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PREFACE TO FIRST EDITION

In all books on stress calculation, save the very elementary, the
discussions of the earlier parts of the subject seem to be inadequate to
the needs of the student who meets it for the first time. On the other
hand, a book which deals fully with the elementary principles probably
does not go sufficiently far for the student who is reading for an honours
degree. My object here has been to produce a book with which the
honours candidate can begin and complete his studies. To this end I
have dealt with the elementary conceptions at some length, for it is at
the beginning that difficulties of understanding arise. As the more
advanced parts of the book are reached, I have reduced the elaboration
of detail, on the assumption that a man who is good enough to read
these parts at all, will be capable of following the work with less help
from the author.

Again, it seems to me that, in most existing books, the examples too
often are only exercises in algebraic substitution. I have endeavoured
to remedy this, somewhat, by including examples which make some
demand on the thinking powers of the student.

The practical engineer, if he require a textbook for reference, wants
it to be as complete as possible. For this reason I have included many
items not usually found in textbooks on Strength of Materials, hoping
that this will increase the value of the book for those whose lot is to deal
with the more unusual type of stress problem which occasionally arises
in the drawing office. Sometimes considerations of space have militated
against a full treatment of some branch of the subject ; in these instances
I have included many useful results among the examples at the ends
of the chapters. These harder examples thus serve two purposes : they
afford profitable exercises for the advanced student, and they constitute
a scattered collection of formule which will be useful to those who have
neither the time nor inclination to prove them. If a reader cannot find
a particular problem worked out in the text, he should search the examples
for a formula that meets his requirements. This will be facilitated by
reference to the exhaustive index at the end of the book.

For the most part it has seemed better, for ease of arrangement, to
develop each part of the theory as far as it is to be carried at all in this
book. But the student will be well advised, for a first reading, to take
only certain selected passages. For the benefit of those who may not be
happily placed in regard to assistance, I give,at the end of the contents,
what I consider to be a good programme of reading.
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vi PREFACE

I have deliberately omitted all matter dealing with the experimental
branches of the subject, for this is now so highly developed as to demand
a separate textbook in itself. For the same reasons I have not touched
on the metallurgical aspects of the strength of materials, with the
exception of a few remarks on fatigue in the final chapter.

During the last few years a vast amount of new work has been done,
considerably increasing the powers of the stress-calculator; I have
included here the most useful results of modern research.

I owe a very large debt of gratitude to the many gentlemen who
have given me assistance in the laborious and tedious work of checking
the manuscript and proofs. The manuscript of the first seventeen
chapters was read by Mr. G. Upjohn, B.A., of Trinity College, Cambridge,
to whom I am also indebted for many valuable suggestions on matters
of detail. 1 must also express my thanks to Mr. J. W. Blomfield, also
of Trinity College, Cambridge, for reading some of the MS. of these
carly chapters. The manuscript of the last sixteen chapters was mainly
recad by Mr. H. A. Webb, M.A,, of Trinity College, Cambridge, who
assisted me by many helpful suggestions and criticisms, and by allowing
me to include certain pieces of work which were done by him in the
first place. At the same time I acknowledge with gratitude the careful
checking of the details, of much of this part of the book, by Mr. W. A,
Green, B.Sc.. AM.I.N.A. The very thankless task of proof-reading was
generously undertaken by Instructor Lieut.-Commander A. E. Hall,
O.B.E., AR.CS., R.N., whose labours have been untiring.

I am also indebted to the Editor of The Engineer for permission
to reproduce the diagram which forms Figure 390.

Finally, I should like to express my very great appreciation of the
great care and trouble which the publishers have taken in the production

of the book.
JOHN CASE.

PREFACE TO SECOND EDITION

The author expresses his appreciation of the reception given to the
first edition of this work, and has taken advantage of the opportunity,
afforded by the publication of a second edition, to correct errors, and to
add some recent examples and footnotes. A slight alteration has been
made to the chapter on bending moments, and the symbol w has replaced
p to denote weight per unit volume, as the latter symbol is so generally
used to denote mass per unit volume. The author hopes that these
small alterations will increase the general utility of the book.

J. C
July, 1932.
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CHAPTER I
DIRECT STRESSES

1. The Purpose of the Theory of Stresses.—When an engineer
embarks upon the design of any machine or structure, it is essential that
he should use every means in his power to ensure that the material real-
ization of his design shall not break or collapse. Itisthe theory of stress
calculation, aided and verified by experiment, which enables the designer
to estimate the strength of his machine before it is built. Unfortunately,
several obstacles combine to prevent the exact calculation of strength in
many cases : first an imperfect knowledge of the forces at work, secondly
the failure of mathematical processes to deal with some particular
problem, thirdly an incomplete understanding of the physical properties
of the materials employed, and, fourthly, the difference between the
properties of the materials of the practical world and those assumed as
a basis of all our theory. For instance, in the case of an aeroplane, our
knowledge of the distribution of air pressure over the surface of the
wings is very limited ; at present mathematical theory does not enable
us to calculate exactly the strength of the crankshaft of a motor car.
However, in spite of these limitations and difficulties, the engineer of
to-day can, if he wish, form a very good idea of the strength of any
design he may create, and, in very many instances, calculate it with great
accuracy. The fact of being able to do this has a definite commercial
value, apart from considerations of safety, for it saves the unnecessary
expenditure of material which occurs when parts of a machine are made
stronger than they need be.

2. Definitions of Load and Stress.—Any member of a machine
or structure has usually to withstand the action of certain external
applied forces; these forces constitute the *“load ” on the member.
For example the load on the piston rod of a steam engine is the force due
to the steam pressure on the piston ; the load on a railway bridge is the
weight of a train passing over it and the weight of the bridge itself ; the
load on the propeller shaft of a ship consists of the twisting moment
applied by the engine, the thrust exerted by the water on the propeller,
and its own weight.

The simplest kind of load we can have is a direct pull or push, or, in
more technical language, a direct tension or compression. As an instance
of the former we might take the lifting rope of a crane, and of the latter

1



2 STRENGTH OF MATERIALS

the piston rod of an engine during the out-stroke. In each case there is
a force applied at one end of the member which must be balanced by an
equal and opposite force at the other end : the pull applied by the wind-
ing engine to the crane rope is balanced by the weight of the load at the
other end; the steam pressure on the piston acting on one end of the
piston rod is balanced by the thrust of the connecting rod at the other
end and the inertia forces.

Now this balance must be maintzined throughout the length of the
member.

p<—{A B}————»p

QA1T-TO

Fia. 1.

Suppose we have a rod AB (Fig. 1) and apply to each end equal and
opposite tensions P ; imagine a chalk mark made at C, then it is clear
that the parts AC and CB must be pulling each other with a force equal
to P. The part AC is in equilibrium under the action of the external
force P at 4 and an equal force applied by the part CB. Similarly
the part CB is in equilibrium under the action of P at B and the equal
force at C applied by the part AC. This argument will hold good
wherever we make the mark C. Thus, across every imaginary section
of the rod perpendicular to the axis there is a resultant force P. These
internal forces, whatever their nature, which are applied by one part
of a body to the neighbouring parts, are collectively referred to as
* stresses.” If the rod is in tension the stress is called a fensile stress
and is then usually considered positive. Referring again to Fig. 1, if
the applied forces are thrusts, the action between any two neighbouring
lengths of the rod will be a push: in other words the rod is in com-
pression ; the stresses are called compressive siresses and are usually
reckoned negative. Tensile and compressive stresses are together
referred to as direct stresses.

The whole action 6f one part of the body on the other, over a plane
section, is sometimes referred to as the “ total stress ”’ on that section ;
we can thus define the total stress as the internal forces which, when
applied to the section, will balance the external forces on one side of the
section.

3. Measurement of Stress.—When we wish to give the stress a
numerical value it is desirable, for purposes of comparison, to refer to
the stress in relation to the area of the cross section, since it is to be
expected, and can easily be verified by experiment, that the total tension
which a rod can bear without breaking will be proportional to the area
of the cross section. The total force acting on a section, divided by the
area of that section, is called the stress ¢ntensity or, more often, simply
the stress.*

* In future when we use the word *‘ stress ’ without qualification it must be

understogd to mean ‘‘ intensity of stress.”



DIRECT STRESSES 3

Thus, if P = total force or total stress acting on a cross section,
S = the area of that section,
p = the intensity of stress on that section,

then

p

p=§........(l)

The stress on any section of a body may or may not be the same all
over, and we shall frequently meet instances where it will be necessary
to speak of the stress at a point, when each unit of area is not trans-
mitting the same amount of stress. In such cases we adopt the following
conception : let 68 be a small area enclosing a point 4 in which we are
interested, and let 6P be the total stress action, or force, across the area
88, between the parts of the body on either side of it ; then in general
the ratio 6P/68 will tend to a finite limit as 48 is indefinitely decreased ;
the value of this limit is taken as the stress intensity at the point A.

In England and America it is usual to measure the load in pounds
or tons weight, and the areas in square inches, so that stresses are expressed
as lbs./in.2 or tons/in.2

There are many instances, less obvious than the above, where the
stress in the material is purely tensile, such as rotating rings : these
will be considered later.

4. Strain.—When a body is subjected to the action of forces it is
found that a certain deformation takes place : the shape and dimensions
of the body are altered. This deformation is referred to as ‘‘ strain.”
It is important that the student should clearly grasp the essential
difference between stress and strain : the former partakes of the nature
of a force, and is the cause of strain, which is purely geometrical in its
manifestation.

5. Measurement of Strain in Tension and Compression.—If
a rod of length I extend an amount 6!, the longitudinal strain of the rod
is reckoned as the increase of length per unit length. That is, if e denote
the strain,

e= (2)
Since all the strains with which our theory deals are very small, so that
ol is very small compared with I, we can, when more convenient, take

ol
¢ =7

If the rod be under compression the strain is specified in the same way,
except that 4/ measures the contraction of length, and will be reckoned
negative.

It must be noted carefully that strain is not an increase or decrease
of length, but a ratio, that is a non-dimensional quantity.

6. Hooke’s Law forms the basis of the whole of the mathematical
theory of elasticity : it states that when the load increases or decreases

8l
1



4 STRENGTH OF MATERIALS

the strain increases or decreases by a proportional amount, and that
when the load is removed altogether the strain is reduced to zero. This
law is obeyed by the majority of solid bodies within certain limits, the
most notable exceptions being cast metals.
7. Young’s Modulus.—From Hooke’s Law we have the relation
stress = strain X a constant.

The constant here mentioned is found to be the same for a given material
whatever be the size or shape of the body made of this material ; it is
called Young’s Modulus of Elasticity and is usually denoted by X in this
country. Since strain is a non-dimensional quantity it follows that
Young’s Modulus has the same dimensions as stress, and is therefore
measured in the same units, viz. 1bs./in.2, etc.

We can now write

_ direct stress _D 3)
" corresponding strain e
From (1), (2) and (3) we have
Ip p*
l=el=_—=_——— . . . . . . 4
“TEES @

which expresses the extension or contraction of a rod in terms of its
dimensions, the total load, and Young’s Modulus.

For most materials Young’s Modulus has the same value in tension
and compression.

Example 1.—The piston of a steam-engine is 16” diameter, and the
piston rod 2-25” diameter. The steam pressure is 150 Ibs./in.? Find

the stress in the piston rod and elongation of a length of 307, taking
E = 30 x 10° 1bs./in.?, when the piston is on the in-stroke.

The net area of the piston = %(256 — 5:06) in.? = 197 in.?
The total load on the piston rod = 197 in.? x 150 lbs./in.?
= 29,500 lbs.
The area of the piston rod = 398 in.2
. . 29,500 lbs.
.*. the stress in the piston rod = EXTITRE

i

7,400 1bs. /in.®
30” x 7,400 1bs./in.?
30 x 108 lbs./in.?

Example 2.—The wire working a signal is 2,000 ft. long and "
diameter. Assuming a pull on the wire of 400 lbs., find the movement
which must be given to the signal box end of the wire if the movement at
the signal end is to be 7. Take £ = 30 x '10¢ lbs./in.?

The area of the cross section of the wire = 0-0276 in.?

The extension of the wire, by equation (4),

2,000 ft. x 400 lbs. 800,000 x 12 .
= 30 x 10° Ibs./in.* x 00276 in.® _ 0-828 x 10¢ '™
= 11-6".

.. the signal box end of the wire must move 18-6”.

= 0-0074".

By formula (4) the elongation =

* If we take the second expression for e above, we get 8l = e(l -+ 8l) = el + edl,
and the last term is of the second order of small quantities and is negligible.
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Example 3.—A circular rod of steel §” diameter is placed in a testing
machine and it is found that when the tension is 1'1 ton, the total extension
on a 12”7 length is 0-01”. Find the value of E.

Area of cross section = 0-1105 in.?

1-1 tons
The stress = mz
. 0-01 in.
The strain = W
stress 1-1 tons X 12 in.
= = i 1 2
strain 01105 in.? x 001 in, — 11,940 tons./in.
Example 4,—Fig. 2 shows the dimensions of a big-end bolt for the

connecting rod of a large marine engine.

N P
L M
H- '«
R
S
n
i

L

D Q
Fia. 2.

<~ 425" >
1

The pull on the ends is P = 45 tons. Taking E = 13,500 tons/in.?, find
the extension of the length PQ.
S, = Area of cross section, 41" diam. = 14-19 in.?
l; = Total length of this section 16-00 in.
S, = Area of cross section, 3%” diam. 11-79 in.?
1, = Total length of this section = 11-00 in.

P LP P(é zz)

(!

Then the elongation of PQ = ES. + Y. " E\S g
1 10 2 71 72
45 tons v_lﬁ”é 11”7 )
= 13,500 tons,/in.® (14-19 int T 11779 in.®
45 , 16 11y .
= 135001219 T Tr7g) B = 000687 in.

8. Stress-Strain Diagrams.—These are usually drawn by plotting
a graph, using strains as abscisse and the corresponding stresses as
ordinates, and the diagrams most frequently employed are those ob-
tained by tests on straight rods under tension. The shape of the
curve obtained depends greatly on the material under test and the
method of testing, and for full information on testing the reader is re-
ferred to works on the testing of materials and articles in the technical
Press.

In Fig. 3, (i) shows a typical stress-strain curve obtained by the use of an
extensometer, with the ordinary methods of attaching it and of holding
the specimen, for mild steel or wrought iron. From O to A the graph is
a straight line, the material obeying Hooke’s law; 4 is the limit of propor-
tionality. From A to B there is a range of imperfect elasticity, and, if the
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load be removed, some of the strain will remain as permanent set, i.e. will
not disappear. At B ““ yield ’ occurs, the material stretching consider-
ably withont increase of load. At this stage the material will begin to flow,

D
F
o F
v \
A
@ (i1)
(1] Strain 0

Fic. 3.

i.e. become plastic, and a visible neck will begin to form (Fig. 4). From
B onwards, the strain increases rapidly with increase of load and the speci-
men eventually hreaks. The stress is usually estimated by dividing the

L J

Fia. 4,

load by original area of the cross section. When the section is consider-
ably decreased, a smaller load may produce a greater actual stress; but
this load, when divided by the original area will show a decreased stress.
Thus the diagram may bend over as DE. The stress plotted in this way
is the “nominal ”* stress. 1If the load be divided always by the actual
minimum cross sectional area, corresponding with that load, the graph
will rise from C all the time.

Fig. 3 (ii) shows the earlier stages of the graph obtained when special
care is taken to ensure axial loading and to avoid local concentration of
stress.®

The portion OF is perfectly straight, and at F occurs the “ higher yield
point.”” This point is shown by a sudden change in the appearance of the
polished surface of the specimen, characteristic of yield: what are known
as Liider’s lines become noticeable. If now, the load be removed and
again applied gradually until this marking begins to spread, it is found
that creep will begin at a stress considerably below the higher yield point.
This stress is the ¢‘ lower vield point.” It is usually not possible to obtain

* See Report of British Association on Stresses in Overstrained Materials (1931).
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any points on the graph between F and H. After H the graph proceeds
as from B in Fig. 3 (i). In less careful tests the existence of the higher
yield point is obscured by the presence of local stress concentrations, and
the ““yield point” found corresponds with the lower yield point in a
careful test. For commercial purposes the lower yield point is gener-
ally the more important, since absolute uniformity of stress distribution
and the absence of local stress concentrations can rarely, if ever, be
ensured.

With materials other than mild steels and wrought irons the graph will
follow the same general shape, except that the limit of proportionality
may not be clearly marked or may be zero, and the same remark applies
to the yield point.

9. Magnitudes of Stresses and Strains.—The following figures will
give the reader an idea of the magnitudes with which he will have to
deal in the study of stresses. In general these run to two extremes :
Young’s Modulus is a large quantity when measured in any of the
common units ; strain, within the limits of linear elasticity or even just
below the yield point, is a very small quantity, whilst stresses are of more
ordinary magnitude. For instance, for mild steel, Young’s modulus is
about 13,500 tons per square inch, the strain will be about 0-00112 with
a stress of about 15 tons per square inch, the yield point being perhaps
about 17 or 18 tons per square inch. If a mild steel bar of one square
inch section, and twelve inches long, be pulled with a force of 15 tons
the elongation will be 0-0132 inch, about. In practice the strain will
never exceed 1/1000.

As further illustration it may be mentioned that the ultimate strength
of ordinary mild steel is about 30 tons/in.%, that of piano wire about
120 tons/in.?%, brass about 15 tons/in.%, timber about 2 to 8 tons/in.Z,
all in tension.

10. Limitations and Scope of Mathematical Theory.—In the
following pages we develop the theory of the strength of solid bodies
under various conditions of loading, and it is important that the reader
should have clear in his mind the assumptions that are tacitly made
hereafter, and the consequent limitations imposed on the application of
the theoretical results.

In the first place the material is assumed to be homogeneous and
tsotropic. The former of these terms is sufficiently well understood to
need no explanation here ; the second implies that the elastic properties
of the material are the same in all directions. No actual materials
within our experience are isotropic, but most metals closely approach
isotropy. Timber on the other hand is far from isotropic : the elastic
properties in directions radial or tangential to the annual rings differ
between themselves and from the properties in the longitudinal direction
of growth.

Secondly the material is assumed to obey Hooke’s Law. This is
almost exactly true within the working limits for certain metals,
such as wrought iron and steel, but many other materials, such as
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cast iron, stone, etc., do not obey the law for any measurable strain.

The strains are supposed to be so small that their squares and products
can be neglected, and it is unlikely that this leads to any serious error.
It is also assumed that the strains are within the limits of perfect elasticity,
i.e. that the strain disappears on removal of the load ; in practice the
limits are in reality extremely narrow, although the ‘‘ sets > which occur
below the limit of linear elasticity are so small as to be negligible.

It is further assumed that the loads are applied gradually from an
initial state of zero stress.

In spite of these assumptions the theory of stresses is able to yield
extremely valuable results. For instance a theory of the stresses in
beams or girders is given below, all the above assumptions and certain
others as well being made; when these results are applied to beams
made of wood, a material which has none of the assumed properties,
the results agree remarkably well with experiment. Theory is able to
predict such phenomena as the increase of stress at the sharp corners of
keyways in shafts, or due to the presence of flaws ; it can indicate when
certain members are likely to fail by buckling, and many other striking
results. So that, although we know that our assumptions are more or
less untrue, their use is amply justified by the results.

One fact, however, must always be remembered, that the formulae
developed will not indicate at all what will happen when the yield point
is reached.

In attempting to solve new problems, their mathematical complexity
frequently drives us to add considerably to the list of assumptions, and
any new results which may be obtained must always be verified by
experiment before they can be taken as established.

Most usually the problem before the engineer is this : he knows the
nature and magnitude of the loads which a particular member must be
designed to stand, he knows the material of which itisto be made ; what
must be the dimensions in order that it may be strong enough * Accord-
ing to the working conditions and the material, a certain maximum
limit, obtained as the result of experiments, such asreferred to in §8, will
be imposed upon the stress ; the theoretical methods given below enable the
engineer to calculate his dimensions so that this stress is not exceeded.
Thus the subject of the strength of structures and machines has two
aspects : the mathematical, which enables us to calculate the stresses
under given circumstances, and the experimental which shows us the
limits which must not be exceeded by the stresses, and by which new
theories and formulee are verified.

Other considerations, such as cost, ease of manufacture, etc., may
influence the design, but that is not our concern here.

11. Factor of Safety and Working Stress.—The greatest
estimated stress in any part of a machine or structure is called the working
stress on that part. This will be a certain fraction of the ultimate break-
ing strength of the material, and the value of the ratio

ultimate strength

working stress
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is called the factor of safety ; its selection depends on the judgment of
the designer if not laid down by law. At the same time of course the
working stress must be kept below the elastic limit.

The factor of safety varies greatly according to circumstances, such
as the nature of the stresses, whether these are constant or fluctuating,
liability to corrosion, possible effects of bad workmanship, non-uniformity
of material, the probable accuracy of the calculated loads and of the
method of calculation, and so on. The factor of safety will usually not
be less than three and may be as high as twelve.

12. Fluctuating Stresses.—In practically every machine at least
some of the parts are subjected to stresses which vary in a periodic
manner between certain limits, for instance the piston rod of a recipro-
cating engine is put into a state of tension and compression alternately
in every revolution of the crankshaft. In some cases the stress varies
between equal, or nearly equal, tensile and compressive values, in others
it is increased from zero to a maximum tension or compression, and then
decreased to zero, and the process is repeated periodically. In the former
instance we usually speak of alternating or reversed stresses. The
question which concerns us, in both cases, is : will it take the same load
to rupture the material under alternating or repeated stresses as under
a stress gradually applied once for all 2 The answer is a decided negative,
8o that it at once becomes important to know what alternating stress
will break a material.

We shall call the stress which, by one gradual application, breaks a
material, the ultimate statical strength of the material. It is found that
frequently repeated stresses of an intensity far less than the ultimate
statical strength will suffice to bring about rupture, if the number of
repetitions is large enough, and that if the stresses are reversed stresses,
an even smaller stress will break the material for a given number of
cycles. These phenomena are usually termed fatigue, and the range of
stress which, after an indefinitely great number of cycles, will not cause
fracture is called the fatigue range. Thus, if it were found that for a
certain material a stress of 25 tons per square inch was the largest stress
which could be repeated from zero an indefinitely large number of times
without causing rupture, we should say that the fatigue range for that
kind of fluctuating stress was 25 tons per square inch ; again if it appeared
that the stress could be alternated between the limits 4 10 tons per square
inch, we should say the fatigue range was 20 tons per square inch for
reversed stresses. We cannot, in an experiment, subject a material to
an infinite number of stress cycles, but we can obtain a curve such as
Fig. 5, and deduce from it the limiting value of the range to which the
curve is asymptotic, and take this as the true value of the fatigue range
for an infinite number of cycles. At the same time it is not yet certain
that there is any range which will ensure the material infinite life under
repeated or alternating stresses, It is common practice to specify
fatigue ranges for six million cycles, although they are sometimes stated
for one million, but this is certainly too few.

It is found that the range of stress is more important than the actual
B
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values of the stress, for instance Wohler found for a specimen of Krupp
axle steel, having a statical ultimate strength of 52 tons per sq. in., that
the limiting stress which could be repeated from zero was 26-5 tons per
sq. in., and that the limiting alternating stress was 4 14-05 tons per
sq. in.; the range in the first case was thus 26-5, and in the second
281, tons per sq. in.
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13. Principle of St. Venant.—In order to reduce a practical problem
to one which is capable of relatively simple mathematical solution we
frequently have to assume an ideal distribution of load which does not
obtain in practice. For example in considering the stresses in a uniform
rod under tension we assume that the load is distributed uniformly over
a cross section of the rod, whereas in reality it may all be applied to the
surface, which would be the case if the rod were being pulled by a hollow
socket into which it was brazed or soldered. In such cases we. find
comfort in a principle stated by St. Venant:* * According to this
principle, the strains that are produced in a body by the application,
to a small part of its surface, of a system of forces statically equivalent
to zero force and zero couple, are of negligible magnitude at distances
which are large compared with the linear dimensions of the part.” As
an illustration of the meaning of this we will consider the case of a rod
AB (Fig. 6) soldered into two sockets R and S, by means of which a

B P LIS

...............

Fia. 6.

tensile load is applied to the rod. In this case forces are applied to the
curved surface of the rod between the planes A and C, and the stress at
a point P between 4 and B will not be exacily the same as if the load were
evenly distributed across the plane 4. But when the distance 4P
excecds two or three times the greatest dimension of the cross section

* A. E. H. Love, Treatise on the Mathematical Theory of Elasticity, 2nd Ed.
p. 129.
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of the rod the effect on the strain at P will not be appreciable. For,
consider the part of the bar between 4 and C and suppose a uniformly
distributed load is applied to the cross section A, having a resultant
equal and opposite to the resultant of the forces applied to the curved
surface AC : the piece of rod AC will be in equilibrium, the applied
systems of forces are together equivalent to zero force and zero couple,
and we can conclude that the strains at P will be quite inappreciable
when AP exceeds a few times the greatest diameter of the cross section.*

Hence the argument amounts to this: the net result of applying a
distribution of force to the curved surface of AC (to the left, say), and a
uniformly distributed force to the cross section at A (to the right, say),
the two distributions having equal and opposite resultants, is that the
strains at a point P will be inappreciable. Therefore the difference
between the stress at P due to either distribution by itself can be dis-
regarded. The distribution over the curved surface is what really
happens, the uniform distribution is one with which we can deal in
calculation.

14. Initial Stresses.—It frequently happens that, before any load
is applied to some part of a machine or structure, it is already in a state
of stress. For instance the bolts holding down the head of the cylinder
of a steam engine are put into tension by tightening up the nuts; the
same remark applies to the bolts in a flanged coupling of a steam pipe,
or the big-end bolts of the connecting rod. In some of these cases we
have to take into account the relative rigidity of the bodies in question,
in others we need not. In the case of the cylinder head, this will deform
so little under the pressure of the nuts compared with the deformation
of the bolts that we can treat it as rigid, and the total intensity of stress
in the bolt, when steam is in the cylinder, will be the sum of the initial
stress and the stress due to the steam pressure. On the other hand, in
dealing with the flanged joint we must consider the elasticity of the
packing : any tension which is applied to the joint will be taken up
partly by extra tension in the bolts and partly by reduced compression
in the packing. The following example should show how such cases are
to be treated.

Example.—Two pieces 4 and B, shown in Fig. 7, fit freely into the
ends of a straight tube and are drawn together by a bolt and nut. The

T =,
//////////A m— V/////A Vi

P e — ——— 5" ;
— — — —— 20" —_
Fia. 7.

section of the tubular distance piece has the same area as the bolt, and they
are of the same material. The nut is initially screwed up so that the ten-
sion in the bolt is 5 tons. The pieces A4 and B are then subjected to forces

* This case has been investigated mathematically by L. N. G. Filon, Phil,
Trans., Vol. 198, A., pp. 147-233.
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of 3 tons tending to pull them apart. Calculate the resulting tension in
the bolt. (Intercoll. Exam., Cambridge, 1908.)

Let S in.? = cross sectional area of bolt or tube.

»» E tons/in.? = Young’s modulus.

1 . .
In screwing up the bolt the tube contracts OIL—S in. . (i)

It was remarked in § 5, p. 3, that we can, without sensible error, reckon
the stretches as fractions of the strained length, so that although the length
of the bolt between the nuts is altered by tightening up the latter, we may
take 20 in. as the length on which to estimate the strains due to the extra
load which is applied after tightening the nuts.

When the external load is applied let the tension in the bolt become T
tons.

2007 — 5
The extra extension of the bolt will be —(*ng—) in
The thrust in the tube will be 7' — 3 tons, so that the contraction of the
. 151" — 3) .
tube will be - ES in.

The decrease of the contraction from its previous value (i) is therefore
75 15(1 = 3)
ES ES 7
This must equal the extra extension of the bolt. Hence
5 15(7 —3)  20(T — 5)
ES T ES — ES
or 75 — 15(T — 3) = 20(T — 5)

which gives T = 6% tons.

15. Rods of Varying Section, and Distributed Axial Loads.—
Most cases of this nature are best dealt with graphically, and the method
should be sufficiently clear from the examples worked out below. In
some cases, e.g. Example 1 below, we do not have to resort to graphical
processes.

Example 1.—A straight steel rod of circular section, and 24” long,
rotates about an axis through one end perpendicular to its length. Take the
weight of steel as p = 0-283 pound per cubic inch, and E as 30 x 10¢1bs. /in.2,
and calculate what speed of rotation will produce a maximum stress of
5 tons/in.? in the rod, and what will then be the elongation of the rod.

Let w = the angular velocity of the rod in radians/sec.

S = the area of the cross section.

The weight of the rod per unit length = Sp.

Then the centrifugal force on an element of length da’, at a distance
pSE w? da

z’ from the axis of rotation, =

! = the length of the rod = 24 in.
Hence the tension 7' on a section distant z{x < «’) from the axis of rota-
tion is given by
i
S 'y 2 2
T = j”—xidx' =’"§—;’(12 — a?)

x
which is a maximum when z = 0.
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Therefore the maximum stress

T pw®® 0-283 lbs./in.? X 576 in.? X w? (secs.)—?

= — —0- 2 in 3
=5~ % 27X (322 X 12) ins./sec.? 0-211e* Ibs. /in.
If this = 5 tons/in.? we must have
5 x 2240
b J— —_———
®? = —451 53,100.
w = 231 radians/sec.
= 2,200 r.p.m.
Now, from above, the stress at distance & from the axis of rotation is
pwt(lt — z?)
2g

The extension of an element dz will be
po?(lt — xt)dx
29E
Hence the total extension will be

0-283 lbs./in.? x 53,100 (secs.)”% x 13,824 ir_x._?
"3 x (12 x 32-2) ins./sec.? x 30-10° Ibs./in.?
= 0-006” nearly.

Example 2.—An aeroplane propeller rotates at 1,650 r.p.m. and is
8’ 4” diameter. It is made of walnut weighing 0-024 pound per cubic
inch, for which E = 1-4. 10¢ lbs./in.? The area of the cross section (S) is
given below for different distances () from the axis of rotation, measured
in inches. Draw a curve showing the variation of stress along the blade
and estimate the total extension between the tip and a section 5” from the
axis.

z{n) . 5 10 15 20 25 30 35 40 45 47
1

5 b
S (in.2). 28 215 165 136 114 91 67 43 24 -5

0
0
The centrifugal force per unit length is given by
pSots

g

where p is the weight per unit volume of the material, w the angular velocity,
x the distance from the axis, and g is measured in inch units since = is in
inch units. Hence

X =

p.¢

0-024 (1650 X 2n)’
=333 » 13 % 0 Sz = 1-85 Sw.

50
The total force on any section will be 1:85 j Sxzdz. Hence we must plot
x
a curve of Sz and integrate it. The load on a section distant 107, say,
from the axis will be the area of this curve between x = 10 and z = 50,
corrected for scales and multiplied by 1-85. Dividing the load by the area
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of the section we obtain the stress p. The extension is then given by
~l

7 p.dr. Consequently we must plot a curve of p and integrate it.
L

Sax
(ins3
300 Sx
1 ﬁg‘z’% Stress
bs./in%
200 1000
600
100
400
200
Inches
4 70 20 x 30 40 50
Fi1c. 8.

The curves are given in Fig. 8, and the rest of the calculations below.

x (in.) . 5 10 15 20 25 30 35 40 45-47-5 50
Se (in.?) . 140 215 248 272 285 273 235 172108 712 0

.4

Se.dr. 8,660 8,300 7,400 6,120 4,720 3,300 2,040 1,040 320 100 0©

» L
Total Force
(Ibs.) . 17,550 15,900 13,700 11,350 8,750 6,220 3,780 1,925 592 185 0
Stress
1bs. /in.? 626 740 830 835 768 683 562 448 282 123 0
From the arca of the stress curve we find
~50

Ibs.
‘ pdx = 27,320 -
. in.

Hence the total extension of that part of the blade

_ 21320 bs.fin o
T 14 x 10° lbs./in2 o

16. Composite Bars in Tension or Compression.—By a com-
posite bar we mean a bar composed of two or more materials, such as
steel rods surrounded by concrete, or a steel tube filled with wood, or
rods of two different metals, ctc. The construction of the bar is supposed
to be such that all the constituent members must extend or contract
equally.

As an illustration, suppose we have three rods of different materials,
the areas of their cross sections being constant and equal to S,, S,, S,,
and Young’s Modulus for the three materials being E,, E,, E,, respec-
tively.
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Let the total load on the composite bar be P, which may be either a
tension or a compression.

Let P,, P,, P; be the portions of the load taken by the three rods.

Let I be the length of the bar.

Then if all the rods have to stretch or contract equally we must have

We must also have
P, +P, + Py=P,

Solving these equations for P,, P, and P; we find :—
E.S,
E.S, + E,S, + E,S;

with similar expressions for P, and P,

Hence the load is divided among the members in the ratio of the
values of ES, and the same will hold for any number of constituent bars.
The stress in each bar is then found by dividing the load on it by its cross
sectional area. Hence the stress in each bar is proportional to its Modulus
of Elasticity.

17. Adhesion Stress in Reinforced Concretex—As an example
of the principles of the preceding paragraph let us consider a reinforced
concrete column, ie. a column of concrete with vertical steel rods
embedded init. Let E, and 8, refer to the steel, £, and S, to the concrete,
and suppose a load P is uniformly distributed over the ends of the column.
Then the load per unit area will be

P,

=

P
PTR5 s,
The loads applied to the steel and concrete respectively will be
PS, PS,

(i)

- and
8, +8, 8+ 8,
But according to § 16 the loads actually carried will be
_BS poana S p
EISI + EZSZ EISI + ‘E282

The difference between the loads given by (i) and those given by (ii)
must be taken up by a drag between the two surfaces in contact. This
drag is called the adhesion force, and its intensity per unit area of surface
is called the adhesion stress. 1Its nature will be more clearly understood
after studying the following example.

In practice the adhesion stress is usually limited to 100 1bs. in.?

(i)

Example.—A reinforced concrete column is 18” square and has four
steel rods 1”7 diameter embedded in it. Taking E == 30 x 10° lbs./in.?
for steel and 2 x 10¢ lbs./in.2 for concrete, find the stress in the steel and
concrete when the total load on the column is 100 tons.

Find also the adhesive force between the steel and the concrete.

* See Engineering. Feb. 26, 1926,
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Let the suffix 1 refer to the steel, and the suffix 2 to the concrete. Then :—

S, =4 xg x 1in.? =314 in.? E, = 30 x 10 Ibs./in.?
S, =(324 — 3-14) in.? = 320-86 in.? E, = 2 x 10° lbs./in.?
E,S, =30 x 10¢ Ibs./in.? x 3-14 in.? = 94:26 x 10° Ibs.

E,S, =2 x 108 Ibs./in.2 x 320-86 in.? = 641-72 x 10¢ lbs.
E.S, + E,S, =136 x 108 lbs., nearly.

Hence we have by § 16

11 1 _ 9426 108 100 tons = 128 ¢
total load on stee = 736 Tbs. X ons = ons.
641-7 lbs.
s . concrete = 7@;‘ x 100 tons = 872 tons.
The stress in the steel = oo O . 407 tons/in.?
e stress in the stee = 3iim ons /1n.
87-2 tons
. —- T 0 in 2
s ' ' concrete = 350°86 in.? 0-272 tons/in.

= 610 Ibs./in.?, nearly.

It should be noted that in structural work the compressive stress in the
concrete is almost invariably limited to 600 lbs./in.? _

Assuming that the load is applied evenly to the ends of the column, the
100
—_— 1 2
394 tons/in.
The total load applied to the concrete is therefore

applied load per unit area is

100
331 tons/in.? X 320-86 in.? = 99:03 tons.

But the actual load carried has been found to be 87-2 tons.

The difference, 11-8 tons, must be transferred to the steel by adhesion.

The load applied to the steel = 0-97 tons, but the load carried by it is
12-8 tons, which agrees with the amount we have just found to be trans-
ferred from the concrete.

18. Temperature Stresses.—When the temperature of a body is
raised or lowered, the material will expand or contract. If this expansion
or contraction is wholly or partially checked stresses will be set up in the
body. In the case of a long bar we can proceed as follows :

Let [, = the length of the bar at temperature 7,.

a == the coefficient of linear expansion of the material.
7 = the rise of temperature.
If the bar is quite free to expand, its length will increase by al,7, i.c. the
length becomes I(1 + ar). If this expansion is prevented it is as if a
bar of length I,(1 + ar) were acted upon by a thrust sufficient to reduce
its length to ;. In this case the compressive strain would be
alet _ ar
il +ar) 1+ ar
The corresponding stress will be
atll
1 +ar
or, since v will be small compared with unity, the stress can be taken as
atk.
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Similarly, if there is a fall of temperature equal to 7, the contraction would
be alyr if it were not prevented. If the contraction is prevented it will
be as if a rod of length I,(1 — ar) were stretched by a tension of such
value as to produce an increase of length alyr, i.e. to produce a strain
ago  ar
Il —ar) l—oar
The corresponding stress will again be Ear. Thus in each the stress
produced = Young’s Modulus multiplied by the unhindered thermal
change of length per unit length.

In the case of steel a is about 7 x107% in Fahrenheit units, so that
Ea = about 210 lbs./in.2, or roughly one-tenth of a ton per square inch.
Hence every 10° F. change of temperature will produce a stress of approx-
imately one ton per square inch.

19, Temperature Stresses in Composite Rods.—Suppose we
have a compound rod consisting of a bar

= art, nearly.

of one material alongside a bar of differ- eﬁ+z:l
ent material, the ends of the two bars 7C ; — T
being fixed together at a certain tem- 2C— e

perature. If the temperature of the ' 1 31—71—4@21-{“'
compound rod is raised (or lowered), F “g
stresses will be set up in each bar, 16. %

since one will try to expand (or contract) more than the other.

Let E,, a,, S, refer to one bar, and E,, a,, S, to the other, and letl be
the original length of each. Let 7 = the increase of temperature, and
assume a,>a;. Suppose, first, that the bars were quite independent.
Then one bar would expand an amount a,lt and the other an amount
a,t, each being free from the restraining action of the other. The
difference in their lengths would therefore be (a, — a,)lv.

Now let the first bar be acted on by a tension 7 and the secon by
an equal thrust; let e, and e, be the tensile and compressive strains
produced in the two bars. Then

o — T
CTES,
and ey = T_ nearly.
2S2
. Sl — E2S2 (5)
‘e, E;S,

Qur problem requires that the final lengths of the two rods should be
the same. Therefore (see Fig. 9) we must have
e, +e,=(a, —ay)t . . . . . . (6)
From equations (5) and (6) we can easily find e, and e, ; the stresses in
the two bars are then E.e, and E.e,.
Example.—A gunmetal rod, }” diameter, screwed at the ends, passes

through a steel tube 1 in. and 1}” internal and external diameters. The
whole is heated to 260° F., and the nuts on the rod are then screwed lightly
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home on the ends of the tube. Find the intensity of stress in the rod when
the common temperature has fallen to 60° F.

Coeff. of expansion per °F. for steel =6 x 108,
’s L s 2 sy gunmetal = ]-O 10—6
Young’s Modulus for steel = 30 X 1()‘i 1bs. /in.?
» » ,»» gunmetal = 134 x 10°¢ Ibs./in.?
(R.N.E.C., Keyham, 1923.)

Let the suffix 1 refer to the steel tube.
’ w 2, »  gunmetal rod.
Then
E,S, = 30 x 10% lbs./in.? x 0-442 in.z = 13-26 x 10% Ibs.
E,S, = 13-4 x 10° lbs./in.? x 0-6 in.? = 8-04 x 10% Ibs.
The strains being ¢, and e, we have from (5), p. 17,
e, 1326
6_1 = 804 1:65.
From (6) we have
e, + e, =4 x 106 x 200 =8 x 104,
Solving these two equations we get
L =302 x 104; e, = 498 x 10-4.
The stress in the tube = 30 x 10¢ lbs./in.? x 3-02 x 104,
= 9060 lbs. /in.®
N ., rod = 13-4 x 10% lbs./in.? x 4:98 x 10-%.
= 6,670 lbs./in.®
20. Abrupt Changes of Section.—The stresses and strains in a
tapered rod have been worked out in § 15 on the assumption that the
stress is evenly distributed over all cross sections. This is not strictly
accurate for, whenever there is a change of section, the stress increascs
in intensity towards the boundary ; but for all practical purposes when
the rate of change of cross section is sufficiently gentle to be called a
taper no appreciable error is made in assuming that the stress is dis-
tributed uniformly over a cross section. When, however, the section
changes abruptly, as at a groove or shoulder, the local increase of stress
becomes important, for instance in such cases as are illustrated in Fig. 10.

—— 4
A A Al

Fic. 10.

In all cases of this sort the stress is greatly increased in the corners .1,
the ratio of the maximum stress at 4 to the mean stress in the rod, remote
from A, depending on the sharpness of the corners. The effect of this
is that the metal on the surface at 4 will reach the yield point before the
rest of the material. Now we know that when the yield point is reached
a relatively large increase of strain can take place with only a small
increase of stress. Therefore, as the stress in the interior of the metal
increases with increasing load, the strain will increase, but the stress on
the surface will only increase slightly. In this way the stresses redis-
tribute themselves in the direction of safety. This argument only applies
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to members which are subject to a constant tension or compression,
but when the stress alternates from one to the other the presence of
sharp cornered grooves or shoulders is extremely dangerous and should
be avoided.

The distribution of stress in a flat tension member whose shape changes
from a wide parallel portion to a narrower parallel ,

portion has been studied by Coker* by his photo- I“”}H
elastic method. Fig. 11 1 shows graphically the varia- Ll
tion of stress intensity across the width of the plate '
at various sections: the widths of the two parallel
portions are 0-853" and 0-4488” respectively, the
curved parts of the boundaries being circular arcs of
03" radius. Each small graph, drawn across the ]
section of the plate, shows the variation in the inten- '
sity of stress across that section; for instance the
graph ab shows the distribution of stress across the
section AB. The maximum stress is nearly 20 per
cent. greater than the uniform stress in the narrower MUl
section. In another case, where the inner corners o

were radii-of ;" the maximum stress exceeded the
mean by nearly 60 per cent. The effects of sharp
corners has also been investigated theoretically by
C. E. Inglis.}

21. Work Done During Tension and Com- Fre. 11.
pression.—Since the point of application of the load
is moved when a rod is stretched or compressed it is evident that
work is done. If the stress does not exceed the elastic limit practically
the whole of the strain disappears on removal of the load, and the work
done is recovered. When the body is in the state of tension or com-
pression the work which has been done on it is therefore stored in the
form of strain energy, provided the stress is below the elastic limit.
Thus within these limits a stretched or compressed rod behaves like a
spring, in fact it is a spring.

Beyond the elastic limit most of the strain does not vanish after
removing the load, and the work which has been done cannot be regained
directly : it has been used up in making the material flow and reappears
in the form of heat.

1f a variable force P moves its point of application a distance dx, the
work done is Pdx. Therefore, within the elastic limit, the work done by
tension or compression, i.e. the strain ecnergy, is given by

v \'Pee . . . . . @

<0
where 2 is the total extension. If the cross section is constant and equal
* B.A. Reports, 1914 and 1921 ; Proc. Inst. C.E., Vol. CCV1I1 (1918-19), Part ii.

T B.A. Report, No. 4, 1921, p. 294,
Y Proc. Inst. Naval Architects, March 14, 1913.
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to S, the stress p is equal to P/§ and the extension dz is equal to Ide,
where de is the strain. Hence, if I denote the length of the rod,

U=2_8l rpde,

v 0

since we are integrating from zero strain to strain e. Hence U = volume
of rod x area of stress-strain curve. Below the elastic limit ¢ = p/E, so

?
v=s (2%
<0 L
where p is the final value of the stress. Thus
A .
== Sl.__.. i l . . . .
U 5% = 3K per unit volume (8)
Since p = P/S this can be written
P2 [Pe
== . . . ... 9
v 2ES 2 ®)

Equations (8) and (9) give the strain energy of a stretched or com-
pressed rod, provided the stress is below the elastic limit.

22. Resilience.—The energy which is stored in a strained body is
also called the resilience ; if p is equal to the stress at the elastic limit
the energy stored is called the proof resilience.

23. Stress Due to Sudden Application of Load.—It has been
stated above that the loads are always supposed to be applied gradually
in the theory of stress calculations. The reason for this will now be
apparent. When the load is applied gradually its initial value is zero
and it is increased in proportion to the strain. But now suppose the load
is applied suddenly with initial value P, producing an extension ol ; let
P’ be the load which applied gently will produce the same extension
and therefore the same stress. The work done by P, (P.8]), must equal the
strain-energy of the rod in the given state of strain (P'81/2).

PSl = 1P'0l
P =2P

That is, it requires double the load applied
slowly to produce the same stress and strain as
when applied suddenly. In other words, if the
load is applied suddenly the stresses and strains
are twice what they would be if it were applied
slowly. This is shown graphically in Fig. 12.
The work done by P is the area OPBC, and
the work done by P’ is the area OAC. These
areas must be equal, and therefore P’ = 2P as before.

This simple method of treating the problem does not really meet
the facts of the case; and, although in this particular instance it leads

Fie. 12.
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to a result which errs on the side of safety, this is not by any means
always true.

24. Waves of Stress.—When a load is suddenly applied to the end
of a rod the problem involves us in’dynamical considerations. Consider
what happens when one end of a rod is suddenly acted on by a tension,
whilst the other end is held fixed. The particles of the rod at the loaded
end begin to move under the action of the applied force, and we are at
once faced with the question of the effects of the inertia of these particles.
As the particles at the loaded end move they will try to drag those next
to them, and so on until the tension is felt at the fixed end. If the
reader has ever observed a locomotive starting a long stationary goods
train, and a similar train running into fixed buffers, it will be helpful
to recall the experience. In the case of starting a train all the trucks
do not begin to move at once, but each starts up the one behind it, so
that a ‘“ wave ” of tightening up of couplings can be heard and seen
pass along the train : the last truck of the train knows nothing of what
is going on in front of it until the next truck has been moving long enough
to tighten up the coupling chain. So it is when a tension is suddenly
applied to the end of arod : the tension travels along the rod as a * wave,”
and until the wave reaches any particular section we assume that there
is no stress at or beyond this section on account of the blow applied to
the free end.

Let us return again to the analogy of the train and examine matters
a little farther : as each truck is set in motion by the one in front of it
its motion is resisted by the inertia of the truck behind it. But the
last truck meets no such resistance, and, as it is acted on by the same
pull as the others,* it will tend to move faster than the trucks in front
of it ; in other words, the last truck will run after the next in front and
push it forwards, and so on until the front of the train is reached. Thus
a push “ wave’ travels up the train, i.e., the wave is reversed in type
at the free end of the train. Next, consider the case of the train running
into fixed buffers : the engine will be brought to rest first, and gradually
each truck in turn will feel the resistance in front and be brought to rest
until the last is reached, ie. a push “ wave” travels down the train
from front to rear. But the last truck, having nothing behind it, will
rebound and start moving backwards, and so exert a pull on the next
truck, and thus a pull “ wave *’ travels up the train to the engine. Again
we see that the type of wave is reversed at the free end. When the pull
““ wave ”’ reaches the engine the latter will resist being pulled backwards,
and will therefore exert a forward pull on the first truck. Thus a pull
*“ wave ” meeting the fixed end of the train is sent back as another pull
“ wave,” i.e. the type of wave is not reversed at the fixed end.

So it is with the rod we were considering : a pull suddenly applied
to one. end travels as a wave of tension to the fixed end, and is reflected
from there as another wave of tension ; this reflected wave will be reflected
from the free end as a wave of compression, and so on.

We remark here two important rules: (i) a wave is reflected from

* Neglecting the effects of ground friction.
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a fixed end without reversal of type; (ii) at a free end the reflected
wave is one of tension if the original wave were one of compression,—
and vice versa.

We shall now apply approximate analytical processes to investigate
the phenomena we have described, and derive formule for the stresses.
For an exact consideration of the problem the reader is referred to Love’s
Theory of Elasticity or Todhunter and Pearson's History.

25. Velocity of Propagation of Stress in a Straight Rod.*—
Consider the case of straight rod of uniform section with one end fixed,
while a load is suddenly applied to the free end, and neglect the effect of
gravity if the rod is not horizontal.

Let w == the weight of the rod per unit volume.

§ = the area of the cross section.

po= the intensity of tensile stress which is suddenly applied to
the free end.

v == the velocity with which the stress wave travels along the rod.

/Sx
s U
p=___ B
0 AR [//4

Fra. 13.

Then after a time ¢ the stress p will reach a section 4 (Fig. 13) distant
2 = vt from the free end O ; after a further time 8¢ it will reach the
section B, where AB = vét = dx.

Let w = the vclocity of the particles comprising the section .1 on
account of the stress reaching them.

Then, while the stress wave travels from A to B the particles at A
will move a distance udt, fowards O, since the stress is tensile, and after
them the particles forming the next section, and so on for all the sections
between A and B will move the same distance. That is in time &t the
portion AB will lengthen by wdt, its original length being vdt.

Hence the strain in AB is

N udl  wu

et v
Let p == the stress on the section 4 at time ¢ + 6t ; then

p:Ee—_—E?f B ¢ )
v

Now consider the motion of 43 : at the beginning of the time interval 6¢
it has no velocity, whilst at the end of the same interval it has acquired
a velocity u, if we assume that each layer of particles between 4 and B
acquires the same velocity. The weight of the part A B iswS.0x = wS.vdt,

wSvit

so that its gain of momentum in time ¢ is w x , which is brought

* This treatment is due to Mr. J. W. Landon.
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about by a force pS. Hence we have

PSGt :uvaét

_pwv
g9
Hence from (i) and (ii), eliminating w,

v = V/%g- O 4 11))

This is the velocity with which the stress p is transmitted along the rod.
Eliminating' v from (i) and (ii) gives

p=ux/gv. R 1

So that, if we know u, the velocity of the particles at any time, we
can calculate the stress.

The wave of tension which starts from O is reflected from the fixed
end as another tension wave; which in turn is reflected from the free end
as a compression wave and so on. It will be seen, then, that we cannot
form a correct estimate of the strain or stress without considering the
reflected waves ; we shall, however, postpone a discussion of these to a
later chapter.

(if)

Example.—A vertical wire is being wound on a drum at a speed of
10 ft./sec. when the free end is suddenly held fixed. Show that the instan-
taneous stress induced is about 6 tons/in.2 E = 15 x 10¢ lbs./in.?; weight
of wire = 560 lbs./ft.* (Intercoll. Exam., Cambridge, 1922.)

From equation (11)

L
P= g

15 % 10° Tbs./in.t % 560 Ibs./f6.8
=10 ft./ “ec'\/ 352 ft. /560,

15 10¢ 560  1bs.? .2
10 ft./sec.\/ x x X 5~

Il

32-2 in.?2 x ft.4
10 ft. 1bs. secs.
= ees, < 16100 1o
161,000 . 161,000 . .
=19 Ibs./in.?2 = 12 x 2,240 tons/in.? = 6 tons/in.?

26. Maximum Stress.—It must be noted that the formula of
§ 25 tell us nothing about the maximum stress induced as they do not
enable us to calculate #, and take no account of the reflected waves.
Attempts have been made to obtain formule for the stresses by ele-
mentary methods, but no such formula has yet been found to give the
correct answers, so far as the author is aware. For purposes of calculation
the following formule, derived from exact analysis, are given here :—
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Casg 1.—A uniform vertical rod is fixed at the upper end, and a
weight W is suddenly attached to the lower end without velocity.

__wt. of body attached
o wt. of rod ’

w = wt. of rod per unit volume.
l = length of rod.
" 1 2 4
Intensity of stress . 3-27Twl/E 504wl /E 9-18wl/E (at top)
If we treat the problem by the simple method of equating the work

done by gravity, as the weight falls a distance equal to the extension
of the rod, to the strain energy of the rod, we find that the stress induced
is double the statical stress, i.e. it is 2W /8, where S is the cross section
of the rod, neglecting the weight of the rod. This errs on the side of
safety.

1

Casg 2.—A uniform horizontal rod is fixed at- one end and free at
the other. The free end is struck longitudinally by a weight W moving
with velocity V. The maximum stress induced is given by Fig. 14, or
when g > 20, by

p:V\/E_g<1+\/ﬁ> ¢ 1)

approximately ; it occurs at the fixed end.

W AN o

Stress+V/Ep/9
N

! ‘
RSNSOI YR S
1 3 H

~
t
r
'
SRR R AR
v
‘
1
'
'
4
'

i H

' H
1 ' i 0 i
' ' ! H H

2 4 66 10 12 14 6 18 20
p=Weight of Striking Body+Weight of Rod

Fia. 14.

0

Simple methods will not yield a correct answer to this problem.

A source of uncertainty in these calculations is that we do not at
present know for certain whether the relations between stress and strain,
when these are changing with great rapidity, are the same as when the
loads are applied slowly. It must also be borne in mind that the stresses
are fluctuating stresses, and this has an important influence on the
maximum permissible working stresses.

Example.—A steel rod 14" diameter, 10 ft. long, weighing 0-283
Ibs. /in.® is struck longitudinally at one end by a body weighing 200 lbs.,
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moving at 4 ft./sec. The other end of the rod is fixed. Calculate the maxi-
mum stress set up in the rod, taking £ = 30 x 10°® lbs./in.?

The area of the cross section of the rod is § = 1-765 in.?

The weight is 0-283 lbs./in.* x 120 in. x 1-765 in.? = 60 lbs. Hence

200
u =55 = 3333

Ew 30 x 10° Ibs./in.? x 0-283 Ibs./in.?
7 - 322 x 12 in./sec.®
V = 48 in. /secs.

Hence the maximum stress is, from Fig. 14,

= 168 lbs. secs./in.?

in. Ibs. secs. .
P =48 = X 168 5o x 3:10 = 25,000 lbs. /in.*

n.?
It will be instructive to compare this result with that given by a more approxi-
mate method. The kinetic energy of the moving body is

200 x 48?2
2 x 322 x 12

If this were all instantly converted into strain energy in the rod, inducing
a stress p, we should have

P ses

oF X vol. of rod = 598 in. lbs.

p? x 1765 x 120 in.?
60 x 10° lbs./in.?

giving p = 13,000 lbs./in.?,

which is 48 per cent. too low.

Some writers attempt to get a more accurate result by assuming that
after impact the velocity of the rod varies uniformly from a value v at the
struck end to zero at the fixed end, and, on this assumption, calculating the
loss of energy by the principle of the conservation of momentum. If w be
the weight of the rod, it is easy to show that its momentum and kinetic

wy wy?
energy are —- and G

in. lbs. = 598 in. lbs.

= 598 in. lbs.

or

1
respectively, and that v= ¥V / (1 + -27> The energy
Wv: (1 +1/3u)
29 " (1 +1/2m)*
find that the stress in the above case is 11,850 1bs./in.?2, so that the error is
considerably increased by this method.

of the system after impact is then Proceeding thus we

27. Stress in a Rotating Ring.—When a circular ring rotates
about its axis each element is acted on by centrifugal force and the ring
tends to swell, i.e. to increase in diameter. This tendency is resisted
by tensile stresses set up between the elements of the ring. In what
follows the linear dimensions of the cross section of the ring are supposed
to be very small compared with the mean radius of the ring, and the
area of the cross section of the ring is assumed to be constant.

Let r = the radius of the ring.
o = the angular velocity in radians per second.
8 = the area of the section of the ring cut by a plane through
the axis.
w = the weight of the material per unit volume.
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Consider an element P sub-
tending a small angle 60 at the
centre. Let 7 be the tensions
exerted on the ends of PQ) by the
remainder of the ring ; it is clear
that 7T acts along the tangents at Iy YA
P and @, and, from symmetry, 0"::"_‘_":'-T—iti?_/{
that the tensions are the same at
cach end of P and therefore
the same all round the circum-
ference.

The weight of PQ =wS8rd6.

The centrifugal force on I’Q is Fra. 13.

y WSrorw?

g
which acts outwards along the radius OR bisecting PQ.
Resolving along OF we have

2, 2
27T sin (%_O__wSr @ 50.
g

Since 66 is a very small angle we can write 62—6 for sin %0, so that the

s

equation becomes
30 wSrin®

27— =" B
2 g
2,,2
Lp2eSTet 1)
g
The tensile stress in the ring is p = 7'/8, that is
26,42
Wrie? (14)
g

which is independent of the area of the cross section.*

It is important here, as always, to pay careful attention to the units :
ifw, r, § are measured in inch units g must also be measured in inch units,
ie. g = 32:2 x 12 inches/sec.?

It should be noted that this cannot be applied, with any accuracy,
to find the stresses in the rims of spoked flywheels, since the spokes
exercise a local restraint on the rim and a bending action takes place.

LATERAL CONTRACTION AND EXPANSION DUE TO DIRECT STRESSES

28. Poisson’s Ratio.—When the material of a body is under tension
(or compression) the stretching (or contracting) in the direction of the
applied force is accompanied by a lateral contraction (or expansion) in
all directions at right angles to the applied force. If the strain in the

* This result is only true if the dimensions of the cross section are small compared
with the radius of the ring.
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direction of the applied stress p be ¢ = p/E, the lateral strain is found
to be proportional to the direct strain e, and is given by

P
mE
where m is a constant determined by experiment. This constant depends
only on the material in question and not at all on the stress. The

lateral strain — — — (15)
m

reciprocal of m, i.e. —, is called Potsson’s ratio. It issometimes convenient
m

to write 1/m = ¢. For most metals m has a value between 3 and 4 ;

for steel it is frequently taken as %O

Example.—A steel bar of rectangular cross section, 2” x }” is sub-
jected to a pull of 10 tons in the direction of its length. Taking E = 13,500

10
tons/in.? and m = 3 find the decrease of length of the sides of the cross

section and the percentage clecrease of area of cross section.
The strain in the direction of the pull is
P P 10 tons 1

© T E T ES T 13,500 tons/in.® x 1 in.2 1350 0-00074.
The lateral strain is

d 3
2 2% 000074 = 0-000222.
m 10
Hence the 2” side decreases by 2 x 0-000222 = 0-000444”.
and » 3 » » 3 X% 0-000222 = 0-000111”.
The new area of the cross section is
(2 — 0-000444) (0-5 — 0-000111) in.?

=2 x 0-5(1 — 0-000222)*

=1 X (1 — 0-000444), neglecting (0-000222)2,
Hence the decrease of area is 0-000444 in.2, or 0-0444 per cent.

29. Strain Due to Two Stresses at Right Angles.—If the material
of a body be subjected simultaneously to two direct stresses at right
angles, the strain produced by either stress is the same as if the other
were absent. This is known as the principle of superposition.

Thus, let p, and p, denote direct stresses in two perpendicular direc-
tions, Or and Oy. Considering extensions as positive,

P, produces strain % in direction Ox, — % in direction Oy.
m

) Ox, v 0
m E 3 T, E 2 y .

Hence, if e, and e, denote the total strains in the directions Ox and Oy,
we have, by addition of the above,

Px _ Py
E mE
_ Px . Dy

T "TmETE

pv ” 1)

ey =

(16)
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Similarly, if there be three mutually perpendicular stresses p,, p,, p,, the
corresponding strains are

y _Pe_ Pyt
* E Em
_ P _P
v T T (17)
[ — &‘_p_‘*_x + p”
* K Em

30. Change of Area and Volume Due to Strain.—If, on any
plane, the strains in two directions at right angles be e, and e,, the sides
0z and dy of an element of area become éz(1 + e,) and dy(1 +¢,). Hence
the area becomes

0xdy.(1 +¢e,) (1 + ¢,)
or Oz.dy(l +e, +e),
neglecting the product e, which can be seen from the example on
p- 27 to be justifiable. Moreover, it was mentioned on p. 8 that the
whole theory of our subject supposes the squares and products of strains
to be negligible. We see, then, that the increase of area per unit area is
measured by

8S/S=e +e, . . . . . . (18)
Similarly, the change of volume per unit volume is measured by
8V/V==e +e,+e, . . . . . . (19)

where ¢,, ¢, and e, denote the strains in three mutually perpendicular
directions.

The ratio of the change of volume to the original volume is called the
volumetric strain.

31. Bulk Modulus.—If a body be subjected to hydrostatic pres-
sure such that the stress is the same in all directions, we shall have
P, =P, = P, =p, say. Then the ratio

Vg
volumetric strain
is known as the Bulk Modulus of the material, and is usually denoted by K.
32. Relation between E and K.—When p, = p, = p, = p we have

e:!::e’l/:e - — . ==

Hence the volumetric strain is
3(m —2)
mE )
But this is equal to p/K by the definition of K, therefore
K — mE
3(m —2)
From this relation we see that, if m be positive, it must be greater than 2,

e, +e +e =

(20)
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otherwise K would be negative, a state of affairs which is inconceivable.

33. Modified Values of E when Lateral Strain is Prevented.—
If a body be subjected to atwo-dimensional distribution of stress defined
by p, and p,, the corresponding strains are

= P _ &’_ and e, = — Ps &’
“"F mE"YT TmEE
If one of these strains is prevented, say e, we must have
P P
pv—Tn—=0, or p, = ==,

Then

~E mE mE
This is the same as it would be if p, were absent and X took on the value
miE
m? —1
Similarly, if there are three mutually perpendicular stresses p_, p,, 2,
and two strains, say e, and e, are prevented, we must have

+ :

p ~ PP n

b (ii)
m

Hence, by subtraction,

v, —2)(1 + ;)= 0

Therefore, since m* % —1,p, = p,. Then, putting p; = p, in (i), we get
1 P
l— —)—2E%=0
p,,( m > m
2,

CRERTT

Giving this value to p, and p, we have

_ P _Py+p_(m+1)(m—2)

e P>

* E mE mim — 1)E
which is the same as if p, and p, were absent and E were replaced by
m(m — 1)E
(m +1)(m —2)
Example 1.—A piece of steel 9 long and 1”7 X 1” cross section is
subjected to a tensile stress of 10 tons/in.® in the direction of its length.

If m =10/3 and E = 30 x 10* lbs./in.*, calculate the change of volume.
Let e; denote the strain in the direction of the axis of the rod, then

10 x 2,240 Ibs./in.? 224
30 x 10° Ibs./in* ~ 3

x 107,

€y =

* A result which is proved later.
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L}:at ey and e, denote the strains parallel to the sides of the cross section,
then

e 3 224 B 67-2 B
e, =€ = —W= —-F)'X—g— X 10-° = ——3— x 107,
The increase of volume per unit volume is
224 — 1344 _ -
ez + ey + € = - - "3 - x 1077 = 29-87 x 109,
The original volume =9 in.®
. increase of volume =9 in.® x 29-87 x 10~
= 0-00269 in.?

Example 2.—The plates of a cylindrical boiler 6’ 0” diameter and 10’
long are under a tensile stress of 10,000 lbs. /in.2 in the direction of the circum-
ference and a tensile stress of 5,000 lbs./in.? in an axial direction. With the
same values of the constants as above, find the increase in the internal capacity
of the boiler. Neglect the compressive stress on the inner surface, which is
equal to the steam pressure.

Let x refer to the circumferential direction,
y » s,  axial ’s
Then p. = 10,000 1bs./in.2 and p, = 5,000 lbs./in.2 The strains are

10,000 5000 _ 8,500

€z — =
E 10 E
E x '3—
. 5,000 10,000 2,000
v TR T 10~ E
E x 3

Now the diameter of the boiler increases or decreases in direct proporuon
to the circumference, so that e. also denotes the increase of diameter per
unit length. Thinking of the space inside the boiler, the strains of the
dimensions are
2,000
E
8,500
E
Hence the increase of volume per unit volume is
2,000 8,500 8,500 19,000

E 5 T E T

parallel to the axis

along any two perpendicular radii.

The original volume
= x 6t x 10 = 90 m it

Hence the increase of volume

19,000 00 m — 19,000
E T T30 x 100
Example 3.—A gun tube 4 is 32" outside diameter, and another tube
B is to be shrunk on to it. It is desired that the radial pressure between the
two tubes should be 5 tons/in.?, and calculation shows that there will then
be a tensile circumferential stress of 22'8 tons/in.? at the inside of B, and
a similar compressive stress of 8:35 tons/in.? at the outside of 4. Calculate
the proper initial difference between the inside radius of B and the outside
radius of A, before heating, if E = 13,000 tons/in.? There is no axial stress.

x 90 m = 0-179 ft.? = 310 in.®
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The circumferential strain at the outside of 4 is

835 5 685
—E T 0~ " E
E x -
3
At the inside of B it is
22-8 5 243
E T 7 0 E
*3
These quantities will also denote the strains in the direction of any radius.
/ 5
If B were removed the outside radius of 4 would increase by l(‘}"(-s—-E:10 ~mE
22 8 5
and the inside radius of B would decrease by 16" - E— ) Hence the

initial difference between the radii should be

(8-35 5 22 8 ) 16" x 31:15
mE )

167( 222 0 X219 0.038”".
6 E E’ E 13,000 0-038

EXAMPLES I

1. A tie bar of steel has a cross-section 6” x {i” and a load of 18
tons is applied to it. Find the tensile stress produced across a normal
section.

2. A specimen of steel 1”7 diam. extends 0-0061” under a load of 8
tons, the original length being 8”. Find the total extension and the strain
when the load is 10 tons. When would the relation you apply in this case
become inapplicable ? (Special Exam., Cambridge, 1914.)

3. A bar of diameter §” is subjected to an axial load of 2 tons, find the
stress on the cross section and the percentage extension, taking £ = 30 x 10¢
Ibs./in.?2  (Special Exam., Cambridge, 1911.)

4. The observations below werc taken, for the load and the extension,
during the test of a bar of length 10” and diameter 0-88”. The breaking
load was 15:0 tons and the diameter at fracture 0-74”. Estimate Young's
modulus, the elastic limit, the yield point, the breaking stress (nominal)
and the percentage contraction of area at the breaking point. (Special
Exam., Cambridge, 1911.)

Load (tons). 0 '3 6 9 10 105 110 11-5 11-8 119 12:0
Extension (in.) 0 0037 -0075 -0112 -0125 -0131 -0140 -0165 -021 -035 -069

5. A steel bar, 17 diameter and 8” long, is compressed 0-004” by a thrust
of 12,000 lbs. Determine the extension under a pull of 4,000 lbs. (Special
Exam., Cambridge, 1913.)

6. 1,000 ft. of uniform steel rope are hanging down a shaft. Find the
elongation of the first 500 ft. at the top if the weight of steel is 480 lbs./ft.
and B = 30 x 10® lbs./in.? (Special Exam., Cambridge, 1919.)

7. 1” diameter stays are to be used for the firebox of a boiler, the pros-
sure being 180 lbs./in.? If the stress in the bolts is not to exceed 4,500
Ibs./in.? at what. pitch should they be set ?

8. In a tensile test piece the diameter is }” and the length under test
8”. The metal yields when under a load of 8 tons, and breaks when the
load is 15 tons; the length is then 10”, and the diameter of the neck 0-4".
Find the yield point, the ultimate strength, the percentage elongation and
percentage reduction of area. (R.N.C., Greenwich, 1923.)

a»
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9. Two parallel wires, 20 ft. long and 0-25 in.? cross-sectional area, are
hung vertically 3” apart and support a horizontal bar at their lower ends.
When a load of 2,000 lbs. is attached to one of the wires, it is observed that
the bar is inclined 1-1° to the horizontal. Estimate the walue of Young's
Modulus for the wire. (R.N.C., Greenwich, 1923.)

10. A length of 400 ft. of steel wire, weighing 1} lb. per ft., is placed
along a horizontal floor and pulled slowly along by a horizontal force applied
to one end. If this force measures 110 lbs., estimate the increase in length
of the wire due to being towed thus, assuming a uniform coefficient of friction.
Take the weight as 486 lbs./ft.?, and K = 30 x 10¢ lbs./in.? (R.N.E.
College, Keyham, 1923.)

11. The piston rod of a double acting hydraulic cylinder is 3 diameter
and 10’ 0” long. The piston has a diameter of 10” and is subjected to
1,000 lbs./in.? water pressure on one side, and 40 Ibs./in.? on the other.
On the return stroke these pressures are interchanged. Find the maximum
stress that occurs in the rod, and the change in length of the rod between
two strokes, allowing for the area of the piston rod on one side of the piston.
E =30 x 10¢ lbs./in.2 (R.N. College, Greenwich, 1922.)

12. Part of a spinner in front of the airscrew of an aeroplane is a circular
wooden ring of semi-circular cross section. The outside diameter of the
ring is 36” and it rotates at 2,000 r.p.m. In addition to the centrifugal
forces acting on the ring there is an external radial load of 30 lbs. per inch
outwards. What must be the diameter of the cross section of the ring if
the stress is not to exceed 2,500 lbs./in.2? Take the weight of the wood
as 0-0173 lbs./in.?

13. The framework shown in Fig. 16, which consists
of three rods connecting two yokes 4 and B, is supported
on a horizontal shaft passing through the bearing C.
The rods have the same section and the same Modulus
of Elasticity. The yokes are supposed to be absolutely
rigid and the rods initially free from stress. A load of
1,000 lbs. is then attached to B. Find the pull set up
in the two outer rods, and the thrust and pull in the
upper and lower portions of the middle rod. (Mech.
Se. Trip., 1911.)

14. A hexagonal slab of steel 3 tons in weight is sup-
ported horizontally on six vertical legs, all of equal
section. Two of the legs, on one diagonal, are of brass
(E; = 12 x 10% lbs./in.?), and the remainder of steel
(E =30 x 10%lbs./in.?), and all are carefully adjusted
so that each bears one-sixth of the total weight of the
slab. If a load of 2 tons is now placed in the centre of
the slab, which may be assumed perfectly rigid, find the
distribution of load on the legs. (R.N.E. College, Key-
ham, 1921.)

15. To enable two walls, 20 ft. apart, to give mutual support they are
stayed together by a 1” diameter steel tension rod with screwed ends,
plates and nuts. The rod is heated to 300° F. when the nuts are screwed
up. If the walls yield, relatively, &” when the rod cools to 60°F. find
the pull of the rod at that temperature. The coefficient of expansion of
steel = 6 X 106 per °F., and E = 13,000 tons/in.? (R.N.E. College,
Keyham, 1922.)

16. A steel tube 1-25” diameter, 0-104* thick, and 12’ (" long, is
covered and lined throughout with copper tubes 0:08” thick. The three
tubes are firmly united at their ends. The compound tube is then raised
in temperature 200° F. TFind the stresses in the steel and copper, and the
increase in length of the tube; also what must be the magnitude of the

A

N

e
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forces which, applied to the ends of the tube, will prevent its expansion ?
Assume E = 30 x 10° Ibs./in.? for steel and 16 x 10°® lbs./in.? for copper,
and the coefficients of linear expansion of steel and copper 0-000,006 and
0-000,0095 per °F. respectively. (R.N.E. College, Keyham, 1920.)

17. A steel rod, §* diameter, screwed at each end, is placed inside a
brass tube 10” long, whose internal diameter is §” and external diameter
1}”. Nuts and washers at each end are adjusted so that there is no end
play at 60° F. Calculate the stress set up in the steel and in the brass when
the temperature of both is raised to 160° F. Coefficient of expansion of
steel 6:5 x 107¢ per °F., and of brass 10:5 X 108 per °F.; E for steel
30 x 10° lbs./in.?, and for brass 14-5 X 10° lbs./in.? (Private Studentship
of Naval Architecture, 1922.)

18. The hoisting rope for a mine shaft is to lift a cage of weight W, and
itself weighs w per unit length. If the rope is to be tapered so that the
stress on every section is p, prove that the law of the taper is

we
S =—¢w
P

where S is the area of the cross section of the rope at a height x above the
cage, and ¢ is the base of Naperian logarithms.

19. A bar of steel 3" x 1”7 cross section is subject to an axial pull
of 18 tons. Calculate the decrease in the lengths of the sides of the cross
section, if £ = 13,500 tons/in.? and m = 3-5.

20. A cube of iron, the length of whose side is 100 in., is subjected to a
uniform pressure of 10 tons/in.? on two opposite faces. The other faces
are prevented, by lateral pressure, from extending more than 0-02”. Find
the lateral pressure, taking E and m as in Ex. 19.

21. A tube is to be shrunk on to a solid shaft 8” diameter, the radial
pressure between the two being 2 tons/in.? It is calculated that the tensile
hoop stress at the bore of the tube is 5:2 tons/in.* Taking E = 13,700
tons/in.? and m = 10/3, find the correct internal diameter of the tube before
heating.

22. In a 13-75” gun, the calculated stresses at the bore are: Radial
pressure, 18 tons/in.? ; hoop stress, 26 tons/in.?; axial tensile stress, 3 tons/in. *
Tfa.ll:)mg E = 12,000 tons/in.* and m = 10/3, find the increase of diameter
of bore.

23. At theinside of a certain gun tube, the stresses at the moment of firing
are, circumferential compressive stress 2 tons/in.,? radial compressive stress
8 tons/in.%, longitudinal tensile stress 1 ton/in.®? Taking m =10/3, find the
strain-energy per unit volume, and compare this with the strain-energy per unit
volume in simple tension with a stress of 30 tons/in.2 (H.M. Dockyard Schools,
1931.)

24. A beam weighing 100 lbs. is held in a horizontal position by three
vertical wires, one attached to each end of the beam, and one to the middle of
its length. The outer wires are brass .;” diamoter, and the centre one is
steel ;" diameter. Find the intensity of stress in each wire. All the wires
are the same length. E for brass--12:5 X 108 1bs./in.,2 E for steel is 30 x 10®
Ibs/in.? (H.M. Dockyard Schools, 1931.)



CHAPTER 1I
DISPLACEMENT DIAGRAMS AND REDUNDANT FRAMES

34. Displacement Diagrams.—The principles set out in the
previous chapter at once enable us to solve two problems which the
methods of pure statics leave unsolved, namely to find the deformation
of a simple framework under a given system of forces, and to find the
loads in the members of a framework which has a greater number of bars
than is required to enable it to keep its shape.

We shall first show how to find the deformation of a framework, with
pin-joints, when acted upon by a given system of external forces. It is
most convenient to employ graphical methods, and the process is usually
called drawing a displacement diagram. The student who is familiar
with the methods employed for drawing velocity and acceleration

ZZ Z,

Fic. 17.

diagrams for link mechanisms will find no difficulty at all in drawing
displacement diagrams for frameworks.

Suppose we have a triangular frame ABC (Fig. 17) in which the side
AB is so fixed that its length cannot change, whilst the corner C is acted
on by any forces in the plane ABC. The joints A, B, C are pin-joints.

First, by ordinary statics, find the loads in AC and BC; then, by
formula (4, p. 4) find the elongations (positive or negative) of AC and BC.

Let 8, and dl, be the elongations of BC and CA.

Now, but for the constraint offered by BC, the elongation of AC
would carry € to €’ in the line AC produced, such that CC’ = dl,;
similarly, but for AC, the elongation of BC would carry C to C* on BC
produced, such that CC” = §l,. On account of the restraint offered by
the one rod to the other they must undergo rotations until ¢’ and C”

34
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coincide. These rotations being very small we can regard ¢’ and C”
as moving short distances at right angles to AC” and BC”. We therefore
proceed as follows :

Take a point @ to represent 4 and, since the displacement of B relative
to A is zero, the point a can also represent B, and so is labelled b as well.

Draw bc, = §l, parallel to BC, and ac, = 6!, parallel to BC. 1If
either red had contracted instead of extending, BC say, then the corre-
sponding stretch 6l, would be drawn the other way.

From ¢, and ¢, draw lines at right angles to bc, and ac, to meet
at c.

Then ac is the total displacement of ¢ relative to 4 or B.

In more complicated frameworks we have simply to repeat the above
process for each triangle of the frame, taking any convenient angular
point and one side through that point, as the a point and line from which
to measure the displacements.

Example.—In Fig. 18 BCDFG represents the front truss of the wings
of a certain aeroplane. The loads in each member and the dimensions are
given in the table below. It is required to find the vertical displacements
of D, F and G relative to C for five times normal load, B and C being regarded
as fixed points. The external loads are upward vertical forces at C, D, F,
B, E, G, due to the air pressure on the wings. The loads are given in the
following table.

! } Elongation (in.)

Mom- z ! E 8
bor. | N ommalLoad)  jn ' Ibs./in.2 in.? ir 51T

. ES ES
CcD — 1,650 90 16 x 10¢| 4:80 — +0193 — -0965
DF — 512 108 ” 340 — -0102 — 0510
BE + 512 90 » 3-50 + -00825 + 0412
EG 0 108 » 3:50 0 0
DE — 550 66 » 210 — +0108 — 0540
FG — 160 66 » 1-65 — 004 - -020
BD + 1,435 115-5 | 30 x 108 | 0-093 + 0594 + -297
EFP + 600 | 127 »» 0-069 + 0368 + 184

In the table ! denotes the length, and S the cross-sectional area of a
member, and T denotes the normal load in the member. The rest of the
table is occupied with the calculation of the elongation (I7'/ES) of each
member ; tensions and stretches are taken as positive; thrusts and con-
tractions as negative. The displacement diagram in the lower part of the
figure is drawn as follows. .

The displacement of C relative to Bis zero, so take a point b, ¢ to represent
both, and commence with the triangle BCD. Draw bd, = 0-297 in. parallel
to BD and c¢d, = 0-0965” in the direction DC (right to left since DC con-
tracts). Then draw d.d and d,d, at right angles to bd, and bd, respectively,
to meet at d. Then bd is the total displacement of D, the vertical component
being d.d which is found to be 0-638”".

We next find the displacement of E: BE stretches 0-0412” so draw
be, = 0-0412° in the direction BE. DE shortens by 0:054” so that E
moves upwards relative to D by this amount ; therefore draw de, upwards
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= 0-054 in. Then, by drawing ¢,e perpendicular to be; and ee perpendicular
to de, the point e is found.

£ 4

N
! C-:—-—go'i_(:‘ﬁ- —1081-—‘%["7
l P 1
o-oz'ﬁ g 3

E G

B
Q 2

]

Frame Diagram
Showing Loads

P=160 /i

Displacement
Diagram

. f
04\3”
(-4
» e
0054 —1—ul
£ a At Five Times Load
0051~

Vertical Displacement of D =0638"
. " » F=1358"
" » - G138

l_——"—'_—__—_\

d,
L]
5
o
_lo096s5°
d 2 be K €,
00412"
Fia. 18.

Finally, starting at ¢ and d and proceeding in a similar manner f is found
and then g. Measurement shows that the vertical displacements of F and
G, relative to C, are 1-358 in. and 1-378 in. respectively.
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35. Application of the Principle of Virtual Work.—The follow-
ing method of calculating displacements will sometimes be useful,
particularly when the component displacement of one particular point
only, in a given direction, is required. For example, consider the pin-

F1a. 19.

jointed framework shown in Fig. 19, where the loads P,, P, and P, are
supported by the reactions R, and R,. Suppose we require the vertical
component of the displacement F, then we proceed as follows :

First find the force in every member due to the external forces P,, P,,
ete.

Let 7', denote the tension in any member. Next, introduce at F
any convenient * force P,, in the direction in which the displacement of
F is required, and find the forces in all the members due to P,.

Let T, denote the tension in any member, due to P,. Then the total
force in any member will be the sum of the corresponding 7', and T, ;

denote this by 7'. The increase in length of the member will be %, hence

the work done on it on account of P, will be 37, l—% if P, be increased

uniformly from zero to its final value.
The total work done by P, will therefore be given by QZTO;{;
But this can also be expressed in the form 4Pz, where z is the dis-
placement of F in the direction of P,, due to all the forces P,, P, P,,
etc. Therefore

ir
1P = %ZTOE—S

T, IT

x = Z_ﬁo "B

The ratio %’ represents the numerical value of the force, in the particular
0

member to which it refers, for unit load at F.

If now P, be made zero, T becomes 7';, and the corresponding value
of z is the displacement of F, in the direction P,, due to the external
forces P,, P,, ete.

1

* In numerical cases P, will usually be taken as unit force, such as one pound
or one ton.
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Example.—Apply this method to the example on p. 35 to find the
vertical displacement of G. The calculations are summarized in the follow-
ing table :—

Member. Ty(bs.) | Ty/P, = f l}% (in.) %‘:% (in.)
| !
D ~1,650 | -3 L~ 00193 0-05790
DF — 512 l —164 | — 00102 0-01670
BE + 512 + 164 + 0-00825 0-01355
EQ 0 | 0 0 0
DE — 550 1 -1 — 00108 0-01080
F@ — 160 -1 — 0-004 0-00400
BD +1,43 | +175 + 0-0594 0-10400
EF + 600 |+ 192 + 0-0368 0-07060
T, IT,
Z b g = 027785,

The second and fourth columns are taken from the table on p. 35. The
third column is obtained by finding the algebraic value of the force in each
member when a vertical upward force of one pound acts at G. The last
column is found by multiplying together the figures of the two previous
columns. The sum of the figures of the last column gives the upward vertical
displacement of G. The displacement at five-times load is thus

5 x 0-27755” = 1-388” approximately.

FrRAMED STRUCTURES WITH REDUNDANT BARS

36. Simply-stiff and Redundant Frames.—By a framed structure
we mean a structure which is composed of straight bars joined together
at their extremities, and unless it be expressly stated to the contrary
we assume that the joints are such that no bending can be transmitted
from one bar to another; this is commonly expressed by saying that
the structure is pin-jointed.

If the structure has just sufficient bars to prevent collapse without
the application of external forces it is called a simply-stiff frame ; when
there are more bars than this the frame is said to be redundant. Definite
relations exist which must be satisfied by the number of bars and joints
if a framework is to be simply-stiff.

37. Conditions for Simple Stiffness.—Let & = the number of
bars, and j the number of joints in a simply-stiff frame.

(i) PLaNE FraMEwoORKS.—Consider first the case where the axes of
all the bars are in one plane: let us build up the frame, starting with
one bar. To fix any other point in reference to the ends of this bar we
must use two more bars, thus making a triangular frame, i.e. b = 3 and
j=3. If we wish to add another point to the frame we must again
add two more bars, thereby fixing the new point with reference to
one side of the triangle; we now have b =5, j = 4. Proceeding in
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this we shall find that b and j are always connected by the relation *
b=2j -3. o @)
(i) THREE-DIMENSIONAL FRAMEWORKS.—We shall now take the case
when the axes of the bars are not all in one plane, The simplest plane
frame that we can have is a triangle, ABC say ; if we wish to anchor a
fourth point D in space with reference to this triangle we can first join it
to two corners of the triangle by two bars, DA and DB say, but this will
still leave D free to swing round the side 4B of the triangle: to fix D
completely we must also join it to (', so that altogether we must add
three bars (making b = 6) to fix a fourth point (j = 4) relative to a
triangle. Similarly a fifth point will require three more bars to fix its
position relative to one of the triangles formed by the first six rods,
making b = 9 and j = 5. Continuing in this manner we shall see that
the relation between b and j is
b=3-6. . . . . . . . (3)
If b is less than the value given by these formule the frame will collapse,
if greater the excess gives the number of redundant bars. Thus a plane
framework consisting of four joints and six bars would have one redun-
dant member, since it is only necessary to have 2 X 4 —3 = 5 bars.
38. Self-strained Frameworks.—If a framework is simply stiff
none of the members will have any stresses until external forces are
applied, but when there are redundant bars this is not necessarily true.
Suppose we wish to add extra bars to a simply stiff frame and that these
are slightly too long or too short to fit exactly into their places: the
original frame will have to be strained to accommodate the new members.
When the latter are in position and the applied constraint is removed
the tendency of the original framework to resume its original configuration
will strain the new members. In such a case the new framework will
be in a state of stress before any external forces are applied to it, and
we say that the frame is self-strained. If the new members fit exactly
so that no straining is necessary to get them into position, the new frame-
work of course will not be self-strained.

39. Stresses in Redundant Frames.—When the frame is simply
stiff the forces in all the bars can be found by the ordinary methods of
statics, but when there are redundant bars this is not possible without
the aid of the principles of elasticity. Here we shall be concerned only
with redundant frames, and we make the following assumptions : (i) the
structure is pin-jointed, so that the forces acting on any member must
act along the axis of that member. (ii) The members are such that
they obey Hooke’s Law, not only as regards the material of which they
are made, but also as regards their own load-extension relations. With
these assumptions we shall now proceed to the theory which leads to a
method of determining the stresses in redundant frameworks.

* Or thus : The equilibrium of each joint provides two equations of equilibrium,
80 that there will be 2j equations. But these will contain implicitly the three
equations of equilibrium of the whole structure, so that there are only 2j-3
independent equations, which is therefore the number of bars necessary for equili-
brium.
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40. Strain Energy of a Framework.—In what follows we shall
use the following notation :

U = strain energy.

P = an external force acting at a joint of a frame.

% = tRe displacement of the point of application of P, in the direction
in which P acts, as P is increased gradually from zero to its
final value.

T = the tension in a member.

l = length of a member.

S = area of the (uniform) cross section of a member.

E = Young’s Modulus.

Then, by equation (9) § 21, the strain energy of the frame is given in
terms of the tensions in the members by the equation

72
U—Zm.......(zi)
the summation extending to all the members of the frame.

Again by the principle of the conservation of energy, the strain energy
given to the frame by the application of the external forces P must
equal the work done by these forces, i.e. 2Pz, the summation extend-
ing to all the external forces.

If the framework is not self-strained we can then write

U=3XPx . . . . . . . (b

Thus we can express the strain energy in terms of the tensions in the bars
or in terms of the external forces as we please.

41. Theorem Relating to the Strain Energy of a Framework.
—If the strain energy of a framework be expressed as a function of the
external forces, the differential coefficients of this function, with respect to
these forces, give the displacements of the points of application of these
forces in their own directions.

If the framework is initially self-strained let U, be its strain energy,
and let U’ be the strain energy added by the gradual application of the
external forces of which P is a type. Then we can write

U=U,+U =U,+4XPx . . . . (i)
where U denotes the total strain energy of the frame.

Now suppose the external forces, such as P, undergo indefinitely
small increments 6P. The displacements of their points of application
suffer small increments such as dx. Then the increase in the strain
energy of the frame must equal the work done by the forces P, that is

oU = X(P.0x) P ¢ 1]
But, from (i), we must have, since U, is a constant,
OU = }2d(Px) = §X(P.0x) + (Z(x6P) . . (iii)

From (ii) and (iii) it follows that
Z(P.ox) = }X(P.ox) + 31X (x.6P).
S 2(@dP) = X(P.bx) N (12
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Now the right side represents the work done, or the increase of strain
energy, on account of the increases 6P of the external forces P, and
therefore the left-hand side must equally well represent the same quantity.
But the increase of U, the strain energy, arising from increments §P,

must be given by
U
= 22Usp
é)P(s

Therefore, from (iv), we have
U
Z'—a?dP = Xx.0P.

This must be true for any force of the system which suffers a small
increment. Hence

— =

oP

Since U is given in terms of the loads in the several members by
{4), this can be written

d T2
E]‘)Zﬁ‘é_ z

1
9T I (.
or Z5s dP (6)

Example.—Let us apply this method of finding displacements to the
example on p. 35; in particular let us find the vertical displacement of
Q, a five-times load as before. .

We must denote the external force at & by P and at the end of the work
give P its proper value.

The calculations are most conveniently done in a table, thus:

| 1 i
Mem- Normal T 7 . S !
ber. T ey | P F wie. | 8 T )
CD | —(3P+1,170) |— 3 9P1-3,510(11-7 x 10-8, (105P -+ 41,100)10-6
DF | —(1-84P1250) — 1-64|2-69P+409 199 ,, (53-5P + 8,140) ,,
BE 1-64P+250 | 1-64/2:69P+409 [16:1 ,, (43-3P + 6,590) ,,
EQ 0 0 0 193 ,, 0
DE | — (P +390) |—1 P390 |196 ,, (19-6P + 17,650) ,,
FG | —P -1 P 250 ,, (25:0P + 0) "
BD | 1.76P + 1,155 | 1.75/3-06P42,020/41-4 ,, | (126-5P -+ 83,700) ,,
EF [1.92P 4 203 1.92(3-69P + 563|614 ,, | (226-0P + 34,600) ,,

The values of T, for the external forces shown in Fig. 18, with P written
instead of 160 lbs. at @, are found by the ordinary methods of statics. The
second, third, and fourth columns are then filled in. The fifth column is
filled in from the data in the table on p. 35, and then the last column is
obtained by multiplying together the figures in the two previous columns.

The last column gives, by addition,

I orT .
zETS‘ T~ 5P = (598-9 P + 181,780)10-¢, inches.
Giving P its value 160 lbs., this gives 0-277”, which is therefore the vertical

D
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displacement of G. At five-times load the displacement will therefore be
1-385” (on p. 36 we found it to be 1-378”).

It will be seen that this method is essentially the same as that employed
on p. 37.

42. Second Theorem Relating to the Strain Energy of a Frame.
—TPhe differential coefficient of the strain energy of a framework with
respect to a couple gives the angular

’

rotation of the arm of the couple about A,-;‘-&—-—————»P
its azis. _,!1'/

In Fig. 20 let P and Q be equal and 7%
opposite forces acting at 4 and B at I 4
right angles to 4B. Then when we I
write down the expression for the strain g___—jl@lﬁ'g
energy of the framework we must re- Fre. 20.

gard @ as a function of P for purposes
of differentiation, afterwards putting @ = P and d@Q/dP = 1.

Let U = the strain energy of the frame, then after strain let 44’
and BB’ be the displacements of 4 and B in the directions of P and ¢,
and let the angle turned through by AB =0. Draw A4B” parallel to
A'B’, then ‘

BB” AA' + BB

0=25= "B

Now by the previous theorem we have
oUu oUu
AA, = —— d BB' [—J—
aP ™" Q

Cf= 1 o0U +6U

"7 AB\oP ' Q

Now let M denote the moment of the couple formed by P and Q,
then
M =PAB=Q.AB.
M
P = = ——
or (4] 1B

We can regard U as a function of M, and P and ¢ can also be regarded
as functions of M. Hence we can write

U _ou ap  oU d@
dM oP dM  oQ dM
_oU 1 oU 1
oP AB  9Q AB
L,y
AB\oP = 0@
From the expression found above for 8, this gives
aUu
M

=0 . . . . . . ..M

which proves the proposition.
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43. The Theorem of Least Work for a Framework which is
not Self-strained.*—T'he forces in the members of a framework which is
not initially self-strained can be found from the conditions that the strain
energy 1s a minimum.

Suppose the framework has n redundant bars; it is clear that so far
as concerns the rest of the framework we may replace each of these n
bars by forces at their extremities equal to the tensions or thrusts
which they are exerting. For instance if 7', is the thrust in a bar
connecting the joints 4 and B (Fig. 21) we can remove the bar 4B and
apply at 4 and B forces equal to T, acting away from each other, as
shown in Fig. 21a.

AL‘ A C

Tap L3

B D B
Redundant Frame Bar AB replaced by forces Typ
leaving a simply-stiff frame

Fic. 21. Fia. 21a.

The effect on the rest of the structure will be the same in each case.

In this way we shall be left with a simply-stiff frame under the action
of the original external forces and the additional external forces repre-
senting the tensions or thrusts in the redundant bars.

By the ordinary methods of statics we can then express the loads in
all the remaining bars as functions of all these external forces, and hence
we can express the strain energy of the simplified frame as a function of
the same quantities.

Thus let P, @, R.... stand for the external forces, and 7, T, T5. . ..
for the loads in the redundant bars. Then we shall have

Uy=fP,QR.... T,Ts....)
where U, represents the strain energy of the simplified framework.
It follows from § 41 that ‘ZTUI gives the amount by which the points

of application of the forces 7', ;epa,ra.te. But in the complete frame
this is given by the extension of the bar carrying the load T, i.e.
YA

Y ¥,
thrust, then in the simple frame the external forces 7', will push the

Here it is necessary to pay attention to sign : suppose 7', isa

* The theorems given here are due to Castigliano, whose work has been trans-
lated into English by E. 8. Andrews (Elastic Stressés in Structures, published by Scott,
Greenwood & Son, 1919). The proofs given here follow the lines adopted by Casti-
gliano, an alternative treatment has been given by R. V. Southwell (Phil. Mayg.,
Vol. XLV, 1923, p. 193). See also a very useful little book, The Mechanics
of Internal Work, by Church (Wiley & Sons).
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corresponding joints away from each other, but the fact of 7', being a
thrust means that this member of the complete frame is in compression,
i.e. has contracted. A similar argument will hold when the member is
in tension. Therefore we write :

oU, _ LT,
oT, ES,
or
oU, LT, _
oT, ES,
which can be written
0 1,72
3T1< 2ES8,
or
=0 N ¢
aT ( ¥ ‘Fzﬁjs1 @

since the partial differential coefficients of the other terms included in
the summation will be zero.

Now the terms included under the X' sign in (i) give the strain energy
of the redundant bars, so that the quantity within the brackets represents
the strain energy of the whole framework, U say. A similar equation
will be obtained by considering the other redundant bars.

We shall thus have n equations of the type

U
oT,

which will enable us to calculate the loads 7', T',. . . . T, in the n redundant
bars. We can then go back and find the loads in all the other bars.

These equations express the conditions that the strain energy of the
whole frame should be a minimum or a maximum, and the latter is
obviously precluded by the nature of the problem, so that the strain
energy must be a minimum.

44, Method of Calculating Stresses in Redundant Frames
which are not Self-strained.—From the theorem just proved we
deduce the following method for calculating the loads and stresses in the
members of a redundant framework.

Let there be n redundant bars; then the process is as follows :

(i) Choose any n members of the frame which could be omitted with-
out causing collapse.

(ii) By resolving the forces at the joints express the loads in the
remaining bars in terms of the loads applied to the frame and the loads

1-++.T, in the redundant bars.

(iii) We have to form the equations

14 14 oUu

’—=0, —=0....—=0
oT, aT, T,

(8)
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where U is the strain energy of the whole frame including the redundant
members. Now

T2
U_QZJE-‘—S,
aU IT T
AN Ly
o7, = YE§ T,
oU_ S OT _ b - o o o (9)

aT, ES “oT,

Therefore, instead of actually forming the function U and differen-

tiating it we find the values of or or o for each member and

T, oT, "' "oT

n
so form the equations (9). We then solve these equations for ', T,....T,.
In all but the most simple cases it will be best to do the calculation in the
form of tables.

Having found T,....7, we can go back and find the loads in the
remaining members.

If E and 8§ are the same for all the members we can reduce the equa-
tions to the form

oT
ZlTﬁ1= 0. . . . . . . . . . (984)
A concrete example will make the method clear.

Example.—The framework ABCFED (Fig. 22) is loaded by the three
forces W, P, Q. All the bars have the same cross section and are of the
same material, and are pin-jointed at their ends. Find the loads in all the
members, in terms of W.

A I ay3 T k.B Iinal, C
2 &
w] = ™ w‘ o
Q
el B Z sy’ 2 L
30° Z50
D T Ty E T, T, |F
P Q
Fie. 22.

This is a plane frame with 6 joints, therefore 9 bars are necessary to
prevent collapse, whereas actually there are eleven. Let us regard BD and
BF as the redundant bars, and let the tensions in them be 7'y and T,.

Let Ty . . . T,, denote the loads in the other bars as shown. Then
the first step is to express these in terms of T',, T',, P, Q, W.

Resolving vertically and horizontally at each joint we obtain the results
given on page 46 in the second column. The third column is filled in from
the diagram. Columns 4 and 5 give the partial differential coefficients of the
loads 7', with respect to T'; and T',, multiplied by the lengths of the corre-
sponding members. Columns 6 and 7 are obtained by multiplying column
2 by columns 4 and 5 respectively.
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1 2 3 4 5 6 7
In terms of length| 2T | T 2T ITE
T | pewra, |t |57 |57 T 3T,
T, Wi+ 27 o | 4o | 2 (‘l’ + 3T, + ;_T,)a (1_-;.—1—,1', + iT,)a
VZ VvE |\2 2v/2 VEZ ' 242
1 a Q
Ty |Q + —=T, a 0 —= = + {Ta)a
V2 % 0 (\/ 2 )

T Lol e o | X (] 7

11 _\/2— fl \/f 1T,

a P
T, |P 43T, s | &1 o (3 +1m)a 0
V3, | 3a 3/
Tw| T avi| 3| 0 ra °
T, |V2@ +Tslayz| 0 |avZ 0 (2Q + V2T
T, | 2P+ T, oa | 2a 0 (4P + 2T))a 0
= %) _| 8a 338 3v3
T, V3P 4+ Y1 eyl 2 0 (TP +.TT.)a 0
Q +-1p L (_1_ 4T

r, Nouk a 0 v 0 \/2—9 + 1)“
T, T, 2a 2a 0 2T, 0
T, T, av2| 0 |aVvZ 0 V2T

We next add up the two last columns and equate the results to zero.
We obtain :

3v3(v3 + 1) 1 W . 333 + 1) ,
3 T,+2\/§T,+E+—2—P=O (i)
L i 2/2)T ¥ o V2R =0 i
2\/§1+(+ T+ 75+ 2+ V20 = - (i)
We also have the equations of equilibrium of the structure as a whole :
P+Q=W

and, taking moments about D,

a(l +4/3)Q = W.aV3

which give
w W3
P=—"—0366W; Q=—c =0-634W
1+43 ? 1+43
Substituting for P and @ in (i) and (ii) and simplifying we get :
7-098T; + 0-3535T, = — 3-10W
0-507, + 6-828T, = — 4-:06W
which give :
T, = — 0:465W
T, = — 0-564W.

2
We now go back and substitute for T’y and 7',, and incidentally for P
and @, in column 2 above and thus obtain the values of the loads in the
other members :

Ty = 0-368W T, = 0-232W T, =0-134W
T, = 0-334W T, =0236W Ty = — 0-403W
Ty = 0-267TW T, = 0-235W Ty, = — 0-399W
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By following this system the loads in complicated pin-jointed structures,
which are free from initial stresses, can be found with no more difficulty
than arises from the laborious arithmetic.*

45. Frameworks which are Self-strained.—Let us imagine that
the framework is first built up as far as the inclusion of all the necessary
bars, and that we then attempt to put in the first redundant bar and
find it is too short by an amount 4;,. In order to get it into position we
shall have to push together the joints between which it is to be placed.
Then, when it is in position, the bar will stretch slightly and the joints
will go part of the way back to their original position, leaving the new
bar with a tension T,, say.

LT,
E IS l'

At the same time it will be exerting a pull 7', on each of the joints,

The redundant bar will have stretched an amount

and these will have been pulled together by an amount (ZTUI, where U,
1

is the strain energy (due to the external loads, including 7',) of the frame
without the redundant bar.

These two lengths together must make up the amount by which the
redundant bar was originally too short, i.e.

oU, | Ty _,

oT, 'ES,

? 1,72
ie. 2 (U '_L)=z L
1.6 6T1< 1 +2ESI 1 (l)

and there will be a similar equation for each redundant bar. These,
added to the equations of equilibrium of the joints, will enable us to
find the forces in all the members of the complete framework under the
action of a given external load system, just as in the case when there
were no initial stresses.

Equation (i) can be written

au ,
ﬁ_zl........(lo)

where U is the strain energy of the whole frame including the redundant
bars, expressed in terms of the forces in these bars and the external forces.

46. Alternative Method : Use of Displacement Diagrams.—
The stresses in redundant frames may also be estimated by the use of
displacement diagrams. Supposing the frame to possess one redundant
member AB the method of procedure is as follows :—

* It will be seen that the determination of the loads involves a knowledge of the
cross sections of all the members. In design work it usually happens that we cannot
fix the size of the members until we know the loads, so that a process of trial and
error is involved. A method of direct design of redundant frameworks has been
given by A. J. Sutton Pippard: Aeronautical Research Committee. R. & M.,
793, H.M. Stationery Office, 4d. Reference may also be made to a paper by the
same author on the torsional stresses in aeroplane fuselages: R. & M., 736, 9d.
Papers on three-dimensional frameworks have been published by R. V. Southwell
in the same series : R. & M., 737, 790, 791, ls. 3d. the set.
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(i) Suppose the bar 4B removed from the frame and determine the
loads in the remaining members due to the external forces.

(ii) Work out the elongations of all the members and draw a displace-
ment diagram * to determine by how much 4 and B separate ; suppose
the separation = a.

(iii) Apply at 4 and B, in the line AB, equal and opposite forces P,}
and determine the forces in all the members on account of the forces P
only.

(iv) Draw another displacement diagram and determine the separation
of A and B under the action of the forces P ; suppose it is equal to b.

Let Q be the load in the redundant bar AB. Then, if external forces
were absent, equal and opposite forces @ at 4 and B would cause these
points to separate by a distance Qb/P.

The external forces without @ cause 4 and B to separate by an
amount a.

Both together will therefore cause a separation equal to a +%b.

But this must equal the elongation of the bar AB under a pull @,

AB.Q

1.e. 7S

, where 8 is the area of the cross section of 4B. Hence we have

Q, ABQ
—b="2. . . . . . .11
a + Pb 75 (11)
which is an equation from which to find Q. When @ has been found
the loads in the other members are obtained by adding to the loads
found in (i) @/P times the loads found in (iii) above.
The method will be made clear by an example.

Example.—Find the loads in all the members of the framework shown
in Fig. 23, the members AC and BD being independent. AC = 5" and

"
S
Al
?,Q'; "96‘4
B
20Tons 0 Tons
o
5 A
@)
®
(Y
&
i~
Fia. 23.

Displacement diagram for external forces; AC removed.

BD = 4-8’. The sectional area of each member is 0-5 in.%, and E = 13,200
tons/in.*

* Or a may be found by the method of § 41,

t E.g. P may be one ton: see example.
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We can regard either AC or BD as the redundant member. Let us take
AC and suppose it removed. Then by the methods of statics we find that
the loads in the other members, due to the pulls of 10 and 20 tons, are

AB and AD: 833 tons, tension.
OB and CD :6-25 ,, »»
BD : 9'60 1Y 9

Now take B as a fixed point and BD as a fixed direction and draw the
displacement diagram. The elongations are: AB and AD, 0:0455”; CB
and OD, 0-0455” ; BD, 0-0840”. It is found that

a = increase of distance AC = 0-0455".

Next apply forees of 1 ton at 4 and C as shown in Fig. 24; find the

A

17on

-] Tor?

3]

Fic. 24.

loads in all the members and draw the corresponding displacement diagram.
The loads and elongations are found to be:

AB and AD :load = 0:833 tons comp. ; elongation = — 0-00455”,
CBand CD: ,, =0625 » » = — 0-:00455".
BD : o, =104 ,» tension ; ” = 4 0-:0091".

The increase in AC is found by measurement to be b = — 0-018”".

Let @ be the actual load in the member AC of the original frame, then

we must have
Q@ x 60
00455 — 0-018€ = G- —3550°

whence
Q = 1-68 tons,

The loads in the other members are then :

AB:833 — 168 x 0833 = 7-13 tons.
BC : 625 — 1-68 x 0-625 = 520 ,,
BD:9-60 + 1-68 x 1-04 = 1135 ,,
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EXAMPLES II

1. Fig. 25 represents the
framework of a crane which
carries a load at its outer
extremity and is supported by
forces R,, R, acting at 4 and
B in the direction shown.
The sections of the various
—S— = members are so proportioned

iR that all tie bars are stressed

2z up to 6 tons per square inch,

Fia. 25. and all struts to 3 tons per

square inch. Construct a

diagram showing the dlsplacement of all the joints of the framework relative

to A. The bar 4B is supposed to remain horizontal. (Intercoll. Exam.,
Cambridge, 1908.)

2, In the framework
shown in Fig. 26 the bars
PQ, RS are each 8 ft. long.
All other members of the
framework are 11 ft. long.

If the section of each
member is 1 sq. in. and E
for the material is 30 x 10¢
Ibs. per square inch, deter-
mine by means of a displace-
ment diagram the horizontal
displacement of A4 relatively
to B. The reactions at these Fic. 26.
ends are to be taken as ver-
tical in direction, (Intercoll. Exam., Cambridge, 1910.)

3. In the framework shown in Fig. 27, the sections of the various mem-
bers are as follows:

) BC =8 sq. in.,
AB = CD =4 sq. in,,
EA =EC = EB = ED =
3 sq. in.

The framework is sup-
ported by vertical reactions
at A and D. Take E =
14,000 tons per square inch
and determine the elongation

Fra. 27. or contraction for each bar.

Draw the displacement

diagram for the framework and determine the *‘spread ” of the frame pro-
duced by the load. (Intercoll. Exam., Cambridge, 1913.)
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4. The framework shown
in Fig. 28 is supported on
wheels. Find graphically the
stresses in the various bars
of the framework. Given
that all tie bars are stressed
up to 8 tons per square inch
and all struts support a com-
pression of 2 tons per square
inch, draw up a table giving
the sections of the various
bars.

By means of a displace-
ment diagram determine the
increase of the span AB pro-

()

duced by the load. Take i
E = 14,000 tons per square - 20" —
inch. (Intercoll. Exam., Cam- Fia. 28.

bridge, 1914.)

8. The double cantilever shown in Fig. 29 is supported by vertical reac-
tions at 4 and B. The figure is drawn to a scale of 20 ft. to 1 in. and the
numbers on the bars denote their sectional areas in square inches. Taking
E for the material as 30 x 10° lbs. per square inch, draw the displacement

D 20 []

40

= S

Fia. 29,

diagram for the framework and determine the vertical displacement of the
points £ and F. (Mech. Sc. Trip., 1911.)
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6. The framework shown in Fig. 30 carries the loads W,, W, and W,

as shown and rests on two supports at 4 and B. The bars composing the
frame all have the same cross section and are made of the same material.

}Wz

Fia. 30.

AC =CB =DE =1, and AD =DC = CE = EB =1, Prove that on
account of the loads the point D sinks a distance

,;‘S( Wi+ Wy + = W)+é:g( W+ = W.+%W‘))’

where S is the area of the cross section of each bar.
If I, =20 ft., I, = 14-14 ft., W, = 8 tons, W, = 2 tons, W, = 4 tons,
S =2 in? E = 30 x 10% lbs./in.?, find how much D sinks.

7. One-half of the wing structure of an aeroplane is shown diagrammatic-
ally in Figs. 31 and 32. AB and CD are the rear spars; A’B’ and C'D’
are the front spars ; BC and B’C’ are rear and front struts between the upper
and lower wings. The other members operating are steel wires BD, 4°C”, BC".
The external loads are as shown. In plan view each wing is as shown in

v ; % 4
N S $ %
A N A Sim’ 5| Mg
i b
| D (4 d c’ r
T gog” P | R ” [ 317
¢ 856 $8 85-6 -———-g ad
Al 428" | 928" B S =
r i Fio. 32 & g 2
' tR N
| A B
Fic. 31.

Fig. 31, the cross members being wooden struts and the diagonals steel
wires. The cross section of each front spar is 3-59 in.? and of each rear
spar 247 in.*; BD = 0-0538 in.*; A’C’ = 0-0269 in.?; the other wires
are all 0-0158 in.? For steel £ = 30 x 10° lbs./in.3, for the wood E =
1-4 x 10%. Considering only the structure ABB’C’D’A’ and neglecting
the strain energy of the struts, find the load in the wire BC’,
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8. In the double cantilever framework shown in Fig. 33, determine the
stress in the member AB., The numbers on each of the bars give their

-

section area in square inches; the reactions at C and D are vertical, and
E is the same for all the bars. (Mech. Sc. Trip., B., 1911.)

70 Tons

9. The framework shown in Fig. 34 con- 160
tains a redundant bar. The members are
all of the same section and material and are
freely jointed together at their extremities.
Find the stress in the bottom horizontal . -
member. (Mech. Se. Trip., B., 1910.) 60 60

S5Tons

S5Tons

Fia. 34.



CHAPTER IIT
SHEARING STRESSES

47. Shearing Stress.—In our first chapter we made a detailed
study of two kinds of stress only : tensile and compressive stress, which
are collectively referred to as ‘ direct * stresses. There is, however, a
third kind of stress which we must study. In dealing with tension and
compression we confined our attention to the action between the particles
of the body on the two sides of an imaginary plane at right angles to the
line of action of the resultant pull or thrust. Let us now consider the
actions between particles separated by a plane which is not at right
angles to the resultant applied force. For instance, in Fig. 35 (i) suppose

0 (ii)

c
A \ B-rpa EP
D D
X & —
—l4 <_<‘ , f&/ Bf—-P
— b e

D §)

(iii) ‘ (iv)
Fia. 35.

b
b

frt

the rod 4B is subjected to a push P applied to its ends, and let CD be
an imaginary oblique section of the rod. What is the action between
the two parts of the rod across the plane CD ¢ Clearly the equilibrium
of the part A4 demands that the resultant force exerted by the part B
should be a thrust P, as shown at (ii). But this resultant action can
be resolved into two components, one at right angles to, and one tangential
to, the plane OD, as shown at (iii). Similarly the reaction of the part 4
on the part B across the plane C'D can be represented by two components,
as shown at (iv); clearly the component at right angles to CD, of the
action of B on 4, is equal to the corresponding component of the reaction
of 4 on B, and likewise the two components tangential to CD must
be equal.

We see, then, that the action and reaction between the two portions
of the rod can be regarded as made up of a pressure between them at
right angles to CD, and a tendency to slide over each other along the

54
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surface CD. The former of these mutual actions gives rise to a direct
stress, such as we have studied in the first chapter ; the latter constitutes
a shearing action.*

In one extreme case, when CD is at right angles to the resultant
thrust, the shearing action disappears, and in the other extreme case,
when CD is parallel to the resultant thrust, the whole action between
the two parts of the rod is zero, both the compressive and shearing
actions being zero, if the load be distributed uniformly over the ends.

These considerations show us that, in order to specify the stress at
any point in a body, even under such a simple load as a pure thrust,
it is necessary to state the direction in which the stress is measured.
Thus at any point in the rod, if the stress is measured in the direction
of the axis of the rod it will be a compressive stress, if at right angles
to any oblique cross section it will again be a compressive stress but of
a different value; if it be measured along any oblique plane it will be
a shearing stress. Referring to Fig. 35 it will be equally true to say
that the stress at any point in CD is a certain compressive stress in the
direction 4B, or to say that it consists of a different compressive stress
at right angles to CD accompanied by a shearing stress along CD. Under
certain circumstances the stress at a point in a body can be completely
specified by stating it as a shearing stress in a certain direction. In
such cases there is said to be a state of ‘ pure shear.”

As a further illustration of shearing stresses suppose we have a block
of material (Fig. 36) glued to a table, and a thin plate glued to the top

of the block, the upper and lower Piste

faces of the block being parallel : if e
we pull on the end of the plate with A B

a force F the plate will tend to slide Bloex

along the tOp Of the bIOCk’ a'nd the Ii' TITTTITTTTTT I T YT T T ITIVTIT? TITITIYITT
block to slide along the table. The Fc. 36.

table resists the sliding of the block,

and the block resists the sliding of the plate. The technical way of
stating this is to say that there is a shearing force acting along the
surfaces of separation.

Again, if we consider the block divided by any imaginary plane 4B,
parallel to the upper and lower faces, the top part of the block will be
trying to slide over the bottom part. In other words, this plane is
subject to a shearing stress, and so is every plane such as AB. It is
in this manner, i.e. the tendency of one part of a body to slide over
the neighbouring part, that obvious shearing actions are met with in
practice.

To make this clear we shall consider one or two instances. First,
consider the case of two flat plates (Fig. 37 (i)) held together by a
single rivet and pulled with forces F. We can imagine the rivet divided
into two portions by the plane AB shown dotted ; then the top half

* The reader may find it helpful to think of a stick of wood sawn in half along
OD, the two parts being placed in contact on a table, and then to imagine what
will happen when the ends are pushed towards each other.
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of the rivet is tending to slide over the bottom half, i.e. a shearing stress
exists at every point in this plane. '

Next consider (Fig. 37 (ii)) a shaft 4 with a collar C held in a bearing B,
one end of the shaft being pushed with a force . In this case there is a
tendency for the shaft to be pushed bodily through the collar, i.e. there
is & shearing action over the surface of the cylinder indicated by the
dotted lines Y. There is also the possibility of the collar pulling through
the bearing, shear taking place on the surface of the imaginary cylinder X.
Which happens first will depend on the relative capacities of the two
surfaces to resist shear.

As a third example we will take the case of a steel bolt through the
end of a bar of wood, as shown in Fig. 37 (iii), the bolt being pulled by
forces F. Suppose that the grain of the wood runs parallel to the length

(i)

- YC'Y 7y
I
Gii)
§ @
; f

of the bar, Then, if the forces F are large enough the whole block
ABCD will be pushed out, shear taking place along the planes 4B and CD.

48. Complementary Shear Stresses.—Let us return now to the
consideration of the block discussed above (p. 558). We have seen that
all planes, such as AB (Fig. 36), parallel to the top and bottom of the
block, are subjected to shearing stress. Consider the material between

_—F
~—— [~ = = —— ==

===
===

———— - —— -

F—
Fi1a. 38.

two such planes, which are close togetner, and imagine that it consists
of a number of rectangular elements, as shown by the full lines in Fig. 38.
Under the action of the shearing forces F, which, together, constitute a
couple, the elementary blocks will tend to take up the positions shown
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by the dotted lines in Fig. 38. It will be seen that there is a tendency
for the vertical faces of the blocks to slide over each other. Actually
the ends of the blocks do not slide over each other in this way, but the
tendency to do so shows that the shearing stress in horizontal planes is
accompanied by shearing stresses in vertical planes perpendicular to
the applied shearing forces. This is true for all cases of shear : a given
shearing stress acting on one plane is always accompanied by a comple-
mentary shearing stress on planes at right angles to the given stress and
to the plane on which it acts.

Consider, now, the equilibrium of one of the elementary blocks *
referred to above. Let ¢ be the intensity

of shearing stress over the faces 4B and  4__, __,  _ 0
CD (Fig. 39), and let ¢’ be the intensity of I n
the complementary shearing stress on the ar—]
faces BC and AD. zr; g tqr
Let the thickness of the block perpen-  + | }
dicular to the plane of the paper be unity. D —g— "=+

The total shearing force on AB = q.0x; Fia. 39.
and that on the face CD is the same. These
two forces constitute a couple of moment ¢.0z.0y in a clockwise direc-
tion. Similarly, the stresses ¢’ give rise to a couple of moment ¢'dy.6x
in an anti-clockwise direction. For the equilibrium of the element these
two couples must be equal. Hence we must have ¢’ = g.

We see then, that, whenever there is a shearing stress over a plane
passing through a given line, there must be an equal complementary
shearing stress on a plane perpendicular to the given plane and passing
through the given line. The directions of the two shearing stresses
must be either both towards, or both away from, the line of intersection
of the two planes in which they act.

It is extremely important to realize the existence of the complementary
shear stress, for its necessary presence has a direct effect on the maximum
stress in the material, as we shall see later. As a simple practical illus-
tration of their importance we give the example shown in Fig. 41 : the
pieces P and @ are under the action of the forces F, and sliding is prevented
by the wooden dowel CD. This dowel is obviously in shear across the

* It may occur to the reader to ask why we take a rectangularelement. Surely,
he may say, the couple due to the stresses g could be balanced equally well by shear-
ing stresses on oblique planes, as in Fig. 40. True, it could, and it is easy to show
that in the same way as above, that ¢’ = ¢, what-
ever the angle ¢ is. It might appear from this that A9 .~ B
we could take our balancing shear stresses on any /
plane we please, but in general the simple relation- q
ship ¢ = ¢ will not hold. We frequently have shear / T
stresses and direct stresses acting simultaneously. /
Suppose there were two direct stresses of intensity p /)
acting at right angles to the faces AB and C’D’ ; they D'
would give rise to a couple piz.8y cot 6, so that for Fia. 40.
equilibrium we should have ¢”'6y.02 = ¢éx.0y — péx.oy .
cot 9, and the value of ¢’ would depend on p except when ¢ = /2. Thus it
will be most convenient always to take 6 = x/2, so that the complementary shear
stress is equal to ¢ whatever direct stresses may be acting as well.

B
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plane AB; therefore there must be

% P E__,I_' equal shearing stresses in the vertical
Al | B planes, such as ¢'D. If this be the
A direction of the grain, failure of the
— 7] piece may occur from the shearing
stress parallel to the grain being too

Fic. 41. large, since wood is weak in shear

along the grain.

49. The Shearing Stresses on a Cross Section must always Act
in Directions Tangential to the Boundary.—Let XY P be the bound-
ary of the cross section of a body which is sub-
jected to shear in the plane XYP. If possible
let the shear stress at P be ¢, as shown in Fig. 42, X
Then, if the direction of g is not along the tan-
gent at P, the stress g can be resolved into com-
ponents g, along the normal at P, and ¢, along ¥
the tangent. The shear stress ¢, demands an
equal complomentary stress acting in the tangent
plane at P, at right angles tog, and ¢,. But, if no q2
external forces are applied to the surface, this is Fre. 49.
impossible. Therefore, if the surface of the body
is not acted on by tangential forces, we conclude that the component
stress g, must be zero, that is the shearing stress at P> must act along
the tangent to the bounding curve at P. We see, then, that in such cases
as rivets, etc., the distribution of shearing stress over the section must be
somewhat as shown in Fig. 43, rather than as in Fig. 44, and we infer
that the intensity of shearing stress must vary over the section.

Fi1a. 43. Fia. 44.

50. Measurement of Shear Stress.—As in the case of direct
stresses, the intensity of shear stress is reckoned per unit area. If the
distribution is uniform the shear stress is equal to the shearing force
divided by the area resisting shear; if the distribution is not uniform
the stress is taken as the limiting value of §#/8S, where 4F is the shearing
force acting on a small area S which contains the point under con-
sideration.

The occurrence of shear stress, and its estimation, will be better
understood after studying the following examples, in all of which the
load is assumed to be uniformly distributed. This assumption is usually
not true, but leads to sufficiently reliable results.
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Example 1.—Three steel plates are held together by a single rivet as
shown in Fig. 45, the load transmitted is 14 tons, and the diameter of the
rivet is § in. Find the average shear stress in the rivet.

1o ]

NN
77005 )

14 Tons

Fia. 45.

The tendency to shear is across the planes indicated by the dotted lines.
The area resisting shear is twice the cross sectional area of the rivet.
Let ¢ = the shear stress. Then
Fi1 5>’, .
29 % T X <8 in.? = 14 tons
14 tons
—— —————— e = N 1 2
9 =562 ins = 229 tons/in.
Example 2.—A cotter joint between two steel bars is shown in Figs. 46
and 47. The shearing strength of steel can be taken as 23 tons/in.? Find

I-—I41+——-3"———-|~/4'L-
- ‘I .l
Tj i W R
N : §
£ .,
1 A B ﬂ
d= - e . - ¢
N Y i N
X
N c Y (_d
15
N
_'*‘_.L ) Fra. 46,
.

Fia. 47.

which part of the joint is likely to shear first, the load being a tension.

Shearing failure may occur in tho following ways:

(i) Shear of the cotter in the planes 4B and CD (Fig. 46).

The area resisting shear = 2. FKMH = 2 x 3-0 x 06 = 3:6 in.?
.. the load required to cause failure in this way

= 3-6 in.? x 23 tons/in.? = 82-8 tons.

(ii) By the cotter pulling through the ends of the socket Y, i.e. by shear

in the planes EF and GH (Fig. 47). There are four areas resisting shear. The

total area in 4 X 1-2 X 1-4 =6-7 in.2
.*. the load rcquired to cause failure = 6-7 in.? x 23 tons/in.? = 154 tons.
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(iii) By the cotter pulling through the ends of the rod X, i.e. by shear
in the planes KL and MN (Fig. 47).

The area resisting shear = 2 X 1-4 X 24 = 6-72 in.?
.". the load required to cause failure = 6-72 in.2 X 23 tons/in.? = 154 tons.
Hence shear failure will occur first in the cotter itself (i).

Example 3.—A lever is keyed to a shaft 1-5” diameter, the width
of the key being 0-5” and the length 2. What load can be applied at a

radius of 36” without causing the shear stress in the key to exceed 4
tons/in.? ?

If the key shears it will do so in the plane AB (Fig. 48).

Let W tons be the load.

The torque produced == 36 tons. ins.

This will produce a shearing force in the plane AB
36 in. x W tons
= 075 in. . = 48W tons.

The area resisting shear = 05 X 2 == 1 in.?
.*. the shearing force must not exceed 4 tons.
. W must not exceed vy ton = 187 lbs.

51. Shear Strain.—If a piece of material be subjected to shearing
stress, an element such as ABCD (Fig. 49),

A ___——9 B which was originally rectangular, will become
T #  oblique. The relative motion of the faces AB

e = and ¢D will be one of sliding in their own
l planes, and lines such as AD and BC, origin-
D g— ¢ ally perpendicular to AB and CD, will be-

come inclined to their original directions at
an angle . This angle ¢ is defined as the
shear strain and is measured in radians.

52. Modulus of Rigidity.—As in the case of direct stresses, the
shear strain is found to be proportional to the shearing stress, within
certain limits, for most metals. In fact a stress-strain diagram for shear
exhibits all the principal features of a stress-strain diagram for tension.

Thus within the limits of proportionality we can write

Fia. 49.

q= C(P . . . . . B . . . (l)
where ¢ = the shear stress
¢= , , strain

and C is an experimental constant for the material ; this constant is
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called the modulus of rigidity of the material, and is roughly of the same
order of magnitude as Young's Modulus, e.g. for steel E = 30 x 108
lbs. /8q. in. and € = about 12'5 x 108 lbs./sq. in.

53. Strain Energy due to Shear.—When a body is in a state of
shear stress, the points of application of the forces causing the stress
undergo displacement ; therefore work is done exactly as in the case
of tension or compression. If the strains are kept within the elastic
limit the work done is recoverable and is stored in the form of strain
energy. Referring to Fig. 49, let 48 denote the area of either of the
faces AB or CD, and let A be the height of the little block. The force
acting on either face is ¢.08, and the couple due to them is ¢.8S.h. As
the stress is gradually increased from zero to the value g, bringing about
the strain ¢, the work done by the stress couple is }gh.08.¢, i.e. gp per
unit volume, ¢ being always small.

Thus the strain energy or resilience, due to shear, per unit volume, is,
from (1), 2

U=%q<p=2—qa B 3]

where C is the modulus of rigidity.

As in the case of direct tension and compression, loads suddenly
applied will produce approximately double the stress that would be
produced if the same load were applied gradually.

EXAMPLES III

1. Rivet holes §” diameter are punched in a steel plate % in. thick.
The shearing strength of the plate is 21-5 tons/in.? Find the compressive
stress in the punch at the time of punching.

2. The diameter of the bolt circle of & flanged coupling for a shaft 57
diameter is 15”. There are six bolts 1” diameter. What horse-power can
be transmitted at 150 r.p.m. if the shear stress in the bolts is not to exceed
4 tons/in 3 ?

3. The pellet (Fig. 50) carrying the striking needle
of a fuse has a mass of 0-2 lb. ; it is prevented from
moving longitudinally relative to the body of the
fuse by a copper pin 4 of diameter 0-02”. It is
prevented from turning relative to the body of the
fuse by a steel stud B. A fits loosely in the pellet
so that no stress comes on 4 due to rotation. If
the copper shears at 10 tons/in.?, find the retarda-
tion of the shell necessary to shear- 4. (R.N.C,,
Fia. 50. Greenwich, 1923.)

4. A lever is secured to a shaft
by a taper pin through the boss of
the lever, as shown in Fig. 51.
The shaft is 1-5” diameter and the
mean diameter of the pin is § in.
What torque can be applied to the
lever without causing the shear
stress in the pin to exceed 8,500 .
1bs, /in.2 ? |
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5. A cotter joint between two round rods in tension is shown in Fig. 52.
Taking the tensile strength of the rods as 23 tons/in.?, the shearing strength
of the cotter 18 tons/in.?, the permissible bearing pressure between surfaces

N

12

Fia. 32,

7R
TR

in contact 45 tons/in.2, the shearing strength of rod ends 12 tons/in.?, calcu-
late suitable dimensions for the joint so that it may be equally strong against
the possible types of failure. Take the thickness of the cotter = d/4, and
the taper of the cotter 1 in 48.

6. A horizontal arm, capable of rotation about a vertical shaft, carries
a mass of 5 lbs., bolted to it by a }” bolt at a distance 18” from the axis
of the shaft. The axis of the bolt is vertical. If the ultimate shear strength
of the bolt is 3 tons/in.2, at what speed will the bolt snap ? (R.N.E.C,,
Keyham, 1919.)

7. A shaft is subjected to a twisting moment which produces a shearing
stress at the surface of 10 tons/in.?, in planes perpendicular to the axis of
the shaft. A small square is scratched on the surface of the shaft with two
of its sides parallel to the axis of the shaft. Taking ¢ = 12-5 X 10¢1bs./in.?%,
find the change in the angle at the corners of the square.

8. A copper disc 4” diameter and 0-005” thick, is .ﬁtted inA the casing
of an air compressor, so as to blow and safeguard the cast iron case in the event
of a serious compressed air leak. If pressure inside the case is suddenly built
up by a burst cooling coil, calculate at what, pressure the disc will blow out,
assuming that failure occurs by shear round the edges .of‘ the disc, and that
copper will normally fail under a shear stress of 8 tons/in. (R.N.E.C., Key-
ham, 1929.)



CHAPTER IV
RIVETED JOINTS

54, Introductory.—In the majority of built-up structures the
several members are united by riveted joints, and the strength of the
joints is just as important as the strength of the members themselves.
Unfortunately, the strength of riveted joints cannot be calculated with
any degree of certainty, and practical design usually depends on empirical
formule based on experience. Certain theoretical considerations, how-
ever, are useful as guides, and provide an interesting application of the
principles which we have already studied.

Cover
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Fia. 53.

A riveted joint is most commonly made in the manncr shown in
Fig. 53, where 4 and B are joined together by the rivets R and cover
plates ¢, D. Except in very light work the rivets are generally placed
in position red hot and the heads are closed immediately. If the rivets
fill their holes when hot they cannot fill them when they have cooled, on
account of lateral contraction. Consequently, the members 4 and B
will tend to slidé over the cover plates, when a load is applied, until
the rivets are all pressed up against their holes. On the other hand,
the contraction of the rivets presses the cover plates against the members
A and B with considerable force, so that any tendency to slide must be
resisted by large friction forces between 4, B and C, D.

Evidently it is desirable that the load on the joint should be less than
that required to overcome friction and produce slip, otherwise there will
be backlash if the load is reversed, and the joint will become “ sloppy.”

It is also evident that, if the rivets are carrying any load, they must
be acting as stops to check the relative movements of the plates. But,
as long as the friction forces are great enough, there will be no relative
movement, and the rivets will not bear any load; as soon as slip
occurs, the rivets are acted on by shearing forces in the planes separating
the cover plates from the main plates.

At the time of writing it is practically impossible to make any reliabie

63
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calculation of the friction forces which may be reckoned on in any given
joint, and in England theoretical calculations are made for the strength
of the plates and rivets, friction being ignored. On the Continent,
however, the friction theory finds more favour, design resting largely
on experimental figures given by Bach. According to Bach, when
slipping begins, the friction forces vary from about 14,000 to 30,000 1bs.
per square inch of rivet section, for each pair of surfaces in contact,
increasing slightly with the length of the rivet, but not quite in pro-
portion to the number of rows of rivets in multiple riveting. In a paper
to the Institute of Naval Architects, 1923,* J. Montgomerie gives the
following figures for the pull which produces slip, per square inch of
rivet section :

Thickness of plates . . . . 06" 075" 1-0”
Slip pull - area of rivet section 7-5to0 8 6-2 5 tons/in.2

These figures were obtained for joints made under ordinary shipyard
conditions, and show a decrease in the frictional resistance as the length
of the rivet increases, which is contrary to Bach’s results. The reason
for this is probably the increased difficulty of getting good contact
between the plates as the thickness increases. When special precautions
were taken to ensure good contact the figure for 1”7 plates was raised
to 7 tons/in.?

In these tests two plates of equal thickness were riveted together,

1
- | T S
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as shown in Fig. 54, and subjected to a load acting in the plane separating
the two plates.

We shall consider the theoretical calculation of the strength of riveted
joints, neglecting friction, which at present is the commonly adopted
theory in this country.t Its chief recommendation is that it will produce
. a joint that will not fail even if slip does occur.

55. Possible Types of Failure of Simple Riveted Joints,
Neglecting Friction.—To explain the general principles it will be
sufficient to consider the joint shown in Fig. 55.

Let d = the diameter of the rivets.
z = the pitch of the rivets, i.e. the distance between their centres
measured parallel to the line separating the plates.
¢, = the ultimate shearing stress for the rivets.
g, = the ultimate shearing stress for the plates and cover plates.
f = the ultimate tensile stress for the plates and cover plates.

* See Engineering, June 8, 15, 1923.

t For other papers on the subject see Annales des Ponts and Chaussées, articles
by Considére (1886), Dupuy (1895) ; Zeit. d. Ver. (1897) ; Iron and Steel Institute,
Vol. XCVI (E. B. Woiff) ; C. Batho in Engineering, Sept. 3, 1920,
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;= the maximum bearing pressure allowed between the plates and
the rivets.

P = the load per unit length of joint, as shown in Fig. 55.
The other dimensions of the joint are as shown in the figure,

Side Elevation

I T

+__

i

T

. 1

P per unit length

Wr;l?bj
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Fi1c. 55.

Let us consider that portion of the joint which lies between 4B and
CD: the total force acting across AC and BD is Pux.

Then the joint may fail in any of the following ways:

(i) The rivets may shear (Fig. 56). -

The resistance of each rivet to shear is a,
nd3q, . \\\‘IM\ l:dz

2 x —— 1% 8o that the relation
4 - Fic. 36,
nacq
<‘2~‘........(1)
must be satisfied.
(ii) The permissible bearing pressure may be
exceeded (Fig. 57). To prevent this we must e T
have Px '_?_
Pr< p,di
or < 2p,d.t ; (2) Fra. 57.
whichever is the smaller.
The bearing pressure between the plates and
the rivets arises from the former being pressed L Py C
up against the latter, and, as we are neglecting P P
friction, the whole load is transmitted in this way,
as shown in Fig. 58, which refers to the left- Fro. 58

hand rivets in Fig. 55.
(iii) The shaded area FHKGQ may be pushed out of the plates which
are being joined together. This is resisted by the shearing stresses on
two rectangular areas perpendicular to the plates, the length of each area
being @ and the depth ¢{. Hence for safety we must have
Prg2alg, . . . . . . . . (3
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(iv) Similarly, the shaded area LM N@ may be pushed out of the cover
plates, and the condition that this should not happen is

Pre 268,y x 2. . . . . . . 4
The factor 2 outside the bracket is due to there being two cover plates.
(v) The plates may fail in tension across P
the line XY (Fig. 59). The resistance b=
to tension is f X (x —d)t, so that we prr] }(w—d)tf’
require H £
Prz fllx —d)y . . . . . (B Fro. 59.
(vi) The plates may tear in the manner
shown in Fig. 60 at Z, but the probability ®<Z
of this is not open to calculation.
Fic. 60.

Example.—Two steel plates §” thick are to be joined by a single
riveted butt joint with cover plates. The
rivets are to be §” diameter and the
tensile and shearing stresses are to be
6 and 4-8 tons/in.? respectively. Find
the proportions of the joint so that it
shall be equally strong in shear and ten-
sion, and calculate the bearing pressure
between the rivets and plates.

The arrangement of the joint will be
as shown in Fig. 61. Let z = the
“pitch ” of the rivets, and let the load
on the joint be P tons per inch so that
the load on a length x is zP tons.

It will be logical to make each cover

Fia. 61. plate half * the thickness of the plates
which are being joined, iLe. &”.

1f the joint fail in tension it will be along the lines AB. The area resisting
tension is

$(x — §)sq. in.
With a tensile stress of 6 tons/in.? the total load on 4B will be
6 tons/in.? ¥ § (x — §) In.? =3 (x — &) tons.

Hence we must have
Pr = jxz — i3 tons . . . .(1)

If the joint fail by the rivets shearing, the area resisting shear, in a length
x, 1s
2 (T By
2 X\ ¢ X 1) = 198 54 I
Therefore, with a shear stress of 4-8 tons per sq. in. we can have

25 25n
— 4- ’ in 2 = in.2 — 4. - i
Px = 4-8 tons/in.? x 28 - 48 x 128 tons . (i)

* In practice the cover plates are usually made thicker than this as it is found
that the cover plates seem to be weaker than the plates joined.
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If the joint is to be equally strong in shear and tension we must have,
from (i) and (ii),
9 45 257

7% 3 =48 X g5

—Z—x =294 + 14 = 4-34
xz =193
Then from (ii), we have Px = 2-95 tons,
The area of each rivet resisting crushing is §” X 4” = #}{in.? Hence the
bearing pressure is
295 tons/4; in.? = 12:6 tons/in.?

Again, since the cover plates are each half the thickness of the plates
being joined, equations (3) and (4), p. 65, will give ¢ = b and

2a X " X 48 tons/in.? = 2-95 tons,
whence a = 0-82" =b.

56. Group-Riveted Joints.*—When two tension members are
joined together by cover plates riveted in the manner shown in Fig. 62

O00:i00O0

O 00;000

OO0O0O:00O0
Fro. 62,

the joint is said to be group-riveted. The greatest efficiency of joint is
obtained when the rivets are arranged as shown in Fig. 63, where it is
supposed six rivets are required each side of the join. The loss of cross
section in the main members, on the line 4, is that due to one rivet hole.
If the load is assumed to be equally distributed among the rivets, the

l

SRR PN
<1>q>§d.>
3?5?;:3

rivet on the line 4 will take one-sixth of the total load, so that the tension
in the main plates, across B, will be § of the total. But this section
is reduced by two rivet holes, so that, relatively, it is as strong as the
section A4, and so on : the reduction of the nett cross section of the main
plates increases as the load carried by these plates decreases. Thus a

1
'
'
)
1
i
i
t
1
{

* See Engineering, Dec. 6, 1918, for an article on the rigidity of riveted joints ;
the effect of rivet holes is dealt with Sept. 1, 1911, Sept. 19, 1913, Sept. 8, 1922.
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more efficient joint is obtained than when the rivets are arranged ag in
Fig. 62.

57. Eccentric Loads.—It is obvious that a uniform distribution
of load among the rivets cannot be attained unless the line of action of
the resultant force acting on the joint passes through the centroid of
the rivet-holes, and, at the same time, the rivets are symmetrically
disposed with regard to the resultant force. In very many cases these
conditions are not satisfied and it is desirable to form an idea of the load
distribution.

In Fig. 64 let ABCD be a plate riveted to a member EF, and let P

E

&

0000
0 0,0 O

&
O O
N
O O P G’
oXe) 7a
D l [c %
F D c
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be the resultant of the forces acting on AB. Let G be the centroid of
the rivet-holes.
Let n = the total number of rivets.

a = the perpendicular distance of & from the line of action of P,

Now we can replace P in Fig. 64 by an equal parallel force P acting
through @, combined with a couple Pa, as shown in Fig. 65.

We assume that the deformation of the plate is negligible in comparison
with that of the rivets, and that the load on each rivet is proportional
to the displacement of the corresponding hole in ABCD, relative to the
member EF, and acts in the same direction.

Consider the loads on the rivets due to P and Pa separately :—

On account of the force P each rivet will carry a load P/n acting in a
direction parallel to that of P.

On account of the couple Pa the displacement of any rivet-hole R
will be at right angles to GR (Fig. 65) and proportional to the distance GR.
Therefore, according to our assumption, the load on the rivet at R will
be proportional to GR and perpendicular to it.

Let GR = x,, W, = the load on the rivet at R, and let

We=ke . . . . . . . . (i)
where k is a constant. Then we must have

Pa= 2 Wz, . . . . . . (i

=1
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From (i) and (ii) we get
T=n T=n
Po= Xka?=1k2Z a?
r=1 r=1
Pa

k=

rz'nx?
r=1
Hence, from (i),
W, = Pa. r S ()
2

r=1

This equation gives the load on each rivet due to the couple Pa.
The total load on the rivet is the vector resultant of this and the load P/n.

Example.—Fig. 66 shows a bracket riveted to a vertical stanchion and
loaded with a vertical load of 5 tons. Assuming that the total shearing
stress in a rivet is proportional to the relative displacement of the bracket
and the stanchion in the neighbourhood of the rivet, find the load carried
by each of the rivets. (Intercoll. Exam., Cambridge, 1922.)

Tons

9”

fe—3"—3"—
4 éb
% %X %

Fi1a. 66.

The centroid of the rivets is evidently at the point marked @ in the figure.

For A, z =AG =49 + 4 = /13 in.,
B, z = BG = /13 in.
C and D, z =2 in.
E and F, z = 413 in.

Zx? =13 413 +13 4+ 13 + 4 4+ 4 = 60 in.?
n =6
a =9 in.
P =5 tons.
.*. Pa = 45 tons. ins.

Then the loads on rivets 4, B, I, K, due to the couple Pa are each
\/ 13 in.
. 60 in.?
at right angles to GA, GB, GF, GE respectively.

45 tons/in. X = 2:71 tons,
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The corresponding loads on the rivets C and D are each

. 2 in.
45 tons/in. X ; = 1-50 tons,

60 in
perpendicular to GC and GD respectively.

The load on every rivet, due to the force of 5 tonsis £ ton = 0-833 ton,
vertically downwards. Thus the resultant loads on all the rivets are found,
as shown in Fig. 67, by drawing parallelograms of forces.

15
Fi1a. 67.
The resultant load on rivets 4 and E = 2:35 tons.
I 29 I T B I P =324 I
Iy s T} 1T} C = 0-667 ’»
” 3y 2 Iz D = 2-333 s

EXAMPLES IV

1. A double-riveted butt-joint connects two $” plates with one cover
strap. The diameter of the rivets is §”, and the distance between rivet
centres along the pitch line is 5”. Assuming that the other unstated
dimensions are adequate, calculate the strength of the joint per foot, in ten-
sion, allowing 5 tons/in.? shear stress in the rivets, and a tensile stress of
6 tons/in.? in the plates. (Special Exam., Cambridge, 1907.)

2. Two bhoiler plates 3" thick are connected by a double-riveted lap
joint, formed by 3” rivets with a pitch of 24”. Determine the least tensile
stress in the rivets which will enable the joint to remain tight under a tension
of 12 tons per foot, along the joint, if the coefficient of friction is 0-2.
(Special Exam., Cambridge, 1913.)

3. A riveted joint is formed by two cover plates shaped in the manner
represented in Fig. 68. When the joint is subjected to a large pull, it may

o O

o

T——

1" .
L3
4 Thick .\
il

Fic. 68.

be assumed that the resistance is all provided by the shear in the rivets,
and that the resistance exerted by a rivet is proportional to the relative
slip of the corresponding rivet holes.

When the four centre rivets only are in position, it is found that with
a pull of 20 tons the slip at the rivet holes is 0-01”.

With all six rivets in position show that the loads taken by the outer
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rivets_exceed the loads taken by each of the four centre rivets in the ratio
of 27:25. E for the plates is 14,000 tons/in.? (Mech. Sc. Trip., 1922.)

4. A flat steel bar is attached to a gusset plate by eight rivets in the
manner represented in Fig. 69. At the section 4B the gusset plate exerts
on the flat bar a vertical shearing force S and a counter-clockwise couple M.

N\

wfr o+ o+ |8
0. %

APPSR PP + +

E a,ti b%a;—‘—zl-; U

Xk 4 + +

] ~“.+__..-___:. ...... .e__._
Y —— b —— A4 /B
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Assuming that the gusset plate, relative to the flat bar, undergoes a
minute rotation about a point O on the line of the two middle rivets, also
that the loads on the rivets are due to and proportional to the relative move-
ment of the plates at the rivet holes, prove that

4M + 3aS
T I T 6aS

Prove also that the horizontal and vertical components of the load on
the top right hand rivet are

2M + 3aS d 4M + 9aS
240 24
respectively. (Mech. Se. Trip., 1923.)

5. A steel strip of cross section 2”7 X }” is bolted to two copper strips,
each of cross section 2” x §”, as shown in Fig, 45, there being two bolts
on the line of pull. Show that, neglecting friction and the deformation of
the bolts, a pull applied to the joint will be shared by the bolts in the
ratio 3 to 4.

Assume that E for steel is twice E for copper.

(Intercoll. Exam., Cambridge, 1923.)

6. *Two flat bars are riveted together in the manner shown in Fig. 70,
z being the pitch of the rivets in a direction at right angles to the plane
of the figure. Assuming that the rivets themselves do not deform, show

tP.
that the load taken by the rivets (1) is t-_*_—;t,, and that the rivets (2) are

r =

free from load.
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* In connection with the distribution of load in riveted joints, see papers by
Montgomerie and Batho (see footnote, p. 64); also a paper by the author in
Aeronautics, 1918. ’



CHAPTER V

ANALYSIS OF STRESS AND STRAIN,
COMPOUND STRESSES

ANALYSIS OF STRESS

58. Introductory.—Up to the present we have confined our atten-
tion to considerations of simple tensile, compressive, or shearing stresses.
But in a very large number of practical cases we have to deal with a
combination of these simple stresses, and some standard of comparison
becomes necessary. The strengths and elastic properties of materials
are usually determined by simple tensile or compressive tests. How are
we to make use of the results of such experiments when we know that
stress in a given case is made up of a tensile stress in one direction, a
compressive stress in some other direction, and a shearing stress in a
third direction ? Clearly we cannot make tests of a material under all
the possible combinations of stress and tabulate the results. The
analytical processes which we explain below will show us that, when all
the stresses act in directions parallel to one plane, the most complicated
stress system is equivalent to a combination of two mutually perpendicular
direct stresses. In the next chapter we consider the relationship between
the strength of a material acted on by two such stresses and its strength
under simple tension. The analysis which follows must therefore be
regarded as having a very direct and important bearing on practical
engineering, and not merely a display of mathematical acrobatics.

59, Stress-components on any Plane due to a Direct Stress
on a Given Plane.—Suppose that the plane AB (perpendicular to the

C B C B
o >, % .
11 +
' P < —pAB
Pe < el
A e A
(i). (ii).
Fia. 71,

plane of the paper) in a body is acted on only by a direct stress p (Fig.
71 (1)), and that it isrequired to find the stress components on a plane AC
making an angle 0 with 4B.
Through B draw a plane B(' at right angles to the plane 4B and to
72
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the plane of the paper, and consider the triangular wedge ABC, the
thickness perpendicular to the plane of the paper being unity.

Let p, = the direct stress on the plane AC,
Qo = » Shea’r tH ’ 3 3

their directions being positive when they act according to the arrows in
Fig. 71.

Consider the equilibrium of ABC : the total actions on 4B and AC
are shown in Fig. 71 (ii).

Resolve at right angles to AC :

Py AC = p.AB.cos 0
= p.AC cos? ()
S pp=p.cos?0. . . . . . . (1)
Resolve in the direction AC :

qe-AC = p.AB sin §
= p.AC sin 0 cos 0
. qp=psinB.cos®=43psin20 . . . . (2)
Then p, and g, are the component stresses on the plane AC due to
the stress p on the plane AB. The stress at 4 can be specified (i) by p
on 4B, or (i) by p, and ¢, on AC.
The shear component ¢ , is numerically a maximum when sin 20 = + 1,
which gives 6 = 45°or 135°. We then have p, = g, = }p.
60. Stress-components on any Plane due to a Shearing Stress
on a Given Plane.—Next suppose that the plane AB is acted on only

% ‘ T w
I BN T‘TAB
A <t 2
-
A e
Fia. 72.

by a shearing stress ¢ (Fig. 72), and proceed exactly as before. From
§ 48, p. 87, we know that there must be an equal shearing stress on the
plane CB. Let p, and g, be the stress components on the plane AC.

Then consider the equilibrium of 4BC ; resolving at right angles to
AC we have

Pg.AC = q.CB. cos 6 + q.AB. sin 0
= q.AC sin 0 cos O + q.AC cos 0. sin 6.
S.Po=2qsin@cos@=qsin20 . . . . (3)
Resolving parallel to AC gives
¢ AC = q.CBsin§ —q.AB cos 0
= ¢q.AC sin 20 — q.AC cos 2§
Qe =q(sin2@ —cos20)= —qcos20 . . . (4)
(3) and (4) give the stress components on the plane AC.

We see from (3) that p, is numerically a maximum when 0 = 45°
F
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or 135°, and that then ¢, is zero. When § is 45° we get p, = ¢, and,when
0 is 135°% p, = —q. Thus two complementary shearing stresses are
equivalent to two equal and opposite direct stresses acting on planes at
45° to the planes of the shearing stresses, and numerically equal to the
shearing stresses. Hence we see that the stresses at O specified by
Figs. 73 and 74 are equivalent to one another.

Y ";I
s ,
K L AT
j q ?59
S a s SRR e le-r
q :
qJ ; ™ yse
1 '
Fia. 73. Fia. 74.

Example.—A bar of cross section §” X §” is subjected to an axial
pull of 2 tons. Calculate the normal stress and shear stress on a plane the
normal to which makes an angle of 60° with the axis of the bar, the plane
being perpendicular to one face of the bar.

We have 0 = 60°

P = 2 tons
S = 0:765 in.2
2 tons

Sop o= 0765 it = 2-62 tons/in.?

The normal stress on the oblique plane is
P €032 60° = 2-62 tons/in.? x } = 0-655 tons/in.2
The shear stress on the obhque plane is
}psin 120° = } x 2:62 tons/in.? x 2% — 1.135 tons/in.?

2
&

61. General Two-dimensional Stress System.—When the
stresses at any point in a body all act parallel to one plane, the most
general stress system will consist of two mutually perpendicular direct
stresses, and two equal complementary shearing stresses. For, consider
the small rectangular block of material ABCD (Fig. 75) and suppose
that the forces acting on the four sides are P, @, R and S. Each of these

X K
b
s 4 B S, ‘;"_j
. B S
S che, &

D \éb' I B
- 14
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forces can be resolved into components perpendicular to and tangential
to the sides of the block, as shown in Fig. 76, and similarly with any
other forces applied to the sides of the block.

The components perpendicular to the sides give rige to direct stresses,
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whilst those tangential to the sides produce shearing stresses. According
to § 48, the shearing stresses on perpendicular faces must be equal, and
evidently the direct stresses on opposite faces must be equal if the block
is not acted on by a ‘ body force ” such as gravity or inertia. Hence
the stress at any point, B for instance, can always be reduced to two
direct stresses acting on perpendicular planes, such as 4B and BC,
together with equal shearing stresses on these planes.

62. Stress-components on any Plane in a General Two-dimen-
sional Stress-system.—Let the stress system consist of direct stresses
p,and p, on the planes AB and BC at right
angles to each other (Fig. 77), together w1th
shear stresses ¢ on these two planes.

Let p, and g, be the stress components on
a plane AC making an angle § with 4B.

Asin §§ 60 and 61, consider a triangular
element of the material with unit thickness
perpendicular to the plane of the paper.

The stress p, produces direct stress on AC = p, cos? §

Fia. 77.

» Dy » ’ 3 == Dy cos? (900'—- 0)
= p, 8in? f
» q »» D) ”» =q gin 20

Hence we have, by addition,
Py = P, cos? 0 + p, sin? O + ¢ sin 260

= %(px + py) + %(pa: .py) cos 20 + q Sln 20 i . (5)

Again,
The stress p, produces shear stress on AC = % p, sin 2 0
3] p, ’ 3] ) = - %p, sin 2(90° — 0)
= — }p, sin 20
» q IH] 1] 3 = —qgcos 20

Hence

=¥p, —p,)sin20 —gecos20 . . . . (6)

63. Principal Planes.—We see from (6) that the stress component
gp is zero when

tan20=—24 . ., .. M)
x_py

20 =tan“1<—2—g—-> or ta.n“1< —2q—) + 180°
P — D, Pr— Py

0=§tan—1(-p%-) orétan—l( 2 ) +90° . (8)

i.e. when

z — Py
Thus there are two planes, separated by 90°, on which the shearing
stress is zero, in any two-dimensional stress system. These planes are
called the principal planes, and the corresponding values of p, are called
the principal stresses. Comparing (5) with (6) we see that the condition
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that g, vanishes is also the condition that p, is a maximum or a mini-
mum.* Thus the principal stresses are the maximum and minimum direct
stresses in the material.

From the above we see that we can always replace the stress-system
(9 P, @ by two mutually perpendicular direct stresses only, these
stresses a,ctmg on planes making angles § with the plane on which p, acts,
when 0 is given by (7). This is a result of very great practical importance,
and we shall give below formule for the values of these stresses.

64. To Find the Principal Stresses.—Let p, and p, be the principal

stresses. When tan 20 = 2 , we have (see Fig. 78)
Py — Py
sin 20 = 2q,. ,
Vip, —p,)* + 4
and 2q
cos 20 = . . Pa p,,
Vip, —p)* + 4
Substituting these values in (5) gives
P, = %(px'*'py +l\/ (Px _py)2+4q2 L 9)

When 20 = talr'l( 29 ) + 180°, the signs of sin 20 and cos 26

are both changed. Therefore if p, denote the corresponding value of
Py, We have

Pe= %(px + py) - %\/(px - py)2 + 4q.2 L . (10)
Equations (9) and (10) give the principal stresses.

65. The Principal Stresses Found from First Principles.—
On account of the importance of the subject
we add the following method of finding the
principal stresses from the definition that
they are the direct stresses across planes on
which the shearing stress is zero.

Referring to Fig. 79, let AC be a principal
plane, and let p be the direct stress on this
plane. Then, resolving in the direction BC,

Fia. 79,

we have
p.AC cos 8 = p,. AB + ¢q.BC
= p,.AC cos 0 + q.AC sin §
“p—p, =qtanb . . . . . (i)
Resolving in the direction AB we have
p.ACsin 6 = p,.BC + q.AB
= p,.AC sin 6 + q.AC cos 6
J Sop—p,=qeot . . . . . (i)
* Since % — (P2 — p,) sin 20 -+ 2q cos 26, which must vanish for a maxi-
mum or minimum value of p.
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Multiplying (i) by (i) we get

P—pPx)(P—Py)=q® . . . . . (11
This is a quadratic for p, the roots of which are the expression for

P, and p, given above. This is perhaps the most useful form to remember
for purposes of calculation.

66. Maximum Shear Stresses.—The planes perpendicular to the
plane ABC, Fig. 77, on which the shear stresses are a maximum, are
given by

dgy
a0 =0
ie. (p, —p,) c0s 20 —2gsin 20 =0
Stan2g=2_P g

2q

If a denote the values of 6 given by (7) when the normal stresses
have stationary values, and 8 the values of 6 given by (12) when the
ghear stress is a maximum, we see that

tan 28 = —cot 2qa

7
28 =2 —
L2 =20 +3

7
ﬁ =a + Z

Hence the planes of maximum shear stress are inclined at 45° to the
principal planes. Since the maximum value of 4 cos x + B sin z is
V/A? + B? we see from (6) that the maximum shear stress is

Amax = %\/(Px —Py)2 +4¢2=3(p, —P.). . . (13)

It can be shown that in a general three-dimensional stress system
there are three mutually perpendiculgr principal planes, three corre-
sponding principal stresses, and that the greatest shearing stress is equal
to half the difference between the greatest and least of these. In a two-
dimensional system the three principal stresses are p,, p,, 0. If p, and
P have the same sign and p,~>p,, p, will be the greatest, and zero the
smallest principal stress, so that the true maximum shear stress is 1p, ;
if p; and p, have opposite signs p, will be the greatest, and p, the smallest
principal stress, and the greatest shearing stress will be }(p, — p,) as
found above. In all cases the greatest shearing stress occurs on a plane
bisecting the angle between the planes of greatest and least principal
stresses.

Example 1.—The propeller shaft of a ship is subjected to a longitudinal
thrust of 6-5 tons/in.?, and there is a shear stress (due to torsion) of 3-75
tons/in.2 Find the principal stresses and the maximum shear stress.

In this case if we take p, = — 6-5 tons/in.?, we have p, = 0 and ¢ = 3-75
tons/in.?
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By (9) and (10) the principal stresses are
6-5 -
— 5 & 3165 + 4 x 3-75°% tons/in.?

— 325 - }1/42:25 + 5625

— 325 £ 496

— 8-21 and + 1-71 tons/in.?
The former is compressive and the latter tensile.

8:21 1-71
The maximum shear stress = —-—_;—— = 4-96 tons/in.?

H

[

Example 2.—In an I girder of a bridge, at a point near the top of the
web, there is a tensile stress of 4 tons/in.? and a shearing stress of 3 tons/in.?
Calculate (i) the maximum direct stress, (ii) the maximum shear stress, also
(iii) the tensile stress which would produce the same maximum shear stress.

(1) From equations (9) and (10) the principal stresses are

2 4+ 31V2 f 4 x 3® =2 4 3-16 tons/in.?

The maximum stress is 5:16 tons/in.?, tensile.

(ii) The maximum shear stress = 3:16 tons/in.?

(iii) In direct tension the tensile stress is double the maximum shear
stress produced (§ 60). Therefore in this case the simple tensile stress which
would produce the same shear stress is 2 x 3:16 tons/in.? = 6:32 tons/in.?

ANALYSIS OF STRAIN

67. Strain in any Direction due to Strain in a Given Direction.
—Let the material of a body receive a given

Y B B strain in one direction only, then it is re-
A L= quired to find the corresponding strain in
so 1 i any other direction. Thus, in Fig. 80, let

2 i the strain in the direction Oz be ¢,, and in

9 : the direction Oy zero, so that the sides 4B

0 C ¢ T and OC of the small rectangle OABC are

Fic. 80. changed into AB’ and OC’ while the sides
OA4 and BC remain unaltered. It is required
to find the strain in the direction OB.
Let ¢, = the strain in OB.
We have
OB? = 0C* 4 CB?
Differentiating, we have, since CB does not change,
OB x 6.0B = 0C x 4.0C.

Divide by OB? then

e=@=—%xéoo=@ixéﬂ
0B OB OBz~ " OC
Hence
e,=-e,cos26 ., . . . . . . (14)

Similarly if the strain in direction Oy be ¢, whilst that in direction Oz
is zero, the strain in direction OB will be e, sin? 6.
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If both e, and e, exist simultaneously, we shall have, by the principle

of superposition,
€ = ¢, co8% 0 + ¢, sin® 0.

68. To Find the Direct Strain in Any Direction due to a Given
Shear Strain.—In Fig. 81, let the shear
strain be e,,, so that the rectangle 0ABC is 4,
strained into the parallelogram OA’B'C, the  , N—
angles A0A’ and BCB' being e,. It is A !
required to find the direct strain in the - ! ]

’

direction OB. We have ! <3
0B% = 0C? + CB? —2.0C.CB cos OCB.* 0 it
Differentiate this, remembering that OC Fic. 81.
and CB do not change in length :
OB x 8.0B = 0C.CB sin OCB x 8.0UB
== 0C.CB.e,,
o
since originally OCB = 90°.
Dividing by OB? we have
0.0B_ OU CB .
OF ~ 0B 0B

'
]
1
]

or
€ == €, ,8inBG.cos 8 = e sin20 . . . . (15)
where e, is the strain in OB.

69. General Two-Dimensional Strain.—Combining the results of
§§ 67 and 68, if the three strains e, ¢, and e,, exist simultaneously, the
strain in direction OB is

€ =€, 082 6 + ¢ sin?f + e, sin 6 cos 0

or
eo = ¥(e, +e,) + (e, —e,) 0820 +e,sin20] . . . (16)
From this we see that ¢, is a maximum or minimum when
tan 20 =2 o Co . an
€ — Oy
This gives two values of 6 separated by ;
If e, and e, be both positive, the smaller value leads to
emae.= e, + &) -+ 3V (e, —e)®: +e, . . . (18)
and the larger to
enin= 36 + &) — 1V, —¢) +&, . . . (19)

These equations give the principal strains ; they should be compared
with the equations for the principal stresses. The principal strains will be
denoted by ¢, and e,, so that ¢, is given by (18) and e, by (19) above.

* The equation must be written in this general form since the angle OCB is a
variable.
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70. Maximum Shear Strain.—Since the state of stress is the
same as that due to the principal stresses, and similarly the strains
in the directions of the principal
stresses are e, and e,, we can deal
with the case as represented by these
strains.

Let ABCD (Fig. 82) be a rec-
tangular element of the material, the
sides 4B and BC being in the direc-
tion of the principal strains e; and e,,
which have been taken positive when
tensile, After strain, ABCD will have
become A'B'C'D’, and each diagonal
will have been rotated an amount 66, so that the shear strain is 266.

The stretch of 4B = 2EB = ¢,.AB.
. EB = }e,.AB = ¢,.0B cos 0
Similarly EB’ = ¢,0B sin 6
Draw B@G perpendicular to OB’, and EF perpendicular to B@. Then
to the first order of small quantities

80 = BG _ EBsin § ._..E_linw from the figure,

OB OB
== ¢, cos f sin ) — e, sin 0 cos 6
= }(e; — e,) sin 20

B s |

SR

Therefore the shear strain
= 200 == (e, — ¢,) sin 20

which is a maximum when 8 = Y Hence the maximum shear strain is

equal to the difference between the two principal strains and occurs on planes
making 45° with them. Notice that the maximum shear stress is equal
to half the difference between the principal stresses (§ 67).

Substituting the values of ¢, and e, from (18) and (19) we have

er —ey = Ve, —e)? + e,
This gives the maximum shear strain (or “ slide ”’ as it is sometimes
called) in terms of e, e,, and e,.
Example 1.—A flat bar 3” x " is subjected to an axial pull of 12

tons. One side of the bar is polished and fine lines are ruled on it to form
a square of 2” side, one diagonal of the square being along the middle line

1
of the polished side. If E = 30 X 10® lbs./in.?2 and m = —3—0, calculate

the alteration in the sides and angles of the square. (Intercoil. Exam.,
Cambridge, 1909.)
The area of the cross section of the bar = 1'5 in.?
12 x 2,240 lbs.

‘. the longitudinal stress = 15 = 17,920 1bs. /in.?
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From §70, since ¢, = p/E and ¢, = — p/mE, we see that the change in
the angles of the square will be

_p m+1 17,920 lbs./in.? 13 _ .. .
90 T F T T30 x 10° Tbe/ims X 10— 00007768 radian
= 0°2'40-2".
The angles which are in the line of pull will be diminished by this, and
the others increased by the same amount.
17,920 lbs./in.?

30 x 10° lbs./in.?

= 0-0005973

The longitudinal strain =

The lateral strain = — 0-0005973 1§0 = — 0-000179.

Therefore the strain of each side
= 0-0005973 cos? 45° — 0-000179 sin? 45°
= 0-000,2987 — 0-000,0895
= 0-000,2092
Then the alteration in the length of the sides will be
0-000,2092 x 2" = 0-000418”

STRESS-STRAIN RELATIONS

71. Principal Strains.—We have seen above that the state
of stress at any point in the material is the same as that which would
be produced by two mutually perpendicular stresses p, and p,, whose
directions have been found in §63. We have taken p, and p, positive
when they are tensile. The total tensile strain in the direction of p, is,
by the principle of superposition (p. 27),

=P _ P G
e, == Ay A 1)
whilst that in the direction of p, is
=P _ P O
“=F TmE (1)
Substituting the values of p, and p, given by (9) and (10) we have

1 1 L | W 7 v sy

o= 51— on) @+ 2) =g (14 WV —p) T A @)

If p, and p, are both positive the former of these gives the maximum,
and the latter the minimum, direct strain in the material.

72. Single Direct Stress Required to Produce same Maximum
Strain as a_Given Stress System.—If the material is acted on by a
single stress p, the strain is p/E, therefore, if this is to be the same as e,
we must have

m —1

=T, )+ TV, T A (2)
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Thus the stress which would produce the maximum strain if acting
alone is not the same as the maximum stress, which is (p. 76)

o +2,) +1V(p, —p,)° + 4
73. Relations Between E, C, K and m.—Suppose that a cube of

the material of a body be under the action of a shearing stress ¢ (Fig. 83).
Then (§ 60) we know that in the direction of

A — .p the diagonal BD there is a tensile stress of
™ o intensity g¢.
AN ’,."' 7 This will produce a tensile stmin% in BD,
X .
N and a compressive strain — in AC.
q S 0 . m )
,"\AB ™, At the same time there is a compressive
4 g stress g in the direction AC, producing a
Fre. 83. compressive strain % in AC and a tensile strain
—gE' in BD. Hence the strain in either diagonal is
m
9. 49 .
=+—= . . . . . . . (1
E mE 0

tensile in BD and compressive in AC.
Again, the shear strain due to g, is
q
by = Zv
and (§ 68) the strain in the direction BD is
sin 45° cos 45° = le, = L

e-’ﬂl “Txy 2() ‘
From (i) and (ii) we have

. (i)

7 _ 49,9
3T F T mB
or
mE
_ —_— —— 2.
2(m + 1) 3)

This relation shows that if m be negative it must be less than — 1, and
we have already seen (p. 28) that, if positive, it must be greater than 2.

Combining (23) with the relation between £ and K found on p. 28
we get, on eliminating E,

3K —2¢ 1
- S = 2
6K + 20 m (24)
If we eliminate 1 we get
9KC
E IR BT
0+ 3K (25)



STRESSES IN THREE DIMENSIONS 83

Hence, if we know two out of the four elastic constants we can calculate
the other two.

74. Strain Energy of Combined Stresses.-—If p, and p, are the
principal stresses, the corresponding strains are given by (i) and (ii) of
§ 71. Hence, the total strain energy per unit volume is

U =}ipe, + $pees

_ P P _ P
= (% +ip( - I

2p,p,
U 2 3 __ ST e e e« .. (26
———2E(p1 + P2 p ) (26)

If we substitute the values of p, and p, given by (9) and (10) we obtain
as the expression for the strain energy :

T 28
and since E/C = 2(m + 1)/m, thls can be written
— p:nz + pv pzpv q 27
U="%g ~mgtac - - - @

STRESSES IN THREE DIMENSIONS

75. Principal Stresses in Three-Dimensional System.—It can
be shown that in a general three-dimensional stress system there are
always three mutually perpendicular planes on which the shearing stress
is zero, i.e. that there are three principal planes. The corresponding
direct stresses on these planes are the principal stresses. For a proof
of this statement, and the equations for finding the principal stresses,
the reader is referred to works on the Theory of Elasticity.

76. Strains in Three-Dimensional Stress Systems.—If the
principal stresses be p,, p, and p;, the strains in these directions, i.e. the
principal strains, will be given by (17) of §29:

€ = El—{pl— 71n(P2 + Ps)} R )]
€y = . {ps “‘"]'.m"(Pa +P1)} (ii)
e LT ] R

Exactly in the same manner as § 70 we can show that the greatest
slide, or shear strain, is e, — ¢, if * ¢,">e,>e;; i.e. the greatest slide is

1 1 eemy—P1—Ds
€ —e = E(l +%)(P1 Ps) = 50

Hence the maximum shear strain is proportional to the difference

* If py >pa >py it follows that e, >e; >e5: thus e, — e; = (m + 1) (py — p,)/mE
and e; — €3 = (m + 1) (py — p;s)/mE, both of which are positive.
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between the greatest and least principal stresses, and it follows that the
maximum shearing stress is §(p; — ps).

77. Strain Energy in Three Dimensions.—It is easy to show,
in the manner of § 74, that the strain energy per unit volume, expressed
in terms of the principal stresses, is

1 2
~2E{p12+p22 4P — —(Paps + PsP1 +p1pz)} .. (28)
m

EXAMPLES V

1. A tie bar of steel has a cross section 6” X 3” and a load of 18
tons is applied to it. Find the stress normal to a plane making an angle
of 30° with the cross section, and the shearing stress along this plane. (Special
Exam., Cambridge, 1914.)

2. A rectangular plate }” thick is 8” long and 6” broad. A total pull of
5 tons is applied, uniformly distributed along the longest sides. Find the
intensity of the tangential and normal stresses on the section joining opposite
angles. What total force on the other pair of sides will produce a pure
shear in the plate ? (Special Exam., Cambridge, 1919.)

3. A rivet is under the action of a shearing stress of 4 tons/in.? and a
tensile stress, due to contraction, of 3 tons/in.? Determine the magnitude
and direction of the greatest tensile and shear stressesin therivet. (R.N.E.C.,,
Keyham, 1920.)

4. A propeller shaft is subjected to an end thrust producing a stress of
6 tons/in. 2, and the maximum shearing stress arising from torsion is 4 tons/in.?
Calculate the magnitudes of the principal stresses. (Intercoll. Exam., Cam-
bridge, 19086.)

5. At a point in a vertical cross section of a beam there is & resultant
stress of 5 tons/in.?, which is inclined upwards at 35° to the horizontal.
On the horizontal plane through the point there is only shear stress. Find,
in magnitude and direction, the resultant stress on the plane which is inclined
at 40° to the vertical and 95° to the given resultant stress. (Mech. Sc.
Trip., 1919.)

6. A plate is subjected to two mutually perpendicular stresses, one com-
pressive of 3 tons/in.2, the other tensile of 5 tons/in.?, and a shear stress,
parallel to these directions, of 3 tons/in.? Find the principal stresses and
stretches, taking Poisson’s ratio as 0-3 and E = 13,500 tons/in.? (Mech.
Se. Trip., 19186.)

7. At a point in a material under stress there is a shear stress, on a ver-
tical plane, of 4 tons/in.?, and also a compressive stress on the same plane
of 1 ton/in.? Find the principal stresses and the maximum shear stress at
the point. (R.N.E.C., Keyham, 1922.)

8. Being given the magnitudes and directions of the two principal stresses,
find the direction of the plane on which the resultant stress is most inclined
to the normal of that plane. Find the magnitude and inclination of this
resultant when the principal stresses are 8 tons/in.? tension, and 4 tons/in.?
compression. (R.N.E.C., Greenwich, 1923.)

9. At a point in a material the three principal stresses acting in dirce-
tions Oz, Oy, Oz, have the values 5, 0, — 3 tons/in.? respectively. Deter-
mine the normal and shear stresses for a plane perpendicular to the 2z plane
inclined at 30° to the ay plane. (Intercoll. Exam., Cambridge, 1913.)

10. A cube of iron, the length of whose edge is 100”7, is subjected to
a uniform pressure of 10 tons/in.2 on two opposite faces; the other faces
are prevented by lateral pressure from extending more than 0-02”. Deter-
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mine the pressure on these faces, and the maximum shearing stress in the
block. E = 30 x 10% lbs./in.?, m = 10/3. (Mech. Sc. Trip., 1912.)

11. In designing a structure, if it be decided that the greatest longitudinal
strain must not exceed that produced by a simple tensile stress of 6 tons/in.?2,
show that the maximum permissible shearing stress is 6m/(m + 1) tons/in.?

With this limitation in regard to strain, calculate the number of ft. lbs.
of energy which can be stored per ton of material, (i) when it is subjected
to a simple tensile stress, (ii) when it is subjected to a pure shearing stress.
Take E = 30 x 10°® lbs./in.2, m = 10/3, and the weight of the material
480 lbs./ft.* (Mech. Sc. Trip., 1906.)

12. Normal forces, applied to the sides of & prism whose section is a
square of 2” side, alter its section to arectangle of sides 2 + 0-01”. Write down
the value of the direct strains and deduce the value of the greatest shear
strain in the material. If m = 1—30 and E is 13,500 tons/in.2, what normal
stresses would be required to produce the specified strains ? Intercoll. Exam.,
Cambridge, 1905.)

13. A uniform rod of circular section 1” diameter is subjected to an axial
pull of 4 tons. If the stress is uniformly distributed across a section, calculate
the normal and tangential stress intensities on a section inclined at 60° to the
axis of therod. (R.N.E.C., Keyham, 1927.)



CHAPTER VI
FAILURE OF MATERIALS UNDER COMPOUND STRESSES

78. Introductory.—We now enter upon the discussion of a subject
about which there are several diverse opinions, and the importance of
which does not seem to be recognized sufficiently by engineers in England
and America. The matter in question is: what is the physical cause
of the failure of materials under stress ? Let us first be clear about the
meaning we attach to the terms we shall employ in this discussion.
First, with regard to the word * failure ”’ : it must be clearly understood
that when we write * failure > we do not mean ‘‘ rupture ”’; we mean
a passing beyond the elastic limit, and we consider a material to have
failed when it has taken up permanent set. The equations of mathe-
matical elasticity, and therefore the deductions from them, remain true
only within the limits of linear elasticity ; that is to say, they cease to
be true long before rupture occurs, at least in the case of the ductile
materials used in engineering. Furthermore, it is known that, after the
elastic limit has been passed, the material suffers a change of state in the
physical sense, and that permanent set is the result of sliding movements
within the individual grains of metal.* Consequently, no theories of the
cause of rupture, which occurs after these changes have taken place,
can be deduced from mathematical elasticity.

Next as regards the expression ‘‘ cause of failure ’: when a bar of
material is tested by pure tension we know that many phenomena are
occurring at the same time ; sections of the bar at right angles to the
line of pull are subject to normal stress ; sections oblique to the line of
pull also experience shear stress which is a maximum when the planes
are inclined 45° to the line of pull ; the bar suffers strains in lateral and
longitudinal directions, the latter being the larger ; and a certain amount
of energy has been put into the bar. When the elastic limit is reached
all these quantities, the maximum normal stress, the maximum shear
stress, the maximum strain, and the strain energy, have certain values.
Which occurrence is the cause of the linear relation bet-veen stress and
strain ceasing to hold ? This is the question which we have to answer
before we can apply the results of a simple tension test to determine
when the elastic limit will be reached in a state of complex stress.

* This theory was first put forward by Beilby and has been developed by Ewing
and Rosenhain.

86
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79. The Various Theories of Failure.—The following is a list of
the various theories which have been advanced in reply to the question
we are considering.

(i) MaxmvoM PrincrpaL STRESs THEORY.—According to this theory
the elastic limit is reached, in a state of complex stress distribution, when
the maximum principal stress equals the elastic limit under simple
tension. This idea was held by all the earlier writers on the subject
except Mariotte (seventeenth century), to whom nobody seems to have
listened, and received the support of Clebsch, Lamé, Rankine and others ;
it is now usually associated with the name of Rankine.

(ii) MaxmMoM STRAIN THEORY.*—According to St. Venant it was
Mariotte who first suggested that the real criterion of failure is the
maximum strain in the material, and it was definitely stated by Poncelet
and St. Venant in the early nineteenth century. It is now usually
known as St. Venant’s theory.

(iliy MAXIMUM SHEAR STRESS, OR STRESS-DIFFERENCE THEORY.—
According to J. J. Guest + and Tresca } failure occurs on account of
the maximum shear stress, and therefore depends on the difference

between the greatest and least principal stresses reaching a certain critical
value.

(iv) BecrER’S THEORY.—In 1916 Dr. Albert Becker § published his
theory that the elastic limit is fixed by both maximum shear stress and
maximum strain.

(v) Harer’s TaEORY.—The above theories are all the results of
experiment and observation and are entirely empirical in nature, with
little or no philosophical foundation. The first attempt to set the matter
on a logical basis is due to Prof. Haigh,|| and we shall see that it fits the
facts better, and over a wider range, than any of the previous theories.

It is outside our present scope to enter into details of the theory,
and the following brief statements must suffice. Permanent strain in a
material is associated with a change of physical state from the crystalline
to the vitreous or amorphous state, and in general a change of state
requires that heat be supplied to or abstracted from the body. In
producing the change of state associated with permanent strain, heat
is supplied to the body in the form of work done by the forces causing
the stresses. If the same change of state can be brought about by
various combinations of stresses, the work done will be the same in each
case provided the actions are reversible in a thermodynamic sense.
That is to say, whether a material reaches a state of permanent strain
by the application of a simple tensile stress or of combined stresses, the
work done will be the same if the actions are reversible. This leads at
once to the idea of a relation between the elastic limits under simple
and complex stress systems. From these considerations Prof. Haigh

* Todhunter and Pearson’s History of Elasticity, Vol. 11, Pt. i, p. 107.

t Phil. Mag., July, 1900. 1 Inst. Mech. E., 1878, and Comptes Rendus.
§ Bulletin 85, Iilinois University.

| B.A. Reports, 1919 and 1921,
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arrives at his strain energy theorem, which may be stated as follows :

If a body is brought to the elastic limit of the material by stresses
which are increased gradually from zero to their final values, the strain-
energy per unit volume attains a nearly constant limiting value inde-
pendent of the simple or complex nature of the applied stresses.

80. The Significance of these Theories.—This will be made more
clear by considering a numerical case. Suppose we have a specimen
of a certain steel which in simple tension shows an elastic limit of
25 tons/in.2, and for which m =10/3, C = 11-5 x 10% lbs./in.?, and
E = 30 <108 1bs./in.?

In the tension test the maximum shear stress at the elastic limit is
12-5 tons/in.2 (see p. 73); and the strain energy per unit volume is
{see p. 20)

P _ 625 x 22402
2 2 x 30 x 108

Consider first the case of a specimen of the same metal in a state of
simple shear, and let ¢ be the shear stress which will bring about the
elastic limit.

(i) By § 60 the principal stresses are equal to ¢ and — ¢, so that if
this be the deciding factor we shall have g = p = 25 tons/in.?

(ii) The maximum strain is (§29)

= 52 lb. inch units.

1 1 13 ¢
_ — 1 J— = I
o B ( - m 1 10 ¥
In the simple tensile test the strain was

25 x 2240 lbs. /in.?
30 x 10° Ibs./in.?

Hence, if the maximum strain is the criterion, we must have

= 0-00187.

which gives
_ 10 X 30 x 10%1bs./in.? x 0-00187

— 192 tons/in.?
13 x 2240 lbs./tons ons/in

(iii) If the shear stress has to be the same as in simple tension we
shall have ¢ = 12-5 tons/in,?

(iv) The strain energy per unit volume is ¢2/2C, and, according to
Haigh’s theory, this must = 52 lbs. in. units. This gives

q = 154 tons/in.?

As another instance, take the case of a plate of the same material
under equal tensions in perpendicular directions. Let p, = p, = p be
the stress which will cause the material to reach the elastic limit.

(i) The principal stresses are p, p, 0, so that the greatest principal
stress is p ; hence the maximum-stress theory will give p = 25 tons/in.2
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(i) The stress which will bring about the same maximum strain as
in simple tension {see §72) is
m —1 7
2p = mp.
It 5= 25 tons/in.2, we shall have p = 357 tons/in.?

(iii) The difference between the greatest and least principal stresses
is p, so that the greatest shear stress is equal to }p. Hence, according
to Guest’s theory we must have p/2 = 12-5 tons/in.%, or p = 25 tons/in.*

(iv.) The strain energy per unit volume is by putting p;=p,=p in
equation (26) of § 74. P2 1

3 p*/y 1
E < m

With Haigh’s theory this must equal 52 Ibs. in. units, which gives
p = 21-1 tons/in.?
Summing up, then, the results of applying the various theories, we

have the following figures for the stresses which will cause the material
to reach the elastic limit :

p:
2m

Equal perpendicular

Simple Shear. Tensions.

Max. Stress Theory . . 25 tons/in,? 25 tons/in.?
»  Straln ' . . 192 ' 357 ’s
»» Shear ' . . 12-5 ’s 25 s
Const. Strain Energy Theory . 154 » 21-1 '

81. Representation of the above Theories.—For purposes of
comparing the various theories with each other and with the results of
experiment, and for purposes of calculation, it is convenient to have a
graphical means of expression.

Let p, and p, be the principal stresses in a two-dimensional stress
system when the elastic limit is reached.

P2

B D= A

D, Compressive| p,and p,
P, Tensile both tensile

R
]

P

0

p,and p, bothip, Tensile
Compressive \p, Compressive

Pr= il

i
N

py=~F'
(A Hi D

Fia. 84.—Representation of Maximum Stress Theory.

Take two axes at right angles (Fig. 84) along which we shall measure
p, and p,. Taking a tension as positive, if p, and p, are both tensile
¢
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stresses, the point (p, p,) will be in the N.E. quadrant of the diagram ;
if they are both compressions (p, p,} will be in the S.W. quadrant ; if
one is tensile and the other compressive, (p, p,) will be in either the N.W.
or S.E. quadrant. ‘

(i) Maximum Stress Theory.—Let f and f' be the elastic limits
of the material in simple tension and simple compression respectively.
In the diagram draw the lines AB and AD, parallel to the co-ordinate
axes, at distances from them equal to f; also draw the lines BC and CD
parallel to, and at distances — f’ from, the axes. Then the material
will reach its elastic limit when the point (p,, p,) passes outside the
square ABCD. If f' = f the centre of the square will be at the origin.

(i) Maximum Strain Theory.—The strains arising from the
stresses p, and p, are

b1 _ Pz
@ = ) mH
and
_ P P
e, =11 — 2=
E mk

The elastic limit will be reached when either of thesc is equal to f/E,
i.e. when

or

Pirand p, both
Tensile

[Z

P, and p, both
Compressive

p, Tensile
1, Compressii

Fia. 85.—Representation of Maximum Strain Theory (f and E unequal in tension
and compression).

If p, and p, are both positive (i.e. tensile) the boundary representing
the elastic limit will be the lines E4 and FA (Fig. 85) representing these
equations.

If p, be negative (i.e. compressive) let f° and E’ be the values
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of f and E in compression. The elastic mit will be reached when

Pr_ P _f

K mE' B
o PP _ S
E' mE i

. E p

That 'hy S . .
hat is when A f
E, pl_ 4
or P E‘E— f

The boundary is now given by the lines ED and HD which represent
these equations.

Similarly the boundaries in the other quadrants are as shown.

If, as in the case of most metals, E' == E and f' = f, the figure
AEDHCGBFA becomes a parallelogram, as shown in Fig. 86, sym-
metrically placed with regard to the axes.

F1a. 86.—Representation of Maximum Strain Theory (f and E equal for tension
and compression).

In the latter case pure shear, for which the principal stresses are equal
and opposite, will be represented by the diagonal BD.

(iii) Maximum Shear-Stfess Px
Theory.—In a simple tensile test the ) —A
maximum shear stress at the elastic limit i
is §f. In a general two-dimensional sys- / 0 3:/
tem, when the principal stresses are p,, Gl 5 Pr
p, and O, the greatest shearing stress is i /

3(p, w~p,) if p,and p, are of opposite signs ; -
if p, and p, have the same sign the H

greatest shearing stress is ip, or ip,,
according to which is the greater. In the Fia. 87.—Representation of

ie Hmi : Maximum Shear-Stress Theory
former case, then, the elastic limit will be (f the same for tension and

passed when p;, — p, = f or p, —p, =, compression).
i.e. when the point (p,, p,) lies outside the
space between the parallel lines G and EH in Fig. 87. In the second
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case, when p, and p, have the same sign, the point (p,, p,) will be out-
side the spaces FAEO or OGCH when the material has passed the elastic
limit. Hence, in general, (p;, p,) must lie within the figure GFAEHCQG.
Thus it will be seen that, for like stresses, this theory gives the same
boundary as the maximum principal stress theory.

(iv) Haigh’s Strain Energy Theory.—The strain energy per unit
volume in a general two-dimensional stress system is (§ 74)

2
é%(plurpf - Eplpz)

and the strain energy at the elastic limit in pure tension is f2/2E. Hence
we must have

2
it — ”—1,])1132 =f?

Pz This is the equation of an ellipse
whose centre is at the origin, with axes
> inclined at 45° to the co-ordinate axes.
Y AN The lengths of the semi-axes being

45
T P f \/ dd : and f \/ id 7 as shown
2 % m — m

- in Fig. 88. For an isotropic material,

1
L
’,

10

having the same elastic limit and modulus

Fia. 88.—Representation of Of elasticity for tension and compression,
}}‘Iﬁxm“m Strain - Energy  this ellipse is the boundary giving the
eory,

elastic limit for any condition of stress.*
The slope of the tangent at any point is given by

dps _ _ P2 —Py/m
d.pl P —pz/m

When p, =0, this gives % = _1; when p, = 0 this gives d_p_z —m.
dpl m dpl

Hence the ellipse is inscribed in the parallelogram given by the maximum
strain theory, touching it at its points of intersection with the coordinate
axes as shown by the dotted lines.

82. Analysis of Experiments.—In recent years several investi-
gators have experimented on the failure of materials under combined
stresses, but from our present point of view none of these researches
is completely satisfactory: usually because of the uncertainty of the
value of m, and sometimes because the yield point has been taken instead
of the Elastic Limit. However, for the present, we must take the results
as they stand and glean such facts as we can from them.

* Similarly in a three-dimensional stress system, the point (p;p,ps) must lie
within the ellipsoid (see § 77),

2
P® + po* + Pt — ;L(pzpa + pspi + Prpe) =

if the elastic limit is not to be exceeded.
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The first important experiments on the subject were published * by
J. J. Guest in 1900, who conducted his researches with thin-walled tubes.
The results of many of his experiments are represented in Figs. 89-92
in the manner described above, the principal stresses being plotted.

If we consider first the points in the N.E. quadrant, that is when
both principal stresses are tensions, we are at once struck by the fact
that the maximum strain theory is very far from agreeing with the facts,
for, according to this, the points should cluster on the sloping sides FA4
and AE of the parallelogram. It appears that the points actually lie
much nearer the sides of the square FA'E as demanded by the maximum
stress theory ; at the same time, however, they show a distinct tendency
to rounid off the corner 4’ and to lie outside the square in the regions

./’/A / ///A
—y / —

Guest \ / Guest o ,
s f o Tubell 2]
< %’/ﬁﬁ tes! x TubeV'}Stee/ /
m=2-57 o Tube VI )
: .
° JE
0 £ 0
A |
' |
- S !
. 2 :
" | — .
e i 1 Hf= - - D

nearer to £ and F, that is to approach the Haigh ellipse. Again, when
we consider the case of unlike principal stresses represented by points
in the S.E. quadrant of the figures, we see that the maximum strain
theory tends to overestimate the stresses at failure, whilst the maximum
stress theory errs even more violently in the same direction. On the
other hand, the maximum shear stress theory underestimates the stresses,
which is shown by the fact that nearly all the points lie outside the
triangle OEH. The same thing is seen in the diagrams showing the
results of some of the experiments of Hancockt and Turner { (Figs. 93
and 94).

On the whole the grouping of the points in this quadrant seems to
point to the greater correctness of the strain-energy theory.

Two facts stand out very clearly from the figures shown :—(i) For
like principal stresses the maximum strain theory stands condemned

* Phil. Mag., 1900, ii. t Phil. Mag., 1906, i,
1 Engineering, February, 1909.
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without any possible shadow of doubt ; (ii) for unlike principal stresses
the maximum stress theory is equally crushed. In both ceses the stresses

A

/ x Ar ’
4 p—— @;';A' / F - \
S Guest <
G N .

e T 2 Lo X Steel
x Tubevm}Stee/ / o Tbe H}Copper{

Tube VI ,

o / o Tube X Brass| /=

m=2-32
0 0

® ’eb ]
) ]
| 1
| |
oF J , )
o} { ]
@4; :
< | /'/ ]

HFE = e - —p’ Hf= oo e

Fic. 91. Fra. 92.

required to cause failure would be violently overestimated by the respec-
tive theories, except when one stress is small compared with the other.

Hancock
Nickel Steel Specimans

m=2-18

o Hancock
x Turner

m=333

Fic¢. 93. Fic. 94.

For principal stresses of like sign the maximum shear-stress theory gives
the same boundary as the maximum principal-stress theory. Further-
more, we can, with almost equal confidence, drop the maximum strain
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theory in the case of unlike stresses, since the majority of the experi-
mental points lie well within the figure OEDH. We are left, then, the
choice between the maximum shear-stress theory or, on the other hand,
the strain-energy theory for both. It will be seen that, on account of
the closeness of the figure FA’EDH to the ellipse, it must require very
careful experimental work to show decidedly which theory is nearer the
truth, in the absence of further evidence. To the author it appears
that the general tendency of the experimental evidence is to favour the
strain-energy theory, which also has the following recommendations:
it is entirely rational in its basis, a qualification which is not held by
the other theories; the strain energy theory gives continuous values to
both principal stresses throughout the entire range of positive and
negative stresses, i.e. the slope of the curve does not suddenly alter
when one of the stresses changes sign. It is surely unlikely that, if we
change the intensity of one of the principal stresses continuously from a
small positive value to a small negative value, thus passing through the
point E in the diagrams, there should be any discontinuity in the value
of the other stress which causes failure of the material.

Additional evidence in favour of the maximum strain-energy theory
for ductile materials is also furnished by the experiments of Cook and
Robertson * on thick-walled tubes subjected to internal pressure. It is
shown below, in Chapter XX VIII, that if P is the limiting internal pres-
sure, f the elastic limit of the material in simple teision, and k the ratio
of the external to the internal diameters, P/f should be given by

? = ]’;j _+: i according to the maximum stress theory.
17) = kzzk_zl " " ,» shear
{’ _ & 1) strain
f sk 2 7 ” v (m=4) ”
whilst, according to the strain-energy theory, we should have, with m = 4,
P 2k —1)
f V6 410k

These graphs have been plotted in Fig. 95, together with the experi-
mental points, I denoting the maximum stress theory, /1 the shear theory,
and III the strain-energy theory. The closeness of the points to the
last graph is remarkable, and in strong contrast with their deviation
from the other three curves.

Thus it seems probable that, for ductile materials, the constant strain-
energy theory is a very close, simple, rational approximation to some law
which is undoubtedly more complicated, and it will be very surprising
if further experimental evidence, when it shall be forthcoming, does not
confirmn this view.

* Engineering, Dec. 15, 1911,
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The law does not seem to apply so well to brittle materials like cast-
iron, and it appears that for such materials it is better to use the maximun
stress theory (cf. Fig. 357).

Many instances of the application of these principles will be found
in subsequent chapters.

EXAMPLES VI

1. In question 4, p. 84, if the yield point of the material in simple tension
be 20 tons/in.?, calculate the factor of safety according to (i) the maximum
stress theory, (ii) the maximum shear stress theory, (iii) the strain energy
theory.

2. In question 6, p. 84, calculate the factor of safety if strain energy is
the deciding factor, taking the yield point in tension as 18 tons/in.*

3. In question 7, p. 84, calculate the factor of safety by the maximumn
shear theory, if the yield point in tension is 25 tons/in.?



CHAPTER VII

THIN CYLINDRICAL AND SPHERICAL SHELLS UNDER
INTERNAL PRESSURE

83. Introductory.—Easy examples of compound stresses are pro-
vided by thin cylindrical shells of circular section, or spherical shells,
under internal fluid pressure. In such cases the pressure is uniform
over the internal surface of the vessel, if we disregard the weight of the
fluid. In general, the shell will experience two principal stresses in
directions parallel to the tangent plane at any point, and these stresses
will vary in their intensity from the inside to the outside of the shell.
When the thickness of the shell is small compared with the diameter,
for instance in the case of boilers, we may neglect this variation without
sensible error. The shell will also suffer a third stress in the direction
of the normal to the surface, which, however, is usually very small com-
pared with either of the other principal stresses. When these conditions
are not fulfilled the problem is more difficult and is postponed to a later
chapter.

84. Thin Cylindrical Shell of Circular Section.—

¥

it of

-
-
pra—
-

gy
i

Fi1a. 96. Fia. 97.

Let r = the internal radtus.
t = the thickness,
P = the internal pressure.

Consider a length x of the shell (Figs. 96 and 97). Then, taking the two
halves of this portion on each side of a diametral plane 4B, the force
tending to separate them is 2rxP.

Let p, be the circumferential stress in the tube, across the diameter

97
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AB. This stress is usually called the ‘ hoop ’ stress. The resistance
which the two halves ACB and ADB offer to separation is then 2p,zt.
Hence we must have

2p,xt = 2rxP
Pr
oDy = e (1

Again, unless the ends of the shell are stayed by longitudinal stays,
the pressure on the ends will produce a tendency to tear across planes
such as ACBD. Whatever be the shape of the ends, plane or dished,
the force tending to produce rupture across the planes ACBD is P x zr®.

Let p, be the longitudinal stress in the shell, then the resistance to
this type of fracture is 2nrt X p,. Therefore we must have

2nrtp, = ar?P
Pr
,p2_2t.......(2)

We thus see that the longitudinal stress is one-half of the hoop stress.

There is also a radial pressure which varies from P inside the shell to
atmospheric pressure outside, but this is usually negligible. Formule (1)
and (2) give the two major principal stresses, except very close to the
ends, where the stresses depend on the nature of the ends : for instance,
if these are flat circular plates the radial expansion of the shell is prevented
and bending stresses are introduced.

Let f denote the yield point of the material, then (i) according to the
maximum stress theory the permissible pressure is given by

p=f
or P= if
r
(ii) according to the strain-energy theory, we must have at yield
2
p:? +P22—;{P1Pz = f?
P22
t2

which gives P = i f \/ 4m
r 5m —4

Iftm= %O, this gives P = 1-025 tl, or about 24 per cent. greater than
r

or

(1+t=214)=r

the value given by the maximum stress theory.

85. Thin Spherical Shell under Internal Pressure.—From sym-
metry it is clear that the tensile stress across all diametral planes is the
same.

Let r = the internal radius of the sphere.
t = the thickness.
P = the internal fluid pressure.
» = the tensile stress across any diametral section.
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Then the total force tending to separate two halves of the sphere = zr2P.
The resistance to fracture is p x 27rf. Hence we must have

p2nrt = nr?P
Pr
Sop= TS 3)

At any point in the shell the principal stresses are p, = p, = Pr/2t, and
the negligible radial stress. If f—= the yield point of the material, the
internal pressure required to produce yield will be given by

p=f

2t

P="_f

or rf

The maximum strain-energy theory requires

42::(1 +1 “‘) =F

2t m
or =.—7.f \/m

Iftm = -1§O this makes P == 0-85(?}’), or about 15 per cent. less than

the maximum stress theory.

86. Thin Cylindrical Shell with Hemispherical Ends.—Unless
the thicknesses of the ends and sides are so proportioned that the radial
expansion is naturally the same for both, bending stresses will be set
up near the junction of the ends with the body of the shell.

Let r = the internal radius of the cylinder, and of the hemispheres
forming the ends.
t; = the thickness of the cylindrical part.
¢, = the thickness of the ends.
P = the internal fluid pressure.
Then the principal stresses in the cylinder are
Pr Pr
and —
T 2’
and the circumferential strain, if the walls are free from restraint, will be
Pr  Pr _Pr/2m—1 ()
Et, 2mkEt, Et]( o2m
The principal stresses in the ends, if these are free from restraint, will
both be g, and the circumferential strain will be

C m P _Prm—i -
2Et, 2mEt, Et,\ 2m
It will be seen from (i) and (ii) that if ¢, = ¢, the expansion of the spherical
ends and the cylindrical shell will tend to differ, so that if they are
forcibly made the same by a joint extra stresses must be incurred. To
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avoid these extra stresses the natural circumferential strains may be
made equal. This requires

2m —1 m —1

2mt,  2mt,
or i, m—1
t, T om —1
1t m =20 this will make 22 = "
3 T

But the weakest part of the shell will now be the ends: taking
m = %0, and adopting the strain-energy theory as the criterion, we shall
have for the pressure required to produce yield in the sides (§84)
P = 1-025%’0; the pressure required to produce yield in the ends will

be (§ 85) P = 0-85 20f _ O'7tif, which is about 30 per cent. less than that
7 r

required to produce yield in the sides.

Example 1.—The air vessel of a torpedo is 17}” external diameter
and " thick, the length being 5 ft. Find the external diameter and length
when charged to 1,500 lbs./in.? (Mech. Sc. Trip., 1916.)

1

We shall take E = 30 x 10% lbs./in.?, and m = EO

r = the internal radius = 8-5",
t = the thickness = 0-375".
P = the internal pressure = 1,500 lbs./in.?

The hoop stress is

The longitudinal stress = p, = 17,000 lbs./in.?
Neglect the radial stress.
The circumferential strain is

_P_ 22__._1’_1_( _ L) _ 34000 17
=E mE_E 2m/ = 30 x 108 < 20
— 0-063 x 10-3

€

The longitudinal strain is
ﬁf_’z_ﬁx__&( __1) =4 _o s
er =% mE_E)" poo 1,7¢a,—0226><10‘.

The increase in external diameter

= 17-75" x 0963 x 10—%= 0-0171".
The increase in length
= 60" x 0:226 x 10—°= 0-0136".

Example 2.—A thin cylindrical shell is subjected to internal fluid pres-
sure, the ends being closed (a) by two watertight pistons attached to a
common piston rod, (b) by flanged ends. Find the increase in internal
diameter in the two cases, having given: Internal diameter = 8”; pres-
sure = 500 lbs./in.?; Poisson’s ratio = 1/3-5; thickness =0-2"; K =
30 x 10°¢ lbs./in.? (R.N.C., Greenwich, 1922.)
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We have
r=4"; P =500 lbs./in.2; t = 02",
In both cases the hoop stress is

P =—F = =S = 10,000 lbs./in.’

(a) There is no longitudinal stress. The hoop strain
_ P, _ 10,000 10—
E 30 x10¢ 3 °
—8

3
(b) The longitudinal stress is 5,000 lbs./in.?

The increase of internal diameter is 8 X = 0-00267".

- _&( - .l)_ 6 p,
The hoop strain = 7 1 5l = .

The increase of internal diameter = 7 x 000267 = 0-00229”.

87. Thin Tube under External Pressure.—When a thin circular
tube is subjected to external pressure it collapses with longitudinal
corrugations when the pressure exceeds a certain value. The problem
of finding the pressure required to bring about this collapse depends for
its solution upon what is known in mathematical elasticity as the * General
Theory of Thin Shells.” This theory is elaborate and difficult, and so
far has not yielded any other results of great practical importance,
whilst the more approximate theory of cylindrical shells, which can be
developed on the lines of Chapter XXXI, cannot be made to yield the
correct answer. For these reasons we have decided to omit the theory
here, and, for convenience of reference in practical cases, give only the
results, which are due to R. V. Southwell . *

The formula for the collapsing pressure is

-y ()] - 0

where
r = the mean radius of the tube,
t = the thickness of the tube,
1/m = Poisson’s ratio,
| = the free length of tube,
n = an integer greater than unity,
and the ends of the tube are compelled to retain their circularity, but
are not otherwise restrained.
When the tube is very long compared with the diameter, we get

m2E3
P = o — ™ T
the smallest permissible value of n is 2, giving
_ miEf
P=qmE — D

* Phil. Trans. Royal Soc. (Ser. A), 1913 ; Phil. Mag., 1913, Vol. 25. See also
Love’s Theory of Elasticity, 3rd Ed.
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In this case the section takes an elliptic form. When the tube is
short,n = 3 may produce collapse at a lower pressure than n = 2, the
section becoming a three-lobed curve of the form 7 =« -+ b cos 30 in
polar co-ordinates. For a shorter length still the collapsing pressure is

500
= §
R
%)
400
NI )
m \
3 LW
% 300
o \ \
<
?;0200 %"’
B N
Q. \
3 A
X
100
8 ~ 72=2
% 2 4 3 g 0
Values of 717( %)

Fue, 98,

given by taking n = 4, and so on. Thus, in the case of steel, taking
. 1
E =30 % 10%1bs./in.2, {/r = 1/50, and m = EO the collapsing pressure

is given by the discontinuous curve shown in Fig. 98 ; for a ratio of I/r
corresponding with A4 the tube might collapse with either two or three
lobes ; at B it might collapse with either three or four lobes, and so on.

EXAMPLES VII

1. A pipe 4" inside diameter and " thick is made of material whose
ultimate strength in tension is 28 tons/in.? What is the maximum allowable
inside pressure * if the factor of safety be 4 * Assume a uniform distribution
of stress over the cross section. (Special Exam., Cambridge, 1907.)

2. A long boiler tube has to stand an internal test pressure of 500 Ibs. /in.2,
without the mean hoop stress exceeding 8 tons/in.? The internal diameter
of the tube is 27, and the weight 490 lbs./ft.> Find the weight per foot run.
(R.N.E.C., Keyham, 1918.)

3. A tube 3” internal diameter is #” thick in the wall. What internal
pressure can be applied before the stress in the metal reaches 6 tons/in.??
(R.N.E.C., Keyham, 1920.)

4. Two boiler plates §” thick are connected by a longitudinal double-
riveted butt joint with two cover plates }” thick. The rivets used are ”
diameter and their pitch is 3}”. The boiler is 4’ internal diameter and has
an internal pressure of 120 lbs./in.? Find the shearing stress in the rivets
and the tensile stresses in the boiler plates and the cover plates. (Special
Exam., Cambridge, 1911.)

5. A steam hoiler 6’ 0” diameter is constructed of steel having an ultimate

* Estimate on the maximum stress theory.
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strength of 27 tons/in.* The shell is §” thick, and the steam pressure 200
Ibs./in.2  If the joints have an efficiency of 85 per cent., find the factor of
safety. (Special Exam., Cambridge, 1914.)

6. A long straight cylinder 6” bore and }” thick, is made of a steel which
is found to yield under a simple tensile stress of 45,000 lbs./in.?2 Water
pressure is applied inside the tube until it yields. Calculate what the pres-
sure will be in lbs./in.? if (i)shear stress, (i1} strain is the circumstance which
decides the yield. Take m = l—:;) and F = 30 x 10¢1lbs./in.* (Intercoll.

Exam., Cambridge, 1908.)

7. In Question 6 what will be the pressure if (i) stress, (ii) strain energy
is the deciding circumstance ?

8. A long steel tube, 3” internal diameter and v5” thick, is plugged at
the ends and subjected to internal fluid pressure such that the maximum
stress in the tube is 8 tons/in.? Assuming m = 10/3, and E = 12,000
tons/in.?, find the percentage increase in the capacity of the tube. (R.N.C.,
Greenwich, 1921.)

9. A cylinder of concrete 10” diameter is surrounded by a steel tube }”
thick. The concrete is subjected to a longitudinal thrust of 500 lbs./in.?
By equating the change in diameter of the eylinder to the change in diameter
of the tube, show that the normal pressure exerted on the concrete by the
tube is approximately 110 lbs./in.? E for concrete = 2 x 10¢ lbs./in.?;

1
E for steel = 30 x 10¢ lbs./in.2; m =§0 for both.* (Intercoll. Exam.,

Cambridge, 1912.)

10. A copper pipe 6” internal diameter and 4" thick is closely wound with
a single layer of steel wire of diameter 0-072”, the initial tension of the wire
being 2-5 lbs. If the pipe is subjected to an internal pressure of 400 lbs. /in.?
find the stress in the copper and in the wire (a) when the temperature is the
same as when the tube was wound, (b) when the temperature throughout
is raised 200° C. E for steel = 30 x 10¢ lbs./in.2, E for copper = 15 x 10°¢
Ibs. /in.?, coefficient of linear expansion for steel = 11 x 10~% for copper
18 x 10~ per 1°C. (Mech. Sc. Trip., 1912.)

11. A cylindrical pipe 2’ 0” diameter and 25’ 0” long is made of steel }”
thick. The ends are closed by plates which are bolted to flanges on the
cylindrical shell, and are also tied together by longitudinal steel rods. The
rods are tightened up till they begin to yield, which happens when the total
tension in them is 60,000 lbs. Show that if the pipe be then subjected to
hydraulic pressure of 500 lbs./in.?, it will stretch longitudinally by about
0-026”. Take m = 35, and B = 30 x 10°lbs./in.? (Mech, Sec. Trip., 1914.)

12. A thin spherical copper shell of internal diameter 12” and thickness
15" is just full of water at atmospheric pressure. Find how much the internal
pressure will be increased if 1} cubic ins. of water are pumped in. Take
m = 3-5 for copper and K = 46 x 10¢ lbs./ft.? for water. (Intercoll.
Exam., Cambridge, 1923.)

13. A spherical shell of 24” diameter is made of steel }” thick. It is closed
when just full of water at 15° C., and the temperature is then raised to 35° C.
For this range of temperature, water at atmospheric pressure increases 0-0059
per unit volume. Find the stress induced in the steel. The modulus of
cubic compressibility of water is 46 x 10° lbs./ft.?, E for steel is 30 x 10¢
Ibs./in.?, and the coefficient of linear expansion of steel is 12 x 10—° per
1° C., and Poisson’s ratio = 0-3. (Intercoll. Exam., Cambridge, 1921.)

# It can be shown that, when a solid circular cylinder is acted on by uniform radial
pressure, the hoop stress and radial are constant and equal to the applied pressure.



CHAPTER VIII
THE TORSION OF CIRCULAR SHAFTS

88. Introductory.—We shall now consider the stress in a uniform
straight rod of circular cross section which is acted on by terminal couples
in planes at right angles to the axis of the rod. The method of investi-
gation which we shall follow is that of assuming that the rod is strained
in a particular manner, and deducing the force system which must be
applied to produce this strain. We shall assume (i) that the torsion is
uniform along the rod, i.e. that all normal cross-sections which are the
same distance apart suffer equal relative rotation, (ii) that the cross
sections remain plane, and (iii) that radii remain straight; from this
we shall deduce that the external force system which is necessary to
produce this state of strain consists only of equal and opposite couples
applied to the ends of the rod in planes perpendicular to the axis. Con-
versely, if these couples are applied to the rod the strain will be that
assumed at the beginning. This is more satisfactory than trying to
find the strain produced by applying given couples, for the process must
involve either lengthy mathematical analysis or making certain deductions
from symmetry * which are untrue when applied to shafts of square (e.g.)
section, although there is no obvious reason why these deductions from
symmetry should be true for circular sections and untrue for square sec-
tions. Asusual we assume that the material is homogeneous and isotropic.

89. Relations between Twisting Moment, Twist and Shear
Stress.—Let | = the length of a circular rod 4B (Figs. 99 and 100).
Let the rod receive uniform twist so that the end B is rotated through
an angle 0 radians relative to the end 4, which we can suppose fixed.
Now imagine the shaft made up of a number of concentric tubes, and
let 4B be a line, on one of these tubes, which is parallel to the axis of the
rod before strain. After strain the line 4 B becomes a helix 4B’ making
a small angle ¢ with 4B.

Then, since § and @ are both small, we have

lp = BB =16
r
=0
77
* Cf. Dictionary of Applied Physics. The argument in § 89 is practically that

of Cauchy and is given in Searle’s Experimental Elasticity and Kelvin and Tait’s
National Philosophy, Part ii.

104
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Now consider a portion of the tube AB of length , as shown on the
right in Fig. 100. Let dr be the thickness of the tube. When the rod
is twisted, parallel lines, such as PQ and RS, will be strained into the
positions PQ’ and. SR’, making angles ¢ with their original positions.
In other words, the element PQRS undergoes a shear ¢ in the plane
PQRS ; the thickness dr, the lengths of the sides PS and QR, and the
length 2« all remain constant. There is no distortion in radial planes or
in planes perpendicular to the axis, so that the shear ¢ is the total strain
undergone by the element.

Such a strain requires for its production only shearing stresses ¢ = Cy,
acting on the ends SP and QF in planes perpendicular to the axis, together
with the equal complementary shear stress along @P and SR in radial
planes. No other stresses are necessary.*

The stresses along QP and SR are provided by the action of the

i
-

F1a. 99. Fie. 100.

similar elements contiguous with QP and SR, so that only the stresses
along SP and QR have to be provided by the action of neighbouring
normal slices of the tube. The total force acting along SP and QR is
q.SP.dr, and the moment of this about the axis is r¢.SP.6r. For the
whole cross section of the tube the moment will be rq.2nr.0r = 2nr2dr.
A couple of this moment is the whole action which has to be trans-
mitted over normal sections of the tube to produce the assumed
strain.

Since we have seen that no other stresses are involved, i.e. the assumed
strain does not involve any action across the cylindrical boundaries of
the tube, we can add together the couples for all the tubes comprising
the rod.

Let T = the total twisting couple transmitted along the rod.
r, = the outside radius of a cross section.
7, = the inside

Then we have T = J-2 Teriqdy,

* The implication is made that PQ’ - PQ, and that in consequence the planes through
PS8 and QR, perpendicular to the axis, draw nearer together. so that the shaft is shortened.
If this shortening be prevented, tensile stresses parallel to the axis will be induced, which
in non-circularshafts may become important. (See Phil. Mag.. 1914, p. 778: and Strength
of Materials (vol.i). Timoshenko.)

H
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But we have shown that

g = Cp = Crf/1, hence

o, v
T = 20 073d7‘
L
0 a(rp—rt)
A

The quantity w(r*—r,%)/2 is the polar moment of inertia of the cross
section, and is usually denoted by J. We can thus write

T=0J0/4 . . . . . . . . (1

where
J = ;(rﬁ——r;‘) :l:)(d;‘—d.}) N+

if d, and d, denote the external and internal diameters of the shaft.

We have thus established that a strain consisting of only a uniform
twist, in the case of a circular rod, requires for its production only the
twisting couple given by (1) ; conversely, a twisting couple of this magni-
tude will produce a uniform twist of 0/I radians per unit length, 0/ being
given by (1).

For a solid shaft it is only necessary to make r, or d, zero.

At any radius r the shearing stress is given by

g=0Cv0/1 . . . . . . . B
The maximum will occur when r = r;; denoting this by ¢, we have
q, = Cr/l=0d,0,72l B 3]
From (1) and (4). eliminating C0/1, we have
rnT dT ~
g, = N )
Equations (1) and (3) can conveniently be combined in the formula
T C86
T ®

90. Principal Stresses in a Twisted Shaft.—At any point in a
twisted circular rod the stresses con-
T, A sist of equal shearing stresses ¢ in
t@ 1@? @ planes normal to the axis in direc-
D=¢, tions at right angles to the axis, and

Fic. 101 in radial planes in directions parallel

to the axis, as shown in Fig. 101.

Therefore, the principal planes make angles of 45° with the axis,
the principal stresses being + g ; thus, at P (Fig. 101) the principal

planes cut the cylindrical surface in the lines AC and BD, the diagonals
of the square ABCD.




THE TORSION OF CIRCULAR SHAFTS 107

If f denote the yield point of the material, the strain-energy theory
will give as the equation for the greatest permissible shearing stress

2
7 +q¢*+ ;n—q*‘=f“z

/S m
whence = _
7=J V 2m 4+ 1)
Withm = 13—0, g =062 f. The maximum shear stress theory would give
g=05f.

Referring to Fig. 101, the stress across the line BD will be tensile,
while that across AC will be compressive. It will be seen that, if a thin
tubular shaft be cut spirally, the spiral lying along AC as indicated by
the dotted line, it would still transmit the torque 7' in the direction
shown, but it would not do so if the spiral cut ran in the direction BD,
since tensile stresses could not be carried across the gap. In this case
it would transmit a torque acting in the opposite direction to that shown.

Example 1.—What turning-moment, in ton-ins., applied to a hollow
circular shaft of 10” outside diameter and 7” inside diameter will produce

a maximum shearing stress of 5 tons/in.? in the material ? (Special Exam.,
Cambridge, 1907.)
Let T = the turning-moment.
We have 7, = 5", r; = 3-5”, and
4 3.54
J = “(5—2—) = (625 — 150)7 = 745 ins.¢
Also gm = 5 tons/in.?
From (5) we have
__Jgm 745 ins.t x 5 tons/in.?
T 5 ins,
Example 2.—A steamship propeller shaft has external and internal
diameters of 10” and 6”. What H.P. can be transmitted at 110 r.p.m. with
a maximum shearing stress of 5 tons/in.%, and what will then be the twist
(degrees) in a 30 ft. length of the shaft ? C = 12 x 10° lbs./in.? (Special
Exam., Cambridge, 1919.)

r, =58, ry = 3:, ! = 30 ft.
n(625 — 81)

J = 2
gm = 5 tons/in.*! = 5 x 2,240 lbs./in,?
Hence - 85—4%‘9 Tbs. ins.

= 854 x 2,240 lbs. ins.
At 110 r.p.m., the H.P. is

27 x 110 x 854 x 2,240

33,000 x 12

= 745 tons. ins.

= 854 ins.*

= 3,340.

From (1) we have

IT 30 ft. x 854 x 2,240 lb.ins.

9 =37 = T2 x 10° bs./in.* x 854 ins.+ "2dians
30 x 12 x 2,240 180

=T g x1er X 5 degrees

= 3:85°.
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Example 3.—A solid circular shaft of 9”7 diameter is to be replaced by
a hollow shaft, the ratio of the external to internal diameters being 2 to 1.
Find the size of the hollow shaft if the maximum shear stress is to be the
same as for the solid shaft. What percentage economy in weight will this
change effect ? (Intercoll. Exam., Cambridge, 1919.)

Let r = the inside radius of the new shaft
then 2r = ,, outside ,, . '

J for the new shaft =—7~2!(16r‘ — rt) = T7-5ars,

J o, old , =3 x 45 =20457 ins:

If T be the applied torque, the maximum shear stress for the old shaft is
45T
20457

and that for the new one is
L A
7-5art 31578

These have to be equal, therefore

45 1
2045 3-75r%
204-5
8 — T .13 3
- = 855 12:1 ins.
r =23,

Hence the internal diameter will be 4-6” and the external 9-2”.
To find the saving in weight we have :
area of new cross section 9-2%2 — 4-62

e = T = 0785
area of old cross section 92 0-785.

Thus the saving in weight will be 21-5 per cent.

Example 4.—The propeller shaft of a steamship has to transmit 10,000
H.P. at 240 r.p.m. The shaft has an internal diameter of 6”. Calculate
the minimum permissible external diameter if the shear stress in the shaft
is to be limited to 10 tons/in. (Mech. Se. Trip., 1923.)

10,000 x 33,000

T = the twisting moment = 320 x 27 % 2,240 tons. ft.

= 97-5 tons. ft.
= 1,170 tonms. ins.

(l2 — 6”
gn = 10 tons/in.?

J = =(d,* — 1,296) ins.*

32
From (5) we have
d. = 2Jgm 2 x n(d,* — 1,296) x 10

vt 32 x 1,170

Hence
32 1
ds — 1,296 = ___XLZ_ d,
27

or d,* — 596d, — 1,296 = 0.

Solving this by trial we find d, = 9-04".
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91, Torsion Combined with Thrust or Tension.*—When a shaft
is subjected to longitudinal thrust, or tension, as well as twisting, the
direct stress must be calculated in addition to the shear stress, and from
these the principal stresses can be estimated.

Let P = the longitudinal pull.
p = the corresponding tensile stress.
Then, with the notation of § 89,

P _ 4P
p= a(r®— ,.’2)— a(d,? —d,?)
where for a solid shaft r, = 0.

The maximum shear-stress due to torsion is given by (5), and the
principal stresses are found from the formula

P )
2 :E E\/Pz + 4qmz'
The maximum shear stress in the shaft is §V/p? 4 4¢2.

Example 1.—A steel shaft, 8” external diameter and 3” internal, is
subjected to a turning moment of 10 tons. ft., and a thrust of 5 tons. Find
the shear stress due to the turning moment alone; also the percentage
increase when the thrust is taken into account. (R.N.C., Greenwich, 1921.)

We have

r,=4"; r, =15
S = area of cross section = % X 13-75 = 43:2 in.?

p = 5 tons.
— 5 tons
. = e——— o= e (e in 2
“P = mo 0-1168 tons/in.

J =-’23(256 — 5-06) = 393 ins.¢

s T =10 tons. ft.

4 ins. % 10 tons. ft.
393 in.*

1-22 tons/in.?

The maximum shear -stress due to the combined load

-Wr i
= }V/0-1345 ¥ 5-952 tons/in.?
= 1-235 tons/in.?,
so that the increase due to the thrust is about 1:2 per cent.

Example 2.—A thin steel tube of 1” diameter and %" thickness has
an axial pull of 1 ton, and an axial torque of 0-094 tons. ins. applied to it.
Find the magnitude and direction of the principal stresses at any point.
(Mech. Sc. Trip., 1912.)

It will be easier, and sufficiently accurate, to neglect the variation in
the shear stress from the inside to the outside of the tube.

Let ¢ = the mean shear stress due to torsion (tons/in.3).

r = ’ radius = $§".
t = the thickness = 1%”.

* For torsion combined with bending, see p. 368. For the stability of a shaft
under end-thrust, see p. 375.

.« gm = shear stress due to torque only

i
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Then the moment of the total resistance to shear

= 2ariqt
= 27 X (3})? X 1%q
225nq .
= 8192 tons. ins.
Hence
225ng
8192
_0‘094><8192_10gt -
= 2957 = ons/in.
The area of the cross section, approximately,
157
=2art =27 X 37 X 15 = 556 ins,?
Hence the tensile stress = 1 + 167 _ 256 tons/in. ?

256 ~ 1on
or p = 545 tons/in.?
The principal stresses are (cf. § 91)

Ho £ Vp* + 4% = 3{ 545 + /207 + 475}
= }{ 545 + 587}
Py = — 021 tons/in.?, p, = 566 tons/in.?,
the positive sign denoting tension.
The planes across which they act make angles 8 and 6 + -721— with the

axis, where

whence 6 = 10° 54’. The planes are shown in Fig. 102.

Fia. 102,

92, Strain Energy of Torsion.—If we consider one end of the
shaft fixed whilst the couple applied at the other end is gradually increased
from zero to its final value 7', the angle turned through by this end
will be proportional to 7' and reach the final value §. Hence the total
work done will be 170. This will be the strain energy stored in the
twisted shaft, and we have, if U denote the total strain energy,

U = }T0.
This can be expressed in various other forms: from (1) we have
ir
b=w
IT?
SU=—. . . . . . . . M

2CJ
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Again, from (4) we have

lq
6 = m,
Cry
so that, eliminating 6, we can write
Jg?
U= L (.S
2Cr,2 (74)

93. Keyways and Serrations.—The effect of a keyway is to reduce
the strength of the shaft, and usually by a greater amount than would
be indicated by supposing the outer boundary of the cross section of
the shaft to be a circle reaching only to the bottom of the keyway. The
chief factor in determining the weakening effect of a keyway is the
radius of the corners at the bottom of the slot. This matter has been
investigated by A. A. Griffith and G. I. Taylor ¥ during the war, and the
results are of considerable importance. The figures” which are given
below are the results of soap-film experiments t for a shaft 10" external
diameter and 5-8” internal diameter, but can be applied to similar shafts
of different absolute dimensions. In the experiments the keyway was
2-5” wide by 1”7 deep. For shafts of different proportions from these the
figures we shall give will indicate the general tendency of things.}

In the tables below, the term ° strength ratio ” means the ratio of
the torque required to produce a given shear stress in the keyed or
serrated shaft to that required to produce the same stress in an uncut
shaft of the same mawximum diameter.

TorsioN oF KEYwWAYED HOLLOW SHAFTS
Strength comp. with

Radius of Ratio of radius shaft having radius
bottom corners to depth of Strength = radius to botfom
of keyway. keyway. Ratio. of keyway.
0-1” 0-1 0-187 0-447
0-2” 0-2 0-297 0-710
0-4” 0-4 0-435 1-04
0-7" 07 0-502 1-20
TorsioN OoF SErRATED HorLrLow SHAFTS (see Fig. 103).
Radius of Ratio of radius
bottom of V. to depth of V. Strength Ratios as above.
0-10” 0-164 0-293 0-475
0-15” 0-247 0-377 0-610
0-20” 0-329 0-401 0-650
0-25" 0-410 0-425 0-689

The torsional weakness of keywayed hollow shafts is due partly—in
fact, mainly—to a region of high local stress near the corners, and partly
to the concentration of shear stress in the thin region between the bottom
of the keyway and the inner wall of the shaft. To some extent the

* Advisory Committee for Aeronautics, Reports and Memoranda, No. 392,
1918. H.M. Stationery Office.

1 Ditto, Nos. 333 and 399 explain the soap-film method of solving torsion
problems ; Engineering, Vol. 104 (1917), pp. 695, 699.

! The strength of keywayed solid shafts may be estimated by the method given
on pp. 480-483.
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strength of the shaft may be increased by making the bore eccentric,
but in most cases the ensuing want of balance would prohibit this. The
presence of the high local stress is particularly important where the shaft
is subjected to alternating stresses, for in such cases the ductility of the
metal is of less account in the prevention of cracks. If the stress merely
fluctuates between maximum and minimum values of the same sign it

Fia. 103.

is probable that the strength of the shaft is not reduced so much. It
must be remembered that the above figures are only accurate for isotropic
materials within the elastic limit.

EXAMPLES VIII

1. Find the maximum shear stress in a propeller shaft 16” external, and
8” internal, diameter, when subjected to a twisting moment of 1,800 tons. ins.
If C = 5,200 tons/in.?, what is the angle of twist in a length of 20 diameters ?
What diameter would be required for a solid shaft with the same maximum
stress and twisting moment ? (R.N.C., Greenwich, 1921.)

2. A propeller shaft, 134 ft. long, transmits 15,000 H.P. at 80 r.p.m.
The external diameter of the shaft is 22-45”, and the internal diameter 9:45”.
Assuming that the maximum torque is 1-19 times the mean torque, find
the maximum shear stress produced. Find also the relative angular move-
ment of the ends of the shaft when transmitting the average torque. Take
C =105 x 10¢ lbs./in.2 (R.N.C., Greenwich, 1922.)

3. A hollow steel shaft has to transmit 8,000 H.P. at 110 r.p.m. Taking
the maximum shear stress at 9,000 lbs./in.?, and assuming d, = id,, find
the necessary dimensions of the shaft. (R.N.E.C., Keyham, 1921.)

4. What diameter of solid shaft is required to transmit 80 H.P. at 60
r.p.m. if the maximum torque is 30 per cent. greater than the mean, and the
limiting shear stress is 8,000 lbs./in.®* ? Assuming C = 12 x 10% lbs./in.2,
calculate the angle of twist of the shaft on a length of 10 ft. (R.N.C., Green-
wich, 1922.)

5. A steel tube, 8’ 0” long, 1-5” diameter, 0-025” thick, is twisted by a
couple of 50 lbs. ft. Find the maximum shear stress, the maximum tensile
stress, and the angle through which the tube twists. Take C = 12 x 10°
lbs./in.? (Special Exam., Cambridge, 1912.)

6. Compare the weight of a solid shaft with that of a hollow one to trans-
mit a given horse-power at a given speed with a given maximum shearing
stress, the inside diameter of the hollow shaft being two-thirds of the outside
diameter. (Intercoll. Exam., Cambridge, 1905.)
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7. A hollow propeller shaft has an internal diameter of 6”. It is designed
to transmit 8,000 H.P. at 150 r.p.m. Show that the external diameter
which will limit the shear stress to 10,000 lbs. /in.? is given by the equation
ds — 1,710d = 1,296. (Intercoll. Exam., Cambridge, 1912.)

8. A straight steel shaft $” diameter and 30” long has its ends rigidly
fixed. The shaft is subjected to a twisting couple of 50 lbs. ft. applied at
a section distant 10” from one extremity. Determine (i) the couples required
to hold the ends, (ii) the magnitude of the greatest shear stress set up in the
shaft, (iii) the angular rotation of the section at which the couple is applied.
Take C = 125 x 10°¢ lbs./in.? (Mech. Sc. Trip., 1911.)

9. A 1” circular steel shaft is provided with enlarged portions 4 and B
as shown in Fig. 104. On to this enlarged portion a steel tube 5" thick
is shrunk. While the shrinking process is going on, the 1” shaft is held twisted
by a couple of magnitude 50 lbs. ft. When the tube is firmly set on the
shaft this twisting couple is removed. Calculate what twisting couple is

B~

I )

do—

Fie. 104.

left on the shaft, the shaft and tube being mdde of the same material. {Mech,
Sc. Trip., 1910.)

10. 'i'o secure torsional stiffness in a shaft transmitting power, the greatest
angle of torsion allowed is frequently 1° for a length of 20 diameters. Prove
that, for a shaft for which C = 12 x 10° lbs./in.?, this corresponds to an
allowable shear stress of 5,236 lbs./in.?2

A hollow shaft, with outer diameter twice the inner, is to transmit 10,000
H.P. at 150 r.p.m. The greatest shear stress is to be 5,000 lbs./in.? Find
the diameters, and also the resilient energy stored in 120 ft. of shaft, when
running as above. (Mech. Sc. Trip., 1919.)

11. A thin tube of mean diameter 1” and thickness 5" is subjected to
a pull of § ton, and an axial twisting moment of  ton-inches. Find the
magnitude and direction of the principal stresses. (Intercoll. Exam., Cam-
bridge, 1922.)

12. A 4" diameter shaft is subjected to an axial thrust of 35 tons while
transmitting 40 H.P. at 100 r.p.m., there being no appreciable bending.

Calculate the maximum normal and tangential stresses in the shaft. (R.N.E.C.,
Keyham, 1922.)

13. A hollow shaft of mild steel, 10’ long, 4” external and 2” internal
diameter, is put under torque. Given that the yield point of the metal in
shear is 10 tons/in.?, and assuming that, when the yield point of the outer
skin is passed, the shear stress remains uniform at that intensity until the
whole tube has yielded, find through what angle the shaft will twist before
the material close to the inner surface is at the yield point. Find also the
approximate torque when this occurs. Take C = 12 x 10¢ lbs./in.? (Bir-
mingham University, 1911.)

14. The H.P. pinion of a set of reduction gearing runs at 2,900 r.p.m. and
transmits 9,000 H.P. If the pinion is 40” long, with a 10” pitch circle diameter,
estimate the relative torsional deflection of the two ends of the teeth in
thousands of an inch. The internal diameter of the pinion is 3”, and for this
calculation it may be assumed that the pinion is equivalent to a plain hollow
shaft of external diameter 10”7, and that the load is equally distributed along
the length. Take C=5,000 tons/in.? (R.N.E.C., Keyham, 1926.)



CHAPTER IX

BENDING MOMENTS AND SHEARING FORCES DUE TO
STEADY LOADS

94. Bending Moments and Shearing Forces Defined.—Let us
consider first the simplest example of a beam, namely, one which is fixed
rigidly at one end, as shown in Fig. 105.

Such a beam is called a cantilever, a

%NA : B familiar example of which is an ordin-

\\ : ary fishing-rod when held in one hand.
' To concentrate ideas, imagine that
&\\N ¢ ij the beam is a horizontal balk of timber
Fia. 105. with one end embedded in a vertical
wall, and that a weight is hung on the
other end. Now conceive the beam divided into two portions by a vertical
plane P@: each of the portions AP and PB must be in equilibrium
by themselves. If we neglect the weight of the beam itself, any other
forces acting on PB besides the weight W must arise from the action of
the part AP across the plane PQ. And whatever action 4P exerts on
PB, PB will exert an equal and opposite reaction on AP,

Now, since AP and the weight W keep PB in equilibrium, the action
of AP must be equal to the action of W. In the first place W tends
to move the part PB bodily downwards with a force W, so that AP must
exert an equal upward force on PB. Thus, there is a shearing action
between the two portions of the beam, the total shearing force on the
section P@Q being equal to W.

Next, W tends to turn PB bodily round
@ with a moment W x PB, and AP must
exert an equal and opposite moment on
PB. Hence, besides the shearing force, a
couple is transmitted across the section
PQ; this couple is referred to as the
bending moment on the section.

If the beam is inclined to the horizon-
tal at an angle §, as shown in Fig. 106, we
can resolve the force due to W into two
components W cos @ and W sin 8. The
former gives rise to a shearing force and bending moment on the sec-
tion P@, and the latter to a direct thrust.

114

Fia. 106.
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Similar considerations will apply whatever loads are applied to the
cantilever, including the reaction of any support that might be placed
at B.

We shall now make the following conventions and definitions :

(i) In practice beams may have any position relative to the horizontal,
but, for convenience, and since the most familiar examples of beams,
namely bridges, are usually horizontal, we shall always refer to a beam
in a horizontal position, and we shall generally represent the forces
which cause bending as weights.

We shall assume that these forces act in one vertical plane which
we call the plane of bending.

(il) We define the axis of a beam as the line on which lie the centres
of area of all normal cross sections of the beam, and when we say the
beam is horizontal we mean that its axis is horizontal.

(iii) The shearing force at any cross section of a beam is the algebraic
sum of the components, perpendicular to the axis, of all the forces acting
on the beam, on one side of this section.

That it is immaterial which side of the section we consider is obvious :
the sum of the components of all the forces on one side of any section
must be equal and opposite to the sum of all the components on the other
side, since the beam as a whole is in equilibrium.

(iv) Shearing force will be considered positive when, with a horizontal
beam, the right-hand portion tends to move upwards relative to the
left-hand portion.

(v) The bending moment at any cross section of a beam is the
algebraic sum of the moments, about a line in the section, through the-
axis of the beam and perpendicular to the plane of bending, of all the
forces acting on the beam, on one side of this section. Again it is
immaterial which side of the section we consider. :

(vi) Bending moments will be considered positive for horizontal beams
when they tend to make the beam concave upwards; such bending
moments are sometimes called “ sagging ”” Pending moments, the opposite
kind being called “ hogging ” bending moments.

Figures which show graphically the bending moment and shearing
force for all cross sections along a beam are called bending moment
diagrams and shearing force diagrams. The two quantities are plotted
above the line when positive, below when negative. Before we can pro-
ceed to calculate the stresses and deformation of beams we must be able
to find the bending moment and shearing force at any section,and we
shall now show how this can be done.

95. Concentrated and Distributed Loads.—An example of what
we mean by a concentrated load is afforded by a weight suspended from
a bolt passing through the beam, as in Fig. 106. In making calculations
such a load is assumed to be localized at a point, although, in reality, it
is distributed over a length of beam equal to the diameter of the bolt,
and so-called concentrated loads must in practice be distributed over a
small length of beam. Examples of distributed loads are walls built on
the top of girders, aqueducts carrying water, and loads due to fluid pressure,
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such as wind pressure on telegraph poles, or on the wings of aeroplanes.

96. Relation between Load, Shearing Force and Bending
Moment.—That these three quantities are not independent is easily
seen by considering the equilibrium of a small length of a loaded beam.

4 Po B
3 L 1
N——I—'.B”Q— ]

5ac?

| 4Pl

M YRS F
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Let AB (Fig. 107) represent a portion of a loaded beam, and let PQ
be an element of this beam; let AP = x and PQ = éz, the positive
direction of x being towards the right.

Let w = the average load per unit length on PQ, so that the total
load on PQ is w.dz.

Let M and F denote the bending moment and shearing force at P,
and let M 4 dM, F + 6F denote the values of the same quantities at Q.

Now consider the portion P@ ; for this element the directions of the
arrows shown in Fig. 107 agree with the sign convention stated above :
if the shearing force is positive at @, the right-hand part @B is tending
to move upwards, i.e. to pull PQ upwards, so that the force ¥ J- §F
acts upwards on P@; likewise M and M 4- 6M are drawn in such
directions that they tend to make PQ concave upwards.

Consider the equilibrium of P@ : resolving vertically we must have

F + 6F = F + wox.

. OF
. e ('S—x' -
or, in the limit, when PQ is infinitesimal,
dF
= 1
| | ax (1)
Therefore, by integration,
B B
J dF = s w.dx
4 4
or
B
FB—FA-———jw.dx O A
4

that is, the increase of shearing force from 4 to B is given by the area
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of the curve representing the load distribution over 4B, or the difference
between Fp and F, equals the total load on 4B.
Again, taking moments about P, we must have

(F 4+ 6F)ox 4+ (M +6M) — M — w.&x.(;—x =0,

or, to the first order of small quantities,
Féx +~6M = 0.
Therefore, in the limit, we have

dM
—=—-F . . . . . ..
ax @)

Integrating this we have

B B
j M = — jF.dx
4

A
or
B
MB—MA=—jF.dx
A
that is
B
MA—MB=jF.dx C L@
A

Hence the decrease of positive bending moment from A to B is given by
the area of the curve showing the change of the shearing force along the
beam.

The two results (2) and (4) are extremely useful for finding the bending
moments and shearing forces on beams with irregularly distributed loads ;
examples of their use will be found below.

Substituting for F from (2) in (4) we have

B B
M,—My= j j wdxdr . . . . . (5)
4J4

An important point which is shown by equation (3) is that the bending
moment has a stationary value when the shearing force is zero. Differ-
entiating (3) we have

_=-—-—='—"u7-. . . . . . (6)

which shows that M is mathematically a maximum, since d*M /dx? is
negative. The significance of the word ‘‘ mathematically ” will be
understood after reading § 107.
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CANTILEVERS
97. Cantilever with Concentrated Load (Fig. 108).—Let W be the
Z
A P l
L4
Fic. 108.

load, acting at a distance ! from the support, and neglect the weight of
the beam itself.

Let M and F denote the bending moment and shearing force on a
section P distant z from the support.

Then, resolving vertically for BP we see that F is constant for all
values of z, between 0 and [, and equal to W. Similarly, taking moments
about P for PB, M is equal to W(l —ux),
which increases uniformly from zero when
z=10to Wl when z =0. With regard to
sign: W tends to make the part PB move
downwards relative to AP, and to make
the beam concave downwards, so that both
M and F must be considered negative
according to the conventions laid down
above, and are accordingly drawn down-
wards. The results are shown graphically

F16. 109. in Fig. 109, which shows the bending moment
and shearing force diagrams for the beam,
drawn separately on AB as zero line. Expressed algebraically we have :
Fe= W
M= —W(I—=x).
The greatest value of the bending moment is given by
Mpax = — wi
98. Cantilever with Uniformly Distributed Load (Fig. 110).—

F=a-W

o~
--X_

. EKT
%*

Fia. 110.

Y Fia. 111.
wf| wLZ
14
Fig. 112.

'f

u-vf F,fw

Let w = the load per unit length over the length AB( = I) of the beam,
acting downwards.

o
3
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Let M and F denote the bending moment and shearing force at a
section P distant z from the support. Then :

F = the total force tending to move PB upwards relative to AP
=—wl -z . . . . . B ()]
and
M = the moment about P of the load on PB, and it must be con-
sidered negative since the load will make the beam concave
downwards.
The load on PB is w(l — z), and its centre of gravity will be at the
middle of PB, ie. (I —z) from P. Hence
M= —wl—x)x # —=
i.e.

M=—’2i’(l-x)2 N )

The results (7) and (8) are shown graphically in Figs. 111 and 112,
which are the bending moment and shearing force diagrams for the beam.
The maximum bending moment is wi?/2, and the greatest shearing force
is wl, omitting the signs.

Equation (7) represents a straight line and the shearing force increases
uniformly from B to 4.

Equation (8) represents a parabola with its vertex at B, and its axis
vertically downwards.

Allowance for the Weight of Beams..—We can allow for the
weight of a beam by regarding the beam as weightless and loaded with
a distributed load representing its weight.

99. Cantilever with Non-uniformly Distributed Load (Fig. 113).

7 1 —|
/‘——-r——-g '
M

Fie. 113.

—Let w denote the load per unit length, w being some function of z.
Let M and F denote the bending moment and shearing force at a
distance x from A, ie. at P.
To find the shearing force and bending moment at P we must resolve
upwards for PB and take moments about P for the load on PB.
Consider a small length d¢ distant £ from A4 : the load on d§ will
be w.d§, and its moment about P will be w.d¢.(&£ — z), hence we have

f=1
- jwdg
fmz
E=l Emi £=1

M= — [w.dé(& —a) = — j wEdE + 2 jw.df.

f=z f=z t=z
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Hence, if we plot curves of w and w&, we can find F and M by estimating
the areas of these curves between P and B.

It will be seen that the expression given above for F agrees with (2),
according to which we have

B
Py —Fp= | wde,
Jp
since Fj is zero and Fp is F.
Instead of plotting a curve of w¢ to find M, we can find it by integrating

the curve of F when found, see equation (4) above.

100. Cantilever with any Manner of Loads.—Whatever may be
the loads on a cantilever they can be resolved into the groups treated
above, and each can be treated separately. 'The complete bending
moment and shearing force diagrams can then be obtained by adding
together those for the separate loads.

Example 1.—The hand lever of a brake is 30” long and the greatest
pull which may be expected on the end is 80 Ibs. What is the bending
moment 20” from the point of application of the pull, and the maximum
bending moment ?

(1) B.M. = 80 x 20 = 1,600 Ib. ins.
(ii) B.M. = 80 x 30 = 2,400 lb. ins.

Example 2.—A cantilever 5 ft. long carries a uniformly distributed
load of 10 lbs. per inch over the outer 4
feet, and a concentrated load of 250 lbs. at
its middle point; it is required to draw
the shearing force and bending moment
diagrams. Referring to Fig. 114, BC is
that part of the beam which carries the
distributed load, and D) is the point of
attachment of the 250 lh. load.

The shearing force due to the dis-
tributed load increases uniformly from zero
at C to 10 X 48 = 480 lbs. at B, and
keeps that wvalue from B to A; this is
shown by the lines marked (1) in the S.F.
diagram. The shearing force due to the
concentrated load is 250 lbs. from D to A,
as shown by the line (2) in the S.F. dia-
gram. Adding the two together we get the
total shearing force shown by the lines (3).

The bending moment due to the dis-
tributed load increases parabolically from
zero at C to
10 1b./ins. X 48%in.®

2
(See § 98.)

The total load on BC is 480 lbs., with its centre of gravity 36” from 4 ;
therefore the B.M. at 4 due to this is
480 lbs. x 36 ins. = 17,280 lbs. ins.
From B to 4 the bending moment increases uniformly, hence we have

the graph (1) in the B.M. diagram.
The bending moment due to the concentrated load increases uniformly

%

= 11,520 1b. ins. at B.

Fia. 114.
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from zero at D to 250 x 30 = 7,500 lb. ins. at 4, as shown by the line (2)
in the B.M. diagram. Combining the two we have the total B.M. shown
by the graph (3).

Example 3.—A uniform rod of length ! rotates as a conical pendulum
round a vertical axis through one end, and is
inclined at an angle 6 to the vertical. If the
weight of the rod is w per unit length, and the
angular velocity w, find the bending moment at
the top end if the rod can be assumed to act as a
rigid cantilever.

Consider an element dx of the rod, distant z
from the top. The weight of the element is w.dx,
and the centrifugal force acting on it is

d:
w—gfwﬂ. z sin 6.

The bending moment at the top, due to these forces, is

ww? sin 6. xdx

g

z cos § — wdx. xsin 0

2
= (% sin 6 cos 6. 2 — wsin 6. x)dx

tending to make the rod concave outwards. The total bending moment is

Lt
w j (—sin 26, x* —sin 0. x)dx
[

29
273 Z2
= w(% sin 20 — 5 sin 0)
12 lw?
- 3‘%—(—;"5 sin 26 — sin e).

Example 4.—The pressure distribution along the blade of an aeroplane
propeller is given by the curve w in Fig. 1186, in lbs./ins. The radius of the
propeller from the axis to the tip of the blade is 4’ 27, and the boss is 10"
in diameter. It is required to draw curves of shearing force and bending
moment from the tip to the boss, neglecting the twist of the blade.

In the original diagram each square had 1” sides, and the figures below
refer to the original drawing.

To draw the shearing force curve we must (§ 99) integrate the load curve,
i.e. plot its area beginning at the blade-tip, so obtaining the curve F. The
scales of the load are

17 = 5” of blade length
1”7 = 5 lbs. /inch load.
. 1 in.? area of load curve = 25 lbs.

The shearing force curve F is plotted to a scale of 17 = 5 in.? of load
curve = 125 lbs.

The bending moment curve is then found by integrating the curve F,
which gives the curve M.

The scales of the curve F are

17 = 5” of blade length
17 = 125 lbs.
=~ 1in.?2 =5 ins. x 125 lbs. = 625 lb. ins.
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T r
2] \ 16s.

LN |
\\\ N Y

NN il
¢ N 3
X 1l
VARN \

250

5 oo / \\ 125

7 N

0 5 10 B 20 25 80 35 4045 5
Inches

Fia. 116.

ANIEN
—

The curve M is plotted to a scale of 17 = 5 in.? of the shearing force
curve = 625 x 5 lb. ins., i.e.

1”7 = 3,125 1b. ins.
The maximum bending moment is
7-45 x 3,125 = 23,300 lbs. ins.

BeaMs FrREELY SUPPORTED AT EacH Exp

By “ freely supported ” we mean that the supports are of such a
nature that they do not apply any resistance to flexure; for instance,
knife-edges or frictionless pins perpendicular to the plane of bending.
The general remarks concerning bending moments and shearing forces,
which we made in reference to cantilevers (§ 94), apply equally to beams
supported at each end, or to any kind of beam.

101. Freely Supported Beam with Concentrated Load (Fig. 117).
—A beam is freely supported at its ends 4 and B, and carries a load W
at a distance a from 4. The length of the beam ABis I. We require
to draw the graphs of bending moment and shearing force along the
beam.

Let R, and R, be the reactions at 4 and B, then, by the ordinary
principles of statics, we must have

R, + R, =W
IR, =aW.
From these equations we have
R =" R, = oW

1 1
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Let x be the distance of any section from 4, and let M and F denote
the bending moment and shearing force for this section.
For the left-hand portion, AP, of the beam we have (v < a)

—F*= R,= bTW_
M*:x.R,,:@V B )
The minus sign is attached to F since the reaction at 4 tends to make
4 A
1/

pr— b—n

i W

| "ﬁll 2y
Aj B

L :

R, . abW:

i Sending !
Al oments

Fie. 117.

the left-hand portion of the beam move upwards relative to the right,
so that, according to the convention of § 94, the shearing force must be
considered negative.

For the portion of the beam to the right of W(a <« < 1), we
have

F:szaTW.
M=R,;(l-—x)=‘%V(l-—x) e (i)

In both cases M is positive, since the action of R, and E, is such as
to make the beam concave upwards. When z = a, i.e. where the load
is supported, either (i) or (ii) give
abW _ abW
—_——— . . . . . . (9

l a+b )
which is greatest, for a given load, when a = b, i.e. when the load is
at the centre of the beam.

The shearing force and bending moment diagrams are shown in
Fig. 117 ; it must be noted that the bending moment is zero at each
support, as must always be the case at a freely supported end.

M=

* Alternatively, for the right-hand portion, PB, we have
F=R,,—W=a_l.W—-W=—lLIIZ

M=Rb(l—w)——W(a——x)=flflv_V
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102. Freely Supported Beam with Uniformly Distributed Load
(Fig. 118).—Let I be the length of the beam, and let the load he w per
unit length ; for the rest the notation is as before.

R, B,
7
RIS STTIRININIL
."x‘jw :%B
L i
' y el

Fig. 118.

Evidently for equilibrium we must have
. wl
R, =E; = 5

The total load on AP = wz.
The shearing force at P = total upward force on PB, or total down-
ward force on 4P. Hence

F = wx — R

=w(x—%_). R 1)

At A, x =0 and F:-—%l; at B, x =1 and F:%l. Now, the

centre of gravity of the load on AP is at a distance g from P, and

the bending moment at. P = the moment about P of all the forces
on either side of P, reckoned positive if they tend to make the beam
concave upwards; hence

M = xR, — w2

)
_wle wa?
T2
M=%(lx—x2). .. . . ..y

This is 2 maximum when x = -é-, i.e. at the centre of the beam. Thus

wi?
M ==, . . . . . .2
max 3 (12)
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Equation (10) represents a straight line ; equation (11) represents a
parabola with its vertex upwards, and its axis vertical and passing
through the centre of the beam. The two graphs are shown in
Fig. 118,

103. Freeiy Supported Beam with Non-uniformly Distri-
buted Load (Fig. 119).—Let the load distribution be given by the
curve ACB, and let the rest of the notation be as before.

y.7 B
2w £ b
: 1
A s
el E, >
G |
fi, 1 ’
AT B
_____ | e e
X N
Fia. 119.

To find the reactions at the supports we proceed as follows : The load
on an element DE( = dz) of the beam is w.dz, and the moment of this
about 4 = w.dx.xz. Therefore, resolving vertically and taking moments
about 4, we must have .

l
R, + R, = j w.dx == the area of the Joad curve.

o

!
IR, = j wr.dx.
4

The value of the second integral can be found by plotting a curve of
wx against ¥ and measuring its area, or by dividing the curve of w into
vertical strips and adding together the moments of all these strips about 4.

The shearing force at 4 (cf. §102) is — R,.

Draw A’M downwards and equal to R,.

Then (§ 96) the increase of shearing force from A4 to D

= rw.dx = area, ACD.

o

Therefore, taking a horizontal line MN as base, plot the curve MPL,
such that

PK represents the area ACD.

Then the ordinates of the curve MPL, measured from A'B’, give
the shearing force at any point in the beam.
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Since the beam is freely supported, the bending moment at 4 is zero,
and the bending moment, M, at D, is given by (§ 96)

N

0

= —the area A’'HPM.

The area A’HPM is negative, and therefore J is positive and will
increase until the curve MPL crosses the line 4’B’. Hence, to draw
the bending moment diagram, on 4’'B’ as base plot the curve A'GB’
such that

GH represents the actual area A'f{PM.

When z > A’Q this area will begin to decrease, and, if the drawing

is accurate, will be found to be zero when z = A'B’.

104. Another Graphical Method of Drawing Bending-Moment
Diagrams.-—The following graphical method is sometimes useful for
dealing with a series of concentrated loads or an unevenly distributed

load. In Fig, 120 five loads are shown acting at C';, (', . . . First, draw
R, R
IR R A R PR
L
B B A S ST
; P o N &
. L
: T N G s N
A : V&
. P b
: I ; '
-_-----ﬂi----g-_______J_____'r. 4-

Fi1a. 120.

a force diagram abedef, beginning at the top with the force on the right.
Then, taking a pole O on the right of this line, draw the funicular polygon
P,P\P,P;P PP,P,, and sodetermine the reactions B, and R, in the usual
way : frand ra. Then, with P,P, as base the bending moment at any
section is given by the height of the funicular polygon. The proof of
this statement is as follows :
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Draw OH horizontal. The triangle P, P,S, is similar to the triangle
Oar since the sides of the two triangles are parallel.

. pg =P,,S1><R,,=B(71><R,,___ll__!i
Co 0 OH OH
where M, is the bending moment at C,.
Again, the triangle P,P,Q, where P,Q is drawn parallel to P,P,, is
similar to the triangle Obr.

. QP c,C
. PzQ = (Rb - Wl)";al = (Rb - Wl) OIHB
Then P,8,= P,Q + P,S,
— (Rb — Wl)Oloz + Rb'(BCl)
OH
= Bo{BCy) — W,.(CC)
OH
" OH

where M, is the bending moment at ,. Thus

M,=0H x P8,

M, = OH x P,8,
and so on for the bending moments at C;, C,, (5. Also, we know that
between these points the B.M. diagram is straight, so that the funicular
polygon gives the bending moment at any section.

ScaLes.—If the beam is drawn to a scale of 1" to s”, and the force
diagram abe. .f to a scale 17 = w lbs., the scale of the funicular polygon
or bending moments will be 1=w.0H lbs.xs ins.=ws.OH. lbs. ins.,
where OH is measured in inches,

Hence, if we wish the resulting B.M. diagram to be to a scale 1” = m 1bs.
(or tons)-ins., we must make

OH =™ inches.
ws

If desired the B.M. diagram may be redrawn on a horizontal base.*
The shearing force diagram is drawn directly by projecting across
horizontally from the line of forces, as shown in Fig. 120. Thus
MN =ra —ab —bc=R, — W, — W,
= the shearing force at L.
To apply the method to distributed loads, the curve of loading must

* In the case of a beam built-in at 4 and free at B (i.e. a cantilever), O should be taken
on the same horizontal level as . The S.F. and B.M. diagrams will terminate on the
vertical through Cy, and the horizontal line through P;, will be the base of the B.M.
diagram.
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be divided into a number of vertical strips, and the distributed load is
replaced by a series of concentrated loads given by the areas of the strips.
When the funicular polygon for these loads has been drawn as above,
a fair curve should be drawn touching this inside : this curve will be the
B.M. diagram.

105. Freely Supported Beam with Couples applied to Both
Ends (Fig. 121).— Let couples M, and M, be applied to the ends 4 and B
of a beam AB, the ends of which are otherwise freely pivoted.

Ry,
Ro By M T
e 7 4 B
=M, P ;
o — |
K~ | —7— —
EE— 4 ; H‘l K\ F=Rp !G
F‘Rb\\\\\ ————— 'L
H] ————aIT G 4
Az Tt B A/ (o B,
Fia. I: 7
1¢. 121. Fic. 122,

The conditions imagined are those of a beam pivoted on frictionless pins
at the ends, and couples applied by some external agency, such as cranks.
For equilibrium we must have, taking moments about 4,

We must also have B, R, =0, so that R, =—R,,.
The shearing force at all sections is the same and equal to R,, repre-
sented by the line HG in Fig. 121.
The bending moment at any section P is

or

M =(-2) R, + M,

l

=Tt - M)+ oy

!
l

Mt

The bending moment diagram is the figure A’KLB’.

(13)

(14)

106. Freely Supported Beam with Couple applied Between
the Supports (Fig. 122).—Let a couple M be applied at the point (* to
the beam AB, the ends of which are freely pivoted.

From the conditions of equilibrium it is evident that

R,=-R,= M|l
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For a point distant 2 from A4, the bending moment is

(- 2B =T M it 0 < <

(-2)R, - M= — ’lfM H0<ez<a

and (18

Thus the shearing force diagram is A’HGB’, whilst the bending moment
is given by the discontinuous graph A’LKB’. The bending moment just
to the right of C is M /I, and just to the left of Citis — aM /I.

The bending-moment and shearing diagrams for any straight beam,
loaded in any manner and having only two supports, can be obtained by
regarding the load system as a combination of two or more of the cases
already treated.* We shall now consider two examples.

107. Beam Freely Supported at each End, carrying a Uniformly
Distributed Load, acted on by Couples at both Ends.—In Fig. 123,
AB is a beam resting on two supports 4 and B, carrying a uniformly
distributed load w per unit length, and the ends 4 and B are acted
on by couples M, and M;,. The rest of the notation is shown in the
figure.

The reactions R, and R, can be found directly by taking moments
about 4 and B in turn, or by combining the results of §§ 102 and 106.

wl M, —M
R, —_- __"a—""b 16
=2 " (16)

Ry= Ty Ma =My

These give the shearing forces at the ends, and so the shearing force
diagram is the line N@Q which has been drawn on a base A’B’.

To draw the bending moment diagram we regard 4B as the combina-
tion of a freely supported beam carrying a distributed load, and a beam
with terminal couples M, and M,. The former gives rise (§102) to a
parabolic bending moment curve A”RB” of height w!?/8.

The latter (§ 106) gives rise to the straight line bending moment HK,
where A"H = M, and B"K = M,. Three cases are shown in the figure
according to the signs of M, and M,.

The complete B.M. diagram is obtained by adding (algebraically)
the ordinates of the two curves 4"RB” and HK. This is most readily
done by replotting A”"RB” on HK as base, so that R'T' = RT. Then the

(17)

* This sentence covers the case of beams which are constrained at the ends,
provided we know the constraining couples. The determination of these requires

the application of principles which are developed below, and forms the subject of
Chapter XXYV.
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ordinates of the curve HR K, measured from A”B", give the bending
moment at any section in AB.
We can obtain an expression for the bending moment at any point P
in AB as follows :
RT =RT = u—;(lx — 2% ... by equation 11, p. 124,

7 = L—l_xMa + ”_;M,, ... by §106.

S M=TF = ! _l M, + Z_”M,, +%(lx —xy) . . (18)
This could also be obtained by the usual method of taking moments
Ra R,

T 3

¥
1

i
]
.
'
t
)

PR,
Shearing \Forces
a, i '

G Bending |

C i :
r_AJ.L},UJ.LuJ.LfL,{B

DS SR,

[

E 'L’ Moments :
) = SN !
” T ) L SO :
Ag,,&/fi{,,*; : s "‘\\\K
ot/r— ) R o o
A i
j Fic. 124.
o
Ma_ A
Mb + H

Fia. 123.

about P for PB. From this we can deduce the position and value of
the ““ maximum ” bending moment.
If M is a maximum we must have

aM M, M, w
e Ma My W o — 0
dz I B U
which gives.
x=bl M =My g
2 wl

Substituting this value of x in (18) gives

wliz M, +M w/M, —M,\?
M. VB MM, _< a.____b> S (20

We can now point out the significance of the word ““ mathematically ™
at the end of § 96, and why we have put maximum in inverted commas
& few lines above. Equation (19) gives the value of x for which the curve
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of M 1eaches its highest point, and (20) gives the corresponding value
of M, which, mathematically speaking, is its maximum value. But it
does not follow that M, given by (20) is numerically greater than M,
or M, and it will probably be the numerically greatest of the three which
is required in considering the strength. ’

Points of Inflexion.—When M, and M, are both negative there will
usually be two points in the beam A B, where the bending moment is zero,
and, as we shall see later, where the curvature of the deformed beam
changes sign ; these points, I and J, are called the points of inflexion
or points of contraflexure. Their position is found from the condition
M =20, ie.

LTy, 1M, 4 B — ) =0,
I R
or -
2t x{l — 2(;%_:%)_}_ 2M,

=0. . . . (21
wl (21)

w
The roots of this are

l—~]‘——li‘—_l—M”:t \/?+<M“;M">+(M“—M°)2 . (22)

2 w wl

The length IJ is equal to the difference between these roots, so that

o B /M, + M, M, — M,\?
A_IJ_Z\/4 +< y >+( = > . (@3

The distances of I and J each side of the centre of the beam 4B can
readily be shown to be

l M a = 'M b ¢
5 + —a (24)

When M, and M, are of opposite signs one of the roots of (21) will
be greater than I, so that there is only one point of inflexion, as shown
at the bottom of Fig. 123.

We have entered into this problem in some detail as the results are
of importance in connection with beams resting on several supports,
and beams fixed in direction at the ends.

108. Freely Supported Beam with Uniformly Distributed Load
over Part of the Length.—The beam AB (Fig. 124) carries a uniformly
distributed load w per unit length over the portion CD ; it is required
to draw the shearing force and bending moment diagrams.

This problem can be treated in a similar way to the last, the portion
CD being regarded as a beam with a distributed load and terminal couples
equal to the bending moments at C and D.

Taking moments about 4 and B we find

bw b bw b
Ry = —l-(c +§> and B, = T(a +§)
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Then the bending moments at ¢ and D are

My = «R, — f‘_;’i”<c + g))
e N !

bew b
My - ol —2F <a +§>,)
The bending moment diagrams for the portions AC and BD are given
by the lines 4"E and FB”. The B.M. diagram for CD by itself would
be a parahola of height wb?/8, as shown dotted ; that due to the couples
M¢ and M, is EF ; the complete diagram is obtained by plotting the
parabola C"HD” again on EF as base obtaining the curve EKF.
Measuring « from (', the bending moment at P is easily shown, in
the manner of §107, to be
b—x
b
From this we can show that the B.M. diagram might be ohtained by
drawing a parabola through E and F to touch A" and B'F :
We have from (ii)

M =

Mo+ 50, 4 50z — ot . LG

dM M, — M.  w
w5 Tae T
__ble — aw | w . .
i §(‘b 2x), from (i)
At C, x =0, and we have
dM  .blc—a)  b) bw b
_— = —_— - = e— - == R .
i TR S Sy °+2> “

But R, is the slope of the line A”E, so that the curve (eq. ii) touches
A"E at E *; similarly, we can show it touches B"F at F.*
The shearing force diagram presents no difficulties, and is shown in
the figure on the line A’ B’ as base,
108a. Useful General Method for Drawing Bending Moment
Diagrams. The following set of rules has been devised to facilitate the
drawing of bending moment dia-
grams when the load system is 4 C
somewhat complicated.
(1) If any loads be applied to
the beam in the way shown in

Fig. 125, they should be replaced _g_-lL-.___ _z_

w

as follows: instead of W acting
down CD, place a load W acting "__ @
down AB, together with a couple Fig. 125

of moment aW, having its axis
at B, where AB cuts the neutral axist of the beam.
* This can also be proved thus: since there is no concentrated load at € or D

the shearing force, and therefore (fii_n is continuous as we pass along the beam. Thus
x

the slope of the curve of bending moments is continuous at C and D.

+ The neutral axis is here understood to mean the line through the centroids of all
croas-sections. It is fully explained in Chapter XI.
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(2) By the ordinary rules of statics, find the values of the reactions on
the supports, ignoring all couples applied to the beam, both those specified
explicitly, and those introduced by (1) above.

(3) Draw the shearing force diagram: commencing at the right-hand
end of the beam, draw a line which descends as downward forces are met
and ascends when upward forces are met: the ascent or descent will be
abrupt for localized forces, gradual for distributed loads (Fig. 126).

w per
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(4) Correct the shearing force diagram for the effect of the couples ig-
nored in (3), by raising the portion between the two supports an amount equal
to the total clockwise couple divided by the distance between the supports.

(5) Draw the bending-moment diagram thus: commencing at the right-
hand end of the beam plot a graph representing the total area of the shear-
ing force diagram up to any point. Areas below the zero line are to be
taken negative, those above the zero line positive. At any point in the
beam where there is a clockwise couple applied, a sudden drop, equal to
the moment of this couple, must be made in the bending-moment diagram;
after this drop continue as before. For anticlockwise couples make a
corresponding abrupt rise in the bending-moment diagram.

Example 1.—A traction engine (Fig. 127) has a wheel base of 9 ft., and
the front and back axle loads are

3 and 5 tons respectively; it is E[a 2y
crossing a bridge with a span of b 1O —ebe—— 9" 7
20 ft. and the front wheels havel O i
just reached the centre of the span. A T > * B
Draw diagrams of bending moment ' 3Tons, 5700s; i
and shearing force on the bridge. i | 625 Torms
(Special Exam., Cambridge, 1919.) ! Shearin gl T
" Force ° | 1257ons| |
A.§_| i rB
iT175Tons 1175 Tons /2, |
; ! ¥
. - o
o \i-6:25 Tons F.
" Bending Moments 1\!
A N 1 B”

Fie. 127,

First we find R. and Rs:
20 ft. x Re =3 x 10 + 5 x 19 = 125 tons. ft.
.. By = 6-25 tons.
Ry = 8 — 6:25 = 175 tons.
The shearing force between D and B:is constant and = 6-25 tons.
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To the left of D the shearing force = 6-25 — 5 = 1-25 tons, and it has
this value all along DC.
From C to A the shearing force = 1:25—-3 = — 1-75 tons = - R,.
The bending moment at C =10 ft. x R, = 17-5 tons. {t.
, D 1 ft. X Rs —625t0n§ ft.
Since the forces are all locahzed at points the B.M. diagram will counsist
of straight lines as shown in Fig. 1235.
The same result could be obtained by drawing the bending moment
diagrams for the two loads separately and adding them together.
Example 2.—AB is a vertical post of a crane (see Fig. 128). The sockets
at 4 and B offer no constraint against flexure.
B A The horizontal arm CD is hinged to AB at €
and supported by the strut FE which is frecly
hinged at its two extremities to AB and CD
Construct the bending moment diagrams for
AB and CD. (Intercoll. Exam., Cambridge,
1909.)

o

I

It is clear from considering the equilibrium
of the whole crane that the horizontal re-
Fia. 128, actions at 4 and B must be equal and oppo-
site, and that the couple due to them must
equai the moment of the 2-tons weight. Let R be the magnitude of the
horizontal reactions at 4 and B, then
14 ft. x B = 14ft. x 2 tons.
. R =2 tons.
Let P = the pullin CE, and T' = the thrustin FE. Then taking moments
about C for the rod CD we have
8 ft. x T'sin@ = 14 X 2 tons ft.

[
<
[
ot

7 7
.T =3 cosecOtons=—2— XE=% tons.

Resolving horizontally for AB we have

7 7 8 14
P =Tcosb =—2-cot0 =5 X§ =73 tons.
7
The vertical reaction at £ = Tsin( = 5 tons.

B.M.Diagram for €D We can now draw the bending moment dia-
Cc yA D grams for AB and CD, considering only the forces
or at right angles to each beam ; let us take CD
-~ ’2_7"7_*_”5"?' first. CD is a beam freely supported at C and
H T E and loaded at D. The BM.at £ = 6 ft. = 2
Fie. 129, tons = 12 tons-ft., to which value it rises uni-

formly from zero at D; from E to C the B.M.
decreases unitormly (§ 97) to zero. The diagram is shown in Fig. 129.
AB is supported a: 4 and B and loaded with equal and opposite loads
at C and F.

Fic 130.
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The bending moment at C = 2 tons x 4 ft. = 8 tons. ft.
39 ” I3 ”» F = —2tons x 4 ft. = — 8 tons ft.
At any point x between C and F, the B.M, is

14
M =2 tons (z + 4) ft. -3 tons z ft. =8 — 1 —g-x tons. ft.
The B.M. diagram is therefore as shown in Fig. 130, positive bending
moments being those which make the beam concave to the left, and plotted
to the left in the figure.

Example 4.—The girder shown in Fig. 131 is supported by a wall at
A, and by a stanchion at B, the
points of support being 12 ft, apart. 7.24
Between A and B there is a uniform ’ ors 8'—s
floor load of 30 tons carried directly 230 rgﬁs-——h.—--e—lg Tons —

by the girder; between B and D T A7 A
72"

there is a uniform floor load of 18
tons, carried by floor beams which A
rest on the girder at B and D.
There is also a concentrated load of Frc. 131

24 tons at a point C, 9 ft. from 4.

Draw the diagrams of shearing force and bending moment, marking the
values of the principal ordinates. Also find the position of the point at
which the flexure of the beam is reversed. (Mech. Se. Trip., 1914.)

30 tons
12 ft.

The load on BD gives concentrated loads of 9 tons each at B and D.
Thus the load system for the beam is as shown at the top of Fig. 132,
The B.M. at B = — 9 tons x 8 ft. = — 72 tons. ft., and the diagram
for the part BD is the straight line D'M.
The B.M. diagram for AB will be the sum of those due to—
(i) A couple = — 72 tons. ft. at B. This gives the straight line (§ 105)
MA’. At a section distant x from A, the B.M.

The load distributed on AB = = 2-5 tons/foot.

z
= — E X 72 = — 6a.
(ii) A concentrated load of 24 tons at C. This gives the two straight
24 x 9 x 3
lines B’L and LA’ (§ 101) where LC’ = ————X—12—X— = 54 tons. ft.

At a section distant x from 4, the B.M. =% X 54 = 6x if

0< x> 9 ft.
Thus over AC the B.M.’s due to the overhang and the concentrated
load cancel each other.
If 9ft. < z < 12 ft., the B.M. due to the concentrated load

12 —
== T« 54 = 18(12 — ).
(i) A distributed load of 2-5 tons/ft. This gives the parabola A’PB’ of
. . 2-5 x 144
maximum height g = 45 tons. ft.

For any section between 4 and B the corresponding B.M: is (§ 102)
1256 (120 — x2).
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The resultant B.M. diagram for AC, then, will be part of this parabola,
and for any section between 4 and C, where

0< x< 9 ft.,, M = 125(12x — x2) tons. ft.
The maximum is when ¢ = 6 ft., and then M = 45 tons. ft.
At C, x =9 ft.,, M = 125 (108 — 81) = 33-75 tons. ft.
For CB, 9 ft. < x < 12 ft.,
M = — 6x + 18(12 — z) + 1:25(12z — z3)
216 — 9 — 1:25x2 tons. ft.

(]

which is zero when
1-25z2 4 92 — 216 = 0
the positive root of which is
x = 1005 ft.
This gives the point of inflexion .J.
The complete B.M. diagram is shown by the thick curve.

247Tons
Jons *9 Tons

3
A 2-5 Jons Ft.—

Q
]

=72 Jons Ft.

315 Tons 59 7ons
Shearing
A Forces 75705
[/ ve—
-ISL{ =37ons

Fia. 132.
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We will now consider the shearing force diagram.

Taking moments about 4 gives Ry = 57 {ons, and since the total load
is 72 tons, R, = 15 tons.

The shearing force from D to B is constant and = — 9 tons.

To the left of B, the shearing force = — 9 — 9 4 57 = 39 tons.

The load on BC = 7-5 tons, therefore the shear to the right of C =
39 — 7-5 = 31-5 tons;

To the left of C the shear = 315 — 24 = 7-5 tons.

The load on CA = 225 tons, therefore the shear to the right of 4 =
75 — 225 = — 15 tons.

The shear is shown in the diagram on A” D” as base.

Example 4.—TFig. 133 shows diagrammatically the arrangement of the
top front spar of a certain aeroplane. The spar is supported by pin-joints
at A and B. The part AB carries a distributed load of 100 lbs. per foot,
and the overhang BD carries a distributed load which decreases in intensity
uniformly, from 100 lbs./ft. at B to 70 lbs./ft. at D. The load acts upwards
and the reaction at B is taken by a wire BC. The pin B to which the wire
is fixed has its axis 1”7 below the axis of the spar. The pin at A, by which
the spar is attached to the rest of the structure, has its axis }” below the
axis of the spar. It is required to draw the B.M. diagram for the spar.

The load distribution is shown graphically by the line LMN with the
spar axis as base.
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Let w, F, and M denote the load intensity, the shear, and the bending
moment at a section in BD distant z ft. from D, the units being pounds and
feet. Then

w =70 + :-3%2-: lbs. /ft
- 1
'.F=de@=70x+-—1&—lb (i)
]
* 5x®
and M = j Fdx = 35x% + e Ibs. ft. . . . (ii)
o

When z = 4/, that is at B,
F = 340 1bs., which gives the total load on BD.
M = 640 lbs. ft., which is the moment of this load about B.
640 1bs. ft.
340 lbs.
Let R = the vertical reaction at B. Then taking moments about 4 :
10 ft. x Rs =5 x 1,000 + 11-88 x 340 lbs. ft.

= 9,040 lbs. ft.
s Ry = 904 lbs.

Let T = the tension in BC. Then

Hence the centre of force of this load is == 1-88 ft. from B.

BC
T = 0a % 904 1lbs.
The horizontal component of this is
AB AB
BC X T =904 lbs. X T4 = 1,808 Ibs.

This produces a bending moment at B, acting on 4B, equal to 1,808
Ibs. % ¢¢ ft. = 151 lbs. ft., in the opposite direction to the moment due to
the load on the overhang.

Thus we shall have a discontinuity at B in the B.M. diagram: just to
the right of B the bending moment is 640 lbs. ft. on account of the
overhang, and in passing to the left of B this is decreased by 151 lbs. ft.,
making there a total of 489 lbs. ft. This tends to make the spar AB con-
cave upwards.

The horizontal component of the pull in the wire must be balanced
by an equal thrust at A, which will also give rise to a bending moment of
1,808 lbs. x # ft. = 75 lbs. ft., tending to make AB concave downwards.

K
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The distributed load on AB gives a parabolic bending moment curve
of height
100 x 10°
8
making the beam 4B concave downwards.
Thus the B.M. diagram is as shown in Fig. 134. The sloping dotted

= 1,250 lbs. ft.,

=640 /bs. ft.
M=-489/6s. 2.
— // -
- —

—— D
M"75 - /
/bs.f \ /

/
/
/0502 | //
S.11.
/
/
N /
1000 - N d
Ibs. f1, \\\ ////
Fia. 134,

line is the B.M. due to the couples 489 and — 75 lbs. ft. applied to the ends
of AB (see § 106); the dotted curve is the parabola for the distributed load
on AB by itself. The thick black curve is the resulting bending moment
diagram.

EXAMPLES IX

Draw the bending moment diagram and shearing force diagrams for the
following beams.

1. A cantilever carrying a load of 10 tons at a distance of 15 ft. from
the supported end.

2. A cantilever carrying a load of 10 tons uniformly distributed over
the inner 15 ft. of its length.

3. A cantilever carrying a load of 8 tons, 5 ft. from the supported end,
and a load of 0-5 ton per foot over its whole length, which is 12 ft.

4. A beam 20 ft. long freely supported at each end and carrying a load
of 20 tons at its middle point.

5. The same beam when the load is 5 ft. from one end.

6. A beam 20 ft. long, freely supported at each end, and loaded with
100 1bs. per foot.

7. A beam 16 ft. long is freely supported at each end and loaded with 500 Ibs.
at a point 4 ft. from one support, the weight of the beam being 50 lbs. per foot.

8. A horizontal cantilever 7 ft. long carries a distributed load of 125
lIbs. per ft., which extends over the middle 5 ft. of the beam and acts down-
wards. There are also concentrated loads of 400 lbs. downwards at a point
3 ft. from the support, and 200 lbs. upwards at the outer end. Draw the
diagrams of bending moment and shearing force.
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9. Draw to scale Shearing Force and Bending Moment diagrams for a
horizontal beam of 10 ft. length supported at two points 1 ft. and 9 ft. from
one end, and loaded as follows, distances being all measured from the same
end :—1 ton at 0, 2 tons at 3 ft., 2 tons at 7 ft., and 1 ton at 10 ft. (Special
Exam., Cambridge, 1907.) -

10. Fig. 135 shows two of the girders
AC and BC strengthening a pair of lock-
gates, If the load oneach girder amounts
to 1,500 lbs. per ft. run, find the bending
moment at the middle of each girder.
(Intercoll. Exam., Cambridge, 1912.)

Fie. 135,

11. A cylindrical mast 8” diameter and 60 it. high, is pivoted at its base
and stayed in a vertical position by means of four light ropes (N, S, E, and
W in plan) attached to the pole by a ring 40 ft. above the pivot. Sketch
the bending moment diagram for the pole, for the loads due to a wind pro-
ducing a pressure of 30 lbs. per ft.? of projected area. It may be assumed
that the flexure of the pole is negligible. (R.N.E.C., Keyham, 1918.)

12. A beam 60 ft. long is supported horizontally by vertical reactions
at one end 4, and at a point B, 40 ft. from A. There i8 a uniformly distri-
buted load of 0-5 ton per foot over the whole beam, a concentrated load of
12 tons at the middle point of AB, and another concentrated load of 8 tons
at the end of the overhanging portion. Draw accurately the Bending-
Moment and Shearing-Force diagrams for the beam. (Intercoll. Exam.,
Cambridge, 1914.)

13. Fig. 136 shows a girder ABCDE bearing on a wall for a length BC
and prevented from overturning by a holding-down bolt at 4. The packing
under BC is so arranged that the pressure over the bearing is uniformly
distributed and the 3 ton load may also be taken as a uniformly distributed
load. Neglect the weight of the beam and draw its B.M. and S.F. diagrams.
(Intercoll. Exam., Cambridge, 1912.)

bt g e 18"
]
| P 3 Tons
H | IE
Fia. 136.

14. ABC is a straight horizontal beam resting upon two supports 4
and B 80 ft. apari, the overhanging portion BC being 40 ft. long. The
girder carries a load of 1 ton per foot run distributed over its whole length,
& concentrated load of 10 tons at C, and a concentrated load of 20 tons at
the middle point of AB. TUse graphical methods to construct the B.M.
diagram for the beam to the following scales : 1” to represent 400 tons. ft.,
17 to represent 10 ft. (Intercoll, Exam., Cambridge, 1913.)
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15. Fig. 137 gives the positions and magnitudes of the loads on a girder
due to a locomotive at rest. Treating the girder as supported at the points

e-51sle—g" 1" —ia- 5L 10 Me g 6 s g

7’.4” 2-108e £t 2 e a7
14-10%5-8=4p

0o AWV -
RO DAY (-
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16. ABC is a vertical post projecting 12 ft. above a concrete emplacement.
CD is a horizontal bar fixed by a pin-joint to the top C. The outer end of CD
is connected to the post by a sloping rod DB, pin-jointed at both ends. CD
is 6 ft. long and the angle CBD =30°. A load of 1 ton is suspended from D
Draw S.F. and B.M. diagrams for the post.

17. Draw the bending moment and shearing force diagrams for the beam
shown in Fig. 138, The beam is supported horizontally by the strut DE,
hinged at one end to a wall, and at the other end to the projection CD which

Fra. 138.

is firmly fixed at right angles to AB. The beam is freely hinged to the
wall at B. The weight of the beam and strut can be neglected. (Mech.

Se. Trip., 1910.)

18. A timber dam is made of planking backed /@TKINE\I\iStrit]”
by vertical piles in the manner shown in Fig. 139. E N .
The piles are encastered at the section 4 where they
enter the ground and they are supported by hori-
zontal struts whose centre lines are 30 ft. above A.
The piles are spaced 4 ft. apart between centres and
the depth of water against the dam is 30 ft.

Assuming that the thrust in the strut is two-
sevenths the total water pressure resisted by each
pile, sketch the form of the Bending Moment and
Shearing Force diagram for a pile. Determine the
magnitude of the bending moment at 4 and the
position of the section which is free from bendin, !
moment. (Intercoll. Exam., Cambridge, 1913.) F16.139. U

RNPile

L

19. A cantilever of length ! carries a distributed load which varies uni-
formly from w, per unit length at the inner end to w, at the outer end. Cal-
culate the bending moment at the support.
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20. The pressure distribution along the overhanging portion of the top
wing of a certain aeroplane is given by the following table :—
Distance from support (ft.) 0 1 2 3 4 45 48 b
Load, lbs./inch. . . 98 945 875 79 67 57 42 O
Draw curves of bending moment and shearing force from the end of the
wing to the support.

2]1. A beam rests on supports 13 ft. apart. The load increases at a
uniform rate from zero at one end to a maximum at the other. The total
load is 10 tons. Draw the Shearing-Force and Bending-Moment diagrams,
(R.N.E.C., Keyham, 1921.)

22. A light shaft, running at 300 r.p.m. in two spherical bearings 10 ft.
apart in a ship, is fitted with a fiywheel, overhung 2 ft. from one bearing.
The flywheel weighs 200 lbs. and its radius of gyration is 1 ft. If the vessel
turns at the rate of 1° per second, draw Shearing-Force and Bending-Moment
diagrams for the shaft in & vertical plane. Indicate the directions of rotation
which are assumed. (R.N.E.C., Keyham, 1922.)

.

~ 73
23. The load distribution (full lines) and 2412 poo

upward water thrust (dotted lines) for a ship ! 4 \

are given in Fig. 140, the numbers indicating s asan s A
tons per foot run. Draw the B.M. diagram 45/ \ 55
for the ship to the following scales: 20 ft. to 7 3
1” and 400 tons. ft. to 17. (Mech. Sc. Trip., / \
1911.) e =

Fia. 140.

24. A beam of length [, supported at each end, carries a distributed load
given by w = w,sin __“lf’ where 2 is measured from one of the supports.

Find an expression for the bending moment at any section.

25. To obtain the form of the longitudinal bending moment and shear force
diagrams for a floating dock when in light condition, consider a rectangular
box length 12 ft. under total loading distributed along its lengths as follows:
¥ 1b. per ft. run for 4 ft. each side of mid-length, and &; 1b. per ft. for the two
remaining end lengths (each 2 ft.). Draw the B.M. and S.F. diagrams for the
hypothetical model if it were floating in water. (R.N.E.C., Keyham, 1928.)

26. A beam 50 ft. long resting on supports 10 ft. from each end carries a
uniformly distributed load of 1 ton per foot run. At mid-length it is subjected
to a couple of 200 tons ft., acting about an axis perpendicular to a plane con-
taining the centre lines of beam and supports. Plot curves of shear force and
bending moment. (R.N.E.C., Keyham, 1927.)

27. A cantilever is loaded as follows: 10 ft. from the fixed and a load of 10
tons; for the next 10 ft. a load of 2 tons per foot; at 20 ft. from the fixed end a
positive couple of 400 tons. ft. Draw the shear force and bending moment
diagrams. (R.N.E.C., Keyham, 1926.)



CHAPTER X

BENDING MOMENTS AND SHEARING FORCES DUE TO
TRAVELLING LOADS

109. Introductory.—In the design of bridge girders it is frequently
necessary to know the maximum bending moment and shearing force
which each section will have to bear when a travelling load, such as a
train, passes from one end of the bridge to the other. The diagrams
which we have considered in Chapter IX show the simultaneous values of
the bending moment, or shearing force, for all sections of the beam with
the loads in one fixed position; we shall now see how to draw a diagram
which shows the greatest value of these quantities for all positions of the
loads. These diagrams are called maximum bending moment, or maxi-
rmum shearing force, diagrams.

110, A Single Concentrated Load Crossing a Beam.—Let a
single load W travel along a beam 4B (Fig. 141) which is freely supported

b 1/ >
n—x——u! éW B
Bl —1 }nb
: i 3
4 - | :
2w !

g ’
: i Y
' |
A 5 B’
F

Fie. 141,

at each end. Let y be the distance of the load from 4, and let P be
any section, distant z from 4.
The reaction at A, B, = Wl—:l———q.
Let M = the bending moment at P, then, if x < y <1, from (ii), p. 123
M=W. l_—;_?/ . (i)

142
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From this we see that M increases as y decreases, i.e. as W gets
nearer to P. That is, whether the load is coming on or going off the
beam from the end B, the bending moment is greater the nearer W is
to P. Similarly, if the load is coming on or going off from the end 4,
the bending moment is greater the nearer W is to P. Thus the bending
moment at P will be a maximum when W is at P.

Let M denote the maximum B.M. at P, then, putting y = x in (i)
we have

ﬂ=Wz<1—ﬁl> e 1
!

The greatest value of M is when x = —, i.e. for the central section,

rol

and it then equals Wi/4.

Equation (1) represents a parabola, with its axis vertical and passing
through the middle of the beam. Hence the maximum B.M. diagram
is the parabola shown ; it is the same as the ordinary B.M. diagram for
a distributed load 2W /I per unit length, for this gives a parabola of height

2W 12> Wi
T(? 4’

Let us now consider the shearing force. Referring to Fig. 141, the
shearing force at P is given by

F:Rb—W=W<%—1> Co L (i)

when x <y < 1. Hence, when the load is to the right of P the shearing
force is negative and increases numerically as y increases, i.e. the nearer
W is to B.

When y <z, the shearing force at P is

F=R=2w. . . . . .\(v
>

which is positive and increases with y, i.e. the nearer W is to P.

Hence, if we consider the load coming on at B the shearing force
at any section P is negative and décreases numerically as the load
approaches the section; as the load crosses the section the shearing
force changes sign and decreases as the load recedes towards 4. Thus
the shearing force, like the bending moment, is greatest when the load
is at the section under consideration.

Putting ¥ = « in (iii) and (iv) we have, for any section,

Maximum negative shearing force = — W(l ——7)

.. z
" positive ' ,, = Wl—.

These are represented by the two straight lines B'LF and A'KF' .
the maximum positive shearing force for the section P is K, and the
maximum negative shearing force is L. For purposes of stress calcula-
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tion the sign of shearing force is not important ; it is the greatest numerical

value, positive or negative, that is required.
111, Uniformly Distributed Travelling Load of Sufficient
Length to Cover the Whole Span.—The bending moment on every
section will have its maximum value

— J{P**ic «— B when the whole span is loaded, for

A .-
R ! ™ any addition to the load on the beam
sl z By must increase the bending moment at
Fio. 149 all sections. Thus the maximum B.M.
1G. .

diagram is identical with the ordinary
B.M. diagram in this case, that is, it is a parabola of height wl?/8, in
our usual notation (p. 124).

Now, consider the shearing forces. In Fig. 142 suppose that the load
is advancing from the right and that the front of it has reached ' where
AC =y. Let P be any section of the beam, where AP == xz. Then by
taking moments about 4 and B in turn in the usual way we find

Ry =" =9 g g~ =9

2] 21
Then, provided % y, the shearing force at P is

— 2
Fe—p - =y
21

This is negative and increases numerically as y decreases until y = .
When this happens we have

_d_w(l—x)2 .
s 2l_ﬁ......(l)

When the front of the load crosses P, we have x>y, and
F=_—R, +wlx—y)

L u(l—y)?

o e —y)

w
2l

which decreases numerically as y decreases. Thus the greatest negative

value of F' is when the part of the beam PC is covered by the load, and
the maximum value is given by (i).

After the front of the load has passed P we see from (ii) that F changes
sign when

(B +y2—20 . . . . . (i)

12 + y? = 2,
that is, when y =V/I(2x — I). Thus F does not change sign unless
x >1/2.
Now, consider the case when the rear end of the load has passed B,
as in Fig. 143. We have now
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If <y, the shearing force at P is given by
F =R, —wly —2)

o(§-v+)

which increases as y decreases, until y = 2, and then

2
F=% Coe e )
which is positive.
When >y, we have
wy?
F = = ——
7]

which decreases with y. Thus F has its greatest positive value when
y = z, i.e. when AP is covered by the
load, and it is given by (iii). We see
that the maximum shearing force dia-
gram is as shown in Fig. 143, which
is to be interpreted thus: as the load
advances from B the shearing force at
P is negative and increases numerically
to the value P’L, which it reaches
when the front of theload is at P. As
the load passes over P the shearing Fic. 143

force gradually changes to the positive

value P'K, as the rear of the load passes P, and then decreases. The
curves A'KF and B LF’ give the maximum positive and negative
shearing forces for any section of the beam.

112. Two Concentrated Loads.—An example of this case is afforded
by any ordinary four-wheeled vehicle crossing a bridge. In these cases
the following analysis may be employed, but when there are more than
two concentrated loads the method of the next article is more suitable.

Let W, and W, be the loads, and let & be their constant distance apart.
Let P be any section of the beam at a distance x from 4 (Fig. 144).
Now, from the considerations of the last article, it is evident that as
the loads advance towards P from either end the bending moment at P
increases until one of the loads is over the section. Therefore the B.M.
at P will be greatest when (a) W, is at P, or (b) when W,is at P, or
(c) when P is between W, and W,; these three positions are shown in
Fig. 144.

Let M,, M,, M, denote the B.M. at P in the three cases.

In case (a) we have

R,

_ W + Wyix — a)
l

M= (- 0B = SN We—Wah @)
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Fia. 144.

In case (b) we have
Wyl—2)+W(l—x—a)

R, = :

VM, =aBy = (Wi + Wl —2) — Wi} . . (i)

In case (c¢) we have
Wiz —y) + Wiz +a — y)

B, = 7
"M, = (- %)E, — (@ — )W,
=L+ Wale — o) + Wy (e — )Wy (i)

Now it can be easily verified from these equations that we can write
M, in either of the two forms :

M, =M, —“_l YW, — (1 — )Wy

or M,=M, + %{le — =)Wy
Therefore, if

W, > — )W,
we have M, > M > M;, but if

eW, (I — )W,
then

M, >M > M,
Hence, in either case M, lies between M, and M,, i.e., the B.M. at P
is greatest when either W, or W, is at P.

From (i) and (ii) we find
M,— M, = _‘l‘{ocW1 —(l— )Wy

x W,
l—= > W,
divide the beam at C so that AC/CB = W,/W,, any section in 4C has

its greatest bending moment when W, is at the section, and any section
in OB has its greatest bending moment when W, is at the section.

Hence M, > M, if and conversely. Therefore, if we
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Thus, for any section where x >> AC, the maximum B.M. is given
by (i), and when # < AC by (ii). These equations represent two para-
bolas with their axes vertical.

Taking equation (i) we see that the parabola cuts the axis of x when

W.a . . .
x=land r =— % . Tts maximum height is when
W, + W, &
b e W,
=Yy W,

Substituting this value in (i) gives
_ YW+ W) —aW,}?

M, = , 2
«= W, Wy )
The parabola given by (ii) cuts the axis when x =0 and
Wi
=l
Wi+ W,
Its maximum height occurs when z = é—; WTTIZ Substituting

this in (ii) gives
W, + We) — aW,}2

M, = B .
’ W, T Wy ®

I W, >W,; M, will be > M,, i.e. the maximum B.M. will occur
under W,, and (2) gives the greatest bending moment on the beam.

The two parabolas are shown in Fig. 145
by the curves (i) and (ii), and the maximum
BM. diagram for the beam is the discon-
tinuous curve ADB.

We have assumed in the above analysis
that if either load goes off the bridge it con-
tinues to act, which is of course ridiculous.
Let W, be the greater load, then, according
to the above, the greatest bending moment
will be at P (Fig. 144) when W, is at P and

1l a W,
T rwiaw,
aW,
or = = =1l
W1+Wn

i.e. when W, and the c.g. of the two loads are equidistant from the ends
of the bridge.

If x < a this will make W, come off the bridge, and (2) will no longer
give the?maximum bending moment. With W, off the bridge, the
greatest B.M. which W, can produce is W,l/4. We must therefore
inquire whether

{l(W1+Wa)—aWa}2>&l
AW, + Wy 4
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Let W,/W, =24, and a/l =k. Then the inequality becomes

{(L+4)—k2 4
' 41+ 2) >3
1.e.
_ k2 —2k(1 +4) + (14 2) >0
l.e.

[e—{a+ v+ v} ] [-{a+n -viTa} ] >0
If
E<(A+1) — Vit 41
both factors will be negative and the inequality will be satisfied. Hence

this is the condition that (2) gives the maximum bending moment on
the beam when W, > W,. The condition * is:

« W, \/ Wa: . W,
<l ] — = B ¢
rsw, T () +w. (’
We must now consider the shearing forces. When both loads are
to the right of any given section P, the shearing force at P = — R,,

which increases numerically as the loads are moved to the left until
W, crosses the section. The shearing force then becomes — R, -+ W,
which increases until W, crosses the section, when it changes sign and
becomes W, 4+ W, — R,. The greatest negative shearing force will
therefore be when either W, or W, is at P.

With W, just to the right of P the shearing force is given by

_F:Ra:l—x(Wl—}—Wz)——%Wl )

With W, just to the right of P we have
—F=R,— W,
=) (W, + W) +aW, W
= ] — W,
[ —x I —
_;r( W1 -+ Wz) - 1 “
The value of — F given by (5) will be greater than that given by (6) if
71—
FW W
ie. if a(W, -+ W,) <IW,
a w,
or R QAL
S+ W,

W, . . . (6

: ™

If this is not true the greatest value of — F will be that given by (6).
In both cases the above equations only hold good as long as both loads
are on the beam, i.e. between x =0 and x =1 — a for equation (5),
and between the limits # = a and x = [ for equation (6).

To make the argument more definite let us limit ourselves to the case

* The proof of this is due to J. W. Landon.
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when condition (7) is satisfied, so that — F is given by (5), over the
range x =0 to x =1 —a. When (I — a)<x <l W, is off the girder
and we have

_F=Ra:l___lxw2. L W)
Thus the diagram of maximum negative shearing force is as shown

by the lines EFB in Fig. 146, the line EF being given by (5), and the
line FB by (iv).

Fia. 146.

Similarly, the maximum positive shearing force is given by the lines
AHQ.

The case when a/l™> W,/(W, 4+ W,) can be dealt with in the same
way.

We can now summarize our results as follows (W, > W,) :—

(a) If we divide the beam at C so that AC/CB = W,/W, for any
section in AC the greatest B.M. occurs when W, is at the section and
is given by equation (ii) above ; for any section in OB it occurs when W,
is at the section and is given by equation (i). This is always provided
the condition (4) is fulfilled, which is usually the case.

(b) The maximum positive and negative shearing forces on any
section are given by the lines AHG and BFE of Fig. 146, provided condi-
tion (7) is fulfilled. If this condition is not fulfilled the negative shearing
force is given by (6) instead of (5),

(¢) If condition (4) is not fulfilled the maximum B.M. is W,l/4.

113. Several Concentrated Loads.—In Fig. 147 let W,, W, .. . W

n

L 3% R

Fi1e. 147.

be a series of concentrated loads crossing the beam AB from left to
right. It is evident from the latter part of § 112 that we cannot assume
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that the absolute maximum bending moment will occur when all the
loads are on the beam, and on account of this we are not able to give
general formule as simple as those for two travelling loads.

A little consideration will show that the maximum bending moment
will occur under one of the loads. Let us, therefore, examine the B.M.
at the rth load.

Let M, = the bending moment under W,, when that load is at a

distance x from 4. Then, referring to Fig. 7147, we have

M, =Pz — (W, + W, ...+ W_a_)
This will be a maximum when
aM,
dx

that is, when
dP .
T +P=0. . . . . . . (i

provided the value of z given by this equation does not entail any of
the loads being off the beam.

Now suppose all the loads advance a distance dx to the right. The
reaction P is given by

P =2"](l —x4a)W,
1

a being reckoned negative for loads between W, and @.
Therefore

1L6P — — S.W, . 6z
1
Hence, in the limit,
dP n .
l%—-—-EW, B 4]

Let y = the distance of the c.g. of all the loads from A. Then, taking
moments about B,

P=(—g)IW,. . . . . . (i)
1
But, from (i) and (i) we have
apP L .
lP———lx%—x.?W,. e L {iv)
Comparing (iii) with (iv) we see that we must have
l—y==z
or L y= z — L
PR AR

Hence M, is a maximum when W, and the c.g. of all the loads are equi-
distant from the supports, or from the centre of the beam, provided
this does not entail any of the loads going off the bridge; if it does,
we must examine the matter further.



DUE TO TRAVELLING LOADS 151

This result is of considerable help in examining the maximum bending
moment, but for the rest we must be guided by general considerations,
such as the fact that the greatest bending moment will usually occur
in the middle portion of the beam.

Example.—A series of loads as shown in Fig. 148 passes over a bridge

of 45 ft. span from left to right ; it is required to find the maximum bending
moment which the bridge will have to bear.

" )
<

S S

[ Q

e— 15"
¢
it
} 9~y

Fia. 148.

First find the horizontal position of the ¢.g. of all the loads on the bridge :
it will be seen that four is the greatest number of loads which can be on the
bridge simultaneously, as shown in Fig. 148.

Let z be the distance from D of the c.g. of the loads 4, B, C, D which
are on the bridge. Then

- 12 x386+4+5x%x27T+12x9
r= 34

The maximum bending moment will occur under one of the loads, so
let us take each load in turn and see what is the greatest bending moment
which occurs under each. Maximum bending moment under load 4 :(—

This will occur when A and @ are equidistant from the supports, pro-
vided one of the loads does not go off the bridge. Referring to the diagram
we see that this requires:

y=9—y)+x=2890—y
ooy = 1445 ft.
But this will make D go off the bridge. Hence the above breaks down ;
with all the loads on the bridge the bending moment under A4 increases
continuously as D gets nearer to the right-hand end. When D is only just
on the bridge we have

45P = 199 ft. X 34 tons = 675 tomns. ft.
.. P =15 toms.

Then the bending-moment under 4 = 9P = 135 tons. ft.

Next consider the bending-moment under the load B. It will have its
_greateat value when
y+9=09-y)+z=289—y
Soy =995 ft.
This again makes D go off the bridge.

When D is only just on the bridge we have seen that P = 15 tons, so
that then the bending moment under B is

15 x 18 — 12 x 9 = 162 tons. ft.

Next consider the load C. The makimum bending moment under it
will occur when

= 19-9 ft.

9 —y + 2z =289
095 ft.

y + 27
y
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We then find
P =211 tons, @ = 129 tons.

The bending moment under C is then
(18 —y)@ — 9 x 5 = 175 tons. ft.

Proceeding in the same way we find that the bending moment under
the load D is greatest when y = — 3:55 ft., but its value is less than the
greatest bending moment under C.

We must next consider the bend-
ing moments when D is off the bridge,
as in Fig. 149,

The c.g. of 4, B, and C is found
to be 14-3’ from C.

Fia. 149, Proceeding exactly as above we
find that
the greatest bending moment under 4 = 168 tons. ft.
s ’” L] 12 113 B = 1665 ’9

When we seek the value of ¥ which will make the bending moment under
C a maximum we find y = 2-65’, which brings D back on to the bridge again ;
this might be inferred from the above results.

Finally consider the bending moments before A4 has come on to the
bridge, as in Fig. 150.

The only load which need be con- k- 9" 18"—ste-9 " he— 158"—
sidered is C, and we find in the same A(D Bay el ;
way as before that the greatest bend- P
ing-moment under it is 180 tons. ft. #

Comparing this with the figures un-
derlined above, it will be seen that Fre. 150.

this is greatest of all the bending
moments, and it should be noticed that it occurs when one of the loads,
namely 4, is off the bridge.

INFLUENCE LINES

114, Influence Lines.—A curve which shows the value of the
bending-moment at a given section of a beam, for all positions of a travel-
ling load is called the bending-moment ¢nfluence line for that section ;
similarly a curve which shows the shearing force at the section for all
positions of the load is called the shearing force influence line for the
section. The distinction between influence lines and maximum bending-
moment (or shearing force) diagrams must be carefully noted : for a
given load there will be only one maximum bending-moment diagram
for the bearm, but an infinite number of B.M. influence lines, one for
every section of the beam.

115. Single Concentrated Load.—In Fig. 151 let a load W be at
a distance x from 4, and let us find the bending-moment and shearing
force influence lines for a section P distant @ (*> ) from A4.

The reaction at 4 is . —_Tf W, and that at B is a:_Il/_V Hence, the

bending-moment at P is
M =( —a) g,



DUE TO TRAVELLING LOADS 153

which increases uniformly from zero when W is at A to the value
a(l — a)W/l when W is at P.

Thus the B.M. influence line for the section P, for all positions of W
between A and P, is the straight line AM, where MN =a(l — a)W/L.

l-x W
Ty - T
pe————» I
-0+
A 1 5

{
H
i —1 .
! W a BM.Influence!
!
1
!

T line for !
/z\w
| s
‘Afs‘.‘%bilnﬂufnc%inq:
A L/Sect/on,:B
F
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Similarly, for positions of W between P and B, the B.M. influence line
is MB, and AMB is the B.M. influence line for the section P. Hence
the bending moment at any section is greatest when the load is at that
section.

. LaWo .
Again, the positive shearing force at P is x—l-, which increases uniformly

from zero to al_W_ as W advances from 4 to P; this is shown by the

straight line A8. When z >>a, the shearing force at P is
W x
T-w=w(5- 1),

which is negative and decreases from c%'i — W when W is at P to zero

when W is at B : as the load passes P the shearing force changes abruptly
by an amount W. Thus the shearing force influence line for the section
P i3 given by ASFB, where K8 = aW/l, and SF = W.

116. Uniformly Distributed Load.—In Fig. 152 let CD be a
uniformly distributed load, w per unit length, which is advancing across
the beam AB, and consider any section P of the beam. The B.M.
influence line for unit concentrated load for the section P will be AMB,
where MN = a(l — a)/l, according to §115. Then, if we have a unit
load at a distance « from 4, the bending moment at P will be the corre-
sponding ordinate QR = y of the influence line ; if the load be wdx instead
of unity the bending moment at P will be QR X wdx = wydr. Hence
the bending moment at P due to the load OD in the position shown
will be

£ ~To
j wydr =w | ydx =w X area EKLF.,
A

z, J
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When the length CD is equal to or greater than AB the bending
moment at P will evidently be greatest when the load covers the span,
and is then given by w X area AMB.

In the same way, if ASFB be the shearing force influence line for

- 1 »

-—— O — ;

- H

a0, '
i daid ocdeony D 5

Ax 3 e dx | .

! M !

B8.M. Influence line, " : 4 ' '

for section P E S ! :

. ; .
AF—= Es R F 7

f&:).F. Inﬂuenc}g’e line S: : : !

or section 1 d )

A & Z
" |
; F T :
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section P for unit concentrated load, the shearing force at P due to the
load CD is given by w x area GHVT. It will be greatest when either C
or D is at P, according to the position of P.

EXAMPLES X

1. Two concentrated loads of 10 and 20 tons advance along a girder
20 ft. span, the distance between the loads being 8 ft. Find the position
of the section which has to support the greatest bending moment, and calcu-
late the value of this bending moment. (Intercoll. Exam., Cambridge, 1913.)

2. A traction engine advances across a bridge from left to right. The
loads on the front and rear axles are 6 and 9 tons and the wheelbase is 10
ft. The span of the bridge is 40 ft. Construct the maximum B.M. diagram
for the bridge. (Intercoll. Exam., Cambridge, 1908.)

3. Two concentrated loads of 12 tons and 8 tons, 8 ft. apart, advance
across a horizontal girder of 45 ft. span. Draw to scale the maximum bending-
moment diagram for this arrangement. (Intercoll. Exam., Cambridge, 1911.)

4. Abraced girder of 200 ft. span, divided into ten equal panels, supports
a rolling load of 1 ton per foot run which may extend over the whole length
of the girder. Show that the maximum positive and negative shearing
forces, due to the rolling load, in the (r + 1)th panel from the end, are
1072/9 and 10 (9 — r)2/9. (Mech. Sc. Trip., 1912.)

5. The loads on the front and rear axles of a motor lorry are 7,100 lbs.
and 17,700 lbs. respectively, and the distance between them is 13 ft. The
lorry advances over a girder having a clear span of 75 ft. Calculate the
greatest bending moment set up and show that the equivalent uniformly
distributed dead load is almost exactly 20 tons. (Mech. Se. Trip., 1915.)

6. A load of 10 tons, followed by another load of 5 tons at a distancs
of 10 ft., advances across a girder of 100 ft. span. Obtain an expression
for the maximum bending moment at a section of the girder distant x feet
from an abutment. (Mech. Se. Trip., 1924.)



CHAPTER XI

LONGITUDINAL STRESSES IN BEAMS

117. Physical Discussion.—We have already seen that, in general,
the action between contiguous parts of a beam consists of a bending
moment and a shearing force ; we have also seen how to estimate the
magnitudes of these actions. The next step towards calculating the
strength of beams is the determination of the consequent stresses. This
problem, in its most general form, is one of considerable complexity,
and no general solution has yet been found. Fortunately for engineers,
the one solution which is easily obtained, for certain simple conditions, is,
in most cases, a sufficiently close approximation for all practical purposes
when more complicated conditions prevail.

As a simple instance, think of a cantilever with a concentrated load
at its free end, and imagine the beam to consist of a number of longitudinal
filaments, like a bundle of wires. In general, some of these filaments
will be extended and some contracted, resulting in a direct tensile or
compressive stress; some of the filaments will be unstrained.

Since the filaments suffer longitudinal strain they must also undergo
lateral strain : those which extend longitudinally will contract laterally
and conversely. It follows from this that the shape of the cross-sections
of the beam must change. In Fig. 153 ABCD represents the original
section of the beam, consisting of, say, sixteen little filaments of square

4 =
A

"
e P
\
'
\

i \
| \
! e’
= d 1
ad

Section ABCD
Enlarged
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section; when the beam is bent the upper filaments will have their

cross-section reduced, so that the edge AB will be contracted, whilst

the sections of the lower filaments will be enlarged so that the edge CD
155
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is stretched. At the same time we may expect that the edges 4D and
BC will not change in length very much. Thus the cross-section will
be changed into a shape something like A'B'C'D'; the network of
straight lines outlining the filaments in the unstrained section will now
become a network of curves.

The cross-section also undergoes further deformation when there is
shear, as there is in the case of the cantilever,

Wi,

—

q—/

c

N

Fic. 154.

Let us suppose now that each longitudinal fibre is divided into short
lengths, as shown in Fig. 154, so that we now think of the beam as built
up of a number of small rectangular blocks such as ABCD. Then the
ends of the block, BC and AD, will experience a shear stress ¢ ; therefore
the upper and lower faces AB and CD will experience a complementary
shear stress (§48) ¢ = ¢, and the block will undergo shear strain. Now,
if the upper and lower surfaces EF and GH arc not acted upon by any
applied forces, it is clear that the shear stress must be zero at these
surfaces. Thus we see that the shear stress, and therefore the shear
strain, must diminish from the interior towards the upper and lower
faces of the beam.

If we take a single column of our imaginary blocks extending from
top to bottom of the beam, each will be distorted by shear, the distortion
decreasing towards the top and bottom, as shown on the right in Fig. 154.

If the shear stress is constant across the width of each layer of filaments
this distortion would mean that every cross section which was plane in
the unstrained beam would be strained into a cylindrical surface. Usually,
however, the shear stress varies across the beam and this leads to a
curving of the lines which were originally at right angles to the plane
of Fig. 154, so that the cross section becomes curved in both vertical
and horizontal directions.

The matter of the distortion of normal plane sections of the beam was
overlooked by the earlier investigators, who assumed that these sections
remain normal plane sections after bending. This hypothesis is usually
known as the Bernoulli-Euler theory, and St. Venant showed that it
can only be true under very special circumstances, namely, when the
bending moment does not vary along the beam.

When the load is distributed over the upper surface of the beam,
compressive stresses in a vertical direction must be called into play,
and these must gradually die away towards the lower surface if this be
free from applied forces. Arguing from this, we can show, without much



LONGITUDINAL STRESSES IN BEAMS 157

difficulty, that it is to be expected that there will exist shearing stresses
on vertical planes parallel to the plane ‘of bending, accompanied by their
complementary shear stresses, and also direct stresses perpendicular to
the plane of bending.

Hence it appears that, in the general case, the problem of determining
the stresses and strains in a beam, for any given system of loads, is one
of considerable complexity, and this indeed is true. Up to the present
time the methods of mathematical analysis have not placed us in a position
to solve directly the problem of finding the stresses, given the loads.
The method employed by St. Venant and later investigators is to assume
the character of some of the stresses or strains, to discover the system
of loading which will agree with the assumptions, and to deduce the
remaining stresses and strains. Proceeding in this way it can be shown *
that, when a beam is bent by equal and opposite couples applied to its
ends, the only stresses are the longitudinal stresses in filaments parallel
to the axis, that in this case cross-sections of the beam remain plane
and normal to the axis, and that the curvature is constant and pro-
portional to the applied couples : this is the only case which lends itself
to simple rigorous treatment. In the case of concentrated loads 1 there
are in addition vertical shearing stresses on the cross sections, accom-
panied by shear between horizontal layers, and cross sections no longer
remain plane. When the load is distributed } along the beam all stress
components are present, and the curvature is not proportional to the
bending moment. Fortunately for engineers, in nearly all practical
cases, the results of the theory when the beam is acted on only by terminal
couples can be applied to other more complicated cases with all the
accuracy that is necessary.

118. The Theory of Uniform Bending.§—We shall now investigate
the flexure of a uniform rod of isotropic material within the limits of
linear elasticity, subject to the following assumptions :—

(a) All longitudinal filaments of the rod bend into circular arcs which
lie in parallel planes and have a cemmon axis perpendicular to these
planes. This axis is called the axis of bending.

(B) All normal sections of the rod remain plane and at right angles
to the longitudinal filaments, so that after bending their planes pass
through the axis of the circular arcs into which the filaments are strained.

(y) The longitudinal filaments are free from mutual actions and
reactions, and experience only longitudinal stress.

(6) Young’s Modulus is the same in compression as in tension.

The plan we follow is to discover what system of applied forces and
couples is compatible with these assumptions, which we have pointed
out above are not true in the general case.

In Fig. 155, ABFD is a longitudinal section of the beam in a plane
parallel to the plane of bending ; OL is the axis of the circles into which

* Love, Theory of Elasticity, 3rd Ed., p. 127.

1 Ditto, Chapters XV and XVI.

1 Ditto, Chapter XVI, p. 359. Michell, Quart. J. of Math., Vol. 32.

§ We follow here with slight modifications the treatment adopted by G. F. C.
Searle, Experimental Elasticity, Chapter II.
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the longitudinal filaments bend ; HC( is the neutral filament, i.e. the

filament which does not change in length, cutting the plane of a normal
section MN at C.

At C take axes Cy and Cz in the plane M N, Cy being in the plane of
bending.

Let R = the radius of the strained neutral filament.

Let PQ = ds, be an element of a filament at distance y from the
neutral filament, subtending an angle 60 at the axis OL.
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After strain, the length of PQ is (B + y)80. Before strain the length
was equal to that of CE, which is unaltered by the bending, i.c. it was
R5H. Hence the strain in the filament PQ is
_ (B4 y)00 — ROy

R60 r
Let p be the longitudinal stress in Pg), then
By
= Fe = -2 1
p=Fe—=— (1

The total force on the ends of the filament is .08, where 68 is the

area of the cross section of the filament. The moments of this about

Cy and Oz are z.p.0S and y.p.08. Hence the resultant action * on the
cross section will consist of

(i) a force = jp.dS = % jy.dS, normal to the section ;

(ii) a couple about Cy = (pz.dS = % [yz as;

v v

(iil) a couple about Cz = jpy.dS = g— jyz.dS,
the integrals being taken all over the cross section.

* T'he resultant of the forces on the ends of the element PQ is p.6S.66, which
must be balanced by radial actions between the filaments, but these forces are
of a smaller order than the end forces p.dS and we neglect them.
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Since we have assumed that the bending all takes place in planes
parallel to the longitudinal planes through Cy, the couple about Cy
must vanish. Therefore we must have

j yz.dS =0

.. Cy must be a principal axis of inertiu * of the strained cross section.
This is an important restriction.t We are then left with a force

E
= G 2
% jy (2)
and a couple
E
M = —- 2.ds . . . . . .
R j y ®)

about Oz, i.e. acting in the plane containing one set of corresponding
principal axes of all cross sections.

We see then that the assumptions made above for a beam of constant
cross section correspond with a constant normal force on the cross section
and a bending moment which is constant along the beam. We shall
confine our attention now to the case when the force P is zero, i.e.
when

jy.dS —0

This integral represents the moment of the arca of the strained section
about Cz. Hence, in this case C2 must pass through the centre of the
section, and, as it is at right angles to ('y, it must be the other principal
axis of the section.

We are now left with the couple given by (3). The integral on the
right-hand side of (3) represents the moment of inertia { of the strained
cross section about Cz. Denoting this by I, we have

EI
M=—- . . . . . . . . (4
- )
Combining this with (1) we have the relations
p_M _ E
T-T"®R (5)

These two equations, then, express the relations between the stress,
the bending moment, the curvature and the dimensions of the cross
section, when a straight beam of uniform section is bent by a constant
bending moment, i.e. by equal and opposite couples applied to the ends,
acting in planes containing one of the principal axes of inertia of the
cross sections.

The conditions under which the formulee (5) have been established
must be carefully noted and remembered, but they can be applied with

* See § 131. T See § 126.
1 See p. 176 et seq. for theory of moments of inertia.
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sufficient accuracy to nearly all the cases of bending of straight beams
met with in engineering practice.

It has been remarked above that Cy and Cz are the principal axes,
and that 7 is the moment of inertia, of the strained cross section. In
all practical cases in engineering, except where especially pointed out,
the distortion of the cross section is so slight that the unstrained cross
section is taken instead. The case when the plane of the applied bending
moment does not contain the principal axes of the cross sections is dealt
with in § 126.

119, Modulus of Section.—We see from (5) above that the stress
at any point in the section is given by

_My
=

When y is zero, that is along Cz, the stress is zero, and this line is referred
to as the neutral axis of the section.
For a given value of M the stress is a maximum when y is a maxi-
mum. Thus
MY oz
I

The quantity I /ymes is called the Section Modulus, and is usually denoted
by Z, so that we can write

Pmaz = (6 )

M
z

120. Application to Practical Cases of Bending.—As remarked
above, in engineering practice the results of applying the above formule
to cases when there is shearing as well as pure bending usually give all
the accuracy that is required. This does not imply, of course, that the
shear stresses need not be calculated ; on the contrary, they usually
should be calculated and we shall consider this question in a later chapter.
In very many cases it happens that the greatest bending moment occurs
at a mathematical maximum (see §96 and § 107), when the shearing
force is zero ; we shall then expect the above formul to be a very close
approximation to the truth.

The formule we have established will also usually give sufficiently
accurate results when applied to beams whose cross sections change
slowly along the beam, but they cannot be taken to give even approximate
values of the stresses where there is an abrupt change of section, or in
the immediate neighbourhood of supports or concentrated loads. But
even in these cases, on account of the principle of St. Venant, we take
the formulee we have obtained as giving the stresses on sections which
are at a greater distance from the point of application of the concentrated
force than two or three times the greatest dimension of the cross section
of the beam.

121. Moment of Resistance of Section.—The bending moment
which can be applied to a beam of a particular cross section, without

Pinaz = (7 )
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the maximum stress exceeding a certain value, is called the moment of
resistance of that section for the prescribed stress.

122. Beams having Initial Curvature.—When the beam is initially
curved we can apply the above formul® in certain cases with sufficient
accuracy for practical purposes. As a working rule it may be taken
that the formule we have established may be applied provided the
largest dimension of the cross section is small compared with the least
radius of curvature of the central line. For instance, we can apply the
formule to large sectioned beams of small curvature, such as the kind
of built-up steel beam which might be used in an arched girder, or to
a slight beam of relatively large curvature, such as a spiral spring, but
we must not apply the above results to a large sectioned beam of relatively
large curvature such as a crane hook. Such cases as this require special
treatment and are considered below in Chapter XXV. In the cases
where the formul® are applicable, if, at any section, R, denote the initial
radius of curvature and R the radius of curvature of the strained beam,

it can be shown in the manner of § 118 that instead of ¢ = 1‘% we have

Y (1 1
-z %)
and instead of (4) we have

M 1 1
_—=— - . . . . . . . (8
EI R R, ®)
123. Beams made of Materials having Different Strengths in
Tension and Compression.—Let y, and y, denote the distances of
the extreme tension and compression filaments from the neutral axis,
then the maximum tensile and compressive stresses in the beam are
given by
My,
I

If the beam has a section such that the neutral axis is at the middle
of the depth, y, and y, will be equal, so that p, and p, will be equal also.
In the case of a material like cast-iron, which is five or six times as strong
in compression as it is in tension, this result is undesirable, and we should
try to design the section in such a way that

BB

Y. P
where p, and p, now denote the maximum stresses which are to be allowed
in tension and compression. For instance, if p, = 5p, we should, on
this basis, make y, = 5y,. In order to bring this about in a flanged
girder we must have the tension flange very large in comparison with
the compression flange. This has the disadvantage that the two cool
at very different rates after casting, and large initial stresses are set up
in the material. In practice, therefore, it is not usual to make y, more

than twice or thrice y,, the tension flange being made wide and com-
paratively thin.

M
p,=-—lyf and p, =
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Example 1.—What load can a beam 12 ft. long carry at its centre,
if the cross section is a hollow square 12”7 x 12” outside and 1-5” thick, the
permissible longitudinal stress being 5 tons/in.? ?

We must first find * the moment of inertia of the cross section about
its neutral axis. The inside is a square 9” x 9”. Then

12 x 128 9 x 93
I X X

12 12
= 1,728 — 547
= 1,181 ins.4

The length of the beam is 144" ; therefore if W tons be a concentrated
load at the middle, the maximum bending moment (§ 101) is
W tons x 144 ins.

M = 1 = 36W tons. ins.

In the notation of § 118, y = 6”. Hence the maximum stress is, from
equation (5),

36W tons in. X 6 ins. 36 X 6W

— — 3
p= 1,181 ins.¢ = T8 tons/in-
If p =5 tons/in.? we must therefore have
5 x 1,181
w =35 %6 = 27-3.

Example 2.—Estimate the section modulus and the maximum longitudi-
nal stress in a built-up IX-girder, with

T 22" equal flanges carrying a load of 2 tons
“ per ft. run, with a clear span of 60 ft.

The web is of thickness 4” and the

depth between flanges 5 ft. Each
(D flange consists of four }” plates 24”

] ok T wide, and is attached to the web by
v 4
—1— %

angle irons 4” X 4” x }". (Mech. Sc.
l Trip., 1919.) (See Fig. 156.)
-
1 L

I
e

—2g

[N
.
b

"

+

31"

F1c. 156.

The moment of inertia of each flange = 48 x 31%
=46,100 in.¢

The moment of inertia of the web
1
=13 X 0-5 X 60% = 9,000 in.*

The area of the horizontal part of each angle iron is 2 in.?, and its centroid
is 293" from the neutral axis. Hence the moment of inertia of this is approxi-

mately
2 x 29752 = 1,770 in.*

* A table of moments of inertia is given on p. 180.
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The area of the vertical part is 1-75 in.?, and its centroid is 27-75” from
the neutral axis. Therefore the corresponding moment of inertia is approxi-
mately

175 x 27-75% = 1,350 in.*

Then the moment of inertia of the whole section of the angle iron, about
the neutral axis of the beam section, is 1,770 + 1,350 = 3,120 in.4

The moment of inertia of the whole beam section is then

I =2 x 46,100 4 9,000 + 4 x 3,120
= 113,680 in.¢
y” = 32 ins,

... the section modulus is

3

113,680 in.* .
Z =220 M 3 550 in.d
32 ins.

The bending moment at the middle of the span is, equation (12), p. 124,

ft. : fp.0
M = 2ons/ 8X 602 1%-* _ 900 tons. ft. = 10,800 tons. ins.

.. the maximum longitudinal stress
_ 10,800 tons. ins.
3,660 in.®

Example 3.—A cast-iron girder k-5
has the dimensions shown in Fig. 157. ,%Z’ng",f,s,ff . fg N
Calculate the load per foot run which
can be carried on a 15 ft. span, if the

irder is simply supported at its ends, .
\g;vithout the Ize};lsilg) pstress exceeding 1 Web 25 in* %o
ton/in.? What is the compressive n
stress then ? Tension

The first step is to find the cen- /
troid of the secgon. Flange 375/”41— . ?:_

Taking moments about the bottom h— 15—
edge, we see that the height of the Fic. 157.
centroid is

= 3-04 tons/in.?

Nﬂ i
S

1%
A2 Bf——172:5

10 x 16 + 25 x 815 + 375 x 1'25
10 + 25 4 375
In Fig. 157 the centroids of each flange and the web are shown by the
spots G4, G4, G;, and that of the whole section by the G marked with a cross.
We now proceed to find the moment of inertia of the section about the
neutral axis, i.e. a horizontal line through G :—

= 5-88”

Comprossion | yoh, Tonsion

M. of I. about. horizontal |5 x 23 2 x 12-53 15 x 2-53

axis through own G (in.%) | 719~ = 33 12 =325 12 =194
Area =8 (in.?) . 10 25 375
Distance of own @ from

neutral axis of section

=k . . . . . .l1012 2-87 4-63
Sh? (in.t) . 1024 206 803
M. of 1. about neutral axis

of section (in.f). . . 1027-3 531 822-4
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Hence the total moment of inertia of the whole section about the neutral

axis

= 1027-3 + 531 4 8224
= 2,381 in.* (approx.).

The distance of the tension face from the neutral axis is 5-88”, hence
if the bending moment be M tons. ins., the maximum tensile stress is

M tons. ins. x 5-88 ins. 5-88M

2,381 in.*

— 1 2
= 3381 tons/in.

Let w tons/ft. be the distributed load.

Then
M =

w tons/ft. x 152 ft.2 x 12 ins./ft.

= 338 w tons ins.

8

Hence the maximum tensile stress is

338w x 5-88

2,381

ton/in.*2

This is not to exceed 1 ton/in.? so the maximun load is

2,381
w

This gives M = 405 tons. ins.

T 338w x 588

= 1-20 tons/ft.

The height of the compression face from the neutral axis = 11:12”,
hence the maximurn compressive stress

_ 405 tons. ins. x 11-12 ins.

2,381 in.*

- = 1-89 tons/in.?

124. Reinforced Concrete.*—The following theory of the flexure of
reinforced concrete beams is that most usually followed and has the
advantage of simplicity. The reader who is interested in pursuing the
matter should consult works devoted to the subject.t Concrete is weak

F1a. 158.

in tension compared with its
strength in compression, and the
idea of ferro-concrete construction is
to reinforce the tension side of a
beam with steel rods or wires. Then,
on account of the tensile weakness
of concrete, and since cracks may
develop in it, the stress calcula-
tions are worked out on the assump-
tion that the steel takes all the
tension and the concrete all the
compression, which must be true at
any rate after the tensile resist-

ance of the concrete has broken down. The cross sections of the

* See also “ Rapid Design of Ferro-Concrete Beams,” by A. Esnouf and L. J.
Coutanceau, Engineering, Feb. 10, 1922 ; and a method of determining the pro-
portions of T-beams by G. I. Cope, Engineering, Feb. 25, 1921 ; see also March

18, 1921.

t For example, Der FEisenbetonbau, by Emil Moérsch. English Translation.
Concrete-Steel Construction, by E. P. Goodrich (Constable).
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reinforcement which were originally in the same plane as a given cross
sectioh of the concrete are assumed to remain so after bending; the
concrete is also supposed to obey Hooke’s Law, and, as before, we assume
that normal cross sections remain normal,* and plane.

Let E, and E, denote the values of Young’s Modulus for concrete
and steel respectively.

Let % be distance of the neutral axis Oz from the extreme compression
face of the beam (Fig. 158).

Let d, be the depth, from the same face, of a reinforcing steel bar A
of small cross section §,. We shall neglect the variation of stress and
strain over the area S,.

Let S, denote the area of the section of the concrete.

Let p be the compressive stress in the concrete at a distance y from
Oz, and let p, be the tensile stress in the steel rod 4.

Let e and e, denote the corresponding strains.

Then, if R be the radius into which the neutral filament is bent, at
any section of the beam we have, in accordance with §118,

p=Be=EZL . . . . . ()
d-]/

and Pa = E 4 = (ii)

The total action across the section consists of a normal force
ch

. pdS, —Z(p,.8) . . . . . (ii)
< 0
and a couple of moment
~h
mem+&%&4¢_m . (i)
[

where dS, is the area of the strip of concrete at height y, and the summa-
tion extends to all the reinforcing bars. In order that the action may
be equivalent to a pure bending moment M, we must have the quantity
(iii) equal to zero, and (iv) equal to M. Hence, substituting for p and p,
from (i) and (ii), we must have

«-h E
jy.dSc=—f.Z(d,,—h).Sa N €:),
o Ec
and
E, E
M =_f| y2dS, + 28 d, — 2 . . . . (1
RJoydc+R o{du ?) (10)

Put into words, these equations are :—
The moment of the compression area of the concrete

—* X the moment of the total area of the steel, . . (9a)

both taken about the neutral axis, and

* W. Hovgaard has shown that this is in accordance with the Principle of
Minimum Strain Energy (Proc. I.N. 4., 1923).
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MR = E, X the moment of inertia of the compression area of the concrete
+ E, X the moment of inertia of the steel area, . . . (104)

both taken about the neutral axis.

The former of these equations enables the position of the neutral
axis to be found. The latter gives the relation between the bending
moment and the radius R. If p, denote the maximum compressive stress
in the concrete, we have from (i)

R:E”h.......(v)

V2
eliminating R between this and (10) we have an equation to determine
the maximum stress in the concrete. Then, from (ii) and (v) the stress
in the bar 4 is given by

B, d—h
g P

These are the general lines upon which to carry out stress calculations
for reinforced concrete beams. The value of E,/E, usually lies between
10 and 15.

125. Reinforced Concrete Beam of Rectangular Section.—

| When the section of the beam is

i b ' rectangular and all the steel bars are

ﬂ at the same depth, the above equa-

I 7|7“ tions can be simplified considerably.
J"i

Pa = (11)

¢

Let the dimensions be as shown in
Fig. 159. Then (9) gives

__o-0-0 | Total Cross

Section of
Steel S
Fic. 159.
bh: E
o ="3d-mnS. . . . . . i
S s (vi)
or
h? + gPsSh—2EsSd=0 e e e (12)

E.b E.b

which is a quadr.tic for %, the positive root being the one required.
Equation (10) becomes

MR = \EJ% + E.S(d—k?® . . . .(vi)

which, combined with (v), gives p., and then (11) gives the tensile stress
in the steel, p,.

The equations in this form are applicable rather to calculating the
strength of beams whose dimensions are known than to problems of
design. In designing a beam it is obviously desirable that both the
concrete and steel should reach their maximum allowable stresses at
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the same time. If these stresses are denoted by p, and p,, we have
from (11):
E, d—h

E' h Pc . (13)
(M

Py =
whence

h_ ke e
d pc+ps'Ec/Es
d

Eliminating R from (v) and (vii) gives
M
—bh2 T E,

G

Pc= S(d e . (viii)

h
But we also have above

E,
- m)S = 3bke,

hence (viii) becomes

d
E.' h h
h(d — =
bh(d —3)
and the total tension in the steel, T, is

T = Sp, = 22 8(d — I—

, bh2<d — _)

M
h
d ——
3

Example 1.—Fig. 160 represents a reinforced concrete beam. If h be
the depth of the neutral axis, and the working stress in the steel and concrete

M
i
=

Fia. 160.

Hence, by (vi),

T = (16)

600 /bs.fin?

Qr«;az +1

1D

is to be limited to 16,000 and 600 lbs. /in.? respectively, show that h/d should
be 0:36; E, =30 x 10°¢ lbs./in.%, and E. = 2 x 10° lbs./in.? The tensile
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strength of the concrete is to be neglected, and cross sections are supposed
to remain plane.

If b =8” and d = 12” calculate the sectional area of the reinforeing
steel rods and the bending moment the beam can withstand without exceed-
ing the above stresses. (Intereoll. Exam., Cambridge, 1911.)

From equation (13) of § 125 we have

d —~h
16,000 = l5.—h——.600

d
or l6=9(’:——1>
Ld_18 %
SET=eTl=g
h 9
.—&—:2—5:0'36.

Hence, when d = 12”, we have h = 4-32”.
Then, from (vi) of § 125, when b = 8”,

8 x 4-322
X—2—— — 15(12 — 4-32)8

where S is the sectional area of the steel.
Hence
4 x 4-322

~ 15x 768

The total tension in the steel = 16,000 x 0-645
= 10,300 lbs.

The moment of this about the neutral axis is
10,300 lbs. x 7-68 ins. = 79,000 lbs. ins.

The stress in the concrete is assumed to inerease uniformly from zero
on the neutral axis DC to a maximum of 600 lbs./in.? on the line AB, as
shown on the right of Fig. 160. Hence the total thrust on the section is

$ X 600 lbs./ins.? X 8ins. x 4-32 ins. = 10,300 1bs.

The centroid of the compression area is 3 x 4-32 = 2-88” above DC.
Hence the moment of the thrust = 10,300 x 2-88 = 29,700 lb. ins., and
the total resisting moment of the section

= 29,700 + 79,000 = 108,790 Ib. ins.
As a check let us calculate M from equation (16) of § 125:

= 0:645 in.?

)
M = T(d — 3) = 10,300(12 — 1-44)

= 10,300 x 10:56 = 108,700 lb. ins.

Example 2.—A rectangular sectioned ferro-concrete beam is 5” wide,
the reinforcement consisting of two steel rods tv5” diameter with their centres
8%” below the compression face of the beam. Find the maximum bending
moment that the beam will take, if the maximum compressive stress in the
concrete is not to exceed 500 lbs./in.? Find also the stress that this B.M.
produces in the steel ; E, and E. are as in Ex. 1. (Mech. Sc. Trip., 1912.)

We have :

b=5"; d=85"
T 7\?2 .
S =2 XTX (1—6) = 0-302 in.
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The depth of the neutral axis is given by (12) of § 125:
h 85
h® 4 30 x 0-302 ><5-30 x 0-302 x?:()
h® + 1-812h — 154 =0
ho= — 0906 + 3V328 + 616
= — 0-906 + 4-026
Taking the positive value we have
h = 312"
From (15) of § 125
h
T
=250 X 5 X 312 x 746
= 29,100 1b. ins.
Then from (13), the stress in the steel is

5-38
Py =15 X 373 X 500 = 12,900 lbs./in.2

Example 3.—Taking the safe stresses for concrete and steel to be 500
and 10,000 lbs. /in.? respectively, and the ratio

of the E’s to be 10, determine d for the section K JF
shown in Fig. 161 in order that the neutral axis 5 0
of the section may lie along AB. Find the A Ril

diameter of the two steel rods, and the safe
distributed load on the beam for a span of 20 3
ft. freely supported. (Mech. Sc. Trip., 1919.)

if 4B is to be the neutral axis, by equa-
tion (9a) we must have the moment of the

area of the flange about AB equal to 10 times TG — - ——
the moment of the area of the steel about
AB, that is Fig. 161.

15 x 5 x 2:5 = 108(d — 5)
where S is the total area of the cross sections of both rods, i.e.

Sd—-5)=1875 . . . . . . (i)
From (11) of § 124 we have
d—5
10,000 = 10 x 5 X 500
. d =15" ’
Hence, from (i)
S = 1-875 in.?

. the area of each rod = 0-9375 in.2, which requires a diameter of 1-09”,
The total tension in the two steel rods
= 1-875 x 10,000 = 18,750 lbs.
The moment of this about the neutral axis
= 18,750 x 10 = 187,500 lbs. ins.
The total thrust in the concrete flange
=4 x 500 x 15 x & = 18,750 lbs.
The moment about AB = 18,750 x (% x 5)= 62,500 lb. ins.
Hence the total B.M. which the beam can take
= 187,500 + 62,500 = 250,000 1b. ins.
If w lbs./inch = the safe distributed load, we must have
2
w_x82_40_ = 250,000
whence
w = 35 lbs./inch, nearly.
M
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126. Oblique, or Unsymmetrical Bending .—1t has been remarked

and emphasized in § 118 that, in order that the bending may take place

entirely in planes parallel to the plane

¥ 4 of the applied bending moment, the

N latter must contain one of the prin-

P B cipal axes of inertia of all cross sections

‘TP of the beam. When this is not the
- case we may proceed in various ways.

In Fig. 162 let GZ and GY be the

I\ Z principal axes of the section whose

boundary is 8, and let GB bé the trace

of the plane of the applied bending

Frc. 162. moment, M. The bending moment,

which is a couple, can be resolved

into two bending moments (couples) M cos 6 in the plane GZ and

M sin 6 in the plane GY. Let the principal moments of inertia be J

and I, about (/Y and G'Z respectively.

Let the co-ordinates of any point P in the section be (y, 2) referred
to GY, GZ.

The bending moment M cos 6 in the plane GZ produces at P a stress
Mz cos 6./1,, and the bending moment M sin 6 in the plane G'Y produces
a stress My sin 6./1,, since GZ and GY are principal axes. Therefore,
by the principle of superposition, the total stress at P is

p:__Mz;:ose_l_MyIsinO

¥
On the neutral axis p =0. Therefore, the equation of the neutral
axis GN is

Iy

v

(17)

z

zcos)  ysinf

-+ 0
T, 1
or
2
X:—Iltanez—lf’—tane. N ¢ £
z I, ky?

where k, and k, are the principal radii of gyration. Referring to the
equation of the momental ellipse in § 134, the equation (18) shows that
the neutral axis is the diameter of the ellipse which is conjugate to
GB, the trace of the plane of the applied bending moment M on the

plane YGS.
From here we can proceed by three ways:—

First METHOD.—Find the principal axes of the section and draw
the momental ellipse. Next, draw the diameter conjugate to the plane
of the applied bending moment ; this diameter will be the neutral axis
(N and its equation is (18) above.

Let @ be the angle between the neutral axis GN and GB the plane
of the applied bending moment.

Let I be the moment of inertia of the cross section about the neutral
axis.
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Let % be the perpendicular distance of any point P in the section from
the neutral axis GN.
The component of M about the neutral axis is M sin ¢. Hence,

applying the formula (5) for bending about the neutral axis, the stress

at P is given by
_(Msing).n
=

SecoNp MetHOD.—Find the principal axes and calculate the stress
at any point by the method of superposition, using equation (17) above.

This method will be satisfactory when the position of the point of
maximum stress is obvious, otherwise it will usually be best to use the
first method, for when the neutral axis is drawn the most highly stressed
point can be seen at once.

We might also proceed by drawing the neutral axis to find the most
highly stressed point, and then use the method of superposition to
calculate the stresses.

TaHIRD METHOD.—This is due to L. J. Johnson * and is useful in a
certain class of problem, particularly when it is desired to find the plane
of bending which will produce the greatest stress at any point for a given
bending moment.

Equation (17) may be written in the form

(19)

S M
P = Z,
where

1  cosf + gin 0

Z, I,/2 1./y
and Z,may be called the modulus of the section for the plane of bending
GB.

Now (20) is the polar equation of a straight line referred to GZ (Fig.
162) as initial line, the radius vector being Z, and the inclination of the
radius vector to the initial line being 0. This line makes intercepts
I /z on GZ and I, /y on (7, so it is easily drawn for an; given point
(y, 2) when the principal moments of inertia have been calculated.

Let CD (Fig. 162) be this line for the point P. Then for any plane
of bending such as GB, the section modulus Z, for that plane for the
point P is given by the length of the radius vector GE to a certain scale.
It is then easy to see what plane of bending will cause the greatest stress
at P: it will be the direction for which GE is least, i.e. when GE is
perpendicular to CD.

When the boundary of the section is polygonal, lines such as CD
can be drawn for each angular point, and it will then be easy to pick
out the plane for which a given bending moment will cause the greatest
stress anywhere in the section: it will be given by the shortest per-
pendicular from @ to any of the CD lines.

(20)

* Trans. Am. Soc. of Civil Engineers, Vol. LVI (1906), p. 169. See also a paper
by C. Batho, Journal of Franklin Institute, Aug., 1915.
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If the boundary is a curve a similar process can be carried out for a
series of points round the boundary, the points being chosen as close
together as may be convenient.

It must be noted that, in general, the flexure of a beam of unsym-
metrical section involves torsion as well.* In order that a beam may
be bent without twisting, the line of action of the load must pass through
a certain point, called the * flexural centre.” The flexural centre will
usually only coincide with the centroid of the section when there is
symmetry about an axis perpendicular to the axis of bending. For
instance, for a beam of thin triangular section, bending in a plane per-
pendicular to its axis of symmetry, the flexural centre is at a point about
4a/5 from the point, where o is the width of the beam.

Example.—A 4" x 5” x 11 lbs. T bar,
having the cross-section shown in Fig. 163,
is subjected to a bending moment, the plane
of which has the trace AB. If the maxi-
mum fibre stress is to be limited to 7-5 tons
per sq. inch, what maximum bending
moment can be applied ?

Find the direction of the neutral axis.
I, = Moment of inertia about

ZZ = 777 ins.A
I, = ' ' about
YY =1-89ins.¢

(Intercoll. Exam., Cambridge, 1919.)

F1c. 163.
By equation (18) the neutral axis is given by
y . _ 17" °o
Z — — [ggtan 45° = — 411

which is a line GN inclined to GZ at an angle 76° 19°. By inspection the
point P is easily seen to be the point of the section which is most distant
from the neutral axis, its distance being 2-29”.

The angle, ¢, between the plane of the applied bending moment and the
neutral axis is 58° 41",

The moment of inertia about the neutral axis is

I = 1-89sin%76° 19" + 7-77 cos? 76° 19’ = 2-22 ins.*
Hence, if M is the applied bending moment, the stress at P is
_ M sin 58° 41’

55— X 229
M x 0-854 X 2-29
= 535 = 0-88M

If p =175 tons/ins.2, M = 852 tons. ins.
Alternatively we could proceed thus: having discovered that P is the
point of maximum stress, we have from (17)
M cos45° x 2 M sin 45° x 1-47
p= 189 + 777
= 0-88.M
which, of course, gives the same value of M as before.

* A. A, Griffiths, Aeronautical Research Commitiee, R. and M., 399. See also Pro-
ceedings of the Second_International Congress of Applied Mechanics, 1927, p. 434; Proc.
Royal Soc., Series A., Vol. 96, p. 211; Proc. London Math. Soc., Vol. 20, p. 398.
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Or, if we follow the third method of § 126, we have for the point P,
= 147", 2 =2". Also I, = 189 ins.4 and I. = 7-77 ins.* Hence the line

7-77 in.¢
CD (Fig. 163) makes intercepts -1_-I7il—nns = 5-29 in.? on the axis GY and
1-89 in.¢
180 . 0945 in® on the axis GZ.
2 ins.

Drawing this line in Fig. 163 we find that it cuts AB at E, and the length
GE represents 1-14 ins.® on the scale that GH represents 0-945 in.3

Hence for a bending moment in the plane AB we have Zy = 1-14 in.?
for the point P. This gives, for the stress at P, p = 0-877TM, with p =175
tons/in.2, the value of M will be 8-55 tons. ins.

127. Geometrically Similar Beams.—Suppose we have two beams
A and B, that all the dimensions of the cross sections of B are n times
those of 4, and that they are made of the same material.

A moment of inertia of an area by definition is of dimensions (length)4 ;
therefore the moment of inertia of B will be n4 times that of 4, which
we express by the equation

I, =ntl,.
The “y” of B is n times the “y” of 4.

Therefore, with a given bending moment M, the fibre stresses in the

two beams will be

My, My, My, p

Pa I, e Py =7 n3l, nd
* & = .l_
. e pa 7'/3’

the suffixes ¢ and b denoting the two beams. On the other hand, if
the bending moments which will cause equal fibre stresses » in the two
beams are M, and M,, we have

a Yy Ys
% =n3,
a
Suppose the lengths of the beams A and B are ! and ml, and that
they carry distributed loads w, and w, per unit length, being freely
supported at the ends. Then the maximum bending moments are

2 272
M, — % and szw”";l .
The fibre stresses are
wel?yY, wmilly,  wmily,
=5 d = =
Pa =gy, ¢ P =gy, 8n°l,

3
w, _ n®
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Similarly for concentrated loads W, and W,, the ratio required to

produce equal stresses is
W, na

W, m

STRAIN ENERGY OF BEAMS

128. Strain Energy Due to Normal Stresses.—Neglecting the
shearing stresses, the strain energy per unit volume of the bent beam is,
from equation (8) of Chapter I,

pz

ﬁ’
where p is the direct stress, i.e. My/I. Hence the strain energy contained
in a slice of beam between two cross sections, at distance dx apart, is

. M2y Mx [,
6U—6xj.2E12 8 = 2E12J.yd8,

where d§ is an element of area of the cross section and the integral is

taken over the whole section. But j y2dS8 =1,

) M2
CLoU = SEI oz
Hence the whole strain energy of the beam is
U ‘M d 21
—Jomx.......()

where [ is the length of the beam. If the section of the beam is constant
this can be written

1 l
U=+ | M.
2E1 j 8
M
Thus, if M be constant, U = 7,
us, 1 € constan 2EI

In the case of a beam freely supported at its ends carrying distributed
load w per unit length, we have (§ 102)

M = —:—(lx — z%)

where x is measured from one end.

1 (w2 w?ld
= " — 208 oyl =
U=sgi LN” Wt + e = som

129, Change of Cross Section in Uniform Bending.—In §117 we
pointed out the change which takes place in the shape of the cross section
when a beam is bent, and remarked on its general nature, observing that
it is usually so small that it can be disregarded. In a footnote on p. 158

we showed the existence of radial pressures between the longitudinal
filaments of a beam bent into a circular arc, and stated that they could
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be neglected ; this is true in the general run of examples met with in
engineering practice, but it is not universally true. If we begin our
investigation on the hypothesis that the radial pressures can be neglected,
we find that the cross section becomes curved, so that the top and bottom
edges of a section, which was originally rectangular, are strained into
concentric circular arcs with their centre on the opposite side of the beam
to the axis of bending.

The top and bottom surfaces of the beam then have anticlastic curva-
ture, the general nature of the strain being as shown in Fig. 164 ; it

Fic. 164.

can be readily observed by bending a flat piece of indiarubber. If the
original section was a rectangle of width 2a and depth 2b, and the beam
is bent to a mean radius R, we find that the cross sections are bent to a
mean radius R’ = mR, provided R is large compared with a2/2bm. But
with a thin flat beam, where a/b is large, it is quite possible for R to be
small compared with a2/2bm, and in this case the lateral curvature does
not take place: it is neutralized by the radial forces which we have
neglected, so that further analysis is required.*

130. Secondary Stresses in Beams.—By secondary stresses we
mean those which, in most practical instances, are of only secondary
importance ; in general, these stresses are proportional to the squares
of the displacements. For instance, we have seen akove, in § 118, that
each element of a beam is subjected to a radial force arising from the
longitudinal stresses. This radial force produces a transverse bending
moment, and therefore transverse tensile and compressive stresses in
directions perpendicular to the plane of bending ; moreover, the general
effect of these transverse stresses is to reduce the moment of inertia of
the section. When the section is difficult to distort, for example, a solid
square or circular section, the effect of the transverse stresses is negligible,
but in certain cases, particularly hollow thin sections,} large stresses
may be induced. Another instance of secondary stresses is afforded by
the type of beam failure considered below in Chapter XXIII: the tendency
of a narrow deep beam to twist when it is bent in the plane of its depth.
The secondary failure in these cases arises from want of torsional stiffness.
Again, when the section is not symmetrical about an axis in the plane
of bending, torsion occurs,} with the corresponding stresses, unless the
load is applied in a unique manner ; these torsional stresses are secondary

* The reader is referred to Searle’s Experimental Elasticity for a detailed treat-
ment of this subject.

t Forinstance, see an article by the author: Pkil, Mag., Feb., 1923, and Timoshenko’s
Strength of Materials, p. 465. t Cf. p. 170.
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stresses. In general, the equations * involved in the theory of secondary
stresses are too complicated to be solved.

APPENDIX . MOMENTS OF INERTIA

131. General Properties of Moments of Inertia.—If (y, z) be the
co-ordinates of a point P, within a plane area S, referred to rectangular
axes Oy, Oz in the plane of the area, and if dS denote an element of area
enclosing the point P, the values of the integrals

I, = jz2.d8andlz= ij.ds,

taken over the whole area, are called the moments of inertia of the area S
about Oy and Oz respectively.

The value of the integral j- 2y.dS, taken over the whole area, is called

the product of inertia for the axes Oy, Oz. Under certain circumstances
the product of inertia for two rectangular axes through the centre of
area is zero; these axes are then called the principal axes of the area ;
the quantities 7, and 7, are then called the principal moments of inertia.

132. Given the Moments of Inertia about the Principal Axes,
to Find the Moments of Inertia about any other Line through the
Centroid of the Area.—Let I, and I, be the moments of inertia about
the principal axes GZ, @Y (Fig. 165).

v’ Y /N

Fia. 165.

Let I, be the moment of inertia about any other line through G,
such as GZ'.

Draw GY' perpendicular to GZ'.

Let (y, z) be the co-ordinates of any point P in the area S referred
to QY, GZ; let (yf2') be the co-ordinates of the same point referred to
QY', GZ'. Then we have:

PM' =1y = PM cos § — GM sin §
=ycosf —zsinf

GM =2 =GMcos 0 + PM sin 0
=2z cos § + ysin 6.

* The matter is dealt with by A. A. Griffith : Aderonautical Research Committee,
R. and M., 468. * Second Order Flexural Stresses.”
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Then, if dS stand for an element of area at P,

1;=j %8 = j (¢ cos § — z sin 6)2d8

= cos? f. j y2.dS — 2 cos @ sin 0 J‘ yzd8 + sin? 6 J 22.d8.
Hence I = I, cos?04 I, sin20, coe .. (22)
for j yzd8 =0, QY and GZ being principal axes.

Similarly, the moment of inertia about GY’ is

I =1,sin?@ { I, cos2® . . . . . (23)
Adding (24) and (25) gives

L'+I)=L+I, . . . . . . (24)
that is, the sum of the moments of inertia about any two perpendicular
axes through the centroid of an area is constant.

133. To Find the Principal Moments of Inertia.—When an area
has an axis of symmetry it is evident that this axis is a principal axis.
For, suppose G'Y is an axis of symmetry, then for every point in the area
whose co-ordinates are (y, z) there will be a corresponding point whose

co-ordinates are (y, — z) ; therefore j yzd8 taken over that part of the
area which lies on the positive side of @Y will have the same magnitude,

but opposite sign, as J y2.d8 taken over the negative side of GY ;

therefore the total value of j y2.dS will be zero.

When there is no axis of symmetry we can proceed as follows : find
the centroid of the area by any convenient method, and take any pair
of rectangular axes GY’, GZ' with the centroid as origin.

Find the moments of inertia I,' and I, about these axes.

Algo find the moment of inertia I, about a line GN bisecting the
angle Z’GY’. (See Fig. 165.)

Let GY and GZ be the required principal axes.

Then, from (22), if I, and I, are the principal moments of inertia,

I, =1, cos? (45° + 6) + I, sin? (45° + 6)
31.{1 + cos (90° + 20)}+31,{1 — cos (90° + 26)}
31(1 — sin 20) + 31,(1 4 sin 26)
W, + 1)+ K, —1)sin 20
I, + 1)) + #L, — 1,) sin 26,

i

by (24).
(I, —I)ysin20 =2y— (I;+ 1)) . . . (i
" Again, subtracting (22) from (23), we have
I] — I = I (sin? 6 — cos? ) + I (cos? 6 — sin® 0) = (I, — I,) cos 26
or (I, —I)cos20 =1, —I) . . . . (i)
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Dividing (i) by (ii) we obtain
tan2g — - ALY (25)
Iu/ _ Iz’
whence § may be calculated. Then, to find 7, and I,, we have the
equations (24) and (ii), which can be written in the form :
I,+1,=1+1/)
LL—1,=(I/~1)) sec 20} Coeo e s (28
which are easily solved in a numerical case.

134. Ellipse of Inertia, or Momental Ellipse.—In Fig. 166 let
G'Y and GZ be the principal axes of a
given area 8, and let the principal
moments of inertia be written in the
form Sk 2 and Sk? so that k, and k, are
the principal radii of gyration measured
at right angles to GZ and G'Y respec-
tively. Similarly, let the moment of
inertia about another line GY’ be I/ =
Sk, 2.

Then from (23) it follows that

k/? = k2 cos? 0 + k2 sin? 0.

With G as centre draw the ellipse
ABA'B’ (semi-axes k, and k,). This ellipse
is called the ellipse of inertia, or momental ellipse; its equation is

F1a. 166.

22 yZ
e e L £-1))
kﬂ2 kz2

Then the length GT of the perpendicular from the centre on to a

tangent parallel to GY’ is given by the well-known relation
GT? =k, cos? 0 + k2 sin? 0.
Hence GT2 = k2.

Thus, to find the radius of gyration about G¥’, we draw a tangent to
the ellipse (27) and drop a perpendicular GT. The length of this per-
pendicular gives the required radius of gyration.

135. Given the Moment of Inertia about an Axis through the
Centroid of an Area, to Find the

Moment of Inertia about any d

other Parallel Axis.—In Fig. 167 TGS

let I, be the moment of inertia about y

ZZ which passes through the cen- G |

troid G. Let Z'Z' be a line parallel 5 [ Ih 7 g

to ZZ at a distance % from it, and
let 7 be the moment of inertia about
Y/ /8

Let y be the distance of an element
of area dS from ZZ, then Fic. 167.
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1=[ v+ has

— jy‘z.dS + 2 j y.dS + h? j ds.

The first integral is I,; the second is zero since it represents the
moment of the area about aline through the centroid ; the third integral
is the area. Hence

I=Jg+Shz . . . . . . . (28)
where 8 denotes the area under consideration.

136. Graphical Determination of Moment of Inertia of an
Irregular Section.—Let APCQ be any area, the moment of inertia of

y
P
Z
Al 2 lc
? Yy i ;
L v U Py
0 M R N
Fic. 168.

which is required, about an axis through the c.g. parallel to a given
direction Oz (Fig. 168).
The area of the curve is given by

ON
S:j i—gdz . . . . . . (29)
oM

which can be evaluated by a planimeter or the use of squared paper.
The moment of the area about Oz is given by

ON

S§=%j (V2 —y2dz . . . . . (30)
oM

where y denotes the distance of the c.g. from Oz. The integral can be
evaluated by plotting curves of y,2 and y,* and finding their areas.
The moment of inertia about Oz is given by

I=§§0N(y,3—y23)dz. N 0]
oM

which can be estimated by plotting curves of y,3 — y,5
Finally, since
I=1,+ 8y
we can find the value of I, from (29), (30) and (31).

137. Table of Moments of Inertia.—We shall not enter into the
calculation of moments of inertia, as the subject is adequately treated
in mathematical text-books, and books on mechanics. Thesfollowing
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formulae are given here for convenience of reference ; the reader who has
not met them before will find no difficulty in verifying them if he is
familiar with the ordinary processes of integration.

Axis. Moment of Inertia. Section Modulus.
I Z
z7 ,bd? 1bd?
44 1bd?
BD? — bd?
z7 15(BD? — bdd) R

3 __ b3
zZ Vo(BD® — bdd) . ﬁl)Tbﬁ‘l_
where b = a + c.
ZZ 75 BD3 44 BD?
AC Y BD3
aD? T g
u 64 32
R
g
=
=]
g s
< 1(D4—d4) 1_D4—d
64 32 D
Circular Tube of outside - P
diam. D and small T D3t T D2
thickness ¢. 8 4

Fia. 168,
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138. Note on I Sections.—Girders and beams of this section are
used so frequently in all branches of engineering that they merit special
attention. It will be seen from (5) that for a beam of given depth the
maximum longitudinal stress varies inversely as the moment of inertia
of the section about the neutral axis. Consequently the first desirable
quality of a beam section is that the moment of inertia should be as large
as possible, whilst the area should be as small ag it can be made consistently
with this. This end can be attained by concentrating the greatest part
of the area towards the top and bottom of the section, and it is by this
reasoning that we arrive at the I section as the best for beams under
ordinary bending conditions.

B ——>,

==\,

Fia. 169. Fia. 170.

With rolled sections the formr is usually similar to that shown in
Fig. 169, and the moment of inertia can be found accurately by dividing
the figure into rectangles, triangles, quadrants of circles, etc., but such
a process is very laborious and gives results which are of greater accuracy
than is consistent with the data in most cases. A good approximation
can be made by drawing by eye an equivalent section composed of
rectangles, as shown by the dotted lines. If greater accuracy than this
is required the graphical method described above may be used.

In very many instances the thickness of the web and flanges is small
compared with the other dimensions, particularly in girders built up of
plates, so that we can use an approximate formula for the moment of
inertia. This formula we shall proceed to discover.

Let the dimensions of the section be as shown in Fig. 170, D being
measured between the centre lines of the two flanges.

The moment of inertia of each flange about its own centre line is

1 Bt.3
128"
The area of each flange is Bt;, and the distance of the centroid from
the neutral axis of the section is 12—) Hence the moment of inertia of
each flange about the neutral axis is

2
BeBlS + By 2

_ ByD? 8,2
==t +i5)
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When ¢,/D is small we can neglect the second term ; in this case the
total moment of inertia of both flanges is

Bt,D? .
— (i)

The moment of inertia of the web is
Ato(D— ) . . ... L (i)

Adding together (i) and (ii) we have the moment of inertia of the
whole section. The practical advantage of this method of calculation
is this : if we use the formula '5(BD? — bd?) of § 137 we depend on the
difference of two large numbers, the difference being small compared
with either of them, and this makes accurate arithmetic very difficult,
but by the above method we avoid this, and, using a slide rule in both
cases, probably obtain greater accuracy with very thin sections. The
method amounts to this: to the moment of inertia of the web add the
joint area of the flanges X (semi-mean distance between flanges)2.

EXAMPLES XI

1. A beam of I section is 10” deep and has equal flanges 4” broad. The
web is 0-3” thick and the flanges 0-5”. It may be stressed up to 8 tons/in.?;
what bending moment will it carry ? (Special Exam., Cambridge, 1919.)

2. Fig. 171 illustrates the front axle of a motor wagon. The axle is of

7 X777 7T 777 7 7 7

Fia. 171.

T section: flanges 3” x 17, web 2” x 1”7, Calculate the tensile stress at
the bottom of the axle. (Intercoll. Exam:., Cambridge, 1912.)

3. A water trough 20 ft. long, freely sup-
ported at the ends, has the section shown in
Fig. 172. 1t is supported at its extremities
and is filled with water. If the metal weighs
480 lbs. per ft.?, and the water 62-5 lbs. /ft.,
calculate the greatest longitudinal stress for
the middle cross section of the trough. (In-
tercoll. Exam., Cambridge, 1909.)

Fia. 172.
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4. A built-up steel T -girder is 6 ft. deep over the flanges, each of which
consists of four }” plates, 3 ft. wide, riveted together. The web is 4" thick
and is attached to the flanges by four 31" x 33" x }” angle irons. The
girder has a clear run of 80 ft. between the supports and carries 2 tons

per foot run. Find the maximum longitudinal stress. (Mech. Sc. Trip.,
1912.)

5. A beam rests on supports 8 ft. apart and carries a load of 1 ton uni-
formly distributed. The beam is rectangular in section, 3” deep. How wide
should it beif the skin-stress must not exceed 4 tons/in.? ? (R.N.E. College,
Keyham, 1920.)

6. An x-section beam has flanges 3” x }” and web 5” X 4" and rests on
supports 9 ft. apart, it carries a concentrated load W at its centre, and & load

w
-5~ one quarter of the way along. Calculate the magnitude of W if the

maximum stress induced by bending is 4 tons per sq. inch. (Birmingham,
2nd year, 1910.)

7. Calculate the stresses set up by bending due to inertia forces in the
locomotive coupling rod shown in Fig. 173, when the engine is running at

r

2
1 1wl

— B
4%

— 8-6"

Fia. 173.

65 m.p.h. The diameter of the coupled wheels is 6 ft., and the distance of
the coupling pins from the wheel centres is 15”. One cubic inch of steel
weighs 0-28 lb. Neglect the effect of the enlarged ends, i.e. assume the
section shown to continue right up to the centres of the coupling pins and
the rod to terminate there. (Birmingham, 3rd year, 1910.)

8. The construction of a reinforced concrete floor is shown in Fig. 174.
Considering a width b of the floor as an independent beam, and assuming
that the concrete takes no tension and that stress is proportional to strain
in both concrete and steel, show that x, the height of the neutral axis above

F eyt

Fia, 174,

AB, is given by the equation 2E,S(y + z) = Eb(h — x)?, where S is the
area of the tee section, y is the depth of its centre of gravity below AB, and
E, and E. are the values of Young’s Modulus for steel and concrete respec-
tively.

If the tees be 4” x 4” x §” for which § = 2-872 sq. in., and y = 2-894",
andif &, = 15E., find h, the depth of concrete above AB, so that the neutral
axis may coincide with 4B.

Also find, in this case, the Moment of Resistance of the section when
the greatest stress in the concrete is 500 lbs. per sq. inch, the moment of
inertia of the tee section about an axis through its centre of gravity, parallel
to AB, being 4-19 inches.* (Mech. Se. Trip. B., 1915.)
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9. Fig. 175 gives the dimensions of a concrete beam reinforced with steel
rods. E for the concrete and steel is 2 x 10% and 30 x 10° lbs. per sq.
inch respectively. The maximum
compressive stress in the concrete
is not to exceed 600 lbs. per sq.
in. and the maximum tensile stress
in the steel is not to exceed 16,000
Ibs. per sq. in.

Prove that if the steel and con-
crete are to be efficiently stressed
the neutral axis must be situated
at a depth of 4-3 ins. below the
top of the flange.

Determine also the sectional
area of the steel, (1) neglecting
tensile stress in the ‘concrete, (2)
taking this tensile stress into
account. Making assumption (1) calculate the B.M. which will set up the
stresses above mentioned. (Mech. Sc. Trip. B., 1911.)

10. Fig. 176 shows a section of a reinforced concrete floor made of hollow

beams placed side by side and connected together. Calculate the maximum
distributed load which can be safely carried on a 10-foot span.

12"~

o

~
~A

Fia. 175.

E for concrete = 2 x 10° pounds per sq. in.
E for steel =3 x 107 v '
Maximum safe stress, concrete = 500 ’ ’

’ steel = 12,000 . '

(Mech. Se. Trip. B., 1914.)

Steel Rods

Fia. 176.

11. Draw the principal axes and the momental ellipse (ellipse of gyration)
of the section of an angle-iron 3}” x 24" outside x %" thick.

Py

12. Fig. 177 shows the section of an unequal
angle iron. It is subjected to a bending moment
.U M, the plane of which has @Y as trace. Calculate

G- , the longitudinal stress at the point P. The prin-

-hy- A cipal axes are GU and GV ; the moment of inertia
. ) about GV is 1-54 in.4, that about GU is 3-19 in.4,
and tan 6 = 0-55. (Intercoll. Exam., Cambridge,

F < *1909.)
F—3’-‘——-I
04"~

Fia. 177,
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13. An I beam of 16 ft. span with a web 11”7 x }” and flanges 6" x }”
is inclined so that the web makes an angle of 10° with the vertical. The
beam carries a vertical load of 400 lbs./ft. run. Determine the direction
of the neutral axis and the greatest stress in the flanges. (Mech. Sc. Trip.,

1910.)
B —y

14. Fig. 178 represents the cross section of a standard ¥ W
bulb angle bar. Explain how to find the principal axes

and the principal moments of inertia of the section.

If the principal axes are inclined at tan—? 0-205 with
the sides 4 and B of the section and the principal <
moments of inertia are 13:52 and 1-:42 inches?, find the
moment of inertia about the axes parallel to 4 and B
through the centre of gravity of the section. (Mech. Se. @

Trip., 1913.)

1
Fia. 178.
15. For the purpose of utilizing narrow strips of timber for planks, the
design shown in Fig. 179 was adopted, in which the strips were fitted into
a framework of bent steel plate and the whole bolted together by cross bolts.
If the longitudinal stress in the timber must not exceed 1 ton/in.? and that

” ” L4 ”
N e s s LNV ) /O

AN SN PRS0 M
S AN R |
A—HSSS WO W e a L b g
ARSI A S )
0-028"
Fre. 179.

in the steel 7-5 tons/in.?, estimate the moment of resistance to bending of
the composite plank, about an axis AB, and show that it is aboub 2% per
cent. greater than that of a solid plank of the same timber with a cross section
9” x 1-5”. Take E for steel 20 times E for the timber. (Mech. Se. Trip.,
1921.)

16. A reinforced concrete beam of rectangular section is required to span
20 ft. and support a load of 1,200 lbs./ft. If the width of the beam is 40
per cent. of its depth to the reinforcement, determine its size and the rein-
forcement required. The tensile stress allowed in the steel is 10,000 Ibs. /in.?,
and the compressive stress in the concrete 500 Ibs./in.2 E,/E. = 12.
(Mech. Sc. Trip., 1920.)

17. Compare the strain-energy of a cantilever of uniform square cross
section, loaded at the end with a weight W, with that of the samc rod in simple
tension the maximum stress being the same in each case.

18. Find the resilience of a beam of length /, and rectangular section, depth
d and breadth b, carrying a load W at a point midway between the ends. Ex-
press the average resilience per unit volume in terms of the maximum stress /e



CHAPTER XII
BENDING STRESSES AND DIRECT STRESSES COMBINED

139. Introductory.—Very many instances arise in practice where
a member undergoes bending combined with a thrust or pull, and we
must investigate the stresses which arise in such cases. When the
stiffness of the member is comparatively small so that the applied bending
moments cause appreciable deflection, the end load, if a thrust, will
increase the bending moment and deflection ; if a tension it will decrease
them. Thus, on the left of Fig. 180, AB is acted on by a thrust P and

Friae. 180.

lateral loads ; if the latter cause the axis of the beam at a section C to
deflect an amount d, the bending moment at C will be increased by P§ ;
similarly on the right, where P is a tension, the B.M. at C is decreased
by P§. These considerations lead us to a class of problems distinet in
itself and treated below in Chapter XXII; for the present we shall
suppose that the deflections are negligible. The type of problem to
which our present considerations apply should be made clear by the
examples on p. 190 and those at the end of the Chapter.

140. Stress Due to Combined Bending and Thrust.—Let 4B

5

Fic. 181.

be a small portion of the axis of a member (Fig. 181), which is subjected
to an end thrust represented by the resultant P and a bending moment
M in the plane AYBY’, which is assumed to be a plane of symmetry.
Let O be the centroid of the cross section, and let ZOZ’ be perpendicular
to YOY’ in the plane of the cross section.

186
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Let I = the moment of inertia of the cross section about ZZ’, and
S = the area of the cross section.
Then the thrust P produces a compressive stress of intensity

P .
§........(1)

at all points in the cross section.
At a point C, distant y from ZZ’, the bending moment M will produce
a stress of intensity
My ..
-I—...‘....(ll)
which will be compressive on one side of ZZ' and tensile on the other
side. Combining (i) and (ii) we see that the total compressive stress
at C is
P My
=_+4== . . . . . . . (1
y being negative when measured towards the convex side of the member.
If y,, denote the maximum value of y on the concave side, and ¥’y
the maximum numerical value of ¥ on the convex side, the maximum
and minimum stresses will be
P My, P My,
— 4+ —"and — — e ¢4
3T T ™5 @
The stress intensity will vary in a linear manner from one side to
the <ther, as shown in Fig. 182, where Y§ and Y'S’ represent vhe maxi-
mum and minimum stresses respectively, OF representing the mean

T &

_____ +
N Y’ ' R N 0 R
T g v
() § (i
Fic. 182.

stress. Two cases are shown in Fig. 182; in (i) the stress does not
change sign, in (ii) it does. From equation (1) we see that the stress
will be zero on a line for which

P My
ST T T
or y:—_{f_
MS

If this line falls outside the cross section, as in Fig. 182 (i), the stress
will not change sign ; if it falls within the section, as in (ii) the stress
will change sign.
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In cases where the longitudinal load is a tension instead of a thrust
it is only necessary to change the sign of P above.

The results of this article are perfectly general and are not limited
by the remarks made above in §139. The effect of the considerations
mentioned there is felt in their influence on the value of the bending
moment ; when the correct value of the bending moment has been found
the above results can be applied.

141. Eccentric End Load.—If the bending moment M above is
due to an eccentric end load P as in Fig. 183, we have M = Ph, h being
the distance of the line of action of the resultant force P from the centroid
of the cross section. Equation (1) above then becomes

P P}‘y—(l Sky.....(3)
1
The stress changes sign where
Shy
—_— = 1
1
or y:—_[-........(4)

Sh

The condition that the stress does not change sign is that the line
given by this equation does not fall within the cross section. Hence,
referring to Fig. 183, we must have

!
X oY’
Sh *

I

orh:@m.......(.ﬁ)

If the line of action of the resultant thrust is
not at a greater distance than this from the
centroid of the cross section, the stress will not
change sign. This is of importance in masonry
structures where it is not permissible for the
material to be under tension.

It must be borne in mind always that %
is the distance of the line of action of P from
the centroid of the section in the strained
position. When the bending is so slight that
the deflection is negligible, 2 may be measured
in the unstrained state, but when the bending is
Z" considerable we must first estimate the deflec-
tion which takes place. This problem will be
considered later.

142. Circular Section.—When the cross section is a circle of
diameter D we have 8 = xD2/4, I = aD1/64, and OY' = D/Z Hence
the maximum value of 4 for there to be no reversal of stress is, by (5),

D
b= (8

Fia. 183.
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that is, the stress will not become tensile provided the eccentricity of
the end load is not greater than one-eighth of the diameter of the cross
section,

143. Rectangular Section.—Let the cross section be a rectangle of
breadth b and length d as shown in Fig. 184, where 4 represents the
line of action of the end thrust. We have then [ = [,bd3, S = bd,

oY = g, so that (5) gives for the limiting value of A :

h:%........(’:)

Similarly, if A be on the other side Z
of 0, its distance from O must not exceed i
.Z.'__.M._..__y
Thus the line of action of the thrust 400 4
must cut Y'Y’ somewhere in the middle 1
third of its length if the stress is not to ; a
change sign anywhere in the section ;

M- . Fic. 184.
this is a most important rule to remember
in the design of masonry structures.

144. Unsymmetrical Bending with Eccentric End Load.—We
have assumed above that the line of action of the resultant thrust cuts
the cross section on a line of symmetry, i.e. on a principal axis. When
this is not the case the bending moment, arising from the eccentricity
of the end load, may be dealt with by the methods of § 126.

145. Core of Rectangular Section.—We shall find that there is

a certain area within which the line of action of the resultant thrust
must cut the cross section if the stress is not to become tensile ; this
area is called the core, or kernel, of the section. We shall consider a
rectangular section. In Fig. 185 let YY’' and ZZ’ be the principal
z axes of the rectangular section ABCD ;

A | B let F' be the point where the line of action

[ II.'/y'Z) of the thrust P cuts the secticn, the co-
' G$ ! ordinates of F being (y'2’) referred to

g if the stress is not to become tensile.

b —

1Y  0Y and 0Z.

] L The force P at F is equivalent to a
v |Z c force P at O, together with couples Py’
about OZ and Pz’ about Oy. At any
point whose co-ordinates are (y, z) these

Fra. 185.
couples give rise to stresses
Py’ Pz'z
Pry a P22
r'zbd? T:0%

whilst the direct stress due to the thrust is b% Hence the total com-

pressive stress at (y, z) is
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1 y'y | 12z22'\%
=P A p—
P <bd T oE T B
P 12y'y | 1222/
= 1 _ _—
bd( * d? + b2

This will be greatest at B, where y :%l and z = g; it will be least

at D where y = — g, z = ——;, y’ and 2’ being taken positive.

We have then, for the maximum and minimum stresses,

P 6y’ 62’
= 1 i I
P, bd( +2 43

P 6y’ 62
Prmin. bd ( d b
If the stress is not to become tensile we must have
6y’ 62’
4 1.
d + b <
Therefore (y'2’) must be within the space enclosed by the axes 0Y, 0Z
and the straight line

6y = 62
~ 4 - =1
d+b

This line makes intercepts g and :—; on the axes and is shown as

GH in Fig. 185 : if the stress is not to become tensile at D, the line of
action of P must cut the section within the triangle OGH. Similarly, if
the stress is not to become tensile at B the thrust must act within the

triangle OJ K, where OJ = _g-and OK = g In general the thrust must
act within the rhombus GHJK, which is the core of the section.

Example 1.—Find the maximum stress on the section 4B of the cramp

pRAr

Fic. 186.

shown in Fig. 186 when a pressure of 5 cwt. is exerted by the screw. The
section is rectangular 17 x §”. (Special Exam., Cambridge, 1912.)

. * It should be noted that EIJ + l—i%al + %’Zdzj = 0 is the equation of the neutral
axis.
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The section AB is subjected to a tension of 560 lbs., and a bending moment
560 x 4 = 2,240 1bs. ins.
The area of the section = 0-375 in.?
560
. 1 1 = in 2
.*. the direct tensile stress 0375 1,490 1b./in.
0-375 x 1

The moment of inertia = 1 = 0-03125 ins.*

Therefore the maximum bending stresses due to the couple of 2,240 lb. ins.
are equal to
2,240 x 0-5
0:03125
Hence the maximum tensile stress on the section
= 35,800 + 1,490 = 37,290 lbs./in.?
The maximum compressive stress is
35,800 — 1,490 = 34,310 lbs./in.?
Example 2.—A masonry pier has a cross section 6’ 0” x 4’ 07, and is

subjected to a load of 100 tons, the line of the
resultant being 2’ 4” from one of the shorter

= 35,800 1bs./in.?

o™

4 6"
sides, and 1’ 8” from one of the longer rides. ! VA B
Find the maximum tensile and compressive —T 8o
stresses produced. (Intercoll. Exam., Cam- k Y ot S

,-
|

bridge, 1923.)
In Fig. 187, P represents the line of action
of the thrust. The bending moments are |
4 x 100 = 400 tons. ins. about OY ‘ 4
8 x 100 = 800 tons. ins. ,, OZ. Fia. 187.

The moments of inertia are

— o T T

¥ a—

6 x 64 x 1442

I, =M. of 1. about OY = — 1 = 32 x 1442 ins.¢
- 2
L= . OZ = ‘i—i—z-l%ﬂ?— — 72 x 144? ins.t

The area of the section = 48 x 72 in.?
For a point whose distances from OZ and OY are y, z, the stress is (§ 145)
100 400z 800y
p_48><72 32)(1442_|-'4'2><l442
100 ( z y)
=Taz x ! T3 5/
The compressive stress is a maximum at B, where y = 36", z = 24" :—
100
e 1 2
Sz xaaltETD

__loox13
= 144 x 22 x 6 Loms/in.

24 .
_ 100 x 13 X 2240 |, 0t — 140 1bs. in.?

tons/in. 2

144 x 24 x 6
The stress at D is
100 100
— A —_3 —2) = e —————— s/in.?
P=igxaal—+-3 132 x 24 x 6 Lons/in

= — 10-8 lbs./in.?
Hence the maximum compressive stress is 140 1bs. /in. 2, and the maximumn
tensile stress 11 lbs./in.? nearly.
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BexDING CoMBINED WITH END LoaDp 1IN REINFORCED CONCRETE*

146. Bending and Axial Thrust: No Tensile Stresses.—In the
first instance we shall assume that the loads are such that no tensile
stresses are set up, either in the concrete or the reinforcement. In
dealing with homogeneous beams above, the bending moment on the
cross section was referred to an axis through the centroid of the section,
which axis represents the neutral layer of the beam when it is only
subjected to bending. Similarly, in dealing with reinforced concrete
beams, the bending moment must be referred to an axis which would
be the neutral axis if there were no end load ; we shall call this the
bending axis of the section.

Now, by the principle of superposition, the final value of the com-
pressive stress on the convex side of the beam will be the resultant of
the compressive stress due to the axial load, and the tensile stress which
would be induced if the bending moment were applied separately.
Consequently in seeking the position of the bending axis of the section,
we must assume that the concrete can temporarily bear tension until
the end thrust is applied. We can then find the position of the bending
axis as described below, where we shall only consider a rectangular section.

In Fig. 188 let ABCD be the cross section of the concrete, 4B being

b 1y, & Pe

+-e—0-0—o-

M M

-
< )-@._._z ff__l

Lo dy] /aoms
D c Pe
Fic. 188.

PsS

e

in the compression face of the beam, which is supposed acted on only
by a bending moment M.
f.ot 8 .- total arca of reinforcement near the edge AB, at a distance @
from it.
., & — ditto, near the face DC, at a distance o’ from AB.
» P, and p. be the compressive and tensile stresses in the steel § and
S’, due to a bending moment M.
,» 1. and p, be the maximum compressive and tensile stresses in the
concrete due to the bending moment M.
.,/ -z the distance of the bending axis from the compression edge AB.
., E,and E, be Young's Modulus for steel and concrete, assumed the
same for tension and compression.

Then, neglecting the reduction of the concrete area by the reinforce-
ment, the total normal force on the section is, with a linear distribution
of stress,

?_L:Z—&.bd+PSS~pS’S’ N €]
which must be zero, since at present there is no total end thrust.
* See also Engineering, Jan, 18, 1929,
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On the assumption that cross sections remain plane we must have
(see § 124, p. 166)

p, _h—a E,

P TF (8)
' o' —h B,

%= rE, ®)
* d—h

%c=__h R ¢ [1)
[

Substituting for p,, p,’ and p,’ from these in terms of p, in (i) and
equating the result to zero we find, by solving the resulting equation,
i bd + 'E‘(aS + a’'8")
=2 E,

11
bd + g_'(s +8) )

[

If desired, for greater accuracy the actual nett area of the concrete
can be inserted instead of bd in this expression. This equation gives
the distance of the bending axis from the concave face of the beam,
and it is to this axis that the bending moment must be referred.
The bending moment equivalent to a compressive stress p, in the

concrete is found by summing up the moments of the stresses about
EF, thus:

M = 3p.bh® + yp/b(d — k)% 4+ p,S(h — a) 4 p,/S'(a’ — k).
Substituting for p,', p,; ps from (ii), (iii) and (iv) this gives

E. [
M =2} 3688 - 1b(d — B)3 + 22 (b — a)28 + (a’ — h)28’ 12
e+t —we + gl — s @ —masr ] ()

[4
If the bending moment is known this enables us to calculate p,; p,,
Ps, ps’ can then be found from (8), (9), (10).

Now let p 4 and p,, be the compressive stresses set up in the concrete
and steel by an axial thrust P. Then we must have, if there be no slip
between the steel and the concrete,

Po _E, 13)
pao Ea (

and, neglecting again the reduction of the area of the concrete by the
reinforcement,

Py -0+ (8 +8)=P . . . . (i)
From (ii) and (13) we find
P

I’co=
E, ,
bd +E(S+S)

(14)

From this we can calculate p,, and then p,, is given by (13).
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Under the combined action of P and M, the maximum compressive
stress in the concrete will be
De -+ Peos
whilst the minimum will be
Peo — Ps
Similarly, the maximum and minimum compressive stresses in the

steel are p; + Py and py — p," respectively.
For the minimum compressive stress in the concrete to be zero we
must have

., _d—h
Peo = D¢ _Tpc

This requires, from (12) and (14)

3688+ 46(d — B + By oyag 1 (o0 — npesny
o= E - . (15)
(@ — k)b + 28 + 8}

If M /P be greater than this, part of the concrete will be thrown into
tension, and a different method of procedure is required. This we shall
now explain.

147. Bending and Axial Thrust: When there are Tensile
Stresses.—In Fig. 189, let O be the centroid of the section, and let the

D C

Fic. 189.

axial thrust and bending moment be referred to 0. Let 2 — the distance
of the neutral axis from AB, the compression face of the beam.
Let p, = the maximum compressive stress in the concrete, and neglect
the tensile stress in the concrete due to the combined
action of P and M.
»» Ps and p,’ be the compressive and tensile stresses in the steel
respectively, due to the combined action of P and M.
For the rest the notation is the same as above.
Then we must have :

Pz%bh—l—p,,S——-psS' N £

M:éﬁ.bh(g_g.>+p,s<g_a>+p,'s'<a'_g) (i)
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We also have, as before,
Pps_Esh—a ps o —h E,

07 7 2= 2 . . . (16
p B & D, h K, 1o
Substituting for p, and p,’ in (i) and (ii) gives
P bR ' ,
P = h—a)S — (a' — h)S N V)
o + 50— a8 — @ —ns]] an

and
(38 Efoa(§-yrrer-a(e-£)e)] o

From these two equations % and p, can be found for a given load
when the dimensions are known; p, and p,” are then given by (16).
Eliminating p, from (17) and (18) by division, and rearranging gives a
cubic equation for A :—

(X Do (4o e Rse)
+ %:[aS(% — a)— a’S’(a’ — -g-)— %(as -+ a’S’)]: 0. (19

When this has been solved for %, p, is given by equation (17).

Frequently the reinforcement is symmetrical and symmetrically
arranged, so that 8’ =8, and @' =d — a. In this case the equation
for A reduces to *

s (2— $yossl Mo o) Ha]o e

and the equation for p, becomes

Ph
:pc =bh2 E . . . . . (2].)
— 4+ (2 — )8
> T =9

In practice, where the area of reinforcement has to be estimated, a
first approximation may be made as follows: Calculate the stresses as
for a"homogeneous concrete section, and then let all the tensile stress
be taken by steel reinforcing bars. In this way a first idea of the size
of the steel rods required may be obtained. Since this neglects the
reinforcement on the compression side it cannot be expected to give
great accuracy ; it will usually be found to give the compression stress
in the concrete with accuracy, but to overestimate the stress in the steel
considerably.

* This can be solved by trial or by the following method :
To solve x? + az?® + bz + ¢ = 0, write # = z — a/3, and the equation takes the
form 2% 4+ pz + ¢ = 0, the roots of which are

=/ NE RS VTR -4

This is Cardan’s solution of a cubic equation.
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148. Bending and Axial Tension Combined.—This case can be
treated exactly as in § 146 above, the same equations obtaining if the
sign of P be changed throughout. The same approximate method
referred to above can be used as a first approximation in design.*

Example.—The section shown in Fig. 190 is subjected to a bending

A B

- -0-0-6—0—
S=0-85n?
[

14—-]5"_—-1-4———75"
|
”

\S"=0-85 in? J

D—15—(

Fi1c. 190.

moment of 82,000 lbs. ft., and an axial thrust of
54,000 lbs. TFind the maximum stresses in the steel
and concrete, taking E,/E. = 15.

Since the reinforcement is symmetrically placed
we can use equation {20) to find the depth of the
neutral axis from the compression face AB. We
have

M 82,000 x 12

— wo 1T 2R O T . ” - ” — 9. FPY
b =15 B 52,000 18-222”. d = 36". S = 2-14 in.
M d )
5 -5 — 0222
E, MS ”

= 2" ¢ = 16" 2(d )2 = 512
a=2"; y—a= ; 3 —a) =
. E‘
d = 656; ES = 32-1
Hence the equation for h is:
2-5h% + 7-5 x 0-222h* + 1,170k — 37,500 = 0
h® + 0-666h% + 468h — 15,000 = 0.
To solve this put
h =x — 0222
and the equation becomes
x® + 467-8x — 15,100 = 0.
The real root of this is

VAN I
3
=/\f/m+\3/?*2ﬁ

= 24-852 — 6-:270
= 18-582

* A graphical treatment of the above problems will be found in Mérsch’s Der

Eiscnbetonbau (see footnote, p. 164).
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Hence
h = 18582 — 0-22 = 18-36".
Then, from (21) the compressive stress in the concrete is

54,000 x 18-36

15 x 336
— + 15 X 072 x 2:14

54,000 x 18-36

= —*MT = 390 lbs./in.’

Pe =

The compressive stress in the steel is, equation (16), given by

16-36 .
pe =15 X 1836 ¥ 390 = 5,220 lbs./in.%,

and the tensile stress in the steel is

19-64
P’ =156 X 1836 < 390 = 6,250 lbs./in.?

Using the approximate method suggested above in § 146 we proceed as
follows :

For the concrete section,
I = 15 x 36°
12
M = 82,000 x 12 lbs. ins.
Then the stresses due to bending are
82,000 X 22 X 1% — 304 bs./in.?
12

The area of the section = 15 x 36 = 540 in.?, hence the direct stress
due to the thrust is

54,000 .
— 2
540 = 100 Ibs./in.

Then the maximum compressive stress in the concrete = 404 lbs./in.?,
and the maximum tensile stress = 204 lbs./in.?, giving a stress distribution
as shown in Fig. 191. This makes h = 23-9”. The total tensile stress

404 lbs/in?
N /i
LY
D
X
. <
©
LY
Y .
Y. Fia. 191,
204 1bs/in?

=102 x 15 x 12-1 = 18,510 lbs. The area of the steel section being
2-14 in.?, the tensile stress in the steel would be 8,650 lbs./in.2 Thus the

compressive stress in the concrete is given fairly accurately, but the tensile
stress in the steel is very badly wrong.
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EXAMPLES XII

1. Fig. 192 represents a cantilever hydraulic crane. The single rope
supports a load of 20 tons and passes over two pulleys and then vertically
down the axis of the crane to the hydraulic apparatus. The section AB
of the crane is a hollow rectangle. The outside dimensions are 15” and 30”

3
20 Tons

Fia. 192.

and the material is 1”7 thick all round, and the longer dimension is in the
direction AB. Calculate the maximum tensile and compressive stresses
set up in the section, and locate the position of the neutral axis. (Mech.
Se. Trip., 1907.)

2. Fig. 193 shows the horizontal cross section of the cast-iron standard
of a vertical drilling machine. The line of thrust of the drill passes through

N
»
»_4}.

5

13

A

Fia. 193.

P. TFind the greatest value the thrust may have without the tensile stress
exceeding 1 ton/in.? What will be the stress along the face AB ? (Intercoll.
Exam., Cambridge, 1920.)

3. A vertical masonry chimney has an internal diameter d, and an external
diameter d,. The base of the chimney is given a horizontal acceleration
a ft./sec.?, and the whole chimney moves horizontally with this acceleration.
Show that at a section at depth h below the top of the chimney, the resultant
normal force acts at a distance ah/2g from the centre of the section. If the
chimney behaves as an elastic solid, show that at a depth g(d?;+d2,)/4ad,
below the top, tensile stress will be developed in the material. (Mech. Se.
Trip., 1910.)

4. A masonry column has a rectangular section ABCD; AB = CD = 6ft.
and BC = AD = 4 ft. It carries a load of 100 tons concentrated at a
point P, 2 ft. from AB and 2} ft. from BC. Determine the greatest and
least compressive stress, and the position of the neutral axis, for a horizontal
section some distance below ABCD. (Intercoll. Exam., Cambridge, 1911.)
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5. A horizontal cross section of a short reinforced concrete column is
shown in Fig. 194, where P is the
point of application of the load. Find + =7
the maximum value this load may ®
have if the steel is to be stressed to —t-] A
16,000 lbs./in.? and the concrete to l SN |
IL ¥

not more than 500 lbs./in.? What
area of steel will be required ? Take
E for steel = 12 times E for concrete. Fic. 194
(Mech. Sc. Trip., 1921.) : :

6. A link of a valve gear has to be curved in one plane, for the sake of

Fic. 195.

clearance, as shown in Fig. 195. Estimate the maximum tensile and com-
pressive stress in the link if the thrust is 540 lbs. (Mech. Se. Trip., 1920.)

7. Fig. 196 shows a cast-iron crank with
a section on the line AB. Show how to
determine the greatest compressive and ten-
sile stresses at 4 B, normal to the section, due
to the thrust P of the connecting rod at the
angle ¢ shown.

Prove that in order that the stresses at
the section shall not exceed 3 tons per sq.
in. either in tension or compression the
thrust P must not exceed 10:2 tons. (Mech.
Se. Trip., 1919.)

Fia. 196.

8. A stanchion is built up of two channels 12” x 4” x §” placed back
to back, 8” apart, and riveted to two plates 16” x }”. The stanchion carries
a bracket bolted up against one of the 16” plates, and the effective load is
15 tons at a distance of 3’ 6” from the centre line of the stanchion. Find
the limits of stress in a section of the stanchion. (Mech. Sc. Trip., 1915.)

9. Fig. 197 illustrates a cast-iron bracket
carrying & bearing. The load on the bearing is
1,000 1bs. The form of the section AB is given.
Calculate the greatest tensile stress across the
section AB and the distance of the neutral axis of
the section from the centre of gravity of the
section. (Intercoll. Exam., Cambridge, 1914.)

1000 /bs.
Fia. 197.



CHAPTER XIII
SHEARING STRESSES IN BEAMS

149, Introductory.—In § 117 we have referred to the existence of
shearing stresses and have given a general physical indication of their
nature in bent beams. We then proceeded to investigate the longitudinal
stresses in a beam when shear is absent, and stated that the result could
be applied with sufficient accuracy to the cases when shear is present.
That is to say, that the effect of shear on the longitudinal stresses is not
of any practical importance, but it does not imply that the shearing
stresses can be neglected altogether : they must be considered for their
own importance, not for their effect on longitudinal stresses. In the
elementary treatment which we shall give here, we consider only the
shear stresses in transverse planes parallel to the shearing force due to
the load, and the complementary shear stresses in longitudinal planes
parallel to the axis of the beam. The presence of other shearing stresses
is disregarded. On these assumptions we examine the distribution of
shearing stress over the cross section.

150. Elementary Treatment of the Distribution of Shearing
Stress.—In what follows, we neglect the variation of the intensity of
shear stress over the width of the section. This is not strictly accurate,
but no great error is involved, and in the majority of practical cases the
width of the beam, in the part which carries most of the shear, is small
compared with the depth.

PR

Fia. 198.

Let 1@ and RS be two normal cross sections of the beam, separated
by a distance dz (Fig. 198) ; let the bending moment on the section £Q
200
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be M, and that on the section RS be M -+ 6M, so that, in the limit
when dx is made indefinitely small, the shearing force on either section
is given by (§ 96)

aM

dr’

F = (1)
Now the longitudinal stress across the section P, at a distance y

from the neutral axis is

_ My

P=r7

where I has the same meaning as previously. Similarly, if the cross
section of the beam is constant, the longitudinal stress across RS at the

same height is

M .
p—{—ép:wﬁ—)—g. B 1]

1
Now consider a small slice MNM’ bounded at the ends M and N by
the sections PQ and RS. Let the thickness of the slice be dy and the
width 2, so that the areas of its ends are z.0y. Then the end M is acted
on by a thrust

M
p(z.0y) = —I—yzﬁy,

and the end N is acted on by a thrust

M+ oM
(0 +6p) (sd) == F gy,

Hence there is a resultant thrust acting on the slice, in the direction
NM, given by
oM

Tyz.éy Coe il

Next consider the volume of the beam above some level KLK' (Fig.
198) included between the sections PQ and RS, and let the height of KL
above the neutral axis be 4 ; also let B be the width KK’. Then this
piece of beam will be acted on by an unbalanced thrust in the direction
LK equal to

oM

Yyad

where Y is the extreme height OP. This force is balanced by the shear
on the surface KLK’, the area of which is B.jz.

Let ¢ be the mean intensity of the shearing stress on KLK’, then the
total tangential force is Bdx.q. Hence, for equilibrium, we must have

de.q:—gryz.dy B $44)
)

¢ being positive when it acts to the left on PRLK.
0
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Therefore, in the limit, when dz is made indefinitely small, we have

1 dM ¢~

q:—IB re \h"’dy

zydy oo by@y. - . o (D)

Now the integral represents the moment, about the neutral axis, of
the area of the cross section included between the level £ and the top
of the beam.

Let § = the area of the part KPK’ of the cross section,
7 = the distance of the centroid of this area from the neutral axis,
then we have, from the above expression for g,

FSy 9
q—-—IE—........(-)

This is a very important formula.

When the depth of the beam is not uniform a different treatment
is required, since it is not then necessary that the shear stress should
vanish at the upper and lower surfaces. (See an article by Filon in
Engineering, Dec. 12, 1924.)

151. Special Cases ; Beams of Constant Section.—

(i) Rectangular Cross Section (Fig. 199).—In this case z is constant
and equals B, which is the same at all depths ; hence from (1) of § 150,

F Dz 12F h?
g = I_j . ydy = BI)3( 3 —-{)-) . . (see p. 180)

D2
- BD3< - )

The maximum occurs when % =0, and is given by

n.
p )

q"‘“x2BD"""(3)

Since BD is the area of the cross sec-
tion, we see that the maximum shear stress
is 50 per cent. greater than the mean over
the whole section. It is zero at the top
and bottom, and the curve of ¢ plotted
Frc. 199 elxggins’c h is a parabola as shown in Fig.

(ii) CGircular Cross Section.—Referring to Fig. 200 we have now

z ==2R cos 0 B =2Rcos ¢
y =R sin 6 h=Rsing
. dy = R cos 6.d8.
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Therefore, by (1), § 150,
F
2R Icosy

— cos® 0
nR-"’ cos ¢ [ ]

4F cos? @
~ 7R® cos ® 3

g = r 2R3 cos? 0 sin 6.d0

P
g

Fia. 200. Fia. 201.

From the figure sin ¢ = %, hence

g 4F 1 — h?
1_37ZR2< ﬁ)

This is a maximum when %2 = 0, and the maximum value is given by

4F
Amax 3nRe (4)

The area of the section is nmR2, so that the mean intensity of shear
stress is F'/nR?. Hence the maximum is # times the mean ; the shear
stress is zero at the top and bottom, and varies according to a parabolic
curve.

The value of g found above is only to be regarded as giving the average
shear stress on a horizontal strip'at a distance 2 from the neutral axis.
The actual distribution of shear stress on a vertical section is somewhat
as indicated in Fig. 201.

(iii) Thin Circular Tube (see Fig. 202).—

Let R = the mean radius of the tube,
= the radial thickness.
Then I = nR% approximately (p. 180), and
8§ = the moment about Oz of the area KPK'

/2
- j RdB.L.R sin 0
¢

== 2R% cos ¢.

Fie. 202.
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And b, the thickness of the section, measured parallel to Oz, at the level
KK’, is approximately :
b = 2t sec ¢.
Hence, by equation (2)
F x 2R?% cos ¢ F
~ R X 2t sec @ ~ 7Rt

cos?e@ . . . . ()

The .maximum value is - when ¢ is zero, i.e. on a horizontal
7

diameter. The mean intensity over the whole section is 2FRt’ so that
27

the maximum is twice the mean.

(iv) Rectangular I Section.—In the I section shown in Fig. 203,
the distribution of shearing stress
in the flanges must be similar to
that indicated by the arrows at
the top of the figure, and is not
open to calculation. The formule
found above will tell us the aver-
age shearing stress at any height
N above the neutral axis, and that
Fio. 203. is all; we shall see in a moment

that this is all that matters in

most practical cases.

For a height y above the neutral axis, when 0 < _1/<—, we have
apprommately

z(——y) <—+y>+ — 9 D4

—w)+§uﬁ—ﬂ»

Hence, in the web,

F rd? .
7= "2’1‘( 1 >+ A
The maximum occurs when y =0, so that
F ) "
qm~gw+( ) BRI
. . d d . o
The variation of ¢ between y = — 5 and y = > as given by (i), is shown

by the parabola PQR, ¢ being plotted horizontally. When y = L+ g, we

have
FB

e N
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This is represented by MP or NR in Fig. 203, whilst g¢,,,, is repre-
sented by S@Q.

By subtraction we have

Fqz
T7Q =8Q — MP = ...
Q =8¢ ST
Hence the parabolic area PQR is equal to
g Fdb g _FP
58I 121
The rectangular area MPRN is equal to
FBd
“2U D2 — @),
SIt( )

from (iii). Hence the total area MPQRN is
F d , d%
—| B(D% — d?¥_ + —
It[ ( )8 + 12]
Therefore the total shear taken by the web is
F d  d%
~| BD*—d*_-+—|. . . . .
F[Bw -+ (iv

Now, approximately, I is given by

I=2B(D—d)D+d>2+@

2 4 12

D4+d  d3t

= 2 gy~ —
BD*— a2 ()

If the flanges are thin, D and d are not very different, so that

D4-d
16
is not very different from g Hence, comparing (iv) and (v), we see that,

when the flanges are thin, the shear taken by the web is very nearly
equal to F, the whole shearing force on the section. Thus the distribution
of shear stress in the flanges is not of much practical importance, and
it has been proved by experiment that the variation through the thickness
of the web is very slight.

It will also be found that, in the case of rolled steel sections, or built-
up plate girders, the variation of ¢ between the top and bottom of the
web is very slight, so that we can, in these cases, assume, with sufficient
accuracy, that the whole shearing force is uniformly distributed over the
web. This gives

F

q=t_d........(6)

This underestimates the shearing stress on the neutral axis, where
it is usually not important, and overestimates it at the top and bottom
of the web, where its importance is greatest (cf. § 154, and Example 2,
p. 208).
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152, Shear in Built-up Plate Girders.*—When a girder is built
of plates and angles riveted together as in Fig.
'Ud_ 204, the rivets have to carry the longitudinal shear
between the flanges and the web. In such cases
we can safely disregard the variation of shear
stress in the web and take it as F/td, where F is
the total shearing force on the section. Then this,
et g by the principle of complementary shear stresses,
will also be the shear, per unit area, of the top or
bottom of the web, between the web and the flange.
Hence if z is the pitch of the rivets, the force to
b L be resisted by the rivets is

F Fz
— X X = —.
Fi1e. 204. td d

From this the size of the rivets may be calculated.

153. General Remarks on Shearing Stresses in Beams.—It
must be remembered that the value of the shear stress we have calculated
above is the mean value over the width of the section, and not necessarily
the maximum value. In the rolled or built-up X, T, and box sections so
largely used, this will not differ greatly from the maximum, but in solid
circular sections and the like the shear stress in the middle may be
appreciably greater than at the sides. Some interesting experiments by
A. A. Griffiths T on the distribution of shear stress in beams show that
in I sections such as are used for wooden aeroplane spars, where the
thickness of the web is much larger compared with the depth than in
the case of rolled or built-up steel sections, the above method of calculation
gives a very good approximation to the true value of the shear stress
in the web, and that the variation across the thickness is very small.
The experiments confirm what is indicated by the above ; that most of
the shearing force on an I girder is taken by the web.

In our approximate calculations we have neglected altogether the
possibility of the existence of the shear stresses g,, and have considered
only the g, stresses. Griffith’s experiments show that in X and T sections
the g, shear stresses are & maximum in the radius of the corners where
the flanges join the web, and that they are not of importance with the
radii ordinarily met with in practice. No gain in strength seems to be
obtained by making the radii more than about one-sixteenth the thickness
of the web.

It is perhaps advisable to point out here a fundamental error which
is made in the above treatment of shear stresses, as it is one which may
easily be made in other investigations. We have considered only the
equations of equilibrium, without any regard to the strains. We have
stated that the simple theory of pure bending gives a good approximation
to the longitudinal stresses in more general cases, and we have given

* An article on Shearing Stresses in Ships, by U. Suychira, will be found in
Engineering, Vol. XCIV (1912), p. 894 ; see correction Jan. 20, 1922.
T Aeronautical Research Committee, R. and M., 399.
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an approximate treatment of the shearing stress distribution. But we
have not paused to see whether the resulting strains are consistent.*
In point of fact they are not, but the error is not of practical importance,
in this instance, for the majority of sections met with in engineering
practice.

154, Principal Stresses in Beams.—We have shown separately
how to find the longitudinal stress at any point in a beam due to bending
moment, and the mean horizontal and vertical shearing stresses, within
the limits between which the theory of pure bending is applicable. But
it does not follow that these are the greatest direct or shear stresses.
Within the limits of our present theory we can employ the formule of
§§ 64 and 66 to find the principal stresses and the maximum shear
stress.

We can draw, on a side elevation view of the beam, lines showing
the directions of the principal stresses. Such lines are called the lines
of principal stress; they are such that the tangent at any point gives
the direction of principal stress. As an example, the lines of principal
stress have been drawn in Fig. 205 for a simply supported beam of

Fic. 205.

uniform rectangular cross section, carrying a uniformly distributed load.
The stresses are a maximum where the tangents to the eurves are parallel
to the axis of the beam, and diminish to zero when the curves cut the
faces of the beam at right angles. On the neutral axis, where the stress
is one of shear, the principal stress curves cut the axis at 45°

L4
| S epm——— *;f!z’
Example 1.—The web of a girder of I section (Fig.
206) is 18” deep x §” thick; the flanges are each 9”7 x
-4”. The girder, at some particular section, has to s
withstand a total shearing force of 20 tons. Calcu- 7 X
late the shearing stress at the top, and middle, of the ]
web, and the total amount of the shear taken by the
web. (Intercoll. Exam., Cambridge, 1908.)
L
——g— T2
Fia. 206.
. 3
The moment of inertia of the web = 0—3'7*51; 18 = 182 in.¢
» s . »» each flange about neutral axis

=45 X 9-25? = 385 in.*
I = Total moment of inertia = 952 in.s

* See Love’s Theory of Elasticity, 3rd Ed., p. 351,
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At a height y, in the web, above the neutral axis, the shear stress is given
by (i), p. 204:—

20 20 x 9
2 =35 9320 —¥) + g 93z x 037510 189
_ 810 — 10y* 2,220 3,030 — 10y? -
= " es2 952 — 95z toms/im
At the top of the web y =9,
2,220 .
= 2T 9. H
9= 553 2-36 tons/in.
At the middle y =0,
3,030 .
o = 9. 2
9= 955 3-18 tons/in.

The total shearing force on the web, between the heights
yand y +dy =¢q x dy x%,

hence the total shear on the web is

r 3 3" @ 10y2)d
T = g | 8030 — 1oy
5 8 8 % 952 )
- 5wl T
= § %053l 3080y ——3~ |
3 x 49,680
= g x o5z — 196 tons

that is 98 per cent. of the whole shearing force on the section.
If we assume the whole shearing force to be uniformly distributed over
the web, we find that the mean shearing stress is 2-74 tons/in.?

I_———Ji-\’l

Example 2.—The flanges of an T girder (Fig. 207)
are 12”7 x 1” and the web is 24” x }*. At a particular
e section the B.M. is 150 tons. ft. and the shearing force
5 S is 50 tons. Consider a point in the section at the top
of the web and calculate for this point: (i) the longi-
tudinal stress, (ii) the shear stress, (iii) the principal
stresses. (Intercoll. Exam., Cambridge, 1913.)
First calculate the moment of inertia about the
neutral axis :
X"
f——
2" —>i ¥
Fia. 207.
0-5 x 24
Moment of inertia of web = N 576 in.¢
. . ,» flanges = 12 x 12-56% = 1,870 in.* (each).
.. Total moment of inertia = 4,316 in.¢

Next, for a point at the top of the web,

Sy (p. 202) = 12 x 12:5 = 150 in.}
t = 05"
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Then for this point we have, with M = 1,800 tons. ins.
_ 1,800 x 12
4,316
50 x 150
7= 4316 x05
Then, § 64, the principal stresses are :
— 26 + 34/25 + 484
= — 25 4 4-28
= — 678 and + 1-78 tons/in.?2,
the former being compressive, and the latter tensile.

It should be noticed that the greater principal stress is about 13 per cent.
greater than the longitudinal stress. At the top of the flange the longi-
tudinal stress = 5-42 tons/in.?, so that the greatest principal stress at the
top of the web is 12-5 per cent. greater than the maximum longitudinal
stress.

It will be instructive to examine the strength of this girder according
to the various theories of complex stresses. Let us suppose that the elastic
limit of steel in simple tension is 15 tons/in.?, and let n denote the multiple
of the above bending moment and shearing force which will cause the beam
to reach the elastic limit.

(i) If the maximum direct stress be taken as the criterion,

=18
" =678
(ii) If the maximum shear be taken: the greatest shear stress under

the above loads = 4-28 tons/in.?, and in simple tension the maximum shear
= 7-5 tons/in.? at the elastic limit. Hence

b
T 428
(iti) Maximum strain theory : the simple stress which will produce the
same maximum strain (§ 72) is, with m = 10/3,
p =035 x5+ 065 x 856
= 7-31 tons/in.?

= b tons/in.?, compression.

= 348 tons/in.?

=221

n = 1-75.

giving
15
n = 7—51- = 2-05.
1
(iv) Haigh’s Strain-Energy Theory, with m = ~§ The elastic limit will

be reached when (see § 81, iv.)
Py? + P — ipipy = 225
With the above loads p, = 6-78, p, = — 1-78, and
Pi? + py? - ipypy = 565,
hence
n? = 225/56-5 = 3-98, or n = 2 nearly.

The variations of the maximum shear stress (gm), the greatest principal
stress (p,), the equivalent simple stress for equal strain (p), and the function
V/P1* + pst — $p.p. are plotted in Fig. 208, which shows clearly that the
top point of the web is the weakest point according to theory (i), (iii) or (iv)
above, but that according to (ii) the strength is practically constant through-
out the depth of the web, the centre being very slightly weaker than the
top. In all cases the top of the web is weaker than the flange.
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y
’2”
IO”
8’/
6”
4~

» . H |
2 —----:———-4-—-—;-----!-- LEEEES ARt REETS

: [ : : : |
0 1 2 3 4 & 6 7 Tons/sq.ins.
Fia. 208.

155. Superimposed Beams.—If we make a girder by placing one
beam on the top of another, there will be a tendency for the two beams
to slide over each other along the plane of contact AB (Fig. 209), and

o this sliding will take place unless it is
M prevented in some way. Thus the

moment of resistance (see p. 160) will
A@ simply be the sum of the moments of
resistance of the two beams separately :
each beam will act independently of the

Fia. 209. other, so that if they are similar beams
the strength of the compound girder will
be double the strength of either beam.

If, however, this sliding is prevented, i.e. if the tendency to shear
is provided for, the compound beam will behave as a solid member,
and the moment of resistance will be found by estimating the moment
of inertia of the double section about its neutral axis considered as a
single area. Thus, in the case of two equal beams of rectangular section,
the strength of the compound beam will be 22 = 4 times as strong as
one beam by itself, if the shear between them is prevented.

In the case of flanged iron or steel beams, the flanges may be riveted
together. In the case of timber beams the shear may be provided against
by the use of shear keys and bolts, as indicated in Fig. 210, where K

K il K il Ki K .

A Sl
L : : L i
oo A oV v ooy

B B B B
F1a. 210.

denotes square sectioned keys fitted between the two beams, and B
denotes bolts passing vertically through the beams between the shear
keys. The bolts are necessary in order to keep the two halves of the
girder together ; on account of the shearing stress along the plane AC,
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the beams tend to slide over each other and so to rotate the keys K,
as in Fig. 211, where the large arrows § indicate the tendency of the two
beams to slide over each other,
and the small arrows indicate
the pressure of the beams on
the keys. The keys will begin
to rotate in a clockwise direc-
tion into the position shown
by the dotted square, trying
to lever the two beams apart
in the direction of the arrows
A ; this separation is pre- Fie. 211.

“vented by the bolts B in Fig. 210.

156. Shear in Reinforced Concrete Beams.*—As an illustration
of the method of dealing with shear stresses in reinforced concrete beams,
we shall consider a beam of rectangular section with reinforcement on
the tension side only. The method to be followed will be the same for
any section, but the general formula for any other case are undesirably
complicated. As in §123, we shall neglect the tensile stress in the

PR o
i
it |
Leoel.
Fia. 212,

concrete, below the neutral axis, and we adopt the same notation as in
§ 125.

Let PQ and RS be two normal sections of the beam (Fig. 212) separated
by a distance dz, the bending moments on the two sections being M
and M 4 M respectively.

Let p, denote the maximum compressive stress in the concrete ;
then the stress at height y from the neutral axis, on the section PQ, is

Yy oy 2M 2My
e S h 2 \

bh(d — _> bh2<d — E)

3 3
by (15) of § 125. Hence the total thrust on a strip of width §y and length
(across the beam) b will be

2Mydy

h2<d — g)

* For a full treatment of this subject reference must be made to works on reinforced
concrete (see footnote, p. 164.) See also Engineering, Oct, 28, 1927,
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Similarly the thrust on a corresponding strip of the section RS will be
AM + M) ,

———— y_

-3

Then there will be an unbalanced thrust on a horizontal slice of the beam
(as in §150) equal to
20M

Hence the total unbalanced thrust between the level y and the top of
the beam will be

yoy.

———————— y_ ———
h h
of g " nefd — "
h (d 3) y ( 3)
This must be balanced by the shear between the two parts ot tue

beam above and below the level y. If ¢ denote the shear stress at height
y, we must therefore have

26 M jhy duOM(# — y?)

B2 — o2

B3 d—_>

3

* q:aiu hz—yz
na=g
bh2<d—_>

3

In the limit, when 6z is indefinitely small, 6M /dx = F, the shearing
force on either section, so that

F 2
q=_ h_<1—lyl_2>. . ..M
b(d - _>
3
When y =k, i.e. at the compression face of the beam, ¢ = 0.
Let g, denote the value of ¢ on the neutral axis (y = 0), then

Q=@

Since we are assuming that there is no longitudinal stress in the
concrete when y is negative, i.e. below the neutral axis, the shearing
stress will retain the value ¢, down to the level of the reinforcement.
Hence we obtain the diagram of shear stress shown in Fig. 212.

At the level of the reinforcement the longitudinal shear is taken up
by the reinforcing bars.
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At PQ the tension is

7= ;‘f%
d— —
3
by (16) of §125, and at RS it is
T 46T = ﬂi‘zM
d—-
3
The shear to be taken up is g,.b.6x. Hence we must have
P
3
Thus
b — oM 1 F
R
3 3

in the limit. This represents the total adhesion which must exist between
the concrete and steel, per unit length of the latter. Hence the adhesive
stress, per unit surface of reinforcement, is

g0b )
total perimeter of reinforcement ~ ° ° °

The surface required for adhesion must be estimated by considering
the section where the shearing force is greatest.

Adhesion must not be relied on entirely to take the shear, but the
ends of the rods should be bent into the
form of a hook as shown in Fig. 213, the
diameter of the circular part of the hook
being at least five times the diameter of the
rod. Provision for shear is also frequently
provided by diagonal or vertical reinforce-
ment, but the subject is too lengthy to treat Fra. 213,
here.*

157. Shear in Oblique Bending.—When the applied bending
moment is not in a plane containing a principal axis of the cross sections
the above treatment may be applied, the correct position of the neutral
axis being found in the manner explained in § 126.

* For a very complete treatment of shear in reinforced concrete beams see the
work referred to in the footnote on p. 164, where a most interesting account of
experimental investigations will be found.
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EXAMPLES XIII

1. A plate web girder consists of 4 plates, in each flange, of 12” width.
The web is 24” deep and is connected to the flanges by 4” x 4” x }” angles,
riveted with $” rivets. Assuming the maximum bending moment to be
370 tons. ft., and the shearing force to be 38 tons, obtain suitable dimensions
for (i) the thickness of the flange plates, (ii) the pitch of the rivets. Take
the tensile stress as 7 tons/in.?, and the shear stress in the rivets as 5 tons/in.?
(R.N.E.C., Keyham, 1920.)

2. In a small gantry for unloading goods from a railway waggon, it is
proposed to carry the lifting tackle on a rolled steel joist, 9”7 x 47, wt. 21
lbs. per ft., supported at the ends, and of effective length 14 ft. The equi-
valent dead load on the joist due to the load to be raised is 3 tons, and this
may act at any point of the middle 12 ft. By considering the fibre stress and
the shear, examine whether the joist is suitable. The flanges are 4" x 0-46”
and the web is 0:3” thick. The allowable fibre stress is 7-5 tons/in.?, and
the allowable shear stress 5 tons/in.? (Intercoll. Exam., Cambridge, 1919.)

3. A girder of T section has flanges 9” x 17, and web 24" x §”. At a
certain section the sagging B.M. is 200 tons. ft., and the shearing force 40
tons. Determine (i) the tensile stress at the bottom of the girder, (ii) the
principal stresses at the level where the web joins the bottom flange. (Inter-
coll. Exam., Cambridge, 1914.)

4. A steel beam of T section 30 ft. long is supported horizontally at its
extremities and carries a load of 20 tons concentrated at a point 10 ft. from
one end. The web is 20” x §” and each flange is 8” x 1. Calculate for
a section 15 ft. from the end : (a) the maximum longitudinal stress, (b) the
maximum shearing stress in the web, (c¢) the principal stresses at the top
and bottom of the web. (Intercoll. Exam., Cambridge, 1909.)

5. A girder of T section has a web 24” x }” and flanges 12” x 1. The
girder is subjected to a bending moment of 100 tons. ft. and a shearing force
of 100 tons at a particular section. Calculate how much of the shearing
force is carried by the web, and how much of the bending moment by the
flanges. (Mech. Sc. Trip., 1910.)

6. Estimate the greatest shearing stress in the web of the girder of ques-
tion 4, p. 183.

7. A girder of I section has flanges 6” x 1” and a web 12”7 X }”, giving
a sectional area of 18 in.? and a principal moment of inertia of 580 in.* At
a certain section the B.M. is 50 tons. ft., and the shearing force 15 tons.
Find the magnitude of the principal stresses at a point in this section at
the top of the web. (Mech. Se. Trip., 1915.)

8. The shear at a given section of a built-up T girder is 100 tons and
the depth of the web is 5’ 6”. The web is joined to the flanges by angle
irons with 17 rivets. Determine the thickness of the web plate and the
pitch of the rivets, allowing a shear stress of 3 tons/in.? in the web and
rivets, and a bearing pressure on the rivets of 8 tons/in.2

9. A reinforced concrete beam 12” wide has for reinforcement two rods
3" diameter, with their centres 3%” from the compression face. It carries
a load of 150 lbs. per foot run. Taking E,/E. = 15, find the adhesive stress
between the steel and the concrete. The length of the beam is 12 ft.

10. A reinforced concrete T beam has the flange 98” x 4”, and the web
117 wide by 20” deep. There are 5 round steel rods 1}” diameter 2” from
the bottom of the web. The shearing force is 23,000 lbs. Calculate the ad-
hesive stress between the steel and the concrete, with E,/E, =15.

11. A steel pipe 24” diameter x §” thick has its ends closed and is full



SHEARING STRESSES IN BEAMS 215

of water. The length is 60 ft. and the ends are freely supported. Draw
a curve showing the distribution of shear stress cver the middle cross section.

12. A compound girder is built of one 18” x 77, wt. 7”——’!
75 1bs. per foot, rolled steel joist with two 10” X §” steel T
plates riveted to each flange. If the ends are simply 0-92
supported and the effective span is 30 ft., what is the
maximum uniformly distributed load which can be
supported by the girder ? (See Fig. 214.) If the
plates are riveted to the flanges with §” rivets, and in

a cross section there are two rivets in each flange, what ®
should be the pitch ?

b=~
Allowable fibre stress for plates = 7-56 tons/in.? 055"
' shear ,, ,, rivets = 4 ’e
’e bearing pressure ,, ,, =17 v ig

(Mech. Se. Trip., 1920.) Fra., 214.
13. The section of an open rectangular cast-iron channel for carrying
water is 12”7 wide and 8" deep, measured externally, the metal being
1” thick. The weight of the cast iron and the water it holds is 125 lbs.
per ft. run. The channel is 20’ long and is supported at its ends.
Calculate the intensity of the shear stress in the vertical sides at a point

7” from the top in a section §’ from the end. (Intercoll. Exam., Cambridge
1911.)

ke 30" >
b
4’,’<4"x1?a' T 4$; 14. The section of a girder is shown

Angles in Fig. 215. The girder carries a num-
ber of concentrated loads and for the
length of girder between two of these
loads the shearing force is 80 tons.
Show that, for this region, the pitch of
- the rivets connecting angle and web,
£ web which will limit the horizontal force to
be resisted by each rivet to 3 tons,is 3-4”
approximately. (Intercoll. Exam., Cam-

‘ﬁh% l bridge, 1912.)

15. If the cross section of a beam varies, but the depth is constant, show
that the formula (2) on p. 202 becomes

Sy(F M dI

40"
44~

Lweb

S

t
 —

Fia. 216.

=B\T ~ T @/

16. A cast-iron channel 20 ft. long and of semi-circular section, has a
mean radius of 4” and thickness 15”. It is supported at the ends and filled
with water. Find the maximum longitudinal stress and the maximum shear
stress produced. Density of cast iron 460 lbs./ft.® (Mech. Se. Trip., 1921.)



CHAPTER XIV
THE DEFLECTION OF BEAMS

158. Introductory.—In our study of beams we have seen how to
estimate the total action between two contiguous portions of a beam
supported freely at two points, or built in at one end and free at the
other, this action being conveniently resolved into a bending moment
and a shearing force ; we have also seen how to calculate, as accurately
as we require in engineering, the stresses due to these bending moments
and shearing forces. This may be summarized by saying that we have
seen how to calculate the strength of such beams ; but there is another
aspect of the problem of flexure which remains to be treated, namely,
the calculation of the stiffness of beams. In most practical cases it is
necessary that a beam should be not only strong enough for its purpose,
but also that it should have the requisite stiffness, that is, that it should
not deflect from its original position by more than a certain amount.
Again, there are certain classes of beams, such as those carried by more
than two supports and beams with their ends held in such a way that
they must keep their original direction, for which we cannot calculate
the bending moments and shearing forces without studying the deforma-
tion of the axis of the beam.

In this chapter, then, we shall consider the following problem : given
the external forces applied to a beam, the cross section of the beam,
and the geometrical conditions attaching to the ends of the beam, to
discover the curve assumed by the axis of the beam under the given
circumstances.

159. General Equations.—It was shown in § 118 that a beam of
uniform cross section, acted on by end-couples only, bends into a circular
arc of radius R, given by
M
.
where I is the moment of inertia of the cross section about its neutral
axis, and M is the value of the bending moment due to the end couples.
At the same time we derived an expression for the longitudinal stress
across a normal section. These two relations are accurate in the par-
ticular case for which they were found, and we explained that the formula
for the stress could be applied with sufficient accuracy to practically
all the cases of straight beams met with in engineering. In cases when

216

2 =
=
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there is shear as well as bending, i.e. when the bending moment is not
constant, the axis does not bend into a circular are, but to some other
curve determined by the loading. To deal with these cases we assume
that the above formula for R is still applicable, but that R is now the
radius of curvature of the strained axis at the point where the bending
moment is M.
As before we shall suppose, for convenience, that, in the un-
strained state, the axis of the beam is
horizontal and straight ; we shall also l x P x
assume that the lateral load acts ver- 3'/;
ticallv downwards. In Fig. 216 let OP A\__)»'?‘,E
be a portion of the unstrained axis of
the beam, O being any convenient point
of reference which is taken as origin of gy
co-ordinates, and P being at a distance x Fro. 216.
from O. Let AB be a portion of the axis
of the beam in its strained position, P’ being the displaced position of P.
Draw Oy vertically downwards, and let y be the vertical displacement

of P. Then we shall suppose that both y and gg are so small that their
x

squares can be neglected, and we neglect the horizontal displacement of P.
Let M = the bending moment at P or P’.
R = the radius of curvature of 4B at P’.
I = the moment of inertia of the cross section, for the present
supposed constant.
E = Young’s Modulus.
Then the fundamental equation from which we must deduce the curve
assumed by the axis of the beam is

Bl _
R
Now the radius of curvature R is given by
d2y
1 da
I NN
1 -~
+{1+(z))
2
Since we assume that <Z‘1_/> is negligible, we can write
x
1 | d%
R~ da?
and our fundamental equation becomes
d2y
El = =
+ dz®

.od? . i, . . .
Since _ﬂ’ =0 is the condition for a point of inflexion on a curve we

see that the curvature of the beam is reversed wherever M = 0 (cf. § 109).
v
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We must now make a convention concerning signs. In Chapter IX, p.
115, we agreed to consider the bending moment positive when it tends to
make the axis of the beam concave upwards. With the axes drawn as

in Fig. 216, y will increase with z, i.e. Z—y will be positive, when the tangent
x

slopes downwards to the right. Then, with the axis concave upwards,
dy

2
o will be decreasing as x increases, i.e. g—‘z will be negative. Thus we
x x

must write our fundamental equation in the form

dy
—El- =M. . . . . . . .(
axt )
where M is the “sagging > bending moment.

This equation can be written in other forms which are sometimes
convenient : since the shearing force, F, is equal to — dM /dx (§ 96),
we have, -on differentiating (1}

d d%y
F=— EI—-— EI s e e e e 2
dx ) dx 3 )
if the beam be of uniform section so that & and I are constant, and F be

considered positive when the right-hand part of the beam tends to move
upwards relative to the left.

Again, since ;E = w (equation (1), §96), by differentiating (2) we
x

have

dx2<1 )Ed4,..... (3)

if E and I are constant and w is the distributed load per unit length,
acting downwards.

If we know w, F or M as functions of z, we can obtain the equation
to the curve taken up by the axis of the beam by direct integration of
one of these equations. Each integration will involve one arbitrary
constant, and these constants must be chosen so that the conditions
which obtain at the ends * of the beam are satisfied. To find the deflec-
tion curve of the beam, then, we proceed as follows :

(i) Choosing a convenient point as origin, write down the general
expression for M, F or w in terms of x, and substitute in the suitable
equation, (1), (2) or (3) above. It will usually be most convenient to
take the origin at a fixed point in the beam, e.g. at one of the supports.

(ii) Integrate the equation so formed. In the case of equation (1)
this will introduce two arbitrary constants, equation (2) three, and
equation (3) four. On this account it will always shorten the subsequent
worn if we select equation (1) when we can.

(ili) Find the values of these constants from the prescribed conditions
of the problem in hand. We shall now illustrate the method by applying
it to certain particular cases.

* Or some other points whose displacements are known.
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160. Reinforced Concrete Beams.—In the case of reinforced con-
crete, EI is replaced by (E, X moment of inertia of compression area of
concrete) + (E; X moment of inertia of the steel), both moments of
inertia being measured about the neutral axis of the beam. Similar
modifications must be made in the case of other composite beams.

161. Cantilever with Concentrated Load.—In Fig. 217 let
OAB be a cantilever with the end O
fixed in a horizontal position, carrying
a weight W at 4 distant a from O. Let
I be the total length of the beam.

For any point P bhetween O and .{
we have

M = — W(q — ). Fia. 217.
Hence the deflection equation is

B1%Y — Wi — o

dx?
2 .
Eld_y:W<ax—x—>+A A
duv 2
2 3
and Ely - W(‘% — z_>+ Az +B . . . (i)

where A and B are constants to be determined. The conditions at the
end O (x =0) are y =0, and j_y =0. The first gives B =0, and the
x

second requires A = 0 from (i). Hence

d_y = _W_<ax — .1"_-> B (113)
dx EI 2
3
and y — 2—VEX1<(1$2 — j— - (iv)

Let ¢ denote the slope of the tangent at A, and y,, the deflection at A.
Substituting @ = ¢ in (iii) and (iv) gives
_ Wa?
LY:73
Wa3

T

Since there is no load on the part 4B, this will remain straight, and
in the direction of the tangent at 4. Hence, if y, denote the deflection
at B,

yp=ys+(l—a)g
_ Wad | Wa*l — )

3EI 2E1
:gg[—.(:ﬂ—a). e ()]

or Y5
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162. Cantilever with Uniformly Distributed Load.—Let OA be
the cantilever (Fig. 218) with the end
O fixed in position and direction, and
let w be the distributed load per unit
length. Then at any point P,

w
M=—_(l—2x)02
-2
Fia. 218. Hence
dy w
Bl 2 = (Il — x)?
dx? 2( )
dy w .
VBl = — _(l—a34+ 4 . . ..
) dx 6( O g
and Ely = 2%(1 — @+ Az +B. . . (i)

The constants 4 and B are given by the conditions ¥ = 0 when « = 0,

and gy == 0 when x = 0.

x
From (ii) the first condition requires
wlt wlt
— + B =0, " B=—_.
24 + o 24
From (i) the second condition requires
I3 3
_’ijuA = 0. A:ﬂ-
6 6
Hence, from (ii) we have
w wBxr  wlt
Ely=_(I—x%+ -~ — .
7 U A
— w 3]2p2 . -3 4 111
or Y 24E1(6l:c 423 4~ xt) <. . (i)
At the end d, where x =, the deflection y, is
wit wlt
3A—2H4E1(6_4+1)-§ﬁ e ()]

163. Supported Cantilever with Distributed Load.—Suppose the
cantilever of the last article has a support at a distance « from the fixed
end 0. We cannot, by the methods of pure statics, find the pressure of
the support and are not able to draw the bending moment diagram for
the heam, but the theory of deflections enables us to surmount this
difficulty.

Let R be the pressure between the support and the beam.

If the cantilever were unsupported the downward deflection of a
point on the axis, distant a from the fixed end, would be

ﬁ%wnaz — 4la® + a%
by (iii) of §162.
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If the cantilever were acted on only by the upward force R the
upward deflection of the same point, by (4) of § 161, would be
Ra?
3EI-
Therefore, under the action of both R and w, the downward movement
of the supported point would be
Ra?
2 __ 2y 7
24E1(6l 4la 4 a?) ST’

To determine B we must know the properties of the suppert
(i) If the support is unyielding and fixed at the level of the built-in

end of the cantilever, we must have

Ra?®
612 — 4 — =0,
24E1( o+ 0% = 3
which gives

R — ?ﬂl<6_ —4 + (%)
If a = I, 1i.e. if the support be at the outer end of the cantilever, R - 3wl/8.

(ii) If the support sinks a distance d, we have

9 61 4lg 4 a?) — 2O
24E1 3EI
3EI$

or Rz_(ﬁ_-v4+l)——a N )

When R has been found, the bending moment, shearing force and
deflection curves can be found by superposing those due to E upon

those due to w, paying due attention to sign.
diameter protrudes 5 ft. horizontally from

(i) Calculate the deflection due to a load of 2 ewt. hung on the end of
(i) If & vertical steel wire

a wall.

the rod. The weight of the rod may be neglected.

10 ft. long, 0-1” diameter, supports the end of the cantilever, being taut

but unstressed before the load is applied, calculate the end deflection on
in.? (R.N.E.C., Keyham,

application of the load. Take E = 30 x 10° lbs./in.?

1923.)
(i) The length of the cantilever is I = 60",

The load on the end is W = 224 lbs.
The moment of inertia of the cross section is

_l 4 . 1 4
I 64 X 24 = (-7854 in.

Hence, from (4) § 161, the deflection at the end is (@ = [ = 60")

3 1n3
224 lbs. X 60°% in. = 0-685".

3 x 30 x 10° lbs./in.® x 0-7854 in.
The area of the cross section

(ii) Let T = the tension in the wire (lbs.).
=0-007854 in.* Then the elongation is

120”7 x T lbs, i)

30 % 10° 1bs./in.? x 0007864 s ° ¢« - - U
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The load on the end of the cantilever — 224 — 7" [bs.  This will pro-
duce a deflection, using equation (4), § 161.

(224 — 7T') Ibs. 603 ins.?
3 x 30 x 10 Ihs./in.? < 0-7854 ins.*

(i1)
We must therefore have, equating (i) and (ii),

, (224 — T)216,000
1207 === 4= 100

252,0007 = 224 x 216,000
T =192.

Then the deflection is, from (i)

_120x192
30 X 10°x 0007854

=0-0978 ins.

Example 2.--A platform carrying a uniformly distributed load rests
on two cantilevers projecting I feet from a wall, as shown in Fig. 219. The
distance between them is 4/ feet. In what ratio might the load on the plat-
form be increased if the ends were supported by a cross girder of the same

YA —

oy
¥
B~
g
5
o

C T L, Cross Girder

0
]
I

Fic. 219.

section as the cantilevers, resting on a rigid column in the centre, as shown ?
It may be assumed that when there is no load on the platform the cantilevers
just touch the cross girder without pressure. (Mech. Se. Trip., 1914.)

Let w, = the safe load per ft. on each cantilever when unsupported.
— w,l?

2

Then the maximum bending moment =

Let w, = the safe load when supported,
4 = the deflection of the end of each cantilever,
3R = the pressure between each cantilever and the cross girder.
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Then from (8) of § 163, putting a =, the pressure is

R 3 3EIS _
g=gwd— 7 - - - o - (D)

We see from the figure above and (4) of § 161, that

5 (R/2)(1/4)* R
= T 3EI T 384EI
I having the same value for the cantilevers and the cross girder. Sub-
stituting this value of & in (i) gives

B 3wl R
2~ 8 128
48
or R = é?)w,l.
. . R 24
The upward pressure on the end of each cantilever is 3% 5uzl giving
24
a bending moment at the wall equal to @wzl'{ The bending moment of

opposite sign due to the distributed load is jw,l2 Hence it is clear that
the maximum bending moment due to both acting together must occur at

. 1 24 17 .
the wall and is equal to (§ 65> wol? = 130 w,l%. If this is to be equal

¥ 65
o -2-wll’, we must have w, = STk in other words, the load on the plat-
form can be increased in the ratio 65/17, or nearly 4/1.*

164. Beam with Uniform Bending Moment.—Let a beam Od
be acted on at its ends by terminal

couples M, as shown in Fig. 220, /\‘M m
and let ! be the length of the et A
beam. Then the bending moment Y
at any point P will be M. We 1 Lid
have then Yy
E]g_i‘_/ - M Fic. 220.
e i
B =—Me4+4 . . . . . o))
dx
and Ely = — %ﬁ +Ax+B. . . . . (ii)

where 4 and B are constants to be determined. If the conditions are
that the ends O and A do not move, we must have

y =0 when x =0 or [
The first condition requires that B = 0, and the second that

_‘_”_l +Al=0

cA=_ . . . . . . . (i
5 (111)

* The B.M. at the centre of the cross girder is 6w,l?/65, which is less than that
at the wall.
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Hence we have from (i)
=__—(l—=x
y= 2E1 )

At the centre of the beam, where x = %, we have

_ Mg
Yo = 8EI
¥, being the central deflection.

(9)

From (i) and (iii) we see that the slope at the ends is given by M{/2E].
These results might easily be obtained by pure geometry, since we
know that the curve is a circular arc of radius EI/M ; we leave this as

an exercise for the reader.

165. Beam Simply Supported at the Ends and carrying a
Uniformly Distributed Load.—

In Fig. 221 let O4 be the beam,
of length [, and let the distributed
load be w per unit length, w being
constant. Then the reactions at the
ends are each equal to wl/2, and,
taking the origin at O, the bending

Fie. 221 moment at P is given by (§ 102)

i D — ),

Hence from equation (1), § 159,

d2y w

S U
dy w et al
Ell = — (= — 2 V44
dx 2 < 2 3 >+
w sl x4
and Ely :—§<_g ——E>+Ax+b’ .

where, as before, A and B are constants to be determined.
do not move, ¥ must vanish at each end, i.e. when =0 or [.

B =0
d : i Al =0
" ~5(F—@)tAat-
", A :E’E
24
Then (i) becomes
wlad xt wix
Ely=— (2. — —
Y 2 ( 6 12> g

or Y (Bx — 2lx® + a%)

. w
T 24E]

)

If the supports

Hence

(i
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The central deflection, y,, is given by
__ 5wt
Yo = 384E1

166. Freely Supported Beam with Concentrated Load.—In
Fig. 222 let the beam OB be freely supported at the ends O and B, and

(10)

&, -RIz
; A
o:c—az—»’: 'B
; 7 aC -
' W
Fic. 222,

let it carry a load W at A4, the dimensions being as shown. The reactions
are

l—a

l
Taking moments on the left of P, the sagging bending moment at P,
when x is greater than a, is
M =Rx — Wz —a),

Therefore we have, x> a.

R, = W and Rzz%W

dz? .
Eld—;i:—Rlx—}—W(x—a). A )

Now, when x < a, the second term on the right-hand side of this
equation will be absent, so that apparently we shall have to deal with
two differential equations, one for 04 and one for AB. The integration
of these equations will introduce four constants, which will be determined

from the conditions y = 0 at each end, and the conditions that y and (dig
x

should be continuous at 4. We can, however, avoid these complications
by the following artifice.*
Integrate equation (i) thus:

dy__R,x2 w s
Bl =g tg a4
3
Ely = — Ré’” +%{x——a}3+Ax+B . (i)

If we agree to omit the { } terms when x < a, the equations will
have the correct form for the part OA ; also, since the second term on
the right vanishes when = a, it is clear that, if we use these equations

for the whole beam, y and ?il/ will be continuous at the point 4, whatever
x
the values of the constants 4 and B.

* Due to R. Macaulay of King’s College, Cambridge : Messenger of Mathematics,
Jan., 1919, xlviii.
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We find 4 and B from the conditions ¥y = 0 when 2 = 0 and z = [.
The condition y =0 when x = 0 gives B = 0, since the { } term is
omitted now.

The condition y = 0 when x =1 gives

RE W
= — ¥ —(l — w)® + Al
0 e T 6( ap® + 4
Hence
R w
A
:[(l——a)l__ (l——a)3:|W
6 6!
W

= _6lﬁ(l — a) (2] — a)
Substituting in (ii) we get
W a(l — a) » 4
= 2 —_ - — 2 _—
7 A A 7|

This is the equation of the deflection curve of the beam, it being
understood that the term { } is rejected when the quantity inside is
negative. Putting x = a, we find for the deflection under the load :

{x —a}® . (iii)

S A 0 5 )

. . Lo ,
When W is at the centre of the beam, i.e. when « == 5 this gives for

<~

the deflection we
48EI’

It should be noted that (11) is not the maximum deflection of the

(12)

l
beam, except when a has the value 5

167. Rules for applying Macaulay’s Method.—The above method
will be found extremely useful in dealing with deflection problems when
the bending moment is discontinuous, and further illustrations of its
use will be found below. In applying the method, it will be found
convenient to follow these rules :

(a) Take the origin at the left-hand end of the beam.

(b) Write down the bending moment for a point in the last portion
of the beam to the right (e.g. the part CB in Fig. 223, the part DB in
Fig. 225, and so on), taking moments to the left.

(c) Integrate such expressions as (x — a), which drop out for the
part of the beam where x < a, in the form }{xr — a}?, using the { }
to denote that these terms are rejected when the part inside the brackets
becomes negative.

(d) Uniformly distributed loads must always be made to extend to
the right-hand extremity of the beam, introducing negative loads if
necessary (see Case ii, p. 228),
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(¢) In beams loaded symmetrically, use the condition g—y =0 when
x

x :%, from symmetry, to find the constant 4 above; the constant B

is always zero.

168. Freely Supported Beam with Distributed Load over a
Portion of the Span.—

Case I (Fig. 223).—Suppose the load is w per unit length over the

R] Rz
A

ez P T

A oot ororonerr g
‘—x——b’
(A
y
Fic, 223.

portion CB of the span. Then, choosing a point P between C and B,
the bending moment at P is

— 2
M =Rz — ’ﬂ{?”__)_a}l;
where R, = wil — a? (i)
21
The general cquation for the deflection is therefore
dz
dxy — Ryx + {x — a}?

where the last term is rejected if x<a.
The integral of this equation is

R,z
6
the term { } being rejected when z < a.

To find 4 and B we have the,conditions ¥y = 0 when x = 0 and when
x = I. These conditions give
0=B . . . . . . . . (i)

0=_BP Yy i miB ..y
6 "2

Ely = — 2% ;_’4{95 —af+ Az +B . . (i)

From (i), (iii), (iv) we have B =0, and
A= 2%(1 — @)% + 2al — a?).

Hence the equation of the deflexion curve is, from (ii),
Ely=— ﬂl-—l%f)—— { —ayt+ (l —a)%(l* +2al —a?)  (13)

the term { } being re]ected when z < a.



228 STRENGTH OF MATERIALS

Case II (Fig. 224), when the load does not reach to either support.
This can be treated in the same way as the last by supposing the load w
to extend from C to B and superimposing a load — w from D to B,

2, R,
Rl Rz :___ A 3
@ b r w per unit length —
A PG YRE RN P e o S DO
C D C "D
I:‘— 1 k=2 per—|
Y v unit length
Fic. 224. Fia. 225.

as in Fig. 225. Then, taking a point P between D and B, the bending
moment at P is
w{x — a)? i w{x — a { b)?

2 2 ’

the second term being rejected when x < a, and the third when
¥ < (a 4 b). The deflection is then given by

M =Rz —

dz2 w w .
Elcﬁg = —Ra+ é-{z— ay? — §{x - a -+ b}?,
from which we have as before

3 -
Rad | w x — a}t — %{x—a + b}4+Adx + B,

6 5
the terms { } being rejected when the quantity inside the brackets
becomes negative. The constants 4 and B are found as before from
the conditions ¥ = 0 when =0 or I.  As the rest of the work proceeds
exactly as in Case (i) we shall not give it here. Other similar cases can
be dealt with in the same way.

169. Beam Supported at Each End, with a Couple Applied at
an Intermediate Point.*—In Fig. 226 let the beam AB, supported at

Ely = —

R# M
A ’c P B
; a \; b—R,
foms z ;
F z ‘
Fic. 226,

A and B, be acted on by a couple M applied at the point C, then the
reactions R, and R, are given by M/I.
The bending moment at Pis —R,x 4 {M}, (x>>a). Hence we have

d2
EI dTZ = Ry —{M}

* This extension of the Macaulay method is due to H. A. Webb.
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The integral of this can be written in the form

EI—-%-—M{x—a}—*—A N )]
" Ely Rg” —-%{{x—a}?—{-Ax-l—B Co. L (i)

As usual, B is zero, since y =0 when z =0.
The condition y =0 when x =1 gives

A=_R_gf+é'_ll.(z_a)2. CoLL L ()

Substituting this value of 4 in (ii) we get the equation of the deflection
curve, We shall content ourselves with finding the deflection at C,
where x = a.

Let y, = the deflection at C, then
Rw® Rual>? Ma

By~ 20y M — 0
= ?é—la( — 13 4+ —-—(l — a)?
Hence
Ma
= (l — —2a). . . . . . (14
v = sprt — a) (L — 20) (14)
The slopes at the ends are obtained from (i), and are given by
dy M 2 _ 9
(dx) Segn B el +3a )) 5
. . . . 3]
() dern
dx 6E11

Example 1.—A beam rests on two supports 20 ft. apart and carries a
uniformly distributed load of 3 tons per foot run. The moment of inertia
of the cross section is 2,700 ins.4, and £ = 13,500 tons/in.? Find the maxi-
mum deflection.

Since E and I are in inch units we will reduce the length and the load
to the same units.

! = 240 ins.
w = fy = 025 ton per inch.

Hence, from (10) the deflection at the centre is

5 X 0-25 tons/ins. X 240% ins.¢
384 x 13,500 tons/in.? x 2,700 in.¢
5 x 025 x 33 x 10¢ ins

= 384 x 185 x 097 % 108 — 295"

Example 2.—If the beam in Example 1 be propped up to the level of
the supports, the prop being 8 ft. from cne end, what will be the pressure
on the prop ?

Let y b - the deflection of the unsupported beam at a point 8 ft. ( = 96”)
from one end, and let R be the pressure on the prop when it is in position.
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Then, from (ii) of § 165, putting x = 96,
B 025

Y =24 X 13,500 x 2,700

025 x 144 x 144

24 x 13,500 x 2,7()0(

216 X 47,616

T 13,500 x 2,700

Now a force R tons acting upwards on the beam at 96” from one end
would produce an upward deflection (§ 166, (11))

R x 967 x 144°
3 x 13,500 x 2,700 x 240

Since the effect of R is to neutralize the deflection due to the distributed
load we must have

(96 x 240° — 480 x 96° | 964)

64,000 — 20,480 + 4,096)

= 0-282",

= 0-00728R ins.

0-00728R = 0-282
R = 38-7 tons.

Example 3.—A beam, 16 ft. long, has an I section 1 ft. deep, and is
A simply supported at the ends. The
L=192" * moment of inertia of the cross section
about the neutral axis is 400 ins.4 A
concentrated load of 5 tons is hung 12 ft.
frora a support. What is the maximun
deflection, and the deflection at the
middle point of the beam ? (R.N.E.C,
Keyham, 1919.) (See Fig. 227.)

Fia. 227.

Taking £ = 13,500 tons/in.?, the value of EI is 13,500 tons/in.? x 400
ins.t = 54 x 10° tons. in.?

We proceed exactly as in § 166, and use equation (iii) of that article,
putting @ = 144", I = 192", W = 5 tons. This gives

_ br x 48
¥ =6 <54 x 10° x

.
5534560 — @%) + g =z — 144)° inches.

.3
or 648 x 10% = 8,640x — “T {r - 144 L L ()
When & = 96”7 this gives
963
648 % 105 — 8,640 x 06 — —-
= 608,000
y = 0-094”.

To find when y is a maximmum we must solve the equation dy/dx = 0.
But a difficulty arises in so far as we do not know which form of equation
(i) we should use, as we do not know whether the value of » which makes
dy/dx vanish is less or greater than 144”. To decide this we investigate
the value of dy/dx when x = 144”: we have from (i)

. . 6dy v Jx? . B
6-48 x 10 e = 8,640 — - t 3{x — 144} .. (1)
When = = 144” this gives
d
648 x 106(2% = 8,640 — 15,550 = — 6,910,

dy . . . T .
Thus J‘é is negative, that is y is decreasing, and it will go on decreasing
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to the end = = 192.” Therefore the maximum value of y will occur when
@ is less than 144”; to find this value of 2 we take the equation
3z?

i 8,640 =0

which gives x = 107-3".
Substituting in (i) we find
Ymaz = 0-0985”,
170. Beam with Terminal Couples and Distributed Load.—Let
the ends of the beam be supported in such a way that no constraint is
offered to their angular deflection, and let external couples M, and M,

L‘“"c—"f 3 —.i

Fi1c. 228.

be applied to the ends as in Fig. 228. For the rest, the notation is as
before.

At any point P, the bending moment is, § 107, equation (18),

(lx—x). .o ()

Hence the equation of the deﬂectlon curve is given by
dty  l—«x z w
— M, —Z(lx — a2
B = " i
Integrating this twice we have

_ 2 2 2 3
pr =Dy “'M—ﬂl_x_—?_>+A.

dx 21

- 2

=2 (i)

. _(l—x)3M _.fM 4
Ely = 5 MM 2 6 I )+ x+B . . . (i)

If the ends of the beam remain at the same horizontal level we must
have

y =0 when z =0
y -

=0 2 x =1
Therefore
2

—%Ml—}—B:O L (i)

2 4
and —%M,—u;—i—}—Al-i—B:O. S .
From these we obtain

4= w_l3 — *_M_‘__Mﬁ

24 6
ZZ
B=_M,



232 STRENGTH OF MATERIALS

Substituting for 4 and B in (iii) we find

2(l —x) (x — 21 x(l? — 2
6EI1 M+ T6EIl ~egn T

The slopes at the ends are given by :

dy le
E <dx>z— 0

— — 2 3
y= 24(1 22 £ 2%, (16)

M, wp?
I A
EI( o+
or

dy M, IM, w3

— = — — — . . 3 . 17
<dx .- 361 T eR1 T 3aEI (17
(SX) MM, WP g
dx/,_,  6El 3EI  24EI

These results will be useful later.

171. Relative Movement of Supports.—Suppose that, in the case
just considered, the end A4 sinks a distance J relative to the end O. Then,
when z ==, we must have y = ¢ instead of y =0. The equations for
finding A and B are then

ZZ

- 6M1 + B = 0,
2 wit
d — M, — — 4 Al + B = EIJ,
an g — o7 + Al + 8
instead of (iv) and (v) above. These give
l wl®  EI
= —_(M, -~ M PRG Eanini
4 g ) T o+ 3
12
B=_M,.
6
Then from (ii) we have, when z =0
dy M, ™M, wB §
- =_ 4 24—+, . . . (19
<dx z=0 3EI + 6EI + 24EI+1 (19)

and, when x =,

dy M, M, wbP )

= =—__ — 2 ——— 4+, . . (20

dx)Z ! 6EI 3EI 24EI + l (20)
The deflection curve is obtained by adding a term 26/1 to (16) above.
172. Beams with Non-Uniformly Distributed Load : Graphical

Treatment.—When a beam carries a load which is not uniformly dis-

tributed the methods of the previous articles can still be employed if M

and | M.dx are hoth integrable functions of x, for we have in all cases

— %Y M,
dx?
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which can be written in the form

drdyy, M
dx %)_ EI
If I is uniform along the beam the first integral of this is
dy 1
— = l— v . . . . . . 21
dx EI Jde @D
where A is a constant. The second integral is
1 -
y — Az +B—E_I”M.dx.da, L@

If M and |Mdx are integrable functions of 2 the process of finding

y can be continued analytically, the constants 4 and B being found
from the terminal conditions. Failing this the integrations must be
performed graphically. This is most readily done by plotting the
bending-moment curve, and from that deducing a curve of areas repre-

senting jde. From this curve a third is deduced representing

Mdx.dx. We shall explain the process in detail for two cascs, and

illustrate them by examples.

173. Simply Supported Beam.—We have shown hLow to deduce
the bending moment diagram for any
loading in Chapter IX, so we shall
assume here that it is known. Let
the B.M. diagram for a beam OC be
the curve OMC in Fig. 229.

Then, starting at O, draw a curve
OND such that at any point the
ordinate PN represents the area OMP
of the B.M. diagram. In Fig. 229 we
have drawn the curves on separate
bases for the sake of clearness, but this
is not necessary. Then for this curve Fra. 229.

T
NP = j Md.
0
Next draw the curve OKH such that the ordinate PK represents the
area ONP of the previous curve, i.e.

'K = rPN.dx - [ *M .
0

-~ 0 JO O

Join OH.
T T
Now at O we havexz ==0,y =0, j [ Mdx = 0. Hence (22) shows

0Jo
that B = 0.
Q
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~r s

z
At ¢ we have 2 =1, y =0, and Mdxdx is represented by

.0

CH. Therefore from (22)
0= Al — - . CH.

Then at P we shall have
Q- f;ic'H — El. 4.
SCQK = PQ — PK
— ElAr — \“ | Mo

0
croNr
Erlae - L | | Mdwar!
( LY BTN t
= Ely.
That is, the ordinates of the curve OKH, measured from the line Of],
represent El times the deflections of the corresponding points of the

beam.
. o . CH
Again, if we draw aline F(/ at a height abhove OB cqual to - = El.A4,
we have

LN =LpP — NP

_ElA— ‘ Md
+ 0

{ e |
=EIl4 —— ‘ M.dx!
BT
_ Y
dux
Therefore the ordinates of the curve OND), measured from the line F@,
represent E/ times the slopes at corresponding points on the axis of the
beam, positive slopes being when the curve is below the line F(.
ScanLes.—Let the scales of the B.M. diagram be
17 == s inches.
1”7 = m lbs. ins.
Then 1 in.2 of the area of the B.M. diagram will represent ms lbs. in.2
Let the curve OD be drawn to a scale of

1” = n sq. ins. of B.M. curve.
== mns lbs. in.?

Then the scale of the slopes, measured between FG and OD will be

mns radians
El '

l// —
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Let the curve OH be drawn to the scale
1” = p sq. ins. of the slope curve.
= pmns? lbs. in.?
Then the scale of deflections, measured between the line OH and the
curve OH will be

. 2
= M ins.

El

174. Cantilever with Irregular Load.—In Fig. 230 BM is the
bending moment diagram for the cantilever
OB fixed at the end O, the bending moment L
being negative for a downward load. The 0‘4—.1:—»{

1!/

curve OS represents jde and its ordin-

i
ates are drawn downwards since M is ‘
negative. Therefore, if we reckon these

1

-_.B.-_-_w‘_.l_

ay
; ot : ax \S
ordinates as positive they will represent {
— (M.dx, ie. —{—E’Ig—y-. The curve OD is Fie. 230.
x

Y

then drawn from OS, representing —ijdx.dx, ie. Ely. The con-

stants A and B both vanish, since the curves make y and ;l_y vanish
x

with x, so that OB is the base line in all cases. The scales are deter-
mined as in the last article.

Example.—A beam of length 14 ft., freely supported at the ends, carries
a total load of 9 tons. The load increases uniformly from one end to double

L 2w
wi
a0 —]
4 v \B
768" ”
Fice. 231.

the intensity at the other end. The moment of inertia of the section is
300 ins.t, and E = 13,500 tons/in.? Calculate the maximum ceflection.

In Fig. 231 let AB be the beam, and LM the lpad distribution curve.
Let w tons/in. be the load per ft. at 4 and 2w the load per ft. at B. The
total load on the beam is then 1-5w X 14 X 12 tons. Hence

9

W =15 <14 x 12 = 0-0357 tons/inch.

At any point P distant x from A the loading is

0-0357 + 1%8 x 00357 = 0-0357 + 0-00212% tons/inch.
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Hence, § 96, the shearing force at P is

F = j (0-0357x 4+ 0-00212x)dx + A

F =00357z + 0-0010622 +4 . . . . . (i)
where A is a constant of integration, and the bending moment is
M= - j Fdx + B
or from (i):
M = — (0-01785z2 + 0-000353z* + Az + B) . . (ii)

where B is a constant. Since the beam is freely supported, M must vanish
when ¢ = 0 and z =1{. This requires B = 0, and

A = — 0:01785] — 0-0003531%.
Then (ii) becomes
M = 0-01785(lx — x?) + 0:000353(I%c — %) tons, ins,

The deflection curve is given by
dy
— Eld—ze =M.
EI = 13,500 x 300 = 4-05 x 10° tons. in.?
Hence
dy
405 % 10“d—z2 = — 0:01785(lx — x* — 0-000353(12x — x?).

Integrating this we obtain :

dy o flx? annflic? ozt
405 x 105Y = — 0-01185(—2— - ?) - 0.000053(—2— — —4—) + 0, (i)
and
lx® 2t (l%’ x5 : .
405 x 10%y = — (»01785(7)- - Tz) — 0:000353( - — %) + Cz + D, (iv)
The constants C and D are given by the conditions ¥y = 0 when 2 = 0
and z =1I. This requires D == 0 and

I (l‘ iz
¢ = 0-01785(5 - 1—2) + 0-000353(35 — %)
= 124,000. ,
Substituting this value of C, and I = 168", in (iii) and (iv) gives:
d
405 x 106(% = 124,000 — 344x? + 123-52% + 2160 . (v)

and
4-05 x 10% = 124,000z — 114-62® + 30-92* + 0-43225 . (vi)

d,
The deflection is & maximum when (_i% = 0, 1l.e. when

2:16x¢ 4 123-52® — 34422 4 124,000 = 0.

The real positive root of this is found by trial to be 85-2. Substituting
this value of x in (vi) we find

= 0-138”",

175. Beams of Varying Section.—When the section of the beam
changes from point to point, the moment of inertia I must be brought
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under the sign of integration in equations (21) and (22) of § 172, which
then read :

dy 1M
T E’j_fd”

10(M (23)
y=Az + B —E'U-idx. dx

The general method of procedure follows exactly the same lines as
before. If M/I and J. ?—Ildx are integrable functions of x, the work can

be done analytically, otherwise graphical methods must be employed.
In the latter case a curve of M /I must be taken as the starting point
instead of a curve of M.

Example 1.—A steel strip 4’ 6” long and 2” wide has a varying thick-
ness. The thickness at the centre is 3” and it decreases to zero at the ends
in such a manner that the thickness at a distance x ins. from an end is } Ii/:z:
The strip is supported at its ends
and carries a central load W. If %
the ecentre line in the unstrained
state is straight, show that the load
W will bend it into a circular are. A

Calculate the value of W to i
give a central deflection of 1 inch,
taking E := 30 x 108 lbs./in.? (In- Y
tetcoll. Exam., Cambridge, 1913.) Fic, 232.

In Fig. 232 let AB represent
the beam. Since the section of the beam is symmetrical about its middle
point O, it will be convenient to take the origin there.

Let & denote the distance of a point P from O, so that = 27 — &,

The depth of the section at P = {at = }(27 — &)}, Hence
1 27 —§& 27 —§

S XX T =302

1) P B

I

ins.*
The bending moment at P is
M= %’(27 — £), lbs. ins.

M W x 3,072
LT = —x~2— = 1,536

dty 11
5 = — 1,636y

which shows that the radius of curvature is constant, i.e. that the beam
bends into a circular arec.
Integrating this equation, we have

dy W&
aE = A — 1,536—E—,
wée
7

We must have y = 0 when & = 27, and on account of symmetry the

y =4& + B — 1768
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d
tangent to the curved central line will be horizontai when § = 0, 1.e. d_gé =0

when § = 0. Hence 4 =0, and

768 x 27:W
=—F

The deflection at the centre, where & = 0. is B. If this is to be 17, we
have

B

v
768 x 2725 =1

B 30 x10¢
T 68 x 729~ 768 x 729

Example 2.—In Fig. 233 the curve M represents the bending moment
due to air pressure on the blade of an aeroplane propeller at various dis-
tances from the axis, the diameter of the propeller being 10ft. The moments

W = 536 lbs.

1bs. ins.

L 14000 va
—
12000 ™. /

V{
| 100, -
174 00

I

Jos

ins’
40001 8000 4

\

N

N \
"

\a\*

10001~ 2000

27 247 367 48" 60"
Fic. 233.

of inertia of the sections of the blade are given in the table below. Regarding
the blade as rigid for the first 9” from the axis, taking £ = 1-6 x 10°%1bs./in.?,
and neglecting the twist of the blade, it is required to deduce a deflection
curve.

Dist. from Axis

{ins.) . . 9 12 15 18 24 30 36 42 48 54
I. (ins.4) . . 50-8 274 174 12:25 565 3-23 1-69 0-783 0-:278 0-074
Dist. from Axis 57 60
I . . . 00298 O

The blade is treated as a cantilever so that, strictly, the bending moment
ought to be considered negative and drawn downwards, according to our
conventions, but for convenience we disregard sign and draw all the curves
upwards on a horizontal base,
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The first step is the calculation of M /I at the various sections, and plot-
ting the results as a curve as shown.

We next plot the areas of this curve, beginning at x = 97, i.e. draw the

curve of j]%ldx

M
From this the third curve, y = J‘J‘i]-dx dx is obtained by the same

process.
In the original drawing of Fig. 233, the scales were
1” represents 6”
1”7 - 2,000 lbs. ins., bending moment
1” ’ 1,000 lbs./in.?, M /I.
Hence 1 sq. in. of area of M /I curve represented 6,000 lbs./in.2 The

M
curve [ de was drawn to a scale of 1”7 = 2 in.? of M /I curve = 12,000

Ibs. /in. 2

M
Therefore 1 sq. in. of area of the ‘ 7da; curve represented

6 x 12,000 = 72,000 lbs./ins,
M
The curve IJde dxz was drawn to a scale
M
17 =5 in.? of [%dw curve

o

= 360,000 Ibs./ins.

1 M

M
*. the scale of the j de dx curve was

The deflection is

17 = -—JM = (0-225" deflection.
1-6 x 108
The maximum deflection at the end of the blade
506 x 0-225

|

1-14” nearly.

176. Non-Uniformly Distributed Load and Terminal Couples :
Expressions for the Slopes.—If w vary from point to point along
the beam, let M, denote the bending moment at any point due to w.
Then, instead of (i), § 170, we shall have

M=M,+ ’l“*;‘fMl + 'gliMz,
and the differential equation for the deflection curve becomes
EI”° ::—Mo——__l_Ml—_Mz A )

Integrating this between the limits 0 and 7 we have

dy dy M, M, ! )
EN () —(5 =0 Mds
[(dz>x-l (dx)z_o] 2 2 L (ll)

v 0
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Again, multiplying (i) by = we have

2 _ 2 .2
EI( d -”)— ”” =M, - o,
. lr — x? x?
ie. EI(%(xd—z;—y):— ; Ml—lelz—ch0

Integrating this between the limits 0 and [ we have
d ! 2 2 7
il - M BMy e
a Y .

Since y = 0 when z = 0 and when a = [, the value of the left-hand side
is ]EI<(Z?{> Therefore
dr/,

dy M, M, 1 [
== = — Made . .
dxl T GET 3Bl BT ) (i1
Substituting this in (ii) we have
dy IM lM 2 1 [ 1 " l .
= —= | M,
[(z ;J tomr Tar | Mot — gy | Modz (i)

The integral \ Mz is given by the area of the bhending moment
Lo

1

curve due to the lateral loads only, and " M jadx is the moment of this
Lo

arca about the end x = 0. Equations (iii) and (iv) then give the slopes

at the ends of the beam.
If A4 = the area of the B.M. diagram due to the lateral loads,* and
Z = the distance of its centroid from the end x == 0,
we can write equations (iii) and (iv) in the form
dy] M, M, A AZ
-0

3El+6E1+E7—UE_I

M, M, AX
ST _OX L (24
[ :L .~ T 6EI 3EI IEI (24)

Putting ' == | — & == the distance of the centroid of the B.M. diagram
from the end z =1, the first of these becomes

™, | IM,
e S .. (@
[ ]xo 3EI 6EI+II (23)

177. Non-Uniformly Distributed Load and Terminal Couples,
with Varying Cross Section.—When the section of the beam is not
constant, / must be brought over to the right-hand side of (i) of § 176,
which then becomes

dy M, M, M,—M, «

dz2 1 I 1 I

* The phrase * lateral loads * does not include the terminal couples.
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Proceeding in the same way as before, the equations for finding the
slopes at the ends of the beam will be found to be

o(@),.~ (@), )= [ e [ e - o

Mz M, M,—M, (ta?
E Koty 24, ﬂ_d .1
(dng LI le+ I (27
M, 1 Mz,

2
It will be necessary to plot five curves : - T %, il 7

to find their areas.

178. Beam Acted on by Terminal Couples and Carrying a
Concentrated Load.—As an example of the use of the formuls estab-
lished in § 176 we shall consider the case shown in Fig. 234 (upper part).

< l —_—

T a He—b—FH
O+ 4.
M ¢ v

W
B‘._—-}T
0 c )
Za g_..b“_zalz—.lA
3 3 12T & |
Fia. 234.

The B.M. diagram for the lateral load W is the triangle OBA shown
in the lower part of the figure. In the notation of § 176 we have

A% = moment of area OBA about O
= sum of moments of areas OBC and 4ABC about O

2 2
:20, Wab+<a+% Wuab

3 2l
= W_‘;lf(z 2 3ab + b9
_ Wa(l? — a?
=
Hence, from (24), p. 240,
dy IM, M, Wa(l®~— a? (28)
(dx) 6Bl 3E1 ~ eEn
Similarly,
dy IM, 1M,  Wa(a®— 3al + 21%)
el = e — 2
(dm e=0 OSEI + 6E1 + 6EIl (29)

If the end A4 sinks a distance  relative to the end O, we can show,
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as in § 171, that we must add % to the above expressions for the values

of Z_y at the ends of the beam.
x

DEerLECcTIONS BY HARMONIC ANALYSIS

179. Introductory.—The following method * of calculating deflec-
tions enables us to deal mathematically with any load distribution
whatsoever, and will be made use of later when we consider the effects
of pulsating loads on girders. Regarding the load distribution as a
function of x, measured along the axis of the beam, it can always be
expressed as a series of sines or cosines by the method of Fourier’s Analysis,
so that if we develop formulax for the case of a load which is distributed
along the beam according to a law of sines we can deduce formule for
any other distribution of load.

180. Freely Supported Beam with Sinusoidal Distribution of
Load.—Consider the case of a beam of length [ freely supported at each
end and subjected to a load

w:wosin"’il”. S (30

per unit length, z being measured from one end, and » being any integer.

The equation for the deflection is
4
E'Ig—gf4 =W = w, sin 7?

By successive integrations we get

dy w,l nnx
EiZY = 7% ARG |
da? nw ©os l -

d3y wel? . nax
EIW__TnEsm—l + Ax - B

dy w3 nnxr A .
EIZl—x fmcos e +2_x2+Bx + C

wlt . nnx

Ely = —}—gx3—|—§x2+0x+D

e
where 4, B, C, D are constants. The conditions to be satisfied are:
%20 and y =0 when * =0, so that B =D =0 ; Z% must also
vanish when x = [, therefore 4 = 0; finally, since y =0 when z =
we get ¢ =0. Hence the deflection is given by

welt nL

y:msm_f N 1)

_ * The first investigators to adopt this method appear to have been Prof. S. P.
Timoshenko (Phil. Mag., May, 1922), and Prof. C. E. Inglis (Proc. Inst. (K., 1924).
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The bending moment is
d¥y  wyl®* . nnx
M= =Bl =™
Thus a sinusoidal distribution of load leads to sinusoidal distributions
of bending moment and deflection, when the beam is freely supported
at each end.

181. Freely Supported Beam with Uniformly Distributed Load.
—We shall illustrate the application of the Fourier series by analysing
the deflection of a beam freely supported at each end, and carrying a
uniformly distributed load w per unit length.

We can express the constant quantity w as a Fourier series by the
equation *

.. (32)

w:%(sin?—}——;—sin:??—{—%sinfj—jﬁ-{— ..... ) . (33)
Then from the results of the last article we can write down at once
2
M:gg_ sinyf;—{—%sin?i;f—f—éssin?f; ....... > (34)
and
4wt /., nx 1 , 3ax 1 . bmx
y:m s1n~l——|—?$s1n—l_+§sm—l ...... ) . (35)

182. Freely Supported Beam with Concentrated Load.—As
another illustration let us take the case of a freely supported beam
bearing a concentrated load W at a point distant ¢ from the end from
which we measure x. In this instance it is more convenient to begin
with the bending moment. We have

Wi —a)
=

M zfromzxz=0tox=a

Mz—ul,—a(l-—x) » X=atox =1

* For convenience of reference we give the formul® for expressing a function
f(x) as-a series of sines. If f(x) has the values f,(x) from z = 0 to = a, f,(x) from
z =atox =0b, fy(x) from ¢ = b to x = ¢, and so on, we can write

fiz) =Alsinnl—:c-+Azsing-l7Lx+ C A
where 0 to ! is the whole range of # which we consider, and the coefficients are given
by
. b
2 ((° . . naw
An=7 { j fl(x)sm@dx + j fol@) sin Tdet .. L }
1] a

The formula expressed thus enables us to deal with discontinuous load distri-

butions, such as triangular, etc. In the above case we have

i
Ap=~ w sin'in—xdx =-2E(1 — CO8 NT) ;
I 0 i an
4 4w
hence A, = ;l—”, Ay =4, = . . . 0; A3:3_n' etc.
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Using the formul® given in the footnote on the last page we find
that we can write

M= nll sin nla sin :nTx -+ 2lzsin g%u—l sin 2 4o, > (36)
Then, from §180, we see at once that
Wi /. ma . nx 1 . 27na . 27z
:m sstm-l——{—ﬁsm_l_sm_l——i- ...... ) (37)
and that W can be expressed as
)
W= _—<s1n 4 sin ¥ + sin f%? sin gzl% + ) .. (38

In making use of the results of §§ 180-182 in any particular case we
can attain to any desired degree of accuracy by retaining sufficient terms
in the series.

DEerFLECTION OF BEAMS DUE TO SHEAR

183. Introductory.—In calculating the deflections of beams we
have neglected the distortion which arises from the shear stresses, and
this can generally be done with safety. In certain cases, however, it
is desirable to calculate the amount of extra deflection which results
from the shear stresses. The exact calculation is not possible by simple
processes, but we can make a very fair approximation by the following
method, which is based on the foregoing theory of bending which is
itself not exact. On the assumption that the intensity of shear stress
is uniform over a narrow horizontal strip of cross section, we have shown
how to estimate its value in §150. By equating the corresponding
strain energy to the work done by the load in producing shear, we obtain
an approximate value for the deflection due to shear. For a more
accurate calculation we must employ the exact methods of St. Venant,*
if the shape of the cross section permits.

We shall not work out any general formula for the deflections due
to shear, as the results are apt to be unwieldy, but illustrate the method
by one or two special cases.

184. Cantilever of Uniform Rectangular Section with Con-
centrated Load at the End.—Let AB and CD (Fig.
235) be two normal cross sections of the beam separ-
ated by a distance dxr. Let dn be the relative dis-
placement of the two sections. The shearing force on
each section is equal to W, the load on the end ; then
the work done on the sectionis §W.dn. (Cf. §53, p. 61.)

Again, if ¢ is the shear stress at height y from the
neutral axis, the strain energy of the element ABDC is

i | L as
X e
j 20
* See Todhunter and Pearson’s History of Elasticity, Vol. II, § 91 and § 96.
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where d§ is an element of area of the cross section, and the integral is
taken over the whole section.
If b = the width of the section, and d is the depth, we have (§ 151)

Ib bdd \ 4
S
b2ds \ 16

Hence, equating the work done to the strain energy, we have

d
s 36W2 d4 df‘
yW.dn = dx [ « SO +y>bdy
. . 36W ) d“_dzy2 R
.dﬂ-wdx-mjlg 16 ) +y>d?/
(174 .
"d‘”'mﬁ B ]

Hence, if I = the length of the beam, the deflection due to shear, at the
outer end is

B50bd " 50bd

Adding this to the deflection due to the bending moment, the total
deflection is

Y 174 6W1
n = =

Wiz 6wl
8EI +50bd
AW 3 E &
~ Ebd® 1+ 10C° )

It E/C =5/2, this becomes
WE L 38y
, Ebd® 4
which shows that for a beam of usual proportions the second term,
which represents the effect of shear, is practically negligible.
185. Cantilever with Uniformly Distributed Load.—If in the
above case the load were uniformly distributed, being w per unit length,

the shearing force at a distance x from the fixing is w(l — z). Hence,
in place of (i) above, we have

(39)

6 u(l — z)dx
T

which gives
= 50bd<l T2

I3 . 2 -
* The expression given by St. Venant is Ly (I lﬁdla o 5 ). very nearly
(Todhunter and Pearson, loc. cit., p. 68).
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At the end, when 2 =1, we have
3wl
T 5Cba
Adding to this the deflection due to bending, the total deflection at
the end is

wl4 Jwi2
8EI  5Chbd
Swl4 2 E 42
e ]_ —_— . =T . T . . . . . 40
2Ebd3< 5T 12> (40)

These two examples should be sufficient to illustrate the method to
be followed in any given case. The cases where the shear deflections
are more likely to be of importance are deep girders with thin plate
webs, when the increase of deflection may be of the order of 10 per cent.,
and timber beams where the value of E/C is much larger than for steel.

EXAMPLES XIV

1. A straight girder of uniform section and length ! rests on supports
at the ends, and is propped up by a third support in the middle. The weight
of the girder and its load is w per unit length. If the central support does
not yield, prove that it takes a load equal to §wl.

2. A beam of T section 16” x 6” carries a wall over a span of 20 ft., the
load being 2-5 tons per foot run. The greatest moment of inertia of the
section is 726 ins.* Find the maximum stress and deflection.

Assuming that these are found to be excessive, find what relief of dip
and stress will be given by a cross beam of the same section carried on sup-
ports 16” below the supports of the main beam and having a 10 ft. span,
the middle point of the cross beam coming under the middle point of the
main beam. (Intercoll. Exam., Cambridge, 1905.)

3. A horizontal steel girder of uniform section, 45 ft. long, is supported
at its extremities and carries loads of 12 and 8 tons concentrated at points
10 ft. and 15 ft. from the two ends respectively. I for the section of the
girder is 4,000 in.* and £ = 30 x 10° lbs./in.? Calculate the deflections of
the girder at points under the two loads. (Mech. Se. Trip., 1911.)

4. A cantilever is to be made of several round rods of steel placed side
by side. It is to project 2 ft. and is to support a load of 1,000 lbs. at the
end. The deflection at the end is to be 01”7, and the maximum stress in

the steel 4 tons/in.? What size and how many
—F  rods should be used ? (Mech. Sc. Trip., 1913.)

5. Fig. 236 represents a wooden mast, with a
uniform diameter of 12”, which is built into a con-
crete block, and is subjected to a horizontal pull at
a point 30 ft. from the ground. The wire guy 4 is
to be adjusted so that it becemes taut and begins to
take part of the load when the mast is loaded to a
maximum stress of 1,000 lbs./in.2 Show that when
| the mast is unloaded there must be about 0-8” of
slack in the guy. Take E for timber =2 x 10¢
//;/;// Ibs./in.2  (Mech. Sc. Trip., 1914.)

30"

Fie. 236.
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6. The sides of a doorway are formed of two 6” x 3" I beams placed
with their flanges facing each other, and rigidly bolted down at ground level.
A third beam is to be placed horizontally between the sides, at a height of
10 ft., to form the top. It is found that the top beam is }” longer than the
width of the opening, and the sides are accordingly thrust apart by a jack,
acting in a horizontal line 6 ft. from the ground. If the greater moment of
inertia of the beams is 20-25 ins.¢, what force must be exerted by the jack,
and what is the greatest normal tensile stress in the section of the beams 6”
from the ground ? Take E = 30 x 10°% lbs./in.? (Mech. Sc. Trip., 1915.)

7. A beam 30 ft. long is carried on three supports in the same horizontal
line, one at each end, and the third 10 ft. from one end. Each span carries
a load of 1 ton at the middle point : find the reaction at each support. (Mech.
Se. Trip., 1916.)

8. A beam 6 ft. long has the Z shaped section shown in Fig. 237. The
beam is encastered at one end, AB
being horizontal, and its other end is
acted on by a vertical load of 2,000
1bs. passing through the c.g. of the
end section. Calculate the horizontal
and vertical displacements of the .
outer extremity of the axis of the SO
beam.

Show that by the addition of a yration.
horizontal force applied at right angles /- v
to the beam, thr}Z)Iflgh the c.g. of its 26'and 06
outer end, the displacement of the Vrrrz7ra
point can be made entirely vertical. Fre. 237
Calculate the magnitude of the force ’ ’
and the vertical displacement produced by the combined forces. (Mech.
Se. Trip., 1907.)

9. A bridge across a river has a span 2!/, and is constructed with beams
resting on the banks and supported at the middle on a pontoon. When
the bridge is unloaded the three supports are all at the same level, and the
pontoon is such that the vertical displacement is equal to the load on it
multiplied by a constant A. Show that the load on the pontoon, due to
a concentrated load W, placed one-quarter of the way along the bridge,
is given by

__uwo
16(1 + fi—il—'{)

where I is the moment of inertia of the section of the beams. (Intercoll.
Exam., Cambridge, 1922.)

y 10. Two equal steel beams are encastered
T ) at one end (see Fig. 238) and connected by a
a

tle

\p steel rod as shown. Show that the pull in
the tie rod is

3
r
. 32 + )
E )
] where d is the diameter of the rod, and I is
Fie. 238. the moment of inertia of the section of each

beam about its neutral axis. (Intercoll. Exam.,
Cambridge, 1923.)

11. The floor of & room is carried on 12”7 x 5” rolled steel joists, 40 ft.
long, which rest on the walls at their ends and are supported by stanchions
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at the middle. The supports were originally all at the same level and the
maximum fibre stress 7-5 tons/in.?, but it is found that one of the stanchions
has sunk 3” more than the walls. Assuming the load uniformly distributed,
show that, due to the settlement, the maximum fibre stress in the joist will
be increased by about 36 per cent., if E = 30 x 10¢ lbs./in.? (Mech. Sec.
Trip., 1920.)

12. A horizontal cantilever of uniform cross section is deflected }” by
a load concentrated at the free end. Calculate the deflection produced by
the same load distributed in a uniformly varying manner such that (a) the
load is zero at the fixed end, (b) the load is zero at the free end. (Mech.
Se. Trip., 1921.)

13. The beam in question 21, p. 141, has I = 320 ins.$, and E = 13,000
tons/in.? Draw the deflection diagram. (R.N.E.C., Keyham, 1921.)

14. Obtain the equation for the deflection curve of a cantilever of uniform
strength carrying a load distributed in such a way that it decreases uniformly
from a maximum at the fixed end to zero at the free end. The section of
the beam is to be rectangular, the depth being varied in such a way that
the longitudinal stress is kept constant along the top and bottom of the
beam, while the width is uniform.

15. A beam is loaded and supported in the manner shown in Fig. 239.
I for the cross section = 5,000 ins.4, and £ = 30 x 10¢lbs./in.? By graph-
ical means draw the deflection curve for the girder to the following scales :
1” = 4 ft. horizontally ; deflections 5 times full size. (Mech. Se. Trip., 1911.)

20"+ 40" i

—— 25—

A "
élo Tons 20 Jons

Fia. 239.

16. If a total load W be distributed over a cantilever of uniform section
in such a way that the intensity of loading varies uniformly from zero at
the free end to a maximum at the fixed end, show that the deflection curve
is given by

w
Y = R — Sl + o)
where # is measured from the free end.
17. A beam carries a load, w per unit length, which extends over a distance

a from one end. Measuring x from that end show that the deflection can
be expressed in the form

2wl 7‘2‘” 1 1 lﬂ) . knx
Y= %E12, kﬁ( TeesTT) s
where ! is the length of the beam, which is freely supported at each end.

18. A girder, freely supported at both ends, carries a distributed load
which varies uniformly in intensity from zero at one end to w, per unit length
at the other end. Measuring = from the end where the load intensity is
zero, show that the deflection is given by

Qultk=o ( — 1%+l knx
Yy =7I5E1k_1 o Sln—l—.




CHAPTER XV
BUILT IN, OR ENCASTRE, BEAMS

186. Introductory.—In all our investigations of the stresses and
deflections of beams having two supports, we have, with one exception,*
supposed that the supports exercise no constraint on the flexure of the
beam, i.e. the axis of the beam has been assumed free to take up any
inclination to the line of supports. This has been necessary because,
without knowing how to deal with the deformation of the axis of the
beam, we were not in a position to find the bending moments on a beam
when the supports constrain the direction of the axis. We shall now
investigate this problem. When the ends of a beam are fixed in direction
so that the axis of the beam has to retain its original direction at the
points of support, the beam is said to be built in, or encastré.

S{@F:::—i:—.—_:_—.—_: :::: >

Fia. 240.

Consider a straight beam resting on two supports 4 and B (Fig. 240)
and carrying vertical loads. If there is no constraint on the axis of
the beam, it will become curved in the manner shown dotted, the
extremities of the beam rising off the supports.

In order to make the ends of the beam lie flat on the horizontal
supports, we shall have to apply couples as shown by M, and M,. If
the beam is firmly built into two walls, or bolted down to two piers,
or in any other manner held in such a way that the axis cannot tip up
at the ends in the manner indicated, the couples such as M, and M,
are supplied by the resistance of the supports to deformation. These
couples are termed fixing moments, and the main problem of the encastré
beam is the determination of these couples ; when we have found these
we can draw the bending moment diagram in the manner shown in
§ 107, and calculate the stresses in the usual way. Since the couples
M, and M, must be such as to produce curvature in the opposite direction
to that caused by the loads, they will usually be negative, according to
our conventions, the positive directions of M, and M, being opposite
to those shown in Fig. 240.

* The propped cantilever of § 163.
R 249
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187. Encastré Beam with Uniformly Distributed Load.—Let
w=the load per unit length. On account of symmetry it is evident
that the fixing moments M, and M, must be equal. In § 169 we have
found expressions for the slope at each end of a beam carrying a uniformly
distributed load and acted on by terminal couples ; in our present case
these slopes must be zero. We must have, therefore, from (17), p. 232,

M, IM, wl®
SE1 T 6Bl T 94B1
and M, = M, Hence

0

wl?

M1=M2=—T2— B 0 5

Again, substituting these values in (16) of §170 we find for the
equation of the deflection curve

wr¥l — x)?

Y= —o4mr

At the centre, where x = %, we find from this that the maximum deflection
is
wlt
384E1 (2)

i.e., one-fifth of the deflection of a freely supported beam carrying the
same load.

The bending moment diagram is drawn as in § 107, and is shown in
Fig. 241, where the curve ARB is the bending moment diagram for the

2 g
#) #

H

distributed load acting alone, HK is the bending moment diagram for
the fixing moments, and HMK is the resultant bending moment diagram.
It will be seen that the greatest bending moment occurs at the ends,
and is two-thirds of the greatest bending moment (wl?/8) when the beam
is freely supported. The bending moment at the middle is

fwl? — fswl? = Jhwl?,
which is one-half that at the ends.

188. Encastré Beam with Single Concentrated Load.—Let a
be the distance of the load W from one end of the beam ; then, proceeding
as above, we have from (28) and (29), p. 241,
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2_ 2
lM,+l_]lé+ W(a 3al+2l):0
6l
IM, M, aW(i*—a? .
s T35t wa - 0
From these we have
_ (I —a)a
M, = __T—w
(3)
a%(l —a)
M, = —_,Tz__W

M, being the fixing moment at the end from which a is measured.
The equation for the deflection curve can be found by combining

the M, and M, terms of (16), § 170, with the W terms of (iii), § 166,

and using the values of M, and M, given by (3). At the point where W

is fixed, i.e. where x = a, we find

Wa¥l — a)3

Y="35m5
The maximum deflection can be shown to be

g Wa¥(l — a)?
3 (1 + 2a)2E]

When W is at the middle of the span, the fixing moments arc (putting

a=1/2) M, =M, = — }Wl, and the

deflection at the centre is WI3/192E1, 2

which is one-quarter of the deflection ,/T_T

the beam would have if freely sup- o MW

ported at the ends. RN
The bending moment diagram can T Al B

be drawn in the same way as before. h{’l

It is shown in Fig. 242 for the case H

when the load is at the middle of the Fic. 242.

beam : ARB is the bending moment
dlagram for the load W only, HK is that for the fixing moments, and
HMK is the resultant bending moment.

189. Encastré Beam with Irregular. Loading.—In this case,
referring to § 175, the slopes at the ends are glven by the equations (iii)
and (iv), p. 240, hence the fixing moments are given by :

1
Myt oMy=— o | Meds
0

l2

-

oM, +M2~-—jM0xdx—El

1
[Modx
Jo

the section of the beam being uniform.
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In the notation of § 176 these equations can be written
647

T

64z 64

2M, + M, =25 — =

A /6% )
M, ="(=—4). . .
' l<l ) ‘

m:%@—?>..w

Adding equations (i) together we have

M, +2M, = —

which give

1
ﬂh+m=_%[mm.....(m
vO

When the loading is symmetrical we must have M, = M, ; hence, from
(ii), in this case:
1
zm:m:—%jmw

0
That is

— M, = — M, =the mean height of the B.M. diagram for the
transverse loads only.

In any case (ii) shows us that the mean value of the fixing moments
must be equal and opposite to the mean bending moment due to the
transverse loads.

In the above equations M, is the fixing moment at the end from which
x is measured, M, that at the other end.

190. Varying Section.—When the section of the beam is not
constant, / must be brought under the signs of integration, as explained
in § 177. The right-hand sides of equations (26) and (27) of § 177 must
be zero, and thus we have two equations for finding M, and M, :

~l _ -l ~l
M, dv M, — M, \ T ‘ Moye ..
0 ! l 1} { +0 1 =
o (Fge - M= Mal2®, \‘IM"xd J )
PloT l Yol AN

the notation being that of §177.

191. Disadvantages of Built-in Beams.—The results we have
obtained above show that a beam which has its ends firmly fixed in
direction is both stronger and stiffer than the same beam with its ends
freely supported. On this account it might be supposed that beams
would always have their ends encastré whenever possible ; in practice
it is not often done. There are several objections to built-in beams :
in the first place a small subsidence of one of the supports will tend to
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get up large stresses, and, in erection, the supports must be aligned
with the utmost accuracy; changes of temperature also tend to set
up large stresses. Again, in the case of live loads passing over
bridges, the frequent fluctuations of bending moment, and vibrations,
would quickly tend to make the degree of fixing at the ends extremely
uncertain.

Most of these objections can be obviated by employing the double
cantilever construction. Since the bending moments at the ends of an
encastré beam are of opposite sign to those in the central part of the
beam, there must be points of inflexion, i.e. points where the bending
moment is zero. At these points a hinged joint might be made in the
beam, the axis of the hinge being parallel to the bending axis, since
there is no bending moment to resist. If this is done at each point of
inflexion, the beam will appear as a central girder freely supported by
two end cantilevers; the bending moment curve and deflection curve
will be exactly the same as if the beam were solid and encastré. With
this construction the beam is able to adjust itself to changes of temperature
or subsidence of the supports.

192. Effect of Sinking of Supports.—Referring to Fig. 228, p. 231,
suppose the end A sinks a distance 9, relative to the end 0. The fixing
moments at the ends of the beam are found, as before, by equating to
zero the expressions for the slopes at the ends. Thus, from (19) and
(20), p. 232, we find for the encastré beam,

__wlt_ 6EIS
12 1. )

A ()
wl?  6EI)
M= =g+ )

M, =

Similarly, when there is a concentrated load W at a distance « from
the end O (Fig. 234) we find

— a)2aW
M, (1 ;) @ 6?’216]
N )
a¥l — a)W _ 6EIS
M, =— = + o J

when the ends are fixed in direction.

Example.—A horizontal beam is encastré at both ends, and is 40 ft.
long. It carries a uniformly distributed load of 20 lbs./ft. over the first
half of the beam, and a concentrated load of 400 lbs. at the centre of the
second half. Sketch curves of shearing force and bending moment, and
determine the points of contrary flexure. Determine also the deflection
under the concentrated load, if I = 3-79 in.* and £ = 30 x 10¢ lbs./in.2,
{Mech. Sec. Trip., 1912.)

The arrangement is shown in Fig. 243, and it should be noticed that we
have drawn the beam with the distributed load over the right-hand end of
the beam, i.e. the half remote from the origin of x; this makes possible the
direct application of the rules given in § 167, without the artifice used in
§ 168, Case ii. '
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B, jgb
— 40"
Maf, 505 M

T R

- ! w= S. .

(e ey)
]

W=400/bs.

Y
Fic. 243.

The reactions are found in the usual way and are
My — M,
Ry = 400 — 0 lbs.
Ma - ﬂ[b
40

where M, and M, denote the fixing moments at 4 and B, measured in lbs. ft.
The bending moment at P is given by

Ry = 400 + Ibs.,

M = M, + 2R — Wiz ~ 10} — S{o — 20}2

40 —x x ¢ :
= M, (-46_) + oMb + 400z — 400{z — 10} — 10{z — 20}* (i)

Hence the deflection curve is given by

2
S (40—90 x o . _ o0
BIZY = — Mo (=g5—) = g5 — 400w + 400{s — 10} + 10{w — 20}
By integration we get

dy  M.40 —2)*  x? . 10
= T _ s — 102 —f{x — 20} A
7554 %0 GGMs — 20027 + 200{w — 10}* + {z — 20} +
M.(40—zx)® 3 2002 200 ., 10
e ol e AN ¥ o A Wkt PO iy 20% + Ax + B
Ely 240 240Mb 3 +-3 {x—10} +12{x ¥+ +
We must have y = 0 when x = 0; therefore
800
B = TM«:
We also require y = 0, when z = 40 therefore
64,000 200 x 64,000 200 x 27,000 10 x 160,000
404 + B = 540 My + 3 - 3 - i2
D4 = 20M, 20M, 175,000
A=y 3

d;
Since the beam is encastered at both ends, we must have d—z = (0 when
z =0, and when z = 40. Hence

20M¢ + A =0
, 10
- 186(;)0Mb — 200 x 1,600 + 200 x 900 + 3 X 8,000 + 4 =0

These two conditions give

40Mq + 20M, = — 175,000
20M, + 40M., = — 165,000,

whence we find

M. = — 3,082 lbs. ft.
{Mb = — 2,583 lbs. it.
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The equation of the bending moment curve is then got from (i); and
we have the following values of M :

%= 0, M = — 3,082 -lbs. ft.
x =10, M = + 1,045 lbs. ft.
x =20, M = + 1,167 lbs. ft.
® =30, M =+ 300 lbs. ft.
xz =40, M = — 2,583 lbs. ft.

Hence one point of inflexion occurs between z = 0 and x = 10; the
other between 2 = 30 and z = 40. To find the first, we have, from (i),
40 — x x
0 M. + 40Mb + 4002z = 0
which gives xz = 7-48 ft.
To find the second point of inflexion, the whole of the expression (i) for
M must be used, since £ > 20. This leads to

z? — 412 + 3082 = 0.
The roots of this are x = 9-8 and = = 31-4. The smaller root is inad-
missible as 9-8 is less than 20, and the equation is only true when z > 20.

Hence the second point of inflexion is where x = 31-4 ft.
The B.M. and S.F. diagrams are shown in Fig. 244.

F=388 /bs.
M 116 T1bs. L.
M=1045 fbs.ft !
i i
! :
A I ¢ D, J B
L 7.48' 4| |F=~12/bs
— 374 — ——
F=-412 /bs]
M-b- -2583 lbs. ft.
My~ —3082 Ibs.ft. Fic. 244,

Finally to find the deflection under the concentrated load, i.e. where
z = 10. We have above (z = 10),

27,000M, 1,000M. 200,000

Ely = 240 550 3 T104+B
2,700 100 200,000 200 200
=g Me— g 3 — Mt 5
1,750,000 800
—s T3
1,550,000

= 87-5M. + 62:5M: +

= 85,200 lbs. ft.?
Also EI = 30 x 3-79 x 10¢

3

1137 x 10°¢ lbs. in.?
0:79 x 10¢ lbs, ft.2

(Il
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00852

Y = —gmg = 0108 ft. = 13"

EXAMPLES XV

1. A beam 25 ft. span is built-in at the ends, and carries a load of 6 tons
at the centre, and loads of 3 tons 5 ft. from each end. Calculate the maxi-
mum bending moment and the positions of the points of inflexion.

2. A girder of span 20 ft. is built-in at each end and carries two loads
of 8 and 12 tons respectively placed at 5 ft. and 12 ft. from the left end.
Find the bending moments at the ends and centre, and the points of contrary
flexure. (Birmingham, VI, B, 1910.)

3. A beam of 30 ft. span has its ends built into the supporting walls,
and is loaded uniformly with 100 lbs. per linear foot. Find the maximum
bending moment, and draw the B.M. diagram to scale. (Birmingham, VIII,
1911.)

4. A horizontal beam of moment of inertia I and length ! is built-in at
the ends, and a couple M is applied to the beam, about a horizontal axis
at right angles to the beam at the middle point. Show that the slope at
the middle is given by M{/16EI. (Intercoll. Exam., Cambridge, 1922.)

5. A horizontal shaft of length I is subjected at its centre to a vertical
load W. The shaft fits in bearings at its ends, and when the slope of the
shaft at the ends is 6 the bearings exert a bending moment on the shaft
of magnitude k0. Prove that the central deflection of the shaft is

wiee (l:l + 8EI))
192EI\kl + 2E1
(Mech. Sc. Trip., 1923.)

6. A built-in beam of 30 ft. span carries two loads of 24 tons, 10 ft. from
each end. Obtain the values of the bending moments at the supports, and
at tho middle of the beam, also expressions for the deflection at the centre
in terms of EI.

7. A beoam of 20 ft. span is built-in at both ends, and carries a load
500 1bs. per ft. over the left-hand half of its length. Find the position and
magnitude of the maximum deflection, if E = 13,400 tons/in.? and I =
225 ins.t

8. A girder is encastré at each end, and has a span of 40 ft. The dis-
tributed load vaiies uniformly from zero at one end to a maximum of 1 ton
per ft. at the other end. Calculate the bending moments at the supports.

9. A built-in girder has a span of 36 ft., and I = 400 ins.? A load of
of 16 tons is on the girder at a distance 12 ft. from the left-hand end.
Calculate the position and magnitude of the maximum deflection, taking
L = 13,500 tons/in.?



CHAPTER XVI
CONTINUOUS BEAMS

193. Fixing Moments at the Supports.—When the same beam
runs across three or more supports it is spoken of as a continuous beam.
Suppose we have three spans, as in Fig. 245, each bridged by a separate

Fia. 245.

beam ; the beams will bend independently in the manner shown. In
order to make the axes of the three beams form a single continuous curve
across the supports B and C, we shall have to apply to each beam couples
acting as shown by the arrows. When the beam is one continuous girder
these couples, on any bay such as BC, are supplied by the action of
the contiguous bays. Thus AB and CD, bending downwards under
their own loads, try to bend BC upwards, as shown by the dotted curve,
thus applying the couples M, and M, to the bay BC. This upward
bending is of course opposed by the down load on BC, and the general
result is that the beam takes up a sinuous form, being, in general, concave
upwards over the middle portion of each bay and convex upwards over
the supports.

In order to draw the bending moment diagram for a continuous beam
we must first find the couples such as Mg and M¢; these are usually
referred to as the “ fixing moments.” In some cases there may also be
external couples applied to the beam, at the supports, by the action of
other members of the structure.

When the bending moments at the supports have been found, the
Bending-Moment and Shearing-Force diagrams can be drawn for each
bay according to §107.

194, Theorem of Three Moments for Uniformly Distributed
Load.—In Fig. 246, let A4, B, C be the lines of support of any two neigh-
bouring bays of a continuous beam.

Let I, and I, be the moments of inertia of the cross sections of 4B and
BC.
,» w;and w, be the (constant) load per unit-length on 4B and BC.
257
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Let 8, 5, ¢ be the amount by which the corresponding supports sink
under the lrad.
v M 4p = the bending moment to the right of 4.

w Mg, = ' » s left of B, and so on.
» Wy =the externa,l couple (if any) applied at B in a clockwise
direction.
Then
Mg, +Wg=Mgg. . . . . . . (1)

and there is a similar equation for each support. Now, for 4B take the
origin at the original position of the support 4, measure z to the right
and y downwards. The amount by which the support B sinks below the

A B c
[ 1, } 1, -
84t YR 6.
g I Mgy : My
yr ‘2
Fia. 246,

support A is 6, — 8,. Then, refernng to equation (20), §171, we see
that the slope of the tangent at B is
WMy LM, wil® | 05— 0, )
6EI, 3EI, 24EI, ,
Similarly, taking the origin at the original position of B for BC, the
slope of the tangent at B, for the part BC, is

LMy LMy | wl® 8o —6,
SEL, | 6EI, T 24E12+ A

Since the axis of the beam is continuous the expressions (i) and (ii)
must be equal. Equating them we have, on rearranging and multiplying
by 6:

L Mg + 2(11MBL + leBR)+ L Mg, + _1_<W1113 + w,l,?
Il Il I%
6E 6E
=—l—(8 —8,)+ A —(8p —8¢) R )

1 2

(if)

Now, if there be altogether » supports and n» — 1 bays, there will be
2n — 2 bending moments to calculate, for at the first and last supports
there will be only one bending moment. We shall have n equations of
the type (1) and n — 2 equations of the type (2), i.e. 2n — 2 equations
altogether, so that we shall be able to find all the unknown bending
moments.

The first and nth equations of type (1) will depend on the conditions
which obtain at the first and last supports : if we take 4 as typical of
the first support, we shall have, if 4 be quite free,
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if A be aeted on by a clockwise couple Wp,

M, =M.
for example, if the beam overhangs beyond 4 by a length ! carrying
a uniformly distributed load w per unit length, and there is no other
couple applied at 4, W = — wl?/2.
If the beam is encastré at 4 the slope there is zero, and we must
have, from (17), p. 232,

2MAR + MBL + wlll

Again, if C be taken as the last support we must have :
If C is free, M,, =0.
If a clockwise couple My be applied at C, M, = — Wp.
If C is encastré, from (18), p. 232,

1,2
My + 2M + 222 =0,

Equation (2) above is a more general form of what is usually known
as the “ equation of three moments.” The simplifications in particular
cases are obvious :

(i) If there are no external couples applied at the supports, we can
drop the second letter of the suffixes of the M’s and write

LM, l l M w,l,® | wl®
I, +2<I )M Iz +4 I, + 1,
6E
=_l;( 64)—}— (5 ' I )

(ii) If, in addition, the section be umform throughoutand I, =1, =1,
LM+ 2+ )My + 1Mo + Hw 1l13 + wilsd)

_6E1( %4 1 % l"50>. L4

(iii) If there is no sinking of the supports :
IM, +2(, + L)Mp + LMg + H(w.l,3 4+ wl,®) =0 . (4a)

This is the simplest form of the equation of three moments, and the
one most frequently required.

When the bending moments at the supports have been determined,
the portions of the reactions due to each bay can be found from (16)
and (17), §107.

195. Theorem of Three Moments for Concentrated Loads.—
Let there be a single concentrated load, W, and W, in each bay respec-
tively, as shown in Fig. 247 ; let the notation be as in § 178 and § 194.
Then considering 4 B, the slope of the tangent at B, with the origin at 4,
is from (28), p. 241,

l,M AR __ LMy, + W (a,2—1,?) + dg —9d,
6E1, 3EI, 6l.EI, L

(i)
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Fic. 247.

Now, considering BC, the slope of the tangent at B is, with the
origin at B,*

LMpp LMo, | a,Wy(l,2—a?) | 8¢ — 0y "
sEL, VeEl, T 6LEL, T 1 (i)
Equating the expressions (i) and (ii) we have
lMAR+2<l MBL+la BR)+12 CL+ ( )+ l—I—_(B aaz)
242
6E

ZT(SB_SA)+T(8B_SC) R ()]

1

Example 1.—In Fig. 248, AD is a continuous girder of uniform section,
and of weight w per unit length, resting freely on four supports 4, B, C, D,

- 2a—h—a—

; adne : j
A7 o
B
w
Fic. 248.

at the same level. The middle span carries a load W as shown. Determine
the reactions on the supports 4 and D. (Mech. Sc. Trip., 1922, B.)

The ‘‘ three-moment ’ equation for the supports 4, B and C is obtained
by combining (44) and (5); the term depending on W is given by putting
Wy=0,1 =a,a, =2a —z, W, =0, and I, = 2a in (5).

oM+ 6aMs+ 2aMo+ (@ + 8a3) + 21;(2«; — z){da® — (26 — @)% =0

or, since M, = 0,

9wa? w .
6Ms + 2Mc = — —— — 55(% — z)4ax — %) . (i)
Similarly, for BCD, we have, since M, = 0,
Ywa® W
2aMs + 6aMo = — —— — 5—(4a® — 27
or
9 2
2Ms + 6Mo = — —‘ii’— - 2a2(4a’ -z . . . (i)
Solving (i) and (ii) we find
9 Wz
MB = - 3—2wa3 - W(M — x)(5a —_ 22?) .
9 Wa 2
e Lt . % (2a — x)(a 4 2x)
Me 32%" 7 16a®

* Note that here {; — a, replaces a, and a, replaces I — a in § 188.
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Then (§ 107)

wa Mz — M,
Bimg +—0—
7 Wa
= gawa — 1—67,(2a — z)(6a — 2x).
wa Mc —_ MD
Bo=g +—4
7

Wz
wa — @3(2‘1 — z)a + 2x).

Example 2.—A railway line for a single railway is constructed with
two main girders, continuous over four supports, forming two side spans
each 150 ft. long and & centre span 180 ft. long. The four supports are at
the same level, the girders are of uniform section, and the ends are free from
bending moment. The dead load on each main girder is 0-8 ton per ft. run,
and the live load 0-4 ton per ft. run. Taking the case when a side span
alone carries live load, determine the bending moments over the supports.
Sketch the B.M. diagram and determine the pressures on the four supports.
(Mech. Se. Trip., 1910, B.)

Let the right-hand span carry live load; then the conditions of the
problem are shown in Fig. 249. The equations for finding the bending
moments at 4, B, C, D are given by (44) § 194. Applying the equation
first to the three supports A, B, C we have, in ton-feet units,

150M 4 + 660M 5 + 180M, = — }(0-8 x 150® + 0-8 x 180%)
= — 1,842,000
and, since M, = 0, this reduces to
Mp +0213Mc=—2,790 . . . . . (i)

Again, applying the equation to B, C, D we have, remembering that
» =0,

180M 5 + 660M¢ = — 3(0-8 x 180 + 1-2 x 150%)
= — 2,180,000
or
Mg 4 3-66Mc = —12,100. . . . . (ii)
Solving (i) and (ii) we find
Mp = — 2,040 tons. ft.
M, = — 2,745 tons. ft.

The bending moment diagram can now be drawn for the whole girder
by treating each bay as described in § 107, and particulars can be read from
the drawing. The bending moment diagram for each bay, on account of
the distributed load only, is a parabola of height wl?/8, which works out
to 2,250, 3,240, 3,375 tons. ft. for AB, BC, CD respectively. These para-
bolas are shown dotted. The bending moments due to the fixing moments
are given by the straight lines AB’, B’C’, C’D. The complete B.M. diagram
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3375
Nm13240

is then drawn by replotting the parabolas on the lines AB’C’D, as shown
by the full curve, as explained on p. 130.

If we only require to sketch the B.M. diagram we can find the principal
points on the curve by the formule given on pp. 130-131

The calculations are most conveniently done in the form of a table.

Units : tons, feet.

Bay. AB BC CcD )
M, (= BM. at left hand end) . . .| O | — 2,040| — 2,745
M, (= , Tmght , ). . .| —2040| — 2,745 0
M, — M, . . . . . . . 2040]| 695|~2745
My+M, . . . . . . . . .|-2040|— 4785 | — 2,745
P Y 08 12
L. . . 150 180 150
wlo . . ... 120 144 180
My — Myl . . o . . . . .| 12 482 | - 1525
/2 . .. . . . . . . . .| 715 90 75
Dist. of Mm. from) [equation (19) i
left hand end of bay § 107.] 57-8 85-18 90-25 ‘
(M, — Myl . . . . . . . 296 232 |
w 232
SMy — Myulyr . . L 118-4 9-28 130
WM, +My) . . . . . . . .|-102]-2392|-1372
wit/8 . . . .. ... 2,250 3,240 3,375
Mma: [equation (20), § 107] . . . . 1,348 857 2,142
(M, +M)/w . . . . . . . .|—2555|— 598 | — 2,285
/4 . . . L ... 5,625 8,100 5,625 |
At M,— MN\* M, + M,/(23),
Tl +( o ) Mt 2(§ 107) 3,366 2,143 3,572
A
Ge et 58 46-2 59-8
Distance of points of A, MM, j
inflexion from centre| _ |2 T 7520 51 (%4;3)
of bay (equation (24), A M,—M, : ©
§ 107) 5= 408 | 414 1750
w . (right) \
- 2 T oI
B.M. at middle of bay = % M ; Mz 1,230 848 ' 2,003 i
!
_ o . !
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The reactions at the supports are also given by (16) and (17), p. 130.
If Ryr and Rz denote the reactions to the left and right of B, and so on,
we have

Ryp = 60 — %‘_’ =60 — 136 — 464, B, — 464

Ra, =60 4 136 = 736

Rygr = 712 - %‘2 =72 - 39 = 68-1J'R' = 1417 14tal Reactions
Ry, —72 4 39— 750 at the supports.
Ror = 60 + 2'1'?05 =90 + 183 = 108~3}R° = 1842

Ry, = =90 — 183 = 717, Rp = 717,

Example 3.—A wooden beam 12” x 127 section, 12 ft. long, is supported
at its ends 4 and C, and at its middle point B, on 3 girders. FEach of these
girders is such that a load of 10 tons applied at the points 4, B, or O deflects
the corresponding girder 1”. Loads of 5 tons are applied to the beam ABC
at points distant 1 ft. and 5 ft. to the right and left of B. Find the magni-
tudes of the reactions at 4, B and C, taking E for the beam as 600 tons/in.®
(Mech. Se. Trip., 1918, B.)

6~ de 6', 1
e fole——m 5 ——te} b —5 —c
i

T

57ons 5 Tons
Fia. 251,

Let R4, Bz and R denote the reactions at the supports.
04, 03, dc denote the deflections of the supporting girders.
Then if R4, Rz and R; are expressed in tons,

Ry Rs

R, . .
64=T6-;63=I-0—;5g=1—(;7mches o)

Also, if Mz = the B.M. at B in tons-feet,
5x56 Mz 254 Ms

Bim—t% =%
1x8 M 54+ M
R = s T TB =——‘6——£ tons . ., (i)
30 — 2M
Ry =10—(R4+Rg) = —6—”
Hence, from (i),
25 + M 5+ M 30 — 2M
84 ='—2-0‘—‘£; dc = _;0 B; 0 = '—6‘0———3 (iii)
5 —3Mp . 5 —3Mp
05 — 04 = 80 ns. = 790 ft. .
bs oo —SMs 2 —3Ma425 @)
B — 00 = ——go—— ins. = 596 .

I for the beam = ¢ ft.¢
E = 600 X 144 tons/ft.2
s EI =600 x 144 x p; = 7,200 tons. ft.?
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The equation of three moments is (M4 = M¢ = 0),
24Mp = — l—:;5(6’ - 12) — 5x5(62 — 52) 4 @(65 —84) + (LE;[((SB—(SC)
6 I 1,
Substituting for ., ds, ¢ from (iv) this becomes
_ 5 x3 25 x11 " 43,200(30 — 6MB)
6 6 6 720
— 75 + 300 — 60M

24Mp =

Hence
84Mp = 2
Mz = 2:68 tons. ft.
Substituting in (ii) we have
27-68

Ry = . = 4-61 tons
30 — 5-36
Ry = Oh = 4-11 ,,
6
68
Re = 7—6_ —~128

Example 4.—One of the wing spars of a certain aeroplane is represented *
in Fig. 252 by the straight line CC’; the supports are at 4, B, C, 4’, B’, C".
The loads are completely symmetrical about the centre line of the machine,
and the supports are assumed not to move. Couples are applied to the
spar as shown ; the bending moments to the left of ¢ and right of C’ are
— 1,040 lbs. ins. It is required to find the bending moments at the supports.

l
66748~ 56— T
Y4

<2764 Ww=2-13!

5o buns, 4 759 Jbuins. 715 .,
¢
Fia. 252.

The units are pounds and inches throughout,
We have by symmetry

MCL = AIC'R = e 1,040; MBL = MB’E; AIB}: = MB’L; .LMA = ]”,4' (1)
Also :

ML'R = MCL + 115 . . . . . . (11)

Mprp = Mp; + 159 . . . . . . (iii)

For C, B, A the equation of moments is, from (2), § 194, putting
04 =03 =26¢=0,
8TMcr+174Mpr+132Mpr+66M 4 +} (2:32 X 872 + 276 x 66%) = 0 (iv)
For B, A, 4’ it is

66Mpr + 228M 4+ 48M 4 + 3(2-76 x 663 + 213 x 48%) =0 . (v
From (i) and (ii) we have
]”('R = — 1,040 + 115 = — 925 lb. ins. == Mc’L.

* In reality the loading along the spar acts upwards and the couples applied
at the supports are counterclockwise ; the spar is drawn upside down to agree
with our conventions of sign.
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From (iii) we substitute for Mzr in terms of Mz in (iv) and (v), and in
(v) we put My = M,. We thus obtain two equations for Ms; and M.
Solving them we find

Mg, = — 1,570 = Myr
M, = — 597 =My.
Then Mgpr = — 1,411, (from (iii)) = Mp1.

We have thus found all the bending moments at the supports. The
bending moment diagram for the whole beam can then be drawn in the
manner of Example 1, p. 261.

196, Theorem of Three Moments for Irregular Loading.—
When the lateral loads are neither concentrated nor uniformly distributed,
the equation connecting the fixing moments at three consecutive supports
can be derived from the expressions for the slopes given in § 176, in the
same way as above. In the notation of §§176 and 194, the slopes of
AB and BC at B are given by equations (24) and (25) of §176:

LM LMy, A

6EI, 3EI EIlll

.M T

d 2 BR CT 2 2
an + 35, + 6El, | Bl

where 4, and 4, denote the areas of the B.M. diagrams for AB and BC
on account of the lateral loads only,

whilst %, and &, are the distances of N

their centroids from A and C respec- M

tively, there being no sinking of the > gz.Az |

supports. LA (T § \c
In Fig. 253 AMB and BNC are = —&,— B }d—xz—u

the B.M. diagrams for 4B and BC, on | Z it

account of lateral loads, as indepen- Fic. 253

dent beams ; @, and G, are the cen-
troids of the areas AMB and BNC.
Equating the two expressions the moment equation becomes :

(l Mgy, + leBR>+ LMg,, + 6A17(1 6A2)_(2 (6)
1 I Izlz

The equation can be modified as in §§ 194, 195, when the section is
uniform throughout, or when the supports sink, etc.

IM*“‘+2 =0.

Example.—A continuous beam of uniform section is supported on three
props at the same level. If the beam

M N40 Tons ft. were not continuous over the centre
30Tons prop, i.e. if the B.M. at the centre
prop were zero, the loads on each seg-
4 c ment are such as to give the tri-
g T o rov— angular B.M. diagrams shown in Fig.
ra_za," 0 30,20_" 254. Find the B.M. on the centre
prop, the beam being free over the end
Fre. 264. props. (Mech. Sc. Trip., 1904.)
Let A, = area AMB.
A, = area BNC.
Z, = distance of centroid of AMB from A measured horizontally.
i 3 = ” " BN C 1 C

’”

E2] ’»
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Then
x 12
A7, :@_;_3 x %6 + 2 = % 12 = 2,800 tons. ft.3
1 10
ag, =052 20 20 X W00 4+ 1)~ 10,000 toms. .

The equation of moments is, then,

6 x 2,800 6 x 10,000
20M 4 + 100M5 + 30Mc - + =

20 30
Also M4y = M, = 0. Hence
100z = — 840 — 2,000 = — 2,840.
. Mp = — 284 tons. ft.

197, Irregular Loading and Varying Section.——In this case the
equations giving the slopes at the ends of a bay are (26) and (27) of § 1?7,
but the equations are made rather shorter if we take the origin at opposite

b L, L,
I, T ~—C, ¥
Al —— c
|~ ¥
Yy Yz
Fic. 255.

ends of the two bays. For AB take the origin at 4 and measure z, to
the right ; for BC take the origin at ¢ and measure z, to the left, as
shown in Fig. 255.

Then, from (27) of § 177, we easily deduce as the condition for con-
tinuity of slope at B, using the notation of §§ 194, 195:

J'l‘x' Ild 1+ ‘ zzdx2+MAR f jzl < >21 dzl

L1

24 l 2q 23 r z, 2)
M, \0 = x’+ BRJ (x”) "2 f i (z) 0. (7)
. 1 2

where M, and M, denote the bending moments on 4B and BC due to
the lateral loads only, and the rest of the notation is as in §§ 194, 195,
there being no sinking of the supports.

The various integrals must be evaluated by plotting appropriate
curves and finding their areas.

198. Dlsadvantages of Continuous Beams.—The general remarks
made in § 191 in reference to encastré beams apply for the most part
to continuous beams : the greatest bending moments are less than those
which would occur with the use of separate beams, but exact alignment
of the supports is an essential condition for the realization of this, and
any sinking of the supports may lead to unexpected and dangerous
stresses. Furthermore, if the section is not uniform, the calculations
become very laborious and consequently expensive in time and money.

199. Hinged Joints in the Spans.—Some of the disadvantages of
continuous beams can be removed by the use of hinged joints between
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the supports, and this construction is sometimes adopted for other reasons.
Since the bending moments at the supports are usually of opposite sign
to those in the central portion of a bay, there will in general be two
points between each pair of supports where the bending moment is zero,
i.e. two points of inflexion. At these points hinged joints can be made
in the beam without altering the bending moment diagram, but it is
important that the joints are at these points and not elsewhere. Otherwise
fresh calculations must be made, for the bending moment diagram may
be very different from that of a continuous beam without joints. For
instance, consider the case shown in Fig. 256, where ABCD is part of
a continuous beam with an overhanging end AB, and AKLMN is the
bending moment diagram. The points of inflexion for the bay BC are

Y. i
-7 0N
:I’ L ! \\\
BY N NC N
7. o
Fia. 256,

J, and J,, and we can make hinged joints in the beam at these points
without altering the bending moments anywhere. But suppose a hinge
is placed at J,: the presence of the hinge necessitates the bending
moment there being zero; this bending moment is the algebraic sum
of the B.M. due to the lateral load and that due to the fixing moments.
In the figure BEC represents the B.M. diagram for BC for the lateral
loads only, and the B.M. at J; is J,E; therefore, the fixing moments
must be such as to produce at J, a bending moment = — J,E. We
can find the fixing moment at C thus : make BK’ = BK, join K'E and
produce it to meet MC at M’, then CM"’,— — CM’, is the fixing moment
at C, and it can be seen that this may be considerably greater than when
the beam is continuous. This shows the necessity of either placing the
pin-joints at the points of inflexion of the continuous beam, or of making
calculations which allow for the presence of the pin-joint, if placed else-
where.

When there is a single pin-joint in one bay, such as E in Fig. 257,

' M2
=1, = T~ lep— 2,
A B C n

Fia. 257.

the calculations can be made as follows. We shall take the simple case
where there is a uniformly distributed load on each bay. Let R be the
action at £ between BE and EC, as shown in the diagram. Let é be
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the deflection at £. We can regard ABE as a continuous beam for which
M, = 0 and the support at E (i.e. the rest of the beam) sinks a distance 4.
_ We have then, if there are no external applied couples,

6E1 _
Z1MA -+ 2(l1 =+ l2)MB + }(wllla +w, lza) - l é (1)
2

the section of the beam being uniform throughout. Similarly for ECD
we have

2(13 + 1Mo + lqMD + i(walas +wl?) = —

6E10

oo )

Also

w,l,?
— My = "’22 —f—lle -
. (iii

) .
— My == "’3;“. — LR J

Eliminating § from (i) and (ii) we have
LM, + 200, + L) Mg} — L2(0s + L) Mo + 1M )

l l
+ ;(wll + wyld) —f (wl® +wd® =0 . . (8)
Eliminating R from (iii) gives
M ly
. c+“i+__o O 1))
2 3

Equations (8) and (9) replace the two equations of “ three moments ”’
which we should have for 4, B, C, D, if the beam were continuous. A
similar treatment can be applied to the more general cases of non-uniform
load, section, etc.

Beams REsTING ON CoMPRESSIBLE GROUND

200. General Equations.—We propose now to consider the following
problem : a beam AB (Fig. 258) rests on a compressible base, which

‘H— YA —_—
T TITITI I
puieisss TIITITY ITTITITY
: b >
}
¥y
Fia. 258.

for purposes of description may be referred to as the ground. Vertical
thrusts, such as P and ¢, are applied to the upper side of the beam.
It is required to find the bending moment at any point of the beam on
the assumption that the pressure, at any point, between the beam and
the ground is proportional to the deflection of the beam at that point.
The problem finds immediate application in such cases as railway sleepers,
where the thrusts P and @ would arise from the loads on the rails ; bolts
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in timber beams, where the loads P and @ would be forces applied across
the ends of the bolts, and other cases of a similar nature.

Let p = the upward pressure of the ground, per unit length of beam
= ky, where
y = the downward deflection of the beam.
M = the sagging bending moment at a distance x from 4.
Then we shall have
d¥y

Ela—z—z—M.......(lt})
and, from § 96, p. 117,
d:M
_d.;z_=p........(14)

where the positive sign is taken, as p is here acting on the beam in the
opposite direction to y. Hence, differentiating twice, we have

dy &M
Eldx“ =T g s T PET ky.
ds 3
a}¥4‘+ dmiy =0 . . . . . . (13)

where

K
m= 4/ =
\/4E1 (16)

The general solution of (15) is

y = A cosh mz. cos mx -+ B sinh mz. sin mx
~+ C cosh mx. sin mx + D sinh ma. cosmz . . . (17)

Then, at a distance x from the origin the bending moment is given by (13),
and the shearing force, F, is given by (§ 96)

aM ddy
dx Bl da®

201. Single Load at the Centre of a Long Beam.*—If a load W
rests on the top of a long beam which itself rests on a horizontal com-
pressible bed, the central part of the beam will be depressed, but the
extremities may rise off the ground. Let 2! be the length of beam in
contact with the ground, and measure « from one end of this part of the
beam towards the other end. Referring to equation (17) of § 200, when

dry diy
T 0, and s

A=B=0; C=D.

F=— (18)

z =0 we must have y =0, = 0. Hence we require

* § 201 is due to A. Saldanha, to whom I am indebted for permission to give
it here. The importance of his treatment lies in his recognizing that the ends of
the beams may leave the ground, a fact which other writers have overlooked.
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At the centre we must have, from symmetry, Z—y == 0, so that we get
x

2C cos ml. cosh ml = 0.

7
Joml =,

2
Hence the length in contact with the ground is 21 For equilibrium we
m
must have

1
W =2 [ ky.dx =2k 9_ sinh ml. sin ml.
) m

=200 inn T
m 2
mW

=T
2k sinh 2~
2

The greatest deflection occurs when x =, and is given by
W

Yoaw == C’?g(cot ml + coth ml) = n‘)_k cothy—;

EXAMPLES XVI

1. A continuous girder of uniform section rests upon four supports at
the same level, forming three¢ equal spans of 100 ft. The girder carries a
load of 2 tons per ft. uniformly distributed. Draw to scale the B.M. diagram
for the whole girder, and calculate the loads carried by each support. (Mech.
Sc. Trip., 1906.)

2. A continuous girder of two equal spans, each 75 ft. long, is carried
on three supports, all at the same level. Find the maximum bending moments
and shearing forces—(a) when one span is loaded with 1,000 1b. per lin. ft. ;
(b) when both spans are loaded with the same intensity of load. The beam
cannot rise above any of the supports.

Draw the B.M. and S.F. diagrams in each case.

What distributions of the uniform load will give maximum positive and
negative shearing forces at the centre of either span. (Birmingham Uni-
versity.)

3. A thin steel strip is laced in and out through a row of stiff pegs. The
pegs are all }” diameter, and their centres are spaced 20” apart in a straight
line. There are five pegs in all, and the section of the strip is a rectangle
1” x %" Find the thrusts on the several pegs, taking E = 30 X 10¢
Ibs./in.? (Mech. Sc. Trip., 1914, B.)

4. A straight elastic beam of uniform section rests on four similar elastic
supports which are spaced ! feet apart. The supports are such that they
compress d for each unit of load upon them. Show that, when a uniformly
distributed load of total amount W comes on the beam, the reactions at the
centre props are each

11  3EId
6 I
"12EId

5+ -3 (Mech. Sc. Trip., 1919, B.)



CONTINUOUS BEAMS 271

5. A continuous girder, carrying a uniformly distributed load of 1-5 tons
per foot, covers three spans. The end spans are each 20 ft. in length and
the central span is 30 ft. Calculate the greatest bending moment and shear-
ing force, and the positions of the points of contraflexure. (Mech. Sc. Trip.,
1919.)

6. Fig. 259 shows diagrammatically in plan the arrangement of girders
carrying a floor. The load is carried by the cross-girders and these are

f—1 I—— f

Hi= == 1= =
= =1

g =L alw

Fie. 259.

supported on two main continuous girders resting on stanchions at their
ends and at the middle.

Draw the B.M. and S.F. diagrams for one of the main girders when there
is a uniformly distributed load of 200 lbs./ft.? on the first three panels and
100 lbs./ft.2 on the second three panels. Each panel is 16’ x 8. (Mech.
Sec. Trip., 1921.)

7. Four parallel: girders, with the same cross section, are laid across
two parallel rigid supports. The distance between the supports is 3a,
and the distance between each girder is ¢. The girders support two longi-
tudinal beams, laid on top of them parallel to the rigid supports, and
dividing each of the four girders into three equal spans of length a. The
length of each longitudinal beam is 3¢, and each carries a load W uniformly
distributed. Show that, at the point where a longitudinal beam crosses
one of the two central girders, the pressure between them is W(15a3I, +
11¢31,)/3(20a3I, + 10c3I,), where I, and I, refer to the girders and beams
respectively. (Mech. Se. Trip. B., 1913.)

8. A 12”7 x 12” timber beam, 24 ft. long and initially straight, is sup-
ported at the two ends and at the middle. When a load of 8 tons is placed
on the middle of the beam, the central support sinks 1-5” below the line
joining the two end supports. Find the pressure exerted on each support,
if £ =145 x 10% lbs./in.2 (Intercoll. Exam., Cambridge, 1919.)

9. A uniform continuous girder ABC rests upon three similar floating
supports, situated at each end and at the middle point B. The buoyancy
of each float is such that every additional ton of load increases its immer-
sion by A&. Initially all the floats are equally immersed. If a load W tons
be placed on the girder at B, show that the proportion carried by the central
float is W(1 + BhEI /a3)/(1 + 9hEI /a®), where 2a is the length of the girder.
(Mech. Sc. Trip., 1922.)

10. A uniform beam of length I rests on a compressible ground, and carries

a uniformly distributed load w per unit length. Assuming that the beam
makes contact for the whole of its length, show that the deflection at a distance
z from one end is given by

w .
Y =3 [2 — (cosh mz — sinh mz) cos mx

— (cosh m.l — z — sinh m.l — z) cos m.l — z] .



CHAPTER XVII
RIGID ARCHES

202. General Discussion.*—Beams which are curved are frequently
used in engineering, particularly in roof work and bridges ; in such cases
they are usually called arches or ‘‘ arched ribs.” In general the applied
loads may have any direction, but they are most commonly vertical,
the arch having a vertical axis of symmetry. We shall limit ourselves
to the cases where the loads are vertical, and assume that the dimensions
are such that the Bernoulli-Euler theory of bending is applicable. Such

Fic. 260.

an arch is shownin Fig. 260, 4 and B being the abutments, W,, W, ... W
a series of vertical loads.

The reactions at 4 and B can be resolved into vertical and horizontal
components as shown, and since the external loads are only vertical the
horizontal components of the reactions at 4 and B must be equal.

The action at any section P will consist of a shearing force F normal
to the axis, a thrust 7' tangential to the axis, and bending moment M.
These three quantities can all be determined when the reactions H,
Y,, Y, (and the bending moments at 4 and B if these are not pin-joints)
have been found.

If A and B are not pin-joints, let M, and M, be the fixing moments,
then considering the equilibrium of 4 P, we have, taking M positive when
it increases the curvature,

M=M—zY, +a W, +2x,W,+Hy=M,+Hy . . . (1)
where M, is the bending moment at @ for an imaginary horizontal beam
AB carrying the same loads.

n

* A considerable investigation of the theory of arches was carried out by Bresse.
See Todhunter and Pearson’s History, Vol. 11, Pt. 1, p. 352.

272
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Also F=(—Y,+W,+Wycos+Hsinb . . . . (2

and T=(Y —W,—Wg)sinb+Hcos . . . . . (3)

Thus, if we can find H, M, and Y, the resultant action on any cross
gection can be determined. The ease with which these three quantities
can be found depends on the nature of the arch. There are three main
types of arch to consider : arches with hinges at the abutments and the
crown, arches with hinges only at the abutments, and arches with no
hinges at all. The first type can be dealt with by the methods of
statics and call for no special treatment here.

GENERAL TBEORY

203. Arch Hinged only at the Abutments (Fig. 261).—In this
case we can find ¥, and ¥, by simple resolution of forces, and

Fic. 261.

the fixing moments at A and B are zero, but we cannot find H by the
methods of pure statics. The difficulty is overcome by working out the
deformation of the arch and writing down the condition that the distance
AB is unchanged.

Consider an element ds of the axis, at P, and suppose it is rotated
through an angle d9. Then if AP remains fixed and PB remains rigid,
B would move tq a position such as B’ if it were free, and

BB' = PB.dy
The horizontal displacement of B would be
BD = BB’ cos B'BD = BB’ cos QPB = éy.PB cos QPB

= y.0p
But dy = 8s 1 1 where 1 _1 denotes the change of curvature
VTR R) B R 8

at P. Therefore 1 1
) BD = ybs.( — — =
yos (R Fo
_ Myés
El
where M is the bending moment, and I the moment of inertia of the
cross section, at P.

, by §122,
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Hence the total horizontal displacement of B towards A, due to a
change of curvature all along the arch, if free, would be
J‘BM y.ds
4 BI
But this must be zero. Hence, since we have M = M, + Hy as in
§ 202, we must have

fwds —0

4 EI
or
B
_j M,yds/I
A
H= —2 4)
g yids/1
Ja
If I be constant this becomes
B
— j Myy.ds
A Ied
H = 5 s . . . . . . (0)
J y*ds
4

When the arch is sufficiently flat * we can write dx instead of ds.
In other cases, such as circular and elliptic arches y and ds can be expressed
in terms of a single parameter and the integrations effected if M, takes
a suitable shape. More usually graphical integration must be employed.

204. Arch Built-in at Both Ends (Fig. 262).—In addition to the

Fic. 262.

horizontal reaction H we have the fixing moments M, and M, at A and
B to find.

Let M, denote the bending moment due to the vertical loads only,
as before.

We have three quantities to find: H, M, and M,. The conditions
for finding them are (i) the horizontal and vertical displacements of B
are both zero, and (ii) the total change of slope from 4 to B is zero.

The bending moment at P is

M = M, + Hy + M,_.’l”_(Ml —M) . . . ()
M and M, being taken positive when they tend to increase the curvature,

as before.
* When rise is not more than %; of the span.
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The notation of Fig. 262 being the same as that of Fig. 261, we have

1 MéSs .
oy = Os ( 7 Ro) B (ii)
BD =]‘§¢“’, asin §203 . . . . . . (i)
and
B'D = PB.$y. sin B'BD = PB.5y. sin BPQ
= (I — x)dyp
_ Ml — x)bs . (iv)
EI

The conditions enumerated above require, then,
gBM:O (BMydszo jBM(l—x)dszo.
4 BI ’ 4 BI ’ 4 EI
Substituting for M from (i), these become :

jBMods+H[yds+M1ng§_u [i:o. (6)
A

_ B
j‘ <§/dS+H[?/dS+M’de MllejxyI.ds:O ™
4 4 4
(I — x)ModS' B(l — z)yds (I — x)ds
Sl LA M [__
jA I ‘A 1 Pl
M, - M, "B(l-—x)xds_o
l o1 h

Multiplying the first of these by I and subtracting from the last we
have for the third equation :

B2,
( oxds+H“xydv+Mj‘x(Ils M, lM"des=0. )
J4 4 J4

When the integrations have been effected, graphically or otherwise,
these three equations suffice to find M,, M, and H. The bending
moment, etc., at any point can then be determined as in § 202.

It must be noticed that here and in §203 we have neglected the
shortening due to direct thrust. In the case of a fairly flat arch we
can assume that the axial thrust is everywhere equal to H, so that the
shortening of the span due to H will be HI/ES. When this is to be
taken into account we must add I/ to the denominator of equation (4)
and [I/8 to the denominator of (5), and Hl/ES should be added to the
left-hand side of equation (7), where § is the (constant) area of the cross
section. If the cross section is not constant a suitable expression is
easily worked out.

205. Deflection of Arched Ribs.—Suppose first that the slope at

4 is changed by an amount 66, as shown in Fig. 263, while 4B remains
rigid. Then P will be displaced to P’, the angle PAP’ being d6.
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Fra. 263. Fia. 264.

The vertical displacement of P = PP’ cos
= AP.66. cos 0
= 2.00.

We must next consider the deflection at P due to changes of curvature
between 4 and P. Let @ be an element ds between 4 and P, the bending
moment at P being M. Then we have seen that the change in angle
between the ends of ds is given by

Suw — M58
L 7
From similar reasoning to the above it can be seen that this will give a
vertical deflection at P equal to (z — &).0y (Fig. 264). Hence the total
vertical deflection of P is

P
d =260 + j (& — &) .dp

A
Pz — E)M :
= z.60 -{-j 2 ds . . . . . (1
r TE ()

At B we must have d = 0,

Bl — &M .
0=100 + J (—.—.d N ¢ 1
L, B " ()

From (i) and (ii), we have, eliminating 40,
Py — B(] _
d— “(x E)M.ds—f[ i—&8M s

VB i), EI
or
1( [PMds (PMEds | (PME, )
d=_. - O Z2dst . .. 9
E{xJBI = 117 ®)

If the arch is fairly flat we can write d£ for ds; the expression for the
deflection then becomes

oz el
Y e
E 1 Jo 1 Il 1

If the section is uniform I comes outside the integrals in both (9)
and (10). It will be seen that, when we can make the approximation
ds = dg, the shape of the beam does not directly influence the expression
for d. Therefore the deflection at P is the same as the deflection of
the corresponding point K of a horizontal beam 4B subject to the same
horizontal distribution of bending moment, the section of the hypo-
thetical beam at K being the same as the normal section of the arch at P.
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206. Temperature Stresses.—Except in the case of the three-
hinged arch, a change of temperature produces changes of stress: if the
temperature rises, the span of the arch would increase if it were not
prevented by the abutments. The resistance offered by the abutments
introduces extra forces and moments on any section ; in general, there
will be an extra horizontal thrust H’, extra vertical reactions ¥,’and Y/,
and extra fixing moments M,’ and M,'.

Let a = the coefficient of linear expansion,
t = the rise of temperature,
| = the span at the initial temperature.

Regarding 4 (Fig. 265) as fixed, the horizontal displacement of B
away from A, if free, would be ail.

P
H 14
HIAI’ Ey MZ ’
o1 ) AR H
) 4
y’-d\ [ V4
Fia. 265.

The extra bending moment at any point P will be
M =Hy + M, — %Ml' — M)
The horizontal displacement of B towards 4 will be (as in § 204)
r’ M'yds n H'
4 EI T ES

Since this must neutralize the displacement arising from the increase of
temperature we must have

BM'yds H'I .
atl == J‘A_E_I— E—S’ . . . . . (l)
Also, as in § 204, we must have

B M'ds

— =0 . . . . . . (i)
| (

B M’ (] —
j Aﬂﬁﬂi’; 0 . . . (i)

These three equations will enable us to find H’, M," and M,’. The
ordinary statical equations of equilibrium will then give Y, and Y,'.
The corresponding stresses can then be estimated.

When the arch is symmetrical M, = M,’, and equations (ii) and (iii)
become the same.

In the case of the two hinged arch M,’ and M,’ vanish, and Y," and
Y, also vanish. The equations (ii) and (iii) are not true as they do not
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allow for the change of slope of the arch at the hinges. We have in
this case

M = H'y.
B rr,,2 ’
atl = JA%S -+ %—é—, from (i)
allE
SH =" " . . . . . . (11
{Byzds_{_l (ab
Ja I S
If I is constant this becomes
=% g e )
J y2ds +
4

It should be noticed that throughout this chapter we have found it
convenient to reverse our convention with regard to the sign of bending
moment ; we here take a ¢ hogging ’ bending moment as positive,
whereas, in dealing with straight beams we took a ‘‘ sagging >’ bending
moment as positive. But in both cases a positive bending moment gives
a positive increase of curvature, which is the reason for the change in
dealing with arches.

Example.—A circular two-pin arch, with rigid abutments and a uniform
cross section, has a span of 150 ft. and a rise of 10 ft. Find the horizontal
thrust due to a concentrated load of 20 tons at the middle of each quarter
span. If the depth of the section is 30", find the greatest change of bending
stress due to a rise of temperature of 20°C. E = 13,000 tons/in.2, coeff.
of expansion = 11 x 10-5% (Mech. Sc. Trip. B., 1919.)

Also draw the B.M. diagram for the arch at the original temperature.

Y-40

Yz=40
y 20 20 20 4

F1a. 266.

The arrangement is shown in Fig. 266.

This example could be worked out by direct integration, but the process
leads to troublesome arithmetic. The rise of the arch being only Ysth of
the span, we shall not make any appreciable error if we take ds = dz.

The bending moment diagram for the vertical loads only is easily drawn
and is shown for half the arch in Fig. 267, where the centre-line of the arch
is also drawn. Reading values of M, and y from these two curves, values
of Mgy are found and plotted, as shown. A curve of y?is also drawn. From
the areas of the curves we find, for half the arch,

— j Myydz = 620,000 tons. ft.3

j‘ yidz = 4,000 ft.*
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On account of symmetry it is sufficient to consider only one-half of the
arch. Then, from equation (5) we have

620,000
4,000

The bending moment diagram for the arch can now be drawn from the
equation

H =

= 155 tons.

M = Hy + Mo.
80
60
w2 40 LT o
& ,, // \\ /
é 0 ~ / N /
N-20 N, / \_/
w0 \\ //
-60 \
Moy_»
1600 Tons i
1400 — 7 — 14,000
g 1200 T ; y 52,1200
& 1000 £ - 10 100 10,000
R ==
g 800 5{8 80 8000
) V4 s He 60 6000
% 400 /:, "54 40 4000
200 E:' 4 Ejz 20 2000
0 020 30 40 B0 60 10 75 Fest

Fic. 267.

The curve has been plotted in the upper part of Fig. 267, on a horizontal
base.

The additional thrust due to a rise of temperature of 20° C, is given by
(12). We have

a=11 x10%; ¢ =20°; I =150 ft.
E = 13,000 tons/in.?

Hence the additional thrust H’ is given by

, 11 x 108 x 20 x 150ft. tons
H' = 8,000 168 x 18,000 7= x I
tons
—= 0. L =0 .
= 0-0536 f——; = 0-0536 x 144 T tons/it.

=772 I x tons/ft.*

If H’ is to be in tons I must be measured in ft.4
The change of bending moment is H’y, which is a maximum at the crown.
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The depth of the section is 30”, hence the greatest change of bending stress is
H’ tons x 10 ft. X 15 ins.
I ft.¢
tons 10 ft. X 15 ins.
oo T fe.¢

=772 1 ft.4 —

tons x
= 772 x 150 —‘Es—ft—,,‘ﬂs—

772 x 150 tons

= 71,728 in.?
= 0-67 tons/in.?
PARABOLIC ARCHES

207. Two-hinged Parabolic Arch with Uniformly Distributed
Load.—In Fig. 268 let ACB be a parabolic arch of uniform section hinged

L4
y: g Ry ;4
0 R i -
yA >
A hwl
#l fagt
Fia. 268.

at 4 and B, and carrying a load uniformly distributed along the span.

Let | = the span of the arch = 4B.
h = the rise of the arch = OC.
w == the load per unit horizontal length.

If we take O as origin, the equation of the centre line of the arch is

4h /12 .

Y= Z——x*) S ¢ 1]
From this we have dy _ 8hx
dz T

Hence an element of arc at (x, y) is

ds = \/dy2+dx2—dx\/1+<d1) \/l+ dx (i)

The bending moment at any point P due to the vertlcal forces only is

w A
M, = E<:zr.2—Z Coe L ()
Hence, from (i) and (iii),
B 2 2
j Myds = 2;‘? j‘A(xz — —i-_ .ds . . (iv)

and

B 2
Lyzds_”;fj >ds LW
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From (5) H is given by the division of (iv) by (v),
wl?

CH=o . (1Y)

The total bending moment at any point (z, ¥) on the centre line of the
arch is

M=M0+H?/—-—-(x2 )-I- (———x2)=0

Thus the arch is everywhere free from bending moment.

208. Two-hinged Parabolic Arch with Concentrated Load.—In
Fig. 269 ACB is a parabolic arch of uniform section and carrying a single
vertical load W at a horizontal distance a from A4.

I/ 45V oSN { NS N .
A x !
a Z »e—b
r e

Fia. 269.

Taking the origin at A the equation of the centre line is

4h , .
y= -l?(lx —) . . . . . L)

from which
dy _4h "
d_x_T’—(l 22y . . . . . . ()
The bending moment at P due to the vertical forces only is
Mo=—ﬂ(l—x) +Wa—a} . . . . (i)

where the term { } is omitted if > a.
We have then

B P B
j M yds = j Myds + j M yyds
A P

A

4ath‘ 2(l—2) 4Wh

7 J‘P (I—x) (a—x)ds . (iv)

Also

jBy2ds 16h2j‘ W—ads . . . . . . . . (v
4 4

14
The evaluation of the various integrals depends on whether we can

take ds = 8z with sufficient accuracy or not, i.e. on whether % is small
T
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enough for A2/12 to be neglected. In this case the integrals are easily
evaluated * and we find from (iv) and (v):

B 2 3
jMoydx: —“h;W<1 % +i)

4 l2 13
B 2
J4 15
Hence
5“(1 —>W. (19
The total bending moment at any pomt is then
M=M,+ H?/
5 ¥, =« a’® ad x
or

M —aw(1- z> : l<l 2z2+zs l]+W{a z . . (18)

the last term being omitted if x> a.

209. Built-in Parabolic Arch with Uniformly Distributed Load.
—We have seen in § 207 that when the arch is hinged at both ends there
is no bending moment anywhere, consequently no extra constraint is
introduced if the ends are built-in : the fixing-moments will be zero and
the horizontal thrust will have the same value, viz. wl?/8h.

210. Built-in Parabolic Arch with Concentrated Load.—On
account of the complexity of the work in the general case we shall limit
ourselves to the treatment of the case when the rise is small and we can
write ds = dx. The section is assumed uniform as before.

Referring to Fig. 269, let M, and M, be the fixing moments at 4 and
B. We find M, and M, from the equations of §204; the results will
readily be found to be:

2 3
Ml_aW<1—— +8‘i—§“_>
RN
M_-_-(——— _ 5l3>.......(16)

15a,2W (1 )
4hl i
* If the rise is not small in the above sense the best procedure is to write

2
ds=/\/1+(Z—Z)=.dx= 1+1—§:i(1—2;‘) dz.

4
Expanding this by the Binomial Theorem and neglecting ?Twe get

h? ht h?
ds—(1+8% =325 . 7+ 925 . lz)d:c
Substitute this value of ds and evaluate the mtegrals.
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211. Piston Rings.—The two features which a piston ring should
possess are: first, that the outside should be truly circular; and,
secondly, that it should exert a uniform pressure on the walls of the
cylinder. A common method of manufacture is to turn a ring of uniform
gection, whose outside diameter is slightly larger than the bore of the
cylinder, and then to cut out a small piece to allow the ring to be sprung
into the cylinder ; we shall see presently that this is an inferior method
as the ring will not be circular when in the cylinder, and will not bear
on the cylinder uniformly round the circumference.

The problem to be considered is this : an incomplete ring of rectangular
cross section, with a constant depth at right angles to the plane of the
ring, is to be circular on the outside in the unstrained state, and circular
when it is loaded with a uniform radial pressure ; how must the radial
thickness of the ring vary ?

Let B, = the initial radius of the outside.
» w = the radial pressure per unit length of arc.
,, R = the radius of the outside under the action of w.

In Fig. 270, AOC is the axis of symmetry of the ring, the thickest

part being at C, and the thinnest at A where the ring is cut. Referring
to the right-hand part of the figure, the bending moment at B due to
the pressure on an element Rdp is

w.Rdp X R sin ¢.

Hence the total bending moment at B is

w6
M = wR? j sin p.dp = wR¥1 4 cos 0)
0
L1 1 M wRX1 4 cos 0) ()
"R R, EI EI e
Since R and R, are constant, the right-hand side of (i) must be con-
stant.

Let ¢, = the thickness of the ring at C,

t = E44 2 B,

d = the depth of the r,ing pe’rpendicular to the plane of the paper.
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3 3
Then I = tl—g At C we have 8 =0 and I = t%i. Therefore the con-

dition that the right-hand side of (i) is constant requires
12wR¥1 + cos 6)  24wR?
Et%d Bt

LB
”E’:%(l + cos ),

or 3/ ey oL
to 2
This gives the law of thickness of the ring.
The maximum bending moment occurs at C, and is equal to 2wR?2

If »p = the maximum permissible stress, we must have
_ 12wR?

.-.t0=2\/§R\/1”)’_d. S .18y

R being the radius of the cylinder.
The initial radius of the outside of the ring, R,, is given by
1 1 M _24wR?

R R, EI Et2d’
Substituting the above value of ¢, this gives

1 1 p3d
_“=_1~\/ N ¢ A
R, R [ 3K 2w:| (19)
Thus R, and ¢, are both expressed in terms of the fundamental quantities
R, p, d, E, w.
It will be evident that if ¢ is made constant, the condition of constant
curvature after springing into the cylinder will not be fulfilled, with the

consequence that the pressure between the ring and the cylinder will
not be uniform round the circumference.

at C.

EXAMPLES XVII

1. Fig. 271 shows the centre line of an arch pin-jointed at A4, B, and C.
Draw the line of pressure * for the given system of loading and determining
the Bending Moment at the point D. (Birmingham, 1911.)

2. The span of an arch is 160 ft. and the rise 20 ft. The arch is hinged
at the abutments and at the crown. It carries loads of 20 and 40 tons con-
centrated at points distant 30 ft. and 60 ft. from the two ends respectively.
Determine the horizontal and vertical components of the three hinge reac-
tions. If the height of the centre line of the arch at points 40 ft. from the
abutments is 15 ft., determine the bending moments in the arch at these
two sections. (Intercoll. Exam., Cambridge, 1911.)

3. A three-hinged metal arch is parabolic in form, the centre hinge being
* See note on p. 287,
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Fia, 271.

the vertex of the parabola. The dead load on the arch is uniformly distri-
buted horizontally, and in addition there is a concentrated load W acting
at a distance x, measured horizontally, from the vertex. Show that the
maximum bending moment set up in the arch is Wx(l* — x*)/21% where 2!
is the span between the lower hinges. (Mech. Sec. Trip., 1906.)

4. The centre line of an arch is parabolic in form. The arch is hinged
at the crown and at the springings. The span is 140 ft. and the rise is 30
ft. Vertical loads of 20, 40, 60, 60, 40, 20 tons act at points distant 20,
40, 60, 80, 100, 120 ft. respectively from the left hinge. Draw the line of
resultant thrust in the arch and determine the horizontal thrust at the
hinges. (Intercoll. Exam., Cambridge, 1910.)

5. A parabolic three-hinged arch having a span 2!, and a rise A, carries
a dead load W uniformly distributed, and alsqo a live load P concentrated
at a point distant z from the centre. Prove that the horizontal abutment

1
thrust is E{Wl + 2P(l — z)}. Calculate the B.M. at the section where

the load P is applied, and deduce that it has its maximum value when
% =1/V3, and that this maximum value is IP/3V3. (Mech. Sc. Trip.,
1922.) .

6. A three-hinged arch is parabolic in form. The span is 120 ft. and the
rise 15 ft. The left half is subjected to a uniformly distributed load w tons
per ft. run. Prove that M, the ‘‘sagging ™ bending-moment in the arch,
at a distance z to the right of the left hinge can be expressed in the form

M =w[;i(60 — ) +—; = — 60}’]

where the term {} is omitted if x < 60.
Prove that the deflection due to the change in curvature in the arch is
given by

y = ‘LSwT[x(x — 60)(x* — 60z — 3,600) — 2{x — 60}4],

and, assuming that the thrust in the arch has the constant value 60w, show

that the additional deflection due to the shortening of the two halves of the
arch is given by

17

Y=ES

S is the area and I the moment of inertia of the cross section. (Mech.

Se. Trip. B., 1923.)
7. One span of a railway bridge, built of circular arched ribs of cast iron,

[z — 2{ — 60}).
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is 62 ft. span with a vertical rise of 8 ft. After erection, it was found that,
due to settlement, the span had increased, and it was estimated that this
reduced the horizontal thrust, per rib, at the abutments by 159 tons. Find
the change in the stress at the top and bottom of the middle cross section,
which is of I form with top flange 104" x 13, web 27} X 3", and bottom
flange 12”7 x 13”. (Intercoll. Exam., Cambridge, 1921.)

8. The central line of a two-pin arch has a span of 150 ft. At a distance
of z feet measured from one pin, along the horizontal line joining the pins,
the ordinate of the centre line is y inches, and the B.M. due to the vertical
load only is M, tons. ft. The values of these at equal intervals along the
span given in the table :

x . 75 225 375 525 675 825 975 1125 1275 1425
y . 26 72 106 128 136 136 128 106 72 26
M, . 350 980 1,490 1,820 1,900 1,740 1,500 1,160 740 280

Find the value of the horizontal thrust, and tabulate the values of the
B.M. in the rib and the ordinates of the linear arch, at the points given.
Also plot the B.M. curve, the centre line, and the linear arch.

If the temperature rise 45° C. above the setting-up temperature, what
horizontal thrust is produced, if the coeff. of expansion be 1-25 x 10-5?
Mech. Se. Trip. B., 1909.)

9. A two-pin arch with hinges at the same level is subjected to a given
distribution of vertical load. If the form of the arch is similar to the form
of the B.M. diagram for a horizontal beam, supported at its ends, having
the same span and load distribution as the arch, and if the horizontal thrust
is suitably adjusted, prove that the arch can be rendered entirely free from
bending moment.

To specify the form and load distribution of such an arch, the point
midway between hinges is taken as origin, # is measured horizontally and y
is measured vertically upwards. The span is 2/, and the rise at the centre
is h. The load distribution is

w=wo + Ty z2
Prove that for freedom from bending moment the form of the arch is
given by
(12 — z2)h
Y= g a0 (0~ wol)

and the horizontal thrust must be adjusted to have the value
(5w + w,}12/12h.
(Mech. Se. Trip B., 1923.)

10. A cast-iron piston ring 1” wide works in a cylinder 5” diameter. The
ring is so shaped that it exerts a uniform pressure of 2} lbs./in.? against
the walls of the eylinder. Show by means of diagrams, plotted on a hori-
zontal base, the values of the bending moment and shearing force at each
section of the ring.

If the tensile stress in the iron is limited to 3,000 lbs./in.2, show that
the radial thickness of the ring at the section diametrically opposite the slit
is }” approximately. (Mech. Se. Trip., 1907.)

11. If the radial thickness of a piston ring be constant and equal to ¢,
show that the initial radius of curvature, Ry, of the ring should be made
according to the formula

EcR
R, =

Et3 — 24wR? cos’%

the notation being the same as in § 211.
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12. A piston ring of cast iron is finished to a circle 124" outside diameter,
its section being 1”7 deep and $” thick. A piece 1§” long is then cut out of
the ring and the ring is forced into a cylinder 12” bore. Find the distribution
of pressure between the ring and the cylinder walls, taking E = 8,000 tons/in.®
(Mech. Sc. Trip., 1905.)

13. A two-hinge arch is of circular form, the rise of the centre line being
h, and the span l. The load is w (constant) per unit horizontal length. Prove
that the horizontal thrust at the abutments is given by

. 7 . .
wR 35 a + acos a 4 acos 3a — Esm&a

8 3 . a ’

a —sin 2a + 3cos 2a
where 2a is the angle subtended by the span at the centre of the arc, the
radius of which is R.

14. If the arch of Ex. 13 be built-in at the ends, and M, denote the fixing
moments at either end, show that H and M, are given by

H =

R4/1
HR(sina — acosa) + aM, = %—(gsin 2a — a cos a)

3
HR(a -3 sin 2a +§ cos 2a) + (sina — acos «)M,

_sz(i_ 7 . )
=g 2sma+acosa+acos3a———6sm3a

15. In a two-pin arch bridge, the two supporting steel ribs are uniform in
section, parabolic in form and rise to a height of 15 ft. at the centre of a span
of 120 ft. Calculate the decreast in the horizontal thrust on the abutments
if the distance between them increases by 1 in. Determine also the cor-
responding alteration in the bending moment at the centre of a rib.

The cross-section of & rib has a moment of inertia 0-75 x 12! in.%, and E for
the material is 30 X 10° 1bs. per square in.

It may be assumed that the length of the rib, measured along its centre
line, remains unaltered. (Mecn. Se. Trip., B., 1924.)

16. A span of 50 ft. is bridged by a parabolic arched rib, 10 ft. high at the
centre. If the load be 2 tons per ft. run of span, find the horizontal thrust at
the abutments.

If an additional load of 1 ton per ft. run be distributed along one half of
the span, from one end to the centre, find the value of the horizontal thrust and
show how to determine the bending moment at any section of the 1ib. (In-
tercoll. Exam., Cambridge, 1905.)

Note on Ez. 1, p. 284.—On AB as base (Fig. 271) draw the B.M. diagram
for a horizontal beam AB, carrying the same vertical loads as the arch,
and draw it to such a scale that it passes through the hinge C. This
B.M. diagram is then called the line of pressure, or line of resultant thrgst-.
Its slope at any point P gives the direction of the resultant force acting
on & cross section of the arch at a point @, vertically below or above P.
Furthermore, the bending moment at Q is H.PQ, where H is the ho}'n-
zontal thrust at the abutments. We leave the proof of this as an exercise
for the student.



CHAPTER XVIII
STRUTS OF UNIFORM SECTION

212. Statement of the Problem.—A member, of a structure or
machine, which is subjected only to end thrust is usually called a strut,
and the consideration of the strength of struts is of great importance
in all branches of engineering. On account of various imperfections
which must occur in practice, we can say that the line of action of the
resultant thrust will never coincide with the geometrical axis of the strut.
The result of this is an inevitable flexure of the strut. Thus, in Fig. 272,
AB is a member subjected to a thrust P, the line of action of which is
distant % from the axis of the member, so that there is an applied bending
moment Ph. The effect of this will be to cause the axis AB to deflect
in the manner shown by the dotted line, so that, if § be the deflection of
the axis at any point, the bending moment is increased to P(é + k).

Fia. 272.

This extra bending moment will cause a greater deflection, which in turn
will increase the bending moment, and the effect is cumulative until
equilibrium is established. The problem we have to consider is the
determination of the value of the bending moment at any point in the
member.

When a strut is very short and stumpy, the effects of possible deflection
are of no importance, but when the member is long and slender these
effects are the prime consideration. We have dealt with strength of
members of the former type in Chapter XII; in the present chapter
we shall consider members of the latter kind.

TueE EuLER THEORY OF STRUTS

213. Strut Pin-jointed at Both Ends.—A perfectly straight rod of
uniform cross section and homogeneous structure is subjected to an end
thrust P, the line of action of which lies truly along the axis of the rod
in its unstrained position. We seek to discover what value of the end
thrust will be able to hold the rod with its axis deformed away from the

288
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straight. The ends of the strut are fixed in position but quite free to
change their direction if the strut bends.

In Fig. 278, OA is the unstrained axis of the rod. If possible let
forces P, in the directions O4 and A0, hold the rod in the deflected

o z —]
P S S S
c ty
Y
Fia. 273.

position OCA, the deflection at C being y. Then the bending moment

at C is Py, and for small deflections we have in the usual notation,

d%y

dx?

where I is the smallest principal moment of inertia of the cross section.
It is convenient to write this in the form

— EI = Py,

d? .
d—::i +aty=0 . . . . . . (i)
where
a? = EI—} B £ 14)
The solution of (i) is
y=Adcosaxr + Bsinaxr. . . . . (i)

where A and B are constants.
Now, y must vanish with z, and therefore 4 = 0 ; y must also vanish
when z = I, which requires
Bsinal =0 B 084

This is satisfied if B = 0, but then there is no deflection at all ; if B
is not zero we must have

sinal=0 . . . . . . . . (v)
that is,
a=0,n 2% ...
n? 4n?
or a2 =0, TR
72l 4n?El
or P = 0, —lz_’ T

The value P = 0 obviously need not be considered.

The value P = n2EI/I? will satisfy all the conditions of the problem,
so that this load will sustain the strut in a deflected state, and we need
not consider the higher values of P.

We must now consider precisely what has been established : if P
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is less than n2EI/I? the rod will remain straight and the only stresses
will be those due to direct compression. If P is equal to #2EI/l* the
rod can be held deflected if given the slightest encouragement, and
equations (iv) and (v) show that B, and therefore y, are indeterminate :
in other words, the strut is in “ neutral equilibrium.” We might con-
clude that, since B can have any value without violating the above
equations when P = n2E! /I?, a deflection once started would get larger
and larger until the strut broke. This would not be quite true : if we
press gently on ends of a light stick no deflection is produced at first,
then, as we increase the pressure, a point is reached when the stick will
suddenly deflect considerably, but if we do not further increase the
pressure it will not deflect indefinitely. There is no discord with theory
here : the fundamental equation (i) rests on the assumption that the
deflection is small, and when the deflection ceases to be small a more
exact theory is required, and this in fact enables us to calculate what
deflection will occur * with a given end thrust not less than =2E[/]2.

In engineering practice it is fairly evident that a strut which has once
deflected, in the manner suggested above in referring to the light stick,
ceases to be of any value as a structural member : in the first place it
is probable that the stresses incurred from the bending moments would
cause failure of the material, and even if this did not happen the structure
would have lost its stiffness and become ““ wobbly.” Consequently, the
value of P found above is taken as the limiting load that-a perfectly
straight strut could bear when the line of action of the thrust coincides with
the axis of the strut. The first deflection referred to above, when P reaches
this value, is called buckling or crippling, and the value

n2El

P, —
12

(1)

is called the Euler buckling load.

214. Limitations of Euler’s Formula.—The limitations of this
formula are of the utmost importance, and we shall now deal with them.
In the first place, Euler’s theory assumes

(i) that the axis of the strut is perfectly straight when unloaded ;

(ii) that the line of thrust coincides exactly with the unstrained axis

of the strut.

Neither of these assumptions will usually be realized in practice, so
that the theory refers to an ideal strut and not a real strut, and the
effect of the imperfections is to convert the strut problem from a problem
in stability into a problem of stresses, of which the Euler theory takes
no account.

We must then consider the questions : When can we apply the Euler
formula to a real strut ? And, when the Euler formula is inapplicable,
how can we estimate the strength of a strut ?

* When the deflection is small compared with [/2, its amount is

l ENNN 3/EINE
H= ) V&)
(Love, Theory of Elasticity, 3rd Ed., p. 412.)
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If § denote the area of the cross section, and %k the least radius of

gyration, (1) can be written
2

P._ mE 2)
S (Uk)? ,
so that p, is the stress corresponding with the Euler failing load. Accord-
ing to this formula the stress required to cause failure will increase
indefinitely as I/k is decreased, as shown by the curve ABC in Fig. 274.
But evidently failure must take place when the compressive stress is

Pe =

c

Pe

Fic. 274.

equal to the stress of the material at the Yield Point. Let OY represent
the yield stress of the material, then it is clear that the Euler formula
cannot possibly apply if I/k is less than OD.

Thus, suppose the yield point is 20 tons/in.2, with £ = 13,500 tons/in.?
we must have

12 =n* % 13,500

k? 20 ’
i.e. I/k => 81-5, if the Euler formula is to be applicable. For a solid strut
of circular cross section this corresponds with a length of about 20
diameters.

So far, then, we should expect the failing load to be given by the
graph ABY, but we have not allowed for the fact that assumptions (i)
and (ii) are not usually realized in practice. When this allowance is
made we shall find that the law is more nearly expressed by a curve
such as that shown dotted.

A. Robertson has shown,* by experiments in which particular care
was taken to obtain perfectly axial loading, that Euler’s formula is correct,
for really axially loaded struts, for all lengths down to those giving
stresses equal to the elastic limit of the material. When the elastic
limit is exceeded certain modifications must be made, even with truly
axial loading. The necessary theoretical modification has been given by

* Report to Royal Society Sub-Committee on Struts.
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Southwell,* and the correctness of this has been confirmed experimentally
by Robertson.

We must now investigate the effects of non-axial loading and initial
crookedness in the strut (§ 215 et seq.).

Example 1.—The cross section of an aeroplane inter-plane strut is such
that I = 0-178b%, where b is the thickness. Calculate the thickness of a
parallel strut, of length 80” between pin-centres, to take an end load of
2,000 lbs. with a factor of safety of 5, assuming it can be treated by the
Euler formula, and taking £ = 1-6 x 10° lbs./in.?

We must design for a thrust of 5 x 2,000 lbs. = 10,000 lbs.

The Euler formula gives
n? x 1-6 x 10¢ lbs./in.2 X 0-178b*

6,400 in.?
64 in.* x lbs.

¢ Bt — — R in ¢
V= T Tbs, x 0i7g — 228 in

10,000 lbs. =

whence
b =2-19".
Example 2.—What thrust will a round steel rod take without buckling
if it is 3” diameter, 8’ 0” long, perfectly straight, and pin-jointed at the ends,
the load being applied exactly alpng the axis of the rod ?
7 X (0-5 ins.)4 7

1= 64 = 1,024

ins.*

! = 96",
Taking F =30 x 10°¢ lbs./in.?, we have
72 x 30 x 10°% lbs./in.? T,
96 x 96 in.: < 1,024
= 98-5 lbs.
215. Strut with Eccentric End-Load.—In Fig. 275 let ON be
the line of action of P, at a distance k from the unstrained axis of the

P =

Fie. 275.

strut AB. Let y be the deflection of any point €' on the axis, measured
from the line of action of P. Then, as before, the bending moment at ¢
is Py, and the equation for y will be

y=Acosor+Bsinar . . . . . (i)

where a® = P/EI.
The conditions to be satisfied are y = A when = 0 and when x = [.
Hence we must have

=4
= A cos al + B sin al,
whence

B = W1 — cos al)/sin al

* Engineering, Aug. 23, 1912,
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Substituting for 4 and B in (i) gives

y=~rh cosax—}—h( — cosaly

sin az.
sinal /

= h(cos ax 4 tan %l sin ax)

=hcosa<-2l-—x>sec%£. B §11

At the centre x = 1/2 and y is a maximum ; denoting the maximum
deflection by y, we have

go = h seo 9‘2.l C L)
Then the maximum bending moment is
M= Phsec%l. B ¢ )]

If y. and y, denote the distances from the centroid of the section to
the compression and tension faces, as shown in Fig. 275, the maximum
compressive and tensile stresses set up by M will be

al al
yc.Phsecé— yt.Phsec—z-

7 and 7

If § denote the area of the cross section, the direct compressive stress
will be P/S. Hence the maximum compressive stress in the strut will be

_P —l— Phyc sec ;l (4)

If f denote the maximum permissible compressive stress in the
material, we have

f
P=_ 4
-1- }ﬁ”secgl
8 I 2
or, writing I = Sk2,
Pz—L......(m
1+—-secal
2

This equation is inconvenient for finding P, since a itself contains P,
and in arithmetical cases a solution can only be found by trial. In such
cases the following method will be found very useful.

2

Let P, = 21

1?

, i.e. the Euler failing load of the same strut axially

Inaded. Then we can write

al 1 P a PP = \/P
TR — — —_— = - . . T 6
=3 2V E~:V "2 P, ©)
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Now, an extrémely close approximation to the value of sec §, for all
values of 0 between 9 and n/2, is *

1+ 2% 026
socf— T _P,+026P
N
2

Substituting this value of sec 6, i.e. sec %l, in (5) and rearranging the

equation gives the following quadratic for P :
h h
P2(1 — 026 %)~ P{P,(l + %ﬂ)ﬁ.&} +f8.P,=0 . (1)

which is readily solved in any given case.
If » =0, this reduces to

P2— PP, +f8) +fSP,=0 . . . . . (8

which gives P = P, or f§. The former is the ordinary Euler value, the
latter refers to a strut so short that bending is negligible : it is the load
which will cause the direct stress to reach the limiting value f.

It will be seen from (ii) that if al = =z, i.e. P = P,, y becomes infinite,
i.e. the strut will buckle, but this is of no practical interest since a lower
value of P will always cause stress failure.

Example.—The 3” x 3” angle shown in Fig. 276 has a sectional area
2-75 in.2  AGQ = 132", OG = 0:25”". The radius of

gyration about zz is 0-573”. The angle is acting as a

x strut having an unsupported length of 60”. The actions

\ at the ends amount to a longitudinal thrust of magni-
tude P acting through O. G is the centroid of the

section. Consider the mid-cross-section of the strut,

and show that, if the compressive stress is not to exceed

x 8 tons/in.?, P must not exceed 9 tons approximately.
Fre. 276 (Mech. Sc. Trip. B, 1923.)
) ) We have
S =295 in.2; [ = 60",
k =0573"; k* = 0-328 in.?
EI = 14,000 x 2-75 x 0-328 = 12,600 tons. in.?
2 . 3 —
® = 12,600
3,60.0P
2]2 p— .
12 = 12,600 0-286P
" al =0-536VP
1 —
% =0-208VP

* This expression was given by H. A. Webb in connection with another problem
and is correct within 0-5 per cent., which is considerably more accurate than that

given by Perry, particularly as 6 ——» g
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In the notation of § 215 we have
h =025"; y, = 132",
P Phy. al
F=5t = 3

-P—{l 025 x 1-32

0338 e (-268\/1—’—)} tons/in.?

= 3i7gtl + 1:005 sec. (-268 VP)}tons/in.?

When P
S

9t
3- 8 (l X 1-005 sec. 0:804)
8 tons/in.? approximately.

I

hye
Alternatively, using equation (7), we have ,;yz‘ = 1-005,
n? x 12,600
P, = —3.600 34-5 tons; fS = 22 tons.
Hence P is given by 0-74P? — 91P + 759 = 0
or P2 —123P x 1,026 =0

The roots of this are P = 9 or — 114, the latter of which is out of the
question. Hence the value of P required is P =9 tons, as before.

216. The Effect of Initial Crookedness.—Ayrton and Perry pub-
lished in 1886 * an analysis on the following lines, from which they
concluded that an initial eccentricity of loading could be taken as equi-
valent to an initial curvature of the central line.

Referring to Fig. 273, let y, denote the distance of any point on the
axis of the strut from the line of action of the load, in the unstrained
state. Then y, can be expressed as a function of . For simplicity and
convenience let us take the initial shape of the axis to be given by

y0=csinnTx. B )

so that c represents the maximum distance of the axis from the line OA
in the unstrained state. Then in the strained state we must have

a2 .
EI (dx2 d;io)_ —Py . . . . ()
From (i) we have
d?y, _ _ cen? sin 7%
da? 12 A

Substituting in (ii), and writing a® = E% as before, gives

2

d%y cn? . mx
J—x2+a2y= — g7 sin
The solution of this is
¢ 2
J—Acosax—}—Bsmax—{-——n—zlz, nn—lx.

* The Engineer, Dec. 10, 1886.
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We must have y = 0 when z = 0; therefore A = 0. We must also
have y = 0 when z = [, and therefore B sin al = 0. This requires either
B =0 or al =7 In the latter case y becomes infinite. Let us then
consider the state of affairs when al <, so that B =0. Then

¢t sin
y w2 — q?l? 1’
The maximum deflection is
crr?
ym:m.......(%

Now, we have seen in § 215 that, provided al < 7, the maximum
deflection of a strut with an initial eccentricity of loading % is given by

ymzhsec%l B 631
By comparing the values of the coefficients of ¢ and 4 in (iii) and (9)

Perry and Ayrton came to the conclusion mentioned above.

If we write, as before (§215), al == \/11;, (9) shows that the

effect of the end load is to make the central deﬂfaction
Pe

P, —P
times its initial value. Also, taking the very good approximation to

sec %Egiven in § 215, we see that if there is originally an eccentricity #,

the central deflection becomes

P, 1+026P
P, —P
times the eccentricity. Hence we can write
max. B.M. per unit initial deflection P, _ 1
max. B.M. per unit eccentricity P,+4026P 1+ 0~26—§

3
The maximum value that this can have is T%é’ or roughly £, in the

worst case when P approaches P,. Thus we can regard an initial crooked-
ness as equivalent to a certain initial eccentricity of loading, and vice
versa.

If the maximum deviation of the strut from the straight be c,, and
the eccentricity of loading be h;, then we can take an ‘“equivalent
eccentricity ”’ A given by

P
h=h, + cl/<l 1026 17)

or
h=h 4%, . . . . . . . (10
approximately.
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Alternatively we might take an ‘‘ equivalent initial curvature.”
¢ = ¢, + b, (approximately) . . . . . (11)

We have arrived at the above results by assuming the initial shape
of the axis of the strut to have the form of a sine curve, but actually
it makes very little difference whether we take a sine curve, a circular
arc or a parabolic arc, as the following figures * will show :

Max. deflection/initial deflection.

P/P, Parabola or
circle. Sine curve.
0 1-0 1-0
04 1-687 1-667
0-6 2:546 2-500
0-8 . 5126 5-000
0-9 . 10-29 10-0
10 . . @ ®

217. Strut with One End Encastré, the other End being Free
to Rotate.—In Fig. 277 the end O of the strut O4 is encastré in the

1 {
P —— Al

Yy

R
Fia. 277.

direction O4 ; the end A is constrained to remain on the line 04 but is
free to rotate round 4. A bending moment must be incurred at the
encastrément, and this involves the presence of a force R at A at right
angles to O4 to maintain equilibrium, with the corresponding reaction
at 0. The equation for small deflections is then

dzy

or
4% | oy 2B
dz? +aly=a P (I—=
where a% = P/EI as before. The solution of this equation is
y=A4 cosax—I—Bsinax—i—g(l—x) R (]

where 4 and B are constants to be determined. We must have y = 0
when = 0 or I, hence

R
A —_ =
+5 =0
A cos al 4+ B sin al = 0.
These give

Rl Rl

A = —— B . . . . ii
7 B y2 cot al (i1)

* E. H. Salmon, Columns, p. 29.
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We must also have Zi! = (0 when x =0. From (i)
x

dy _ Asi B R
gz = —odsinax +a cos a¥ 3
Therefore we must have
abB = E
P
or
q?cotalzg B 514
ie. al=tanal . . . .. (i)

This is the condition that the thrust P may be able to hold the strut
in a deflected position. At the same time the force R, and therefore
A and B, become indeterminate. The smallest root of (iv) which is
greater than zero is

al = 449
or a?l? = 20 = 2n? approximately.

Hence, in this case the smallest thrust which can hold the strut
deflected is given approximately by
2n2El

[

It will be seen that the critical load is double that of the strut with
both ends free to rotate.

218. Strut with One End Encastré, the Other End being Free
to take up any Position (Fig. 278).—Let 04 be the axis of the strut

M z —
P e, Al

A

Fia. 278.

P — (12)

Y

in the undeflected state. Suppose 4 moves to 4’ under the action of
the thrust P. Then a fixing moment M = P x AA’is brought into play
at 0. Let AA' = h, then the deflection is given by

d%y

— EI e P(y — h)
2
or j_x:i_/z + a?y = a’h
where a? = P/EI. The solution of this equation is
y=Acosaxr-+Bsinax+h . . . . (i

giving

dy . .

~ =—qadsinax 4 aBcosar . . . . (ii

dx
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The conditions to be satisfied are:
y=0andg%=0whenx=0,

y=~h when z = 1.

Hence from (i) we must have

A=—h
Acosal+ Bsinal =0
SoB=—Acotal=hcotal . . . . (iii

From (ii) we must have B = 0. Therefore (iii) shows that either
h = 0, in which case there is no deflection, or cot al = 0, and in this
case kb is indeterminate. We have then

cot al = 0.
n 3n
al ==, =, ...
2° 2

Hence the smallest value of P which will cause the strut to be unstable
is given by a?? = n%/4, or
2
P n2E]
412
, It should be noticed that this is the same as for a strut of length
pin-jointed at both ends.

2
219. Strut with Both Ends Encastré.—Referring to Fig. 279, the
ends O and 4 are both encastré in the direction OA, so that fixing

(13)

moments M, are introduced at the ends, these moments being equal by
symmetry. The equation for the deflections is

dz?

or

d?y — 2 Mo

(E‘z-i—azy_a ?s
where a2 = P/EI.

The solution of this is
y=Acosax+Bsinaz+J%'. N ¢

ivin
giving ‘E-I:—aAsinax—{—chosax. P 1)

dx
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The conditions to be satisfied are :

y=Oand(.lg:Owhenx=O. .o (i)
dx
Also, for symmetry,
d—‘Zszhenxz%. Coe e (i)
The conditions (iii) require 4 = — - and B = 0. Then (ii) and (iv)
give
1%9 sin %l- =0.

Since M, is not zero we must have sin %l: 0. The smallest value a

which satisfies this is 27”, which gives

P - 412El
2

This is the smallest end-thrust which can hold the encastré strut
deflected, and is four times the corresponding load for a strut the ends
of which are free to turn. In practice such a large factor is not used
since perfect encastrément is not obtainable. It must also be noted that
this formula does not in any way apply to a strut fixed to other members
having a flexural rigidity comparable with that of the strut itself, however
rigid the connection may be.

220. The Imperfections of Real Struts.—In all the theoretical
investigations above we have made, tacitly or otherwise, certain assump-
tions which cannot usually be realized in practice, and attention was
called to this in §§ 213-4. We shall now consider the matter in greater
detail, but space will not permit an exhaustive discussion.* We have
mentioned above, and dealt with theoretically, two important departures
of the real strut from ideal conditions : crookedness and eccentricity of
loading. In addition to these defects there are several uncertainties
which combine to make the exact design of struts an almost impossible
achievement, and among them the following may be mentioned as
examples : Variations in the elastic properties of the material and in
the dimensions of supposedly uniform sections, past history including
the effects of manufacturing processes, flaws and local defects, uncertainty-
as to the exact conditions obtaining at the ends, etc.

It can be shown that a variation in the value of E through the material
of the strut is equivalent in effect to a certain fictitious eccentricity of
loading, or a certain initial curvature, or both. A want of uniformity of

* The reader is referred to E. H. Salmon’s Columns (Oxford University Press),
where he will find an exhaustive bibliography of the literature of struts, and a
lengthy discussion of the matter considered above, with a review of all the most

important experimental work. The third and fourth chapters of this work should
be studied by all who deal with the design of struta.

(14)
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area in rolled or drawn sections may also be represented by an eccentricity
of loading, and often the effect of end fixings may be so represented.
The effects of manufacturing processes, flaws, etc., can be allowed for
by a certain reduction of the permissible stresses. Thus we can regard
all the defects of a real strut as represented by initial curvature and
eccentricity of loading, and if we could be sure of the value of these we
could calculate the stresses with very little uncertainty, whilst the
reduction in the strength of the material could be allowed for by a suit-
able increase in the factor of safety.

The trouble is that in practical cases we do not know exactly the
degree of fictitious eccentricity or initial curvature to allow for, and all
the empirical formule are simply efforts to dodge this difficulty : in
fact, they do little more than call an * uncertainty >’ a ““ doubt > and
deceive the unwary into thinking that by so doing they have got round
the trouble !

Let us see to what extent this eccentricity may be estimated. For-
tunately a small error in calculating the exact value of the eccentricity
does not greatly affect the stresses, for we shall find that the estimate
can only be a rough approximation.

221. Eccentricity of Loading.—It is to be expected that the
accidental eccentricity of the line of action of the resultant force will
vary in some manner with the dimensions of the strut, but presumably
not in any definite regular manner. Some writers would make it a
function of the dimensions of the cross section only ; others suggest a
function of the length ; others again make it depend on I/k. Salmon,
who has investigated the matter in great detail, suggests taking the
eccentricity of load as [/1,000. In addition to this he makes an allowance
for possible variations of Young’s Modulus by an extra eccentricity which
he estimates may be calculated from the formula /10, where § is the
distance, from the neutral axis, of the centroid of that portion of the
cross section which is on the convex side of the strut. For lattice girder
struts he takes 1/20th of the width of the strut in the plane of bending.
Salmon also adds a further eccentricity to allow for unequal areas of
the opposite members (intended to be equal) of a built-up strut, and

proposes it should be calculated as 1/160th of the width. Thus he
would give

= i&@ -+ IyO for ordinary columms, . . . . (15)
~ 1,000 000 + +
! 4+ — 9B for lattice braced columns, (16)
T 1,000 " 160 R

B being the width in the plane of bending.

222, Initial Curvature.—It has already been pointed out that no
real strut can be expected to be perfectly straight, but to apply this
axiom to practical design we must be able to estimate what is a reasonable
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initial deflection to assume. Some authorities propose to take a certain
fraction of the length, others to assume it proportional to I/k. Salmon
(loc. cit., pp. 152-3) has plotted the initial deflections observed by various
workers, mostly under laboratory conditions, and finds that practically
all the points fall within the limit I/750 or 0-0023 I/k; in the former
case the maximum deflection is considered whatever its direction happens
to be, whilst in the second it is the deflection in the direction of the k
taken to evaluate [/k. He concludes that at least this amount of initial
deflection must be reckoned on, or it may be twice as much if the columns
are not straightened. Robertson * gives the value 0-003 I/k.

In §221 variations of E were taken as equivalent to an eccentricity
of loading, but they might be regarded as equivalent to an initial curvature,
or partly one and partly the other. In a pin-jointed strut it is safer to
take it as entirely eccentricity of loading, so that in this case Salmon takes

h =1/1,000 4 /10 together with a deflection ¢ = l/750}
or h =1/1,000 4+9B/160 ,, » ” c=1/750) "

With an encastré strut it is the initial curvature which is the important
factor, since eccentricity only modifies the fixing moments, and Salmon
divides the allowance equally between % and ¢, thus

h =1/1,000 4 3/20,together with a deflection ¢ = /750 +- /20 } 18
orh=1/1,000 + 5B/160 ,, , .  c=1/750 + B/4os - (18)

223. Equivalent Eccentricity.—If we examine the above values
given by Salmon for various shapes, we shall find that the equivalent
eccentricity calculated as in § 216 is not very different from that given
by (B = thickness of strut in direction of bending).

(17)

1 B
h=_—_ — e e e e
500 + 50 (19)
in the case of solid struts, and
1 B
h=__ e
500 + 20 (20)

for lattice struts. Furthermore, these formule for 2 do not differ greatly
from that given by the Air Ministry for commercial solid drawn steel
tubes,t and give results which will be safe in practice.

224. Reduction in Strength.—The effects of the past history of the
material, including cold straightening, manufacturing processes, anneal-
ing, etc., are very difficult to estimate, but their importance is becoming
more and more realized. Baker (1888), Considére,} Howard,§ Moncrieff,||
Lilly § and others, have all called attention to the matter, but at present
we can do little more than increase the factor of safety or decrease the
working stress by some arbitrary amount. Salmon recommends reducing

* Aeroplane Structures, Pippard and Pritchard.

1 Ditto: h = 1/600 + D/40 where D is the internal diameter.

1 Congrés Int. des Procédés de Const. Exposition Univ. Int. de 1889, Vol, III.

§ Proc. Amer. Soc. for Testing Materials, Vol. VIII (1908).

Il Proc. Amer. Soc. Ctvil Engineers, Vol. XLV (1900).
S| The Design of Columns and Struts, 1908.
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the working stress at least 10 per cent., and preferably 20 per cent., below
that allowed for tension in the same material.

225. End Conditions.—In most theoretical work the strut is usually
supposed perfectly free in direction, or perfectly fixed in direction, at
the ends. In practice all struts are imperfectly fixed in direction at the
ends. If the strut is pin-jointed to the rest of the structure of which
it is a member, friction between the pin and its bearing must exert some
constraint against flexure, which may vary in amount from almost perfect
fixing if the pin be relatively large and a tight fit, to practically zero for
a relatively small, loose-fitting, well-lubricated pin. If the strut is
supposed to be rigidly attached to the rest of the structure we ought
not to begin to think of it as an encastré strut unless the members to
which it is attached are so relatively rigid that their flexure by the strut
is inconceivable ; if the strut and the neighbouring members are of
comparable stiffness the strut may actually fail under a smaller load
than if it were pin-jointed. But even when these considerations allow
us to regard the strut as encastré, it must be remembered that no fixings
can be absolutely rigid in practice, and this is particularly important
when we notice what a small angular movement of the ends precedes
the failure of a pin-jointed strut : a slope of the order of 1,/1,000 for loads
just under the failing load is what may be expected in many cases.*
This being so, it is evident that a very slight want of rigidity in the fixings
will convert en encastré strut into a pin-jointed strut for all practical
purposes. A common method of dealing with so-called encastré siruts
is to regard them as pin-jointed struts having a length of 0-6 to 0-8 of
the actual length When attached to flexible members the strength of
the structure as a whole should be considered by estimating the bending
moments at the joints.

DxsicN oF STRUTS

226. Range of the Euler Formula.—Let us first examine the range
within which the Euler formula may be expected to apply to real struts,
The notation here is the same as that of § 215, where we have seen that
the failing load of an eccentrically loaded strut is given by

Pz(l 02672/2“) {Pe(1+’2_y;>+fs}+fs.1),=o (i)

2 2P Q2
where P, = ~EL_ ﬂ B §44]
2 12

Let us investigate the extent by which a small eccentricity makes
the failing load depart from the Euler value given by (ii). Regarding
P and h as variables, (i) gives on differentiation

h P2 k
2P(1 — 0-26%"’;)«110 — 0267 Yean — dP{Pe<1 y) + fS}

_ PPy,
k2
* 1909-1910 Watertown Arsenal experiments; see Salmon (loc. cit.), p. 166,

dh=0. . . . . . (i)
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For a given shape of cross section, k£ will be proportional to y, and
we can put
k2 = yy.2,
y being a constant depending only on the shape of the cross section.
Making this substitution in (iii) and dividing through by P? we have

2idf<1 - o-%i) 026 C_lf{ﬂ(l +_h_)+fsl P dh
P Y vy, PP 79,/ PPy
When & = 0, P is equal to P,; if we put these values in this equation
we shall have a relation between the amount by which P departs from
P, on account of a small eccentricity dh ; we get

2dP _ odh _dP +fs dh

Pﬂ yyc PG e 7yc

or

P 126 dh @)
Pe 1 _f_“g VY,

P

€
In this equation dh/y, represents the eccentricity of the end load
expressed as a fraction of y, and dP/P, is the corresponding change of
failing load expressed as a fraction of the Euler load P,. f8§ is the load
which would cause failure by direct stress.
Substituting for P, from (ii) in the right-hand side of (21) it becomes

e _ 16 dh o (e

P, 1_,_f_<l_ 2 Y,
7k lc>
Equations (21) and (22) enable us to express in two ways the conditions
which must be fulfilled if a given equivalent total eccentricity is not to
cause the load which the strut will bear to depart from the Euler load
by more than a prescribed percentage. From equation (21) we can set a

limit to Jf—:sf, and from (22) we can set a limit to I/k. To illustrate this

we shall consider some numerical examples.
Let us take dh = 0-02y, and stipulate that the failing load must
not be less than 095 P,, i.e. dP = — 0-05P,. Then we have from (21)

s 0-504
=14 —.
P, T
For a circular section y = 1/4, so that

fS = 30186,

or 7S =3
that is, the stress intensity under the Euler load must not exceed one-third
of the limiting stress allowable. For a rectangular section of least width
a,vis1/3, and we find that the ratio is 1/2-5 instead of 1/3. If the

approximately,
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eccentricity is doubled, the ratio is 1/5 for the round section, and 1/4
for the rectangular section, approximately.
Again, from (22) we have, for the same conditions,

12 0-504
B f L=
For the circular section we find that we must have
12 _3-016x2F
70—2 { _f_’
and for the rectangular section :
2-512n2%F

For a steel strut having F = 13,500 tons/in.2 and f = 20 tons/in.?,
these correspond with I/k <140 and 130 respectively.

For a steel having a yield point of 40 tons/in.2, the least values of
1/k will be 100 for the circular section and 93 for the rectangular section.

For a timber having £ = 1-5 X 10® lbs./in.2, and p, = 5,000 lbs./in.?%,
the values are 95 and 87 for round and rectangular sections respectively.

The above remarks and figures should be sufficient to show the reader
the limitations which must be considered to restrict the use of the Euler

N
S 20
N %
) 2209y 2 | E = 13500 tons/in?
N T S Yield Poirtt 20 tans/in?
o]
3 5 \
\! ‘é’
O i 00 N,
0 B %
h \
55 e
\
e
0 20 40 60 80 100 120 140 160 180
Solid Circuler Pinjointed Strut. Values of Lﬁ:
Fi1a. 280.

formula, and before applying it in any practical case he should make
perfectly sure that he will be justified in doing so.

The curves shown in Fig. 280 will indicate how the permissible load,
per unit area of cross section, on a strut of given material depends on
the eccentricity and on the value of I/k. The curves refer to pin-jointed
struts of circular cross section of diameter d, the eccentricity of the load
being &.

227. Empirical Formulee.—We have seen above that when I/k
is less than about 90-150 for steel, or 80-100 for timber, the Euler theory
must be expected to give values for the failing load which will be too
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high, even though the load per unit area be then less than the yield point,
on account of the imperfections of real struts. Consequently there is
a need for a reliable formula upon which to base the design of struts,
and many formule have been given by various writers. Yet, from the
very nature of the problem, it seems that a reliable formula covering
all conditions must ever be sought in vain. We have seen how an
eccentricity of end load affects the failing load : in practice it will hardly
ever be zero and the amount of eccentricity cannot be foretold with any
degree of accuracy. In view of such facts as these it seems unreasonable
to look for a formula which will yield accurate results in all cases, and
the best we can hope for is an empirical formula which will be applicable
with moderate accuracy over a limited range of circumstances. In recent
years the subject has excited considerable controversy,* but at present
the choice of a formula is largely a matter of taste and convenience,
whilst the selection of suitable values for the empirical constants in any
particular formula is a matter for judgment based on experience. The
reader cannot be too emphatically warned against using any particular
values of empirical constants without ascertaining the conditions in which
they were found, and they should never be used outside the range of
the experiments from which they were found. In most specifications
for struts it is usually stipulated that /% shall not exceed 100, or 70 in
the case of bridge construction, thus practically ruling out Euler’s formula.
We shall now consider the more important empirical formulse.

228. The Rankine-Gordon Formula.—This formula appears to
have originated from Tredgold in analysing the results of Hodgkinson’s
experiments, and seems to be based on the following argument : If y
denote the maximum deflection, the bending moment due to an end load
P is Py, which will give rise to a stress Pyb/2I where b is the thickness
of the (symmetrical) section parallel to the plane of bending. At the
same time the stress due to direct compression is P/S, where § is the
area of the cross section. Hence, if f = the maximum permissible stress
we must have, as in § 214,

P Py
I=5%%r
from which we derive
P I .
= . . .. (i)
§ 1.9
2k

This formula will be perfectly true for any strut provided we know y,
which is the real crux of the matter. Tredgold assumed the curvature

* Reference may be made to the following :—H. Basquin in the Journal of the
Society of Western Engineers, June, 1913, 1914 ; C. P. Buchanan in Engineering
News, Dec. 26, 1907 ; J. Kubler, C. J. Kriemler, and L. Prandtl in Zestschr. d.
Deutschen Ingenieure, Bd. 44 (1900), also Kiibler and Kriemler in Zeitschr. f. Math.
u. Phys., Bde. 45-47 (1900-1902) ; a paper by Timoschenko in Ann. des ponts et
chaussées, 1913 ; Southwell in Phel. Trans. R.S. (Ser. A), vol. 213 (1913); T. Strand
in Teknisk Ukeblad (Sept. 27, 1918) ; Salmon’s Columns.
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to be circular and arrived at formuls for struts of rectangular and circular
cross sections. This was modified by Gordon who put it in the form

A f"‘ — .
N2
1 —
+ c< b)
¢ being a constant depending on the cross section and material. Rankine
further medified it to

P
5= .. (29)

Pt @
oy
K

a being a similar constant to Gordon’s c.

From the above it will be seen that these formule do not really avoid
the difficulty of finding y; they simply dodge it by substituting the
unknown 4 or ¢ for the unknown y. The constants @ and ¢ are then
regarded as empirical numbers to be found by experiment. The under-
lying error is that y is really a function of P, so that @ and ¢ should also
depend on P, whereas they are treated as constants.*

The following values of a apd f are those generally accepted when
this formula is used :

Mild Steel. Wrought Iron. Cast Iron. Ash or Spruce.

. . . 21 16 36 2-25 tons/in.?
l/a . . . 1,500 9,000 1,600 3,000

For encastré struts 1/a is usually taken as four times the above.

Example.—A cast-iron column, 8” external diameter and 6” internal
diameter, is 20’ long. Applying the Rankine-Gordon formula (24) and
assuming ¢ = 1/6400, find the compressive stress produced by an axial
load of 50 tons. (R.N.E.C., Keyham, 1920.)

We have
S = ~Z(8’—62) in.? = 7x in.? = 22 in,?
=£ L __ 64 ins t _?.O_O_ ¢
I 64(8 64) ins. g ins
I 100
2 = = — 2 == ”
.k S T k=25

1+a (%)' = 244

1 =5l +e (@)} =B

229, Straight Line Formulse.—On account of the great variation
of the experimental results of tests on struts under conditions approaching

X 2:44 = 5-5 tons/in.?

* Sometimes an attempt is made to connect these formulse with Euler’s formula
by starting with the empirical relation 1/P = 1/fS + I3/n2Ek? on the ground that
it satisfies the conditions at both ends of the scale, when ! is very large or very
small. But this seems rather specious ; it gives the value ¢ = f/#3E.
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those of actual practice, any empirical formula can only be expected to
give a more or less rough prediction of failing loads for actual struts.
For this reason there is a great deal in favour of the simplest possible
formula, namely, one following a straight line, and such formuls are
in common use in America. We have in these cases

1
P=S{f —n_— < e . . . . (25
(f nk> (25)
where n is a constant. A frequent specification for mild steel is
P= S(l6,000 — 80—2—), with freeends . . . . (26)
pP= S(16,000 - 60%), with fixed ends . . . (27)

in pound-inch units, with the stipulation that in no case shall I/k exceed
100, or 70 in bridge work.* This formula, though simple in itself, is
not so convenient for the direct calculation of the area required as the
parabolic formula of the next article.

230. Johnson’s Parabolic Formula.—Johnson has given the

following formula
12

P=S(f~rk—2). .. .28

where  is a constant. If P/S be plotted against I/k, this equation will

give a parabola, and r is chosen to make the parabola touch the Euler

curve P/S = a2Ek?2. Johnson, as the result of experiments, gives the
following figures :

For mild steel, f = 42,000 lbs./in.?
For wrought iron, f = 34,000 lbs./in.2

r =097 if I/k <150, ends pivoted.
r =062 if I/k <190, ends fixed.

. r=0-67 if 1/k <170, ends pivoted.
For wrought uon{r = 043 if I/k <210, ends fixed.

For cast iron the Rankine-Gordon formula gives better results.

For practical struts it is usually only the parabolic part of the curve
which is required.

The area of cross section required can be found directly by the
following device which is due to Asimont:

For mild steel {

Let 8 = sk?, s depending only on the shape of the section.
»» 8o = the area required to resist direct crushing.

f

* Taken from The Strength and Elasticity of Structural Members by R. J. Woods.
1 Zeit. des Bayer Arch.-u.-Ing.-Ver., Miinchen., Bd. viii, Heft 6. The appli-
cation is due to Ostenfeld (Zeits. d. Ver. deu. Ing., Dec. 31, 1898).
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The parabolic formula may be written

l%s
=I-rg
2
8= s°+’7’8 (@

231. Fidler’s Formula.—The following formula is given in Fidler’s
Bridge Construction :
P 1
E = ﬁ{f +pc - V(f '*".pe)2 - 2/"'fpc} : ° - (30)
where f = ultimate strength of material in compression.
p, = the Euler stress = n%Ek?/I2.
1t = a constant of average value 1.2.

232, Perry’s Formula.—The following three formule are less
empirical in their nature than the foregoing, although all depend on at
least one empirical constant. They represent, in various forms, attempts
to allow for such imperfections as initial crookedness and eccentricity
of load. Perry gave the following formula :

= %{f +pe(l + 77)} %'\/{f + pe(l + 17)2 4fp¢} * * (31)
where p = P/8.
J = yield stress in compression.
P, = Euler stress = n2Ek3/12%.

n= 2k,(c + = h)

¢ = maximum initial deflection.
h = the eccentricity.,
b = the thickness in the direction of the smallest radius of gyration.

233. Robertson’s Formula.—Prof. Andrew Robertson modifies
Perry’s formula by taking 5 = 0-003 I/k, which he finds fits a large number
of experimental results extraordinarily well.

234. Author’s Formula.—Solving equation (7) in § 215 we have
1
P/S = o-{f +bp) — VI ¥ D —4Lap} . . (32)

hy
where a = 1 — 0-26 ka,g,:;db——l-{-hy"

where % is to be calculated from the formula (19) or (20) of §223.
The chief reason for the difference of form between this and Perry’s
formula is the more accurate approximation taken for sec 6 in §215.
In (32) p, p,, f and k? have the same meaning as above; for struts of
symmetrical section y, in (32) will equal 5/2 in (31). If the constants
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can be accurately known in both cases (32) may be expected to yield
better results than (31).

235. Stress Determining Strut Failure *~Robertson has shown
that, for ductile materials such as mild steel, high tensile steel, and
wrought iron, it is the value of the stress at yield in compression, and
not the ultimate strength, which determines failure. The reason for this
is the reduction of stress which occurs when the yield point is reached :
the strain of the material has to be many times the elastic strain before
the yield stress can be supported. Thus the slightest increase of load
will bring about a reduction of stress in that portion of the strut which
has reached the yield point, since the rest of the strut prevents the strain
being sufficient to support the yield stress. The effect is to shift the
line of action of the resultant stress farther away from the axis of the
strut, which is accompanied by considerable strain in the material,
resulting finally in the complete collapse of the strut.

It is, then, the value of the yield stress in compression which we
require for determining the strength of struts, and Robertson has shown
that, provided care is taken that the load is uniformly distributed during
test, the elastic limit, yield point, and Young’s Modulus are practically
the same in compression and tension ; also that the yield point and elastic
limit are generally identical for steels which have a well-defined drop
of stress at yield.T Some of his experimental results are given in the
following table and in the table on p. 321.

Trsts oN SorLipD RounND STEEL SPECIMENS

Tension (tons/in.*). Compression (tons/in.?),

Elastic | Yield | Elastic | Yield

Limit. | Point. Limit. | Point. E

Mild steel . . .| 183 18-3 ‘ 13,300 | 19-2 19-2 13,300
» » . . .| 2001 | 202§ 13,300% — — —
‘“36-ton” steel . . | 215 22-8 113,200 ;| 24-0 24-1 13,500

» » - .| 230} | 23-0% |13,210% — — —

236. Factors of Safety for Struts.—In dealing with members
which are in tension, shear, or bending unaccompanied by thrust, or
compression without bending we can write

load at failure _ stress at failure
working load ~ working stress *

In the case of struts this is not strictly true, although the empirical
formule of §228 would make it appear to be. We know that the
failure of a strut is due to stresses set up by thrust and flexure combined,
the flexure being due to a real or fictitious eccentricity of the end load, ®
and increasing as the latter increases but not proportionally.

* See a paper by Westergaard and Osgood on struts stressed beyond the elastic limit,

published in the Proceedings of the American Society of Mechanical Engineers.
t See B.A. report on stresses in overstrained materials, 1931.

{ Special loading shackles to ensure uniform distribution of strain.

factor of safety =
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the flexure being due to a real or fictitious eccentricity of the end load,
and increasing as the latter increases but not proportionally.

A consideration of the equations obtained in § 215 for an eccentrically
loaded strut will explain matters. Taking the approximate equation (7)
and dividing by S§2% we can write it in the form

ap?— b +p)p +pp,=0 . . . . (D)
where p = the average stress = P/8,
p, = the maximum compressive stress,
P, = the Euler stress = n2Ek2/12,
and a and b are constants depending on the dimensions of the strut.
Now let f = the yield stress in compression.
n = the factor of safety.
P, = the maximum working stress = £ .

From (i) we can find p and hence P, obtaining

S
P= %{b +pc - \/(b +pc)2 et 4a’pcpe}

If we insert in this f or np, instead of b, we shall obtain the average
stress at failure and hence the load P’ which will cause breakdown ;

8
P'=o-fb +np, — V(b + np,)* — danp,p},

evidently P’ s nP.

To find the true factor of safety of a given strut under a given end
load, using equation (i) we should proceed thus : we have first p=P/8,
8o that from (i) we can find the maximum stress p, = plb —ap)/(p, — p),
then the factor of safety is f/p,

Conversely, if we wish to design a strut by the same equation, to have
a given factor of safety with a given load, we first calculate Pe=f/n,
and then, taking a trial section, find p from (i) and hence P = p8. If
this does not give the correct value of P we must try again.

We have here interpreted the factor of safety as meaning stress at
failure <~ working stress; if we take it to mean the multiple of the
working load which will cause failure we must design the strut so that
.= f when p = nP/8.

237. Shearing Forces in Struts.—In any strut the bending
moment depends on the displacement of the axis and varies along the
strut. Consequently there must be shearing forces. When the data
are sufficient these can be calculated from the exact formula given above
for the bending moment. For instance, in the case of strut pin-jointed
at each end, with an eccentric load, we have from equation (ii), § 215,

M = Py = Ph cos a(;— - x)sec g—l.
Hence, if F denote the shearing force at any section,

aM . l al
F = p aPh sin a(E- — )sec 3

X
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This is numerically a maximum when x = 0 or [, which gives

—aPhtana—2l- C e . (33

Other cases can be calculated in the same way. When an empirical
formula is used to calculate the safe load on a strut or to design a strut,
we can form an approximate idea of the shearing force thus :

Let p = the average stress on a section = P/S.

p, = the stress due to bending.

f = the working stress taken to calculate the strut.
= the deflection at the centre.

Z = the modulus of the cross section.

Pé
Then f=p4+p, = p+—

from which 6=%(f—p) e e e (3

In the case of a pin-jointed strut the Euler theory suggests that we
should assume a sine curve for the shape of the deflected axis. Let us
take, with the notation of Fig. 273,

y = dsin 7?
Then the bending moment is
M = P§sin ’_‘;ﬁ

and the shearing force is given by
_aM _@Pé  ax

T de l A
This is & maximum at the ends of the strut where = 0 or [, giving
nPtS
With an encastré strut, we may assume for the deflection curve,
6 1—o 2rv
v=5( T
and M=Py+M°=%6(l—— cos 2’”‘)+ M,

where M, represents the fixing moments at the ends. Then

aM nP6 . 2qx
F = 8N —— .
dz 1 l
This is a maximum when z = % or %, and

Ps
Fma,=:t"———i (f—p) S .. (36)
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BRACED STRUTS*

238. Braced Struts.—Large struts are frequently of built-up lattice
girder construction. In these cases the deflections, bending moments,
etc., may be calculated in the same manner as for solid struts, the value
of the moment of inertia being calculated for the whole cross section
of the strut. This statement, of course, infers that the eccentricity of
loading, etc., can be calculated, so that the same uncertainties must be
faced as in the design of solid struts, and the problem can be dealt with
in the same way, that is by trying to estimate the eccentricity or by
empirical formulz. But with reasonable care, whatever method of
design be adopted, the chance of the strut failing as a whole is not large :
the most important feature of the design of built-up struts is the con-
sideration of local strength, that is the strength of the individual members
between the panel points, the strength of the bracing, the failure of the
separate plates of the flanges between the rivets, and so on. The flanges,
between the panel points, must be considered as individual struts, pin-
jointed at their ends, either eccentrically loaded or by empirical formulz,
the former for preference.

Let M denote the bending moment on any section, and let b = the
breadth between the centroids of the flanges. Then the thrust in each
flange is 4+ M/b. If the total area of the cross section of the flanges
be 8, and the load on the strut be P, the direct thrust on each flange is
P/S. Hence the total thrusts in the two flanges are P/S - M/b. Thus
the greatest load which has to be taken by a single flange between the
panel points is P/8 + M/b. We are here assuming that the two flanges
are equal; if they are not a similar
expression is easily worked out. If the ! ,
eccentricity of loading on the strut is & =
known, M can be calculated by the exact 1—
methods ; if an empirical formula is used, \ % E (

I

it can be estimated approximately in the
manner of §237.

When the flanges are built of several Fre. 281.
plates riveted together, as in Fig. 28I,
the possibility of the outside plate buckling between the rows of rivets
must also be considered. The plate may be treated as an imperfectly
encastré strut, by taking a free length of 0-71 to 0-81.

The strength of the bracing to resist the shearing forces must also
be considered, and we have shown above how to estimate the total
shearing force to be dealt with. When double lattice bracing is used
as in Fig. 282 (a) the thickness of the lattice plates should not be less
than gyth of the distance between the nearest end rivets, whilst with
single bracing (Fig. 282 b) it must not be less than gyth. The stress
in compression should not be greater than (8,600 — 63 I/t) lbs./in.2 for
mild steel, where [ is the length of the bracing member and ¢ the thickness.
When nickel steel is used an increase of 40 per cent. on this may be

* This subject is treated in detail by Salmon (loc. cit.) and Timoshenko, Strength of
Materials, p. 6594,

X
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allowed. If F is the total shearing force, the thrust in single lattice
bracing is F sec 0 (Fig. 282 (b)) ; with double lattice bracing the shear
is taken by thrust in one bar and tension in the other, and if these are
assumed equal each is }F sec 0 (Fig. 282 (a)).

Of the various types of bracing in use the double lattice system
(Fig. 282 (a) ) is probably the best, particularly if the bars are riveted

Fi1c. 282.

together where they cross. Experiments made with built-up beams *
indicate that such a type has a considerable superiority over the single
system (Fig. 282 (b) ), and that there is considerable gain from riveting
together the crossing bars; the same experiments also showed the
system () to be vastly superior to the system (c). On the other hand,
other experiments t showed very little difference between the merits -of
the single and double systems, even when the ends of the former are
independent as in (¢). A tie bar between opposite points, such as 4
and B in Fig. 282 (a), is bad as it causes the diagonals to take part of
the axial load on the column.

Yy

. s Example 1.—Design a lattice braced strut

T r j of length 49’ 0” to take an axial thrust of 320

tons, with the specification that the load is

| given by P/S = 16,000 — 80l/k lbs./in.2, and

i that [/k is not to exceed 70, also that the

4 .t' e flanges are to be single 1”7 plates joined to the
7

0 bracing by 4” X 4” x §” angles, as shown in
Fig. 283. The bracing is to be of the double
lattice type, the centroid of the section of each
L l» J angle iron is 1-22” from each face, the moment

b —— 25~
|

of inertia about an axis parallel to either side
is 6:56 in.%, and the area is 4-61 in.?

Fia. 283.

* Basquin, Journal of Western Society of Engineers, Chicago, 1913.
T Watertown Arsenal, 1909-10.
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If I/k = 70, we must have k = 5,;—%8 = 8:43”, and
g = 16,000 — 5,600 = 10,400 lbs./in.2
320 x 2,240 .
. —_— . 2
. S 10,400 = 689 in.

The area of the four angles is 18-44 in.?, so that the total area of the
plates must be 50:46 in.2 Make them 25” deep, find k and check the stress.
The moment of inertia about OX will be found to be 4,974 ins.4, whilst
the area is 68-44 in.* This gives k = 8:33”, which is slightly larger than
the value we laid down. We must have
P 588

§< 16,000 — 80 x 353

< 10,470 1bs./in.?
With 25” flanges P/S = 10,470 lbs./in.3, and so is just within the limit.
We must now make the moment of inertia about OY right.

Let D = the distance between the centres of the flanges. Then the
moment of inertia about OY is

2(25 - Y o5 x 1%) + 4{6~56 + 4'61(]_; - 1'72)2}

2
= 4.1 4 12-5D% 4 26-24 + 18~44(%
= 17-11D%* — 317D + 84-9.

Equating this to the moment of inertia about OX and solving for D we
get D = 17-85", so take D = 18”. This gives I,y = 5,025 ins.*

We must next consider what is the greatest permissible free length of
each flange by itself. Taking one flange plate with its two angles we find
that the area is 34-22 in.%, and the moment of inertia 35-1 ins.t about an
axis, through the centroid of the whole flange, parallel to the plates.

Hence k* = 35-1/34-22 = 1-026 in.2, or & = 1-:012”,

We must have

— 172D + 2-96)

DL < 16,000 — 80 x —A—
3492 < 10999 =80 X 1513

ie < 16,000 — 790, . . . . . . ()

where P, is the maximum load in one flange, and I, is the unsupported
length.
Now P, will be greater than half the total load on account of bending.
If fo denote the stress due to bending,

fﬁ ”» b4] ” 2y t}]‘rust’
we have
Jo + fe = 16,000 lbs./in.?
320 x 2,240 .
. fo = 16,000 — —e8ds = 5,530 lbs./in.?
The bending moment required to produce this is
5,530 5,025 .
M =fiZ = 2.240 X 95 X 1,306 tons. ins.

This produces a thrust in one flange and tension in the other equal to
1,306 . . .
% = 72-6 tons. Hence the maximum total thrust in one flange is

160 + 72-6 = 232-6 tons.
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Hence, from (i) we must have
2326 x 2,240
34-22
15,230 < 16,000 — 791,

< 16,000 — 79I,

which gives I, & 975",
This means that the panel points of the lattice bracing should not be
more than 9} apart.

Fic. 284.

The centre lines of the angles are 13-5” apart, and we shall take these
lines as the line of the rivets attaching the bracing to the angles, as shown
in Fig. 284.

We must next estimate the probable shearing force.

From equation (35) § 237, we have

Fmaz = 77(f —p).

In the present case f —p = 5,530 lbs./in.? (see above).
! = 588”, Z for bending in the plane OX is 5025/9-5 = 530 ins.®* Hence
7 x 530
Faz = “Es3 X 5,530 = 15,600 Ibs.
This is for both sides of the strut, for one side it will be 7,800 lbs. If
we assume that half this is taken by thrust in one lattice bar, and half by
tension in the other lattice bar, we see that the forces T are (Fig. 284)

16-5
1% X 3,900 = 4,760 1bs.
. . 16-5
The thickness of the lattice plates must not be less than 60 = 0-26" ;
say 2%,
Let b = the width of the lattice bars, then for those in compression we
must have, according to § 238,
4,760 165
o-3755 % 8,600 — 63 X Gra7y
% 5,910
4,760 ,
or b ¥ 6375 x 5,910 X 216"

This is perhaps rather wide; if we take the thickness }* instead of §”
we find & = 1-61”, or say 1}”. A single rivet " diameter will take the loads
in the lattice bars, with a shearing stress of 4-53 tons/in.?; the nett area
across the rivet hole to take tension will be 0-438 in.?, giving a tensile stress
of 4-8 tons/in.?
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Example 2.—Check the above design by exact methods on the assump-
tion that the equivalent eccentricity is that given by § 223.
The equivalent eccentricity is

B
h l

=500 T 30"

The smaller moment of inertia is about 0X, so that we must consider
bending about that axis, and we must take B = 25”. Hence, since I = 488",
we have

h = 0-98 + 1:25 = 2:23".

We also have

I = 4,974 ins.t

P = 320 tons.
Take E = 13,500 tons/in.?, then
P 320 1
a? = —3

ET T 13,500 % 4,974 _ 210,000 ™

— — ins—1
¢ = o5 ins.
al 244 . o o
5 =160 = 0-533 radian = 305
A

sec. 5 = 116

The area of the cross section is 68-44 in.? Hence, from equation (4)
§ 215, the maximum compressive stress is

320 320 x 223 x 125
844 T 1,074
= 4-68 + 2-:09 = 6-77 tons/in.? = 15,200 lbs./in.?
This is below the 16,000 lbs./in.? which is allowed.*

We must next consider bending in the other plane, for which we have
B =19", b =1-93", I = 5,025 ins.*

x 1-16 tons/in.?

1
= 212,000’ :
which is sensibly the same as before. Hence the maximum bending moment

. . . 1 .
in this plane is Ph sec. “5 =320 x 193 x 116 = 716 tons. ins.

This requires a thrust in one flange, and a tension in the other, equal
to 39-8 tons. Thus the total maximum thrust is 160 + 40 = 200 tons,
nearly, in one flange. This is less than our previous calculation gave.

Next consider one flange between the panel points :

a?

1 =95", B=5"
h = 00195 + 0-1 = 0-12” nearly.
I =351 ins.¢; P = 200 tons.
at = 200 1
13,500 x 351 2,370
1
a = 187 ins,—!
gf = :—75 = 0-0975 radian = 5-7°.
al
sec. 5 = 1-005

* The eccentricity A would have to be 2:64” to bring the stress up to the maxi-
mum permissible value.
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The area is 34:2 in.2 Hence the maximum stress is
200 200 x 0-12 x 3-74
343 + 351 x 1-:005
= 585 + 2:58 = 8-43 tons/in.? = 18,900 lbs/in.3,

which is greater than that allowed.
Finally we shall calculate the maximum shearing force in the plane 0X.
It is given by equation (33), p. 312:

Foaz = aPhtan%l

320 x 1-93
= TGO x 0-5890

= 0-79 ton = 1,770 lbs.,
which is considerably less than before.

StEEL TUBULAR STRUTS

239. Equivalent Eccentricity.—The remarks which have been
made above concerning struts in general apply of course to steel tubular
struts in particular, but, on account of the researches carried on during
the war in connection with struts for aeroplanes,* this particular class
of strut stands in a more satisfactory position than other classes. The
result is that there is really no necessity for falling back or rough empirical
formulee for design, such as those of Rankine or Gordon. Research shows
that with ordinarily well-manufactured solid drawn steel tubes the
equivalent eccentricity of load due to initial crookedness or eccentricity
of bore is very unlikely to exceed a value given by

__length  diameter
600 0

We may therefore use with considerable confidence the formule for
eccentrically loaded struts, either the accurate formula (5), p. 293, or
the more convenient approximate quadratic (7). In this case the
quantity Ay,/k? which enters into the equations can conveniently be

written thus :
hy, 1 11
=) - (38
z 5( + 60 k& (38)

In designing steel tubular struts attention must be paid to two
points : crinkling and heat treatment. The yield point of mild steel
may be considerably reduced by any heat treatment which it receives,
such as welding or brazing. On this account precautions should be taken
to prevent such treatment, or the strength must be taken as that of the
annealed material.

240. Crinkling.—When a tubular steel strut is under compression
the tube may * crinkle ”—ij.e. the walls of the tube may cave in and form
folds, after the manner of a concertina. These folds may be circular,
oval or polygonal, and they may occur after or before the longitudinal

(37)

* Useful curves for design of tubular steel struts were published by the Air
Ministry and are reproduced in Pippard and Pritchard’s Aeroplane Structures
(Longmans).
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stress reaches the yield point. The matter was investigated * analytically
by R. V. Southwell, who deduced the formula

p—E\/ e R ¢

where p = the stress causing collapse,
t = the thickness of the tube,
R = the mean radius of the tube,
1/m = Poisson’s Ratio,

for values of p less than the elastic limit, which, we have seen, is practically
identical with the yield point. Thus, for a mild steel tube, having an
elastic limit of 20 tons per square inch, the formula will only apply
when /R is less than about 1/400—i.e. it will not apply to many tubes
used in practice.

The phenomenon has been examined experimentally by Mason,t
Popplewell and Carrington,{ and Andrew Robertson.§ In Mason’s
experiments the load was applied through conical cups; in 31 tests of
tubes 3 in. x 14 SW.G., having ¢{/R = 0-052, there were nine cases in
which signs of failure were noticed before the longitudinal stress reached
the yield point; with tubes 2% in. X 10 S.W.G., no signs of collapse
were observed before this happened.

Popplewell and Carrington experimented with nickel-chromium steel
tubes, both in the annealed and in the unannealed states. The com-
position of the steel was : Carbon, 0-2 to 0-3 per cent. ; nickel, 4 to 5 per
cent. ; chromium, 1 to 1.5 per cent. In tension the yield point of the
annealed tubes varied from 36-4 to 38-5 tons per square inch. In the
compression tests the load was transmitted through hardened and ground
parallel steel plates; the ends of the tubes were either sunk into the
plates or plugged, or both. Extensometer readings taken on opposite
sides of the tubes showed whether there was any bending. The authors
of the paper referred to concluded that ““ (1) in the case of the annealed
tubes, there is a definite crinkling stress which varies, approximaitely,
with ¢/R, so long as this does not exceed 0-1 ; (2) for values of ¢/R greater
than 0-1 the elastic breakdown is identical with the elastic limit of the
material ”; for the unannealed tubes they conclude that * special
attention is necessary when ¢/R is greater than 0-1.” The results of the
experiments are shown in Fig. 285. In connection with this, the authors
state that ** The results for the hard tubes were complicated by the fact
that the thicker ones appeared to be softer than the thinner ones. . . .
To test this further, a thick tube (¢{/R = 0-172) was machined down
inside and outside until {/R = 0-055, and tested.” The machined tube
collapsed at 80,060 lb. per square inch. For a full account of these
experiments the reader is referred to the original paper, where stress
strain diagrams and full experimental results are given.

* Phil. Trans. Royal Society, Series A, vol. 213

t Proc. Mech. Engineers, 1909.

1 Proc. Civil Engineers, 1916-17, Pt. 1.

§ Report to the Royal Society Sub-Committee on Struts.
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In 1914 experiments were made by W. H. Barling * on annealed mild
steel tubes, and he came to similar conclusions—namely, that, below a
certain critical value of ¢/R, the crinkling stress is less than the yield
stress, and proportional to f/E. The results of his experiments are
included in Fig. 285.

TIobertson’s experiments do not confirm the results of Popplewell,
Carrington and Barling. The experiments were made on 1} in. X 18
S8.W.G. tubes, 3} in. long, the ends being faced up on a mandril. Mild
steel and air-hardening high tensile steel tubes were tested, both annealed
and unannealed. The tubes were tested in a special jig to ensure parallel-
ism of the hardened and ground end plates transmitting the load, and
every possible precaution was taken to obtain a uniform distribution of
strain. Robertson concludes from his experiments that ¢ for tubes of
ductile steel in which ¢/R is greater than 0-02, yield precedes collapse by
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wrinkling ; for tubes of annealed mild steel in which ¢/R is greater than
about 0-044 collapse occurs at higher stresses than the yield. . . .”

Subsequent experiments by Robertson on mild steel tubes 2% in.
diameter led him to the conclusion that ‘‘a mild steel tube having
t/R = or >0-006 will, if axially loaded, sustain a stress equal to the
yield stress before collapsing by wrinkling.”” Some of his experimental
results are given in the table on the opposite page.

We see, then, that at present the matter is still open to argument,
and that the evidence is conflicting. My own opinion is that, under
the conditions in which tubes are loaded in practice, there is a danger
of crinkles forming near the ends at stresses below the yield stress,
although they may, under highly refined laboratory conditions, sustain
the yield stress before collapsing. I think that the crinkling stress, for
annealed mild steel and high tensile (nickel-chromium) steel, is pro-
portional to the ratio ¢/R, when the value of that quantity is below about
0-06 for mild steel, and 0-1 for annealed high tensile steel. In our present

* See Aeronautics, Dec. 4, 1918, or Royal Aeronautical Society, Reprint No. 9.
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ComprESsioN TEsTs ON TuBES (mean radius R, thickness ¢).
Specimens 3} in. long. YR. | Timite | Pont. | Modutes. | lopes.
Mild steel . 083 29-3 333 12,580 384
. e e e e -083 284 312 12,930 36-3
Mild steel annealed at 900°
C., cooled in air | -083 21-0 214 12,730 27-2
. annealed at 900°
C., cooled in air | -083 226 226 12,580 —
v annealed at 900°
C., cooled in fur-
nace PR -083 17-14 17-14 13,380 23-8
' annealed at 900°
C., cooled in fur-
nace 083 16-78 | 16-78 | 13,280 227
Annealed high tensile steel* . 083 334 385 13,350 43-3
' ' v . 083 27-0 295 13,070 40-0
' ' " 083 24-6 280 12,660 38-6
. ’s " 083 280 29-5 12,570 —
. . ’ 083 30-3 324 13,380 —
) 3 T -083 29-5 30'8 12,880 -—
Hardened high tensile steel* . | -083 163 No 12,340 No
» 7] ” -083 34-0 defi- 11,620 col-
I ’ 2 -083 26-0 nite 12,900 l&pse
sy *» ” ‘083 22-0 yield 12,400 below
’ sy Y} -083 22-0 pOint 12,780 72 tons
»” " »» -083 20-9 12,850 /in-’

state of ignorance it is probably safe to take the critical value as 0-08 in

both cases.

REINFORCED CONCRETE STRUTS
241. Short Struts where Bending is Negligible.—If the column

be reinforced with rods surrounded by
hoops at relatively large distances apart,
the calculations can be done in the
manner indicated on pp. 14-16. With
the Considére system, however, the
method given below may be used.
The reinforcement consists of steel rods
spaced equally round the column, a
short distance, inwards, from the sur-

O Rods
‘ ’4\ Helical

%o @ NWire Binding

Fic. 286.

face. The rods are surrounded by a wire taking the form of a helix of
small pitch, as shown in Fig. 286.

* The steel referred to here is air-hardening steel, and the annealed tube shows
no marked drop of stress at yield, such as occurs with mild steel, but there is always
an elastic limit (limit of proportionality of stress and strain), and a point where
the slope of the stress strain curve becomes very markedly less, and this latter
point is taken as the yield. This explains the apparent contradiction by the table
of the statement in § 235 that the elastic limit and yield point are generally identical.
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Let P = the total load on the column.

. S =, ,, area of the cross section of the column.
P Ss — Iy 3 3 T 3’ I rods.
,» P, = the longitudinal stress in the steel.
n Pe= » » »» s concrete.
» Fy= Young’s Modulus for the steel.
i) Ec - 3 s I 3 concrete.
Then, from §16, p. 15,
P, = EF
‘ EC(S - Ss) + EsSs
! E
S P = pA s-|-<is- 1)881. L (o)
L ¢ J

Now, the helical reinforcement can be regarded as behaving as a
thin tube ; suppose the diameter of the cross section of this tube is d,
and the radial thickness of the spiral binding is . The hoop stress in
the tube being p,, the radial pressure, p,, between the concrete and the
tube, is given by

2p 1
Py = —Z’
d

=2 . . . . . . . .4

The procedure now depends on what theory of elastic failure we adopt.
Suppose we adopt the maximum shearing-stress theory : then p,—p,
must not exceed a certain value f. Hence

p.=p,+f
=2y
Hence, from (i)
P (‘;Lf +f){s +(§: -1>s,} L 42

This gives the safe load on the column when the maximum stress in
the steel, and the maximum stress-difference in the concrete, are pre-
scribed, and the dimensions are known.

242. Long Struts.—Consider two separate struts: one consisting
of the concrete without the reinforcing rods, and the other consisting
only of the reinforcing rods braced together in their proper relative
positions by imaginary shear bracing. Let I, and I, denote the moments
of inertia of the two cross sections. In the composite strut the imaginary
shear bracing between the steel rods is supplied by the adhesion between
the steel and concrete.

Let P, and P, denote the load taken by the concrete and steel
respectively. Then, if the concrete strut and steel strut, imagined
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separate, bend to the same shape, which must be the case when they
form one composite strut, we must have

PC 'PS
=L =_%_ . . . . . . . (43
EI, E|I, (43)
If this condition is satisfied, the Euler failing load of the combination
(§213) is given by
_ T (EL + Efly)
e ——'—l—z'——_
where ./ is the length of the strut.
If there is no slipping between the steel and concrete, which is a
necessary condition if we apply the formula (44), we require

P._BS. . .. . . @

P (44)

P,” BB,

8

where §, is the nett cross section of the concrete. For both (43) and
(45) to be true the radii of gyration of the two imaginary separate struts
must be equal. Hence this is the condition to be aimed at in design.

EXAMPLES XVIII

1. Calculate the Euler failing load of a pin-jointed strut made of round
steel rod }” diameter and 12 ft. long.

2. An seroplane wing strut is of streamline section and made of silver
spruce. It is 72” long between pin-joints. The maximum axis of the sec-
tion is 4-5” and the minimum 1-5”, and it is parallel throughout its length.,
Calculate the axial load under which it will fail, given that I = BD?/24,
where B and .D are lengths of the maximum and minimum axes respectively,
and that E = 1-6 x 10° lbs./in.? (A.F.R.Ae.S. Exam., 1922.)

3. A mild steel column has a cross section such that S = 50 in.? and
k = 4". If both ends are encastré, and the length is 20 ft., find the load
which the column can take, according to the Rankine-Gordon formula.
Use the constants given in § 228,

4. In question.2, if the load is eccentric by an amount h = 0-03”, calcu-
late the load which will produce a maximum compressive stress of 5,000
1bs. /in.2

5. Find thickness of a round steel tubular strut 1-5” external diameter,
6 ft. long, pin-jointed at the ends, to take a load of 2,000 Ibs.

6. An encastré strut is built of steel with the section shown in Fig. 288,
and the length is 15 ft. In erection the ends are given an initial slope of
1in 100. If EF = 13,000 tons/in.?, and the permissible stress is 10 tons/in.?
calculate the maximum end load. (See Ex. 21.)

7. Calculate the Euler crippling load for a strut encastré at both ends,
the cross section being a square 3” x 3", and the length 5 ft. Take

E =30 x 10 lb./in.?
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8. Fig. 287 shows a strut composed of two parallel
plates each 3” x 4” kept apart by four distance pieces.
The strut is fitted with pin joints 4B, CD, at its extremi-
ties. The ends are maintained vertically above one another
and the axes of the pins are kept parallel. Taking E for
the material as 30 x 10¢ lbs./in.?, calculate what vertical
load the strut will carry without buckling in a plane per-
pendicular to the axes of the pins. Assuming that the
ends of the struts remain vertical in direction, examine
whether the plates in the six-foot length will buckle under
l a less load. (Mech. Sc. Trip., 1910.)

EE%ED

Fia, 287.

9. By means of Rankine’s formula the buckling load for a hollow cylin-
drical pillar 20’ long, 8” external diameter, 6” internal diameter, is found
to be 324-5 tons. The direct crushing strength of the material was taken
as 36 tons/in.? and the ends considered fixed. What would be the buckling
load of the same pillar, shortened by 5 ft., under the same conditions ?
(R.N.E.C., Keyham, 1922.)

10. For a strut with riveted ends, axially loaded and having a free length
1, it is specified that p the safe load measured in tons per square inch is given

1 ! . . . .
by p = 8(1 — 300 %) wherse k is the least radius of gyration of the section.

I .
For values of % not exceeding 120 and for a material which has an elastic

limit of 15 tons per square inch, how does this specification compare with
one in which it is laid down that the intensity of stress must not exceed
half the elastic limit or one-third the Euler limit for a strut with hinged
ends ?

Take E as 14,000 tons per sq. inch.

The cross section of a strut is represented by Fig. 288.

Angles 3x3% y
Sectional area of each =2-75 in
Radius of gyration about

P e = " , 2 ”

v

2777

_—
%

Fia. 288.

The angles are joined by horizontal battens which alternate at intervals
down the strut. Using the straight line formula stated above and taking
{ =10 ft., find what axial load this strut can safely support.

If a strut is constructed having a section obtained by increasing or decreas-
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ing all the linear dimensions given in Fig. 288 in the same ratio, prove that
the sectional area S to carry a load P for this same length is given by

P R
8 =g+ 35+ V123 + -088P.
{(Mech. Se. Trip., 1923.)

11. Consider a solid steel strut of square cross section, pin-jointed at
the ends, with an equivalent eccentricity equal to 0-01 of the side of the
cross section. Let the yield point be 15 tons/in.?, and E = 13,500 tons/in.?
On a base of P/S plot curves showing the maximum and minimum stress
on the central cross section for values of I/k = 30; 80; 150; 200.

12, Two similar members of the same dimensions are connected together
at their ends by two equal rigid links as shown in Fig. 289, the links being
pin-jointed to the members. At the middle the members are rigidly con-
nected by a distance piece. Equal couples are applied vo the links, the axes

£

al|| |3

Fia. 289.

of the couples being parallel to the pins of the joints. Show that buckling

will occur in the top member if the couples M exceed a value given by
1 1A

tan% = tanh ‘23— where a* = M/EId. (Mech. Sc. Trip. B., 1921.)

13. The ends of a strut are capable of a limited small angular movement
to the extent of ¢ radians, the load is applied axially and the strut is initially
straight. Show that, provided the end load is greater than the Euler value
of the strut when pin-jointed at its ends, the fixing moments at the ends
are given by

L
M, = o cot 3
and that the maximum deflection is
P
a tan 4

in the usual notation,

14. If in erecting a strut with fixed ends, the ends have to be forced into
position, with the result that they are acted upon by equal fixing moments
M ,, the axis of the strut is bent into a circular arc. The maximum deflection
of the axis is then h. Prove that when the load is applied, the fixing moments
will be increased by

8Phf al al
a’l“(? cot R 1)’
and that the central deflection becomes
4Ph al
alv g
if h2/1% is negligible. ]
15. In the case of a strut with one end encastré but the other end fixed
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in position only (as in § 217), if there is initial curvature such that the un-
strained shape of the axisis given by y, = ¢ sin (sz/I), show that the bending
moment at the encastré end is given by
na2l2P¢
(n2 — a¥2)(1 — al cot al)’
16. A uniform rod is encastré at one end in a vertical position, and free
at the upper end. It is acted on by a vertical load w per unit length. Show
that instability will occur when I = 1-99%/EI /w.

17. A uniform rod is pin-jointed at both ends and acted on by a distri-

buted axial load, the thrust at a distance x from either end being w (-lé- — x) ’

where [ is the length of the rod. Show that the critical load is given by
wl?/8 = n*EI/0-48161% . . . (Yassinski.)

18. A strut ACUB is pin-jointed at both ends, and the point C is free to
deflect in the horizontal plane, which contains 4 and B, but it cannot move
at right angles to this plane. Thrusts P and @ are applied at 4 and B along
the line 4B, and a thrust P — @ is applied at C in a direction parallel to
AB. The cross section is uniform throughout.

Let BC/CA =m; Q/P =n%; P/EI =a?; AC =1. Show that the
critical value of P is given by *

(n® —1)2
nim 4+ n)¥

Hence show that, when m = 1 and #n = 0-5, the error made by supposing
the whole strut to carry the mean thrust }(P + Q) is about 2 per cent.

19. Two uniform struts AB and CD are pin-jointed at the ends for flexure
in the plane ABCD. A cross member EF connects the two, being hinged
to both at their middle points E, F.

Let P = the thrust in AB, m2?P = the thrust in CD;
I = the moment of inertia of the cross section of 4B, and n2l =

1
al (cot al + -, cot mnal) =

that of CD.
a* = P/EI.
Show that instability will occur when
mal
tana; 1 tanT_l -1
al m? mal
n
If the load on CD be a tension, and we write m? = — u?, write down

the corresponding equation. If m = 0, show that the criterion for instability
i3

tanal  (al)?
al 3n:
Hence show that, for all practical purposes, when m? is not less than
— 05, the error will not exceed about 5 per cent. if we use the formula
P, + P, = a%E(I, + I,)L? where P, and P, denote the two (positive or
negative) end loads, and I, and I, denote the two moments of inertia.t
20. A uniform strut whose axis initially has the shape given by

—3(1 2m:)
Yo =5\l —cos ——),

with the notation of § 216, is encastré at both ends. Show that the bending

* This result is due to Miss B. M. Cave-Browne-Cave.
t Case and Griffiths: Aeronautical Research Commitiee, R. & M., 403,
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moments at the ends and middle of the strut are equal, and are given by
27%P /(4n% — a®l?), provided al < 2a. (Salmon.)

21. If the axis of a uniform strut initially has the form y, = csin Elx—,
and the ends are encastré so that each makes an angle nc/l with the line of
thrust, show that the bending moments at the ends are given by

al
?‘.
whilst the bending moment at the centre is given by

My = mcalP. cot /(n® — a?l?),

l
M, = rch.(n — al cosec %—)/(n’ — a¥?),

Show that M, and M, do not become infinite when al =, and that
M, < My, but —> M, as al —> 2n. Show also that the conditions of this
problem give & worse case than the conditions of Example 20. (Salmon.)

22. The jib of a derrick makes an angle of 45° with its vertical supporting
post, and the head of the jib, which carries the pulley for the purchase, is
supported by a horizontal tie rope 20 ft. long, attached to the top of the post.
The lead in of the purchase, which is a single hawser, lies above the jib in the
same vertical plane, and makes an angle of 15° with it. The jib is of solid
circular section 1 ft. diameter, wood; elastic limit 3-2 tons/in.2 “‘a ” in Ran-
kine-Gordon formula 1/750. Determine the purchase load that will cause
failure of the jib. (R.N.E.C., Keyham, 1928.)



CHAPTER XIX
TAPERED STRUTS

243. Introductory.—In a pin-jointed strut failure always occurs
on account of the stress exceeding a certain limit, at least in all the
struts that are ever used in engineering or building, on account of a real
or fictitious eccentricity, although it happens that if the ratio I/k exceed
a certain value, and eccentricity of loading be small, the strength may
be calculated from the criterion of stability without appreciable error.
The stress in a strut is due partly to direct thrust and partly to bending
moments arising from the deflection. The bending moment on any
section is proportional to the deflection of the centroid of that section.
Consequently, if the section of the strut be uniform, the stress will be
greatest on the central cross section. In view of this it appears that
we could obtain a more economical strut by designing it so that the
maximum stress on all sections is the same, by tapering the strut towards
the ends. Such a strut will be called a strut of uniform stress. A great
variety of tapered struts are used in practice, frequently showing a
considerable lack of understanding on the part of their designers. The
two commonest are those which have an elliptic profile, and those which
taper in straight lines with or without a parallel central portion, and it
is this type which is most likely to be ill-designed. The problem of the
lightest strut has been exhaustively treated * by H. A. Webb and W. H.
Barling in connection with aeroplane design, and the reader is referred
to their work. We shall consider here the strut of uniform stress, and
then pass on to a few remarks about elliptically tapered and straight-
tapered struts. Finally, we shall show how to find the strength of any
given strut of non-uniform section.

STRUTS OF UNIFORM STRESS

244. General Equations.—We assume that the load has an eccen-
tricity A, that the maximum stress on every cross section is to have
the same value under a given end load, and consider the problem of
finding the shape of the strut in side elevation.

In Fig. 290 AOB is the axis of the strut, and flexure takes place in
the plane of the paper. The planes through AB and Oy, perpendicular
to the paper, are planes of symmetry.

* See Aeronautics, Dec. 4, 11, 1918 ; Royal Aeronautical Society, Reprint No. 9 ;
Aeronautic Research Committee’s Reports, R. & M., 343 and 363.

328
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Let b = the thickness, in the plane of bending, at a distance z from

the mid-section.
I = the moment of inertia of the same section.

8 = the area of the same section.
f = the maximum permissible stress.

P = the end load.
E = Young’s Modulus.
We shall use the suffix 0 to denote the central section, and the suffix 1

to denote the end sections.

44 r——1 1
) e
Fic. 290.

The bending moment on the section C is P(y + %), hence at every
section we require

P Ply+hb_ .
§+T~f. B { )

The equation of the deflection curve is

d2y ..

—EI(W:P(y—i—h) O 11

From these two equations we have to find the shape of the strut,
i.e. we must find an equation connecting b and z.

From (i) we have
Py+h _Ir P
o5 b 1 ng> e e (i)

Differentiate this twice :
Pdy_ afls l de
2fdz de -LE fS) db{ b( fS dx'
P dy a | dr (I
3 dar dbLb< fS)}dxz AN < fs>f< )

2
Substitute Z—:—{z and (y + &) from (iii) and (iv) in (ii) :

;b{i( fS)}Z::l: db’{ ( fS)}(dx) T EI b( fS)
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This is the differential equation of the meridian curve of the strut
in the plane of bending. A first integral is obtainable on multiplying by

a‘%{% 1— ﬁr)j et
2 Lt fs)j] i ai5( )

This satisfies the condltlon d—— 0, when b = b,, which is necessary
x

We get

if the shape of the strut is to be a smooth curve.
From this we have

/1
P ds _ dbLb< fs/j

E db \/ bold! 112
j 7db} ( fS 3]

Integrating this we have

E \/ r’al d r1
db
b Idb b fS>1

which satisfies the condition x = 0 when b = b,.

e R L

At the end of the strut, when =z = éand y = 0, we have from (iii)

b( fS 2f (2)

This equation gives b, since I, and 8, are known functions of b,.

Then, since b = b, when z = ZE, we must have from (vi)

3)

bo (I P )]{
: \/gz , dbibb B
o 2
A - B
1, 1db\b 18/
which is an equation for ﬁndmg be, the thickness of the strut at the centre.
The thickness at any other point is then given by (1), whilst the
deflection curve is given by (iii). We have thus found a complete general
solution of the problem.
If the eccentricity is neglected (1) and (3) remain unaltered, but (2)
reduces to
P=f8, . . . . . . . . @

These equations appear formidable, but we shall see that they are
quite manageable in certain useful cases.
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245, Solid Strut of Uniform Stress.—Let all the cross sections
be similar and similarly situated curves so that we can write

S = ab?
I = Bb4
where a and f§ are constants. Also write
b = b, cos ¢
Then (1) and (3) become
“’ P
— tp — d
/ (COS @ 3f80\ P (5)
=\ 3BT, \/l + 8Plog,cosp  P2sectg
3f8, sin? ¢ 3f28,2
and
h (coss2 - ——>
I P 38 (6)
2 3EI, \/1 + 8P log,cos ¢ , P?sec?g

3f8, sin? ¢ 3f28,2
where b, = b, cos ¢,.
If the eccentricity be neglected we have

P=fS8,
and therefore
P 8 _b® 2
E_S_‘)_Eé—cos L )]

If the eccentricity cannot be neglected (2) gives

2_ P @B\ os?
b_oé_f_g)(l-}--iﬂ—bl)—cos - - . . . (8

In the one case g, is given in terms of fé by (7), in the other by (8),
0

so that in both cases(6) gives i «\/ P as a function of P only. Hence,
2 37, 8

for a given value of fg_’ I,,and s0 b,, can be found by graphical integration,
[]
plotting the integrand of (6) on a base of ¢.

Again, for a given value of %, (5) gives x 311;10 as a function of bo
so that by graphical integration we can find 2x/1 for any values of b/b,.
Thus we can draw the shape of the strut. Curves obtained in this way
by Webb and Barling are shown in Figs. 291 and 292.

To design a tapered strut of this type we must obtain a first approxima-
tion to the value of P/fS, to settle which curve is to be used.

When the eccentricity is negligible we obtain the required approxima-
tion thus. Assume that the strut is so long that only stability failure
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Values of 2ac/1
4 05

01 o2 03 06 o7 o8 09 10
A B l
0138
0134, o8
N
0183 B 7
S 7
\ Y
0132 vi b 060
N ﬁ.’-w.o& 090, 015, 00 Ny
0181 4 Hos%
o
0180 i1
\\ 06 06 07 08 () §
6129 N H Mo
o el
3 Ho2
\\\ 1S
0127 I_ | 0.1
1
01264 005 G10 015 020 °
Values of P/fS,
Fra. 291.

need be considered ; this corresponds with taking f = co. We then have

from (6), since b, is then zero and so @, = z

2
l P J;_ 2 4
— t = cos2q .dp =",
2 3EI, 0 v
or
2
p - 3 ™EL 9)
4 P
which gives
©2p
bt=0135-_ . . . . . . . (10
o GE (10)

This gives an approximate value of b,, and hence of S,, so that a
first approximation to the value of P/fS, is obtained.
When stress failure is considered we obtain instead

rzp
bt=A—-. . . . . . . .11
o 8 (11)
where 1 is a constant given in the left-hand part of Fig. 291.

The question arises in connection with the above.: When can the
eccentricity be neglected ? Webb and Barling find that an eccentricity
h = 0-01 b, will not affect the strength of a tapered strut by more than
1 per cent. provided P/fS, % 0-22, and, accordingly, decide to neglect
eccentricity if P/fS, & 0-2.

With short tapered struts the eccentricity will not in general be
negligible, but it is found that with given values of [, b, and b, the curves
giving the shapes of the struts are nearly identical for all values of Z,
although, of course, the failing load of a given strut depends very much
on the value of A. The curves given in Fig. 292 are drawn for 2 = 0,
but if they are used for other values of A the error in b will not exceed
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e
os ' % mosue| o), \\‘Eg
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Fia. 292.
02 per cent. In these cases b, is calculated from (8), which may be
written
P ah
b==_<1+_). RN 1
=g b, (12)

When I}:—> 0-03 and I;)—‘-> 0-5, Webb and Barling give the following
1 0

formula for calculating b, :

be _(0 933 + 0-163 ﬂb) \/P_Jr(o 191 — 0019 %% )5 Vfa (13)

When b_< 0-03, b, must be found by interpolation from the curves
1

shown in Fig. 293.

|
10 %‘7’,} =3 7}»2 La/o-«/o-;
vs | 744////
06 //// /{*f‘io
e PO,
%f.&lbo -
04
o2l
2/EBP
o
0 07 02 03 04 05 06 07 08 09 10

F1e. 293.
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From the foregoing we can draw up the following rules for design :

(a) Find a first approximation to b, from (10) and the corresponding
value of P/fS,.

(6) i. If P/fS, <02 find A from Fig. 291 for this value of P/fS,.

Hence find a corrected value of b, from (11) and the new value of
P/f8,.

With this value of P/f8, choose the appropriate curve for the profile
from Fig. 291.

(b) ii. If the first value of P/fS, > 0-2, we must estimate as well
as possible the value of 2/b,. Then b, is found from (12) and b, from (13)
or Fig. 293.

Next find the value of b,2/b,% and select the profile from Fig. 292.

The weight of tapered struts designed on the principles given here
is found from Fig. 294, where w is the weight per unit volume.

1 ] 100
Weight of Strut .

(wSo.L) x Weight Coefficient
095

[=]
©
(]

[=]
[« )
wn
Weight Coefficient.

/ 0-80
v P_b

[f'So' bz
0 02 04 06 08 007
Fic. 294

Example 1.—Design a solid pin-jointed strut of uniform strength to
take an end load of 4,000 lbs., the distance between the pins being 70”. The
strut is to be of timber for which f = 5,500 lbs./in.?, and E = 1-6 x 10°®
lbs./in.* The cross sections are such that a = 28 and § = 0-178.

As 8 first approximation to b, we have from (9):

0-757=% x 1-6 x 10% X 0-178b,*

4,000 = 3,900

which gives bt = 9'3 in.*
bo? = 3'05 in.?

by =175 ins

Then Sy = 28 x 3-05 = 8:55 in.?
. P 4,000
* fSo T 5,500 x 855

Hence, from Fig. 291, A = 0-132, and the small value of P/fS, shows

= 0-0852.
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that we can neglect any fictitious eccentricity. We now get a second approxi-

mation to by from (11)

0132 x 4,900 x 4,000 ,
i — = 0. 'y
b 0-178 x 16 x 10° 9-00 ins.

sobgt = 3-015 in.%, and b, = 1-736 ins.
P 4,000
7S, T 5,500 x 28 x 3-015

The shape of the strut is now found from the curves of Fig. 291 by inter-
polation :—

= 0-086.

T . . 0 7 14~ 21" 25" 30" 32”7 34" 35”
2z /1 . 0 0-2 0-4 0-6 0-714 0-86 0914 097 1-0

b/b, . 1 099 095 0-88 081 0-71 0-595 0-415 0-28
b . . 1736”7 1-72” 1-65" 153" 1-405” 1-23”7 1-03” 0-72" 0-49”

The strut would probably be made with b, = 1-75”, the other values of
b being increased in proportion. This strut is about 13 per cent. lighter
than a parallel strut of the same strength.

Example 2.—Design a solid pin-jointed strut of uniform strength for
an end load of 11,000 lbs., the length between the pins being 48”. Assume
that the eccentricity of loading is 0-1d; and take the same values of the
constants as in Example 1.

‘We have
ah 28 x01 .
Bb, — 0178
P 11,000 .
fo = 5500 x 28~ 0715
fo _ 15400 45,

EB — 0-285 x 10%
From equation (13) we get, then,
by = (0-933 4 0-256)0-845 + (0-191 — 0-0298) x 24 x 0-233
= 191",
Next, from (12):—
b = 0-715(1 + 0-783) = 1-275
Soby =113
Hence b,%/b,2 = 0-35.
The profile of the strut is a curve which is half-way between curves 6
and 7 in Fig. 292. By interpolation we have :—

2x/1 . . . . 00 0-2 04 0-6 0-8 0-9 1-0
b/by . . . . 10 099 096 09 080 0715 0-594
 ins. . . . . 0 9-6 19-2 288 384 432 48
b ins. . . . . 191 18 183 172 153 137 114

246. Tapered Hollow Struts of Uniform Thickness.—We shall
next consider hollow struts made of material of uniform small thickness.
Let ¢t = the thickness of the material. Then if ¢ is so small that
t2/b? is negligible we can write
S = abt
I = gb3t.
Also let b = b, cos? ¢.
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Then the equations for the shape of the strut (1) and (3) become

(¢
—_— cos? )cos @.dy
2 a/) P _ < S .. (14
4E1, \/1 L 3P log, 3P log, cos @ Pisec?gp
J T fS, i sin? g 21282
"4)1
2.
\/ _ (cos @ 2fSo>COS . dy s
2 481, \/1 N 3Plog,cosp | P?sectyp
Jo Fosintp | 2

where b, = b, cos? ¢,.
Also, for a very long strut when the eccentricity can be neglected,

P =f8,
P 8 b e ¢ 1))
d e ___1 = ___1 = 2
an 788, b, cos? @,
When the eccentricity is not negligible we find from (2)
= N O V)
b0 fS ( + 28b, ) ("

The shapes of the struts, when 2 = 0, can be drawn from these equa-
tions in the same way as before for given values of P/fS,, using ¢ as
an auxiliary variable for the graphical integrations involved. The curves
obtained by Webb and Barling in this way are shown in Fig. 295. In
this case they decide, from the same considerations as above (p. 332),
to neglect any fictitious eccentricity if P/fS, % 0-4.

A first approximation to the value of b, is found by considering only
stability failure, i.e. putting f = o and ¢, = z/2 in (15); this gives
l P ‘ : cosd ¢ .dp = 4

3
Hence
64 EI, 64Ef(b3
Pe=g = om
Therefore a first approximation to b, is given by
9 r*p
64 Ept
When stress failure is considered as well, we have
*p
=AN—— . . . . . . . (19
£Bt (19)
where A is a constant given by the curve on the left of Fig. 295.
We have thus the following rules for designing struts of this type :

(@) Find a first approximation to b, from (18), and the corresponding
value of P/fS,.

3 —
o =

(18)
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(b) With this value of P/f8, find A from Fig. 295.
(¢) Find b, more accurately from (19), and the new value of P/fS,.

Values of 2x/l,
04 08 06

0 01 02 03 (4 08 09 10

S 7 &
o1oP N oo ®
N / «
™. A . °

. L LHHHos
ous \x e - o~‘/o~{ o4, 08,04 N §
> A, 09.01,02, 03, 04 o~4§

- 0.3

0280 <] 02

\\ 01

01285~ [ (3 00

o1 02
Vaiues of PIfS,
Fie. 295.

(d) The profile of the strut is then given by selecting a suitable curve
from Fig. 295.

If required, the weight of the strut is uwS,l, where w is the weight
per unit volume, and u is a constant given by Fig. 296.

73
085

084

083

/

0-82
/

/

081 v
0805 o1 02 03 04
P/fS,
F1a. 296,

Example.—Design a tapered tubular pin-jointed steel strut of circular
cross section to take an end load of 120 tons, the length between the pins
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80 ft., and the thickness of the walls of the tube being 1 in. Take f = 13-5
tons/in.?, and E = 13,500 tons/in.? Estimate the saving of weight effected
by tapering.
For thin circular tubes we have approximately :
nb?

S = abt andl=—-8—

where b is the mean diameter. Hence
a =2 and ﬂ=g = 0-393.
From (18), since I = 960", and ¢t = 17,
9 x 9602 x 120

be®= 64 % 13,500 x 0393 x 1 — %40 in?
o by = 14:33”
Then Sy = 14:33n, in.?
f% =133 ><12104-33n = 0-198
From Fig. 295, 1 = 0-134,
Hence, from (19), b,®= 2,800 in.3
by = 14:1”

P
This gives S, = 141z, in.? and 5 = 0-2.
fSe

As this is so nearly equal to the previous value no further correction is
necessary. The profile of the strut is then given by the curve marked
P/fS; = 0-2 in Fig. 295. The diameter 15” from the ends will be 4-8”.

The area of the middle cross section is Sy = 14:1 X 7 = 44-2 in.?, the
length is 960”, and Fig. 296 gives u = 0-817. Taking the weight of steel
as 490 lbs. /ft.%, the weight of the tapered strut is
44-2 x 960

1,728

For a parallel strut we should have

_nEl  a*Eb%
Tolr o8
giving b = 12-83”, whence S = 404 ins.?

The weight would be

404 x 960 x 490
1,728 x 2,240

Hence the weight saved by tapering is 0-54 tons or 11 per cent. of the
weight of the parallel strut.

(0-817) x 490 x = 9,800 Ib. = 4-40 tons.

tons = 4-94 tons.

247. Elliptically Tapered Struts.—Tapered struts are sometimes
made with their longitudinal section in the form of an ellipse with its
ends cut off. This is a bad type of strut as, even with ““ long ’ struts,
stress failure will probably occur near the ends before the Euler crippling
load is reached. As they are no easier to design or make than struts of
uniform stress we shall not discuss elliptic struts in detail. We must
point out, however, that when the failing load of a strut of arbitrary
taper is required, it is extremely unreliable to draw an ellipse that more
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or less fits the profile of the given strut, and to calculate the Euler failing
load of this elliptic strut. A full treatment of the subject has been given
by the author in Aeronautics.

StruTs WiTH OTHER TAPERS

248. Rules for Design of Straight-Taper Struts.—The most
simple kind of tapered strut is one in which the longitudinal section
consists of a central parallel portion and two conical ends, as shown in
Fig. 297, a. The length of the parallel portion may vary from I, the
whole length of the strut, in which case
we have a simple straight strut, to zero,
in which case we have the double conical
strut shown in Fig. 297, b.

These struts have been considered by b
H. A. Webb and E. D. Lang,* who give ==
rules for the optimum design ; struts of

the type b, Fig. 297, have been approxi- Fie. 207.
mately treated by Pippard and Pritch-
ard,t and accurately by A. Berry. Webb and Miss Lang show that
the lightest possible straight-tapered strut is obtained when :

(i) The length of the parallel portion is one-half the total length.

(ii) The end thickness b is one-half the thickness b, of the parallel
portion.

(iii) The thickness of the parallel portion is given by

2p

bl=gmg - oc o o (20

with our previous notation.

Such a strut will have a weight only about 1 per cent. in excess of
the weight of the ideal tapered strut. The saving of weight compared
with a straight strut is slightly more than 12 per cent., and this is the
best that can be obtained with a straight taper. A strut of the type b
(Fig. 297) will be heavier than this; the maximum possible saving of
weight in this case is about 10-5 per cent when b,/b, equals about 0-58.
These remarks will apply only to * long » solid struts, when effects of
eccentricity are comparatively unimportant. The reader must be
reminded that the wrong taper may be worse than no taper, and this
is of great importance
. 'The rules just given enable us to design a strut which will not become
unstable before a certain end load is reached. In dealing with tapered
struts, however, we should consider whether failure may not occur on
account of the maximum stress at some section in the tapered part
exceeding the maximum stress on the central section. The present
author has investigated this matter and has found that the greatest
stress in a strut designed according to the above rules occurs somewhere

* Royal Aeronautical Society, Reprint No. 12.
T Aeroplane Structures, p. 227,



340 STRENGTH OF MATERIALS

in the last tenth of the length from either end. This suggests that, in
the absence of experimental evidence, it will hardly be safe to rely on
the above rules.

Safe rules are the following : (i) as above; (ii) make the thickness
at the ends = 0-6 X the thickness at the centre ; (iii) as above ; always
provided P/f8,<0:2.*

249. To Find the Failing Load of a Solid Strut of Given Shape.—
We have remarked that, except in the case of the strut of uniform stress,
the Euler crippling load is not necessarily the least load which will cause
stress failure in long tapered struts, and that the actual failing load
may be considerably less than the Euler load. The surest practical
method of finding the failing load of a given tapered strut, which is not
designed as in § 245, consists of three stages :

(i) Find the Euler crippling load in the manner indicated below ;
let this be P,.

(ii) Draw a strut of uniform stress to take this load P as shown
in §245.

(i) Compare the stresses in the two struts at all points in the
length.

We require, then, to be able to find the Euler failing load of a strut
of any given arbitrary shape. One method will be described below.

250. To Find the Euler Crippling Load of a Strut Symmetrical
about the Central Section.t—Let ACB (Fig. 298) be axis of the
deflected strut under the action of an end load P acting along the
line AOB. Take the origin O at the centre of the line AB.

Fia. 298.

The ends 4 and B are supposed pin-joints. Then, at any point D
on the axis we have
—E*Y—py . .. ()
dx?

where I is the moment of inertia of the cross section at D and is a function
of . Then, integrating both sides of (i) we have

dy *Py
%Y — — | Y da,
iz jom v

* For further treatment of the problem of tapered struts the reader is referred
to the following : Aeronautics in Theory and Experiment, Cowley and Levy, Ch.
ix. Articles by A. Morley in Engineering, April 24, 1914, and Sept. 21, 1917;
also an article by Bairstow and Stedman, Engineering, Oct. 2, 1914. )

+ See also Aeronautical Research Committee, Report No. 543, by A. A. Griffith.
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the constant of integration being zero, since Z—% =0 when x = 0. Inte-
grating both sides of this we have
:

y=j‘j.o§gdxdx Coe L)

since y = 0 when z = %

Let y, be the deflection at the centre, and assume

nx
y=y‘,cosT O 1)

This gives the correct value of y at the centre and ends of the strut,
and the difference between the actual and assumed deflection curves
will nowhere be large. Consequently the difference between their second
integrals will be very small indeed. From (ii) and (iii) we have, then

1

llo=j ij"cosT dx . dz.

EI
Hence
: cosmc
E_r r T
7= )2 Jo T dx . dx
or ¥

f (2 )°°s~xd

I

To obtain the cnpplmg load we have only to plot a curve of the
integrand in this equation, find its area, and deduce the value of P from
(21). The same method may readily be extended to the case of unsym-
metrical struts.}

X . . . . .2

EXAMPLES XIX

1. Design a solid tapered strut of uniform strength for a load of 2,000
1bs., the length between pin-centres being 70”7, Take E = 1-6 x 10%1bs./in.3,
f = 5,500 lbs./in.3, a = 2-18, § = 0-130.

2. Find the thickness at the middle and ends of a solid tapered strut
50" long for an end load of 12,000 lbs., using the same values of the constants
as in question 1, and estimate the percentage weight saved by tapering.

3. A circular solid wooden strut is 1” diam. at the middle, the eccentricity
of loading is 0-2”, and the strut is designed with the correct taper according

e z °
* Applying the theorem j J(z).dx dx = j (¢ — z)f(x).dz. See Edwards’
Integral Caleulus, Vol. I, p. 381.° ’
t See an article by the author, Engineering, Dec. 20, 1918, for various applica-
tions of this method to problems of flexure.
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to Fig. 292. Taking the above values of E and f calculate the failing load
of the strut. The length of the strut is 18” and the diameter at the ends
is §*.

4. In a straight-tapered strut of the type (a) Fig. 297, the length of the
parallel portion is A, I being the total length ; I, is the moment of inertia
of the cross section of the parallel portion. If the Euler crippling load is

EI, . .
kLl;-, show that k is given by the equation

1 —u k(1 — 2)
1__1+kcot pr s

where u = the ratio of the diameter at the ends to the diameter of the central
section.* (Webb and Lang.)

ktan Ak =

2
* The solution of the equation g;_z + 7%.7;—3: =0 is

Y ==z(A sin_c_—{-Bcos_c_)
me max
where 4 and B are constants of integration.



CHAPTER XX

BEAMS UNDER LATERAL AND LONGITUDINAL LOADS
COMBINED

251. Deflection Due to Lateral Loads Influenced by End Loads.
—In Chapter XII, § 139, we pointed out the general nature of the problem
of flexure due to eccentric thrusts or tensions, and showed how to
estimate the stresses when the deflection of the beam is negligible ; in
the last chapter we have dealt with the case when the deflection is
important and due entirely to the end thrust. We must now consider
the case when the flexure is due partly to lateral loads, and partly to
end loads (see §139). In such cases the stress on any section is that
arising from the resultant bending moment and the direct axial force,
and is calculated from (1), § 139.

252, Beam Supported at Each End, Carrying a Uniformly
Distributed Transverse Load, and End Thrust.—Let 04 (Fig. 209)

7 1
[ A aal

O x. ~ AP

---—---------—----------v"y-----

@ per unit length

g oennanmans

Fia. 299.

be a beam of uniform cross section, pin-jointed at the ends, with a load w
per unit length and a thrust P in the line O4. Let I be the moment of
inertia of the section of the beam for bending in the plane of w. Then
at any point C, where OC = z, the bending moment is

M = Py, due to the thrust P
+1"2f(z —2),duetow (§102) . . . . (i)
The deflection equation is then

;) ca Py — 2(lz — oY

dz?
dy P = w L
or T+ ¥ = — sl — 2

343
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Now write
P
EI
The equation for y becomes
R
We have for the solution

=a? . . . . . L . (i)

wlx wx? w
-4 B _lwle  wx®  w
Y cos axr -+ B sin ax P 3 B +a"’) (i)

When r=0,y=0

w
a?P’

Also, when z =1, y =0,
.'.Acosal—}—Bsinal:_lf.

atP
Hence

B = a-z%(cosec al — cot al)

al
-———-t
a?P 2°

Substituting in (iii) for 4 and B gives

w al . 1 /wlx wzxd  w
y = gap( cosae +tan ain az) — H(5F —TF + )
al . . al
€08 @x cO8 — -+ 8in ax . sin—
_w 2 2 1 _wzl_x)
" a?P al 28
cos?

or

{cosa( —x) sec } ;0;(1 2. . (1)

The maximum value of y occurs when z = %—, and is:

w al wi?
= V— —_—— - . . . . . 2
Ymaz a2P<sec 9 1) P ( )
Substituting in (i) the value of y given by (iv) we get :
M=%{cosa<2-l—x) sec;—l——l} N )]

. . . l
The bending moment is & maximum when x =3 and we have

m.,——<sec——> .. @)
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It we write al = 20, and adopt the approximation for sec 6 given
in § 215, we obtain the following approximate expression for the maximum
bending moment :

1-02P, wi?
M*pax = o——— « —— N (1
=5 P8 (5)

When P is zero, the error arising from the use of (5) instead of (4)
is 2 per cent.; when P/P, = 0-985 the error is — 0-6 per cent., which
shows that the more convenient approximate expression (5) has all the
accuracy necessary in practice.

Example.—The coupling rod of a locomotive is of rectangular section
4” deep x 1-25” wide. The maximum thrust in the rod is 12 tons, applied
at the centre of the section at each end. Inertia and gravity combined
produce a maximum transverse load of 24 lbs. per inch length. The length
of the rod between centres is 100”.

Find the value of the central bending moment and deduce the maximum
intensity of stress in the central section. (Mech. Sc. Trip. B., 1909.)

We have I= 1'251—;64 = 6-66 ins.*
P =12 tons.
Taking E = 13,500 tons/in.? we get
. 12 tons _ 1
@ = 13,500 tons/in.? x 6-66 ins.® _ 7,490 in.?
1
¢ = 865 ins.

I = 100 ins.
. al = 1:155 radian.
A

12 = 0-5775 radian = 33-1°.
!
sec% = 1-194.
Then, from (4) of § 252,

Moee = 24 2% % 7,490 ins.? x 0-194
ms.

= 34,900 lbs. ins.
34,900 x 2
666

The area of the cross section is 5 in.3, hence the direct compressive stress
due to thrust is

The stress due to bending = = 10,500 lbs./in.?

12 x 2,240 52’240 = 5,380 lbs. /in.?

Hence the maximum total stress is 10,500 + 5,380 = 15,880 lbs./in.*?
It will be interesting to compare the value of the bending moment calcu-
lated above with that given by the approximate formula (5), § 162.
We have
z? x 13,500 x 6-66

P, = 10,000 = 88-6 tons.

2
* By writing the B.M. due to w as “—% cos Eli’
the beam, instead of the algebraic expression, Perry obtained the expression (5)
without the factor 1-02 (Phil. Mag., March, 1892).
Z

the origin being at the centre of
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Then

102 x 886 24 x 10,00 .
Mmaz = 66 X 8 0 = 35,400 lbs. ins.

This is about 1-3 per cent. greater than the value found by the more
exact formula, and is an error on the safe side.

253. Beam Supported at Each End, Loaded with a Uniformly
Distributed Lateral Load, Terminal Couples and End Thrust.—
In Fig. 300 let OCA represent the strained axis of the beam, the supports

¥ per unit length

Fia. 300.

being at O and 4. Let the lateral load be w per unit length, and let
the couples applied to the ends be M, and M,. Let R, and R, be the
reactions at the supports, which are such that they exercise no constraint
on the direction of the axis of the beam. Let P denote the end thrust,

which is supposed to act along the direction of the unstrained axis of
the beam.

Then the bending moment at any point €, distant « from y, is
M = Py due to the end load P,
l—=z
l

-:—M ; due to the terminal couples (§ 106)

+w?”(z—x) due to the lateral load (§102). . . . (i)

Hence the equation of the strained axis of the beam is

l—x x w
I — ‘M, — 2 M., — Z(lx — 2.
E dxz — Py 7 1 7 M, 2(lazc x?)
Let us write
P
2 = —— . . . 0 » . . ii
@* = & (ii)

Then the equation becomes

d?y o a®(l—«x z w, e
29 tawy =~ 7){ 20+ Y —ay | )

The solution of this is
y=A cos ax+Bsin ax—}—)< M z+wlx we +——> . (iv)

The conditions to be satlsned at the ends are
y=0 when x =0
y =0 when z =1
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The first gives:

O=A—}_)<M1+:%>. A

and the second gives :

0=Acosal+Bsinal—1—(M2+u—)>. .. (vi)
P a?

From (v) we have:
1 w
A =3+ 5)

and substituting this in (vi) leads to
B=— _<M + —->cot al + <M2 )cosec al.

If we now substitute these values of 4 and B in (i) and (iv) we obtain
the equations of the bending moment curve and deflection curve. After
some straightforward simplification the results are :

_ M, sing(l —2) 1—=z +M2 sinax_x]
¥y=7p sin al ] ?[:sinal 1

sin a(! sm ax wx
/ —1}l—=({—2.
2P|: sin al sm al 2P (t==). (6
and
w w
M =(M1 + —z)cos azx +[<M, + —2>cosec al
a a
—(M, +%>cot al:lsin ar — 1%— R )]
a a

We shall find it convenient later to have expressions for the slopes
of the beam at the ends. From (6) we have, by differentiation,

dy M, 1 — al cos afl — ) n alcos ax
de 1P " sinal :I lP[ sin al :I

w [cos ax cosal—x
a—PI:sin al sin al ]+2P 22— 1.

When x = 0 this gives

d leot al ! 1— z(mn %l >

y —atcota ul cosec u w

- _ T M - _,-M _—

dx] om0 iP + P + YA

and, when z = [,

al
tan —
dy al cosec al —1 —alcotal wl( 2 )
- = M—WM———-M—_ — 9
daL':Iﬂ,= ! 1P P P al YA

It will frequently be found in practice that it is convenient to adopt
the following notation, suggested by A. Berry :
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Put al = 20, and let
6(20 cosec 20 — 1)

g =10)
Bﬂ:(z—z)ifE)@pr(e).......(lO)
3@# = ¢(0)

Then (8) and (9) can be written :
[ :l “W ’+621 2+2Z%v’(0) NG §)
jZ:I ,=‘légf)Mngqgf)Mr2’;’2,1#(0)- . (12)

The functions f, ¢,  have been tabulated by Berry and are given
at the end of Pippard and Pritchard’s Aeroplane Structures.

To find the “ Maximum ” bending moment we proceed as follows.
Let us write:

C=M +7,
(13)
D= <M2 —}—ﬁ;)cosec al—(M1 —|—iz>cot al
a a
= M, cosec 20 — M, cot 20 +u—)2’can 0
a
Then (12) becomes
M=Ccosax+Dsinax—-—u—; N A 2]
a
When M is a maximum we must have
aM
— =0
dx
which gives
tan ax = D (14)
=G oo

Solving this equation for «, we find the position of the *“ maximum ”
bending moment. Its value is then obtained from (7).
From (14) we have

C D
cos qr = {/—C—ﬁ and sin ax = VCT——{———D—?’
hence from (7)

Mm=x/02+1)2—(’%. N ¢ 1)
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The positions of the points of inflexion are found by solving the
equation M = 0, i.e.

. . w
Ccosax + Dsinax = —

5 (16)

254. Approximate Formulae.—The following approximations * will
be found extremely useful for arithmetical work and may be relied upon

for accuracy within 1 per cent. for all values of § between 0 and %

P, — 038P

__P,+02P
10 =515 o) =" )
P 7101’ - ..
'/’(9) =—176TP7

where P, is the Euler crippling load of the beam = =2EI/i2,
The maximum bending moment occurs at a distance from O (Fig. 300)
given by
! M,—M,

+=o L a8)

Nl

and its value is

P P wl?
M, .= e M, +M,){1 4026 — 1-02 —
e = {100, + (1 4020 5 ) 02 )
(M, — M,)?
+ —wBE (19)
whilst the distances of the points of inflexion, if any, from O are
oM —M 4, \/M_mx C @)
2 wl w

When the beam is in tension instead of compression the corresponding
exact formul are easily worked out. The following approximate expres-
sions will, however, be sufficiently accurate in all practical cases :

P,—0-12P
O ="p p-
_ P, +032P
O="p3p - L.
P+ g%p
vO=Frr
P, .y P og WE
Mox = 5 l;{g(Ml + M,)(l — 021 'P:>+° 98—8—}
(Ml - M2)2
e 2

* Due to H. A. Webb, deronautics, Jan. 1, 1919.
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The positions of the maximum bending moment and points of inflexion
are given by the formulx as above.

255. Continuous Beams with Longitudinal Forces and Lateral
Loads.*—Fig. 301 shows two consecutive bays of a continuous beam, in

W, perunit length: wy, per unit length
A\I\HlH/f fnuuff

Y
AR' My | Mpp MCL
Fia. 301,

which each bay is subjected to a uniformly distributed load, an end
thrust, and at each point of the beam over a support there are applied
forces and couples in the plane of the distributed loads, so that the end
loads in consecutive bays will in general be different, and the bending
moments on either side of a support will be different. The equation
connecting the bending moments at 4, B and C is formed exactly as
in §194; taking the origin at 4 for AB and at B for BC we equate
the values of the slopes at B for the two bays, using the equations (11)
and (12) of §253.

If we employ the notation of § 253, and use the suffixes 1 and 2 to
denote the bays AB and BC respectiveiy, we arrive at the following
equation :

ll'jl.(el)]”‘”e + 2ll 'I(p(el)ﬂ[BL + 2l2 1¢( 02)1”];1{ _}7_ {z‘j}eZ)MCL

1 1 2 2

wily® p(0,) | wul® y(B,) .
. . = R -

raliys 4 1, 0 (23)

When concentrated loads as well act on any bay, or when the supports
are not at the same level, the corresponding modifications can easily
be deduced.

Approximate expressions :—

Corresponding with the algebraic approximations of § 254 Webb t
givcs the following equations :

5. _P ll[<1+02 )MAR+2<1 038_>MBL

wlz2 1 P, <
1 02_ M,
4\ 70 Pﬂ)] +(Pe2—P [ + cL

. 2 w,l,2 1 Pz
+2<1--0 381_);_2>MBR+ - (1_701) >] 0 . (24

when P, and P, arc both thrusts. This form of the equatidn is much
more convenient for arithmetical work than the trigonometric form,

* For graphical treatment see Phil. Mag., Jan., 1914 ; Engineering, Dec. 20,
1918.
t Loc. cit., p. 349.
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particularly when the section of the beam may not be known at first
and several trial calculations have to be made.

If any bay be in tension instead of compression the coefficients of
the corresponding M’s are modified as in §254, and — % is replaced
by + 4% in the coefficients of wl2/4.

We may remark here that a continuous beam is not necessarily
unstable when the end load in one bay is equal to the Euler load of that
bay (considered as a pin-jointed strut by itself), on account of the fixing
moments at the supports; but this is of little practical interest. We
are concerned here, as in most practical cases, with stresses and not
stability, so that the stability of a continuous beam is not of much
importance. Readers interested in the mathematical theory may refer
to the work of Messrs. Cowley and Levy.*

Example.—Fig. 302 represents a wing spar for a certain aeroplane,
the moment of inertia and area of the cross section being 3:52 ins.t and
2-48in.2, and £ = 1-4 X 10°1bs./in.? There are no external couples applied

¢.
— 87" —a}e— sa"—waﬁ—-—h—ss —44—-—37"

w116 fb.jnis. wet3 g Ib.ins, w106 w={16 /bms ; D'
i€ P=1700/bs ;B P-,Z5sooA;B 00 A P-7/500 B P=1700 /6s.\C"
M~75200 I et B M ==5200 .11,

Fia. 302.

at the points 4, B, C, etc., and the supports are all collinear. The loads
in the various bays are given in the diagram. It is required to draw the
bending moment diagram as accurately as possible.

* Loc. cit., p. 340, or Aeronautical Research Commitice Reports, R. & M., 364
and 373,
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The calculations are most conveniently done in tabular form, and we
shall illustrate the use of the approximate formul®s only as these suffice
for all practical work.

E =14 x 10% Ib./in.?

b
_ ‘ CB BA AAr
P Ib. 1,700 7,500 9,000
I in. X 87 66 48
w lb. per in. . 11-6 138 10-65
EI . . . . 14:92 x 109 4-92 x 10% 492 x 10
P, = n*EI/l* 6,420 11,130 21,000
P/P. . 0-265 0-674 0-429
P
1+ 025 1-053 1-135 1-086
- e ,
0385 . . . . . . . . .. 010l 0-256 0-163
- ‘
1—0385 . 0-899 0-744 0-837
1 P o
o P 0-0038 0-0086 0-0061
1 P
— 76" P, 0-9962 0-9914 0-9939
wi? |
7l N I ‘ 22,000 15,000 6,110
wl’( 1 P) ' ,
»i == 50 | 6,05
=57 | 21,950 | 14,900 050
Po—P . . . . . . . . .l 472 | 38630 12,000
(Po — P)l . 1411,000 | 239,500 | 576,000

The equations for finding the fixing moments can now be written down
from (24):—

1
m0(1~053Ma + 1798 M5 + 21,950)
+ m(l"iSSMB + 1-135M 4 + 14,900) =0
and m(l-mf)Ms + 148834 + 14,900)
1 , B
+ 376,_06(—)(1.674]‘14 + 1-086M,4° + 6,0560) =0
Also, M, = — 5,200, and M. = M..
These equations reduce to :—
4-358M 5 + 1-'950M 4 = — 42,350
1-135M 5 + 2:633M, = — 17,410
We find
M, — 3,000 = M/

Mg — 8,370
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We now proceed to find the position and magnitude of the maximum
bending moment, and the positions of the points of inflexion :—

—_— CB BA AAr
M, . . . . . . . ... — 5,200 — 8,370 — 3,000
M, . . . . . . . . . .| —837 | —3,000 -—3,000
M,+M, . . . . . . . .|—13570 |—11,370 , — 6,000
M,—M, . . . . . . . .i =317 5,370 ‘ 0
wl e e e e e 1,010 810 511
MM 23 6-64 0
wl
2L Ce e e 43-5 33 24
z for Mmaz [equation (18)] . . . 40-4 39-6 ] 24
P I
1+ 0'2617 e e e e e e e 1-069 1-176 1112
P\M M
(1 + 0-26;)%” . . . .| —1725 | —6,670 | —3,336
wi?
102 x R 11,200 7,650 3,110
P\M M 2
(1 + 0-2617)—‘;”—-’ + 1-08%— : 3,950 980 | — 226
P )M, + M,
[(+ 02ez)™5
wl“] P, )
-+ 1‘08—5— X P._P .. 5,370 3,000 — 396
(Ml - Ml)'
e 57 250 0
Mume: [equation (19)] . . . . . 5,427 3,250 = 396
Meee 468 236 — 37
w
M,—M
09——=— . . . . ... 2-82 5-96 0
wl
[4 M,—M
3 + O'QT e e e 46-32 38-96 24
12V Moz /w e e 25-9 161 | imaginary
Distances of points of inflexion from 20-42 22-86 —
left hand end of bay (equation 20)} 72-22 5506 —

EXAMPLES XX

1. An eccentric rod AB of uniform section and length ! is subjected to
an end thrust P. Owing to friction on the eccentric sheave the end B is
subjected to a bending moment AP ; the other end A4 is free from bending
moment. Prove that at a distance x from A the deflection y of the rod
is given by y = 1 (sin ax/sin al — x/l), where a® = P/EI.

If I = 100" and the diameter of the rod is 2”, calculate the greatest thrust
the rod can withstand without buckling; FE = 14,000 tons/in.* (Mech.
Se. Trip., 1922.)
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2. If the yield point of the steel in question 1 is 20 tons/in.?, will the
rod fail at a lower load than there indicated, taking 4 = 09 ins.?

c
3. Fig. 303 illustrates an arrangement sometimes em-
P ployed for testing struts. The load is applied to the strut
b by C and D, acting through steel balls P and @ fitting into
cylindrical holes bored in the ends of the specimen and in the
pieces C, D.

In a particular case the strut is of circular section 0-5”
diameter and 18” long. It is estimated that when the load
is 1 ton a friction couple of 0-01 ton-inch has to be over-
come before angular movement can take place at the ends of
the strut. If the ends were free from friction show that a
load of 2,800 lbs. would buckle the strut. In the case
- described above show that if the axial load is increased to
=ag’ 4,000 lbs. the strut will not buckle, and that it would then

take a transverse force of 12 lbs. applied at the centre of the
strut to produce breakdown. E = 30 x 10¢lbs./in.? (Mech.
D Sc. Trip. B., 1910.)

Fic. 303.

4. A strut initially straight is continuous through a number of supports.

4, B, C are three consecutive supports, AB and BC being of lengths a and

b. If on applying an axial load P the strut begins to buckle, show that

M,, M,, M3, the bending moments at A, B, C, are connected by the relation
M, sinba + Mssinaa — M, sin (@ + b)a __sin aa. sin ba

Mb + Maa — Mya + b) aba
where «® = P/EI. (Mech. Sc. Trip. B., 1912.)

5. A beam of varying cross section, with pin-joints at its ends, carries
a lateral load w per unit length and an axial thrust P. The beam is sym-
metrical about the middle cross section. By the method of § 250, show
that the deflection J at the centre can be found approximately from the
equation

p é—l—x éw(l——m)
2 nr lz[ 2 nx
6l 1—= |_~_ e/ it
E.[o 7 o8 _dl x| =3 1o B cos l.dx.

x being measured from the centre of the beam.

6. A mild steel connecting rod, 5 ft. in length, is required to transmit
a thrust of 25 tons between pins on two levers that turn in opposite directions
in the same plane. Assuming that the pins are 2” diameter, and act with
p = 0-15, find a suitable diameter for the connecting rod, allowing a maxi-
mum stress not greater than 6 tons/in.? (R.N.C., Greenwich, 1922.)

7. The coupling rod of a locomotive is of length 8 ft., the cross section
being such that the area is 6:5 in.? and the moment of inertia 9-8 ins.* The
maximum thrust in the rod is 16 tons, and the lateral inertia load is 20 lbs.
per inch run. Taking the density of the metal as 490 lbs./ft.3, find the
maximum stress when gravity and inertia act together.

8. The following particulars refer to a locomotive coupling rod: I =
length between centres, w = weight per unit length, » = crank length,
o = angular velocity of wheels, P = thrust. When the rod is in its lowest
position, allowing for the variation of inertia force along the rod on account
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of the deflection of the latter, show that the maximum bending moment is

—E](l s ) (4—;—).‘% + %)—}(sech 0l — sec ¢l)

where
. P P2 ww?
' =51 'V i T gET
P Pl wel
sEI TV i T gEn
(H. Mawson in Phil. Mag., Oct., 1915.)
9. Referring to Fig. 302, the following are particulars of a certain aero-
plane spar: AB = A’B’ =81"; BC = B'C' =84"; COD = (C'D’ = 20".
Distributed load 5-5 lbs./inch. End thrusts in 4B and 4’B’ 2,730 1bs. ;
in BC and B’C’ 640 lbs.; M, = M, = 0. Area and moment of inertia
of spar section 2:17 in.? and 1-8 ins.*, depth of section 2-65” ; E = 1-38 x 10¢
lbs./in.? Calculate the bending moment at B, the value of the maximum
B.M. in the bay AB, and the maximum compressive stress in the spar.
10. If in § 252 the beam be encastré at each end show that the *‘ maxi-

92 = —

2
mum " bending moment is 1—02—1« S (g—) in the notation of § 252.

11. A freely supported beam AB, of length I, carries a load W at a dis-
tance @ from A, and is acted on by an axial thrust P. Show that the deflec-
tion and bending moment at a distance # from A are given by

sin a(l — z) sin aa ) :I aW w ,
GP[ sin al —sin afa — x} _lp(l—x)-i-ﬁ{a—x}
vV —
a L [Hndl—Blsingd G o6 — ],

where the { } terms are omitted if » > a.



CHAPTER XXI
FRAMEWORKS WITH STIFF JOINTS

256. Nature of the Problem.—In practice the several members of
structural frameworks are frequently attached to each other rigidly, so
that any flexure of one member involves the flexure of all the others.
We may divide such frameworks into two general classes : those which
depend on the rigidity of the joints for maintaining their shape and
those which do not. In the former case there will always be a smaller
number of bars than is required to constitute a simply stiff frame (p. 38),
in the latter the number may be such that the frame would, if pin-jointed,
be simply stiff or redundant.

In any case the first problem to attack is the estlmatlon of the bending
moments at the ends of each member, for, when that is done, we can
proceed according to the principles of Chapters IX and XII to draw the
bending moment diagram for each member and to calculate the stresses.
To solve this problem we make use of the results obtained in Chapter XIV.
There we found expressions for the angular deflections of the ends of a
beam under various conditions of loading ; here we apply these results
to express the physical condition that the ends of all the members rigidly
connected at one joint must rotate by the same amount. By this means
we obtain sufficient equations to enable us to determine the unknown
bending moments. It will be seen from these remarks that, when we
have only two bars meeting at one point, the problem is analogous to
that of a continuous beam, and the same equations may be used. The
following examples should make the method clear to the reader.

257. Rectangular Portal.—In Fig. 304, ABCD is a framework of
rods or beams of the same material rigidly joined together at right angles
at B and C, whilst the ends A and D are fixed rigidly vertical in the
ground. AB carries a uniformly distributed horizontal load w per unit
length. Tt is required to investigate the bending moments in 4B and
the thrust in BC ; the effects of the thrusts on the flexure of the members
may be neglected.

Let M, = the bending moment at 4 on AB.

M, = the couple acting on AB on account of BC, and vice versa.
M, = the similar couple at C.
M, = the bending moment at D on CD.
P = the thrust in BC.
I, = the moment of inertia of the cross sections of 4B or CD,
I, = ditto, for BC.
356
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fe——p— c
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Fia. 304. Fi1a. 305.

The directions of the couples are shown in Fig. 305, where the beams
have been drawn separately for the sake of clearness.

For AB take the origin at 4 and measure y to the right. The bending
moment at a point in AB at a height x above 4 is

— M, — %U(l — ) 4+ P(l — 7).
Hence for 4B we have

d¥y

w
Bl = My + 51— 2)*—P(l — 2).

Integrating this twice we find

dy _ w s Py e
Elld—xHM,x Ti(l x) —|—2—(l )24+ 4
M2 w,, P,
Ely = 3 +§Z(l x) ’é(l x)3 4 4z -+ B.
d
The conditions to be satisfied are d_g =0and y =0, when 2 =0,
which give
wl® P2
4=%"%
wlt | PP
B=—-5%%

Let @z = the slope of AB at B, in the direction shown in Fig. 305,
then, from the above equations,
dy 1 wl®  Pl2
—_— _ — f= Ml —_—
¥ dxl,, A
l wl2 Pl .
or @y = ——-E—11<M2 -+ o - 9 R ()]
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Let d; = the movement of B to the right, then

Elp, — M e
M212 wlt PP
2 vty 3
1M, | wit Pl )
2= g7\ % + <"3) (ii)

The slope, ¢, and deflection, d,, of DC at C can be deduced by writing
M, for M,, — P for P, and omitting w in (i) and (ii) above; thus

Pl
Po= — 77 (M . (i)

°=£J_h<§_+—§ R § 4
Let ¢," and ¢,” be the slopes of BC at B and C as shown

. Then from
equations (17) and (18), § 170, writing M, for M,, — M, for M,, and
w = 0, we have

b
! = 2M - M, .

b
= — M, —2M
Pc 6E12( 2 a)

Since the corners are rigid, we must have

@5 = @5 and g’ = @c.
From (i) and (v) we have, then

wl? b o
< g 6 z = gar, M= M
whilst (iii) and (v1) give

Pl b
— (M, + =)= — — (M, — 2M,).
E11< ) o\ M — 2M)

GE/l,
If we write

bI,

B e
iT, (vii)
these two last equations reduce to

— (2k + 6)M, + kM, + 3IP = wi? (i)
and

kM, — 2k +6)M; —3IP=0 . . . . (ix)
Again, we must have dz = d,; hence, from (ii) and (iv)

M, wl 1P My IP
28 3 2 '3

2
or ﬂ['-’”jus'—él]):—wl

4....(x)
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Equations (viii}, (ix) and (x) enable us to find M,, M, and P. Solving
them we obtain the values

23k + 6 wl?
(k6 (2k+D)" 24
25k + 18 wi?
C(E+6 2k +1) 24
3k +2 wl
To%k+1'8
Now, considering the equilibrium of DC, we have
M,=1P 4+ M,
Substituting the above values of P of M,, this gives
9k? + 35k 4 18 wi? .
M‘=——(2k—_+—*_l) (k_:-ﬁ).ﬁ .. (xii)
For the equilibrium of 4B we have

3 =

2
M, =M, —IP+ “’?l
which gives
_15k® 4 73k + 30 wi?
VT k+6) 2k +1) 24
Equations (xi), (xii), (xiii) provide a complete solution of the problem,

since the bending moment diagrams for each member can now be drawn
in the ordinary way.

(xiii)

For variations of this problem see Examples XXI, p. 367.

258. Secondary Stresses in Triangulated Frameworks.*—In
the ordinary process of estimating the loads in the members of frame-
works, whether they be simply stiff or redundant, we assume that all
the joints are pin-joints. The stresses which arise from these loads are
called direct stresses, or primary stresses. In practice the perfect, friction-
less pin-joint does not exist. If the joint is really a pin-joint there is
always friction present which resists the free rotation of the members
round the pin. Frequently the joint does not even pretend to be pin-
jointed, and the members are riveted or bolted together to form a rigid
joint.

Consider the framework ABCD shown in Fig. 306, acted on by the
opposing forces P. The members AB, BC, CD, DA will all be in tension,
whilst BD will be in compression. If the bars were all freely pinned
together at the corners the framework would distort in the manner shown
by the dotted lines, the angles 4 and C being decreased, whilst B and D
are increased. But if the bars are rigidly fixed together this change of
angle cannot take place, so that the frame must distort as shown in Fig.
307, where the full lines show the undistorted frame, and the dotted lines

* For a detailed treatment of this subject see Modern Framed Structures, by
Johnson, Bryan, and Turneaure, Pt. IT (Wiley).
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the distorted frame. We see, then, that the bars are bent, so that there
must be corresponding bending moments and stresses, and these are
sometimes of considerable importance. In the case of pin-jointed frame-
works, friction will have a similar effect, but to a much less extent of
course. The stresses arising from these causes are called secondary
stresses.

Secondary stresses may arise from other causes: in a pin-jointed
frame the joint may be eccentric, i.e. the axis joining the pin-centres
may not coincide with the line of centroids of the members, in which
case bending moments will be applied to the ends of the bars. The

Fia. 306. Fie. 307.

weights of the members themselves also introduce bending stresses which
must sometimes be considered. It will usually be found that the most
important secondary stresses are those which are due to the rigidity of
the joints.

259, Secondary Stresses Due to Rigid Joints.

(i) The first step in the calculations is to estimate the direct stresses,
and hence the elongations, for all the members of the frame on the
assumption that all the joints are pin-joints.

(i) The second step is to find the changes in the angles of all the
triangles of the frarse, using the values of the stresses found previously.
This may be done by drawing a displacement diagram or by calculation.

Fia. 308.

Thus, in Fig. 308, abcycc, is the displacement diagram for the triangle
ABC, drawn so that ab represents the elongation of AB, ac, that of AC
and be, that of BC, as in Chapter II. Then c,¢c, at right angles to AC,
represents the movement of ¢' due to the rotation of AC round 4, so
that c,c/AC gives the change in the angle 4. Similarly cc,/BC gives
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the change in B, and the change in C is found from the condition
04 4 6B + 6C = 0.

Again, suppose, on account of an elongation of BC only, C moves
to €', so that AC' = AC, and CC’ can be regarded as a straight line
perpendicular to AC. Draw C'D and AE perpendicular to BC. Then,
since 04 is small, we have

54 — co’ - CD cosec CC'D . cD . CD N CcD
A0 AC " ACsin OC'D ACsin ¢ AE’

Now BC = CE + EB = AE(cot C + cot B), hence
CD
= B
64 BC(cot C + cot B),

where CD represents the elongation of BC.

If p, denote the stress in BC, QD— = &, and we have

BC E
64 = %(cot B -+ cot C).

Similar expressions can be derived for the changes in the angle 4
arising from changes in the lengths of the other sides, and the other
angles can be treated in the same way. Thus, if 4, B, C are the angles
of a triangle, whilst p ,, p,, p¢ are the tensile stresses in the opposite sides,

the increases in the angles are given by

6A=——p“‘;pc cotB—{—-———-p';p”cotO

6B=%mcot0+pBE—_pCcotA B £ )

6C=I—)—C%&’-cotA —}—ﬁgl;—p"cotB

These formule enable us to calculate the alterations in all the angles
of the framework.

(i) The third step is to find the bending moments which must be
applied to the ends of the members to bring about the changes of angle
found above.

Fia. 309.

In Fig. 309, let AB be the unstrained axis of a beam acted on by

couples M 45 and My, as shown, so that the angular deflections are 04z
RWA
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A, K, E, F, and deal with the frame CDGHB, which would only
involve solving five simultaneous equations.

A B C D A

K H G F
Fi1c. 311.

260. Effects of Lateral Loads.—So far we have considered only
the flexure which arises from the distortion of the triangles composing
the framework ; if we wish to consider also the effects of lateral loads
in producing flexure, instead of equations (2) and (3) we must use suitable
expressions such as those given on pp. 232 and 241 for the slopes of the
ends of the members. The procedure then follows exactly the same lines.

261. Effects of End Loads.—In some cases the direct thrust or
tension in a member will exert a large influence on the flexure ; we must
then use the expressions given on pp. 348-9 for the slopes of the ends of
the members. The work then becomes extremely laborious when the
frame has a large number of members.

Matters are complicated by the fact that the end loads themselves
are functions of the bending moments, the number of simultaneous
equations to solve is large, and they are not all simple algebraic equations
as the expressions for the slopes involve trigonometric functions. This
latter difficulty may be avoided by using the approximate expressions
given on p. 349, but even then the work will be terrible. Usually, how-
ever, it is sufficiently accurate to calculate the end loads as if the structure
were pin-jointed, and, using these values, proceed to the calculation of the
bending moments. The method will be made clear by the example below.

Example.—Consider the structure shown in Fig. 312. The spruce
beams AB and DC are encastre at A and D, and connected by the member

w,=10 /bs/inch run

B 25015,
— J % 8
g ™
. /
3
(]
2
! !
3 e A
» 7500 lbs. C
1,-90"— 22", s
Fic. 312.

BC, to which they are rigidly connected at B and C. The steel tie rod AC
is pin-jointed at its ends. The loads are shown in the figure, and the other
necessary data are

AB:— I =60 ins.*

CD:— I = 80 insg.¢

BC:—1 =07 ins.4; § = 59 in.2; thickness in plane of bending 1-5”.
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For the three members E = 1-4 X 10°¢ lbs./in.?

We shall neglect the stretching of the tie AC.

Let the suffix 1 refer to AB, 2 to DC, and 3 to BC.

Then the end loads, if the structure were pin-jointed would be :

P, = 250 lbs. = thrust in AB
P, = 3,890 lbs. = thrust in DC
P, = 450 lbs. = thrust in BC
Let M, = the bending moment at 4
M:, = ” I ) B}On 4B
M, = ”» I i ”» D
M:l = e ”» ” ” G}on BC.

As usual these will be considered positive when they have a sagging
action on AB and DC; the bending moments on BC will then be as shown
by the arrows. The positive directions of the slopes are indicated by the
dotted lines in the figure

Then, from (12), p. 348, the slope of AB at B is

LM, LMy wil,®
and the slope of BC at B is
.M, laM ?
Equating these two we get

LM 1M, LM, M, wyl,? }
lsIllf( 1) + 3Il‘l’\ 1) + 311‘?\03)'_ 361 ?J(ea/— 24111 ( 1) . (l)

Similarly, considering the joint C, we get

LM, I,M, LMY .
ST + 00 — S7E00 + S7te0) = —5iten . i)

The conditions that the slopes at 4 and D are zero give

M,p(6,) + 2f(61)+ 8 (p(O) =0 . . L (i)

M.p(0,) + "2—af(02)

Taking the values of P,, P,, P;, etc., given above we have, in the nota-
tion of § 253,

(iv)

£(6,) = 1-0290 f(6,) = 1-4635 f(65) = 1-2753
@(6,) = 1.0166 @(6;) = 1-2568 @(6;) = 1-1541
v(6,) = 1:0249 ¥(6;) = 1-3922 v(6,) = 1-2340

Equations (i) to (iv) become, then,

2-58M, + 40:3M," — 19-45M," = — 51,700
19-45M, — 2:756M , — 39-90M,” = 63,400
1-017M, + 0-515M,’ = — 10,380
1-257M, + 0-732M = — 16,900
Solving these we get
M, =—9,700 1b. ins. M, = — 12,700 lb. ins.
M, = — 1,310 lb. ins. M, = — 1,350 lb. ins.

We can now, if we wish, proceed to a second approximation thus : taking
the above values of the bending moments and calculating the corrected
values of the reactions at the ends of the beams, we find new values for the
end loads :

P, = 291 lbs. P, = 3,540 lbs. P; = 357 lbs,



CHAPTER XXII
BENDING COMBINED WITH TORSION AND THRUST

262. Introductory.—Innumerable cases arise in practice where a
shaft is subjected to bending as well as twist, the bending being due
either to the weight of the shaft or to transverse loads from belts or
cranks ; in some cases, such as the propeller shafts of ships, there is an
axial thrust in addition to torsion and bending. In such cases we have
to consider (i) torsion stresses, (ii) tensile and compressive stresses due
to bending, (iii) shear stresses due to bending, and then find the principal
stresses. Frequently the shear stresses due to bending are unimportant,
but they may have a large influence when the shaft is very short.

263. Torsion Combined with Pure Bending.—Suppose a round
shaft is subjected to a uniform bending moment M and a torque 7,

and that bending takes place in vertical planes, the shaft becoming
concave upwards.

Let d = the outside diameter of the shaft.
I = the flexural moment of inertia of the cross section, and

J = the torsional moment of inertia (pp. 106 and 180).
Then J = 21.

At the bottom and top of the shaft there will be tensile stresses

Md Md .
R e N

At all points on the surface there will be shear stresses due to torsion
given by (§89)

_Td __Td (i
q—§j 7

At the bottom of the shaft the principal stresses will be
2y g
5 & T T
the upper sign giving a tensile stress and the lower a compressive stress
giving p the + sign in (i). At the top of the shaft the principal stresses
will be given by the same expression, the maximum compressive stress

occurring when both p and the radical are given the negativesign. Thus
368
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the maximum tensile and compressive stresses are both given numerically
by

Md Mz TRdE
_1 Mig® | THd* 1
Pmax = 27TV o1z T 161 )
or
Md M?dE | Td?
= a——— — —_——am 2

according to which form we take for p and ¢ from (i) and (ii).
The first of these expressions can be written in the form

d ™M e e
ﬂ‘[?jL%VM +T]

which is the tensile or compressive stress which would be produced by a
bending moment
M=¥M+VME+Ty . . . . . (3
acting alone; M’ is therefore sometimes called the equivalent bending
moment.
Similarly (2) can be written

d M2 172
M+ VHTET

which is the maximum principal stress which would be produced by a
torque

T'=M+VME+TE, . . . . . (4
acting alone ; 7" is often called the equivalent torque.

Since Vp%/4 + ¢® is greater than p/2, the two principal stresses
must be of opposite sign, and we have seen in Chapter VI that in this
case the maximum principal stress cannot be regarded as a criterion of
failure, at least when dealing with ductile materials. It follows that
the above expressions for equivalent bending moment and equivalent torque
have no real value, and it is important that this should be realized for
they are frequently met in books.* It was shown in Chapter VI that
when dealing with unlike principal stresses we should use the maximum
shear theory, or the maximum strain-energy theory, as a criterion of
failure, the latter for preference. The maximum shearing stress is

P = tvaryTs
\/ T T =Y+ T
which is the same as would be produced by a torque
T=VvM:4+T2. . . . . . . (3)
If we adopt the strain-energy theory we must have
2
P2+ p — Eplpa =/

* Cf. Ex. 1 below, which shows that (4) errs on the side of danger, which in fact
is obvious. See footnote, p. 372.
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The maximum principal stress 0-892 tons/in.?
»» minimum . ”» — 0-256 ’»
,» Mmaximum shear . 0-574 ’s

(Il

The maximum principal stress will be compressive on one side of the
shaft and tensile on the other.

The angles between the principal planes and the plane of a normal section
of the shaft are given by

56° 18’ or 236° 18’

28° 9’ or 118° 9’

—f— A In Fig. 318 the shaft is supposed bent
i 0256 concave upwards perpendicular to the plane

tg/%% 2 A; : gtons//}z’ of the figure, the directions of the principal

2
oD
[

) planes at the point P are Px and Py ; the

< sides AB and CD of the element ABCD

S C suffer a tensile stress 0-256 tons/in.? across

s : them, and the sides AD and BC a compres-

P o sive stress of 0-892 tons/in.? On the opposite

side of the shaft the directions of the prin-

Fia. 318. cipal planes will be the same but compression
and tension are interchanged.

According to the maximum shear theory the equivalent torque is,
from (5),

vV4* 1 6% =172 tons. in.
The strain-energy theory, by (6), gives

20
A/ i3 % 16 4 36 = 7-78 tons. in;

which is 8 per cent. greater.*

Example 2.—A pulley weighing 600 lbs. is mounted on a shaft 2-5”
diameter midway between bearings which are 24” apart, and the shaft is
transmitting a torque of 5,000 lb.ins. Calculate the principal stresses at
the extremities of (a) a vertical diameter, (b) a horizontal diameter, of a

cross section of the shaft close to the pulley, also the maximum shear stress
at the same points.

For the shaft we have
7 X 2-54
_—
J =384 ins.4; S =49 in.?
The maximum bending moment is
M =300 x 12 = 3,600 lbs. ins.,

and we shall take this value as obtaining on the section under consideration,
although it will actually be slightly less by an amount depending on the
width of the pulley.

The maximum shearing force is F = 300 lbs.

(a) At the top and bottom of the section the direct stress due to bending

I = 1-92 ins.*

is

p = 3,600 lbs. ins. x 1-25 ins.

o5 = 2,340 Ibs./in.*

* The erroneous formula M + /M?% + T3 would give 11-07 tons. ins.
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The shear stress due to torsion is
_ 5,000 Ibs. ins. X 1-25 ins.
- 3:84 ins.¢
The shear stress due to F is zero.
Hence the principal stresses are
1,170 &+ V1,170* + 1,630 lbs./in.t
= 1,170 4+ 2,000 lbs./in.?
= 3,170 and — 830 Ibs./in.®

The maximum shear stress is 2,000 lbs./in.?
(b) At the ends of a horizontal diameter p is zero, and the shear stress
due to F is

= 1,630 lbs./in.?

4 300
= = n 2
3 %X 19 82 lbs. /in.
The shear stress due to torsion is 1,630 lbs./in.? as before.
Hence q = 1,630 + 82 = 1,712 lbs./in.?

This is the value of the maximum shear stress and of the principal stresses
at these points, since p = 0. Hence the maximum shear stress is greatest
at the ends of a vertical diameter.

EXAMPLES XXII

1. A uniform hollow steel shaft, 18” external diameter and 12-5” internal
diameter, is supported between bearings 30 ft. apart and runs in salt water
at 150 r.p.m. transmitting 13,500 H.P. Find the maximum principal stress
due to combined bending and torsion. Density of salt water = 64 lbs. /ft.?;
density of steel = 490 Ibs./ft.* (R.N.E.C., Keyham, 1923.)

2. A shaft 5” diameter is subjected to a thrust of 15 tons along its axis.
There is a bending moment on the shaft equal to half the twisting moment.
If the maximum stress is 13,000 lbs./in.?, find the H.P. which can be trans-
mitted at 120 r.p.m. (R.N.E.C., Keyham, 1920.)

3. A solid steel marine engine weigh shaft is required to transmit a maxi-
mum torque of 7 tons.ft. Given that the shear stress should not exceed
9,000 1bs. /in.?, and that the angle of twist should be limited to 1° in a length
of 20 ft., find a suitable diameter for the shaft. If the shaft were also sub-
jected to & bending moment of 1 ton. ft., would this necessitate any modi-
fication of the original size ? if so, what would be the new diameter ? Take
C = 6,000 tons/in.? (R.N.E.C., Keyham, 1921.)

4. A solid steel shaft 6” diameter transmits 1,000 H.P. at 200 r.p.m.
Assuming that there is no constraint at the bearings, i.e. that each span
of the shaft is simply supported and free-ended, find the maximum allow-
able span between bearings if the shear stress is limited to 8,000 lbs./in.?,
and then find the maximum direct stress. Take the weight of steel = 490
lbs./ft.> (R.N.E.C., Keyham, 1922.)

5. The outside and inside diameters of a shaft are 16” and 8” ; the twist-
ing moment is 200 tons. ft.; there is at the same time a bending moment
of 50 tons. ft., and an end thrust of 35 tons. Find the maximum intensity
of the compressive stress. (H.M. Dockyard Schools, 1921.)
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xz, and the latter to decrease the curvature in the plane xy. For bending
in the two planes, then, we have

d2y dz

-EI(E—2=Py—T%. B 61}
d% dy ..
— Eltm = Pz 4+ TJ:; B 1]

To solve these equations multiply (ii) by ¢ = v — 1) and add the
result to (i), writing

Yy + iz = u.
Then we get
EI%;; +iT%+Pu=O Coe (i)
The auxiliary equation is ‘
ElI .D2 44T .D+ P=0,
the roots of which are
1 . — e TR o
D:m[—zT:};\/—W—LIEI.P]
-t
2E1
Hence the solution of (iii) is
u = Ae—Haz—B2) | Be—ilaz + pz)

[~ T 4+ VT2  4EIP)

=e (A 'sinfr + B'cosfz) . . . (iv)
where
T
*= 2E1
B = VT + 4EIP
2E1

and A4’ and B’ are constants of integration. When # = 0 or [ we have
y = 2z =0, and therefore » = 0. Hence we must have B’ = 0 and

A’'sin 8l = 0.
Thus the criterion for instability is Al = &, which gives
72 T P

—_—=———t = . . . . . . . (1
2 4E%? + El ()
This may be written
T? 9
s (2)

where P, is the Euler crippling load of the rod.

268. Non-Circular Rods.—Let I, and I, be the principal moments
of inertia of the cross section, the corresponding principal axes being
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originally parallel to Oz and Oy (Fig. 318). Then in (i) and (ii) we must
write I, and I, respectively instead of I. From these equations we can
show that the end load required to cause instability is the smaller of the
two values given by

P— ~’El, T? \'
12 4EI1, | 3)
P — w’El, T? J
I 4EIL
Similarly, if P is zero, the torque required to produce instability is
given by
poIEVIL

269. Stability of Thin Deep Cantilever with Concentrated
Load.*—Suppose we have a uniform beam 04 (Fig. 322) with the end O
fixed in the direction Oz, whilst the principal axes of the cross sections
are parallel to Oy and Oz. If the principal moments of inertia of the

z RN, N

Fia. 322,

cross section are comparable with one another, and the beam be bent by
a load W at 4, parallel to Oy, flexure will take place entirely in planes
parallel to xOy. But if the stiffness of the beam for bending in the
plane 20z be much smaller than for bending in the plane 20y, it is possible
for the load W to hold the beam deflected so that its axis is not in the
plane xy, and in this case the beam is also twisted.

Let I, = the moment of inertia of the cross section about the principal
axis which is parallel to Oz, and I, that about the principal axis parallel
to Oy, and suppose that I, is small compared with I,.

Suppose that the load W can deflect the end 4 to the position .z,
as shown, and let € be the total twist of the beam between O and some
section B distant x from O.

The section at B is then acted on by a couple W(l — z) about an axis
parallel to Oz, which makes with the principal axes of the section angles
whose cosines are approximately unity and — 6. Thus the component
bending moments about the two principal axes are W(I — x) and

* A. G. M. Michell, Phil. Mag., 1899; and Pradtl, * Kipperscheinungen,”
Niirnberg, 1899.

B2
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— W({I — )8, so that the equations for. the deflected axis are

JE .
Elld_xig =Wi—2 . . . . . . (i)
Elzg_ifz. ——Wi—®0 . . . . (i)

The couple W(l — z) also has a torque component about the tangent

to the axis of the beam at B equal to W(l — x)%lf whilst the vertical
X3

force W exerts a torque W(z, — z); the former tends to increase 0
whilst the latter tends to decrease it. Hence we have

OKle_z = W(l — x)j—z— W(zo —2) . . . (iii)
where K is the torsion constant for the section, and € is the modulus
of rigidity. The calculation of K is dealt with in Chapter XXX.

Differentiating (iii) with respect to x we have

a0 d*
CK_— = —x)-—
da? Wi x)dxz
2] _ )2
= — W_-—(lfl‘lz %) 6, from (ii).
This may be written
PO i —m—0 . . . . . ()
da?
where
we
2 — {
P = zx, )

The solution of (iv), in terms of Bessel Functions,* is
L [B 1 [B :
0— x/l—x[A.J*w(ux)z} +BJ {0 —x)2}] (vi)
where A and B are constants of integration.

When z = [, z = z,, therefore Z—a = 0, from (iii), so that 4 must be
x

Zero.
When z = 0, 0 = 0, and the criterion for instability is

J_*@f):o

2
which gives % = 2, very closely, or

44/CKEI,
e )

* Funktionentafeln mit Formeln und Kurven, by Jahnke and Emde (Teubner),
contains tables of Bessel Functions and a most useful collection of differential
equations with their solutions in terms of Bessel Functions.

W:
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270. Thin Deep Cantilever with Distributed Load.—We shall
next consider the case when the load on the cantilever is uniformly

distributed.
Pos Let w be the vertical load per unit
0 =ik length in the direction Oy in Fig. 323

‘A which shows the projection of the dis-
torted axis of the beam on the xz plane.
% Let P be the point (z, y, 2), and let @
Fra. 323. be a point (2', y', 2') between P and the
free end A4.

The force parallel to Oy, due to an element dx’ at @, is w.dz’. This
produces a torque round PK = w.dz'.QK, PK and QK being parallel

to Oz and Oz respectively. Hence in the notation of § 269,

1
T————jw.QK.dx’ )

! being the length of the beam.
Then, as in the previous case, we form the equations

d?z dy ..

—_ E[zd__2 = (l — x)20 + T&; B 1]
w dz

= T . . . . (i

CK e Sl —a—+ (iii)

We shall suppose that flexure in the plane zy can be neglected, so
that we omit the last term of (ii). Then (iii) gives

2
C’Kd—o =—w{l—= 3:; + g’(l - .'/r:)zg—z2 + Z—f- . (iv)
From (i) we have
= Rl —w [M
z dz
Now, when z' = », QK is zero, so that the term [ ] vanishes. Also
QK =2' — =2
. dQK) _  dz
Y odx dx
(QK) , , dz ., dz
. L (33: )dx = — Lc—l;'dx =—(—- x)(zt-.
Hence, from (v),
aT

dz
T w(l — x)ca—.
Substituting in (iv) we have
a0

C’de (l— )dx2

- Y
4E’I (l x)40,
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. d
from (ii), remembering that we are neglecting 7' &g Hence

a0 | w¥l — x)*

o4 =0

dxz? + 4CKEI,

d26
or It + Al — x)*0 =0,
where

2
e W . (vi)
4CKEI,

The solution of this equation is

0=(— x)‘[AJ; {’1—” = xmj +BJ_, {l(l - x)a}]

In the same manner as § 269, we find that the criterion for instability is

J_(%f): 0

which gives

173
A—l- = 2:15
3
i LT
e 6v/CKEIL,
or wl =129V CKEL,. . . . . . (6
271. Thin Deep Beam under Constant Bending Moment.—The
y next problem of this nature which

we shall consider is that shown in
Fig. 324, where ABCD is a thin
deep beam acted on by terminal
couples M in the plane of its depth,
when unstrained, which is the plane
zy. We suppose that dimensions
are such that the flexure in the
Fra. 324, plane zy is negligible, and seek to
find what value of M, if any, will
cause the beam to bend parallel to the xz plane. If this happens
there will be twist about the axis Ox.

In the first place we assume that the only constraint applied to the
ends is such that the edges AD and BC remain in the plane xy. Then,
if the beam twist in the manner shown, it follows that there must be a
“ fixing ” torque T, applied to the ends by the fixings.

Hence

d’z dy .
EIZEF = M0 + TO(H e
CKdB = M(E — Ty . . . . (i)

dr  dz
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The flexure in the plane xzy being negligible, we can omit the last
term in (i).
Eliminating 2 from (i) and (ii) we get

d20 0
am =0
M2
2 =
where 7] OKEL,
Hence

6 = A cos 8z + B sin fx.
where 4 and B are constants.

Since § = 0 when * = 0, we must have 4 = 0. Then, as 0 also
vanishes when z = [, we must have

Bsinfl =0
Hence, either B = 0, in which case there is no twist, or gl = =,

ie. M:}‘VCKEIT. I )

This is the smallest value of M which will hold the beam deflected
in the supposed manner ; @ then becomes indeterminate and the beam
is unstable.

If the ends of the beam are encastré in the xz plane, *“ fixing ”” moments
must be introduced at the ends, acting in this plane. We find that the
critical value of M is given by

M:%’f\/c’?}“ﬁ:. N )

These problems have been investigated experimentally by Carrington, *
whose results, so far as they go, confirm the formul obtained by analysis.

272. The Case of 1-Beams.—The above re-
sults require modificationt when the beam carries B
stiffening flanges, such as those on E, T beams etc., |-C
since the lateral flexure of the flanges now becomes \
important.

Referring to Fig. 325, let { be lateral deflection
of the top of the web relative to the axis, and let
I denote the moment of inertia of each flange about
the axis BB. Then the extra shearing force on the
flange is

d3
EI o ’ ‘
The moment of this about the axis of the beam is g_.l\B
h. . d3
§ a@' Fia. 325.

* Phil. Mag., 1922.
t+ M. S. Timochenko, Sur la Stabilité des Systémes Elastiques. Pub. A. Dumas,
Paris, or see Annales des Ponts et Chaussées, Fasc. I11-V, 1913.
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There will be a corresponding force on the bottom flange, so that on
account of the shear in the flanges there is a torque

a3y hE_ . d30
REI 2 = -2.E’I o
since { == -0 approximately. Hence the left-hand side of equation (iii),

§ 269, becomes
d0  Elh*d%
dx 2 da¥
273. Uniform Bending Moment.—The equations of §271 now
become

CK

d%

E’Id2 Mo . . . o)
OK?TG—%EIM%_—MZ—:G—T A 4!
neglecting flexure in the plane zy. Differentiating the second we have
2
T VIR Tk
2
- Eﬁlz_g

or
a9 20K 4 2M*)
dzt  EIlh? dx®  E2,1 52

It will be found that

=0 . . . (i)

0 = A sin 27%
l
satisfies (iii), and all the terminal conditions, provided that
nint  nin? 20K  2M?
I 12 "EIR:  E,lA°

or

and then A is indeterminate. Hence, if we give n the value unity we
shall obtain the least value of M consistent with the assumed deformation,
and this will be the critical value. Thus

n2El, h?
M:‘ EI,CK \/1 N
VELCK tSoR B (9)

274. Other Cases.—The following are some of the results which have
been obtained by M. Timochenko (loc. cit.), and are given for reference.
They all refer to X section beams.
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(i) Constant bending moment M in xy plane, axis fixed in direction
at the ends in the az plane.

2m/0KE1 \/ Bl B2
M=—— 1 +2"k =

(i) Same as (i), but ends free in zz plane, with the addition of an
axial thrust P.

n\/O'KE'Iz \/ n? EI,h Pz
M= 1—-
1+3 2 CKI? niBl,

(iii) Same as (11), but ends fixed in zz plane.

2
Mzzm/(;KEz, \/1+2 LL B/ P

CK'I* 4n2El,
(iv) Cantilever with load W at the end.
KEI L
W= ’N+”, where k is given by

20Kl
E’.I_il"’— . 01 10 20 40 80 120 160 240 320 40

3
k . . 44-3 157 122 976 803 72 673 619 587 564

(v) Beam of length I carrying a distributed load w per unit length,
the ends being free to rotate in the zz plane; w = ¥V CKEI,/I3, where

ELp?

L is given below, and g2 = %,

& ’ 3CKI2
1/a% . 040 40 80 16 32 48 64 96 160 320 o)
1. /8 . 179 6-63 532 4-54 4-08 394 381 3-73 3-65 3-58 3-54
2. k/8 11:6 4-54 3-8 343 3-28 3-27 3-22 3-25 3-27 331 3-54

3. k/8 . 277 977 743 601 509 476 45 43 408 387 3-54
1. Load applied along axis ; 2, load applied on top ; 3, load applied at bottom.

(vi) The same as (v), but the ends encastré in the xz plane, a® having
the same meaning as in (v), 1

1/a? . . 04 4 8 i6 32 96 128 200 400
k . . 488 160-8 1192 91-2 73-04 5800 55-84 5344 51-20
(vii) Beam supported at each end, with a concentrated load W at
the centre. The critical load W is given by W = ¥V CKEI,/I2, k being
obtained from the following table :
1/a? . . 04 40 80 16 32 64 96 160 320 oo
k 864 319 256 21-8 194 183 179 175 172 170
The load is here supposed to be applied at a point on the axis of
the beam.
(viii) The same as (vii), but with ends prevented from rotating in
the xz plane.

1/a% . . 04 40 80 16 32 64 96 160 320 400
k 268 888 655 502 402 342 318 300 285 282
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If there be an axial thrust as well as the bending moments in cases
(v) and (vi), the above values must be multiplied by the following factors :

2
(v) and (vii) r\/l — 7?]:2_12

T 2
(vi) and (viii) \/1 — 4%

EXAMPLES xxur*

1. If a narrow deep beam, such as shown in Fig. 324, carries a vertical
load W at the middle point, prove that torsional instability will occur when
Wi = 16-94 VECI,K.

2. In question 1, if the ends are encastré in the horizontal plane, prove
that the critical value of W is given by
Wiz = 259V ECILK.

3. In the case of § 271, if the section of the beam varies in such a manner
that
ax

I, = 10(1 + 7) and K = KO(I + “7”)

and the ends of the beam are free in direction in the xz plane, show that
the twist is given by
(14920 2 w28 A o
{/de? "1 l/de = CEILK, )
ar

Hence, by the substitution 1 + 7

ef, solve the equation and show

that instability will occur when
aa vV OET K,
" Togd1 + a)”
@ being a constant which gives the rate of change of I, and K along the
beam.

4. In § 271, if there be an axial thrust P in addition to the couples M,
and if the section is not uniform, prove that the twist is given by

d rEI, d( an\ ] PCK df
dz| M 'chCKd_z)*MO t @’

5. A narrow deep beam, simply supported at both ends, carries a uni-
formly distributed load w per unit length. Show that the twist is given by

d*  wiqi(l —x)?
da? 4ECIK
and hence show that the beam will be unstable if
wl® > 28-3VECI,K
6. A thin deep cantilever of uniform section carries a total load W which

decreases uniformly from a maximum at the fixed end to zero at the free
end. Show that the condition for instability is

o we
J—i(lz VCKEI, ) =0

that is when Wiz = 26-51VCKEI,

M

=0,
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7. If the section of a cantilever carrying a load W at the free end tapers
from the fixed end, considered as origin, in such a way that I,= 1 0(1 —%)

and K = Kn(l —7—) show that instability occurs when

1 are) =
VCK,EI,
i.e. when Wis = 2405V CK,E1,

8. In question 7 if the total load W be uniformly distributed show that
the criterion for torsional instability is Wit= 9-62V CK,EI,, whilst, if it
decrease uniformly from a maximum at the fixed end to zero at the free end,
the criterion is WI* = 21-65V CK,EI,.

9. A strut of uniform wide thin section is acted upon by an eccentric
end load, the load being eccentric by an amount % along the major principal
axis. Prove that the load P which will cause torsional instability is given by

P (1 Ph’) _

BTN T oK) < T
where I, is the smaller moment of inertia of the cross section, if the ends
of the axis are free to take up any angular position in the zz plane.

10. If the beam in § 271 be subjected to an axial thrust P, prove that
the criterion of instability is

M3 P =t
CKEL, TEI = @
the ends being free to bend in the xz plane.

* The results of examples 6, 7, 8 are due to H. A. Webb, those of 1, 2, 5, 9 are
due to Michell.



CHAPTER XXIV
SPRINGS

275. General Properties of Springs.—The common purpose of all
kinds of springs is to absorb energy and restore it slowly or rapidly
according to the function of the particular spring under consideration.
Thus, in the case of clockwork a certain amount of work is done by an
external agency in winding up, i.e. deforming, the spring ; this work is
stored in the form of strain energy and is regained when the spring is
allowed to return to its original shape. In clockwork the resumption
of the spring’s original shape takes place slowly. The other most common
use of springs is for absorbing shocks, such as the springs of buffers of
railway rolling-stock and the springs of wheels on all manner of vehicles.
In such cases some of the kinetic energy of the moving body, the truck,
or that due to the vertical motion of the wheels and axles, is converted
into strain energy in the spring, the effects of the blow on the truck
as a whole being thereby reduced. The springs, in returning to their
original shape, give back this energy tending to reverse the relative
motion of the colliding bodies. Springs are also used to provide a means
of restoring various mechanisms to their original configuration against
the action of some external force, or when an external force is removed.

The properties of a spring which are usually of most interest to the
engineer are (i) its capacity for absorbing energy, (ii) the deformation
produced by a given load, or vice versa, provided of course that the
safe working stress of the material is not exceeded, and sometimes (iii)
its natural frequency of vibration.

Springs in practice belong usually to one of two definite families :
springs in which a length of rod or wire is made into a coil of some kind,
and springs consisting of one or more approximately flat plates.

The “ stiffness ” of a spring is the load required to produce unit
deflection.

The ““ resilience ” of a spring is its capacity for storing energy without
exceeding a certain stress limit.

276. Coiled Springs.—Coiled springs may be divided into (i)
ordinary helical springs, when the axis of the wire has the form of a
helix described on a right circular cylinder ; (ii) helical springs in which
the axis of the wire is a helix described on a right circular cone ; (iti)
spiral springs, when the axis forms a plane spiral curve.

386
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277. Geometry of Helical Springs.—In Fig. 326, CQB is a helix
described on a cylinder whose axis is OA, this helix being the central
line of the wire forming the spring. F@D is a generator of the cylinder ;
Dz is the tangent at D to the cross section-CDH of the cylinder, and @z
is the tangent at @ to the helix. @y is in the tangent plane FDx and
perpendicular to Qz. QK is parallel to Dx.

Fia. 326.

Let R be the radius of the eylinder, and let a be the pitch angle of
the helix, so that FQy = QzD = a.

Let ! = the length of wire.

n = the number of complete convolutions.
Then
l=2nmBRseca . . . . . . (i

Let the spring be acted on by axial forces P and axial couples L.
Now forces P acting along the axis of the cylinder are equivalent to forces
P along DF and couples P.R about @K.
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The force P along @D * can be resolved into components P cos a
along %@, i.e. a shearing force in the plane of the normal cross section
of the wire at @, and P sina along @, i.e. perpendicular to the same
cross section. Usually the effects of these forces can be neglected.

The couple P.R about QK can be resolved into components
T = PR cos a about @z, i.e. a torsional couple acting on the wire, and
M = PR sin a about @y, i.e. a flexural couple tending to decrease the
curvature of the wire.

Similarly a couple L, whose axis is O4, will have a torsion component
L sin a about @z in the same direction as 7', as shown in Fig. 326, and
a flexural component L cos a about Qy tending to increase the curvature
of the wire.

278. Close-Coiled Helical Spring : Axial Pull.—When the coils
of a helical spring are so close together that they can be regarded as
practically lying in planes at right angles to the axis of the helix, the
angle a is very small, and we speak of the spring as “ close-coiled.”

With such springs under an axial tension P only, the bending couple
PR sina becomes negligible in comparison with the torsion couple ;
we can also take I = 2znR, with sufficient accuracy.

Let 6 be the axial extension of the spring due to the load P applied
gradually. Then

the work done by P = }P4.

The torsion couple at any point on the central line is T = PR, approxi-
mately. From equation (7), §92, the strain energy of the deformed
172
m)
where 1 is the total length of wire, i.e. 22nR. Hence the energy stored
in the spring is

spring is U=

__ wmR3P?  32nR3P* N
== =@ -
if the spring be made of round wire of diameter d.

Equating this to the work done by P we obtain an expression for
the deflection :

U

R3p2
Py = T
b cJ
. 2ranR3P  64nR3P
A= T —ac @
Putting 6 = 1, we have
CJ d«C

stiffness = —— = __—_ __

2nnR®  64nR3 ®)
If ¢ denote the maximum permissible shear stress, the resilience and

maximum load can be expressed in terms of ¢ thus:

* We are considering now the forces and couples transmitted by the part CQ
of the wire ¢ the part @B, and Fig. 326 is drawn accordingly. :
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From § 89, we have

__Td __ PRd

T2l 2T
2Jq  mdiq*

=2="_J. . . ., . . . (4
Rd 16R )

Substituting in (1) we obtain a formula for the stored energy in terms
of the maximum stress :

oys 4nnRJq® nnRd%** _ q2 X
resilience = CiE -~ 80 =1G X volume of metal . (5)

It will thus be seen that all such springs have equal weight for equal
stress and equal resilience.

279. Close-Coiled Helical Spring : Axial Couple.—If a close-
coiled spring is acted on by a couple L whose axis is the axis of the helix,
we can neglect the torsional couple L sin a, and consider the wire as

acted on everywhere by a flexural couple which is approximately equal
to L.

Let 6 = the total angle through which one end of the spring is turned
relative to the other. Then the work done by L is L6, 6 being measured
in radians.

From §128 the strain energy of the spring is

L2 nnRL2
91"~ “EI
Equating this to the work done by L we have
2nnRL
6=—E—I——-........(6)

For a circular section wire of diameter d we have
128»RL
TEdt

The maximum stress in the wire is given by

Ld  32L
Tl ad®
Hence the maximum couple for a given stress is
nd3p
32
Putting 6 equal to unity in (6) we have

6=

L =

stiffness for torsion = —E— perradian . . . (7)
2nnR

* Useful alignment charts expressing these formule were published by Mr. F.
Fitchett in Machinery, Jan. 14, 1915.

The following practical rules are worth noting: A new close-coiled helical
spring should be closed up solid twice in compression ; after this treatment it will
take no more permanent set. If P be the load required to close the spring solid,
the spring should never, even in tension, carry more than this load P.
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Example.—Calculate the number of turns required for }” deflection
in a spring made of steel }” diameter and forming a cylindrical coil 5” mean
diameter, if the load be 100 lbs. and ¢ = 12 x 10°® lbs./in.? (Mech. Sec.
Trip., 1910.)

Assuming the coil to be close-coiled, we have from (2)

_ dCs
" = §aR°P
d = 0-75". d* = 0-315 int, R = 2-5”, R® = 156 ins.?
P =100 lbs. & = 0-25". C =12 x 10¢ lbs./in.?
0-315 in.4 x 12 x 10° lbs./in.2 x 0:25 in.
Hence n =

64 x 15-6 in.® x 100 lbs.
= 9-45.

280. Open-Coiled Helical Spring : Axial Force.—We shall now
consider a helical spring where the coils are not so close that the angle
a can be treated as small.

Let P = the axial load, and let the rest of the notation be as in § 276.
The torsion couple is PRcosa, and the flexural couple is PRsina;
hence the strain energy of the spring is

I(PR cos a)? n (PR sin a)?
20J 2E1
__1P2?R?%/cos?a | sin?a
2N El
The work done by P is }Pd; equating the two we have
cos?a = sin?a
=IPR% —_—~ 4+ ——
b=t cJ + EI
cos?a | sin%a
il o Wi S
cJ EI
The stiffness is the value of P obtained from this when d = unity.
For a spring of circular wire of diameter d, (8) becomes

3
S = M(cosza + %—(ysin2 a) S ()]

= 2anPR3sec ¢

d«C
281. Open-Coiled Helical Spring : Axial Couple.—Let the
spring be acted on by a couple L whose axis coincides with the axis of
the helix. Then the torsion couple at any point is L sin a and the flexural
couple is L cos a. Hence, in this case, the strain energy is
YLsina)? | YL cosa)?
507 2El
whilst the work done by the couple L in twisting one end of the spring
through an angle 0§ relative to the other is £L0, the angle being measured
in radians. Equating this to the strain energy we have
sinfa , cos?a
0= (G +Er
sinfa | cos? a)

= 2nnRL sec a| ——

== 10
cJ El (19
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For a wire of circular cross section this gives

_ 128sRLseca/E . , 2
0 7iE (2—6—’sm a + cos a) .o {1
In the case of open-coiled springs the stresses due to flexure and torsion
must be found separately and the principal stresses calculated.

It should be noted that the formulse of §§ 280 and 281 are only
approximations as we have treated R and a as constants, whereas really
they vary continuously as the load is applied, but the formule derived
here are sufficiently accurate for all practical purposes.* The connec-
tions between R, a, 6 are 2aRn = [ cos a, and

0 = lcos a.da.
282, Plane Spiral Springs.—Fig. 327 represents a spring whose
central line is a plane spiral curve. One end of the spring is anchored

to a pin at C, and the inner end is attached to the winding spindle. A
couple M is applied to this spindle.

re
]
|
|
]
|

Fra. 327.

Let X and Y be the components of the reaction at C' along and per-
pendicular to the line joining the axis of the spindle to the centre of the
pin C. Let(z, y) be the coordinates of an element 4B (= ds) referred
to the same directions as shown in Fig. 327.

Then the bending moment on ABis Yo — Xy. Let df = the change
in the angle between the tangents at the ends of the element 4B, then

df = ds( 1- — l
P Po
where p, and p denote the radii of curvature at (, y) before and after
strain. But iy
1 1 Yx— Xy,
P Po EI

where I is the moment of inertia of a cross section of the spring about
its neutral axis perpendicular to the plane of the spring. Hence

do = _Y_“E_:_{ng_

EI

* For a more exact treatment the reader is referred to Love’s Theory of Elas-
ticity, 3rd Ed., p. 421.
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If I be constant this gives, for the total change of angle between
the tangents at the extremities of the spring,
Y X
! = —— -_——= .
0=z j = g j. yds

Now jxds and j yds represent the moment of the whole length

of the spring about the directions ¥ and X respectively. The centroid
of the spring will be approximately at the centre of the winding spindle,
and if we assume this to be true we shall have

J'xdsle and jydszO

where ! is the total length of the spiral. Also Y.R = M, the couple
applied to the spindle. Hence
Mi

N £

The work done in winding, i.e. the energy stored, is
M3
2EI
The stress at any section will be given by
Yr Mx
Z RZ
where Z is the modulus of the cross section.
The maximum value of z is a (Fig. 327), so that the maximum stress

1M6 —

is
p=‘b—lg. e e e (128)

RZ

If f stand for the maximum permissible stress, the maximum value
of M is

m=RZ gy
a
and the resilience is
R2Z2f?
bl 14
2ElIa? (14)

When the spring is made of a very thin flat band of metal, anti-
clastic curvature arises (see p. 175), and the full treatment of the problem
becomes more complicated, but is not of great interest to the engineer.*

* A golution of the problem of the flexure of a broad thin band into a circle
of radius comparable with the mean proportional between the width and thickness
of the band will be found in the Pkil. Mag., Vol. 31, 1891 (H. Lamb).

Other papers of interest dealing with this class of spring are referred to Tod-
hunter and Pearson’s History, Vol. II, pt. i, pp. 466-470. The most important is
that by Phillips. Annales des Mines, tome xx, 1861, “ Mémoire sur le spiral
réglant de chronometres et des montres,”
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283. Close-Coiled Conical Spiral Spring.—Fig. 328 represents a
spring whose central line is a spiral curve
drawn on a circular cone.

Let r, be the smallest, and r, the largest
radius of the spiral.

Let » be the number of complete con-
volutions of the wire.

Let the spiral be such that the polar
equation of its projection on a plane at
right angles to the axis of the cone is of P
the form

Elevation

r=a + b6.
Then, if we measure 6 from the radius
r, we have ¢ = r, and
b = (r; — ry)/2nn,
so that Plan

r=rl+§0_(rz—r1) Coe e o)
T Fic. 328.

We shall suppose the spring to be “ close-
coiled,” i.e. that the convolutions very nearly lie in planes perpendicular
to the axis of the cone. Then the element of the spring at radius r is
subjected to a torque Pr.

2,2
The strain energy per unit length is then 1230—7:] Hence the energy

stored in length ds, = rd#, is

2,3
dU = P2r3dp
2CJ
From (i) we have
20 — 2ren.dr
3 — 1
nnP2r3dr
AU = ———
CJ(ry — 1)
Hence the total strain energy of the spring is
inP? . ainP?
- dr — 2 2
CJ(ra — 1) j'n” r m(rl + ra)(r ® + %) (15)

The work done by P is 1P¢, if § denote the total axial extension
of the spring. Equating this to U we have
znP Plr,24-r,2
6= é_@.(rl + r)(r,2 + 1.2 Py 210fi), ... (18)
where ! denotes the total length of the wire, approximately.
If the spring be acted on by an axial couple L instead of an axial

pull, every element of the wire is subjected to the same bending moment,
o2
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and the change of radius has no direct effect. The formula which we
found for a cylindrical helical spring (§ 279) subjected to an axial torque
is therefore true also for a close-coiled conical spring, ! denoting the
total length of wire. It is only in its effect on the value of / that the
éhanging radius alters the formula.

284. Approximate Theory of Leaf Springs.—We shall now con-
sider the type of spring shown in Fig. 329, consisting of » parallel strips

LR ; >>>>>>>":§
J

Fia. 329.

of metal of width b. The spring carries a central vertical load W which
is balanced by equal end reactions %, as shown.

We shall assume now that the centre lines of all the plates are initially
circular arcs of the same radius r, that each plate has a uniform thickness
t, and overlaps the one below it by an amount a = [/2n at each end,
and that these overlaps are tapered in width to the triangular shape
shown.

Now, since the plates are initially circular arcs of the same radius,
each will, when unloaded, touch the one above it at its ends only. If,
when the load is applied, the change of curvature of each plate is uniform
and the same for all the plates, contact will continue to be at the ends
only.

In these circumstances each plate will bear a downward load %’

at its ends, and an upward load %’— at the ends of the plate next below

it. Thus the triangular overhanging ends are loaded as cantilevers,
whilst the parallel portions are loaded with a uniform bending moment
iWa.

The moment of inertia of the cross section of the parallel portion
of each plate is 1';b¢3, hence for this portion of the plate the new radius
of curvature, p, is given by

1 1 _ bending moment _ 6Wa
r o p El ~ Eb’

Next consider the triangular ends: at a distance x from the point
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the bending moment is 1 Wz, and the moment of inertia is 1—12 Zpts ; hence
a

for this portion we have
LoL_Wr 1u oW
r p 2 " ab3E Eb3
Thus for the whole length of each plate we have
i-zé——%%%‘:mrxstant. B 4§
Thus all the plates are bent into circular arcs of radius p, and contact
continues to be at the ends only.

The load W, which will straighten out all the plates is obtained by
putting p = oo in (i); we get

3 3
. _ B _nEor -
Gar 3lr
If Jo be the initial dip of the top plate, assumed to be small.
we have 5 :f or r — 2 from the propertics
8r 80y of a circle.
Substituting for » in (17) gives
3
w, — SnEbt3, (18)
3

Since for each plate the bending moment - the moment of inertia
is constant and the same for all the plates, the maximum fibre stress
will also be constant for each plate and the same for all.

Let p = the maximum fibre stress for a given load W, then

t

IWa x—

b 2 _3Wa_3W

I S ThtE T 2nbed

Hence, if f denote the stress corresponding with the load * W,
required to straighten the plates,

(19)

2 nbt*}f
= . 20
o= 5 (20)
From (18) and (20) we have
418
f= lz"E R 1

For a given material f and E will be prescribed, so that this equation

fixes the proper relationship between the thickness and initial radius
of the plates.

Since M /I is constant, the dip J, for a load W, is given by (§ 164),
8'0—8=JE =1_@l_2 12 _3Wal* _ 3WP. . (@2

8EI 8 2 E b3 4Eb®  8nEbtd
which is the deflection of the ends of the spring relative to the centre.

* The load W, is generally known as the ‘‘ proof "’ load.
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Example.—Find the load required to straighten a carriage spring which
has 6 strips, of breadth 3” and thickness §”, the top strip having a length
of 3 ft., if the deflection of the top strip when unloaded is 24”. The overlaps
are each equal to half the total length of the bottom strip, and their breadth
is uniformly tapered to a point. (Mech. Se. Trip., 1912.)

Erom (22) of § 284, we have, since § = 0,

_ 8nEbLs,
- TE
n==6,b=23Iin., t = 0375 ins., 6, = 25", | = 36",

Hence, taking £ = 30 x 10 lbs./in.?

48 x 30 x 10° lbs./in.?2 X 3 in. x 0-0527 in.® X 25 in.
3 X 46,656 in.3

w

W =

= 4,070 lbs.

EXAMPLES XXIV
Unless otherwise stated take E = 30 x 10¢1bs./in.2, C =125 X 10%]bs. /in.?

1. A helical spring is made of steel wire }” diameter. The coils,
60 in number, are in close formation, and the centre line of the wire lies on
a cylinder 3” diameter. The two ends of the spring are pulled apart by an
axial pull of 10 Ibs. What shear stress is set up in the wire and what elon-
gation is produced ? (Mech. Sc. Trip., 1915.)

2. A safety valve of 3” diameter is to blow off at a pressure of 150 lbs. /in.?
by gauge. It is held by a close-coiled compression spring of circular steel
bar. The mean diameter is 6” and the initial compression of the spring is
1”.  Find the diameter of the steel and the number of convolutions necessary
if tho shearing stress allowed is 8 tons/in.?, and C = 5,000 tons/in.? (Mech.
Se. Trip., 19186.)

3. Two shafts in line, which are prevented from moving axially, are
connected by a helical spring, the spring fitting loosely on the shafts and
having its ends fixed to the shafts. Show that, if the coils of the spring
are of circular cross section, and are inclined at 45° to the axis, the couple

ré

E
er unit angle of twist is given b —_(~ -+ C), where r is the radius
per tmib ang & Y 8 VZnR\2

of the cross section and the rest of the notation is as in §280. (Mech. Sc.
Trip., B, 1913.)

4. Obtain the deflection and angular twist of the free end of a helical
spring of 10 coils, 10” diameter, made of }” round steel, due to an axial load
of 40 lbs. if the helix makes an angle of 60° with the axis. (R.N.C., Green-
wich, 1922.)

5. A load of 50 lbs. weight is suspended from a close-coiled helical spring
made of }” diameter steel wire. If there be 10 coils of 2” mean diameter, find
the extension of the spring and the shear stress in the material. (R.N.E.C,,
Keyham, 1923.)

6. A close-coiled helical spring made of }” round steel wire has 20 coils,
mean diameter 3”. Find (i) its deflection under a load of 40 lbs., (ii) the
shear stress in the wire due to this load, (iil) the work done in producing the
extension. Take C = 11 x 10¢ lbs./in.? (R.N.E.C., Keyham, 1920.)
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7. A steel carriage spring is to be 30” long and to carry a central load
of } ton. If the plates are 3” wide and }” thick, how many plates will be
required if the stress is to be limited to 12 tons/in.?2? What will be the
deflection of the spring at the centre ? To what radius should each piece
be curved ! Take E = 13,000 tons/in.? (R.N.E.C., Keyham, 1921.)

8. A length of 50” of 0-232” diameter wire is coiled to a mean diameter
of 34" to make a closely coiled helical spring. Neglecting the inertia of the
wire, find with what period a mass of 2 lbs. would oscillate when suspended
on the spring. (R.N.E.C., Keyham, 1922.)

9. Estimate the length of 0-232” diameter wire necessary to form a
helical spring with a mean diameter of 34", whose stiffness under axial load
is to be 20 lbs. per inch. (R.N.E.C., Keyham, 1923.)

10. Prove that, for a given resilience and given maximum shearing
stress, the ratio of the weight of a close-coiled helical spring made of tube
to that of one made of solid wire is k2/(1 4 k2), where k is the ratio of the
nutside diameter of the tube to the inside diameter.

11. Find the maximum safe load and deflection for a close-coiled helical
spring of 0-25” diameter wire, having 12 complete turns of 3” mean diameter.
Maximum stress 60,000 lbs./in.? and C = 12 x 10¢ 1lbs./in.2 (R.N.E.C,,
Keyham, 1922.)

12. Calculate the stiffness of a closely coiled helical steel spring consisting
of 10 turns of 3" diameter wire coiled on a mandrel 2” diameter. Take C =
12 x10° Ibs./in.2  (R.N.E.C., Keyham, 1925.)

13. A composite spring is made by joining two springs end to end, one
spring having twice the stiffness of the other. Show that the stiffness of the
composite spring is } of that of the stiffer of the two springs.

14. A close-coiled spring has a mean radius of 2 ins. and the wire is "
diameter. There are 30 turns. Calculate the work done in rotating one end
90° relative to the other, by a couple whose axis coincides w1th the axis of the
spring. (H.M. Dockyard Schools, 1931.)



CHAPTER XXV

STRESSES IN CURVED BEAMS OF LARGE CURVATURE

285. Introductory.—In all the problems of flexure which we have
considered in previous chapters we have assumed that the dimensions
of the cross sections of the members are small in comparison with the
radius of curvature of the central axis, before and after bending. We
must now investigate the flexure of members, the dimensions of whose
cross sections are comparable with the radius of curvature of the central
axis. The most common instances of such members are chain links,
rings, and hooks. Up to the present time no really satisfactory theory
of bending, applicable to such pieces, has been discovered.

Considerable light is thrown on the problem by the investigations
of two-dimensional stress systems given in Chapter XXVII. Referring
to pp. 430-433 it will be found that when a flat plate, in the form of
a semi-circular annulus, is subjected to bending in its own plane, radial
stresses exist which are not entirely negligible. It is the failure to take
account of these radial stresses which renders unsatisfactory the existing
theories of bending applied to such pieces as chain links and hooks.

The first important attempt to give a suitable theory of the strength
of chain links was made by Winkler,* and the investigations of this
chapter follow closely the lines of his memoir as quoted and corrected
by Karl Pearson in his History. A later attempt to improve on this
was made by Andrews and Pearson,f but their theory does not appear
to be any better than Winkler’s as we shall see presently. Winkler’s
theory is really a modification of the Bernoulli-Euler theory of bending
to allow for the fact that the cross sections are not small compared with
the radius of curvature of the central axis. We shall first give a general
statement of this theory, and then apply it to a particular case and
compare the results with those given by other theories.

286. Winkler’s Theory of the Flexure of Curved Bars.—It is
assumed that the central axis of the bar forms a plane curve before and
after bending, that the cross section is uniform, and that longitudinal
elements of the bar, parallel to the central axis, exert no action on each
other. This last assumption is the main fallacy of the theory, and is
known to be untrue.

* Der Civilingenieur, Bd. IV, 1858. See also Todhunter and Pearson’s History

of Elasticity, Vol. II, Pt. i, p. 423 et seq.
1 Drapers’ Company Research Memoirs, I, 1904.

398
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Refemng to Fig. 330 let 4,B, be a small portion of the unstrained
central axis, of length ds,, the centre of cur-
vature being C, and the radius of curvature

po = Cod, = CoB,.
Then
00 = d-_sg . . . . . . . (1)
Po

Relative to the cross section at 4, let the N, A
central axis be deformed into the curve 4,B, ‘-qo\/' ;
whose centre of curvature is C, and whose c"iﬁ’,'
radius of curvature is Z’.o

p=C4,=CB. Fic. 330.

Let ¢, =— the strain of the central axis, for

the element A4,B,, then the length of 4,B is
ds=(1+e)ds, . . - - . . (i)

and the angle @ is given by
0 =d_8 — (_1_+ eo)dsy )

p p

Let PyQ, be a longitudinal element of the beam, which, in the un-
strained state, is at a distance y, from the central axis 4,B, After
strain let P,Q, become P, at a distance y from the central axis AB.
Let e = the strain of PyQ,.

Then we have

Py = (po + Yo)0, and PQ = (p + y)0

(i)

Therefore
:PQ—P0Q0= (P+?/)0 _
PQq (Po -+ .710)00

Hence, from (i) and (iii)

(b + (1 + e d;"

e = —1
de

{po + Yo) °

Po

1+ eo)<1 + ﬂ)
—_—— P

14 %

Po
Now Winkler assumes that the difference between y and y, can be
neglected, an error which was pointed out by Andrews and Pearson
(loc. cit., p. 398), who modify the theory accordingly by an attempt
to allow for the radial strain. As, however, they ignore the radial
stresses referred to above, it is hardly to be expected that their results
will be any more reliable than Winkler’s. We shall see later that this




400 STRENGTH OF MATERIALS

view has a good deal to justify it, and accordingly we shall write y = ys,.
In this case the expression for e can be written in the form

1+ eo)yo<-l -1

e =¢ey + P Por L (1)
1472
Po
This form will be found convenient in the subsequent work. The
stress at a distance y, from the central axis is p = FEe, and the total
action over a cross section consists of a normal stress-resultant

j - jEe.dS

and a stress-couple
M= j Feyds,

where dS is an element of area of the cross section. Inserting the value
of ¢ from (1), these become '

P = EeS + E(1 + ¢, <*— >§ P gg. . (iv)
Po + Yo
and
2
M=z _~_>j PY” 4s, . . .
-+ eo)( Po + 7o {v)

the integrals extending over the whole area of the cross section. In
deriving this expression for M we have taken jEeoy .dS =0, since

the central axis passes through the centroid of the section.
We shall now write

2

jp—"y"—dS:Shz . e ®
Po + Yo

Then

2 2
j PY g = Kpoy __f"’y;>ds L
Po+ Yo Po T Yo Po

Hence (iv) and (v) become *

2
P=Eeos_E(1+eo)<l _ANSeE e
e Po/ Po

1 1
M = E(1 +e,,)<_— —>Sh2. e @

e Po
* Some writers prefer to let L)—P"gé— = §’, and then deduce the expressions

0 [}

po + Yo ot Yo
from one system to the other is A* = p (g— — l).

ds
j PO po(S — §) and j""‘y“ s _ peXS’ — S). The formula for converting

’



STRESSES IN BEAMS OF LARGE CURVATURE 401

These are the general formule which we shall use in the further
development of the theory.

287. Pure Bending.—When the bar is subjected to terminal couples
only we must have

P=0.
Then dividing (4) by p, and adding the result to (3) we get
M
eo == ETP".
Then, from (4), (— — )( T SP0> T

This _—_____
gives P po AWM + Ep,S)

Substituting for e, and 1/p — 1/p, in (1) we get
¢ — M 14 1 Yo Pos)

ESPo\ po+ ¥ A2
Hence the tensile stress is given by
M Yo Po*
= (14 B I (]
Spo\  po+Yo h? ®
M being the bending moment tending to increase the curvature.

288. Formule for h?—In the case of a rectangular section of
radial depth D, and thickness B at right angles to the plane of bending,
we have

D

1 (2 PoyaBd?/o Pos 2p, + D

Bt = £o —p? . . (6

BDjD Ty, D%, —D M ()
EP y P

For a circular cross section of diameter D,

D _—
aD% . _ r‘ 200>V D3 /4 —y 2 dy,
4 _;_) Po + Yo
which gives
ht = 1 . .
16( +*<2 ) +68 2p ) t @
For the trapezium shown in Fig. 331,
|-—cz 5!
f £ iPa

Fm 331,

h? = p, [ 1 +P°{<d. +—c +Po]) lo&Po + cl —(d— dz)}}

1+I
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For any other section,

Bt — j potie?.dS _ l <1 >_1 .d8
Po +yo NI
—_—T; [{1 —~?—|— %‘3) — . }yozdS
v 0 0

=k — o {was s fuas + ®)
poS

and the values of the integrals can be found graphically ; k is the radius
of gyration of the cross section about the transverse axis through its
centroid.

289. Deformation of the Central Axis.—In certain cases we
require to estimate the change in the length of a chord of the central
axis. In Fig. 332 let D,A.E, be a
portion of the central axis before
strain, and let 4,8, be an element of
this line of length ds,, We wish to
examine the shift of E, relative to D,
on account of the strains,

Suppose the part D,4, of the axis
to be unstrained, and that the element

Fro. 332. AoB, is strained to 4B, carrying B,E,

with it to BE, but the axis between B

and ¥ undergoing no strain. Let ¢, be the linear strain of the element

AB,, so that the length of 4,B is (1 4 eg)ds,. Let dp be the angle
between the tangents at 4, and B, as shown. Then

b — 80 — 50, — (LT 9% _ dso

p Po
which can be arranged thus

bp = (+%&(———)+ Bes
Hence
@ = — —— — e—o
ds, 1+ e) r P
d(p M eo .
or s, TSR + from (4 . . . . (vi

Now draw EK parallel to DOEO, a,nd E K perpendicular to D,E,,.
Then, as in § 203, p. 273, the displacement of E, in the direction E,D,,
on account of the flexure of A4,B, is

KE = 20,
where z = A H, perpendicular to D,E,. Hence the total shift of K,
in the direction E,D,, on account of the flexure of the axis is

E, T e
jpoz . d{p - j‘D.<EShz +;’ sto:
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from (vi). In addition to this there is the displacement of E, which

arises from the linear strain e¢,. In the direction Dy, it amounts to
5,

[ eo8in 8 . ds,

Jp,
where 0 is the angle between D&, and the normal at 4, Hence the
total displacement of E, in the direction E,D,, is u, where

E(/ M e .
u = L).{<W+;‘: z—-eosmﬂ}dso N ()]

Similarly we can show that the total displacement of &, in the direc-
tion E.K, is v where

B(r M €o
v = jp.{<fé%—2+—o z—{—eocosﬁ}dso ... (10)

in which x = E H.
290. Application to Hooks.—Consider the hook shown in Fig. 333
loaded with a weight W  Let EF be the principal section of the hook,

Fia. 333. Fiq. 334.

i.e. the normal cross section through the point on the central axis which
is farthest from the line of action of W. Then the action on the section
EF consists of a bending moment — Wa, and a tension W. We can
apply the formula (5), p. 401, to find the stress due to the bending moment,
and add to the result the stress due to the direct pull W,

If @ be the centroid of the section EF, let GE = y,, and GF =y, ;
let p, and p; be the corresponding tensile stresses. Then *

* The formul® given by Andrews and Pearson are

W "l+1
= m bt
I SPo'Y:{( ) 7‘} "

m+1 m-
W Wa ( y ( y)’ m
and = _ — —J2 m — where v, = = 1 Je) L™ 48
nd p, = £ +Spm{ 1 Po) n}, T SI + b

P1

1
and vy = — % j(l + %‘.’) ™ dS, ve =71 — Vs :7' being Poisson’s ratio.
0.
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— Wa Y1
= 14+ 2 ) + 5 = tensile stress at B 11)
P Spo ( po + yl A (
— Wa, Yy
Py = (1 " h2> + —- = tensile stress at F (12)
— J2

where p, is the radius of curvature of the central axis at G.

We shall now compare the values of the stresses given by these
formulse with those found by other formulee. Now for purposes of
comparison we shall take the case when the cross section of the hook
is uniform, and the central axis a circular arc, over, say, the range AB
to CD. Then it is clear that the stresses on the section EF of the hook
(Fig. 333) will not differ appreciably from the stresses over the section
EF of the semi-circular beam in Fig. 334, if the mean radius and cross
section be the same for both. If, as a special case, the section of the
hook be a rectangle whose width perpendicular to the plane of bending
is small compared with E'F, the stresses in the case of Fig. 334 are accur-
ately given by the formulx (14), p. 433. It is for this reason that we
take this special case for purposes of comparison.

We shall first take the case when r, = 2r,, so that the mean radius
is py = 1-5r; and the depth of the section is D =r,.

We have, from (6), p. 401,

B — (l-5r1)3 log 3r,+n,

¢ 8r, — 1,

— (1'5ry)?

<_ log, 2 — 2-25) = 008972

3/1=?/a=§—0571

a = p, = 1'5r;.
Then from (11) and (12) we have

W W.15r, 0- 5r, 2-257,2 W
= = — 632
=3 S.l-5r1< + 0089r1> 25

W W.1lbn 0-57'1 2-25r,2 w

— 1— . = 12-63—.

=g T w1 5r1< rl 0-089r,2> 33

If we calculate the stresses by the simple bending formule we get

W 12Way, W(l 12 X 151, X O~5rl> _ 8W

hEFT I DT F s
_ W, 12Way, . W
nes v

If we apply the Andrews-Pearson formule (see footnote, p. 403),
we find, taking m = 10/3,
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1 1‘,1; __mp, 2p, 117» 2po ?17»
= S’ I—-(l By, = T[<2Po - D) <2Po + D) ]
= 1-0605
Ys= — 3 j. (1 mdyo
2P0 + D 2Po
“m— I)D[( 2p, ( 200 ) ] = 10075
s = 0-0630
Then
W W (410 _ W
P=§ 505308 {(5) - 1'0605} =62y
W, W (218 W
=3 +0-0530,s{(§) - 1'0605} = 1295

Finally let us apply what we know to give the correct values of the
stresses, namely (14) on p. 433. The stresses p, and p, are found by
putting r = r, and r, respectively in the formula for p,:

— 6r, +5’1 +&: - -
= n__8n = = —644_
6r\2log,2 —3r,® B S
5 4r4
— 3+ rl+rrls w 4
= 1 =12-88—,
2= 5 flog,2 —3r,® B 3

If we repeat the calculations for the case when r, = 7r, we obtain
the following results :

Formule (11) and (12) pr=—1 43%, Py = 107—;.
. . w W
Simple bending formule p, = — 3-00—.§, P = 53
|14 w
Andrews-Pearson formule p, = — 1'287g' )y Ps= 11-479.
A 14 : w
Correct formule (p. 433) p, = — 1.67 5= 11-65—5.

On studying these results it will be seen that to apply the ordinary
formulz for straight beams will lead to very serious errors ; the Andrews-
Pearson formule do not give any better results than the Winkler
formule. It does not appear to the present author that the extra
complexity of the Andrews-Wilson formule is justified by the results,
particularly as its basis is no better than that of Winkler. In an article
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in Engineering (September 11 and 25, 1914), Prof. Morley, examining
experimental results, comes to the conclusion that on the whole the
Andrews-Pearson formule do not give such good results as Winkler’s.
Furthermore the determination of y, and y, must be done with great
accuracy in order to get an approximately correct value for their differ-
ence y,. We shall therefore develop the rest of investigation on the
lines of Winkler’s work. When the curve of the central axis is nearly
semi-circular, and the section approximates to a thin rectangle, we
can check our calculations by formule (14) on p. 433. TUnfortun-
ately these formule will not help us very much when the section
is not approximately rectangular and the central axis not approximately
a semi-circle. In certain cases something might be effected by dividing
the beam into lamina parallel to the planes of bending, applying these
formule to each lamina, and integrating to find the total moment of
resistance. But the process will be very laborious and it is doubtful if

the results would justify the work.

291. Chain Ring.—We shall
now consider the case of a circular
ring subjected to pulls W applied
at opposite ends of a diameter
(Fig. 335).

Let @ = the mean radius of the
ring, that is, the radius of the line
of centroids of the cross sections.

Let M, = the bending moment,
or stress couple, at the ends of a
diameter perpendicular to the line
of action of the load.

Consider a portion of the ring
ACDB; let M be the bending
moment and P the normal force
on the section AB. Then we have

po = @, and
P=%’cose S 1)
M=M,+ %“.(1 —cosf) . . . . (i)
Hence, from (3) and (4), p. 400, we have
EeS — E(1 + e.,)(% - %)‘%f - —g,cos 0 . . . (i)

E(Q1 + eo)(l —~ l)g;,zzﬂ(l — 008 8) + M, (iv)
P a 2
Dividing (iv) by a and adding to (iii) we get
W M,
E'eoS-—--E—I—;—. B 4]
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which shows that e, is constant. Then, multiplying (iv) by adf and
integrating over a quadrant of the ring gives

E(1 + e)Sh? [ <_ — —>ad0 _Wa j;(l — cos B)adf) + ﬁM.ﬂdO.
1] ]

Now jTM is the angle between the normals to the strained
0 P

central axis at F and F, which is % Hence the last equation becomes

SESK — ESW(L + e) 7 — Walfm _ 1) 4 M

2 \2 2
whence, using the value of ¢, given by (v),
Wa,2 a?
M,=22 ?z'a——”—h’_1> C e . (1)

Substituting for M, from (13), (ii) gives

Wa/2 al
M= coso) .. (14

The maximum value of the bending moment occurs at the points

of loading, where 6 = g and — —725, and we have

Wa a?
Moee =2 g 1)
Then from (v) we have
2
a /4 (16)

b= + A2 xES
To calculate the stresses we must find e. From (iv) we get
Wa al?
EQ1 — —Z\spr=10(2 2
(1 +e0) (p )Sh 2 (n a? + h? cosO)
Then (1) on p. 400 gives
¢ — a’.W_*_Wa,/E. a? )ay.,
a® + k2 mES ' 2ESk*\m "a® + A2
The normal stress at any point is p = Ke, therefore
Wil a? a2 /2 a? Yo
= —_— (= — T S § §
p S{a a"+h’+2h”(n a? + h? coso)a-{-yo} (17

At F, on the line of action of W, 6 = %, and

_ W/ a a® a? Yo
p—n—S(a’+h’+h—"a’+h"a+yo)

W 2 ad
n—S'a’:— ( +7fi a-.?yo)
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The maximum stresses on this section are

2 2
') v —?——-(1 +& 90 ), at the outside

7S "a? + A2 k% a+y, (18)
w a? a? gy, ..
=2 Y -2, , at th de .
Pa s a? —{—h”( ht a — y,) ¥ ¢ mside
For the section CD we have 8 = 0 and
Wil a? at 2 a? ¥
iy i —— —1 .
P S {n a2+h2+2h’(n a? 4 h? )a +y1} (19)

Wil a? a? /2 a? Ya

pz_?{;'az-l—kz—m(;'a"—i—h’ l)a——y,} )

Which of these four stresses is numencally the greatest depends on

the relative size of the mean radius of the ring and the dimensions of
the cross section.

292. Ring with Stud.—Suppose now that the ring has a stud as

shown in Fig. 336. Let R denote the

w thrust in the stud.
We have seen above that the

,4 strain of the central axis, on account
£ of the load W, is independent of 6,
7 a0 and we deduce from (16) on p. 407
. I 3 that in this case we shall have
= L __a W+R %
T et R RES (20)
The bending moment due to R
can be deduced from (14), p. 407, by
w writing B for W and % — 0 for 6,
Fie. 336. thus

Wa a? Ras2 a? .

M= ?(;.m—cose) +—2—(;.m—sm0) (21)

Hence the stresses can be determined when we have found R, which
is achieved by considering the contraction of the stud.

From (9), p. 403, we see that the contraction of the diameter of the
ring, in the direction of R, is given by

u—2j" {( d +e°)asm0—eosm0}ad0

ESR
. 2 ((W+R)ad a? .
_2jo{ e - oyt 6 2ESha(Wcoso+Rsm0)sm0} o

whence
__2Wa a’( 1 a?

2 . 2Ra a*(l a? n)

E'a=+h'_2)+TS'ﬁ % at+ht 8/
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! , Where [ is the length, S, the area of the
1™~
cross section, and E, is Young’s Modulus for the stud. We can write

this

But we also have u =

ES
= A, == e e e (22
AES where A TS, (22)
Equating the two values of u, we get
at/ at n
= — =W
h’(a’ + A2 4)
R=n ll+a’ @ =nW, say . . . (23)
2 h’( a® + h"‘)

Inserting this value of R in the expressions for ¢, and M, we get
for the stress

.4 n+1 at a? [n+41 a? _ . Yo
E —§ m‘*’lﬁ { T . m '}(008 0+n sin 0) }m]
(24)

This will be & maximum when
cos 8 +nsinh =0

or tan § = — l
n
Let n = tan a, then
cos O +nsin0=w,
cos a

Now n is positive, therefore a will be in the first quadrant, and there-
fore cos (6 — a) must be positive. Therefore, for the stress to be a
maximum, 6 — a must be numerically as large as possible. Hence if

a<g the condition for a maximum is § = g, and if a>Z-, the con-
dition is § = 0.
If0=72—twe find
Win +1 a? a?  y, at  ny,
=—| —— —— (1 4+ .2 ) (25
P S[ 4 az-l—h’( +h2 a+yo) 2h2 a+yo:| (25)

The treatment of elliptical links will be found in Todhunter and
Pearson’s History, Vol. 2, Pt. 1, p. 439.

D2
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EXAMPLES XXV

1. In the case of an oval link with straight sides
and semi-circular ends, as shown in Fig. 337, show
that in the semi-circular parts the bending moment
is given by

M = -v?(n — cos 8),
whilst in the straight part it is given by Ezll(ﬂ — 1)
where
@ —b) +b

t

T p— h?
e =0+ (1 +5)

h referring to the circular part of the link, and k&
Fia. 337. being the radius of gyration of the cross section.
(K. Pearson.)

2. A curved beam, whose central line is a circular arc of radius 67, is
formed of a tube of radius 2” outside, and thickness }”, determine the greatest
tension and compression stresses set up by a bending moment of 10 tons. ins.
tending to increase the curvature. (Mech. Sc. Trip., 1922, B.)

3. The bracket shown in Fig. 338 is used to support an under-running
rail for an electric railway, and is subject to an upward thrust in the centre
line of the section of the rail. If the middle portion of the bracket is a T,
of dimensions 2}" x 24" X }”, bent to a circle about O as centre, find the
greatest values of the tensile and compressive stresses when the upward
thrust is 1,000 lbs. (Mech. Se. Trip., B, 1914.)

Fia. 338. Fig. 339.

4. A ring of mean diameter 4” is made of round steel 1” diameter. It
i subjected to four equal pulls in two directions at right angles and passing
through the centre. Determine the maximum value of the pulls if the
Ilrsai)gix)nmn tensile stress is not to exceed 5 tons/in.2 (Mech. Se. Trip., B,

5. Calculate the greatest tensile and compressive stresses in the hook
shown in Fig. 339. (Mech. Se. Trip., B, 1911.)



CHAPTER XXVI
GENERAL ANALYSIS OF STRESS AND STRAIN

293. Need for General Analytical Methods.—Many problems in
stress calculation require for their solution a method of treatment differing
from any of those employed in our previous chapters. Examples of such
problems are afforded by thick tubes subjected to internal or external
pressure, rotating discs, the flexure of flat plates, the more exact calcula-
tion of bending stresses which is desirable in a few particular cases, the
torsion of shafts of non-circular cross section, etc., etc. In general, the
method consists in considering the equilibrium and deformation of an
element of the body and so forming differential equations, the solution
of which enables us to calculate the stresses and strains at any point
in the body. To this end we shall occupy ourselves first with establishing
certain general equations to which we shall afterwards make frequent
reference.

StrESsES 1IN THREE DIMENSIONS

294, Stress Components.—If we know the forces which act on
any three planes in three different directions, per
unit area, we can find the force per unit area on c
any fourth plane. For, consider any tetrahedron
OABC (Fig. 340), and suppose the edges 04, OB,
OC are mutually perpendicular, and that we know
the forces on the faces OAB, OBC, OCA. Letl,
m, n be the direction eosines of the resultant A
force P on the face ABC, referred to OA, OB, B
OC as axes. Then for the equilibrium of the Fre. 340.
matter within the tetrahedron we must have

I[P + the sum of the resolved parts, in direction 04, of the known
forces on the other three faces, =0,

and two similar equations. We also have the equation 12 + m2 4 2% = 1.
Thus there are four equations to find the four unknown quantities
I, m, n, P. The edges OA, OB, OC have been taken as perpendicular
to each other for convenience of expression, but the proposition would
be equally true whatever the relative inclinations of the three planes
for which we know the forces.

411
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Now, to specify completely the resultant force on any one plane we
must, know its components in three directions, so that if we are to be
able to find the force across any arbitrary plane it would appear that
we must know altogether nine components. This, however, is not true,
for consider the equilibrium of a small rectangular block of matter, the
lenéth of its sides being dz, dy, dz.

Let p,, p,, p, be the normal stresses on the faces of the block 04 BC....
in the directions Oz, Oy, O:=.

Let ¢, and g,, be the tangential components of the resultant stress on

P
=T T

—>Px

F1a. 341. Fia. 342.

the face z = constant, i.e. the shear stresses. Similarly, let ¢,, and ¢,,
be the shear stresses on a face x = constant ; p,, and ¢, the shear stresses
on the faces y = constant.

The directions of these are shown in the diagrams (Figs. 341 and 342).
With regard to the notation adopted for shear stresses it will be noticed
that the second letter of the suffix denotes which plane the stress is
acting on, whilst the first letter of the suffix shows the axis to which the
direction of the stress is parallel ; thus the suffix xy denotes that the
stress is in a plane y = constant and parallel to the axis of .

Fig. 342 is a view of the block looking along the axis of y. Evidently,
for equilibrium, the couple formed by g,, acting on the upper and lower
faces must be equal and opposite to the couple formed by g,, acting on
the right and left faces. Therefore, we must have g¢,dx.dy X 2
= q,, X0y .0z X 6z, and therefore g, = ¢,,. Similarly, ¢, = ¢, and
9, = q,,» Thus the nine stress components are reduced to six: p,,
pf/’ Dy Qo Ty /o

295. Stress Equations of Equilibrium.—Let the stress com-
ponents, referred to a system of rectangular axes, be specified as in § 294,
and consider the equilibrium of a small rectangular block whose edges
are parallel to the three co-ordinate axes. Let the lengths of the edges
be dx, dy, oz, as in Fig. 343, and suppose the element to be acted on by
body forces X, Y, Z,* per unit volume in the positive directions of the
axes.

* These forces may be gravitational, or due to rotation, magnetic attraction,
etc., and do not refer to forces applied to the boundary of the body.
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I p, be the normal stress on the plane OBDC, the rate of increase

of p, in direction = will be 381; 2 the sign of partial differentiation being

used since p,, and all the stresses, will in general be functions of z, y and 2.

Then the normal stress on the plane AEHF willbe p, + %i‘-‘éx. Similarly,

if g, is the shear stress on the plane O4AEC in the direction of the axis

Fia., 343,
of z, the shear stress on the plane BDHF is ¢, + %”éy. The shear

stresses on the planes OAFB and CEHD, parallel to Ox, are ¢, and

4., + ggf&z. The directions of all these stresses are shown in Fig. 343, the

stresses parallel to the other axes being omitted for the sake of clearness.
The total stress acting on the area OCDB in the direction of the axis
of z is p, . 6ydz ; the total stress on the area CEHD parallel to the same

axis is ( s T %&z)&x&y, and so on. Taking all the forces acting in

this direction we see that for equilibrium we must have

(Pz + aﬁ” 6x)6yéz — p, . Oyoz +(qm + gg—;"éy)éxéz

ox
— g 070+ (00 + aaq—”éz)éxéy + Xozdydz =0
or Z€3+aqﬂ+aqn+x 0

In the same way, resolving parallel to the axes Oy and O, we obtain
two more equations of equilibrium. Remembering (§ 204) that g,, = ¢,,,
9y = ¢y and ¢, = g,,, We obtain:

= ' oy
0wy _, 0Dy aqu —_ e e 1
a__|_..a."7.}-_.+1’—0 (1)

M , 0% ap. _
e + 241 Z=0
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296. Plane Stress with No Body Forces : Cartesian Co-ordi-
nates.—When the body is acted on only by forces applied to its boundary,
the quantities X, Y, Z are zero. If the applied forces are such that the
stresses are all parallel to one plane, say the zy plane, p,, ¢,., and ¢,
being zero, the equations of equilibrium become

/P B
or oy _ 2)
0q , Op, _ '
B

where ¢ is written for g, being the only shear stress. It is easily verified
that the stresses can now be expressed in terms of a single function V of
x and y:

_ ¥V p _efv. %Y 3)

oy Py S—x—i’q xdy .
for these values of p,, p, and ¢ satisfy the equations (2) identically. The
function V * is called the ‘‘ stress function.”

297, Plane Stress with No Body Forces : Polar Co-ordinates.—
The above equations can readily be transformed to polar co-ordinates
(r, 6) by the usual formul® of transformation, but it will be more instruc-
tive to discover the equations independently.

3
5
>

Px

Fic. 344.

In Fig. 344 let O be the origin of the polar co-ordinates, and consider
an element of the material bounded by two radii separated by an angle
80, and two arcs of radius r and r + ér with O as centre. This element
is shown shaded.

Let p, = the radial stress across the inner arc, so that p_ 4 %%6;«
is the radial stress across the outer arc.

Let py and py + %’360 be the normal (“ hoop ) stresses across the
radial boundaries of the element.

* YV possesses the property that if the curves ';_I.I = const. and g_V = const. be
z y "

drawn for a series of values of the constants separated by equal intervals, the stresses
at any point, across planes parallel to (xz) and (yz), are directed along the tangents
to these durves respectively at the point in question. (J. N. Michell, London Math.
Soc. Proc., Vol. 32 (1901).
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Let the shear stresses be as shown.

Let the material be of unit thickness perpendicular to the plane of
the paper, and consider the equilibrium of the element. Resolving along
the middle radius we have :

op, _ (01 %se\s, ] %6
(2r + Zeor)(r + 81160 — p, . r86 +[(q + 5206)0r — gor |cos

ops og . 66
— e . = =0
I:p,,ér +(p, + %6 60)6r +(q + E<5r)(r + 68r)d6 + ¢ réﬂ] sin 3
This reduces to
op, , 19¢ py _
oA -
on rejecting small quantities of the second order.
Similarly, resolving at right angles to the middle radius, we find

opy . 86 oq
[(pﬂ + %60)67* poér]cos 5 T (q + Eér)(r + 6r)80

oq . 00
—q.rd0 +[(q + 8—060)& + q&r:lsm 7 = 0,

which reduces to
%9 + 1 op, + 2 _

or r o6 r
Thus the stress equations in polar co-ordinates are
o, 102 po_
or rod r (4)
og  10p, , 2¢ _
#trag T30

It can easily be verified that p,, p, and ¢ can be expressed in terms
of a stress function ¥V by the equations *

1 o*v+1av
Pe= 0 Trar
22V
po—ﬁ ce e ... (B)

1= -5 5)
where V is a function of r and 6, for on substituting these values in (4)
the equations are satisfied.
298. Displacements in Cartesian Co-ordinates.—Let us consider
a two-dimensional system of strain, and let the positions of all points
in the body be referred to fixed rectangular axes Ox, Oy (Fig. 345).
Let (x, y) be the co-ordinates of a particle 4 in the body before strain,

* J. H. Michell, London Math. Soc. Proc., Vol. 31 (1899).
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and (z + u, y -+ v) the co-ordinates of the same particle after strain
when it has moved to A’. Then u» and v are the displacements of 4
in the directions of the axes of x and y. In general » and » will be
functions of x and y.

Let B be another point in the unstrained body, its co-ordinates before

y
Cl
c
: dv
il 2 Pt omt
A,‘w‘i B 4

0 . x
Fra. 345.

al RN
4—.z'—~4——-—| 82 !hﬂ%&x

strain being (x + 8z, y) ; then after strain it will be at B’, its co-ordinates
being

(x +dx +u +%x; y+v+§26x)
ox oz
g—z and g—:; being the rates at which % and v increase in the direction z.

Then, to the first order of small quantities, the length of A'B’ is

ox + %x
ox

so that the increase of length is g_uéz
z

Hence, if e, represents the strain in the direction x, we have

. — ou
£ 5;
Similarly, the strain in the direction y is
. = o
v 53'/
Again, from the figure, we see that the slope of A’B’ is
ov ov
M ® &
AM e P 14 2
oz oz
ov ouy 1
= (14 =
ax( + ax)
ov

5&"’



GENERAL ANALYSIS OF STRESS AND STRAIN 417

to the first order of small quantities. Thus, the change in direction of

AB is g_'v Similarly the change in direction of an elementary length AC,
z

originally parallel to Oy, is %;—; Hence, the shear strain, that is the change

in the angle CAB is %;—:—I— 2—:_
Thus the components of strain are given in terms of the displacements
u and v by the equations

_ou, e =bv. e _du dv 6
*Tax' Y ¥y’ Y ooy &x )
Similarly, if e,, €, €,, €., €, ¢, denote the components of strain in
a three-dimensional system, we can show that
ow ov ow ow  Ou
e‘_a‘y ey;_a—'—@: eu_5;+a—z . . . (7)

where w is the displacement of the point (z, y, 2) in the direction z. We
leave the deduction of these equations as an exercise for the student.

299, Relations between the Strain Components.—The above
expressions for the strains, in terms of the displacements, show that the
former are not all independent ; eliminating 4 and v from the three
equations (6) will give a relation which must hold between the strains
in a two-dimensional system. Differentiating the first of (6) twice with
respect to y we have

o%, _  Pu
oyt Ox.oy*
Similarly the second gives
0%, 0%
0 0x%. 0y
Adding these together we have
0%, , O%, u o%

oy2 ' Ozt =8x.6y’+8x’.3y

0% /0 0
= T‘a;(a—z +5)

That is
O, | O, _ ey
oy* o0x? Ox.oy
This is usually called the equation of compatibility.
300. Relations Between the Stresses and Displacements in a
Two-Dimensional Stress System,—If the only stresses in the material

(8)
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be p,, p, and g, the ordinary stress-strain relations (p. 27) give, from

(16), §29,
oxr * E mE =~ (9)
0 g Py P
oy ' E mE
Solving these equations for p, and p, we get
m?E <bu 1 bv)

Px= mT_1\6x ' mbdy
_ mZE v 1 du J (10)
py_m”—l(z;' mbx) I
Also we have
ou  ov
qg=_Ce,= 0(5& +§})
or mE /dou ov
= (—~ 4= P |
q 2(m+1)( +z>x> (1)

301. Equations for Finding the Displacements in a Two-
Dimensional Stress System.—Substituting the above values of p,
and ¢ in the first of the equilibrium equations (2) we have

:E 90 0 E 0 /0 0
m2E (u 1 v) 2’(‘,%_'__1)@<£+5£)=

m? —10z\0x ' m dy
or
m (0 1 ow 82u o%
m—l(_a_;2-+m Bxay)—i_%( 8x8y>

Similarly, from the second equilibrium equation we get
m (0% | 1 0% 0% 0%
_ (4= =0
m — l(ay2 m ox . 8y)+ %<ax“ ox . 6y>
These two equations may be rearranged thus :

0 /0 0 0 /0 0
T aE e ~ralE a0

d0u oy B0 duwy I
1 alE e P iaE )0

(12)

The quantities (Z—: +?)) and %(g—z — %3) are known as the “* dilata-
Y

tion ”” and “ rotation ”’ respectively, and are usually denoted by A and
w, so that

ou Ov
A—gi-f-a;
2%:30 ou

% oy
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The equations may then be written
m  0A oW _ 0
m—1"0% 0oy l
m  0A

m—1" 0y

?'_7’='0). (13)

ox

Differentiating the first of these with respect to  and the second with
respect to 'y, and adding the results we get, after dividing by m/(m — 1),

+

02A | 0%A

7 oy 0
or

VEA=0 . . . . . . . . (14
h 2 gtands for th to: o or
where V2 stands for the opera rw—l—a’;’.

Again, using the values of ou and 8% given by (9), we have

0x 0
m—1
A - TE_(pz +py)'

If p, and p, are given by a stress function V, as in § 296, we get
m— 1,02V | 0
A= G T o)
Hence, from (14) we have

V’(ﬂ" + azv) =0

oy: | ox?
o2 92\ 2
or (Gt o) " =0
which may be abbreviated to
viv=0 . . . . . . . . (18)

The problem of finding the stress distribution in a two-dimensional
system of stress reduces to finding a solution of this equation, which is
such that the conditions obtaining at the boundary of the material are
satisfied.

It should be noted that the elastic constants do not enter into the
equation for V, so that the type of internal strain under given boundary
conditions does not depend on the particular material used, provided
it obeys Hooke’s Law and is isotropic. We shall illustrate the method
of solving particular problems presently.

302. Two-Dimensional Strain System.—We have considered
above the case when the stresses all act parallel to the zy plane ; in general
this will imply strain in three dimensions. For example, a flat plate,
acted on by tensions applied to its boundary, parallel to its central plane,
and uniformly distributed over the thickness of the plate, will contract
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in directions perpendicular to the plate. To prevent this contraction
we should have to apply equal and opposite tensions to the two surfaces
of the plate. We should then have a three-dimensional stress system
producing a two-dimensional state of strain. In general, if the strain
system is in two dimensions the stress system must be three-dimensional,
and conversely. An example of an exception to this is the torsion of a
circular shaft.

Let the strains be entirely parallel to the zy plane. Then we have

(p. 28) (. = _gg _ IE_( P ;nHD.)
i

Solving these simultaneous equations for p,, p,, p, we get

mE ou , v
’”z“m){"”‘”s”“a‘a}'

mE 3u
p”z(m—Z)(m—l—l){( ’a ax} Cofe - (18
mE ou Ov
p‘_(m—2)(m+1)(a_x+§“y)'
and, as before,
mE (Ou  Ov
qﬂzz__(m+1)(é§+55) Nt 1))

The strains e, and e, are zero, so that ¢, and g, are zero also;
w is zero, whilst « and v are functions of x and y only. The equations

of equilibrium are

—. = H

. Op,
F) —a-;-—'Oo

Substitutmg for p,, p, and ¢, in the first two of these we get, after
a little rearrangement,

it N R T T (L BT

m—2 0x\ox Oy "oy\ox Oy

and . . (18)
m—1 0 + 0/0v Ou
m— 2 ay(ax )+ i 6x(8x 63/) 0.

Comparing these with equations (12) it is easy to see that we shall
have, in this case also,
ViV =0.

303. Transformation to Polar Co-ordinates.—In many problems



GENERAL ANALYSIS OF STRESS AND STRAIN 421

it is more convenient to work with polar co-ordinates, and in these cases
we require the equation corresponding with V4V = 0.
Write x = 7 cos §, and y = r sin 6.

Then
ov _ oV _83 ?_K@_y
or oz ‘or oy or
ov . ov
—-coso.é;-{—sma.g

and

oW _ov o oV o
9 ox 00 ' 9y 90
ov av

=-—sm0.a—z-+cosa.5—y—. coe . ()
ov

Solving (i) and (ii) as simultaneous equations for g—x-V and E gives

ov oV 1 ov

=co8 .- —=s8inf.

ox or r 26

ov . or 1 ov

g—smﬂ.gr— +;0088'W
or, in general,

_3_ 0 1 in 0

oz ‘or r "6

0 . 0 1 0

oy ‘or ' r o6
Then

o3V 0,0V 0 1 . 0 ov 1, v
E—’;;=5:;:(5:-”-)=(cos0.5'—7smt9.a—0)(cosﬂ.-z-’7—-7sm0.a—0-)

=cos’0.(?;%’ +lzcosﬂsin0.a—v+l-sin’0§—v:

r 00 r or
oV 1 . a0V 1 ., 0%
ar—.-ae-}—ﬁcosﬂsm08—0+r—asm 60—

06%
#*V 1., 0V
mor T O

sin20 oV sin20 0%V

—%sin()cose

ﬂ:coszo__az_v

1 .,
ox? or? +r’sm o

Similarly,
2
oV _ sin2 0

oy

82V+}-cos”0 aﬁV—i—-l-cos’O.aa—I:

"ot 2 90T T r

sin20.8_V+sin20. oV

50 r or o0 - (i)
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Adding together (iii) and (iv) we get

o 1 02V 109V

T aeeE T

Hence the equation V*V = 0 becomes

02 1 o2 1 0\2
<§ﬁ+ﬁ'w+757>v_0 S .19

vy =

EXAMPLES XXVI

1. Prove that, with cylindrical co-ordinates (r, 8, z) the stress equations
of equilibrium when there are no body forces, are:

6}7' 3qm 0 Qrz pr Pe

1
o T 0 T r
oqre 10ps Ogee  2¢ro
or + r o6 oz + r

or T 30 0z r

2. Prove that in question 1 the strains are given by

=0

=90

= 0.

Lo low,w o
k=G =7 Tty eTg
1 _Bﬁ. 3uo au' auz

=Tt R " a o

auo U9 1 our

o TT

where u,, ug, 4. are the displacements of the point (r, 6, 2) in the directions
r, 0, z respectively.

€rg =

3. The dilatation A being defined as the increment of volume per unit

volume, show that in a three-dimensional strain system
3u v ow
A= + o9 + 2 in Cartesian co-ordinates.

1 8 1 6uo oUs
A= lrw) + =25 + 5 in eylindrical co-ordinates.

4. Show that, for small displacements, the extension of an element in
the direction (I, m, n) is

ed? 4+ e.m? + et + eyr.mn + exnl + exlm.
ot 1 o2 1o
or? + 3 W_*- r or
ciples, assuming the relations between the stresses and ¥V given in § 297.

5. Establish the equation ( ) V = 0, from first prin-



CHAPTER XXVII
SOME PROBLEMS IN TWO DIMENSIONS

304. Some Particular Solutions of the General Equation.—We
shall now illustrate the application of the above principles by applying
them to the solution of certain problems of practical interest. For the
most part the method is indirect : we cannot usually start with the data
of a particular problem and work towards an answer, but we can guess
solutions to the equation y*V = 0 and see what problem that solution
solves. In some cases the data of the problem suggest the form of
solution to take. The solutions of this equation can be made to throw
considerable light on several practical problems which at present have
not yielded to complete mathematical analysis, and the subject has been
extensively developed lately by C. E. Inglis.* The results of his
investigations are of great importance, so that we shall include most of
them here. We shall, however, begin with a few simple solutions.

(i) V=Ax + By

2 2 2
satisfies V4V =0, but 07, 2V oy

and

5 gt 520y all vanish so that all the

stresses are zero.

(ii) ¥ = Ax? + By®* 4 Cxy

also satisfies the equation, A, B and C being constants. We have
oV oV oV
Pz—@‘{—ﬂg’ p,—ax—2—2A, g= i C.

Thus, this solution corresponds with normal stresses, parallel to the
axes of # and y, which are constant everywhere, together with a shear
stress which is also constant. Hence, if we take C =0, 4 =0, and
B = }P,, we shall have p, = Py, p, = ¢ = 0, i.e. the case of pure tension
parallel to the axis of x.

Similarly, V = — g.zy gives the case of a plate subjected to constant
shearing stresses ¢ parallel to its edges.

V = }P.x? gives pure tension parallel to the axis of y:p, = P,,
while p, = ¢ = 0.

(iii) V = A4y?
is a solution of the equation V4V = 0. This gives
oV
p,=—a—y7=6Ay; py=0; ¢=0.

* Inst, Naval Architects, 1922, also Engineering, Vol. 95, p. 415.
423
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Hence we have a tensile stress parallel to the axis of z, proportional to
the distance from that axis.

Consider a plate of thickness b, and bounded by the lines y = 4 d/2,
as in Fig. 346, and the lines x =0, z = 1.

v

o~

pe—d

Fro. 346.

On any section parallel to Oy the stress at any point will consist of
a tensile stress p, = 64y only.
The resultant stress across the section is

a a
r b.dyp,—= r 6A4by.dy = 0.
d
8 _

(SN

The resultant stress couple is
d d

r bdy.p,.y = 64 jz dby’.aly = 641,

LY

where I denotes the moment of inertia of the cross section about an axis
through its centre perpendicular to the xy plane.

If we take 4 = g—f, the resultant couple will be M, and we have

Py = 64y = My/I. This is the case of simple bending in the plane xy,
due to forces distributed over the ends # = 0 and z == [ in accordance
with the law p,ocy. Similarly, the solution ¥V = 4’23 will correspond
with pure bending due to forces distributed in a similar way along the
edges parallel to the axis of =.

(iv) Another solution is

V = 4xy?
where 4 is a constant. This gives
oV o
= _. . =64 . =0: = - = — 3A4y>2
Pa P Y ; Dy y 4 S0y Y

Hence for points on the line = const., p, varies as y, as in case (iii)
above, so that the resultant action due to p, over the section of a plate

whose edges are given by y = - g, will be a couple 6421 in the above

notation, i.e. a couple proportional to the distance of the line from the
axis of y.
Simultaneously, there will be a shear stress ¢ = — 34y2.
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The total action due to this, on the section of a plate of width d as

above, is
d

5 3
— r d3Ay2 Lbdy = — égd— == constant.

2
Thus all such sections will be subjected to this shearing force.

305. Narrow Cantilever of Rectangular Section with Con-
centrated Load.—The results of cases (ii) and (iv) above suggest that
we can probably find a solution for the case of a cantilever loaded with
a single load at one end. In this case every cross section is acted on
by the same shearing force and by a bending moment proportional to
the distance of the section from the loaded end. In case (ii) when 4
and B are zero, we have a constant shearing stress at all points ; in case (iv)
we have a shearing stress which gives a constant total action over the
cross section of a plate of width d, as in Fig. 346, but the shearing stress
does not vanish at the extremities of this section, as it must in the case
of a beam. Case (iv) also gives a couple acting on every cross section
proportional to the distance from this axis of y, and if we take the origin
at the loaded end of the cantilever this is what is required.

¥
-t I p
i . . -
7.
w
Fia. 347.

Perhaps by a combination of the two solutions we can fit all the
conditions of the problem.

Let I be the free-length of the cantilever, d its depth parallel to the
axis of y, and b its thickness perpendicular to the plane zy, and take
the origin at the middle of the loaded end, as in Fig. 347.

Take V = Axy® + Bay.
Th o
en pz=$2—=6Axy;p,=0
oV
71=—= 8y= — 34y® — B.

The conditions to be satisfied are that the total action on a section
such as PQ should consist of a couple = Wz, and a shearing force = W,

and that the shear stress should vanish when y = 4 g This last
condition requires
a2 3
3AZ —B=0,0orB= —-ZAdz.
Then V = A(zy® — diry).

E2
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The resultant stress across the section PQ is
d d

jzdpz.bdy = 64bx r ydy = 0.
d

The resultant couple is

g a

[2 pbydy = 64z (2 by*dy — 64l
d d

2 2
where [ is the moment of inertia of the section about an axis through its
centre perpendicular to the xy plane. If this is to equal Wz, we must

w
h A= —.
ave 6l Then

V= ¥y — datay)

ond _ Wy W
d ol ' T8I 21(

Thus ¢ vanishes when y = + g, as required (compare p. 202).

The last thing to check is the total shear over the section PQ; it is
d

"2 Wb
qbdy~—21 ( )J-— =W,
'2

which is right. Thus the solutlon

v

, W
V = 2 lay — dday)

Wz w
p,=Ty,q= —-27<y”——

exactly fits the conditions of the problem, provided W is distributed over
the end section according the same law as g, i.e. in a parabolic manner.
This shows that, with this reservation with regard to the distribution
of W, for beams of rectangular section, the solution afforded by the
mmple theory of bending gives the true values of the stresses. Therefore,
in, accordance with the principle of St. Venant, we can conclude that
the stresses so calculated are extremely close approximation to the
truth, for all cross sections except near the ends. We can, however,
show that the assumption made in the simple theory that cross sections
rumnain plane is not true in this case.
From (9), p. 418, we have

ou _p, P, Wxy

(1)
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Integrating these equations gives

Waxy
<57 /W

U == e

()
where f and ¢ are functions to be determined. Now,

mE _ mE Wa? + daf +d<p
1= gm 1) ay ) 2(m + 1) \2E1 2mEI dy " dx
But above we had

_ Wy Wt
=7 %r "ar
Hence we must have
dp _ Wa?
dx  2EI
Wy mE df  Wy*  Wa?
4m + 1) 2m +1) dy oI ' BRI
3
The first of these gives ¢ = — éEiI-—f- vy, Where v, is the value of v
when £ =y = 0. The second gives
mE ﬂ _ 2m+41 Wy*  Wat
m+1 2m +1)" I 41
Hence
mE 2m + 1 Wy3 Wdty
—_— = T tant.
m+1f 6m T I + —= - -+ a constan
or
. _2m+41 m + 1
f= El Wy + Wd’y +uy
where u, is the value of » when x = y = 0.
Thus

Wa? Pty . .@
ORI gl "y T e )

which shows that u is not linear in y as it would be if the cross sections

v Wz=+m+1Wd,> _2m+1

Strained
, Cross section

Unstrained central axis

Str'ained central axis Unstrained

cross section

Fic. 348.

remained plane. The sections are distorted in the manner shown in
Fig. 348.
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306. Narrow Cantilever of Rectangular Section with Uniformly
Distributed Load.*—
Let b = the width of the section, and d the depth (Fig. 349).
» w = the load per unit length, distributed uniformly over the top
surface, so that the pressure per unit area, there, is w/b.

Fra. 349.

As before, take the origin on the centre line of the beam, at the free
end. At any section P, distant z from the end, the shearing force is
proportional to z, the bending moment is proportional to x2, and the
resultant tension is zero.

It is left to the reader to verify that the following is a solution of the

problem.
LR L WL S
V_bds(xy ra 5+10y) SR
giving

P, = o(6a®y — 49° + 3%)

w

pv=m(4y3—3d2y—d3) e N € )
Owx 2_d_2

—®\Y 1

It will be noticed that p, is not linear in y, as the simple theory of
bending assumes, and it can be shown in the manner of § 305 that cross
sections do not remain plane.

307, Solution of ¢4V =0 in Polar Co-ordinates.—It will be
found on substitution that the equation is satisfied by the following

value of V . —
V = (4" + By™t2) cos nb,

where #» may have any positive or negative value, 4; and B, being con-
stants. It will be convenient to establish at once the corresponding
expressions for the stresses.

102V 1 oV
= 3 5gT +;. i (from (5), p. 415)
= —n}d4," "2+ B;r*) cos n6 + {nd,r"~2+ (n + 2)B;r"} cos nb
= — {n(n — 1)A;y" 2+ (n + 1)(n — 2)B,;r"}cos nd.

* Cf. J. H. Michell, Quart. Journal of Math., 1900 ; L. N. G. Filon, Phil. Trans.,
Ser. A., 1903 ; and Proc. R.S., 1904.
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Similarly
Po = {n(n — 1)A,r" "2+ (n + 1)(n + 2)By™} cos nb
g ={n(n — 1)A,r"~24 (n + 1)nByr"} sin n6.
If we write
Amnn—1)=A4 and Bj(n +1) =B
the expressions for the stresses take the more simple forms :

Pr= —{Ar" 24 (n — 2)Br%cosnd . . 2
P = {Ar*-24 (n + 2)Br®}cos n0 R (5)
q={Ar"2{ nBrYsinn® . . . . . .)

Solutions of many interesting problems can be found by giving n
different values.

Another system of stress can be formed by writing cos z0 in place of
sinnf and — sinn0 in place of cosnf. '

In some problems the stresses are seen by inspection to be independent
of 6, and the equation y4V =0 then reduces to

dz .
(W ; dr) V=0 . . . . . (i
which may be written )
PO )
drr ' rdr
d:v  1adv
where ¢=W+;-d7' Coe L (i)

The solution of (ii) is
®=A, + B,log,r,
where 4, and B, are arbitrary constants. Hence (iii) becomes
arv | 14V

LA Tl A | 1
dr2+rdr 1+ B, log, r
or dr( ) =A,r + Byrlog,r
dav Alr

+B1J‘rloger.dr+01

_<1 By,
2

dV Br c
B (2 4) rot g loger +

i
r+C,

A B
.V = 1—‘—4‘ r + C,log, r + D,.
By altering the constants we can write this
V=A+4Brt+Clog,r+ Drtlog,r . . . (6)

which is the general solution of (i).
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The corresponding stress components are, from (5), p. 415,
p,—2B+D +§+2])loger

7
p,=2B+3D—-r92+2Dloger) @

q=20.

308. Thick Hollow Cylinder under Radial Pressures.*—If we
take n = 0, we get from equations (6) above

A A
Pr:-r—2+2B9 po=ﬁ+2B; g =0,

giving stresses which are symmetrical about the axis, with zero shear
stress.

309. Incomplete Circular Plate with Terminal Couples.t—
Let us now consider a beam of thin
cross section, measured perpendicular
to the plane of bending, the centre
line being a circular arc, when the

B A ]ﬂ/ﬂ c ends are acted on by couples M, as
0

— e in Fig. 350. Let ¢ be the thickness of

\-ﬂ R Y the beam, and r,, r, the radii of the

Fic. 350. bounding arcs. Evidently this is a

cagse where the stress and strain are

independent of 6, so that we shall use the forms of the stress com-
ponents given by (7), above.

Since the arcs AC and BD are free from stress, we must have p, = 0

when r =7, or r,; hence:

2B+D—}—£;—}—2Dlogcr1=0 ()
"
C
2B+D+7__-_2+2Dloger,=O
2

Hence, by subtracting and rearranging, we get

_ 2y 2
0:——2D(10g‘r‘ log, r5)r,2r, L)

7y — 1,2
Then, from (vi) substituting for C,
27,2 ) 2r,2log, r
2B +D[1 — e alog ] —0. (i)

Substituting for B and C in terms of D, from (ii) and (iii) in the
first of (7) gives, after some simplification,

. s ra2ry? 1og. T3
2D(732 log., rg — 1,2 loge 7y) [1 _ (7'2 ) 10g, r+ r2 8 7y

72 — 7? ry? log, r3 — 1,2 log, 7y

* This problem is treated independently below, p. 437.
1 This result of § 309 was given by J. J. Guest, Proc. Roy. Soc. 4., 1918.

Dy =—
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Denoting the quantity outside the [ ] by P, we have

2, 2
|: (rs* — r2%) log, 7 + 12" log, '—*:|
p,=—P| 1—

ry?log, 7y — r2log, ry

Similarly

2y 2
[ (re® — (1 + log,r) — o r:’ log, ;’ ]
. _ 1
Py = 1 rs® log, ry — ry% log, ry

whilst ¢ = 0.

7
If we now evaluate j ’tp,.dr we find the result is zero, so that there
L4

is no total tension on any cross section, whilst if we evaluate jtp,rdr

between the same limits we find the result is a couple, tending to increase
the curvature, of magnitude

% 7?2 — 12\ 2}
iy e

ry?log, ry — r,%log, r,

where ¢ is the thickness of the plate. If we denote this couple by M,
the stresses at any point in the plate are given by

- 1272 P
. M ri?log, ry — ry2log, 7, — (12 — %) log, r — lr; loger_:
T 2\ 2 72 — 7.2\ 2
lo _-> — ( _=__1>
| ("17': 2 "1 B) _
_ pird o ®
M rstlog,ry —riflogr, — (1,2 — r,?)(1 + log,7) +"‘2—2 log,-*
r 7,
Py= — -
7 RN 72 — 72y 2
log,*) — (_2_1)
L ("1"3 ogc 7‘1) 2 _—
=0

It should be noted that p, tends to become very large as r, becomes
very small. Prof. Inglis finds that when r, = 7r,, the normal stress
over any radial cross section is more than three times as great at the
inner boundary as it is at the outer boundary, whilst the radial stress
very nearly reaches the smaller of these two values at a point about
one-sixth of the width from the inner are.

310. Semi-Circular Plate Subjected to Terminal Shearing
Forces.*—In Fig. 351 the beam AB is of thin rectangular section of
thickness¢. The tension over any radial cross section is proportional
to sin 0, whilst the shearing force varies as cos 0.

In the general expressions (5) for the stresses we can write cos nf

* C. E. Inglis, loc. cit., p. 423.
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Fia. 351.

instead of sin n0 and — sin n0 instead of cos n6, and so obtain another
possible stress distribution :

p, = {4r*"% + (n — 2)Br*}sin nf
Py = — {Ar*=2% 4 (n 4- 2)Br"}sin nf
g = {Ar*~% 4- nBr"}cos nf
From these we can derive two possible stress distributions by taking

n =1 and — 1 in turn: we get

p, = <f4;l—Blr> sin 0
A .
n =1 p9=—<7‘+3Blr>sm0. )

q= 1—4—1+Blr)cosﬂ .
p

and
P, = %_ 35, sin 6 .
n=—1<Ps = <-— —>81n0 I ¢ (1))
g ={— ——)cosﬂ. . J
In the second of these systems take B, = A, and we get
P, =— ‘:—;——3—‘;1«1 sinf . P

pe = ( 22 _)smO R ST  § §)
<_——_ cos§ . . j

Subtract (11) from (9) and we have as a possible stress system

(-Blr-— -——+—- sin 6

po=(—3Br— 24 _ANang . L g
r 73

q—(Blr—}——;—xi3 cosf . .
r
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We will write these

B O\ ..
B C\ .
po=(3Ar+;—+;§)sm0 S T ¢ ¢ )

B C

In this aystem, when & = 0 we have only shear, which fits our case.
Also, since p, and ¢ are the same functions of r, we can make both vanish
simultaneously at the two bounding arcs, r =r, and r,. Using these
conditions we find that p,, py and ¢ can be written :

b= (= EETE T g
r s

ri® +

12y

P = P(— 3r + 3
g=P (r _n j_ ! + rl::") cos 0

If we integrate these over a cross section we find that the total
tension and shear on a radial section are :

sin 6

+

Pt{(r,2 — 13 — (rsd +n?) log,;’} cos 0
1
and Pt{(r.’ 4 r,%) log, :;’—(r.’ - r,’)} sin 0.
1
Therefore in our case the stresses will be given by

_aanttnt i
r+ = \

.gin 0

. (r3+n?) 103.:—’— (ry® — n?
1

-ty

P,

e+ 13 43 + #,27,2
r r

-~y

Po snf ) (14)

(n? + s log,:_’ —(nt—mn?
- 1
_rnd —:— re? + r2r?

r

=~k

.cos @
(2 4% 1083,1 — (ra? —n?
" y

Where ry = 7r,, the normal stress on the cross section DC (Fig. 351)
is found to be seven times as great at D as it is at C, whilst the mazimum
radial stress is slightly greater than the smaller of these.
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By combining the cases just considered the general case of such a
beam bent by any concentrated loads can be analysed.*

Example.t—A flat plate cut in the form shown in Fig. 352 is acted
on by the forces W, }W, }W. It is required to investigate the stresses on
the cross sections AB, AC, DE, DF.

l‘-zzt 4-12 2"

'ﬂ_

Y
N

Fi1e. 352.
The section 4B is acted on by a shearing force } W, and a bending moment
—% % 2 = — W. For estimating the effects of the former the part of

the plate between AB and AC may be treated as half the semi-circular plate
of § 309, and for estimating the effects of the latter the results of § 310 can

be applied.

a4
P Equivaient unifvrmly
P 9 varying stress
t
Max. 0-73]3[ c
73 W
1s¥ /pe .y 17 ¥
Pr Equivalent uniformi
108 tN/I; N‘rgm‘f stress
1
oss ¥
244 W
Fra. 353.

. . . . |14 . .
The section DF is subjected to a shearing force 3 combined with a

. w
bending moment 3 X 6 = 3W.
The stresses for the sections DE and AC are shown in Fig. 353. It will
* For stress in plates with holes, i.e. in multiple connected regions, see a paper

by L. N. G. Filon, Brit. Assoc. Report, 1921.
1 Taken from the paper by Prof. Inglis (see footnote, p. 423),
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be noticed that they are very different from those which would be found by
the ordinary simple theory of bending. Thus we should, in applying the
simple theory, regard the section AC as acted on by a bending moment 2W
and a tension W ; the former would produce maximum normal stresses

on the section equal to ;i; 3" I;V, whilst the latter would give a normal

lstrests;?ls . %,, so that the normal stresses at A and C would be g X _P_t_V and
7

—8 X g Actually the maximum tensile stress is 3-41?, or 2:28 times
what the simple theory would have it. This result should be carefully
noticed, for it will be seen that the problem here treated has a strong resem-
.blance to the problem of a crankshaft. The figures given by the simple
theory will be more nearly approached on the section PQ, between A0
and ED. The theory can also be applied to calculate the stresses due to
the bent T or X sections.

EXAMPLES XXVII

1. A force P is applied at a point-in the edge of a flat plate ; the line of
action of the force makes angles a and # — a with the edge of the plate and is
in the plane of the plate. -Show that, within the limits @ > 8 > — (7 — a),
the stress distribution is given by pr = (2P /nr) cos §.* (Michell.)

2. A flat plate is bounded at one corner by two straight lines 04 and
OB inclined at an angle y. A force P acts at O in the plane of the plate
in a direction making an angle ¢ with O4. The direction of the maximum
radial stress makes an angle a with OA. Show that a is given by

¥ sin ¢ — sin y sin (y — @)
y cos ¢ —sin y cos (y — @)

Show also that the condition that the radial stress shall be one-signed
is approximately that the line of action of P lies within the middle third
of the angle y, provided y<=n/2. (Michell, loc. cét., below.)

3. A tapering flat plate as shown in Fig. 354 is acted on by couples M

gctmg in its plane and applied to its ends. Show that the stresses are given
y 1

tan a =

_ 2M sin 20
Pr = — {(sin 2a — 2a cos 2a)r?
po=0; g = M (cos 20 — cos 2a)

t (sin 2a — 2a cos 2a)r?

Fia. 354.

4. A semi-infinite flat plate is bounded on one side by a straight line.
A thrust w per unit length acts, in the plane of the plate, at right angleq
to the straight edge, over a length AB = 2a, The position of any point

* The effects of a pressure uniformly distributed along a finite length of & straight
edged plate can be found by integration (Michell, Proc. London Math. Soc., 1902).
t C. E. Inglis.
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P in the plate is defined by the angles PAB = 6 and PBA = ¢. The thick-
ness of the plate is 2h. Prove that the stress components at P are given by

w .

Pa=—5 {# — 0 —¢ + sin (6 + @) cos (6 — @)}
w .

Py = —m{n—a—q;—sm(O +¢)COS(0—¢)}

w o, .
q =msm(0 + @) sin (¢ — 8)

the origin being at the middle of AB, which is taken as the axis of y.
(Michell.)



CHAPTER XXVIII
THICK CYLINDRICAL AND SPHERICAL SHELLS

311. Thick Cylindrical Shell under Radial Pressures.*—We
shall consider the case of a thick, hollow, circular cylinder subjected
to fluid pressure on its inner and outer surfaces (Fig. 355).

Let r, = the inside radius :

ry = ,, outside ,,
P = ,, internal pressure per unit area.
P2 = ,, external pressure »

Fia. 355.

Symmetry shows that the stresses and strains are independent of 8,
the angular position of any radius. Consider an element ABCD : the
faces AB and CD will be under a radial pressure, whilst the faces 4D
and BC will experience a ‘‘ hoop ” tension.

Let p = the radial compressive stress at radius

5s» ¢ = ,, hoop tensile stress at radius r.

Consider now an annular ring of the tube, of internal radius r and
external radius r 4 ér. The radial pressure on the inner surface will
be p, and on the outer surface p + ép.

The nett pressure tending to burst the ring across any diameter
(Fig. 366) is 2pr — 2(p + Op)(r + 6r). This is balanced by a tensile
stress of total amount 2¢.0r, both per unit axial length of tube. Hence

2pr — 2p + Op)(r + 0r) = 20dr.

Multiplying out and neglecting products of small quantities this gives

pér +71rép 4+ tdr =0

* Pipes with eccentric bore have been dealt with by Jeffery. See Bret. Assoc.

Report, 1921,
437
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Hence, in the limit
dp
+r=4+t=0. . . . . . . 1
P rdr =0 o)

We shall now assume that plane cross sections of the tube, perpen-
dicular to the axis, remain plane and perpendicular to the axis. This
implies that the strain parallel to the axis is. either zero or constant.
This assumption must be very nearly true for sections remote from
the ends. '

Let ¢, and p, be the longitudinal strain and stress respectively, posi-
tive when tensile, then

ezzlt,(p,—f—z-)—;——{) e )]

We shall now make the further assumption that the longitudinal
stress is uniform over the cross section.* It follows from (2) that p — ¢
must then be constant also.

Let p—t=22 . . . . . . . . . . . . . (@)

Then from (1) we have

dp

= = 20 — 2p.

i a — 2p
dp _ 2dr
a—7p 7

~. —log, (@ — p) = 2log, r + const.
log, [r*a — p)] = const.
. r¥{a — p) = const = B, say.

Hence we can write

p=a—%.......(3)

. Thls assumption really follows from the first, but, since it appears as i'ea.sonable
to consider the longitudinal stress constant as to treat the strain as constant, it
seems an unnecessary refinement to prove that one is a consequence of the other.

However, for those who prefer it, we subjoin the proof : If % denote the radial
displacement we have :

d“=——1(p+p—'”j’—‘)—(a); "-‘=El(t—”'—m‘—”)-(b)-

dr K r
Multiply (b) by r, differentiate and subtract from (a): we get
1 r dp dt r dp —rd
¢ Y4 L LTy O,y
® + )(1+m)+mdr+rdr m dr m3 dr(p 9
from (2) above if ¢ is const. But from (1) above p + £ = — r‘;_:’. Hence we get

dt 1\ dp rdp r d 1\ad
—— (1t =+~ =T % p—0p, 1 ——_V(p—1t)=0.
'dr ( + m)rdr + mdr m? dr(p ) or ( m')dr(p 7 =0

Thus p — ¢ is constant, and it follows from (2) above that p, must be constant.
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Then it follows from (i) that

- g :

t == — O — r—s . . . . . . . (4)

At the outer surface we must have p = p, and at the inner surface
P =p;. Therefore, from (3)
: 8

P =a""‘;1—g and p.=a—r.2
These equations give
Pars® — pini?
rd — 1
_ (ps — Porirs?
f=r2_22 2
1re? —~ 7,3
Substituting in (3) and (4) we get finally :

a =

(8)

— 2 2
p= 3 1 - ,[P.h’ - p1r1’ +(p~————_1 p:)rl Ta ] .
Iry® — I r
2 ) 1 ( ring (6)
P1 — P20 °T
t= e [P1r1’ — Pary? +_L_E#__’ I .

312, External Pressure Negligible.—The most important practical
applications of the above formuls occur when the external pressure is
atmospheric and negligible compared with the internal pressure. In
such cases we can put p, =0, and the formule become

P’ rs? — 1?2 { = Para? et + 1
red — 1,2 rm red — 1,2 r2

p=

()

Both p and ¢ have their maximum values at the inner surface of the
tube, where r =1, :
__7'12‘*"12 _k2+1

p=pl;t1_r,’-—r1’ 1-—-k2_lpn T )]

where k& = ry/r,.
~ Let us consider what will be the maximum permissible internal
pressure, according to the various theories set out in Chapter VL.
Let f = the elastic limit of the material in simple tension. Then :—
(i) MaxmMum PrincreAL STRESS THEORY.—The elastic limit will be
reached when ¢ = f, the elastic limit in simple tension, that is when

pl _— k2 — 1

7_k3+1"""'(9)

(ii) Maxivom SHEAR STRESS THEORY.—The principal stresses are

o and ¢, which are compressive and tensile respectively, so that failure

will occur when (p. 91) p + t=f; this gives, from (8),
‘ p,_k*—-1

f 2K (10)
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(iii) STRAIN ENERGY THEORY.—In this case we must have * (p. 92)

Pz + tfz —Pt .f”
which gives

2 __
‘_;.‘= ki1 ...

\/2m+lk‘+2m—l
m m

An important series of experiments was conducted by Messrs. Cook
and Robertson { on thick-walled tubes of cast iron and mild steel, the

07 '7 v H
& i
Y |
06 K B S
o o ” mw3
Theo
Energy
05 A 51"[‘81'.,-..4-----
et
5neel. ot
et

e

.
e eme——bao

L T T YY YMpI) WEppIpRpRpapap povesacenad

£xper/mmts on M/a' Steel Tubes
Cook & Robertson
© Experimental Points

.

N U St 4 .-
H
i
o1
7T ) ] 3 )
Values of k=%,
Fra. 356.

results of which are summarized in Figs. 356 and 357. The experi-
mental points are marked with small circles, and the theoretical values
of p,/f have been plotted against £ according to the above three theories.
In the case of the ductile material, mild steel, the strain-energy theory
comes very close to the mark, whilst in the case of the more brittle
cast iron the maximum stress theory fits the facts best. In this latter
case f has been taken as the breaking strength of the cast iron. Strictly
speaking these experiments belong to the class of three-dimensional

* Neglecting the longitudinal stress.

t Engineering, Dec. 15, 1911, Further experiments on thick tubes are described in

a paper to the Physical Society by G. A. Wedgwood, May 10, 1929, and the Brit. Ass.
report on stresses in overstrained materials (1931).
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stresses, but the longitudinal stress is small, and they afford the strongest
confirmation of Haigh’s theory for ductile materials (cf. Chapter VI).
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Adopting the maximum stress theory for brittle materials we have
k2 - 1 p‘
B+1 f
ne=tte
f—p

Therefore if p, = f, k will have to be infinite, which means that we
cannot make a cast-iron tube sufficiently thick to withstand an internal
pressure equal to the breaking stress of the material.

For ductile materials like mild steel we have from (11) above

L
2<m;— 1k4+m; 1) =

2p:2 m+1 2p.2m — 1 :
or (]_?—. m )k‘—-—2k2+<l—- f2 T =0.

VoY
f_z
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Solving this equation for k2 we get

1422 \/1—”‘2”;1;.2

1 —opm !

k2

(13)

me —
mZ

< 1, so that the quantity under the radical in the numerator is positive.

Taking the upper sign we see the condition that k2 may be real is

where A stands for p,/f. Now 1 is <1, and clearly A must * be

m
A2 <Zm+

P m
or 7< \/m . . . B . . (14)

If m =4 this shows that we cannot make a steel tube to take an
internal pressure greater than 0-633f, and if m = 3 we must have

Py < 0-613f.
313. Longitudinal Stress.—We have from (2) of § 311,
P Pt
“=ztmm

If the ends are constrained in such a way that e, is zero, we must
have

— 2 gl
P,=— (p—9 _ 2(piry? — psra?) (15)
m m(ry? — %)
If one end is free so that there is no longitudinal stress, then
1 2(para® — pari®)
=__(p —¢f) = M¥r1 _ J117 16
% mE(p ‘) mE(rg® — 1,?) (16)

Example 1.—The cylinder of an hydraulic ram is 8" diameter inside.
The factor of safety is to be 2, the internal pressure 2-5 tons/in.®! The
material is steel having an elastic limit of 20 tons/in.? in simple tension.
Calculate the outside diameter, (i) on the maximum shear-stress theory,

- . 10
(ii) on the strain-energy theory, taking m = 3

(i) We must have p + ¢ % 10 tons/in.?, i.e. we take f = 10 tons/in®

From (10) we have
{1—%)
256 = 3 1— P 10
1
P’
Lk =V2

r,=4", 5 7, =4V2 = 566", say 57"

) 1
o 2

* Since m lies between 3 and 4 for most metals, k* would be negative and k
imaginary if N ¥ 1.
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(ii) From (11) we have

1

Valkt —1).10

2'5 = ——-13=_._“'_7
ot 1o

kBt —2:39k* +1:09 =0

kt = 1-78 or 0-615

k = 1-336 or 0-785

A value of k less than unity is obviously inadmissible, so we take &k = 1-336,
which gives r, = 5-35".

Example 2.—Calculate the initial difference of diameter for a tube of
external diameter 12” to be shrunk on to a solid shaft 8” diameter so that
the pressure between the tube and the shaft is 2 tons/in.* Take £ = 13,700
tons/in.%, m = -150 (Mech. Sc. Trip., 1920.)

The problem is to find the initial difference between the inside diameter
of the tube and the outside diameter of the shaft. Since the difference will
be very small we can take both diameters as 8" for the purpose of finding

the stresses. We shall here neglect the compressibility of the shaft (cf.
pP. 449.)

For the tube we have
py =2 tons/in.2; r, =4"; py =0; ry, =6"
Hence, from (6), p. 439, at the inside we have
2
1 [32 " x 18 x 36

t =

36 — 16 16
104
== e~ == B 1 2
=35 = 5-2 tons/in,

Hence the inside fibres of the tube will be under a tension of 5-2 tons/in.?
and a pressure of 2 tons/in.? Therefore their strain will be,

52 2 1 58
e=F tmE ~ 1370002 T 06) = 3755

This strain is neutralized by the shaft and the radius is changed. Sup-
pose the unstrained radius is 7,, Then we must have
ro(l +¢) =47

4 % 58

13,700

. This is the initial difference of radius which must exist. The difference
of diameter will be 0-0034”.

Example 3.—A gun tube B of external diameter 40” is to be shrunk
on an inner tube 4 of external diameter 32” and internal diameter 16*;
the pressure between the two tubes is required to be 5 tons/in.? Calculate
the proper initial difference between the inner radius of B and the outer

10
radius of 4, if £ = 13,000 tons/in.? and m = 3 (H.M. Dockyard Schools,
1924.)
For 4 we have

G4 —rg=re =4de* = = 0:0017.”

py =0, pg =5 tons/in.?
ry =8, r, = 16"

* Beep. 3, § 5.
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Hence, at the outside, we have
Palry? + 74?%) 5 x 320
T g —rr T 192
p =5 tons/in.?
Therefore the circumferential strain at the outside of 4 is

1 : 5 x3 6-85 .
E(—8'35+ 10 )=_T e e (i)

P, =5 tons/in.?; p, =0
7y = 167, ry = 20".
Hence, at the inside, we have
py(ry® + %) 5 X 656
T Tt 144
p =5 tons/in.?
Therefore the circumferential strain at the inside of B is

= — 8-35 tons/in.?

t =

For B we have

[ = 22-8 tons/in.?

l( 5 X 3) 24-3
28+ ) =F
If B were taken off, the outer radius of 4 would increase by 16—2,6—853
16” 24-3
and the inside radius of B would decrease by —%———

Therefore the initial difference of radius should be
16 x 31-15 16 x 31-15
E = 713,000

314. Compound Tubes.*—It will be seen from the formule (6)
and (7), p. 439, that the stresses decrease rapidly as the radius increases.
For instance, if r,/r; = 2, the hoop stress ¢, when outside pressure is
zero, will be two-and-a-half times as great on the inner surface as it is
on the outer. Thus, the material is not used economically. Again, it
was pointed out in § 312 that, for a given strength of material, there is
a limit to the internal pressure which a tube can stand, however thick
the walls are made. For these reasons, various methods have been
devised for strengthening thick tubes, one of which is to form the tube
by shrinking one tube on the outside of another. Then the inner tube
is subjected to external pressure by the cooling of the outer one, which
itself is subjected to an equal internal pressure. It will be seen from
Example 3 above that the hoop stress of the inner tube is negative, i.e.
is compressive, whilst for the outer one it is positive, i.e. tensile. If
now the inside of the compound tube be subjected to fluid pressure a
tensile hoop stress will be superimposed throughout the material. As
the inner tube is initially in a state of compression, the final tensile stress
set up will not be so great as if the tube were initially free from stress.
Similarly, since the outer tube is initially in a state of tension, the final
tensile stress will be greater than if the tube had been initially unstressed.
In this way the stresses are more or less equalized throughout the walls

= 0-038” nearly.

* For a paper on the longitudinal strength of guns, see Engineering, Feb. 16,
1917,
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of the compound tube, particularly if three or four tubes are shrunk on
to each other, and thus the tube can take a greater fluid pressure.
Nothing is gained by giving a general analysis of this, and we shall
content ourselves with working out an illustrative example.
Example.—A gun tube is built up of four tubes,* as shown in Fig. 358;
it is required to calculate the shrinkage pressures necessary between the
tubes, for an explosion pressure of 8:25 tons/in.?, the factor of safety being
3, and the elastic limit of the material being 30 tons/in.? in simple tension.

(i) We shall first work the problem on the maximum shear-stress theory.
We must have p + ¢ %> 10 tons/in.?

' :
105‘,’,%5- : !

reedotackoboten

35
596
4.3

____al_ 72 ldzoléins.

‘AB'CD'
Fia. 358. Fie. 359.

A

For the explosion pressure, treating the whole tube as solid, we have
witlh Py = 0, -
2p,ryPry
P
where p, = 8:25 tons/in.}; r; = 8", r, = 24", Hence
16-5 x 64 x 576 1,190 .
P+l =" xrm o o O
We now commence filling in the table shown.

1 2 3 4 [ v [
. !
Radial
P+t p+t . Actual
r(ins.).| r* due to due to Prossures ° yajues of
due to

explosion. | shrinking. shrinking. P+

0 ! 9-80

Insideof A4 .| 8 | 64| 1856 |—870

Outside of A . | 12 | 144 | 825 |— 388 2.422 | 437
Inside of B .| 12 | 144 | 825 175 2422 | 1000
Outside of B . | 16 | 256 | 465 008 2040 | 563
Inside of C .| 16 | 256 | 465 5:35 2.040 | 1000
Outside of C . | 20 | 400 | 297 B | 1075 \ 6-40
Inside of D . & 20 | 400 | 297 7:03 1076 | 10-00
Outside of D . | 24 | 576 | 206 &9 0 . 6-96

Stresses are given in tons/in.?
Columns 1 and 2 are filled in from the data, and column 3 from equation
).
* These figures are purely fictitious.
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Next find the initial stresses, due to shrinking, required to make p + ¢t = 10
tons/in.? at the insides of B, C, D and A. These are the figures underlined
in column 4. We now have to find the radial pressures between the tubes,
necessary to produce these values of p + £. At the inside of any tube we
have
2(p, —pa)rs? s

(f ‘:g _p ;1)‘2 2’ (i)

Thus for D, wehave p, = 0,p + t = 7-03 tons/in.%, r, = 24" and r; = 20",
Therefore

P+t =

2p, x b76
703 = 2LI2D
Hence for D
Py = 7%1152&3 = 1075 tons/in.* . . (i)

Then, for C we have
Py =1075, p +t =535, ry = 20", r, = 16",

Hence, from (ii)
2(p, — 1-075)400

535 = 144
535 x 144
. 10785 = — " O n 2
. P, — 1075 800 0-965 tons/in.
P, = 2:040 tons/in.2 . . . . . (iv)
For B:
2(p, — 2-040)256
175 = 112
which gives
py = 2422 tons/in.2. . . . . (v)

The values of p, given by (iii), (iv) and (v) are now inserted in column 5
of the table.

From column 5 we can complete column 4 :

At the outside of any tube

. (vi)

We have then :

At outside of D, (ps = 0, p, = 1-075, r; = 24", r, = 20%)
p+it= 2—'15'; :csﬂ =49 tons/in.? . .  (vii)

At outside of C, (p, = 1-075, p, = 2:040, r, = 20", r, = 16")

2 x 0-965 x 256
p+t=2 200 X0 5 bonesine . (viii)

At outside of B, (pg = 2:040, p, = 2:422, r, = 16", r, = 12")
P+t = 2"0'33—22—“45 — 098 tons/in.* .  (ix)
At outside of 4, (p, = 2422, p, =0, ry =127, r, = 8”).
p+t=— L“‘;i‘?—x% = — 3:88 tons/in.? . (x)
At inside of 4 we have from (ii)
_2 X 2-422 x 144

pHt= %0

= — 8:70 tons/in.? (xi)
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The figures (vii), (viii), {ix), (x), (xi) are now inserted in column 4.

Adding together columns 4 and 5 we get the final stresses as shown in
column 6. It will be seen that by building up the tube we have practically
halved the stress at the bore, and have rendered possible what would have
been impossible in the case of a solid tube, namely to withstand a pressure
of 8} tons/in.* without p 4 ¢ exceeding 10 tons/in.* The stress distribution
is shown in Fig. 359.

(ii) We shall treat the same problem on the principle of maximum strain-
energy, and the work will be rather more tedious and not so direct, as we
must work the stresses separately.

Here we have, to make

F(p, t) = p* + t* + 0-6pt - 102
As before we first find the stresses due to the explosion pressure, treating

the tube as solid and unstressed beforehand, with p, = 0. From equations
(7) we obtain the values given in columns 1 and 2 of the table:

o 2 3 4 5 6
! due to explosion | shrinking final values
P ¢ 4 b ¢ F(p,?)
Inside 4 . . 8-25 10-25 0 825 |— 2-25 61-9
Outside 4 . . 3-10 5-15 3-47 6-57 |—3-92 439
Inside B . . 3:10 5-15 3-47 6-57 5-81 100
Outside B . . 1-29 3-36 2-57 3-86 3-12 31-8
Inside C . . 1-29 3-36 2-57 3-86 8-18 100
Outside C . . 0-46 2-51 1-24 1-70 597 44-7
Inside D . . 0-46 2:51 1-24 1-70 9-39 100
OQutside D . . 0-00 206 0 1] 772 59-5
For each tube we have :—
2 23) —9 2
At the inside, ¢ =, =2 TNl =2t
Ty ——1n
. 2 s __ ]
» outside, ¢ =t; = Py ’p,(ﬁ’ t ); P = Py
rg"— 1

Tube D :—
Let p, = the radial pressure on the inside due to shrinking.
Let p, and ¢; be the final stresses at the inside, then

Py =pi{ + 046
976p;
176
Substituting these values in the equation
Pyt + 2 4 0-6pyt, = 100

t, = 251 = 251 + 5-55p].

we get
Pt + 0-915p] — 267 =0
which gives p;{ = 1-24 for the positive root.
Then
p; = 1-70 tons/in.?
t; = 9-39 tons/in,?
Also we find, at the outside, ¢ty = 7-72,
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We now proceed in exactly the same way for each of the other tubes,
C, B, A in turn, and thus the table above is completed. It will be seen
that according to this theory greater shrinking pressures between the tubes
are demanded.

315. Driving Fits on Solid Shafts.*—Consider the case where a
tube of external diameter 2r, and internal diameter 2r, — & is forced
on to a solid shaft of external diameter 2r,.

Let E, and m, refer to the shaft, and E, and m, to the tube.

As in the case considered in § 311 we shall have

b
p=a o
I=—a—=—

r2

where p and ¢ are the radial pressure and hoop tension at radius r in the
shaft.

Now, clearly the stress in the shaft is not infinite at the centre,
where r = 0. Therefore we must have 8 =0. Then

p = — { = a = constant.

Thus the material of the shaft is subjected at all points to both radial
and circumferential compressive stress of intensity p,, where p, denotes
the pressure between the shaft and the tube. Therefore the circum-
ferential compressive strain at the outside of the shaft is

Py \__P1 1 :
- 1-— S ¢
(E1 mE,) K, my @)
since { = — p,.

At the inside of the tube the hoop tension is given by (8), p. 439,

p =P

7,2 — g2

(if)

neglecting the small quantity § in comparison with r,. Also the cir-
cumferential tensile strain there is

t P
E+szz e e e e (i)

From (i) and (iii) we have, equating the sum of the changes in
diameters of the shaft and the inside of the tube to their original

difference :
pl 1 tl .
—(1 - = ~1=46 . .
E1< m, + E,] (v)

Now what we usually wish to know is the relation between é and ¢,,
the latter being the maximum tensile stress in the tube.

* See also an article by Morley in Engineering, Aug. 11, 1911,
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Substituting for p, from (ii) in (iv) we get

r?—r?2 1 rt-n? 1 1
2 —_—yr ! 2 4=
rltl[ ! ml)r82+r12 E1+"az'f"'12 mnEa+E:J 6
or 4
ml’—l 1 —7‘1 ]
= .. (17
tl[ m, B +m,E,)r,2+rl E (1n

From this we can calculate ¢, in terms of §, or vice versa.
From (ii) we have

732 - 712

r? + 12 !

Combining (17) and (18) we can test the strength of the tube by either

the shear-stress theory, or the strain-energy theory. In practice d/2r,
will usually be of the order 1/2,000.

Example.—We shall now apply these formule to the example worked
out on p. 443, where we neglected the compress1b1hty of the shaft. We
have

P = (18)

10
ml = m’ = ?
E, = E, =13,700 tons/in,*
ry=4" ry =6,
p, = 2 tons/in.?

From (18) we have ¢, = 2- 6p1 = §-2 tons/in.?
Then (17) gives
6_8"><5-2(g_(_) )_8><5-2><72
~ 13,700 \52 13,700 x 52

which is 23 per cent. greater than the value we found when we neglected
the compressibility of the shaft. If we take the previous value of 4 (0-0034”)
the pressure due to shrinking will be only 1-62 tons/in.* instead of 2, an error
of nearly 20 per cent.

= 0-0042",

TuBES STRENGTHENED BY WIRE WINDING

316. Purpose of Wire Winding.—We have seen above that a tube
may be made to withstand a higher internal pressure if it be built of
several tubes shrunk upon each other than if it be a solid homogeneous
tube. To be quite sure that the greatest stresses in each tube are kept
within the desired limits requires great accuracy of turning and boring
in order to produce the correct shrinking pressures. This accuracy is
more easily desired than obtained in such large tubes as those used for
gun construction. An alternative method of strengthening a tube is to
wind it, like a reel of cotton, with steel ribbon or * wire,” applying a
suitable tension to the wire during the winding process. The chief
difficulty, in formulating a theory of wire wound tubes, is to decide how
the wire behaves. In what follows we suppose that the wire winding
acts as if it were a homogeneous tube, the theory being due to C. E.
Inglis,
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317. General Equations.—Let the internal and external radii of
the main tube be r, and r,, and let the overall
radius of the finished winding be r; as shown in
Fig. 360.
Let P be the internal pressure due to the explo-
sion or other cause.
,, Let p, and t, be the stresses due to the
internal pressure.
+»» Do and £, be the initial stresses.
Fic. 360. »» I be the winding tensile stress in the wire
at radius r.
Then p, + p, and {, + ¢, are the final stresses.
As in § 311 we shall have, for the general equation o