnahme des Wertes bei 0° stets unter dem Betrag von 0,1 WE.

Anhang.

Tafel I.

1.	2.	3.	4.	5.	6.	7.	8.
Druck	Absolute	Volumen	Gewicht	Entr	'onie	e"_e'	Spez. Wärme
at	Tem-	von 1 ka	von 1chm	der Flüs-	des	5 5	an der
(kg/qcm)	peratur	Dampf	Dampf	sigkeit	Dampfes		Grenzkurve
		ebm	ka				
р	т	v ″	7 ″	s'	s"	r/T	c,"
0,02	290,3	68,126	0,01468	0,0616	2,0783	2,0167	0,478
0,04	301,8	35,387	0,02826	0,1004	2,0202	1,9198	0,479
0,06	309,0	24,140	0,04142	0,1240	1,9868	1,8628	0,480
0, 0 8	314,3	18,408	0,05432	0,1411	1,9631	1,8220	0,481
0,10	318,6	14,920	0,06703	0,1546	1,9449	1,7903	0,481
0,12	322,2	12,568	0,07956	0,1659	1,9300	1,7641	0,482
0,15	326,7	10,190	0,09814	0,1799	1,9121	1,7322	0,483
0,20	332,8	7,777	0,12858	0,1984	1,8890	1,6906	0,484
0,25	337,6	6,307	0,1586	0,2129	1,8711	1,6582	0,486
0,30	341,7	5,316	0,1881	0,2252	1,8566	1,6314	0,487
0,35	345,3	4,600	0,2174	0,2356	1,8444	1,6088	0,488
0,40	34 8 ,5	4,060	0,2463	0,2448	1,8336	1,5888	0,490
0, 50	353,9	3,2940	0,3036	0,2604	1,8159	1,5555	0,492
0,60	358,5	2,7770	0,3601	0,2734	1,8015	1,5281	0,494
0,70	362,5	2,4040	0,4160	0,2846	1,7895	1,5049	0,496
0,80	366,0	2,1216	0,4713	0,2944	1,7789	1,4845	0,498
0,90	369,2	1,9003	0,5262	0,3032	1,7698	1,4666	0,499
1,0	372,1	1,7220	0,5807	0.3111	1,7615	1,4504	0,501
1,1	374,8	1,5751	0,6349	0,3183	1,7541	1,4358	0,503
1,2	377,2	1,4521	0,6887	0,3250	1,7473	1,4223	0,504
I,4	381,7	1,2571	0,7955	0,3370	1,7352	1,3982	0,507
1,6	385,7	1,1096	0,9013	0,3475	1,7248	1,3773	0,510
1,8	389,3	0,9939	1,0062	0,3569	1,7156	1,3587	0,513
2,0	392,6	0, 90 06	1,1104	0,3655	1,7077	1,3420	0,516
2,5	399,7	0,7310	1,3680	0,3839	1,6903	1,3064	0,521
3,0	405,8	0,6163	1,6224	0,3993	1,6760	1,2767	0,526
3,5	411,1	0,5335	1,8743	0,4125	1,6640	1,2515	0,531
4,0	415,8	0,4708	2,1239	0,4242	1,6537	1,2295	0,536
4,5	420,I	0,4217	2,3716	0,4347	1,6445	1,2098	0,541
5.0	424.0	0,3820	2,6177	0.4442	1.6363	1.1021	0,546
5.5	427,6	0,3494	2,8624	0.4520	1,6200	1,1761	0,550
6,0	430,9	0,3220	3,1058	0,4609	1,6221	1,1612	0,554
6,5	434,I	0,2987	3,3481	0,4683	1,6158	1,1475	0,558
7,0	437,0	0,2786	3,5891	0,4753	1,6101	1,1348	0,561
7,5	430.8	0,2611	3,8204	0,4819	1,6048	1,1220	0,565
8,0	442.5	0,2458	4,0683	0,4881	1,5997	1,1116	0,568
8,5	445,0	0,2322	4,3072	0,4939	1,5949	1,1010	0,572
9,0	447,4	0,2200	4,5448	0,4995	1,5905	1,0910	0,575
9,5	449,7	0,2091	4,7819	0,5048	1,5863	1,0815	0,578
10,0	451.0	0,1993	5,018	0,5099	1,5822	1,0723	0,581
11,0	456,1	0,1822	5,489	0,5194	1,5748	1,0554	0,588
12,0	459,9	0,1678	5,960	0,5282	1,5678	1,0396	0,593
13,0	463,6	0,15565	6,425	0,5364	1,5616	1,0252	0,598
14,0	467,0	0,14515	6,889	0,5440	1,5557	1,0117	0,603
15,0	470.2	0,13601	7,352	0,5513	1,5504	0,9901	0,608
16,0	473.3	0,12797	7,814	0,5581	1,5452	0,9871	0,614
18,0	479,1	0,11450	8,734	0,5707	1,5359	0,9652	0,623
20,0	484,3	0,10365	9,648	0,5821	1,5274	0,9453	0,632

Tafel II.

1.	2.	3.	4.	5.	6.	7.	8.
Druck	Tem-	Wärm	einhalt	Energie	Verdamp-	u"	AP(v" v')
at	peratur	der Flüs-	des	des	fungs-		
(kg/qcm)		sigkeit	Dampfes	Dampfes	wärme		
			-		i'' - i' =		
р	t	ľ	i″	u"	r	Q	Ψ
0,02	17,3	17,3	602,9	571,0	585,5	553,6	31,01
0,04	28,8	28,8	608,3	575,I	579,4	546,3	33,15
0,06	36,0	36,0	611,6	577,7	575,6	541,7	33,92
0,08	41,3	41,4	614,1	579,6	572,7	538,2	34,49
0,10	45,6	45,7	616,0	581,1	570,4	535,4	34,94
0,12	49,2	49,3	617,7	582,3	568,4	533,I	35,32
0,15	53,7	53,8	619,7	583,9	565,9	530,I	35,79
0,20	59,8	59,9	622,4	586,0	562,6	526,1	36,42
0,25	64,6	64,8	624,6	587.7	559.8	522.0	36.02
0,30	68,7	68,9	626,4	589,1	557.5	520,2	37.34
0.35	72.3	72.5	628,0	500.3	555.5	517.8	37.70
0,40	75,5	75,7	629,4	591,3	553.7	515,6	38,02
0.50	80.9	81.2	631,7	503.I	550.5	512.0	38.56
0,60	85.5	85.8	633.7	504.6	547.8	508.8	30.01
0.70	89.5	80.0	635.3	505.0	545.5	506.1	30.20
0.80	03.0	03.5	636.8	507.0	542.2	502.6	20 72
0,90	96,2	96,7	638,1	598,1	541,4	501,4	40.03
I.0	00.1	00.6	630.3	500.0	520.7	400.4	40.20
1.1	101.8	102.3	640.7	500.8	528 T	407 5	40,50
1.2	104.2	104.8	641.3	600.5	526.5	49753	40,55
I.A	108.7	100.4	643.1	601.0	5227	493,7	40,70 AT 18
1.6	112.7	112.4	644.7	602.0	521.2	480.7	41,10 AT 54
1,8	116,3	117,1	646,0	604,1	528,9	487,1	41,85
2,0	119,6	120.4	647,2	605.1	526.8	484.7	42.14
2,5	126,7	127.7	649.9	607.1	522.2	470.4	42.74
3.0	132,8	133.0	652,0	608.7	518.1	474.0	42.22
3.5	138,1	130.4	653.8	610.1	514.5	470.8	42.65
4,0	142,8	144.2	655.4	611.3	511.2	467.2	44.01
4,5	147,1	148,6	656,8	612,4	508,2	463,9	44,33
5,0	151,0	152,6	658,1	613,3	505.5	460.8	44.61
5,5	154,6	156,3	659,2	614,2	502.9	458.0	44.87
6,0	157,9	159,8	660,2	615,0	500.4	455.3	45.10
6,5	161,1	163,0	661,1	615,7	498.1	452.8	45.32
7,0	164,0	166,1	662,0	616,3	495,9	450,4	45,51
7,5	166,8	168.9	662,8	616.0	403.0	448.2	45.67
8,0	169,5	171,7	663,5	617,5	401.8	446.0	45.86
8,5	172,0	174,3	664,2	618,0	489.9	443.0	46.02
9,0	174,4	176,8	664,9	618,5	488.1	441.0	46.17
9,5	176,7	179,2	665,5	619,0	486,3	440,0	46,30
10,0	178,9	181,5	6 66, 1	619,4	484,6	438.2	46.43
11,0	183,1	185,8	667,1	620,2	481,3	434,6	46,67
12,0	186,9	189,9	668,1	620,9	478,2	431,3	46,88
13,0	190,6	193,7	668,9	621,6	475,3	428,2	47,08
14,0	194,0	197,3	669,7	622,2	472,5	425,2	47,26
15,0	197,2	200,7	670,5	622,7	469,8	422,4	47,43
16,0	200,3	203,9	671,2	623,2	467,3	419,7	47,58
18,0	206,1	210,0	672,4	624,1	462,4	414,6	47,85
20,0	211,3	215,5	673,4	624,9	457,9	409,8	48,08

Tafel III.

1.	2.	3.	4.	5.	6.	7.	8.
Tem-	Druck	Druck	Volumen	Gewicht	Entr	opie	s" e'
neratur	at	mmHa	von 1 kg	von 1chm	der Flüs-	des	3 3
porutai	(ka/acm)		Damnf	Damof	sinkeit	Dampfes	
1	(chm	ka			
•				•• •	e'	e"	r/T
	P		V	7			
0	0.0063	4.60	204.07	0.00488	0,0000	2,1783	2,1783
5	0.0080	6.53	146.03	0.00681	0,0182	2,1479	2,1297
10	0.0125	0.17	106.62	0.00038	0,0360	2,1188	2,0828
15	0.0173	12.70	78.23	0.01278	0,0535	2,0909	2,0374
20	0,0236	17,40	58,15	0,01720	0,0707	2,0643	1,9936
25	0.0320	23,6	43.067	0,02290	0.0877	2,0389	1,9512
30	0.0420	31,5	33,132	0,03018	0,1044	2,0146	1,9102
35	0.0560	41,8	25,393	0.03938	0,1208	1.9912	1,8704
40	0,0747	54,9	19,650	0,05089	0,1369	1,9688	1,8319
45	0,0971	71,4	15,346	0,06516	0,1528	1,9474	1,7946
50	0,125	92,0	12,091	0,08271	0,1685	1,9268	1,7583
55	0,160	117,5	9,607	0,10409	0,1839	1.9070	1,7231
60	0,202	148,8	7,695	0,12995	0,1991	1,8880	1.6889
65	0,254	186,9	6,211	0,16100	0,2141	1,8697	1,0556
70	0,317	233,1	5,050	0,19800	0,2289	1,8522	1,6233
75	0.302	288.5	4,1353	0,2418	0,2435	1,8352	1,5917
80	0,482	354,6	3,4085	0,2934	0,2579	1,8189	1,5610
85	0.589	433,0	2,8272	0,3537	0,2721	1.8031	1,5310
90	0,714	525,4	2,3592	0,4239	0,2801	1,7879	1,5018
95	0,862	633,7	1,9797	0,5051	0,2999	1,7731	1,4732
100	1,033	760	1,6702	0,5987	0,3130	1,7589	1,4453
105	1,232	906	1,4166	0.7059	0,3271	1,7452	1,4181
110	1,462	1075	1,2073	0,8283	0,3404	1.7319	1,3915
115	1,726	1 26 9	1,0338	0,9673	0,3536	1,7190	1,3054
120	2,027	1491	0,8894	1,1243	0,3666	1,7064	1,3398
125	2,371	1744	0,7681	1,3018	0,3795	1,6943	1,3148
130	2,760	2030	0,6664	1,5005	0,3922	1,0824	1,2902
135	3,200	2354	0,5800	1,7241	0,4048	1,0710	1,2002
140	3,695	2718	0,5071	1,9719	0,4173	1,0599	1,2420
145	4,248	3125	0,4450	2,2471	0,4290	1,0490	1,2194
150	4,868	3581	0,3917	2,553	0,4418	1,6384	1,1966
155	5,557	4088	0,3460	2,890	0,4538	1,6280	1,1742
160	6,323	4651	0,3065	3,262	0,4658	1,6181	1,1523
165	7,170	5274	0,2724	3,671	0,4776	1.6082	1,1300
170	8,104	5961	0,2429	4,117	0.4893	1,5986	1,1093
175	9,131	6717	0.2171	4,607	0,5009	1.5893	1,0884
180	10,258	7546	0,1945	5,140	0,5124	1,5802	1,0578
185	11,491	8453	0,1748	5,720	0,5238	1,5713	1,0475
190	12,835	9442	0,1575	6,348	0,5351	1,5626	1,0275
195	14,300	10519	0,1423	7,028	0,5463	1,5541	1,0078
200	15,890	11688	0,1288	7,763	0,5574	1,5458	0,9884
l	1	1	J		1	J	1

Tafel IV.

1.	2.	З.	4.	5.	6.	7.	8.
Tem-	Wärmeinhalt		Diff.	Energie	Verdamp-	(u"	AP(v" v')
peratur	der Flüs-	des		des	fungs-	(
-	sigkeit	Dampfes		Dampfes	wärme	=	_
	_				(i''-i')=		
t	ï	i″		u"	r	e	ψ
0	0	594.7		564.7	594.7	564.7	30.02
5	5,0	597,1		566,5	592,1	561,5	30,56
10	10,0	599,4	4,74	568,3	589,4	558,3	31,11
15	15,0	601,8		570,1	586,8	555,1	31,65
20	20,0	604,1	4,71	571,9	584,1	551,9	32,19
25	25,0	606,5		573,7	581,5	548,7	32,74
30	30,0	608,8	4,67	575,5	578,8	545,5	33,28
35	35,0	611,1		577,3	576,1	542,3	33,81
40	40,1	613,5	4,63	57 9 ,1	573,4	539,1	34,34
45	45,1	615,8		580,9	570,7	535,8	34,88
50	50,1	618,0	4,58	582,6	567,9	532,5	35,41
55	55, I	620,3		584,4	565,2	529,3	35,93
60	60,1	622,6	4,52	586,1	562,4	526,0	36,45
65	65,2	624,8		587,8	559,6	522,7	36,96
70	70,2	627,0	4,44	589,5	556,8	519,3	37,47
75	75,3	629,2		591,2	553,9	516,0	37,97
80	80,3	631,3	4,34	592,8	551,0	512,6	38,47
85	85,3	633,5		594,5	548,1	509,3	38,96
90	90,4	635,6	4,23	59ó, I	545,2	505,7	39,45
95	95,5	637,6		597,7	542,2	502,2	39,92
100	100,5	639,7	4,09	599,2	539,I	498,7	40,39
105	105,6	ó 4 1,7		600,3	536,1	495,2	40,85
110	110,7	643,6	3,95	602,3	532,9	491,6	41,30
115	115,8	645,5		603,8	529,8	488,0	41,74
120	120,9	647,4	3,79	605, 2	526,6	484,4	42,17
125	126,0	649,2		606,6	523,3	480,7	42,59
130	131,1	651,0	3,63	608,0	520,0	477,0	43,00
135	136,2	052,8		609,3	510,6	473,2	43,41
140	141,3	054,5	3,45	610,6	513,2	469,4	43,80
145	146,4	656,1		611,9	509,7	465,5	44,18
150	151,6	657,8	3,27	613,1	506,2	461,6	44,55
155	156.7	659,3		614,3	502,6	457,7	44,90
160	161,9	660,8	3,07	615,4	498,9	453,7	45,25
165	167,1	662,3		616,5	495,2	449,6	45,58
170	172,2	663,7	2,86	617,6	491,4	445,5	45,90
175	177,4	665,0		618.0	487,6	441,4	46,20
180	182,6	666,3	2,60	619,6	483,7	437,2	46,49
185	187,9	667,6		620,6	479,8	433,0	46,78
190	193,1	668,8	2,48	621,5	475,7	428,7	47,05
195	198,3	670,0		622,3	471,7	424,4	47,31
200	203,6	671,1	2,27	623,2	467.5	420,0	47.56

Tafel V.

t	B	3	G	t	¥	3	ଞ
0	0,075	8	0,021	225	0,0101	1,00	0,00159
5	0,071	7	0,020	230	0,0098	0,97	0,00152
10	0,067	7	0,018	235	0,0095	0,94	0,00146
15	0,063	6	0,017	240	0,0092	0,91	0,00139
20	0,059	6	0,016	245	0,0089	0,88	0,00134
25	0,056	6	0,015	250	0,0086	0,85	0,00128
30	0,053	5	0,014	255	0,0083	0,82	0,00123
35	0,050	5	0,013	200	0,0081	0,79	0,00118
40	0,048	5	0,012	205	0,0078	0,77	0,00113
45	0,045	5	0,011	270	0,0070	0,75	0,00109
50	0,043	4,3	0,0103	275	0,0074	0,72	0,00105
55	0,041	4,I	0,0097	280	0,0071	0,70	0,00101
60	0,039	3,9	0,0091	285	0,0069	0,68	0,00097
65	0,037	3,7	0,0085	290	0,0067	0,66	0,00093
70	0,035	3,5	0,0080	295	0,0065	0,64	0,00090
75	0,033	3,4	0,0075	300	0,0063	0,62	0,00086
80	0,032	3,2	0,0070	305	0,0062	0,60	0,00083
85	0,030	3, I	0,0066	310	0,0060	0,58	0,00080
90	0,029	2,9	0,0062	315	0,0058	0,57	0,00077
95	0,028	2,8	0,0059	320	0,0057	0,55	0,00074
100	0,0265	2,66	0,00554	325	0,0055	0,53	0,00072
105	0,0255	2,55	0,00524	330	0,0053	0,52	0,00069
110	0,0243	2,44	0,00494	335	0,0052	0,50	0,00067
115	0,0232	2,35	0,00468	340	0,0051	0,49	0,00064
120	0,0223	2,24	0,00442	345	0,0049	0,48	0,00062
125	0,0214	2,14	0,00418	350	0,0048	0,46	0,00060
130	0,0205	2,06	0,00397	355	0,0047	0,45	0,00058
135	0,0197	1,97	0,00376	360	0,0046	0,44	0,00050
140	0,0189	1,89	0,00357	365	0,0044	0,43	0,00054
145	0,0181	1,82	0,00339	370	0,0043	0,41	0,00052
150	0,0174	1,75	0,00321	375	0,0042	0,40	0,00051
155	0,0168	1,68	0,00306	380	0,0041	0,39	0,00049
160	0,0161	1,61	0,00291	385	0,0040	0,38	0,00047
165	0,0155	1,55	0,00277	390	0,0039	0,37	0,00040
170	0,0149	1,49	0,00263	395	0,0038	0,36	0,00044
175	0,0144	1,44	0,00251	400	0,0037	0,35	0,00043
180	0,0139	1,38	0,00239	405	0,0036	0,34	0,00042
185	0,0134	1,33	0,00228	410	0,0035	0,33	0,00040
190	0,0129	1,29	0,00217	415	0,0034	0,33	0,00039
195	0,0124	1,24	0,00208	420	0,0034	0,32	0,00038
200	0,0120	1,20	0,00198	425	0,0033	0,31	0,00037
205	0,0116	1,15	0,00189	430	0,0032	0,30	0,00036
210	0,0112	1,11	0,00181	435	0,0031	0,29	0,00035
215	0,0108	1,08	0,00173	440	0,0031	0,29	0,00034
220	0,0105	1,04	0,00166	445	0,0030	0,28	0,00033
225	0,0101	1,00	0,00159	450	0,0029	0,27	0,00032

Additional information of this book

(Neue Tabellen und Diagramme für Wasserdampf;

978-3-662-23250-7) is provided:

http://Extras.Springer.com