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PREFACE

The pattern set nearly 70 years ago by Maxwell's Treatise on Electric-

ity and Magnetism has had a dominant influence on almost every subse-

quent English and American text, persisting to the present day. The
Treatise was undertaken with the intention of presenting a connected

account of the entire known body of electric and magnetic phenomena
from the single point of view of Faraday. Thus it contained little or

no mention of the hypotheses put forward on the Continent in earlier

years by Riemann, Weber, Kirchhoff, Helmholtz, and others. It is

by no means clear that the complete abandonment of these older theories

was fortunate for the later development of physics. So far as the

purpose of the Treatise was to disseminate the ideas of Faraday, it was

undoubtedly fulfilled; as an exposition of the author's own contributions,

it proved less successful. By and large, the theories and doctrines

peculiar to Maxwell the concept of displacement current, the identity

of light and electromagnetic vibrations appeared there in scarcely

greater completeness and perhaps in a less attractive form than in the

original memoirs. We find that all of the first volume and a large part

of the second deal with the stationary state. In fact only a dozen pages

are devoted to the general equations of the electromagnetic field, 18 to

the propagation of plane waves and the electromagnetic theory of light,

and a score more to magnetooptics, all out of a total of 1,000. The
mathematical completeness of potential theory and the practical utility of

circuit theory have influenced English and American writers in very

nearly the same proportion since that day. Only the original and

solitary genius of Heaviside succeeded in breaking away from this course.

For an exploration of the fundamental content of Maxwell's equations

one must turn again to the Continent. There the work of Hertz, Poin-

car6, Lorentz, Abraham, and Sommerfeld, together with their associates

and successors, has led to a vastly deeper understanding of physical

phenomena and to industrial developments of tremendous proportions.

The present volume attempts a more adequate treatment of variable

electromagnetic fields and the theory of wave propagation. Some atten-

tion is given to the stationary state, but for the purpose of introducing

fundamental concepts under simple conditions, and always with a view

to later application in the general case. The reader must possess a

general knowledge of electricity and magnetism such as may be acquired

from an elementary course based on the experimental laws of Coulomb,
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Amp&re, and Faraday, followed by an intermediate course dealing with

the more general properties of circuits, with thermionic and electronic

devices, and with the elements of electromagnetic machinery, termi-

nating in a formulation of Maxwell's equations. This book takes up
at that point. The first chapter contains a general statement of the

equations governing fields and potentials, a review of the theory of units,

reference material on curvilinear coordinate systems and the elements of

tensor analysis, concluding with a formulation of the field equations in

a space-time continuum. The second chapter is also general in char-

acter, and much of it may be omitted on a first reading. Here one will

find a discussion of fundamental field properties that may be deduced

without reference to particular coordinate systems. A dimensional

analysis of Maxwell's equations leads to basic definitions of the vectors

E and B, and an investigation of the energy relations results in expres-
sions for the mechanical force exerted on elements of charge, current, and
neutral matter. In this way a direct connection is established between
observable forces and the vectors employed to describe the structure of a

field.

In Chaps. Ill and IV stationary fields are treated as particular cases

of the dynamic field equations. The subject of wave propagation is

taken up first in Chap. V, which deals with homogeneous plane waves.

Particular attention is given to the methods of harmonic analysis, and
the problem of dispersion is considered in some detail. Chapters VI and
VII treat the propagation of cylindrical and spherical waves in unbounded

spaces. A necessary amount of auxiliary material on Bessel functions

and spherical harmonics is provided, and consideration is given to vector

solutions of the wave equation. The relation of the field to its source,

the general theory of radiation, and the outlines of the Kirchhoff-Huygens
diffraction theory are discussed in Chap. VIII.

Finally, in Chap. IX, we investigate the effect of plane, cylindrical,

and spherical surfaces on the propagation of electromagnetic fields.

This chapter illustrates, in fact, the application of the general theory
established earlier to problems of practical interest. The reader will

find here the more important laws of physical optics, the basic theory

governing the propagation of waves along cylindrical conductors, a

discussion of cavity oscillations, and an outline of the theory of wave

propagation over the earth's surface.

It is regrettable that numerical solutions of special examples could

not be given more frequently and in greater detail. Unfortunately the

demands on space in a book covering such a broad field made this imprac-
tical. The primary objective of the book is a sound expositfon of

electromagnetic theory, and examples have been chosen with a view to

illustrating its principles. No pretense is made of an exhaustive treat-
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mcnt of antenna design, transmission-line characteristics, or similar

topics of engineering importance. It is the author's hope that the

present volume will provide the fundamental background necessary for

a critical appreciation of original contributions in special fields and satisfy

the needs of those who are unwilling to accept engineering formulas

without knowledge of their origin and limitations.

Each chapter, with the exception of the first two, is followed by a
set of problems. There is only one satisfactory way to study a theory,
and that is by application to specific examples. The problems have been

chosen with this in mind, but they cover also many topics which it was

necessary to eliminate from the text. This is particularly true of the

later chapters. Answers or references are provided in most cases.

This book deals solely with large-scale phenomena. It is a sore

temptation to extend the discussion to that fruitful field which Frenkel

terms the "quasi-microscopic state/
7 and to deal with the many beautiful

results of the classical electron theory of matter. In the light of con-

temporary developments, anyone attempting such a program must soon

be overcome with misgivings. Although many laws of classical electro-

dynamics apply directly to submicroscopic domains, one has no basis

of selection. The author is firmly convinced that the transition must be

made from quantum electrodynamics toward classical theory, rather

than in the reverse direction. Whatever form the equations of quantum
electrodynamics ultimately assume, their statistical average over large

numbers of atoms must lead to Maxwell's equations.

The m.k.s. system of units has been employed exclusively. There

is still the feeling among many physicists that this system is being forced

upon them by a subversive group of engineers. Perhaps it is, although
it was Maxwell himself who first had the idea. At all events, it is a good

system, easily learned, and one that avoids endless confusion in practical

applications. At the moment there appears to be no doubt of its uni-

versal adoption in the near future. Help for the tories among us who
hold to the Gaussian system is offered on page 241.

In contrast to the stand taken on the m.k.s. system, the author

has no very strong convictions on the matter of rationalized units.

Rationalized units have been employed because Maxwell's equations are

taken as the starting point rather than Coulomb's law, and it seems

reasonable to make the point of departure as simple as possible. As a

result of this choice all equations dealing with energy or wave propagation
are free from the factor 47r. Such relations are becoming of far greater

practical importance than those expressing the potentials and field

vectors in terms of their sources.

The use of the time factor e~iut instead of e+<w *
is another point of

mild controversy. This has been done because the time factor is invar-
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iably discarded, and it is somewhat more convenient to retain the positive

exponent e+*R for a positive traveling wave. To reconcile any formula

with its engineering counterpart, one need only replace i by +j.
The author has drawn upon many sources for his material and is

indebted to his colleagues in both the departments of physics and of

electrical engineering at the Massachusetts Institute of Technology.
Thanks are expressed particularly to Professor M. F. Gardner whose

advice on the practical aspects of Laplace transform theory proved

invaluable, and to Dr. S. Silver who read with great care a part of the

manuscript. In conclusion the author takes this occasion to express his

sincere gratitude to Catherine N. Stratton for her constant encourage-

ment during the preparation of the manuscript and untiring aid in the

revision of proof.

JULIUS ADAMS STRATTON.

CAMBRIDGE, MASS.,

January, 1941.
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ELECTROMAGNETIC THEORY
CHAPTER I

THE FIELD EQUATIONS

A vast wealth of experimental evidence accumulated over the past

century leads one to believe that large-scale electromagnetic phenomena
are governed by Maxwell's equations. Coulomb's determination of the

law of force between charges, the researches of Amp&re on the interaction

of current elements-, and the observations of Faraday on variable fields

can be woven into a plausible argument to support this view. The
historical approach is recommended to the beginner, for it is the simplest

and will afford him the most immediate satisfaction. In the present

volume, however, we shall suppose the reader to have completed such a

preliminary survey and shall credit him with a general knowledge of the

experimental facts and their theoretical interpretation. Electromagnetic

theory, according to the standpoint adopted in this book, is the theory of

Maxwell's equations. Consequently, we shall postulate these equations
at the outset and proceed to deduce the structure and properties of the

field together with its relation to the source. No single experiment
constitutes proof of a theory. The true test of our initial assumptions
will appear in the persistent, uniform correspondence of deduction with

observation.

In this first chapter we shall be occupied with the rather dry business

of formulating equations and preparing the way for our investigation.

MAXWELL'S EQUATIONS
1.1. The Field Vectors. By an electromagnetic field let us under-

stand the domain of the four vectors E and B, D and H. These vectors

are assumed to be finite throughout the entire field, and at all ordinary

points to be continuous functions of position and time, with continuous

derivatives. Discontinuities in the field vectors or their derivatives

may occur, however, on surfaces which mark an abrupt change in the

physical properties of the medium. According to the traditional usage,
E and H are known as the intensities respectively of the electric and

magnetic field, D is called the electric displacement and B, the magnetic
induction. Eventually the field vectors must be defined in terms of the

experiments by which they can be measured. Until these experiments
1
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are formulated, there is no reason to consider one vector more funda-

mental than another, and we shall apply the word intensity to mean

indiscriminately the strength or magnitude of any of the four vectors

at a point in space and time.

The source of an electromagnetic field is a distribution of electric

charge and current. Since we are concerned only with its macroscopic

effects, it may be assumed that this distribution is continuous rather

than discrete, and specified as a function of space and time by the den-

sity of charge p, and by the vector current density J.

We shall now postulate that at every ordinary point in space the field

vectors are subject to the Maxwell equations:

(1) VXE+f = 0,

(2) VXH-f =
J.

By an ordinary point we shall mean one in whose neighborhood the

physical properties of the medium are continuous. It has been noted that

the transition of the field vectors and their derivatives across a surface

bounding a material body may be discontinuous; such surfaces must,

therefore, be excluded until the nature of these discontinuities can be

investigated.

1.2. Charge and Current. Although the corpuscular nature of elec-

tricity is well established, the size of the elementary quantum of charge

is too minute to be taken into account as a distinct entity in a strictly

macroscopic theory. Obviously the frontier that marks off the domain

of large-scale phenomena from those which are microscopic is an arbi-

trary one. To be sure, a macroscopic element of volume must contain

an enormous number of atoms
;
but that condition alone is an insufficient

criterion, for many crystals, including the metals, exhibit frequently a

microscopic "grain" or "mosaic" structure which will be excluded from

our investigation. We are probably well on the safe side in imposing

a limit of one-tenth of a millimeter as the smallest admissible element

of length. There are many experiments, such as the scattering of light

by particles no larger than 10~3 mm. in diameter, which indicate that

the macroscopic theory may be pushed well beyond the limit suggested.

Nonetheless, we are encroaching here on the proper domain of quantum

theory, and it is the quantum theory which must eventually determine

the validity of our assumptions in microscopic regions.

Let us suppose that the charge contained within a volume element A0

is Ag. The charge density at any point within At; will be defined by the

relation

(3) A? = P Av.
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Thus by the charge density at a point we mean the average charge per

unit volume in the neighborhood of that point. In a strict sense (3)

does not define a continuous function of position, for Av cannot approach
zero without limit. Nonetheless we shall assume that p can be repre-

sented by a function of the coordinates and the time which at ordinary

points is continuous and has continuous derivatives. The value of the

total charge obtained by integrating that function over a large-scale

volume will then differ from the true charge contained therein by a

microscopic quantity at most.

Any ordered motion of charge constitutes a current. A current dis-

tribution is characterized by a vector field which specifies at each point

not only the intensity of the flow but also its direction. As in the study

of fluid motion, it is convenient to imagine streamlines traced through

the distribution and everywhere tangent to the direction of flow. Con-

sider a surface which is orthogonal to a system of streamlines. The

current density at any- point on this surface is then defined as a vector J

directed along the streamline through the point and equal in magnitude
to the charge which in unit time crosses unit area of the surface in the

vicinity of the point. On the other hand the current / across any surface

S is equal to the rate at which charge crosses that surface. If n is the

positive unit normal to an element Aa of $, we have

(4) AI = J n Aa.

Since Aa is a macroscopic element of area, Eq. (4) does not define the

current density with mathematical rigor as a continuous function of

position, but again one may represent the distribution by such a function

without incurring an appreciable error. The total current through S is,

therefore,

jm

n da.

Since electrical charge may be either positive or negative, a convention

must be adopted as to what constitutes a positive current. If the flow

through an element of area consists of positive charges whose velocity

vectors form an angle of less than 90 deg. with the positive normal n,

the current is said to be positive. If the angle is greater than 90 deg., the

current is negative. Likewise if the angle is less than 90 deg. but the

charges are negative, the current through the element is negative. In

the case of metallic conductors the carriers of electricity are presumably

negative electrons, and the direction of the current density vector is

therefore opposed to the direction of electron motion.

Let us suppose now that the surface S of Eq. (5) is closed. We shall

adhere to the customary convention that the positive normal to a closed
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surface is drawn outward. In virtue of the definition of current as the

flow of charge across a surface, it follows that the surface integral of the

normal component of J over S must measure the loss of charge from the

region within. There is no experimental evidence to indicate that under

ordinary conditions charge may be either created or destroyed in macro-

scopic amounts. One may therefore write

(6)

where V is the volume enclosed by $, as a relation expressing the con-

servation of charge. The flow of charge across the surface can originate

in two ways. The surface S may be fixed in space and the density p

be some function of the time as well as of the coordinates; or the charge

density may be invariable with time, while the surface moves in some

prescribed manner. In this latter event the right-hand integral of (6)

is a function of time in virtue of variable limits. If, however, the surface

is fixed and the integral convergent, one may replace d/dt by a partial

derivative under the sign of integration.

(7) f J.nda=~ f %Js Jvdt

We shall have frequent occasion to make use of the divergence theorem

of vector analysis. Let A(x, t/, 2) be any vector function of position

which together with its first derivatives is continuous throughout a

volume V and over the bounding surface S. The surface S is regular

but otherwise arbitrary.
1 Then it can be shown that

(8) fs A n da =
j^
V A dv.

As a matter of fact, this relation may be advantageously used as a

definition of the divergence. To obtain the value of V A at a point P
within F, we allow the surface S to shrink about P. When the volume V
has become sufficiently small, the integral on the right may be replaced

by W A, and we obtain

(9) V A = Km ^7 I A n da.
s-+o V Js

1 A regular element of arc is represented in parametric form by the equations
X = x(t\y *=*

y(t), z =*
z(t) such that in the interval a ^ t ^ b x, y, z are continuous,

single-valued functions of t with continuous derivatives of all orders unless otherwise

restricted. A regular curve is constructed of a finite number of such arcs joined end

to end but such that the curve does not cross itself. Thus a regular curve has no

double points and is piecewise differentiable. A regular surface element is a portion
of surface whose projection on a properly oriented plane is the interior of a regular
closed curve. Hence it does not intersect itself. Cf. Kellogg, "Foundations of Poten-

tial Theory," p. 97, Springer, 1929.
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The divergence of a vector at a point is, therefore, to be interpreted as the

integral of its normal component over an infinitesimally small surface

enclosing that point, divided by the enclosed volume. The flux of a

vector through a closed surface is a measure of the sources within; hence

rhe divergence determines their strength at a point. Since S has been

shrunk close about P, the value of A at every point on the surface may
be expressed analytically in terms of the values of A and its derivatives

at P, and consequently the integral in (9) may be evaluated, leading in

the case of rectangular coordinates to

On applying this theorem to (7) the surface integral is transformed

to the volume integral

Now the integrand of (11) is a continuous function of the coordinates

and hence there must exist small regions within which the integrand does

not change sign. If the integral is to vanish for arbitrary volumes V, it

is necessary that the integrand be identically zero. The differential

equation

(12) T.J + I-O
expresses the conservation of charge in the neighborhood of a point.

By analogy with an equivalent relation in hydrodynamics, (12) is fre-

quently referred to as the equation of continuity.

If at every point within a specified region the charge density is con-

stant, the current passing into the region through the bounding surface

must at all times equal the current passing outward. Over the bounding
surface S we have

(13)

and at every interior point

(14) V J = 0.

Any motion characterized by vector or scalar quantities which are

independent of the time is said to be steady, or stationary. A steady-

state flow of electricity is thus defined by a vector J which at every point

within the region is constant in direction and magnitude. In virtue of

the divergenceless character of such a current distribution, it follows
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that in the steady state all streamlines, or current filaments, close upon
themselves. The field of the vector J is solenoidal.

1.3. Divergence of the Field Vectors. Two further conditions satis-

fied by the vectors B and D may be deduced directly from Maxwell's

equations by noting that the divergence of the curl of any vector vanishes

identically. We take the divergence of Eq. (1) and obtain

(15) v.f =
|v.B-0.

The commutation of the operators V and d/dt is admissible, for at an

ordinary point B and all its derivatives are assumed to be continuous.

It follows from (15) that at every point in the field the divergence of B
is constant. If ever in its past history the field has vanished, this con-

stant must be zero and, since one may reasonably suppose that the

initial generation of the field was at a time not infinitely remote, we
conclude that

(16) V B =
0,

and the field of B is therefore solenoidal.

Likewise the divergence of Eq. (2) leads to

(i?) VJ + |V.D
=

O,

or, in virtue of (12), to

(18) I (V D -
p)
= 0.

If again we admit that at some time in its past or future history the field

may vanish, it is necessary that

(19) V - D =
p.

The charges distributed with a density p constitute the sources of the

vector D.

The divergence equations (16) and (19) are frequently included as

part of Maxwell's system. It must be noted, however, that if one assumes

the conservation of charge, these are not independent relations.

1.4. Integral Form of the Field Equations. The properties of an

electromagnetic field which have been specified by the differential equa-
tions (1), (2), (16), and (19) may also be expressed by an equivalent

system of integral relations. To obtain this equivalent system, we apply
a second fundamental theorem of vector analysis.

According to Stokes' theorem the line integral of a vector taken

about a closed contour can be transformed into a surface integral extended
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over a surface bounded by the contour. The contour C must either be

regular or be resolvable into a finite number of regular arcs, and it is

assumed that the otherwise arbitrary surface S bounded by C is two-

sided and may be resolved into a finite number of regular elements. The
positive side of the surface S is related to the positive direction of circu-

lation on the contour by the usual convention that an observer, moving
in a positive sense along C, will have the positive side of S on his left.

Then if A(z, y, z) is any vector function of position, which together with

its first derivatives is continuous at all points of S and C, it may be shown
that

(20)

where ds is an element of length along C and n is a unit vector normal to

the positive side of the element of area da. This transformation can

also be looked upon as an equation defining the curl. To determine the

value of V X A at a point P on
fif, we allow the contour to shrink about P

until the enclosed area S is reduced to an infinitesimal element of a plane
whose normal is in the direction specified by n. The integral on the

right is then equal to (V X A) n/S, plus infinitesimals of higher order. The

projection of the vector V X A in the direction of the normal is, therefore,

(21) (V X A) n = lim ~ f A - ds.
c-o o Jc

The curl of a vector at a point is to be interpreted as the line integral of

that vector about an infinitesimal path on a surface containing the point,

per unit of enclosed area. Since A has been assumed analytic in the

neighborhood of P, its value at any point on C may be expressed in

terms of the values of A and its derivatives at P, so that the evaluation of

the line integral in (21) about the infinitesimal path can actually be

carried out. In particular, if the element S is oriented parallel to the

2/z-coordinate plane, one finds for the x-component of the curl

(22) (V X A). -^ -

Proceeding likewise for the y- and 2-components we obtaip

(23) vxA =
v

i j k

1 A 1
dx dy dz

jflijt IJiJJ A*.
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Let us now integrate the normal component of the vector SB/dt over

any regular surface S bounded by a closed contour C. From (1) and

(20) it follows that

(24) f E ds + f
Jc Js

n da = 0.

If the contour is fixed, the operator d/dt may be brought out from under

the sign of integration.

(25) I E-ds = ~ I B-ncta,
Jc ot Js

By definition, the quantity

(26) -I B nda

FIG. 1. Convention relating
direction of the positive normal
n to the direction of circulation

about a contour C.

is the magnetic flux, or more specifically the flux of the vector B through
the surface. According to (25) the line integral of the vector E about any

closed, regular curve in the field is equal
to the time rate of decrease of the magnetic
flux through any surface spanning that

curve. The relation between the direction

of circulation about a contour and the posi-

tive normal to a surface bounded by it is

illustrated in Fig. 1. A positive direction

about C is chosen arbitrarily and the flux <

is then positive or negative according to

the direction of the lines of B with respect

to the normal. The time rate of change of <$> is in turn positive or nega-

tive as the positive flux is increasing or decreasing.

We recall that the application of Stokes' theorem to Eq. (1) is valid

only if the vector E and its derivatives are continuous at all points of S
and C. Since discontinuities in both E and B occur across surfaces

marking sudden changes in the physical properties of the medium, the

question may be raised as to what extent (25) represents a general law

of the electromagnetic field. One might suppose, for example, that the

contour linked or pierced a closed iron transformer core. To obviate

this difficulty it may be imagined that at the surface of every material

body in the field the physical properties vary rapidly but continuously

within a thin boundary layer from their values just inside to their values

just outside the surface. In this manner all discontinuities are eliminated

from the field and (25) may be applied to every closed contour.

The experiments of Faraday indicated that the relation (25) holds

whatever the cause of flux variation. The partial derivative implies a
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variable flux density threading a fixed contour, but the total flux can

likewise be changed by a deformation of the contour. To take this into

account the Faraday law is written generally in the form

(27) I E ds = -
-j4 I B n da.

Jc at Js

It can be shown that (27) is in fact a consequence of the differential

field equations, but the proof must be based on the electrodynamics of

moving bodies which will be touched upon in Sec. 1.22.

In like fashion Eq. (2) may be replaced by an equivalent integral

relation,

(28) I H ds = I + ^ I D n da.
Jc at Js

where I is the total current linking the contour as defined in (5). In the

steady state, the integral on the right is zero and the conduction current /

through any regular surface is equal to the line integral of the vector H
about its contour. If, however, the field is variable, the vector d'D/di

has associated with it a field H exactly equal to that which would be

produced by a current distribution of density

To this quantity Maxwell gave the name "displacement current/' a term

which we shall occasionally employ without committing ourselves as

yet to any particular interpretation of the vector D.

The two remaining field equations (16) and (19) can be expressed in

an equivalent integral form with the help of the divergence theorem.

One obtains

(30) B n da = 0,

stating that the total flux of the vector B crossing any closed, regular

surface is zero, and

(31)

according to which the flux of the vector D through a closed surface is

equal to the total charge q contained within. The circle through the

sign of integration is frequently employed to emphasize the fact that a

contour or surface is closed.
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MACROSCOPIC PROPERTIES OF MATTER

1.5. The Inductive Capacities e and y. No other assumptions have
been made thus far than that an electromagnetic field may be charac-

terized by four vectors E, B, D, and H, which at ordinary points satisfy
Maxwell's equations, and that the distribution of current which gives
rise to this field is such as to ensure the conservation of charge. Between
the five vectors E, B, D, H, J there are but two independent relations, the

equations (1) and (2) of the preceding section, and we are therefore obliged
to impose further conditions if the system is to be made determinate.

Let us begin with the assumption that at any given point in the field,

whether in free space or within matter, the vector D may be represented
as a function of E and the vector H as a function of B.

(1) D D(E), H =
ff(B).

The nature of these functional relations is to be determined solely by the

physical properties of the medium in the immediate neighborhood of the

specified point. Certain simple relations are of most common occurrence.

1. In free space, D differs from E only by a constant factor, as does H
from B. Following the traditional usage, we shall write

(2) D - E, H = - B.
Mo

The values and the dimensions of the constants 6 and ju will depend
upon the system of units adopted. In only one of many wholly arbitrary

systems does D reduce to E and H to B in empty space.
2. If the physical properties of a body in the neighborhood of some

interior point are the same in all directions, the body is said to be iso-

tropic. At every point in an isotropic medium D is parallel to E and H
is parallel to B. The relations between the vectors, moreover, are linear

in almost all the soluble problems of electromagnetic theory. For the

isotropic, linear case we put then

(3) D = eE, H = iB.
M

The factors c and ju, will be called the inductive capacities of the medium.
The dimensionless ratios

(4) K. = 1, Km = ,

*o A*o

are independent of the choice of units and will be referred to as the

specific inductive capacities. The properties of a homogeneous medium
are constant from point to point and in this case it is customary to refer
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to K as the dielectric constant and to Km as the permeability. In general,

however, one must look upon the inductive capacities as scalar functions

of position which characterize the electromagnetic properties of matter

in the large.

3. The properties of anisotropic matter vary in a different manner

along different directions about a point. In this case the vectors D and

E, H and B are parallel only along certain preferred axes. If it may be

assumed that the relations are still linear, as is usually the case, one

may express each rectangular component of D as a linear function of the

three components of E.

-f-

(5) Dy

The coefficients ,& of this linear transformation are the components of a

symmetric tensor. An analogous relation may be set up between the

vectors H and B, but the occurrence of such a linear anisotropy in what

may properly be called macroscopic problems is rare.

The distinction between the microscopic and macroscopic viewpoints
is nowhere sharper than in the interpretation of these parameters e and /*,

or their tensor equivalents. A microscopic theory must deduce the

physical properties of matter from its atomic structure. It must enable

one to calculate not only the average field that prevails within a body but

also its local value in the neighborhood of a specific atom. It must tell

us how the atom will be deformed under the influence of that local field,

and how the aggregate effect of these atomic deformations may be

represented in the large by such parameters as e and ju.

We, on the other hand, are from the present standpoint sheer behav-

iorists. Our knowledge of matter is, to use a large word, purely phe-

nomenological. Each substance is to be characterized electromagnetically

in terms of a minimum number of parameters. The dependence of the

parameters e and /x on such physical variables as density, temperature,
and frequency will be established by experiment. Information given by
such measurements sheds much light on the internal structure of matter,
but the internal structure is not our present concern.

1.6. Electric and Magnetic Polarization. To describe the electro-

magnetic state of a sample of matter, it will prove convenient to intro-

duce two additional vectors. We shall define the electric and magnetic

polarization vectors by the equations

(6) P = D - e E, M = ~ B - H.
Mo

The polarization vectors are thus definitely associated with matter and
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vanish in free space. By means of these relations let us now eliminate

D and H from the field equations. There results the system

VXE + .0,

(7) V X B -
eoMo^

= MO
(j
+ ^ + V X

M),

V B =
0, V E = -

(p
- V P),

which we are free to interpret as follows: the presence of rigid material

bodies in an electromagnetic field may be completely accounted for by an

equivalent distribution of charge of density V P, and an equivalent

dP
distribution of current of density

- + V X M.
ot

In isotropic media the polarization vectors are parallel to the corre-

sponding field vectors, and are found experimentally to be proportional

to them if ferromagnetic materials are excluded. The electric and

magnetic susceptibilities Xe and \m are defined by the relations

(8) P = x^ E, M = x-H.

Logically the magnetic polarization M should be placed proportional to B.

Long usage, however, has associated it with H and to avoid confusion

on a matter which is really of no great importance we adhere to this

convention. The susceptibilities x and \m defined by (8) are dimension-

less ratios whose values are independent of the system of units employed.
In due course it will be shown that E and B are force vectors and in this

sense are fundamental. D and H are derived vectors associated with

the state of matter. The polarization vector P has the dimensions of D,
not E, while M and H are dimensionally alike. From (3), (6), and (8) it

follows at once that the susceptibilities are related to the specific induc-

tive capacities by the equations

(9) Xe = * 1, Xm = *rn
~ 1.

In anisotropic media the susceptibilities are represented by the com-

ponents of a tensor.

It will be a part of our task in later chapters to formulate experiments

by means of which the susceptibility of a substance may be accurately

measured. Such measurements show that the electric susceptibility is

always positive. In gases it is of the order of 0.0006 (air), but in liquids

and solids it may attain values as large as 80 (water). An inherent

difference in the nature of the vectors P and M is indicated by the fact

that the magnetic susceptibility x may be either positive or negative.

Substances characterized by a positive susceptibility are said to be
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paramagnetic, whereas those whose susceptibility is negative are called

diamagnetic. The metals of the ferromagnetic group, including iron,

nickel, cobalt, and their alloys, constitute a particular class of substances

of enormous positive susceptibility, the value of which may be of the

order of many thousands. In view of the nonlinear relation of M to H
peculiar to these materials, the susceptibility %m must now be interpreted

as the slope of a tangent to the M-H curve at a point corresponding to a

particular value of H. To include such cases the definition of suscepti-

bility is generalized to

x =Xm

The susceptibilities of all nonferromagnetic materials, whether para-

magnetic or diamagnetic, are so small as to be negligible for most practical

purposes.

Thus far it has, been assumed that a functional relation exists

between the vector P or M and the applied field, and for this reason

they may properly be called the induced polarizations. Under certain

conditions, however, a magnetic field may be associated with a ferro-

magnetic body in the absence of any external excitation. The body is

then said to be in a state of permanent magnetization. We shall main-

tain our initial assumption that the field both inside and outside the

magnet is completely defined by the vectors B and H. But now the

difference of these two vectors at an interior point is a fixed vector M
,

which may be called the intensity of magnetization and which bears no

functional relationship to H. On the contrary the magnetization M
must be interpreted as the source of the field. If an external field is

superposed on the field of a permanent magnet, the intensity of magneti-
zation will be augmented by the induced polarization M. At any interior

point we have, therefore,

(11) B = Mo(H + M + Mo).

Of this induced polarization we can only say for the present that it is a

function of the resultant H prevailing at the same point. The relation

of the resultant field within the body to the intensity of an applied field

generated by external sources depends not only on the magnetization
M but also upon the shape of the body. There will be occasion to

examine this matter more carefully in Chap. IV.

1.7. Conducting Media. To Maxwell's equations there must now
be added a third and last empirical relation between the current density

and the field. We shall assume that at any point within a liquid or

solid the current density is a function of the field E.

(12) J = J(E).
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The distribution of current in an ionized, gaseous medium may depend
also on the intensity of the magnetic field, but since electromagnetic

phenomena in gaseous discharges are in general governed by a multitude
of factors other than those taken into account in the present theory, we
shall exclude such cases from further consideration. 1

Throughout a remarkably wide range of conditions, in both solids

and weakly ionized solutions, the relation (12) proves to be linear.

(13) J - <rE.

The factor cr is called the conductivity of the medium. The distinction

between good and poor conductors, or insulators, is relative and arbitrary.
All substances exhibit conductivity to some degree but the range of

observed values of a is tremendous. The conductivity of copper, for

example, is some 107 times as great as that of such a "good" conductor
as sea water, and 10 19 times that of ordinary glass. In Appendix III

will be found an abbreviated table of the conductivities of representative
materials.

Equation (13) is simply Ohm's law. Let us imagine, for example, a

stationary distribution of current throughout the volume of any con-

ducting medium. In virtue of the divergenceless character of the flow

this distribution may be represented by closed streamlines. If a and 6

are two points on a particular streamline and ds is an element of its

length, we have

f E-rfs = (

b

l
J* Ja <r

(14) E ds = l.dn.
Ja Ja 0-

A bundle of adjacent streamlines constitutes a current filament or tube.

Since the flow is solenoidal, the current 7 through every cross section of

the filament is the same. Let S be the cross-sectional area of the filament

on a plane drawn normal to the direction of flow. S need not be infini-

tesimal, but is assumed to be so small that over its area the current

density is uniform. Then SJ ds = / ds, and

C
b

C b
i

(15) I E ds = I I -~ ds.
Ja Ja <TO

The factor,

1 It is true that to a very slight degree the current distribution in a liquid or solid

conductor may be modified by an impressed magnetic field, but the magnitude of this

so-called Hall effect is so small that it may be ignored without incurring an appreciable
error.
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is equal to the resistance of the filament between the points a and 6.

The resistance of a linear section of homogeneous conductor of uniform

cross section S and length I is

(17) B-i

a formula which is strictly valid only in the case of stationary currents.

Within a region of nonvanishing conductivity there can be no permanent
distribution of free charge. This fundamentally important theorem can

be easily demonstrated when the medium is homogeneous and such that

the relations between D and E and J and E are linear. By the equation
of continuity,

On the other hand in a. homogeneous medium

(19) V-E = ip,

which combined with (18) leads to

(20) ! +
^ p = 0.

The density of charge at any instant is, therefore,

(21) p = p e~' ,

the constant of integration p being equal to the density at the time t = 0.

The initial charge distribution throughout the conductor decays expo-

nentially with the time at every point and in a manner wholly inde-

pendent of the applied field. If the charge density is initially zero, it

remains zero at all times thereafter.

The time

(22) r = 1

required for the charge at any point to decay to 1/e of its original value

is called the relaxation time. In all but the poorest conductors r is

exceedingly small. Thus in sea water the relaxation time is about

2 X 10~10 sec. ; even in such a poor conductor as distilled water it is not

greater than 10~6 sec. In the best insulators, such as fused quartz, it

may nevertheless assume values exceeding 106
sec., an instance of the

extraordinary range in the possible values of the parameter cr.
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Let us suppose that at t = a charge is concentrated within a small

spherical region located somewhere in a conducting body. At every
other point of the conductor the charge density is zero. The charge
within the sphere now begins to fade away exponentially, but according
to (21) no charge can reappear anywhere within the conductor. What
becomes of it? Since the charge is conserved, the decay of charge
within the spherical surface must be accompanied by an outward flow,

or current. No charge can accumulate at any other interior point; hence

the flow must be divergenceless. It will be arrested, however, on the

outer surface of the conductor and it is here that we shall rediscover the

charge that has been lost from the central sphere. This surface charge
makes its appearance at the exact instant that the interior charge begins
to decay, for the total charge is constant.

UNITS AND DIMENSIONS

1.8. The M.K.S. or Giorgi System. An electromagnetic field thus

far is no more than a complex of vectors subject to a postulated system of

differential equations. To proceed further we must establish the physical

dimensions of these vectors and agree on the units in which they are

to be measured.

In the customary sense, an
"
absolute" system of units is one in which

every quantity may be measured or expressed in terms of the three

fundamental quantities mass, length, and time. Now in electromagnetic

theory there is an essential arbitrariness in the matter of dimensions

which is introduced with the factors CQ and /*o connecting D and E, H
and B respectively in free space. No experiment has yet been imagined

by means of which dimensions may be attributed to either c or /z as

an independent physical entity. On the other hand, it is a direct conse-

quence of the field equations that the quantity

(1) c = -^
shall have the dimensions of a velocity, and every arbitrary choice of

and JJLQ is subject to this restriction. The magnitude of this velocity

cannot be calculated a priori, but by suitable experiment it may be

measured. The value obtained by the method of Rosa and Dorsey of

the Bureau of Standards and corrected by Curtis 1 in 1929 is

(2) c = *-. = 2.99790 X 10 8
meters/sec.,V o

1 ROSA and DORSET, A New Determination of the Ratio of the Electrostatic Unit

of Electricity, Bur. Standards, Bull. 3, p. 433, 1907. CURTIS, Bur. Standards J.

Research, 3, 63, 1929.
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or for all practical purposes

(3) c = 3 X 10 8
meters/sec.

Throughout the early history of electromagnetic theory the absolute

electromagnetic system of units was employed for all scientific investiga-

tions. In this system the centimeter was adopted as the unit of length,

the gram as the unit of mass, the second as the unit of time, and as a

fourth unit the factor jz was placed arbitrarily equal to unity and con-

sidered dimensionless. The dimensions of CQ were then uniquely deter-

mined by (1) and it could be shown that the units and dimensions of

every other quantity entering into the theory might be expressed in

terms of centimeters, grams, seconds, and p, . Unfortunately, this abso-

lute system failed to meet the needs of practice. The units of resistance

and of electromotive force were, for example, far too small. To remedy
this defect a practical system was adopted. Each unit of the practical

system had the dimensions of the corresponding electromagnetic unit and

differed from it in magnitude by a power of ten which, in the case of

voltage and resistance at least, was wholly arbitrary. The practical

units have the great advantage of convenient size and they are now

universally employed for technical measurements and computations.
Since they have been defined as arbitrary multiples of absolute units, they
do not, however, constitute an absolute system. Now the quantities

mass, length, and time are fundamental solely because the physicist has

found it expedient to raise them to that rank. That there are other

fundamental quantities is obvious from the fact that all electromagnetic

quantities cannot be expressed in terms of these three alone. The
restriction of the term " absolute" to systems based on mass, length, and

time is, therefore, wholly unwarranted; one should ask only that such a

system be self-consistent and that every quantity be defined in terms of

a minimum number of basic, independent units. The antipathy of

physicists in the past to the practical system of electrical units has been

based not on any firm belief in the sanctity of mass, length, and time,

but rather on the lack of self-consistency within that system.

Fortunately a most satisfactory solution has been found for this

difficulty. In 1901 Giorgi,
1

pursuing an idea originally due to Maxwell,
called attention to the fact that the practical system could be converted

into an absolute system by an appropriate choice of fundamental units.

It is indeed only necessary to choose for the unit of length the inter-

1 GIORGI: Unita Razionali di Elettromagnetismo, Atti dell' A.E.I., 1901. An
historical review of the development of the practical system, including a report of the

action taken at the 1935 meeting of the International Electrotechnical Commission
and an extensive bibliography is given by Kennelly, /. Inst. Elec. Engrs., 78, 235-

245, 1936. See also GLAZEBBOOK, The M.K.S. System of Electrical Units, /. Inst.

Elec. Engrs., 78, pp. 245-247.
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national meter, for the unit of mass the kilogram, for the unit of time the

second, and as a fourth unit any electrical quantity belonging to the

practical system such as the coulomb, the ampere, or the ohm. From
the field equations it is then possible to deduce the units and dimensions

of every electromagnetic quantity in terms of these four fundamental

units. Moreover the derived quantities will be related to each other

exactly as in the practical system and may, therefore, be expressed in

practical units. In particular it is found that the parameter /* must
have the value 47r X 10~7

,
whence from (1) the value of e may be calcu-

lated. Inversely one might equally well assume this value of MO as a

fourth basic unit and then deduce the practical series from the field

equations.

At a plenary session in June, 1935, the International Electrotechnical

Commission adopted unanimously the m.k.s. system of Giorgi. Certain

questions, however, still remain to be settled. No official agreement
has as yet been reached as to the fourth fundamental unit. Giorgi him-
self recommended that the ohm, a material standard defined as the

resistance of a specified column of mercury under specified conditions

of pressure and temperature, be introduced as a basic quantity. If

Mo = 4?r X 10~7 be chosen as the fourth unit and assumed dimensionless,
all derived quantities may be expressed in terms of mass, length, and
time alone, the dimensions of each being identical with those of the corre-

sponding quantity in the absolute electromagnetic system and differing

from them only in the size of the units. This assumption leads, however,
to fractional exponents in the dimensions of many quantities, a direct

consequence of our arbitrariness in clinging to mass, length, and time

as the sole fundamental entities. In the absolute electromagnetic sys-

tem, for example, the dimensions of charge are grams* centimeters*, an

irrationality which can hardly be physically significant. These fractional

exponents are entirely eliminated if we choose as a fourth unit the

coulomb; for this reason, charge has been advocated at various times as a

fundamental quantity quite apart from the question of its magnitude.
1

In the present volume we shall adhere exclusively to the meter-kilogram-
second-coulomb system. A subsequent choice by the I.E.G. of some
other electrical quantity as basic will in nowise affect the size of our units

or the form of the equations.
2

x See the discussion by WALLOT: Elektrotechnische Zeitschrift, Nos. 44r-46, 1922.

Also SOMMEBFELD: "Ueber die Electromagnetischen Einheiten," pp. 157-165, Zeeman

Verhandelingen, Martinus Nijhoff, The Hague, 1935; Physik. Z. 36, 81^820, 1935.
2 No ruling has been made as yet on the question of rationalization and opinion

seems equally divided in favor and against. If one bases the theory on Maxwell's

equations, it seems definitely advantageous to drop the factors 4?r which in unrational-

ized systems stand before the charge and current densities. A rationalized system
will be employed in this book.
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To demonstrate that the proposed units do constitute a self-consistent

system let us proceed as follows. The unit of current in the m.k.s.

system is to be the absolute ampere and the unit of resistance is to be

the absolute ohm. These quantities are to be such that the work

expended per second by a current of 1 amp. passing through a resistance

of 1 ohm is 1 joule (absolute). If R is the resistance of a section of

conductor carrying a constant current of I amp., the work dissipated in

heat in t sec. is

(4) W = PRt joules.

By means of a calorimeter the heat generated may be measured and thus

one determines the relation of the unit of electrical energy to the unit

quantity of heat. It is desired that the joule defined by (4) be identical

with the joule defined as a unit of mechanical work, so that in the electrical

as well as in the mechanical case

(5)
*

1 joule = 0.2389 gram-calorie (mean).

Now we shall define the ampere on the basis of the equation of continuity

(6), page 4, as the current which transports across any surface 1 coulomb

in 1 sec. Then the ohm is a derived unit whose magnitude and dimensions

are determined by (4) :

,-v -.in watt - kilogram meter2

(6) 1 ohm = 1-
2
= 1-r PS
-

j*
ampere 2 coulomb 2 second

since 1 watt is equal to 1 joule/sec. The resistivity of a medium is

defined as the resistance measured between two parallel faces of a unit

cube. The reciprocal of this quantity is the conductivity. The dimen-

sions of v follow from Eq. (17), page 15.

/rr v . ., - , ,
. ., 1 . coulomb 2 second

(7) 1 unit of conductivity = -r-T = 1 rn-1 rN ' ohm meter kilogram meter3

In the United States the reciprocal ohm is usually called the mho,

although the name Siemens has been adopted officially by the I.E.C.

The unit of conductivity is therefore 1 siemens/meter.

The volt will be defined simply as 1 watt/amp., or

(8) 1 volt = 1
watt = 1

kilogram meter2

^
ampere coulomb second 2

Since the unit of current density is 1 amp./meter
2
,
we deduce from the.

relation J = <rE that

/r^ i -j. r T? i wa*t i volt . kilogram meter
(9) 1 unit of E = 1- = 1 = 1-i^r-TV

ampere meter meter coulomb second 2
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The power expended per unit volume by a current of density J is there-

fore E J watts/meter
3

. It will be noted furthermore that the product
of charge and electric field intensity E has the dimensions of force. Let a

charge of 1 coulomb be placed in an electric field whose intensity is

1 volt/meter.

,^N . , , vv . volt
., joule . kilogram meter

(10) 1 coulomb X 1 r = 1 +
= 1 jx ' meter meter second 2

The unit of force in the m.k.s. system is called the newton, and is equiva-

lent to 1 joule/meter, or 10 5
dynes.

The flux of the vector B shall be measured in webers,

(11) 3> = f B n da webers,

and the intensity of the field B, or flux density, may therefore be expressed

in webers per square meter. According to (25), page 8,

(12)
f E .<to=-$

webei
\
3

.

x '
Jc at second

/*6

The line integral I E ds is measured in volts and is usually called the

electromotive force (abbreviated e.m.f.) between the points a and 6,

although its value in a nonstationary field depends on the path of integra-

tion. The induced e.m.f. around any closed contour C is, therefore,

equal to the rate of decrease of flux threading that contour, so that

between the units there exists the relation

. ., .,
weber

1 volt =

or

,. i u i 3 u^e
i kilogram meter2

(14) 1 weber = 1 - = 1-~ r--rv '
ampere coulomb second

It is important to note that the product of current and magnetic flux

is an energy. Note also that the product of B and a velocity is measured

in volts per meter, and is therefore a quantity of the same kind as E.

/ K\ i ,- t T -i
weber - kilogram

(15) 1 unit of B = 1 75 = 1-i T~
--vv meter 2 coulomb second

/i\ - ., - |T> , , ,
- weber vx - meter . volt - ., riT,,

(16) lumtof |B| |v|
-I, X 1 ^^^^

= 1 jj^
= 1 unit of |E|.

The units which have been deduced thus far constitute an absolute

system in the sense that each has been expressed in term? of the four
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basic quantities, mass, length, time, and charge. That this system is

identical with the practical series may be verified by the substitutions

(17) 1 kilogram = 10* grams, 1 meter = 10 2
centimeters,

1 coulomb =
-nr abcoulomb.

The numerical factors which now appear in each relation are observed

to be those that relate the practical units to the absolute electromagnetic
units. For example, from (6),

1
, _- kilogram meter2

__ 10 3
grams 10 4 centimeters2

coulomb 2 second 10~2 abcoulomb 2 seconds
= 109 abohms;

and again from (8),

t u 1 kilogram -meter2
___

10 3
grams 104 centimeters2

coulomb second 2 10" 1 abcoulomb second 2

= 10 8 abvolts.

The series must be completed by a determination of the units and

dimensions of the vectors D and H. Since D = eE, H = - B, it is

necessary and sufficient that o and /*o be determined such as to satisfy

Eq. (2) and such that the proper ratio of practical to absolute units be

maintained. We shall represent mass, length, time, and charge by the

letters M, L, T
7

,
and Q, respectively, and employ the customary symbol [A]

as meaning "the dimensions of A." Then from Eq. (31), page 9,

(20) f D n da = q coulombs

and, hence,

/91 \ mi _ coulombs Q
(21) [D] -

meter2
=
I?

(22) [co]
= r^-1 = C0ul mbs

1 j L J
- .

# volt -meter ML3

The farad, a derived unit of capacity, is defined as the capacity of a

conducting body whose potential will be raised 1 volt by a charge of

1 coulomb. It is equal, in other words, to 1 coulomb/volt. The
parameter CD in the m.k.s. system has dimensions, and may be measured
in farads per meter.

By analogy with the electrical case, the line integral f H ds taken
Ja

along a specified path is commonly called the magnetomotive force
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(abbreviated m.m.f.). In a stationary magnetic field

(23) I H ds = J amperes,

where / is the current determined by the flow of charge through any
surface spanning the closed contour C. If tk** field is variable, I must

include the displacement current as in (28), page 9. According to (23)

a magnetomotive force has the dimensions of current. In practice,

however, the current is frequently carried by the turns of a coil or winding
which is linked by the contour C. If there are n such turns carrying a

current I, the total current threading C is nl ampere-turns and it is

customary to express magnetomotive force in these terms, although

dimensionally n is a numeric.

(24) [m.m.f.] = ampere-turns,

whence

/oc x rTT1 ampere-turns Q
(25) IH] =

meter
=
If'

It will be observed that the dimensions of D and those of H divided by a

velocity are identical. For the parameter MO we find

/OA\ r i _ & volt * second ML
(26) lMoJ

""

ampere - meter
~
&

As in the case of o it is convenient to express MO in terms of a derived

unit, in this case the henry, defined as 1 volt-second/amp. (The henry
is that inductance in which an induced e.m.f . of 1 volt is generated when

the inducing current is varying at the rate of 1 amp. /sec.) The parameter

Mo may, therefore, be measured in henrys per meter.

From (22) and (26) it follows now that

(27)
LMOCO

and hence that our system is indeed dimensionally consistent with

Eq. (2). Since it is known that in the rationalized, absolute c.g.s.

electromagnetic system MO is equal in magnitude to 4?r, Eq. (26) fixes also

its magnitude in the m.k.s. system.

/rtox . gram centimeters A 10~3
kilogram 10~2 meter

(28) Mo = 4rr ~ r ; r-s = w ryrf * r~5 ;

abcoulombs 2 10 2 coulombs 2

or

(29) N - 4r X 10-'
kil0

g^'Ko

e
3

terS = 1-257 X 10-.

coulombs 2 meter
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The appropriate value of o is then determined from

(2) c = -^L= = 2.998 X 10 8 meters

\AoMo second

to be

(30) eo - 8.854 X W-^ = 8.854 X 10-3
.

kilogram meter3 meter

It is frequently convenient to know the reciprocal values of these factors,

(31) = 0.7958 X 10 , = 0.1129 X 10 -,
Mo henry c farad

and the quantities

(32) Ap = 376.6 ohms, .p = 2.655 X 10~ 3
mho,\ *o \ MO

recur constantly throughout the investigation of wave propagation.
In Appendix I there will be found a summary of the units and dimen-

sions of electromagnetic quantities in terms of mass, length, time, and

charge.

THE ELECTROMAGNETIC POTENTIALS

1.9. Vector and Scalar Potentials. The analysis of an electromagnetic
field is often facilitated by the use of auxiliary functions known as poten-
tials. At every ordinary point of space, the field vectors satisfy the

system

(I) V X E + ~ =
0, (III) V B =

0,

(II) VXH-~~ = J, (IV) V-D =
p.

According to (III) the field of the vector B is always solenoidal. Conse-

quently B can be represented as the curl of another vector AO.

(1) B = V X Ao.

However A is not uniquely defined by (1) ; for B is equal also to the curl

of some vector A,

(2) B V X A,

where

(3) A = Ao - V^,

&nd ^ is any arbitrary scalar function of position.
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If now B is replaced in (I) by either (1) or (2), we obtain, respectively,

Thus the fields of the vectors E H ~ and E + -rr are irrotational and
ot ot

equal to the gradients of two scalar functions < and <t>.

(5) E = -V* -
^?,

(6) E = -v* -

The functions <f> and $ are obviously related by

(7) *-* + &
The functions A are vector potentials of the field, and the arc scalar

potentials. AO and <o designate one specific pair of potentials from which

the field can be derived through (1) and (5). An infinite number of

potentials leading to the same field can then be constructed from (3)

and (7).

Let us suppose that the medium is homogeneous and isotropic, and

that and p are independent of field intensity.

(8) D = cE, B = MH.

In terms of the potentials

(9)
x -,

which upon substitution into (II) and (IV) give

(10) V X V X A + ju*V
-TJ

+ M*
^73-

= ML

All particular solutions of (10) and (11) lead to the same electromagnetic

field when subjected to identical boundary conditions. They differ

among themselves by the arbitrary function $. Let us impose now upon
A and <t> the supplementary condition

(12) V A + M ^r
= 0.

To do this it is only necessary that \l/ shall satisfy

(13)
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where 4>o and A are particular solutions of (10) and (11). The potentials

^ and A are now uniquely defined and are solutions of the equations

(14) V X V X A - VV A + M - = /J,

(15)

Equation (14) reduces to the same form as (15) when use is made of

the vector identity

(16) V X V X A = VV A - V VA.

The last term of (16) can be interpreted as the Laplacian operating on

the rectangular components of A. In this case

(17)
^

V 2A-

The expansion of the operator V VA in curvilinear systems will be

discussed in Sec. 1.16, page 50.

The relations (2) and (6) for the vectors B and E are by no means

general. To them may be added any particular solution of the homo-

geneous equations

^T>

(la) V X E + 25 =
0, (Ilia) V B =

0,

(Ha) V X H - ~ =
0, (IVa) V-D = 0.

ot

From the symmetry of this system it is at once evident that it can be

satisfied identically by

(18) D = -V X A*, H -
-V<f>* - -^,

from which we construct

(19) E =
-J

V X A*, B = -M
(v<*>*

+

The new potentials are subject only to the conditions

(20)
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A general solution of the inhomogeneous system (I) to (IV) is, therefore,

(21) B = V X A
fj, ~~^ M^0*,

(22) E = -V0 - ~ - ~ V X A*,

provided M and e are constant.

The functions <* and A* are potentials of a source distribution which

is entirely external to the region considered. Usually <* and A* are put

equal to zero and the potentials of all charges, both distant and local,

are represented by < and A.

At any point where the charge and current densities are zero a

possible field is <o = 0, A = 0. The function ^ is now any solution

of the homogeneous equation

(23) VV - M
^TJ

= 0.

Since at the same point the scalar potential satisfies the same equation,

\l/ may be chosen such that <t> vanishes. In this case the field can be

expressed in terms of a vector potential alone.

(24) B = V X A, E =
~^>

(25) V 2A -
/* -^

=
0, V A = 0.

Concerning the units and dimensions of these new quantities, we

note first that E is measured in volts/meter and that the scalar potential

< is therefore to be measured in volts. If q is a charge measured in

coulombs, it follows that the product q<f> represents an energy expressed

in joules. From the relation B = V X A it is clear that the vector

potential A may be expressed in webers/meter, but equally well in either

volt-seconds/meter or in joules/ampere. The product of current and

vector potential is therefore an energy. The dimensions of A* are found

to be coulombs/meter, while <* will be measured in ampere-turns.

1.10. Homogeneous Conducting Media. In view of the extreme

brevity of the relaxation time it may be assumed that the density of

free charge is always zero in the interior of a conductor. The field

equations for a homogeneous, isotropic medium then reduce to

(16) V X E + 22 =
o, (III6) V B =

0,

(116) VXH-^-<rE =
0, (IV6) V D = 0.

ot
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We are now free to express either B or D in terms of a vector potential.

In the first alternative we have

(26) B = V X A, E = -V* -^
If the vector and scalar potentials are subjected to the relation

(27) *-A + /*

a possible electromagnetic field may be constructed from any pair of

solutions of the equations

(28)

(29) w \jv

As in the preceding paragraph one will note that the field vectors are

invariant to changes in the potentials satisfying the relations

/e.^ , , ,
d\l/ . . _ .

(30) <b = </>o + -^7> A = Ao \y,
ut

where 6
,
A are the potentials of a possible field and \l/ is an arbitrary

scalar function. In order that A and <t> satisfy (27) it is only necessary

that \l/ be subjected to the additional condition

d^\b d\ls . $00
(31) VnP /x IJLO"

:== V AO i M^ ~r p>(T<f>Q,

To a particular solution of (31) one is free to add any solution of the

homogeneous equation

Frequently it is convenient to choose \l/ such that the scalar potential

vanishes. The field within the conductor is then determined by a single

vector A.

(33) B = V X A, E = -^
(34) V 2A -

/* ^ -
iur^ =

0, V A = 0.

The field may also be defined in terms of potentials <* and A* by

(35) D = -V X A*, H = -V<f>*
-^ - - A*.
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If <f>* and A* are to satisfy (28) and (29), it is necessary that they be

related by

(36) V A* + M6 ? = 0.

The field defined by (35) is invariant to all transformations of the poten-

tials of the type

(37) ** = tf + 1 +
f **> A * = A* - v+*>

where as above <* and A* are the potentials of any possible electro-

magnetic field. To ensure the relation (36) it is only necessary that \l/*

be chosen such as to satisfy

(38)

Finally, by a proper choice of \f/* the scalar potential <* may be made

to vanish.

(39) D=-VXA*, H=
;)2A* ^A*

(40) V'A* - M ^ -
M<r^ =

0, V A* = 0.

1.11. The Hertz Vectors, or Polarization Potentials. We have seen

that the integration of Maxwell's equations may be reduced to the

determination of a vector and a scalar potential, which in homogeneous
media satisfy one and the same differential equation. It was shown by
Hertz 1 that it is possible under ordinary conditions to define an electro-

magnetic field in terms of a single vector function.

Let us confine ourselves for the present to regions of an isotropic,

homogeneous medium within which there are neither conduction currents

nor free charges. The field equations then reduce to the homogeneous

system (la)-(IVa). We assume, for reasons which will become apparent,

that the vector potential A is proportional to the time derivative of a

vector n.

/^i\ A dn
(41) k==

^~df'

Consequently,

(42) B = MVX^ E= -V*-,*5,

1 HBRTZ, Ann. Physik, 38, 1, 1888. The general solution is due to Righi: Boloyna

Mem., (5) 9, 1, 1901, and II Nuovo Cimento, (5) 2, 2, 1901.
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and, when in turn this expression for E is introduced into (Ha), it is

found that

(43)
|

We recall that at points where there is no charge, the scalar function <

is wholly arbitrary so long as it satisfies an equation such as (23). In

the present instance it will be chosen such that

(44) 4 = -V-n.

Then upon integrating (43) with respect to the time, we obtain

(45) VXVxn-VV-II + jLie -^
= constant.

The particular value of the constant does not affect the determination of

the field and we are therefore free to place it equal to zero. Equation

(IVa) is also satisfied, for the divergence of the curl of any vector vanishes

identically. Then we may state that every solution of the vector equation

(46) vxv

determines an electromagnetic field through

(47) B = MeV X -~, E = VV . H -

The condition that </> shall satisfy (23) is fulfilled in virtue of (46). One

may replace (46) by

(48)

provided V 2
is understood to operate on the rectangular components of n.

Since the vector D as well as B is solenoidal in a charge-free region,

an alternative solution can be constructed of the form

(49) A* = Me~; 0*=-V.n*,

(50) D - -/16V X ^ H = VV II* - M -i

where n* is any solution of (46) or (48).

From these results we conclude that the electromagnetic field within

a region throughout which c and ju are constant, p and J equal to zero,

may be resolved into two partial fields, the one derived from the vector n
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and the other from the vector n*. The origin of these fields lies exterior

to the region. To determine the physical significance of the Hertz

vectors it is now necessary to relate them to their sources; in other words,

we must find the inhomogeneous equations from which (48) is derived.

Let us express the vector D in terms of E and the electric polariza-

tion P. According to (6), page 11, D = E + P. Then in place of

(Ha) and (IVa), we must now write

It may be verified without difficulty that these two equations, as well

as (la) and (Ilia), are still identically satisfied by (47), provided only

that be replaced by and that n be now any solution of

(52)

The source of the vector H and the electromagnetic field derived from it is a

distribution of electric polarization P. In due course we shall interpret

the vector P as the electric dipole moment per unit volume of the medium.

Since H is associated with a distribution of electric dipoles, the partial

field which it defines is sometimes said to be of electric type, and n itself

may be called the electric polarization potential.

In like manner it can be shown that the field associated with n* is

set up by a distribution of magnetic polarization. According to (6),

page 11, the vector B is related to H by B = Mo(H + M), which when

introduced into (la) and (Ilia) gives

(53) VXE + Mof~= -"'If'
V ' H== ~ V ' M -

Then these equations, as well as (Ha) and (IVa), are satisfied identically

by (50) if we replace there /z by MO and prescribe that n* shall be a

solution of

(54) V 2n*- Mo6-^r
= -M.

We shall show later that the polarization M may be interpreted as the

density of a distribution of magnetic moment. The partial field derived

from n* may be imagined to have its origin in magnetic dipoles and is

said to be a field of magnetic type.

The electric polarization P may be induced in the dielectric by the

field E, but it may also contain a part whose magnitude is controlled

by wholly external factors. In the practical application of the theory

one is interested usually only in this independent part PC, which will be
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shown to represent the electric moment of dipole oscillators activated by
external power sources. The same is true for the magnetic polarization.

To represent these conditions we shall write (6), page 11, in the modified

form

(55) D = eE + Po, H = ~B - Mo,

in which PO and Mo are prescribed and independent of E and H, and

where the induced polarizations of the medium have again been absorbed

into the parameters e and p. Then the electromagnetic field due to these

distributions of PO and MO is determined by

(56) E = VV - M*~ - MV X ~,

(57) H = eVx

when n and IT* are solutions of

(58) VII -
M = -

Po, VII* - Me ~ = ~M .

In virtue of the second of Eqs. (58) and of the identity (16) we may also

write (57) as

(59) H = eV X ~ + V X V X n* - Mo.
ot

Since B = V X A, it is evident from this last relation that the vector

potential A may be derived from the Hertzian vectors by putting

(60) A = Me~ + MV X H* -
Vft

ot

where \[/
is an arbitrary scalar function. The associated potential < is

(61) 4,= _v .n + ^,

with $ subject only to the condition that it satisfy

(62) W -^ = 0.

The extension of these equations to a homogeneous conducting
medium follows without difficulty. The reader will verify by direct

substitution that the system (I6)-(IV6), in a medium which is free of
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fixed polarization P and M , is satisfied by

(63) E = vxvxn- Mvx

(64) H = V X
(*

+
rfl)

+ V X V X H*,

TX vxn- vv-n + pe + nff
=

o,
ffi.fi\

dt dt

( '
a 2n* an*v x v x n* - vv n* + ^^- + *w ^- = o.
at* ot

1.12. Complex Field Vectors and Potentials. It has been shown by
Silberstein, Bateman, and others that the equations satisfied by the

fields and potentials may be reduced to a particularly compact form by
the construction of a complex vector whose real and imaginary parts are

formed from the vectors defining the magnetic and electric fields. 1 The

procedure has no apparent physical significance but frequently facilitates

analysis.

Consider again a homogeneous, isotropic medium in which D = dS,

B = juH. If now we define Q as a complex field vector by

(66) Q = B +

the Maxwell equations (I)-(IV) reduce to

(67) V X Q + n/^ = jj, V - Q = ip.

The vector operation V X Q may be eliminated from (67) by the

simple expedient of taking the curl of both members. By the identity

(16) we obtain

(68) VV - Q - V 2Q + *V^V X - MV X J,
ot

which, on replacing the curl and divergence of Q by their values from

(67), reduces to

(69)

When this last equation is resolved into its real and imaginary com-
1
SILBERSTEIN, Ann. phys., 22, 24, 1907. Also Phil. Mag. (6) 23, 790, 1912.

BATEMAN, "Electrical and Optical Wave Motion," Chap. I, Cambridge University
Press.
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ponents, one obtains the equations satisfied individually by the vectors
E and H.

(70) V*H- /
= -VXJ,

(71) **-,* = Mf + ivP .

Next, let us define Q in terms of complex vector and scalar potentials
L and 3> by the equation

\T

(72) Q = V X L -

subject to the condition

(73) VL + cM^f
= 0.

ot

It will be verified without difficulty that (72) is an integral of (67) pro-
vided the complex potentials satisfy the equations

(74) V*L- eM = - MJ,

(75)

If the real and imaginary parts of these potentials are written in the

form

(76) L = A -

and substituted into (72), one finds again after separation of reals and

imaginaries the general expressions for the field vectors deduced in

Eqs. (21) and (22).

If the free currents and charges are everywhere zero in the region
under consideration, Eq. (67) reduces to

The electromagnetic field may now be expressed in terms of a single

complex Hertzian vector r.

(78) Q = McV X + iV^V X V X T,
ot

where T is any solution of

(79) VT-eM f
= 0.
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If, finally, r is defined as

(80) r = n-

and substituted into (78), one finds again after separation into real and

imaginary parts exactly the expressions (47) and (50) for the electric

and magnetic field vectors.

When the medium is conducting, the field equations are no longer

symmetrical and the method fails. The difficulty may be overcome

if the field varies harmonically. The time then enters explicitly as a

factor such as e i<at
. After differentiating with respect to time, the

system (I6)-(IV6) may be made symmetrical by introducing a complex

inductive capacity e' = e i
CO

BOUNDARY CONDITIONS

1.13. Discontinuities in the Field Vectors. The validity of the field

equations has been postulated only for ordinary points of space; that is

to say, for points in whose neighborhood the physical properties of the

medium vary continuously. However, across any surface which bounds

one body or medium from another there occur sharp changes in the

parameters , p,, and a. On a macroscopic scale these changes may
usually be considered discontinuous and hence the field vectors themselves

may be expected to exhibit corresponding discontinuities.

Let us imagine at the start that the surface S which bounds medium

(1) from medium (2) has been replaced by a very thin transition layer

within which the parameters e, /x, a vary rapidly but continuously from

their values near S in (1) to their values near S in (2). Within this

layer, as within the media (1) and (2), the field vectors and their first

derivatives are continuous, bounded functions of position and time.

Through the layer we now draw a small right cylinder, as indicated in

Fig. 2a. The elements of the cylinder are normal to S and its ends lie

in the surfaces of the layer so that they are separated by just the layer

thickness A. Fixing our attention first on the field of the vector B, we

have

(1) < B n da = 0,

when integrated over the walls and ends of the cylinder. If the base,

whose area is Aa, is made sufficiently small, it may be assumed that B

has a constant value over each end. Neglecting differentials of higher

order we may approximate (1) by

(2) (B ni + B n2)Aa + contributions of the walls = 0.
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The contribution of the walls to the surface integral is directly pro-

portional to AZ. Now let the transition layer shrink into the surface S.

In the limit, as AZ > 0, the ends of the cylinder lie just on either side

of S and the contribution from the walls becomes vanishingly small.

The value of B at a point on S in medium (1) will be denoted by BI, while

"
Boundary
surfaceS

FIG. 2a. For the normal boundary condition.

the corresponding value of B just across the surface in (2) will be denoted

by B 2 . We shall also indicate the positive normal to S by a unit vector

n drawn from (1) into (2). According to this convention medium (1)

lies on the negative side of /S, medium (2) on the positive side, and

HI = n. Then as AZ > 0, Aa 0,

(3) (B 2
- BO n = 0;

the transition of the normal component of B across any surface of discon-

tinuity in the medium is continuous. Equation (3) is a direct consequence
of the condition V B =

0, and is sometimes called the surface divergence.

(1) Cy/^.lJi

FIG. 26. For the tangential boundary condition.

The vector D may be treated in the same manner, but in this case

the surface integral of the normal component over a closed surface is

equal to the total charge contained within it.

(4) a) D n da = q.

The charge is distributed throughout the transition layer with a den-

sity p. As the ends of the cylinder shrink together, the total charge q

remains constant, for it cannot be destroyed, and

(5) q = p AZ Aa.

0, the volume density p becomes infinite. It is thenIn the limit as AZ

convenient to replace the product p AZ by a surface density w, defined as
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the charge per unit area. The transition of the normal component of the

vector D across any surface >S is now given by

(6) (D 2
- DO n = co.

The presence of a layer of charge on S results in an abrupt change in the

normal component of D, the amount of the discontinuity being equal to the

surface density measured in coulombs per square meter.

Turning now to the behavior of the tangential components we replace

the cylinder of Fig. 2a by a rectangular path drawn as in Fig. 26. The
sides of the rectangle of length As lie in either face of the transition layer

and the ends which penetrate the layer are equal in length to its thick-

ness AZ. This rectangle constitutes a contour Co about which

(7) f E ds + f ^ - n da = 0,
JCo JSo Ot

where /So is the area of the rectangle and n its positive normal. The
direction of this positive normal is determined, as in Fig. 1, page 8, by
the direction of circulation about Co. Let TI and ^2 be unit vectors in

the direction of circulation along the lower and upper sides of the rec-

tangle as shown. Neglecting differentials of higher order, one may
approximate (7) by

3T>

(8) (E ti + E * 2) As + contributions from ends = n As AZ.
ut

As the layer contracts to the surface $, the contributions from the seg-

ments at the ends, which are proportional to AZ, become vanishingly

small. If n is again the positive normal to S drawn from (1) into (2),

we may define the unit tangent vector T by

(9) * = n X n.

Since

(10) n X n E = n n X E,

we have in the limit as AZ > 0, As > 0,

(11) n n X (E 2
-

Ei) + lim A - 0.

L AZ-*0 \0l /I

The orientation of the rectangle and hence also of no is entirely

arbitrary, from which it follows that the bracket in (11) must equal

zero, or

(12) n X (E 2
- EO = - lim^ AZ.



SBC. 1.13] DISCONTINUITIES IN THE FIELD VECTORS 37

The field vectors and their derivatives have been assumed to be bounded;

consequently the right-hand side of (12) vanishes with AJ.

(13) n X (Ei
-

Ei) = 0.

The transition of the tangential components of the vector E through a surface

of discontinuity is continuous.

The behavior of H at the boundary may be deduced immediately
from (12) and the field equation

(14) I H ds I n da = I J n da.
JCt JSg ut JS9

We have

(15) n X (H2
- Hi) = lim (~ + J

J
AZ.

The first term on the right of (15) vanishes as AZ > because D and its

derivatives are bounded. If the current density J is finite, the second

term vanishes as well. It may happen, however, that the current

J == J . n As AZ through the rectangle is squeezed into an infinitesimal

layer on the surface S as the sides are brought together. It is con-

venient to represent this surface current by a surface density K defined

as the limit of the product J A I as Ai! > and J > o . Then

(16) n X (Ha
- HO = K.

When the conductivities of the contiguous media are finite, there can be

no surface current, for E is bounded and hence the product 0-E AZ van-

ishes with Ai. In this case, which is the usual one,

(17) n X (H 2 HO =
0, (finite conductivity).

Not infrequently, however, it is necessary to assume the conductivity

of a body to be infinite in order to simplify the analysis of its field. One

must then apply (16) as a boundary condition rather than (17).

Summarizing, we are now able to supplement the field equations by
four relations which determine the transition of an electromagnetic

field from one medium to another separated by a surface of discontinuity.

n (B 2
-

Bi) =
0, n X (H,

- HO = K,
1 ;

n X (E 2
-

Ei) -
0, n (D 2

- DO =
.

From them follow immediately the conditions for the transition of the

normal components of E and H.

(19) n .

(Hl
- ^H^ - (K n. (E,

- SB^ - -
\ M2 / \ 2 / f
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Likewise the tangential components of D and B must satisfy

(20) n X D Z
- Dx =

0, n X B 2
-
^Bi

= M2K.

COORDINATE SYSTEMS

1.14. Unitary and Reciprocal Vectors. It is one of the principal

advantages of vector calculus that the equations defining properties
common to all electromagnetic fields may be formulated without reference

to any particular system of coordinates. To determine the peculiarities

that distinguish a given field from all other possible fields, it becomes

necessary, unfortunately, to resolve each vector equation into an equiva-
.xmt scalar system in appropriate coordinates.

In a given region let

(1) ul =
/i(x, y, z), w2 = /2 (z, y, z), u* = /8 (x, y, z),

be three independent, continuous, single-valued functions of the rec-

tangular coordinates x. y t
z. These equations may be solved with respect

to x, y, z, and give

(2) x = piCu
1
,
w2

,
u3

), y =
<p2<y, u2

,
w3

), z = <f>*(u\ u2
,
w3

),

three functions which are also independent and continuous, and which

are single-valued within certain limits. In general the functions <pi as

well as the functions /i are continuously differentiable, but at certain

singular points this property may fail and due care must be exercised in

the application of general formulas.

With each point P(x, y, z} in the region there is associated by means of

(1) a triplet of values u l

,
u 2

,
u 3

] inversely (within limits depending on the

boundaries of the region) there corresponds to each triplet u 1
,
u 2

,
u 3 a

definite point. The functions u 1

,
u 2

,
u 3 are called general or curvilinear

coordinates. Through each point P there pass three surfaces

(3) u1 = constant, u2 = constant, u3 = constant,

called the coordinate surfaces. On each coordinate surface one coordi-

nate is constant and two are variable. A surface will be designated by
the coordinate which is constant. Two surfaces intersect in a curve,

called a coordinate curve, along which two coordinates are constant and

one is variable, A coordinate curve will be designated by the variable

coordinate.

Let r denote the vector from an arbitrary origin to a variable point

P(x, y y z). The point, and consequently also its position vector r, may
be considered functions of the curvilinear coordinates u 1

,
u 2

,
u3

.

(4) r = r(uS u\ u3
).
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A differential change in r due to small displacements along the coordinate

curves is expressed by

(5) dr =
du 1

Now if one moves unit distance along the i^-curve, the change in r is

directed tangentially to this curve and is equal to dr/du
1

. The vectors

(6) a 3
= dr

du3
'

are known as the unitary vectors associated with the point P.

constitute a base system of reference for

all other vectors associated with that

particular point.

(7) dr = ai du 1 + a2 du* + a 8 du\

It must be carefully noted that the

unitary vectors are not necessarily of unit

length, and their dimensions will depend
on the nature of the general coordinates.

The three base vectors ai, a2> a3 de-

fine a parallelepiped whose volume is

(8) F = a! (a2 X a3)
= a 2 (a3 X aO
= a3 (ai X a 2).

The three vectors of a new triplet defined by

They

FIQ. 3.- Base vectors for a curvilinear

coordinate system.

(9) a2 =
(a, X EI), a5 =

y (EI X aa),

are respectively perpendicular to the planes determined by the pairs

(a 2 , a3), (as , ai), (EI, a 2). Upon forming all possible scalar products of

the form E* E/, it is easy to see that they satisfy the condition

(10) E"E,= tq,

where $</ is a commonly used symbol denoting unity when i = j, and
zero when i 9* j. The unitary vectors can be expressed in terms of the

system E1
, E

2
,
E8 by relations identical in form.

(11)
1_

V a2
=

(a
8 x a'), a, (a

1 X a2
).

Any two sets of noncoplanar vectors related by the Eqs. (8) to (11) are

said to constitute reciprocal systems. The triplefe a 1
, a2

, a8 are called

reciprocal unitary vectors and they may serve as a base system quite
as well as the unitary vectors themselves.
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If the reciprocal unitary vectors are employed as a base system, the
differential dr will be written

(12) dr = a 1 d^ + a2 dw2 + a3
du*.

The differentials du\, dw2,
dw3 are evidently components of dr in the direc-

tions defined by the new base vectors. The quantities Wi, w2 ,
w3 are

functions of the coordinates w 1
,
w2

,
us

,
but the differentials dui, dw2 ,

duz
are not necessarily perfect. On the contrary they are related to the
differentials of the coordinates by a set of linear equations which in

general are nonintegrable. Thus equating (7) and (12), we have

(13) dr= 5)a*du= Ja'dw,.

Upon scalar multiplication of (13) by a* and by a, in turn, we find, thanks
to (10):

3 3**
o^

(14) du; = V a, a< dw*, du = V a* a' duj.
-i A

It is customary to represent the scalar products of the unitary vectors

and those of the reciprocal unitary vectors by the symbols

9ij
= a a,-

=
(16) & = a . a/ =

The components of dr in the unitary and in the reciprocal base systems
are then related by

3 3

i- ,

3

(17) duj = V
i - 1

A fixed vector F at the point P may be resolved into components
either with respect to the base system ai, a 2> a3 , or with respect to the

reciprocal system a1
, a

2
, a

8
.

3 3

(18) F =

The components of F in the unitary system are evidently related to those
in its reciprocal system by

and in virtue of the orthogonality of the base veetors a,- with respect to
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the reciprocal set a* as expressed by (10), we may also write

It follows from this that (18) is equivalent to

3 3

(21) F =

The quantities /* are said to be the contravariant components of the

vector F, while the components // are called covariant. A small letter

has been used to designate these components to avoid confusion with the

components FI, F2, F$ of F with respect to a base system coinciding with

the a^ but of unit length. It has been noted previously that the length

and dimensions of the unitary vectors depend on the nature of the

curvilinear coordinates. An appropriate set of unit vectors which, like

the unitary set a*, are tangent to the t^'-curves, is defined by

1
t ij j > jj 3 -==.

V011 V 922 V 033

and, hence,

(23) F = Fiii + F2i2 + FA,

with

(24) Fi

The Fi are of the same dimensions as the vector F itself.

The vector dr represents an infinitesimal displacement from the point

P(w
1

,
u2

,
w3

) to a neighboring point whose coordinates are u l + du l
,

u 1 + du2
. u z + du*. The magnitude of this displacement, which con-

stitutes a line element, we shall denote by ds. Then

o O O 9

(25) ds 2 = dr-di = V V ^.^du^dvf =
5) ]

a* a' dm dw,-;

ri yri 1 /-I

or, in the notation of (15) and (16),

3 3

(26) ds2 = V gaditdtf =
] gO'duidu*.

tfZi i~i

The t, and ^*
J
'

appear here as coefficients of two differential quadratic

forms expressing the length of a line element in the space of the general
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coordinates u{ or of its reciprocal set w<. They are commonly called the

metrical coefficients.

It is now a relatively simple matter to obtain expressions for elements

of arc, surface, and volume in a system of curvilinear coordinates. Let

dsi be an infinitesimal displacement at P(u l
,
u2

,
u3

) along the t^-curve.

(27) dsi = ai du 1
, d$i = \d$i\

= -\/0u du
l

.

Similarly, for elements of length along the u2- and w 3
-curves, we have

(28) ds<t = \/022 du*, d$3
= V033 du 9

.

Consider next an infinitesimal parallelogram in the u^surface bounded

by intersecting u2- and w3-curves as

indicated in Fig. 4. The area of such

an element is equal in magnitude to

(29) dai = |ds 2 X ds 3
|

=
|a2 X a3

|

du2 du 3

= V(a2 X a3) (a2 X a3) du2 du*.

By a well-known vector identity

(30) (a X b) (c X d)
= (a-c)(b.d)- (a-d)(b.c),

where a, b, c, d are any four vectors,

FIG. 4. Element of area in the t^-surface. and hence

(31) (a2 X as) (a 2 X a3)
=

(a 2 a 2)(a3
* a3)

-
(a 2 a3)(a3 a 2)

= ^2

For the area of an element in the i^-surface we have, therefore,

=
022033 023-

(32) Cfal = ^022033
-

023 du? du3
,

and similarly for elements in the w 2- and w 3
-surfaces,

(33) da2 U -
01i du 1

,

da* = V0n022 - 012 du
1 du 2

.

Finally, a volume element bounded by coordinate surfaces is written as

(34) dv = dsi dsz X ds8
= en a2 X af du 1 du2 dw3

.

If now in (21) we let F = a2 X a3 , we have

(35) a* X a, = (a
1

a, X a*^ + (a
2 a2 X a8)a2 + (a

3 a2 X
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or, on replacing the a* by their values from (8) and (9),

(36) ai a2 X a3
= -

a *

Q [(a 2 X a3 a2 X a3)ai +
**i

* a2 p\ a3

(a3 X ai a2 X a3)a2 + (ai X a 2 a2 X a3)a8].

The quantities within parentheses can be expanded by (30) and the terms

arranged in the form

(37) (ai a2 X a3)
2 = ai ai[(a 2 a 2)(a? a3)

-
(a2 a3)(a3 a2)]

+ ai a 2[(a2 a3)(as ai) (a2 ai)(a3 a3)]

+ ai a3[(a 2 ai)(a3 a2)
-

(a 2 a 2)(a3 aOJ.

If finally the scalar products in (37) are replaced by their ga, we obtain

as an expression for a volume element

(38) dv = Vg du l du* du 3
,

in which

011 012 013

(39) g
=

021 022 023

031 032 033

A corresponding set of expressions for the elements of arc, area, and
volume in the reciprocal base system may be obtained by replacing the

ga by the <y
,
but they will not be needed in what follows.

Clearly the coefficients gy are sufficient to characterize completely
the geometrical properties of space with respect to any curvilinear system
of coordinates; it is therefore essential that we know how these coefficients

may be determined. To unify our notation we shall represent the

rectangular coordinates x
t y, z of a point P by the letters x l

,
x 2

,
x* respec-

tively. Then

(40) ds* = ((fa
1

)
2 + (dx*Y + (dx*)\

In this most elementary of all systems the metrical coefficients are

(41) ga = By, (da
=

1, fc/
= when i 7* f).

From the orthogonality of the coordinate planes and the definition (9),

it is evident that, the unitary and the reciprocal unitary vectors are

identical, are of unit length, and are the base vectors customarily repre-

sented by the letters i, j, k.

Suppose now that the rectangular coordinates are related functionally

to a set of general coordinates as in (2) by the equations

(42) x l x l

(u
l
,
u2

, u*}, x* = x 2
(ttS w2

,
w 8

)> z 3 = x*(u
l

,
w2

,
ws

).
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The differentials of the rectangular coordinates are linear functions of the

differentials of the general coordinates, as we see upon differentiating

Eqs. (42).

.

du 1 du*

r)r 2

(43)

According to (26) and (40)

(44) dss = V 5)

whence on squaring the differentials in (43) and equating coefficients

of like terms we obtain

ii
~

du1 du* du* du> du* du!

1.15. The Differential Operators. The gradient of a scalar function

^(w
1
,
u i

/
-u

3
) is a fixed vector defined in direction and magnitude as the

maximum rate of change of < with respect to the cordinates. The

variation in incurred during a displacement dr is, therefore,

(46) d* = V* dt = du< -

tl

Now the dw* are the contravariant components of the displacement vector

dr, and hence by (20) ,

(47) du{ = a dr.

This value for du{ introduced into (46) leads to

and, since the displacement dr is arbitrary, we find for the gradient of a

scalar function in any system of curvilinear coordinates:

() ^
In this expression the reciprocal unitary vectors constitute the base
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system, but these may be replaced by the unitary vectors through the

transformation
3

(50)

The divergence of a vector function F(u
1
,
u2

,
uz

) at the point P may
be deduced most easily from its definition in Eq. (9), page 4, as the

limit of a surface integral of the normal component of F over a closed

surface, per unit of enclosed volume. Consider those two ends of the

volume element illustrated in Fig. 5 which

lie in i6
2-surfaces. The left end is located

at u 2
,
the right at u 2 + du 2

. The area

of the face at u 2
is (ai X &z)du

l
du*, the

order of the vectors being such that

the normal is directed outward, i.e., to

the left. The net contribution of these

two ends to the outward flux is, therefore,

(51) [F (as X ai) du 1
du*]u*+du *

+ [F (ai X a3) du 1

du*]v*,

the subscripts to the brackets indicating

that the enclosed quantities are to be

evaluated at u 2 + du 2 and u 2
respective-

ly. For sufficiently small values of du 2
,

(51) may be approximated by the linear term of a Taylor expansion,

(52)
~

(F - a3 X en du 1 du 2
du*),

ai X a3 having been replaced by a3 X ai. Now by (21), (20), and

(37) we have

(53) F a3 x at = F a 2
(a 2 a3 X aO = f

2 Vg;
hence the contribution of the two ends to the surface integral is

a

FIG. 5. Element of volume in

curvilinear coordinate system.

(54) du 2 (f
2 Vg) du* du 2

Analogous contributions result from the two remaining pairs of faces.

These are to be measured per unit volume; hence we divide by dv = -\/g

du 1 du2 du3 and pass to the limit du 1 * 0, du 2 > 0, du 3
0, ensuring

thereby the vanishing of all but the linear terms in the Taylor expansion.
The divergence of a vector F referred to a system of curvilinear coordi-

nates is, therefore,

(55) V F =
t = l
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The curl of the vector F is found in the same manner by calculating

the line integral of F around an infinitesimal closed path. According

to Eq. (21), page 7, the component of the curl in a direction defined

by a unit normal n is

(56) (V X F) n = lim = I

c-o & Jc
F-ds.

Let us take the line integral of F about the contour of a rectangular

element of area located in the ^-surface, as indicated in Fig. 6. The

sides of the rectangle are a2 du2 and a3 du3
. The direction of circulation

is such that the positive normal is in the

sense of the positive i^-curve. The con-

tribution from the sides parallel to w 3-curves

is

(F a3 * (F a3

from the bottom and top parallel to

curves, we obtain

-
(F a2 (F a2

FIG. 6. Calculation of the curl

in curvilinear coordinates.

Approximating these differences by the

linear terms of a Taylor expansion, we
obtain for the line integral

-
5? CP-.O]

du 2 du3
.

This quantity must now be divided by the area of the rectangle, or

\/(a2 X a3) (a2 X a3) du2 du3
. As for the unit normal n, we note that

the reciprocal vector a 1
,
not the unitary vector ai, is always normal to the

^-surface. Its magnitude must be unity; hence

(58) n =

These values introduced into (56) now lead to

(59) (V X F)

1

V (a 2 X as) (a2 X
By (9) and f37)

(60) a2 X a, = [a t (a2 X a 1
;



SEC. 1.16] ORTHOGONAL SYSTEMS 47

hence (59) reduces to

(61) (vx^.a

The two remaining components of V X F are obtained from (61) by
permutation of indices. Then by (21)

(62) VXF=Y(VXF- a*)*.
i^l

Remembering that F a* is the covariant component /, we have for the

curl of a vector with respect to a set of general coordinates

+ (-!&)*]
Finally, we consider the operation V 2

<, by which we must understand

V V<t>. We need only let F =
V<f> in (55). The contravariant com-

ponents of the gradient are

(64) p = F a* =
j-r

Then

(65) V V<t>
=

1.16. Orthogonal Systems. Thus far no restriction has been imposed
on the base vectors other than that they shall be noncoplanar. Now it

happens that in almost all cases only the orthogonal systems can be

usefully applied, and these allow a considerable simplification of the

formulas derived above. Oblique systems might well be of the greatest

practical importance; but they lead, unfortunately, to partial differential

equations which cannot be mastered by present-day analysis.

The unitary vectors ai, a2 ,
a3 of an orthogonal system are by definition

mutually perpendicular, whence it follows that a* is parallel to a and
is its reciprocal in magnitude.

(66) a --i-a = la.
a a 0u

Furthermore

(67) ai a 2
= a2 as

= a8 ai 0;
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hence ga =
0, when i ^ j. It is customary in this orthogonal case to

introduce the abbreviations

(68) hi =

The hi may be calculated from the formula

at*(70)
J

,

although their value is usually obvious from the geometry of the system.

The elementary cell bounded by coordinate surfaces is now a rectangular

box whose edges are

(71) dsi = hi du l
, ds% = h% dw 2

, ds* = h$ du 3
,

and whose volume is

(72) dv = hihji* du l du* du*.

All off-diagonal terms of the determinant for g vanish and hence

(73) Vg = hihji*.

The distinction between the contravariant and covariant components
of a vector with respect to a unitary or reciprocal unitary base system is

essential to an understanding of the invariant properties of the differential

operators and of scalar and vector products. However, in a fixed refer-

ence system this distinction may usually be ignored. It is then con-

venient to express the vector F in terms of its components, or projections,

Fi 9 ^2, ^3 on an orthogonal base system of unit vectors ii, i2) is. By (22)

and (66)

(74) a< = W, a = ~i<.
Al

In terms of the components JP the contravariant and covariant com-

ponents are

(75) /'
= r F'' /<

= ***.
'*

Also

(76) F = Fiii + F2i 2 + F8i8>

(77) ij ik
=

5, fc .

The gradient, divergence, curl, and Laplacian in an orthogonal system
of curvilinear coordinates can now be written down directly from the

results of the previous section.
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From (49) we have for the gradient

(78) V<t>
=

49

j-i

According to (55) the divergence of a vector F is

(79) v ' F = d^[^ (wo +^
For the curl of F we have by (63)

V X F = T-i

It may be remarked that (80) is the expansion of the determinant

(81) V X F = d d d

du l du2 du*

Fi hzFz

Finally, the Laplacian of an invariant scalar <j> is

By an invariant scalar is meant a quantity such as temperature or

energy which is invariant to a rotation of the coordinate system. The

components, or measure numbers, JF\ of a vector F are scalars, but they
transform with a transformation of the base vectors. Now in the

analysis of the field we encounter frequently the operation

(83) V X V X F = VV F - V VF.

No meaning has been attributed as yet to V VF. In a rectangular,

Cartesian system of coordinates x l
,
x2

,
# 3

,
it is clear that this operation is

equivalent to

(84,

i.e., the Laplacian acting on the rectangular components of F, In genet-
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alized coordinates V X V X F is represented by the determinant

ii
/i 2/i3

A

(85) V X V X F =

a

du*

A.L

IT 1 -

/Il/l2

d

duz

du l

The vector V VF may now be obtained by subtraction of (85) from the

expansion of W F, and the result differs from that which follows

a direct application of the Laplacian operator to the curvilinear com-

ponents of F.

1.17. The Field Equations in General Orthogonal Coordinates. In

any orthogonal system of curvilinear coordinates characterized by the

coefficients /ti, 7i 2 , /is, the Maxwell equations can be resolved into a set of

eight partial differential equations relating the scalar components of the

field vectors.

1

(D

^ (h*Ez)
- -

2 (hjlj

du*

a

a#i
a*

= 0.

= o.

~3 = 0.

CrjL/l *~
~aT

=
-71-

et
" z-

~
"aT

= /8'

(A^BO + (WA) + (MA) = 0.

_3_
dM 1

a

(IV) + + ^,
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It is not feasible to solve this system simultaneously in such a manner
as to separate the components of the field vectors and to obtain equations
satisfied by each individually. In any given problem one must make the
most of whatever advantages and peculiarities the various coordinate

systems have to offer.

1.18. Properties of Some Elementary Systems, An orthogonal
coordinate system has been shown to be completely characterized by the
three metrical coefficients, hi, hi, A3 . These parameters will now be
determined for certain elementary systems and in a few cases the differ-

ential operators set down for convenient

reference.

1. Cylindrical Coordinates. Let Pf
be

the projection of a point P(x, y, z) on the

z-plane and r, be the polar coordin-

ates of P' in this plane (Fig. 7). The
variables

(86) ul u 3
z,

are called circular cylindrical coordin-

ates. They are related to the rectan-

gular coordinates by the equations
Fl '

(87) x = r cos 0, z = z.y = r sin 0,

The coordinate surfaces are coaxial cylinders of circular cross section
intersected orthogonally by the planes 6 = constant and z = constant.
The infinitesimal line element is

(88) ds 2 = dr2 + r2 dP + dz\

whence it is apparent that the metrical coefficients are

(89) hi = 1, h, = r, A8
= 1.

If ^ is any scalar and F a vector function we find:

VTJ x v
jp = -

|

<9o)

rdr dr r2 60*
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2. Spherical Coordinates. The variables

(91) u l =
r, w2 =

6, u* *=
<f>,

related to the rectangular coordinates by the transformation

(92) x = r sin cos <, y = r sin sin <, 2 = r cos 0,

are called the spherical coordinates of the point P. The coordinate

surfaces, r = constant, are concentric spheres intersected by meridian

planes, <t>
= constant, and a family of cones, 6 = constant. The unit

vectors ii, i2, is are drawn in the direc-

tion of increasing r, 0, and <t> such as to

constitute a right-hand base system, as

indicated in Fig. 8. The line element

is

(93) ds* = dr2 + r 2 dO*

+ r2 sin 2
d<t>*,

whence for the metrical coefficients we
obtain

FIQ. 8. Spherical coordinates.

(94) hi = 1, A2

These values lead to

=
r,

As = r sin 6.

(95)

r2 sin 2
d<t>

2

3. Elliptic Coordinates. Let two fixed points Pi and Pz be located at

z = c and x = c on the x-axis and let r\ and rj be the distances of a

variable point P in the z-plane from Pi and P2 . Then the variables

(96) t

defined by equations

(97)

* = z.

2c
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are called elliptic coordinates. From these relations it is evident that

(98) | 1, -1 SS if ^ 1.

The coordinate surface, = constant, is a cylinder of elliptic cross

section, whose foci are PI and P* The semimajor and semiminor axes

of an ellipse are given by

(99) a = c,

and the eccentricity is

(100)
_ c _ 1

e "
a
"

I
"

The surfaces, 77
= constant, represent a family of confocal hyperbolic

V-TT

FIQ. 9. Coordinates of the elliptic cylinder. Ambiguity of sign is avoided by placing
cosh u, q cos v.

cylinders of two sheets as illustrated in Fig. 9. The equations of these

two confocal systems are

r

>

T* r/2 r*

(ioi)
fi
+^n = ",

f-, i -u2

from which we deduce the transformation

(102) x = = c

The variable ij corresponds to the cosine of an angle measured from the

s-axis and the unit vectors ii, ia of a right-hand base system are therefore
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drawn as indicated in Fig. 9, with is normal to the page and directed

from the reader.

The metrical coefficients are calculated from (102) and (70), giving

(103) Ai =

4. Parabolic Coordinates. If r, 6 are polar coordinates of a variable

point in the z-plane, one may define two mutually orthogonal families

of parabolas by the equations

(104)

^
/

^
A

\/2r sin -

r,
= \/2r cos -

The surfaces, = constant and n constant, are intersecting parabolic

$=5 >7=5

45
FIQ. 10. Parabolic coordinates.

cylinders whose elements are parallel to the z-axis as shown in Fig. 10.

The parameters

(105) u l =
,

w2 =
17,

w8 = -z

are called parabolic coordinates. Upon replacing r and in (104) by

rectangular coordinates we find
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whence for the transformation from rectangular to parabolic coordinates
we have

(107) x = y = z = z.

The unit vectors ii and i2 are directed as shown in Fig. 10, with I3 normal
to the page and away from the reader. The calculation of the metrical

coefficients from (107) and (70) leads to

(108) 7*3= 1.

5. Bipolar Coordinates. Let PI and P 2 be two fixed points in any
z-plane with the coordinates (a, 0), ( a, 0) respectively. If $ is a

parameter, the equation

(109) (x
- a coth )

2 + y
2 = a2 csch2

,

describes two families of circles whose centers lie on the x-axis. These
two families are symmetrical with respect to the T/-axis as shown in

FIQ. 11. Bipolar coordinates.

Fig. 11. The point P t at (a, 0) corresponds to = +00, whereas its

image P2 at (a, 0) is approached when = oo . The locus of (109),
when f = 0, coincides with the 7/-axis. The orthogonal set is likewise

a family of circles whose centers all lie on the #-axis and all of which pass
through the fixed points Pi and P 2 . They are defined by the equation,

(110) x 2 + (y
- a cot 17)

2 = a2 esc2
1?,
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wherein the parameter 17 is confined to the range ^ 77 g 2r. In order

that the coordinates of a point P in a given quadrant shall be single-

valued, each circle of this family is separated into two segments by the

points PI and P*. A value less than TT is assigned to the arc above the

x-axis, while the lower arc is denoted by a value of 77 equal to TT plus

the value of 17 assigned to the upper segment of the same circle.

The variables

(111) u l =
,

u2 =
77, n 3 =

z,

are called bipolar coordinates. From (109) and (110) the transformation

to rectangular coordinates is found to be

/nox a sinh a sin 77

(112) x = r-r 9 y = T-T > z = z.
cosh cos TJ cosh cos 17

The unit vectors ii and i2 are in the direction of increasing and 17 as

indicated in Fig. 11, while i3 is directed away from the reader along the

z-axis. The calculation of the metrical coefficients yields

(113) hi = h 2
= r--^ , A, = 1.v ' cosh cos 77

6. Spheroidal Coordinates. The coordinates of the elliptic cylinder

were generated by translating a system of confocal ellipses along the

z-axis. The spheroidal coordinates are obtained by rotation of the

ellipses about an axis of symmetry. Two cases are to be distinguished,

according to whether the rotation takes place about the major or about

the minor axis. In Fig. 9 the major axes are oriented along the x-axis of

a rectangular system. If the figure is rotated about this axis, a set of

confocal prolate spheroids is generated whose orthogonal surfaces are

hyperboloids of two sheets. If <t> measures the angle of rotation from

the 2/-axis in the x-plane and r the perpendicular distance of a point
from the x-axis, so that

(114) y = r cos 0, z = r sin 0,

then the variables

(115) u^ = fc u* =
17, u* = *,

defined by (97) and (114) are called prolate spheroidal coordinates. In

place of (101) we have for the equations of the two confocal systems
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from which we deduce

(117) x = eft, y =
-

1)(1
-

rrOsin

(118) ^ 1, -1 g r? g 1, ^ g 27T.

A calculation of the metrical coefficients gives

(119) A 1
=

When the ellipses of Fig. 9 are rotated about the y-axis, the spheroids

are oblate and the focal points PI, P 2 describe a circle in the plane y = 0.

Let r, 0, y, be cylindrical coordinates about the 2/-axis,

(120) z = r cos <, x = r sin <.

If by PI and P2 we now understand the points where the focal ring of

radius c intercepts the plane 4>
= constant, the variables and t\ are

still defined by (97) ;
but for the equations of the coordinate surfaces we

have

from which we deduce the transformation from oblate spheroidal

coordinates

(122) u 1 =
f, u2 =

T?, ti
3 =

0,

to rectangular coordinates

(123) x = c^ sin 0, t/
= c V(f 2 -

1)(1
-

r;

2
), z = cfiy cos 0.

The surfaces, = constant, are oblate spheroids, whereas the orthogonal

family, rj
= constant, are hyperboloids of one sheet. The metrical

coefficients are

(124) *i = <ufe r' ^ = c

The practical utility of spheroidal coordinates may be surmised from

the fact that as the eccentricity approaches unity the prolate spheroids

become rod-shaped, whereas the oblate spheroids degenerate into flat,

elliptic disks. In the limit, as the focal distance 2c and the eccentricity

approach zero, the spheroidal coordinates go over into spherical coordin-

ates, with >
r, rj

> cos 0.

7. Pardboloidal Coordinates. Another set of rotational coordinates

may be obtained by rotating the parabolas of Fig. 10 about their axis
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of symmetry. The variables

(125) u l =
$, u 2 =

T],
w 8 =

4>,

defined by

(126) x =
(ft cos <#>, 2/

=
(to sin *> 2 = *(

2 ~
^
2
)

are called paraboloidal coordinates. The surfaces,
= constant,

rj
= constant, are paraboloids of revolution about an axis of symmetry

which in this case has been taken coincident with the z-axis. The plane,

y = 0, is cut by these surfaces along the curves

-
*),

** = V
(^

+
*)>(127) * =

which are evidently parabolas whose foci are located at the origin and

whose parameters are 2 and 7j

2
. The metrical coefficients are

(128) hi = A 2
- VlFTT2

, >*3
=

{17.

8. Ellipsoidal Coordinates. The equation

(129) JT.
+ S + ?- 1 ' ( >6>C) '

is that of an ellipsoid whose semiprincipal axes are of length a, 6, c. Then

(130) + - + -1, (-e. >,>->>,

o^Tf ^6 2 + f
'

c 2 + f
-' v

are the equations respectively of an ellipsoid, a hyperboloid of one sheet,

and a hyperboloid of two sheets, all confocal with the ellipsoid (129).

Through each point of space there will pass just one surface of each kind,

and to each point there will correspond a unique set of values for
, ?/, f .

The variables

(131) u* = *, u2 =
n, u* = f,

are called ellipsoidal coordinates. The surface, % = constant, is a

hyperboloid of one sheet and t\
= constant, a hyperboloid of two sheets.

The transformation to rectangular coordinates is obtained by solving
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(130) simultaneously for x, y, z. This gives

59

(132)

x =

</=

*=

- 2a 2
)

(c
2 - 6 2

)(a
2 - 6

2
)

"(a
2 - c 2

)(6
2^=:72

y"

The mutual orthogonality of the three families of surfaces may be verified

by calculating the coefficients ga from (132) by means of (45). They are

zero when i ^ j; for the diagonal terms we find

(133)

^3 ^

(
-

u)(
-

r)

(r
-

)(r
-

It is convenient to introduce the abbreviation

(134) R9
* V(s + <*

2
)(s + W)(s + i

For the Laplacian of a scalar \l/
we then have

4

(
=

(135) o

THE FIELD TENSORS

1.19. Orthogonal Transformations and Their Invariants. In the

theory of relativity one undertakes the formulation of the laws of physics,

and in particular the equations of the electromagnetic field, such that

they are invariant to transformations of the system of reference.

Although in the present volume we shall have no occasion to examine the

foundations of the relativity theory, it will nevertheless prove occasion-

ally advantageous to employ the symmetrical, four-dimensional notation

introduced by Minkowski and Sommerfeld and to deduce the Lorentz

transformation with respect to which the field equations are invariant.

To discover quantities which are invariant to a transformation from one

system of general curvilinear coordinates to another, it is essential that
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one distinguish between the covariant and contravariant components
of vectors and between unitary and reciprocal unitary base systems.

For our present purposes it will be sufficient, however, to confine the

discussion to systems of rectangular, Cartesian coordinates in which, as

we have seen, covariant and contravariant components are identical. 1

Let ii, i2 , ia be three orthogonal, unit base vectors defining a rectangu-

lar coordinate system X whose origin is located at the fixed point 0, and

let r be the position vector of any point P with respect to 0.

(1) r = xiii + a?8i2 +

and since

(2) iy U /*,

the coordinates of P in the system X are

(3) Xk = r i*.

Suppose now that ij, ij, i are the base vectors of a second rectangular

system X' whose origin coincides with and which, therefore, differs

from X only by a rotation of the coordinate axes. Since

(4) r = x(i{ + x'& + xjij,

the coordinates of P with respect to X' are

(5) zj
= r

ij
= xiii ij + z 2i 2 % + z3i3 i};

each coordinate of P in X' is a linear function of its coordinates in X,

whereby the coefficients

(6) Oik
=

ij U

of the linear form are clearly the direction cosines of the coordinate axes

of X' with respect to the axes of X. A rotation of a rectangular coordi-

nate system effects a change in the coordinates of a point which may be

represented by the linear transformation

(7) *}
-

]g <^*> (3
=

*> 2
>
3)-

Jk-l

The coefficients a# are subject to certain conditions which are a

consequence of the fact that the distance from to P, that is to say, the

l This section is based essentially on the following papers: MINKOWSKI, Ann.

Phyaik, 47, 927, 1915; SOMMERFELD, Ann. Physik, 32, 749, 1910 and 33, 649, 1910;

MIE, Ann. Physik, 37, 511, 1912; PAULI, Relativitatstheorie, in the Encyklopadie der

mathematischen Wissenschaften, Vol. V, part 2, p. 539, 1920.
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magnitude of r, is independent of the orientation of the coordinate system.

3 3
/

3 \/ 3 - 33
(Q\ V (~'\2 =- V / V fl T I I VW

(2j
wJ -

.2^ \2^
a x

*) \Zf^

whence it follows that

(10)
V...., - A. - *> wheni = fc

>

Equation (10) expresses in fact the relations which must prevail among
the cosines of the angles between coordinate axes in order that they be

rectangular and which are, therefore, known as conditions of orthog-

onality. The system (7), when subject to (10), is likewise called an

orthogonal transformation. As a direct consequence of (10), it may be

shown that the square of the determinant |a#| is equal to unity and hence

\a>]k\
= 1. Any set of coefficients a,-fc which satisfy (10) define an

orthogonal transformation in the sense that the relation (8) is preserved.

Geometrically the transformation (7) represents a rotation only when
the determinant |a3 jfc|

= +1. The orthogonal transformation whose
determinant is equal to 1 corresponds to an inversion followed by a

rotation.

Since the determinant of an orthogonal transformation does not

vanish, the Xk may be expressed as linear functions of the Xy. These
relations are obtained most simply by writing as in (5) :

(11) Xk = r U =
x(i( I* + z& ifc + ^ij -

i*,

or
3

(12) xk - ]g a,-**}, (* = 1, 2, 3),
j'-i

whence it follows from (8) that

3

(13)

Let A be any fixed vector in space, so that

3 3

(14) A = J Akik = V A&.
* - 1 * - 1

The component Ay of this vector with respect to the system X' is given by

(15) A;.
= A

i}
= V ^* '

*J
= 2
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thus the rectangular components of a fixed vector upon rotation of the

coordinate system transform like the coordinates of a point. Now
while every vector has in general three scalar components, it does not

follow that any three scalar quantities constitute the components of a

vector. In order that three scalars AI, A 2, A 3 may be interpreted as the

components of a vector, it is necessary that they transform like the coordinates

of a point.

Among scalar quantities one must distinguish the variant from the

invariant Quantities such as temperature, pressure, work, and the liko

are independent of the orientation of the coordinate system and are,

therefore, called invariant scalars. On the other hand the coordinates

of a point, and the measure numbers, or components, of a vector have

only magnitude, but they transform with the coordinate system itself.

We know that the product A B of two vectors A and B is a scalar, but a

scalar of what kind? In virtue of (12) and (13) we have

3 3
/

3 \/ 3
\

3

(16) A-B = 2 AkBk = 2(2 a'*A0(S a*B
'<)

= 2 A
'i

B
'i>

the scalar product of two vectors is invariant to an orthogonal transformation

of the coordinate system.

Let < be an invariant scalar and consider the triplet of quantities

(17) Bt
=
J, (

=
1, 2, 3).

Now by (12),

(18) ~, = a^,

and hence

(19) * = -

1

the Bi transform like the components of a vector and therefore the gradient of 4 ,

calculated at a point P, is a fixed vector associated with that point.

Let Ai be a rectangular component of a vector A, and

(21) B, =

Then by (18) and (15),

(22) l*
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whence, from (10), it follows that

the divergence of a vector is invariant to an orthogonal transformation of the

coordinate system.

Lastly, since the gradient of an invariant scalar is a vector and since

the divergence of a vector is invariant, it follows that the Laplacian

(24) VV = V . V 4,

is invariant to an orthogonal transformation.
The transformation properties of vectors may be extended to mani-

folds of more than three dimensions. Let &i, & 2 , 3, x * be the rectangular
coordinates of a point P with respect to a reference system X in a four-

dimensional continuum. The location ofP with respect to a fixed origin
is determined by the vector

(25) r =
/=-

The linear transformation

(26) *J
=

, a,***, (j = 1, 2, 3, 4),
= 1

will be called orthogonal if the coefficients satisfy the conditions

4
ff>'7\ X^ <

\*<)
2if

a
)>
a

ik
=

***

J-l

The characteristic property of an orthogonal transformation is that it

leaves the sum of the squares of the coordinates invariant:

(28)

y^i

The square of the determinant formed from the a,-* is readily shown to be

positive and equal to unity, and hence the determinant itself may equal
1. However, if (26) is to include the identical transformation

(j
=

1, 2, 3, 4),

it is obvious that the determinant must be positive. Henceforth we
shall confine ourselves to the subgroup of orthogonal transformation?
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characterized by (27) and the condition

(30) M = +1.

The transformation then corresponds geometrically to a rotation of the

coordinate axes.

A four-vector is now defined as any set of four variant scalars

Ai (i
=

1, 2, 3, 4) which transform with a rotation of the coordinate

system like the coordinates of a point.

(31)

It is then easy to show, as above, that the scalar product of two four-

vectors and the four-dimensional divergence of a four-vector are invariant

to a rotation of the coordinate system.

4 4

(32) A B =
"SJ A kBk = ^? A'jB],

/ON
(33)

j = 1

Furthermore the derivatives of a scalar,

(34) B, = g (,'
=

1, 2, 3, 4)

transform like the components of a four-vector and hence the four-

dimensional Laplacian of an invariant scalar,

is also invariant to an orthogonal transformation.

1.20. Elements of Tensor Analysis. Although most physical quanti-

ties may be classified either as scalars, having only magnitude, or as

vectors, characterized by magnitude and direction, there are certain

entities which cannot be properly represented by either of these terms.

The displacement of the center of gravity of a metal rod, for example,

may be defined by a vector; but the rod may also be stretched along the

axis by application of a tension at the two ends without displacing the

center at all. The quantity employed to represent this stretching must

thus indicate a double direction. The inadequacy of the vector concept

becomes all the more apparent when one attempts the description of a

volume deformation, taking into account the lateral contraction of the
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rod. In the present section we shall deal only with the simpler aspects

of tensor calculus, which is the appropriate tool for the treatment of such

problems.
In a three-dimensional continuum let each rectangular component

of a vector B be a linear function of the components of a vector A.

Bi = TuAi + T 12A Z + T 13A 3 ,

(36) B, = rAi + T22A 2 + T28A 8,

3
= T9lAi + T82A 2 +

In order that this association of the components of B with the components
of A in the system X be preserved as the coordinates are rotated, it is

necessary that the coefficients T& transform in a specific manner. The

Tjk are therefore variant scalars. A tensor or more properly, a tensor of

rank two will now be defined as a linear transformation of the com-

ponents of a vector A into the components of a vector B which is invariant

to rotations of the coordinate system. The nine coefficients Tjk of the

linear transformation are called the tensor components.
To determine the manner in which a tensor component must trans-

form we write first (36) in the abbreviated form

(37) Bt
= 2 T,kA k , (j

=
1, 2, 3).

fc = l

If (37) is to be invariant to the transformation defined by

3 3

(38) x'j
= V ajkxk ,

V a3la]k
= dlk ,

* - 1 j-i

then the Tjk must transform to T'
{1 such that

(39) fft = V TV',, (,'
=

1, 2, 3).

Multiply (37) by a/ and sum over the index j.

q q o

(40) J a^Bf = V V a*5P*A*.
>-i j-i*-i

But

(41) B( = 2 a*B,, Ak = V attAJ,
= i zT\

and, hence, 333 1

(42) 3 = 2 (S S a
'*^*) ^ = X n^',.

j-i vytit-i ' ffi
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The components of a tensor of rank two transform according to the law

3 3

(43) r - a a"T*> ft i - 1, 2, 3);

inversely, any set of nine quantities which transform according to (43)

constitutes a tensor.

By an analogous procedure one can show that the reciprocal trans-

formation is

If the order of the indices in all the components of a tensor may be

changed with no resulting change in the tensor itself, so that Tjk
= Tkj,

the tensor is said to be completely symmetric. A tensor is completely

antisymmetric if an interchange of the indices in each component results

in a change in sign of the tensor. The diagonal terms T
}J

- of an anti-

symmetric tensor evidently vanish, while for the off-diagonal terms,

Tik
= - TV It is clear from (43) that if Tik

= Tki ,
then also T^ = T'K .

Likewise if Tik
= Tk] ,

it follows that T'
it
= T'K . The symmetric or

antisymmetric character of a tensor is invariant to a rotation of the

coordinate system.

The sum or difference of two tensors is constructed from the sums or

differences of their corresponding components. If 2R is the sum of the

tensors 2S and 2TY its components are by definition

(45) Rjk
= S]k + Tik , 0', k =

1, 2, 3).

In virtue of the linear character of (43) the quantities Rjk transform like

the Sjk and Tjk and, therefore, constitute the components of a tensor 2R.

From this rule it follows that any asymmetric tensor may be represented

as the sum of a symmetric and an antisymmetric tensor. Assuming
2R

to be the given asymmetric tensor, we construct a symmetric tensor 2S
from the components

(46) Sjk

and an antisymmetric tensor 2T from the components

(47) T0

Then by (45) the sum of 2S and 2T so constructed is equal to 2R.

In a three-dimensional manifold an antisymmetric tensor reduces to

three independent components and in this sense resembles a vector. The

1 Tensors of second rank will be indicated by a superscript as shown.
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tensor (36), for example, reduces in this case to

B! = - TnA 2 + T13A 3 ,

(48) J92 = T^Ai + - r. 8A,,

3
- -Ti 3Ai + T32A 2 + 0.

These, however, are the components of a vector,

(49) B = T X A,

wherein the vector T has the components

(50) T, = 7*32, T2
= rw ,

Z
r

,
= Z'n.

Now it will be recalled that in vector analysis it is customary to distin-

guish polar vectors, such as are employed to represent translations and
mechanical forces, from axial vectors with which there are associated

directions of rotation. Geometrically, a polar vector is represented by a

displacement or line, whereas an axial vector corresponds to an area. A
typical axial vector is that which results from the vector or cross product
of two polar vectors, and we must conclude from the above that an axial

vector is in fact an antisymmetric tensor and its components should

properly be denoted by two indices rather than one. Thus for the com>

ponents of T = A X B we write

(51) Tik = A iBk
- AtB, = -ZV, (j, fc = 1, 2, 3).

If the coordinate system is rotated, the components of A and B are

transformed according to

(52)
= V anAJ, Bk

= V aikB[.
i-i i-a

Upon introducing these values into (51) we find

3 3

(53)

a relation which is identical with (44) and which demonstrates that the

components of a "vector product" of two vectors transform like the

components of a tensor. The essential differences in the properties of

polar vectors and the properties of those axial vectors by means of which

one represents angular velocities, moments, and the like, are now clear:

axial vectors are vectors only in their manner of composition, not in

their law of transformation. It is important to add that an antisym-
metric tensor can be represented by an axial or pseudo-vector only in a

three-dimensional space, and then only in rectangular components.
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Since the cross product of two vectors is in fact an antisymmetric

tensor, one should anticipate that the same is true of the curl of a vector.

That the quantity dAi/dx*, where A, is a component of a vector A, is

the component of a tensor is at once evident from Eq. (22).

The components of v X A,

therefore, transform like the components of an antisymmetric tensor.

The divergence of a tensor is defined as the operation

(56) (div T), =

The quantities Bj are easily shown to transform like the components of

a vector.

or, on summing over I and applying the conditions of orthogonality,

-
< -23?-;- 2?

*>
Isl j

08 ! Af^l J 1

divergence of a tensor of second rank is a vector, or tensor of first rank.

The divergence of a vector is an invariant scalar, or tensor of zero rank.

These are examples of a process known in tensor analysis as contraction.

As in the case of vectors, the tensor concept may be extended to mani-

folds of four dimensions. Any set of 16 quantities which transform

according to the law,

(59) n = a* r*' (i '
l = *' 2

'
3

'

;-l ffl

or its reciprocal,
4 4

(60) T,

will be called a tensor of second rank in a four-dimensional manifold.

As in the three-dimensional case, the tensor is said to be completely
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symmetric if T)k
= Tki,

and completely antisymmetric if !> = Tkit

with TJJ
= 0. In virtue of its definition it is evident that an anti-

symmetric four-tensor contains only six independent components.
Upon expanding (59) and replacing Tki by - Tjk ,

then re-collecting terms,
we obtain as the transformation formula of an antisymmetric tensor the
relation

_i_-JL 44
(61)

Any six quantities that transform according to this rule constitute an
antisymmetric four-tensor or, as it is frequently called, a six-vector.

In three-space the vector product is represented geometrically by the
area of a parallelogram whose sides are defined by two vectors drawn
from a common origin. The components of this product are then the

projections of the area on the three coordinate planes. By analogy, the
vector product in foUr-space is defined as the "area" of a parallelogram
formed by two four-vectors, A and B, drawn from a common origin.
The components of this extended product are now the projections of the

parallelogram on the six coordinate planes, whose areas are

(62) Tjk
= AtBk

- A kB f
= -T

fc/J (j, k = 1, 2, 3, 4).

The vector product of two four-vectors is therefore an antisymmetric
four-tensor, or six-vector.

If again A is a four-vector, the quantities

(63) T'*
= ^-!=- T*>> ,

* - 1, 2, 8, 4),

can be shown as in (54) to transform like the components of an anti-

symmetric tensor. The Tjk may be interpreted as the components of

the curl of a four-vector.

As in the three-dimensional case the divergence of a four-tensor is

defined by

<*> (div2T) <
=

' 0' = 1,2, 3, 4),

a set of quantities which are evidently the components of a four-vector.

1.21. The Space-time Symmetry of the Field Equations. A remark-
able symmetry of form is apparent in the equations of the electromagnetic
field when one introduces as independent variables the four lengths

(65) xi = Xj Xz = y, #3 = 3, Xt = ict,

where c is the velocity of light in free space. When expanded in rec-
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tangular coordinates, the equations

(II) V X H - $9 =
J, (IV) V D =

p,

are represented by the system

n TT
ft
TT *\ T\

___ _ I C\ I
_,

~ __ a ft . T__
j yj _j_

___ ^ ^_ __ ^ g
,AAx dxi dxs dx^
(66) ATT ^ nd/i2 a/zi . A . djL/3 r

. .
-J- ()

. = J g^

ic -j~ 2*c ~j- ic -f-
=

icp.
dxi dx% dx$

We shall treat the right-hand members of this system as the componenta
of a "four-current" density,

( fi.*7\ T T T - T T T T
'

and introduce in the left-hand members a set of dependent variables

defined by

On = (?12 = HZ Gl3 = /:

c* v f^ c\ r< u
fW\ Zl = "~-" 3 ^2 = U (^23 = Hi
(68) r T, r _ TT r<-n n ;

Crsi = 112 ^32 -" 1 vJ"33 v VJT34 ^

Then in the reference system X y Eqs. (II) and (IV) reduce to

4 .^

(69)

Only six of the (?# are independent, and the resemblance of this set

of quantities to the components of an antisymmetric four-tensor is

obvious. Since the divergence of a four-tensor is a four-vector, it follows

from (69) that if the G
3k constitute a tensor, then the Jk are the com-

ponents of a four-vector; inversely, if we can show that J is indeed a

four-vector, we may then infer the tensor character of 2G. However,
we have as yet offered no evidence to justify such an assumption. In

the preceding sections it was shown that the vector or tensor properties

of sets of scalar quantities are determined by the manner in which they
transform on passing from one reference system to another. Evidently
an orthogonal transformation of the coordinates Xk corresponds to a

simultaneous change in both the space coordinates x, y, z and the time t,

and only recourse to experiment will tell us how the field intensities may
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be expected to transform under such circumstances. In Sec. 1.22 we
shall set forth briefly the experimental facts which lead one to conclude
that the Jk are components of a four-vector, and the Gjk the components
of a field tensor; in the interim we regard (69) and the deductions that
follow below merely as concise and symmetrical expressions of the field

equations in a fixed system of coordinates.

The two homogeneous equations

\TQ

(I) V X E + ~ =
0, (III) V B =

0,

are represented by the system

(70)
3^2 _ aS
ftci das,

_J - *h _ *5 4. n _ n
dxi dx2

'

After division of the first three of these equations by ic, an antisym-
metrical array of components is defined as follows:

Fn =

T)
21 >3

(71)
T)

d l J 2

Then all the equations of (70) are contained in the system

(72) ^ + ^JS + ^J* = ov
ax fc

^
dx/

^
dx U;

where t, j, ft are any three of the four numbers 1, 2, 3, 4.

The arrays (68) and (71) are congruent in the sense that in each the
real components pertain to the magnetic field, while the imaginary com-
ponents are associated with the electric field. To indicate this partition
it is convenient to represent the sets of components by the symbols

(73) P =
(B,

-
j
E\ ^G = (H, -tcD).

\ c /
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Now the field equations may be defined equally well in terms of the

"dual" systems:

and a corresponding system for the components of 2G*. Upon intro-

ducing these values into (I) and (III), and (II) and (IV), respectively,

we obtain

(76) 2l3 =
' (j= 1,2, 3, 4),

+
l

+
r

= J'' ft*M -
1. * 3, 4).

It has been pointed out by various writers that this last representation

is artificial, in that (74) implies that E is an axial vector in three-space

and B a polar vector, whereas the contrary is known to be true. The

representation

<"> + + -
' .*- !,*!,>.

(69) ' J" 0-1,2,3,4),

must in this sense be considered the " natural" form of the field equations.

To these we add the equation of continuity,

(V) ^J + ^ =
'

which in four-dimensional notation becomes

(78)

If the components Fjk are defined in terms of the components of a

"four-potential" * by

(79) F,, - -
g, O; * -

1, 2, 3, 4),
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one may readily verify that Eq. (72) is satisfied identically. Now in

three-space the vectors E and B are derived from a vector and scalar

potential.

(80) E = -V* -
^, B = v x A;

or, in component form,

dA
>' dAk dA

>'-
; >i =- ---

*4 dx/ da:*'

where the indices t, j, fc are to be taken in cyclical order. Clearly all

these equations are comprised in the system (79) if we define the com-
ponents of the four-potential by

(82) *! = A x,
$2

= A9 , *, = A,, *4 = -
*.

c

As in three dimensions, the four-potential is useful only if we can

determine from it the field 2G(H, -tcD) as well as the field 2
F(B, -~

E).
c

Some supplementary condition must, therefore, be imposed upon 4> in

order that it satisfy (69) as well as (72); thus it is necessary that the

components Gjk be related functionally to the Fjk . We shall confine the
discussion here to the usual case of a homogeneous, isotropic medium and
assume the relations to be linear. To preserve symmetry of notation
it will be convenient to write the proportionality factor which charac-
terizes the medium as y/*, so that

(83) Qih
=

7)kFjk ;

but it is clear from (68) and (71) that 1

(84) yik
= - when j, fc = 1, 2, 3, yik

= cc2 when j or k == 4.

These coefficients are in fact components of a symmetrical tensor, and
with a view to subsequent needs the diagonal terms are given the values

(85) -YH = 1, (j
=

1, 2, 3), T44 = /ic
2c.

Equation (69) IB now to be replaced by

(86) * = J >> 0'= 1,2, 3, 4).

1 A medium which is anisotropic in either its electrical properties or its magnetic
properties may be represented as in (83) provided the coordinate system is chosen to

coincide with the principal axes. This also is the case if its principal axes of elec-

trical anisotropy coincide with those of magnetic anisotropy.
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Upon introducing (79) we find that (86) is satisfied, provided O is a

solution of

4

(87) y,~ (7**,-)
= -

Ji, (j
=

1, 2, 3, 4),^
subject to the condition

4

(88)

This last relation is evidently equivalent to

(89) V.A + M6^
=

0,

and (87) comprises the two equations

V*A f
-

^L'
= -fj it (j

=
1, 2, 3),

(90) vV _
Me^=_i p .

In free space /io*o
= c~2

, 7,-*
=

/xo"
1

,
for all values of the indices. Equa-

tions (87) and (88) then reduce to the simple form:

= 1 A; = 1

1.22. The Lorentz Transformation. The physical significance of

these results is of vastly greater importance than their purely formal

elegance. A series of experiments, the most decisive being the celebrated

investigation of Michelson and Morley,
1 have led to the establishment of

two fundamental postulates as highly probable, if not absolutely certain.

According to the first of these, called the relativity postulate, it is impossible

to detect by means of physical measurements made within a reference

system X a uniform translation relative to a second system X'. That
the earth is moving in an orbit about the sun we know from observations

on distant stars; but if the earth were enveloped in clouds, no measure-

ment on its surface would disclose a uniform translational motion in

space. The course of natural phenomena must therefore be unaffected

by a nonaccelerated motion of the coordinate systems to which they are

referred, and all reference systems moving linearly and uniformly relative

to each other are equivalent. For our present needs we shall state the

relativity postulate as follows: When properly formulated,
the laws of

1 MICHELSON and MORLBT, Am. J. Sd., 3, 34, 1887.
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physics are invariant to a transformation from one reference system to

another moving with a linear
, uniform relative velocity. A direct conse-

quence of this postulate is that the components of all vectors or tensors

entering into an equation must transform in the same way, or covariantly.

The existence of such a principle restricted to uniform translations was

established for classical mechanics by Newton, but we are indebted to

Einstein for its extension to electrodynamics.

The second postulate of Einstein is more remarkable: The velocity

of propagation of an electromagnetic disturbance in free space is a universal

constant c which is independent of the reference system. This proposition

is evidently quite contrary to our experience with mechanical or acoustical

waves in a material medium, where the velocity is known to depend

on the relative motion of medium and observer. Many attempts have

been made to interpret the experimental evidence without recourse to

this radical assumption, the most noteworthy being the electrodynamic

theory of Ritz. 1 The results of all these labors indicate that although a

constant velocity of light is not necessary to account for the negative

results of the Michelson-Morley experiment, this postulate alone is con-

sistent with that experiment and other optical phenomena.
2

Let us suppose, then, that a source of light is fixed at the origin

of a system of coordinates X(x, y, z). At the instant t = 0, a spherical

wave is emitted from this source. An observer located at the point

x, y,zinX will first note the passage of the wave at the instant ct, and the

equation of a point on the wave front is therefore

(92) x 2 + 7/
2 + z2 - cH 2 = 0.

The observer, however, is free to measure position and time with respect

to a second reference frame Xr

(x' y y' , z') which is moving along a straight

line with a uniform velocity relative to O. For simplicity we shall assume

the origin O' to coincide with O at the instant t = 0. According to the

second postulate the light wave is propagated in X' with the same

velocity as in X
t
and the equation of the wave front in X r

is

(93) x'" + y
1
'

+ z
1
' - cV* = 0.

By t' we must understand the time as measured by an observer in X'

with instruments located in that system. Here, then, is the key to the

transformation that connects the coordinates #, t/, z, t of an observation

or event in X with the coordinates x'
9 y' t z', t' of the same event in X1

: it

must be linear and must leave the quadratic form (92) invariant. The

linearity follows from the requirement that a uniform, linear motion of a

particle in X should also be linear in X f
.

1
RITZ, Ann. chim. phys., 13, 145, 1908.

1 An account of these investigations will be found in Pauli's article, loc. cit. t p. 549.
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Let

(94) xi = x, x z
=

y, x* = z, X* = tc*,

be the components of a vector R in a four-dimensional manifold

X(Xi, X*, X 3 ,
24).

(95) fi
2 = sj + x\ + x\ + x\.

The postulate on the constancy of the velocity c will be satisfied by the

group of transformations which leaves this length invariant. But in

Sec. 1.19 it was shown that (95) is invariant to the group of rotations in

four-space and we conclude, therefore, that the transformations which

take one from the coordinates of an event in X to the coordinates of that

event in X' are of the form

(26) *J
= 2 a,**, (j

=
1, 2, 3, 4),

where

(27) k = X
>
2

>
3

>

the determinant
|a/jfc| being equal to unity.

We have now to find these coefficients. The calculation will be

simplified if we assume that the rotation involves only the axes # 3 and X*,

and the resultant lack of generality is inconsequential. We take, there-

fore, x'i
=

Xij x'2
= x2,

and write down the coefficient matrix as follows:

(96)

The conditions of orthogonality reduce to

(97) 033 -J- <143
=

1, #34 -f" &44
=

1, &33&34 T" &43&44 == 0.

If we put a33
=

a, #34 = ictp, we find from (97) that a44 = a,

43
=

^f-iaP, <x -\/l /8
2 = 1. Only the upper sign is consistent with

the requirement that the determinant of the coefficients be positive unity,
and this in turn is the necessary condition that the group shall contain

the identical transformation. In terms of the single parameter ft the

coefficients are

(98) 1X33
=5: #44 =" - '*-- " -
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for the transformation itself, we have

(99) x( = xi, z'2
= 3 2 ,

Reverting to the original space-time manifold this is equivalent to

x' = x, y
f =

t/,

(ioo) w-
The parameter ft may be determined by considering x', y', z' to be the

coordinates of a fixed point in X f
. The coordinates of this point with

respect to X are #, y, z. Since dz
f =

0, it follows that

and hence the rotation defined in (96) and (97) is equivalent to a transla-

tion of the system X' along the z-axis with the constant velocity v relative

to the unprimed system X.

The transformation

(102)

y'

obtained from (100) by substitution of the value for ft, or its inversion,

(103) z = -7=L= (' + t>O,
=

has been named for Lorentz, who was the first to show that Maxwell's

equations are invariant with respect to the change of variables defined

by (102), but not invariant under the "Galilean transformation :

"

(104) z' = z - vt, t
r = t.

All known electromagnetic phenomena may be properly accounted for

if the position and time coordinates of an event in a moving system X'

be related to the coordinates of that event in an arbitrarily fixed system

X by a Lorentz transformation. The Galilean transformation of classical

mechanics represents the limit approached by (102) when v c, and

may be interpreted as the relativity principle appropriate to a world in

which electromagnetic forces are propagated with infinite velocity.
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1.23. Transformation of the Field Vectors to Moving Systems. We
shall not dwell upon the manifold consequences of the Lorentz transforma-

tion; the Fitzgerald-Lorentz contraction, the modified concept of simul-

taneity, the variation in apparent mass, the upper limit c which is imposed

upon the velocity of matter, belong properly to the theory of relativity.

The application of the principles of relativity to the equations of the

electromagnetic field is essential, however, to an understanding of the

four-dimensional formulation of Sec. 1.21.

The Lorentz transformation has been deduced from the postulate on

the constancy of the velocity of light and has been shown to be equivalent
to a rotation in a space xi, rc2 , 3 , 4

= ict. Now according to the rela-

tivity postulate, the laws of physics, when properly stated, must have

the same form in all systems moving with a relative, uniform motion;

otherwise, it would obviously be possible to detect such a motion. In

Sees. 1.19 and 1.20 it was shown that the curl, divergence, and Laplacian
of vectors and tensors in a four-dimensional manifold are invariant to a

rotation of the coordinate system. Therefore, to ensure the invariance

of the field equations under a Lorentz transformation it is only necessary

to assume that the four-current J and the four-potential 4> do indeed

transform like vectors, and that the quantities
2
F,

2G transform like

tensors. In other words, we base the vector and tensor character of these

four-dimensional quantities directly on the two postulates.

The four-current J satisfies the equation

Under a rotation of the coordinate system the components transform as

4

(105) J}

or, upon introducing the values for aik from (98),

J 1 T
<Jx Jx,

1

with its inverse transformation

J-
=

We shall assume henceforth that the reference system Xf
is fixed within a

material body which moves with the constant velocity v relative to the
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system X. This latter may usually be assumed at rest with respect to

the earth. If the velocity v is very much less than the speed of light,

Eq. (107) is approximately equal to

(108) J, = JJ + vp', P = P'.

An observer on the moving body measures a charge density p' and a

current density J'z ]
his colleague at rest in X finds the current J'z aug-

mented by the convection current vp'.

In like manner the relations between the electric and magnetic
vectors defining a given field in a fixed and in a moving system are

obtained directly from the rule (61) for the transformation of the com-

ponents of an antisymmetric tensor. Upon substitution of the appro-

priate values for the coefficients a#, one obtains for the components of 2F :

iz +

Fu =

W #22^33^23 + #22^34^24 =

24
=

and, hence,

The restriction to translations along the z-axis may be discarded by

writing v as a vector representing the translational velocity of X' (the

moving body) in any direction with respect to a fixed system X. Since in

(110) the orientation of the z-axis was arbitrary, we have in general

(Ill)
*'-*' *

5'j. = _ 2
f B - -

t
v X E

J
,
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where
||
denotes components parallel, J, components perpendicular to

the axis of translation. Dropping terms in c~2
,
as is justifiable whenever

the body is moving with a velocity v 3 X 108
meters/second, we

obtain the approximate formulas

L, E' =

The implication of these results is striking indeed: the electric and

magnetic fields E and B have no independent existence as separate
__ 7*

entities. The fundamental complex is the field tensor 2F = (B, E) ;
c

the resolution into electric and magnetic components is wholly relative

to the motion of the observer. When at rest with respect to permanent

magnets or stationary currents, one measures a purely magnetic field B.

An observer within a moving body or system Xf

,
on the other hand,

notes approximately the same magnetic field, but in addition an electro-

static field of intensity E' = v X B. Or, inversely, the moving body
may carry a fixed charge. To an observer on the body, moving with the

charge, the field is purely electrostatic, whereas his colleague aground
finds a magnetic field in company with the electric, identifying quite

rightly the moving charge with a current.

From the tensor 2G = (H, icD) are calculated in like fashion the

transformations of the vectors H and D from a fixed to a moving system.

(113)
**- H

(H - v X

The invariance of Maxwell's equations to uniform translations amounts

to this: if the vector functions E, B, H, D define an electromagnetic field

in a system X, the equations

/)TV

Y'XE' + 2g-
=

0, V'-B' =
0,

(114)
*

V X H' - - =
J', V'-D' =

p',

are satisfied in a system Xr which moves with the constant velocity v

relative to X, the operator V' implying that differentiation is to be effected

with respect to the variables x', y', z'. An observer at rest in X' inter-

prets the vectors E', B', H', D' as the intensities of an electromagnetic
field satisfying Maxwell's equations. Clearly the ratios of D to E and

H to B are not preserved in both systems. The macroscopic parameters
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, jit,
<r are also subject to transformation, which may be ascribed to an

actual change in the structure of matter in motion. In practice one is

interested usually in the mechanical and electromotive forces, measured in

the fixed system X, which act on moving matter
,
rather than in the trans-

formed field intensities E', B', IF, D'. The determination of these

forces and of the differential equations which they satisfy within the

framework of the relativity theory was accomplished by Minkowski in

the course of his investigation on the electrodynamics of moving bodies.

The vector character of the four-potential is demonstrated by Eq.

(79) which expresses the field tensor 2F as the curl of 4>. Under a Lorentz

transformation

(115) *}
-

or, in terms of vector and scalar potentials,

As in the case of the field vectors, the resolution into vector and scalar

potentials in three-space is determined by the relative motion of the

observer.

In conclusion it may be remarked that a rotation of the coordinate

system leaves invariant the scalar product of any two vectors. It was

in fact from the required invariance of the quantity

(117) R R = R* = x* + y* + z 2 - c 2
*
2

,

that we deduced the Lorentz transformation. Since the current density

J and the potential I> have been shown to be four-vectors, it follows that

the quantities

J 2 = Jl + Jl + Jl
- cV,

(118) $2 = Al + Al + Al -
,

c

^ J = AJX + AyJy + AJ, fa,

are true scalar invariants in a space-time continuum. There are, more-

over, certain other scalar invariants of fundamental importance to the

general theory of the electromagnetic field. From the transformation

formula Eq. (59) the reader will verify that if
2S and *T are two tensors

of second rank, the sums

kj
= inyariant>

y-i *-i
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are invariant to a rotation of the coordinate axes. These quantities

may be interpreted as scalar products of the two tensors. Let us form

first the scalar product of 2F with itself. According to (71) and (119)

we find 44
/ 1 \

(120) F* = 2 B * "
2
E = invariant '

Next we construct the scalar product of 2F with its dual 2F* defined in

(75).
4 4

(121) ^ ^^ FjkFJk 4 - B E = invariant.

From the tensor 2G and its dual 2G* may be constructed the invariants

4 4

(122) "V^ ^? Ojk
= 2(H 2 c 2Z) 2

)
= invariant,

. 1

4 4

(123) ^ (?y*(?J
* ^ " 4lcH * D = invariant -

>-! A;l

Proceeding in the same fashion, we obtain

= invariant,

I D H E H
)

= invariant.

The invariance of these quantities in configuration space is trivial; they

are set apart from other scalar products by the fact that they preserve the

same value in every system moving with a uniform relative velocity.



CHAPTER II

STRESS AND ENERGY

To translate the mathematical structure developed in the preceding

pages into experiments which can be conducted in the laboratory, we
must calculate the mechanical forces exerted in the field upon elements of

charge and current or upon bodies of neutral matter. In the present

chapter it will be shown how by an appropriate definition of the vectors

E and B these forces may be deduced directly from the Maxwell equations.

In the course of this investigation we shall have to take account of the

elastic properties of material media. A brief digression on the analysis of

elastic stress and strain will provide an adequate basis for the treatment

of the body and surface forces exerted by electric or magnetic fields.

STRESS AND STRAIN IN ELASTIC MEDIA

2.1. The Elastic Stress Tensor. Let us suppose that a given solid or

fluid body of matter is in static equilibrium under the action of a specified

system of applied forces. Within

this body we isolate a finite volume

V by means of a closed surface S, as

indicated in Fig. 12.

Since equilibrium has been as-

sumed for the body and all its parts,

the resultant force F exerted on the

matter within S must be zero. Con-

tributing to this resultant are volume

or body forces, such as gravity, and

surface forces exerted by elements of

matter just outside the enclosed

region on contiguous elements

within. Throughout 7, therefore, FK- 12. A region V bounded by a surface

. . , ,.
,

., , j S in an elastic medium under strow.
we suppose force to be distributed

with a density f per unit volume, while the force exerted by matter outside

S on a unit area of S will be represented by the vector t. The components
of t are evidently normal pressures or tensions and tangential shears. The

condition of translational equilibrium is expressed by the equation

(1) V '

83
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To ensure rotational equilibrium it is necessary aluo that the resultant

torque be zero, or

(2)

where r is the radius vector from an arbitrary origin to an element of

volume or surface.

The transition from the integral relations (1) and (2) to an equivalent

differential or local system expressing these same conditions in the

immediate neighborhood of an arbitrary point P(z, y, z) may be accom-

plished by a method employed in Chap. I. The surface S is shrunk

about P and the components of t are expanded in Taylor series. The

integral can then be evaluated over the surface and on passing to the

limit the conditions of equilibrium are obtained in terms of the deriva-

tives of t at P. This labor may be avoided by applying theorems already

at our disposal. Let n be the unit, outward normal to an element of S.

There are then three vectors X, Y, Z which satisfy the equations

(3) k = X n, tv
= Y n, t,

= Z n.

The quantity Xn is clearly the x-component of force acting outward on a

unit element of area whose orientation is fixed by the normal n. The

expansion of the scalar products in the form

tx = XXUX + XyUy + XZUZy

(4) tv
= Yxnx + YyUy + Yznzy

tz
= Zxnx + ZyUy + Zznt

may also be interpreted as a linear transformation of the components of

n into the components of t, the components nx ,
nyj nz being the direction

cosines of n with respect to the coordinate axes. The equilibrium of the

rr-components of forces acting on matter within S is now expressed by

(5)

which in virtue of the divergence theorem and the arbitrariness of V is

equivalent to the condition that at all points within S

(6) fx + V X = 0.

For the y- and ^-components we have, likewise,

(7) fy + V Y =
0, /. + V Z = 0.

The rotational equilibrium expressed by (2) imposes further condi-

tions upon the nine components of the three vectors X, Y, Z. The

^-component of this equation is, for example,

(8) fy (yf*
-

*/) dv + fa (yt.
- zty) da = 0.
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Introduction of the values of t, and < defined in (3) leads to

(9) fr (yf.
-

zfv) dv + fs (yZ - Y) n da = 0,

which, again thanks to the divergence theorem and the arbitrariness of

V, is equivalent to

(10) yf, -tf, + V> (yZ - Y) = 0.

But

(11) V-foZ) = 2/V-Z + Z- Vy - yV-Z + Z
tt

.

Equation (10) reduces to

(12) y(f. + V . Z)
-

*(/ + v . Y) + Zv
- Y. = 0;

or, on taking account of (7),

(13) Zv
= Y,.

In like manner there may be derived from the y- and ^-components of

(2) the symmetry relations

(14) Xy
= F., Xz

= Z,.

The nine components Xx ,
Xv ,

. . . Zt , representing forces exerted on
unit elements of area, are called stresses. The diagonal terms Xx ,

Yv ,
Zz

act in a direction normal to the surface element and are, therefore,

pressures or tensions. The remaining six components are shearing
stresses acting in the plane of the element. These nine quantities con-

stitute the components of a symmetrical tensor, as is evident from (4)

and the fact that t and n are true vectors (cf. Sec. 1.20). For the sake of

a condensed notation we shall henceforth represent the components of the

stress tensor by T,-*, where

(15) Xx = Tn, Xy
= T12 ,

... Y, = TM ,
... Z, = r3a .

In order that a fluid or solid medium under stress shall be in static

equilibrium it is necessary that at every point

(16) f + div 2T =
0, Tik = 2V

Imagine an infinitesimal plane element of area containing a point

(x, y, z) in a stressed medium. The stresses acting across this surface

element will, in general, be both normal and tangential, but there are

three distinct orientations with respect to which the stress is purely
normal. Now if the resultant force t acting on unit area of a plane ele-

ment is in the direction of the positive normal n, one may put

(17) t - Xn,
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where X is an unknown scalar function of the coordinates x, y, z, of the

element. When this condition is imposed upon Eqs. (4) one obtains the

homogeneous system

(18) Xn, = V Tjknk , (j
=

1, 2, 3).

In order that these homogeneous equations be self-consistent, it is

necessary that their determinant shall vanish; whence it follows that the

scalar function X can be determined from

(19)

X

7*22
"~ X TW

JL32 TzZ X

=
0,

provided, of course, that the stress components T]k with respect to some

arbitrary coordinate system are known. The secular equation (19) has

three roots, Xa , X&, Xc ,
and these fix, through Eq. (18), three orientations of

the surface element which we shall designate respectively as n(a)
,
n(6)

,
n(c)

.

If the roots are distinct, the preferred directions defined by the unit

vectors n(o)
,
n(6)

,
n(c) called the principal axes of stress are mutually

perpendicular. Let us consider, for example, n(a) and n<6)
. According

to (18),

(20) Xarc<.*>
=

Multiply the first of these equations by nf\ the second by n<0)
,
subtract

the second from the first and sum over j.

(21) (Xa
- X6) V n

~l ,--!*-!

The right-hand sum vanishes, leaving

(22) (Xa
- X6)n(> - n< = 0.

If Xa 5^ X&, the vector n(o) must be orthogonal to n(6) as stated.

The physical significance of the principal axes may be made clear in

another manner. At a point P in a stressed medium the symmetrical

tensor 2T associates with a unit vector n the resultant force t acting on a

unit surface element normal to n. Let the origin of a rectangular coordi-

nate system be located at P. The scale of length in this new system is

arbitrary and we may suppose that the components of n, drawn from P,
are

, 77, f . Now the scalar product of the vectors t and n, which we shall

call <, is a quadratic in
, ?y, f .

(23) *(t 77, f) = t n =
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The surface < =* constant is called the stress quadric. By a rotation of

the coordinate axes (23) can be reduced to the square terms alone, and
it is clear that the principal axes n(o)

, n(6)
, n(c) must coincide with the

principal axes of the quadric. One will observe, furthermore, that

(24) t = iV$.

This property enables one to find the stress across any surface element at

P by graphical construction. We shall suppose the stress to be such that

the quadric is an ellipsoid and draw about P the surface $ = 1. The
radius vector from P to any point P' on this surface is n. According to

(24) the resultant force acting on an element at P whose normal is n is in

the direction of V$, or normal to $ = 1 at Pf
. The magnitude of t

according to (23) is equal to the reciprocal of the projection NP f

indicated

FIG. 13. Graphical determination of stress on an element of area at the point P from the

stress quadric.

in Fig. 13. Along the principal axes, a, fc, e, the normal to the surface

$ = 1 coincides with the vector n and the stress on the element at P is

purely normal. If these principal stresses are known, the quadric can

be constructed and the stress on an arbitrarily oriented element deter-

mined graphically.

2.2. Analysis of Strain. If surface and volume forces arc applied to

a perfectly rigid body, the resultant motion may be described in terms of

a translation of the body as a whole and a rotation about its center of

mass. If, however, the body is deformable, its parts suffer also relative

displacements which increase until equilibrium is reestablished by internal

forces evoked in the deformation. The changes in the relative positions

of the parts of a body under stress are called strains.

In an unstressed, continuous medium a point P is located with respect

to an arbitrary, fixed origin by the radius vector r. Under the influence

of applied forces the medium undergoes a deformation, in the course of

which the matter located initially at P moves to a point P' at r' = r + s.

The displacement s corresponding to a given deformation depends on
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the coordinates of the initial point P; we assume s to be a continuous

function of r. Consider now any neighboring point Pi located by the

radius vector ti. The initial position of PI with respect to P is fixed by
the vector 5r, where

(25) Sr = n - r.

The displacement of PI during the deformation is Si, a function of ri.

The relative displacement of two neighboring points P and PI occasioned

by the deformation is therefore

(26) 6s = Si s = s(r + 5r) s(r).

Since s(r + 3r) is continuous, it may be expanded in a Taylor series;

for points in a region sufficiently small about P we need retain only the

linear term

(27) 5s = (6r- V)s;

or, in component form,

(28) ta '

(The indices 1, 2, 3 again replace the subscripts x, y, z for convenience in

summing.)
The nine derivatives dsj/dxk are the components of a tensor (cf.

Eq. (54), Sec. 1.20) which is in general asymmetrical. However, it can

be resolved after the manner of Eqs. (46) and (47), page 66, into a

symmetric part,

(29) <"*
=

and an antisymmetric part,

The components of this antisymmetric tensor are evidently identical with

the components of an axial vector b, defined by

(31) b = iV X s,

(32) 6l = &S2, &2 = bl3, &3 = &2L

The relative displacement 5s can likewise be split up into a part 5s'

associated with the symmetric tensor a#, and a part 5s
;/ associated with

the antisymmetric tensor b^. Then, by (28) and (30),

(33) 5s" = b X 5r - i(V X s) X 8r.

Physically this implies that the matter contained within an infinitesimal

volume about P is subjected to a rotation as a rigid solid; the rotation
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takes place about an instantaneous axis through P in the direction of

V X s, and in circular measure is equal to i|V X s|. This local rotation

is brought about by stresses whose curl does not vanish.

Whereas the relative positions of points in the immediate vicinity

of P are preserved by the local rotation (33), the symmetric tensor (29)

defines a local deformation an actual stretching and twisting. We ask

first whether there are any vectors 5r drawn from P whose direction is

unchanged after the deformation; that is to say, are there any points

PI, Fig. 14, which in the course of the

deformation will move along the line

defined by 5r? The necessary condi-

tion is that

(34) 5s' = X 5r,

where X is an unknown scalar function

of the coordinates of P; or

3

(35)X to,
= aikdx k , (j

=
1, 2, 3).

O
The parameter X is found from the FlQ - 14. -Vectors characterizing the de-

T... , t , ,v j . . , fj-i' formation of a continuous medium.
condition that the determinant of this

homogeneous system shall vanish and, as in the analogous case of the

stress tensor discussed in the preceding paragraph, it is easy to show that

the three roots fix three principal axes which in general are mutually

orthogonal. Along these principal axes of strain, and along them only,

the deformation consists of a pure stretching. The nature of the deforma-

tion along any other axes can be visualized with the aid of a strain quadric

such as (23). Let the point Pi, Fig. 14, have the coordinates 1, 2, 8

with respect to P and construct the surface

(36) ^ = 5r 5s' = V Y a#fcfr = constant.
/-I ffi

If all lines issuing from P are extended, or if all are contracted, the quadric
is an ellipsoid; if some lines are extended and others contracted, the sur-

face is an hyperboloid. The relative displacement of PI with respect to

P is given by

(37) 5s' = iV*.

The radius vector from P to PI on the surface S = 1 is 5r. In Fig. 15

it has been assumed that this surface is an ellipsoid. The direction of

the relative displacement 5s' due to the deformation is that of the normal

erected at PI and its magnitude is equal to the reciprocal of the projection
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NPi of the radius vector 5r on the normal. Obviously the vectors 5s'

and 5r are parallel only along the principal axes of the ellipsoid. These

axes represent also the directions of maximum and minimum contraction

or extension.

There is an interesting physical interpretation to be given to the

tensor components a#. If before a deformation the relative position

of two points P and Pi, Fig. 14, is fixed by 5r, their relative position

after the deformation is 5r' = 5r + 5s', the prime over 5s' indicating

that local rotations are excluded. Suppose now that 5r is directed along

b

FIG. 15. Graphical determination of strain at the point P from the strain quadric.

the Zi-axis, so that 5x 2
= 5x3 = 0. Then 5r' is a vector whose com-

ponents are

(38) 5xJ = (1 -f- aii) $Xiy 5x = ct2i 5xi, 5x3
= a3 i 5xi.

The absolute value of the distance between P and PI after deformation is

(39) |5r
7

|

= V(l + an)
2 + ali + <*!i fai,

and the relative change in length is

(40)
M -

obtained by expanding (39) and discarding all terms of higher order

than the first. Similar expressions can be found for deformations of line

elements lying initially along the x2
- and x s-axes, whence we conclude that

the diagonal components a//
=

dsj/dx,- represent extensions of linear ele-

ments which in the unstrained state are parallel to the coordinate axes.

Again let 5a be a linear element which in the unstrained state is

parallel to the i-axis and 5b be a linear element initially parallel to the

a;2-axis. A local deformation transforms the vector 5a = ii 5zi into an
element
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while at the same time 6b = i2 8x 2 is transformed into

(42) 6b' = iiai2 8xz + i 2 (l + a22) 8x 2 + i3a32 tei.

In the initial state 6a and Sb are mutually orthogonal, but after the

deformation, they form an angle which differs but little from ir/2 and

which we shall denote by ^ 0i 2 .

&

(43) 3a' 8b' = |5a'| |5b'| cos fa - 0A
But

(44) cos f
1
-

0i 2

J
= sin 12

~ 6l2j

and, hence,

(45) 0i 2
= ai2(l + an) + a2i(l + a22) + a 3ia 82 ;

or, on neglecting terms of higher order than the first,

(46) 12
= 0l2 + a21 = |!l + |??.0X2 oXi

Thus, in general, the coefficient a#, with j ^ fc, measures one-half the

cosine of the angle made by two linear dements after <i deformation, which

in the unstrained state werz directed along a pair of orthogonal coordinate

axes.

Conforming to this interpretation, it is customary to write the com-

ponents of the deformation tensor in a slightly altered manner. The
coefficients defined by

dsi dsi
,

ds2
11
=

3 #12 = -5 -r v~ = e 2 i
dxi axz oxi

/A7\ o
$s* *

ds *
i

5s s

(47) e22 = _ e = ~ + = e*z

are called the components of strain, and the components of the relative

displacement of any two points P and Pi due to a local deformation

are therefore

5si
= en 8xi + |ei 2 8x 2

(48) 5s2
= ^e 2 i 8xi + 6 22 8x2

xi + ^32 8x2

If the origin of the arbitrary coordinate system Xi, rc2 ,
x 3 is located at the

point P and the axes then rotated into coincidence with the principal

axes of the strain ellipsoid associated with that point, all components of
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strain are reduced to zero with the exception of those lying on the main

diagonal. We shall measure distances along the principal axes of strain

by the coordinates u\, w2 , u*. Then the components of any local deforma-

tion with respect to P are

(49)

where

(50)

6s' = e

e 2
=

and where 8ui, 6u 2 ,
6w 3 are the components of 5r with respect to the

principal axes. The coefficients e\, e 2 ,
e 3 are called the principal strains?

or principal extensions.

Associated with the deformation of an infinitesimal region there is a

change in the element of volume. If 6a, 5b, 8c are three vectors defining

a parallelepiped, its volume is given by

8ai 5a 2

(51) 8V = (5a X 5b) 8c =

Without loss of generality we may choose for this initial element a rec-

tangular block whose sides are parallel to the coordinate axes.

(52) 5a = ii 5zi, 5b = i 2 5x 2 ,
dc = i 3 8x s .

The deformation transforms these vectors as in (41) and (42), whence

for the volume after strain we find

1 + 011 021

012 1 + 022(53) 8V =
(&*' X 5b

r

)
. 8c' 8Xl 8X3 8X3.

01S 2 3 1 + 033

Expansion of this determinant and discard of all terms of higher order

than the first lead to

57' - 57
(54) 8V

= an + 022 + 033 = V S

for the change of volume per unit volume a quantity called the cubical

dilatation.

In summary, the analysis has shown that the most general displace-

ment of particles in the neighborhood of a point may be resolved into a

translation and a local rotation, upon which there is superposed a deforma-

tion characterized by the strain components e^ and accompanied by a

change in volume. The rotational component of the total strain can

be induced only by rotational stresses force functions, that is to say,

whose curl is not everywhere zero.
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2.3. Elastic Energy and the Relations of Stress to Strain. Under the

Influence of external forces the particles composing an elastic fluid or

solid suffer relative displacements. These strains, in turn, evoke internal

forces which, in the case of static equilibrium, eventually compensate
the applied stresses. The work done by the applied volume and surface

forces in displacing every point of the medium an amount 6s is

(55) W =
J*

f 5s dv + f t 5s da.

According to Eq. (3)

(56) t 5s = 6sxX n + 5syY n + dstZ n,

and, hence,

(57) J*
t 6s da = J V (X dsx + Y dsv + Z ds,) dv.

Now

(58) V (X dsx)
= texV X + X V dsx,

and by (6) / = -V X. Thus (55) reduces to

(59) dW = f (X V 8sx + Y V dsy + Z V 5s,) dv.

The components of the integrand may, however, be written

(60) X V *> - T () + T S

(ft)
+ T135 (), etc.,

which in the notation of Eqs. (47) leads to

(61) tW = f (Tn Sen + T22 8eZ2 + TZ z 5e 33 + r 6e 12 + T23 fess

+ r8 i tesi) dv

for the work done by the applied stresses against the elastic restoring

forces in the course of an infinitesimal change in the state of strain. If it

be assumed that this change takes place so slowly that the variation in

kinetic energy may be neglected, and that no heat is added or lost in the

process, then SW must be equal to the increase in the potential energy U
stored up in the elastically deformed medium. The elastic energy

stored in unit volume will be denoted by w, whence

(62) 6W = tU = Budv.

The energy density u at any point must depend on the local state of

strain and it may, therefore, be assumed that

(63) u = u(eU) 612, e83),
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or

fdA\ XT7 C i dU
* I

dU
H I

dU
(64) SU =

J Us 5eu +^ 5e*2 +^
*T
063

The strain components 6,-& are arbitrary; hence it follows that the com-

ponents of applied stress (which in static equilibrium are equal and

opposite to the induced elastic stresses) can be derived from a scalar

potential function,

(65) r.

The existence of an elastic potential, which has been demonstrated

here for the case of quasi-stationary, adiabatic deformations, may be

shown for isothermal changes as well.

When the deformations are not excessive, the components of elastic

stress may be expressed as linear functions of the components of strain.

TH = CiiBn + 612622 + 613633 + 614612 + 015623 + 615631,

45623

The coefficients cmn are called the elastic constants of the medium. The
elastic potential u is in this case a homogeneous quadratic function of the

strain components. The existence of a scalar function u(ejk) satisfying

(65) and (66) imposes on the elastic constants the conditions

(67) Cmn = Cnm (fl, W =
1, 2, , 6),

whereby the number of parameters necessary to specify the relation of

stress to strain in an anisotropic medium reduces from 36 to 21. Any
further reduction is accomplished by taking advantage of possible sym-
metries in the structure of the medium. If, in particular, the substance

Is elastically isotropic, the quadratic form u must be invariant to orthog-
onal transformations of the coordinate system, and the number of inde-

pendent constants then reduces to two. The elastic potential assumes

the form

(68) u = i\i(cii + 622

whence, by (65)

(69) r22
= Xi(6n + 622 + 6 33) + 2X2622, T23 = X 2e23 ,

r33 = Xifcu + 622 + 633) + 2x2633, TV = x26 3 i.
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Now the conditions of static equilibrium are expressed by

(16) f + V - 2T = 0.

Upon introducing the components (69) into the expanded divergence
and expressing the strain components ,* in terms of the deformation s,

we find

(70) f + (Xi + X2)VV - s + X2V 2s =

as the equation determining the deformation of an isotropic body sub-

jected to a volume force f. The constants of integration are evaluated

in terms of data specifying either the displacement of points on the

bounding surface, or the distribution of stress over that surface.

The parameters Xi and X2 are positive quantities. X 2 is called the

rigidity, or shear modulus, for it measures the strains induced by tan-

gential, or shearing, stresses. No simple physical meaning can be

attached to Xij however, it may be defined in terms of the better known
constants E and a, where Young

1

s modulus E is the ratio of a simple

longitudinal tension to the elongation per unit length which it produces,

and where the Poisson ratio <r is the ratio of lateral contraction to longi-

tudinal extension of a bar under tension. Then

E<r E
01

(1+cOtt -2cr)'
/v *

2(1+ a)

An ideal fluid supports no shearing stress, and hence X2
= 0. The

stress acting on any element of a closed surface within the fluid is, there-

fore, a normal pressure,

(72) Tn = T22
= T33

= -p, Tw = T23
= T31

=
0,

the negative sign indicating that the stress is directed inward. The

components of strain en, 622, 33 are all equal and

(73) p = Xi(cn + <?22 + e 33)
= XiV s,

while the equation of equilibrium reduces to

(74) f - Vp = 0.

Let Fo be the initial volume of an element of fluid, V\ its volume at a

pressure pi, and F2 its volume at a pressure p 2 . From the definition

(54) of the cubical dilatation V s we have

T7 -\T T7 T7

(75) p,
= -Xi-

and for sufficiently small changes,

(76) p,-pi=
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For an infinitesimal change in pressure

/i-,\ j x dV x dr
(77) dp =

-Xi-y
= Xi ,

where T is the density of the fluid. The reciprocal of Xi is in this case

called the compressibility.

ELECTROMAGNETIC FORCES ON CHARGES AND CURRENTS

2.4. Definition of the Vectors E and B. An electromagnetic field is

defined according to our initial hypotheses by four vectors E, B, D and H
satisfying Maxwell's equations. The physical nature of these vectors

will be expressed in terms of experiments by means of which they may be

measured. Now it is easy to show that pE and J X B are quantities

whose dimensions are those of force per unit volume. For by Sec. 1.8

(1\ f pi
c ul mbs v volts __ kilograms
meter3 meter second 2 meter2

/ox TT ^ -01 amperes . . webers kilograms
(2) U X BJ = X -

meter2 meter 2 second 2 meter2

We are, therefore, free to define the vectors E and B as forces exerted

by the field on unit elements respectively of charge and current. More

precisely, we shall suppose that charge is distributed throughout a volume

V with a macroscopically continuous density p. Then E is defined such

that the net mechanical force acting on the charge is

(3) Fe
= fyPEdv,

distributed with a volume density

(4) f. = PE.

If V is sufficiently small, the field within this region at any instant may
be assumed homogeneous, so that in the limit

(5) Fe
=

In like manner the association of the magnetic vector B with the

force exerted on a unit volume element of current through the equation

(6) fm = J X B,

leads to

(7)

as the net force exerted on a volume distribution of current. If the

current is confined to a linear conductor of sufficiently small cross section,
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B may be assumed homogeneous and the current lines parallel to an
element of length ds. The force acting on a linear current element is then

(8) d m = I cfe X B.

dFm

Whereas the force exerted by an electric field on an element of charge is

directed along the vector E, the force exerted on an element of current

in a magnetic field is normal to the plane defined by the element ds

and the vector B.

This arbitrariness in our definition of E and B is inevitable. The
mutual forces exerted by charges upon charges or currents upon currents

can be measured, but the field vectors themselves are not independent
entities accessible to direct observation.

The definitions of E and B based on Eqs.

(3) and (7) have been shown by purely

dimensional considerations to be compat-
ible with Maxwell's equations. In the

following we shall have to show that the

properties of a field of the vectors E and B
defined in this manner and satisfying

these equations are in complete accord

with experiment. From the forces ex-

erted by charges and currents may be

determined the work necessary to estab-

lish a field; from energy relations in turn it will be possible to deduce the

forces exerted on ponderable elements of neutral matter.

2.5. The Electromagnetic Stress Tensor in Free Space. Let us sup-

pose that a certain bounded region of space contains charge and current

distributions but is free of all neutral dielectric or magnetic materials.

The field is produced in part by the charges and currents within the

region, in part by sources which are exterior to it. At every interior point

FIG. 16. Direction of force exerted
on a current element J ds in a mag-
netic field B.

(I)VXE + =
0, (III) V B =

0,

r

(II) V X B - ^o = MoJ, (IV) V . E = -p.

Let (I) be multiplied vectorially by oE, (II) by the vector B. Upon
adding and transposing terms we find

(9) e(V X E) X E + (V X B) X B = J X B + eo (E X B).
Mo <n

In a rectangular system of coordinates the first term of (9) may ba

represented by the determinant
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(10) (V X E) X E =
j k

x dEf dEv

~dy

Ey Eg

The ^-component of this vector is

(11)
dx dy

s
'~dF

V
Jlivv

""to"
\ TTT a T}1

O-C/y J-,
CfjUz

dx
*
dx

Now the quantities

(12) Sft

transform like the components of a tensor [Eq. (43), page 66] and the

first three terms on the right of (11) constitute therefore the x-component
of the divergence of a tensor 2S (a)

. The remaining components are

calculated from the T/- and z-components of c (V X E) X E, such that

we are led to the identity

(13) (V X E) X E = div 2
S<*> - c E V E,

the components of 2S (6) being tabulated below.

TABLE I. COMPONENTS S ($ OF THE TENSOR 2S (fl) IN FREE SPACE

The transformation of (V X B) X B is effected similarly, giving

(14)
~ (V X B) X B = div 2S<*> - - B V
Mo Mo

where the components of 2S (ns) are as represented in Table IT.



SBC. 2.5] THE ELECTROMAGNETIC STRESS TENSOR <J9

TABLE II, COMPONENTS S(

/f OF THE TENSOR 2S(m) IN FREE SPACE

Upon replacing the first two terms of (9) by (13) and (14) and taking
account of (III) and (IV), we obtain an identity of the form

(15) div 2S = Ep + J X B + e (E X B),

wherein the components of the tensor 2S are

(16) s* =
stf + sj?>,

and where

,
3 3

div 2S =
'

>, >, i/(17)

Equation (15) is a relation through which the forces exerted on elements

of charge and current at any point in otherwise empty space may be

expressed in terms of the vectors E and B alone.

Let us integrate this identity over a volume V. Now the integral

of the divergence of a tensor throughout V is equal to the integral of a

vector over the surface bounding V. To demonstrate this tensor ana-

logue of the vector divergence theorem, let n be the outward unit normal

at a point on the bounding surface and consider Su to be the x-component
of a vector whose y- and ^-components are zero. The component of this

vector in the direction of the normal n is SnnX) whence by the divergence
theorem

(18) Jr ^>s
Sun, da =

j -^ dv.

Likewise it is apparent that

J

/
(19)

-
f f^>J d/

'

-/ r
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Upon adding these three identities, we obtain

120) J (flun. + &*. + SnJ da = J (*.'
+

jbs
+

***)
dv .

The integrand on the right is the ^-component of div 2
S, and consequently

(21) *,

is the x-component of a vector t which according to (20) is to be integrated
over the surface bounding V. Proceeding similarly for the other com-

ponents, we have the general theorem:

(22) t da = div 2S dv,

where the components of t are

(23) t,
= 2 S*n, (j

=
1, 2, 3),

or, in abbreviated notation,

(24) t = 2S n.

Applied to Eq. (15), the divergence theorem (22) leads to

(25) J
2S - n da F, + Fm + o

~
J E X B dv

with F and Fm representing, as in Eqs. (3) and (7), the resultant forces

acting respectively on the charge and the current contained within V.

Consider first stationary distributions of charge and current. The
fields are then independent of time and the third term on the right of (25)

is zero. Equation (25) now states that the force exerted on stationary

charges or currents can be expressed as the integral of a vector over any

regular surface enclosing these charges and currents. It does not state

that the volume forces F and Fm are maintained in equilibrium by the

force 2S n distributed over the surface. The equilibrium must be

established with mechanical forces of some other type, and in fact it will

be shown shortly that a charge distribution cannot possibly be maintained

in static equilibrium under the action of electrical forces alone. To be

more specific, let us imagine a stationary charge distribution to be divided

into two parts by an arbitrary closed surface S. The force exerted by
the external charges on those within S must in some manner be trans-

mitted across this surface. The net force on the interior charges may,
according to (25), be correctly calculated on the assumption that the

force transmitted across an element of area da is
2S (e> n da, and the

components SJp are hence effective stresses in the electrostatic field.
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Associated with every point in the field there is a stress quadric from

which may be determined the normal and tangential components of

transmitted stress on an element whose normal is n. To find the prin-

cipal axes of this quadric with respect to the direction of the field we shall

adopt the procedure described in Sec. 2.1. The secular determinant (19)

of that section assumes in the present instance the form

(26) = 0.

- X

- X

o(#*
- %E2

)
- X

When expanded and reduced by taking account of the relation

E* + El + El = #2
,

Eq. (26) proves equivalent to

(27)
- 8X3 + 4JS7

2X2 - 2S4X - JS
6 = 0.

The roots of (26) are, therefore,

(28) Xa
=

|tf>,
X5
= X =

-|JP,

from which it is apparent that the stress quadric has an axis of symmetry.
Let n(o) be a unit vector fixing the direction of the principal axis

associated with X . According to (18) page 86, the components of

n(o) with respect to an arbitrary reference system must satisfy

(El
- E*)n? + EJBvny> + E*Ezn =

0,

(29) EJEjtf + (El
-

E*}nf + EvEzn<?>
=

0,
- E*)n = 0.

From the theory of homogeneous equations it is known that the ratios of

the unknowns n(

x
a
\ n(

\ n 0) are as the ratios of the minors of the deter-

minant of the system, whence one may easily verify from (29) that

(30) nL
0)

:<> : n<* = Ex :Ev :Et .

The major axis of the electric stress quadric at any point in thefield is directed

along the vector E at that point. The stress transmitted across an element

of surface whose normal is oriented in this direction is a simple tension,

(31) t<>
-|j57

2 n^).

The stress across any element of surface containing the vector E t.ev,

an element whose normal is at right angles to the lines of force is also

normal but negative, and corresponds therefore to a compression

(32) t<
6> =- -
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Suppose, finally, that the normal of a surface element in the field ig

oriented in an arbitrary direction specified by n. Let the z-axis of a
coordinate system located at the point in question be drawn parallel to E
and choose the z-axis perpendicular to the plane through E and n. The
angle made by n with the direction of E will be called 0. Then

Ex = Ey
=

0, IEI = Eg,

nx = 0, ny == sin 0, nz
= cos 0,

whence according to Eq. (23) the stress components are

(33) 0, sin 0, tz = 2 cos Q.

The absolute value of the stress transmitted across any surface element,
whatever its orientation, is therefore

(34) |t|=!#
2

.

Furthermore t lies in the plane of E and n in a direction such that E
bisects the angle between n and t as illu-

strated in Fig. 17.

In the light of this representation it is

easy to comprehend the efforts of Faraday
and Maxwell to reduce the problem of elec-

tric and magnetic fields of force to that of

an elastic continuum. To both, the con-

cept of a force propagated from one point in

space to another without the intervention

of a supporting medium appeared wholly

untenable, and in the absence of anything
more tangible an all-pervading

" ether"

was eventually postulated to fill that role.

There was then attributed to the stress

components of the field, even in space free of matter, a physical

reality, and a valiant attempt was made to associate with the ether

properties analogous to the strains of elastic media. These efforts did
not bear fruit. Subsequent research has shown that electromagnetic
phenomena may be formulated without employment of any fixed refer-

ence system, and that there are no grounds for the assumption that force

can be propagated only by actual contact of contiguous elements of mat-
ter or ether. On the modern view, the representation of an electrostatic

field in terms of the stress components S$ has no essential physical

reality. All that can be said and all that it is necessary to say is

that the mutual forces between elements of charge can be correctly

FIG. 17. Relation of tension t

transmitted across an element of

surface in an electrostatic field to
the field intensity E.
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calculated on the assumption that there exists throughout the field a

fictitious state of stress as described.

Since the tensors 2S(m) and 2S (e) are of identical form, the discussion of

the foregoing paragraphs applies in its entirety to the field of a stationary

distribution of current. The force exerted by external sources on the

current within an arbitrary closed surface is obtained by integrating over

this surface a stress whose absolute value is

(35) |t|
= B*,

*Mo

and whose direction with respect to the orientation of a surface element

and the direction of the field B is as in Fig. 17.

If in Eq. (23) the components Sjk are introduced from Tables I and II,

it is apparent that the stress transmitted across an element of area whose

positive normal is n may be written vectorially as

(36) t<<> = 2S> n = c (E n)E - &̂

(37) t<
m) = 2S<" n = -

(B n)B - ^-
Mo ^Mo

Over any volume bounded by a regular, closed surface S we have there-

fore for stationary distributions of charge and current:

(38)

(39)

I

e (E n)E -
| E*n1 da = f PE dv,

-
(B n)B - ^ J3 2n 1 da = f J k B

MO 2/10 J Jv
dv.

2.6. Electromagnetic Momentum. In a stationary field the net force

transmitted across a closed surface S bounding a region containing neither

charge nor current is zero. If, however, the field is variable, it is clear

from Eq. (25) that this is not the case. How, then, are we to interpret

the apparent action of a force on volume elements of empty space?

Since the dimensions of e E = D are QL~ 2
,
and those of B =

/* H are
7"" 1

,
it is evident that the quantity

(40) g = 6 ExB = ~ExH
c

is dimensionally a momentum per unit volume. The dimension Q drops

out of the product D X B and this conclusion, therefore, is not simply a

consequence of the particular system of units employed. The identity

(41)
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can be interpreted on the hypothesis that there is associated with an

electromagnetic field a momentum distributed with a density g. The
total momentum of the field contained within V is

(42) =
I g dp kg.-meters/sec.,

\) *

and (41) now states that the force transmitted across 2 is accounted for

by an increase in the momentum of the field within 2. The vector
2S n measures the inward flow of momentum per unit area through 2,
while the quantity Sjk may be interpreted as the momentum which in

unit time crosses in the j-direction a unit element of surface whose normal is

oriented along the k-axis.

A direct consequence of this hypothesis is the conclusion that New-
ton's third law and the principle of conservation of momentum are

strictly valid only when the momentum of an electromagnetic field is

taken into account along with that of the matter which produces it. Let
us suppose that within the closed surface 2 there are charges distributed

with a density p, and that the motion of these charges may be specified

by a current density J. The force exerted on the charged matter within
2 is then

(43) F. + Fm = f (PE + J X B) dv - ^ <

J at

where Gmeoh is the total linear momentum of the moving, ponderable
charges. The conservation of momentum theorem for a system com-
posed of charges and field within a bounded region is, therefore, expressed
according to Eq. (25) by

(44) ~ (Gme0h + Golectroma.)
= f 23 . n da.

at Js

If the surface 2 is extended to enclose the entire field, the right-hand
side of (44) must vanish, and in this case

(A K\ /"^ I f\
\*^) ^^rocoh I

vj<ii Kt.rr>m^
~~~ constant.

There appears to be associated with an electromagnetic field an inertia,

property similar to that of ponderable matter.

ELECTROSTATIC ENERGY

2.7. Electrostatic Energy as a Function of Charge Density. A finite

charge concentrated in a region so small as to be of negligible extent
relative to other macroscopic dimensions will be referred to as a point

charge. Now the force exerted on such a point charge q in the field of a

stationary charge distribution is gE, and the work done in a displacement
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of q from a point r = TI to a second point r = 12 is

(1) W = g f
r'

E ds.
/ri

Since the curl of E vanishes at every point in an electrostatic field, the

vector E is equal to the negative gradient of a scalar potential <, and we
have

(2) E rfs = -V0 - ds = -d0,

where d<t> is the change in potential along an element ds of the path of

integration. From this it follows clearly that the work done in a dis-

placement of q from ri to r2 is independent of the choice of path and is a

function solely of the initial and terminal values of the potential.

(3) W = -
*

In particular, the work done in the course of a displacement about a

closed path is zero. A field of force is said to be conservative if the work
done in a displacement of a system of particles from one configuration

to another depends only on the initial and final configurations and is

independent of the sequence of infinitesimal changes by which the finite

displacement is effected. The conservative nature of the electrostatic

field is established by (3), or more precisely by the condition V X E = 0.

Displacements and variations in a static field must be understood to occur

so slowly as to be equivalent to a sequence of stationary states. Such

changes are said in thermodynamics to be reversible.

In Chap. Ill it will be shown that if all the sources of an electrostatic

field are located at finite distances from some arbitrary origin the poten-
tial and field intensities become vanishingly small at points which are

sufficiently remote. The work done by a charge q as it recedes from an

initial point r = TI to r8
= oo

is, therefore,

(4) W =

Obviously the scalar potential itself may be interpreted as the work done

against the forces of the field in bringing a unit charge from infinity to

the point r, or as the work returned by the system as a unit element of

charge recedes to infinity.

(5) <t>(x, y, z)
= -f^ E . ds.

We shall use the term energy of an electrostatic system somewhat

loosely to mean the work done on the system in carrying its elements of

charge from infinity to the specified distribution by a sequence of reversi-
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ble steps. It will be assumed that the temperature of all dielectric or

magnetic matter in the field is held constant. 1

The energy of a point charge 2 in the field of a single point source q\ is

(6) U =
02021,

where 2 i is the potential at 2 due to 0i. Now the work done in bringing

02 from infinity to a terminal point in the field of q\ would be returned

were q\ allowed next to recede to infinity, and therefore

(7) U =
0i0i2.

The mutual energy of the two charges may consequently be expressed by
the symmetrical relation

(8) U = 4(01012 + 02021).

If first 02 and then 3 be introduced into the field of 0i, the energy is

(9) U = 02*21 + 03(031 + 032),

which in virtue of the reciprocal relations between pairs is equivalent to

(10) U = 4(012 + 013)01 + 4(021 + 023)02 + 4(031 + 032)03.

By induction it follows that the energy of a closed system of n point

charges is

n n n

(n) u =
122 *** =

12 **'
t=l ;1 =!

tyy

where is the potential at 0t due to the remaining n 1 charges of the

system.
Note that (11) is valid only if the system is complete, or closed. If

on the contrary the n charges are situated in an external field of potential

0o, a term appears which does not involve the factor 4- In this case

Let us consider now a region of space V within which there are to be

found fixed conductors and dielectric matter. Within the dielectrics

charge is distributed with a volume density p, while over the surfaces of

these dielectrics and on the conductors there may be thin layers of charge

of surface density o>. At a point (x, y, z) within V the potential of the

distribution plus that of possible sources situated outside V is 0. The

work required to increase the charge at (x, y, z) by an infinitesimal

1 The energy in question is in fact the free energy hi a thermodynamic sense.
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amount 5q is < Sg, and the increase in energy resulting from an increase

in the volume density of charge by an amount Sp, or the surface density

by an amount fao, at every point in V is

(13) dUi =
J"

<f> dp dv + C
<t> 5co da.

The second integral is to be extended over all surfaces within V bearing

charge. On the other hand, the addition of an element of charge 6q at

(x, y, z) increases the potential at all points both inside and outside V
by an amount 6<, with a resultant increase of the energy of the charges

already existing within V of

(14) SC/2 -
J*

p &<f> dv + f o> S<t> da.

The work 5[/i done on the system in building up the charge density is

equal to the potential energy dU2 stored in the field provided the system
is closed; provided, .that is, that the region V of integration is extended

to include all charges contributing to the field. In that case

SU = SUi = 6C72,

(15) BU -
\ J (* 8p + p 50) dv + ~

J (* du + co 40) da,

which upon integration leads to

(16) V =
\

as the electrostatic energy of a charge system referred to the zero state

p = w = o. 1

2.8. Electrostatic Energy as a Function of Field Intensity. Let us

imagine for a moment that conductors have been eliminated from the fie!d

and that all surface discontinuities at the boundaries of dielectrics are

replaced by thin but continuous transition layers. Charge is distributed

throughout the dielectric with a density p, but we shall assume that this

distribution is confined to a region of finite extent: the potential and
intensities of the field vanish at infinity. Regions free of matter are, of

course, to be considered as dielectrics of unit inductive capacity. The
work required to increase the charge density at every point in the field

by an amount dp is

(17) SU = f <t> Bp dv,

where </> is the potential due to the initial distribution p. Now the

increment in charge density is related to a variation of the vector D
1 The convergence of these integrals will be demonstrated in Chap. III.
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D) = V (SD).

by the equation

(18) Sp =

Furthermore,

(19) <f>V
- (SD) = V - (0 SD) - SD V< = V (0 SD) + E

and hence (17) is equivalent to

(2t; 6C7 = E - 5D dv + V -
(<f> SD) dv.

or, upon application of the divergence theorem, to

(21) dU = E SD dv + <t> 5D n da,

where S is a closed surface bounding a volume V. This region V need

not include all the charges that contribute to the field. If, however, we
allow the surface S to expand into

a sphere of infinite radius about

some arbitrary origin, the contri-

bution of the surface integral

vanishes
;
for <t> will be shown later

to diminish as 1/r at sufficiently

large distances from the origin,

and D as 1/r
2

. The surface S in-

creases with increasing radius as

r2
,
and the surface integral there-

fore vanishes as 1/r. The incre-

ment of energy stored in the

electrostatic field can be calculated

from the integral

FIG. 18. Conductors bounded by the
(22) dU = f E SD dv

surfaces Si, St, . . . , embedded in a ^ ' J
dielectric medium. , i j n

extended over all space.

In practice the charge is rarely distributed throughout the volume of a

dielectric but is spread in a thin layer of density w over the surfaces of

conductors. These conductors may be considered as electrodes of

condensers, and the increase in the energy of the field is the result, for

example, of work done by the electromotive forces of batteries in the

process of building up the charge on the electrodes. Let us suppose that

there are n conductors, whose surfaces we shall denote by /Si, embedded
in a dielectric of infinite extent. One of these surfaces, let us say Sn ,

will

be assumed to enclose all the others as illustrated in Fig. 18. To ensure

the continuity of the potential and field necessary for the application of

the divergence theorem, surfaces of abrupt change in the properties of the

dielectric may again be replaced by thin transition layers without in
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any way affecting the generality of the results. The work required to

increase the charge density on the surfaces Si by an amount $u> is

(23) SU =
jj fs <t> 5co da,i.

The sum of these n surface integrals can be represented as a single integral

by the artifice of drawing finlike surfaces from the interior conductors to

Sn as indicated in Fig. 18. The integration starts at a point P on Sn,

extends on one side of the fin to Q, then over Si and then returns to P
over the opposite face of the fin. The surface PQ carries no charge and
contributes nothing to the integral. The interior of Sn is thus reduced

to a simply connected region
1 bounded by a single surface S = ^ Si.

t i

(24) dU = f <t>duda.
js

In Sec. 1.13 it was shown that at any surface of discontinuity the

normal and tangential components of the vectors D and E satisfy the

conditions

(25) n (D2
-

7>i)
=

w, n X (E2
-

EI) = 0.

The positive normals to the surfaces Si are directed into the dielectric,

and since n in Sec. 1.13 was drawn from medium (1) into medium (2),

the index (1) now denotes the interior of the conductors whereas (2)

refers to the dielectric. In Chap. Ill we shall have occasion to consider

in some detail the electrostatic properties of conductors, but for the

present we need only accept the elementary fact that the field at any
interior point of a conductor is zero. Were it otherwise, a movement of

free charge would occur, contrary to the assumption of a stationary state.

The interior and surface of a conductor are, therefore, a region of constant

potential. The charge density at interior points is zero [Eq. (21), page

15] and whatever charge the conductor carries is distributed on the

surface in such a way as to bring about the vanishing of the interior field.

Since EI = DI =
0,

(26) n-D 2
=

w, n X E2
= 0;

at a point just outside the conductor the tangential component of E
is zero and the normal component of D is equal to the surface density
of charge.

Upon introducing the first of these relations into (24) and dropping
the index, we obtain

(27) dU = f <MD-nda.
js

1 See Sec. 4.2, p. 227.
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To express this result as an integral extended throughout the volume of

dielectric bounded by the surfaces Si we again apply the divergence

theorem, but must note that n in (27) is directed into the dielectric; the

sign must therefore be reversed.

(28) SU - f V fa 3D) dv =
J*E

3D dv - J <V (3D) <fe.

If the density of charge throughout the dielectric is zero or constant,

V (3D) =
0, and we find as in (22) that the work expended by the

batteries in building up the electrode charges by an amount 5co is

(29) 317 = J E 3D dv,

an integral extended over the entire space occupied by the field, and that

this work is stored in the field as electrostatic energy.

Since the energy 5C7 appears to be stored in the field, as the potential

energy of an extended spring is in some manner stored within it, it is

not unreasonable to suppose that the electrostatic energy is distributed

throughout the field with a density

(30) du = E 3D. joules/meter
3

It is difficult either to justify or disprove such a hypothesis. The
transformation from a surface integral to a volume integral is obviously
not unique, for there might be added to < 3D in (27) any vector whose

normal component integrated over S is zero. Furthermore, it may be

questioned whether the term "energy density" has any physical sig-

nificance. Energy is a function of the configuration of a system as a

whole. The objection has been stated in a rather quaint way by Mason
and Weaver,

1 who suggest that it is no more sensible to inquire about the

location of energy than to declare that the beauty of a painting is dis-

tributed over the canvas in a specified manner. However ingenious,

such an analogy seems not entirely well founded. The energy of an

inhomogeneously stressed elastic medium is certainly concentrated

principally in regions of greatest strain and in this case the elastic energy

per unit volume has a very definite physical sense. Granting that the

analogy of the electrostatic to the elastic field is not a close one, and that

we can be certain only of the correctness of the expression (29) integrated

over the entire field, it is nevertheless plausible to assume that the

energy is localized in the more intense regions of the field in the manner

prescribed by (30).

To find the total energy stored in a field, the increment dU must be

integrated from the initial state D = to the final value D.

1 MASON and WEAVEB, "The Electromagnetic Field," p. 266. University < I

Chicago Press, 1929.
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(31) U

In case the medium is isotropic and linear, such that c in the relation

D = eE is a function possibly of position but not of E, we have

E 5D ~ SE 2
,

j

and hence

(32) t/ = i f cE2
dy.

2.9. A Theorem on Vector Fields. Let P and Q be two vector func-

tions of position which throughout all space satisfy the conditions

(33) V X P =
0, v Q =

0,

and which are continuous and have continuous derivatives everywhere

except on a closed, regular surface Si. The transition of the tangential

components of P and of the normal components of Q across the surface Si

is assumed continuous, but arbitrary discontinuities are permissible

in the normal components of P and the tangential components of Q.
The prescribed conditions over Si are, therefore,

(34) nx(P+ -P_) =
0, n.(Q+ -Q_) = 0.

The unit normal n is drawn outward from Si and vectors in the immediate

neighborhood of this outer face are denoted by the subscript +, whereas

those located just inside the surface are denoted by the subscript .

Finally, it is assumed that the sources of the fields P and Q are located

at finite distances from an arbitrary origin and that P and Q vanish at

infinity such that

(35) lim rP = 0, lim rQ = 0.
r > r

Then k can be shown that the integral over all space of the scalar product

of an irrotational vector P and a solenoidal vector Q is zero, provided P and

Q and their derivatives are continuous everywhere except on a finite number

of closed surfaces across which the discontinuities are as specified in (34).

For since V X P =
0, we may write P =

V<t> and, hence,

(36) P Q = -V (4>Q) + 0V Q.

We shall denote the volume enclosed by the surface Si by Vi, and that

exterior to it by F2 ,
so that the complete field of P and Q is Vi + F2 .

The last term of (36) vanishes and therefore

(37) /Fi+rj P - Q dv = -
fvi V - (Q) dv - JF| V (*Q) dv.

To apply the divergence theorem to this expression we observe that
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is bounded by Si, and that V* is bounded on the interior by Si and on the

exterior by a surface S which recedes to infinity. In view of the behavior

of P and Q at infinity as specified by (35), the integral of <t>Q n over S is

zero. The positive normal to a closed surface is conventionally directed

outward from the enclosed volume; the two integrals of <Q n over S\

are therefore of opposite sign but of equal magnitude in virtue of (34).

Equation (37) transforms to

(38) h+v>
P ' Q *> = -fSl *Q+ ' n da + fSl *Q- ' n da =

>

as stated. The extension of this theorem to a finite number of closed

surfaces Si of discontinuity is elementary.
2.10. Energy of a Dielectric Body in an Electrostatic Field. The

useful theorem of the preceding section may be applied to the solution of

the following problem. Let us suppose that an electrostatic field EI has

been established in a dielectric medium. To simplify matters we shall

assume that this medium is isotropic and linear
} and hence characterized

by an inductive capacity i which is either constant or at the most a

scalar function of position. A nonconducting body whose inductive

capacity is 2, is now introduced into the field EI, while the sources of EI

are maintained strictly constant. We wish to know the energy of the

foreign dielectric body due to its position in the field.

The initial energy t/i, representing the total work done in establish-

ing the initial field, is obtained by evaluating

=
\ J(39) Ui = Ei D! dv

over all space. After the introduction of the body the modified field at

any point is E, and the difference E2
= E EI is thus the field resulting

from the polarization of the body. The volume occupied by the foreign

body we denote by V\ y
that of the medium exterior to it by V*. The

energy of the field in this new state is

(40) V* = | f E D dv,* jFi-f 7i

and the change

(41) U = f/2
- Ui = J f (E D - Ex Di) dv

* JVi+Vt

must be the energy of the body in the external field EI, and consequently

equal to the work done in introducing it. Equation (41) is equivalent to

(42) U = i f E - (D - Di) dv + ~
f (E

-
EI) - D x dv.

* JVi+Vt * JVi+Vt
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The curl of E is zero ev?rywhere, and the divergence of D DI is zero

since the initial source distribution is fixed. Across the surface which
bounds the medium 2 from the medium i the conditions

(43) n X (E+ - E_) =0, n - [(D
- DO+ - (D - DO-] =

0,

are satisfied provided the surface carries no charge. Then by the theorem
of Sec. 2.9 the first integral of (42) is zero, leaving

(44) V =
5 f (E - Ei) D! dv + 1

f (E - Ei) - D! dv.
* JVi 4 JV*

Since DI =
iEi, the second integral of (44) is equivalent to

(45) 5 f (B - Ei) Di cfo = 5 f (D - DO - EX dv.
* JV* * JVi

The conditions of Sec. 2.9 are satisfied by V X EI =
0, V (D DI) =

0,

so that

(46) f E! (D - DO dv ~ f Ei (D - DO dv
JVi+Vi JVi

+ I Ei (D - DO dv = 0,J Vt

and hence

(47) 5 f E! (D - DO dv = -5 f E! - (D - DO dv.
^ JVt * JVi

Upon introducing (47) into (44), we obtain an expression for the energy
of a dielectric body embedded in a dielectric medium in terms of an

integral extended, not over all space, but over its own volume alone.

(48) C7 =
^J^(E

2 .D 1 ~E 1 -D 2)&,

or, since DI = cJSi, D = e2E within Vi,

(49) U = i
f (E D! - Ei D) dv = f ( l

- e 2)E . E l dv.
* JVi * JVi

In case the external medium is free space, the inductive capacity j

reduces to c . Then, since the resultant field within the body is related

to its polarization according to Sec. 1.6, by

(50) D = E + P 2E, P =
( 2

-
o)E,

U may be written

(51) U = ~i f P Ei dv.
* JVi
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The potential energy of a dielectric body in free space and in a fixed external

field EI is equal to P EI per unit volume.

It is the variation of this potential energy U expressed by (49) or (51)

with respect to a small displacement that will lead us to the mechanical

forces exerted on polarized dielectrics. It will be observed that the

energy is negative if e 2 > ei, and decreases in this case with decreasing ei,

increasing e 2 ,
or increasing field intensity EI. We may anticipate, there-

fore, that if 2 > 61, the body will be impelled toward regions of intense

field or diminishing inductive capacity 1. On the other hand if 1 > e 2 ,
as

might be the case of a solid immersed in a liquid of high inductive capac-

ity, the forces exerted on the body will tend to* expel it from the field.

A direct consequence of (49) is the theorem that any increase in the

inductive capacity of a dielectric results in a decrease in the total energy of

the field. Let us suppose again that EI is the field of & fixed set of charges

in a dielectric medium whose inductive capacity is e = t(x, y, 2). If a,t

every point is increased by an infinitesimal amount 5e, the consequent
variation in the electrostatic energy will according to (49) be equal to

_ 1
f~~2j(52) dU =

-^ I 5tE*dv,

for the product deE EI will then differ from Be E 2 by an infinitesimal of

second order.

The energy of an electrostatic field is now completely determined by
the distribution of charge p and w, and by the inductive capacity e(x, y, z).

Equation (52) expresses the variation in energy resulting from a slight

change in the properties of the dielectric, in the course of which the

charges are held constant.

(53) U = -H I I
E*dedv, (constant charge).

The variation

(54) 8U = I
<t> 8p dv + I Sco da =

j

E - SD dv

expresses, on the other hand, the increment of energy resulting from a

small change in the density of charge, in the course of which the proper-
ties of the dielectric are held constant.

2.11. Thomson's Theorem. Charges placed on a system of fixed con-

ductors embedded in a dielectric mil distribute themselves on the surfaces of

these conductors such that the energy of the resultant electrostatic field is a

minimum.

The proof of this and the following theorems will be confined to the

case of a linear, isotropic dielectric. Let us suppose that there are n
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conductors bounded by the surfaces S, (i
=

1, 2, . , . , n), each bearing
a charge g<, Discontinuities in the properties of the dielectric may be

replaced by thin transition layers without affecting the generality of the

theorem and we shall, therefore, assume the inductive capacity e of the

medium to be a continuous but otherwise arbitrary function of position.

It may also be assumed that there is a density of charge throughout the

volume of the dielectric, although such a condition does not often occur

in practice.

At every point within the dielectric the field of the charges in equi-
librium must satisfy the conditions :

(55) y . D =
p, v x E =

0, E = - V<;
over the surface of each conductor >S

(56) $< = constant, f D n da =
#<;

JSi

at infinity the potential vanishes as 1/r.
1

Suppose that <', E', D' is any other possible electrostatic field; it satis-

fies the conditions (55), but not necessarily (56), and is known to differ

somewhere, if not everywhere, from <, E, D. Since the volume distri-

bution p and the total charge on the conductors is fixed we have

(57) V (D'
- D) =

0, I (D'
- D) - n da = 0.

Js*

If U and U' are the electrostatic energies of the two fields, their difference

is

(58) U' - U = i
J E' D' dv - i f E - D dv,

or, since D' = cE',

(59) W - U =
IJ (E'

- E) . (D'
- D) dv + f E (D' - D) dv.

The second term on the right vanishes, for we see that on putting E = P,
D' D = Q, the conditions of the theorem demonstrated in Sec. 2.9

are satisfied. There remains

(60)
' ~ U =

\ J *(E
' "

which is an essentially positive quantity. The theorem is proved, for

if E' differs in any region of space from E the resultant energy U' will be

greater than U. The condition of electrostatic equilibrium is character-

1 See Sec. 3.5, p. 167.
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ized by a minimum value of electrostatic energy and one therefore con-

cludes that for the determination of equilibrium the energy U plays the

same role in electrostatics as the potential energy in mechanics.

2.12. Earnshaw's Theorem. A charged body placed in an electro-

static field cannot be maintained in stable equilibrium under the influence of

the electric forces alone.

We shall suppose that the initial field is generated by a set of charges

qi, (i
=

1, . . .
, n), distributed on n fixed conductors whose bounding

surfaces are denoted by Si. These conductors are embedded in a dielec-

tric whose inductive capacity may be a continuous function of position

but in which there is no volume distribution of charge. We note first

that neither the potential nor any of its partial derivatives can assume a

maximum or a minimum value at a point within the dielectric; for if <t>

is to be an absolute maximum it is necessary that the three partial deriva-

tives 3 2
(t>/dx*, d 2

<t>/dy*, d*<t>/dz* shall all be negative at the point in ques-

tion, but this condition is incompatible with Laplace's equation

Likewise the existence of an absolute minimum requires that these three

derivatives shall be positive, which again is inconsistent with (61).

The same argument applies also to the derivatives of the potential.

Let us suppose now that a charge qo is placed on a conducting surface

So. The distributions on all the conductors are momentarily assumed to

be fixed and SQ is introduced into the field of the other n charges. If co

is the surface density of charge on /So, the energy of this conductor is

(62) C/o = ^ 0o)o da,* JSo

where < is the potential of the initial field. Let x, y, z be the coordinates

of any point which is fixed with respect to So and
, rj, f, those of any

point on the surface. The potential on So due to the other n charges

may be represented by a Taylor series in terms of its value and the value

of its derivatives at z, t/, 2,

(63) *(*, i,, r)
=

*(*, y,z) + -
x) + (i,

-
y) + (T

-
z)

hence the energy, too, may be referred to the potential and its derivatives

at this point. But since < cannot be a minimum at x, y, z, it is always

possible to displace the conductor So in such a way that the energy C/

is decreased. If after this displacement the charges, which thus far

have been assumed to be "frozen" on the surfaces S
, St, are released,
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these surfaces will again become equipotentials and by Thomson's
theorem the energy of the field will be still further diminished. A
minimum value of the energy function UQ(x, y, z) does not exist in the

electrostatic field and consequently the conductor SQ is never in static

equilibrium.

2.13. Theorem on the Energy of Uncharged Conductors. The intro-

duction of an uncharged conductor into the field of a fixed set of charges
diminishes the total energy of the field.

The conditions are the same as in the previous theorem but the

surface SQ now carries no charge. Let E, D be the vectors characterizing
the field before, E', D' the field after the introduction of the conductor /S .

The change in energy is

(64) U - W =
^ J E - D dv -

\
f E' D' dv.

The volume integrals are to be extended through all space, but since the

field vanishes in the interior of the surfaces /S
, /S, the contribution from

these regions is zero. Let V be the volume of the field exterior to the n
conductors Si before the introduction of $o, and VQ the volume bounded

by /So. Then

(65) V l
= V - 7

represents the volume of the region occupied by the field after the intro-

duction of /So, and Eq. (64) may be written in the form

(66) U - V = J f E D dv - ~ ( E'-V'dv
* Jv 2 Jvi

=
J f E - D dv + i

f (E D - B' D') (to
* JVo * JVi

=
5 f E D dv + \ f (E

- BO (D - D') dv
* JVo * JVi

+ f E' (D - D') dv.

JVi

The last integral on the right can be shown to vanish. For

E' (D - D ;

)
= - v*' (D - DO = -V [<'(D - DO]

+ 4/V-(D -D 7

),

and V (D DO = 0. By the divergence theorem,

(67) f E' (D - DO dv = f V [0'(E>'
-

D)] dv
JVi JVi
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where the <j are the potentials of the conducting surfaces Si. The

total charge on each surface is constant, so that

C f
(68) I D' n da = I D n da =

j<,
/5* t/S

and hence

(69) I (D'
- D) n da = 0.

%/Si

The difference between the initial and final energies is, therefore,

(70) U - V9 =
I f *E*dv + ~

f e(#
-

')
2

tfo,
2 JFO 2 J Fl

an essentially positive quantity.

MAGNETOSTATIC ENERGY

2.14. Magnetic Energy of Stationary Currents. Let us consider a

stationary distribution of current confined to a finite region of space.

This current may be supported by conducting matter, or result from the

convection of charges in free space. The equation of continuity reduces

to v J ==
0, in virtue of which we may imagine the distribution to be

resolved into current lines closing upon themselves. A current tube or

filament may be constructed from the current lines passing through an

infinitesimal element of area. The tube is bounded by those lines which

pass through points on the contour of the element. At every point

on the surface of a tube the flow is tangential; no current leaves the tube

and consequently the net charge trans-

ported across every cross section of the

tube in a given time is the same.

We shall calculate first the potential

energy of a single, isolated current filament

Sr ^n3 in the field B of fixed external sources.

FIG. 19. illustrating displacement The current carried by the filament is /
of a current filament. 1-1 < 11 -A- i j j. J

and it follows an initial contour designated

in Fig. 19 as Ci. The force exerted by the field on a linear element of the

filament is

(1) f = I ds X B.

Suppose now that the filament Ci is translated and deformed in such a

manner that every element ds is displaced by the infinitesimal amount 6r

into the contour C 2 . The displacement 6r is assumed to be a continuous

function of position about C\ but is otherwise arbitrary. The work

done by the force (1) in the displacement of the element ds is

(2) f 8r = /(ds X B) dr = IB (5r X ds).
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Let Si be any regular surface spanning the contour C\. A second

surface S2 is drawn to span C 2 ,
but in such a way as to pass through C\

and then coincide with Si The surface

(3) &3 D 2 &l

is, therefore, a band or ribbon of width 5r bounded by the curves Ci and

C 2 . If da$ is an element of S 3 we have clearly

(4) dr X ds = n 3 da 3 ,

where n 3 is the positive unit normal to $3. The positive faces of Si

and 82 are determined by the usual convention that an observer, circu-

lating about the contours in the direction of the current, shall have the

positive face at his left. The magnetic fluxes threading Ci and C2 are

(5) $1 = f B m dai, $ 2
= f B n 2 da 2 ;

t/oi /O2

hence the net change in flux resulting from the displacement is

(6) 5$ = $2 <J>i
= f B n 3 da 3 .

7*33

On the other hand the total work done by the mechanical forces is

obtained by integrating (2) around the closed contour Ci, whence in

virtue of (4) we find

(7) dW =
< f Sr = I 5$.
J Ci

If now it be assumed that in the course of the virtual displacement 5r

the external sources and the current / are maintained strictly constant,

then the work done by the mechanical forces is compensated by a decrease

in a potential energy function U.

(8) SU = -dW = -7 8$,

or

(9)

where S represents any surface spanning the current filament. Inversely,

the mechanical forces and torques on a current filament in a magneto-

static field can be determined from a variation of the function U while

holding constant the current I and the strength of the sources.

If 6r is a real rather than a virtual displacement, work must be

expended to keep the current constant. The change 5$ in the flux

induces an electromotive force

(10) V = f B ds = -
-^i

JC n
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where dt is the time required to effect the displacement. This induced

e.m.f. must be counterbalanced by an equal and opposite applied e.m.f.

V. The work expended by the applied voltage on the circuit in the time

dt is

(11) VI U = +1 d$.

The work done by the transverse mechanical forces in a small displacement

of a linear circuit is exactly compensated by the energy expended by longi-

tudinal electromotive forces necessary to maintain the current constant.

The total work done on the circuit is zero.

Let us suppose now that the source of the field B is a second current

filament. Thus we imagine for the moment that the current distribution

consists of just two isolated, closed filaments /i and I 2 . The fields

generated by these currents are respectively BI and B 2. The potential

energy of circuit 72 in the external field BI is

(12) f/2 i
= -J2 Bi-n2 da2 ,

JSt

where S2 is any surface spanning the filament 72 . Likewise the potential

energy of circuit I\ in the field of I2 is

(13) f/i2 = -Ii f B 2
/01

Uiz and f/2i are scalar functions of position and circuit configuration

whose derivatives give the forces and torques exerted by one filament

on the other. From the equality of action and reaction it follows that

(14) Un = Vn =
C/,

and hence the mutual potential energy may be expressed as

(15) U = -ili*i - i/A,

where 3>i is the magnetic flux threading the filament I\.

The mutual energy [/, which reduces to zero when the separation

of the filaments becomes infinite, is not equal to the total work that must

be done in approaching them from infinity to some finite mutual configura-

tion, and therefore does not represent the total energy of the system.

For let us suppose that 72 is allowed a small displacement under the

forces exerted by Ji, with a resultant decrease dU in the potential

energy. To maintain the current J2 constant during the displacement,

an equal amount of work dW must be done on the circuit J 2 to compensate
the effect of the induced e.m.f. Thus far the net change in energy is zero.

But now we must note that the displacement of 7 2 results in a change
in the flux threading Ji and gives rise, therefore, to an induced e.m.f. V\

opposing the current /i. If I\ is to be maintained constant, a voltage V[
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must be impressed on the circuit I\ compensating Vi and doing work
at the rate IiV(. The induced e.m.f., however, depends only on the

relative motion of Ii and J 2 - The work done by the electromotive forces

induced in circuit (1) by th<* displacement of circuit (2) must equal that

which would be done were (2) fixed and an equal and opposite displace-

ment imparted to (1). The work done on (1) is therefore 8W. In sum
;

when the mechanical forces acting on the two filaments are allowed to

do work, there is a decrease in the mutual potential energy of amount

dUj but this is offset by the work 2dW which must be done on the

system to maintain I\ and I2 constant. If the total magnetic energy
of the system be denoted by T

7

,
the variation in T associated with a

relative displacement at constant current is

(16) dT = 2dW - dU = 5W = -5C7,

or, by (15),

(17) T = i/i*i + i/ 2<i>2 .

In general, if the current system is composed of n distinct current fila-

ments, the magnetic energy is

where $< is the flux threading circuit i due to the other n 1 circuits.

Equation (18) is an expression for the work necessary to bring n
closed current filaments from an initial position at infinity to some speci-

fied finite configuration. The cross section of any filament is very small

but does not vanish, and a filament in the sense that we have used it here

is not, therefore, a line singularity. Each filament or tube may be sub-

divided into a bundle of thinner filaments carrying fractions of the initial

current. In the limit of vanishing cross section, the current carried

by the filament is infinitesimally small, as is also the energy necessary

to establish it. Consequently the total energy of a current distribution

is simply the mutual energy of the infinitesimal filaments into which the

distribution can be resolved.

Now in practice a current distribution in a conducting medium cannot

be established by the mathematically simple expedient of collecting

together current filaments from infinity, and although (18) proves to be

correct for the magnetic energy of n circuits in a medium for which the

relation of H to B is linear, this is not necessarily true in general. In

place of a continuous distribution let us consider for the moment n

linear circuits embedded in any magnetic material. The resistance of

the ith circuit is JB< and at any instant the current it carries is /. To each

circuit there is now applied an external e.m.f. 7< generated by chemical
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or mechanical means. These applied voltages give rise to variations

in the currents and corresponding variations in the magnetic flux thread-

ing each circuit. If Vi is the voltage induced by a variation in <f> t , the

relation of current to total e.m.f. in the circuit at any instant is

(19) y< + Vi =
rr d$i

or, since Vi =

(20) V'{ =

UrV

The power expended by the impressed voltage V^ is F<I, and conse-

quently the work done on the ith circuit in the interval dt is

(21) dWi = R>Pi dt + Ii d$i.

Of this work the amount RJ\ dt is dissipated as heat, while the quantity

Ii d$i is stored as magnetic energy.
1 A variation in the magnetic energy

of the n filaments is therefore related to increments in the fluxes by

n

(22) dl

and the total energy expended on the system, apart from that dissipated

in ohmic heat loss within the conductors, as the currents are slowly

increased from zero to their final values, is

(23) r-;|
/,<.

$to is the flux threading the ith circuit at the initial instant when all

currents are zero. This initial flux will be zero if there is no remnant

magnetization of the medium about the circuits. Equation (23) can

be interpreted as available energy stored in the magnetic field only when

the relation of Ii to $1 is single-valued (no hysteresis), and (23) reduces

to (18) only when the relation of H to B and consequently of Ii to $ is

linear, such that Ii d<bi = <$; dli.

It is a simple matter to extend (23) from a finite number of current

filaments to a continuous distribution of current. Within this dis-

tribution let us choose arbitrarily a surface element d<r. The current

lines passing through points of da- constitute a current tube, which, in

virtue of the stationary character of the distribution, closes upon itself.

If J is the current density, the scalar product J n da = dl is constant

1 A portion of the energy /< 53>t may, however, be made unavailable because of

hysteresis effects. See Sec. 2.16.
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over every cross section of the tube. Let B' be the magnetic field at any
point within the tube produced by all those current filaments which lie

outside. The increment in the energy of the current dl due to an
infinitesimal increase in the field of the external filaments is

(24) J(dT) = dl 64?' = dlf 5B' n da,

the integral to be extended over any surface bounded by the contour of

the filament dL If A' is the vector potential of the field B', then
B' = V X A' and (24) may be transformed by Stokes' theorem to a line

integral following the closed contour of the filament.

(25) S(dT) = J n da SA' ds.

Now the total vector potential A along any central line of the tube dl is

equal to A' plus the contribution of the current dl = J n da itself
; but

as the cross-sectional area da + 0, the latter contribution vanishes, so

that in the limit A' may be replaced by A. Since furthermore the cur-

rent density vector J, the unit vector n normal to da, and the element
of length ds along the tube are parallel to one another within a tube of

infinitesimal cross section, one may write in place of (25) :

(26) o(dT) =
(fj-B&dads.

The product da ds = dv represents the volume of an infinitesimal length
of tube. The total increment in the energy of the distribution is to be
found by summing the contributions of all the tubes into which it has
been resolved, and this summation is clearly equivalent to an integration
of the product J 5A over the entire volume occupied by current.

(27) 5

The work required to set up a continuous current distribution by means
of applied electromotive forces is, therefore, in general

(28) r

In case the relation between the current and the vector potential which
it produces is linear, this reduces to

(29) T

2.16. Magnetic Energy as a Function of Field Intensity. We shall

suppose that discontinuities in the magnetic properties of matter in the
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field can be represented by layers of rapid but continuous transition.

The field may be due in part to currents, in part to permanent magnets
or residually magnetized matter, but all sources are located within a

finite radius of some arbitrary origin. It will be demonstrated in Chap.
IV that under these circumstances the vectors A and B vanish at infinity

as r~ l and r~ 2
. The current density J at any point is related to the

vector H at the same point by

(30) J = V X H.

Furthermore, by a well-known identity,

(31) J 6A = SA - V X H = V (H X 8A) + H - V X 6A
= V (H X A) + H SB.

Upon introducing (31) into (28) and applying the divergence theorem,

we obtain

(32) T = f f
B H dB dv + f f

A
(H X dA) - nda,jv /BO / t/Ao

where V is any volume bounded by a surface S enclosing all the sources

of the field. If the surface S is allowed to recede toward infinity, the

second integral of (32) vanishes, for the integrand diminishes as r~ 3

whereas S grows only as r2
. Therefore the work done by impressed

e.m.fs. (such as might be derived from batteries or generators) in building

up a magnetic field from the initial value B to the final value B can be

represented by the integral

(33) T

extended over all space. It is to be emphasized that (33) is the energy

associated with the establishment of a current distribution in the presence

of magnetic materials, and does not include the internal energy of per-

manent magnets or the mutual energy of systems of permanent magnets.

The magnetic properties of all materials exclusive of the ferromagnetic

group differ but slightly from those of free space; the relation between B
and H is linear within wide limits of field intensity, the factor /i in the

relation B = /zH is very nearly equal to MO, and there is no appreciable

remnant magnetism. Under these circumstances the work done in

building up the field to a value B is returned as the field is again decreased

to zero. Equation (33) integrates to

(34)

which we interpret as the energy stored in the magnetic field. As in the

corresponding electrostatic case we may suppose this energy to be dis-

tributed throughout the field with a density |/x#
2
joules/meter.

3
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2.16. Ferromagnetic Materials. The relation of H to B for ferro-

magnetic substances is in general nonlinear and multivalued. In an

initial, unmagnetized state the vectors B and H are zero. If the field is

now built up slowly by means of impressed electromotive forces applied
to conducting circuits, the function B = B(H) at any point in the ferro-

2.00

200 400 600 800 1000 1200 1400
H in ampere-turns per meter (rationalized)

FIG. 20. Typical magnetization curve for annealed sheet steel.

magnetic material follows a curve of the form indicated by Fig. 20.

According to (33) the work done in magnetizing a unit volume of the

substance is represented by the shaded area in the figure. Were the

function B(H) single-valued, a decrease in the field from Hi, BI to zero

would follow the same curve and the entire energy (33) would be avail-

able for useful work. Actually, the return usually follows a path such

as that indicated in Fig. 21. Starting

at Hi, the field is decreased until

H = 0. The associated value of

B = B 2 , however, is still positive.

To reduce B to zero, negative values

must be imparted to H, meaning

physically thai: H must be increased

in the opposite direction. At
H = H 3 the vector B is zero, and

as H continues to increase in negative

value a point is eventually reached

where simultaneously H = Hi,
FIG. 21. Hysteresis loop.

B = BI. The return to the positive values HI, BI follows the sym-
metrical path through B = -B 2 ,

H = and B =
0, H = +H 3. At all

points along the segment BiB 2 the value of B is greater than its initial

value on the dotted curve for the same value of H ; the change of B lags

behind that of H and the substance is said to exhibit hysteresis.
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Let w be the work done per unit volume of magnetic material in chang-

ing the field from the value BI to B.

(35) ,

If the variation of the field is carried through a complete cycle following

the hysteresis loop from BI through B 2 , BI, B 2 and returning to BI,

the net work done per unit volume is

(36) w =
-<j>B-dH,

a quantity evidently represented by the enclosed area of the hysteresis

loop illustrated in Fig. 21. The net work done per cycle throughout the

entire field is

(37) Q =
-^

Q is the hysteresis loss, an irretrievable fraction of the field energy dis-

sipated in heat.

2.17. Energy of a Magnetic Body in a Magnetostatic Field. Let us

suppose that a magnetic field BI from fixed sources has been established

in a magnetic medium. We shall

assume that the relation of BI to Hi
is linear and that the medium is isotropic.

Then BI = juiHi, where /n is at most a

scalar function of position which reduces

to a constant in case the medium is

homogeneous. The energy of the field

is

FIG. 22. The region V\ is occupied *
by a magnetic body embedded in the /OCA rp I TT

.
*D

x/

homogeneous, isotropic medium Vz. ww * 1
2 I

*
*

* tt

extended over all space. Now reduce the intensity of the sources to

zero and introduce into a suitable cavity formed in the first medium a

body which we shall assume to be unmagnetized but whose magnetic

properties are otherwise arbitrary. As in Sec. 2.10 the volume occupied

by the embedded body will be denoted by Vi, Fig. 22, and the entire

region exterior to it by F2 - If the external sources are currents, the

work which must be done in order to restore them to their initial intensity

is

(39) T2 = f dv
\
H-dB = ~

\
H* 1Bdv+ f dv

\
H-dB.

JFI+FI Jo 2Jr, Jvi Jo

The ultimate field B differs at every point from the initial field BI by
an amount B 2

= B BI arising from the change in polarization of the
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matter contained within V\. The increase in the work necessary to build

up the current strength to the initial value is

(40) T = T2
- Ti = i f (H B - Hx Bi) do

** \J r I

It has been assumed that throughout the region 72 exterior to the body
the relations between B and H are linear:

(41) B! = MlHi, B = M1H in 7 2 .

The first integral in (40) is therefore equivalent to

(42) \
I (H B - H ! BO dv = \ f (H - HO - (B + BO do." JV* A J Vl

By hypothesis the initial and final current distributions in the source are

identical, so that in both Fi and F2 the conditions

(43) V - (B + BO -
0, V X (H - HO =

0,

over the surface bounding V\ we

, N
n-[(B + BO+- (B + BO-] =

0,

(44)
n X [(H - HO+ - (H - HO-] = 0.

The theorem of Sec. 2.9 may be applied, giving

1 f 1 f
(45) ^ (H - HO (B + BO dv = - (H - HO (B + BO dv

are satisfied, while over the surface bounding Fi we have according to

(18), page 37,

(H - HO (B + BO dv = 0,
Vl

or

(46) if (H - Hi) - (B + BO dv
* JVz

- -s
I

(H - HO (B + BO dv.
* JVi

The additional work required to build up the currents in the presence of

the body can thus be expressed in terms of integrals extended over the

volume occupied by the body. Upon introducing (46) into (40), we
obtain

(47) r - f (HI-B
- H-B! -H-B + 2 (* n.dB\dv.
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If hysteresis effects are negligible (H is a single-valued function of B),

the quantity T may be interpreted as the energy of the body in the mag-
netic field of any system of constant sources; and the variation of T
resulting from a virtual displacement of the body determines the mechan-

ical forces exerted upon it. If furthermore the magnetic properties of

the material within V\ can be characterized by a permeability /*2 ,
so that

B =
/* 2H, then (47) reduces to

(48) T =
I ( (Hi B - H BO dv =

I f G* 2
-

/*i)H H! do.
* JVi *JVi

The body was assumed to be initially free of residual magnetism; con-

sequently the vectors B and H within V\ are related to the induced mag-
netic polarization M by Sec. 1.6,

(49) B = Mo(H + M),

and, when B =
ju 2H, this leads to

(50) M =

If, therefore, the cavity V\ was initially free of magnetic matter we may
put /m = fi and write (48) in the form

(51) T =
^ M B! dv,
" JV\

an expression which corresponds to (51), page 113, for the electrical case

in all but algebraic sign. This distinction, however, is fundamental.

Whereas in the electrostatic case the work done by the external forces in a

virtual displacement is accompanied by a decrease of the potential

energy U, we shall learn soon that the mechanical forces exerted on a

magnetized body are to be determined from the increase in T, so that T
in this sense behaves as a kinetic rather than a potential energy.

A useful analogue of Eq, (52), page 114, may be deduced for the

magnetostatic field from (48). Suppose again that BI is the field of

fixed sources either currents or permanent magnets and that at every

point in space the permeability is specified by ^ =
ju(z, ?/, z), a continuous

function of position. If now the permeability is varied by an infinitesi-

mal amount 5ju, the consequent change in the magnetic energy is

(52) 8T = ~
J

b,H*dv\

therefore, the magnetic energy of a distribution of matter in a fixed field is

(53) T
I J dv H* d/i, (M = Mo*m)
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provided the matter is initially unmagnetized and /* is independent of H.
For paramagnetic material /x > JJL O ,

Km > 1, but in the case of diamag-
netic matte . < /* and the magnetic energy of the initial field is dimin-
ished by the introduction of diamagnetic bodies.

2.18. Potential Energy of a Permanent Magnet. A rigorous analysis
of the energy of material bodies in a magnetic field becomes very much
more difficult when these bodies are permanently magnetized. In that

case there is a residual field, which we shall denote by B ,
H

, associated

with the magnet even in the absence of external sources. The relation of

BO to HO may still be expressed in the form

(54) Bo = Mo(H + Mo),

but Mo, the intensity of magnetization, is now quite independent of H
,

being determined solely by the previous history of the specimen. If an
external field is applied, there will be induced an additional component
of magnetization which, as in the past, we denote by M. This induced

polarization M depends primarily on the resultant field H within the

magnet (vanishing as H reduces to H ), but also on the state of the mag-
net and its permanent or residual magnetization M .

(55) B = Mo[H + M(H, Mo) + Mo].

The resultant field H at an interior point is determined furthermore by
the shape of the magnet as well as by the intensity and distribution of the

external sources.

We shall content ourselves with the derivation of a simple and fre-

quently used expression for the potential energy of a system of perma-
nent magnets. The proof rests on assumptions which are approximately
fulfilled in practice; namely, that the magnetization M is absolutely

rigid and that the induced magnetization M in one magnet arising from
the external field of another is of negligible intensity with respect to M .

The field at all points, both inside and outside a magnetized body occupy-

ing a volume Vi, is exactly that which would be produced by a stationary
volume distribution of current throughout Vi of density

(56) J = V X Mo,

together with a current distribution on the surface $ bounding Vi of

density
1

(57) K = Mo X n,

where n is the unit outward normal to S. As a direct consequence of the

analysis of Sec. 2.14 and in particular of Eq. (9), it follows that the poten-
tial energy of the magnet V i in the field of other permanent magnets or of

1 See Sees. 1.6 and 4.10.
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constant currents is

(58) C/=

or, in virtue of (56) and (57),

(59) U = -
fv (V X Mo) A dv - fs (M X n) A da.

Now

(60) A V X Mo = V (M X A) + M - V X A,

(61) (M X A) -n = (n X M ) -A = -(M X n) - A,

so that upon applying the divergence theorem and putting B = V X A,

(59) reduces to

(62) U = ~
fVi

Mo B dv.

In (62) one may consider dm = M dv to be the magnetic moment of

an element dv of the magnet. Its potential energy in the resultant field

B is dU = B dm. The resultant field B is composed of the initial

field Bi of all external sources, plus the field B 2 due to all other elements

of the same magnet Vi. Therefore the work necessary to construct the

magnet by collecting together permanently magnetized elements in the

absence of an external field should be

(63) t/2 = -fVi Mo B 2 dv.

These elements must be held together by forces of a nonmagnetic char-

acter. The work necessary to introduce the magnet as a rigid whole

from infinity to a point within the external field BI is then

(64) Ui = -
r
Mo Bi dv,

and the force exerted on a unit volume of the magnet by the external

sources is

(65) f = +V(M Bi).

The difference of (64) and (51) is accounted for when we note that

(64) is only the potential energy of the magnetized body in the external

field, while (51) includes the work involved in building up the magnetiza-

tion from zero to M, and is based on the assumption that there exists a

linear relation between BI and Hi, and consequently between BI and M.
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ENERGY FLOW
2.19. Poynting's Theorem. In the preceding sections of this chapter

it has been shown how the work done in bringing about small variations in

the intensity or distribution of charge and current sources may be

expressed in terms of integrals of the field vectors extended over all space.
The form of these integrals suggests, but does not prove, the hypothesis
that electric and magnetic energies are distributed throughout the field

with volume densities respectively

(1) u = D
E dD, w = B

H - dB.

The derivation of these results was based on the assumption of reversible

changes; the building up of the field was assumed to take place so slowly
that it might be represented by a succession of stationary states. It is

essential that we determine now whether or not such expressions for the

energy density remain valid when the fields are varying at an arbitrary
rate. It is apparent, furthermore, that if our hypothesis of an energy
distribution throughout the field is at all tenable, a change of field inten-

sity and energy density must be associated with a flow of energy from
or toward the source.

A relation between the rate of change of the energy stored in the field

and the energy flow can be deduced as a general integral of the field

equations.

(I) V X E +^ =
0, (III) V - B =

0,

(II) VXH- =J ,

We note that E J has the dimensions of power expended per unit

volume (watts per cubic meter) and this suggests scalar multiplication of

(II) by E.

(2) E - V X H - E - = E .
J.

ot

In order that each term in (I) may have the dimensions of energy pe*
unit volume per unit time it must be multiplied by H.

(3) H V X E + H 5 = 0.
ot

Upon subtracting (2) from (3) and applying the identity

'4) V (E X H) = H V X E - E - V X H,
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we obtain

(5) V (E X H) + E J = -E
^5

_ H ^
Finally, let us integrate (5) over a volume V bounded by a surface S.

(6) f (E X H) n da + f E J dv = - f ( E ? + H ^ J
do.

JS Jv Jv \ ot dt/

This result was first derived by Poynting in 1884, and again in the

same year by Heaviside. Its customary interpretation is as follows.

We assume that the formal expressions for densities of energy stored in

the electromagnetic field are the same as in the stationary regime. Then
the right-hand side of (6) represents the rate of decrease of electric and

magnetic energy stored within the volume. The loss of available stored

energy must be accounted for by the terms on the left-hand side of (6).

Let a be the conductivity of the medium and E' the intensity of impressed

electromotive forces such as arise in a region of chemical activity the

interior of a battery, for example. Then

(7) J = <r(E + E'), E = J -
E',

a

and hence

f f ij2 - f '

Jv
* "~

Jvff Jv

The first term on the right of (8) represents the power dissipated in

Joule heat an irreversible transformation. The second term expresses

the power expended by the flow of charge against the impressed forces,

the negative sign indicating that these impressed forces are doing work
on the system, offsetting in part the Joule loss and tending to increase

the energy stored in the field. If, finally, all material bodies in the field

are absolutely rigid, thereby excluding possible transformations of

electromagnetic energy into elastic energy of a stressed medium, the

balance can be maintained only by a flow of electromagnetic energy
across the surface bounding V. This, according to Poynting, is the

significance of the surface integral in (6). The diminution of electro-

magnetic energy stored in V is partly accounted for by the Joule heat

loss, partly compensated by energy introduced through impressed forces ;

the remainder flows outward across the bounding surface S, representing

a ?oss measured in joules per second, or watts, by the integral

(9) f S n da = f (E X H) n da.
js js

The Poynting vector S defined by

(10) S = E X H watts/meter
2

,
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may be interpreted as the intensity of energy flow at a point in the field;

i.e., the energy per second crossing a unit area whose normal is oriented

in the direction of the vector E X H.

It has been tacitly assumed that the medium is free of hysteresis
effects. In case the relation between B and H is multivalued, energy to

the amount Q [Eq. (37), page 126] is dissipated in the medium in the

course of every complete cycle of the hysteresis loop. If the field is

harmonic in time with a frequency v, there will be v cycles/sec, and con-

sequently the hysteresis will also participate in the diminution of mag-
netic energy at the rate of i>Q joules/sec.

In the absence of ferromagnetic materials the relations between the

field intensities are usually linear, and if the media are also isotropic

Poynting's theorem in its differential form reduces to

cr c

As a general integral of the field equations, the validity of Poynting's
theorem is unimpeachable. Its physical interpretation, however, is open
to some criticism. The remark has already been made that from a
volume integral representing the total energy of a field no rigorous con-

clusion can be drawn with regard to its distribution. The energy of the

electrostatic field was first expressed as the sum of two volume integrals.
Of these one was transformed by the divergence theorem into a surface

integral which was made to vanish by allowing the surface to recede to

the farther limits of the field. Inversely, the divergence of any vector

function vanishing properly at infinity may be added to the conven-
tional expression u = E D for the density of electrostatic energy with-

out affecting its total value. A similar indefiniteness appears in the

magnetostatic case.

A question may also be raised as to the propriety of assuming that
vTV

f$V\

E and H represent the rate of change of energy density for

rapid as well as quasi-static changes. Such an assumption seems plaus-

ible, but we must note in passing that a transformation of the energy
function expressed in terms of the field vectors to an expression in terms

of the densities of charge and current leads now to difficulties with surface

integrals. Let

be the rate at which work is done on the system by external forces. Upon
introducing the potentials
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(13) E = -V<t> -^, B = V X A,
of

and applying the identities

(14)

T*'f =T

H-^ = *

we obtain

where $ is a surface enclosing the entire electromagnetic field. Now in

the stationary or quasi-stationary state the potentials can be shown to

vanish at infinity as r~ l and the fields as r~ 2
;
the integral over an infinite

surface then vanishes. It will be shown in due course, however, that

the fields of variable sources vanish only as r" 1 and in this case the last

term of (15) cannot be discarded by the simple expedient of extending the

integral over an infinitely remote surface. On the other hand we know
that fields and potentials are propagated with a finite velocity. If,

therefore, the field was first established at some finite instant of the past,

a surface may be imagined whose elements are so distant from the source

that the field has not yet arrived. The intensity over S is then strictly

zero and under these circumstances

dW C f , dp , . dA\
J av.

Finally, it must be granted that even though the total flow of energy

through a closed surface may be represented correctly by (9), one can-

not conclude definitely that the intensity of energy flow at a point is

S = E X H; for there might be added to this quantity any vector

integrating to zero over a closed surface without affecting the total flow.

The classical interpretation of Poynting's theorem appears to rest to

a considerable degree on hypothesis. Various alternative forms of the

theorem have been offered from time to time,
1 but none of these has the

advantage of greater plausibility or greater simplicity to recommend it,

and it is significant that thus far no other interpretation has contributed

anything of value to the theory. The hypothesis of an energy density

1
MACDONALD,

"
Electric Waves," Cambridge University Press, 1902. LIVENS,

''The Theory of Electricity," Cambridge University Press, pp. 238^., 1926. MASON
and WEAVEB, "The Electromagnetic Field," University of Chicago Press, pp. 264 #.,
1929.



SEC. 2.20] THE COMPLEX POYNTINO VECTOR 135

in the electromagnetic field and a flow of intensity S = E X H has, on

the other hand, proved extraordinarily fruitful. A theory is not an

absolute truth but a self-consistent analytical formulation of the relations

governing a group of natural phenomena. By this standard there is

every reason to retain the Poynting-Heaviside viewpoint until a clash

with new experimental evidence shall call for its revision.

2.20. The Complex Poynting Vector. If we now let h = u + w

represent the density of electromagnetic energy at any instant and

Q = _ J2 _ j/ , j -faQ power expended per unit volume in thermo-
G

chemical activity, the Poynting theorem for a field free from hysteresis

effects may be written

(17) V-S + - + Q-0.

In a stationary field h is independent of the time, so that (17) reduces to

(18) V S + Q = 0.

Q may be positive or negative as the work done by the impressed elec-

tromotive forces E' is less or greater than the energy dissipated in heat.

Accordingly the energy flows from or toward a volume element depending
on its action as an energy source or sink.

The sources and their fields in most practical applications of electro-

magnetic theory are periodic functions of the time. The mean value of

the energy density h is constant and dh/dt = dh/dt = 0, the bar indi-

cating a mean value obtained by averaging over a period. In the case of

periodic fields, therefore,

(19) TTS + Q-0, or
J^,S

nda + fy Qdv = 0.

When there are no sources within V, the energy dissipated in heat

throughout V is equal to the mean value of the inward flow across the

surface S.

The advantages of complex quantities for the treatment of periodic

states are too well known to be in need of detailed exposition. The
reader may be reminded, however, that certain precautions must be

observed when dealing with products and squares. Throughout the

remainder of this book we shall usually represent a harmonic variation

in time as a complex function of the coordinates multiplied by the factor

e
-iw

B Thus if A is the quantity in question, we write

(20) A = A06-' = (a + ift)<r**
=

(a + i/3)(cos co
- i sin 0,

where a and ft are real functions of the coordinates x, y, z. The conjugate

of A is obtained by replacing i = \/"~l by ~~i> &nd is indicated by the
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sign A.

(21) 1 = (a
-

ifS)e^.

Although it is convenient to employ complex quantities in the course of

analytical operations, physical entities must finally be represented by
real functions. If A satisfies a linear equation with real coefficients,

then both its real and its imaginary parts are also solutions and either

may be chosen at the conclusion of the calculation to represent the

physical state. However, in the case of squares and products, we must

first take the real parts of the factors and then multiply, for the product

of the real parts of two complex quantities is not equal to the real part of

their product. We shall indicate the real part of A by Re(A) and the

imaginary part by Im(A).

Re(A) = a cos co + ft sin orf = Va2 + ft
2 sin (orf + <),

(22) Im(A) =
ft cos ut a sin ut = V 2 + ft

2 cos (co -f </>),

< = tan- 1 -

The square of the amplitude or magnitude of A is obtained by multi-

plication with its conjugate.

(23) AA = a2 + ft
2

.

The real part of A is also given by

(24)

The product of the real parts of two complex quantities A\ and A 2 is,

therefore, equal to

(25) Re(A 1)
- Re(A*) = ^(A l + li)(A 2 + I,)

The time average of a periodic function A is defined by

- 1 f T

(26) A = -
I A dt,

where T is the period. If A is a simple harmonic function of the

its mean value is of course zero. The mean value of such functions as

cos ut sin ut also vanishes, and we have consequently from (25) the result

(27) Re(Ai)

or

(28)
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According to the preceding formulas the mean intensity of the energy
flow in a harmonic electromagnetic field is

(29) S = Re(E) X Re(S) == $Re(E X H),

the real part of the complex vector E X H. The properties of this

so-called complex Poynting vector are interesting. We shall denote it by

(30) S* = IE X H.

Let us suppose that the medium is defined by the constants 6, /*, v and
that the field contains the time only in the factor e***'. Then the

Maxwell equations in regions free of impressed electromotive forces E' are

(31) V X E = tw/iH, V X H =
(<r
-

icoe)E.

The conjugate of the second equation is

(32) V X H =
(o- + ico )E,

which when united with the first as in Sec. 2.19 leads to

(33) V S* = -friB E + to ( H - H - ~ E - E\
\ * /

or in virtue of (28) and (23),

(34) V S* = -Q + teu(w - u).

The divergence of the real part of S* determines the energy dissipated in

heat per unit volume per second, whereas the divergence of the imaginary

part is equal to 2w times the difference of the mean values of magnetic and
electric densities. Throughout any region of the field bounded by a

surface S we have

(35) Re I S* n da = total energy dissipated,js

and

(36) Im I S* n da = 2w X difference of the mean values of magneticjs
and electric energies.

FORCES ON A DIELECTRIC IN AN ELECTROSTATIC FIELD

2.21. Body Forces in Fluids. Let us consider an electrostatic field

arising from charges located on the surfaces of conductors embedded in

an isotropic dielectric. To simplify the analysis we shall assume for the

moment that throughout the entire field the dielectric medium has no

discontinuities other than those occurring at the surfaces of the con-

ductors. It will be assumed furthermore that D = cE, where c is a
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continuous function of position. The total electrostatic energy of the

field is therefore

(1) U = f eE* dv

extended over all space.

The position of any point in the dielectric with respect to a fixed

reference origin is specified by the vector r. Every point of the dielectric

is now subjected to an arbitrary, infinitesimal displacement s(r). It is

supposed, however, that the conductors are held rigid and the displace-

ment of dielectric particles in the neighborhood of the conducting surfaces

is necessarily tangential. The displacement or strain results in a varia-

tion in the parameter c with a corresponding change in the electrostatic

energy equal to

(2) SU = ~
I deE*dv.

At the same time a slight readjustment of the charge distribution will

occur over the surfaces of the conductors. Initially the surface charges
were in static equilibrium and the initial energy (1), according to Thom-
son's theorem, Sec. 2.11, is a minimum with respect to infinitesimal varia-

tions in charge distribution. The variation in energy associated with

the redistribution is, therefore, an infinitesimal of second order which

may be neglected with respect to (2).

Consider the dielectric material contained initially in a volume dv^

The displacement is accompanied by a deformation, so that after the

strain this element of matter may occupy a volume Eq. (54), page 92.

(3) dv2
=

(1 + V s) dvi.

The mass of the element is conserved and hence if the density of matter

is denoted by r we have

(4) TI dvi = T 2 (l + V s) dvi,

or, for an infinitesimal change,

(5) 5r = T2 TI = TV s.

The inductive capacity e is a function of position in the dielectric and

also of the density r. The element which after the displacement finds

itself at the fixed point r was located before the displacement at the

point r s, and the contribution to 5e arising from the inhomogeneity
of the dielectric is therefore s Ve. If it be assumed that e depends

only on r and r, the total variation is

(6) de = S Ve + ~ 5r = -s Ve r ~ V s.
or or
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The change in electrostatic energy associated with the deformation is

(7) 817 =
J \E*Ve s + E*r~ V -

sj
do.

Now

(8)

and hence

(9) U.

These volume integrals are to be extended over the entire field. The
surfaces of the conductors, within which the field is zero, shall be denoted

by Si, 82, . . .
,
Sn . A surface So is drawn to enclose within it all

conductors and all parts of the dielectric where the field is of appreciable

intensity. Within the volume bounded externally by So and internally

by /Si, 82, 5
Sn the function E 2r s is continuous. Thus the

divergence theorem may be applied to the second integral of (9), giving

(10)

Over So the intensity of E is zero, while over the rigid conductors Si,

. . .
,
Sn the normal component of s has been assumed zero. The

integral (10) therefore vanishes.

If one neglects the effect of gravitational action, it may be assumed

that the only body force f is that exerted by the field on elements of

dielectric. The work done by this force per unit volume during the

displacement is f s, and hence according to the principle of conservation

of energy,

(11) f f -scto = - f U# 2Ve-i

The displacement s is arbitrary and we find

(12)

In case there are also charges distributed throughout the dielectric, a

term pE must be added.

The last term of (12) is associated with the deformation of the dielec-

tric. The assumption that e can be expressed as a function of position

and density alone is admissible for liquids and gases but is not necessarily



140 STRESS AND ENERGY [CHAP. II

valid in the case of solids. To a very good approximation the relation

of dielectric constant K, (e
= Ke ) to density in gases, liquids, and even

some solids is expressed by the Clausius-Mossotti law,

/t n\ & """" 1 /T t

(13) r-iy
= CT, or K - I = 1-CV

where C is a constant determined by the nature of the dielectric. Through
a simple calculation this leads to

(14) T^
=
| (K-I)OC + 2).

The force exerted by the field on a unit volume of a liquid or gas is,

therefore,

(15) f = - E*V* + V [E*(K
-

1)(* + 2)].

2.22. Body Forces in Solids. The volume force (12) exerted on a

dielectric by an electrostatic field has been derived on the assumption
that the variation in the inductive capacity e during an infinitesimal

displacement can be accounted for by the inhomogeneity of the dielectric

and the change in density associated with the deformation. It is clear,

however, that deformations in solids may occur without any accompany-

ing change of volume, and that a rigorous theory must therefore express

the variation of in terms of the components of strain. Since the

dielectric is presumed to be in static equilibrium, the mechanical forces

exerted by the field will be balanced by elastic forces induced during the

deformation. Our problem is to find these forces and to determine the

resultant deformation of the dielectric due to the applied field. We shall

confine the investigation to media whose electric and elastic properties in

the unstrained state are isotropic. Since the variations in e are dependent
on the components of strain, it is hardly to be expected that a solid will

remain electrically isotropic after the strain is applied. Our first task

is to set up an expression for the electrostatic energy of an anisotropic

dielectric.

In Sec. 2.8 it was shown that the electrostatic energy density within

a dielectric is

(16) u = E dD

without regard to the relation of D to E. We shall now assume that in

an anisotropic medium the components of D are linear functions of the

components of E.

(17) J>*=S/*E, = 1.2,3).
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Since the quantities Ek, Dj transform like the components of vectors it is

clear that the # are the components of a tensor of second rank. By a
rotation of the coordinate system this tensor may be referred to principal
axes defined by the unit vectors a, b, c such that

(18) Da =
a#a, A, = CbEb ,

D c
=

<5#c .

Then

(19) E dD = eaEQ dEa + bEb dEb + *CEC dEc
= D dE.

The energy density in an anisotropic, linear medium is, therefore,

(20) W =
^

We have next to calculate the change in the energy resulting from a
variation of the parameters e# while holding the charges fixed. A review
of the proof of Sec. 2.10 shows that it may be adapted directly to our

present needs. To avoid confusion of subscripts we shall replace the
index 1 in Sec. 2.10 by a prime to denote initial conditions. Thus the
dielectric in the field was characterized initially by the coefficients

cj fc
.

Within a region Fi these values are changed to ,*. The total change in

the energy of the field, according to Eq. (49) , page 113, is

(21) U =

or in virtue of (17)

(22) U = ~ [(ii
~

eiOEi-E'i + (C22
-

e'22)# 2E2 + (633
~

+ (e 12
-

e'n)(E2E( + EJEi) + ( 23
-

ei

+ (si
-

In case the variations in e,& are infinitesimal, this becomes

(23) = -1
I* JVi

Finally, the parameters ,-* must be related to the components of

strain. For sufficiently small deformations we may put

(24) &,4

The 81 coefficients a are the components of a tensor of rank four. In
virtue of the relations c

?

-

fc
=

*,-, 6fm = em i, we have
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Then of the 81 9 = 72 nondiagonal terms, only 36 are independent and

the total number of independent coefficients is reduced to 36 + 9 = 45.

To reduce the system still further use must be made of symmetry condi-

tions and we now introduce the limitation to a medium which is initially

isotropic,
1

though not necessarily homogeneous.
The variation in the density of the electrostatic energy due to a small

deformation is 3333
(26) su = -\2222 a*>EiEh Seim -

The coefficients a?fm have fixed values characteristic of the dielectric at

each point, but varying from point to point in case the medium is inhomo-

geneous. Now since the dielectric is assumed to be initially isotropic,

Eq. (26) must be invariant to a reversal in the direction of any coordinate

axis and to the interchange of any two coordinate axes. Thus a reversal

of the axis x
3

- reverses the signs of E/ and e^ k ^ j, but leaves all other

factors unchanged. As a consequence, certain coefficients must vanish

if 8u is to be unaffected by the reversal or exchange of axes. In fact it is

evident that all but three classes of coefficients are zero, namely:

(27) <% = ai, a& = a 2 , a]l
= a 3 , ( j ^ k).

Equation (26) is thereby reduced to

(28) du = -ifoxCEJ fen + El de, 2 + El 5e 33)

+ aJi(El + ED den + (El + El) 5c 22 + (E\ + El) Se 33]

Now 8u must also be invariant to a rotation of the coordinate axes

and this implies a further relation between the parameters 01, a 2 ,
a 3 .

The condition is easily found by rewriting (28) in the form

1 f
3 3

(29) du = (a x
- a 2

- 4a 3)^ E*
be + a *E *2 tey/

L j-i y=i

+ 4a3(f 8en + El de^ + El de^ + EiE2 5ei2

3

in which E* = El + El + El The sum ] e^ is, according to (54),
; = 1

page 92, the cubical dilatation, a quantity not dependent on the coordi-

nate system. The middle term of (29) is, therefore, invariant to a rota-

tion of the reference system. The same is true also of the last term; for

if the strains e^ are replaced by the coefficients 2a/fc of Sec. 2.2, this last

1 The anisotropic case is discussed by POCKELS, Encyklopadie der inathematischon

Wissenschaften, Vol. V, Part II, Teubner, 1906.
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term is an invariant quadric similar in form to the strain quadric of

Eq. (36), page 89. Only the first term of (29) is variant with the coor-

dinates and it is necessary that 1

(30) ai a 2 4a 3
=

0, a 3
=

(ai a2).

The variation in the density of electrostatic energy due to the local

deformation, or pure strain, of an isotropic dielectric is finally

(31) du8
= -i[(ai#? + a 2El + a 2S2

3) fen

The subscript s has been added to emphasize the fact that this is only
that portion of the total variation which arises from a pure strain. The
most general deformation of an clastic medium, it will be remembered,
is composed of a translation, a local rotation defined by (33), page 88,

and the local straip. defined by (29), page 88, of which we have taken

account in (31). In an anisotropic dielectric the local rotation gives

rise to variations in the tensor components # and consequently a system
of torques must act on each volume element. 2 In the initially isotropic

medium considered here these rotational variations are absent. The
variation in the density of electrostatic energy associated with an infini-

tesimal translation 6s of an inhomogeneous dielectric was calculated in

Sec. 2.21.

(32) Su t
= iE^Ve 6s,

where e is the inductive capacity in the unstrained, isotropic state.

A deformation of the dielectric occasions a variation in the elastic

energy as well as in the electrostatic energy. According to (68), page 94,

(33) 8ue
= (XiV s + 2X2en) 5en + (XiV s + 2X2622) 6e 22

+ (XiV s + 2X2633)

Now the work done by the mechanical forces acting on the dielectric

within the volume Vi and over the surface Si bounding Vi during an

infinitesimal displacement 5s must equal the decrease in the total available

energy, elastic plus electrostatic. We write, therefore, for the energy
balance:

1 The procedure followed here in reducing the constants of electrostriction to two
is identical with that which leads to the reduction of the elastic constants c,*, Sec. 2.3,

to the two parameters Xi and \2. See, for example, LOVE, "Treatise on the Mathe-
matical Theory of Elasticity," Chap. VI, 4th ed., Cambridge Press, 1927. The
determination of these constants for various classes of anisotropic crystals was made
by Voigt, "Kompendium der theoretischen Physik," Vol. I, pp. 143-144, Leipzig,
1895. His results are cited by Love, loc. cit.

2 POCKELS, loc. cit., p. 353.
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(34) f f 5s dv + C t 5s da = -5 f (u. + u. + u t) dv.
J Vi JSi J Vi

It will be convenient to resolve the total body force per unit volume f

arbitrarily into the two components f and f", where

(35) f = -p? 2 Ve

is the contribution resulting from the inhomogeneity of the dielectric

and where f
"

is the force associated with a pure strain. The latter must

satisfy the relation

(36) f f" 5s dv + f t" 6s da = -S f (u. + u.) dv.
Jr\ ft/Ol J Y 1

The resolution into translational and strain components of body and

surface force is such that

(37) f f dv + f t' da =
0, f f" cfo + f t" da = 0.

/ rl /Ol / r 1 /Ol

Then by Sec. 2.3, the left-hand side of (36) may be transformed to

(38) 5W" =
Y (T'A Sen + T& 5e 22 + T'3

'

3 de 33 + T 5e 12 + T& 8eM

+ T't { Sen) dv.

The variations in the strain components are arbitrary and hence on

equating coefficients of corresponding terms from (31) and (33) we obtain

Til = -(XiV s + 2Xien) +
ZM = -(XiV s + 2X 2e22) +
TiS = -(XiV s + 2X2e,3) +

(39)

These are the components of a stress tensor whose negative divergence

gives us the resultant body force associated with a strain. If the body
force is solely of electrical origin, as will be the case when gravitational

action is neglected, the divergence of the elastic stresses will vanish and
we obtain for the ^-component of force:

(40) ft - -
(oiE? + a2^ + HBJ) - -~

((a,
-
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with analogous expressions for /'2
' and /". To these are added the com-

ponents of f from (35) to obtain the total body force exerted by an

electrostatic field in an isotropic dielectric.

The parameters a\ and a 2 must in general be determined for a given

substance by measurement. Physically the parameter a\ expresses

the increment of corresponding to an elongation parallel to the lines of

field intensity, while a* determines this increment for strains at right

angles to these lines.

If the dielectric within V\ is homogeneous and contains no charge, the

gradient of is zero and the vector E satisfies V E = 0, V X U = 0.

In this case f = and the resultant force I" = f reduces to

(41) f = -i(ai + az)VE\

In a liquid or gas the shearing strains e
;-&

are all zero and hence by

Eqs. (24) and (27) a 3
= a$ =

0, ai = a 2
= a. Furthermore there can

be no preferred directions in the dielectric properties of a fluid and con-

sequently ,*
= when j ^ k, en = e22

= 33 = e. In place of (24) we

may write:

(42)^ ' den

Denoting the cubical dilatation by A = en + e^ + e33 ,
we

(43)

Now by (5)
dr de

and consequently the total force per unit volume exerted by an electro-

static field on a fluid dielectric is

(45)

as was deduced directly in Sec. 2.21.

The derivation of the volume forces from an energy principle as in

the foregoing paragraphs seems to have been proposed first by Korteweg
1

and developed by Helmholtz2 and others. A complete account of the

theory with references to the older literature is given by Pockels. 3 The

energy method has been criticized by Larmor4 and Livens5 who propose

1 KORTEWEG, Wied. Ann., 9, 1880.
2 HELMHOLTZ, Wied. Ann., 13, 385, 1881.

8 POCKELS, Arch. Math. Phys., (2) 12, 57-95, 1893, and in the Encyklopadie der

mathematischen Wissenschaften, Vol. V, Part II, pp. 350-392, 1906.

LARMOR, Phil. Trans., A. 190, 280, 1897.

8 LIVENS, Phil. Mag., 32, 162, 1916, and in his text ''The Theory of Electricity,"

p. 93, Cambridge University Press, 1926.
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alternative expressions for the forces. These criticisms, however, do not

appear to be well founded. Objections to the particular form of the

energy integral employed by Helmholtz are satisfied by a more careful

procedure. Livens has undertaken a generalization of the energy method
to media in which the relation between D and E is nonlinear in order to

show that it leads to absurd results; in so doing he has omitted the essen-

tial term associated with the deformation. The alternative expressions

for the volume force proposed by Livens may on the other hand be derived

very simply, in both the electric and magnetic cases, by assuming that

polarized matter is equivalent to a region occupied by a charge of density

p' = -v . P and current of density J'
= + V X M (cf. Sec. 1.6).

The forces may then be calculated exactly as in Sec. 2.5. Such a pro-
cedure would be justifiable were the medium absolutely rigid. According
to the Livens theory one calculates the force exerted by the field on the

polarized matter, and then introduces these forces into the equations of

elasticity to determine the deformation. The deformation, however,
affects the polarizations and the two parts of the problem cannot, in

general, be handled separately in any such fashion. Under certain

conditions, particularly in fluids, the two theories lead to identical results,

but in most circumstances they differ. There appears to be little reason

to doubt that the energy method of Korteweg and Helmholtz is funda-

mentally sound.

2.23. The Stress Tensor. We shall suppose again that Si is a closed

surface drawn within an isotropic dielectric under electrical stress. The

properties of the dielectric are assumed to be continuous across this

surface and at all interior points; it is not, in other words, a surface of

discontinuity bounding a whole dielectric body. The total force exerted

on the matter and charge within Si is

(46) F =

We wish to show now that the force F can be represented by a surface

integral over Si. To this end it is only necessary to express the integrand
as the divergence of a tensor. The term f" appears already in this form

in (40) and therefore needs no further transformation. In the first term

we replace p by V D and then make use of the identity

(47) B2 Vc = V(#2
)
- 2(D V)E,

which holds only when V X E = 0. It follows without difficulty that the

components of the vector pE %E2Ve are

3

/AQ\ ^T? ^
J?2 ^S^ /I? n '\

1 CF .,._- _^v1*OJ P*-J i
~"~" """ FJ ' ' ^ \-*-J i'*^kJ

""""
C H i/)
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and the integrand of (46) can thus be expressed as the divergence of a
tensor 2

S,

(49) p?-iS2 Ve + f" = V- 2
S,

whose components S# are tabulated below.

Sn = ~
(E\ El - El) H (aiE\ + a 2El +4 &

e -w w JL 2
"" ai z? F Q012 ^1^2 T" o -^1^2 = >->21>

(50)
2

^

Upon applying the divergence theorem expressed in Eqs. (22) and

(23), page 100, it appears that the force F exerted on the charge and
dielectric matter within Si is equivalent to the integral over Si of a
surface force of density

(51) t =

where n is as usual the outward unit normal to an element of Si. To
maintain equilibrium an equal and opposite force per unit area must be
exerted by the material outside Si on the particles composing Si.

The tensor components (50) and the surface force t differ from the

corresponding expressions developed for free space in Sec. 2.5 in that e

is replaced by e and the deformation is accounted for by the constants ai

and a 2 ,
thus giving rise to additional terms which may well be important.

At any point on the surface Si the vector t lies in the plane of E and n,
but is no longer oriented such that E bisects the angle between n and t

as was the case illustrated by Fig. 17, page 102.

2.24. Surfaces of Discontinuity. Throughout the previous analysis
it has been assumed that abrupt discontinuities in the properties of the

medium, such as must occur across surfaces bounding dielectric bodies,

may be replaced by layers of rapid but continuous transition. As the

transition layer becomes vanishmgly thin, a discontinuity is generated
that gives rise to infinite values for the gradient of c. But the volume
within the layer also vanishes and we must seek the limit of the force f

per unit volume to learn what total force is exerted on the resultant

surface of discontinuity.
In Fig. (23) the crosshatched area represents a section of a transition

layer between dielectric media (1) and (2). The force exerted by the
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field on the matter and charge within this layer can be found by inte-

grating (51) over the two faces. The two essential parameters that

characterize an isotropic dielectric will be denoted as

(52) a = c

The force acting on unit area in the direction from medium (1) towards

(2) as the thickness of the layer approaches zero is then

(53) t = [E(E .
n)] 2 + [aE(E n)h

the subscripts indicating that the values are to be taken on either side

of S. It should be noted that ni = n2 .

Very few reliable measurements of the constants ai and a2 for solids

have been reported in the literature. The traction t may, however, be

computed in the case of an interface separat-

|

*

ing two fluids to which the Clausius-Mossotti

law can be applied. According to Eqs. (43)
Dielectric (1) Dielectric (2)

and (14),

(54) a\ = a2
=

Then for a fluid,

(55) <* = e, f

~ 1
2).

= -
(

2 - 2* - 2).

At the interface the tangential components of

^Sl
E are continuous, En = EM, and in the

FIG. 23. Section of a tran- absence of surface charge we have also
sition layer separating two ^7 ^ rpi n ii-o' /ro\ xi,

dielectric media. ^Eni = 2#n2 . The field E in (53) may, there-

fore, be expressed in terms of its intensity in

either medium. The values of a and )3 from (55) introduced into (53)

lead to

(56) t = ^
-

?K 2
-

6*1*1
~

3/cf

-
2)
-

The traction exerted by the field on the interface of two fluids is normal

to the surface, directed from medium (1) toward (2), a necessary con-

sequence, of course, of the fact that a fluid supports no shearing stress,

In case medium (2) is air, K 2 may be placed approximately equal to

unity. Equation (56) then reduces to

(57) t = Q(KI
-

I)
2

6
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The traction is a maximum when E is normal to the surface, and is in

the direction of diminishing inductive capacity (cf. page 114). However,
if E lies in the surface, En i

=
0, and the traction becomes negative,

implying a pressure exerted by the field on dielectric jci.

Another case of interest is that in which medium (1) is a conductor.

Then Ei = 0, En = and (53) reduces to

(58) t= (a - p)E*n = -^ E*,

all quantities having their values just outside the metal surface in the

dielectric (1). In case this dielectric is a fluid,

These expressions are valid whether or not the conductors are charged,

for En is related to the surface charge by eEn = co. But Eqs. (58) and

(59) do not represent the resultant force per unit area exerted on the surface,

for they will be compensated to a certain degree by stresses or pressures

generated by the field within the dielectric. These we shall now investi-

gate. Only in case medium (1) is free space or a gas of negligible induc-

tive capacity can this internal pressure be ignored. We have then

T = and (59) becomes

(60) t = ie #*n =
|coJ57n n,

where w is the charge per unit area.

2.25. Electrostriction. The elastic deformation of a dielectric under

the forces exerted by an electrostatic field is called electrostriction. The

displacement s at any interior point of an isotropic substance must

satisfy Eq. (70), page 95:

(61) f + (Xi + X2)VV s + X2T 2s = 0,

where now the body force f = f'+ f" is given in general by (35) and

(40). To these there may be added, when the occasion demands, a

force Ep to account for a volume charge, and a gravitational force rg.

Solutions of (61) must be found in an appropriate system of coordinates.

These solutions are subject to boundary conditions over a surface bound-

ing the dielectric. On this surface either the applied stresses or the

displacement must be specified. Thus if the surface is free, stresses

will be exerted upon it by the field and from these may be determined the

boundary values of s.

In solids the effect is small and easily masked by deformations arising

from extraneous causes. The attractive forces between metal electrodes

in contact with the dielectric may bring about deformations within the
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volume of the dielectric which have nothing to do with electrostriction.

Experimental data on the subject are not abundant and frequently

contradictory. The theory of electrostriction in a cylindrical condenser,

however, has been developed in considerable detail. The method
described above was applied by Adams,

1 and his results were later

reconciled by Kemble2 with the earlier work of Sacerdote. 3 An extensive

list of references is given by Cady in the International Critical Tables.4

The electrostriction of fluids is more amenable to calculation, for the

shearing modulus X2 is then zero and Xi is equal to the reciprocal of

the compressibility. According to (73), page 95, the pressure within the

fluid is related to the volume dilatation by p = XiV s. This expres-

sion, together with the body force f from Eq. (45), introduced into (61),

leads to the relation

(62)

between pressure and field intensity at any point in the fluid. To inte-

grate this equation the functional dependence of both pressure and

inductive capacity on the density r must be specified. In a chemically

nomogeneous liquid or gas, one may assume that p =
p(r), e = c(r),

and that the dependence on position is implicit in the independent variable

r. Then

(63)
^

and hence (62) reduces to

A scalar function P(p) of pressure is now defined such that

(65) P(p) =
JJ dp, VP = i Vp,

where pQ is the pressure at a point in the fluid where E = 0. If ds is an

element of length along any path connecting two points whose pressures

are respectively p and p$, then VP ds = dP, and (64) is satisfied by

(66)

1 ADAMS, Phil. Mag., (6) 22, 889, 1911.
8 KEMBLE, Phys. Rev., (2) 7, 614, 1916.
* SACERDOTE, Jour, physique, (3) 8, 457, 1899; 10, 196, 1901.
4 International Critical Tables, Vol. VI, p. 207, 1929.
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In liquids dp = Xi , Eq. (77), page 96, or

p-po

(67) T = T e x'
.

The parameter Xi, the reciprocal of the compressibility, is a very large

quantity and hence T~ TO. For liquids, therefore,

(68) p_

or, upon applying the Clausius-Mossotti law,

(69) p-po =

T>/T7

In gases (67) is replaced by the relation p = T ~^, where R is the

gas constant, T the absolute temperature, and M the molecular weight.
1

2.26. Force on a Body Immersed in a Fluid. The results of our

analysis may be summed up profitably by a consideration of the following

Fluid

FIG. 24. A solid body immersed in a fluid dielectric.

problem. In Fig. 24, a dielectric or conducting body is shown immersed
in a fluid. An electrostatic field is applied and we desire an expression
for the resultant force on the entire body. Let us draw a surface Si enclosing
the body and located in the fluid just outside the boundary S. On every
volume element of the solid there is a force of density

(70) f = pB-i^Ve + f",

where f" is given by Eq. (40), and on each element of the surface of dis-

continuity there is a traction given by (53) . Rather than evaluate the

integrals of f and t over the volume and bounding surface S, we need only

1 ABRAHAM, BECKER, and DOTTGALL, "The Classical Theory of Electricity and

Magnetism," p. 98, Blackie, 1932.
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calculate the integral of t from Eq. (51) over the surface Si. Since Si

lies in the fluid, ai = a2
= T~ and (51) reduces to

(71) t - eE(E n)
-
I

tf2n + ~ ~ #'n,

where n is the unit normal directed from the solid into the fluid and e

and r apply to the fluid. Now the integral of this traction over Si gives

the force exerted directly by the field on the volume and surface of the

body. But the field, as we have just seen, also generates a pressure

(68) in the fluid which at every point on Si acts normally inward, i.e.,

toward the solid. The resultant force per unit area transmitted across

Si is, therefore, equal to (71) diminished by (68), and the net force

exerted by the field on the solid the force which must be compensated

by exterior supports is

= f
I

(72) F = II eE(E - n)
-

|
# 2n da.

Thus to obtain the resultant force on an entire body we need not know
the constants aj. and a% within either the solid or the fluid, for the forces

with which they are associated are compensated locally by elastic stresses.

Furthermore, since the fluid is in equilibrium, it is not essential that Si

lie in the immediate neighborhood of the body surface S. The net force

on the liquid contained between Si and an arbitrary enclosing surface S%

is zero and consequently

(73) f \*E(E n)
- ~ E2nl da = f fcE(E n)

- - E2nl da,
Jsi L ^ J Jst L * J

if we adhere to the convention that n is directed outward from the enclosed

region. The surface S2 rnay, therefore, be chosen in any manner that

will facilitate integration, provided only that no foreign bodies are

intersected or enclosed.

In case the solid is a conductor, the field E is normal at the boundary.
The resultant force on an isolated conductor is then

(74) F = ^ f eE2nda = ~ f 6>Eda,^ JSi & JSi

where co is the charge density on S. This last is true, of course, only for a

surface Si just outside the conductor.

It should be evident now that the force on one solid embedded in

another can be calculated only when the nature of the contact over their

common surface is specified; the problem i3 complicated by the fact that
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tangential shearing stresses as well as normal pressures must be com-

pensated by elastic stresses across the boundary.

FORCES IN THE MAGNETOSTATIC FIELD

2.27. Nonferromagnetic Materials. The analysis of Sec. 2.22 may
be applied directly to the magnetostatic field in all cases where the rela-

tion between B and H is of the form

(1) B, = V MB* G*
=

1, 2, 3),
Wi

with the components ^k of the permeability tensor functions possibly of

position but independent of field intensity. The change in magnetic

energy of an isotropic body resulting from a variation in M is given by

Eq. (52), Sec. 2.17.

(2) &T =

and the generalization of this expression to an anisotropic body occupying

the volume Vi is

(3)
=

g f

This variation may be expressed in terms of the components of strain,

assuming a linear relation between the components of the permeability

and strain tensors.
3 3

2^ 5e '-" ^

If we assume further that in the unstrained ztate the medium is isotropic,

the coefficients 6& reduce to two,

/e\ I,

(5) Zh

so that the variation in magnetic energy due to a pure strain is

(6) ar = i f KbiffJ + biflj + biHJ) eu + (biH| +
Se 12

Equation (6) differs formally from (31), page 143, only in algebraic

sign. Now the electrostatic energy U represents the work done in
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building up the field against the mutual forces between elements of

charge. The magnetic energy T, on the other hand, represents work

done against the mutual forces exerted by elements of current, plus

the work done against induced electromotive forces. The work required

to bring about a small displacement or deformation of a body in a mag-
netic field is done partly against the mechanical forces acting on the body,

partly on the current sources to maintain them constant. 1 When the

work done against the induced electromotive forces is subtracted from

the total magnetic energy, there remains the potential energy of the

mutual mechanical forces, and this we found in Sec. 2.14 to be equal and

opposite to T.

(7) dU = -ST.

The forces exerted by the field on the body within V\ are to be calculated

from (6) with sign reversed.

In complete analogy with the electrostatic case we now find that

the body force exerted by a magnetic field on a medium which in the

unstrained state is isotropic, whose permeability is independent of field

intensity, which is free of residual magnetism, but which may carry a

current of density J, is

1 ^3

_iJL
2dXj

If the medium is homogeneous and carries no current, (8) reduces to

(9) f = -K&i +

In a gas or liquid 61 = & 2
= r -~, and (8) can be written in the form

OT

(10) f = /.JXH-

As in the electrostatic case, the body force whose components are

given by (8) can be expressed as the divergence of a tensor 2
S,

(11) f = V - 2
S,

whose components are

1 This remark does not apply if the source is a permanent magnet; in that case the

energy of the field is not given by T - J/fi H dv.



SBC. 2.28] FERROMAGNETIC MATERIALS 155

(13)

The force exerted by the magnetic field on the matter within a closed

surface Si is, therefore, the same as would result from the application over

Si of a force of surface density

(13) t =

Likewise the force per unit area exerted on a surface of discontinuity
can be obtained by calculating (13) on either side of the surface. The
result is the magnetic equivalent of (53) . A case of particular importance
is that of a magnetic body immersed in a fluid whose permeability to a

sufficient approximation is independent of density and equal to MO ,
the

value in free space. Let the body be represented by the region (1) in

Fig. 23 and the fluid by the region (2). The force per unit area on the

bounding surface is then found to be

(14) t = CLZ

where the constants 61, 62 apply to the magnetic body and HI is measured

just inside its surface.

Not very much is known about the parameters 61 and 62, although
there are indications that they may be very large. They must, of course,
be determined if the elastic deformation of a body is to be calculated.

In most practical problems, fortunately, one is interested only in the net

force acting on the body as a whole. The forces arising from deforma-
tions are compensated locally by induced elastic stresses and conse-

quently terms involving 61 and 62 will drop out. As in the electric case,
the resultant force exerted by a magnetostatic field on a nonferromagnetic

body immersed in any fluid is obtained by evaluating the integral

(15) F = f f
JSiL

MH(H - n)
-

I
tf2n da

over any surface enclosing the body.
2.28. Ferromagnetic Materials. The preceding formulas apply to

ferromagnetic substances in sufficiently weak fields. If, however, the

permeability \n depends markedly on the intensity of the field, the energy
of a magnetic body can no longer be represented in the form of Eq. (2)

or (3) and we must use in their place the integral derived in Sec. 2.17.

(16) T =
\ \ (Hi B-H-B l -H-B + 2 f H- dB ) dv.
* JVi \ JO /
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An analysis of the volume and surface forces for such a case has been
made by Pockels,

1 who also treats briefly the problem of magnetostriction.
The phenomena of magnetostriction are governed, however, by several

important factors other than the simple elastic deformation considered

here. A specimen of iron, for example, which in the large appears
isotropic, exhibits under the microscope a fine-grained structure. The
properties of the individual grains or microcrystals are strongly aniso-

tropic. Of the same order of magnitude as these grains but not necessarily
identified with them are also groups or domains of atoms, each domain

acting as a permanent magnet. In the unmagnetized state the orienta-

tion of the magnetic domains is random and the net magnetic moment
is zero. A weak applied field disturbs these little magnets only slightly
from their initial positions of equilibrium. A small resultant moment is

induced and under these circumstances the behavior of the iron may be

wholly analogous to a polarizable dielectric in an electric field. As the

intensity of the field is increased, however, the domains begin to flip over

suddenly to new positions of equilibrium in line with the applied field,

with a consequent change in the elastic properties of the specimen. A
dilatation in weak fields may be followed by a contraction as the field

becomes more intense, quite contrary to what would be predicted by the

magnetostriction theory when applied to strictly isotropic solids. We
are confronted here with a problem in which the macroscopic behavior of

matter cannot be treated apart from its microscopic structure.

FORCES IN THE ELECTROMAGNETIC FIELD

2.29. Force on a Body Immersed in a Fluid. The expressions

(1) su = -1
f E* fc cto, dT = I f ff2 5M dv,* J * J

for the energy of a body in a stationary electric or magnetic field have
been based in Sees. 2.10 and 2.17 on the irrotational character of the

vectors E and H HI as well as upon their proper behavior at infinity.

In a variable field these conditions are not satisfied and therefore (1)

cannot be applied to the determination of the force on a body or an ele-

ment of a body without a thorough revision of the proof. At best the

analysis will contain some element of hypothesis, for our assumption that

the quantities E and H represent the energy densities in an

electromagnetic field is, after all, only a plausible interpretation of

Poynting's theorem.

1
POCKBLS, loc. cit., p. 369.
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In Sec. 2.5 it was shown that the total force transmitted by an elec-

tromagnetic field across any closed surface 2 in free space is expressed
by the integral

(2) F = f L(E n)E + 1 (B n)B - J ( ,

t/s L j^o * \

Subsequently we were able to demonstrate for stationary fields that if

the surface 2 is drawn entirely within a fluid which supports no shearing

stress, the net force is given by (2) if only we replace and MO by their

appropriate values in the fluid.

(3) F = e(E n)E + /i(H n)H - ~
0=.E

2 + uH*}n da.
J^ L Z \

This is the resultant force on the charge, current, and matter mthin 2.

The matter within 2 need not be fluid and there may be sharp surfaces of

discontinuity in its physical properties; the relations between E and D,
and B and H, however, are assumed to be linear.

Now since (2) is valid in the dynamic as well as in the stationary
regimes, there is reason to suppose that (3) may be applied also to variable

fields. It is not difficult to marshal support for such a hypothesis,
particularly from the theory of relativity. However, the right-hand side

of (3) must now be interpreted in the sense of Sec. 2.6 not as the force

exerted by the field on the matter within 2 but as the inward flow of

momentum per unit time through 2, We denote the total mechanical
momentum of the matter within 2, including the ponderable charges, by
Gmcoh , and the electromagnetic momentum of the field by Gf. Then

(4) TJ (Gmwh + Ge)
= (E n)E + /t(H n)H - i

(efi
2 + u#2)n da.

/ 2 |_ 2t I

The surface integral (4) may be transformed into a volume integral.
For in the first place:

l f _ i r

2js 2J|;
Then

(6) %V(eE
2
)
= #2V + (D T)E + D X V X E.

(7) (D . V)E = (DJK) +
t̂ (DJS) + %

(8) L fe (DxEx} +
iy

(DyE^ + I (D*Ex) dv = (D ' n)S* da>

and this obviously cancels the z-component of the vector *(E -n)E in



158 STRESS AND ENERGY ICnAp. II

(3). Proceeding similarly with the magnetic terms and then making

use of the relations V X E = 9B/W, VXH = + J,V-D=p, we
ot

are led to

(9) ^ (G "<* + G.) = f [pE + J X B -
|at jv L ^

The increase in the mechanical momentum is the result of the forces

exerted by the field on charges and neutral matter.

F, therefore, the right-hand side of (9) can be split into two parts identi-

fied with Gmech and Ge ,
the force can be determined. Just how this

resolution is to be made is by no means obvious and various hypotheses

have been suggested.
1

According to Poynting's theorem the flow of

energy, even within ponderable matter, is determined by the vector

(11) S = E X H joules/sec.-meter
2

.

Abraham and von Laue take for the density of electromagnetic

momentum
1

(12) gc
=

/xo^oS
= -28 kg./sec.-meter

2
.

c

Then according to this hypothesis, the resultant force on the charges,

currents, and polarized matter within S is

(13) F = f (PE + J X B - i 2V _ 1 H 2
V/A +

K * - 1 ^ ) dVj
Jv \ & & c ot /

or

(14) F = f I (B n)E + /*(H - n)H - | (eB
2 + Mff

2
)n1 da

E X H dv._llf
c2
d<J F

'

Practically, the exact form of the electromagnetic momentum term

is of no great importance, for the factor 1/c
2 makes it far too small to be

easily detected.

1
PAULI, Encyklopadie der mathematischen Wissenschaften, Vol. V, Part 2,

pp. 662-667, 1906.
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On the grounds of (13) it is sometimes stated that the force exerted

by an electromagnetic field on a unit volume of isotropic matter is

(15) f = PE + JxB- * ' KmK'~

Such a conclusion is manifestly incorrect, for (15) does not include the

forces associated with the deformation. As previously noted, these

strictive forces are compensated locally by elastic stresses and do not

enter into the integrals (13) and (14) for the resultant force necessary
to maintain the body as a whole in equilibrium.



CHAPTER III

THE ELECTROSTATIC FIELD

From fundamental equations and general theorems we turn our

attention in the following chapters to the structure and properties of

specific fields. The simplest of these are the fields associated with

stationary distributions of charge. Of all branches of our subject, how-

ever, the properties of electrostatic fields have received by far the most

adequate and abundant treatment. In the present chapter we shall

touch only upon the more outstanding of these properties and of the

methods which have been developed for their analysis.

GENERAL PROPERTIES OF AN ELECTROSTATIC FIELD

3.1. Equations of Field and Potential. The equations satisfied by
the field of a stationary charge distribution follow directly from Max-
welPs equations when all derivatives with respect to time are placed

Equal to zero. We have, then, at all regular points of an electrostatic

field:

(I) V X E =
0, (II) V - D -

p.

According to (I) the line integral of the field intensity E around any
closed path is zero and the field is conservative.

The conservative nature of the field is a necessary and sufficient con-

dition for the existence of a scalar potential whose gradient is E.

(1) E = -V<.

The algebraic sign is arbitrary but has been chosen negative to conform

with the convention which directs the vector E outward from a positive

charge. Equation (1) docs not define the -potential uniquely, for there

might be added to <t> any constant < without invalidating the condition

(2) V X V(<#> + <o) ss 0.

In Chap. II it was shown that the scalar potential of an electrostatic

field might be interpreted as the work required to bring a unit positive

charge from infinity to a point (x, y y z) within the field:

(3) *(*,,*) =

We shall show below that the field of a system of charges confined to a

finite region of space vanishes at infinity. The condition that < shall

vanish at infinity, therefore, fixes the otherwise arbitrary constant <<>

160
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Those surfaces on which < is constant are called equipotential sur-

faces, or simply equipotentials. At every point on an equipotential the
field intensity E is normal to the surface. For let

(4) <t>(x, y, z)
= constant

be an equipotential, and take the first differential.

(5) *-*' +
S?'fr

+ *-0.

The differentials dx, dy, dz, are the components of a vector displace-
ment dr along which we wish to determine the change in <, and since

d<f>
=

0, this vector must lie in the surface, <t>
= constant. The partials

d<t>/dx, d<t>/dy, d<t>/dz, on the other hand, are rates of change along the
x-

y y-, z-axes respectively and as such have been shown to be the com-
ponents of another vector, namely the gradient

<6> ^-'fHfJ + kfr--*-
d(f> is manifestly the scalar product of these two and, since this product
vanishes, the vectors must be orthogonal. An exception occurs at those

points in which the three partial derivatives vanish simultaneously.
The field intensity is zero and the points are said to be points of

equilibrium.

The orthogonal trajectories of the equipotential surfaces constitute a

family of lines which at every point of the field are tangent to the vector
E. They are the lines of force. It is frequently convenient to represent

graphically the field of a given system of charges by sketching the projec-
tion of these lines on some plane through the field. Let ds represent a
small displacement along a line of force, where

(7) ds = i dx f + j dy
f + k dz',

the primes being introduced to avoid confusion with a variable point
(z, y, z) on an equipotential. Then, since by definition the lines of

force are everywhere tangent to the field-intensity vector, the rectangular

components of ds and E(x', t/', z') must be proportional.

(8) Ex = \ dx', Ev
= X dy' y E, = X dz'.

The differential equations of the lines of force are, therefore,

/ON dx' dy' dz'
1 ; Ex (x', y', z'} Ev (x', y', z'} E.(x', y', z')

The relations between the components of D and those of E are almost

invariably linear. If the medium is also isotropic, one may put

(10) D = eE = -cV*,



162 THE ELECTROSTATIC FIELD [CHAP. Ill

whence, by (II), < must satisfy

(11) V (eV<) = eV 2
< + Ve Vtf>

= -p.

In case the medium is homogeneous, < must be a solution of Poisson's

equation,

(12) V 2 = ~p.

At points ot the field which are free of charge (12) reduces to Laplace's

equation,

(13) V 2* = 0.

The fundamental problem of electrostatics is to determine a scalar

function <t>(x, y, z) that satisfies at every point in space the Poisson equa-

tion, and on prescribed surfaces fulfills the necessary boundary condi-

tions. A much simpler inverse problem is occasionally encountered:

Given the potential as an empirical function of the coordinates repre-

senting experimental data, to find a system of charges that would produce

such a potential. The density of the necessary continuous distribution

is immediately determined by carrying out the differentiation indicated

by Eq. (12). There will in general, however, be supplementary point

charges, whose presence and nature are not disclosed by Poisson's

equation. At such points the potential becomes infinite and, inversely,

one may expect to find point charges or systems of point charges located

at the singularities of the potential function. The nature of these

systems, or multipoles as they are called, is the subject of a later section,

but a simple example may serve to illustrate the situation.

Let the assumed potential be

where r is the radial distance from the origin to the point of observation

and a is a constant. By virtue of the spherical symmetry of this function,

Poissons's equation, when written in spherical coordinates, reduces to

on differentiation one finds for the density of the required continuous

charge distribution

The charge contained within a sphere of radius r is obtained by integrat-

ing p over the volume, or

(17) P dv = e~ r
(ar + 1)

- 1.
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If the radius is made infinite, the total charge of the continuous dis-

tribution is seen to be

(18)

But this is not the total charge required to establish the potential (14).
For at r = the potential becomes infinite and we must look for a point
charge located at the singularity. To verify this we need only apply
(II) in its integral form. If q is a point charge at the origin,

(19)

the surface integral extending over a sphere S bounding the volume V.

<*> *--- c (?

(21) -

J*
Dr da = (ar +

and, hence,

(22) q = +1.

The potential defined by (14) arises, therefore, from a positive unit

charge located at the origin and an equal negative charge distributed

about it with a density p, the system as a whole being neutral.

3.2. Boundary Conditions. The transition of the field vectors across

a surface of discontinuity in the medium was investigated in Sec. 1.13

and the results of that section apply directly to the electrostatic case.

The two media may be supposed to meet at a surface S and the unit

normal n is drawn from medium (1) into medium (2), so that (1) lies

on the negative side of S, medium (2) on the positive side. Then

(23) n X (E2
-

Ei) =0, n - (D 2
-

DI) -
,

where <o is the density of any surface charge distributed over S.

It will be convenient to introduce the unit vector t tangent to the

surface S. The derivatives d</dn and d<t>/dt represent respectively the

rates of change of $ in the normal and in a tangential direction. Then
the boundary conditions (23) can be expressed in terms of the potential by

From the conservative nature of the field it follows also that the potential
itself must be continuous across S, for the work required to carry a small

charge from infinity to either of two adjacent points located on opposite
sides of S must be the same Hence

(25) 0! = < 2 .
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The two conditions

are independent.
Conductors play an especially prominent role in electrostatics. For

the purposes of a purely macroscopic theory it is sufficient to consider

a conductor as a closed domain within which charge moves freely. If

the conductor is a metal or electrolyte, the flow of charge is directly

proportional to the intensity E of the electric field: J = aE. Charge is

free to move on the surface of a conductor but can leave it only under

the influence of very intense external fields or at high temperatures

(thermal emission). If the conductor is in electrostatic equilibrium all

flow of charge has ceased, whence it is evident that at every interior

point of a conductor in an electrostatic field the resultant field intensity E
is zero, and at every point on its surface the tangential component of E is zero.

Furthermore the electrostatic potential $ within a conductor is constant and

the surface of every conductor is an equipotential. Let us suppose that an

uncharged conductor is introduced into a fixed external field E . In the

.first instant there occurs a transient current. According to Sec. 1.7,

no charge can accumulate at an interior point, but a redistribution will

occur over the surface such that the surface density at any point is w,

subject to the condition

(27)

This surface distribution gives rise to an induced or secondary field of

intensity EI. Equilibrium is attained when the distribution is such that

at every interior point

(28) Eo + E! = 0.

Likewise, if a charge q is placed on an isolated conductor, the charge

will distribute itself over the surface with a density o> subject to (28)

and the condition

(29) J co da = q.

We shall denote the interior of a conductor in electrostatic equilibrium

by the index (1) and the exterior dielectric by (2). Then at the surface S

(30) EI = Di =
0, n X Ea

=
0, n D 2

=
,

or in terms of the potential,

(31) <t>
= constant, 2

~^= -co.
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If a solution of Laplace's equation can be found which is constant over
the given conductors, the surface density of charge may be determined

by calculating the normal derivative of the potential.

CALCULATION OF THE FIELD FROM THE CHARGE DISTRIBUTION

3.3. Green's Theorem. Let V be a closed region of space bounded
by a regular surface S, and let < and

\l/ be two scalar functions of position
which together with their first and second derivatives 1 are continuous

throughout V and on the surface 8. Then the divergence theorem

applied to the vector \t/V4> gives

(1) fv V (W) dv = fs (tV<t>)
- n da.

Upon expanding the divergence to

(2) V OAV0) =
V\l/ V<t> + \f/V V0 = V$ V$ + ^V 2

$,

and noting that

(3)

where d^/dn is the derivative in the direction of the positive normal,
we obtain what is known as Green's first identity:

(4) I V*-V<t>dv+ f *W<to= f*^dd.Jv Jv Js on

If in particular we place ^ = <t> and let <f> be a solution of Laplace's

equation, Eq. (4) reduces to

f (V4)*dv= ( <t>^da.Jv Js on
(5)

Next let us interchange the roles of the functions <t> and ^; i.e., apply
the divergence theorem to the vector <t>V\[/.

(6) I V<j> V^ dv + I 0vV dv = f <t>^ da.
Jv Jv Js dn

Upon subtracting (6) from (4) a relation between a volume integral and a

surface integral is obtained of the form

(7)

known as Green's second identity or also frequently as Green's theorem.

1 This condition is more stringent than is necessary. The second derivative of one
function ^ need not be continuous.
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3.4. Integration of Poisson's Equation. By means of Green's

theorem the potential at a fixed point (z', y', z'} within the volume V can

be expressed in terms of a volume integral plus a surface integral over S.

Let us suppose that charge is distributed with a volume density p(x, y, z).

We shall assume that p(x, y, z) is bounded but is an otherwise arbitrary

function of position. An arbitrary, regular surface S is now drawn

enclosing a volume 7, Fig. 25. It is not necessary that S enclose all

the charge, or even any of it. Let O be an arbitrary origin and x = x',

y = y^ z = z', a fixed point of observation within V. The potential

at this point due to the entire charge distribution is <j>(x', y
f

, z'). For

FIG. 25. Application of Green's theorem to a region V bounded externally by the surface 5
and internally by the sphere Si.

the function ^ we shall choose a spherically symmetrical solution of

Laplace's equation,

(8) t(x, y, z] x', y', z'}
= -,

where r is the distance from a variable point (x, y, z) within V to the

fixed point (x
f

, y
f

, z').

(9) r = vV ~
*)

2 + (y
f - yY + (*'

-
*)

2
-

This function ^, however, fails to satisfy the necessary conditions of

continuity at r = 0. To exclude the singularity, a small sphere of

radius ri is circumscribed about (x', y', z
1

} as a center. The volume V is

then bounded externally by S and internally by the sphere Si. Within

V both <t> and ^ now satisfy the requirements of Green's theorem and

furthermore V 2
\[/
= 0. Thus (7) reduces to

the surface integral to be extended over both S and Si. Over the sphere

Si the positive normal is directed radially toward the center (x'j y', z') 9
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since this ia out of the volume V. Over Si, therefore,

(11) *$ - -**,UJ "

Since ri is constant, the contribution of the sphere to the right-hand side

of (10) ia

*, 1

If and d</>/dr denote mean values of
<j> and 3<t>/dr on Si, this contribution

is

which in the limit ri > reduces to 4ir</>(z', y', 2')- Upon introducing
this value into (10) the potential at any interior point (x', t/', z') is

'
4ir Jv T 4ir Js [_r dn dn\rj

or in terms of the charge density when the medium is homogeneous,

i~t o\ j.// f f\ * I P i i
* I I 1 v<p o il\l

^loj <i>(x , y ,
z )

= -
I ay + 7~ I I

~
<b I II da.

4-Trc Jy T 4r js |_r dn dn \T/ ]

In case the region V bounded by S contains no charge, (13) reduces to

(14) *(*', y', *')
= 1

It is apparent that the surface integrals in (13) and (14) represent the

contribution to the potential at (x
r

, y', z') of all charges which are exterior

to S. If the values of < and its normal derivative over S are known, the

potential at any interior point can be determined by integration. Equa-
tion (14) may be interpreted therefore as a solution of Laplace's equation
within V satisfying specified conditions over the boundary. The integral

(15) ^'^-
is a particular solution of Poisson's equation valid at (x', y', z

1

}] the

general solution is obtained by adding the integral (14) of the homo-
geneous equation V Z

4>
= 0. If there are no charges exterior to S, the

surface integral must vanish.

3.6. Behavior at Infinity. Let us suppose that every element of a

charge distribution is located within a finite distance of some arbitrary
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origin 0, We imagine this distribution to be confined within the interior

of a surface Si which also contains the origin 0. The distances r, ri and

jB are indicated in Fig. 26.

(16) r = (#
2 + r\

- 2riR cos 0)*.

The potential at any point P(x' J y', z') outside Si is then

(17) 6(x' v' z')- p(x > y > *> dv
(17) t(x , y ,

z )
-

As P recedes to infinity, the terms r\ and 2riR cos 6 become negligible

FIG. 26. Figure to accompany Sec. 3.5.

with respect to R 2
,
and in the limit as R > oo we find

(18)
f
J 7i

where q is the total charge of the system. A potential function is said

to be regular at infinity if R<fr is bounded as R > <*> . The field intensity

E = v< at great distances is directed radially from and the function

R*\E\ is bounded.

All real charge systems are contained within domains of finite extent

and their fields are, therefore, regular at infinity. Frequently, however,
the analysis of a problem is simplified by assuming the external field to

be parallel. Such a field does not vanish at infinity and can only arise

from sources located at an infinite distance from the origin.

It is important to note that a closed surface S divides all space into

two volumes, an interior Vi and an exterior V2 ,
and that if the functions

<t> and \// are regular at infinity Green's theorem applies to the external

region F2 as well as to Vi. For certainly the theorem applies to a closed

region bounded internally by S and externally by another surface S2 .

If now S2 recedes towards infinity, the quantities \f/ and <t>
~ vanish

on an



SEC. 3.6] COULOMB FIELD 169

as 1/r
3 and the integral over 82 approaches zero. Consequently

(19) (W ~ *W * - , - , da,

but the positive normal at points on S is now directed out of Vz and
therefore into V\. Let us suppose, for example, that a charge system is

confined entirely to the region Vi within S. The potential at any point

(z', y', z') in 7 2 outside S may be calculated from (17), or equally well

from a knowledge of <t> and d^/dn on S, applying (14) as indicated in

Fig. 27.

FIQ. 27. Application of Green's theorem to the exterior Vt of a closed surface 5.

3.6. Coulomb Field. According to (18) the potential of a charge q in

a homogeneous medium at distances very great relative to the dimensions
of the charge itself approaches the value

(20) ^ ; ^ 20

If q is located at (x, y, z), the distance from q to the point of observation

(*', y', z') is

(21) r = V<X -
*)

2 + (y'
- yY + (*'

-
z)

2
.

Let now r represent a unit vector directed from the source; i.e., from

(x, y, z) towards (x', y', z'). Then

(22) ^

where the prime above the gradient operator denotes differentiation

with respect to the variables (x', y', z') at the point of observation.

The field intensity at this point is

(23) E(

The field of a point charge is inversely proportional to the square of the dis-

tance and is directed radially outward when q is positive. This is the law
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established experimentally by Coulomb and Cavendish which is usually

taken as a point of departure for the theory of electrostatics. The term

"point charge
"

is employed here in the sense of a charge whose dimen-

sions are negligible with respect to r. Mathematically one may imagine

the dimensions of q to grow vanishingly small while the density p is

increased such that q is maintained constant. In this fashion a point

singularity is generated and (23) is then valid at all points except r = 0.

There is no reason to believe that such singularities exist in nature, but

it is convenient to interpret a field at sufficient distances as that which

might be generated by systems of mathematical point charges. We
shall have occasion to develop this concept in the subsequent section.

The potential at (x
f

, y', z') is obtained by integrating the contribu-

tions of charge elements dq = p dv over all space.

(24)

(25) dE = --L
p(x, y, z)V 0)

dv = ~ P (x, y, z)V (^
dv.

The field intensity due to a complete charge distribution in a homo-

geneous, isotropic medium is, therefore,

(26)
-
4^ J

3.7. Convergence of Integrals. The proof of convergence of the

integrals for potential and field intensity is implicit in the method by
which they have been derived, but an alternative treatment will be

described which may serve as a model for proofs of this kind. Since the

element of integration at (a;, y, z) can coincide with (x', y', z'), with the

result that the integrand becomes infinite at this point, it is not obvious

that the integral has a meaning. It will be shown that, although an

improper integral of this type cannot be defined in the ordinary manner

as the limit of a sum, it can by suitable definition be made to converge

absolutely to a finite value.

Let the point Q(x', y', z') at which the field is to be determined be

surrounded by a closed surface $ of arbitrary shape, thus dividing the

total volume V occupied by charge into two parts: a portion V\ repre-

senting the volume within S and a portion V% external to S. Throughout
F2 the integral of Eq. (26) is bounded and consequently the charge

outside S contributes a finite amount to the resultant field intensity at Q,

a contribution E 2 ,

(27) E2(*', y', *0 = ~ P (x, y, *)V (
dv.
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The contribution of the charge within S to the field intensity at Q may
be called Ei. If now the field intensity E = EI + E2 at Q is to have a
definite significance, it is necessary that EI vanish in the limit as S
shrinks about Q. A moment's reflection will indicate that this is indeed
the case for, although the denominator of the integrand vanishes as the

square of the distance, the element of charge in the numerator is propor-
tional to the volume Vi which vanishes as the cube of a linear dimension.
It has been tacitly assumed that the charge density p is finite at every
point in the volume V. There exists, therefore, a number m such that

\p\ < m, and \p/r\ < m/r, at every point in V. It follows, furthermore,
for this upper bound m that

(28) PV(5

and

dv

LOG)
The surface S bounding the volume Vi is of arbitrary form, and so, to

avoid the awkwardness of evaluating the integral over this region, a

sphere of radius a concentric with Q is circumscribed about Vi. The
volume element of integration is positive; consequently the integral
extended throughout Vi must be less than, or at the most equal to, the

integral extended throughout the volume enclosed by the circumscribed

sphere.

which evidently vanishes with a. The contribution of the charge within
S to the field at Q becomes vanishingly small as S shrinks about Q and
hence (26) converges for interior as well as exterior points of a charge
distribution.

The potential integral

(31) >'- "'>*'> = i^ J
;

is also an improper integral when the point of observation is taken within
the charge but, since the denominator of the integrand vanishes only
as the first power of r, the proof above holds here a fortiori. If p is a

bounded, integrable function of position, (31) is a continuous function
of the coordinates z', y', z', has continuous first derivatives, and satisfies

the condition E = V'$ everywhere. It can be shown, furthermore,
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that if p and all its derivatives of order less than n are continuous, the poten-

tial <t> has continuous derivatives of all orders less than n + I.
1

EXPANSION OF THE POTENTIAL IN SPHERICAL HARMONICS

3.8. Axial Distributions of Charge. We shall suppose first that an

element of charge q is located at the point z = f on the 2-axis of a rec-

tangular coordinate system whose origin is at 0. We wish to express the

potential of q at any other point P in terms of the coordinates of P with

respect to the origin 0. The rectangular coordinates of P are x, y, z,

but since the field is symmetric about the z-axis it will be sufficient to

locate P in terms of the two polar coordi-

nates r and 0, Fig. 28. The distance from

q toP is r2 and the potential atP is, therefore,

(1)
1

the medium being assumed homogeneous
and isotropic.

(2) r2
=

(r
2 + f

2 -
2rf cos 0)*.

FIQ. 28. Figure to accompany
Sec. 3.8.

There are now two cases to be considered.

The first and perhaps less common is that

in which P lies within a sphere drawn from as a center through f .

Then r < f and we shall write

(3)

The bracket may be expanded by the binomial theorem if

M-j. 1.

If furthermore 2 cos B < 1, the resultant series converges abso-

lutely and consequently the various powers may be multiplied out and

the terms rearranged at will. If the terms of the series are now ordered

in ascending powers of r/f,
we find

(4) f-
- r

1 See for example KELLOGG,
" Foundations of Potential Theory," Chap. VI,

Springer, 1929, or PHILLIPS, "Vector Analysis," pp. 122 #, Wiley, 1933.
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which shall be written in the abbreviated form

(5)
~

The coefficients of r/f are polynomials in cos and are known as the

Legendre polynomials.

P (cos 0)
=

1,

PI(COS 0)
== cos 0,^ P 2(cos 0)
= i(3 cos 2 -

1)
= (3 cos 20 + 1),

P 8(cos 0)
= i(5 cos 3 3 cos 0)

= |(5 cos 30 + 3 cos 0).

The absolute value of the coefficients Pn is never greater than unity;

hence the expansion converges absolutely provided r < |f|.

In the second case P lies outside the sphere of radius f ,
such that

r > f . The corresponding expansion is obtained by interchanging r

and fin (3) and (5).

(7) ^
=

(8)

'

This last result may be obtained in a slightly different manner.

Consider the inverse distance from the point z = f to P as a function of f

and expand in a Taylor series about the origin, f = 0.

1

(9) /(f)
= =

(r
2 + f

2 - 2rf cos 0)~*,

Now in rectangular coordinates, r2 is

(11) r2
=

(x* + y*

and

Hence^

and, since /(O)
= 1/r, we have



174 THE ELECTROSTATIC FIELD [CHAP. Ill

The potential at a point P outside the sphere through q can be written

in either of the forms

47T6 1 f*l
~

47T6
n-0 n-0

from which it is apparent that

Pn (cos 6} _(-!)* 3*
(l\" ~^r a^ vv

Finally, let us suppose that charge is distributed continuously along

a length I of the z-axis with a density p = p(f). The potential at a

sufficiently great distance from the origin is

(17) <t>(r, 6)
- * -

'

p(f)f
" *^' (r > <)

The leading term of this expansion,

where g is now the iotoZ charge on the line, is evidently the Coulomb

potential of a point charge q located at the origin. However, the density

may conceivably assume negative as well as positive values such that

the net charge

(19)
= r

Jo

is zero. The dominant term approached by the potential when r ~2> I is

then

/9ns , _ 1 Pi(cos 6} C l

, . , _ p cos e
(20) fc - ^ p J

P(f)f* -
j^ r-

The quantity

(21) p =
Jo

P(f)fdr

is called the dipole moment of the distribution. In general, we shall

write

and define

(23) Pw =
Jo

as an axtaZ multipole of nth order.
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3.9. The Dipole. In order that the potential of a linear charge dis-

tribution may be represented by a dipole it is necessary that the net

charge be zero the system as a whole is neutral and that the distance

to the point of observation be very great relative to the length of the line.

We have seen that the potential < is that which would be generated by a

mathematical point charge located at the origin. < has a singularity

at r = 0, for a true point charge implies an infinite density. We now
ask whether a configuration of point charges can be constructed which

will give rise to the dipole potential fa.

Let us place a point charge +# at a point z = I on the z-axis and an

equal negative charge q at the origin. According to Eq. (8) the

potential at a distant point is

/0 ,x

(24)
. q (\ 1\ ql cos , . , ,

,

4 =
JL ^_

-
_J

= JL- __ + higher order terms.

The product p = qlis evidently the dipole moment of the configuration

Suppose now that I > 0, but at the same time q is increased in magnitude
in such a manner that the product p remains constant. Then in the

limit a double-point singularity is generated whose potential is

everywhere but at the origin. A direction has been associated with a

point. The dipole moment is in fact a vector p directed, in this case,

along the z-axis. The unit vector directed along r from the dipole

towards the point of observation is again r, and the potential is,

therefore,
1

1 o r t

(26) <l>(x, T/, z)
== ~ *-~ ==

j p
'

The field of a dipole is cylindrically symmetrical about the axis;

hence in any meridian plane the radial and transverse components of

field intensity are

d(j> 1 p cos

(27}
r

E = _i** = 1 P sin
9

r 36 4ire r3

1 In (26) r = \/a;
2

-f- 2/
2
4- z* and V(l/r) implies differentiation at the point of

observation. If the dipole were located at (x, y, z) and the potential measured at

(r/, y' f 2'), we should have (x', y', z'} - p V' (
-

)
-

4--^- P V (- ) See
4rr \r/ 4re \f/

Eq. (22), p. 169.
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The potential energy of a dipole in an external field is most easily

determined from the potential energies of its two point charges. Let a

charge +g be located at a point a, and a charge q at b displaced from

the first by an amount 1, in an external field whose potential is (j>(x, y, z).

The potential energy of the system is then

(28) U =
q<t>(a)

-

or as 6 > a,

(29) U = q d<t>
=

ql V< = p E = pE cos 9,

where 6 is the angle made by the dipole with the external field E.

FIG. 29. Lines of force in a meridian plane passing through the axis of a dipole p.

The force exerted on the dipole by the external field is equal to the

negative gradient of U when the orientation is fixed.

(30) F = V(p

On the other hand a change in orientation at a fixed point of the field also

leads to a variation in potential energy. The torque exerted on a dipole

by an external field is, therefore,

(31)

or vectorially,

(32)

W__ = -pE

T = p X E.

3.10. Axial Multipoles. Let us refer again to Eq. (17) for the poten-

tial of a linear distribution of charge. This expansion is valid at all

points outside a bphere whose diameter is the charged line. Now the

first term <<> of the series is just the potential that would be produced

by a point charge q located at the center of the sphere. The second term

<f>i represents the potential of a dipole p located at the same origin. We
shall show that the remaining terms <t>n may likewise be interpreted

as the potentials of higher order charge singularities clustered at the

center.
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The dipole, whose moment we now denote as p(1)
,
was constructed

by placing a negative charge q at the origin and a positive charge +q
at a point z - Z along the axis. The two are then allowed to coalesce

such that p(1) =
qlQ remains constant. The potential of the resultant

singularity is

(33) ^

The singularity of next higher order is constructed by locating a dipole
of negative moment p(1) at the origin and displacing from it another

equal positive moment by the small amount li. For the present we
confine ourselves to the special case wherein the axes of both dipoles
as well as the displacement li are directed along the 2-axis, The potential
of the resultant configuration is

(34) <#>2
=

4>i +
or by virtue of (12)

(35) *._L

An axial quadrupole moment is defined as the product

(36) p(

The mathematical quadrupole is generated by letting Z > 0, l\ >
0,

q > oo such that the product (36) remains finite. The potential of this

configuration is then strictly

-$
at all points excluding r = 0.

By induction one constructs charge singularities, or multipoles, of

yet higher order. In each case a multipole of order n 1 and negative
moment p<

w- l> is located at the origin and an equal positive multipole

p(n-i) displaced from it by ln. In the general case to be dealt with below,
the displacements are arbitrary in direction; if, as in the present special

case, all are along the same straight line, the multipole is said to be axial.

The potential is given approximately by the first term of a Taylor series,

which again by (12) may be written

The n-pole moment is defined as the limit of the product

(39) p<">
= np<
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when ln
- and p<*-*> oo in such a manner that p(n~inn remains

finite. The potential of a point charge of nth order is then

(40)
(-1)-
nl

(n = 0, 1,

The potential of an arbitrary distribution of charge along a line is identical,

outside a sphere whose diameter coincides with the line, with the potential

of a system of multipoles located at the origin. The moments of these

multipoles can be determined from the charge distribution by (23).

3.11. Arbitrary Distributions of Charge. We shall consider next a

charge which is distributed in a completely arbitrary manner in any
finite region of a homogeneous, isotropic dielectric, or upon the surfaces

of conductors embedded in such a dielectric. The region containing

charge lies within a sphere of finite radius R drawn about the origin O
of a coordinate system. We wish to express the potential of the dis-

tribution at a point P outside the sphere

in terms of the coordinates of P with

respect to 0.

The rectangular coordinates of P
are x, y, z and its polar coordinates

r, 0, $, where

(41) x = r sin 6 cos
\//,

y r sin sin ^, z r cos 6.

We calculate first the potential atP of

an element of charge dq = p dv located
Figure to accompany Sec. 3.11. at the variable point , 77, f. If r,,

Fig. 30, is the distance from dq to P, the contribution of this element is

P <x, y, z)

(42) d<t> JL
47T6

-
)
2 + (y i?)

2 + (z f)
2

The denominator of this function can be expanded about the origin in

powers of
, 77, f exactly as in Eq. (14), and one obtains

(43)

dy dz dz dx r

The expansion converges provided ri == \/ 2 + ^7

2 + f
2 <H,r > R.

Next we integrate (43) over the entire charge distribution; i.e., with

respect to the coordinates
, 77, f, noting that r = \/x 2 + y

2 + z* is
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independent of this integration. Once again we shall write <j> as the
00

sum of partial potentials <f>nj $ =
< n . Then the first term of the

expansion is

1 <n(0)

(44) '-iV'
where

(45) pt
= q = f P(, ,, f) <fo

is the total charge. At sufficiently large distances relative to R the potential

of an arbitrary distribution of charge may be represented approximately

by the Coulomb potential of a point charge located at the origin.

The second term, which is dominant when the net charge is zero, is

(46)
_

^--.
where p(1) is a vector dipole moment whose rectangular components are

(47) pp = f P dv, pp =
fprj dv, p<

= f pf dv.

The potential of any distribution whose net charge is zero may be approxi-

mated at large distances by the potential of a dipole located at the origin

whose components are determined by (47).

In like manner the partial potential < 2 arises from a quadrupole whose

components are

p> =
f P? dv, p$ =

f py* dv, p% =
f pf

2
dv,

(48)

P
{$ = f Pti dv, p% = J piyr &, pii*

=
J pf cfo.

Whereas the dipole moment is a vector, the quantities defined in (48)

constitute the components of a tensor of second rank. The multipole

moments of higher order determined from subsequent terms of the

expansion (43) are likewise tensors of higher rank.

3.12. General Theory of Multipoles. Let l t be a vector drawn from

the origin to the point Q( , 77, f) whose direction cosines with the coor-

dinate axes #, y, z are respectively at-, ft, 7*. Let ~-~
/($, ?/, 2) be the

potential at the point P(x, y, z) due to a charge singularity p<*> of any
order located at the origin. If now a charge singularity of equal magni-
tude but positive sign be placed at the outer extremity of the vector li,

the potential at P due to the pair of multiple points will be

(49) ^ x
= 2L!-

[/, (X
- vfc y

- p& Z - yJ.)
- /fa y Z)]
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for it is to be noted that the change in potential at (#, y, z) arising from a

displacement of the source from the origin to a point Q whose coordinates

are = aZ, rj (Hi, f = y ll i ,
is identical with that resulting from an

equal but opposite displacement of P to a point (x , y y, z f)

during which the source remains fixed at the origin. Expanding by
Taylor's theorem, we have

(50) ^(x, y, z)
=
-?p (a,g + ft^ +

7*f)
+ terms of higher

order in /.

The expression in parentheses is evidently the derivative of /, with

respect to the direction specified by the vector l t .

-. - *,__ a<__ 7,_.

The multipole moment of order i + 1 is again defined in terms of the

moment of order i by the limit of

(52) p<*H> =
(i + l)p >Zi, (i

=
0, 1,

- -

),

as li > and pW > oo in such a manner that their product remains

finite. The potential at any point (x, y, z) due to a multipole of moment
located at the origin is then

A single point charge may be considered as a singularity of zero

order and " moment" p (0) =
q.

(54) *.-iS
The potential of a dipole oriented in any direction specified by the vector

lo is consequently

The quadrupole is next generated by displacing the dipole parallel to

its axis in a direction specified by the vector li. For its potential we find

from (53) and (55)

Thus by induction the potential of the general multipole of nth order is

A _ (- !)?<> a"
<t,n - __ -^^ Wi . . .
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The construction of a quadrupole and an octupole is visualized in Figs
31a, 316.

The result of applying the operator

XfQN C7
I O I

^

n times to the function - =
(x

2 + y* + z2
)-* must be of the form

(59) < n = -
p(*) _JL,

where Fn is a function of the cosines of the angles m between r and the
n axes It, and of the direction cosines a

iy fr, yt of the angles made by the

FIG. 3 la. Quadrupole. FIG. 316. Octupole.

vectors 1< with the coordinate axes. But the angles /* are related to
the spherical coordinates 0, $ of P by the equation

(60) cos m =
(on cos

\l/ + fa sin ) sin 6 + 7; cos 0,

which may be demonstrated by calculating the distance QP = r2 , Fig.
30, both in terms of n =

Z<, r, and the angle m, and in terms of its projec-
tions on the coordinate axes. Thus Yn is a function of the angles 6 and ^,
and hence of position on the surface of a unit sphere. For the dipole
term we have

702).

Upon replacing rectangular by spherical coordinates, Eqs. (41), this
becomes

(62)

or

(63)

4^ 72"

_ cos

cos
\l/ + /3 sin

\l/) sin ^ + 70 cos 0],

$ + fa sin ^)P}(cos 0) + 70 PJ(cos 8)],
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where the functions P(COS 0) are the associated Legendre functions

defined by

(64) P?(cos 0)
= sin" e^~^ P(cos 0).

Between the four constants p(1)
,
a

0} /50; 70, there exists one relation,

namely + Pi + To = 1, and there remain, consequently, three arbi-

trary parameters which determine the magnitude and orientation of the

dipole.

Proceeding to the quadrupole term, we obtain

+
g

(jSori + ]8iYo) sin ^ + (TC<*I + 71^0) cos ^ U sin 20

+
];

(o/3i + i/5o) sin 2^ + j (a i + o0i) cos 2^ 3 sin2 0\,

or, with reference to (64),

(66) <#>2
=

j -5- [a2oP(cos 0) + (a2 i cos ^ + 6 2 i sin

+ (a22 cos 2^ + 62-2 sin 2^)Pi(cos 8)].

Between the six direction cosines there are two relations of the form

af + ($\ + y\ =
1; consequently there are, together with the arbitrary

moment p (2)
,
five completely arbitrary constants which are sufficient to

determine the magnitude and orientation of the quadrupole.

A solution of Laplace's equation is called a harmonic Junction. Since

the coordinates r, 0, \J/ are arbitrary, each term < n in the expansion of j>

must itself satisfy Laplace's equation and is, therefore, harmonic. Gen-

eralizing, we conclude that the harmonic function </>n representing the

potential of a multipole of nth order is a homogeneous polynomial of nth

degree in
, y, 2. Upon transformation to spherical coordinates r, 0, ^,

the function < n can be expressed in the form (59), where the spherical

surface harmonic Fn (0, $} is now explicitly

n n

(67) Yn(0,f)

The harmonic of nth order contains 2n + 1 arbitrary constants sufficient

to determine the moment and orientation of the axes of the corresponding

multipole. If charge be distributed in arbitrary manner within a sphere
of finite radius, the potential at all points outside the sphere must be

harmonic and it must furthermore be regular at infinity. These condi-
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tions are satisfied by

(68)

If the charge distribution is known, the components of the multipole
moments are determined as in Sec. 3.11; if the distribution is unknown
but an external field is specified, these constants are obtained from the

boundary conditions as we shall shortly see.

DIELECTRIC POLARIZATION

3.13. Interpretation of the Vectors P and n. Although the two vec-

tors E and D are sufficient to characterize completely an electrostatic

field in any medium, it is convenient to introduce a third vector P
defined in Sec. 1.6 as the difference of these two fields,

(1) P = D -
6 E.

The vector P vanishes in free space and therefore is definitely associated

with the constitution of the dielectric. The divergence equation then

becomes

(2) V-E - -(p ~ V-P),
CD

from which one concludes that the effect of a dielectric on the field may
be accounted for by an equivalent charge distribution whose volume

density is

(3) p'=-V-P.
At every interior point of the dielectric the potential satisfies a modified
Poisson equation,

(4) V*+ = -!(p + p').
*o

The validity of (4) is no longer contingent upon the isotropy and homo-
geneity of the medium. If, however, there are surfaces of discontinuity,
such as the boundaries of a dielectric, the vector D is subject to the

condition

(5) n (D 2
- DO =

co,

(6) n-(E 2 -Ei) = -co - -n-(P2
- PJ = ~(co + co').

CO Co Q

The primary sources of an electrostatic field are the "real" charges whose
volume and surface densities are respectively p and co. The effect of

rigid dielectric bodies on the potential may be completely accounted for

by distributions of induced, or "bound," charges of volume density p'
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and a density

(7) a/ = -n (P2
-

Pi)

over each surface of discontinuity, the unit vector n being drawn from

medium (1) into (2). If (1) is dielectric and (2) free space, the induced

surface charge is simply a/ = n PI, where n is the outward normal.

In the case of a transition from a dielectric (2) to a conductor (1) bearing

a free surface charge o>, there results a net surface charge o> n P2>

since PI vanishes within the conductor.

The potential at any fixed point either within a dielectric or exterior

to it can be expressed by

The surface integrals are to be extended over all surfaces of discontinuity.

It need scarcely be remarked that this analysis in most cases is purely

formal, for in order to know P it is usually necessary to calculate first

the potential.

The physical significance of the vector P becomes apparent if we trans-

form (8) with the help of the identity

i_p =v

The dielectric may be resolved into partial volumes Vt bounded by
surfaces Si of discontinuity. For each partial volume

(10)^ } f V.(*U = f
JVi \rj Js

On summing these integrals over the partial volumes and remembering
that Ui is directed out of V* and hence in to a contiguous Vkj one finds

that (8) reduces to

(11)\ j (x
f

, y', *')
= -r^- (~dv +^ ff^da + T^- f,*, /

47rcoJ r 47ToJ r 47re J

The third integral is now clearly the potential produced by a continuous

distribution of dipole moment, and P is, therefore, to be interpreted as

the dipole moment per unit volume, or polarization of the dielectric.

According to (11) a dielectric body in the primary field of external

sources gives rise to an induced secondary field such as is generated by a

distribution of dipoles of moment P per unit volume.

In a purely macroscopic theory this is really all that can be said about

the polarization vector. Macroscopically a charged conductor behaves
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as though the charge were distributed with a continuous density, though
in fact we know it to be constituted of discrete electronic charges. Like-

wise, neutral matter under the influence of an external field acts as though
dipoles were distributed as a continuous function of position. Now we
know that neutral atoms and molecules are in fact constituted of equal
numbers of positive and negative elementary charges. A microscopic
electrodynamics must show how the electrical moments of each atom
or at least their most probable values can be calculated. Then by a
suitable process of averaging over large-scale volume elements the polari-
zation per unit volume will be determined from the atomic moments
and the transition effected from microscopic to macroscopic quantities.

A word at this point is in order concerning the physical significance
of the Hertz vector n introduced in a more general connection in Sec.

1.11. We shall suppose that the density of free charge p within the
dielectric is zero. If the potential <f> is expressed as the divergence of a
vector function IJ,

(12) = -V-n,

then Poisson's equation assumes the form V ( V 2n + - P )
= and

\ /
'

this condition will certainly be satisfied if

(13) V 2H = -i P.
60

The vector n is determined from the polarization by evaluating the

integral

(14) n (*', </', *')
= JL-

J
p(x>v> ^

dv,

whence n is sometimes referred to as the polarization potential.

DISCONTINUITIES OF INTEGRALS OCCURRING IN POTENTIAL THEORY

3.14. Volume Distributions of Charge and Dipole Moment. Accord-

ing to the foregoing analysis, a conductor is simply a region of zero field

bounded by a surface bearing a layer of charge of density w, while a rigid

dielectric may be represented either by an equivalent volume distribution

of density p' = V P bounded by a surface layer a/, or as a region

occupied by a continuous distribution of dipoles whose moment per
unit volume is P. The boundary conditions, which heretofore have
been deduced from the field equations, must evidently follow directly
from the analytic properties of the integrals expressing the potential
and its derivatives in terms of volume and surface densities of charge
and dipole moment.
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In Sec. 3.7 it was established that the improper integrals

(i)

(2) E(*', y', ^')
=

4 J P(X, y, z)V
(i

da,

are convergent and continuous functions of x f

, y', z
r

provided only that the

charge density is bounded and piecewise continuous; i.e., that the volume

occupied by the charge can be resolved into a finite number of partial

volumes within each of which p is finite and continuous. Thus on either

side of a surface bounding a discontinuous change in p, <t>
and E will have

the same values, although the derivatives of E will in general be dis-

'Jfto. 32. Transition of potential and field intensity at the surface of a uniform spherical

charge of unit radius.

continuous. Consider, for example, a spherical distribution of constant

density p and radius a. At a point inside, the field E is found most

simply by taking account of the spherical symmetry and applying the

Gauss law, I E n da =
I p dv. At a distance r from the origin,

r < a
}
we have

(3) E =
^ p r = 2 ~V (r < a)>

where q is the total charge contained within the sphere. Likewise at any

external point

(4) E-

(5)

The potential is calculated from the integral <t>
= P E dr, giving

0= -JL- f
r

! drs
l

2, (r >o),^
47T J co r2

47T6o T

* - -i*- f*V - /- frdr
-
=*-(?

- ^, (r < a).v
4ir Jr2 4ir Ja Sireo \a a3

/
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In Fig. 32, < and its first derivative E are plotted as functions of r.

Note that although E passes continuously through the surface r = a,

its slope the second derivative of <j> suffers an abrupt change because

of the failure in continuity of the density p.

Consider next a volume distribution of dipole moment of density P.

The potential at any exterior point is

(6) ^', 2/

'

) ,')

This can be resolved into three integrals of the type

1 f d (\\ 1 d CP
(7) 01 "i^J Px

te\r)
dv==

~4^;?J ~^ dv '

From what has just been proved regarding (1) it follows that (6) converges

within the dipole distribution as well as at points exterior to it, and is a

continuous function of position provided only P(x, y, z) is bounded and

piecewise continuous. Since a dielectric body is equivalent to a region of

dipole moment, we have here proof of the continuity of the potential

across a dielectric surface without recourse to an energy principle.

Across a surface of discontinuity in P, the normal derivative of (6),

and consequently the normal component of E, is discontinuous. The

magnitude of this discontinuity can be determined most readily by
reverting from the volume distribution of moment to the equivalent
volume and surface-charge distribution defined in Sec. 3.13. The vector

E passes continuously into the volume charge, but we shall now show that

its normal component suffers an abrupt change in passing through a

layer of surface charge.

3,15. Single-layer Charge Distributions. Let charge be distributed

over a surface >S with a density co which we shall assume to be a bounded,

piecewise continuous function of position on S. The potential at any
point not on S is

(8)

where r as usual is drawn from the charge element co(x, t/, z} da to the

point of observation. If now (x', ?/', z
1

) lies on the surface, ths integral

(8) is improper and its finiteness and continuity must be examined.

About the point (x', t/', z
1

} on S let us circumscribe a circle of radius a.

If the radius is sufficiently small, the circular disk thus defined may be

assumed plane. Now the potential at (x', ?/', z
1

) due to surface charges
outside the disk is a bounded and continuous function of position in the

vicinity of (x', 2/', z')- Call this portion of the potential <fo. There

remains a contribution fa due to the charge on the disk itself. The
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surface density w is bounded, and we proceed as in Sec. 3.7. There exists

a number m such that at every point on the disk
|co|

< ra, |co/r| < m/r.

/n\ 1^1 * ^
(9) 0i = -: I - dav ' ' '

f
*

1 j ma-
I -rdr = ^ >

Jo r 2e

where $1 indicates that the surface integral is to be extended over the

disk. The resultant potential at an arbitrary point (#', t/', z') on the

surface is, hence,

(10)
= 0i + 2 .

Both 0i and 2 have been shown to be bounded, and 2 is also continuous.

But 0i vanishes with the area of the disk and consequently, since

differs as little as desired from a continuous function, it is itself con-

tinuous. The specialization of the disk to circular form is no restriction

on the generality of the proof, since the circle may be considered to be

circumscribed about a disk of arbitrary shape. The potential due to

a surface distribution of charge is a bounded, continuous function of position

at all points, both on and off the surface. The function defined by (8),

therefore, passes continuously through the surface.

The integral expression of the field intensity,

(11) E(*', y', *')
=

4 s
<*, V, )

is continuous and has continuous derivatives of all orders at points not

on the surface, but suffers an abrupt change as the point (x', y
r

, z')

passes through S. The nature of the discontinuity may be determined

directly from (II),
1 but we shall content ourselves here with the simple

method employed in Sec. 1.13 based on the divergence and rotational

properties of E. The transition of the vector E through the layer S is

subject to a discontinuity defined by

(12) E+ - E- = -
con,

^0

where n is the unit normal drawn outward from the positive face of the

surface. If now by o> we understand the true plus the bound charge,

w n (P+ P_), then (12) is equivalent to

(13) (e E+ + P+) n - (*_ + P_) n = (D+ - D_) n = .

This specifies at the same time the transition of E at a surface of dis-

continuity in a dipole distribution.

3.16. Double-layer Distributions. It frequently happens that the

potential of a charge distribution is identical with that which might be

1
Cf. KELLOGG, loc. cit.; PHILLIPS, loc. cit., Chap VI.
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produced by a layer of dipoles distributed over a surface. We imagine
such a surface distribution to be generated by spreading positive charge
of density +o> over the positive side of a regular surface S, and an identical

distribution of opposite sign on its negative side. The result is a double

layer of charge separated by the infinitesimal distance 1. The dipole
moment per unit area, or surface density T, is a vector directed along the

positive normal to S and is defined as the limit

(14) T = n lim (wZ) as I > 0, co oo .

The dipole moment corresponding to an element of area da on the double

layer is r da, and its contribution to the poten-
tial at a fixed point (x', y' } z') not on the sur-

face is

/^e\ jj 1 T COS , 1 _ /1\ 7

(15) a< =
-; 5 da = T t V I

-
I da.

47T r2 47T \r/

XT cos ,

.Now ~- "a measures exactly the solid angle

d!2 at the point of observation ($', ^/', 2') sub-

tended by the element of area da. This angle
is positive if the radius vector r drawn from area

Fl
^ ^Ue^dV

(x
f

, y', z'} to the element da makes an acute solid angle at PI and a

angle with the positive normal n. Thus in Fig.
Iiegative angle at Pz '

33 the element da subtends a positive angle at PI and a negative one atP2 .

The potential due to the entire distribution may be written

(16) <K*', y
f
f z')

= -^

where is the solid angle subtended at (#', y', z'} by the surface S. That
the second integral must be preceded by a negative sign is evident, if one

notes that dtt is positive when the layer is viewed from the lower or

negative side, where the potential is certainly negative.
The potential <t> has distinct values on opposite sides of a double layer.

Suppose first that the surface S is closed and that the distribution is of

constant density, so that T may be taken outside the integral sign. The

positive layer lies on the outer side of S so that T has the same direction

as the positive normal. There is a well-known theorem on solid angles
which applies to this case :

"
If S forms the complete boundary of a three-

dimensional region, the total solid angle subtended by S at P is zero,

if P lies outside the region, and 4?r if P lies inside." 1 The potential

at any interior point of S is, therefore, 0- == r; at any exterior point

1 On the analytic properties of solid angles see Phillips, loc. cit.,p. 112.
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<+ = 0. The difference in potential on either side of the double layer is

(17) <+ -
<t>-

= - r.

Next we observe that (17) represents correctly the discontinuity in <

as one traverses the double layer also when S is an open surface. For S

may be closed by adding an arbitrary surface Sf
. At every point within

or without this closed surface the resultant potential can be resolved into

two parts, a fraction <t> due to the distribution on S, and a fraction <', due

to that on S'. Inside the closed surface the resultant potential is again

T; outside, it vanishes. Thus, as we traverse the surface S, <j> + <'
60

changes discontinuously by an amount T; but <', due to the layer S'
y

is certainly continuous across S and hence the entire discontinuity is in <,

as specified by (17).

It remains to show that (17) is also valid when r is a function of

position on S. About an arbitrary point P on the surface S draw a circle

of radius a. Let the radius a be so small that, over the area enclosed by
the circle, r may be assumed to have a constant value TO. The potential

()> in the neighborhood of P may again be resolved into two parts, a

fraction <t>' due to the infinitesimal circular disk and a fraction <" due

to that portion of the dipole layer lying outside the circle. <t>" is con-

tinuous at P. </>' on the other hand suffers a discontinuous jump of T O
CD

on crossing the circular disk. The resultant potential < = $' + <t>"

must, therefore, exhibit a discontinuity of the same amount and, in the

limit as a > 0, we find that (17) holds for variable distributions if for T we

take the value at the point of transition through S.

These results might be interpreted to mean that the work done in

moving a unit positive charge around a closed path which passes once

through a surface bearing a uniform dipole distribution of density T O is

TO, depending on the direction of circuitation. The potential in

presence of such a double layer is a multivalued function; for to its value

at (x' y y
f

j z') one may add mr, where m is any positive or negative
o

integer. To obtain a different value of < one need only return to the

initial point after traversing the surface S. All this appears to be in

contradiction to the conservative nature of the electrostatic field. As a

matter of fact, the mathematical double layer constitutes a singular

surface which has no true counterpart in nature. We shall show below

by means of Green's theorem that the potential within a closed domain



SEC. 3.16] DOUBLE-LAYER DISTRIBUTIONS 191

bounded by a surface $ due to external charges is identical with that

which might be produced by a certain dipole distribution over S. This

equivalent double layer, however, does not lead to correct values of <t>

outside S.

The application of the integral (p E nda = - a to a small rightJ CQ

cylinder, the ends of which lie on either side of the double layer, after the

manner of Sec. 1.13, indicates at once that there is no discontinuity in

the normal component of the field vector E across the surface since the

total charge within the cylinder is now zero.

(18) (E+
-

E_) - n = 0.

The line integral of E around a closed path, however, is no longer neces-

sarily zero; consequently we anticipate a possible discontinuity in the

tangential components. Let the

contour start at 1, Fig. 34, at which

point the dipole density is r. The
difference in potential between

points 1 and 2 is, according to (17),

J FIG. 34. Transition of the tangential com-

</>! $2 = T. (Note that the ponents of E across a double layer.

intensity E is given by the derivative of the potential, not the difference in

potential across the discontinuity. The normal derivative is continuous.)

If Al is the length of the path tangential to the surface, the density at 3 is

r + Vr Al, and the potential difference between 4 and 3 is

<* - 4>3
= -

(r + Vr -

Al).
*o

Now the quantity (< 2 <i) + (</>s $2) + (</>4 $3) + (<i $4) is

identically zero; hence,

(19) --T + (*s -*)+- (r + Vr -
Al) + (4>!

- $ 4)
= 0.

Q ^O

Abbreviating < 4 <i = A<+, 4> 3
- fa = A(_, (19) reduces to

where t is a unit vector tangent to S. The limit of A</AZ as Z

is the component of E in the direction of t, so that in virtue of the con-

tinuity of the normal component of E the transition of the field vector is

specified by

(21) E+ - E_ = VT.
60
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Clearly Vr signifies here the gradient of r in the surface and is, therefore,

a vector tangent to $. The proof is subject to the assumption that r and

its first derivatives are continuous over S.

3.17. Interpretation of Green's Theorem. In Sec. 3.4 it was shown

that the potential at any interior point of a region V bounded by a closed,

regular surface S could be expressed in the form

(22) *(*', y', z>)
= *

f p-dv + fl**,
*

{+*(?) da.
v ' ^^ ' * ' ' 4njvr ^irjsrdn 4?r Js dn\r/

From the analysis of the preceding paragraph we are led to interpret this

result in the following way. The volume integral represents, of course,

the contribution of the charge within S, and the surface integrals account

for all charges exterior to it. However, the first of these surface integrals

is also equivalent to the potential of a single layer of charge distributed

over S with a density

(23) -.

and the second can evidently be interpreted as the potential of a double

layer on S whose density is

(24) r = <.

The charges outside S may be replaced by an equivalent single and double

layer',
the densities of which are specified by (23) and (24), without modifying

in any way the potential at an interior point. The potential outside S

produced by these surface distributions corresponds in no way, however,

to that arising from the true distribution. On the contrary, it is most

important to note that these equivalent surface layers, which give rise to

the proper value of the potential at all interior points of /S, are just those

required to reduce both potential and field E to zero at every point outside.

We observe first that the single layer gives rise to a discontinuity in the

normal derivative of < equal to

The normal derivative in Eq. (23) must be calculated on the inner or

negative side of S, since this alone belongs to V. Replacing (d</dn)_

by its value (23), it follows that (d<f>/dri)+
= 0. Furthermore, the dis-

continuity in potential due to the double layer is specified by (17), which

together with (24) shows that <+ = 0. That <t> and its derivatives vanish

everywhere outside S is readily shown by applying (22) to the volume F2

exterior to S. Since there are now no charges in F2 ,
V 2

< = 0. At

infinity the potential is regular, and consequently the potential within
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72 is determined solely by the values of 0+ and (d<t>/dri)+ on S. But
these have just been shown to vanish. The function <(#', y

f

,
z

f

) of (22)

is continuous and has continuous derivatives. The field intensity E
outside S is, therefore, also zero.

From the foregoing discussion it is clear that one may always close

off any portion of an electrostatic field by a surface, reducing the field

and potential outside to zero, and taking account of the effect of external

charges on the field within by proper single- and double-layer distribu-

tions on the bounding surface. It is instructive to consider these results

from the standpoint of the field intensity E. The single layer introduces

the proper discontinuity in the normal component En ,
but does not affect

the transition of the tangential component. The double layer, on the

other hand, in no wise affects the transition of the normal component, but

may be adjusted to introduce the pro-

per discontinuity in Et ,
or according

to (21),

f*',y',z
r(26) &- =

jj'
^+ =

0,

where I is any direction tangent to S.

If in particular the surface S is an

equipotential, n X E =
0, and no

dipole distribution is necessary; the

field inside S due to external charges

can then be accounted for by a single
r\ i

layer of density w = e -- on the

equipotential.

3.18. Images. An important ap-

plication of these principles is to be

found in the theory of images. The

equipotential surfaces of a pair of

equal point charges, one positive and

the other negative in a homogeneous
dielectric of inductive capacity e, form a family of spheres whose centers

lie along the line joining the charges. Let the surface S be repre-

sented by any equipotential about q, Fig. 35. This surface thus

divides all space into two distinct regions, and in view of the regularity

of the potential at infinity, Green's theorem applies to both, S being the

bounding surface in either case; i.e., either region may be taken as the

"interior" of S. If, therefore, the charge q be removed, the field in

the region occupied by +q is unmodified if a charge of density o> is spread
over S as specified by (23). Inversely, if the charge +q be located as

Fio. 35. Application of Green's theorem
to the theory of images.
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shown with respect to a conducting sphere, a surface charge o> will be

induced upon it such that it becomes an equipotential. The contribution

of this induced charge to the field outside the conductor S is now deter-

mined most simply by replacing the surface distribution by the equivalent

point charge q. The charge q is said to be the image of +q with

respect to the given sphere. In case the equipotential surface is the

median plane x' = 0, the calculation is extremely simple. The potential

at any point (x' } y' } z') to the right of x f = is

(27) <t>(x', y', z'}
= JL

[47T L *' - a)
2

+ a)
2 + ?/

/2 + z

The normal derivative at x
f = must be taken in the direction of the

negative z'-axis, since the region on the right of x
f = is to be considered

the interior of the equipotential.

Q

-
2 (a* + y" + *'*)*

hence by (23) the charge density is

<*> = -

where r2 = a2 + */'
2 + z'

2
.
1

BOUNDARY-VALUE PROBLEMS

3.19. Formulation of Electrostatic Problems. The analysis of the

preceding sections enables one to calculate the potential at any point in

an electrostatic field when the distribution of charge and polarization is

completely specified. In practice, however, the problem is rarely so

elementary. Ordinarily only certain external sources, or an applied

field, are given from which the polarization of dielectrics and the surface

charge distribution on conductors must be determined such as to satisfy

the boundary conditions over surfaces of discontinuity.

Among electrostatic problems of this type are to be recognized two

classes : the homogeneous boundary-value problem and the inhomogeneous

problem. To illustrate the first, consider an isolated conductor embedded

in a dielectric. A charge is placed on the conductor and we wish to know

its distribution over the surface and the potential of the conductor with

respect to earth or to infinity. At all points outside the conductor the

1 On the method of images, see JEANS, "Mathematical Theory of Electricity and

Magnetism," 5th ed., Chap. VIII, Cambridge University Press; or MASON and

WEAVER, "The Electromagnetic Field," pp. 109jf., University of Chicago Press,

1929.
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potential must satisfy Laplace's equation. At infinity it must vanish

(regularity), and over the surface of the conductor it must assume a

constant value. We shall show that these conditions are sufficient to

determine </> uniquely. The density of surface charge can then be deter-

mined from the normal derivative of $, subject to the condition that

Jo; da over the surface of the conductor must equal the total charge.

An inhomogeneous problem is represented by the case of a dielectric

or conducting body introduced into the fixed field of external sources.

A charge is then induced on the surface of a conductor which will dis-

tribute itself in such a manner that the resultant potential is constant over

its surface. The integral Jco da is now zero. Likewise there will be

induced in the dielectrics a polarization whose field is superposed on the

primary field to give a resultant field satisfying the boundary conditions.

A schedule can be drawn up of the conditions which must be satisfied

in every boundary-value problem. To simplify matters we shall assume

henceforth that the dielectrics are isotropic and homogeneous except
across a finite number of surfaces of discontinuity.

(1) V 2
< = at all points not on a boundary surface or within external

sources;

(2) $ is continuous everywhere, including boundaries of dielectrics or of

conductors, but excluding surfaces bearing a double layer;

(3) <j> is finite everywhere, except at external point charges introduced as

primary sources;

(4) 2 ( -r-
J

ci (
J
=0 across a surface bounding two dielectrics;

(5) e ~ = co at the interface of a conductor and dielectric;
tin

(6) On the surface of a conductor either

(a) <t> is a known constant <t>i,
or

(b) <t> is an unknown constant and

(7) < is regular at infinity provided all sources are within a finite

distance of the origin.

In (4) it is assumed that the interface of the dielectrics bears no charge,

as is almost invariably the case. The normal is directed from (1) to (2),

and in (5) from conductor into dielectric.

An electrostatic problem consists in finding among all possible solu-

tions of Laplace's equation the particular one that will satisfy the con-

ditions of the above schedule over the surfaces of specified conductors

and dielectrics.
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3.20. Uniqueness of Solution. Let < be a function which is harmonic

(satisfies Laplace's equation) and which has continuous first and second

derivatives throughout a region V and over its bounding surface S.

According to Green's first identity, (5), page 165, <f> satisfies

(1) I (V0)
2
dt> = I da.

Suppose now that = on the surface S. Then f (V0)
2 dv = 0. The

J v

integrand is an essentially positive quantity and consequently V0 must

vanish throughout V. This is possible only if is constant. Over the

boundary = and, since by hypothesis is continuous throughout F,

it follows that = over the entire region.

Now let 0i and 02 be two functions that are harmonic throughout the

closed region V and let

(2)
= 01 02.

Then if 0i and 2 are equal over the boundary S, their difference vanishes

identically throughout V. A function which is harmonic and which

possesses continuous first- and second-order derivatives in a closed^ regular

region V is uniquely determined by its values on the boundary S.

Consider next a system of conductors embedded in a homogeneous
dielectric whose potentials are specified. We wish to show that the

potential at every point in space is thereby uniquely determined. The

reasoning of the preceding paragraph is applied to a volume V which

is bounded interiorly by the surfaces of the conductors, and on the

exterior by a sphere of very large radius R. Let us suppose that there are

two solutions, 0i and 2 ,
that satisfy the prescribed boundary conditions.

Then on the surfaces of the conductors, = 0i 2
= 0. Since 0i

and 02 are assumed to be solutions of the problem, they must both satisfy

the conditions of Sec. 3.19; hence their difference is harmonic, has the

value zero over the conductors, and is regular at infinity. The surface

integral on the right-hand side of (1) must now be extended over both
the interior and exterior boundaries. Over the interior boundary = 0;

hence the integral vanishes. On the outer sphere d<j>/dn
=

6<t>/dR. If

R approaches infinity, vanishes as 1/R and d<t>/dR as 1/R
2

. The
\ i

integrand thus vanishes as l/#
3
,
whereas the area of the sphere

becomes infinite as Rz
. The surface integral over the exterior boundary

is, therefore, zero in the limit R > oo . It follows too that the volume

integral in (1) must vanish when extended over the entire space exterior

to the conductors, and we conclude as before that if the two functions 0i
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and 02 are identical on the boundaries they are, identical everywhere:
there is only one potential function that assumes the specified constant

values over a given set of conductors.

The left-hand side of (1) may also be made to vanish by specifying
that d<p/dn shall be zero over the enclosing boundary S. Then through-
out V we have again V< =

0, whence it follows that <f> is constant every-

where, although not necessarily zero since the condition d<t>/dn = does

not imply the vanishing of < on S. One concludes, as above, that if the

normal derivatives d<t>i/dn and dfa/dn of two solutions are identical on the

boundaries, the solutions themselves can differ only by a constant. In

other words, the potential is uniquely determined except for an additive

constant by the values of the normal derivative on the boundaries. But the

normal derivative of the potential is in turn proportional to the surface

charge density and, consequently, there is only one solution corresponding
to a given set of charges on the conductors.

In case there are dielectric bodies present in the field the requirement
that the first derivatives of <, as well as <t> itself, shall be continuous is no

longer satisfied and (1) cannot be applied directly. However, the region
outside the conductors may be resolved into partial volumes V* bounded

by the surfaces Si within which the dielectric is homogeneous. To each

of these regions in turn, (1) is then applied. The potential is continuous

across any surface Si and the derivatives on one side of Si are fixed in

terms of the derivatives on the other. It is easy to see that also in this

more general case the electrostatic problem is completely determined by the

values either of the potentials or of the charges specified on the conductors of

the system.

3.21. Solution of Laplace's Equation. It should be apparent that

the fundamental task in solving an electrostatic problem is the determina-

tion of a solution of Laplace's equation in a form that will enable one to

satisfy the boundary conditions by adjusting arbitrary constants. There

are a certain number of special methods, such as the method of images,
which can sometimes be applied for this purpose. Apart from the theory
of integral equations, the only procedure that is both practical and

general in character is the method known as
"
separation of the variables."

Let us suppose that the surface S bounding a conductor or dielectric body
satisfies the equation

(3) /i(*, y, z)
= C.

We now introduce a set of orthogonal, curvilinear coordinates w1
,
w2

,
w1

,

as in Sec. 1.14, such that one coordinate surface, say u 1 = C, coincides

with the prescribed boundary (3). If then a harmonic function </>(ti*,

u 2
,
u3

) can be found in this coordinate system, it is evident that the normal

derivative at any point on the boundary is proportional to the derivative
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of <j> with respect to u l

,
and that the derivatives with respect to u2 and u*

are tangential.

According to (82), page 49, Laplace's equation in curvilinear coordi-

nates is

Let us suppose that the scale factors hi satisfy the condition

(5)

Each of the product functions /(w*) depends on the variable w* alone,

but the factor M v does not contain u\ It may, however, depend on the

other two. We next assume that < likewise may be expressed as a prod-
uct of three functions of one variable each.

(6)
= FiWzMW).

Then (4) can be written in the form

If finally the Mi are rational functions, Eq. (7) can be resolved into three

ordinary differential equations. The method is best described by

example.
1. Cylindrical Coordinates. From (1), page 51, we have

r Vg VJ7 _ 1 Vg
r, ^-

-
r, ^

-
-p ^ -

r,

whence by inspection

(9) /i
=

r, /2
= /3

=
1, M i

= M3
=

1, M2
= 1

Equation (7) becomes

The first two terms of (10) do not contain z; the last term is independent of

r and 4>. A change in z cannot affect the first two terms and therefore

the last term must be constant if (10) is to be satisfied identically for any

range of z.
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The arbitrary constant Ci, called the separation constant, has been chosen

negative purely as a matter of convenience and the partial derivative

has been changed to a total derivative since F3 is a function of z alone.

Upon replacing the third term of (10) by Ci and multiplying by r2

one obtains

(12) L
^ }

Fi

It is again apparent that the second term of (12) is constant, leading to

two ordinary equations,

(13)
~~2 + C*F* = 0,

The equations for F 2 and F 3 are satisfied by exponential functions of

real or imaginary argument depending on the algebraic sign attributed

to the separation constants
; Fi is a Besselfunction. In the not uncommon

case of a potential < which is independent of 2, we find f\ constant,
Ci = 0, and in place of (14)

2. Spherical Coordinates. From (2), page 52, we have

(16) V^ = r'sin*, =*sin*, = sin 0,

whence

(17) A = r, /,
= sin e, /,

=
1,

T
L

T L gm 2
(

Equation (7) reduces to

JL. 1 L**L\ + -
l 1 /sin e^\ + _JL_

Fir
2 dr\ dr )

^
r2 sin OF 2 dO\ dO )

^
r2 sin2 OF'3 VY

where ^ has in this case been employed in place of <t> to represent the

azimuthal angle. Separation of the variables leads to the three ordinary

equations

/IOTA sin 5 d / . d/'
1

2 /-, /-//,
(196) m ~ =

2
~ Cl '

= 0.

Of these three, only the Legendre equation (196) is of any complexity.
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3. Elliptic Coordinates. According to (3), page 52, we have

(20)
. /EE3, v_ /L3,
\i-ii*' h\ ~V*2 -i

which by inspection lead to

(21) _

The Laplace equation for the elliptic cylinder is

(22)

which upon separation gives

(23a)

(236)

(28c)

Both Fi and Ft are Mathieu functions, but simplify notably when Ci

as is the case when 4> is uniform along the length of the cylinder.

4. Spheroidal Coordinates. According to (6), page 56, we have

If
~ ~

' ~W
~ c(

~
n >' ~h\~

/i = ? -
1, /i = l- u', /, = 1,

t f C 1 f Ct -m f

=

(25)

Laplace's equation reduces to

1 = 0.

which separates into the three ordinary equations

(27o) kw = ~
Ci>

(276)
i^

(27c) i ^
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Equations (276) and (27c), which obviously are identical, are satisfied

by the associated Legendre functions.

The criteria stated on page 198 for the separability of Laplace's

equation are not the most general known, but they include all coordinate

systems of common use. A more general set of separable coordinate

surfaces, of which the toroidal surfaces formed by rotating a set of bipolar
coordinates is an example, has been investigated by Bdcher. 1

It would lead us too far afield to discuss the properties of the various

functions satisfying the equations enumerated above and the methods
of determining the arbitrary constants. We shall have constant occasion

throughout the remainder of this volume to employ Legendre and Bessel

functions. The reader is referred to the classic treatises of Hobson2 and
Watson8

,
and to Whittaker and Watson. 4 Detailed application of

boundary-value methods to electrostatics will be found in Jeans 5 and in

Smythe.
6

PROBLEM OF THE SPHERE

3.22. Conducting Sphere in Field of a Point Charge. Consider a

conducting sphere of radius TI whose center is located at the origin of the

coordinate system. The sphere is embed-
ded in a homogeneous, isotropic dielectric

of inductive capacity 2 . At z = f > r\

on the z-axis, there is located a point

charge q, Fig. 36. We wish to find the

potential and the distribution of charge
on the sphere.

Let <t>o be the potential of the source q

and <t>i the potential of the induced charge
distribution on the sphere. The resultant

potential at any point outside the sphere
is < =

<f> + <i. The induced potential $1

must be single-valued, a condition satisfied FIG. 36. Sphere in the field of a point
! i , , , 4. . n charge located at z f .

only when the separation constant C 2,

Eq. (19c), page 199, is the square of an integer: C2
= m2

,
m 0, 1,

2, .... Likewise the only solutions of (196) which are finite and

single-valued over the sphere are the associated Legendre function

1 "Ueber die Reihenentwickelungen der Potentialtheorie," Dissertation, 1894.
2 HOBSON,

"
Spherical and Ellipsoidal Harmonics," Cambridge University Press,

1931.
3 WATSON, "Treatise on the Theory of Bessel Functions," Cambridge University

Press, 1922.
4 WHITTAKBB and WATSON, "Modern Analysis," Cambridge University Press,

1922.
8
JEANS, loc. cit.

6 SMYTHE, "Static and Dynamic Electricity," McGraw-Hill, 1939.
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s 0), imposing on Ci the value Ci = n(n + 1), n =
0, 1, 2, . . . .

Under these circumstances (19a) is satisfied by either rn or r"*" 1
. The

condition that the potential be single-valued is fulfilled by the function

(1) fa = y y anmr
n + Z p-(cos g)e***,

iti\ r J

where anm ,
bnm are arbitrary constants. But <t>i must also be regular at

infinity, which necessitates our placing anm = 0. Furthermore, the

primary potential <o is symmetric about the z-axis; consequently m =

in this case. The potential of the induced distribution is, therefore,

represented by the series

(2) 0i =

The expansion of the primary potential < in spherical coordinates

was carried out in Sec. 3.8. When r < f ,

and the resultant potential on the surface r = ri is

)
= 2 [if (?)"

+ ^] p-(cos 9)
=

u ^ ' J

Now <^)8 is a constant, and since (4) must hold for all values of 0, it follows

that the coefficients of Pn (cos 6) must vanish for all values of n greater

than zero. The coefficients bn are thus determined from the set of

relations

At any point outside the sphere

To determine the charge density, we compute the normal derivative

on the surface.
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and the induced charge density is

,

The total charge on the sphere is

(9) q l
= T

ur\ sin 6 dd d$.

Now a well-known property of the Legendre functions is their orthogonality.

(10) P(cos 0)P(cos 0) sin d0 =
0, n p* w.

We may take m =
0, P (cos 0)

=
1, and learn that Pn(cos 0) vanishes

when integrated from to v if n > 0.

(11)
*

qi
= -q~

The potential of the sphere is, therefore,

qi representing an excess charge that has been placed on the isolated

sphere. If the sphere is grounded, <t>8 may be put equal to zero.

It is interesting to observe that the potential <i of the induced dis-

tribution at any point outside the sphere is that which would be produced
3

by a charge 47re 2& =
Ji, a dipolc moment 4x626i = g ^ etc., all located

at the origin and oriented along the z-axis (Sec. 3.8). There is, however,
another simple interpretation. The point z = f', Fig. 36, where ff

' =
rf,

is said to be the inverse of z = f with respect to the sphere. The recip-
rocal distance from this inverse point to the point of observation is, by
(8), page 173,

[

n
Pn(cOS 0)

rn+1

Thus the resultant potential (6) may be written

Outside the sphere the potential is that of a charge q at z = f ,
an ii

ri

f

7*1

charge q'
=

5 located at the inverse point z = f',
a charge gi (which
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is zero when the sphere is uncharged) located at the origin, and a charge

q
-~ at the origin which raises the potential of the floating sphere to the

proper value in the external field.

3.23. Dielectric Sphere in Field of a Point Charge. At any point
outside the sphere, whose conductivity is zero and whose inductive

capacity is i, the potential is

The notation <t>+ will be employed to denote a potential or field at points

outside, or on the positive side, of a closed surface. The expansion of $1

in inverse powers of r does not hold within the sphere, for the potential
must be finite everywhere. We resort, therefore, to an alternative solu-

tion of Laplace's equation obtained from (1) by putting the coefficients

&nm equal to zero. At any interior point the resultant potential is

00

(16) <t>-
= ^ anrPn(cos 0), (r < n).

n =

<- includes the contribution of the charge q as well as that of the induced

polarization, for the singularity occasioned by this point charge lies

outside the region to which (16) is confined. In the neighborhood of the

surface, r < |f|,
so that <t>Q can be expanded as in (3). Just outside the

sphere,

Across the surface

(18) ++ = *-,

A calculation of the coefficients from these boundary conditions leads to

< 2n + 1

+(tt+l)62

'

-i U

The potential at any point outside the sphere is

+ 1 q q z
~

l ^ n
"

l + (n
ns

while at an interior point



SBC. 3.24] SPHERE IN A PARALLEL FIELD 205

It is important to observe that a region of infinite inductive capacity
behaves like an uncharged conductor. As ei becomes very large, it ^ill

be noted that the first term in the series (20) corresponding to n =
vanishes, so that in the limit one obtains (6) for the case qi = 0.

3.24. Sphere in a Parallel Field. As the point source q recedes from
the origin, the field in the proximity of the sphere becomes homogeneous
and parallel. We shall consider the case of a sphere embedded in a

dielectric of inductive capacity c2 under the influence of a uniform,

parallel, external field E directed along the positive z-axis. The primary
potential is then

(22) 4>
= -Eoz = -E<>r cos = -# rPi(cos 0).

Note that </> is no longer regular at infinity, for the source itself is infinitely

remote. The potential outside the sphere due to either induced surface

charge or polarization is again

(23) ^
n=-0

If the sphere is conducting, the resultant potential on its surface and

throughout its interior is a constant <,.

(24) *. = -Sor 1P 1(cos 9) +
n-0

< a is independent of 6; whence it follows that

(25) 6 =
ri<., 61 = r\EQl bn = when n > 1.

(26) <t>+
= -E,r cos 6 + E,r\

C-~ + <t>,

T

The charge density and the total charge are respectively

(27) co = 3e 2# cos + ~> qi
=

lirrierf,.

The potential of the induced surface charge is, therefore, that of a dipole

of moment p = ^^E^r\] a moment, in other words, which is proportional

to the volume of the sphere. To this is added the potential of q\ in case

the sphere is charged.

If the sphere is a dielectric of inductive capacity ei, the potential at

an interior point is of the form (16). To satisfy the boundary conditions

(18), the coefficients must now be

flo
= b =

0,

an = 6n = 0, when n > 1.
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The resultant potential is then

= -Er cos 9 +^^ r\EQ -J-?,+ 2e2 r

u r cos 0.

(29)
1

Within //ie sphere the field is parallel and uniform.

(30) *--!?- -rV *
O2 1 + Je 2

The dielectric constant KI of the sphere may be either larger or smaller

than K 2 . Thus the field within a spherical cavity excised from a homo-

geneous dielectric /c2 is

(31) * __,.
Next we note that the induced field outside is that of a dipole oriented

along the z-axis whose moment is

(32) p =

Apparently even a spherical cavity behaves like a dipole. This effect

may be readily accounted for by recalling that the walls of the cavity
bear a bound charge of density a/ = n P 2 , where P2 is the polarization

of the external medium.

In the case of a dielectric sphere in air, e2
= e . The polarization of

the sphere is then

(33) P! = eoOd
-

1)E~ - 3 ^=4 e E
>

KI -f- *

and its dipole moment

(34) p = |
Trr??! = 4xrl^~ 6 E .

The energy of this polarized sphere in the external field is

(35) Ui = -I ( Pi Eo dv = -27rr?^^ * E%
= -J P Eo.

& jv KI ~t~ ^ <6

The dielectric polarization modifies the field within the sphere. It

will be convenient to express this modification directly in terms of PI.

A depolarizing factor L is defined by

(36) E- = Eo - LPi.

From (30) and the relation P! = O(KI 1)E~, one calculates for a sphere
in a parallel external field



SBO. 3.25] FREE CHARGE ON A CONDUCTING ELLIPSOID

j

207

(37)
3e

In the case of a sphere immersed in air *2
=

1, L = -

FIG. 37a. Conducting sphere in a

parallel field. The external medium
is air.

Fio. 376.-

parallel field,

is air.

-Dielectric sphere in a
The external medium

PROBLEM OF THE ELLIPSOID

3.25. Free Charge on a Conducting Ellipsoid. In ellipsoidal coordi-

nates Laplace's equation reduces by virtue of Eq. (135), page 59, to

(i) o-r) *

+ ({
- n)Bf (*)-"

The properties of the ellipsoidal harmonics that satisfy this equation

have been extensively studied, but we shall construct here only certain

elementary solutions that will prove sufficient for the problems in view.

Consider first a conducting ellipsoid embedded in a homogeneous

dielectric e 2 . The semiprincipal axes of the ellipsoid are a, 6, c. It

carries a total charge q, and we assume initially that there is no external

field. We wish to know the potential and the distribution of charge over

the conducting surface.

To solve this problem a potential function must be found which

satisfies (1), which is regular at infinity, and which is constant over the

given ellipsoid. Now is the parameter of a family of ellipsoids all

confocal with the standard surface = whose axes have the specified

values a, 6, c. The variables rj and f are the parameters of confocal

hyperboloids and as such serve to measure position on any ellipsoid

= constant. On the surface =
0, therefore, $ must be independent of

i) and f. If we can find a function depending only on which satisfies (1)

and behaves properly at infinity, it can be adjusted to represent the

potential correctly at any point outside the ellipsoid
= 0.
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Let us assume, then, that <
= <(). Laplace's equation reduces to

(2)
~i fa ||)

=
0,

which on integration leads to

(3)

where Ci is an arbitrary constant. The choice of the upper limit is such

as to ensure the proper behavior at infinity. When becomes very

large, R$ approaches 8 and

(4) 4>^~' ({->>).v
On the other hand, the equation of an ellipsoid can be written in the form

r 2
-J7 2 ^2

(5}
x

4- -V -L.
z

tW 2 2 ^ *~ *'

If r2 = x 2 + y
2 + z 2

is the distance from the origin to any point on the

ellipsoid ,
it is apparent that as becomes very large r2 and hence

at great distances from the origin

ff*\ . *j\j i

(6) 4 ~ - -

The solution (3) is, therefore, regular at infinity. Moreover (6) enables

us to determine at once the value of Ci; for it has been shown that,

whatever the distribution, the dominant term of the expansion at remote

points is the potential of a point charge at the origin equal to the total

charge of the distribution in this case q. Hence Ci = -> and the

potential at any point is

The equipotential surfaces are the ellipsoids {
= constant. Equation

(7) is an elliptic integral and its values have been tabulated. 1

To obtain the normal derivative we must remember that distance

along a curvilinear coordinate u l
is measured not by du l but by hi du 1

(Sec. 1.16). In ellipsoidal coordinates

rtn(8)

l See for example Jahnke-Emde, "Tables of Functions," 2d ed., Teubner, 1933L
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The density of charge over the surface = is

If now in the three equations (132), page 59, defining x, y, z in terms of

, i), f ,
we put =

0, it may be easily verified that

~
a4 4 c4

Consequently, the charge density in rectangular coordinates is

t.

Several special cases are of interest. If two of the axes are equal, the

body is a spheroid and (7) can be integrated in terms of elementary
functions. Thus, if a = b > c, the spheroid is oblate and

(13) <t>
=

When c 0, the spheroid degenerates into a circular disk. On the other

hand, if a > b = c the spheroid is prolate and we find for the potential

The eccentricity of a prolate spheroid is e = ,Jl -
]

As e 1,

the spheroid degenerates into a long thin rod.

3.26. Conducting Ellipsoid in a Parallel Field. We assume first that

a uniform, parallel field E is directed along the o>axis, and consequently

along the major axis of the ellipsoid. The potential of the applied field is

Hto *
(15) o

=

the value of x in ellipsoidal coordinates being substituted from Eqs.

(132), page 59. This primary potential is clearly a solution of Laplace's

equation in the form of a product of three functions,

It is not, however, regular at infinity.
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Now if the boundary conditions are to be satisfied, the potential fa

of the induced distribution must vary functionally over every surface

of the family = constant in exactly the same manner as fa. It

differs from fa in its regularity at infinity. We presume, therefore, that

fa is a function of the form

(17)

where

(is) F,(i)

To find the equation satisfied by (?i() we need only substitute (17) and

(18) into (1), obtaining as a result

na\ jf
i 4- r n

(19) R,^ (R, -^J
-
^-4

+
2j

Gi = 0.

Equation (19) is an ordinary equation of the second order and as such

possesses two independent solutions. One of these we know already to be

F l
= -y/ -|- a 2

. There is a theorem 1 which states that if one solution

of a second-order linear equation is known, an independent solution can

be determined from it by integration. If 7/1 is a solution of

(20) g + p(x) | + q(x)y - 0,

then an independent solution j/2 is given by

J
e-Cp dx

yT
dx '

In the present instance

hence,

/oo\ c< ( t\
(26) CriU)

The limits of integration are arbitrary, but G\( ) is easily shown to vanish

properly at infinity if the upper limit is made infinite. The potential of

the induced charge is, therefore,

(24) fa = 0o 7 / .
[

i

J See for example Ince, "Ordinary Differential Equations," p. 122, Longmans.
1927.
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The constant C2 is determined finally from the condition that on the

ellipsoid = the potential is a constant </>8 .

At any external point the potential is

. , , <t>* <fro C
* = * + p dg L

J U +

As in the analogous problem of the sphere, the constant <, can be cal-

culated in terms of the total charge on the ellipsoid. The integrals

occurring in (26) are elliptic and of the second kind. 1

In case the field is parallel to either of the two minor axes it is only

necessary to replace the parameter a2 above by Z>
2 or c2

. Thus the

potential about a conducting ellipsoid oriented arbitrarily with respect

to the axis of a uniform, parallel field E can be found by resolving E
into three components parallel to the principal axes of the ellipsoid and

then superposing the resulting three solutions of the type (26).

3.27. Dielectric Ellipsoid in Parallel Field. It is now a simple matter

to calculate the perturbation of a uniform, parallel field due to a dielectric

ellipsoid. We shall assume that the inductive capacity of the ellipsoid

is i, and that it is embedded in a homogeneous medium whose inductive

capacity is again 2 The applied E is directed arbitrarily with respect

to the reference system and has the components EQX , E^ EQZ along the

axes of the ellipsoid.

Consider first the component field E$x . Outside the ellipsoid the

resultant potential must exhibit the same general functional behavior

as in the preceding example, and will differ from it only in the value of

the constant C* In this region, therefore,

(27) [d
The variable s has replaced under the integral to avoid confusion with

the lower limit.

The interior of the ellipsoid corresponds to the range c2 < J
< if

a ^ 6 > c. In this region <t>~ must vary with 17 and f as determined by
the function F^(rf)F^) and, since (19) has only two independent solutions,

the dependence on must be represented by either Fi() or (?i() to

satisfy Laplace's equation. But the function (?i() is infinite at = c 2
,

1 See for example Whittaker and Watson, "Modern Analysis," 4th ed., pp. 512f.,

Cambridge University Press, 1927.
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whereas Fi() is finite at all points within the surface = 0. Thus the

potential within this region must have the form

(28) <t>-
= CsF 1(QF2 (7?)F3 (r),

where C3 is an undetermined constant.

The constants C2 and C3 are to be adjusted to satisfy the boundary
conditions

(29) *+ = *-

The first of these leads to

the second gives

(31)

Since tf>
= EQxx, one finds that the potential at any interior point of

the ellipsoid is

(32)

and the field intensity is

The components along the other two axes are found in an identical

manner. The potential of the applied field is in total

(34) 4>o
= -E0xx - EQvy

- E 0ltz,

and the resultant potential at an interior point is

i ^<c, ij.r ^A1 + (ei
-

2)Ai 1 + (e!
- c 2)A 2

in which the constants A 2 and A 3 are defined by

(36) A2=
(S

The remaining components of the perturbed field are
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We are led to a conclusion of great practical importance: If the applied
field is initially uniform and parallel, the resultant field within the ellipsoid
is also uniform and parallel, whatever the orientation of the axes. The vec-
tor E~, however, is not in general parallel to E , for the constants AI,
A 2 ,

A 3 are equal only in degenerate cases.

Outside the ellipsoid the resultant potential associated with the

primary component EQx is given by (27),

ds
l T '

I 7

(38)

i 4-
^c 6l

"" 62 f
00

ds

2 c2 Jo ( + a)Bt

with corresponding potentials for the fields E^ and E0g . If in (38) we
let ci -> oo

,
we find that <j>+ reduces to (26) for the case 0. = 0. The

potential outsid$ a body of infinite inductive capacity is the same as that

outside a grounded conductor of the same shape.
The induced polarization PI within the ellipsoid tends to decrease the

applied field. The depolarizing factors LI, L 2 ,
L 3 are defined by the

relations

(39) E; - E,x
- LiPlx , E; = E0v

- LJP ly , E; = #o, - LJ> lz .

Putting Pi =
(Cl 6 )E~ and introducing the components of E~ from

(33) and (37) leads to

Most commonly the medium outside the ellipsoid is free space, /c2 = 1.

In that case the depolarizing factors depend only on the form of the

ellipsoid.

L
*
- A* (3

-
1, 2, 3).

The polarization may then be determined from the simple formula

(42)

with corresponding expressions for Pv and Pf.

3.28. Cavity Definitions of E and D. The field inside an ellipsoidal

cavity is given by (33) and (37) when i
= c . There are two cases of

considerable interest: that of a disk-like cavity whose plane is normal to
the direction of the applied field, and that of a needle-shaped cavity
parallel to the field.
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We shall consider first the applied field to be oriented along the s-axis.

Tnen as c becomes very small the ellipsoid degenerates into the disk

illustrated in Fig. 38a. There is no loss of generality in assuming the

disk circular, a = 6, and in this case the elliptic integral A 3 reduces to a
more elementary function.

(43) A 3
=

(a
2 - c 2

)s

- tan- 1

The limit of the product a2cA 3 as c > is 2. The field inside the cavity
is purely transverse, and since KI = 1,

(44) E- = * 2Eo= -Do.

Apart from the proportionality constant
,
the field intensity E" within

the disk-shaped cavity is equal to the vector Do of the initial field in the

dielectric.

A

\j

FIG, 38a. Fia. 386.
FIGS. 38a and 6. Illustrating the cavity definitions of the vectors E and D. The arrows

indicate the direction of the applied field.

In Fig. 386 the field is directed along the major axis of the prolate

spheroid a > b = c.

(45)
ds

where e = .Jl ^ is the eccentricity. As e > 1, the spheroid degen-

erates into a long, needle-shaped cavity and the product db*Ai approaches
zero. At any point inside this cavity E~ = E : the field intensity E" is

exactly the same as that prevailing initially in the dielectric.

These cavity definitions of the vectors E and D in a ponderable medium
were introduced by Lord Kelvin. Obviously a direct measurement of

E or D in terms of the force or torque exerted on a small test body is not
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feasible within a solid dielectric, and if a cavity is excised the field within
it will depend on the shape of the hole. Our calculations have shown,
however, that the electric field intensity within the dielectric is exactly
that which might be measured within the needle-shaped opening of

Fig. 386, whereas the field measured within the flat slit of Fig. 38a differs

from D within the dielectric only by a constant factor.

3.29. Torque Exerted on an Ellipsoid. The intensity of an electro-

static field may be measured by introducing a small test body of known
shape and inductive capacity suspended by a torsion fiber and observing
the torque. Inversely, if the intensity of the field is known, such an

experiment may be employed to determine the inductive capacity or

susceptibility of a sample of dielectric matter. In general the field and

polarization throughout the interior of the probe are nonuniform and an
accurate computation is difficult or impossible. On the other hand, the

advantages of an ellipsoidal test body for these purposes are obvious.
The polarization of the entire probe is constant and the applied torque
depends essentially only on its volume and its inductive capacity.

According to Eq. (49), page 113, the energy of a dielectric body in an
external field is

(46) ^1

f
Jv

where as above E~ denotes the resultant field inside the body and E
the initial field. If the body is ellipsoidal and E is homogeneous, we
have by (33) and (37) :

(47)

abc iii

and, since the volume of an ellipsoid is fyrdbc,

(48) U =
|^ra6c(e2

-
ci)ET B .

This energy depends not only upon the intensity of the initial field but also

upon the orientation of the principal axes with respect to the field. Let
the vector &o represent a virtual angular displacement of the ellipsoid
about its center and T the resultant torque exerted by the field. Both T
and 5o> are axial vectors (page 67), and the components Sco*, 6coy , a. are
the angles of rotation about the axes x, y, z, respectively. The work done
in the course of such a rotation is

(49) 8W = T &> T, 3co, + !Ty a?v -f T, Sco,.
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This work must be compensated by a decrease in the potential energy [7.

In virtue of the homogeneous, quadratic character of (47), we may write

(50) 817 = ra6c( 2
- i)(B" E )

= ^abc(e2
-

ci)Er - 5E .

The reference axes have been chosen to coincide with the principal
axes of the ellipsoid. Relative to this system fixed in the body the
variation of E corresponding to a virtual rotation 5o> is

(51) SE = Eo X $<o,

whence for the energy balance we obtain

(52) 8U =
irrafccfe

-
ci)E" (E X 6o>)

=
$7ra&c(e 2

-
i)(E" X E ) &> = ~&W,

and from the arbitrariness of the components of rotation it follows that
the torque exerted by the field is

(53) T = ^7ra6c(i
-

2)E~ X E .

The components of this torque are

(1

-L abC Kl
"~

I -J.
^ ^2

I _L1 + -^

(54) Tv
=

T, =

A,-

To investigate the stability of the ellipsoid we must determine the
relative magnitudes of the constants Ai, A 2 ,

A 3 . In the first place, it is

clear from their definition, (32) and (36), that all three are positive,
whatever the values of a, 6, c. It is easy to show, furthermore, that the

order of their relative magnitudes is the inverse of the order of the
three parameters. That is, if a > b > c, AI < A 2 < A 3 . Next, one
finds that the sum of the three integrals can be reduced to a simple integral
when u = Rl is introduced as a new variable, giving

(55) + A, + A, -
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whence from the essentially positive character of the constants it follows

that

< A, S -

c
, (j = 1, 2, 3),

(57) 1 +^^ A , >0 , 0-1,2,8).

The denominators of (54) are, therefore, positive both when 1 > 2 and
when 61 < 2 ,

and the direction of the components of torque is independent

of the relative magnitudes of ei and c2 . If the applied field is parallel to

any of the three principal axes, all components of torque are zero, so

that these constitute three directions of equilibrium.

The stability of equilibrium depends on the direction of the torque
and this, we see, depends solely on the sign of A/ A k ,

which in turn
is determined by the relative magnitudes of the axes a, 6, c. Thus
A A 2 is positive if b > c, negative when c > b. The components of

torque are such as to rotate the longest axis into the direction of the field

by the shortest route. An ellipsoid whose major axis is oriented along
the applied field is in stable equilibrium; the equilibrium positions of the

minor axes are unstable.

Problems

1. The coordinates
, TJ, f are obtained from the rectangular coordinates x, y t

z by
the transformation

where / is any analytic function of the complex variable x -f iy. Demonstrate the

following properties of this transformation :

a. The differential line element is ds2 = W(d? + cfy
2
) + df

2
,
where h =

1/|/'|,

/' denoting differentiation with respect to the variable x -f- iy,

b. The system , 17, f is orthogonal;
c. The transformation is conformal, so that every infinitesimal figure in the xy-

plane is mapped as a geometrically similar figure on the ^ij-plane.

Show that in these coordinates the Laplacian of a scalar function assumes
the form

i /a2<fr r 5Lr i i

and find expressions for the divergence and curl of a vector.

2. With reference to Problem 1, discuss the coordinates defined by the following
transformations :

(1) + i?
- In (x + ty),

(2) x + iy - a cosh ( + trj),

(3) * + ty - ( + ti)',
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(5) + irj
~ In

*
"I"
y + g

i

re + iy a

(6) a; -f- iy = ia cot
2

3. A set of ring or toroidal coordinates X, MI ^ are defined by the relations

r cos ^, y = r sin
cosh X + cos A*

where

_ sinh X

cosh X 4- cos /i

Show that the surfaces, ^ constant, are meridian planes through the z-axis, that

the surfaces, X = constant, are the toruses whose meridian sections are the circles

z2 + z* - 2x coth X + 1 ~
0,

and that the surfaces, ju constant, are spheres whose meridian sections are the

circles

a;
2 + z2 + 2z tan /x

- 1 0.

Show that the system is orthogonal apart from certain exceptional points, and find

these points. Find the expression for the differential element of length and show that

_ **'
*\

d
(r *+\ \

*
( r

d
+\.i

r a20
1

r 3
L dx \ ax/ a/i\ a/*/ sinh2 xa^2

J

Is Laplace's equation separable in these coordinates?

4. Let F(:c, y, z) = \ represent a family of surfaces such that F has continuous

partial derivatives of first and second orders. Show that a necessary and sufficient

condition that these surfaces may be equipotentials is

where /(X) is a function of X only. Show that if this condition is fulfilled the potential

is

where c\ and c 2 are constants.

5. Show that \f/
=* F(z -\- ix cos u + tt/ sin w) is a solution of Laplace's equation

dV av av .

ao?2 ay
2 az2

in three dimensions for all values of the parameter u and for any analytic function F.

Show further that any linear combination of 2n -f 1 independent particular solutions

can be expressed by the integral

I (z + t-s cos u + t'v sin u)
n
fn (u) du>

tJ~* *
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where fn (u) is a rational function of e*u
, and finally that every solution of Laplace's

equation which is analytic within some spherical domain can be exoressed as an

integral of the form

=
J_ f(z + ix cos u + iy sin w, u) du.

(See Whittaker and Watson, "Modern Analysis/
7

Chap. XVIII.)
6. Charge is distributed along an infinite straight line with a constant density of g

coulombs/meter. Show that the field intensity at any point, whose distance from
the line is r, is

and that this field is the negative gradient of a potential function

(* 2/) flln-t
27T6 T

where r is an arbitrary constant representing the radius of a cylinder on which
<jf>

0.

From these results show that if charge is distributed in a two-dimensional space
with a density o>(o;, y) the potential at any point in the zy-plane is

1 f , r
I w In dat

2 J r

where r \^(x' x)
2 + (y

f

y)
2 and that <(#, 2/) satisfies

Show furthermore that this potential function is not in general regular at infinity,

but that if the total charge 'iero, so that / co da =
0, then r<j> is bounded as r oo .

7. Charge is distributed: over an area of finite extent in a two-dimensional space
with a density <>(, y). Express the potential at an external point x', y' as a power
series in r, the distance from an arbitrary origin to the fixed point a/, y'. Show that

the successive terms are the potentials of a series of two-dimensional multipoles.

8. Let C be any closed contour in the xy-plane bounding an area S and let </> be a

two-dimensional scalar potential function. By Green's theorem show that

I InrWda- I ( In r -
<f> In r ) <fo,

JS JC\ dn dn /

where u <j>(x', y') if a?', y' is an interior point, and u = if x', y' is exterior. In this

formula

and n is the normal drawn outward from the contour.

9, A circle of radius a is drawn in a two-dimensional space. Position on the circle

is specified by an angle 0'. The potential on the circle is a given function <>(a, #')
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Show that at any point outside the circle whose polar coordinates are r, the potential

is

This integral is due to Poisson.

10. An infinite line charge of density q per unit length runs parallel to a conducting

cylinder. Show that the induced field is that of a properly located image. Calculate

the charge distribution on the cylinder.

11. The radii of two infinitely long conducting cylinders of circular cross section

are respectively a and b and the distance between centers is c, with c > a + b. The
external medium is a fluid whose inductive capacity is e. The potential difference

between the cylinders is V volts. Obtain expressions for the charge density and the

mechanical force exerted on one cylinder by the other per unit length. Solve by
introducing bipolar coordinates into Laplace's equation and again by application of

the method of images.
12. An infinite dielectric cylinder is placed in a parallel, uniform field E which is

normal to the axis. Calculate the induced dipole moment per unit length and the

depolarizing factor L (p. 206).

13. Two point charges are immersed in an infinite, homogeneous, dielectric fluid.

Show that the coulomb force exerted by one charge on the other can be found by
evaluating the integral

EE(E- n)
- -Ezn da,

[Eq. (72), p. 152] over any infinite plane intersecting the line which joins the two

charges.

14. Two fluid dielectrics whose inductive capacities are i and 2 meet at an infinite

plane surface. Two charges qi and q 2 are located a distance a from the plane on oppo-
site sides and the line joining them is normal to the plane. Calculate the forces acting

on qi and #2 and account for the fact that they are unequal.
15. A conducting sphere of radius r\, carrying a charge Q, is in the field of a point

charge q of the same sign. Assume q <3C Q. Plot the force exerted by the sphere
on q as a function of distance from the center and calculate the point at which the

direction reverses.

16. A charge q is located within a spherical, conducting shell of radius b at a point

whose distance from the center is a, with a < b. Calculate the potential of the sphere,
the charge density on its internal surface, and the force exerted on q. Assume the

sphere to be insulated and uncharged.
17. Find the distribution of charge giving rise to a two-dimensional field whose

potential at any point in the zy-plane is

^ ( tan-
1

-f tan-1
)

2^0 \ y y /

18. Show that the electrostatic potential <f> is uniquely determined by the values

of either < or d<t>/dn on the surfaces of conductors embedded in an isotropic, inhomo-

geneous dielectric.

19. A set of n conducting bodies is embedded in a dielectric medium which is iso-

tropic but not necessarily homogeneous. If the charges q\, qz, . . . , qn are placed on
these conductors the corresponding potentials on the conductors are fa, fa, ... 9
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n. Likewise the charges q{, q(, . . .
, qn give rise to the potentials <#>j, <^J, . . . , <f>'n.

Show that

20. Find the charge in coulombs on a metal sphere of radius a meters necessary to

raise the potential one volt with respect to infinity.

21. An infinite plane surface divides two half spaces, the one occupied by a dielec-

tric of inductive capacity c, the other by air. A charge q is located on the air side a

distance a from the surface. Obtain expressions for the potential at points in the air

and in the dielectric and show that the potential in either space can be represented in

terms of images.

What is the density co' of induced, or bound, charge on the surface of the dielectric?

Calculate the force acting on q and the work done in withdrawing the charge to

infinity.

22. The radii of two metal spheres are respectively a and b and the separation of

their centers is c, where c > a + 6. A charge qa is placed on the first, thus raising its

potential to a specified value < a . The potential fa of the second sphere is maintained

at zero by grounding. Obtain expressions for the charges qa and qb and their distri-

bution over the spheres by building up a series of images at the inverse points of the

spheres (p. 203).

The method is due to Lord Kelvin. See the discussion by F. Noether in Riemann-

Weber's "
Differential und Integralgleichungen der Physik," Vol. II, p. 281, 1927.

23. Two infinite, parallel, conducting planes coincide with the surfaces x = 0,

x =s a. The planes are grounded. A charge q is located on the #-axis at the point
x =

c, where < c < a. Show that the density of induced charge on the plane
x = Ois

f -^

^r >r^| j
2na c 2na + c )

"fa V' =
4^ ^ 1[(2na - c)

2 + r 2
]*

~
[(2na + c)

2 + r2
}*)n =, oo ^ /

where r is the distance from the origin to the point x, y on the plane. What is the

density on the plane x = a? Show that the total charge on the two planes is q.

(Kellogg.)

24. Prove that the surface charge density at any point on a charged ellipsoidal

conductor is proportional to the perpendicular distance from the center of the ellipsoid

to the plane tangent to the ellipsoid at the point.

25. Equation (14), p. 209, gives the potential of a charged prolate spheroid. Show
that as the length > oo and the eccentricity 1, this function approaches the

logarithmic potential characteristic of a two-dimensional space. Apply the theorem

of Problem 24 to find the charge per unit length.

26. Charge is distributed with constant density within a thin ellipsoidal shell

bounded by the two similar concentric ellipsoidal surfaces whose principal axes are a,

6, c and all H 1> 6 ( 1 -\
)
>c (l "1

)'
Show that the field is zero at all internal

points and obtain an expression for the potential at external points.

27. The major axis of a conducting, prolate spheroid is 20 cm. in length and its

eccentricity is e. The spheroid is suspended in air and carries a total charge of q

coulombs. The maximum field intensity at the surface shall at no point exceed

3 X 10 volts/meter. Plot the maximum value of charge that can be placed on the

spheroid subject to this condition as a function of eccentricity.
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88. The effect of lightning conductors has been studied by Larmor (Proc. Roy.

Soc., A, 90, 312, 1914) through the following problem. A hemispheroidal rod projects
above a flat conducting plane. The potential of the charged cloud above is uni-

form in the neighborhood of the rod. Find a potential function </> which is constant
over the spheroidal surface and over the plane. Plot the ratio of potential gradient
at the tip of the rod to intensity of the applied field against eccentricity of the rod.

Assume the length of the rod (semimajor axis) to be fixed and equal to one meter.

Discuss the lateral influence of the rod on the field as a function of eccentricity.
29. A very thin, circular, metal disk of radius a carries a charge q. Show that the

density of charge per unit area is

1

where r is the radial distance from the center on the disk.

Calculate the field intensity at the surface of the disk and plot volts per meter per
coulomb against r/a. Assume the disk to be suspended in air.

30. A spheroidal, dielectric body is suspended in a uniform electrostatic field.

The length of the major axis of the spheroid is twice that of its minor axis, and the

specific inductive capacity is 4. The external medium is air. For what orientation

with respect to the axis of the applied field is the torque a maximum? Calculate the

value of this maximum torque per unit volume of material, per volt of applied field

intensity.

31. A stationary current distribution is established in a medium which is isotropic
but not necessarily homogeneous. Show that the medium will in general acquire a
volume distribution of charge whose density is

Te - eVcr) V<f>,

where <r and c are respectively the conductivity and inductive capacity of the medium.
32. Two homogeneous, isotropic media characterized by the constants i, <TI, and

2, <T2, meet at a surface S. A stationary current crosses S from one medium to the

other. If the angles made by a line of flow with the normal at the point of transition

are <j>i and $2, show that each line is refracted according to the law

0*2 cotan $2 =
<TI cotan <i.

Show also that a charge appears on S whose surface density is

-lAj-n.

33. In many practical current-distribution problems it can be assumed that a sys-

tem of perfectly conducting electrodes is embedded in a poorly conducting medium
which is either homogeneous or in which discontinuities occur only across specified

surfaces. The electrodes are maintained at fixed potentials and either these potentials
or the electrode currents are specified. Show that the current distribution is uniquely
determined by a potential function < satisfying the following conditions:

(a) V2
< = at all ordinary points of the medium;

(6) <
= 0, a constant on the ith electrode;

(c) At a surface of discontinuity in the medium the transition is governed by
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(d) Regularity at infinity;

(e) Condition (6) may be replaced by / = (D o- da, where v is the condue-
/ Si dn

tivity of the medium just outside the electrode whose bounding surface is Si

and where / is the total current leaving this electrode.

34. A system of electrodes is embedded in a conducting medium. The electrodes

are maintained at the fixed potentials fa, fa, . . .
, <t>n,

and the currents leaving the

electrodes are I\, /2, . . . , /n. Show that the total Joule heat generated in the

medium is

Q =

36. Prove that for a system of stationary currents driven by electromotive forces

the current will distribute itself in such a way that the heat generated will be less for

the actual distribution than for any other which coincides with the actual distribution

in the region occupied by the driving forces and which is solenoidal everywhere else.

Assume that the medium is isotropic and that the relation between field intensity and

current density is linear.

36. A circular disk electrode of radius a is in contact with an infinite half space of

conductivity <r, such as the surface of the earth. The distance to all other electrodes

is large relative to the radius a. Show that the current distribution is determined by
the conditions:

(a) V 2
< within the conducting half space;

(6) 3<f>/dn = at the boundary excluding the disk;

(c)
= -- ._____..... - on the disk, where r is the radial distance from the

dn 2ir<raV & r*

center.

37. A stationary current is carried by a curved, conducting sheet of uniform thick-

ness. The sheet is assumed to be so thin that the current distribution is essentially

two-dimensional. If and 17 are curvilinear coordinates on the surface, the geometry
of the surface is defined by the element of arc

ds* = 0n d? + 2^12 d drj + 022 <fy
2
,

the properties of the g^ having been defined in Sec. 1.14. The scalar potential deter-

mining the current distribution satisfies the Laplace equation

-4-"~~ '-
d* V 011022

~

Define a conjugate function ^ by the relation

d<ft d<j> d<^> d<j>

011
---

012 77 022 012 T-
,, ft?_d

Jt . ,

d_ftj ,

d$ - -- d$ + '

^r dlj

V0H022 ~
0I 2 V 011022

-
0? 2

and show that ^ satisfies the same equation as <f>.
The functions <f> and $ are potential

and streamline functions on the surface, and $ =*
<t> + i\f/ will be called a complex
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function on the surface. Now choose and t\ so that f = 4* ii? is itself such a func-

tion. Show that in this case 4> satisfies the simple equation

and that <f> and ^ are related by

while the line element reduces to ds* = g\\(d$* -\- <V). Thus the complex func-

tions of the surface are analytic functions of each other and the transformation

-r- irj
= x + iy maps the surface conformally on to the complex z-plane. If the

conformal mapping of a surface on to the plane is known, the current distribution

problem reduces to the solution of Laplace's equation in rectangular coordinates.

Inversely, if a current distribution over a curved surface can be determined experi-

mentally, a conformal mapping of the surface on the plane is found. (Kirchhoff.)

38. Referring to Problem 37, show that

z = ae 1^ tan
2

is a conformal, stereographic projection of a sphere of radius a on the complex plane,
where z = x -f- iy and p is the equatorial angle or longitude and the colatitude on
the sphere. Show further that

tan^-/()| j

is a complex potential function on the sphere where / is any analytic function of z.

39. A steady current I enters a conducting spherical shell of radius a and surface

conductivity <r at a point on the surface and leaves at a similar point diametrically

opposite. Find the potential at any point and the equation of the streamlines.

40. A cylindrical condenser is formed of two concentric metal tubes. The space
between the tubes is occupied by a solid dielectric of inductive capacity which, how-

ever, is not in direct contact with the tubes, but separated from them by thin layers
of a nonconducting intermediary fluid of inductive capacity c'. The solid dielectric

extends so far beyond the ends of the metal tubes that the stray field is of negligible

intensity. A constant potential difference is maintained between the metal elec-

trodes. Obtain an expression for the change in length per unit Length of dielectric.

(Kemble, Phys. Rev., 7, 614, 1916.)



CHAPTER IV

THE MAGNETOSTATIC FIELD

The methods that have been developed for the analysis of electro-

static fields apply largely to the magnetostatic field as well. Every
magnetostatic field can be represented by an electrostatic field of identical

structure produced by dipole distributions and fictive double layers.
The equivalence, however, is purely formal. There is no quantity in

magnetostatics corresponding to free charge, and the surface singularity

generated by a double layer of electric charge does not actually exist. A
double layer leads in fact to a multivalued potential and consequently to

a nonconservative field. Whatever the analytical advantages of the

electrostatic analogy may be, it is well to remember that the physical
structure of a field due to stationary distributions of current differs

fundamentally from that of any configuration of electric charges.

GENERAL PROPERTIES OF A MAGNETOSTATIC FIELD

4.1. Field Equations and the Vector Potential. The equations satis-

fied by the magnetic vectors of a stationary field are obtained by placing
the time derivatives in Maxwell's equations equal to zero.

(I) V X H -
J, (II) V B - 0.

To these must be added the equation of continuity which now reduces to

(III) V J = 0.

The current distribution in a stationary field is solenoidal; all current lines

either close upon themselves, or start and terminate at infinity. From (II)
it follows likewise that all lines of the vector B lines of magnetic flux, as

they are commonly called close upon themselves. Suppose that the
flux density of the field produced by a current filament Ii is BI. All lines

of this field link the circuit Ii. A fraction of the flux BI may, however,
thread also a second current filament 72 . The concept of "flux linkages

"

commonly employed in the practical analysis of electromagnetic problems
is based on these solenoidal properties of current and flux in the station-

ary state. The extension to slowly varying fields (quasi-stationary

state) is justifiable only so far as dp/dt remains negligible with respect
to V J.

Upon applying Stokes' theorem to (I), we obtain the equivalent
integral equation,

225
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(la) fc H ds = fs J n da =
/,

where S is any surface spanning the contour C, and I is the total current

through this surface. The line integral of H around a closed path is

equal to the current linked : the magnetic field is nonconservative.

Every solenoidal field admits a representation in terms of a vector

potential. As in Sec. 1.9, Eq. (II) is identically satisfied by

(1) B = V X A.

The vector A is now chosen to satisfy (I), and the relation H =
between the magnetic vectors must therefore be specified. If the
medium is nonferromagnctic, the relation is linear; if moreover it is

homogeneous and isotropic, we put B = juH and arrive at

(2) V X V X A = /J

for the vector potential.

In Sec. 1.9, it was shown that there may be added to A the gradient
of any scalar function

\l/ without affecting the definition (1). By a proper
choice of ^ it is always possible to effect the vanishing of the divergence
of A. The vector potential is uniquely defined by (2) plus the condition

(3) V . A = 0.

In rectangular coordinates, (2) then reduces to

(4) V 2A - - MJ,

where it is understood that the Laplacian operates on each rectangular
component of A.

4.2. The Scalar Potential. The existence of a scalar potential func-
tion associated with the electrostatic field is a direct consequence of the
irrotational character of the field vector E. If double-layer distributions
of charge are excluded, the curl of E is everywhere zero; hence one may
express E as the negative gradient of a scalar <f>. Furthermore, since the
line integral of E vanishes about every closed path of the region, the poten-
tial is a single-valued function of the coordinates.

A region of space, enclosed by boundaries, is said to be connected
when it is possible to pass from any one point of the region to any other

by an infinice number of paths, each of which lies wholly within the region.

Any two paths which can by continuous deformation be made to coincide
without ever passing out of the region are said to be mutually recon-
cilable. Any closed curve or surface is said to be reducible if by con-
tinuous variation it can be contracted to a point without passing out
of the region. Two reconcilable paths when combined form a reducible
circuit. If finally the region is such that all paths joining any two points
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are reconcilable, or such that all circuits drawn within it are reducible,
it is said to be simply connected. The electrostatic field of a volume
distribution of charge constitutes a simply connected region of space
within which every closed curve is reducible.

Contrast this geometrical property of the electrostatic field structure

with the magnetic field of a stationary distribution of current. We shall

call the region of space occupied by current Vi, while the region within

which J = will be denoted as 72 . Figure 39 represents a plane section

through the field, the shaded areas indicating, for example, the cross

FIQ. 39. Illustrating a doubly connected space.

sections of conductors carrying current. In the region Vi the curl of H
does not vanish and consequently no scalar potential exists. Throughout
F2 we find

(5) V X H =
0,

and so within this region H may be expressed as the negative gradient
of a scalar function <*(#, y, z).

(6) H = -V**.

The line integral of H along any contour wholly within F2 connecting
two points P and Q is

(7) H ds = - V<* ds = **(P) - **(Q).

The paths by which one may reach Q from P are not, however, all mutu-
ally reconcilable. A closed curve composed of two segments such as

PEQ and QFP is irreducible, since on contraction to a point it must
necessarily penetrate the region FI. Thus the region F2 occupied by the

magnetostatic field exterior to the current distribution is multiply
connected. The scalar potential 0* is a multivalued function of position,
for to its value at any point P one may add a factor nl by performing n
complete circuitations about the current /. However F2 may be rendered

simply connected and the potential single-valued by the introduction
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of a cut or barrier which prevents a circuit from being closed in such a

manner as to link a current. There are, of course, an infinite number of

ways in which such an imagined barrier might be placed but, if the cur-

rent is constituted of a bundle of current filaments forming a single,

closed current loop, it is most simple to think of it as a surface spanning
the loop. The line MN in Fig. 39 represents the trace of such a sur-

face. In the "cut" space the line integral of H about every closed path

vanishes, for the barrier surface excludes current linkages, and con-

sequently the potential function $* is single-valued. At points lying on

either side and infinitely close to the barrier the values of <* differ by
/. There is a discontinuity in the potential function thus defined equal
to

(8) *?-** =
/,

where the subscripts refer to the positive and negative sides of the surface.

According to Sec. 3.16 the discontinuity in <* across the barrier is equivalent

to that of a surface dipole layer of constant moment I per unit area. Only
when all currents are zero and the sources of the field are permanent

magnets does the potential become a single-valued function of position.

4.3. Poisson's Analysis. At every point where the current density

is zero, and in particular at interior points of a permanent magnet, we
have

(9) B = -MoVtf>* + Mo(M + Mo).

Since B is divergenceless, the scalar potential satisfies a Poisson equation

(10) W* = -p*, p* = -V (M + Mo).

The quantity p* is the magnetic analogue of "bound charge" density,

which in the older literature was frequently called the density of Pois-

son's "ideal magnetic matter."

Across any surface of discontinuity in the medium the magnetic
vectors satisfy, according to Sec. 1.13, the conditions

(11) n (B 2
-

Bi) =0, n X (H2
-

HI) = 0.

The equivalent conditions imposed on the scalar potential are, therefore,

Q2) -
(12) dn A \dnt '

\dt

(13)
* = n [(M + M )i

- (M + Mo) J.

Within any closed region containing permanent magnets and polarizable

matter
,
but throughout which the conduction current density J is zero, the

magnetostatic problem is mathematically equivalent to an electrostatic

problem.
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The calculation of the potential <* from the densities p* and w* has
been described in the previous chapter.

', y', z') J P *(x, y, 2)
- cfo + ^ J *(, y, 2)

i
da,(14)

where as usual r = \/(z' z)
2 + (y' y)

2 + (z
1

z)
2

. To evaluate
the integrals one must know both the permanent magnetization M
and the induced magnetization M; but the induced magnetization is a
function of the field intensity and consequently of <* itself. If, however,
the permanently magnetized bodies are not too close to one another, the
induced magnetization can usually be neglected with respect to M .

Some assumption is then made regarding the magnetization M and the
fixed or primary field of the sources calculated by means of (14). This

primary field induces a magnetization M in neighboring polarizable
bodies soft iron, for example. The calculation of the induced or sec-

ondary field is a boundary-value problem to be discussed later.

Let us calculate now the magnetic moment of a magnetized piece of

matter. By analogy with the electrostatic case, Sec. 3.11, this moment
is defined by the integral

(15) m = fv n P *(f , 17, ftdv + fs n *>*({, n, f) da,

where ri = i + fa + kf , Fig. 30, page 178, is the vector drawn from the

origin to the element of ''magnetic charge/' and S the boundary of a body
whose volume is 7. Upon replacing p* and o>* by their values defined

in (10) and (13), then transforming by means of the identity

V . M = V - (M) - M V,

which applies to each component of TI, we find that (15) reduces to

(16) m = fy (M + Mo) dv.

The magnetic moment of a body is equal to the volume integral of its

magnetization.

Finally, if Eq. (14) is transformed by (9), page 184, after p* and *

have been replaced by (10) and (13), one obtains for the potential

(17) **(*', </', z'}
- ~

J^
(M + Mo) - V

(i)
dv.

If the dimensions of the magnetized body are sufficiently small with

respect to the distance to the observer at (x', y', z'), the variation of
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Vl/r within V may be neglected and we are led to an expression for the

scalar potential of a magnetic dipole,

(18) <*(z' ; y', z')
=

j- m '

CALCULATION OF THE FIELD OF A CURRENT DISTRIBUTION

4.4. The Biot-Savart Law. It has been shown that in a homogeneous,

isotropic medium of constant permeability /* the vector potential satisfies

the system of equations

(1) W, = -W,, V A =
0, 0'

=
1, 2, 3).

The Aj are rectangular components of the vector A, but the restriction to

rectangular coordinates does not necessarily apply to the scalar operator

V2
. Considering the Aj and *// as variant scalars, the theory developed

in Sec. 3.4 for the integration of Poisson's equation may be applied directly

to (1). If the current distribution can be circumscribed by a sphere of

finite radius each component of the vector potential can be expressed

as an integral,

= ^ J(2) A y (*', y', z')
=

f- J&, y, z) dv, (j = 1, 2, 3),
^tTT ^/ /

extended over all space. These components are now recombined to

give a vector.

/o\ A //>.' /.' '^
'

\P) *i(x , y j
z ; -r

where r = \/(z' x)
2 + (y

f

y)
2 + (z

f

z)
2

. Moreover, it follows

from the discussion of Sec. 3.7 that if J is a bounded, integrable function,

then A is a continuous function of the coordinates (x*', y' , z') possessing

continuous first derivatives at every point inside and outside the current

distribution. If J and all its derivatives of order less than n are finite

and continuous, the vector function A has continuous derivatives of all

orders less than n + 1.

The vector potential defined by (3) satisfies the condition V A =

provided the current distribution is spatially bounded. The integral

is regular and consequently may be differentiated under the sign of

integration.

(4) V'.A =
jj(*,3/,

2

).V'(i)<fo=
-

J

(5) J-\ * j
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in virtue of the condition V J = 0. Then

(6) --f f
4irJ

for, since all current lines close upon themselves within a finite domain,
the surface S may be chosen such that there is no normal component
of flow.

Note that the contribution dA to the vector potential is directed

parallel to the element of current J dv. Equation (3) can be simplified

in the case of currents in linear conductors; i.e., conductors whose cross

section da is so small with respect to the distance r that the density vector

may be assumed uniform over the cross-sectional area and directed

along the wire.

(7) J dv = J da ds = I ds,

where / is the t6tal current carried by the conductor and ds is an element

of conductor length. Since the steady current 7 must be constant

throughout the circuit, Eq. (3) reduces to

(8) A(*', y', ')
=

I

in which the integral is to be extended around the complete circuit C.

The field can be obtained directly from (3) by calculating the curl of A
at the point (x', y', z'). In virtue of the convergence of the integral and

the continuity of its first derivatives the differential operator may be

introduced under the sign of integration.

(9) H(x')2/
'

)2')=

Expansion of the integrand according to elementary rules yields

(10) V X J(x, y, z)
= V X J(x, y, z) + V X J(x, y, z).

But the current density is a function of the running coordinates x, y, z
t

whereas the differentiation applies only to x', y', z'\ consequently the first

term on the right is zero, giving for the field vector

dv(11) H(*', */', *')
= ~

J V 0)
X J(x, y, z)
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If r is a unit vector directed from the current element toward the point
of observation, (11) is equivalent to

(12)

which for linear circuits assumes the form

(13)
I_

47T

s X r
ds,

where s is a unit vector in the direction of the current element I ds.

The law expressed by (13) is frequently formulated with the statement

that each linear current ele.nent / ds contrib-

utes an amount

*~

*

(14)
s X r

to the total field. This is essentially the result

deduced from the experiments of Biot and Sav-

art in 1820. There is no very cogent reason

to reject the formula (14), other than the fact

that this resolution of (13) into differential

elements is not unique; for there may be added

to (14) any vector function integrating to zero

around a closed circuit. All stationary cur-

rents are composed of closed filaments, so that

it is difficult to imagine an experiment to deter-

mine the contribution of an isolated element.

Obviously no error can result from an

application of (14) to the analysis of a field

when it is understood that these contribu-

tions are eventually to be summed around the

circuit.

Whereas the vector potential due to a differential element of current

is directed parallel to the element, the field vector H is oriented normal

to a plane containing both the current element and the line joining it

with the point of observation; i.e., to the plane defined by the unit

vectors s and r. If 6 is the angle which r makes with s, the intensity

of the field is

FlQ. 40. Solenoidal current
distribution.

(15)v / 'da.

The field along the axis of a solenoid, Fig. 40, may, for example, be

calculated approximately by assuming an equivalent current sheet of
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negligible thickness. If there are n turns/meter carrying a current of

J amp., the current density of the sheet is K = In. The contribution

of a solenoidal element of radius a and length dx at a distance x along

the axis from the point of observation is

(16) dH = ~
T^rq-^p

dx =* ^ d (cos *)

These contributions are directed along the axis. At any point on the

axis, the field is

cos 0i).

At the center this reduces to

(18) H = nl

Another elementary case of some interest is that of a straight wire of

infinite length and circular cross section. The current I is assumed to be

distributed uniformly over the cross section. The simplest solution is

obtained by taking advantage of the cylindrical symmetry of the field to

apply the integral law (f>H ds = I. If r is the radial distance from the

axis and a the radius of the wire, it is obvious that

2*rH = TrrV =
J, H = JL

r, (r < a),

(19)

=
7, H =

(r > a).

The field outside the wire, which is independent of its radius, can also be

obtained from the Biot-Savart law. If, however, one attempts to cal-

culate the vector potential by means of (8), it will be noted that the

integral diverges owing to the fact that the current distribution is in

this case not confined to a region of finite extent. The vector potential is

actually

(20) A r
= A, = 0, A, = ^ In , (r > a),

as may be verified by calculating the curl in cylindrical coordinates

(page 51), and this function becomes infinite as r > <*> .

4.6. Expansion of the Vector Potential. Following the example set

in Sec. 3.11 for the scalar potential, we shall determine an expansion of

the vector potential of a stationary current distribution in terms of the

coordinates of a point relative to a fixed origin. To ensure regularity at
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infinity it will be assumed that the entire distribution can be circum-

scribed by a sphere of finite radius R drawn from the origin; we shall

consider here only points of observation exterior to this sphere. The
current distribution is completely arbitrary, but it must be assumed that

the permeability /* is everywhere constant and uniform. Practically
this excludes only ferromagnetic materials and admits conductors of any
other nature and arbitrary shape embedded in dielectrics of any sort.

The notation will be essentially that adopted in Sec. 3.11 and illus-

trated in Fig. 30; for convenience in summing we shall let the coordinates

of the fixed point P be xi, x 2 ,
z3 ,

and those of the current element 1, 2 , 3.

The distance from the origin to P is r = -\/x\ + x\ + x\ and that from
the element J( l; 2; 3) dv to P is

At P the vector potential is, therefore,

extended over the volume V bounded by the sphere of radius R. If ri

is the vector whose components are
/,
the expansion of l/r2 in a Taylor

series about leads to

Consequently the vector potential can be represented by the expansion

(23) Ad,) = 2 AW = 5 7 J J.> * - 5 / ["
T
0)]

J<> *

[r,.v(i)]}
. vr,.v ,,*-....

Note that J and ri are functions of the / with respect to which the integra-

tion is to be effected; the function 1/r depends only on the x
3-,
and the

operator V applies to these coordinates alone.

In virtue of its stationary character the current distribution may be
resolved into filaments, all of which close upon themselves within V.

Let us single out any one of these filaments. We suppose the infinitesimal

cross section to be da\ and the current carried by this linear circuit to be
I =

|Jj dai. A point on the circuit is located by the vector TI drawn
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from the origin, Fig. 41, and an element of length along the circuit in

the direction of the current is dri. Then for each filament or tube

(24) A<> = i f dn =
0,

4rrr Jc
'

where C is the closed filament contour. (A(0) would not necessarily

vanish were V to contain only a portion of the current distribution.)

The dominant term of the expan-

sion is, therefore, the second, which

we transform as follows.

C^
i / 1 \ i i

(25)

Again the total differential vanishes FlG - 41.-Closed current filament follow-

, ing the contour C.

when integrated about a closed

filament, while ri X dr\ = n da is the vector area of the infinitesimal

triangle shown shaded in Fig. 41.

(26)

The quantity

(27)

A< = F5 .

m = / I n da = ~
I

is by definition the magnetic dipole moment of the circuit. Since the

surface integral may be extended over any regular surface spanning the

contour, the magnetic moment depends only on the current and the form

of the contour.

The dipole potential of the total distribution is obtained by summation
over all the current filaments. By definition the magnetic dipole moment
of a volume distribution of current with respect to the origin is

(28) m = H

The magnetization M of a region carrying current can likewise be defined

as the magnetic moment per unit volume.

(29) M -
dv

-
r, X~

2
fl X

It is clear that magnetization with respect to a given origin will occur

whenever the current density has a component transverse to the vector
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TI; that is to say, whenever the charge has a motion of rotation about
as a center. If p is the charge per unit volume and v its effective velocity,
so that J = pv, the magnetization is

(30) M = in X pv,

which is identical with angular momentum per unit volume when p is

interpreted as the density of mass.

The remaining terms of the expansion (23) are the vector potentials
of magnetic multipoles of higher order. Two distinct definitions of

magnetic moment have been presented: the one in terms of Poisson's

equivalent magnetic charge, wholly analogous to the electrostatic case,
Sec. 4.3; the other in terms of current distribution. The identity of

these two viewpoints must now be demonstrated.
4.6. The Magnetic Dipole. According to Sec. 4.3, a magnetized

piece of matter has a dipole moment defined by (15), page 229, and at

sufficient distances its scalar potential is given by (18) of the same section.

Our first task is to determine the equivalent vector potential; i.e., a
vector function whose curl leads to the same field as the gradient of the

scalar <>*. We shall again let (x', y', z') be the fixed point of observation
and locate the dipole at (x, y, z). Then

(31) H(x', y', z')
= -v'** = 1 v'

[m
V

and, consequently,

(32) v'xA_

To expand the right-hand side of (32), note that m is a constant vector

or at most a function of x, y, z, whereas V' applies only to the coordinates

x', y', z'. Furthermore

(33) V' X V (~\
=

0, V' V = 0.

It may be verified now without difficulty that

(34) v'
[m

V
(i)]

- -V X
[m

X VQ] ;

hence,

(35) V< X A = - V X
[m

X V
Q],

(36) A + m X V =
V'f(x>, y', z'),

where / is an undetermined scalar function. The divergence of the left

side vanishes, and consequently / may be any solution of Laplace's
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equation. However, / contributes nothing to the field H and we are at

liberty to place it equal to zero. The vector potential of a magnetic

dipole is, therefore,

(37) A(af, if,
= - X V'(i) =

Equation (37) is identical with the vector potential attributed to a

current dipole moment in the preceding paragraph. At a sufficient

distance the field of any source magnetic matter or stationary current

reduces to that of a magnetic dipole. This amounts to no more than a

restatement of the fact that a magnetized region is fully equivalent to a

current distribution of density J'
= V X M, and gives mathematical

support to Amp&re's interpretation of magnetism in terms of infinitesimal

circulating currents.

4.7. Magnetic Shells. We have shown thus far that the potential of

any closed linear current can be expanded into a series of multipole

potentials. By allowing the circuit con-

tour to shrink to infinitesimal dimensions

about some point (x, y, z), the potential

can be represented everywhere but at the

singularity (x, y, z) by the dipole term

alone. The magnetic moment of the

resultant elementary linear current is

(38) dm = In da,

FIG. 42. Resolution of the
current / about the contour C
into elementary currents.

where n is the positive normal to the

infinitesimal plane area da. The ele-

mentary moment depends on the current

and the area enclosed by the circuit, not

upon its particular form.

Any linear current of arbitrary size

and configuration can be resolved

into a system of elementary currents. Let 5, Fig. 42, be any regular

surface spanning the circuit contour C and draw a network of intersecting

lines terminating on C. Imagine now that about the contour of each

elementary area there is a current / equal in magnitude to the current

in C and circulating in the same sense. The magnetic field due to this

network of currents is everywhere identical with that of the current / in

the simple contour (7; for the currents along the common boundaries of

adjacent surface elements cancel one another except on the outer contour.

As the fineness of the division is increased, the field of each mesh current

approaches more closely that of a dipole whose axis is oriented in the

direction of the positive normal Clearly in the limit the field of the
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network, and consequently that of the current / about C, is identical

with that of a dipole distribution, or double layer, over the surface S.

The density, or moment per unit area, of the equivalent surface distribu-

tion is constant and equal to

(39) T = = 7n.

In effect every linear current acts then as a magnetized shell. The
scalar potential of such a shell has been determined in Sec. 3.16 in con-

nection with double layers of charge.

(40) **(*', y', z')
= -1

where ft is the solid angle from (a/, ?/', z') subtended by S. Moreover the

potential of a double layer has been shown to be multivalued. The

discontinuity suffered by <* as one traverses S is by (17), page 190,

(41) </>*
-

<f>*
= r = I]

consequently, the line integral of H about any closed path piercing S a

single time is

(42) < H ds = -

The surface S bearing the double layer or magnetic shell is completely

arbitrary and evidently equivalent mathematically to the barrier or

"cut" by means of which the field was reduced in Sec. 4.2 to a simply
Connected region.

A DIGRESSION ON UNITS AND DIMENSIONS

4.8. Fundamental Systems. In Sec. 1.8 a dimensional analysis of

electromagnetic quantities was based directly on Maxwell's equations
and the adoption of the m.k.s. units was advocated on the grounds that

they constitute a system which is both "absolute" and practical. His-

torically the development of the various systems followed another course.

As long as electrostatic and magnetostatic phenomena were considered

to be wholly independent of one another, it was natural that two inde-

pendent, absolute systems should exist for the measurement of electric

and magnetic quantities. Discovery of the law of induction by Faraday
and proof much later that current is no more than charge in motion estab-

lished a connection between the two groups of phenomena and imposed
certain conditions on the choice of otherwise arbitrary constants.

The units and dimensions of electrostatic quantities have been com-

monly based on Coulomb's law: the force between two charges is pro-
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portional to the product of their magnitudes and inversely proportional

to the square of the distance between them.

(1) F-

Since the presence of matter does not affect the dimensions of charge,

we assume henceforth that all forces are measured in free space. In
"
rationalized" units the proportionality constant fci is chosen equal to

1/47T ;
in "unrationalized" systems the factor 4?r is dropped. The

constant is arbitrary and not necessarily dimensionless, so that the

dimensions of charge can be expressed only in terms of e . From (1)

we obtain

(2) [q]
= ecMffcir- 1

;

from the equation of continuity it is evident that the dimensions of

current are those of charge divided by time.

(3) [7]
=

From these it is a simple matter to deduce the dimensions of all other

purely electrical quantities.

The properties of magnetic matter can be described more naturally

in terms of magnetic moment m than by the introduction of fictitious

"magnetic charges." The torque exerted on a magnet or current loop
of moment m 2 in the field B produced by a source of moment mi is

(4) T = m2 X B,

and the vector B is expressed in terms of the source mi by (31), page 236.

From these two relations one may readily verify that the dimensions

of magnetic moment are

(5) [m] =
/I

Equation (5) is a relation deduced directly from an expression for the

mutual torques exerted by two magnetic dipoles, the proper magnetic

counterpart of Coulomb's law. But this is not the only experimental

law involving magnetic moment. It is a matter of observation that the

moment m of a small loop or coil carrying a current 7 is proportional to

the current and to the area of the loop. The constant of proportionality,

which we shall call 1/y, is, like e and /z , arbitrary in size and dimensions

so that m is subject also to the dimensional equation

(6) [m] = y~
l

[l\L*
= i~

l*JM*UT-\

The relation of magnetic moment to current and of current to electric

charge thus imposes a condition upon the otherwise arbitrary constants
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o, MO and y. Whatever the choice of these three factors, their dimensions

must be such that (5) and (6) are consistent. Upon equating (5) and

(6), it follows that

(7)

The magnitude of the characteristic velocity c must be determined by
experiment. In Chap. I it appeared as the velocity of propagation of

fields and potentials in free space; now it occurs as a ratio of electric and

magnetic units. To determine c without recourse to a direct measure-

ment of velocity, a quantity is chosen that can be calculated in one system
of units and measured in another. The capacity of a condenser, for

example, can be calculated if its geometrical form is sufficiently simple,
and the electrostatic capacity of any other condenser may be measured in

terms of this primary standard by means of a capacity bridge. On the

other hand a ballistic galvanometer measures the charge on the con-

denser in terms of the magnetic effects produced when the condenser is

discharged through the galvanometer. The ratio of the two values of

capacity can be shown to be

(8)

where Ce is the calculated electrostatic value and Cm the measured value

in magnetic units. The accepted value of c is approximately 3 X 10 8

meters/sec.

The various dimensional systems which at one time or another have
been employed in the literature on electromagnetic theory are obtained

by ascribing arbitrary values to any two of the three constants e
, MO and

7oJ the third is then determined by (7). We shall review the most

important of these systems briefly.

1. The Electrostatic System. If o
=

1, r =
1, all quantities, both

electric and magnetic, are expressed in electrostatic units. For MO one
obtains from (7) the value

(9) MO = i X 10-20
(sec./cm.)

2
.

The c.g.s. units in this system are based on a definition of charge from
Coulomb's law: two unit charges of like sign concentrated at points 1 cm.

distant repel one another with a force of 1 dyne.
2. The electromagnetic system is obtained by putting

(10) MO = 1, 7 =
1, 6 = i X 10-20

(sec./cm.)
2

.

The ratio of charge measured in the two systems is
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where qe is the magnitude of a charge measured in electrostatic units,

qm the magnitude of the same charge measured in e.m.u.

3. The m.k.s. system, described in detail in Sec. 1.8, is essentially an

electromagnetic system in which the units of mass and length have been

adjusted such that the units of electric arid magnetic quantities conform

to practical standards. In the form adopted in the present volume, the

coulomb is introduced as an independent unit, leading to

(12^ MO = 47T X 10~ 7
henry/meter, 7 =

1,

eo
= 8.854 X 10~ 12

farad/meter.

An alternative form of the m.k.s. system puts

(13) Mo = 47r X 10- 7
, 7 =

1, o
= 8.854 X 10~ 12

(sec./meter)
2

,

which is dimensionally identical with the electromagnetic system.

4. The Gaussian system has until recently been most commonly

employed in scientific literature. It is a mixture of the electrostatic

and electromagnetic systems obtained by putting

(14)
=

1, Mo = 1, 7 = c.

The factors
, MO drop out of all equations and electrical quantities are

expressed in electrostatic units, magnetic quantities in magnetic units.

The advantages of all this are rather dubious. It is fully as difficult to

recall the proper position of the factor c entering into electromagnetic

equations written in Gaussian units as it is to retain the factors e and /z

from the outset. The m.k.s. system is quite as much an "absolute" or

"scientific
"
system as the Gaussian, and there are few to whom the terms

of the c.g.s. system occur more readily than volts, ohms, and amperes.

All in all it would seem that the sooner the old favorite is discarded, the

sooner will an end be made to a wholly unnecessary source of confusion.

Any equation appearing in this book can be transformed to Gaussian

units by replacing and /x each by 1/c; J and p by J/c and p/c

respectively.

4.9. Coulomb's Law for Magnetic Matter. In the older literature

the magnetic system of units was commonly based on a law of force

between magnetic "poles." The "charge" or pole strength q* was

defined such that the product of q* and the length of a dipole was equal to

its moment m. The dimensions of #* based on (5) are then

(15) [<Z*]
= M

while for the law of force corresponding to Coulomb's law we obtain

(16) '-
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This expression differs from the one commonly assumed in that /z

appears in the numerator rather than the denominator. 1 At the root of

this puzzling result is the fact that the force on an element of current,

as deduced from Maxwell's equations, Sec. 2.4, is J X B, not J X H.

Consequently the torque on a dipole is m X B arid the force on a magnetic

"charge" is F = j*B.
To make (16) conform strictly to the electrostatic model it has been

customary to write the factor ju in the denominator and to define the

vector H by the equation F = g*H. This procedure, however, leads to

dimensional inconsistencies in the field equations unless juo is assumed to

be a numeric and there is little to be said in its favor. The parallel

nature of the vectors E and B and the vectors D and H has been recog-

nized by most recent writers.

MAGNETIC POLARIZATION

4.10. Equivalent Current Distributions. The equivalence of a mag-
netized body and a distribution of current has been noted previously
on various occasions. Let us see just how this distribution in a body of

volume V bounded by a surface >S is to be determined.

We shall suppose that the intensity of magnetization, or polarization,

M includes also the permanent or residual magnetization M if any is

present. At any point outside the body the vector potential is by (37),

page 237, equal to

(1) A(*', y', z')
= M(z, y, z) X V dv.

By virtue of the vector identity

(2) Mx

and the fundamental formula for the transformation of the volume

integral of the curl of a vector to the surface integral of its tangential

component,

we see that the right-hand side of (1) may be resolved into two parts.

fA\ A / / / A Mo I
^ X M , juo I

M X n ,

(4) A(*', y', z'}
= dv + -- da.

1 SOMMERFELD, "Ueber die elektromagnetischen Einheiten," p. 161, Zeeman, Ver-

handelingen, Martinus Nijhoff, The Hague, 1935.
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The vector potential due to a magnetized body is exactly the same aa

would be produced by volume and surface currents whose densities are

(5) J'
= V X M, K' = M X n.

The validity of this result at interior as well as exterior points is

easily demonstrated. For the surface integral certainly converges at

all points not on /S, and the volume integral can be resolved into three

scalar components, each of which is equivalent to the scalar potential

of a charge distribution.

We recall that the magnetic polarization was introduced initially,

Sec. 1.6, as the difference of the vectors B and H.

(6) M = - B - H.
Mo

At a surface of discontinuity between two magnetic media the field

vectors satisfy "the boundary conditions of Sec. 1.13; namely,

(7) n (B,
-

Bi) =0, n X (H 2
- Hi) = K,

in which the surface current density is zero whenever the conductivity

is finite. Then by (6) these conditions are equivalent to

(8) n (B 2
- BO =0, n X (B,

- BO = Mo(K + K'),

where

(9) K' = (Mi - M a) X n.

4.11. Field of Magnetized Rods and Spheres. A steel rod or cylinder

of circular cross section uniformly magnetized in the axial direction will

serve as an example. The length of the cylinder is Z, its radius a, and

the magnetization is M . Since M is assumed constant, the volume

density of equivalent current J' is zero. On the cylindrical wall the

current density is K' = M X n, so that the magnetized rod is equivalent

to a solenoidal coil of the same dimensions. The vector potential and

field at any internal or external point can now be calculated from the

series expansion derived in Sec. 4.5. The value of B along the axis has

already been computed in Sec. 4.4. In particular, we find at the center

(10) B =

For an actual magnet the validity of our assumption of uniform

magnetization is dubious, particularly in the vicinity of the edges. If,

however, the length of the cylinder is either very large or very small with
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respect to the radius, the approximation is usually a good one. Thus, if

I a so that the rod is needle-shaped, the field at the center reduces to

(11) B = MoM .

In case I <C a, it degenerates to a disk, with

(12) B = 0.

If the cylinder is soft iron instead of steel in an external field H0)

the permanent polarization M must be replaced by the induced mag-
netization M and (10) is to be interpreted as the induced field BI. At the

center of a long needle in a parallel field H > the resultant fields are

(13) B = Bo + BI = Bo + /xoM; H = - B - M = H
;

Mo

the field H in the interior of the needle is the same as that which existed

initially. In the case of the disk

(14) B = Bo, H = Ho - M.

The assumption of a uniform magnetization of a soft-iron cylinder

with squarely cut ends is obviously a direct violation of the boundary
conditions on the vectors B and H. On the other hand the induced

magnetization of a sphere or ellipsoid in a parallel external field must be

uniform, for the problem is wholly analogous to the electrostatic case

considered in Sees. 3.24 and 3.27. The induced or secondary field Bt
can now be attributed to a surface current circulating in zones concentric

with the axis of magnetization, but the density will evidently vary with the

latitude. If 6 is the angle made by the outward normal with the direction

of M,

(15) K' - |M X n]
= M sin 9.

By the Biot-Savart law the component of 67 in the direction of M is

(16) dBT = sin* Ode = sin3 d6.
A 4

When integrated this leads to

(17) Bl
o o

for the induced field at the center, while for the total field one obtains

(18) B- = B + BI = Mo(H + fM), H- - Ho - *M.

An important corollary to this result is the value of the field at the

center of a spherical cavity cut out of a rigidly and uniformly magnetized
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medium. The surface current distribution is the same but, since the
normal is now directed into the sphere, the circulation is in the opposite
direction. The induced field at the center is |/n M , and the resultant

field is

(19) B- = Bo - fMoM = /io(H + |M ), H- = Ho + *M ,

where Ho and B are the initial fields within the medium. Obviously
these fields do not satisfy the customary boundary conditions on the
normal and tangential components, and they are possible only when the

cavity is excised after the rigid magnetization of the material.

DISCONTINUITIES OF THE VECTORS A AND B

4.12. Surface Distributions of Current. It follows directly from the

investigation of Sec. 3.14 that the vectors A and B are everywhere con-
tinuous functions of position provided the current is distributed in vol-

ume with a density which is bounded and piecewise continuous. When,
however, the conductivity of a body is assumed infinite, or the magnetized
state of the body is to be represented in terms of an equivalent current

distribution, it becomes necessary to take account of surface currents

across which the transition of the vector B is discontinuous. Let us

imagine a current with a finite volume density J confined to a lamellar

region of thickness t. Suppose now that the thickness is allowed to

shrink, but that throughout the process the total current traversing its

cross section is maintained at a constant value. As t > 0, the volume

density J necessarily approaches infinity. The surface current density is

defined as the limit of a product:

(1) K = limj, as *-0, J->oo.

Because of the infinite value of J, this distribution constitutes a surface

singularity.

We shall assume that K is a bounded, piecewise continuous function
of position on a regular surface S. The vector potential at any point
(z', y', z') not on S is

(2) A(,')y',
2')=

in which r is, as usual, drawn from the element Kfc, y, z) da to the fixed

point (x', y' y z'). Each rectangular component of A is an integral of the
form representing the electrostatic potential of a surface distribution of

charge. In Sec. 3.15 it was shown that such integrals are bounded, con-
tinuous functions of the coordinates (z', y', t') at all points in space,

including those lying on S. Both the normal and tangential components of
the vector potential pass continuously through a single surface current layer.
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Turning our attention now to the vector B, we have according to

Eq. (11), page 231, at a point not on S

(3) E(x', y', z')
= K(z, y, z) x V da.

Upon resolving K into its rectangular components,

K = iK9 +
it appears that (3) is equivalent to

(4) B(*', y', O =
[i
X Jg X.

+ JX

Now an integral of the type

(5) E(z', T/', *')
= ^ J cofe y, 2)VQ da

may be interpreted, apart from a dimensional factor
,
as the field due to

a charge of density w spread over the surface S; and, as was shown in

Sec. 3.15, it exhibits a discontinuity as the point (x' y y
f

,
z

f

) traverses the

surface equal to

(6) E^ - E_ =
con,

where w is the local value of the surface density at the point of transition.

Upon applying this result to (4) it follows immediately that

(7) B^ - B_ = /ioK X n.

The normal component of B passes continuously through a surface layer of

current.

(8) n (B+
- B-) = 0.

The tangential components of B experience a discontinuous jump defined by

(9) n X (B+
- B_) -

juon X (K X n).

The right-hand side, by a well-known identity, transforms to

(10) n X (K X n) = (n n)K - (n K)n.

Since, however, K lies 'n the surface and is hence orthogonal to the unit

normal n, (9) reduces to

(11) n X (B+
- B_) - MOK,

The significance of this analysis is made clearer by comparison with

the boundary conditions deduced directly from Maxwell's equations in
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Sec. 1.13. According to Sec. 4.10 a magnetized medium is equivalent to

a volume distribution of current of density J'
= V X M, but discon-

tinuities in the magnetization must be accounted for by surface layers of

current whose density is K' = n X (M+ M_). The discontinuity in

the field across such a surface is

(12) n X (B+
-

B_) =
Mo[K + n X (M+ - M-)],

or, since B M = H,
Mo

(13) n X (H+ - H_) = K.

The continuity of the normal components of B across the boundary is

ensured by (8).

4.13. Surface Distributions of Magnetic Moment. The equivalence
of a linear circuit and a surface bearing a magnetic dipole distribution was
demonstrated in Sec. 4.7. We shall give some further attention to the

discontinuities exhibited by the potential and field in the neighborhood of

such singular surfaces without restriction to the case of normal magnetiza-
tion. The vector M shall now represent the surface density of magnetiza-

tion, the magnetic moment of the surface S per unit area. The direction

of M with respect to the positive normal n is arbitrary.

At any point not on S the vector potential of the distribution is by
(37), page 237, equal to

(14) A(x', 2/', *')
=

s

M (x, y, z) X V da.

We need but note the similarity of form which this expression bears to

Eq. (3) to conclude that the vector potential experiences a discontinuity

on passing through a surface bearing a distribution of magnetic moment,
the amount of the discontinuity being

(15) k - A_ = juoM X n.

The normal component of A is continuous,

(16) n (A+
- A_) =

0,

but the tangential component is continuous only in case the magnetization i&

normal to the surface. Otherwise

(17) n X (A+ - A_) = MoM - Mo(n M)n.

To investigate the discontinuity exhibited by the magnetic vector B
as it passes through a surface layer of magnetic moment it will be advan-

tageous to employ an expression of the form of Eq. (31), page 236, which

we shall now write as
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(18) B(x', a', z')
- -. V M(*, y, *) V i da.

** ^/s r

The surface polarization M may be resolved into a normal and a tan-

gential component by means of the identity

(19) M = (n M)n + (n x M) x n,

so that in place of (18) one has

(20) B(*', ', z')
= -g V' f (n M)n - V *

da

-~-V f

f[(nx M) xn].y-da.^7r /s f

On comparison with (16), page 189, it is clear that the first integral may
be interpreted as the scalar potential due to a double layer of moment
T = (M n)n, while the negative gradient of this potential at the point
(a/, ?/', z') gives the field intensity. Now it was shown in Sec. 3.16 that
the normal components of the field intensity approach the same limit on
either side of such a distribution, but that the tangential components
cross it discontinuously as expressed by Eq. (21), page 191, the amount of

the jump in the present case being

(21) .

B t+ -Bt-= -
Mo ^(M.n).

Thus the component of B along any direction tangent to a surface bearing
a distribution of magnetic moment experiences a discontinuity on travers-

ing the surface which is proportional to the rate of change of the normal

component of the polarization in that same direction.

Turning our attention next to the contribution of the second integral
in (20), we reduce it to a more familiar form by certain transformations of

the integrand. The identity

(22) [(n X M) x n] V = (n X M) . n X V

can easily be verified. Next let us resolve (n X M) into scalar com-

ponents, so that n X M =
i/i + j/2 + k/3 . We have then

(23) [(nx M) Xn].T = i
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Now if f(x, y, z) be any function which is continuous and has continuous

first and second derivatives over a regular surface S and on its contour

C, then

(24) fn X Vfda = f /ds.
Js Jc

It follows, therefore, that if the tangential components of M satisfy the

prescribed conditions over /S, the three surface integrals whose integrands

are of the type i f n X V
J
can be transformed to integrals along any

closed contour on S, so that

(25)

The remaining three terms of the integrand may be reduced by the

relation

= S.(l x T/. + j x T/. + k _n-T X (0 X M)

The second term on the right-hand side of (20) has, therefore, been

resolved into a contour integral plus a surface integral, or

(27)
-1 V f [(n X M) X n] V - da = -i V fv '

4?r Js
LV ' J

r 47r Jcc r

/^ ,
f n V X (n X M)

4x Js r

Now the contour integral is continuous and continuously differenti-

able at points on S which are interior to the contour. On the other

hand, the last term of (27) might be interpreted as the field intensity at

a point (x', y'> z') due to a surface charge distribution of density

-n V X (n X M).

Consequently, one must conclude that the tangential component of

surface magnetization leads to a discontinuity in the normal components
of B at the surface S of amount

(28) B+ - Bn- = -//on V X (n X M).
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Differentiation is restricted to directions tangent to the surface. Con-

sequently the vector V(M n) lies in the surface, while the vector

V X (n X M) is normal to it. The discontinuities exhibited by the vector

B in its transition through a surface distribution of magnetic moment can

be expressed by the single formula:

(29) B+ - B_ = ~juo[V(n M) + V X (n X M)].

INTEGRATION OF THE EQUATION V X V X A = /J

4.14. Vector Analogue of Green's Theorem. The classical treatment

of the vector potential is based on a resolution into rectangular com-

ponents. On the assumption that V A =
0, each component can be

shown to satisfy Poisson/s equation and the methods developed for the

analysis of the electrostatic potential are applicable.

The possibility of integrating the equation V X V X A =
/xj directly

by means of a set of vector identities wholly analogous to those of Green

for scalar functions appears to have been overlooked. Let V be a closed

region of space bounded by a regular surface S, and let P and Q be two

vector functions of position which together with their first and second

derivatives are continuous throughout V and on the surface S. Then,
if the divergence theorem be applied to the vector P X V X Q, we have

(1) V (P X V X Q) dv = (P X V X Q) n da.

Upon expanding the integrand of the volume integral one obtains the

vector analogue of Green's first identity, page 165,

(2) y (V X P V X Q - P V X V X Q) dv

= f (P X V X Q) n da.
/o

The analogue of Green's second identity is obtained by an interchange

of the roles of P and Q in (2) followed by subtraction from (2). As a

result

(3) y (Q V X V X P - P V X V X Q) dv

=
jf(PXVXQ-QXVXP)-ncZa.

4.15. Application to the Vector Potential. We shall assume that the

volume density of current J(x, y, z) is a bounded but otherwise arbitrary

function of position. The regular surface S bounding a volume V need

not necessarily contain within it the entire source distribution, or even

any part of it. As in Sec. 3.4 we shall choose as an arbitrary origin

and x =
z', y =

y', z = z' as a fixed point within V.
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Now let P represent the vector potential A subject to the conditions

(4) V X V X A = /J, V A =
0,

where \i is the permeability of a medium assumed homogeneous and iso-

tropic. The choice of Q may be made in either of two ways. It will

be recalled that in the scalar case the Green's function
\l/ satisfied Laplace's

equation vV = and could be interpreted as the potential at (x
f

, y' y z')

due to a charge 4?re located at (x, y, z). likewise the vectorial Green's

function Q may be chosen to represent the vector potential at (z', y', z'}

produced by a current of density 4T/ju located at (x, y, z} and directed

arbitrarily along a line determined by the unit vector a.

(5) Q(x, y, z] x', y', z'}
= =, r = V(x' -

*)
2 + (y'

-
2/)

2 + ('
-

*)
2
-

However the divergence of this function is not zero and consequently

(5) fails to satisfy the condition V X V X Q = 0. On the other hand,
the vector potential arising from a distribution of magnetic moment has

been shown to satisfy V X V X A = everj where and an appropriate
Green's function for the present problem is, tferefore,

(6) Q-

Obviously (6) may be interpreted as the vectof potential of a magnetic

dipole of moment a.
M

Either (5) or (6) may be applied to the integration of (4) but the

necessary transformations turn out to be simpler *n the case of (5) in spite

of the divergence trouble. We have in fact

(7) V X Q = V (~\ X a, V X V X Q = V a V

(8) P-V X V X Q - A

In these transformations and those that follow it is to be kept in mind that

a is a constant vector. The left-hand side of the identity (3) can now
be written
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Proceeding to the transformation of the surface integrals, we have

(10) (PX VXQ).n=JAx[vQxa]j.n
= a V (i

j
X (A X n),

/ \
(11) (Q X V X P) n =

in which B replaces V X A. The identity (3) becomes

(12) dv = (A.n)vda + ~ X (A X n) da

(*
Js r

Now the validity of this relation has been established only for regions

within which both P and Q are continuous and possess continuous first

and second derivatives. Q, however, has a singularity at r = and

consequently this point must be excluded. About the point (#', y', z') a

small sphere of radius ri is circumscribed. The volume V is now bounded

by the surface Si of the sphere and an outer enveloping surface S as

indicated in Fig. 25, page 166. Since V(l/r) = r/r
2

,
the surface integrals

over Si may be written

: X (A x n) da H |
n X B da.

The integrand of the middle term is transformed to

(13) r X (A X n) =
(r

- n)A - (A - n)r + A X (r X n),

and since on the sphere r n =
1, r X n = 0, the surface integrals

over Si reduce to

\ f Ada + ~ f
*1 jSi 7*1 JSi

If A and n X B denote the mean values of the vectors A and n X B over

the surface of the sphere, these integrals have the value

which in the limit as n > reduces to 4rA(z', y', z
1

). Upon introducing
this result into (12) and transposing, we find the value of the vector

potential at any fixed point expressed in terms of a volume integral
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and of surface integrals over an outer boundary which is again denoted

byS.

U4> w.,, -

The proof that the divergence of (14) at the point (x', t/', z') is zero

is left to the reader. Clearly the surface integrals represent the con-

tribution to the vector potential of all sources that are exterior to the

surface 8. At all points within 7, the vector A (re', y
f

, z') defined by (14)

is continuous and has continuous derivatives of all orders. Across the

surface $, however, it is apparent from the form of the surface integrals
that A and its derivatives will exhibit certain discontinuities. We shall

show in fact that outside 8 the vector A is zero everywhere.
The first surface integral in (14) may be interpreted as the contribu-

tion to the vector potential of a surface current

(15) K = -- n X B_
t

in which the subscript of B_ emphasizes that this value of B is taken

just inside the surface 8. Now in Sec. 4.12 it was shown that a surface

layer of current does not affect the transition of the vector potential, but

gives rise to a discontinuity in B of amount

(16) n X (B+
-

B_) =
jiK.

Upon replacing K by its value from (15) it is clear that just outside S

(17) n X B+ =

In like manner the second surface integral is equivalent to the vector

potential of a distribution of magnetic surface polarization of density

(18) M = - A_ X n.

The normal component of A passes continuously through such a layer,

but the tangential component is reduced discontinuously to zero, as we
see on substituting (18) into (17), page 247

(19) n X (A+ - A_) = -n X A- + [n . (n X A_)]n,

whence

(20) n X A+ = 0,
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The mathematical significance of the last term of (14) is apparent,
but it is difficult to imagine a physical distribution of current or magnetic
moment of the type called for. This is the form of integral which we
have associated with the field intensity of a surface charge of density

(A_-n), and which leads to a discontinuity in the normal component

specified by

(21) n - (A+
-

A..)
= n A.,

as a consequence of which we conclude that

(22) n A+ = 0.

Thus far we have demonstrated that on the positive side of the closed

surface S the tangential and normal components of A and the tangential

component of B are everywhere zero. It follows at once, however, that

the normal component of B must also vanish over the positive side of S;

for the normal component of the curl A involves only partial derivatives in

directions tangential to the surface. Furthermore, we need but apply

(14) itself to the region external to S to prove that A, and consequently

B, must vanish everywhere. Current and magnetic polarization are

absent outside F, since their effect is represented by the surface integrals.

Then, since n X B+, n X A+ and n A+ are all zero, it follows from (14)

that A(z', y' t z') must vanish at all points outside S.

When Q = v(l/r) X a is chosen in place of (5) as a Green's function,

it can be shown without great difficulty that

(23) B(*', y>, O =
J^

J X V dv -
J^

(n X B) X V
(j)

da

This is the extension of the Biot-Savart law to a region of finite extent

bounded by a surface S. The contribution of currents or magnetic
matter outside 8 to the field within is accounted for by the two surface

integrals.

BOUNDARY-VALUE PROBLEMS

4.16. Formulation of the Magnetostatic Problem. A homogeneous,

isotropic body is introduced into the constant field of a fixed and specified

system of currents or permanent magnets. Our problem is to determine

the resultant field both inside and outside the body. In case the current

density at all points within the body is zero, the secondary field arising

from the induced magnetization can be represented everywhere by a

single-valued scalar potential <* and the methods developed for the
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treatment of electrostatic problems apply in full. A schedule for the

solution may be drawn up as follows.

The scalar potential of the primary field is <ftf . In case the primary
source is a current distribution <$ is multivalued but this in no way
affects the determination of the induced field

</>?,.
The resultant potential

is </>*
= (* + 0*. The permeability of the body will be denoted by jm

and that of the homogeneous medium in which it is embedded by ju 2 .

Then a function <#>* must be constructed such that:

(1) V 2
<? =

0, at all points not on the boundary;

(2) </>f is finite and continuous everywhere including the boundary;
(3) Across the boundary the normal derivatives of the resultant potential

<* satisfy the condition

the subscripts + and implying that the derivative is calculated

outside or inside the boundary surface respectively. The induced

potential <* is, therefore, subject to the condition

in which f is a known function of position on the boundary satisfying
the condition

(4)

(5) At infinity <f>f must vanish at least as 1/r
2

,
so that r*4>? remains

finite as r > <*>
y for there is no free magnetic charge and conse-

quently <f must vanish as the potential of a dipole or multipole of

higher order.

In case the body carries a current, the interior field cannot be repre-
sented by a scalar potential and the boundary-value problem must be
Solved in terms of a vector potential. Such a case arises, for example,
when an iron wire carrying a current is introduced into an external mag-
netic field. The distribution of the current in the stationary state is

unaffected by the magnetic field. Its determination is in fact an electro-

static problem. The vector potential of the primary sources is A while
the potential of the induced and permanent magnetization of the body
and of the current which it may carry will be denoted by AI. This
function AI is subject to the following conditions:

(1) V X V X AI =
jwj, at points inside the body where the current

density is J ;
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(2) V X V X Ai =*
0, at all other points not on the boundary S;

(3) V AI =
0, at all points not on S;

(4) Ai is finite and continuous everywhere and passes continuously

through the boundary surface (Sees. 4.10 and 4.12);

(5) Across the boundary the normal derivatives of the potential Ai as

well as those of the total potential A satisfy

/dA

V *r
= *o( +

~
} x '

in w/iic/t n is 2/ie outward normal and where M_ is Me polarization

of the body and M+ that of the medium just outside the boundary.

Since M+ and ML are determined at least in part by the field itself this

relation is usually of no assistance in the determination of AI. In its

place the customary boundary condition on the tangential components
of the total field must be applied.

0, which imposes a rela(6) n X (H+ - H_) = n X ( B+
- ^ B_ )

\ Mi /
tion between the derivatives of A in a specified coordinate system;

(7) As r > GO the product rAi remains finite.

4.17. Uniqueness of Solution. The proof that there is only one func-

tion <t>* satisfying the conditions scheduled above was presented in

Sec. 3.20. A corresponding uniqueness theorem for the vector potential

may be deduced from the identity (2) of page 250. Let us put
p = Q == A and assume first that within V\ bounded by S the current

density is zero. Then V X V X A = and

CO f (V X A)
2
<fo = - f A (n X V X A) da.

JVl 4/0

From the essentially positive character of the integrand on the left it

follows that if A is zero over the surface S, then B = V X A is zero

everywhere within the volume V\. Hence A is either constant or at

most equal to the gradient of some scalar ^. But since A is zero on S,

the normal derivative d^/dn is also zero over this surface and it was

shown in Sec. 3.20 that this condition entails a constant value of ^

throughout V\. Consequently, if A vanishes over a closed surface, it

vanishes also at every point of the interior volume. It is also clear that

the vector function A is uniquely determined in Vi by its values on S.

For if there existed two vectors Ai and A2 which assumed the specified

values over the boundary, their difference must vanish not only over 8
but also throughout V\.

The condition V X A =
0, A = V^, throughout Vi can be estab-

lished also by the vanishing of V X A, or of the tangential vector
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n X V X A over S. In this ease, however, it does not necessarily follow

that A is everywhere zero. If the two functions V X AI = Bi and
V X A2

= B 2 are identical on S, then BI and B 2 are identical at all

interior points and AI and A2 can differ at most by the gradient of a

scalar function.

In case there are currents present within V\ the vector potential A
is resolved into a part A' due to these currents and a part A" due to

external sources. The vector A' is uniquely determined by the current

distribution, while the values of A" or its curl over S determine A" at

all interior points.

The vector potential is regular at infinity and consequently the proof

applies directly to the region F2 exterior to S. The vector B is uniquely
determined within any domain by the values of its tangential component
n X B over the boundary.

PROBLEM OF THE ELLIPSOID

4.18. Field of a Uniformly Magnetized Ellipsoid. An ellipsoid whose

semiprincipal axes are a, b
}
c is uniformly and permanently magnetized.

The direction of magnetization is arbitrary, but since the magnetization
vector can be resolved into three components parallel to the principal

axes we need consider only the case in which M is constant and parallel

to the a-axis.

In view of the uniformity of magnetization p* = V M = at

all points inside the ellipsoid. The potential <* of the magnet is due to a
"surface charge" of density w* = n M . The external medium is

assumed in this case to be empty space. The problem is now fully

equivalent to that of the polarized dielectric ellipsoid treated in Sec.

3.27. From Eqs. (27), (32), and (42) the potential 4>i due to the polariza-
tion Px may be found in terms of Px and the parameters of the ellipsoid.

Upon dropping the factor e and replacing Px by MQx one obtains

(i) K-AJI* A

as the magnetic scalar potential at points inside the ellipsoid; at all

external points

AW A*
(2) tf =

The field inside the ellipsoid is

H*
= ~ = -
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Consequently if the magnetization is parallel to a principal axis, the field

H inside the ellipsoid is constant, parallel to the same axis, but opposed

to the direction of magnetization.

4.19. Magnetic Ellipsoid in a Parallel Field. An ellipsoid of homo-

geneous, isotropic material is introduced into a fixed and uniform parallel

field Ho. The ellipsoid is free of residual magnetism and we shall suppose

that for sufficiently weak fields its permeability jui is constant, as is also

the permeability ^2 of the external medium.

The determination of the field can again be adopted directly from the

electrostatic case, for upon reference to Sec. 4.16 it will be noted that

the boundary conditions imposed upon <* are identical with those to be

satisfied by <t> when ju is substituted for . The resultant magnetic

potential at an interior point of the ellipsoid is, therefore,

,
" uz~ H- Qy?/

9 ~" ~T~ ~1~
~

1 + o 0*1
"~ P2)Al 1 +

1 I

aC
f

1 + 9 (Ml
2^2

outside the ellipsoid <* is obtained from (38), page 213, by replacing

by M and adding the contributions induced by Hoy and H Oz .

The torque exerted by the field on the ellipsoid may likewise be

determined directly from (54), page 216, after a similar substitution.

The importance of these results is fundamental. There are experimental
methods of measuring small torques with great precision. The magnetic
field near the center of a long solenoid is very nearly parallel and uniform,
and its intensity in terms of the current can be calculated. Thus the

permeability or susceptibility of the test sample can be determined with

great accuracy.

CYLINDER IN A PARALLEL FIELD

4.20. Calculation of the Field. As an example of the application of

the vector potential, let us consider the following simple problem. A
cylinder or wire of circular cross section and permeability m is embedded
in a medium of permeability ^2- The wire is infinitely long, has a radius

a, and carries a current I. The external field B is directed transverse

to the axis of the wire and is everywhere parallel and uniform. We
wish to calculate first the resultant field at points inside and outside

the cylinder.

The x-axis of the reference system will be chosen parallel to the

vector BO, while the z-axis is made to coincide with the axis of the cylinder
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and the direction of the current, Fig. 43. A vector potential is to be
found which satisfies the conditions

(1) V X V X A =
0, (r> a),

(2) V X V X A = nJ, (r < a).

The current density has only a z-component.

(3) J, = JV
=

0, J, =^ (r< a).

The vector potential may be resolved into two parts: the potential A
of the applied field, and the secondary potential AI due in part to the

Fio. 43. Cylinder in a uniform magnetostatic field.

current I, in part to the induced magnetization. Now clearly B can

be derived from a vector potential directed along the z-axis. If i3 is

the unit vector in the positive z-direction, then

(4) Ao = isB Qy = i3jB r sin 9.

Moreover AI is also oriented along this same axis, for the magnetization
can be represented by equivalent volume and surface currents. Cer-

tainly the induced magnetization lies in the transverse plane and con-

sequently the equivalent currents J'
= V X MI and

K' = n X (M 2
- MO

of Sec. 4.10 are directed along the cylinder. Since the vector potential

is always parallel to the current, AIX = Aiv = 0. The expansion of (2)

is now a simple matter. From (85), page 50, we have

in which the subscript z has been dropped.
A general solution must first be found for the homogeneous equation

obtained by putting the right-hand member of (5) equal to zero. The

separation of such an equation was discussed in Sec. 3.21, and since the

vector potential is a single-valued function of we write down at once
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(6) A' = (an cos n6 + bn sin n0)r
n + ^ (cn cos n0 + dn,cos n0)r~

n

n*0 n=0

Moreover the vector potential must be finite everywhere in space and

consequently inside the cylinder the coefficients cn and dn are zero.

The general solution of (5) is obtained by the usual method of adding
to (6) any particular solution of (5). Since r2J depends only on r, we
shall assume that this particular solution A" is independent of 9.

> '" -

Consequently at all interior points of the cylinder the resultant vector

potential is

(9) A- = - (

J
+ (a* cos n* + 6 sin ne>n

-

V \ / n ~Q

Since the vector potential of the induced magnetization is regular at

infinity, outside the wire we put an = bn in (6). To this must be

added the vector potential of the current I, which in Eq. (20), page 233,

was shown to be /* 2//27r In 1/r, and lastly the contribution of the external

field itself from (4). The resultant vector potential at any point outside

the cylinder is, therefore,

(10) A+ = BQr sin 9 +~ In ~ +^ (c cos n + d sin ne)r~
n

.

n =

Next, the coefficients of the series expansions are determined from the

condition that the vector potential and tangential components of H shall

be continuous across the boundary r = a. From the expansion of the

curl in cylindrical coordinates, page 51, we have

/in p _ 1 dA z R SA Z

(11) B
'~r~de'

5<
=

~~dF'

so that the boundary conditions imposed on the vector potential are

(12) A--A+,N ' '

z

The result of equating coefficients of like terms from (9) and (10) is then

a =
0, Co = (2ji2 In a MI) -*->

7, - 2Ml P /7 _ Mi M2
01 = -:

-
JDQ, aj = -:

-
Ml + M2 Ml + M2
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and all other coefficients zero,

By means of (11) the field may be calculated.

cos

2
sn 0-

The nature of the field inside the cylinder is made somewhat clearer by
a transformation to rectangular coordinates.

(17) Hx = Hr cos -
ffo sin 0, H = Hr sin + He cos 0.

rr- 2JSo / _ 7

The magnetization of the cylinder is given by the relation

Mo

Mo
X.

Mo

Evidently the magnetization induced by the applied field B is in the
direction of the positive x-axis. Upon this is superposed the magnetiza-
tion induced by the current L

4.21. Force Exerted on the Cylinder. If the medium supporting the
wire is fluid, or a nonmagnetic solid, the force per unit length exerted by
the field can be computed from (15), page 155. Resolved into rec-

tangular components, this becomes

F* = I M2 (#*#r
-

J ff2 cos B] r d6.

(20)
Jo \ 2 /
f2- / i \

Fv
= I M2 ( HyHr -H* sin 6 } r dO.

The rectangular components of the field outside the cylinder are first

calculated from (15) and (17).
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H+ = ff + Ml 7^ Ho cos 20 -^ sin 0, .

(21)
1.1 + M.r* arr

H+ = Ml
,

M
'g. Ho sin 20 + H- cos 0,*

Ml
'a

while H2
is equal to the sum of the squares of these two components.

47rV 2

Upon introducing (21) and (22) into (20) and evaluating the integrals,

one obtains the components of the total force exerted by the field upon
the wire and the current it carries.

(23) Fx = 0, Fv
= M2#o/.

That the induced magnetic moment of the wire contributes nothing to

the resultant force follows from the uniformity of the applied field. If

this field, on the other hand, were generated by the current in a neighbor-

ing conductor, the distribution of induced magnetization would no longer

be symmetrical; a force would be exerted on the cylinder even in the

absence of a current /.

Problems

1. An infinitely long, straight conductor is bounded externally by a circular cylin-

der of radius a and internally by a circular cylinder of radius b. The distance between

centers is c, with a > b + c. The internal cylinder is hollow. The conductor carries

a steady current 7 uniformly distributed over the cross section. Show that the field

within the cylindrical hole is

H - 62
)

and is directed transverse to the diameter joining the two centers.

2. Two straight, parallel wires of infinite length carry a direct current 7 in opposite

directions. The conductivity a- of the wires is finite. The radius of each wire is a and

the distance between centers is 6.

a. Using a bipolar coordinate system find expressions for the electrostatic poten-

tial and the transverse and longitudinal components of electric field intensity at

points inside and outside the conductors.

b. Find expressions for the corresponding components of magnetic field intensity.

c. Discuss the flow of energy in the field.

3. A circular loop of wire of radius a carrying a steady current 7 lies in the st/-plane

with its center at the origin. A point in space is located by the cylindrical coordinates
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r, <f>, z, where x = r cos <, ?/ r sin <. Show that the vector potential at any point
in the field is

= OM/
f

2r J (a
2 + r 2 + z2 - 2ar cos ,

where /b
2 = 4ar/[(a -f r)

2 + z2
], and K and E are complete elliptic integrals of the

first and second kinds.

Show that when (r
2
-f z2

)* a, this reduces to Eq. (37), p. 237, for the vector

potential of a magnetic dipole.

4. From the expression for the vector potential of a circular loop in Problem 3

show that the components of field intensity are

Hr = - .

-
, ,

5 + r* + z*

2w r[(a +

H -
'

2*- [(a

a-r- 8
]+ (-^+^ J"

6. The field of two coaxial Hclmholtz coils of radius a and separated by a distance

a between centers is approximately uniform in a region near the axis and halfway
between them. Assume that each coil has n turns, that the cross section of a coil is

small relative to a, and that each coil carries the same current. From the results of

Problem 4 write down expressions for the longitudinal and radial components of H at

points on the axis and at any point in a plane normal to the axis and located midway
between the coils. What is the field intensity at the mid-point on the axis? Find
an expansion for the longitudinal component Hz in powers of z/a valid on the axis in

the neighborhood of the mid-point, and corresponding expressions for Ut and Ht in

powers of r/a valid over the transverse plane through the mid-point.
6. Two linear circuits Ci and C 2 carry steady currents /i and 72 respectively.

Show that the magnetic energy of the system is

1 fc fc
!

/ Ci j Ca

where ds\ and dsz are vector elements of length along the contours and 7*12 the distance

between these elements. The permeability ju is constant.

The coefficient of mutual inductance is defined by the relation

- --
4?r J c\

7. Show that the mutual inductance of two circular, coaxial loops hi a medium of

constant permeability is

Li, - -
|
E\
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where a and 6 are the radii of the loops, c the distance between centers, K and E the

complete elliptic integrals of the first and second kinds, and k is defined by

4a6

(a + 6)
2 + c2

When the separation c is very small compared to the radii and a 6 show that this

formula reduces to

^Ma(ln "J
~

where d - [(a
-

&) + c2
]*.

8. The coefficient of self-inductance L\\ of a circuit carrying a steady current I\ is

defined by the relation

where T\ is the magnetic energy of the circuit. Hence L\\ can be calculated from

either of the expressions

'll "
T\ J

J
' A dv ~

7? J

provided B is a linear function of H. The volume integral in the first case is extended

over the region occupied by current, in the second over the entire field. That portion
of LU associated with the energy of the field inside the conductor is called the internal

self-inductance Z/n .

Show that the internal self-inductance of a long, straight conductor of constant

permeability /*i is

L'n = henrys/meter.
Sir

9. Show that the self-inductance of a circular loop of wire of radius R and cross-

sectional radius r is

where /ui is the permeability of the wire and /z 2 that of the external medium, both being
assumed constant.

10. A toroidal coil is wound uniformly with a single layer of n turns on a surface

generated by the revolution of a circle r meters in radius about an axis R meters from

the center of the circle. Show that the self-inductance of the coil is

henrys.

11. A circular loop of wire is placed with its plane parallel to the plane face of a

semi-infinite medium of constant permeability. Find the increase in the self-induc-

tance of the loop due to the presence of the magnetic material.

Show that if the plane of the loop coincides with the surface of the magnetic

material, the self-inductance is increased by a factor which is independent of the form

of the loop.

12. Find an expression for the change in self-inductance of a circular loop of wire

due to the presence of a second circular loop coaxial with the first.
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13. An infinitely long, hollow cylinder of constant permeability MI is placed in a
fixed and uniform magnetic field whose direction is perpendicular to the generators of

the cylinder. The potential of this initial field is <* H^r cos 0, where r and 6

are cylindrical coordinates in a transverse plane with the axis of the cylinder as an

origin. The cross section of the cylinder is bounded by concentric circles of outer

radius a and inner radius 6. The permeability of the external and internal medium has

the constant value M2. Show that the potential at any interior point is

1 -
/MI + M,V _ /&Y
\Mi

-
M2/ \a/

HQ r cos 8, (r < 6).

14. A hollow sphere of outer radius a and inner radius 6 and of constant permeabill

ity MI is placed in a fixed and uniform magnetic field Ho. The external and internal

medium has a constant permeability M2. Show that the internal field is uniform and is

given by

H
1-1-

1 -
(MI

20*1
~

M2)
2

bV
a

Ho, (r < 6).

Discuss the relative effectiveness of a hollow sphere and a long hollow cylinder for

magnetic shielding.

16. A magnetic field such as is observed on the earth's surface might be generated
either by currents or magnetic matter within the earth, or by circulating currents

above its surface. Actual measurement indicates that the field of external sources

amounts to not more than a few per cent of the total field. Show how the contribu-

tions of external sources may be distinguished from those of internal sources by meas-

urements of the horizontal and vertical components of magnetic field intensity on the

earth's surface.

16. Assume that the earth's magnetic field is due to stationary currents or mag-
netic matter within the earth. The scalar potential at external points can then be

represented as an expansion in spherical harmonics. Show that the coefficients of

the first four harmonics can be determined by measurement of the components of

magnetic field intensity at eight points on the surface.

17. A winding of fine wire is to be placed on a spheroidal surface so that the field

of the coil will be identical with that resulting from a uniform magnetization of the

spheroid in the direction of the major axis. How shall the winding be distributed?

18. A copper sphere of radius a carries a uniform charge distribution on its sur-

face. The sphere is rotated about a diameter with constant angular velocity. Cal-

culate the vector potential and magnetic field at points outside and inside the sphere.

19. A solid, uncharged, conducting sphere is rotated with constant angular velocity

w in a uniform magnetic field B, the axis of rotation coinciding with the direction of

the field. Find the volume and surface densities of charge and the electrostatic

potential at points both inside and outside the sphere. Assume that the magnetic
field of the rotating charges can be neglected.

20. The polarisation P of a stationary, isotropic dielectric in an electrostatic field

E is expressed by the formula

P -
(
-

o)B.
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If each element of the dielectric is displaced with a velocity v in a magnetic field the

polarization is

P -
(
-

eo)(E+v XB),

at least to terms of the first order in 1/c = \/ OMO.

A dielectric cylinder of radius a rotates about its axis with a constant angular

velocity w in a uniform magnetostatic field. The field is parallel to the axis of the

cylinder. Find the polarization of the cylinder, the bound charge density appearing
on the surface, and the electrostatic potential at points both inside and outside the

cylinder.

21. A dielectric sphere of radius a in a uniform magnetostatic field is rotated with

a constant angular velocity co about an axis parallel to the direction of the field. Using
the expression for polarization given in Problem 20, find the densities of bound volume
and surface charge and the potential at points inside and outside the sphere.

22. Show that the force between two linear current elements is

4?r

where r is a unit vector directed along the line r joining <isi and d$ 2 from d$i toward

G?S 2 .

23. A long, straight wire carrying a steady current is embedded in a semi-infinite

mass of soft iron of permeability /t at a distance d from the plane face. The wire is

separated from the iron by an insulating layer of negligible thickness. Find expres-

sions for the field at points inside and outside the iron.

24. A long, straight wire carrying a steady current is located in the air gap between

two plane parallel walls of infinitely permeable iron. The wire is parallel to the walls

and is assumed to be of infinitesimal cross section. Find the field intensity at any

point in the air gap. Plot the force exerted on the conductor per unit length for a cur-

rent of one ampere as a function of its distance from one wall.

// * * * '/////
^* A- l n&> straight conductor of infinitesimal

Iron
"///< cross section lies in an infinitely deep, parallel-sided

slot in a mass of infinitely permeable iron. The thick-

p^ i ness of the slot is I and the conductor is located by the

parameters s and h as in the figure. Calculate the

//A
\ f ,,,, *\ f , ,

^e^ intensity at points within the slot and the force

^K/^^ on unit Ien8th of conductor per ampere. (Cf. Hague,
"
Electromagnetic Problems in Electrical Engineering,"

and Linder, /. Am. lust. Elec. Engrs., 46, 614, 1927.)

26. An infinite elliptic cylinder of soft iron defined by the equation

is placed in a fixed and uniform magnetic field whose direction is perpendicular to the

generators of the cylinder. Find expressions for the magnetic scalar potential at

internal and external points and calculate the force and torque exerted on the cylinder

per unit length. Discuss the case of unit eccentricity in which the cylinder reduces
to a thin slab.

27. A particle of mass m and charge q is projected into the field of a magnetic
dipole.
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a. Write the differential equations for the motion of the particle in a system of

spherical coordinates whose origin coincides with the center of the dipole.

6. Show that the component of the angular momentum vector in the direction of

the dipole axis is constant.

c. Discuss the trajectory in the case of a particle initially projected in the equa-
torial plane.

28. A small bar magnet is located near the plane face of a very large mass of soft

iron whose permeability is M. The magnet is located by its distance from the plane
and the angle made by its axis with the perpendicular passing through its center.

Considering only the dipole moment of the magnet, find the force and torque exerted

on it by the induced magnetization in the iron.

29. Two small bar magnets whose dipole moments are respectively mi and ma are

placed on a perfectly smooth table. The distance between their centers is large

relative to the length of the magnets. At any instant the dipole axes make angles 0i

and 02 with the line joining their centers.

a. Calculate the force exerted by mi on ma and the torque on ni2 about a vertical

axis through its center.

6. Calculate the force exerted by m 2 on mi and the torque on mi about a vertical

axis through its center.

c. Calculate the total angular momentum of the system about a fixed point in the

plane. Is it constant?

30. Show that the force between two small bar magnets varies as the inverse

fourth power of the distance between centers, whatever their orientation in space.

31. A magnetostatic field is produced by a distribution of magnetized matter.

There are no currents at any point. Show that the integral

U B H dv =

if extended over the entire field.

32. If J(a, y, z) is the current density at any point in a region V bounded by a closed

surface S, show that the magnetic field at any interior point x r

, y
f

,
z' is

where r \/Oe' #)
2

-f- (y
f

y)
2
H- (z

r

z)
2

,
and that at exterior points the value

of the surface integral is zero.

33. Determine the field of a magnetic quadrupole from the expansion of the vector

potential given by Eq. (23), p. 234. Give a geometrical interpretation of the quad-

rupole moment in terms of infinitesimal linear currents.



CHAPTER V

PLANE WAVES IN UNBOUNDED, ISOTROPIC MEDIA

Every solution of Maxwell's equations which is finite, continuous,

and single-valued at all points of a homogeneous, isotropic domain

represents a possible electromagnetic field. Apart from the stationary

fields investigated in the preceding chapters, the simplest solutions

of the field equations are those that depend upon the time and a single

space coordinate, and the factors characterizing the propagation of

these elementary one-dimensional fields determine also in large part
the propagation of the complex fields met with in practical problems.
We shall study the properties of plane waves in unbounded, isotropic

media without troubling ourselves for the moment as to the exact nature

of the charge and current distribution that would be necessary to establish

them.

PROPAGATION OF PLANE WAVES

6.1. Equations of a One-dimensional Field. It will be assumed for

the present that the medium is homogeneous as well as isotropic, and

of unlimited extent. We shall suppose, furthermore, that the relations

(1) D = E, B = /*H, J =
<rE,

are linear so that the medium can be characterized electromagnetically

by the three constants
, /*, and a. If the conductivity is other than zero

any initial free-charge distribution in the medium must vanish spontane-

ously (Sec. 1.7). In the following, p will be put equal to zero in dielectrics

as well as conductors. The Maxwell equations satisfied by the field

vectors are then

-JTT

(I) V X E +^ =
0, (III) V - H =

0,

*\Tf

(II) VXH-e^~-(7E =
0, (IV) V - E = 0.

We now look for solutions of this system which depend upon the time

and upon distance measured along a single axis in space. This preferred
direction need not coincide with a coordinate axis of the reference system.
Let us suppose, therefore, that the field is a function of a coordinate

f measured along a line whose direction is defined by the unit vector n.

The rectangular components nX) Uy, n of this unit vector are obviously
268
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the direction cosines of the new coordinate axis J". Our assumption

implies that at each instant the vectors E and H are constant in direction

and magnitude over planes normal to n. These planes are defined by
the equation

(2) r n = constant,

where r is the radius vector drawn from the origin to any point in the

plane as indicated by Fig. 44.

FIG. 44. Homogeneous plane waves are propagated in a direction fixed by the unit vector n.

Since the fields are of the form

(3) E - E(T, 0, H - H(r, 0,

the partial derivatives with respect to a set of rectangular coordinates

may be expressed by
d d d d e d

From these we construct the operator v and so obtain simplified expres-

sions for the curl and divergence.

(6)

(7)

V X E = n X
&E

(a x

In virtue of these relations, the field equations assume the form

(I) n X |? + /*^ =
0, (III) n ^? =

0,
OC ut u\

C/Xl UjCj v* ^ x-r-r-rv C/JC/

i X ^r - -TT - o-E = 0, (IV) n = 0.
o ol o$
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This system is now solved simultaneously by differentiating first (I)

with respect to f and then multiplying vectorially by n. (II) is next

differentiated with respect to t. We have

(8)

ff

at
'

upon elimination of the terms in H, the vector E is found to satisfy the

equation

A similar elimination of E leads to an identical equation for H.

,1A, 3 2H 3 2H 3H .

(10) -^--^-^--^^-=0.

Since n ( n X ^7 1 is identically zero, it follows from (I) that

c_, =o. Taken together with (III), this gives
at

We are forced to conclude that a variation of the f-component of H with

respect to either f or t is incompatible with the assumption of a field which

is constant over planes normal to the f-axis at each instant. Equation

(11) does admit the possibility of a static field in the f-direction but, since

at present we are concerned only with variable fields, we shall put Hf = 0.

Likewise, it follows from (II) that

(12) n

this together with (IV) leads to

(13) n-c + -E<tt + d =n.dE + Edt =0.
\dt e ar / \ /

The component of E normal to the family of planes, therefore, satisfies

the condition

(14)

which upon integration gives

(15)
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where E^ is the longitudinal component of E at t = and T = /<r is the
relaxation time defined on page 15. If the conductivity is finite, the

longitudinal component of E vanishes exponentially: a static electric

field cannot be maintained in the interior of a conductor. According to

(15) there may be a component E{ in a perfect dielectric medium, but
this particular integral does not contain the time.

Equations (11) and (13) prove the transversality of the field. The
vectors E and H of every electromagnetic field subject to the condition (3) lie

in planes normal to the axis of the coordinate f .

Let us introduce a second system of rectangular coordinates
, 77, f ,

whose origin coincides with that of the fixed system x, y, z and whose
f-axis is oriented in the direction specified by n. With respect to this

new system the vector E has the components E^ Jg,, and Ef
= 0. Both

EZ and EH satisfy (9), which can be solved by separation of the variables.

Let

Then

where k 2
is the separation constant. The general solution of the

equation in /i is

(18) /!() = Ae*t + Ber**,

where A and B are complex constants; for/2 we shall take the particular
solution

(19) M) = Or*.

Then p must satisfy the determinantal equation

(20) p'
- ? p + *! = 0.

There exists a fixed relation between p and the separation constant fc
2

;

the value of either may be specified, whereupon the other is determined.

From (18) and (19) may be constructed a particular solution of the

form

(21) ES =

likewise, for the other rectangular component,

(22) E, = Ei^-^ +
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The four complex constants EU . . . E%, are the components of two

complex vector amplitudes lying in the 77 plane. Combining (21) and

(22), one obtains

(23) E = -v +
This vector solution of (9) in turn is introduced into the field equations
to obtain the associated magnetic vector H. Since H must have the

n

PIG. 45. Relative directions of the electric and magnetic vectors in positive and negative
waves.

same functional dependence on f and
,
we can write

(24) H = Hie**-* + Htf-**-*,

and then determine the constants Hi, H2 in terms of Ei and E2.

(25)
= i

dt
= -pH.

These derivatives are introduced into (I) and lead to

(26) (ifcn X Ei - pMHi)e^-"< -
(ifcn X E2 + pvK^e-**-* = 0.

The coefficients of the exponentials must vanish independently and,

hence,

(27) Hi = n X Ei, = n X 2*

In terms of the rectangular components,

""
ik
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Since E n X E =
0, it follows that E H = 0. The electric and magnetic

vectors of afield of the type defined by Eq. (3) are orthogonal to the direction n
and to each other. These mutual relations are illustrated in Fig. 45.

5.2. Plane Waves Harmonic in Time. There are now two cases to

be considered, dependent upon the choice of p and fc, which it will be well

to treat separately. Let us assume first that the field is harmonic in

time, and that therefore p is a pure imaginary. The separation constant
is then determined by (20).

(29) p =
ico, ft

2 =
/zeco

2 + ijjuru.

In a conducting medium fc
2
,
and hence k itself, is complex. The sign of

the root will be so chosen that the imaginary part of k is always positive.

(30) k = a + iff.

The amplitudes EU . . . E*, are also complex and will be written now in

the form

where the new constants a x . . . 6 2 , #1 . . . ^2 are real. In virtue of

these definitions we have for the ^-component of the vector E

(32) EZ = aie-ft**-"**'* + a^t-****"'-'* .

Since (32) is the solution of a linear equation with real coefficients, both
its real and imaginary parts must also be solutions. The real part of (32)
is

(33) ES = aie-*r cos (ut
- af - 0i) + a^ cos (wt + af - 2).

The phase angles 0i and 2 are arbitrary and consequently a choice of the

imaginary part of (32) does not lead to a solution independent of (33).
In the same way the Ty-component of E is obtained from (22).

(34) # = fctf-tt cos (at
- af - ^i) + bzePt cos (w + ctf

-

The components of the associated magnetic field are found from (28).

We now have

ik a + ift V 2 +=-- =-!

, i-s tan" 1 -

The complex ^-component of H is

(36) ff = Hi^r+iw-^o + Hu^r

upon substitution of the appropriate values of His and #2$, we obtain for



cos (erf
- af -

0i
-

7)

cos (erf + af - 2
-

7).
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the real part
-v/^2 JL /Q2

COS (cot Qjf tyl 7)

if* cos (erf
/zco

Similarly for the rj-component,

(38)

These solutions correspond obviously to plane waves propagated

along the f-axis in both positive and negative directions. Consider first

the most elementary case in which all amplitudes except a\ are zero in a

nonconduct ng medium. Then a and consequently ft are zero and the

field is represented by the equations

(39) Et = ai cos (erf af 0i), HI = ai cos (erf af 0i).
fJ.00

This field is periodic in both space and time. The frequency is eo/27r
= v

and the period along the time axis is 2?r/co
= T. The space period is

called the wave length and is defined by the relation

fAf\\ ^ \ ^fl"

(40) a ) X =
A a

The argument <i = erf af 0i of the periodic function is called the

phase and the angle 0i, which will be determined by initial conditions, is

the phase angle. At each instant the vectors E and H are constant over

the planes f = constant. Let us now choose a plane on which the phase
has some given value at t = 0, and inquire how this plane must be dis-

placed along the f-axis in order that its phase shall be invariant to a

change in t. Since on any such plane the phase is constant, we have

(41) $1 = co af 0i = constant, d<j>i
= w dt a d = 0.

The surfaces of constant phase in a field satisfying (39) are, therefore,

planes which displace themselves in the direction of the positive f-axis

with a constant velocity

v is called the phase velocity of the wave. It represents simply the

velocity of propagation of a phase or state and does not necessarily

coincide with the velocity with which the energy of a wave or signal is
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propagated. In fact v may exceed the critical velocity c without violating
in any way the relativity postulate.

In a nonconducting medium

(43) a = co A/Ate, v =

where c is the velocity of the wave in free space and *, Km are the electric

and magnetic specific inductive capacities. In optics the ratio

n = c/v ac/co is called the index of refraction. Since in all but ferro-

magnetic materials Km is very nearly unity, the index of refraction should
be equal to the square root of Ke . This result was first established by
Maxwell and was the basis of his prediction that light is an electro-

magnetic phenomenon. Marked deviations from the expected values of

n were observed by Maxwell, but these were later accounted for by the

discovery that the inductive capacity does not necessarily maintain at

high frequencies the value measured under static or quasi-static condi-

tions. A functional dependence of n on the frequency results in a

corresponding dependence of the phase velocity and leads to the phe-
nomena known as dispersion.

At a given frequency the wave length is determined by the properties
of the medium.

(44) X = - = H
v n

where X is the wave length at the same frequency in free space. In all

nonionized media n > 1, and consequently the phase velocity is decreased
and the wave length is shortened.

Referring again to (39), we see that the relation of the magnetic
to the electric vector is such that the cross product E X H is in the
direction of propagation. The magnetic vector is propagated in the
same direction with the same velocity, and in a nonconducting medium
is exactly in phase with the electric vector. Their amplitudes differ

by the factor

(45) =
^|i

= 2.654 X 10-3

^, (, = 0).

If in Eqs. (33) to (38) all amplitudes except a 2 are put equal to zero,
another particular solution is found which in nonconducting media
reduces to

(46) EI = a2 cos (at + af - 2), fff
= a2 J- cos (at + af - 0,).

This field differs from the preceding only in its direction of propagation.
The phase is < 2

= wt + af 2 and the surfaces of constant phase are
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propagated with the velocity v = w/a in the direction of the negative

f-axis.

The two particular solutions whose amplitudes are bi and 6 2 represent

a second pair of positive and negative waves, both characterized by
electric vectors parallel to the rj-axis.

Let us remove now the restriction to perfect dielectric media and
examine the effect of a finite conductivity. It is apparent in the first

place that both electric and magnetic vectors are attenuated exponen-

tially in the direction of propagation. Waves traveling in the negative
direction are multiplied by the factor e~w, but since f decreases in the

direction of propagation this too represents an attenuation. Not only
does a conductivity of the medium lead to a damping of the wave, but

it affects also its velocity The constants a and & can be calculated in

terms of p,, *, and <r by squaring (30) and equating real and imaginary parts

respectively to the real and imaginary terms in (29).

(47) cf - P

Upon solving these relations simultaneously, we obtain

Ambiguities of sign that arise on extracting the first root are resolved

by noting that a and ft must be real.

The planes of constant phase are propagated with a velocity

-1/2

which increases with frequency so long as the constants Ke , Km, and or are

independent of frequency. Attenuation of amplitudes in a surface of

constant phase is determined by the attenuation factor ft which also

increases with increasing frequency. The complex factor k will be referred

to as the propagation constant, and its real part a may be called the phase

constant, although this term is applied also to the angles 6 and ^.

The effect of frequency and conductivity on the propagation of plane

waves is most easily elucidated by consideration of two limiting cases.

Examination of (48) and (49) shows that the behavior of the factors

a and is essentially determined by the quantity <r
2
/c

2
co

2
. Now the



SEC. 5.2] PLANE WAVES HARMONIC IN TIME 277

total current density at any point in the medium is

(51) J = <rE + ^ =
(*
-

twe)E f
Of

whence it is apparent that or/we is equal to the ratio of the densities of

conduction current to displacement current.
2

Case I. ~2~2 ^ ! The displacement current is very much greater

than the conduction current. This situation may arise either in a

medium which is but slightly conducting, or in a relatively good con-

ductor such as sea water through which is propagated a wave of very

high frequency. Expansion of (48) and (49) in powers of <r
2
/

2 2
gives

(52) =

(53)
"

One will remark that to this approximation the attenuation factor is

independent of frequency. In a given medium the attenuation approaches

asymptotically a maximum defined by (53) as the frequency is increased.
2

Case II. i?^ 1- The conduction current greatly predominates
e cu

over the displacement current. This is invariably the case in metals,
where a is of the order of 10 7

mhos/meter. Not much is known about the

inductive capacity of metals but there is no reason to believe that it

assumes large values. Since the magnitude of e is probably of the order

of 10~n
,
the displacement current could not possibly equal the conduction

current at frequencies less than 10 17
, lying in the domain of atomic

phenomena to which the present obviously does not apply. For a and ft

we obtain the approximate formula

(54) a =
ft
=
J^j-

= 1.987 X 10~3 Vw^.

An increase of frequency, permeability, or conductivity contributes in

the same way to an increase in attenuation. The phase velocity also

increases with frequency, but decreases with increasing a or Km . Thus
the higher order harmonics of a complex periodic wave are constantly

advancing with respect to those of lower order.

The amplitudes of the electric and magnetic vectors of a plane wave
a*e related by

(55) IHI =
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(6)

In poorly conducting media expansion of (56) gives

(57)
V* + P* ^ 2.654 x 10-3 /

( i + 0.807 X 1020

JUCO \ ACm \

whereas in good conductors,

<58) ^T^ -^ = 355 '8
>/ (a* 0'

In a perfect dielectric the electric and magnetic vectors oscillate in

phase; if the medium is conducting, the magnetic vector lags by an

angle y.

(59)

If T~2^ ^ ^s ra^ reduces to unity; hence the magnetic vector of a

plane wave penetrating a metal lags behind the electric vector by 45 deg.

6.3. Plane Waves Harmonic in Space. The assumption that p in

Eq. (20) is a pure imaginary leads to complex values of k and to electro-

magnetic fields which are simple harmonic functions of time. A field

which at any given point on the f-axis is a known periodic function of t

can be resolved by a Fourier analysis into harmonic components propa-

gated along the f-axis as just described. The time variation at any other

fixed point can then be found by recombining the components at the

point in question. In place of the variation of the field with t at a certain

point f ,
one may be given the distribution with respect to f at a specified

value of t and asked to determine the field at any later instant. A
harmonic analysis must then be made with respect to the variable f .

Let the separation constant k 2 be real. Then p is a complex quan-

tity determined by

/*m *
,

(60) p=! _

Vfc

2
<r
2--

T"V the electric vector defined
/* 4e2

in (23) assumes the form

(61) E - Etf-S- 8 +
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If now <7
2
/4

2 < fc
2
//i, the quantity iq is a pure imaginary and the field

may be interpreted as a plane wave propagated along the f-axis with a

phase velocity

(62) . - * -
f

The amplitude of oscillation at any point f decreases exponentially with t,

the rate of decrease being determined essentially by the relaxation time

T = /ff.

When <r
2
/4e

2 > fc
2
/Ate, the quantity iq is real and there is no propaga-

tion in the sense considered heretofore. The field is periodic in f but

decreases monotonically with the time. There is no displacement along

the space axis of an initial wave form: the wave phenomenon has degener-

ated into diffusion.

5.4. Polarization. Inasmuch as the properties of the positive and

negative waves differ only in the direction of propagation, we shall con-

fine our attention at present to the positive wave alone. Furthermore,
since the attenuating effect of a finite conductivity in an isotropic,

homogeneous medium enters as an exponential factor common to all

field components, it plays no part in the polarization and will be neglected.

Let us suppose then that the amplitudes and phase constants of the

rectangular components of E have been specified and investigate the

locus of |E|
= V^* 2 + EI? in the plane f = constant.

To determine this locus one must eliminate from the equations

(63) EI = a cos (<t> + 0), E, = b cos (</> + ^), #f
=

0,

the variable component <
= af ut of the phase. To this end (63)

is written in the form

W V
(64)

^ = cos (</> + 0), -^
= cos (0 + 0) cos 5 - sin (<f> + 0) sin 5,

where 6 = ^ 0. Upon squaring, the periodic factor cos (< + 0) can

be eliminated and it is found that the rectangular components must satisfy

the relation

The discriminant of this quadratic form is negative,

faa\ ^ cos2 5 * 4 .
2 A

(66) rrr---^2 =
-&-* sin2 6^0,

a 2o 2 a 2o 2 a 2o 2

and the locus of the vector whose components are E^ U, is, therefore,

an ellipse in the {rj-plane.
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In this case the wave is said to be elliptically polarized. The points

of contact made by the ellipse with the circumscribed rectangle are found

from (65) to be ( a, 6 cos 6) and (a cos d, b). In general the

principal axes of the ellipse fail to coincide with the coordinate axes
, 17,

but the two systems may be brought into

coincidence by a rotation of the coordinate

system about the f-axis through an angle &
defined by

(67) tan 2tf =
2ab

a 2 -
I

cos 6.

7
FIG. 46. Polarization ellipse.

When the amplitudes of the rectangular

components are equal and their phases differ

by some odd integral multiple of 7r/2, the

polarization ellipse degenerates into a circle.

(68)
= a2

, (a
=

6, d =
mir

it'
m =

1, 3,

The wave is now said to be circularly polarized. Two cases are recog-

nized according to the positive or negative rotation of the electric vector

about the f-axis. It is customary to describe as right-handed circular

polarization a clockwise rotation of E when viewed in a direction opposite

to, that of propagation, looking towards

the source.

By far the most important of the

special cases is that in which the polari-

zation ellipse degenerates into a straight

line. This occurs when 5 = WTT, where

m is any integer. The locus of E in the

??-plane then reduces to a straight line

making an angle & with the -axis de-

fined by

Right-handed Left-handed

FIG. 47. Circular polarization,
the circles indicating the locus of E.
The direction of propagation is nor-

mal to the page and toward the
observer.

(69) tantf = ? = (-!) -
a

The wave is linearly polarized. The magnetic vector of a plane wave is

at right angles to the electric vector and H oscillates, therefore, parallel

to a line whose slope is ( l)
m
a/6. It is customary to define the polariza-

tion in terms of E and to denote the line (69) as the axis of linear polariza-

tion. In optics, however, the orientation of the vectors is specified

traditionally by the
"
plane of polarization/

7

by which is meant the plane

normal to E containing both H and the axis of propagation.
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5.5. Energy Flow. The rate at which energy traverses a surface in an

electromagnetic field is measured by the Poynting vector, S = E X H
ik

defined in Sec. 2.19. Since by (27) H = n X E, the sign depending

upon the direction of propagation, it is apparent that the energy flow is

normal to the planes of constant phase and in the direction of propagation.

To calculate the instantaneous value of the flow one must operate

with the real parts of the complex wave functions. The mean value of

the flow can be quickly determined, on the other hand, by constructing

the complex Poynting vector S* = ^E X H as in Sec. 2.20. For sim-

plicity let us consider a plane wave linearly polarized along the x-axis

and propagated in the direction of positive z. Then

Ex = e-**+i<*-H-)

& \A* 2 + # 2
* -

fH = a ~ e~^ z~~ l(az '

The complex flow vector is, therefore,

1 ~ A/rv 2 -4- ft
2

* v ~

whose real part represents the energy crossing on the average unit area

of the 7/-plane per second.

fl
2 A Ay 2 I 2

(72) & = ~ V ^ P
e-w* cos 7.v ' 2 /KO

The factor cos 7 arising from the relative phase displacement between

E and H may be expressed in terms of a and /3.

(73) tan 7 = -> cos 7 =

/v
f*7A\ Q /? %pzn 2
(74) >

T>
a -

^jjUCO

According to Poynting's theorem the divergence of the mean flow vector

measures the energy transformed per unit volume per second into heat-

In the present instance

(75) v . fc _ - _ a e
^

>

which in turn is obviously equal to the conductivity times the mean

square value of the electric field vector E.
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6.6. Impedance. In a world which outwardly is all variety, it is

comforting to discover occasional unity and tempting to speculate upon
its significance. To the untutored mind a vibrating set of weights

suspended from a network of springs appears to have little in common
with the currents oscillating in a system of coils and condensers. But

the electrical circuit may be so designed that its behavior, and the vibra-

tions of the mechanical system, can be formulated by the same set of

differential equations. Between the two there is a one-to-one corre-

spondence. Current replaces velocity and voltage replaces force; and

mass and the elastic property of the spring are represented by inductance

and the capacity of a condenser. It would seem that the "
absolute

reality," if one dare think of such a thing, is an inertia property, of which

mass and inductance are only representations or names.

Whatever the philosophic significance of mechanical, electrical, and

chemical equivalences may be, the physicist has made good use of them

to facilitate his own investigations. The technique developed in the last

thirty years for the analysis of electrical circuits has been applied with

success to mechanical systems which not long ago appeared too difficult

to handle, and mechanical problems of the most complicated nature are

represented by electrical analogues which can be investigated with

ease in the laboratory. Not only the methods but the concepts of

electrical circuits have been extended to other branches of physics.

Certainly the most important among these is the concept of impedance

relating voltage and current in both amplitude and phase. This idea

has been applied in mechanics to express the ratio of force to velocity, and

in hydrodynamics, notably in acoustics, to measure the ratio of pressure

to flow.

The extension of the impedance concept to electromagnetic fields is

not altogether new, but it has recently been revived and developed in a

very interesting paper by Schelkunoff. 1 The impedance offered by a

given medium to a wave of given type is closely related to the energy

flow, but to bring out its complex nature we may best start with an

analogy from a one-dimensional transmission line, as does Schelkunoff.

Let z measure length along an electric transmission line and let

V = Voe"', I = lQe~
iut be respectively the voltage across and the cur-

rent in the line at any point z. The quantities Vo, 7o are functions

of z alone. The resistance of the line per unit length is R and its indue*

tance per unit length is L. There is a leakage across the line at each

point represented by the conductance G and a shunt capacity C. The

series impedance Z and the shunt admittance Y are, therefore,

(76) Z = R -
uoL, Y = G -

icoC,

1 SCHELKUNOFF, Bell System Tech. /., 17, 17, January, 1938.
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while the voltage and current are found to satisfy the relations 1

< ^=-ZI
> Tz=~ YV-

These equations are satisfied by two independent solutions which repre-

sent waves traveling respectively in the positive and negative directions.

,7jn
1 1
= A i

tt
*-*", 7i =

Zo/i,U *;
la =

where

(79) k

k is the propagation constant and Z the characteristic impedance of the

line. 2

Consider now a plane electromagnetic wave propagated in a direction

specified by a* unit vector n. Distance in this direction will again be

measured by the coordinate f and we shall suppose that the time enters

only through the factor e~ iut
. Whereas voltage and current are scalar

quantities, E and H are of course vectors. To establish a fixed con-

vention for determining the algebraic sign, the field equations will be

written in such a way as to connect the vector E with the vector H X n
which is parallel to E and directed in the same sense.

(80)
= icoM(H X n),

~ (H X n) - i(w + 6r)E.
of df

By analogy with (77)

(81) Z =
-iw/i, Y = -*( + id).

The propagation constant is

(82) k = i

as in (29), page 273, while the intrinsic impedance of the medium for

plane waves is defined by Schelkunoff as the quantity

(83) Z a
--

1 See for example, Guillemin, "Communication Networks/' Vol. II, Chap. II,

Wiley, 1935.
2 These results differ in the algebraic sign of the imaginary component from those

usually found in the literature on circuit theory due to our choice of e~^ 1 rather than

c*w< . Obviously this choice is wholly arbitrary. Although it is advantageous to

use e*wt in circuit theory, we shall be concerned in wave theory primarily with the space
rather than the time factor. The expansions in curvilinear coordinates to be carried

out in the next chapter justify the choice of e~IM *.
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In free space this impedance reduces to

(84) Z<> = Ap = 376.6 ohms.

Assuming n to be in the direction of propagation so that the distinction

between positive and negative waves is unnecessary, the relation between

electric vectors becomes

(85) n X^E = Z H, E = Z H X n.

There is an intimate connection between the intrinsic impedance
and the complex Poynting vector.

(86) S* =
^E X H =

^E x ^-^ =
-|- (E . E)n,* ^ Zo 2Zo

and, consequently,

GENERAL SOLUTIONS OF THE ONE-DIMENSIONAL WAVE EQUATION
In the course of this chapter we have investigated certain particular

solutions of the field equations which depend on one space variable and

the time. Owing to the linear character of the equations these particu-

lar solutions may be multiplied by arbitrary constants and summed to

form a general solution, about which we now inquire. In virtue of the

infinite set of constants at our disposal it must be possible to construct

solutions that satisfy certain prescribed initial conditions. We shall

show, for example, that the distribution of a field vector as a function of f

may be specified at a stated instant t = o, and that the field is thereby

uniquely determined at all subsequent times; or the variation of a field

vector as a function of time may be prescribed over a single plane f = fo

and the field thus determined at all other points of space and time.

The means at our disposal for the investigation of general integrals of a

partial differential equation of the second order fall principally into two

classes: the methods of Fourier and Cauchy, and those of Riemann and

Volterra. The latter have come to constitute in recent years the most

fundamental approach to the theory of partial differential equations, and

their application to the theory of wave propagation has been developed
in a series of brilliant researches by Hadamard. 1 But although the

method of characteristics, first proposed by Riemann, affords a deeper

insight into the nature of the problem, it proves less well adapted as yet

1 HADAMARD, "Legons sur la propagation des ondes," A. Hermann, Paris, 1903;

"Lectures on Cauchy's Problem," Yale University Press, 1923.
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to the requirements of a practical solution than the methods of harmonic

analysis which will occupy our attention in the present section.

6.7. Elements of Fourier Analysis. For the convenience of the

reader, who presumably is to some degree conversant with the subject,
we shall set forth here without proof the more elementary facts concerning
Fourier series and Fourier integrals.

Consider the trigonometric series

(1) -rjr
+ (i cos x + bi sin x) + (an cos nx + bn sin nx) + ,

with known coefficients an and bn ,
and let it be assumed that the series

converges uniformly in the region ^ x < 2ir. Then (1) converges
uniformly for all values of x and represents a periodic function /(x) with

period 2?r.

(2)
^

f(x + 2?r)
=

/(x).

The coefficients of the series may now be expressed in terms of /(x).
In virtue of the assumed uniformity of convergence, (1) may be multi-

plied by either cos nx or sin nx and integrated term by term. In the
domain < x <

2-rr, the trigonometric functions are orthogonal; that
is to say,

(3)
p2ir

/2r
I cos nx cos mx dx =

0, sin nx sin mx dx = 0,
Jo Jo

rJo cos nx sin mx dx =
0, (m ^ n]

/o

Since

/*2ir /*27T

(4) I cos2 nx dx =
j

sin2 mx dx =
?r,

Jo Jo

it follows that

i r 2*

an = ~
I /(x) cos nx dx,v Jo

(5) (m =
0, 1, 2 -..

),

1 f
27r

= ~
I /(x) si

* Jo
sin nx dx.

Inversely let us suppose that a function /(x) is given. Then in a

purely formal manner one may associate with f(x) a " Fourier series"

defined by
00

(6) f(x)
~ - + (an cos nx + bn sin nx),
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the coefficients to be determined from (5). The right-hand side of (6).

however, will converge to a representation of /(x) in the domain

^ x < 2ir only when the function /(x) is subjected to certain con-

ditions. The whole question of the convergence of Fourier series is an

e, and even the continuity of /(x) is not sufficient to

ensure it. It turns out, fortunately, that under such circumstances

the series can nevertheless be summed to represent accurately the func-

tion within the specified interval. 1 A statement of the least stringent

conditions to be imposed on an otherwise arbitrary function in order

that it may be expanded in a convergent or summable trigonometric

series would necessitate a lengthy and difficult exposition; since we are

concerned solely with functions occurring in physical investigations, wo
can content ourselves with certain sufficient (though not necessary)

requirements. We shall ask only that in the interval < x < 2ir the

function and its first derivative shall be piecewise continuous. A function

/(x) is said to be piecewise continuous in a given interval if it is con-

tinuous throughout that interval except at a finite number of points. If

such a point be x
,
the function approaches the finite value /(x + 0) as

x is approached from the right, and /(x 0) as it is approached from

the left. At the discontinuity itself the value of the function is taken to

k ,t .,, ,. /(xo + 0) + /(x
-

0)
be the arithmetic mean -Z___^L^

-'.

z

The Fourier expansion is particularly well adapted to the representa-

tion of functions which cannot be expressed in a closed analytic form,

but which are constituted of sections or pieces of analytic curves not

necessarily joined at the ends. In view of the admissible discontinuities

in the function or its derivative, the fact that two Fourier series represent

the same function throughout a subinterval does not imply at all that

they represent one and the same function outside that subinterval.

It is thus essential that one distinguish between the representation of a

function and the function itself. The expansion in a trigonometric
series indicated on the right-hand side of Eq. (6) represents and is

equivalent to the piecewise continuous function /(x) within the region
^ x ^ 27T. Outside this domain the values assumed by the series

are repeated periodically in x with a period 27r, whereas the function /(x)

may behave in any arbitrary manner. Only when /(x) satisfies the

additional relation (2) will it coincide with its Fourier representation

over the entire domain -co < x < <
.

If within a specified interval the Fourier series of /(x) is known to be

uniformly convergent, it may be integrated term by term and the series

thus obtained placed equal to the integral of /(x) between the same limits.

1 WHITTAKER and WATSON, "Modern Analysis/' 4th ed., Chap. IX, Cambridge
University Press, London.
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The uniform convergence of a Fourier series is in itself not sufficient to

justify its differentiation term by term and the equating of the derived

series to df/dx. If furthermore /(x) is discontinuous at some point
within an interval, its Fourier series certainly is not uniformly convergent

everywhere within that interval, and consequently the Fourier expansions
of its integral and of its derivative demand special attention. 1

It is usually advantageous to replace (6) by an equivalent complex
series of exponential terms of the form

(7) /(*) =
]g cn

n =

whose coefficients are determined from

(8) Cn = ^ Jo
f^ e

~in da
> (" = 0, 1, 2 -

)

Since

(9) einx = cos nx + i sin nx,

it is clear that the complex coefficients cn are related to the real coeffi-

cients an and bn by the equations

2cn = an - ibn , (n> 0),

(10) 2c = a
, (n = 0),

2cn = a_n + ib-n, (n < 0).

By an appropriate change of variable the Fourier expansion (7)

may be modified to represent a function in the region I < x <
I.

-IfO7 I

*/

-<*
f(oi)e

l da -

Now this stretching of the basic interval or period from 2?r to 2Z suggests

strongly the possibility of passing to the limit as the basic interval

becomes infinite and thereby obtaining a Fourier representation of a

nonperiodic function for all real values of x lying between oo and + oo .

We shall assume that throughout the entire region oo < x < oo
, f(x)

and its first derivative are piecewise continuous, that at the discontinui-

ties the value of the function is to be determined by the arithmetical

/OO f(x) dx is absolutely convergent.- CO

or in other words, that the integral | \f(x)\ dx exists. Let w/l = Aw.
J w

1 These questions are thoroughly treated by Carslaw,
"
Introduction to the Theory

of Fourier's Series and Integrals," Chap. VIII, Macmillan, 1921.
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Then (11) may be written

(12) /(*)
= ^ 2j A^

J_j
/()**"

A" (~ da.

(* CO

On the other hand the definite integral I <(w) du is defined as the
J 00

limit of a sum as Aw > 0:

f 00 ^h
(13) I $(w) du = lim ^ <l>(n Aw) Aw.

As Z approaches infinity, Aw approaches zero and we may reasonably expect
the limit of (12) to be

(14) =-r (^ du ( /(a)e<-> da.
^7T J _ oo J - oo

This is the Fourier integral theorem according to which an arbitrary

function, satisfying only conditions of piecewise continuity and the

existence of
\ \f(x)\ dx, may be expressed as a double integral.

1

J 00

It will be noted that the result has been obtained by a purely formal

transition to the limit which makes the existence of the representation

appear plausible but does not confirm it. A rigorous demonstration ia

beyond the scope of these introductory remarks.

If f(x) is real, the imaginary part of the Fourier integral must vanish

and (14) then reduces to

i r r*
(15) f(x)

= -
I du I /(a) cos u(x a) da.

K Jo J -

Since

(16) cos u(x a) = cos ux cos ua + sin ux sin wa,

it is apparent that the Fourier integral of a real, even functionf(x) =

/(*) is

2 r r
(17) f(x)

-
I COS UX I /(a) cos wa da du,* Jo Jo

and that of a real, odd function /( x)
= /(#) is

(18)
2 r * r

/(#) = - I sin wx I /(a) sin ua da du.
* Jo Jo

1 As a general reference on the subject the reader may consult "Introduction to

the Theory of Fourier Integrals," by E. C. Titchmarsh, Oxford University Press, 1937.
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From these formulas we see that the Fourier integral of a function may
be interpreted as a resolution into harmonic components of frequency
w/2rr over the continuous spectrum of frequencies lying between zero

and infinity. In (18), for example, one may consider the function

(19) Q(U) = J- f(a) sin ua da
\* Jo

as the amplitude or spectral density of f(x) in the frequency interval u
to u + du. Then

12 r l/tt)

(20) f(x) = */- I g(u) smuxdu.
\TT Jo

The relation between f(x) and g(u)
is reciprocal. g(u) is said to be the

Fourier transform of f(x), and f(x) is FlQ . 48. step function,

likewise the transform of g(u). In

the more general case of Eq. (14) one may write for the spectral density
of f(x) the function

(21) g(u) = = I f(x)e-
iux

dx,

and hence for f(x) the reciprocal relation

(22) /(*) = -= .

An extensive table of Fourier transforms has been published by Campbell
and Foster. 1

The application of the Fourier integral may be illustrated by several

brief examples of practical interest. Consider first the discontinuous

step function defined by

f(x)
=

1, when
\x\ < I,

(23) /(x)
=

i, when \x\
=

I,

f(x}
=

0, when
\x\ > L

The function is real and even, so that we may employ (17). The trans-

form is

/o>i\ / N /2 f
l

, /2sinuZ
(24) g(u)

=
^- JQ

cos wx dx = ^ ^
,

and the Fourier integral

/^x ^/ N /2 f
*

/ x , 2 f sin ul cos ux ,

(25) f(x)
= A /~ I 0(u) cos uxdu = -

I du.
\7T JO 7T JO W

1 CAMPBELL and FOSTER: "Fourier Integrals for Practical Applications," Bell

Telephone System Tech. Pub., Monograph B-584, 1931. Appeared in earlier form in

Bell System Tech. J., October, 1928, pp. 639-707.
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Let us take next for /(re) the "
error function"

(26) /(*) = e'^.

To find its Fourier transform we must calculate the integral

(27) g(u) =
A /- I e 2 cos ux dx

t

\*r Jo

which is clearly equal to the real part of the complex integral

(28) g(u) = ^
On completing the square, (28) may be written

(29) *<*>->! '"*/.'
/9 - u * C Q'/3

'

=
v^

e

~
2at U e

"
2 ^-

* ^ o

The path of integration follows the imaginary axis from iu/a
2 to

and then runs along the real axis from to co . The imaginary part of

the integral arises solely from the interval iu/a
2 ^ < 0, and since

we are concerned only with the real part the lower limit may be taken

equal to zero. The result is a definite integral whose value is well known:

f _S!
(30) e 2

dp =
Jo

so that the transform of e 2
is

(31) g(u) = e~

Then/(x), which is reciprocally the transform of g(u), is

/2 f
*
e~^"* -

(32) f(x) = A /- I cos ux du = e 2
.

\ir Jo

In the particular case a = 1, Eq. (32) becomes a homogeneous integral

equation satisfied by the function e 2
. The pair of functions defined

by (31) and (32) have other properties more important for our present

needs. Let us modify (31) slightly to form the function

(33) fife a)--
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The area under this curve is equal to unity, whatever the value of the

parameter a;

(34)

"
S(x, a) dx =

1,

as follows directly from (30). Now let a become smaller and smaller.

The breadth of the peak grows more and more narrow, while at the same
time its height increases in such a manner in the neighborhood of x =
as to maintain the area constant, as indicated in Fig. 49. In the limit

as a > 0, the curve shrinks to the line x = where it attains infinite

amplitude. A singularity has been generated, an impulse function

bounding unit area in the immediate neighborhood of x = 0. A unit

S(x,a)

-2
FIQ. 49. The impulse function S(x, a).

impulse function which vanishes everywhere but at the point x = x is

represented by

(x-xo)

(35) SQ(X XQ)
= li

Any arbitrary function F(), subject to the usual conditions of continuity,

can now be expressed as an infinite integral.

(36) F(Q = -
x)F(x) dx.

It is apparent from (32) that the transform ofJbhe impulse function SQ(X)

is a straight line displaced by an amount l/\/27r from the horizontal axis.

As a final illustration of the Fourier integral theorem consider a

harmonic wave train of finite duration. Such a pulse might result from

closing and then reopening a switch connecting a circuit to an alternating

current generator, or represent the emission of light from an atom in the

course of an energy transition. Let

(37)

/(*)
=

0,

f(t)
= COS C0 ,

when

when
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To facilitate the integration we shall take f(t) equal to the real part of

T
e ot in the domain

\t\ < -= and use Eqs. (21) and (22).

J2

r sin vwu

,"""- -^
The Fourier integral of /(O corresponds now to the real part of (22), or

/,. (coo -o>)r

(39) /(f)
= I . cos

C0
-

CO

J
f '

!
L

(co
~

co)T . (coo + co)T
sin ~ sin p:

co co coo -r co
COS

Equation (39) may be interpreted as a spectral resolution of a function

which during a finite interval T is sinusoidal with frequency co . The

amplitude of the disturbance in the neighborhood of any frequency co is

determined by the function

. (co
-

co)Tsm^ s ^-

(40) A(w) = =-
V '

7T C0 CO

The amplitude vanishes at the points

(41) co = coo
-
np> (n = 1, 2 ),

in the manner indicated by Fig. 50, and has its maximum value at

co = COQ. As the duration T of the wave train increases, the envelope

of the amplitude function is compressed horizontally until in the limit,

as y _> oo
y
the entire disturbance is confined to the line co = co on the

frequency spectrum. The simple harmonic variations that enter into

so many of our discussions are mathematical ideals; the oscillations of

natural systems, whether mechanical or electrical, are finite in duration,

and the associated waves are periodic only in an approximate sense.

We shall discover shortly that in the presence of a dispersive medium the

entire character of the propagation may be governed by the duration

of the wave train.

5.8. General Solution of the One-dimensional Wave Equation in a

Nondissipative Medium. To acquire some further facility in the use of

the Fourier integral it will repay us to pause for a moment over the ele-

mentary problem of finding a general solution to the wave equation in a
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nonconducting medium. Let ^ represent either the x- or ^-component
of any electromagnetic vector. Then

\f/ satisfies

(42)
ay

dt
2

According to Sec. 5.2, a particular solution of (42) is represented by

(43) Be

The coefficients A and B are arbitrary and may depend on the frequency

w; that is to say, we associate with each harmonic component an appro-

priate amplitude which may be indicated by writing A(o>) and (o>).

FIG. 60. The amplitude function A(w) = - Shl (c

Now the general solution of (42) is obtained by summing the particulai

solutions over a range of co. In case ^ is to be a periodic function, ths

sum will extend over a discrete set of frequencies. In general the wave
function is aperiodic in both space and time, and the frequency spectrum
is consequently continuous.

(44) *(,<)= f"J c

+ B()e

Let us suppose that over the plane 2 = the values of the function ^
and of its derivative in the direction of propagation are prescribed func-

tions of time.

<45) = -1} = *().
.-
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The problem is to find the coefficients A(o>) and B(o>) such that these

two conditions are satisfied, and thereby to show that the prescription

of the function and its derivative at a specified point in space (or time)

is sufficient to determine \l/(z, t) everywhere.

If we assume provisionally that the integral on the right of (44) is

uniformly convergent, it may be differentiated under the sign of integra-

tion with respect to the parameter z, yielding

(46) ^ = - f
"

<*[A(<*)*
- JB()e"*Vfal dw.

OZ V J oo

On placing z = in (44) and (46), we obtain

(47)

F(f)

. / 00

= - [A(
J--

- ()]-*" d;

upon Comparison with (21) and (22) it is immediately evident that the

coefficients of the factor c" fa * in the integrands of (47) are Fourier

transforms.

(48)

^ (A
-

B) = ~ f
t; 4TT J -

<
d*.

Solving these two relations simultaneously for A and B and substituting
1

a for t as a variable of integration, we obtain

(49)

e** da,

e da,

and on substitution into (44) there results:

(50) *fcO-;c f" * f" /()[ fa(
"+!-0 + X-7-0

TT3T J eo */

/*oO /* 8 TT/\ .W

- L f <fo I ^M
(6
V _

4TJ-00 J-co CO

Now the first of these double integrals is the Fourier expansion of a

function which on reference to (14) may be written down at once. In

1 The variables a. and /3 appearing in the next few pages obviously have no connec-

tion with the real and imaginary parts of k a + ift defined on p. 273.
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the second let us invert the order of integration.

(51) w,.,^f(t-ty+f(t +
?)

+ - r F(a)da (^ sina 6i.(->*f.
2*- J-co

v '

J- w v w

The imaginary part of the last integral vanishes because

1 . co . JN- sm - z sm coux n
co v

x '

integrates to an even function. Therefore,

/ero\ I
COZ

tw rt
dw

I
. C02 , N d!o>

(52) I sm e tw(a
~ = I sin cos co(aV '

J-oo t; CO J-oo V
^ '

03

By a slight modification& t&e conditions which defined the step function

(23), it is easy to show that each of the last two integrals represents a

function with a single discontinuity. In fact

^ when p > 0,
Zt

/* .-

(53) I dx =
0, when p =

0,
jo x

~> when p < 0.

z z
Hence (52) will vanish whenever the arguments a -\ t and a t

z z
are of the same sign. Changes of sign occur at a = t and a = t -\

The integral (52) has, therefore, a nonvanishing value only in the interval

z z
t < a < t + -> where it is equal to TT. The general solution of (42)

is now established in terms of the prescribed initial conditions.

(54) *(M) =
|

Let us define a function &() by the relation

(55) A(/J)
= -y f F(a) da.

Jo



296 PLANE WAVES IN UNBOUNDED, ISOTROPIC MEDIA [CHAP. V

Then

(56)
~ -

fc'GS)
-

In place of (54) one may write

When 2 = 0, it is evident that ^(0, reduces to f(t), and (d\f//dz) z^ to

-
/&', or F(). It may also be verified by differentiation and substitution

that (42) is satisfied by any function whose argument is of the form t
-

The replacement of the variable t in/(0 by t results in a displacement

or propagation without distortion of the function to the right along the

positive z-axis with a velocity v. The initial distribution therefore

splits into two waves, the one traveling to the right and the other to

the left. Upon these two waves are superposed the h waves, so chosen

that at z = they annul one another but such that the derivative of
\l/

assumes the prescribed value F(t).

Prescription of the two functions f(t) and F(t) on the plane z = is

sufficient to determine completely the electromagnetic field. Let us

suppose, for example, that the electric vector of the plane wave is polarized

along the z-axis. The Maxwell equations are then

uZ ut uZ ut

Let Ex be represented by the function \l/(z, t) in either (54) or (57) ; then

on differentiating with respect to both t and z we find expressions for

dHy/dt and dHv/dz with the aid of (58) ;
from these in turn it is a simple

matter to deduce the expression for Hy .

(59) JBf.=

These fields are clearly such that over the plane 2 = 0,

E, = /(O. ~^
(60) (2 = 0)
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The electromagnetic field is, therefore, determined by the specification,
as independent functions of time on the plane z = 0, of any pair in (60)

containing both f(t) and F(t). Thus the electric field and its normal
derivative may be prescribed, or the electric and magnetic fields without
restriction on the derivatives.

6.9. Dissipative Medium; Prescribed Distribution in Time. W$
pass on now to the more difficult problem of finding an electromagnetic
field in a conducting medium which reduces to certain prescribed func-
tions of the time on a plane z = constant. Again we shall allow \l/ to

represent any rectangular component of an electromagnetic vector

satisfying the equation

It will be convenient in what follows to introduce two new constants.

(62)

. <r

a = =, 6 = ,

k = \/AiW2 + tjLurco
= - \Ao 2 + 26a>i.

a

Note that in a dissipative medium a differs from the phase velocity
v = c/n of a harmonic component. In this notation the wave equation
assumes the form

(63) -.
or dt dz 2

Particular solutions of (63) that are harmonic in time were investigated
in Sec. 5.2 and found to be

(64) ^ = (Ae** + Be-^e-'.

Assuming the coefficients A and B as well as the complex quantity
fc to be functions of the frequency, we construct a general solution by
summation of the harmonic components.

(65) $(z, t)
=

Again, let us suppose that the wave function and its normal derivative
are prescribed functions of time over the plane z = constant. For
convenience the origin of the reference system is located within the

plane so that the constant is zero.

(66)

In physical problems the character of the function ^(2, <) is such that the
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infinite integral converges uniformly. Assuming this convergence, it

may be differentiated with respect to the parameter z.
1

d\l/ f *

"te I
*

On the initial plane, (65) and (67) reduce to

(68)

Again the coefficients of e~' may be interpreted as the Fourier trans-

forms of f(t) and F(0 respectively.

(69)

Solving for A and B:

(70)

*-/;. /()+**(*)

E

da,

l da.

When these values are reinserted into (65) one obtains, after inversion

of the order of integration, the expression

(71) i f
80

J
sin kz

Thus far the analysis has not deviated formally from that of the

problem in a nondissipative medium. At this point, however, we encoun-

ter a difficulty due to the complexity of k and we shall have to digress

momentarily to discuss the representation of the function sin kz/k as a

definite integral. The basis of this representation is an integral due to

Gegenbauer
2 which in the simpler case at hand reduces to

I See for example Carslaw, "Introduction to the Theory of Fourier's Series and

Integrals," Chaps. IV and VI, MacmUlan, 1921.

WATSON, "A Treatise on the Theory of Bessel Functions/
1

p. 379, Cambridge

University Press, 1922. Equation (72) is a special case of (69), p. 411, derived in

Sec. 7.7.
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(72)
E^Jf = 1

f JQ (U gi
u * Jo

Je(w sin < sin 0) denotes the zero-order Bessel function of argument
u sin <t> sin 6.

Let us make the following substitutions:

(73) u = v

where X and M are real or complex constants.

u cos ^ = v I p + ~ \ u sin < = t ~ (X
-

/*),

(74)

cos ^ = -> sin ^ = ^/l ^
v \ t;

2

sn
t;

In terms of these new parameters, (72) becomes

sint; \/(p

Observe that the function to the left of Eq. (75) is the Fourier transform

of a function g(fi) defined as follows: 1

00) =
0, when |j9| > t;,

(76)
when

||3|
< v.

Finally, let us assign to the parameters in this general formula the particu-

lar values

t;
= -; p = 0>, X = 26i, JDt

sa 0.

The desired result is then

a sin - \/w 2 + 26a>i (**

i /.

J-***
2

After this small excursion we return once more to Eq. (71). In the

second integral on the right-hand side, which for convenience may be

1 CAMPBELL and FOSTER, loc. cit., No. 872.2.
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denoted i/% introduce (77) and then invert the order of integration.

*

(78) *, = 2
J\ dp e-*

[JL J ^
dco

where

(79) *(, 0) F()

The double integral within the brackets is the Fourier expansion of the

function <t>(t ft 0); consequently,

(80) *, = 2 F(*
-

0)Jo V* 2 - a2

or, upon a slight change of variable,

(81) ^2
=

To calculate the first integral to the right of Eq. (71), which shall be

denoted ^i, we need only replace F(a) in 1^2 by f(a) and differentiate

partially with respect to z. Since the limits in (81) are functions of z,

this differentiation must be effected according to the formula

(83)

d/J.

wave function which in a conducting medium reduces on the plane
2 = to f(t) and whose normal derivative reduces to F(t) is determined every-

where by the expression

(84)

a
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It is apparent from (84) that the character of the propagation is pro-

foundly modified by the presence of even a slight conductivity. At
2 = the integrals vanish due to the identity of the limits. The initial

pulse f(f) then splits into two waves of half the initial amplitude as in the

nondissipative case. These partial waves are propagated to the right
and to the left with a velocity a which is necessarily independent of

frequency, and also independent of the conductivity. They are further-

more attenuated exponentially in the direction of propagation, as might
have been anticipated. Note that the attenuation factor is that

approached by a harmonic component in the limit as <7
2
/e

2
o>

2 oo .

/OR\ b __
(85) a-

which is identical with (53), page 277. The initial function is no longer

propagated without change of form, for the integrals represent contribu-

tions to the field persisting for an infinite time at points which have been

traversed by the wave front. The wave now leaves in its wake a residue or

tail which subsides exponentially with the time. The nature of these con-

tributions will be clarified by the numerical example to be discussed in

Sec. 5.11.

5.10. Dissipative Medium; Prescribed Distribution in Space. The
initial conditions are frequently prescribed in another fashion. Let us

suppose that at the instant t = the field \l/ and its time derivative

are specified as functions of the space coordinate z.

(86) *(*, 0)
=

g(z), (^Jt_ o

= G(z).

A harmonic analysis is called for in space rather than in time and a

general solution may be constructed from particular solutions of the type
discussed in Sec. 5.3.

(87) ^ = e~*'(Ae* +
where

/p IT

(88) g =^ -
|p

=

The constants a and 6 are defined as in Sec. 5.9 but k is now a real variable.

To eliminate the common exponential factor it is convenient to take

(89) * =
(i, t)e-,
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The general solution is to be constructed by assuming the amplitudes
A and B to depend on k and then summing over all positive and negative
values of k.

(90) t*(* f
= f [A(k)e** + B(k)e-*]e

ik' dk.

For the derivative, we have

(91) S = f iq[A(k)e**
-

B(k)*-**\e*' dk.
dt J oo

The procedure is now essentially the same as that described in the fore-

going paragraph. At t = 0,

(92)

g(z)
=

f" [A(k) + B(k)]e dk,
J-

G(z) = f (ip[A(k)
-

B(k)]
-

b[A(k) + B(k)]}e* dk,
J-oo

and the coefficients are readily determined by the Fourier transform

theorem.

(93)

*(*) = iL

Substitution of these values into (90) leads, after simple reductions, to

(94) u(z, *)=^-| da g(a) \
cos qt e^<M> dk

&K J - J -

-- q

sin at
,

cfib.

In virtue of (75) the function -

+

\ a'
can be expressed

as a definite integral. To the parameters in (75) are assigned the valuet

t; = at, q = fc, X = 6/a, /i
= ~6/a,
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whence it follows that

sin at *

(95)
X

Let us denote the three terms on the right-hand side of (94) by MI,

and MS respectively. Then

(96) u, - i
J_^

49 [1 J_^
dfc J

where

(97)

By the Fourier integral theorem, the double integral within the brackets

represents the expansion of <t>(z 0, 0), and consequently

(98) us =
^

(?(
-

j8)/ Vl8 2 - a2
<
2

dj9,

or, after a change of variable,

,_
(99) u* =

^^ G(j3)J V(* ~ 2 - a2
i
2

dp.

In like manner, one obtains _
(100) Mj =

2_ o<
ff (j8)J, V(z-W-

aV)
dp;

from this ui is derived by differentiation with respect to t.

(101) ,
=

]|0(a
+ of) + i

g(z
-

at)

+at

wave function which in a conducting medium reduces at t = to g(z)

and whose time derivative at the same instant is G(z) is determined everywhere

by the expression

(102) *(z, f)
= e-" g(t +'at) + g(z

-
at)
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In its essential characteristics this solution does not differ markedly
from that derived under the assumptions of Sec. 5.9. The initial field

distribution along the z-axis splits into two waves which are propagated
to the right and left respectively. If the conductivity is other than

zero, a residue or tail remains after the passage of the wave front, and the

field subsides exponentially with the time.

5.11. Discussion of a Numerical Example. The physical significance

of these results can be most easily elucidated in terms of a specific

example. Fresh water is a convenient medium for such a discussion,

for at radio frequencies it occupies a position midway between the good
conductors and the good dielectrics. Let us assume the following
constants:

Km = 1, Ke
= 81, <r = 2 X 10~4

mho/meter.

From these values we calculate

a = | X 10 8
meters/sec., 6 = 1.4 X 10 5 sec.-1

,

- = 4.2 X 10~3 meter-1
,

a

It is usually easier to visualize a distribution and propagation along
an axis in space than along one in time; for this reason we shall consider

(102) first. Let us suppose that at t = the field vanishes everywhere

except within the region 25 < z < 25, where its amplitude is unity.

g(z)
=

1, when
|z|
< 25,

g(z)
=

0, when
|z|
> 25,

G(z) =
0, for all values of z.

In Fig. 51a %[g(z + at) + g(z at)} is plotted as a function of z for

various values of t, and in Fig. 516 the same as a function of t for various

values of z. These two figures represent the propagation of the initial

pulse in time and space in a medium of zero conductivity. The function

g(z at) vanishes if

z < at - 25 or z > at + 25,

or, if

t < i
(z
-

25) or t> -
(z + 25).

Likewise the negative wave g(z + at) is zero at all points for which

z < -at - 25 or z > -at + 25,

or

t < -i
(25 + z) or t > -

(25
-

z).
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In Figs. 52a and 526 the same wave functions are multiplied by the

attenuation factor e~". Nothing has been stated regarding the origin

100

z in meters t in micro-seconds
FIG. 52a. FIG. 626.

of the field, but it is supposed that at some anterior time it was generated

by a system of appropriately disposed sources from whence the field is

propagated and attenuated in such a manner that at t = it is distributed
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as shown at the top of Fig. 52a. In the present instance it is clear that

the wave started as two pulses at some value of t < 10 X 10~6
sec.,

the one at a distant point on the positive z-axis, propagated to the left,

and the other at a point on the negative z-axis, propagated to the right.

In the neighborhood of t = 0, z = 0, they meet, pass through one another

with consequent reinforcement, and then continue on their way. Their

subsequent progress is indicated at t = 0.45, t = 3.75, and t = 8.25

microsec. The succession of events occurring at a fixed point in space is

illustrated in the series of Fig. 526. Take, for example, z = 275 meters.

At t = 9 microsec. the front of a negative wave arrives at this point,

traveling toward smaller values of z. An interval of 1.5 sec. is now

required for this wave to pass, in the course of which its amplitude is

diminished exponentially. From t = 7.5 to t = 7.5 microsec. all is quiet ;

then arrives the front of the positive wave with greatly reduced ampli-

tude, for it has passed through unit value at the origin and traveled on to

the positive point of observation.

This simple history of a field must now be modified to take into

account the contributions of the integral terms in Eq. (102). In most

cases the evaluation of these terms necessitates numerical or mechanical

processes of integration, but thanks to the simple functional form of

g(z) in the present instance the integration can be carried through

analytically for sufficiently small values of z and L From the theory of

Bessel functions we take the following relations:

T f \ _ -|
^

|
% 3s

|

t/oW i
22

'

22 . 42
~~

22 . 42 . g2
~r'**

*> = -,),

Introducing the appropriate value of x leads to

<

An investigation of the convergence of these series indicates that in the

present instance no serious error will be committed if we limit ourselves

to the first two terms, provided that z does not exceed 300 meters. The
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Bessel functions will, therefore, be represented approximately by

, , 1

These functions are now to be multiplied by g(fi) and integrated with

respect to ]8. With regard to the limits we note the following. Suppose
that t is positive. If z at > 25 or z + at < -25, the resultant field

$(z, t) is zero. If at + 25 < z < at - 25, the partial fields g(z + at)

and g(z erf) are zero but the integrals do not vanish, and this no matter

-1.0

A0
-(Xo

-0.6

-200 -150 -100 -50

_ 6= 3.75x10 sec.

-02 /Residue

50

z in meters

FIG. 53a.

100 150 200

how large t may become. A residual field lingers in the region previously
traversed by wave pulses. If z + at > 25 and z at < 25, the limits of

integration may be fixed at 25, for beyond these values g(fi) is zero.

Such limits are, therefore, appropriate for the entire region between
the pulses, at + 25 < z < at 25.

The results of the integration are plotted in Figs. 53a and 536. The
effective field \Kz, is indicated by a heavy black outline; the partial

fields expressed by the various terms of (102) are shown dotted. Figure
53a illustrates the distribution along the z-axis at the instant t = 3.75

microsec. We note the beginning of a deformation of the initially rec-

tangular pulse, the top sloping forward and the residual tail trailing
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behind. As the wave progresses, the sharp front decreases in height,
BO that tail and pulse eventually merge into a rounded contour. In

Fig. 53& observations are made at the fixed point z = 125 meters. At
times anterior to t = 3 microsec. a field existed here, a field which was

wiped out by the passage of the negative pulse. At t = 3 microsec. the

positive wave arrives, followed by its tail which persists after the passage
of the pulse.

The essential difference between the solutions represented in Eqs.
(84) and (102) is due to an interchange of the roles of space and time.

To illustrate the behavior of the field, let it be assumed that the initial

time function f(f) in Eq, (84) is a rectangular pulse defined by

/(O =
1, when

\t\
< 1 X 10~ 6

sec.,

f(t)
=

0, when
\t\
> 1 X 10~ 6

sec.,

F(f) =
0, for all values of t.

b b

a? / \ * / \
The functions y/U +

~J
and ^rf(t

-
|)

are plotted in Figs. 54a

and 546 at various values of z and t. In virtue of the definition of

it is clear that the third term on the right-hand side of (84) contributes

*10 -8-6-4-2 2 4 6 8 10 -300 -200 -100 100 200 300

t in micro-seconds z in meters

FIQ. 64a. FIG. 54&.

nothing if t - - > 1 or t + ~ < -1. If 1 - - < t < - -
1, the funo-

d a a a

tions/U + -J and/ It
j
vanish but the integral does not. In this

interval, which lies between the pulses on the J-axis, the limits of integra-
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tion are 1. In Figs. 55a and 556 are shown the deformations of an

initially rectangular pulse at fixed points in time and space due to the
tail of the wave.

z in meters
250 300

FIG. 55a.

When studying these figures it must be kept in mind that two pre-

existing waves coming from sources at infinity have been assumed
which superpose to give just the correct distribution at t = or z = 0.

A single wave whose amplitude is zero for all values of t and z less than
zero can be generated only by a source at the origin constituting a

singularity in the field a problem we have not yet considered.

5.12. Elementary Theory of the Laplace Transformation. Among
the oldest and most important of the various methods devised for the

solution of linear differential equations is that of the Laplace trans-

formation. If in the equation

(103)
dw

the dependent variable w is transformed by the relation

(104) w(z) =
J*

u(t)e~* di,

it will be found in many cases that u(t) satisfies a differential equation
which is simpler than (103), and in fact that u(() is frequently an ele-

mentary function whereas w(z) cannot, in general, be expressed directly
in terms of elementary transcendentals. 1 When the coefficients p(z)
and q(z) are functions of the independent variable z, it is necessary to

1
INCB, "Ordinary Differential Equations," Chaps. VIII and XVIII, Longmans,

london, 1927.
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choose the path of integration properly in the complex plane of t in

order that (104) shall be a solution of (103) ;
the independent solutions are

then distinguished by the choice of path. The result is a representation

of the particular solutions as contour integrals. If, however, the coeffi-

cients p and q are constant, the equation has no other singularities than

the essential one at infinity and the paths of integration can be chosen to

coincide with the real axis. The solutions are then expressed in terms

of infinite integrals intimately related, if not equivalent, to a Fourier

integral representation.

In recent years the application of the Laplace transformation to

linear equations with constant coefficients has been considered with

growing interest on the part of physicists and engineers, and its orderly

and rigorous procedure appears to be rapidly replacing the quasi-empirical

methods of the Heaviside operational calculus. Although the Laplace
methods lead to no results unobtainable by direct application of Fourier

integral analysis, they do offer certain definite advantages from the

standpoint of convenience. They are particularly well adapted to the

treatment of functions which do not vanish at + oo and which conse-

quently fail to satisfy the condition of absolute convergence, and they
lead in a simple and direct manner to the solution of an equation in terms

of its initial conditions. On the other hand, they can be applied only to

problems in which the field may be assumed to be zero for all negative

values of the independent variable; in short, the Laplace integral is

applicable to problems wherein all the future is of importance, but the

past of no consequence.

We shall approach the theory of the Laplace transform from the

standpoint of the Fourier integral and suggest rudimentary proofs for

the more important theorems. Let us consider a function f(f) which

vanishes for all negative values of t. Then apart from a factor l/-\/2w

the Fourier transform of f(t) is

(105) F()

provided only that the integral f |/(0| dt exists. In case/() does not
/o

vanish properly at infinity the integral fails to converge, but under

certain circumstances absolute convergence can be restored by intro-

ducing a factor e"7 '. The Fourier transform of e~^f(t) is then

(106) F(y + tw)
- fQ

"

/(O*-^** dt.

If there exists a real number 7, such that

(107) lim f* \tr"f(t)\dt < oo,
y_ oo JO
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then f(f) will be said to be transformable. The lower bound ya of all

the 7*8 which satisfy (107) is called the abscissa of absolute convergence.

Suppose, for example, that f(t)
= ebt when t ^ and f(f)

= when
t < 0. Then f(f) is transformable in the sense of (106) and 7 > 6 = ya .

On the other hand a function f(t)
= e* is not transformable, for there

exists no real number 7 leading to the convergence of (106).

The inverse transformation follows from the reciprocal properties of

the Fourier transforms, Eqs. (21) and (22).

(108) f(t)e-T = o- F(y + iu)e
itu

do>,
*7T J oo

where 7 > 7a . The function defined by the integral on the right is

equal to f(f)e"** only for positive values of t, aui vanishes whenever

t < 0. To give explicit expression to this fact we introduce the unit

step function u(t) which is zero when t < and equal to unity when t > 0.

The inverse transformation may thus be written

(109) /(O u(t)
= ^

If ya <> 0, one may pass to the limit as 7 after the integrations

indicated in (106) or (109) have been effected and thus determine the

Fourier transforms of functions not otherwise integrable. Such a step

is unessential, and the Laplace transform contains this convergence
factor implicitly. Let us introduce the complex variable 5 = 7 + ico.

Then the Laplace transform of f(t), henceforth designated by the operator

(110) L[/(0] = J[
/(*>-" dt = F(s), Re(s) > 7 ,

where Re(s) is the usual abbreviation for "the real part of s," and ya

is determined in each case by the functional properties of /(). The
inverse transformation iy represented by an integral taken a/long a path
in the complex plane of s.

(111) L->[F(s)) - -L. ("
' "

F(s)e ds = /() u(0,6in J 7 -ao

where 7 > ya - The Laplace transformation can be interpreted as a

mapping of points lying on the positive real axis of t onto that portion

of the complex plane of s which lies to the right of the abscissa ya . The
domains of f(t) and its transform F(s) are indicated in Fig. 56.

From the linearity of the operators it follows that if L[fi(t)]
=

Fi(s),

FiW, then

(112)
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If, furthermore, a is any parameter independent of t and s, then

(113) L[af(t)] = aF(s).

The application of the Laplace transform theory to the solution of

differential equations is based on a theorem concerning the transform of

a derivative. Assume that/(0 and its derivative ~nf(f) are transformable

in the sense of (107), and that f(f) is continuous at t = 0.

Then by partial integration

fJo dt -fJO
hence, if L[f(f)]

= F(s), it follows that

(114)

The importance of this theorem lies in the fact that it introduces the

initial value /(O) of the function /(). Integrating partially a second time

t-plane

Domain of f<ft

FIG. 56. A Laplace transformation effects a mapping of points on the positive real axis of

t onto the shaded portion of the s-plane.

leads to a theorem for the transform of a second derivative which involves

not only the initial value /(O) but also the value of the derivative

(115)

Thus the transform of the dependent variable of a second-order differential

equation is expressed in terms of the initial conditions. These results

have no analogue in the theory of the Fourier transform.

The "Faltung" or "folding" theorem is a particular application of

9, well-known property of the Fourier integral.
1

Suppose again that

1 See for example Bochner "Vorlesungen uber Fouriersche Integrate," and Wiener,

"The Fourier Integral," p. 45, Cambridge University Press, 1933.
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=
Fi(s), L[fz(t)]

= F2 (s), and that we wish to determine the

Laplace transform of the product function fi(t)

(116) f
Jo

^
/*Y*+ * /* o

=
. <foF2 (<r) fMe-^' dt,ATM J^-tao JO

and, hence, the first theorem:

(117) L[A(0 -/2] - fV* ~ er)
'

F,(<r) rfcr,
^T '

72 > Ta,,

Of more freqiient use is a second Faltung theorem on the inverse trans-

formation of a product of transforms. We wish to determine a function

whose Laplace transform is Fi(s) F 2 (s).

(118)

-T) dr.

Since the unit function vanishes for negative values of the argument,
the upper limit of T must be t and hence

JQ

or

(120) L f f /!(*
-

r) /2 (r) drl = FiGO F 2().
LJo J

Geometrically, the product 7y1

i(s) F 2 (s) represents the transform of an

area constructed as follows: The function fi(r) is first folded over onto

the negative half plane by replacing r by T, and then translated to the

right by an amount t. The ordinate fi(t r) is next multiplied by
/2 (r) dr and the area integrated from to t
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A set of operations applied repeatedly in the course of our earlier

discussion of the Fourier integral may be referred to as translations. Let
a be a parameter independent of s and t.

(121) L[e?'f(t)]
=

JT /(0e-c> dt - F(s
-

a).

Equation (121) is obviously valid for both positive and negative values

of a. Next consider the transform of f(t a).

(122) L[f(t
-

a)]
=

jT"/(
- a)e- dt = e

f'jtfe-"
dr.

Now it has been postulated throughout that the function /(J) shall vanish

for all negative values of the argument and hence the lower limit a

may be replaced by zero. As a consequence, we obtain

(123) LUd- a)] = r-FU,

Likewise, we may write

(124) L[/ + a)] *(.),

but one must note with care that this last result applies only to functions

f(t) which by definition vanish for t < a. A replacement of t by t a or

t + a represents a translation of f(i) a distance a to the right or left

respectively.

In addition to the foregoing fundamental theorems there exist a

number of elementary but useful relations which may be deduced

directly from (110). The following formulas are set down for con-

venience and their proof is left to the reader.

(125)

(126)

(127) L /(*)
=

F(<r) da;

(128)

(129) /(O) =limsF(s);
8 > oo

(130) lim/(<) = limP().
t > oo s

Evaluation of the contour integrals that occur in the inverse trans-

formations (111) is most easily effected by application of the theory of

residues. The functions f(t) with which one has to deal are analytic
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functions of the complex variable t except at a finite number of poles.

It will be recalled that in the neighborhood of such a point, say t = a,

the function may be expanded in a series of the form

where $() is analytic near and at a and, therefore, contains only positive

powers of t a. The singularity is said to be a pole of order m if m i?

a finite integer. If, however, an infinite number of negative powers is

necessary for the representation of f(t) ,
the singularity is said to be essen-

tial. If now the function f(t) is integrated about any closed contour C
in the i-plane which encircles the pole a but no other singularity, it can be

shown that all the terms in the expansion (131) vanish with the excep-
tion of the one whose coefficient is &_i. The result is

(132) f /() dt = 2art6_i.
Jc

The coefficient 6_i is called the residue at the pole. In case the contour

encloses a number of poles, the value of the integral is equal to 2iri times

the sum of the residues. In particular, if f(f) is analytic throughout the

region bounded by the contour C, the integral vanishes. These results

are a consequence of a fundamental theorem of function theory. If f(t)

is analytic on and within the contour C, which is to say that it may be

expanded in terms of positive powers of t only then the value of f(t)

at any interior point a may be expressed as

(133) /(a)
=
^

This is known as Cauchy's theorem.

If the function f(t) vanishes properly at infinity, an integral which is

extended, as in (111), along an infinite line may be closed by a circuit of

infinite radius and thus made subject to the theorems of the preceding

paragraph. The restrictions that govern the application of the theory of

residues to the evaluation of infinite integrals are specified in what is

known as Jordan's lemma quoted as follows:

II Q(z] uniformly with regard to arg z as \z\
> when ^ arg z ^ TT,

and if Q(z) is analytic when both \z\ > c (a constant) and ^ arg z ^ TT, then

lim f em<*Q(z) dz = 0,
p oo /*

where F is a semicircle of radius p above the real axis with center at the origin.
1

1 WHITTAKER and WATSON, loc. tit., p. 115. In Chaps. V and VI of this reference

the reader will find all that is essential for the application of function theory to the

solution of physical problems.
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As stated, this lemma applies to the evaluation of integrals along
the real axis from oo to +00, but it may be modified to include

integrations along an imaginary axis; by appropriate changes the circuit

may be transferred from the half plane lying above the real axis to that

below, or from the right half plane to the left. In case Q(z) has poles

within the closed contour at distances
\z\
< c from the origin, the value

of the integral is equal not to zero but to the sum of the residues.

The bearing of these theorems on the theory of the Laplace transform

may be illustrated by two elementary examples. Consider first the step

function defined by

/(0=0, when*<0,
/(O =

1, when t > 0.

It will be noted in passing that (134) does not fall within the province of
/* 00

functions admitting a Fourier analysis, for the integral I [/()[ dt

is nonconvergent. The Laplace transform of (134) is

(135) L [/()]
= f 1 e~ai dt = i =

F(s).
Jo s

We verify this result by applying the inverse transformation (111).

<136>

Now F(s) has a pole of first order at s = 0. The abscissa of absolute

convergence is zero, whence it is necessary that Rc(s) > 0. The integra-

tion is to be extended along any line parallel to and to the right of the

imaginary axis. The integrand of (136) satisfies the conditions of

Jordan's lemma and the path of integration may be closed by an infi-

nite circuit. If t > 0, the path may be deformed to the left so that

Re(s) > oo. The closed contour 7 ^00 to 7 + i<x> to oo + i<x> to

oo ioo to 7 i< contains the pole at s = 0. The residue is unity,

and hence by (132) the right-hand side of (136) is also unity for t > 0.

Since F(s) is only defined in the right half plane, a question may arise as

to the justice of extending the integration to the left half plane. One
must be careful to distinguish between a function and the representation

of that function in a restricted domain. 1/s is a representation of F(s)

when Re(s) > 0, but in view of possible discontinuities in F(s) the two

functions need not coincide at all when Re(s) < 0. Now along the line

7 1*00 to 7 + ioo we are integrating the function 1/s; for purposes of

integration we may make use of any of its analytic properties. The

analytic continuation into the left half plane is of the function 1/s, and

not of F(s).
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When t < 0, the vanishing of the integrand may be assured by
deforming the path to the right. Within the closed contour 7 i oo to

y + i oo to co + i oo to oo i oo to 7 t oo there are no singularities and
the right-hand side of (136) is zero.

We have verified that the unit step function may be expressed

analytically by

(137)

1 /*7+ ,

=
2^ IAM J-y-too 5

7 > 0.

It is interesting to apply the translation theorem (123) to this result,

putting a = z/v.

(138)

or

(139)

[( -?)]- -JrK

!.(-:> *.

From the preceding discussion it is apparent that (139) vanishes when

t
- <

;
and is equal to unity when t - > 0. In Figs. 57a and 576

ult -

J
is represented as a function of t and z respectively.

u(t-z/v)

t'=z/v t

utt-z/u)=0, t<z/v,

u(t-z/v)~l, t>z/v.

Fia. 57a.

u(t-z/v)

z'=vt

Q, z>vt,

l, z<vt.

Fia. 576.

As a second example let us imagine that a harmonic wave is switched
on suddenly at t = and continues indefinitely.

(140)

(141) =
I

<r*'-< dt = J-r-iJO S + tO)

when t < 0,

when t > 0.

Re(s) > 0.

As in the previous case we can verify (141) by applying the inverse

transformation

(143> 0.
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If t > 0, the path is again deformed to the left. The enclosed pole is

located at s = io>; on applying the Cauchy theorem we see that (142)

is indeed equal to e''. On the other hand if t < 0, the path is deformed

to the right and the integral vanishes. In general,

f
t

z\ 0, when t
- - < 0,^ A'"*) '

v
'

1

. . as = _i'w(*--l . z
T -ioo 5 -T- tco e \ / when t > 0.

'
t;

5.13. Application of the Laplace Transform to Maxwell's Equations.
Let Ex = f(z, t) and Hv

=
g(z, t) be the components of a plane electro-

magnetic field. The functions /(z, t) and g(z, t) are assumed to be trans-

formable in the sense of (107) and to vanish for all negative values of t;

moreover, they are related to one another by the field equations

f?/ i ^ = ^2 4- ^4- f=0
dz

M
dt

'

dz
"*

dt
J

Treating z as a parameter, the Laplace transform of this system with

respect to t proves to be

z, s)
- M (z, 0)

=
0,

(145)
*?(, s)

^|p + *sF(z, s) + ffF(z, s)
-

e/0, 0) = 0.

Upon elimination of G(z, s) an ordinary, inhomogeneous equation for

F(z, s) is obtained in which s enters only as a parameter.

(146)
- (^

Since the derivative of g(z, t) with respect to z at the instant t = can

be expressed in terms of /(z, 0) and (6//d)-o through (144), this last

result is equivalent to

(147)
-

Cue*
2 + Ar<OF = -

( Ms + /nr)/(e, 0)
~ M*

By /(z, 0) one means strictly the limit of f(z, t) as > 0. The functions

(148) MZ) = lim /(*, 0, /,(*)
= lim %^,<-*o *-o vf

represent the initial state of the field and are assumed to be known. Upon
writing A 2 =

/xes
2 + juo-s, we obtain finally

(149)
- AF = -
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The general solution of (149) consists of a solution of the homo-

geneous equation

(150) ^ - h*F =

containing two arbitrary constants, to which is added a particular solu-

tion of (149). One can verify easily enough that (149) is in fact satisfied

by

ehz C
(151) F(z, s)

= Aeh* + Be~ha + e~h*Z(z, s) dz
JUI\J J

eh*Z(z, s) dz,
e-h, C

~~2/rJ

in which h is that root of \/A* which is positive when h2
is real and posi-

tive. The constants A and B are to be determined such as to satisfy

specified boundary conditions at the points z = Zi and z = z2 . After

A and B have been evaluated in terms of s, an inverse transformation

leads from (151) back to a solution /(z, t) of (144) satisfying both

initial and boundary conditions.

To illustrate, consider first the elementary case in which the field is

zero everywhere at the initial instant t = 0. Then Z = and we are

concerned only with the solution of the homogeneous equation. Let us

suppose that at z = there is a source switched on at the instant t =
which sends out a wave in the positive z-direction and whose intensity

at the origin is /(O, f)
=

fs(t). Thus the second boundary condition at

z = z 2 is replaced in the present example by the stipulation that the field

shall be propagated to the right along the z-axis. The transform of the

boundary value is represented by

(152) F(0, s)
= Fs() = L[Mt)].

Since the wave is to travel to the right, the constant A must be placed

equal to zero. This is clear when v = 0, for then h =
s/a, and by the

translation theorem of page 314

(153) F(z, s)
= F*(8)e~* = L

[/, (t
-
^],

(154) /(z, =/(- y>
(t ^ 0, z > 0).

If the conductivity is not equal to zero, the solution is more difficult

In this case we shall write ft
2 = ( s-y/M* + 5 ,J- <r

j j^ and apply the
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integral
1

'*

Upon substitution of \/j3
2 + z2 = at, this reduces to

(156) IT
= a

I

r*Vo
(a
Vs2 - a 2

'*)
r" <8,

a

where a = 1/A/M*, 6 = o"/2^ a defined on page 297. Finally, by dif-

ferentiation we obtain

e~*^ - a \ e~~
bt ~ J Q V^ 2 - aW

J
e-8t

d,(157)

or

--z -/
(158) e~h* = e

* e ** - oLtofo t)]

where 0(2, i) is a function defined by

(159) 0(2,

0, when < t < ->

= e-bt 1. j ( V^ 2 - a),
02 \a /

when * > -

With this transform at our disposal, we now write

b z

(160) F(, s)
= F,(

To this we apply the translation theorem and the Faltung theorem of

page 313, followed by the inverse transformation of the complete equation.

(161) f(z, t)
= .TV,

(
-
|)
- a /.

- T)^I /o

a

or, with a minor change of variable,

(162) /(*,9-e~
f

- or* f

1 WATSON, toe. c&, p. 416, (4).
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This function, as the reader should verify, satisfies the wave equation in a

dissipative medium and represents a wave traveling in the positive direc-

tion which at z = reduces to /3(0 for all values of t > 0.

DISPERSION

5.14. Dispersion in Dielectrics. A pulse or "signal" of any specified
initial form may be constructed by superposition of harmonic wave
trains of infinite length and duration. The velocities with which the

constant-phase surfaces of these component waves are propagated have
been shown to depend on the parameters e, /*, and a. In particular, if

the medium is nonconducting and the quantities e and ju are independent
of the frequency of the applied field, the phase velocity proves to be

constant and the signal is propagated without distortion. The presence
of a conductivity, on the other hand, leads to a functional relation

between the frequency and the phase velocity, as well as to attenuation.

Consequently the harmonic components suffer relative displacements in

phase in the direction of propagation and the signal arrives at a distant

point in a modified and perhaps unrecognizable form. A medium in

which the phase velocity is a function of the frequency is said to be

dispersive.

At sufficiently high frequencies a substance may exhibit dispersive

properties even when the conductivity a due to free charges is wholly
negligible. In dielectric media the phase velocity is related to the index

of refraction n by v = c/n, where n = VMW At frequencies less than
10 8

cycles/sec, the specific inductive capacities of most materials are

substantially independent of the frequency, but they manifest a marked
dependence on frequency within a range which often begins in the ultra-

high-frequency radio region and extends into the infrared and beyond.
Thus, while the refractive index of water at frequencies less than 10 8

is about 9, it fluctuates at frequencies in the neighborhood of 10 10

cycles/sec, and eventually drops to 1.32 in the infrared. Apart from
solutions or crystals of ferromagnetic salts, the dispersive action of a

nonconductor can be attributed wholly to a dependence of *<, on the

frequency.
All modern theories of dispersion take into account the molecular

constitution of matter and treat the molecules as dynamical systems

possessing natural free periods which are excited by the incident field.

A simple mechanical model which led to a strikingly successful dispersion
formula was proposed by Maxwell and independently by Sellmeyer.
A further advance was accomplished by Lorentz who extended the

theory of the medium as a fine-grained assembly of molecular oscillators

and who was able to account at least qualitatively for a large number of

electrical and optical phenomena. According to Lorentz, however, these
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molecular systems obeyed the laws of classical dynamics; it is now known
that they are in fact governed by the more stringent principles of quantum
mechanics. Following upon the rapid advances of our knowledge of

molecular and atomic structure revisions were made in the dispersion

theory which at present may be considered to be in a very satisfactory

state.

Both the classical and the quantum theories of dispersion undertake

to calculate the displacement of charge from the center of gravity of an

atomic system as a function of the frequency and intensity of the dis-

turbing field. After a process of averaging over the atoms contained

within an appropriately chosen volume element, one obtains an expression

for the polarization of the medium; that is to say, the dipole moment per

unit volume. The classical result corresponds closely in form to the

quantum mechanical formula and leads in most cases to an adequate

representation of the index of refraction as a function of frequency. We
shall confine the discussion, therefore, to the case in which the electric

polarization in the neighborhood of a resonance frequency can be

expressed approximately by the real part of 1

(1) P =
-^ ^ :- coE.
coo or ^co(7

By the electric field intensity, we shall now understand the real part of

the complex vector

(2) E = Eo 6~ tw
'.

The constant a 2
is directly proportional to the number of oscillators per

unit volume whose resonant frequency is co . The constant coo is related

to this resonant frequency by

(3) 5% = co?
- ia

2
,

such that co > co at sufficiently small densities of matter. The constant

g takes account of dissipative, quasi-frictional forces introduced by
collisions of the molecules. The constants co and g which characterize

the molecules of a specific medium must be determined from experi-

mental data.

At sufficiently low incident frequencies co, the polarization P according

to (1) approaches a constant value

1 For the derivation of this result, see Lorentz, "Theory of Electrons," or any
standard text on physical optics such as for example Born, "Optik," Springer, 1933,

or Forsterling, "Lehrbuch der Optik," Hirzel, 1928.
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and, since the specific inductive capacity is related to the polarization by

(5) P =
(K
-

l)e E,

one may express K in terms of the molecular constants.

(6) K = 1 +
|-

When, however, the incident frequency is increased, further neglect

of the two remaining terms in the denominator becomes inadmissible.

In that case we shall define by analogy a complex inductive capacity K*

through either of the equations

(7) P =
(K'
-

l)e E, D = K' E,

whence from (1) we obtain

(8) . -!+..
a
: .

.

600 or lug

In terms of this complex parameter the Maxwell equations in a medium
whose magnetic permeability is /-to are

(9) V X E + MO
~ =

0, V X H - eo/ ~r =
0,

ot ut

as a consequence of which the rectangular components of the field vectors

satisfy the wave equation

/IA\ ^9 i / dV n
(10; \ z

\f/ eoMo* -TTJJ-
= 0.

A plane wave solution of (10) is represented by

(11) \[/
= ^ Oe ***""*"',

where

(12) k = - V7' = a + ip,
c

so that

(13) K' = ~
(a + #).

The wave is propagated with a velocity v = co/a
=

c/n, but a and the

refractive index are now explicit functions of the frequency obtained by
introducing (8) into (13).

In gases and vapors the density of polarized molecules is so low that

K! differs by a very small amount from unity. The constant a2
is there-

fore small, so that w differs by a negligible amount from the natural
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frequency coo and the root of K? can be obtained by retaining the first two

terms of a binomial expansion. Thus

(14)
-

(a + iff)
~ 1 +

2

yw. | v^j j - * O 2 9
co 2coo co

2
tcogr

When the impressed frequency co is sufficiently low, the last two terms

of the denominator may be neglected so that

The index of refraction and consequently the phase velocity in this case

are independent of the frequency; there is no dispersion.

If the impressed frequency co is appreciable with respect to the

resonant frequency co but does not approach it too closely, the damping
term may still be neglected. |co

2
co

2
|
^>> cog,

/*/>\ c i

(16)
_ = n = l'" x

I O 2 9
CO 2 COQ CO'

5

The attenuation factor is zero and the medium is transparent, but the

refractive index and the phase velocity are functions of the frequency.

If co < co
,
n will be greater than unity and an increase in co leads to an

increase in n and a decrease in v. If co > coo, the refractive index is less

than unity but an increase in co still results in an increase in the numerical

value of n. The dispersion in this case is said to be normal.

Finally let co approach the resonance frequency co . Upon resolving

(14) into its real and imaginary parts one obtains

ac
1

a2
co

2
) co

2

"
co

~
2" (c^WTW2

'

B =
< LP
2c (co

2 -
co

2
)
2 + coV

In Fig. 58 are plotted the index of refraction and the absorption coeffi-

cient jftc/co of a gas as functions of frequency. The absorption coefficient

exhibits a rather sharp maximum at coo, so that in this region the medium
is opaque to the wave. As co rises from values lying below co

,
the index

n reaches a peak at coi and then falls off rapidly to a value less than unity
at co 2 ,

whence it again increases with increasing co, eventually approaching

unity. When as in the region coico2 an increase of frequency leads to a

decrease in refractive index and an increase of phase velocity, the dispersion
is said conventionally to be anomalous. According to this definition

dispersion introduced by the conductivity of the medium and discussed

in the earlier sections of this chapter is anomalous. In fact it might
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FIG. 58. Dispersion and absorption
curves in the neighborhood of a re-
sonance frequency.

almost be said tuat the "anomalous" behavior is more common than the
"normal."

In the case of liquids and solids these results must be modified to some
degree since the assumption of a small density of matter is no longer
tenable, but the general form of the dispersion curves is not greatly
affected. Discussion has been confined, moreover, to the behavior of the

propagation constants in the neighbor-
hood of a single resonance frequency.

Actually a molecule is a complicated

dynamical system possessing infinite

series of natural frequencies, each affect-

ing the reaction of the molecule to the

incident field. The location of these

natural periods cannot be determined

by classical theory; by proper adjust-

ment of constants to experimental data,
an empirical dispersion formula can be

set up, of which (8) is a typical term

and which is found to satisfy the observ-

ed data over an extensive range of fre-

quencies.

6.15. Dispersion in Metals. A surprisingly accurate theory of the

optical properties of metals may be deduced from the following rather

crude model. One imagines the fixed, positive ions of a metallic con-

ductor to constitute a region of constant electrostatic potential. Within
this region a cloud or

"
gas" of freely circulating electrons has attained

statistical equilibrium, so that on the average the force acting on any
particular conduction electron is zero, and apart from normal fluctuations

the total charge within any volume element is zero. The application of

an external field E results in a general drift of the free electrons in the

direction of the field. The motion is opposed by constantly recurring
collisions at the lattice points occupied by the heavy ions; the consequent
transfer of momentum from the drifting electrons to the lattice points

results, on the one hand, in thermal vibrations of the ions, on the other in a

damping of the electron motion. The exact nature of the local force

exerted on a conduction electron is a somewhat delicate question, but in

so far as one can ignore the contribution of bound electrons there appears
to be justification for the assumption that the effective field intensity ig

equal to the macroscopic field E prevailing within the conductor.

Let r be the displacement from the neutral position of a free charge e

whose mass is m. The charge is acted on by an external force eE and its

motion is opposed by a force "-
wflf -57 proportional to the velocity which
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accounts empirically for the dissipative effect of collisions. The equation

for the average motion of e is, therefore,

(18) mg
whose steady-state solution is

(19) r =
g ^co com

If there are N free electrons in unit volume, the current density is

g2

(20) J = tf<4 = is.v y *
dt g io)

Then by analogy with the static conductivity defined by J = o-E, one

is led to introduce a complex conductivity <r
f which in virtue of (20) is

P i

N-
(21) J - 2L.
v ' -

The propagation constant and attenuation of a plane wave are now
obtained in the usual way from the relation fc

2 =
jueco

2 + tVjuco. The
resonance frequencies of the bound electrons of metallic atoms are known
to lie far in the violet or ultraviolet region of the spectrum, so that in

the visible red, the infrared and certainly at radio frequencies the induc-

tive capacity of a metal can be safely assumed equal to 6 . Moreover

if the conductor is nonferromagnetic, ju is also approximately equal to

/io and

(22) &2 = (a + i/3)
2 =

Upon replacing a' by (21) and separating into real and imaginary parts,

one obtains

2 _*2-^ fl
Ne * 1 \a P

c2
V m co

2 + 2/
Ne*

c2 we co co
2 + gf

2

At sufficiently low frequencies the inertia force mf in Eq. (18) is

negligible with respect to the viscous force mgi . Within this range the

conductivity <r' defined by (21) reduces to a real and constant value,

(24) </ - >
v '

mg
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which must be identical with the static conductivity a. In a series of

researches of fundamental value, it was demonstrated by Hagen and

Rubens 1 that the values of conductivity measured under static conditions

may be employed without appreciable error well into the infrared. At

wave lengths shorter than about 25 X 10~4
cm., however, the con-

ductivity exhibits a pronounced dependence on frequency and the

observed dispersion can be accounted for roughly by the relations set

down in (23).

The sum and substance of these investigations is to show that dis-

persion formulas expressing the dependence of the parameters c, ju, and <r

on frequency permit the extension of classical electromagnetip theory
far beyond the limits arbitrarily established in Chap. I.

5.16. Propagation in an Ionized Atmosphere. Recent investigations

of the propagation of radio waves in the ionized upper layers of the

atmosphere have led to some very interesting problems. In these

tenuous gases the mean free path of the electrons is exceedingly long and
the damping factor consequently negligible, so that the apparent con-

ductivity turns out to be purely imaginary,

AM
(25) a' = i ,

mo)

whence
22 2

(26) n2 =
V '

CO

An electromagnetic wave is propagated in an electron atmosphere with-

out attenuation and with a phase velocity greater than that of light in

free space. At frequencies less than a certain critical value determined

by the relation

A/> 2w * =-
the index of refraction becomes imaginary, and it can be shown that at the

boundary of such a medium the wave will be totally reflected.

Actually the problem of propagation in the ionosphere is complicated

by the presence of the earth's magnetic field. Let us suppose that a

plane wave is propagated in the direction of the positive z-axis of a

rectangular coordinate system. For the sake of example we shall

assume only that there are N particles per unit volume of charge e and

mass m in otherwise empty space. There is also present a static mag-
netic field that may be resolved into a component in the direction of

propagation and a component transverse to this axis. Only the longi-

i Ann. Physik, 11, 873, 1903. See Chap. IX, p. 508.
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tudinal component, whose intensity will be denoted by H ,
leads to an

effect of the first order.

The equations of motion of a particle are

(28) y

* + IT
e

Now the ratio of the force exerted by the magnetic vector of the traveling

wave to that exerted by the electric vector is equal to the ratio of the

velocity of the charge to the velocity of light. The terms involving
Hx and Hy in (28) may, therefore, be neglected so that the equations of

motion reduce to the simpler system

x - - E 4- * <Q
- - E - - z -x - m &* + m y, y -
m ^y m x

>
*-"

Since the motion takes place entirely in the ?/-plane and since the

vectors of the incident wave are likewise confined to this plane, complex

quantities can be employed to advantage. Let us write

(30) u = x + iy, E = Ex + iEy ,
H - Hx + iHv .

Then the equations of motion are expressed by the single complex

equation

,_,.
(31)

while for the field equations one obtains

dE . 3H . dH
,

. dE
(32) ^ -

tMo
-
dT

=
0,

-.,-
+ te =

in which the charge per unit volume times the average velocity has been

introduced for current density.

A solution must now be found for this simultaneous system of three

equations. Let us try

(33) E = Ae l'0"-w
,

H = Be****-"*, u =

These are harmonic waves traveling in the positive direction with a

propagation constant h; whereas the algebraic sign of the exponent is

immaterial in the absence of an applied field H
,
its choice in the present
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instance gives rise to two distinct solutions as we shall immediately see.

For upon introducing (33) into (31) and (32) one obtains

(34) hA + IMOB =
0,

+ ihB + NewC = 0.

In order that this homogeneous set of equations for the amplitudes

A, B, C have other than a trivial solution, it is necessary that the deter-

minant vanish.

(35)
= <> m

ih Neu

= 0.

Expansion of this determinant leads to an equation for the propagation
constant h.

Ne*
_T_9

(36)

w* m
The phase velocity v = w/A, and consequently (36) is equal to the square
of the index of refraction n.

It turns out, therefore, that an electron atmosphere upon which is

imposed a stationary magnetic field acts like an anisotropic, double-

refracting crystal in that there are two modes of propagation with two
distinct velocities. It is apparent, moreover, that by an appropriate
choice of co the index of refraction of the medium with respect to one of

these waves becomes infinite.

Ne*

(37)

m

Likewise, at another frequency the index of refraction

(38)
We

co
s + m

reduces to zero. The remarkable optical properties of the Kennelly-
Heaviside layers can be largely accounted for by these formulas. A
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linearly polarized wave entering the medium is resolved into a right-
handed and a left-handed circularly polarized component, the one

propagated with the velocity v+ and the other with the velocity v^.

Since the reflection occurring at the layer is determined by the index of

refraction, the polarization of the wave returning to earth may be greatly
altered and frequently contains a strong circularly polarized component
which contributes to

"
fading" phenomena. 1

VELOCITIES OF PROPAGATION

6.17. Group Velocity. The concept of phase velocity applies only to

fields which are periodic in space and which consequently represent wave
trains of infinite duration. If a state of the medium is represented by
the function 1^(2, 0> where

(1) iK, = Ae*'-*",

then the surfaces of constant state or phase are defined by

(2) kz ut = constant,

and these surfaces are propagated with the velocity

A wave train of finite length, on the other hand, cannot be represented in

the simple harmonic form (1), and the term phase velocity loses its

precise significance. One speaks then rather loosely of the
"
velocity of

light," or of the " wave-front velocity." The necessity of an exact

formulation of the concept of wave velocity became apparent some years

ago in connection with certain experiments fundamental to the theory

of relativity, and the subject at present has an important bearing upon
the problem of communication by means of short waves propagated

along conductors. Since an electromagnetic field can never be com-

pletely localized in either space or time, there must be an essential

arbitrariness about every definition of velocity. The slope and height

of a wave front vary in the course of its progress, and the concept of a
"
center of gravity" grows vague as the pulse diffuses. It will probably

be of more practical importance to the reader to know what certain

common terms do not mean, than to attach to them a too precise physical

significance.

1 A more complete account of propagation in ionized media with bibliography

will be found in an article by Mimno, Rev. Mod. Phya., 9, 1-43, 1937. See also the

"Ergebnisse der exakten Naturwissenschaften," Vol. 17, Springer, 1938.
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Next in importance to the idea of phase velocity is that of group
velocity. Let us consider first the superposition of two harmonic waves
which differ very slightly in frequency and wave number.

(4)
\l/i
= cos (kz co),

^2 = cos [(k + 8k)z
-

(o>

The sum of these two is

(5) * = *i + ^2
= 2 cos (z dk - t ~

which is just the familiar expression for the phenomenon of
"
beats."

The field oscillates at a frequency which differs negligibly from w, while

its effective amplitude

(6) A = 2 cos i(z dk t

varies slowly between the sum of the amplitudes of the component waves
and zero. As a result of constructive and destructive interference the

field distribution along both time and space axes appears as a series of

FIG. 59. Beats.

periodically repeated "beats" or
"
groups" in the manner portrayed by

Fig. 59. Now the surfaces over which the group amplitude A is constant

are defined by the equation

(7) z dk t 5co = constant,

from which it follows that the groups themselves are propagated with
the velocity

<8> M - w
The group velocity is determined by the ratio of the difference of fre-

quency to the difference of wave number. If the medium is nondis-

persive, dk = - So> and, hence, the group velocity coincides with the

phase velocity v. In a dispersive medium their values are distinct.

In the example just cited the superposition of two harmonic waves
leads to a periodic series of groups. A single group or pulse of any desired

shape may be constructed upon the theory of the Fourier integral by
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choosing the amplitude of the component harmonic waves as an appro-

priate function of the frequency or wave number and integrating.

(9) *(*, =
w
A (fc)e

*'-<> dk.

The concept of group velocity applies only to such Fourier representa-

tions as are confined to a narrow band of the spectrum. If the amplitude
function A(k) is of negligible magnitude outside the region

fco dk <> k < fc + 8k,

we may replace (9) by

which represents what is commonly called a "wave packet/* For the

present we shall assume that fc is real and that w is a known function of fc.

Within a sufficiently small interval 26fc, o>(fc) will deviate but slightly from

its value at fco and may, therefore, be represented by the first two terms of

a Taylor series.

(U) co(fc)
=

co(fco) + fe) (fc
-

fco) + .

\a,K/ fc-fco

The condition that higher order terms in this expansion shall be negligible

imposes the necessary restriction on dk.

(12) kz - orf == fcoz
-

o> J + (fc
-

fco) U -
P~jJ

t\ + .

A wave packet can now be represented by

(13) t = ^Oe i(fco*-wo<)

where ^o is a mean amplitude defined by

.... .

(14) ^o

This amplitude is constant over surfaces defined by

(15) z ( -JT ) * = constant,v '
\dk/k = ko

'

from which it is evident that the wave packet is propagated with the

group velocity

(16) "-V2S/*

In case the medium is nondispersive, u coincides with the phase velocity

v, but otherwise it is a function of the wave number fc .
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From the relations k = 27T/X, o> = kv, we may derive several equiva-

lent expressions for the group velocity which are occasionally more

convenient than (16).

. _ _d_ / IA _ 4. fr J^ . _ \ .^ dv 1

It is apparent from the manner in which the group velocity was

defined that this concept is wholly precise only when the wave packet is

composed of elementary waves lying within an infinitely narrow region

of the spectrum. As the interval 5k is increased, the spread in phase

velocity of the harmonic components in a dispersive medium becomes

more marked; the packet is deformed rapidly, and the group velocity

as a velocity of the whole loses its physical significance. Note that a

concentration of the field in space does not imply a corresponding con-

centration in the frequency or wave length spectrum, but rather the

contrary. Consider, for example, the case of a harmonic wave train of

finite length.

/(z)
= 0, when

\z\ > -~>

(18) I
J(z)

= cos fc 2, when
\z\
< ~-

Z

The amplitude of the disturbance in the neighborhood of any wave

number k is given by (40), page 292,

and the form of this function is illustrated by Fig. 50. As the length L

increases, the wave number interval dk within which A (k) has an appreci-

able magnitude decreases. On the other hand a pulse produced by the

abrupt switching on and off of a generator is diffused over the spectrum
and cannot be represented even approximately by (10). This broad

distribution over the spectrum is a common grief to every laboratory

worker who must shield sensitive electrical apparatus from atmos-

pheric disturbances or the surges resulting from the switching of heavy

machinery.
5.18. Wave Front and Signal Velocities. If the dispersion of the

medium is normal and moderate, a pulse or wave packet may travel a

great distance without appreciable diffusion; since the energy is presumed
to be localized in the region occupied by the field, it is obvious that the

velocity of energy propagation must equal at least approximately the
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group velocity. In a normally dispersive medium an increase of wave

length results in an increase of phase velocity and hence by (17) the

group velocity under these circumstances is always less than the phase

velocity. If on the contrary the dispersion is anomalous as is the case

in conducting media the derivative dv/d\ is negative and the group

velocity is greater than the phase velocity. There is in fact no lack of

examples to show that u may exceed the velocity c. Since at one time

it was generally believed that the group velocity was necessarily equiva-

lent to the velocity of energy propagation, examples of this sort were

proposed in the first years following Einstein's publication of the special

theory of relativity as definite contradictions to the postulate that a

signal can never be transmitted with a velocity greater than c. The

objection was answered and the entire problem clarified in 1914 by a

beautiful investigation conducted by Sommerfeld and Brillouin,
1 which

may still be read with profit.

The particular problem considered by Sommerfeld is that of a signal

which arrives or originates at the point z = at the instant t and

continues indefinitely thereafter as a harmonic oscillation of frequency o>.

The signal is propagated to the right, into a dispersive medium, and we

wish to know the time required to penetrate a given distance. We have

seen that the Fourier integral of a nonterminating wave train does not

converge, but this difficulty may be circumvented by deforming the path

of integration into the complex domain of the variable w. On the other

hand, the theory of the Laplace transform was introduced for the very

purpose of treating such functions; and indeed, it may be shown by a

simple change of variable that the complex Fourier integral employed by
Sommerfeld is exactly the transform defined in Eq. (143) of Sec. 5.12.

It will facilitate the present discussion to modify the original analysis

accordingly.

At z = the signal is defined by the function

1 f
T+ia>

e
7 0, when * < 0,

(20) /<>0 =
2SJ 7 -,.. T+to*

8

-^*, when*>0.

The representation of this field at any point z within the medium is

obtained by extending (20) to a solution of the wave equation, which

by (10), page 323, is

* 2

/-i'!^-0
d c2 dt*

~

1 SOMMERFELD, Ann. Physik, 44, 177-202, 1914, BRILLOUIN, iUd., 203-240. A
complete and more recent account of this work was published by Brillouin in the

reports of the Congrte International d'filectricitt, Vol. II, l
re

Sec., Paris, 1932.
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Equation (21) is satisfied by elementary functions of the form

exp ( st s ^ z
J

from which we construct our signal.

, -J ^ ' 2m Jy-i* s + io)
'

In a nondispersive medium, K! is constant and (22) is identical with

(143), page 318. If, however, the medium is dispersive, K! is a function

of s. We shall suppose that the dispersion can be represented by a

formula such as (8), page 323, and upon replacing i& by s we obtain

To include metallic conductors we need only put o> = 0. The wave
function which for i > reduces to a harmonic oscillation at z = is,

therefore,

/ 7 4-too H*-/5
^);;)

(24)
/(Z; Q

1

p
+ ^ /

; ^ 7 > 0.
' v ' ' '

As s > ioo, jS(s) > 1. If now r = t -- < 0, the contour may
c

be closed, according to Jordan's lemma, page 315, by a semicircle to the

right of infinite radius. This path excludes all singularities of the

integrand and consequently f(z, t)
= 0. Thus we have proved that at a

point z within the medium the field is zero as long as t < z/c, and hence

that the velocity of the wave front cannot exceed the constant c.

If T = t -- > 0, the path may be closed only to the left. The
c

singularities thus encircled occur at the pole s = ia> and at the branch

points of p. These last are located at the points where = and
= oo . If /3s is written in the form

f9 K\ at o\ /s
2 + sg + o?g + a2

(*o; p(s)
=

^/ 24! Z~^2
'

we see that

=
,

when s = ^ ff H V4coJ
-

gr

2
,

(26)
J

J

=
0, when s = -^ gr g \/4(u

2 + a 2
)
-

^
2

.

The disposition of these singularities in the complex s-plane is indicated
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in Fig. 60a, where

Now if one encircles a branch point in the plane of 5, one returns to the

initial value of ft but with the opposite sign. This difficulty is obviated

by introducing a "cut" or barrier along some line connecting a+ and &+,

and another between a_ and &_. Over this "cut" plane which in the

function-theoretical sense represents one sheet of the Riemann surface

of ft(s) the function ft(s) is single-valued; for, since it is forbidden to

traverse a barrier, any closed contour must encircle an even number of

branch points. The path of integration in (24), which follows the line

drawn from 7 i oo to y + i <*> and is then closed by an infinite semi-

s-plane

a 6

FIGS. 60a and 606. Paths of integration in the -plane.

circle to the left, may now be deformed in any manner on the "cut"

plane without altering the value of the integral, provided only that in

the process of deformation the contour does not sweep across the pole at

s = zw or either of the two barriers. In particular the path may be

shrunk to the form indicated in Fig. 606. The contributions arising

from a passage back and forth along the straight lines connecting Co

and Ci and Co and C* cancel one another and (24) reduces to three

integrals about the closed contours C
, Ci, and C2 .

The first of these three can be evaluated at once.

(28) /,(, i)
= i

whence by Cauchy's theorem

(29) / (, = e~

s -r to)
rrds,
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By (25)

/o
A /

\
hence,

(31) / (a,
= e~^

z
. e&~

The remaining two integrals which are looped about the barriers cannot
be evaluated in any such simple fashion and they shall be designated by

(32)

r (<-/<);)
i 2(*,0 = ~ *

. . ds.
* JCi+ C, S + tW

Thus the resultant wave motion at any point within the medium can
be represented by the sum of two terms,

(33) f(z,t) =/ (M) +/(*,0-

Physically these two components may be interpreted as forced and free

vibrations of the charges that constitute the medium. The forced

vibrations, defined by / (2, ), are undamped in time and have the same

frequency as the impinging wave train. The free vibrations /i 2 (z, are

damped in time as a result of the damping forces acting on the oscillating
ions and their frequency is determined by the elastic binding forces.

The course of the propagation into the medium can be traced as follows :

Up to the instant t z/c, all is quiet. Even when the phase velocity
v is greater than c, no wave reaches z earlier than t z/c. At t = z/c
the integral /i2 (2, t) first exhibits a value other than zero, indicating that
the ions have been set into oscillation. If by the term "wave front

" we
understand the very first arrival of the disturbance, then the wave front

velocity is always equal to c, no matter what the medium. It may be shown,
however, that at this first instant t = z/c the forced or steady-state term

/o(z, just cancels the free or transient term/i 2 (z, t), so that the process
starts always from zero amplitude. The steady state is then gradually
built up as the transient dies out, quite in the same way that the sudden

application of an alternating e.m.f. to an electrical network results in a
transient surge which is eventually replaced by a harmonic oscillation.

The arrival of the wave front and the role of the velocity v in adjusting
the phase are illustrated in Fig. 61, which however shows only the steady-
state term. The axis z/c is drawn normal to the axis of t The line at
45 deg. then determines the wave-front velocity, for it passes through a
point z at the instant z/c. The line whose slope is tan = c/v determines
the time t = z/v of arrival at z of a wave whose velocity is v. Actually
the phase velocity has nothing to do with the propagation; it gives
only the arrangement of phases and, strictly speaking, this only in the case
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of infinite wave trains. The phase of the forced oscillation is measured

from the intersection with the dotted line at t z/v, and the phase at the

wave front t = z/c is adjusted to fit. If v > c, < 45 deg. The phase
of the steady state is again determined by the intersection with the line

z/c at t = z/v, but the wave front itself arrives later.

The transition from vanishingly small amplitudes at the wave front

to the relatively large values of the signal have been carefully examined

z/c c v

FIG. 61. Determination of the phase in the steady state.

by Brillouin. This investigation is of a much more delicate nature and

we must content ourselves here with a statement of conclusions which

may be drawn after the evaluation of (32). According to Brillouin a

signal is a train of oscillations starting at a certain instant. In the course

of its journey the signal is deformed. The main body of the signal is

^ S\

FIG. 62a. Illustrating the variation in

amplitude of the first precursor wave.

Signal

FIG. 626. Illustrating the arrival of

the first and second precursors and the

signal.

preceded by a first forerunner, or precursor, which in all media travels

with the velocity c. This first precursor arrives with zero amplitude,
and then grows slowly both in period and in amplitude, as indicated

in Fig. 62a; the amplitude subsequently decreases while the period

approaches the natural period of the electrons. There appears now a new

phase of the disturbance which may be called the second precursor,

traveling with the velocity
c

>. c. This velocity is obtained byV ^0 + a 2

assuming in the propagation factor P(iu>) of Eqs. (30) and (32) that the

impressed frequency co is small compared to the atomic resonance fre-

quency w . The period of the second precursor, at first very large,
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decreases while the amplitude rises and then falls more or less in the

manner of the first precursor.

With a sudden rise of amplitude the main body, or principal part, of

the disturbance arrives, traveling with a velocity w which Brillouin

defines as the signal velocity. An explicit and simple expression for w
cannot be given and its definition is associated somewhat arbitrarily

with the method employed to evaluate the integral (32). Physically
its meaning is quite clear. In Fig. 626 are shown the two precursors

and the final sudden rise to the steady state. When restricted to this

third and last phase of the disturbance the term "
signal" represents that

portion of the wave which actuates a measuring device. Under the

assumed conditions a measurement should, in fact, indicate a velocity

u= group velocity

C/v, V ~ phase velocity

c/w, w signal velocity

FIG. 63. Behavior of the group, phase and signal velocities in the neighborhood of a
resonance frequency.

of propagation approximately equal to w. It will be noted, however,
that as the sensitivity of the detector is increased, the measured velocity

also increases, until in the limit of infinite sensitivity we should record

the arrival of the front of the first precursor which travels always with

the velocity c. Qualitatively at least we may imagine the medium as a

region of free space densely infested with electrons. An infinitesimal

amount of energy penetrates the empty spaces, as through a sieve,

traveling of course with the velocity c. Each successive layer of charges

is excited into oscillation by the primary wave and reradiates energy
both forward and backward. By reason of the inertia of the charges

these secondary oscillations lag behind the primary wave in phase, and

this constant retardation as the process progresses through successive

layers results in a reduced velocity of the main body of the disturbance.

The wave-front velocity defined here is thus always equal to the con-

stant c. The phase velocity v is associated only with steady states and

may be either greater or less than c. The group velocity u differs from

the phase velocity only in dispersive media. If the dispersion is normal,
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the group velocity is less than v; it is greater than the phase velocity

when the dispersion is anomalous. In the neighborhood of an absorption

band it may become infinite or even negative. The signal velocity w
coincides with the group velocity in the region of normal dispersion,

but deviates markedly from it whenever u behaves anomalously. The

signal velocity is always less than c, but becomes somewhat difficult and

arbitrary to define in the neighborhood of an absorption band. In

Fig. 63 the velocities which characterize the propagation of a wave train

in the neighborhood of an absorption band are plotted as ratios of c.

Problems

1. Let EQ be the amplitude of the electric vector in volts per meter and 3 the mean

energy flow in watts per square meter of a plane wave propagated in free space. Show
that

3 - 1.327 X 10-' El watt/meter
2
, EQ = 27.45 A/S volts/meter.

2. Let #o be the amplitude in volts per meter of the electric vector of a plane wave

propagated in free space. Show that the amplitudes of the magnetic vectors HQ and

BQ are related numerically to EQ by

HQ =* 2.654 X 10~3 EQ ampere-turn/meter = J X 10~4 EQ oersted,

B - } X 10~8 EQ weber/meter2 = i X 10~4 EQ gauss,

where the oersted is the unrationalized c.g.s. electromagnetic unit. If EQ is expressed

in statvolts per centimeter, show that

HQ = EQ oersted, BQ = EQ gauss.

If a particle of charge q moves with a velocity v in the field of a plane electro-

magnetic wave, show that the ratio of the forces exerted by the magnetic and electric

components is of the order v/c.

3. The theory of homogeneous, plane waves developed in Chap. V can be extended

to inhomogeneous waves. If \l/ is any rectangular component of an electromagnetic

vector, we may take as a general definition of a plane wave the expression

in which ^ is a complex amplitude and < the complex phase. The propagation factor

k is now a complex vector which we shall write as

k = ki -f iks = ani + tfni,

where ni and n 2 are unit vectors. Show that a is the real phase constant; that the

surfaces of constant real phase are planes normal to the axis ni, and the surfaces of

constant amplitude are planes normal to n 2 ; and that is the factor measuring attenua-

tion in the direction of most rapid change of amplitude. The true phase velocity %

is- hi the direction ni.

Show that the operator V can be replaced by tk and the field equations are

k X E - coB - 0, k B -
0,

k X H + coD - -tj, k D - 0.
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also that, if the medium is isotropic,

fc* = k\
-

k\ + 2tki k2
= 6>V

Let ki k2
= kjct cos and find expressions for k\ and k* in terms of /* , *, and the

angle 0.

4. Continuing Problem 3, assume that the electric vector is linearly polarized.
Show that E is perpendicular to both ki and k2 and that H lies in the plane of these

two vectors. What is the locus of the magnetic vector H? Inversely, show that if

H is linearly polarized it is perpendicular to both ki and k2 , while E lies in the ki,

k^plane. These inhomogeneous plane waves are intimately related to the so-called

"H waves" and "E waves," Sec. 9.18.

6. The theory of plane waves can be extended to homogeneous, anisotropic
dielectrics. Let <r 0, /*

-
MO, and the properties of the dielectric be specified by a

tensor whose components are e/*. Choosing the principal axes as coordinate axes,
we have

DJ =
eoKytf,-, 0*

=
1, 2, 3).

The field equations relating E and D are then

k X (k X E) + o>VoD =0, k D = 0.

Let k =
fcn, where n is a unit real vector whose components along the principal axes

are n\, n 2 , n^. Let v = w/fc and v,
= C/\/KJ- The v

} are the principal velocities.

Show that the components of E satisfy the homogeneous system

, =0, (j
=

1, 2, 3),

and write down the equation which determines the phase velocity in any direction

fixed by the vector n. Show that this equation has three real roots, of which one is

infinite and must be discarded. There are, therefore, two distinct modes of propaga-
tion whose phase velocities are v' and v" in the direction n. Correspondingly there

are two types of linear oscillation in distinct directions, characterized by the vectors

E', D' and E 7

', D". Show that these are related so that

D' E" = D" E' = D' D" =
0,

E' E" ?* 0, E n ^ 0.

6. Show that in a homogeneous, anisotropic dielectric the phase velocity satisfies

the Fresnel relation

"-i n.*

-+ "

where the r? are the direction cosines of the wave normal n with respect to the prin-

cipal axes, and the / are the phase velocities in thp directions of the principal axes.

(See Problem 5.) Show also that

3
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where the 7,- are the direction cosines of the vector D with respect to the principal

axes.

7. If in Problem 6 v\ > vz > v 3,
show that there are two directions in which v

has only a single value. Find these directions in terms of Vi, t>2, t>s, and show that in

each case the velocity is t> 2 . The directions defined thus are the optic axes of the

medium which in this case is said to be biaxial. What are the necessary conditions

in order that there be only one optic axis?

8. Show that for a plane wave in an anisotropic dielectric

S = E X H [n#
2 -

(n E)E],
Mo

2

where v is the phase velocity defined in Problem 5.

A vectorial velocity of energy propagation u in the direction of S is defined by the

equation

S = hu.

The velocity u is related to the phase velocity v by

t;
== n u.

Show that

h = JE D + 5Mo#2

and, hence, that the energy flow is equal to the total energy density times the velocity

u, with

E*n -
(n E)E

v

or in magnitude

9. From the results of Problem 8 show that the magnitude of the velocity u of

energy propagation in a plane wave can be found in terms of the constants 1/1, Vzt Va

from the equation

3

^^S

in which the lj are direction cosines of the vector u.

Show also that there are, in general, two finite values of u corresponding to each
direction. In what directions are these two roots identical? What is the relation of

these preferred axes of u to the optic axes?

10. A nonconducting medium of infinite extent is isotropic but its specific induc-

tive capacity K = e/e is a function of position. Show first that the electric field
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vector satisfies the equation

V2T?
I 1*2T?

J2/
j

/i JJ/

where k z - a>
2

/z and the time enters only through the factor exp( iut).

Assume now that the spatial change of e per wave length is small, so that

|VK|AI. Show that the right-hand term can be neglected and that the

propagation is determined approximately by

W + & =
0,

where \l/ is a rectangular component of E or H and k is a slowly varying function of

position. Next let

where is the phase, fc =
/c, and S a function of position. Show that the phase

function S is determined by the equation

where

Note that S is in general complex, even though K is real, and that the amplitude of the

wave is also a slowly varying function of position.
11. The transition from wave optics to geometrical optics can be based on the

results of Problem 10. Show that as the wave number k becomes very large, the

phase function is determined by the first-order, second-degree equation

4)'
while the amplitude satisfies

Vln

Since S is now real, the wave fronts are represented by the family S =
constant, and

the wave normals or rays are given at each point by VS. The function S is called

the "eikonal" and is identical with Hamilton's
"
characteristic function." Let the

vector n represent the index of refraction \/K times a unit vector in the direction of

the wave normal. Then

VS =
n, n V In ^ = - }V n.

Note that these relations hold only in regions where the change in K per wave length is

small. Hence they fail in the neighborhood of sharp edges or of bodies whose dimen-
sions are of the order of a wave length. In such cases the complete wave equation
must be applied. (Sommerfeld and llunge, Ann. Physik, 35, 290, 1911.)
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Let dr be an element of length in the direction of a ray. Then

S =
J"

n - dr.

S is a function of the coordinates x
, 2/0, 20 of a fixed initial point and the coordinates

x, y, z of the terminal point reached by the ray. Of all possible paths through these

two points, the ray actually follows that which makes S a minimum, or

r(x >y>z )

I

J(xo,yo,zo
n - di = 0.

This is Fermat's principle. If the disturbance originates at XQ, y$, Zo at the instant U.

and arrives at x, y, z at t, then

S(x , 2/0, z
; x, y, z)

= t
-

to,

and the path of the ray is such that the time of arrival is a minimum.
12. Plane waves are set up in an inhomogeneous medium whose inductive capacity

varies in the direction of propagation. Suppose this direction to be the z-axis and
assume the field to be independent of x and y. The wave equation is then

d 2^

j + *}(*)* =
0,

where k\ = co
2

Mo and the time enters only in the factor exp( iwt).

Suppose that K * KI as z > <, and K KI as z >
<*>, where KI and K.I are con-

stants. It is possible to construct four particular solutions behaving asymptotically
as follows:

^i exp(tfco V*i z), as z oo.

\//2 exp( iko VKI z), as z oo.

\^ 8
-* exp(tfc V KZ z), as z > oo .

^ 4 > exp( t'fco v K2 z), as z > oo.

Thus ^i and ^* reduce to plane waves traveling in the positive direction; ^2 arid ^4,

to waves in the negative direction. Only two of these solutions are linearly inde-

pendent and, hence, there must exist analytic connections of the form

^8 =
fll^l 4- O2^2, ^4 = ^1^1 + &2^2.

Mathematically this represents the analytic continuation of ^g from one region to

another, and physically the reflection coefficient is given by the ratio r = aa/ai.

Let

where =
fcos/*, ics is a constant and s an additional parameter. Replace z by

the new independent variable u = exp(f) and show that the wave equation reduces

to hypergeometric form. Express ^i . . . ^4 as hypergeometric functions and cal-

culate the joining factors and the reflection coefficient. The form of K(Z) is such as

to admit a very wide choice in strata. (Epstein, Proc. Nat. Acad. Sci., 16, 627, 1930.)

13. Ten times the common logarithm of the ratio of the initial to the terminal

energy flow measures the attenuation of a plane wave in decibels Show that for a
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plane wave in a homogeneous, isotropic medium

power loss = 8.686)3 db/meter,

where is the attenuation factor defined in Eq. (49), page 276.

14. For the media whose constants are given below, plot the attenuation of a

plane wave in decibels per meter against frequency from to 10 7
cycles/second.

Use semilog paper or plot against the logarithm of the frequency.

16. A function /(a?) is defined by

x > 0, > 0.

x < 0, ft > 0.

Show that

2 ft cos ux

16. Obtain a Fourier integral representation of the function f(l) defined by

/(O

f(t)

0, t< 0,

t > 0.

Plot the amplitudes of the harmonic components as a function of frequency (spectral

density) and discuss the relation between the breadth of the peak and the logarithmic

decrement.

17. The surges on transmission lines produced by lightning discharges are often

simulated in electrical engineering practice by impulse generators developing a uni-

directional impulse voltage of the form

V = Fo - [e-<-0 - e

where a and /3 are constants determined by the circuit parameters. This function

represents a pulse or surge which rises sharply to a crest and then drops off more

slowly in a long tail. The wave form can be characterized by two constants ti and It,

where ti is the time required to reach the crest, and t* is the interval from zero voltage

to that point on the tail at which the voltage is equal to half the crest voltage. A

standard set of surges is represented by the constants

(a) '0.5,

.1.0,

1.5,

is -5,
ti - 10,

*, - 40,

microseconds.

From these values one may determine the constants a and 0.
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Make a spectral analysis of the wave form and determine the frequencies at which

the spectral density is a maximum for the three standard cases.

18. The "telegraphic equation
"

has the initial conditions

Show that

u =
f(x), =

g(x), when t = 0.
at

i c at
d r

u - \[f(x + at) +f(x -
at)] + ~-

\
f(x + 0)

- 7 U
^a J -at <M L

H

where

~

a?
a

T
COS (^ COS

This solution was obtained independently by Heaviside and by Poincare*.

19. An electromagnetic pulse is propagated in a homogeneous, isotropic medium
whose constants are c, /x,

a in the direction of the positive 2-axis. At the instant

i = the form of the pulse is given by
_J!l

1 e 2& *

where 5 is a parameter. Find an expression for the pulse f(z, I) at any subsequent
instant.

20. Wherever the displacement current is negligible with respect to the conduc-

tion current (<r/eo> ^> 1), the field satisfies approximately the equations

aHVXE+M -=0, VXH=J.
dt

Show that to the same approximation

E=-f- H-SxA,
dt n

V2A - ^ =0, V A =
0,

dt

and that the current density J satisfies

VJ - M' =
0, V-J=0.
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What boundary conditions apply to the current density vector? These equations
govern the distribution of current in metallic conductors at all frequencies in the radio

spectrum or below.

21. The equation obtained in Problem 20 for the current distribution in a metallic

conductor is identical with that governing the diffusion of heat. Consider the one-

dimensional case of a rectangular component / propagated along the 3-axis

a2/ a/

dz*
***

dt

Show that

i C
f"

'2Yrf J_
/() 6

4 < d*

is a solution such that at t =
0, / =

f(z) ,
and which is continuous with continuous

derivatives for all values of z when t > 0.

22. In Problem 21 it was found that the equation

av a^
v =
az2 dt

is satisfied by

*->fe
From the theory of Fourier transforms show that this can be written in the form

/T" ^7^ r2* Qg ~ CT+ 2nir)
a

* ~
\ ~i ^ I

6
4 "' ^ d<*'

n =3 oo

Obviously the equation is also satisfied by

1 ^ri C 2*

=- > e^-^-^'/W
"n^ooJo

Compare these solutions and from the uniqueness theorem demonstrate the

identity

t 2
This relation has been applied by Ewald to the theory of wave propagation in crystals.

23. Show that if radio waves are propagated in an electron atmosphere in the

earth's magnetic field, a resonance phenomenon may be expected near a wave length

of about 212 meters. Marked selective absorption is actually observed in this region.

Assume e = 1.60 X 10~19 coulomb /electron, m = 9 X 10~31
kg. /electron, and for the

density of the magnetic field of the earth B Q
= 0.5 X 10~4 weber/meter2

.

24. A radio wave is propagated in an ionized atmosphere. Calculate and discuss

the group velocity as a function of frequency, assuming for the propagation constant
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the expression given in Eq. (36), page 329. The concentration of electrons in certain

regions of the ionosphere is presumed to be of the order of 10 ls electrons/meter3
.

25. A plane, linearly polarized wave enters an electron atmosphere whose density
is 10" electrons/meter3

. A static magnetic field of intensity J5 = 0.5 X 10~4

weber/meter* is applied in the direction of propagation. Obtain an expression

representing the change in the state of polarization per wave length in the direction

of propagation.
26. A radio wave is propagated in an ionized atmosphere in the presence of a fixed

magnetic field. Find the propagation factor for the case in which the static field is

perpendicular to the direction of propagation.
27. As a simple model of an atom one may assume a fixed, positive charge to

which there is bound by a quasi-elastic force a negative charge e of mass m. Neg-
lecting fractional forces, the equation of motion of such a system is

mi +/r =
0,

where r is the position vector of e and / is the binding constant. A static magnetic
field is now applied. Show that there are two distinct frequencies of oscillation and
that the corresponding motions represent circular vibrations in opposite directions

in a plane perpendicular to the axis of the applied field. What is the frequency of

rotation? This is the elementary theory of the Zeeman effect.

28. The force per unit charge exerted on a particle moving with a velocity v in a

magnetic field B is E 7 = v X B. The motional electromotive force about a closed

circuit is

V - w-as = [v X (v XB)]-ndd.

At any fixed point in space the rate of change of B with the time is dB/dt. If by
we now understand the total force per unit charge in a moving body, then

V X E - ~ -f V X (v X B).
dt

Show that the right-hand side is the negative total derivative

dB dB_=_. + (,. V)B ,

so that the Faraday law for a moving medium is

dB

The displacement velocity is assumed to be small relative to the velocity of light.



CHAPTER VI

CYLINDRICAL WAVES

An electromagnetic field cannot, in general, be derived from a purely

scalar function of space and time; as a consequence, the analysis of

electromagnetic fields is inherently more difficult than the study of heat

flow or the transmission of acoustic vibrations. The three-dimensional

scalar wave equation is separable in 11 distinct coordinate systems,
1

but complete solutions of the vector wave equation in a form directly

applicable to the solution of boundary-value problems are at present

known only for certain separable systems of cylindrical coordinates and

for spherical coordinates. It will be shown that in such systems an

electromagnetic field can be resolved into two partial fields, each derivable

from a purely scalar function satisfying the wave equation.

EQUATIONS OF A CYLINDRICAL FIELD

6.1. Representation by Hertz Vectors. We shall suppose that one

set of coordinate surfaces is formed by a family of cylinders whose ele-

ments are all parallel to the z-axis. Unless specifically stated, these

cylindrical surfaces are not necessarily circular, or even closed. With

respect to any surface of the family the unit vectors ii, i2 , is are ordered

as shown in Fig. 64. ii is, therefore, normal to the cylinder, i 3 tangent
to it and directed along its elements, and i2 is tangent to the surface and

perpendicular to ii and i 3. Position with respect to axes determined

by the three unit vectors is measured by the coordinates u l
3
u 2

, z, and

the infinitesimal line element is

(1) ds = ijii du l + i2h2 du* + i3 dz.

Now let us calculate the components of the electromagnetic field

associated with a Hertz vector n directed along the z-axis, so that

H! = II2 = 0, nr 7^ 0. We shall assume in the present chapter that the

medium is not only isotropic and homogeneous but also unbounded in

extent. Then by (63) and (64), page 32, the electric and magnetic
vectors of the field are given by

=
\

~
(2) E< = V X V X H, H< 1> =

\

~ + er V X

1 EISENHAHT, Annals of Math., 35, 284, 1934.

349
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since both Hi and Hz are zero, it is a simple matter to calculate from (81)

and (85), page 49, the components of E (1) and H(I)
.

(3)

_ _.,
a- an.

H< u = 0.

Thus we have derived from a scator function ITZ = ^, an electromagnetic

field characterized by the absence of an axial or longitudinal component

y

Fia. 64. Relation of unit vectors to a cylindrical surface. The generators of the surface

are parallel to the 2-axis.

of the magnetic vector. Since n is the electric polarization potential, this

can be called a field of electric type (page 30), but in the present instance

the term transverse magnetic field proposed recently by Schelkunoff l seems

more apt.

Since 11, is a rectangular component, it must satisfy the scalar wave

equation,
^2.f. 3J.

(5)

1 SCHELKUNOFF, Transmission Theory of Plane Electromagnetic Waves, Proa

ln$t. Radio Engrs., 25, 1457-1492, November, 1937.
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or by (82), page 49,

,-v 1 d /X d\l/\ 1
(A) . I T ___L- I _L_

.W/ L 7, ^..1 I L 't-.l I r 7^ 7

The elementary harmonic solutions of this equation are of the form

(7) ^ = / n 2
)e ***-"**,

where /(u
1
,
w2

) is a solution of

* 5

In quite the same way a partial field can be derived from a second

Hertz vector EL* by the operations

(9) E< = -AI ^ V X n*, H< 2> = VXVXIl*;
(jt

if n* is directed along the 2-axis, the components of these vectors are

IL r)
2TT*^ z

(U)

JJCD = _A. [A^ ^A +A Ai an?\l
Aifca L^^

1

\Ai 3u 1

/
^

dw 2
VA 2 du 2

/ J

The scalar function ILf is a solution of (5), and the field of magnetic type,
or transverse electric, derived from it is characterized by the absence of a

longitudinal component of E.

The electromagnetic field obtained by superposing the partial fields

derived from U 2 and II* is of such generality that one can satisfy a pre-

scribed set of boundary conditions on any cylindrical surface whose gen-

erating elements are parallel to the 2-axis; i.e., on any coordinate surface

defined by u 1 = constant or prescribed conditions on either a surface

of the family u 2 = constant or a plane z constant. The choice of these

orthogonal families, however, is limited in practice to coordinate systems
in which Eq. (8) is separable.

6.2. Scalar and Vector Potentials. The transverse electric and trans-

verse magnetic fields defined in the preceding paragraph have interesting

properties which can be made clear by a study of the scalar and vector

potentials. Consider first the transverse magnetic field in which



352 CYLINDRICAL WAVES [CHAP. VI

JJ(l)
__ Q

(12) E (1) = -V</>
-

~^;
B< = V X A,

(13) 4>=-V.n, A =
/ifej

+ ojn.\ x

In the present instance T/'
= II and, hence,

d\f/
. d\fs

(14) <f>
== ) AZ AtC |~ P-^Yy A i A 2

== 0.

The components of E (l) are then

(15)

for the components of B (1)
,
we obtain

-
o,

in which A without a subscript has been written for A z .

Now it will be noted that in the plane z = constant the vector E (1)

is irrotational and therefore in this transverse plane, the line integral of

E (1) between any two points a and 6 is independent of the path joining

them; for an element of length in the plane z = constant is expressed by
ds = ii/ii du l + i2A 2 du2

and, consequently,

(17)
a
B - ds = - du^ + d

TAe difference of potential, or voltage, between any two points in a transverse

plane has a definite value at each instant, whatever the frequency and whatever

the nature of the cylindrical coordinates.

Next, one will observe that the scalar function A plays the role of a

stream or flow function for the vector B (1)
. Let the curve joining the

points a and 6 in Fig. 65 represent the trace of a cylindrical surface inter-

secting the plane z = constant. We shall calculate the flux of the

vector B (1) through the ribbonlike surface element bounded by the curve

ab whose width in the ^-direction is unity. If n is the unit normal to this

surface and is a unit vector directed along the z-axis, we have

(18) B< 1 > n da = B< (i s X ds)
= i3 (ds X B<),
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where ds is again an element of length along the curve. Upon expanding
(18) we obtain

(19)

hence,

(20)

B< 1> n da = du l du? = -dA;

= A(a) - A(6).

The magnetic flux through any unit strip of a cylindrical surface passing

through two points in a plane z = constant

is independent of the contour of the strip.

If the components of E (1) and B (1) are

expressed in terms of the scalar function ^,

it is easy to show that

(21) EyB<? + Ey*By> =
o,

and consequently the projection of the vector

E (1) on the plane z constant is everywhere

normal to B (1)
. Moreover, in the trans-

i xi_ r T f i

verse plane the families of curves, <t>
= con-

Stant, A = constant, Constitute an

orthogonal set of equipotentials and stream-

lines. When the time variation is harmonic, it is clear from (14) and (7)

that the equipotentials are the lines

FIO. 65.- The curve a-b re-

presents the intersection of a cy-
ndrical 8urface with the xy_plane

which contains also the vectors n

(22) /(te
1
,
w2

)
= constant,

in which /(u
1

,
u2

) satisfies Eq. (8).

The transverse electric field has identical properties but with the

roles of electric and magnetic vectors reversed. According to (35),

page 27,

(23) D< 2> = -V X A*, H< 2> = -V4>* - M! - ? A*.
ut

an*
dt

'

(24) <t>*
= -V-n*, A* =

If now we let t = n?, n? =
II?

=
0, then

(25) <t>*
= -^ A* == MC^ Af = A? = 0.

The components of the field vectors are, therefore,

=
o,

d<t>*



354 CYLINDRICAL WAVES [CHAP. VI

(27)

9V W

The projection of H(2) on the transverse plane is irrotational and, con-

sequently, the line integral representing the magnetomotive force

between two points in this plane is independent of the path of integration.

(28)

Likewise the flux of the vector D (2)
crossing a strip of unit width as shown

in Fig. 65 depends only on the terminal points.

(29) f
b

D< n da = f
*

dA* = A*(b) -
A*(o).Ja Ja

The projection of H (2) on the plane z = constant is everywhere normal
to D (2)

; hence, the families </>*
= constant, A* = constant are orthogonal.

The field D (2)
,
H(2) is in this sense conjugate to the field <*>, B^.

6.3. Impedances of Harmonic Cylindrical Fields. We shall suppose
that the time variable enters only in the harmonic factor e~ itat

. Then the

potentials and field components of a transverse magnetic field are

(30) <f>
=

+ih\[/, A =
i(iJieo) + ii

<3I> w- w- * -<*>-,

in which fc
2 =

/zcco
2 + ip0w. The upper sign applies to waves traveling in

the positive direction along the 2-axis, the lower sign to a negative direc-

tion of propagation.
A set of impedances relating the field vectors can now be defined on

the basis of Sec. 5.6. It is apparent that the value of the impedance
depends upon the direction in which it is measured. By definition,

_^ _ By .COM/I"

The intrinsic impedance of a homogeneous, isotropic medium for plane
waves is by (83), page 283,

(34)
"
*/* + iff

~
k

COjLt _ COjLt
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so that (33) can be expressed as

(35) Z< =
|Z .

Likewise impedances in the directions of the transverse axes can be

defined by the relations

(36) Ep = -ZpHp, E^ = ZpHp.

The correlation of the components of electric and magnetic vectors and
the algebraic sign is obviously determined by the positive direction of the

Poynting vector. Since H (

z
l)

is zero, there is no component of flow

represented by the terms E^H (

z
l

\ EpH (

,
l

\ and the associated impedances

consequently are infinite. Upon introducing the appropriate expressions

for the field components into (36), we obtain

7CD _ W -
/c

2
hrf 7 7 1} _ fe

2 -fc 2
h*t 7

(37)
^ --

3T~a /0 ' A --
ik~l&

'

du l du 2

The determination of corresponding impedances for the harmonic

components of transverse electric fields needs no further explanation.

The potentials and field vectors are in this case given by

(38) 0* = +iht, A* = -i

(40) Hi>= , ^'='
From these relations are calculated the various impedances.

(42)

(43) ^ u^ 72)
^o, Zi ^

There emerges from these results the rather curious set of relations :

(44) Zi"Zi2) = Zi"Z
(

2
2 > = Z( 1}

Z^
2) = Zi2) .

WAVE FUNCTIONS OF THE CIRCULAR CYLINDER

6.4. Elementary Waves. By far the simplest of the separable cases

is that in which the family u l = constant is represented by a set of
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coaxial circular cylinders. Then by 1, page 51,

(1) u l =
r, w2 =

0, A! =1, A 2
=

r,

and Eq. (8) of Sec. 6.1 reduces to

which is readily separated by writing /(r, 0) as a product

(3) / = /i(r)/,(0),

wherein /i(r) and /2(0) are arbitrary solutions of the ordinary equations

(4) r r + [(*
-

A')r
- p2

]/,
= 0.

(5) + P% - 0.

The parameter p is, like A, a separation constant; its choice is governed

by the physical requirement that at a fixed point in space the field must

be single-valued. If, as in the present chapter, inhomogeneities and

discontinuities of the medium are excluded, the field is necessarily

periodic with respect to and the value of p is limited to the

integers n = 0, 1, 2, . . . . When, on the other hand, a field is

represented by particular solutions of (4) and (5) in a sector of space

bounded by the planes
=

0i,
=

0%, it is clear that nonintegral values

must in general be assigned to p.

Equation (4) satisfied by the radial function /i(r) will be recognized

as Bessel's equation. Its solutions can properly be called Bessel func-

tions but, since this term is usually reserved for that particular solution

JpCv/fc
2 W r) which is finite on the axis r =

0, we shall adopt the name

circular cylinder function to denote any particular solution of (4) and shall

designate it by the letters /i
= Zp(\/k*

- h* r). The order of the func-

tion whose argument is \/^ 2 h*r is p. Particular solutions of the

wave equation (5), page 350, which are periodic in both t and 0, can there-

fore be constructed from elementary waves of the form

(6) ^. = eM Zn(Vk* - h 2
r) e**-H

The propagation constant h is, in general, complex; consequently the field

is not necessarily periodic along the z-axis. An explicit expression for h

in terms of the frequency a? and the constants of the medium can be

obtained only after the behavior of
\l/
over a cylinder r = constant or on a

plane z = constant has been prescribed.
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6.5. Properties of the Functions Zp (p). Although it must be assumed
that the reader is familiar with a considerable part of the theory of Bessel's

equation, a review of the essential properties of its solutions will prove
useful for reference.

If in Eq. (4) the independent variable be changed to p = \/k 2 h 2
r,

we find that Zp (p) satisfies

an equation characterized by a regular singularity at p = and an essen-

tial singularity at p = oo. The Besselfunction Jp (p), or cylinder function
of the first kind, is a particular solution of (7) which is finite at p = 0.

The Bessel function can, therefore, be expanded in a series of ascending
powers of p and, since there are no singularities in the complex plane of

p other than the points p = and p = co
,
it is clear that this series must

converge for all finite values of the argument. For any value of p, real

or complex, and for both real and complex values of the argument p we
have

When p in (7) is replaced by p, the equation is unaltered; conse-

quently, when p is not an integer, a second fundamental solution can be
obtained from (8) by replacing p by p. If, however, p = n is an

integer, Jp (p) becomes a single-valued function of position. The gamma
function T(n + m + 1) is replaced by the factorial (n + m)\, so that

(9) J(P) =

(n - 0, 1, 2,
...

).

The function J-n (p) is now no longer independent of (9) but is related to

it by

(10) /-n(p) = (-l)J(p),

so that one must resort to some other method in order to find a second
solution.

The Bessel function of the second kind is defined by the relation

(11) N (p}
=
ihT^ [JM

cos v* - /

This solution of (7) is independent of Jp (p) for all values of p, but the

right-hand side assumes the indeterminate form zero over zero when p



358 CYLINDRICAL WAVES [CHAP. VI

is an integer. It can be evaluated, however, in the usual way by dif-

ferentiating numerator and denominator with respect to p and then

passing to the limit as p n. The resultant expansion is a complicated
affair 1 of which we shall give only the first term valid in the neighborhood
of the origin.

(12) *,GO~-
IT 7P 7T \p>

(n = 1, 2,
-

),

where 7 = 1.78107 and
[p|

<JC 1. The characterizing property of the

functions of the second kind is their singularity at the origin. Since they
become infinite at p = 0, they cannot be employed to represent fields that

are physically finite in this neighborhood.
Further light is cast on the nature of the functions Jp (p) and Np (p)

when one examines their behavior for very large values of p. The expan-
sions about the origin converge for all finite values of p, and Jp (p) and

Np(p) are analytic everywhere with respect to both p and p, the points

p = and p = oo excepted. However, when p is very large the con-

vergence is so slow as to render the series useless for practical calculation

and one seeks representations of these same functions in series of

inverse powers of p. It can, in fact, be shown that BessePs equation
is satisfied formally by the expansions

(13) JP(P) =
\ [Pp(p) cos <t> QP (p) sin $],

/IF

(14) NP (P)
=
^~ [Pp (p) sin * + Qp (p) cos 0],

pp(p) = l - ^T
~ A 'w 9)

2!(8p)
2

-
25) (4p

2 -
49)

KM <V> - 4p2
~ 1 (4P

2 -
l)(4p

2 -
9)(4p'

-
25)

(16) p(p)
-

^
---^P- +

in which the phase angle is given by

(17)] * = p

Now it turns out that these series diverge for all values of p, and
consequently do not possess the exact analytical properties of the func-

1 See WATSON, "A Treatise on the Theory of Bcssel Functions," Chap. Ill,

Cambridge University Press, 1922, and JAHNKE-EMDB, "Tables of Functions/'
p. 198, Teubner, 1933.
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tions they are intended to represent. On the other hand, if p is large,
the first few terms diminish rapidly in magnitude and in this sense the

series are "semiconvergent." It can be shown that if the expansions
are broken off near or before the point at which the successive terms begin
to grow larger, they lead to an approximate value of the function and the

error incurred can be estimated. The larger the value of p the more

closely does the sum of the first few terms coincide with the true value of

the function
;
for this reason such representations are said to be asymptotic.

In the present instance we note that when p is sufficiently large,

(18) J,(p)
~ - cos

(p
-

At very great distances from the origin the cylinder functions of the first

and second kinds are related to each other as the cosine and sine func-

tions, but are attenuated with increasing p due to the factor l/\/P^

They are the proper functions for the representation of standing cylindrical

waves.

By analogy with the exponential functions one may construct a linear

combination of the solutions Jp (p) and Np (p) to obtain functions asso-

ciated with traveling waves. The Bessel functions of the third kind, or

Hankel functions as they are commonly known, are defined by the

relations

(20) H?(p) = J,(p) + tW,(p),

(21) Hy>(p)
= JM -

iN,(p).

From the preceding formulas we find readily that for very large p

(22)

("9" _/ _?!
e V- 4

-

(23)

To the series expansions of the functions themselves we shall add for

ready reference several of the more important recurrence relations.

/94\ 7 I 7- ___ "P r7

\^) 6p-l "T "p+l ^p.
P
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(25) ^.1^-1*^
(26)

~

(27)
~

6.6. The Field of Circularly Cylindrical Wave Functions. Within a

homogeneous, isotropic domain every electromagnetic field can be repre-

sented by linear combinations of the elementary wave functions

(28) tnhk = eM Jn(Vk* - h* r) e **

(29)

Of these (28) alone applies to finite domains including the axis r = 0;

at great distances from the source, (29) must be employed, since by (22)

it reduces asymptotically to a wave traveling radially outward. Each

elementary wave is identified by the parameter triplet n, 7i, k. When
n =

0, the field is symmetric about the axis; when h = 0, the propagation

is purely radial and the field strictly two-dimensional. Functions such

as (28) and (29) can be said to represent inhomogeneous plane waves.

The planes of constant phase are propagated along the 2-axis with a

velocity v = w/a, where a is the real part of h, but the amplitudes over

these planes are functions of r and 6. Such waves can be established

only by sources located at finite distances from the origin of the reference

system, or in media marked by discontinuities. The plane waves studied

in the preceding chapter are in a strict sense homogeneous, since the planes

of constant phase are likewise planes of constant amplitude. They can

exist only in infinite, homogeneous media, generated by sources that are

infinitely remote.

From the formulas developed in Sec. 6.3 one may calculate the

impedances and the components of the field vectors in terms of a wave

function \l/. We find

-A 2
)r

>

(30)
a"

k*

(31) Ep = ih^ E, ==

7 ff'

(32) H?> - -- -
g* H.< - S

g,
= Q.

x
p.u r av n& or
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Likewise for the transverse electric field,

__, =

(3g)
-fc'Z.Cp) Jb'-Wr

(34) *

(35) #<*> = tt
Jt ff,< =

f^ H{ = (*
-

A*)*.

When initial conditions are prescribed over given plane or cylindrical

surfaces, a solution is constructed by superposition of elementary wave
functions. For fixed values of co (or fc) and h, one obtains for the resultant

field in cylindrical coordinates the equations

(36) E, = - -

E, = (*
-

H. =
(fc

_

where an and 6n are coefficients to be determined from initial conditions.

The direction of propagation is positive or negative according to the

sign of h.

INTEGRAL REPRESENTATIONS OF WAVE FUNCTIONS

6.7. Construction from Plane Wave Solutions. If f measures dis-

tance along any axis whose direction with respect to a fixed reference

system (x, y, z) is determined by a unit vector n, then the most elementary
type of plane wave can be represented according to Sees. 5.1 to 5.6 by
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(1)

CYLINDRICAL WAVES [CHAP. VI

in which the constants k and w are either real or complex. Let R be the

radius vector drawn from the origin to a point of observation whose

rectangular coordinates are a;, T/, z. The phase of the wave function at a

given instant is then measured by

(2) f = n R = + nyy + nzz.

The direction cosines nx ,
nV) nz of the vector n are best expressed in terms

of the polar angles a and ft shown in Fig. 66.

(3) nx
= sin a cos ft,

hence,

nv
= sin a sin ft,

= cos a;

(4) gik(x
sin a cos /3-j-y sin a sin /3-f* cos a) iut

As the parameters a and ft are varied, the axis of propagation can be

oriented at will. With each direction of

propagation one associates an amplitude

g(a, ft) depending only on the angles a
and ]3; since the field equations are in the

present case linear, a solution can be con-

structed by superposing plane waves, all

of the same frequency but traveling in

various directions, each with its appropri-
ate amplitude.

1

(5) t(x, y, z, t)
= e~^ J da f dft g(a, ft)

gik(x
sin a cos /3-fy sin a sin /S-f-z cos a)

FIG. 66. The phase of an ele-

mentary plane wave is measured If the angles are real, the limits of inte-

*f^tt*S^ sration for * are obviously and *; ? g<*A J&xed point of observation is lo- from to 2?r. But Slich a solution is
cated by the vector E.

mathematically by no means the most

general, for (5) satisfies the wave equation for complex as well as real

values of the parameters a and ft and we shall discover shortly that

complex angles must in fact be included if we are to represent arbitrary
fields by such an integral.

When w is real, the wave function defined by (5) is harmonic in time.

To represent fields whose time variation over a specified coordinate

1 The general theory of such solutions of the wave equation has been discussed by
Whittaker. See WHITTAKBB and WATSON, "Modern Analysis," 4th ed., Chap.
XVIII, Cambridge University Press, 1927.
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surface is more complex it will be necessary to sum or integrate (5) with

respect to the parameter co. We shall define a vector propagation constant

k = fcn whose rectangular components are

(6) ki = k sin a cos 0, k 2
= k sin a sin

,
& 3
= k cos a,

so that the elementary plane wave function can be written

(7) ^ = e<k.R-u^

It follows upon introduction of (7) into the wave equation

te" aiT a?
"

a?
"

a '

that the components of k must satisfy the single relation

(9) kl + kl + kl = /*co
2

and are otherwise completely arbitrary. Thus of the parameters fci, fca,

& 3 , co, any three may be chosen arbitrarily whereupon the fourth is fixed

by (9).

Let us suppose then that over the plane 2 = the function ^ is

prescribed. We shall say that \l/(x, y } 0, f)
=

f(x, y, t). The desired

solution is

(10)

KX, 2/, ,

=
(^J J ^ J M J

in which fti, ^2 and co are real variables and A; 3 is a complex quantity deter-

mined by

(11) k\ = C0
2
jLt + WCO kl fcf.

The amplitude function is to be such that

(\
3 /* oo /* oo"l /* oO

^) J- oo J^ co J- oo
' (fcl '

If /(x, t/, and its first derivatives are piccewise continuous and abso-

lutely integrable, then g(ki, k^ co) is its Fourier transform and is given by

(13) g(k lt fc 2 , co)
= (^ J_ ^ J_ ^ J_ ^

/(*, y, e-^+*^-0 ctedy c.

When <r = 0, each harmonic component is propagated along the z-axis

with a velocity v = co/fc 3 ,
but since kz = -\/wVc ~~

&i
""

^2 is not a linear

combination of co, fci, and fc2,
it is apparent that the initial disturbance
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/fo 1/9 does not propagate itself without change of form even in the

absence of a dissipative term. More precisely, there exists no general

solution of (8) of the type /

Equally one might prescribe the function \{/(x, y, z, t) throughout all

space at an initial instant t = 0. Let us suppose, for example, that

\l/(x, y, z, 0)
=

f(x, y} z). The field is to be represented by the multiple

integral

(14)
X 1 \ I /** /* eo / oo

,/.// n I M f\ -~- I ll I I ndf-t Ufa. lfn\ t>i(ki%"\'lwU"\~k& <*>0 f-llf . fJlfnrllf-
\y\X,y,Z)l) I TT I III yWly K'2) frS} & '

a/t/i U71/2 WA/3,V71 / J-J-J-
in which fci, & 2 ,

& 3 are real variables and co is a complex quantity deter-

mined from (9).

(15) iw = 6 i

where a = l/\/M, & = 0"/2e as defined on page 297. The amplitude or

weighting function g(k\, &2 , ka) is to be such that

(16)

If f(x, y y z) has the necessary analytic properties, the Fourier transform

exists and is given by

(17)

g(kiy k2j k&)
=

( ^ ) I I I /(> yy *) e
~ IX 2J/ d% dy dz.

Only positive or outward waves have been considered in the foregoing

and initial conditions have been imposed only upon the function ^
itself. If both ^ and a derivative with respect to one of the four variables

are to satisfy specified conditions, it becomes necessary to include nega-

tive as well as positive waves according to the methods described for the

one-dimensional case in Sees. 5.8, 5.9, and 5.10.

6.8. Integral Representations of the Functions Zn (e). In any system

of cylindrical coordinates t*
1
,
w2

, z, the wave equation (6), page 351, is

satisfied by

(18) ^ = f(u\ u 2
) e*'-',

where h and co are real or complex constants. Following the notation of

the preceding section h = k$ = k cos a and, since k = \/Mo 2 + ^AWCO, it
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follows that the angle a made by the directions of the component plane
waves in (5) with the z-axis is also constant. In other words, the ele-

mentary cylindrical wave function (18) can be resolved into homo-

geneous plane waves whose directions form a circular cone about the

z-axis, but the aperture of the cone is in the general case measured by a

complex angle.

(19) f(u
l

,
u2

)
= f 0(0) eik sin <* cos c+y sin

dp,

in which x and y are to be expressed in terms of the cylindrical coordinates

w 1
,
u2

.

In the coordinates of the circular cylinder we have x = r cos 0,

y = r sin 6, and, hence,

(20) x cos ft + y sin = r cos (6 0).

In the notation of the preceding paragraphs we have also

(21) kr sin a = r \/3k
2 h 2 =

p,

so that

(22) /(r, 6)
=

ff(/5) * t<p cos (9
-

ffi dp.

We now change the variable of integration in (22) from p to
<f>
=

0,

and note that, since the equation for /(r, 0) is separable, it must be

possible to express g(<j> + 6) as a product of two functions of one variable

each.

(23) 0(0)
=

g(<t> + 0)
=

hence,

(24) /(r, 0)
- /i(r)/2 (0)

=
2 (0) J

The angle function 2 (0) must obviously be some linear combination

of the exponentials e ipd and e~ lp9
,
and the amplitude or weighting factor

0i(<) must be chosen so that the radial function /i(r) satisfies (4),

page 356, which in terms of p is written

(25) pJ^ + p
|i

+ (p2
_ p% =

.

Let us substitute into (25) the integral

(26) /i(p)
= f0i(*
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Differentiating under the sign of integration, we have

cos
^1 I

i cos <t> fifi(*) e*p
COB * d*, j%

= -
J

hence from (25)

(28) f (p
2 sin 2 + *p cos <t>

- P
2
)0i(4>) e* c08 * d< = 0.

This equation is next transformed by an integration by parts. Equation

(28) is evidently equivalent to

(29) J [
jrifo)

" C 8 *
+ P

2
0i(4>) e* "

*]
d* = 0.

If P and Q are two functions of <, then

d dp dQ~

this applied to (29) gives

(31)
J

- Ui(0)
^|

+ ^ + p0 1 )
6*o.* cty =

The first of these two integrals can be made to vanish if the contour of

integration C is so chosen that the differential has the same value at both

the initial and terminal points; the second is zero if the integrand van-

ishes. Therefore (26) is a solution of the Bessel equation if gi(<t>) satisfies

(32) j + pVi =
d<p

and if the path C of integration is such that

(33) (ip
sin gW -

^J
= 0.

Equation (32) is evidently satisfied by e ip+. However, we shall find

that, if /i(p) is to be identical with the cylinder functions Zp (p) defined

1
* T

in Sec. 6.5, a constant factor - e ^ must be added. Then by choosing

(34)

"-
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we obtain Sommerfeld's integral representation of the cylinder functions,
1

~
tpi (*

(35) Zp (p) = -- e t-(

v Jc

the contour C to be such that

(36) (p sin <(> + p) <>'(pcos*+P0) |
= Q.

The distinction between the various particular solutions JP(p\

Np (p), Hp(p) is now reduced to a distinction in the contours of integration

in the complex plane of 0. Consider first the most elementary case in

which p =
ft, an integer. Then clearly, if the path of integration is

extended along the real axis of </> from TT to TT, or an}?" other segment of

length 2?r, the condition (36) is fulfilled and the definite integral

' n

(37) , Jn (p)
= ^

is a solution of the Bessel equation. That the function defined in (37)

is actually identical with the particular solution (9), page 357, can be

verified by expanding eipcoa<f> in a series about the point p = and

integrating term by term.

In the general case when p is not an integer, or to obtain the inde-

pendent solution, one must choose complex values of
<j>

in order that (36)

shall vanish at the terminal points. Let = 7 + iy- Then

(38) ip cos <t> + ip<t>
= p sin 7 sinh 17 prj + ip cos 7 cosh 77 + ipy.

If p is complex we shall assume that p = a + ib
t
where a is an essentially

positive quantity. Then by an appropriate choice of 7 and t\ the real part

of (38) can be made infinitely negative, while exp(tp cos <t> + ip<f>) 0.

This condition will be satisfied, for example, if we let 77
> + and

choose for 7 either ?r/2 or +37T/2; but the exponential also vanishes

when 7i
> oo provided 7 = 4-7T/2. In order that (35) shall represent

a solution of the Bessel equation, it is only necessary that the contour C
connect any two of these points.

Sommerfeld has chosen as a pair of fundamental solutions the two

integrals
~ ipi /I"*"

(39) #<,%>)=- efr " *+fc* d0,* J--H-
. T

-"5 -

(40)

1 SOMMERFELD, Math. Ann., 47, 335, 1896.
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The contour C\ followed by the integral (39) starts at 17
=

oo, 7 =
ir/2,

crosses both real and imaginary axes at <t>
=

0, and terminates eventually

at t\
= oo

, 7 =
ir/2. The contour C 2 followed by (40) starts at the

terminal point of Ci, crosses the real axis at 7 =
TT,

and comes to an end

at 17
=

oo, 7 =
3?r/2. Both contours are illustrated in Fig. 67. The

point at which the crossing of the real axis occurs is, of course, not essen-

tial to the definition. The contours may be deformed at will provided only

they begin at an infinitely remote central point of one shaded area and

terminate at a corresponding point in a second shaded area.

FIG. 67. Contours of integration for the cylinder functions.

The advantages of carrying C\ and C2 across the real axis at the

particular points 7 = and 7 = TT become apparent when the integrals

(39) and (40) are evaluated for very large values of p. For if the real

part of p is very large, the factor exp(ip cos 0) becomes vanishingly

small at all points of the shaded domains in Fig. 67 with the exception

of the immediate neighborhood of the points r?
=

0, 7 =
0, ir, 2ir,

.... At these points the real part of ip cos <f>, Eq. (38), is zero however

large p; consequently, if Ci and C2 are drawn as in Fig. 67, the sole con-

tribution to the contour integrals will be experienced in the neighborhood
of the origin and the point rj

=
0, 7 = TT. Out of a shaded region in

which the values of the integrand are vanishingly small, the contour Ci

leads over a steep "pass" or "saddle point
"
of high values at the origin,

and then abruptly downwards into another shaded plane where the con-

tributions to the integral are again of negligible amount. The contour

C2 encounters a similar saddle point at t\
=

0, 7 = TT. To confine the

integration to as short a segment of the contour as possible, one must

approach the pass by the line of steepest ascent, descending quickly from
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the top into the valley beyond by the line of steepest descent. This

means in the present case that the contours Ci, C* must cross the axis

at an angle of 45 deg. The behavior of the integrals (39) and (40) in

the neighborhood of a saddle point has been used by Debye 1 to calculate

the asymptotic expansions of the functions H^(p) and H(p). When p

is very large, both with respect to unity and to the order p t
one obtains

the relations (22) and (23) of page 359, thereby identifying the integrals

(39) and (40) with the Hankel functions defined in Sec. 6.5. Debye
considered also the case in which p was larger than the argument p, but his

results have been improved and extended by more recent investigations.
A contour integral representation of JP (p), when p is not an integer,

follows directly from the relation

(41) Jp (p)
=

i[#S,
1}
(p) + H^(P}\.

ip-z /

(42) J (p) ==: I
*p CO8 *~t~ lP <

(%(h
2?T JCt

The contour C$ shown in Fig. 67 represents a permissible deformation

of Ci + C2 .

6.9. Fourier-Bessel Integrals. It has been shown how in cylindrical

coordinates the two fundamental types of electromagnetic field can be
derived from a scalar function $. In case the cylindrical coordinates are

circular, \[/ is in general a function obtained by superposition of elemen-

tary waves such as the particular solutions (28) and (29) of page 360.

Our problem is now the following: at the instant t = the value of

^(r, By z, t) is prescribed over the plane z 0; to determine ^ for all

other values of z and t.

Let us suppose then that when t = z = 0, \f/
=

/(r, 6). We shall

assume that /(r, 6) is a bounded, single-valued function of the variables

and is, together with its first derivatives, piecewise continuous. Then

/(r, 6) must be periodic in 6 and can be expanded in a Fourier series whose
coefficients are functions of r alone.

00

(43) /(r, 0)
= ^ /-W ein

> /-W = i

If now /(r, 0) vanishes as r oo in such a way as to ensure the con-

vergence of the integrals
J^ |/n (r)| -\/rdr, then each coefficient fn (r) can

be represented by a modified Fourier integral.
2

1 DEBYE, Math. Ann. 67, 535, 1909. See also WATSON, Zoc. cit., pp. 235jf.
1 The Fourier-Bessel integral ia established by more rigorous methods in Chap. XIV

of Watson's "Bessel Functions."
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Consider a function f(x, y) of two variables admitting the Fourier

integral representation

(44) , j,)
= JL

J_^ J
A transformation to polar coordinates is now made both in coordinate

space and in k space.

% = r cos 0, y r sin 0,

fci
= X cos ft y

/c 2
= X sin 0,

so that in the notation of earlier paragraphs X = k sin a = \/k 2 A 2
.

Then fcix + fc 2y = Xr cos (ft 0) and (44), as a volume integral in

k space, transforms to

(46) /(r, 0)
= ^ X d\ \ df) g(\, ft) e*' " ->.

^* t/0 t/0

The physical significance of this representation is worth noting. The
function exp[iXr cos (ft 0) iut] represents a plane wave whose

propagation constant is X, traveling in a direction which is normal to the

2-axis and which makes an angle ft with the z-axis. Each plane wave is

multiplied by an amplitude factor g(\, ft) and then summed first with

respect to ft from to 2ir and then with respect to the propagation

constant, or space frequency X.

The transform of f(x, y) is

(47) 0(fci, A*) =2T j_

which when transformed to the polar coordinates f = p cos /*, 17
= p sin

ju,

leads to

(48) jr(X, j8)
= p dp dM /(P, M)

Suppose finally that /(r, 0)
= /n (r) e in5 . Then

(49) 0(X, j8)
= ^ f p dp /w (p) f

"

d/z e~
&K JO JO

which upon a change of variable such as0 = Ai~"0 iris clearly equal to

(50) 0(X, 18)
= *W*> f

"

/n(p)/n(XP)p dp =
Jo
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Likewise (46) becomes now

(51) /(r, tf)
= /n (r) eM =

^- f X dX gn(\) f

**

dft <f>* <*-iO-Ktf H*)^ Jo Jo

or upon placing <
= 0,

(52) /(r) e = e f n (X)Jn(Xr)X dX.
Jo

Thus we obtain the pair of Fourier-Bessel transforms

(53) /.(r)
=

I
n(A)/n (Xr)X dX,

Jo

(54) n (X)
= f /(p)/n(Xp)p dp.

Jo

The function

(55) * = r "5! e<n* f \n(X)/n(Xr)e*VF^T'*xdX
nfHo J

is a solution of the wave equation in circular cylindrical coordinates,

which at t = reduces to /(r, 0) on the plane z = 0. But this obviously
is not the most general solution satisfying these conditions, for we have

still at our disposal the two parameters w and k which are subject only to

the relation fc
2 =

/-teco
2 + tcr/uo. If o) is real, harmonic wave functions

such as (55) may be superposed to represent an arbitrary time variation

of i// over the plane 2 = 0. If both positive and negative waves are

considered, it is permissible also to assign values to both \l/ and d\l//dz

at z = 0. The treatment of such a problem has been adequately illus-

trated in Chap. V.

6.10. Representation of a Plane Wave. The Fourier-Bessel theorem

offers a very simple means of representing an elementary plane wave in

terms of cylindrical wave functions. Let the wave whose propagation

constant is k travel in a direction defined by the unit vector n, whose

spherical polar angles with respect to a fixed reference system are a and ft

as in Fig. 66, page 362. Then

. ikz cos a fat

and our problem is to represent the function

fJ) f(x y) = e*'*
Bin a(* coa 0-f-y aiu 0) = gikr

sin a cos (ft 6)

as a series of the form

(58) f(r, 0)
= /.(r) e.
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By (43) we have

1 P 2*

(59) fn (r)= gt-fcrsinacostf-*)-
&K Jo

Upon replacing 6 by <, this becomes equal to

(60) /n (r) = <?

n
(*~ ft

)jn(kr sin a),

and we obtain thereby the useful expansion

[CHAP. VI

(61) eikr 8in cos V- *> = sn

Several other well-known series expansions are a direct consequence

of this result. Thus, if we put p = kr sin a, 0=0 ^ (61)z

becomes

(62)

which upon separation into real and imaginary parts leads to

00

cos (p sin <) =
5) ^n(p) cos n0,

n = oo

(63)
00

sin (p sin <) = ^ ^n(p) sin n<i>.

n = oo

THE ADDITION THEOREM FOR CIRCULARLY CYLINDRICAL WAVES

6.11. Several important relations pertaining to a translation of tho

axis of propagation parallel to itself can be derived from the formulas of

the foregoing section. In Fig. 68

and Oi denote the origins of two

rectangular reference systems.
The sheet of the figure coincides

with the zi/-plane of both systems
and the axes Xi, y\, Zi through Oi are

respectively parallel to x, y, z. The
function Jn(Xri) ein&l

,
when multi-

FIQ. 68. Translation of the reference

system.
r , , , . ., . .

Plied y exp(ihzi to>0, repre-
sents an elementary cylindrical

wave referred to the Zi-axis. We wish to express this cylindrical wave
in terms of a sum of cylindrical wave functions referred to the parallel

z-axis through 0.
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We write first

(1) /.(X

From the figure it is clear that Q\ = + ^ and that

/2\
fi cos \l/

= ri cos (0i 0)
= r r cos (0 ),

ri sin ^ ri sin (0i 0)
= r sin (^ ).

Moreover, in virtue of the periodic properties of the integrand, (1) is

equivalent to

(3) Jn(Xn) e^ = f f e*

>n CM <*-*>+

^*" J-1T

It follows from (2) that

(4) ri cos (<> i/O
= r cos </> r cos (<

hence,

,_ x r /> x 1 f* Xrco8*-tXroCOB(0-ftf- ~
.

(5) Jn(Xri) ein0 > = ^ l_
6 \ 2'

d<t>.

By (61), page 372, we have

(6) e -t\ro c

and in virtue of the uniformity of convergence one may interchange

the order of summation and integration.

^mmmm

t'Xr cos <-H(n-fm)( <t> s ) +tw(U 0o)-f in6

Upon replacing B\ by 6 + ip this result becomes

(8) /.(XrOe*
1*-

An analogous expansion for the wave function H }

(\ri) einei can be

obtained by writing

(9) //'"(xn) +* = 1 f e
l>1 CM (*

^" JCi
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where C\ is the contour described in Fig. 67, page 368, with a shift of

amount ^ along the real axis to ensure the vanishing of the exponential

at the terminals. Upon expanding the exponent by (2), we find

(10)
,/ 1 Iin+ = -

I

* JCi

J2'.

If now
|r|
> |r

cos (0 0o)|, one can proceed exactly as above and

is led to the expansion

en)

If r =
0, the two centers coincide; Jm (0)

= for all values of m except

zero, and Jo(0) = 1. The angle \l/ is zero and the right and left sides

of (11) are clearly identical. The expansion can be verified also in the

case when r and n are very large, for then the Hankel functions can be

replaced by their asymptotic representation, (22), page 359. The

angle ^ is approximately zero and r\ c^. r ~ r cos (0 ). The

amplitude factor \/2/irri can be replaced by \^2/irr without appreciable

error, but the term r cos (0 ) must be retained in the phase. Then

(11) reduces to

/m (Xr ) 6 2
,

and the right-hand side of (12) in turn is by (61), page 372, the correct

expansion of the plane wave on the left. Indeed as r\ becomes infinite,

the expanding cylindrical wave function designated by (11) must become

asymptotic to a plane wave.

When
|r| < |r cos (0 0o)| the expansion (11) fails to converge and

is replaced by
CO

(13) ff^(Xri) *in* = X #^Xro)/n+,n(Xr) ^C^-*),

which is finite at r = 0. At this point J
r

n+m(Xr) is zero unless m = n.

Moreover ^~TT + and, since H (^(p) = enviH^(p)t the right

and left sides of (13) are clearly identical. In the other limiting case of

r very large, we write 7*1
= r r cos (0 ) and find by means of the

asymptotic representations of the Hankel functions that (13) approaches

(14) e-V cos (0-0o) =
77

a plane-wave function propagated from Oi towards along the line joining

these two centers.
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WAVE FUNCTIONS OF THE ELLIPTIC CYLINDER

6.12. Elementary Waves. Circular wave functions are in a sense a

degenerate form of elliptic wave functions obtained by placing the

eccentricity of the cylinders equal to zero. The analysis of the field and
the properties of the functions must inevitably prove more complex in

elliptic than in circular coordinates, but the results are also fundamentally
of greater interest.

From 3, page 52, we take

(1) ul -
,

u2 =
ry, {

>
1, -Igi,^ 1,

(2) Al==

upon introducing these into (8), page 351, we find that /(, ??) must

satisfy the equation

This in turn is readily separated by writing / = /i()/2 (*?) and leads to

(4) (? -
1)

' + { + [ejfti
-W -

&]/, = 0,

(5) (1
-

)
-

, + (b
- c*a (k*

- AVIA =
0,

where 6 is an arbitrary constant of separation. Thus /i() and /2 (??)

satisfy the same differential equation. Equations (4) and (5) are in fact

special cases derived from the associated Mathieu equation
1

(6) (1
- z2X' -

2(a + l)zw' + (6
- cW)w =

by putting the parameter a =
. These equations are characterized

by an irregular singularity at infinity and regular singularities at z = 1.

When :s> 1, (4) goes over to a Bessel equation.
A certain simplification of (4) and (5) can be achieved by transforma-

tion of the independent variables. Let

(7) = cosh u, rj
= cos v,

so that the transformation to rectangular coordinates is expressed by

(8) x == CD cosh u cos v, y = Co sinh u sin v.

1 WHITTAKBR and WATSON, loc. cit., Chaps. X and XIX; INCE,
"
Ordinary Differ^

ential Equations," Chap. XX, Longmans, 1927.
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Then in place of (4) and (5), we obtain

(9) 2~ + (c
2X* cosh* u - 6)/i

=
0,

(10) Jr
2 + (6

- c
2X 2 cos 2

t;)/,
=

0,

where as in the preceding sections X = \/k* h 2
. The distance between

the focal points on the z-axis, Fig. 9, is 2c and the eccentricity of the

confocal ellipses is e = 1/cosh u. The transition to the circular case

follows as the limit when Co * and u o . Then Co cosh u > Co sinh u
>

r, and t; is clearly the angle made by the radius r with the x-axis.

For this reason we shall refer to f\(u) as a radial function and /2 (y) as an

angular function. When u =
0, the eccentricity is one and the ellipse

reduces to a line of length 2c joining the foci on the o>axis.

The Mathieu equations (9) and (10) have been studied by many
writers. We shall consider first the angular functions f*(v). There are,

of course, solutions of (10) whatever the value of the separation constant

6. But the electromagnetic field is a single-valued function of position

and hence, if the properties of the medium are homogeneous with respect

to the variable v
y

it is necessary that f%(v) be a periodic function of the

angle v. Now Eq. (10) admits periodic solutions only for certain char-

acteristic values of the parameter 6. These characteristic values form a

denumerable set 61, 62,
. . .

,
6m ,

. . . . Their determination is a

problem of some length, so we shall content ourselves here with a reference

to tabulated results 1 and proceed directly to the definition of the functions

satisfying (9) and (10) when b coincides with a characteristic value 6m .

For the proper values of 6, Eq. (10) admits both even and odd periodic

solutions. The denumerable set of characteristic values leading to even

solutions may be designated as 6^ and the associated characteristic

1 A very readable account of the theory of the Mathieu functions has been given

by Whittaker and Watson, loc. cit.
y Chap. XIX; further details with extensive refer-

ences to the literature have been published by Strutt in a monograph entitled "Lam6-
sche- Mathieusche- und verwandte Funktionen in Physik und Technik," in the collec-

tion "Ergebnisse der Mathematik," Springer, 1932. Tables of Mathieu functions

and characteristic values have been published by Goldstein, Trans. Cambridge Phil.

Soc., 23, 303-336, 1927. The functions Sem and Som defined in the text differ from
the cem and sem of these authors only by a proportionality factor. Whereas Goldstein

chooses his coefficients such that the normalization factor is A/Tr, we have found it

advantageous to normalize in such a way that the even function and the derivative of

the odd function have unit value at the pole t; 0. See Stratton, Proc. Nat. Acad.

Sci. U. S., 21, 51-56, 316-321, 1935; and MORSE, ibid., pp. 56-62. Extensive tables

of the expansion coefficients D, the characteristic values bm and the normalization

factors have been computed by P. M. Morse and will appear shortly.
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functions can then be represented by the cosine series

(11) Sem (c<>\ cos v)
= ]' D cos nv, (m =

1, 2, 3, ),

where the primed summation is to be extended over even values of n
if m is even and over odd values of n if m is odd. The recursion formula

connecting the coefficients D (coA) can be found by introducing (11) into

(10). All coefficients of the series are thus referred to an initial one which
is arbitrary. It is advantageous to choose this initial coefficient in such

a way that the function itself has unit value when v = 0, corresponding to

TJ cos v = 1. To this end we impose upon the Z> the condition

(12)

The odd periodic solutions of (10) arc associated with a second set of

characteristic values to be designated by by. These functions can be

represented by a*sine series

(13) Som (co\, cos v)
= '

F% sin nv

upon whose coefficients F(c A) we impose the condition V' nF = 1.

n

Consequently the derivative of Som (cQ\, cos t;) will have unit value at

v = 0.

(14) ^ Som (cQ\, cos w) =1.

The characteristic functions Sem and Som constitute a complete

orthogonal set. Let ty
e) and ty

e} be two characteristic values and Se lt

Be, the associated functions. They satisfy the equations

(15) + (6J.)
_ C

2X 2 C0g

(16)
~' + (&}>

- c2X 2 cos 2
v)Sef

= 0.

Multiply (15) by Seh (16) by Set, and subtract one from the other.

(17)
TV (

Se
>

TV
Sei ~ Sei

TV
Se

<)
+ W ~ b^Se <Se >'

= 0-

Upon integrating (17) from to 2w and taking account of the periodicity
of the functions, we obtain

(18) Se^coX, cos v) Se,(eoX, cos ) dv =
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The normalization factors N ( can be computed from the series expan-
sions of the functions.

In identical fashion one deduces that

cos 5o y(c X, cos tO dv = > >

JM
4 , l J.

and

(20) JQ

*

Sei(cQ\, cos v) So,(c X, cos t;) dv = 0,

the last for i = j as well as i 7* j.

With each characteristic value b( there is associated one and only
one periodic solution Sem . For this same number b( there must exist

however, an independent solution of (10). Since the second solution is

nonperiodic it is unessential in physical problems so long as the medium
is homogeneous with respect to the angle v. When, on the other hand,
there are discontinuities in the properties of the medium across surfaces

v = constant, the boundary conditions may require use of functions of

the second kind.

We turn our attention now to the radial functions. It can be shown
without great difficulty that Eq. (9) is satisfied by an expansion in Bessel

functions whose coefficients differ only by a factor from those of (11)
and (13). Thus, when the parameter b assumes one of the characteristic

values b(

,
an associated radial function is

(21) Rel(c Q\, Q

where = cosh u
y

i
m~n = exp i(m - n) |

Since all solutions of

Bessel's equation satisfy the recurrence relations (24) and (25), page 359,
the even radial functions of the second kind are defined in terms of the
Bessel functions of the second kind by

(22)

The convergence of such series of functions is not easy to demonstrate
but appears to be satisfactory in the present instance. The great advan-

tage of these representations is that they lead us at once to asymptotic
expressions for very large values of c X. By (18) and (19), page 359,
we have

(23) Re^CoX, Q ~ -* cos (CoX - ^t-1A
VCoXf \ 4

/
1 / o _L i \

(24) fle*M(c X, & ex-= sin
(
CoX$ - ^LiA
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By analogy with the Hankel functions, we are led to form the linear

combinations

(25)

n

(26) Re*m (c \, )
= Rei - iRe*m =

whose asymptotic expansions are

(27) lfci(coX, *) ^ -

(28)

The function Re^ satisfies the same equation as the angle function

Sem ;
neither has singularities other than that at infinity. The two must,

therefore, be proportional to one another.

(29)

1 ^r-^/ --~>
7(e) =m

n-m -~ (meven),

On the left, replaces cos v. Consequently when u =
0,

=
1, we have

(30) Bei(c X, 1)
=
-4=^)' [^ Bi(c X, cosh ti)l

= 0.

A corresponding set of relations can be obtained for the odd radial

functions. We define:

(31)

(32)

(33) BoJ^coX, )
= Ro^

The asymptotic expansions of the odd functions are identical with those

of the corresponding even functions. Finally,

(34) iSom (co\, )
= V^S Qj^ifcoX, ),

l

p%
in~> (meven),

~ i
n~m

, (m odd).
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At u = 0,
=

1, we have

(35) Rol(cQ\ 1)
=

0, [
-

Rol(c,\, cosh u)l =^~
L
aM Ju0 V^TT^m

With these functions at our disposal we are now in a position to write

down elementary wave functions for the elliptic cylinder. The even and

odd wave functions, which are finite everywhere and in particular along
the axis joining the foci, are constructed from radial functions of the

first kind.

(36) fa = &w (c X, cos t>) Re
l
m(c,\ Q

(37) fa = SoM(coX, cos t>) #<4(c X, Q

When it is known that at great distances from the axis of the cylinders the

field is traveling radially outward, the elementary wave functions will be

constructed from radial functions of the third kind.

(38) fa = Se^CcoX, cos t;) Rel(cQ\,

(39) fa = Som(coX, cos v) Boi(coX,

The components of the electric and magnetic vectors can now be

found by the rules set down in Sec. 6.3.

6.13. Integral Representations. According to (19), page 365, we
have in any system of cylindrical coordinates

(40) f(u
l
, u*)

= f e
ik 8in

If now the rectangular coordinates are replaced by elliptic coordinates

through the transformation x = c cosh u cos v, y = Co sinh u sin v, we can

write (40) in the form

(41) f(u,v) =

where as in the past X = \/k 2 h* = fc sin a, and where

(42) p(u, v, 0) = x cos + y sin = Co(cosh u cos v cos

+ sinh u sin v sin /3) ,

This function /(w, v) is to satisfy the equation

(43)
tot

+ + c X2 (cosh2 w - cos2 )/ = 0,

but since/ = /i(u)/2(f), it is clear that it must also satisfy

(44) f + (cgX
8 cosh 2 u-b)f =

0,
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obtained by multiplying (9), page 376, by /2 (v). Upon differentiating

(41) with respect to u, we have

if, therefore, (41) is to satisfy (44), it is necessary that

(46) J 0(0)
[i\^ - X2 feY + cy cosh2 u-b\ e*" <Zj9

= 0.

Now p is a function of j3 as well as of u and it can be easily verified that

(47) d cosh* - =
c? cos* /s +

- - d *
P

-~
du*

Consequently (46) is equivalent to

Jf ft*p*f 1

008) [-^r
+ (^

-
CoX

2 cos2

0)e*i>J
d/S = 0.

Finally by (30), page 366,

hence, (41) is a solution of (44) provided g(f$) satisfies

(51) + (6
- c

2X2 cos 2
fig = 0,

and the path C of integration is so chosen that

(52)
= 0.

It will be noted that the equation of the transform g(f) is identical with

that of the angular function /2 (v), and in fact differs unessentially from

that for fi(u) with which we set out. This property is common to the

transforms of all solutions of equations belonging to the group defined by

(6), page 375.

The results just derived are valid whatever the value of the separation

constant bm . If, however, we confine ourselves to the even and odd sets

of characteristic values 6J? and 6J?, it will be advantageous to choose for

g(ff) the periodic solutions of (51) which have been designated by Sew (c X,

cos /8), Som (c X, cos j8). Since p(u, v, ff) is also periodic in j3 with period

2?r, it is apparent that (52) will be fulfilled when the path of integration
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is any section of the real axis of length 2*. An integral representation

of /(w, t;) which holds when b belongs to the set V is then

/2r

(53) f<?(u, tO
= Sem(cQ\, cos 0) eWu>*>

d|8.

4/0

From this an integral representing fi(u) can be found immediately by

placing v = 0.

^
(54) /ffi(w)

=
I /Sem(c X, cos |8) e*

coX cosh u cos *
djS.

There remains the task of identifying the particular solution defined

by (54). Upon introducing the cosine expansion of Sem and abbreviating

coX cosh u p, we obtain

(55) /fi(u)
= 2' -" L eip

C 8 * cos n/3

n "

Next we note that t
n = (~l)

ni~n
,
and remember that the summation

extends over even values of n if ra is even; over odd values only if w is

odd. Therefore (~l)
n =

( l)
m

,
and in virtue of the definition (21),

page 378, it follows that

(56) ltei(coA,
= ^~ C* Sem (c Q\ cos j3) e*** coa ^

dftV STT Jo

where ^ = cosh u. Moreover, em (c X, cos |9) is proportional to Re^(c Q\
cos 0), in which has been replaced by cos 0, so that by (29), page 379,

the function Re^(cQ\j Q satisfies an integral equation,

(57) Bei(c X,
= *-*^ f Re l

m (c<>\ cos j8) e*
6^ C0fl '

dfr

Still another representation of Re^ can be found by expanding the

integrand of (57). Thus

(58) Bi(coX, - 1^^ 2'^^ J[
Jn(c X COS

But

*- r
(59) Jn (c X cos ]8)

= cos n</> 6l
'

coX cos ^ cos

T JO

whence,

(60)
/2 /

I /n(c X cos 0) e"'x* COB ^
d/9

= i~n

Jo jo
cos n<^ c XJ + cos

o
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Remembering once more that ( l)
n =

( l)
m

,
we obtain

C f 2*

(61) Bei(coX,
= ^(-l)"1

A/O /o[coX(* + cos 0)] Sem (c X, cos *) <Z*.

Integral representations of the radial functions of the third and

fourth kinds can be obtained by a variation in the choice of contour. To

simplify matters a little, let us take cosh u
,
v = 0, cos ft

= t. Then

the several radial functions are represented by integrals of the form

(62) />(*) = Jc Sem(c\ t) e***(l
-

*
2
)~* dt,

where the contour C is such as to ensure the vanishing of the so-called

"bilinear concomitant" (52), which now assumes the form

= 0.
c

(63) (1
-

**)*[
tCoX{&m (coX,

-
jt

Sem (c*\, t)
J

e

When t becomes very large, the asymptotic expansion of Sem is

(64) Sem(c X, ^ W <~ cos

consequently, the vanishing of (63) at infinity is governed by a factor

exp icoX( l)t. If, therefore, the real part of c X( 1) is greater than

zero, the contour can begin or end at t = i&>
,
while for the other limit one

may choose either +1 or 1. As a result we have

(65) Rel>(cQ\, )
= i

m
* /- I Sein (c Q\, t) <

(66) .R0J(coX, ^)
= i~m ,* /- I Sem (cQ\j t)

provided the real part of [c X( 1)] > 0. Reverting to the complex

j3-plane, we find (65) equivalent to

12 n"*
08

Re*m (c \, Q = t-* J-
J o

(67) Re*m (c \, Q = t-* -
o

Scw (c X, cos

with a corresponding integral for jRe^(c X, J).

With the help of (67) one may deduce further integrals of the type

(61). Thus, in place of (58) we write

/|-

(68) Bei(coX, Q =
fi? \/2^ 2' '""nD"

J
71

' -
!)nDn I d<t> cos n<^> I

2 ^+ C08 *> c09 ^
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Now by (39), page 367, when p =
0, we have

HH" 1 f^'* 7T

(69) I eip cos ft d8 = 7: I e*p
oos ft d8 = ^ H<Ql) (p),

Jo 2 J_![+ieo
2

provided the real part of p > 0; consequently,

(70)

provided the real part of [c X( 1)] > 0. A combination of (61) and

(70) leads to

(71) #d(coX, )=Z^-l)m
g o

JV [c X(f + cos0)]Scm (c X,cos^) d<t>.

A clue to the formulation of integral representations of the odd func-

tions is given by

f 2* n f
2*"

(72) e*** cos ^ sin np cos d/3
= -r-r-r et>coX cos ^ cos n/5 d/5,v

Jo ^c \f Jo

the result of an integration by parts. The proof of the relations

r \ _ /27T

(73) Boi(c X, {)
= -^ i

1-771 V?2 - 1 ^om (c X, cos/3) e*
x* C08

^sin/3dj3
Jo

^7 ! f Ro l

m (c X, cos j8) e^ cos ^ sin /8 d/3
Jo

^ f

"

JJcoX( + cos )]
Jo

x .x sin ,

Som (cQ\ cos <
- -

,

-p COS <p

(74) Rol(c \, f)
= CoX!>(- 1)- V=l ffi"[coX (f + cos

is left to the reader.

6.14. Expansion of Plane and Circular Waves. The periodic func-

tions /Sew (coX, cos v) and Som(coX, cos v) constitute a complete, orthogonal

set. Consequently, if a function f(u, v) is periodic in v with period 2ir and

together with the first derivative df/dv is piecewise continuous with

respect to
t>,

it can be expanded in a series of the form

(75) /(u, v)
= V /<J>M Se(c X, cos ) + j /Jj>(ti) Som (CoX, cos ),
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whose coefficients are determined from

(76)

l C
2*

f^W =
jj^ f(u, v) Sem (c<>\ cos v) dv,^ m t/0

i f
2r

/^M =
^53 J Q

/(w, v) Som (c Q\, cos v) cto.

This expansion may be applied to the representation of a plane wave
whose propagation constant is A, traveling in a direction defined by the

unit vector n whose spherical angles with respect to a fixed reference

system are a and as in Fig. 66, page 362.

(77) \l/
= eik sin a (x cos &+y sin ) eijcz coa *w*

Upon expressing x and y in terms of u and v and putting X = k sin a, we
have

(78) f(u, v, j8)
= c^, p = Co(cosh w cos v cos + sinh u sin v sin 0).

Since there is complete symmetry in (78) between v and j8, the expansion
(75) can be written

(79) ea" = 2 aw (w) &w (c X, cos /3) /Sem (c X, cos )

C^) Som(co\, cos 0) $om (c X, cos v)

in which the coefficients am(u) and 6OT (w) depend on u alone. In virtue

of (76), we have

(80) am(u) NSem (c<&, cos j8)
= **

Sem (cQ\, cos v) e** dv.

since am(u] is unaffected by the value of 0, we may put
Sem(co\ 1)

=
1, p = c cosh M cos y. Then by (56),

* --
(81) c^fy) = - ^ 0) Rel(cG\, cosh n).

*'m

Likewise

(82) bm (u) JV^^om (c X, cos 0) = Som(c*\, cos t;) e^ dv.

We now differentiate this last relation with respect to and then put
& = 0. In virtue of (14) the coefficient bm(u) proves to be

(83) b(u) =Q Boi(coX, cosh u).
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The complete expansion for a plane wave of arbitraiy direction is,

therefore,

(84) e*p = \/87r 2j i
m

JJM H<4(c X, cosh u) Sem(c X, cos v}
m-O Um

em (coX, cos 0) + -tt Bo^CcoX, cosh u) Som(c \, cos v) Som (c X, cos 0) .

This last result enables us to write down at once the integral repre-

sentations of those elementary elliptic wave functions that are finite on

the axis. We need only multiply (84) by Sem (c<>\, cos ft) and integrate

over a period. From the orthogonal properties of the functions it follows

that

V-m /2*

(85) KeJ(coX, cosh w) Sem (co\, cos v)
=

, I /Sem(c X, cos 0) e*p dft;

VOTT Jo

similarly, for the odd functions,
* m /2ir

(86) JRoi(coX, cosh w) /Sow (coX, cos v)
=

/
_: I Som (c<>\, cos

)

VSTT Jo

With the help of (67) it can be shown also that the elementary functions

of elliptic waves traveling outward from the axis are represented by the

contour integral

(87)

N . /2 f^" ,

BeI(coX, cosh u) $ew(coX, cos v) = z*"-"* * /- I oeOT (c X, cos 8) e iKv dS.
\Tjo

The upper sign in the exponential is to be chosen when Tr/2 < v < w/2,

the negative sign when ir/2 < v < 3w/2. A similar relation can be

deduced for the odd functions.

From the analysis of Sec. 6.8 it is easy to see that the even circular

wave function cos nO /*(Xr), which remains finite on the axis, can be

represented by the integral

(88) 27Ti
n cosn0Jn (Xr) = I cos n/3 e** d0,

Jo

where p = x cos j3 + y sin = r cos (/3 0). Upon multiplication by

DjJ and summation over even or odd values of n
}
one obtains

(89) Be^fcoX, cosh u) /Sem(coX, cos v)
= */s ^ t""-"

1

!);? cos ndjn(\r) 9

n

which expresses the even elliptic wave function as an expansion in circular

wave functions. A similar expression can be found for the odd functions.
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An addition theorem relating circular and elliptic waves referred to

two parallel axes has been derived by Morse. 1

Problems

1. Show that the equation

ay WV-^ -<rM-=0

is satisfied by wave functions of the type

^ = Cei( * l+ *J> cos (h& -
Si) cos (h zy - Sde**-*,

h\ + hi + hi
- W.

Let ^ = n, Ux nv 0, be the components of a Hertz vector oriented in the direc-

tion of propagation. Show that this leads to a transverse magnetic field whose

electric components are

Ex - -tfcifc,C*'<
8l+ fa> sin (hix

- 50 cos

.# - -tfc,fc,C
f6^ai+ **> cos (/lire

-
Si) sin (fc

Et
-

(jfc
2 -

fcJ)C6*<
ai+ 5l> cos (fci

-
5i) cos

and whose impedances are

E. k* - hiZ = - - =
O>M cotanHy ik*hi

E, k* -h*
-

Zf

cotan (h 2yii
Ex o>M^8

Find the components of a corresponding transverse electric field by choosing

$ = n*, n* = n* = o.

The factor e
1'^ 1 "*" 8^ is introduced to include traveling as well as standing waves.

Thus, if one chooses 5i = too, the field behaves as elhix .

2. The equation of a two-dimensional wave motion in a nondissipative medium is

ay ay i ay _
aa?2 dy

2 a2 dt 2

Show that

)i TT G(x, y\ when - 0.
at

This is the Poisson-Parseval formula. Note that at time t the wave function \f/ is

determined by the initial values g and G at all points on the circumference and the

interior of a circle of radius at. Thus even in nondissipative media the disturbance

1 MORSE, loc. tit.
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persists after the passage of the wave front. This behavior is characteristic of

wave motion in even-dimensional spaces.

3. Show that the wave equation

IL( ^
~rdr\ ~dr

_
dz* c2 dt*

has a particular solution of the form

- I F I z 4- ir cos a, t
-- sin a ) da,

2*- Jo \ c )

which reduces to ^ = F(z, t) on the axis r = 0, where F is an arbitrary function,

Show that another solution of the same equation is

I F [ z r sin/i a, t cosh a J da. (Bateman)
J->o \ C /

4. A special case of the solution obtained in Problem 3 is the symmetric, two-

dimensional wave function.

I F ( t
- - cosh a

) da,
27T JO \ C /

which represents a wave expanding about a uniform line source of strength F(t) along

the z-axis.

Show that if F(t) = when t < 0, then

c C ~* F(ft)
= _ I

27TJ-C. Vc*tt-W-r*
which is zero everywhere as long as t < r/c.

If the source acts only for a finite time T, so that F(t) =0 except in the interval

< t < T, show that the wave leaves a residue or "tail" whose form, when t ^> T,
c

is determined by

(Lamb, "Hydrodynamics," 5th ed., p. 279, 1924. Cambridge University Press.)

5. Show that the equation

-~ + ~~ + -

is satisfied by

fJH
+ a)

r4- rov P (* x*Y (y i/o)
1

where

r* x2
4- y

2
, rj a?5 + yj. (Bateman)

6. Show that the equation
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is satisfied by

where r2 a2 4 y
2 and / and F are arbitrary functions. To what limitations is this

solution subjected?

Obtain in this way the particular solution

1

^ = - e~Xr (x 4* iy) (Bateman)
r

7. The equation

\dx
2

dy
2
/ dt dt*

is reduced by the substitution

t = e-**u(x, y,

to

The initial conditions are

u =
flf(x, y),

= G(x, y\ when i = 0.

Let r be the radius of a sphere drawn about the point of observation and a, /9, 7 the

direction cosines of r with respect to the x, y, z axes. Show that a solution is repre-

sented by
^ /^

u(x, y, t)
= ~- -

I I ig(x + ata, y + atft) cos (ibty) dtt
ir M J J

I

J

* GO + ate, y + a*/3) cos (ibty) do,

(Boussinesq)

where dn is the solid angle subtended by an element of surface on the sphere.

8. Show that

+ i) Jo
c s (p c s 0) si

is an integral representation of the Bessel function of the first kind valid for all values

of the order p provided Re(p) > J.

9. Derive the integral representations

cos (z cosh a) dot, 1m z > 0.*. - -? r
^r JO

for the Bessel function of the second kind and zero order, and

/* 00

ma)
(s)

. ip+i ~ I e"^ ooah a cosh pa da, Im z < 0.
* Jo
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10. Show that the modified Bessel equation

t^ _i_ ^L _ j_ 2^ _.

is satisfied by the function

/, -

^T-O

Where

[CHAP. VI

m! F (p +
1 /2\p "^2m

+ m + 1) \2/

/p(z) - when -T < arg z < -

The most commonly used independent solution is the one denned by

A complete set of recurrence relations for these functions are given by Watson,

"Bessel Functions," page 79.

11. Demonstrate the following integral representations of the modified Bessel

functions.

r(i)r(P

/ \ p C*

P + t) V|J Jo

r(i)r(p

It is assumed that Re ( p + -
J
> and jarg z\ < --

12. Show that for very large values of the argument the asymptotic behavior

of the modified Bessel functions is given by

.

, m)

., ,

provided
- < arg z <

m-0

where

m - 3 a
)

- (2m -

m! T(p - m
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Retaining only the first term,

/,(*)~J-L<i, Kp (z)c
\ tiirZ

13. Prove that if R * \/r2 + g2 is the distance between two points, the inverse

distance is represented by

-- = -
I cos PZ K (pr) dp,R * Jo

where KQ(pr) is the modified Bessel function defined in Problem 10.

14. As a special case of Problem 4, show that the equation

/ \

r Or \ dr / c2 dt*

is satisfied by
^(r,

- K Q (ikr) e
iu>t

,

where k = u/c and KQ is the modified Bessel function defined in Problem 10. This

solution plays the same role in two-dimensional wave propagation as does the function

elkR/R in three dimensions.

15. Show that the equation

rdr\ dr

is satisfied by

1 . "^1 *?? , , N m
^ = -

Jo(\r) + 2 "^ e
n *

Jmfrr) cos 0,
n -^* ~ n

m=*l n

which has a period of 2mr in 6 and hence is multivalued about the axis. Show that

this solution can be represented by the integral

following a properly chosen contour C in the complex a-plane. This solution is

everywhere finite and continuous. ^ behaves like a plane wave at infinity provided

| |
< ir, but vanishes (is regular) at infinity if 6 lies between any pair of the limits

TT < < STT, STT < < 5V, -Zir < < -TT,

which define the 2nd, 3rd, . . . nth sheets of a Riemann surface. Such multiform

wave functions have been applied by Sommerfeld to diffraction problems.

16. Derive explicit expressions for the radial and tangential impedances of elliptic

cylindrical electromagnetic waves.

17. Show that the integral

o

is a cylindrical wave function which is equal to eikR/R, R* = r2 + z*> when /(X) 1.



CHAPTER VII

SPHERICAL WAVES

In the preceding chapter it was shown how the analytic difficulties

involved in the treatment of vector differential equations in curvilinear

coordinates might be overcome in cylindrical systems by a resolution of

the field into two partial fields, each derivable from a purely scalar func-

tion satisfying the wave equation. Fortunately this method is applicable

also to spherical coordinates to which we now give our attention. The

peculiar advantages of cylindrical and spherical systems are a conse-

quence of the very simple character of their geometrical properties. A
deeper insight into the nature of the problem and of the difficulties

offered by curvilinear coordinates in general will be gained from a brief

preliminary study of the vector wave equation.

THE VECTOR WAVE EQUATION

7.1. A Fundamental Set of Solutions. Within any closed domain

of a homogeneous, isotropic medium from which sources have been

excluded, all vectors characterizing the electromagnetic field the field

vectors E, B, D, and H, the vector potential and the Hertzian vectors-

satisfy one and the same differential equation. If C denotes any such

vector, then

(D VC-^-/^-0.
Because of the linearity of this wave equation, fields of arbitrary time

variation can be constructed from harmonic solutions and there is no

loss of generality in the assumption that the vector C contains the time

only as a factor e~w *. By the operator V 2
acting on a vector one must

understand T 2C = W C V X V X C ; therefore, in place of (1)

we shall write

(2) VV C - V X V X C + /c
2C =

0,

where fc
2 = /*w

2 + io>cco as usual.

Now the vector equation (2) can always be replaced by a simultaneous

system of three scalar equations, but the solution of this system for any

component of C is in most cases impractical. [C/. (85), page 50.] It

is only when C is resolved into its rectangular components that three

392
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independent equations are obtained and in this case

(3) V 2
C,- + fc'C,-

=
0, (j

=
x, y, z).

The operator V2 can then be expressed in curvilinear as well as rectangular
coordinates. Very little attention has been paid to the determination of

independent vector solutions of (2), but the problem has been attacked

recently by Hansen 1 in a series of interesting papers dealing with the
radiation from antennas.

Let the scalar function ^ be a solution of the equation

(4) W + *V =
0,

and let a be any constant vector of unit length. We now construct three

independent vector solutions of (2) as follows:

(5) L = V^, M = V X a*, N = ~ V X M.
K

If C is placed equal to L, M, or N, one will verify that (2) is indeed satisfied

identically by (5) subject to (4). Since a is a constant vector, it is clear

that M can be written also as

(6) M = L X a = ~ V x N.
k

For one and the same generating function ^ the vector M is perpendicular
to the vector L, or

(7) L M = 0.

The vector functions L, M, and N have certain notable properties
that follow directly from their definitions. Thus

(8) v x L =
0, V - L =

whereas M and N are solenoidal.

(9) V M =
0, V N = 0.

The particular solutions of (4) which are finite, continuous, and single-
valued in a given domain form a discrete set. For the moment we shall

denote any one of these solutions by \l/n . Associated with each character-

istic function \pn are three vector solutions Ln ,
Mn , Nn of (2), no two of

which are colinear. Presumably any arbitrary wave function can be

represented as a linear combination of the characteristic vector functions;
since the Ln ,

Mn ,
N n possess certain orthogonal properties which we shall

demonstrate in due course, the coefficients of the expansion can be deter-

1 HANSEN, Phys. Rev., 47, 13&-143, January, 1935; Physics, 7, 460-465, December,
1936; /. Applied Phys. t 8, 284-286, April, 1937.
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mined. When the given function is purely solenoidal, the expansion is

made in terms of M and Nn alone. If, however, the divergence of the

function does not vanish, terms in Ln must be included.

The vectors M and N are obviously appropriate for the representation

of the fields E and H, for each is proportional to the curl of the other.

Thus, if the time enters only as a factor er*** and if the free-charge density
is everywhere zero in a homogeneous, isotropic medium of conductivity

tr, we have

(10) E = VXH, H = - V X E.
K* IUJJ,

Suppose then that the vector potential can be represented by an expansion
in characteristic vector functions of the form

(H) A = -^ (a*Mn + &nNn + cnLn),
CO dfri i

n

the coefficients an ,
fen ,

cn to be determined from the current distribution.

By (8), (10), and the relation MH = V X A, we find for the fields

>
H = ~

The scalar potential <j> plays no part in the calculation, but can, of course,

be determined directly from (11). For by (27), page 27, V A == ~ & 2
0;

CO

hence, by (8)

Then V<f>
= ~^cnLn and clearly the relation E = V< --- leads

again to (12). Finally, if we recall that under the specified conditions

an electromagnetic field can be represented in terms of two Hertz vectors

by the equations

(14) E = vxvxn + ico/iV x n*, H =~ v<x n + v x v x n*
f

it is immediately apparent that

n = 42 & *"a> n * = -L2 a^a
>

where a is a constant vector.

Before applying these results to cylindrical and spherical systems, let

us consider the elementary example of waves in rectangular coordinates.
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A plane wave whose propagation vector is k = fcn is represented by

(16) I = 6*-*-**

where R is the radius vector drawn from a fixed origin. Then since

k R = kxX + kyy + fc*z, it is easy to see that

(17) L = tyk, M = tYk X a, N = - ^(k X a) X k.

In this particular case L M = M N = N L = 0; all three vectors are

mutually perpendicular and L is a purely longitudinal wave. Now the

polar angles determining the direction of k are a and /3, as defined in

Fig. 66, page 362, and general solutions of (2) can be constructed by

integrating these plane-wave functions over all possible directions. If

g(aj ff) is a scalar amplitude or weighting factor, one may write for L
in any coordinate system, subject to convergence requirements,

(18) L = ie-i** j
da ( dp g(a, 0)k(a, p) e*- *;

likewise for M and N

(19) M = ie-** I dot \ d&g(a, 0)k X ae* ;R
,

(20) N = ~ e-** (da (dp g(a, j8)(k X a) X k e*' R.

7.2. Application to Cylindrical Coordinates. 1 The scalar character-

istic functions of the wave equation in cylindrical coordinates were set

down in Eq. (6), page 356. There are certain disadvantages in the use of

complex angle functions exp(in0) and it will prove simpler to deal with

the two real functions cos nO and sin nO which may be denoted simply

as even and odd. Cylindrical wave functions, constructed with Bessel

functions of the first kind and hence finite on the axis, will be denoted by

^1}
,
while the wave functions formed with Nn (\r) or H*(\r) will be

called i/^
2) and r/^

3)
respectively. Thus

= cos nO Jn (Xr) e^~-<,
= sin nO Jn (Xr) e**-^,

= cos

= sin

where X = \/fc
2 h 2 = k sin a as ustial. Functions of the first kind are

1 Compare the results of this section with Eqs. (36) and (37), p. 361.
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represented by the definite integrals

i-n C2*

= 1- e*r cos <*-*> cos up dp eih*-**f

Z" JQ

7--n C 2*

=
7T- e*r cos (

rt Jo
sn

and representations of other kinds differ from these only in the choice

of the contour of integration.

From (23) we now construct integral representations of the vector

wave functions. Thus

Upon differentiating (23) with respect to r, 0, and z and noting that

k sin a cos (0 6), k sin a sin (0
-

0), and fc cos a are the components

of k respectively along the axes defined by the unit vectors ii, i 2 , is, so that

(25) k = iifc sin a cos (0
-

0) + i2fc sin a sin (0
-

0) + i3& cos a,

we find for the even function

i\-n C 2"

L x
=~

ZTT Jo
(26) L x

=~ ketV cos tf~'> cos
ZTT Jo

which is of the form (18). The corresponding odd function is obtained

by replacing cos up by sin n/? under the integral. When applying these

characteristic functions to the expansion of an arbitrary vector wave,

it proves convenient to split off the factor exp(*7i2 io>0, and we shall

define the vector counterparts of the scalar function. /(r, 0) of Chap. VI by

(27) Ln = lne^-^, Mn = mne
ihg-^

9
Nn = nne^~K

From (26) we have
VI n /*2w nnct

(28) li
= V- fa*- cos <"->^ n/5 dj8.

o
nX ^ Jo S111

In like fashion one finds integral representations of the independent

solutions. For the constant vector a we choose the unit vector i 3 directed

along the 2-axis. Then

(29) M< =W X i, = - --
ii

whence it is easily deduced that

VI n /*27r

(30) m> =^ ( (k X We*' - -
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since V X Mn = &Nn , we have

(31) n<* = pr (
2*

(Art,
- Ak)6> ^s 0-0 cos

x 27T/C J sin
K

From these integrals one can easily calculate the rectangular components
of the wave functions. The vector functions of angle in the integrands
are resolved into rectangular components which can then be combined
with cos n/3 or sin nf$. The resulting scalar integrals for the components
are evaluated by comparison with (23).

To expand an arbitrary vector function of r and 6 in terms of the

la ,
ma ,

ne , one must show that these functions are orthogonal. Let
o
nX

o
nX

o
nX

ii> i2> is be unit base vectors of a circularly cylindrical coordinate system,

Fig. 7, page 51, and Zn (\r) a cylindrical Bessel function of any kind.

Then by (5) we obtain

(32) *
A
=

I:
Z W ^ nB ^ + l 2n (Xr)

Sin n ii + ih ^(Xr)
c

.

os nS i 3 ,n Or oiii T cos sin

(33) m.,
- T 5

S.(Xr) ^ n 1,
- 1 Zn(Xr) ^ n. i2,

<34> V = * I^M sin
^ ^ T W Z*M S ^ i2 + T Z-^>

c
.

os n^ is .

sin

Now it is immediately evident that the scalar product of any two func-

tions integrated over 6 from to 2?r must vanish if the two differ in the

index n.

(*2ir
1*

(35) lenx U <W = 1.
- le ,v dB = 0, if n ^ n'.

JO JO nX
o
nX

Let us understand by 1 the function 1 with the sign of ih reversed. 1 Then
the normalizing factor is to be found from the integral

+ Zn (\r) Zn (\'r) + hh'ZM Zn(\'r)

where 5 = unless n =
0, in which case 5 = 1. The first two terms on

the right can be combined with the aid of the recurrence relations (24)

and (25), page 359, giving

1 This is not necessarily the conjugate, since X and h may be complex quantities.
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(37)
JJ'

l,nX LnX
,
dO = (1 + 5)* {^ [Zn-i(Xr) ^(X'r)

The same recurrence relations lead us also to the integrals

/2ir /2*

(38) mn\ monx dO = m, me ,. ,
dO = 0, (n ^ n') ?

JO JO o
wA

o
nA

/*2r \\/

(39) m. m. x,
cW = (1 + S)TT^ [*_i(Xr) Zn-i(X'r)

JO o
nA

o** *

+ Zn+1 (Xr) ^i(XV)],
A2ir /2r

(40) nenx n,,^ d(? = n
. n, de = 0, (n * n'),

JO JO o"
A

o"^

(41)
J^

2'

n.nX
&
>x

,
d0 = (1 + 5) |^-' [Zn_ 1 (Xr) Z^,(X'r)

+ ZB+1 (Xr) Zn+,(X'r)] + (XX')
2
2n(X7-) Z.(X'

Furthermore

(42) r i- v ^ =r "v > ^ -rv v^ =

and by use of the recurrence relations once more
/2r /2x

(43) 1 -mo x,dO= \ m. -n. dtf = 0.

JO nX
e
nX JO nA

e
nA

There remains only one other combination, and this, unfortunately, leads

to a difficulty.

(44) P' 1, fi, d^ = f (1 + 5)
~ UX'' Zn (Xr) Zn (X'r)

JO o o
n K \

-~ [Z^i(Xr) Zn-i(XV) + Zn+1 (Xr) Zn+1 (X'

a quantity not identically zero. The set of vector functions le . , mc .

o"* o
nX

n, , therefore, just fail to be completely orthogonal with respect to 6
o*
A

because of (44). In many cases this is of no importance, for if a vector

function is divergenceless as are the electromagnetic field vectors in

the absence of free charge it can be expanded in terms of mf ^ ne x
o o

alone. A complete expansion of the vector potential, on the other hand,

requires inclusion of the 16
* l

o
nA

1 The completeness of the set of vector functions has not been demonstrated but

presumably follows from the completeness of the scalar set t, .

IA
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In the case of functions of the first kind the Fourier-Bessel theorem

has been applied by Hansen to complete the orthogonality and to simplify

the normalization factors. From (53) and (54), page 371, after an

obvious interchange of variable, we have

(45) /(X) = f "rdrfQ "\' dX7(XO/n(XV)/n(Xr).

This is applied to (37), (39), (41), and (44) when Zn (\r) is replaced by
/n(Xr). For /(X') we shall have X', h' = Vk 2 - X/2

,
A'X' and the like.

Now one must note that the validity of the Fourier-Bessel integral has

been demonstrated only when f |/(X)|\/X d\ exists, and that this con-
/o

dition is not fulfilled in the present instance. The artifices employed to

ensure convergence involve mathematical difficulties beyond the scope

of the present work. With certain reservations one may introduce an

exponential convergence factor exactly as in the theory of the Laplace

transform on page 310. By 1<
1}

X
let us understand henceforth the limit

o
n

approached by IQe-W as s - 0. Then
*

(46) lim f
"

r dr f
"

X' d\' [X'-l'l^/.(\'r)J.(Xr) = X.

a_o J J

Consequently the normalizing factors reduce to

oT '- *y^ dr de=(1

m
?x

m
-:v

x
'^ dr de=:(1

fo ~foT n> fi^' d*r drde=(l

while for the troublesome (44) we find 1

THE SCALAR WAVE EQUATION IN SPHERICAL COORDINATES

7.3. Elementary Spherical Waves. Since an arbitrary time variation

of the field can be represented by Fourier analysis in terms of harmonic

components, no essential loss of generality will be incurred hereafter by
the assumption that

(1) * = /(, , *)*-*"

1 The reader must note that the limit approached by (46) as s -* is not necessarily

equal to the value of the integral at s =0, for this would imply continuity of the func-

tion defined by the integral in the neighborhood of s = 0. This point underlies the

whole theory of the Laplace transform. Cf. Carslaw,
" Introduction to the Theory

of Fourier's Series and Integrals," 2d ed., p. 293, Macmillan, 1921.
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In a homogeneous, isotropic medium the function f(R, 0, <t>) must satisfy

(2) v 2
/ + fc2/=0,

which in spherical coordinates is expanded by (95), page 52, to

w p as (
B>I) + panB (

8in '$ + PISH + ** - "

The equation is separable, so that upon placing / = /i(r)/2 (0)./3(<) one

finds

(4) ft2 ~& + 2R& + (*
2B J -

7^
2
)/i

=
0,

The parameters p and q are separation constants whose choice is

governed by the physical requirement that at any fixed point in space

the field must be single-valued. If the properties of the medium arc

independent of equatorial angle <, it is necessary that/3 (</>) be a periodic

function with period 2ir and q is, therefore, restricted to the integers

m =
0, 1, 2, . . . . To determine p we first identify the solution /2

as an associated Legendre function. Upon substitution of r/
= cos 0,

Eq. (5) transforms to

an equation characterized by regular singularities at the points rj
=

1,

q = +i j y = oo, and no others. Its solutions are, therefore, hyper-

geometric functions. Now when m =
0, (7) reduces to the Legendre

equation. There are, of course, two independent solutions of the

Legendre equation which may be expanded in ascending power series

about the origin rj
= 0. These series do not, in general, converge for

V)
= 1. If, however, we choose p

2 = n(n + 1), where n =
0, 1, 2,

. . .
,
then one of the series breaks off after a finite number of terms

and has a finite value at the poles. These polynomial solutions satisfying

the equation

are known as Legendre polynomials and are designated by Pn (i?). If

now we differentiate (8) m times with respect to 17, we obtain

(9) (1
-

7?

2
)

- 2(m + l)ij^ + [n(n + 1)
- m(m + l)]w =

0,
arj dt\
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where w = d^/dy, and upon making a last substitution of the dependent
m

variable, w =
(1 if) ^(T?), we obtain (7) in the form

(10) (1 tf) -~| 2j -~ -f n(n + 1)
-

/2
= 0.

The solutions of (10) which are finite at the poles 77
= 1 and which are,

consequently, periodic in are the associated Legendre polynomials

(11)

For each pair of integers there exists an independent solution

which becomes infinite at rj
=

1, and which consequently does not

apply to physical fields in a complete spherical domain.

The definition of the associated Legendre polynomial as stated in (11)

holds only when n and m are positive integers. The functions of negative
index are related in a rather simple fashion to those of positive index,
but we shall have no need of them here. To obviate any confusion on
this matter we choose for particular solutions of (6) the real functions

cos ra<, sin m<, and restrict m and n to the positive integers and zero.

It is clear from (11) that P"(i?) vanishes when m > n, for Pn (ij) is a

polynomial of nth degree. We have in fact

The properties of the hypergeometric functions, of which the Legendre
functions are the best known example, have been explored in great detail

and it would be scarcely possible to give an adequate account of the

various series and integral representations within the space at our dis-

posal. We shall set down only the indispensable recurrence relations,

(n
- m + IJPjn

-
(2n + l)ijP + (n + m)P^.1

=
0,

~ n - m
+ (n + m)

m + l)ip -
(n
- m + DP-.,,

(n + m)(n - m

,__^ _1_ pm4-nn 2n + l
^ n+1 ^-i/'

=
n[(n

- m + l)(n
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To these may be added the differential relations

(n m +

[CHAP. VII

(14) = (n

dp n _ /i s dp%
~W

~ -Vl- n -^
=

g
n - m n

It may be remarked in passing that these relations are satisfied also by
functions of the second kind Q.

The functions cos m<t> Pjj(cos 0) and sin m<f> P(cos 0) are periodic on
the surface of a unit sphere and the indices m and n determine the number
of nodal lines. Thus when m =

0, the field is independent of the equa-
torial angle <. If n is also zero, the value of the function is everywhere
constant on the surface of the sphere. When n =

1, there is a single

nodal line at the equator =
?r/2 along which the function is zero. When

FIG. 69. Nodes of the function sin 3?> P*(cos 0) on the developed surface of a sphere.
The function has negative values over the shaded areas.

n =
2, there are two nodal lines following the parallels of latitude at

approximately 6 = 55 deg. and = 125 deg., so that the sphere is

divided into three zones; the function is positive in the polar zones and
negative over the equatorial zone. As we continue in this way, it is

apparent that there are n nodal lines and n + 1 zones within which the

function is alternately positive and negative. For this reason the
Pn(cos 0) are often called zonal harmonics. If now m has a value other
than zero, it will be observed upon examination of Appendix IV that

TO

the function is zero at the poles due to the factor (1 i?
2
)
2

,
and that the

number of nodal lines parallel to the equator is n m. Moreover, the
function vanishes along lines of longitude determined by the roots of

cos m<t> and sin m<t>. There are obviously m longitudinal nodes that

intersect the nodal parallels of latitude orthogonally, thus dividing the
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surface of the sphere into rectangular domains, or tesserae, within which

the function is alternately positive and negative. For this reason the

functions cos m<t> P(COS 0) and sin m<t> P(cos 0) are sometimes called

tesseral harmonics of nth degree and rath order. There are obviously
2n + 1 tesseral harmonics of nth degree. This division into positive and

negative domains is illustrated graphically in Fig. 69 for the function

sin 3</> Pf(cos 0).

If the tesseral harmonics are multiplied by a set of arbitrary constants

and summed, one obtains the spherical surface harmonics of degree n

with which we have already had something to do in Chap. III.

n

(15) 7n(0, 0)
=

5) (nm COS m(t> + bnm SHI W0)P(COS 0).
w =

The tesseral harmonics form a complete system of orthogonal func-

tions on the surface of a sphere.
1 It is in fact easy to show through an

integration of (12) by parts that

=
o,

when n 7^ I or m ^ I respectively, and that

fJ-i
P -
J-i

L nWJ
1 - 7?

2 m(n -

From these relations follows the fundamental theorem on the expansion of

an arbitrary function in spherical surface harmonics: Let g(0, $) be an

arbitrary function on the surface of a sphere which together with all its first

and second derivatives is continuous. Then gr(0, 0) oan be represented by

an absolutely convergent series of surface harmonics
,

(18) 0(0, *) =
5) [anoPn (cos 0) + ] (anm cos w</> + bnm sin m<)
n0 wi = l

P-(cos
whose coefficients are determined by

2n + X

f f gr(0, 0) Pn (cos 0) sin d0 d^,
?r Jo JO

ano =

(19) an
m)

! f f'
l Jo Jo

1 The proof of this statement and of the expansion theorem which follows will be

found in Courant-Hilbert, "Methoden der mathematischen Physik," 2d ed., Chap.
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In the case of a function that depends on alone, the conditions deter-

mining the convergence of an expansion in Legendre polynomials are

identical with those governing the convergence of a Fourier series.

Under such circumstances it is sufficient that g(B) and its first derivative

be piecewise continuous in the interval ^ 6 < 2w. The convergence

theory of the expansion (18) in surface harmonics, on the other hand,

presents definitely greater difficulties and the extension of the theorem to

discontinuous functions involves considerations beyond the scope of the

present outline.

There remains the identification of the radial function fi(R) satisfying

(4). If for /i we write /i = (kR)~*v(R), it is readily shown that v(R)

satisfies

and hence, by Sec. 6.5, is a cylinder function of half order.

(21) /i(B)

The characteristic, or elementary, wave functions which at all points on

the surface of a sphere are finite and single-valued are, therefore,

(22) /.mn
= -J Zn+*(kR) P?(cos 9) m*.

As in the cylindrical case, we choose for Zn+i(kR) a Bessel function of the

first kind within domains which include the origin, a function of the third

kind wherever the field is to be represented as a traveling wave.

7.4. Properties of the Radial Functions. Various notations have been

employed at one time or another to designate the radial functions

(kR)~*Zn+i(kR) but none appears to have gained general acceptance.
1

What seems to be a logical proposal has been made recently by Morse 2

and will be adopted here. Accordingly we define the spherical Bessel

functions by

jn(p)
=

(23) nn(p) =

VII, 6, 1931. For greater detail see Hobson, "The Theory of Spherical and Ellip.

Boidal Harmonics," Cambridge University Press, 1931.

^See WATSON, "Bessel Functions," p. 55, Cambridge University Press, 1922.

3 MOBSB: "Vibration and Sound," p. 246, McGraw-Hill, 1936.
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Series expansions oi these functions about the point p = can
be obtained directly from (8) and (11), page 357. If we recall that

r(2 + 1) SB
zT(z), T() = V^, and make use of the duplication formula

we find for jn (p)

whence it is apparent that jn (p) is an integral function. Likewise from
the relation Nn+(p) =

( l)
n~ 1J

r
.n_i (p), we obtain for the function of

the second kind

((>(̂ /x 1 ^sh r(2n
(26) nn (p)

= -_
2V*- 1 J rn\T(n

- m + 1)
p '

We turn next to representations when p is very large, and discover at

once a notable property of the Bessel functions whose order is half an
odd integer. On page 358 expansions in descending powers of p were

given for the functions of arbitrary order p. Such series satisfy the
Bessel equation formally, but are only semiconvergent. We observe

now, however, that when p = n + 1/2, the series Pn+*(p) and Qn+$(p)
break off, so that there is no longer question of convergence. Conse-

quently (13) and (14) of page 358 are analytic representations of /-H(P)
and Nn+$(p) ; furthermore, it is apparent that these functions of half order

can be expressed in finite terms. From (23) above and Eqs. (13) to (17)
of page 358, we obtain

(27) jn(p) = 1

(28) rcn (p)
= 1

cos p
- - Qn+i(p) sin p

_

in
(p
-11

*)
+ QB+J (p) cosPn+i(p) sin

P

where

(29)

n(n
2 -

l)(n
2 -

4)(n
2 -

9)(n + 4)

(*n\ n i \ ( + !) n(n
z -

l)(n
2 -

4)(n + 3) .

(30) Qn+} (p)
=

-Tr-TTi- 2-3lp
+ ' '

For the functions of the third and the fourth kind this leads to

(31)
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These series converge very rapidly so that for large values of p the first

term alone gives the approximate value of the function. Thus, when

- / N , x -

jn (p)
~ - cos ( p

-
^

TT 1; ttn(p) ^ - sm ( p

P P

The recurrence relations satisfied by the spherical Bessel function

follow directly from Eqs. (24) to (27) of page 359.

(33) Zn-l + Zn+l
=
-^
-

Zn,

(34) j-
zn (p)

=
2n + l

[nZn~ l
-

(n + IK+i],

(35) ^ [p"
+1

Zn(p)]
= P^^n-l, ^ [p~

nZn (p)]
= -p-Zn+1 .

Having defined the radial functions, we can at last write down the

general solutions of (3) as sums of elementary spherical wave functions.

In case /(ft, 0, <) is to be finite at the origin, we have

(36) /(1)
(#, 0, 4>)

=
] J(*fl) noPn(cos 0) + (o w cos

nm sn

while a field whose surfaces of constant phase travel outward is repre-

sented by /
(3)

CK, 0, 0), obtained by replacing jn(kK) by h(kK) in (36).

A spherically symmetric solution results when all coefficients except a o

are zero. Then apart from an arbitrary factor, we have

/(1) _ sin kR
f(2) __ cos kR

Jo
~

kR
' ;

~
kR

'

^ ' I 1
/(3) _ x

pikR f(4) _ x
p-ikR

/0
~
kR

e
> /0 ~kR e '

7.5. Addition Theorem for the Legendre Polynomials. If g(0, <) is

any function satisfying the conditions of the expansion theorem (18),

its value at the pole,
=

0, must be

(38) \g(0, 4>)]M = 2 an = ^2 (2n + 1}
J

sin d0 d</>,

since Pn(l)
=

1, P (1)
== 0. In particular let us take for 0(0, </>) any

surface harmonic Fn (0, <) of degree n expressed by (15). Then in
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virtue of the orthogonality relations, the sum in (38) reduces to a single
term and we obtain the formula

(39) Fn (0, 4>)Pn(cos 0) sin 6 dO d<t>
=

We shall apply this result to the problem of expressing a zonal har-

monic in terms of a new axis of ref-

erence. Let P in Fig. 70 be a point
on a sphere whose coordinates with

respect to a fixed rectangular refer-

ence system are and <. A second

point Q has the coordinates a and

0. The angle made by the axis OP
with the axis OQ is 7. The zonal

harmonics at P referred to the new

polar axis OQ are of the form Pn

(cos 7) and our problem, therefore,
is to expand Pn (cos 7) in terms

of the coordinates 6, <, and a, 0.

It is apparent that on a unit

sphere cos y is the projection of the

line OP on the axis OQ. If #, y, z

are the coordinates of P, #', t/', z' those of Q, then

(40) cos y = xx' + yy
r + zz

r = sin 8 sin a cos (< /S) + cos cos a.

We now assume for Pn (cos 7) an expansion of the form

FIG. 70. Rotation of the axis of

"om OP to OQ for a system of

(41) Pn(cos 7) =
r Pn(cos cos sn

multiply both sides by P(COS 6) cos w</>, and integrate over the unit

sphere. With the help once more of the orthogonality relations, we
obtain

(42) I I Pn(cos 7) P?(cos 0) cos m<t> sin 6 dd d<}>
Jo Jo

27T

But by (39)

(43)
f

2* r
I I Pn
Jo Jo

(cos 7)P(cos 0) cos m< sin dS d$

47T=
2n + l

tP (cos fl) cos w*k-o =
2n + 1

jP^(cos a) cos m^
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since when 7 =
0, 6 = a, <f>

=
ft. Consequently,

(44) c = 2 -
P?(cos ) cos m0.

Likewise,

(45) <Zm = 2 fr ""*?] P?(cos a) sin m/3.
^/t "T* 171) I

The desired expansion, or addition formula, is therefore

(46) Pn (cOS 7) =* Pn((X>S ) Pn(cOS 0)

s a> p (cos *> cos m(* ~ "5.
V** I "Vm * 1

This result leads to an alternative formulation of the expansion

theorem stated on page 403. If g(0, <) and its derivatives possess the

necessary continuity on the surface of a sphere, its Laplace series (18) is

(47) g(0, 4>)
=

or by (19) and (46),

1 ^ri C 2* C*
(48) g(6, <t>)

= -=-
>j (2n + 1) g(a, ^3)Pn(cos 7) sin a da d)8.

tfTo ^ ^

7.6. Expansion of Plane Waves. It is now a relatively easy matter

to find a representation of a plane wave propagated in an arbitrary

direction in terms of elementary spherical waves about a fixed center.

The direction and character of the plane wave will be determined by its

propagation vector k whose rectangular components are

(49) fci
= fc sin a cos 0, fc 2

= k sin a sin jS, fc 3
= k cos a,

while the coordinates of any arbitrary point of observation are

(50) x = R sin 6 cos 0, t/
= R sin sin <, z = R cos 0.

Then the phase is given by

(51) k R =
fcft[sin a sin cos (* 0) + cos a cos 0]

= fc/J cos 7.

The function /(l)
(K, 0, </>)

= exp(tfc JR cos 7) is continuous and has continu-

ous derivatives everywhere including the origin R = 0. It can, therefore,

be expanded according to (36), page 406. Consider first an axis that

coincides with the direction of the wave. Since the wave is symmetrical

about this axis, we write

(52) giMeo., = anjB(fcfl)Pn(cos 7).
n-0
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The coefficients are determined in the usual manner by multiplying
both sides by Pn(cos 7) sin 7 and integrating with respect to 7 from to

TT.
.
Then by (17)

2n 4- 1 C*
(53) anjn(kR) = f- JQ

e< * y Pn (cos 7) sin 7 dy.

To rid this relation of its dependence on R, differentiate both sides with

respect to p = kR and then place p = 0. From (25) it follows that

o

~
(2n+l)P

hence,

in

Jo
C sn y P"

(2n + 1)1
" sn

The integral on the right of (55) is readily evaluated and we obtain

an = (2n + l)t
n

>
or

(56) e** C08 * =
2J <(2n + l)jn(kR) Pn(cos 7).

n-O

In case the z-axis of the coordinate system fails to coincide with the

direction of the plane wave, one may use the addition theorem (46) to

express (56) in terms of an arbitrary axis of reference. Then

(57) e*R cos Y = 2 i"(2n + l)jn(*B) [Pn (cos a) Pn (cos 0)

n-O L

n

_j_ 2 ^. -7 T; riP(cos a) Pn(cos ^) cos m(<t> ft)

m-1 ^ ^ '

J

7.7. Integral Representations. We have found it convenient on

various occasions to represent a wave function as a sum of plane waves
with appropriate weighting or amplitude factors. The direction of each

component wave is determined by the angles a and ft. Integration is

extended over all real directions in space, and may in certain cases include

imaginary values of a and ft as well. As in Sec. 6.7, we wish to find

representations of the form

(58) f(x, y, z)
= f da C dft g(a, ft)

or, when x = R sin 6 cos <, y = R sin sin <, z = R cos 0,

(59) /(, 0, 0) = / daf dft g(a, ft) e** *,

where a and ft are the angles shown in both Figs. 66 and 70. In the

case of cylindrical waves a fixed frequency and a fixed wave length along
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the z-axis lead to a constant value of a, so that the directions of the plane

waves representing a cylindrical function f(u
l
9
u2

) constitute a circular

cone. Since for spherical waves there exists no such preferred' axis, the

integration must be extended to both a and ft.

An integral representation of elementary spherical wave functions

can be obtained directly from the expansion (57). If both sides of that

equation are multiplied by P(COS a) cos mfi or by P(COS a) sin ra/3, one

obtains, thanks to the orthogonality relations (19), the result

(60) jn (*fi) P?(cos 0) n
S

m<t>
=

sin a da. dfl.

Upon multiplying both sides by the arbitrary constants anl , &nm and

summing over m, this can be written also as

/*2ff /*7T

(61) jn(kR)Yn (6, *) = p| e*B coa ^Fn(, 0) sin a da dj8.
* ** t/ *J

From these general formulas may be derived a number of useful special

cases. Thus by choosing m =
0, 6 = 0, we obtain a representation of the

spherical Bessel function jn(kR).

i~n C*
(62) jn(kK) =

-TT c*5cOBa Pn(cos a) sin a da,
^ Jo

or

{63)

It is in fact easy to show that Eq. (4), page 400, is satisfied by the integral

(64) zn (kR) = t- f e**'Pw (iy) <^,
Jc

provided the contour C is such that the bilinear concomitant

(65)
=

c

vanishes at the limits. In place of
77
=

1, we may choose a value that

will cause the exponential to vanish. Thus if k is real, we take for the

upper limit rj
= i and obtain the representations

= f- e'^Pn (7,) dr,,

(66)
J
r.

= i-"
/"""*
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If on the other hand k is complex due to a conductivity of the medium,
one may choose that root of A;

2 whose imaginary part is positive and

replace the limit 17
= i oo by t\

= oo .

Again from (60) and (54) , placing < and R equal to zero, one obtains

a representation of the function P(cos 6) :

(67) P(COS 0)
= n

'

|
2

I I cosn 7 P(COS a) cos mft sin a da dp.

The integration with respect to a cannot be carried out easily with only
the help of formulas from the present section at our disposal, but by other

means it may be shown that (67) reduces to

(68) P?(cos 0)
=^^ i~m I (cos 6 + i sin 6 cos j8) cos mp dp.

Finally, one will note that by making use of the integral representa-
tion (37), page 367, for a Bessel function, the right-hand side of (60) can

be reduced to a single integral. When
<f>
=

0,

i-n C*
(69) jn(fcjR) PjT(cos 0)

= I e** c08 cos Jm(kR sin d sin a)^ Jo

a) sin a da.

7.8. A Fourier-Bessel Integral. It will be assumed that the arbitrary
function f(x, y, z) and its first derivatives are piecewise continuous and
that the integral of the absolute value of the function extended over all

space exists. Subject to these conditions the Fourier integral of /(#, ?/, z)

is

(70) f(x, y, z)
=

_ w _ g(k lt k,,

dki dk2

and its transform is

(71) g(k l , ft,, /c,)
=
(I)

1

J_"_ J_"a J_^
/(x, y, )-.-(*+**+.)

dx dy dz.

We now transform these integrals to spherical coordinates under the

tacit assumption that a triple integral extended over an infinite cube can

be replaced by an integral over a sphere of infinite radius. Proceeding
as in Sec. 6.9 and noting that k\x + k^y + k& = kR cos 7, we obtain

(72) /(, 0, <) =
Q-Y J^

f
'

f
2'

g(a9 p t k) e<* - y fc
2 sin a dk da dp,

(73) g(a , P, k) = Qj J J j
/(ft, 0, <) e- C09 > 72

2 sin 6 dR de d*.
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Next we shall assume that f(R, 0, <t>) =*f(R)Yn (0, tf>) and impose

upon the otherwise arbitrary function fn(R) the condition that it shall be

piecewise continuous and have a piecewise continuous first derivative,

and that the integral f |/(B)| dR shall exist. Then

(74) g(a, ft ft)
=

Q
J22 dR fn(R) Yn (6, *)-

sin d6 d<,

which in virtue of (61) and the fact that jn(kR) =
( l)

n
jn(kR) goes

}ver into

75) 0(, ft fc)
= (- l)7n(a, 0)

"

/n(B) jn(fcB)B dR

or gf(a, j8, ft)
=

( I)
n7n (a, ft) gn (k). Introducing this evaluation of the

transform back into (72) and again interchanging the order of integration,

we are led to

(76) fn(R) 7n (fl, *) = gn(k)jn(kR)k*dk\' Jo

and hence to the symmetrical pair of transforms

(77) /() = Jfe f g(fc) jn(ftK)fc
2
dfc,

X 71
"

Jo

(78) g(k)
=

from which the subscript n has been dropped as having no longer any

particular significance. In the special case n =
; Eqs. (77) and (78)

reduce to the ordinary Fourier integral (18), page 288. In case the

chosen value of R coincides with a point of discontinuity mf(R), we write

(79) \ f k*dk f /(P) jn (fcp) jn(kR) p
2
dp = I (f(R + 0) + f(R - 0)].

^Jo Jo ^

7.9. Expansion of a Cylindrical Wave Function. When calculating

the radiation from oscillating current distributions it is sometimes

necessary to express a cylindrical wave function in spherical coordinates.

The integral representation of wave functions that are finite on the axis is

(80) m<f> J.(Xr) *** =

Now

(81) k R = Xr cos (ft 4>) + ifez = fcfi[sin a sin cos (0 0)

+ cos a cos 0],
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and in (57), page 409, we have an expansion in the appropriate spherical
wave functions of exp(zk R). Upon integration with respect to 0, we
obtain

(82) ,

s a) P"(cos 0) jn(kR).

Since P vanishes if m > n the first m terms of (82) are zero and the

expansion can be written

00

fQ1\ T f\v\ nih* ^^ f'n/n^ i rk__ i i\ ^
(OO) J m\W) 6 *

^>j f

n=*0

P^(cOS0)jn+,n(2).
When a = w/2, h = 0, X = k, and

m (o\ = 0> if n is odd'

n+wWy ^ 4- 9tn 1M
if n is even.

2n+m-l(!M ! ("

The result is an expansion of a cylindrical Bessel function in a series of

spherical Bessel functions.

J flfert./.(AT;

7.10. Addition Theorem for z (kR). Let P(B , 0, *) be a point of

observation and Q(Ri, Oi, <t>i) the source point of a spherical wave. The
coordinates J?

, ^, and Ri, Oi, <t>i are referred to a fixed coordinate system
whose origin is at 0. The distance from Q to P is, therefore,

^2 =: *v jRg ~h ^2f 2/?o^?i cos 7

where cos 7 = cos cos 0i + sin sin 0i cos (<#> <#>i). Our problem is

to express a wave function referred to Q as a sum of spherical waves whose
source is located at 0. General treatment of this problem demands a

lengthy calculation and its practical importance is insufficient to warrant
discussion here. However, in the theory of radiation we shall have occa-

sion to apply the special case in which the wave is spherically sym-
metric about the source Q. One finds then without great difficulty the

expansions:

O1V\ 1 /? * >^

l)Pn(cos 7) j*

ff^O
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s>ikR

(87)

00

(2n + l)P(cos 7) J

n-O

(2n + l)Pn(cos 7) j(*Bi)WB ), (Bo > Bi).

The proof is left to the reader.

THE VECTOR WAVE EQUATION IN SPHERICAL COORDINATES

7.11. Spherical Vector Wave Functions. As in the case of cylindrical

coordinates, one can deduce solutions of the vector wave equation in

spherical coordinates directly from the characteristic functions of the

corresponding scalar equation. Following the notation of the preceding
section we shall put $e

=
/, e"*"', where fe is the characteristic

Q
mn

O
mn

Q
mn

solution

(1) /.
= ?

Q
S

m<P;r(cos0)zn (fctf).
o
mn

According to Sec. 7.1, one solution of the vector wave equation

(2) VV C - V X V X C + /c
2C =

can be found simply by taking the gradient of (1). We define L = V^,
and split off the time factor by writing L = le-**'. Then by (95), page

52,

(3) l.mn
=
^g Zn(fctf) P?(cos 0) n

where ii, i 2, is are the unit vectors defined in Fig. 8, page 52, for a

spherical coordinate system.

To obtain the independent solutions M and N as described in Sec. 7.1,

one should introduce a fixed vector a. Such a procedure in the present
instance is of course permissible, but then M and N will be neither normal

nor purely tangential over the entire surface of the sphere. If in place
of a we use a radial vector ii, a vector function L X ii is obtained which is

tangent to the sphere; but ii is not a constant vector and consequently it

by no means follows & priori that it can be employed to generate an

independent solution. However, we shall discover that a tangential solu-

tion M can in fact be constructed from a radial vector. Unfortunately
the procedure fails in more general coordinate systems.
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Let us try to find a solution of (2) in the form of a vector

M = V X (iiu(BM = L X iiu(R),

where u(R) is an unknown scalar function of R. Then if Mij Mz , M*
are the R, 0, and < components of M, we have

The divergence of M is zero and we now expand the equation
V X V X M -

fc
2M = into 72, 6, and </> components by (85), page 50.

The ^-component is identically zero, whatever u(R). The conditions

on the and <j> components are satisfied provided u(R) is such that

/K\ d *
( t\ .

l d \ ' a d
f IN! 1 d 2

/ t\
(5) C^+j^^^smfl^

= 0.

(The peculiar advantage of spherical coordinates over more general

systems is that the conditions on both tangential components are iden-

tical.) If, therefore, we choose u(R) = R, Eq. (5) reduces to the required

relation

(6) VV + fcV = 0.

Hence in spherical coordinates, (2) is satisfied by

(7) M-VXRiA = LxR = ivxN,

whose components are

-

From the relation fcN = V X M the components of a third solution can

be easily found.

/nN ... aw) .,.,,. Ar
i 3 2(W Ar

i a*W)
(9) fctfi--^? + *'*, X^kR-^' N

^kR^re-dRd^-

Since ^ must satisfy (4), page 400, the radial component reduces to the

simpler form 1

< *-**.
1 The first thorough investigations of the electromagnetic problem of the sphere

were made by Mie, Ann. Physik, 26, 377, 1908 and Debye, Ann. Physik, 30, 57, 1909.

Both writers made use of a pair of potential functions leading directly to our vectors

M and N. The connection between these solutions and a radial Hertzian vector has

been pointed out by Sommerfeld in Riemann-Weber,
"
Differentialgleichungen der

Physik," p. 497, 1927.
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To obtain explicit expressions for the vector wave functions M and N,

we need only carry out the differentiation of (1) as required by (8) and

(9). The time factor is split off by writing M = me-*" 1

,
N = ne-* 1

,

and we find

(11) m = + L Zn(kR) P?(coS 0)
n m* i,

- zn(kR)

+ kK-em [R z

7.12. Integral Representations. The wave functions 1, m, and n can

be represented as integrals of vector plane waves such as (18) to (20),

page 395. For the functions of the first kind, which are finite at the

origin, we have by (60), page 410,

_n p2r f*Tr

(13) /(i)
=

\ \
eikR COB * P(cos a)

c
.

os mp sin a da dp.
, 4?r Jo Jo sin

First, we calculate the components of the gradient; namely, df/dR,

_i -L, ~--i, differentiating under the sign of integration. Next we
R dd R sin d<t>

observe from an inspection of Fig. 70, page 407, that if the vector k(, 0)

is directed along the line OQ and R(0, <#>) along the line OP, then

k . ij = k cos 7 ==
fc[sin sin 6 cos (<t> 0) + cos a cos 0],

(14) k i2
=

fc[sin QJ cos cos (<t> ft) cos a sin 0],

k i3
= fc sin a sin (0 0),

the unit spherical vectors ii, i 2 , is referring, of course, to the point of

observation at P. Then it follows without further calculation that

(15) I(D =~
I I k(, p)e

ikR C08 y P^(cos a)
c

.

os m& sin a da d/9.

o
m* 47T JO Jo S1U

To find the corresponding representations of m (l) and n(1) we note that

R X k *=
JfeJB{sin a sin (</> /3)i2 + [sin a cos cos (</>

-
0)

(16)
cos a sin 0]i 3 },

(k X R) X k = fc
2
#{sin

2 7 ii cos 7[sin a cos cos (<
-

p)

cos a sin 0]i2 + cos 7 sin a sin (< j3)is}

*nd, upon differentiating according to (8) and (9), obtain

(17) mi1 ' =~
\ I k X R eikR cos ^ P?(cog a)

c
.

os
m/3 sin a da dB,

^ '
J 4?r Jo Jo sin
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eikR cos y pm(cos a)
COS

sm

To obtain the corresponding integral representations of functions of the
third and fourth kinds the integration over a from to w must be replaced
by a contour in the complex domain as described on page 410.

Rectangular components of the vectors 1, m, and n can be calculated
without great difficulty with the help of these integral representations,
although the resultant expressions are somewhat long and cumbersome.
The vector integrands are resolved into their rectangular components
and become explicit expressions of a, 0, 6, <t>. Thus, for example,
kx = k sin a cos 0. The recurrence relations for the spherical harmonics
are then applied to eliminate these factors and to reduce the integrals to
a form that can- be evaluated by (13).

7.13. Orthogonality. The scalar product of any even vector with any
odd vector, or with any vector differing in index m, is obviously orthogonal
and we need consider only such products as do not vanish when integrated
over </> from to 2w. Thus

JT

where 5 = if m > 0, d = 1 if m = 0. To reduce (19) we apply the
formula

___ 0, when n
2 (n + w)! / u

>
when n =

Integration of (19) over gives, therefore, zero when n 7* ri, or, when
n =

n',

(21)
J J

l
%w 1^ sin dO d<i>

A final reduction follows from the recurrence relations (33) and (34),

page 406, and we obtain the normalizing factor
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(22) I Ml, 1, sin dO d<t>

JO JO O
m*

o
m*

- n _i_ *\
2?r (n + m) !

(n

The same formulas lead directly to the integrals

/2
f*

(23) I I m, me sin
Jo Jo o

m
o
m*

27T

(24) I I n, -n, sin
JO JO o

mn
o
m"

,, ,

27r (n + m)!= ( 1 -f- o) 7^ : r-rrt 7 \~i
'

(Zn + 1J (n in)
1} { (n

while all products differing in the index n are zero.

Upon examining the cross products, we find first

/rtp\ l*i j , i/ii^N 71
" 771C

(25) I 1, m , d0 =
(1 + 5) 2?n ^ ^ ^

-

JO O
mn

e
tt -^ 8m " "

hence,

r* r
2r

(26) I I le m
,
sin d0 d<t>

=
Jo Jo O

wn wn

for arbitrary values of n and n'. Likewise

(27)
r c

2*

I m, - n
,
sin dO d<f>

= 0.
Jo Jo O

mn
e
wn

The complete orthogonality of the system is spoiled, as in the cylindrical

case, by the product le n
e , whose integral over the sphere does not

o o

vanish if n = n7
. In that case we find

(28) I I le -n, sined6d<t>
JO JO o

m*
o
m*

f+ . ^ 2ir (n + m)! / ,

To complete the orthogonalization one might treat kr
as a variable

parameter and integrate over k
f and R as in Sec. 7.2; such a procedure

usually proves unnecessary.

7.14. Expansion of a Vector Plane Wave. To study the diffraction

of a plane wave of specified polarization by a spherical object one must
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first find an expansion of the incident vector wave in terms of the spherical

wave functions 1
,
m6 ,

ne .

o
mn

^mn Q
mn

Consider the vector function

(29) f(z)
= a e ik* = a eikR c<*

',

where a is an amplitude vector oriented arbitrarily with respect to a

rectangular reference system. Let a be resolved into three unit vectors

directed along the x~, y-, z-axis respectively. Then

a* = sin 6 cos < ii + cos cos 4* i% sin < is,

(30) Oy = sin 6 sin < ii + cos sin < i 2 + cos <t>
i3 ,

a* = cos 6 ii sin 6 i 2 ,

where ii, i 2 , ia are again the unit vectors defined in Fig. (8), page 52,

for a spherical coordinate system. Now the divergence of the vector

functions &x exp(ikz) and a^exp^fcz) is zero and consequently they may
be expanded in terms of the characteristic functions m and n alone. At
R = the field is finite and we shall, therefore, require functions of the

first kind. It is apparent, moreover, that the dependence of (30) on

limits us to m =
1; whence upon consideration of the odd and even

properties of (11) and (12), we set up the expansion

(31) a

To determine the coefficients we apply the orthogonality relations of the

preceding section.

(32) f f a, m^
1^ eikR coa e sin 6 dO d<t>

= 2irinn(n +
Jo Jo

whence by (23),

Likewise

(34) I
I ax n<pn e*

R coa e sin dd d<t>

Jo Jo

which in virtue of (24) gives

b = >On l

n(n
hence,

(36) W =
n =
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The same process gives for the wave polarized in the ^/-direction the

expansion

(37) a*

Since the longitudinal wave function az exp(ifc2) has a nonvanishing

divergence, its expansion must involve the 1 functions. It turns out, in

fact, that only this set is required and one finds without difficulty that

(38) a,e<* =
n=0

Problems

1. Show that the spherical Bessel functions satisfy

0, when m j n,

2 2n + 1

provided n and m are integers satisfying the conditions n ^ 0, m > 0. For the appli-

cation of such integrals to the expansion of functions in Bessel series see Watson,

"Bessel Functions," page 533.

2. Show that the cylindrical Bessel functions satisfy

and with the help of these formulas show that the spherical Bessel functions satisfy

d* /cos x\ I 1 d
n

/ cos

3. Show that if R 2 = R% + R\ 2R QRi cos y,

sin M sin kRo sin <

l-i kR

sin fc# cos fe/Zi
K> < 7?

cos A;J2 fcfto A;J?i

o(cos y) =*

1 jf ^ jjj^

4. Show that in the prolate spheroidal coordinates defined on page 56 the equation
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assumes the fonr

0.

Let ), and show that the above separates into

- C- 1

+
1 -

'0,

-C 0,

where m and C are separation constants. Next show that a set of prolate spheroidal
wave functions can be constructed from

sin

in which both the "angular functions" Se and the "radial functions" Re satisfy the

equation

(1
- zV - 2(m + l)zt/' + (6

- cs)y =
0,

with m an integer or zero, b C m, and c = fed = 2ird/\.

6. When the wave functions of Problem 4 apply to a complete spheroid one

must choose m =
0, 1, 2, . . .

,
and find the separation constant b such that the

field is finite at the poles r/
= 1. A discrete set of values can be found in the form

6n - n(n + 1) +/n (c), n =
0, 1, 2, ....

Show that the functions Se and Re can be represented by the expansions

Se l

mn (c, z)
= d.TT(i), T?(z) = (1

- * >.%
S

where PT+m is an associated Legendre function and the prime over the summation sign

indicates that the sum is to be extended over even values of s if n is even and over

odd values if n is odd.

e
l

mn (c, z)
._ (2m +*)!
*'

n
;

daj a .

s\

where jt+m(cst) is a spherical Bessel function. The independent solution is obtained

by replacing j,+m (cz) by ns+m (cz). Show that the coefficients satisfy the recursion

formula

8+2

-
1)(s +2m +2) (a -f 2m + 1)

(2s + 2m + 5)(2 -f 2m + 3)
" 1"" 1" '

(2s + 2m -
1)(2 -f 2m -

3)

, f 2s2
-f 2(2m + 1) + 2m - 1

*~f

+ (a -f 2m + 1)
- b \d.

L(2s + 2m -
1)(2 + 2m + 3)

and from this relation give a method of determining the characteristic values
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6. Prove that the spheroidal functions defined in Problem 5 satisfy the relations

Sel

mn (c, z) - X e**(l -
t*)
mSe l

mn (c, f) dt

where Xn is one of a discrete set of characteristic values.

7. Write the equation VV 4" &V in oblate spheroidal coordinates and express

the solutions in terms of the functions Se and Re denned in Problem 5.

8. A system of coordinates
, 77,

< with rotational symmetry is denned by

ds* = hi d? -{- h2 dip + r 2
d<t>*

where r is the perpendicular distance from the axis of rotation. If the field has the

same symmetry as the coordinate system, its components are independent of <.

Show that the equations

V X E -
ico/iH =0, V X H + (to*

-
<r)E *

break up into two independent groups:

iunHt = 0,

(I) 4" Tt (rE<t>)

~
(htH,)

- . (hlHi) 4. (iw
-

ihtldt di\ J

T 5 (/l2^}
~

I" (/ll^ }
-

ii/iaL 6 ^ ^ J

Show that (II) is satisfied by a potential Q such that

n - a
Q -

5^ \r/ii 5^/677 \rfc, ^r? / r
V

(I) can be integrated in the same manner. (Abraham)
9. Apply the method of Problem 8 to find a rotationally symmetric electro-

magnetic field in prolate spheroidal coordinates. In the case of electric oscillations

directed along meridian lines show that Q satisfies

vW -
0,

which separates into

(? - DQ" + (dW? - OQi -
0,

a - ^e;' + (~dw + C)Q, -
o,



PROBLEMS 423

where Q Qii&QM. Note that both of these are a special case of the equation

(1 z z
)y" 2(a + l)zy' + (b c 2z2

)y
=

when a 1. Show that the field is given by

ico/i Qi dQz

Icon

, ,

Pfc V (1
- l')('

-
I

2
) dt

10. Two types of spherical electromagnetic waves have been discussed in this

chapter: the transverse electric for which ER =
0, and the transverse magnetic for

which HR 0. Obtain expressions for the radial wave impedances as was done

previously for cylindrical waves.

11. Prove the expansions (86) and (87) of Sec. 7.10 and show that when 0i = ir,

Ri QO, Eq. (87) goes over asymptotically into the expansion of a plane wave.

12. Obtain expressions for the rectangular components of the vector spherical

wave functions 1, m, and n by the method suggested at the end of Sec. 7.12.



CHAPTER VIII

RADIATION

In the course of the past three chapters we have studied the propaga-
tion of electromagnetic fields with no concern for the manner in which

they are established. We consider now the sources, and the fundamental

problem of determining the intensity and structure of a field generated

by a given distribution of charge and current.

THE INHOMOGENEOUS SCALAR WAVE EQUATION
8.1. Kirchhoff Method of Integration. Mathematically the problem

of relating a field to its source is that of integrating an inhomogeneous
differential equation. Let \l/ represent a scalar potential or any rec-

tangular component of a field vector, and let g(x, y, z, t) be the density of

the source function. We shall assume that throughout a domain V the

medium containing the source is homogeneous and isotropic, and that

its conductivity is zero. The presence of conductivity introduces serious

analytical difficulties which can be avoided in most practical applications

of the theory. The effect of conducting bodies in the neighborhood of

oscillating sources will be treated as a boundary-value problem in Chap.
IX. Subject to these restrictions, the scalar function \l/ satisfies the

equation

(i) W-JI^T = -0foy,M),

where v = (CM)""* is the phase velocity.

The Kirchhoff theory of integration is an extension to the wave

equation of a method applied in Sec. 3.3 to Poisson's equation. Let V
be a closed domain bounded by a regular surface S and let < and \l/

be any two scalar functions which with their first and second derivatives

are continuous throughout V and on S. Then by (7), page 165,

f*
- *

fj)
(2) <*vV - *Y*) * =

s
* - * da,

where d/dn denotes differentiation in the direction of the positive, or

outward, normal. Let (x', y' ,
z

r

) be a fixed point of observation within

y and

(3) r = V(x' -
x)* + (y

f -
y) + (*'

-
z)

2

the distance from a variable point (x, y, z) within V or on S to the fixed

424
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point. For < we shall choose the spherically symmetric solution

(4) * =
J

of the homogeneous equation

where / It + -
1 is a completely arbitrary analytic function of the argu-

ment t -\

As in the analogous problem of the stationary field, < has a singularity

at r 0; this point must, therefore, be excluded from the domain V
by a small sphere Si of radius r\ drawn about (re', y', z') as a center. The
volume V is now bounded externally by S and internally by Si. Further-

more, if we denote the left side of (2) by / and make use of (1) and (5),

we obtain

(6)

Or, since

Upon integrating over the entire duration of time this gives

<8> r. j * - -
r. *j> * + ?i (* ss

- * 2)
*

The next task is to choose the function f(t + -
J
in such a way that

the last term of (8) vanishes. To this end let V = r/v and take for

f(t + t') the impulse function
~+O

(9) f(t + t')=--=
e

^
= S + O,

defined by (35), page 291, with the property

(10)

To avoid any question as to the continuity of <t> and its derivatives, we

shall imagine d to be exceedingly small but shall not pass at once to the

limit 5 = 0. Thus defined, St(t + V) vanishes everywhere outside an

infinitesimal interval in the neighborhood of t = V. With this in mind
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it is apparent that if F(f) is an arbitrary function of time, then

(11) F(-O =
M S(t + t')F(t) dt,

and that df/dt approaches zero with vanishing 5 for all values of t.

Since now <t> and d<t>/dt vanish at the limits t = <*> and t = oo 1 for

all finite values of r, it follows that the last term of (8) must likewise

vanish and, consequently, that

r idt= - ( dv r s<>(t + 1'}
g(x > y > *>

J- * JV J ~ r

When equated to the right-hand side of (2), this leads to

Over the surface Si we know that d/dn = d/dr, so that

(14)
I

/ ^
J ^^~

Passing to the limit as r\ > 0, this reduces to

and hence by (11),

C / z.t. ;JA\

Ida = -

1
Obviously these limits may now be drawn in to enclose an infinitesimal interval

containing the instant t =
r/v.
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Substituting this value into (13) gives

(17) *(*', y>, tf, 0) = -

^
ff(a

.

f p> 2,
_o dt,

+JL
r r [i^+o^-^47rj,sJ_aoLr dtt dn r

To reduce these integrals to a simpler form we note that

(18) ^[Mfl].w + 0f^) + i*. &( ,

and that

d du 1 3r a5o

An integration by parts gives

tdS (t + t') lldr

and application of (11) leads to

(21) *(*', j/', ', 0) =

1 f [i (w\ d (i\S Jsb We- -r
" ^W

According to (21) the value of ^ at the point x'
y y'',

2;' and the instant

i = is obtained by summing the contributions of elements whose phases
have been retarded by an amount t' = r/v. But the location of the

reference point on the time axis is purely arbitrary; consequently, the

Kirchhoff formula becomes

(22) *(x',y',zr,() = J

in which the symbol

(23) fo

will denote a function with retarded phase.
The volume integral in (22) is a particular solution of the inhomo-

geneous wave equation representing physically the contribution to

^(z', t/

7

, z', t) of all sources contained within V. To this particular solu-

tion is added a general solution of the homogeneous equation (5) expressed
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as a surface integral extended over S and accounting for all sources

located outside S. In case the values of \l/ and its derivatives are known
over S, the field is completely determined at all interior points, but it is

no more permissible to assign these values arbitrarily than in the static

case. We shall have occasion below to discuss this point further in

connection with the Huygens principle.

The behavior of ^ at infinity is no longer obvious since r enters

explicitly into [g] through the retarded time variable t --- The field,

however, is propagated with a finite velocity; consequently, if all sources

are located within a finite distance of some fixed point of reference and if

they have been established within some finite period in the past, one may
allow the surface S to recede beyond the first wave front. It lies then

entirely within a region unreached by the disturbance at time t and

within which \[/ and its derivatives are zero. In this case

= 1
\g (x, y, z, t

-
(24) *(*', y', z', t)

= g x, y, z, t
-

dv,

where V now represents the entire volume occupied by sources.

The reader has doubtless noted that the choice of the function

/ It + -
)

is highly arbitrary, since the homogeneous equation (5) admits

also a solution - / f t -- V This function leads obviously to an advanced

time, implying that the quantity \l/ can be observed before it has been

generated by the source. The familiar chain of cause and effect is thus

reversed and this alternative solution might be discarded as logically

inconceivable. However the application of "logical" causality prin-

ciples offers very insecure footing in matters such as these and we shall

do better to restrict the theory to retarded action solely on the grounds

that this solution alone conforms to the present physical data.

8.2. Retarded Potentials. When (24) is applied to the scalar poten-

tial and to the rectangular components of the vector potential we obtain

the formulas

(25)

(26)

which enable one to calculate the field from a given distribution of charge

and current. Here x f

represents the coordinate triplet #', y
f

,
z

r

}
and x

T
the triplet x, j/, z, while the retarded time is expressed by t* = t ---
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This statement, however, is subject to one condition. We have in

fact only shown that (25) and (26) are solutions of the inhomogeneous
wave equation. In order that they shall also represent potentials of an

electromagnetic field it is necessary that they satisfy the relation

(27) V A + M ^ = 0.
ot

The prime attached to the operator V denotes differentiation with

respect to x 1

', y
r

,
z' at the point of observation.

We shall show that this condition is fulfilled by (25) and (26) provided
the densities of charge and current satisfy an equation of continuity.

Since d/dt = d/dt* at a fixed point in space we have

-

Now when the operator V is applied to any power of r, one may write

T
Vrn = V'rn . The variables x' occur in J(x, t*) only through t* t

;

consequently,

On the other hand
1 r)T

(31) V J = -
-^ Vr + (V J)i*_ constant,

so that

(32) V J = (V J),*_ constant
- V J.

Equation (29) can now be written

(33) V' A = -
J

V r
Jj

dv +
;

I
J (V - J>-constant *

By the divergence theorem

(34) f V
(
i

J
dv =

I

J n da =
0,

JF \r/ Jsr

since the closed surface S bounding V can be taken so large that J is

zero everywhere over S. Then on combining (28) and (33), we find

(35)
i T'.A + .-^



430 RADIATION [CHAP. VIII

and this must vanish since the conservation of charge requires that

(36) (V J),._ constant +
~j*

=

at any point whose local time is t*.

8.3. Retarded Hertz Vector. By virtue of (36) it is sufficient to

prescribe the current distribution in space and time. The charge density

can then be calculated and the potentials determined by evaluating the

integrals (25) and (26). However, in most cases it is advantageous to

derive the field from a single source function by means of a Hertz vector.

Let us express the current and charge densities in terms of a single

vector P defined by

(37) J = ^ P = -V-P.

The equation of continuity is then satisfied identically and the field

equations are

(I) V X E + IL^ =
0, (III) V H =

0,

PXH- ^ =^, (IV) V-E= -iv-P.
6

As shown in Sec. 1.11, these equations are satisfied by

(38) E = VV n -
/ze ^5, H = eV X -~;

at" Ov

where n is any solution of

(39) v x v x n w n + /x^ -^
~~

7

The rectangular components of II
, therefore, satisfy the inhomogeneous

wave equation

(40) V 2n
y
-

ju ^Jr
=
-\

P *> U =
*> 2j 3) *

It need scarcely be said that the vector P defined by (37) is not

identical with the dielectric polarization defined first in Sec. 1.6. The

(x ,x ,#3)
vector P of the present section measures

^
the polarization, or moment per unit vol-

ume, of the free-charge distribution and

consequently is not equal to D e E.

To facilitate the calculations that fol-

low a small change in notation will be
^

, . made. The point of observation in Fig.
Fio. 71. A current element is TIT, / .c j

located at 1, 2 , g, while xit xt, x 8 71 whose radial distance from a tixed ori-

locate a fixed point of observation. gm Q is R will now be located by the rec-

tangular coordinates (x\ 9
z 2 , 3). The current element located a distance
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Ri from has the coordinates (1, 2 , 3) and its distance from the point
of observation is r, so that

(41) r =

We need consider only the harmonic components of the variation, from
which general transient or steady-state solutions may be constructed.

Let

(42) J = J () e-*, p = po() 6-*", po = ^ V J (a

(43) P-PoCQe-*', Po = ^Jo.
CO

Applying (24) to (40) and noting that in the present case k = co \/M* =
co/v,

we obtain the fundamental formula

(44) n(x,0

A MULTIPOLE EXPANSION

8.4. Definition of the Moments. To evaluate the retarded Hertz

integral one must frequently resort to some form of series expansion.
The nature of this expansion will be governed by the frequency and the

geometry of the current distribution. In the present section we shall

consider an extension to variable fields of the theory of multipoles set

forth in Sees. 3.8 to 3.12 and Sees. 4.4 to 4.7 for electrostatic and mag-
netostatic fields.

According to (87), page 414, when R > RI, the integrand of (44) above

can be expanded in the scries

oo

(]\ _ 7'k ^v (2-n 4- "HP /Vn ^ i" (kJ?-,} Jj^VfrTPV
\-*- / vtv s^t \ill |^ **)*- nvkUo // J7t\'^-*i'l/ '^n \li>JLvJ ,

consequently, if R is greater than the radius of a sphere containing the

entire source distribution,

f9h T\(r t\ f>i<*t ^^ fO-vj _1_ 1 ^7)(l)/'^/?^ I l$n(t\i (Irft^P (nr\<z<v} dii\AJ J.JL^l/, 1>J
~

t> ^ \^tll ^^ .Jfln \^t\/J.ifJ
I X^QVS / Jn\iv-LvIJ J. ri\^'-'o I ) Wi/.

Suppose now that PU(?) is expressed as a function of 72i, 7, 0, where </>

is the equatorial angle about an axis drawn from through the point of

observation. Then the vector PoCRi, 7, <) can be resolved into scalar

components and each component expanded in a series of spherical
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harmonics as in (36), page 406. In virtue of the ortnogonality of the

functions Pn(cos 7), the integral on the right reduces essentially to an

expansion coefficient times [jn (kRi)]*. The success of this attack will be

determined by the nature of the current distribution and the difficulties

encountered in computing the expansion coefficients.

If the wave length of the oscillating field is many times greater than

the largest dimension of the region occupied by current, the series (2)

can be interpreted in terms of electric and magnetic multipoles located at

the origin. We shall assume that for all values of R\ within V

(3) Jfcfli
=

1,

where X is the wave iength in the medium defined by and /i. Conse-

quently the function j(kRi) can be replaced by the first term of its

series expansion. By (25), page 405,

(4)

The total field will be represented as the sum of partial fields by
e

(5) n(x,f) = 2n"CM),
n-0

and, hence?,

* *71

(6) n<">(*, =
4-^ **+'*-<" A>(0

J^
Pott) B! Pn(cos 7) dv.

Since P (cos y) = 1 and htf*(kR)
=

~"jD
e
** we ^ave at once ^or

the first term
1 fikR-i<*t C

(7) n"> = ^ P"> 5-g-, P< =
Jr

Po({) dv.

Let $ be any scalar function of position. By the divergence theorem

(8) f V . tyPo) dv = I r^Po n da,
Jr J5

and, hence,

(9) I Po V^ dt; * -
I ^V Po + I $Po n da.

If S encloses the entire source distribution, P n will be zero over $

and the surface integral will vanish. Choose now for ^ a rectangular

component ,
of the radius vector R t . Then

(10)
- f *,
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consequently

(11) P (1) = f Po<to= f R lpo <fo.

Jv Jv
The partial field n (0) is generated by an oscillating electric dipole whose
moment p (1) is defined exactly as in the electrostatic case, Eq. (47), page 179.

To obtain the second term of (6) we note that Pi(cos 7) = cos 7,

" Hence '

/1O\ ww 1 1 \ *''*' I *
i

'
1 -1.0 j I ^_

(12) n< l > = ~ (- + -_) e^--' P ({) R, cos 7 dw.
4:7T \/I A:/t/ / J^

To interpret the integral we first expand the integrand.

(13) P Ki cos 7 = (Ri R) ^r

1

27e
l x po) x R + po(Ri R) + Ri(R Po)].

The magnetic dipole moment was denned in (28), page 235, as

m< = R! X J o

Since R is independent of the variables { of integration, one has, therefore,

(15) ^ I
(Ri X Po) X R dv = -^m'

1 ' X R.*K J v co/t

The electric quadrupok moments of a charge distribution were defined
in (48), page 179, as the components of a tensor,

(16) Pi,
=

I t ,p cfo = - f J t{,V - Po dv.
Jv Jv

Upon putting ^ =
{ t {/ in (9) this gives

(17) p./
=
J ({,P * + Po,) di; = p,i.

Furthermore,

(18) Ri-R-

Consequently,

(19) ~ ( [P(Ri R) + {.(P. . R)] dv

1 dR 1 ,_

2
=
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The quantities pW are the components of a vector

(20) p
(2) = 2

p VB,

where 2
p is the tensor whose components are p^. [Cf. Eqs. (23), (24),

page 100.]

The partial field n (1)
represents the contributions of a magnetic dipole

and an electric quadrupole.

Comparison of (21) with (7) shows that the two fields differ in the first

place by a factor A/M*, or approximately 3 X 10 8
,
and consequently the

moments m (1) and p
(2> must be very much larger than p

(1) if II (1) is to

be of appreciable magnitude. On the other hand, it must be remembered

that the electric moments of a cur-

rent distribution are functions of the

frequency as well as of the geometry

[Eq. (43), page 431]. If p
(2) is ex-

pressed in terms of current rather

than charge, we see that the magni-
tude of n (l) is independent of fre-

quency, whereas the magnitude of

n (0) diminishes as 1/co with increas-

ing frequency.

The remaining terms of the series

in n (n)
represent the contributions of

electric and magnetic multipoles of

higher order. These must be ex-

pressed in terms of tensors and the

labor of computation increases rap-

idly. The magnitudes of the successive terms progress essentially

as (o>/c)
n

. In case the rate of convergence is so slow that higher order

terms must be taken into account, one is usually forced to adopt some

other method of calculating the radiation.

8.6. Electric Dipole. Let us suppose that the charge distribution is

such that only the electric dipole moment is of importance. This is the

case, for example, of a current oscillating in a straight section of wire

whose length is very small compared to that of the wave. The coordinate

system is oriented so that the positive z-axis coincides with the dipole

moment p (1)
. The vector p (1) can be resolved into its components in a

spherical system as illustrated in Fig. 72.

FIG. 72. Components of field about an
electric dipole.

(22)
O> = cos i pw sin 9 is ,
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where ii, i2 , is are the unit spherical vectors designated in Fig. 8, page 52.

According to (7) the Hertz vector n<> is parallel to p<
1} and can be

resolved in the same manner. The field vectors are now calculated from
the formulas (38), page 430, which in the case of a harmonic time factor

become

(23) E = vv n + fc
2
n, H = -tcoev x n.

The differential operators, expressed in spherical coordinates by (95),

page 52, are applied to the vector

(24) n<> = n<> cos ii
- n sin Oi2 .

If Ro S3 vR is a unit vector directed from the dipole towards the observer

r>

and t* = t --i then
v

(25) E<> = *-*"
-p [3R (R p (1)

)
- p<]

fif ^ 2 1- [3Ro(R p>) - p<] -
J [R X (Ro X

p<)]|,

(26) H --^
The general structure of a dipole field is easily determined from these

expressions. We note in the first place that the electric vector lies in a
meridian plane through the axis of the dipole and the magnetic vector is

perpendicular to this plane. The magnetic lines of force are coaxial

circles about the dipole. At zero frequency all terms vanish with the

exception of the first in l/R
3 in (25), which upon reference to (27),

page 175, is seen to be identical with the field of an electrostatic dipole.

Moreover, if we replace p
(1) by the linear current element - / ds according

to (43), page 431, it is apparent that the first term of (26) can be inter-

preted as an extension to variable fields of the Biot-Savart law, (14),

page 232. The terms in (25) and (26) have been arranged in inverse

powers of R and the ratio of the magnitudes of successive terms is kR,

or 2*- In the immediate neighborhood of the source the "static" and
A

"induction" fields in 1/K
3 and 1/R 2

predominate, while at distances such

that R X, or kR 1, only the "
radiation

"
field

(27)

need be taken into account. At great distances from the source, measured
in wave lengths, the field becomes transverse to the direction of propagation.



436 RADIATION [CHAP. VIII

If we let R oo and at the same time increase p
(1) so that the intensity

of the field remains constant, we obtain in the limit the plane waves

discussed in Chap. V.

This transverse property of the wave motion at great distances is

common to the fields of all electromagnetic sources, but we must not

overlook the fact that in the vicinity of the source there is a longitudinal

component in the direction of propagation. The radiation field of an

electric dipole, for example, vanishes along the axis of the dipole, but for

sufficiently small values of R there is an appreciable longitudinal com-

ponent of E (0) of the form

This component, and not the radiation field, determines the distribution

of current in a vertical antenna above the earth.

Let us calculate next the energy flow within the field. For this

purpose we shall make use of the complex Poynting vector derived in

Sec. 2.20. If S is the mean value of the energy crossing unit area in the

direction of the positive normal per second, then

(29) S = Jfe(S), S* = iE X H.

To calculate the complex Poynting vector S*, we first write (25) and

(26) in component form.

From these we construct

(31) S* =

and obtain

i
-

R*
l

32rr2
e

Next the normal component of S* is integrated over the surface of a

sphere of radius R.

(33) S2 fl' sin 9 d6 d<t>
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Now by (29), page 137, the real part of (33) gives the mean outward flow

of energy through a spherical surface enclosing the oscillating dipole.

Since this real part is independent of the radius of the sphere, it must be
the same through all concentric spheres and we discover that the system is

losing energy at a constant rate

(34) TF<> = -
/x \/^ |p

(1)
|

2 watts.

The quantity W measures the radiation loss from the dipole. In the

expansion of an electromagnetic field, only those terms that vanish at

infinity as R~ [
give rise to radiation. In the present instance there is,

of course, an instantaneous energy flow associated with the other terms
of (25) and (26), but the time average of this flow over a complete cycle is

zero. The terms in R~ 2 and R~* account for the energy stored in the

field, energy which periodically flows out from the source and returns to

it, without ever being lost from the system.

In free space AC O
= 4?r X 10~7

, \/Moeo = i X 10~8
,
and hence

(35) W<> = J X 10- 15
co

4
|p<

1}
l

2 = 173 X 10- 16 vVT watts

where v is the frequency. The radiation increases very rapidly with

increasing frequency and decreasing wave length.

8.6. Magnetic Dipole. The current distribution may be such that

only the magnetic dipole moment m (1) is of importance. At sufficiently

low frequencies this is certainly the case for any closed loop of wire. Then

The components of the field calculated from (23) are

(37) W$ =
Q-,

-
Jj)

cos 6 \mW\e-"*,

ik

The structure of this field is identical with that of the electric dipole but
the roles of E and H are reversed. The vector H (1) lies in a meridian

plane through the dipole and has a radial as well as a transverse com-

ponent. The lines of E (1) are concentric circles about the dipole axis.

When k =
0, (37) reduces to the expressions derived in Sec. 4.5 for the

static field of a fixed magnetic dipole.

To calculate the radiation we construct the complex Poynting vector

as in (31) and integrate its radial component over a sphere of radius R.
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Only the terms of (37) in 1/R contribute to the result and we obtain

(38) WM =^^ |m
(1)

|

2 watts.

In free space VVoAo = 376.6 ohms, in which case

fjW) TF (1) = 10& 4lw (l)
l

2 watts.W^/ l I

For the sake of example consider an alternating current in a single

circular loop of radius Ri meters. The maximum value of the current is

7 and the wave length is assumed to be very much greater than fii.

The phase of the current is then essentially the same at all points of the

circuit, whence it follows from (43), page 431, and (11), page 433, that

the electric dipole moment is negligible. The magnetic moment

|w
(1)

|

=
TTJBf/oJ consequently, the energy radiated per second is

(40)

The radiation resistance (R is defined as the equivalent ohmic resistance

dissipating energy at an equal rate. Since Jo represents the maximum

current amplitude,

(41) W =
ifltfj

and, hence, in the present instance

/R \
4 (R Y

(42) (R = 3207T* ( -^ I
= 3.075 X 10 5

(
~

)
ohms.

\ A/ \ A/

This result is restricted in the first place by the condition that the second

term in the expansion of ji(kRi) shall be negligible with respect to the

first.

(43)

and hence ji(kRi) can be approximated by the first term if kRi < 1.

It is in fact a general rule that these functions can be represented by their

first term as long as their argument is not greater than their order. If

then X = 10 JRi, we find the radiation resistance to be about 30 ohms.

As X decreases, (R increases very rapidly, but the electric dipole and

quadrupole moments now begin to play a part. On the other hand if

the wave length increases, it is clear that radiation soon becomes entirely

negligible. Currents whose wave length is long compared to the largest

dimension of the metallic circuit give rise to no appreciable radiation and

are said to be quasi-stationary.

RADIATION THEORY OF LINEAR ANTENNA SYSTEMS

8.7. Radiation Field of a Single Linear Oscillator. The rigorous

determination of the current distribution in a conductor is a boundary-
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value problem. A steady-state solution of the field equations must be

found, corresponding to a given impressed e.m.f., which satisfies the

necessary conditions of finiteness at interior points of the conductor and

continuity of the tangential components of field intensity across its

surface. This problem has never been completely solved for a finite

length of a cylindrical conductor, but a good idea of what takes place may
be gained from a study of a conducting, prolate spheroid whose eccen-

tricity differs but little from unity. Such an investigation was made first

by Abraham,
1 and a number of papers have dealt more recently with

the same subject. All this work confirms what one would naturally

expect : the current distribution along an iso-

lated straight wire is essentially harmonic and

the ratio of antenna length to wave length is

half an integer, as long as the cross-sectional

dimensions are very small with respect to

the length. A much greater source of error

than the finite diameter of the conductor is

the damping due to radiation. As the an-

tenna current flows outward from the feeding

point towards the ends, energy is dissipated

in heat and radiation. Consequently the

assumption of a constant amplitude at the

current loops along the wire is incorrect.

Superimposed on a standing antenna current wave is a damped traveling

wave supplying the losses. The effect of this modified distribution on

the radiation pattern may be considerable.

The current distribution is also affected by proximity to the ground
or other objects. The trend in contemporary antenna design is towards

systems of linear antennas supported some distance above the earth and

in this case the effect of the earth on current distribution can usually be

neglected. When, on the other hand, a structural steel tower is used as

an antenna, the capacity to ground may have an important influence on

the distribution.

In the present section we shall consider the radiating properties of

linear antennas completely isolated in free space. The manner in which

the radiation is reflected and refracted by the earth will be taken up in

the following chapter. We shall assume that the current has been

measured at a number of points along each conductor and that this

measured distribution can be represented by one or more harmonic

standing or traveling waves.

Let us consider first a single straight wire of length I as shown in

Fig. 73. The current at any point measured from the center of the
1 ABRAHAM, Ann. Physik, 66, 435, 1898.

Single linear oscillator.
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wire is 7 = u()exp( iwf). Then by (44), page 431, the Hertz vector

of the distribution is

where d is an element of length along the conductor. The radiation

field of an element d is by (27), page 435,

(2)

so that upon integrating the contributions of all elements along the length

of the wire we obtain

^
J- <(3) Et --

Now if ry> I one may consider sin 6/r to be a slowly varying func-

tion of . This means that the radius vectors from current elements to

the point of observation are essentially parallel, so that sin 6/r may be

replaced by sin 6/R and removed from under the sign of integration.

This approximation is the more nearly exact the larger 72, and since the

radiation is the same through all concentric spheres about the origin 0,

we may take R as large as we please. The phase, however, must be

considered with more care. From the figure it is clear that the time

required for a wave emitted by the element at to reach a distant point

is less than that required for a wave originating at by the amount

cos 6/c, and consequently their phase eventually differs by fc cos 6,

since fc = 27T/X. It follows that, as R > oo
,
the field intensities approach

the limit

//ZQ jj IOJ/ZQ sin 6

(4) ^ aa ^^*- 47 ~7T
(

A sinusoidal current distribution is represented by

(5) u() = 7 sin (& a),

and the condition that the current shall be zero at the ends =
1/2 is

satisfied by

(6) M() = Jo sin mw U +
^ j,

* =
-y

The integer m is equal to the number of half wave lengths contained in

the length Z, and 7 is the current amplitude at a loop position. The

integral (4) is readily evaluated and leads to



Sue. 8.7] LINEAR OSCILLATOR 441

<7> *- -c
The numerical factor is

hence,

(mw \
cos I

~2~
cos )

fljjj..^

(9) Eo = -i607o ^-r ;

e

p , when w is odd,sin t/ /

or

. /*
sm 1

-
rraTr-^r- COS

(10) EQ
~

60/o 7 ^ ^ ^ when m is even.
sin (/ /e

The expressions do not depend on the length of the radiator, but only

upon the mode of excitation. The field is that of a dipole located at the

center whose amplitude is modified by a phase factor F(6).

The intensity of radiation in any given direction is again expressed in

terms of the complex Poynting vector which is radial and whose magni-
tude is S* =

j2
cos 2

[ -^ cos 6

(ii)
25rft2

p sin 2
( cos 6

s * = o- -ol ^-r- ^' (m = 2, 4, 6,
- - -

i.
2?r /2

2 sin 2 ^
v ' ' ' y

From the location of the zeros and maxima of these functions one can

gain a fair idea of the radiation pattern. When m is odd, the zeros of

S* occur at

/-*^\ * 1 3 771

(12) cos 6 = ,,... ,m m m
while the maxima are found from the relation

(13)
~- tan 6 sin 6 = cotan ( -^ cos 0V

Likewise, when m is even, the zeros occur at

/n> * ^ 2 4
(14; COS =

0, ;;; jmm m
and the maxima correspond to angles satisfying

(15) -Tj-
tan sin = tan (

-^-
cos 6 V

The radiation patterns of the first four modes are shown in Fig. 74.

In each case the current distribution is indicated by a dotted curve
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along the radiator, which is broken up into oscillating current sections

alternately in phase and 180 deg. out of phase. The interference action

of these current sections gives rise to lobes in the radiation pattern equal
in number to that of sections m. Between lobes is a radiation node.

FIG. 74a. m = 1.

FIG. 74c. m = 3. FIG, 74d. m = 4.

Fia.74. Radiation patterns of a linear oscillator excited in the modes m = 1, 2, 3, 4.

The radiation intensity is greatest along the axes of the lobes lying
nearest the radiator and as m > oo the radiation is directed entirely

along the wire. Energy can be propagated along an infinite conductor

but there is no outward radial flow. We shall see later that a Joule heat

loss within the conductor gives rise to a compensating inward flow.

These theoretical patterns are modified in practice by the damping
due to Joule heat and radiation losses. As a consequence, the successive
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current loops diminish in amplitude as one proceeds along the antenna

outward from the point of feeding. The radiation lobes in or near the

equatorial plane 6 = ir/2 are strengthened at the expense of the outer

ones. This effect becomes more pronounced as the resistance of the

antenna wire is increased. It is illustrated by Fig. 75. The curves were

obtained by Bergmann
1 from measurements on linear oscillators excited

in the mode m = 3 and constructed of bronze and two sizes of steel wire

respectively. The ratio of the current maximum at the central loop to

that at either of the outer loops was of the order of 1.4:1. When the

Bronze, 4.0 mm diameter

Steel, 4.0 mm diameter

Steel, 0.5 mm diameter

FIG. 75. Effect of antenna resistance on the radiation according to measurements by
Bergmann.

current amplitudes were weighted in this ratio, a calculation of the

radiation gave results in close agreement with the observed values.

The power dissipated in radiation is obtained by integration of S*

over the surface of a sphere of very large radius R drawn about the center

0. When m is odd, we have

(16) W = S*RZ sin 6 d6 d<t> J*
2 (*cos 2

I -~-

sm

*
-~- cos

To evaluate this integral, we replace the variable 6 by u = cos 6 between

the limits +1 and 1. Then, since

(16) transforms to

(18) W = 15/3

1 BERGMANN, Ann. Physik, 82, 504, 1927.

l-^-ad + u
1 1-u)

r 1
l + cosm,m

du
J-i 1 + w
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Now let 1 + u = v/mTT, which leads to

[CHAP. VIII

TIT 1 C 72 f 1 COS ,W = 15/g I cfo,

Jo v
(19)

or

(20) TF = 15J2
[ln 2miry - Ci 2wwr],

where 7 = 1.7811 and Ci a; is the cosine integral

cos v
(21) Ci x = (to,

for which values \iave been tabulated in Jahnke-Emde, "Tables of

Functions/'

An identical result is obtained when m is even. In either case the

radiation resistance is

(22) (R = 30(ln 2mwy - Ci 2>mr), (m =
1, 2, 3, ),

or, since In 2iry = 2.4151,

(23) <R = 72.45 + 30 In m - 30Ci 2jrm

160
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A

FIQ. 76. Radiation resistance of a linear antenna at resonance.

If m > 2, the term in Ci 2irm is negligible. The relation of radiation

resistance to the order of excitation is shown graphically in Fig. 76.

Equation (23) is valid only at resonance, when the quantity 2l/\ = m is

an integer. At intermediate wave lengths the radiation resistance

follows a curve which oscillates above and below the resonance values

indicated by Fig. 76. The exact form of this curve depends on the

nature of the excitation. 1

1
See, for example, an interesting paper by Labus, Hochfrequenztech. u. Elektroak.,

41, 17, 1933.
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8.8. Radiation Due to Traveling Waves. The current distribution

considered in the preceding paragraph constitutes a standing wave with
nodes located at the end points. By a proper termination of the wire,
a part or all of the reflected wave may be suppressed with the result that
the current is propagated along the conductor as a traveling wave.

Such, for example, is the case of a transmission line, where in order to

secure the most efficient transfer of energy every effort is made to avoid

standing waves.

To calculate the radiation losses of a single-wire antenna of finite

length
1 with no reflected current component, let us assume for the current

distribution the function

(24) u(&

If, as in the previous case, the antenna is fed at the central point, the
radiation field intensities are

i

(25) E^^H^-^I,^ j**-** J
3

,
e-~. m d{,

which, when evaluated, gives

sin
-g

1 - cos
*

(26) Ei = -t'60/o sin 9
e

--
1 - cos 6 R

The radiant energy flow is determined by the function

kl
2 sn sn

/O7\
(27)

~\

sin2 e sin2 ho (1
- cos 0)

J JL__ ___-.

i _ cQg g)

- _.

The power dissipated in radiation is, therefore, equal to

J*sin

2 0sin 2

[!
Z

(l
- cos 0)1-(T^i--Jsi

To integrate we put u = 1 cos 6, du = sin 6 d6, and reduce (28) to

*2 7 7

(29) /'Jo

Omitting the elementary intervening steps, one finds for W the expression

/ . 4

I 97 A. 7
Sm

"\

(30) W - 30/ 2 1.415 + In ^ - Ci~ + ~ri
A

\ XX 4?n

\ T
1 The problem of a line with parallel return was first treated correctly by

Manneback, /. Am. Inst. Elec. Engrs., 42, 95, 1923.
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and for the radiation resistance

sm

(31) <R = 84.9 + 601n ^ - 60Ci
A

It appears that for equal wave lengths and the same antenna the radiation

resistance of a traveling wave is greater than that of a standing wave.

A
2

Marconi-Franklin antennas Idealized current distribution

FIQ. 77.

8.9. Suppression of Alternate Phases.

The directional properties of a single-

wire antenna can be accentuated by
suppression of alternate current loops.

This is accomplished in the Marconi-

Franklin type antenna by proper loading

with inductance at half-wave-length in-

tervals along the line. The alternate sec-

tions of opposite phase are shortened to

such an extent as to render them negligible

as radiators and the antenna is then equiv-
alent to a colinear set of half-wave oscil-

lators placed end to end and all in phase.

This is shown schematically in Fig. 77.

The contribution of each oscillating segment to the radiation field at

a distant point arrives with a phase advance of ft
= ud/c over its next

FIG. 78. Evaluation the series

;
b e-*

m-0
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lower neighbor. Consequently the resultant field is

447

cos

(32) t
= -6(h7 (5

sin 6 R
tn-0

where n is the number of current loops. Now the quantity 6 e~imft is a

vector in a complex plane rotated through an angle mf) from the real

axis. The sum indicated in (32) can, therefore, be evaluated by simple

geometry. The vector diagram is drawn in Fig. 78, and the sum is

clearly the chord of a regular polygon. Following the notation of the

figure we have

b = 2a sin >
= 2a sin -~j

l

whence V =
Q

at an angle a = (n 1) = with the real axis.

Sin
2

Since in the present instance 6 = 1, we obtain

(33)

. n/3
8111

IT t(n 1)-
e-W = -. e 2

.

sm
2

For we write o>d/c
= TT cos 0, since d =

^
cos ^> an(i so obtain

cos ( K cos ) sin (

-^-
cos

(34) Ee
= 60tI -

sin

in(^cosg) e
^^- <(n-i)=

/* \ B

cos

sin

(35)

in f - cos
0j

The radiation intensity is

cos ( ^ cos 6 } sin (
-^ cos

J

5* = 30

sin (*Sin I ;rSin I r COS
w

and the total power radiated

*T
cos 2

( 7: cos 6 } sin 2

(36) F = 30/2

cos
0J

sin 6
^d6.

sin 2
( cos
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This integral has been evaluated by Bontsch-Bruewitsch,
1 who obtains

[nr

(n-l)Tr (n-2)ir (n-3)*- rl
S - 4S + 8S - 125 + - 4(n - 1)S L0000 Oj

where
mv Cm* gm 2 u I

(38) S =
I du = K (In 2W7T7 Ci 2m7r).v '

o Jo u 2

The radiation resistance is, therefore,

(39) <R = (-]
nir (n-l)ir (n 2)

60(5 - 4S + 8S000
600 r

Figure 79a shows the concentration of radiant energy in the equatorial

plane for the case of three oscillat-

ing segments; Fig. 796 is a plot of

radiation resistance which shows

that a marked increase of radiating

efficiency is achieved by the sup-

pression of alternate interfering

phases.

8.10. Directional Arrays. The

single-wire antenna is directive

only in the sense that the radiation

is concentrated in cones of revo-

lution about the antenna as an axis.

A colinear set of half-wave oscil-

lators excited in phase confines the

radiant energy to a thin, circular

disklike region such as that of Fig.

79a. If now one wishes to intro-

duce a preferred direction in the

equatorial plane itself, or any other

form of axial asymmetry, the

single-wire radiator must be re-

placed by a group or array of

half-wave antennas suitably spaced and excited in the proper phase-

In practice the spacing between centers is usually regular, so that

the array constitutes a lattice structure. There is in fact a certain

parallel between the problems of x-ray crystallography and the design

of short-wave antenna systems. From the x-ray diffraction pattern the

physicist endeavors to locate the centers of the diffracting atomic dipoles

and hence determine the structure of the crystal; the radio engineer must

choose the lattice spacing and phases of the current dipoles so as to

1 BONTSCH-BKTJEWITSCH, Ann. Physik, 81, 437, 1926.

FIG. 79a.

FIG. 79a. Radiation pattern about an-

tenna whose current distribution is indicated

by the dotted curve.

FIG. 796. Radiation resistance of n half-

wave segments oscillating in phase.
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obtain a prescribed radiation pattern. In both cases the distribution of

radiation is characterized by a phase or form factor dependent upon the

polar angles 6 and <, and the methods which have been developed for

the analysis of crystal structure can be applied in large part to antenna

design.

To simplify matters we shall assume that all radiators of the array
are parallel. The antennas are excited at the central point by means of

FIG. 80. A system of half-wave oscillators arrayed in a regular lattice structure denned by
the base vectors ai, fta, &?

transmission lines which can be designed to radiate a negligible amount of

energy. Moreover the phase velocity of propagation along these lines

can be adjusted to values either less or greater than c; consequently, the

phase relations between the members of the array can be prescribed

practically at will. 1

The phase factor of a single half-wave antenna will be denoted by

(40)

COS (
2
COS 1

sin

The centers of the oscillators are spaced regularly in a lattice structure

whose constants are fixed by the three "base vectors
"

ai, a z , as, as shown

1 The technical aspects of this problem have been discussed by many recent

writers. One may consult: Carter, Hansell and Lindenblad, Proc. Inst. Radio

Engrs.y 19, 1773, 1931; Wilmotte and McPetrie, J. Inst. EUc. Eng. (London), 66, 949,

1928; Hund, "Phenomena in High-frequency Systems," McGraw-Hill, 1936; Holl-

man, "Physik und Technik der ultrakurzen Wellen," Vol. II, Springer, 1936.
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in Fig. 80. The jth oscillator is located in the network by a vector

(41) r,
= jiai + J 2a2 + jsa 8 ,

where ji, J2 , js are three whole numbers not excluding zero. The phase
of the jth oscillator with Tespect to the phase of the oscillator at the

origin is /?/,

(42) pj = jil + J2<*2 + J33.

Thus ai is the phase of any oscillator relative to its nearest neighbor on

the axis denned by the base vector ai, and so on for the others. The
radiation field of the jth oscillator is, therefore,

pikR iut t/sRo-r, 1/3/

(43) fy = -t60I #Fo(0)
--

^
-

where R is a unit vector in the direction of the radius vector R. The
resultant field intensity is obtained by summing over the entire array.

pikR i

(44) E = -t6QF

By a proper adjustment of amplitude, spacing, and phase in (44) a

radiation pattern of almost any desired form can be obtained. We shall

consider only the most common arrangement in which all current ampli-
tudes are the same and the base vectors ai, a2 , as define a rectangular

structure whose sides are parallel to the o>, t/-, and z-axes. In each row

parallel to the rr-axis there are ni radiators; in each row parallel to the

2/-axis there are n2 ;
and in each column parallel to the z-axis there are n 3 ,

so that the lattice is completely filled.

(45) Ro TJ
= jiai sin cos <t> + J 2a 2 sin sin $ + J8a 3 cos 6

in which ai, a 2 ,
a 3 are the spacings along the x-, y- y

z-axes respectively.

The field intensity at any point in the radiation field is

e"
(46) E=

-ieo/oFo/i/i/i^-jj
,

whose complex phase factors are

i sin 8 cos 0+ai)

n

(47) fa
= V 6 -tf:(fcaj8in fl sin
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If we let

(48) Y i
=
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sin 6 cos <t> +
73 =

then (47) can be written

72 = ka z sin sin < +
cos 6 + 3 ,

(49)
^^ -a,

'BIO ,y

T" -^-"r

sm

1,2,3)
' = 1} >

by (33). The complex factors are eliminated from the radiation intensity

and we get

(50) 8 * =
&i*

where

sin

(51) F.=

sing

(s
=

1, 2, 3).

All the radiation formulas derived above are special cases of this

result. For example, the single wire of Sec. 8.7 excited in an upper mode
constitutes a linear distribution of half-wave oscillators with ai= a2

=
0,

a 3
= X/2, 0:3

= TT. Then

sm

(52)
77T -I Tjl

i r 2 1, -r 3

(cos e + 1)

COS

which leads directly to (11) on page 441. If the colinear oscillators are

in phase, as described in Sec. 8.9, we take ai = a 2
=

0, as = X/2, a3
=

0,

and obtain (35).

Consider next a row of vertical half-wave oscillators spaced along the

horizontal x-axis. We shall assume them to be excited in phase and

spaced a half wave length apart. a\ = X/2, a 2
= a 3

=
0, ai = 0. Then

(53)
30 II

COS (
^

cos 6
J
sin (

~- sin 6 cos $
J

-~j~~ s
-

sin I ^ sin 6 cos <f> \

sin

which now depends on the equatorial angle <t>.
The zeros occur at those

angles for which the quantity ni7r/2 sin 6 cos <t>
has any one of the values

IT, 2r
9

. . . . In the equatorial plane 8 = ir/2 and there are radiation
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nodes along the lines determined by

(54)

ICHAF. VIII

,2,4 .fti
cos <t>

= + j j

fti fti fti

or

cos
HI n\

Fio. 816. Radiation

pattern in the equatorial

plane of four half-wave
oscillators operating in

phase and with half-wave-

length separation.

FIG. 8 la. Radi-
ation pattern in the

equatorial plane of

two half-wave oscil-

lators operating in

phase and separated
by a half wave length.

as fti is even or odd. The principal maximum occurs at <
= x/2, so that

this array gives rise to a broadside emission of energy. Subsidiary

maxima are determined by the condition dFi/d$ =
0, which in the

present instance leads to the relation

(55) tan ^ sin 8 cos <t>]
= tan f-~- sin 6 cos <l.

When 6 = <t>
=

ir/2, FoFi =
fti, so that the radiation intensity in the

direction of the principal maximum is n\ times the maximum intensity of a

single oscillator. On the other hand, each oscillator receives only the

nith part of the total power delivered by the source (assuming equiparti-

tion), and hence the net gain in radiation intensity in the preferred direction

is given by the factor n\, the number of oscillators.
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The neighboring zeros lying on either side of the principal maximum
in the equatorial plane are fixed by the relation cos < = 2/n\. Hence
the larger m, the narrower the beam. The beam is evidently confined to

a region bounded by the angles <t>i and <#> 2 ,
where cos fa cos <t>\

= 4/ni,

i

FIG. 82. Radiation pattern in the equatorial plane of two half-wave oscillators 90 deg. out
of phase and with quarter-wave spacing.

lying on either side of <t>
=

ir/2. The radiation patterns in an equatorial

plane have been plotted in Figs. 81a and 816 for arrays containing two
and four oscillators.

Lastly, we shall apply (50) to two antennas spaced a quarter wave

length apart and 90 deg. out of phase.

ai = -7T/2.

Let ai = A/4, a 2
= a s

=
0,

<- ^

(56)

0=77/2

R 2 sin

COS3s f
j (sin 6 cos

<j> 1)
J

The radiation pattern in the equa- "U

torial plane is shown in Fig. 82.
~

The energy is thrown forward in a

broad beam in the direction of the

positive x-axis. Radiation to the

rear is reduced to a very small

amount. In many commercial in-

stallations the rearward antenna is not connected directly to the source.

Its excitation is then due to inductive coupling with the forward oscillator

and its action is that of a reflector. In this case, however, the spacing is

not quite A/4 and a small adjustment must also be made in the length of

the reflector.

FIG. 83. Radiation patterns in the

equatorial plane for a horizontal row of
vertical half-wave oscillators backed by a
row of reflectors, illustrating the concen-
tration of radiation in a forward beam by
increasing the number of oscillators.

(Hotlmann.)
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FIQ. 84. Radiation patterns in the

meridian plane for a vertical set of half-

wave oscillators backed by reflectors.

(Hollmann.)

A needlelike beam in space can be obtained by a combination of the

simple arrays described above. Concentration of the radiation in a

meridian plane is accomplished by means of a horizontal row of vertical

oscillators. Extending the length of these vertical lines into a series

of half-wave radiators excited in

phase results in a concentration in

the equatorial plane. Finally, this

two-dimensional array is backed up
by a corresponding set of reflectors

at an approximate distance of X/4.

In Fig. 83 the radiation diagram in

the plane =
ir/2 of a horizontal

row of vertical oscillators backed by
reflectors is drawn for several values

of n2 ,
the number in a row. In Fig.

84 the same diagram is drawn for a

vertical set in the meridian plane <t>
=

ir/2. In both cases the effective-

ness of an increase in n is apparent. The greatest improvement naturally

occurs when n is small, in which case the addition of another oscillator

makes a very considerable difference. The relative gain decreases with

increasing numbers and a point is soon reached at which any further

addition to the array is economically un-

warranted.

8.11. Exact Calculation of the Field

of a Linear Oscillator. The method of

Poynting, which has thus far been em-

ployed to calculate the radiation resist-

ance, is based entirely on a determination

of the outward flow of energy at great

distances from the center of the radiating

system. Now if energy is constantly lost

from the system it must also be supplied

by the source; consequently, work must

be done on the antenna currents at a constant rate. There must be a com-

ponent of the e.m.f . parallel to the wire at its surface which is 180 deg. out

of phase with the antenna current. A knowledge of the phase relations

between current and e.m.f. along the conductor must lead to the same value

of radiation resistance. In fact it can give us more; for this resistance is

but the real part of a complex radiation impedance which must eventually
be determined if the radiator is to be treated as a circuit element.

It is apparent that the results of the preceding paragraphs cannot be

applied to this alternative method, for they are valid only at great dis-

tances from the source. It is essential that we have an exact expression

FIG. 85. Coordinates of the linear

oscillator discussed in Sec. 8.11.
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for the field in the immediate neighborhood of each conductor. The
demonstrations by Brillouin,

1

Pistalkors,
2 and Bechmann 3 that an

exact expression in closed form can in fact be found were an extremely

important contribution to antenna theory.

We shall consider again a single linear conductor coinciding with a

section of the 2-axis, but the center of the conductor need no longer be

located at the origin. A point on the conductor is fixed by its coordinate

,
and its length is I = & 1, as shown in Fig. 85. The current dis-

tribution is sinusoidal, but the current need not be zero at the ends if

terminal loading is taken into account. Such loading can be accomplished

through the capacitative effect of metal plates, by grounding through a

lumped inductance or resistance, or by any of a variety of other devices.

The current is, therefore, again

(57) / = 7 sin (fc cfte-***

and the Hertz vector of the distribution is

(58) n.(z, = j~ e-** sin (fc
-

a) df,

which can be written also in the form
r /* * *z. / _i_ t\ /* ! / >\

(W\ TT (r t\
6

P- I - . fit - P ia I

e%
,IcJJ/l JLlV*/ (/I ~~~

,-* I C/ I
~~

\Jd C t/ I
"

I

OTTCoO) L J*i r Jfi r

The cylindrical coordinates of an arbitrary point in the field are

p, 0, 2, and the distance from any current element to this point is

r = vV + (z
-

)
2

- Now let

(60) u = r + f
-

2, du = - d.

Then

(6i) r^^ dt = ** r d^'
Jii r

s
Jut u

where Ui = ri + f i 2, w 2
= r2 + ^2 2?,

and n, r2 are the distances

from the ends of the wire to the point of observation. Likewise, if

(62) v = r { + 2, dv = -
df,\ / s i >

r
s,

(63)
I ^-^d= --**

I ^dw,
Jfi r Ji y

where Vi = ri f i + 2, v 2
= r2 f2 + 2. The Hertz vector is, there-

'

r /*wa 'fc ^* rs t*jfc ~i

H, = f ei(kz-a) I ^du + 6-'<*-> dw
87T CO L Jui W Ji V J

fore,

1
BRILLOUIN, RadiotlectriciU, April, 1922.

1 PISTALKORS, Proc. Inst. Radio Engrs., 17, 662, 1929.
* BECHMANN, ibid., 19, 461, 1471, 1931.
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A simple transformation reduces these exponential integrals to a form

for which tabulated values are available. We note first that

(*
u*

eiku C giku C e\ku

(65) du = du - du.
1 '

Jui U Jui U Ju, U

By definition the cosine and sine integrals are

_.. ,
f

*
cos ku , a . , f

M1
sin fcw ,

(66) Cikui = -
I du, Sifct/i = I au;
Jui ^ JO W

since Si < =
Tr/2, we have

/* 00 "J.
'

(67) I du = Ci kui i Si fc^i + ^>
Jui ^6 ^

or
/*Ul -L Wl Ml

(68) I
- du = Ci ku + i Si ku

Jui M Ul Ml

Tables of these functions will be found in Jahnke-Emde.

To calculate the field we apply the formulas

(69) E = vv n + fc
2
n, H - -tcoev x n,

which in cylindrical coordinates reduce to

V ' f)IT

H, = Hp
=

0, H* - zcoe

^-*-

Since MI, M2 ,
etc. in (64) depend upon both z and p, the integrals must be

differentiated with respect to their limits. For example,

_
dz ui dz

Similarly,,

3

* J.

ri
-

(z
-

f i) ri

After differentiating in this manner and combining terms one obtains

for the components of field intensity

* r^-iw* T (>
ikr* eikri

(73) E9
= - 4^-U cos (fcfc

-
)
- * - cos

(fcn - a)N r
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^7<n tf tToe-*' (k(z
-

2) e^' ,_
.

,
(74) #, = - <-i-2_d _ cos (&

_ a)
co ( p r2

cos fcfe -)-- cos
P

1* /\P~~ tto* F />*&

(75) ff,
= H -w L P

-L- *(*
" &) ^*r '

.

fltt
. J(Z

- fQ eri "I

_|
--- sm ^^ _ a)

--v-s_y_ - gm ^.^ _ ^
P ' 2 p TI J

In the case of an isolated wire whose ends are free the current will be
zero at the points =

f 1? J = 2 . Then jfe
=

Trw/Z, where m is again the
number of half wave lengths along the wire. Since

fi \ . /7T7tt 2 \sm
-j^-

- a } = sm ( ^ - a
j
=

0,

we place a = "^ = Tm M -
^\ The field intensities then reduce

to the comparatively simple expressions

I /jiArs f>\kr\. \

Ez
= -iSO/oc-^ (-l)

m
^
--

~r- h

(76) iJA

8.12. Radiation Resistance by the E.M.F. Method. The expressions
for the field derived in the preceding paragraph are valid and exact at

all points of space, including the immediate neighborhood of the current.

The occurrence of singularities at the end points n =
0, r2 = 0, results

from the assumption of a line distribution of current. In practice the
finite cross section of the wire ensures finite values of the field intensity,

although relatively large intensities must be expected near these ter-

minals. At any other point along the conductor the phase relation

between current and the parallel component of E can be determined from
(73) or (76) ; consequently, the work necessary to maintain the current

against the reactive forces of the field can be calculated.

In Sec. 2.19 it was shown that for real vectors E, H, and J and a cur-

rent distribution in free space the divergence of the Poynting vector
satisfies the relation

(77} v.S=-E.J-
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If the field is periodic, the average of the time rate of change of stored

energy is zero, so that

(78) V^S = V S = -
E~TJ.

If now in place of real vectors we deal with complex field intensities and

currents, we have by Sec. 2.20

(79)
S - $Re(E X H) =

ReE Re] = $Re(E J),

the sign
~ indicating conjugate values. The total average power radiated

from a system of currents is, therefore,

(80) W = I S n da = ~ Re I E J dv.
Js * Jv

The radiation can be calculated either by integrating the normal component

of the Poynting vector over a closed surface including all the sources, or by

integrating the power expended per unit volume over the current distribution.

Suppose next that there are n linear conductors carrying current in

otherwise empty space. Without any great loss of generality it may be

assumed that the conductors of the system are parallel to one another

and to the z-axis. The current in the jth conductor is I/, a complex

quantity. The z-component of the electric field at the jth conductor

due to the ith current is EH Then by (80) the total radiation from the

system is

(81) W = ~ Re
7^1

the integrations to be extended the length of each conductor. This is the

rate at which the induced e.m.f.'s do work on the currents. Let us write

(82) Jy
= Joy sin (fcy ay) e ""*"*, Eji = lQ lUjie~

l"t
.

The amplitudes Joy and J * are in general complex, and the function

[/, is determined by (73). Then

1
n

?^

(83) W =
\Re22 /("^Z*>

J = l l-l

where

(84) ZH = - P Va sin (fefo
-

ay) df /.
Jtii

The quantities Z^ are coupling coefficients or, in a certain sense, transfer

impedances. The real part of the coefficient Z t < represents the radiation

resistance of the tth conductor when all other conductors are removed.
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A very neat method of calculating the radiation has been suggested

by Bechmann. 1 If the current distribution is sinusoidal as in (82), one

may write

d2/-
(85) ^ = -*/,.a $i

The field intensity E,i satisfies the relation

(86)

Moreover,

(87) I
< - n i + - j

i - n *

(87) /,___!!, -^
+ ^7, n,-

and hence

From (64) and (68) we have

T .p-io>t r r

(89) n< =^- L*,-) Cifcu +
57TCOW L L

+ 6-.w,-)
I

Ci kv + i Si kv
|

where, in the present case w = r^ + {, fy, t;
= r/ f + f,. The

coordinate ^i refers to points on the antenna whose current is /, while

/ is a point on the jth conductor. The subscripts 1 and 2 denote as

before the coordinates of the lower and upper ends respectively of an

antenna. No further integration is necessary to find the radiation from a

system of linear conductors. Since the current amplitudes 7 t and J / are

factors in (88), an integrated expression for the impedance Z3i can be

found.

In the case of an unloaded antenna the current Ij is zero at the ter-

minals i/ and 2 ,-.
Then fci ;

-

a,-
=

0, fc 2 ,- ay = m,^r, and we obtain

(90) W = Be

A difficulty arises when this formula is applied to colinear conductors.

Consider, for example, the radiation from a single linear oscillator as in

Sec. 8.7. This case is the limit of two parallel wires whose separation

approaches zero. If we take the terminals of the two conductors to be

coincident, then

1 BECHMANN, loc. cit.
t p. 1471.
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when f /
=

1, UK = + li 1
=

0, u2i
= Z + 2 1

=
2Z,

VH = -
1 + 1

=
0, t>2*

= I
-

{2 + f i
=

0,

and when
,
= 2 , MI = Z + 1

-
2
=

0, i* 2<
= + 2

-
2
=

0,

I>K = I
-

f i + fc
=

2Z, u 2
= -

2 + f2
= 0.

By (89),

-fcrf

Ci kv + *Si kv
07T CO

^- r i
ws=21

~- Cifcu + iSifcw
OTTCoCO L Jw<=0

But A; = Trm/l = 2?r/X, VMO/CO = 60; hence by (90)
/7T

Tf = ~

This result fails, however, since Ci is infinite. The difficulty can be

avoided by calculating first the radiation of two parallel wires separated

by a small but finite distance p. Upon passing to the limit p = 0, the

infinite terms drop out 1 and one obtains, as in Sec. 8.7,

(91) W = 15/2
o(ln

THE KIRCHHOFF-HUYGENS PRINCIPLE

8.13. Scalar Wave Functions. Let V be any region within a homo-

geneous, isotropic medium bounded by a closed, regular surface S, and

let \I/(x, y, z) be any solution of

(1) W + kV =

which is continuous and has continuous first derivatives within V and on

S. Then it follows directly from Green's theorem, (7), page 165, that

the value of
\l/
at any interior point x

r

, y
f

,
z' can be expressed as an integral

of \// and its normal derivative over S.

where as usual

(3) r = V(x f ~
*)

2
+~(7/

- yY + (z
f - zY

is the distance from the variable point x, y, z on S to the fixed interior

point x', y', z'. Equation (2) is in fact the special case of (22), page 427,

for which all sources are located outside S and the time factor exp ( ivl)

has been split off.

1 Details are given by Bechmann, loc. cit. t p. 1477.
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The function defined by (2) is continuous and has continuous deriva-

tives at all interior points, but exhibits discontinuities as the point
z

f

> y'> %' traverses the surface S. The transition of the function

(*)

across S was shown to be continuous in Sec. 3.15; consequently, the dis-

continuities of (2) are identical with those discussed in Sec. 3.17 in

connection with the static potential. If x', y'',
z' is any point, either

interior or exterior, the function defined by the integral

fr\
(5)

FIG. 86. The surface Si may bo closed at infinity.

is at all interior points identical with the solution ^ whose values have

been specified over S, and at all exterior points is zero. 1

As in the static case, too, the values of
\j/
and its derivatives at all

interior points are uniquely determined by the values of ^ alone on S

(Dirichlet problem), or by d\l//dn alone (Neumann problem). The values

of both ty and d\l//dn, therefore, cannot be specified arbitrarily over S if

u and \[/ are to be identical at interior points. The function u defined by
(5) satisfies (1) and is regular within V whatever the choice of ^ and

d\l//dn over S, but the values assumed by u and du/dn on S will in general

differ from those assigned to
\l/
and d\l//dn.

All elements of the surface S which are infinitely remote from both

the source and the point of observation contribute nothing to the value

1 The analytic properties of the Kirchhoff wave functions are discussed in detail

by Poincare", "Th&me mathe'matique de la lumiere," Vol. II, Chap. VII. See also

the very useful treatise by Pockels, "Uber die partielle Differentialgleichung

Aw -f k*u = 0," Teubner, 1891, and "Lectures on Cauchy's Problem" by Hadamard,
Yale University Press, 1923.
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of the integral (2). In Fig. 86 all elements of the source are located

within a finite distance R\ of a fixed origin Q. The surface S is repre-

sented as an infinite surface Si closed by a spherical surface S2 of very

large radius r about P as a center. The point of observation P(x', t/', z')

lies within S and all elements of the source are exterior to S. If R, the

distance from Q to an element of area on 82, is very much larger than

the largest value of RI, then by (87), page 414, and (32), page 406,

(6)
~ =*~

n

n=0
QO

(7) TT-l
hence,

(8) * =^ ~
Over S2

(9)

The terms in r" 1
,
r~ 2

,
and r"~

3 in the expanded integrands of (2), therefore,

cancel one another, while the remaining terms are of the order r~n
,

n > 3, and consequently contribute nothing to the integral over S2

as r > oo .

Let us suppose now that the surface S represents an opaque screen

separating the source from the observer. In virtue of the theorem just

proved it can be assumed that open surfaces of infinite extent are closed

at infinity. If a small opening Si is made in the screen, the field will

penetrate to some extent into the region occupied by the observer. The

problem is to determine the intensity and distribution of this diffracted

field. Clearly if the values of ^ and d\f//dn were known over the opening

Si and over the observer's side of the screen, the diffracted field could

be calculated by evaluating (2). These values are not known, but to

obtain an approximate solution one may assume tentatively with Kirch-

hoff that:

(a) On the inner surface of the screen
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(6) Over the surface S\ of the slit or opening the field is identical with

that of the unperturbed incident wave.

Nearly all calculations of the diffraction patterns of slits and gratings

made since KirchhofFs time have been based on these assumptions.
1

It is easy to point out fundamental analytic errors involved in this

procedure. In the first place, the assumption that
\f/ and d\[//dn are zero

over the inside of the screen implies a discontinuity about the contour Ci

which bounds the opening Si, whereas Green's theorem is valid only for

functions which are continuous everywhere on the complete surface S.

This difficulty cannot be obviated by the simple expedient of replacing

the contour of discontinuity by a thin region of rapid but continuous

transition. If ^ and d\(//dn are zero over any finite part of S, they are

zero at all points of the space enclosed by /S.
2 In the second place, an

electromagnetic field cannot in general be represented by a single scalar

wave function. It is characterized by a set of scalar functions which

represent rectangular components of the electric and magnetic vectors.

Each of these scalar functions satisfies (1) and its value at an interior

point x'
, y' ,

z' is, therefore, expressed by (2) in terms of its values over the

boundary S. But these components at an interior point must not only

satisfy the wave equation, they must also be solutions of the Maxwell

field equations. The real problem is not the integration of a wave

equation, either scalar or vector, but of a simultaneous system of first-

order vector equations relating the vectors E and H.

In spite of such objections the classical Kirchhoff theory leads to

satisfactory solutions of many of the diffraction problems of physical

optics. This success is due primarily to the fact that the ratio of wave

length to the largest dimension of the opening in optical problems is

small. As a consequence the diffracted radiation is thrown largely

forward in the direction of the incident ray and the assumption of zero

intensity on the shadow side of the screen is approximately justified.

Measurements are usually of intensity and do not take account of the

polarization. As the wave length is increased, the diffraction pattern
broadens. A computation of ty from (2) now leads to intensities directly

behind the screen which are by no means zero, contrary to the initial

assumption. Various writers have suggested that this might be con-

1 On the classical theory of diffraction see, for example, Planck, "Einfiihrung in

die theoretische Optik," Chap. IV, Hirzel, Leipzig, 1927, or Born, "Optik," Chap.

IV, Springer, Berlin, 1933. To obtain a clearer understanding of the physical signif-

icance as well as the shortcomings of Kirchhoff's method the reader should consult

the papers by Rubinowicz, Ann. Physik, 63, 257, 1917, and Kottler, ibid., 70, 405,

1923. Since the writing of this and the following sections a treatment of the subject

has appeared in book form: "The Mathematical Theory of Huygens' Principle,
"
by

Baker and Copson, Oxford, 1939.
2 A direct consequence of Green's theorem. See POCKELS, loc. cit., p. 212.
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sidered as the first of a series of successive approximations, the values of

^ and d\f//dn over S obtained from the first calculation to be used as the

boundary conditions in the second. There is, however, no proof that
the process converges and the difficulties of integration make it impractical.

Recent advances in the technique of generating ultrahigh-frequency
radio waves have stimulated interest in a number of problems previously
of little practical importance. A natural consequence of this trend
towards short waves is the application of methods of physical optics to

the calculation of intensity and distribution of electromagnetic radiation

from hollow tubes, horns, or small openings in cavity resonators. In
radio practice, however, the length of the wave is commonly of the same
order as the dimensions of the opening, and the polarization of the dif-

fracted radiation is easily observed. It is hardly to be expected that
the Kirchhoff formula (2) can be relied upon under these circumstances.

8.14. Direct Integration of the Field Equations.
1 The problem of

expressing the vectors E and H at an interior point in terms of the

values of E and H over an enclosing surface has been discussed by a
number of writers. 2 A simple and direct proof of the desired result can
be obtained by applying the vector analogue of Green's theorem to the

field equations. In Sec. 4.14 it was shown that if P and Q are two vec-

tor functions of position with the proper continuity, then

(10)

where S is as usual a regular surface bounding the volume V.

Let us assume that the field vectors contain the time only as a factor

exp ( iwt) and write the field equations in the form

(I) V X E -
iw/iH = -

J*, (III) V H = -
p*,

(II) V X H + tucE = J, (IV) V E =
J p.

The medium is assumed to be homogeneous and isotropic, and of zero

conductivity. The quantities J* and p* are fictitious densities of

"magnetic current 77 and "
magnetic charge,

77 which to the best of our

1 Sections 8.14 and 8.15 were written in collaboration with Dr. L. J. Chu.
2
LOVE, Phil. Trans., (A) 197, 1901; LARMOR, Lond. Math. Soc. Proc., 1, 1, 1903;

IGNATOWSKY, Ann. Physik, 23, 875, 1907, and 25, 99, 1908; TONOLO, Annali di Mat.,
3, 17, 1910; MACDONALD, Proc. Lond. Math. Soc., 10, 91, 1911 and Phil. Trans., (A)
212, 295, 1912; TEDONE, Line. Rendi., (5) 1, 286, 1917; KOTTLER, Ann. Physik, 71,
457, 1923; SCHELKUNOFF, Bell. System Tech. J., 15, 92, 1936; BAKER and COPSON.
toe. tit., Chap. III.



SEC. 8.14] INTEGRATION OF FIELD EQUATIONS 465

knowledge have no physical existence. However, we shall have occasion

shortly to assume arbitrary discontinuities in both E and H, discon-

tinuities which are in fact physically impossible, but which would be

generated by surface distributions of magnetic current or charge were

they to exist. Currents and charges of both types are related by the

equations of continuity,

(V) V J
- ip =

0, V - J* - twp* = 0.

The vectors E and H satisfy

(H) V X V X E -
fc

2E =
itt/J

- V X J*,

(12) V X V X H -
fc

2H = io) J* + V X J,

with fc
2 = wV

In (10) let P = E, Q = <a, where a is a unit vector in an arbitrary
direction and <t>

= e
ikr

/r. Distance r is measured from the element at

x, y, z to the point of observation at x', T/', z' and is defined by (3). We
have identically

(13) v X Q = V< X a, v x V X Q = afc
2
</> + V(a V<),

V X V X P = fc
2E + tco/J

- V X J*.

Following the procedure of Sec. 4.15, it is easily shown that a is a factor

common to all the terms of (10) and, since a is arbitrary, it follows that

,. (*/. T 1 \
(14) I I teo/ij9 V X J < H pV< I dv

<J v \ * /

=
I [icoA*(n X H)< + (n X E) X V</> + (n E)V< n X J*<6l da.
Js

The identity

(15) V X ]*<p dv = I n X J*< da + I J* X V< dv
Jv Js Jv

reduces this to

(16) I UCOM!* ~ J* X V<t> + -
pV<t>)

dv

=
I [iw/i(n X H) + (n X E) X V<t> + (n E)V<] da.
Js

The exclusion of the singularity at r = was described in Sec. 4.15.

A sphere of radius r t is circumscribed about the point a;', t/, z', its normal
directed out of V and consequently radially toward the center.

/I \ >&?

(17) V</>
=

(
- - ik

) to,
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and on the sphere n = TO- The area of the sphere vanishes with the

radius as irr\ and, since

(18) (n X E) X n + (n E)n = E,

the contribution of the spherical surface to the right-hand side (16)

reduces to 47rE(x', y'j 2')- The value of E at any interior point of V is,

therefore,

(19) E(z', y', z')
= - iurft - J* X V* + P V0 dv

T~ I [W(n X H)< + (n X E) X V<f> + (n E)V<] da.

An obvious interchange of vectors leads to the corresponding expression

forH,

(20) H(x', ?/, z')
=

^
to>j** + J X V0 + P

*

+
4- (

[*wc(n X E)<
-

(n X H) X V$ -
(n H)V</>] da.

This last is the extension of (23), page 254, to the dynamic field.

If all currents and charges can be enclosed within a sphere of finite

radius, the field is regular at infinity and either side of S may be chosen

as its "interior."

In the earlier sections of this chapter the calculation of the fields of

specified distributions of charge was discussed in terms of vector and

scalar potentials and of Hertzian vectors. We have now shown that

E and H may be calculated directly without the intervention of poten-

tials. The surface integrals of (19) and (20) represent the contributions

of sources located outside S. If S recedes to infinity, it may be assumed

that these contributions vanish. Discarding the densities of magnetic

charges and currents, one obtains the useful formulas

(21)

Since the current distribution is assumed to be known, the charge density

can be determined from the equation of continuity.

In Sec. 9.2 it will be shown that an electromagnetic field within a

bounded domain is completely determined by specification of the tan-

gential components of E or H on the surface and the initial distribution

of the field throughout the enclosed volume. It follows that when
a X E and n X H in (19) and (20) have been fixed, the choice of n E
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and n H is no longer arbitrary. The selection must be consistent with
the conditions imposed on a field satisfying Maxwell's equations. The
same limitations on the choice of ^ and d\l//dn were pointed out in Sec.

8.13. The dependence of the normal component of E upon the tangential

component of H is equivalent to that of p upon J.

Let us suppose for the moment that the charge and current distribu-

tions in (19) are confined to a thin layer at the surface S. As the depth
of the layer diminishes, the densities may be increased so that in the
limit the volume densities are replaced in the usual way by surface

densities. If the region V contains no charge or current within its

interior or on its boundary S, the field at an interior point is

= ^ I [tM(22) B(z',y

It is now clear that this is exactly the field that would be produced by a

distribution of electric current over 8 with surface density K, a distribu-

tion of magnetic current of density K*, and a surface electric charge of

density 77, where

(23) K - -n X H, K* - n X E, r,
= -e n E.

The values of E and H in (23) are those just inside the surface S.

The function E(x
f

, y
f

, z') defined by (22) is discontinuous across 8.

It can be shown as above that discontinuities associated with < = e lkr
/r

are identical with those of the stationary regime, $ =
1/r. Then by

Sec. 3.15 the integral

(24) Ea(s',

suffers a discontinuity on transition through S equal to n AE 3
=

iy/c,

where AE 3 is the difference of the values outside and inside. The third

term of (22), therefore, does not affect the transition of the tangential

component but reduces the normal component of E to zero. Likewise by
Sec. 4.13 the discontinuity of

(25) Et(x' 9 ?/, ')
=

r- I

K* X V< da
^" *J s

is specified by n X AE 2
= K*, so that the second term in (22) reduces the

tangential component of E to zero without affecting the normal com-

ponent. The first term in (22) is continuous across $, but has discon-

tinuous derivatives. The curl of E at a;
7

, j/', z
f

is

(26) V' X E(x', y', z'}
= ~ (n X H) X V* da

s
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which is of the type (25). The vector E and the tangential component of

its curl are zero on the positive side of S; E is, therefore, zero at all external

points. The same analysis applies to H.

8.15. Discontinuous Surface Distributions. The results of the pre-

ceding section hold only if the vectors E and H are continuous and have

continuous first derivatives at all points of S. They cannot, therefore,

be applied directly to the problem of diffraction at a slit. To obtain

the required extension of (22) to such cases, consider the closed surface S

(surfaces closed at infinity are included) to be divided into two zones

Si and $2 by a closed contour C ly-

ing on S, as in Fig. 87. The vectors

E and H and their first derivatives

are continuous over Si and satisfy

the field equations. The same is

true over /S2 . However, the com-

ponents of E and H which are tan-

gential to the surface are now
FIQ. 87. C is a contour on the closed subject to a discontinuous change

surface S dividing it into the two parts Si in passing acrogs C from Qne ZQne to

the other. The occurrence of such

discontinuities can be reconciled with the field equations only by the

further assumption of a line distribution of charges or currents about the

contour (7. This line distribution of sources contributes to the field,

and only when it is taken into account do the resultant expressions

for E and H satisfy Maxwell's equations.

A method of determining a contour distribution consistent with the

requirements of the problem was proposed by Kottler. 1 It has been

shown that the field at an interior point is identical with that produced

by the surface currents and charges specified in (23). A discontinuity

in the tangential components of E and H in passing on the surface from

zone Si to zone $2 implies therefore an abrupt change in the surface

current density. The termination of a line of current, in turn, can be

accounted for according to the equation of continuity by an accumulation

of charge on the contour. Let ds be an element of length along the

contour in the positive direction as determined by the positive normal

n, Fig. 87. Let n t be a unit vector lying in the surface, normal to both n
and the contour element ds, and directed into zone (1). The line den-

sities of electric and magnetic charge will be designated by <r and <r*.

Then Eqs. (V), when applied to surface currents, become

(27) m (Ki - K,) = tW, ni - (Kf - K?) = war*,

1 KOTTLBR, Ann. Phyrik, 71, 457, 1923.
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and hence by (23)

tW = ni (n x H 2
- n X Hi) = (H2

-
HI) -

(ni X n),
twcr* = ni - (n X E! - n X E 2)

= -(E2
-

Ei) (ni X n).

The vector HI X n is in the direction of rfs. If S* represents an opaque
screen over which E 2

= H2
=

0, the field at any point on the shadow side

is

(29) E(x>, y', *')
= -i -L

fo V* Hi ds

- ~
[twM(n X Hi)* + (n X Ei) X V* + (n . Ei)V<] do,*" y $1

which can be shown to be identical with

(30) 4E(z', j/',
= i-^ V<#> Hi - ds + <^ Ei X da

t-CO / C J C

For the magnetic field one obtains

(31)

+ [to>(n X E00 -
(n X Hi) X V<^

-
(n HO V0]

*/ <Si

= 1

^ v*E 1 -cfa + ^ ^HiXds- f (n^^-^iwjjijc jc Jsi\ dn dn

It remains to be shown that the fields expressed by these integrals are

in fact divergenceless and satisfy (I) and (II). Consider first the diver-

gence of (29) at a point x
l

', t/', z
r

.

(32) V E(*', y', z')
=

S Is
[t V<t> + (Q ' El)v2^ da

^ f
"" */ 01

taking into account the relation V' = V when applied to < or its

derivatives. Now

(33) f (n X H) V< da = f <t>V X H n da - (
<t> H - ds.

J8 JS J C
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The line integral resulting from this transformation is zero when S is

closed, but otherwise just cancels the contour integral in (32). Inversely,

only the presence of the contour integral in (29) leads to a zero divergence and

waves which are transverse at great distances from the opening Si. From

(II) and the relation k 2
/iu =

icoju, follows immediately the result

(34) V'-E(o;', 7/, z') =0.

An identical proof holds for H(a/, ?/', z').

Finally, it will be shown that (29) and (31) satisfy (I) and (II).

(35) V X H(s', y', *')
= ~ f [(n X H a) VV^> + W<t>(n X HO

47T JSi
- fw(n X Ei) X V</>] da,

since the curl of the gradient is identically zero. Furthermore,

(36) f (n X HO VV0 da = - f
'

n (Vv^ X HI)V0 da
/Ol /01

= f (n - V X HOV* da - f n X V (HiV0) da
/<Si ,/$i

=
(p

V< Hi ds iut f (n-EOV^da,
a/ C / Si

where the operator VV acts on V</> only. The last integral takes account

of the fact that the field equations are by hypothesis satisfied on /Si.

Then

(37) V X H(*', ?/, z')
= fc V<t> Hi - ds + Jft

UW(n X HO*

+ (n X EO X V* + (n E

The validity of (I) is established in the same manner. 1

FOUR-DIMENSIONAL FORMULATION OF THE RADIATION PROBLEM

8.16. Integration of the Wave Equation. In Sec. 1.21 it was shown

how by means of tensors the field equations could be written in an exceed-

ingly concise form. If the imaginary distance x = id be introduced as a

coordinate in a four-dimensional manifold, the equations of a variable

field are in fact formally identical with those which govern the static

regime, and the methods which were applied to the integration of Poisson's

equation can be extended directly to the more general case. The four-

1 These formulas have been applied by L. J. Chu and the author to the calculation

of diffraction by a rectangular slit in a perfectly conducting screen. The results

compare favorably with those obtained by Morse and Rubcnstein, Phys. Rev., 54, 895,

1938, who solved a two-dimensional slit problem rigorously by introducing coordinates

of a hyperbolic cylinder. Phys. Rev., 56, 99* 1939. See also the treatment of such

problems by Schelkunoff, ibid.> p. 308,



SBC. 8.16] INTEGRATION OF THE WAVE EQUATION 471

dimensional theory is more abstract than the methods described earlier

in this chapter, and consequently has not been applied to the practical

problem of calculating antenna radiation. Quite apart from its formal

elegance, however, the four-dimensional treatment sometimes leads in

the most direct manner to very useful results. This is particularly true

of the rather difficult problem of calculating the field of an isolated

charge moving in an arbitrary way.
The discussion will be confined to the case of charges and currents in

free space. As in (82), page 73, the vector and scalar potentials can be

represented by a single four-vector whose rectangular components are

n

(1) $1 = A X) $ 2
= A VJ $3 = A z , $4 = -

0.
c

Likewise the current and charge densities are represented by a four-vector

whose components are

(2) Ji =* JX) Jz =
Jy, t/3 Jz) J 4 = ICp.

The four-potential satisfies the relations

(3)

According to the notation of (35), page 64, D is a symbolic four-vector

whose components are d/dxk. Then (3) can be expressed concisely as

(4) D 24> = -MoJ, D * = 0.

Let V be a region of a four-dimensional space bounded by a three-

dimensional "surface" S. n is the unit outward normal to S. Then in

four as in three dimensions

(5) I D & dv = I <I> n da.
Jv Js

If u and w are two scalar functions of the four coordinates Xi, x*, x 3 ,
x

which together with their first and second derivatives are continuous

throughout V and on S, then

(6) I D (uHw) dv = I uHw n da,
Jv Js

(7) I Hu*nwdv+ I uD*w dv = I u-^-da.
Jv Jv Js dn

Thus, one obtains a four-dimensional analogue of Green's theorem,

(8)
r
<*D - MD%) * -

s g - u
fj

da.
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Let
x'j

be the coordinates of a fixed point of observation within S,

and Xj those of any variable point in V or on S. The distance from

x9
- to x^ is

It can be verified by direct differentiation that the equation

(10) D 2w =

is satisfied by

(ID -
jjj

at all points exclusive of the singularity R =
0, which will be excised in

the usual fashion by a sphere Si of radius 12 1. If u is identified with any

component $, of the four-potential, there follows

Over Si we have

To determine the area of the hyperspherical surface S\ polar coordinates

are introduced,

Xi = R cos 0i, # 2
= 12 sin 0i cos 2 ,

x 3
= 12 sin 0i sin 2 cos 0, #4 = 12 sin 0i sin 2 sin 0,

which satisfy

(15) x\ + x\ + x\ + x\ = 12 2
.

The scale factors hi are calculated as in (70), page 48, and are found to be

(16) hi = 1, h* = 12, hz = 12 sin 0i, A 4
= 12 sin 0i sin 2 .

The element of volume is

(17) dv = hihjijii dR dOi d0 2 d<t>
= 12

3 sin2
0! sin 2 cZ12 dOi dB2 d<#>;

hence, the area of the hypersphere is

/r pr /2ir

(18) 12
3 sin 2

0i sin 2 c?0i ^02 d<fr
= 27r212

3
.

Jo Jo Jo

Therefore,

as
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Upon replacing D 2
^,- by /W/ and recombining the components <!>, into

a four-vector, one obtains for <I> at the point x'j
the expression

To find the field vectors one must compute the components of the

tensor 2F at the point x\. By (79), page 72,

(21) F* -
w,

~
f|

* -
*> 2

>
3

- *>

Let us suppose for the moment that all sources are contained within V.

Then the integral over S contributes nothing in (20) to the value of

and in this case

.gf (JXR)**,
\j y **

where (J X R)/* = J/JB* JkRj, and where R is the radius vector drawn
from x to x'. The cross product J X R is a six-vector or antisymmetric
tensor whose components are defined as in (62), page 69. In concise

form,

(23) *(,>) -

8.17. Field of a Moving Point Charge. An isolated charge q moves
with an arbitrary velocity v in free space. It will be assumed that the

distance from the charge to the observer is such that the charge can be

represented by a geometrical point. The motion of the charge along its

trajectory is specified by expressing its coordinates as functions of t,

(24) xi = /i(0, *2 = /(0, *3 = /s(0, *4 = /4 (0 = id.

One must note that here t is not the observer's time but time as measured
on the charge. Then

(25)
J_ _ J_^ J_^

J f dxi dx, dx3
=

q*ji
=

q &, (j = 1, 2, 3, 4),

and by (20)

<26> *-

The origin on the time axis can be shifted at will without loss of

generality. It will be convenient to assume that the observer's time
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t' at the instant of observation. Then x( = and

(27) R 2 = r 2 + xl

where r is the distance in three-dimensional configuration space from the

charge to the observer. The poles of the

integrand in (26) are located at
-Plane

4
= r

(28) #4 = ir,
= +ir.

Now the data of the problem specify the

coordinates of the trajectory for real values

t which are less than t'j and in the present

instance less, therefore, than zero. Thus
the fj(t) are given only for values of #4

on the negative imaginary axis. However,
tlie assumption will be made that the/,(0
are analytic functions of z 4

= ict and that
, , . , . . .. .

they can be continued analytically over the

entire complex x 4-plane. Since the only singularities of (26) are the poles

at (28), it follows from Jordan's lemma, page 315, that the contour of

integration can be deformed from the real axis to a small circle about the

pole #4 = ir in the direction indicated by Fig. 88, and the integral then

evaluated by the method of residues, page 315. Expansion of R 2 about

the point x = ir gives

-100

FIQ. 88. The contour of inte-

gration is reduced to a small circle

about the pole at 4 = ir.

(29)

(
.

(30)

hence,

,Q1 ,

(31)

(x,

2i 2i

2i= v r
. .. (v r \

2ir = 2ir
[
- 1 )>

\c /

where vr is the component of charge velocity in the direction of the radius

vector r drawn from charge to observer.

The integral (26) now has the form

(32)

2r(l-

-
dt x^ + ir

dx<.

The contour is traced in the clockwise direction; consequently, the

integral in (32) is by Cauchy's theorem equal to 27ri-~
CLL
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(33) *' = ;ra*
or, in terms of vector and scalar potentials,

ff)A\ A MO (?V
(d4) A =

7 ,-, </>
== --

These are the formulas of Li&iard and Wiechert. The values of r and v

are those associated with q at an instant preceding the observation by the
interval r/c.

Rather than differentiate these expressions to obtain the field vectors,
it is most direct to apply the same procedure to (23). This has been done

by Sommerfeld 1 who obtains formulas, the derivation of which by older

methods led to great complications. It is convenient to resolve the

expressions for the field into two parts : a velocity field which contains no
terms involving the acceleration v, and an acceleration field which vanishes
as v goes to zero. For the velocity field one finds

(35) ^
where

(36) 7 -
v<r

c

and r is a unit vector in the direction of r from charge to observer at the

instant t
1 These formulas can be obtained also by applying the

c

Lorentz transformation (111), page 79, to the field of a static charge and

noting that (111) refers to the observer's time.

The acceleration field is

(37)

SOMMERFELD, in Riemann-Weber, "Partiellen Differentialgleichungen der

mathematischen Physik," p. 786, 8th ed., 1935. See also, ABRAHAM, "Theorie der

Elektrizitat," Vol. II, pp. 74jf., 5th ed., 1923, and FRENKEL, "Lehrbuch der Elek-

trodynamik," Vol. I, Chap. VI.
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Note first that both velocity and acceleration fields satisfy the condition

(38) H

The magnetic vector is always perpendicular to the radius vector drawn from

the effective position of the charge, by which one means the position at the

instant t'
- The electric vector of the velocity field is not transverse,
c

but in the acceleration field

(39) E =^ H X r ,
E - r = H - r = 0.

The velocity field decreases as 1/r
2

,
while the acceleration field diminishes

only as 1/r. At great distances the acceleration field predominates; it is

purely transverse and it alone gives rise to radiation.

In case the velocity of the charge is very much less than that of light,

the equations (37) for the field at large distances become approximately

(4o)
H~-_-vXr ,

47TTC

which remind one of (27), page 435, for the radiation field of a dipole.

The results of this section have been based on the assumption that

the motion and trajectory of the charge are known, just as earlier the

assumption was made that the current distribution can be specified.

In neither case is it exact to treat the problem of the motion or distribu-

tion apart from that of the radiation. Let us suppose, for example, that

a charge is projected into a known magnetic field. If the radiation is

ignored, the mechanical force exerted on the charge is gv X B, from which

the motion can be calculated by the methods of classical mechanics.

In case the velocities are large, a correction can also be made for the

relativistic change in mass. Now the effect of this force is to accelerate

the charge in a direction transverse to its motion and, consequently, to

introduce an energy loss through radiation. The dissipation of energy

through radiation is not accounted for by the force gv X B. An addi-

tional force, the radiation reaction, which can be compared roughly to

friction, must be included. The radiation reaction in turn affects the

trajectory, whence it is obvious that the exact solution can be found only

by introducing the total effective force from the outset a very much

more difficult problem. Fortunately the radiation reaction is in most

cases exceedingly small, so that a satisfactory approximation for the

motion can be obtained by ignoring it entirely.
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Problems

1. Show that the r.m.s. field intensity at large distances from a half-wave linear

oscillator is given by the formula

w cos

\i
cos

77\/W
'

E _JL x: -L
volts/meter,R sin e

where W is the radiated power in watts, R the distance from the oscillator in meters,

and 9 the angle made by the radius vector R with the axis of the oscillator.

Show that the r.m.s. field intensity at large distances from an electric dipole is

E = 6.7 ~^- \/W volts/meter,

provided the wave length is very large relative to the length of the dipole.

2. Let \f/ be a solution of the equation

,

which together with its first and second partial derivatives is continuous within and

on a closed contour C in the xy-pl&ne, and let

=
i4jcL

where r \/(x' #)
2

-f- (y
1 ~

2/)
2

>
^ denotes the outward normal to C, and

is a Hankel function. Show that, if the fixed point x', y' lies outside the contour C,

then u =
0, while u = ^ if it lies within.

The theorem holds also when H^(kr) is replaced by the function N(kr). This

is a two-dimensional analogue of the Helmholtz formula (5), page 461, derived by
Weber, Math. Ann., 1, 1-36, 1869.

3. Discuss the analogue of the Kirchhoff formula in two dimensions. A proof

based on the Weber formula of Problem 2 has been given by Volterra, Ada Math.,

18, 161, 1894. (Very interesting work on the propagation of waves in a two-dimen-

sional space has recently been done by M. Riesz. See the discussion by Baker and

Copson, "Huygens' Principle," Cambridge University Press, p. 54, 1939.)

4. Let x', y' be any fixed point within a plane two-dimensional domain bounded

by a closed curve C, and let ^ be a solution of

'

dx* dy*

which is continuous and has continuous first derivatives on C and within the enclosed

area S. Show that

', 2/0
-

I K Q (ikr)
- * ~ K*(ikr)

\

ds + ~ I (*, y) K Q (ikr) da,

JtC[_dn dn J ** JS

where r2 = (x
r

x)
s

-f (y
f

T/)* and KQ (ikr) is a modified Bessel function dis-

cussed in Problem 10, Chap. VI. The normal n is drawn outward from the contour.
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6. Let the current distribution throughout a volume V be specified by the func-

tion J(x)e~
tut

y
where x stands for the three coordinates x, y, z. Show that the electric

intensity due to the distribution can be represented by the integral

C

Jv
KJ *

where x' stands for the three coordinates of the point of observation, k = w VM*, and

r* - (x'
-

z)
2 + (y'

-
y)

2 + V -
*)

2
.

6. When the theorem of Problem 5 is applied to a perfect conductor one obtains

where K is the surface current density at a point x, y, z on the conductor S. Let S
now be the surface of a linear conductor. Assume that the curvature of the wire is

continuous and that at all points the cross section is small in comparison with the

radius of curvature and with the wave length. Show that the field of such a linear

conductor is given by

(*',) - ---*"*' 7
r

si C dl elkr ) ic*u C elkr

+ ^~<fe>+^ I d,,
s2 Jc ds r ) 4^ Jc r

where V' is applied at the point of observation and the integrals are extended along
the contour C of the wire between points si and S*.

7. Apply the formula of Problem 6 to obtain the field of a linear oscillator of

length I and compare with the results of Sec. 8.11.

8. In case the linear circuit of Problem 6 is closed, Si = s 2 and the integrated

term is zero. On the surface of the conductor the tangential component of E is

approximately

f^ 2 /" 1 f>
lkr

ii + tv d.-o,
|_
ds 2

J r

whence the current / must be of the form

/ Am e~lkm'
t

I

where I is the length of the circuit and m is an integer. Show that the field of such

a closed, oscillating loop is given by

The expression is exact in the limit of vanishing cross section and is approximately
correct if the cross section is small in comparison with the wave length and the radius

of curvature at each point of the circuit. Its application to Hertzian oscillators,

such as were used in the early days of wireless telegraphy, was discussed in an Adams
Prize essay by Macdonald in 1902 entitled "Electric Waves."

9. A semi-infinite linear conductor carrying a current of frequency o>/27r coincides

with the negative z-axis of a coordinate system. Find expressions for the components
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of electric and magnetic field intensity and calculate the total energy crossing a plane
transverse to the conductor.

10. Compute the radiation resistance of a linear half-wave oscillator by the
e.m.f. method described in Sec. 8.12.

11. An isolated, linear, half-wave antenna radiates 50 kw. at a wave length of

15 meters. Plot the parallel and perpendicular components of electric fiek intensity

along the antenna on the assumption of a harmonic current distribution and a No. 4
wire.

12. The odd and even functions

8ln (a C S CQS (* CQS

sin sin

occur frequently in the theory of linear oscillators. Let TJ
= cos 6 and show that

these function are solutions of

(1
-

T7

2)F" -
2ijF' + <*

2
(1
-

T7
2
)
- -

\F = 0.

L 1 ~ ^J

Put F = \/l 77
2 G

y
and show that G satisfies the associated Mathieu equation

(6), page 375,

(1
- ^)w" - 2 (a + l)-nw' + (b

- cV)w =

for the particular case a =
1, 6 = a 2

l,c = a.

Although F (fl) and F<> are periodic in for all values of a, note that they remain
finite at the poles only for certain characteristic values. For the even function, these

values belong to the discrete set a% =
TT; for the odd function, they form the

set o mir, where m is an integer.

Demonstrate the orthogonality of the functions expressed by

F^F^(1 tf)d-n =0, m 5* n,

m ? n

the subscripts referring to characteristic values of
,
and show that the functions are

normal. Discuss the relation of these functions to the radiation field of an arbitrary
current distribution on a linear antenna.

13. An electromagnetic source is located at a point PI, and another operating
at the same frequency is located at P 2 . The intervening medium is isotropic but
not necessarily homogeneous. All relations between field vectors are linear, and the
time variation is harmonic. Let the field vectors due to the source at PI be EI and
Hi, those due to the source at P 2 be E 2 and H 2. Show that wherever these vectors
are continuous and finite, they satisfy the symmetrical relation

V (Ei X H 2
- E 2 X HO - 0.

This result is due to Lorentz and has been developed into a number of reciprocity
theorems of fundamental importance for radio communication.
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14. On page 434 it was shown that the Hertz vector of an electric quadrupole is

n =
p(P k(L 4__!_

\. V* w
3

... ^1 dR C
Pi

= > P.; ' p./ = .,PO *>,

^T *"' Jr

where po(i, 2, s) is the density of charge. Let PR, pe, p<t> be the spherical components
of the vector p(2)

. Show that the radiation field of the quadrupole, in the region

1, is given by

Ee~* -

while the radial components vanish as l/R*. Show that the mean radiation inten-

sity is

16. Show that the components pe and p^ of the vector p<
2) in the preceding prob-

lem are related to the components p/ of the quadrupole tensor by

pe * i sin 20 (pa cos2
</> + pn sin 2

<#> p 88 -f- pi 2 sin 2<#>)

-r- cos 29 (pis cos </> + p 2 sin ^),

p^ J sin (? sin 20 (p 22 pn) + pit sin cos 2< -f ^23 cos cos ^ psi cos sin 0.

Rotate the coordinate system to coincide with the principal axes of the quadrupole
tensor. Then pit pM = p3 i

= and the above reduces to

p^ sin 20 (Qi Q 2 cos 2^), p<t> 2 sin sin 2</> Q 2 ,

where

Qi - i(pn + ?>22
-

2p83), Qz = l(pn ~ pii).

Show now that the total quadrupole radiation is

W - J- (Ql -f 3$) watts.

If the medium about the quadrupole is air, /*
- 1/c

2
,
and \/~

^
60, so that

16. A charge e is located at each end of a line rotating with constant angular
velocity fc >out a perpendicular axis through its center. A charge 4-2e is fixed at the

center. ..'he dipole moment of the configuration is zero. Calculate the components
of the quadrupole moment and find the total radiation. (Van Vleck.)

17. Two fixed dipoles are located in a plane, their axes parallel but their moments
directed in opposite sense. The dipoles rotate with constant angular velocity about
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a parallel axis located halfway between them. Calculate the components of the

quadrupole moment and find the total radiation. (Van Vleck.)

18. A positive and negative charge are bound together by quasielastic forces to

form a harmonic oscillator. Show that the radiation losses can be accounted for by a

frictional force which, however, is proportional to the rate of change of acceleration

rather than to the rate of change of displacement.

19. A positive point charge oscillates with very small amplitude about a fixed neg-

ative charge of equal magnitude. Show that the formulas for the field of an oscillating

dipole can be obtained directly from Eqs. (35) and (37) on page 475 which apply to

an accelerated point charge.



CHAPTER IX

BOUNDARY-VALUE PROBLEMS

It can now be assumed that the reader is familiar with the principles

that govern the generation of electromagnetic waves and the manner in

which they are propagated in a limitless region of homogeneous, isotropic

space. The " boundless region" is, of course, simply an abstraction.

In point of fact the most interesting electromagnetic phenomena are

those induced by surfaces of discontinuity or rapid change in the physical

properties of the medium. These boundary phenomena are roughly
of three types. Suppose that a wave, propagated in one medium, is

incident upon a surface of discontinuity marking the boundary of

another. In the first case the linear dimensions of the surface measured
in wave lengths are very large. A fraction of the incident energy is

reflected at the surface and the remainder transmitted into the second

medium. The direction of propagation is in general modified and this

bending of the transmitted rays is referred to as refraction. The laws

that govern the reflection and refraction of electromagnetic waves at

surfaces of infinite extent are relatively simple. If, however, any or all

the dimensions of the surface of discontinuity are of the order of the

wave length, the difficulties of a mathematical discussion are vastly
increased. The perturbation of the primary field under these circum-

stances is referred to as diffraction. In both cases the secondary field of

induced charges and polarization is excited by a primary wave of inde-

pendent origin. Both are inhomogeneous boundary-value problems as

defined first for the static field on page 195.

The third case referred to above is the homogeneous problem. A
conducting body is embedded in a dielectric medium. Charge is dis-

placed from the equilibrium distribution on the surface and then released.

The resulting oscillations of charge are accompanied by oscillations in

the surrounding field. This field can in every case be represented as a

superposition of characteristic wave functions whose form is determined by
the configuration of the body and whose relative amplitudes are fixed by
the initial conditions. Associated with each characteristic function is a

characteristic number that determines the frequency of that particular

oscillation. The oscillations are damped, partly due to the finite con-

ductivity of the body and partly as a result of energy dissipated in radia-

tion. However, the positions of conductor and dielectric relative to the

surface of separation can be interchanged. Electromagnetic oscillations

482
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then take place within a dielectric cavity bounded by conducting walls.
If the conductivity is infinite, there is neither heat loss nor radiation and
the oscillations are undamped at all frequencies.

GENERAL THEOREMS
9.1. Boundary Conditions. A conventional proof of the conditions

satisfied at a boundary by normal and tangential components of the
field vectors was presented in Sec. 1.13. In Chaps. Ill and IV the rela-

tion of these boundary conditions to the discontinuous properties of

certain integrals was established for the stationary regime; on the basis
of Sees. 8.13 and 8.14, the same procedure can be extended to the variable
field. We shall forego this analysis but shall give some further attention
to the important case in which the conductivity of one of the two media
approaches infinity.

At the interface of two media the transition of the tangential com-

ponent of E and the normal component of D is expressed by

(1) n X (E 2
-

Ei) =0, n (D a
- DO =

6,

where by previous convention n is the unit normal directed from the
medium (1) into (2) and d denotes the surface charge to avoid confusion
with a? = 2irv. The flow of charge across or to the boundary must also

satisfy the equation of continuity in case cither or both the conductivities
are finite and not zero.

(2) n.(J.-J.) = ~
Suppose now that the time enters only as a common factor exp( zcoZ)

and that apart from the boundary the two media are homogeneous and

isotropic. Then (1) and (2) together give

/0\ 2^2n *lEin = 5,

(TzEzn VlEln = Uo5.

Let us see first under what circumstances the surface charge can be zero.

If d = 0, the determinant of (3) must vanish and hence

(4) CTi 2 CT2 i
= 0.

If 5 is not zero (and this is the usual case), it may be eliminated from (3)

and we obtain as an alternative boundary condition on the normal component

ofE:

(5) Ml&!#2n
- Ml^ln = 0.

If either conductivity is infinite, (5) becomes indeterminate; but from (3)

(Tj

d,
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and in the limit as <r\ > <*>
,

(7) Eln
-

0, #2n -> - 5,
2

From the field equations, moreover,

(8) Ei =-
. V X Hi, Hi = -- V X

v '
en

so that, if by hypothesis the field intensities are bounded, both EI and

Hi approach zero at all interior points of (1) as o-i <*>. The transition

of the tangential component of E is continuous across the boundary and,

consequently, in the case of an infinitely conducting medium

(9) n X E2
= n X E! = 0.

Consider now the behavior of the magnetic field at the boundary.

In general

(10) n (B 2
-

Bi) =0, n X (H2
- Hi) = K,

where the surface current density K is zero unless the conductivity of

medium at the boundary is infinite. It has just been shown that Hi
vanishes if <TI becomes infinite and in this case

(11) n B 2
=

0, n X H2
= K.

A further useful boundary condition on the magnetic field in the case

of perfect conductivity can be derived as follows. 1 Let the boundary

surface S defined by the equation,

(12) ? = fi(x, y, z)
= constant,

coincide with a coordinate surface in an orthogonal system of curvilinear

coordinates
, r;, f as in Sec. 1.16. If <n > oo

,
the tangential component

of E2 and the tangential component of V X H 2 , which is proportional to

it, approach zero. Therefore by (80), page 49,

(13)

+ *i [it

The normal coordinate is f. Since a\ is infinite, H[ is zero; hence, since

the coefficients of the unit vectors must vanish independently, we have

just outside the conductor

(14) (/*,#,) =0, (h&d = 0.

The quantities h^H^ and h^H^ are covariant components (page 48) of

the vector H2 tangent to the surface. The boundary condition is, there-

fore: the normal derivatives of the covariant components of magnetic field

1 The author is indebted to E. H. Smith for the proof.
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tangent to the boundary vanish as the conductivity on one side becomes

infinite.

Under the head of "boundary conditions" we shall consider also

the behavior of the field at infinity. In this respect the variable field

differs notably from the static. If in the stationary regime all sources

are located within a finite distance of the origin, the field intensities

vanish at infinity such that lim R 2E and lim R 2H are bounded as R > oo ,

where R is the radial distance from the origin. The scalar potential
satisfies V 2

<
= and lim R<j) is bounded as R > oo . Every function <

which is regular at infinity and which satisfies Laplace's equation at all

points of space (no sources) is necessarily zero. On the other hand, if

variable sources are located within a finite distance of the origin, the field

intensities vanish such that lim RE and lim RK are bounded as R > oo
.

The scalar potential and rectangular components of the vector potential
and the field intensities all satisfy the equation,

(15)

'

VV + &V =
0,

at points where the source density is zero. Moreover there exist func-

tions \f/ satisfying (15) throughout all space and vanishing at infinity
which are not everywhere zero.

A solution of Laplace's equation is uniquely determined by the sources

of the potential and the condition that it shall be regular at infinity.

These two conditions are not sufficient to determine uniquely the wave
function ^, for (15) admits the possibility of convergent as well as divergent
waves. This question has been investigated by Sommerfeld 1 in con-

nection with the Green's function of (15) for spaces of infinite extent.

To conditions that are analogous to those of the static problem must be
added a "radiation condition." The problem is formulated as follows:

The density g(x, y, z) of the source distribution is specified, and these

sources are assumed to lie entirely within a domain of finite extent.

Then ^ is uniquely determined if:

(a) at all points exterior to a closed surface S (which can, if necessary,
be resolved into a number of separate closed surfaces), ^ satisfies

(16) W + *V = -0;

(6) \l/ satisfies homogeneous boundary conditions over S of the type
d\l/

at + ^ =
0, where a and are constants or specified functions of

position;

(c) ^ vanishes in such a way that lim R$ is bounded as R oo
,
a con-

dition we shall again refer to as regularity at infinity;

1 SOMMERFELD, Jahresber. deid. math. Ver. t 21, 326, 1912.
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(d) \l/
satisfies the radiation condition

<17) ?.
R
(H

-

which ensures that at great distances from the source the field represents

a divergent traveling wave. It has been tacitly assumed that the time

enters explicitly in the factor exp( iwi).

The significance of (17) may be made clear by applying Green's

theorem to (16) within a region bounded internally by S and externally

by a surface SQ. Then, as in Sees. 8.1 and 8.13,

(18)
y .

** *"
,

The first two terms to the right of (18) represent traveling waves diverging
from, the source. The third term, however, expresses the sum of all waves

traveling inwards from the elements of >S and must, therefore, vanish as

iSu recedes to infinity. If this third term be designated by U, we have

- ** ^) Tf da

where d 12 is an element of solid angle. The second integral in (19) is

extended over the finite domain 4?r and vanishes as R > oo provided ^
is regular at infinity as prescribed in (c) above. In order that U shall

vanish, it is sufficient that

(20) limv '
fl->oo

If at great distances SQ is replaced by a sphere of radius R, (20) is identical

with (17).
1

9.2. Uniqueness of Solution. Let V be a region of space bounded

internally by the surface S and externally by $ . The surface S can be

resolved, if the case demands, into a number of distinct closed surfaces

Si as in Fig. 18, page 108. Then V is multiply connected (page 226)

and the surfaces Si represent the boundaries of various foreign objects in

the field. It will be assumed for the moment that the properties of V
are isotropic but the parameters ju> *, and a can be arbitrary functions

of position. Now let EI, Hi, and E 2 , H2 be two solutions of the field

equations which at the instant t = are identical at all points of V.

We wish to find the minimum number of conditions to be imposed on the

1 An alternative proof was given in Sec. 8.13, p. 461.
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components of the field vectors at the boundaries S and S in order that
the two solutions shall remain identical at all times t > 0.

In virtue of the linearity of the field equations (we exclude ferro-

magnetic materials) the difference field E = E 2 EI and H = H2 HX
is also a solution. One may assume without loss of generality that the
sources of the fields lie entirely outside the region V, since it was shown
in the preceding chapter that the field is uniquely determined when the

charges and currents are prescribed. Or, if sources appear within 7,
one must specify that the distribution and rate of working of the electro-

motive forces are in both cases the same. Then within 7, by Poynting's
theorem, page 132, the difference field satisfies

In order that the right-hand member of (21) shall vanish, it is only
necessary th&t ^either the tangential components of E t and E 2 ,

or the

tangential components of HI and H 2 be identical for all values of t > 0;
for then either nxE = OornxH = and E X H has no normal

component over the boundaries. In that case we have

(22)

The right-hand member of (22) is always equal to or less than zero.

The energy integral on the left is essentially positive or zero and vanishes
at t = 0. Hence (22) can only be satisfied by E = E 2 EI =

0,
H = H 2 HI == for all values of t > 0, as was to be shown. An
electromagnetic field is uniquely determined within a bounded region V
at all times t > by the initial values of electric and magnetic vectors through-
out 7, and the values of the tangential component of the electric vector (or

of the magnetic vector) over the boundaries for t > 0.

If >S recedes to infinity, 7 is externally unbounded. To ensure the

vanishing of the integral of a Poynting vector over an infinitely remote

surface, it is only necessary to assume that the medium has a conductivity,
however slight. If the field was initially established in the finite past,
the difficulty may also be circumvented by the assumption that SQ lies

beyond the zone reached at time t by a field propagated with a finite

velocity c. The theorem just proved does not take full account of this

finiteness of propagation. We have established that the values of

E and H are uniquely determined throughout 7 at time t by a tangential

boundary condition and the initial values everywhere in 7. Physically
it is obvious, however, that this is more information than should be

necessary. The field is propagated with a finite velocity and, conse-

quently, only those elements of 7 whose distance from the point of
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observation is <> (t )c need be taken into account. The classi-

cal uniqueness proof given above has been extended in this sense by
Rubinowicz. 1

The theorem applies also to anisotropic bodies. Electric and mag-
netic energies are then positive definite forms (cf. page 141), which is to

say that they are positive or zero for all values of the variables. The

proof remains unmodified.

There is one aspect of the theorem which at first thought may be

puzzling. We have seen that the field is determined by either the values

of n X E or n X H on the boundary, yet in the problems to be discussed

shortly we find it necessary to apply both boundary conditions,

(23) n X (E,
-

Ei) =0, n X (H 2
- Hi) =

0,

where here E 2 and EI denote values of field intensity on either side of the

boundary. The reason for the apparent discrepancy is, of course, that

n X E and n X H refer to the tangential components of the resultant

field on one side of the surface. These are in general unknown and it is

the object of a boundary-value problem to find them. Equations (23)

simply specify the transition of the field across a surface of discontinuity

and the two together enable us to continue analytically a given primary
field from one region into another. Having thus determined the total

field, the uniqueness theorem shows that there is no other possible

solution. If, however, one side of a boundary is infinitely conducting
we do know the tangential component of the total field, for in this case

n X E =
0, and a single-boundary condition is sufficient for the solution

of the problem.
9.3. Electrodynamic Similitude. Since Newton's time the principle

of similitude and the theory of models have had a most important influ-

ence on the development of applied mechanics. This is particularly true

of ship and airplane design which is governed very largely by the data

obtained from small models in towing tanks and wind tunnels. It is

customary to express the conditions of an experiment in terms of certain

dimensionless quantities such as the Reynolds number. Thus the

results of a single measurement of a given model can be applied to a series

of objects of identical form and differing only in scale, provided the

viscosity of the fluid and the velocity of flow are varied in such a way
as to keep the Reynolds number constant.

Similar principles prove very helpful in the design of electromagnetic

apparatus. We shall write first the field equations in a dimensionless

form. In a homogeneous, isotropic conductor

\TT aTf

(24) VXE + M^ =
0, VXH-^~E = 0.

dt ot

1 RUBINOWICZ, Physik. Z., 27, 707, 1926.
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Now let

E eE, H = AH,

length = ZoL, time = UT,

where E, H, K, /cm , 5, I/, and T are the dimensionless measure numbers of

the field variables in a system for which the unit quantities are e, A,

co, MO, Zo, O-Q, and Jo. The measure numbers satisfy the equations

V X E+aKm~ =
0,

(26)
d ^

V X H $K, ^ ysE =
0,

where

are dimensionle&s constants. Upon eliminating the common ratio e/A,
one obtains

/l\* p
(28) ji o (7-)

=
constant, MO<TO

~ = constant.
Vo/ to

From the first of these it follows at once that the product /z must have
the dimensions of an inverse velocity squared. This is, no doubt, the

most fundamental approach to the problem of units and dimensions. 1

In order that two electromagnetic boundary-value problems be

similar, it is necessary and sufficient that the coefficients OJCTO , j9je, and ys
be identical in both. For tQ let us take for example the period r of the

field, and for Z any length that characterizes one of a family of bodies

which differ only in scale. Thus Z may be the radius of a set of concen-

tric spheres, or the major axis of a set of ellipsoids. The condition of

similitude requires that the two characteristic parameters Ci and C2 in

(29) A

be invariant to a change of scale. Suppose that the characteristic length

Zo is halved. Then both Ci and C2 remain unchanged if the permeability

n at every point of the field is quadrupled. This is an awkward remedy
from a practical standpoint, but it is the only way in which the initial

state can be simulated through the adjustment of a single parameter. If

n and are left as they were, constancy of Ci results also from halving
the period, or doubling the frequency, but this alone does not take care

of C 2 . In order that the half-scale model shall exactly reproduce the

1
Cf. Sees. 1.8. 4.8, and 4.9.
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full-scale conditions, it is necessary also that the conductivity be doubled
at every point.

This principle can be illustrated by reference to the type of high-

frequency radio generator that maintains standing electromagnetic waves
in a cavity resonator bounded by metal walls. The frequency of oscilla-

tion is determined essentially by the dimensions of the cavity, while
the losses depend largely on the conductivity of the walls. If the dimen-
sions are halved, the frequency will approximately be doubled; if the

conductivity of the walls is unchanged, it is entirely possible that the

resulting increase of the relative loss will pass the critical value, so that

the half-scale apparatus fails to oscillate.

REFLECTION AND REFRACTION AT A PLANE SURFACE

9.4. Snell's Laws, Two homogeneous, isotropic media have as a
common boundary the plane S, and are otherwise infinite in extent. The
unit vector n is normal to the plane S and directed from the region

7sMedium (2) Medium (1)

FIG. 89. Reflection and refraction at a plane surface S.

(ii Mi, on) into the region (c 2 , ^2, 0*2). Let be a fixed origin, which for

convenience we locate on S. Then, if r is the position vector drawn from
to any point in either (1) or (2), the interface S is defined by the equation

(1) n-r-0.
A plane wave, traveling in medium (2) is incident upon S. By (27),

page 272,

(2) n X Et,

where E is the complex amplitude of the incident wave and n a unit

vector which fixes its direction of propagation,
1 as in Fig. 89. The plane

defined by the pair of vectors n and n is called the plane of incidence.

1 It is apparent that so far as the present problem is concerned it would be neater
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The continuation of the primary field into medium (1) is determined

by the boundary conditions at S. To satisfy these boundary conditions,
a reflected or secondary field must be postulated in (2). Physically it is

clear that the primary field induces an oscillatory motion of free and
bound charge in the neighborhood of S, which in turn radiates a secondary
field back into (2) as well as forward into (1). We shall make the

tentative assumption that both transmitted and reflected waves are

plane, and write

E< - Ei *mi-'-*, H< =A ni x E,,

(3) 7
E r

= E 2 ea-rr-o-S Hr
= ^ n2 X Er,

COM2

where the unit vectors ni and n2 are in the directions of propagation of

transmitted and reflected waves respectively, and EI and E2 are complex

amplitudes, all as yet undetermined. By hypothesis, EI, E 2 , and E
are independent of the coordinates and, consequently, if the tangential

components of the resultant field vectors are to be continuous across S,

it is necessary that the arguments of the exponential factors in (2) and

(3) be identical over the surface n r = 0. But

(4) r = (n r)n
- n x (n x r) ;

hence, at any point on the interface r = n X (n X r). Therefore,

fc 2n n X (n X r)
= fc 2n2 n X (n X r),, .

^ J
fc 2n n X (n X r)

= /fcini n X (n X r),

or, since n n X (n X r)
= (n X n) (n X r),

,

fi

v (n X n n2 X n) n x r = 0,W
(fc 2n X n - fcini X n) n X r = 0.

From these two relations it follows that n, n , ni, and n2 are all coplanar.

The planes of constant phase of both transmitted and reflected waves are

normal to the plane of incidence. From the first of (6) also

(7) sin 62 = sin (IT )
= sin

,

whence the angle of incidence is equal to the angle of reflection 2 .

From the second of (6)

(8) k z sin = ki sin 0i.

Equations (7) and (8) express Snell's laws of reflection and refraction.

from a notational point of view to let the incident wave travel from (1) into (2).

Shortly, however, the plane S will be replaced by a closed surface S bounding a com-

plete body. By previous convention n is directed outward from a closed surface and

from medium (1) into (2). The choice of n as above will facilitate the comparison

of formulas from the present with those of later sections.
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9.6 FresnePs Equations. The boundary conditions will now be

applied to determine the relation between the amplitudes E^ EI and E 2.

At all points on S

(9) n X (E + E2)
= n X EI, n X (H + H2)

= n X HL

By virtue of (2) and (3) the second of these two can be expressed in terms

of the electric vectors.

(10) n X (n X Eo + n 2 X E 2)
~3 = n X (n x X EI) ^
M2 Ml

Expansion of (10) leads to such terms as

(11) n X (n X Eo) = (n E )n
-

(n n )E .

The orientation of the primary vector E is quite arbitrary but can always
be resolved into a component normal to the plane of incidence and conse-

quently tangent to /S, and a second component lying in the plane of

incidence. (Cf. Sec. 5.4, page 279.) The analysis is greatly simplified

by a separate treatment of these two components of the incident wave.

Case I. Eo Normal to the Plane of Incidence. Then

n. EO == HO EO = 0.

Since the media are isotropic, the induced electric vectors of the trans-

mitted and reflected waves must be parallel to EO and hence also normal

to the plane of incidence, so that n EI = n E2
= 0. From Fig. 89

n n = cos (IT )
= ~ cos

,

(12) n ni = cos (?r X)
= cos 0i,

n H2 = cos 2 .

Upon multiplying the first of Eqs. (9) vectorially by n and making use of

(11) and (12), we find that the amplitudes must satisfy

EO + E2
= EI,

^ '
cos E - cos 2E 2

=~ cos

The relative directions of electric and magnetic vectors for this case are

shown in Fig. 90. Solving (13) for EI and E2 in terms of the primary

amplitude E leads to

E = M1&2 (cos 02 + cos ) E
(14)

'

*, coe
J,

+ *i cos fc
-

(whena . Eo = ),

= nJc* cos 0o pjci cos 0i E
COS 02 + Ma&i COS 0i

*

These relations are not quite so simple as they appear at first sight,

for 0i is complex if either (1) or (2) is conducting and may be complex
even if both media are dielectric. By (7) and (8)
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(15) cos 62
= cos

, fci cos 0i =

The angles of reflection and refraction can be eliminated from (14) and

we obtain as an alternative form the relations

COS

(16)

cos 0o + M2 V^i k\ sin 2
.EO

(when n EO = 0),

__ /Ltifc 2 cos 0o M V&i -
k\ sin2

. _: JB/0

Mifc 2 cos + M2 V ^! k% sin 2

Complex values of the coefficients of E imply that the amplitudes EI
and E2 themselves are complex and that the transmitted and reflected

waves differ in phase from the incident wave.

FIQ. 90. Polarization normal to the plane of incidence.

Case II. EO in the Plane of Incidence. The magnetic vectors are

then normal to the plane of incidence and parallel to S.

n HO = n HI = n H2

From (2) and (3) we have

i X HI

(17) J
2

"

Kl

2
= T 1*2 X H2,

which when substituted into (9) give

/- ox cos 0o Ho cos 2 H2
== M cos 0i HI,

(lO) HzKi

HO + H2 = HI,



494 BOUNDARY-VALUE PROBLEMS [CHAP. IX

as the conditions at the boundary. The relative directions of electric

and magnetic vectors for this case are shown in Fig. 91. Solution of

(18) leads to

H = M2fci(cos 2 + cos ) H
/I2fcj COS 2 + /iifc 2 COS 0i

*

(19)

TT Mafcl COS 0o Mi&2 COS 0i .

Xlo = " "

jU2fci COS 0o + Ml&2 COS 0i

or, upon elimination of 0i and 2 by (15),

cos 0o

(when n - H =
0),

HI ==

cos
H

(o>

(20)

k$ sin 2

(when n HO =
0),

i cos f fc^ sin 2

nJc{ cos 0o + nikz *v fc?
~~

k% sin 2
0o

When the incidence is normal, =
0, the two cases cannot be dis-

tinguished and the amplitudes of transmitted and reflected waves reduce

to

(21)
17
Xl/2

=

The relations expressed by Eqs. (14) and (19) were first derived in a

slightly less general form by Fresnel in 1823 from the dynamical prop-
erties of a hypothetical elastic ether.

7s

FIG. 91. Polarization parallel to the plane of incidence.

9.6. Dielectric Media. We shall study first the case in which the

two conductivities <r\ and cr% are zero, so that both media are perfectly

transparent. The permeabilities will differ by a negligible amount from

Mo and SnelPs law can now be written
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sin 0i sin __

2

~
\

= " ni2'

where t>j and t>2 are the phase velocities and n i2 is the relative index of

refraction of the two media. If ei > c2 it follows that nn < 1 and there

corresponds to every angle of incidence a real angle of refraction

0i. If, however, ei < c 2> as is the case when a wave emerges from
a liquid or solid dielectric into air, then 0i is real only in the range for

which nw sin ^ 1. The phenomena of total reflection occur when
ni2 sin > 1. We shall exclude this possibility for the moment and
consider the Fresnel laws for real angles between the limits and Tr/2.

When E is normal to the plane of incidence we now obtain from (14)

_ 2 cos sin 0i _* l
~

sin (0! + 0o)

E
'

(23) (n E =
0),

T? - sin (0!
-

)
** "

sin (0i + )

Eo>

and for the components of E lying in the plane of incidence from (19)

v 1? - 2 cos 0o sin X v> T?ni X El -
sin (0 + 00 cos (0

-
0i)

n X Eo '

(24) (n-H = 0),

n v p _ tan (0o
- 0Qn * x E*

-
teT07T~07

x '

Since the coefficients of E in (23) and (24) are real, the reflected and
transmitted waves are either in phase with the incident wave, or out of

phase by 180 deg. It is apparent that the phase of the transmitted wave
is in both cases identical with that of the incident wave. The phase of the

reflected wave, however, will depend on the relative magnitudes of

and 0i. Thus if ci > e 2 ,
then 0i < ,

so that E 2 is opposed in direction

to Eo in (23) and therefore differs from it in phase by 180 deg. Under
the same circumstances tan (0 0i) is positive, but the denominator

tan (0 + 0i) becomes negative if 0o + 0i > Tr/2 and the phase shifts

accordingly.

The mean energy flow is given by the real part of the complex Poynting
vector. In optics this quantity is usually referred to as the

"
intensity

"

of light, but the term is ambiguous since it is also applied to the amplitudes
of the fields. In the present case

X (n X Eo)

(25)

V ll T72 Q 2 rr2
*
-- ~

l '
~

o *
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Now the primary energy which is incident per second on a unit area of

the dielectric interface is not * but the normal component of this flow

vector, or n *
= -^^ El cos . Likewise the energies leaving a

Zi

unit area of the boundary by reflection and transmission are

(26) n Sr
= ^r E\ cos

,
n S, = -~ El cos 0i.

t &

According to the energy principle the normal component of energy flow

across the interface must be continuous,

(27) n (S + Sr)
= n S,f

or

(28) -v/2 El cos 60 = \/7i El cos 0i + \^E\ cos .

It can be easily verified that the Fresnel formulas (23) and (24) satisfy

this condition. The reflection and transmission coefficients are defined by
the ratios

p - n*Sr __ E\ n.< _ cos O l
'

B + r = i.

In case E is normal to the plane of incidence, these coefficients are

/OAN r> sin 2
(0i

-
) sin 20 sin 20i

(30) Bj -
=

sin^ (0i + )'

T =
sin* (*i + 0o)'

and in the case of E lying in the plane of incidence

tan 2
(0o

- 0Q sin 20 sin 20i
{

.

^ }
tan 2

(0 + 0i) sin2
(0 + 0i) cos 2

(0
-

If the incidence is normal, == 0i = 0, and it follows from (21) and

(22) that

(32) ^/m 4 \

tf

There is only one condition under which a reflection coefficient is

zero. As + 0i > ir/2, the tan (0 + 0i) > oo and in this case R\\ 0.

The reflected and transmitted rays are then normal to one another

(HI -n! = 0) and sin Si = sin f
|
-

J
= cos

;
it follows from (22)
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that

(33) tan = J2 - nM .

\2
The angle that satisfies (33) is known as the polarizing, or Brewster angle.

A wave incident upon a plane surface can be resolved, as we have seen,

into two components, one polarized in a direction normal and the other

parallel to the plane of incidence. The reflection coefficients of the two

types differ and, consequently, the polarization of the reflected wave

depends upon the angle of incidence. In particular, if incidence occurs

at the polarizing angle, the reflected wave is polarized entirely in the

direction normal to the plane of incidence. Use is sometimes made of

this principle in optics to polarize natural light, although in practice it is

less efficient than methods based on double-refracting prisms.

The optical indices relative to air are usually of the order of n 2 i
= 1.5;

at radio frequencies they may be very much larger with a corresponding
increase in the polarizing angle. Thus in the case of water, n 2 i increases

from about 1.33 to 9 at radio frequencies and the polarizing angle from

53 to 84.6 deg., which is not far removed from grazing incidence. Irregu-

larities of radio transmission over water can doubtless be attributed on

certain occasions to this cause. One will note also that at the polarizing

angle T\\ is unity and that this is the only condition under which all the

energy of the primary wave can enter the second medium without loss by
reflection at the surface.

9.7. Total Reflection. We return now to the case excluded from
Sec. 9.6 of transmission from medium (2) into a medium (1) whose index

of refraction is less than that of (2). The formulas of Sec. 9.6 are valid

whatever the relative values of 61 and 2 ,
but if 0o is such that

ni2 sin = \ sin 0o > 1,
\*i

they can be satisfied only by complex values of 0i. Physically a complex

angle of refraction implies a shift of phase and the appearance of an
attenuation factor.

Let us suppose, then, that sin 61 > 1. The cosine is a pure imaginary.

(34) cos 0i = -== \/*2 sm2 0o 1
= -mi2 \/sin

2

The radical has two roots whose choice will be governed always by the

condition that the field shall never become infinite. To simplify matters*.

a bit, the reflecting surface S will be made to coincide with the plane
x =

0, as in Fig. 92. All points of medium (1) correspond to negative
values of x. The phase of the transmitted wave is, therefore,
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(35)

BOUNDARY-VALUE PROBLEMS [CHAP. IX

( x cos 0i + z sin 0i)

( tx \/sin
2

rcfi sin 0o),

where it is assumed that ^i = M2 = MO, and the field intensity of the

transmitted wave is

(36)

where

(37)

a = w

E< *= Ei eftix+it

sin
,

co

< o),

2rr

0o
~

The field defined by (36) vanishes exponentially as x > -^ oo
,
whicK

confirms the choice of the positive root in (34).

Medium (2)

'////////S/////S////S/*

Medium (1)

Fio. 92. Total reflection from a surface coinciding with the yz-plane.

The amplitudes of reflected and transmitted fields are next deter-

mined from the Fresnel laws after elimination of 0i. From (14) we obtain

, 2 cos

(38)

E2J. ~

cos 0o + i A/sin
2

nil

cos t x/sin 2 -

E'OJL>

cos 0o + i \/sin
2
0o nfj

and from (19) and (3), for polarization in the plane of incidence,

_ v T? - 2n * 1 cos
Hi x ii/ig

=
*)?. pn<a ft

(39)
cos

. QO X EO

V F -X Ursil

COS ^ ""

. / ; u '^ u r
n! cos + t v sin 2

n| x

Since the coefficients of E are complex, it is apparent that the trans-

mitted and reflected waves are no longer in phase at the surface with

the incident wave. The reflection coefficient according to (29) is

R = E2 E2/J, and it follows at once from (38) and (39) that

(40) 72j.
=

flu
=

1, T = TI = 0.

The intensity of energy flow in the reflected wave is exactly equal to the
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intensity in the incident wave; there is no average flow into the medium o/
lesser refractive index. The field intensity in medium (1), however, is by
no means zero. There is, in fact, an instantaneous normal component of

energy flow across the surface whose time average is zero
;
the time aver-

age of the flow within (1) parallel to the surface (i.e., in the direction of

2) does not vanish. This latter component is unattenuated in the direc-

tion of propagation but falls off very rapidly as the distance from S
increases due to the factor exp fax. The surfaces of constant phase in

the transmitted wave are the planes z = constant, which are normal to

surfaces of constant amplitude, x = constant. It is clear that E*g and

Hi|| have components along the z-axis, which is the direction of propaga-
tion within (1). The excitation within medium (1) in the case of total

reflection is a nontransverse wave (it may be either transverse electric or

transverse magnetic, page 350) confined to the immediate neighborhood of the

surface.

This analysis gives no clue as to how the energy initially entered (l) f

for it is based on assumptions of a steady state and of surfaces and wave
fronts of infinite extent. Actually, the incident wave is bounded in both
time and space. The total reflection of a beam of light of finite cross

section has been treated by Picht 1 who showed that the average flow

normal to the surface is in this case not strictly zero. Any change
causing a fluctuation in the energy flow of the transmitted wave destroys
the totality of reflection.

Figures showing the course of the magnetic lines of force and the
lines of energy flow in total reflection have been published by Eichenwald
and by Schaefer and Gross. 2

Finally, let us examine the relative phases of the reflected waves. In

(38) and (39) write

Then since

a ib .. d b
.7
= e , tan - == ->

a + ib
'

2 a

we have

(43) tan ^ = -

cos 2 nfi cos 5

Suppose that the incident wave is linearly polarized in a direction that is

neither parallel nor normal to the plane of incidence. We then resolve

it into components and discover that the resultant reflected wave is

1
PICHT, Ann. Physik, 3, 433, 1929. See also NOETHER, ibid., 11, 141, 1931.

1 SCHAEFER and GROSS, Untersuchungen ttber die Totalreflexion, Ann Physik
32, 648, 1910.
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formed by the superposition of two harmonic oscillations at right angles

to one another and differing in phase by an amount

(44) 6 = $u
-

JJL.

The reflected wave is elliptically polarized, since by (43) the relative phase

difference d is not, in general, zero.

,,., . _
(45) tan -

tan ~ tan -~

tan - tan =

The phase shifts 5.L and
5||

both vanish at the polarizing angle

0o = sin" 1
ri2i, and their difference 5 is also zero at grazing incidence,

=
ir/2. The relative phase 5 attains a maximum between these limits

at an angle found by differentiating (45) with respect to and equating
to zero. The maximum occurs when

(46) sin* * -

which, when substituted into (45), gives

(47) tan 5=5 l "
2n 2 i

This property of the totally reflected wave was used by Fresnel to

produce circularly polarized light. It is first necessary that the incident

wave be linearly polarized in a direction making an angle of 45 deg. with

the normal to the plane of incidence. The amplitudes E 2 and E2
\\

are then equal in magnitude. The relative index n2 i and the angle of

incidence are next adjusted do that 5 = ir/2, or tan 6/2 = 1. Accord-

ing to (47) this condition can be satisfied only if 1 n^ > 2n 2 i, or

n2 i < 0.414, or rii2 > 2.41. In the visible spectrum such a minimum
value of the index of refraction is larger than occurs in any common
transparent substance. To overcome this difficulty, Fresnel caused the

ray of light to be totally reflected twice between the inner surfaces of a

glass parallelepiped of proper angle. In the radio spectrum, on the other

hand, the index of refraction may assume very much larger values. Thus,
in the case of a surface formed by water and air, ni2

=
9, n 2i

= 0.11.

The condition tan 5/2 = 1 is then satisfied by either of the angles

0o = 6,5 deg. or = 44.6 deg. The latter figure has been confirmed

by measurements at a wave length of 250 cm. 1

9.8. Refraction in a Conducting Medium. The phenomena of reflec-

tion and refraction are modified to a striking degree by the presence of a

1 BEBGMANN, Die Erzeugung zirkular polarisierter elektrischer Wellen durch

cinmalige Totalreflexion, Physik. Z.. 33, 582, 1932.
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conductivity in either medium. The laws of Snell and Fresnel are still

valid in a purely formal way but, as in the case of total reflection, the com-

plex range of the angle 0i leads to a very different physical interpretation.
Let us suppose that medium (2) is still a perfect dielectric but that

the refracting medium (1) is now conducting. The propagation con-

stants are defined by

where ai and /3i are expressed in terms of ei, jui, and <n by (48) and (49),

page 276. By Snell's law we have

k a
(49) sin 0i = 7- sin ^o = 2 <! 02 (ai

"~ ^0 a^n ^>>

which it is convenient to write as

(50) sin 0i = (a ib) sin .

The complex cosine is then

(51) cos 0i = VI -
(a

2 - 6 2 -
2afa) sin2 = pe*.

The magnitude p and phase 7 are found by squaring (51) and equating
real and imaginary parts on either side.

(52)
p2 C 8 2y ** p^2 C s2 ^ ~ !)

^ x -~
(a2

~" &2) sin2 *o,

p
2 sin 2y = 2p

2 sin 7 cos 7 = 2o6 sin 2
.

The phase of the refracted wave is, as in (35) and Fig. 92,

(53) fcini r = (i + i$\)(~x cos di + z sin 0i)

= xp(a\ cos 7 $1 sin 7) ixp(0\ cos 7 + i sin 7)

+ 2(aai + &i) sin 0o + iz(a@i bai) sin .

From (49) and (50) it is readily seen that (aot\ + bfti) sin = a2 sin

and (a0i 6ai) == 0. Within the conducting medium the transmitted

wave is represented, therefore, by

(54) Ei = EieP*+ t
'

(-*+ <M* 8in '- w<)
, (x < o)^

where

. J>
=

p(]8i cos 7 + <*i sin 7)

q == p(ai cos 7 /Ji sin 7).

Note that the surfaces of constant amplitude are the planes px constant,

the surfaces of constant phase are the planes qx + z sin OQ z = constant,

and these two families do not
f
in general, coincide. Within (1) the field

is represented by a system of inhomogeneous plane waves, as in the case of
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total reflection. The planes of constant amplitude are parallel to the

reflecting surface /S; the direction of propagation is determined by the
normal to the planes of constant phase. The angle \f/ made by this wave
normal with the normal to the boundary plane (in the present instance

the negative x-axis) is the true angle of refraction and is defined by

f56) x cos ^ + z sin
\l/
=

constant,

or

(57) cos \l/
= sin

\l/
= sn

+ OL\ sin 2
r

VgM- oil sin 2

The relation of the planes of constant amplitude to the planes of constant

phase is illustrated in Fig. 93.

Medium (2)

Medium (1)

'//////////%/////////////// Z

Plane of constant amplitude

\
Wave\normal

FIG. 93. Refraction at a plane, conducting surface.

A modified Snell's law for real angles is expressed by (57).

(58)

The;quantity n(0 ) is a real index of refraction which now depends on the

angle of incidence, a notable deviation from the law of refraction in

nonabsorbing media. The phase velocity, defined as the velocity of

propagation of the planes of constant phase, is

(59) t>i(0o)
~ CO

+ al sin 2

Not only does this velocity depend on the angle of incidence, but as in the
case of total reflection there are also components of field intensity in the
direction of propagation. The field within the conductor is not strictly
transverse.
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The calculation of p, g, and n in terms of the constants of the media
and the angle of incidence is a tedious but elementary task. From (52)
and (55), together with the definition of a and b implicit in (49), one
obtains the following relations:

P
2
(0o)

= i[-*J + R + ai sin 2
0o

p\ + (a?
-

j8j
-

a| sin 2
)
2
],

(60) g*(0 )
= aj

-
0?
-

a\ sin 2

/ a - - a sn

a\ sin 2

l + (a?
-

/?
-

1 sin2
)
2
].

From these a subsidiary set of relations, known as Ketteler's equations,
can easily be derived.

(61)

COS

The functional relation of n(0 ) to the angle of incidence and the
constants i and pi expressed by (60) has been confirmed by measure-
ments in the visible region of the light spectrum.

1 No direct connection

exists, however, between the observed values of ai and pi at optical fre-

quencies and the static or quasi-static values of the parameters ei, /zi,

and cri. In fact ai and /3i can assume values at optical frequencies which
at radio frequencies are possible only in densely ionized media. Thus Shea
found for copper ai/aj =

0.48, a value less than unity, and i/a2
=

2.61,
instead of the exceedingly large value one might anticipate for such a

good conductor. In this case the apparent phase velocity within the
metal is greater than that of light. The anomalous behavior of these

parameters at optical frequencies gives rise to some very interesting

phenomena in the domain of metal optics, which lie beyond the limits we
have imposed upon the present theory.

2

Although there appear to be no experimental data available in

support of Eqs. (60) at radio frequencies, there is every reason to believe

them exact. We shall discuss only the case in which the conduction
current in the medium is very much greater than the displacement
current. Let 17

= cr/w. Then the assumption is that r?? >>> 1, and
under these circumstances it will be recalled (page 277) that

1
SHEA, Wied. Ann., 47, 271, 1892; WILSET, Phys. Rev., 8, 391, 1916.

8 An excellent account of the optical problems of reflection and refraction is given
by Konig in his chapter on the electromagnetic theory of light in the "Handbuch der

Physik," Vol. XX, pp. 197-253, Springer, 1928.
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(62)

From (60),

but, since 17? is assumed to be very much larger than the maximum value

of sin2
,
we obtain the approximate formulas

hence, n > <*> as en < or w 0. At the same time

(65) sin

and ^ 0. As the conductivity increases or the frequency decreases, the

planes of constant phase align themselves parallel to the planes of constant

amplitude and the propagation is into the conductor in a direction normal to

the surface.

In the case of copper, cri
= 5.82 X 10 7

mhos/meter, and it is obvious

that ^ differs from zero by an imperceptible amount. Whatever the

angle of incidence, the transmitted wave travels in the direction of the

normal. The factor

(66)

measures the depth of penetration. It is characteristic of all skin-effect

phenomena and gives the distance within the conductor of a point at

which the amplitude of the electric vector is equal to 1/e = 0.3679 of its?

value at the surface. In this distance the phase lags 180 dog. Since the

value of d measures the effectiveness of a material for shielding purposes,

it is interesting to know its order of magnitude. The table below gives

the values of 5 in the case of copper for several frequencies. They are

obtained from the approximate formula 6 = 6.6i>~* cm.

cycles /sec. cm.

60 0.85

10' 0.21

10 0,007

The depth of penetration is decreased by an increase in permeability,

but this is usually offset by the poor conductivity of many highly perme-

able magnetic materials.
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The angle \f/ may be approximately zero for materials of much lower

conductivity than the metals. In the case of sea water,

<TI
= 3 mhos/meter, *i = 81c

,

and we find

(67) ijx
~ X 10 8

,
n =~ X 10s

, & =^ meters.
v v *> v */

At v = 10 6 we see that n =
164, ^ < 0.35 deg., and 5 = 29 cm. The

approximation is just valid at v = 10 8
,
for then r?

2 = 45 1, and in this

case n =
16.4, i < 3.5 deg., d = 2.9 cm.

9.9. Reflection at a Conducting Surface. We shall examine next the

phase and amplitude of the wave reflected at the plane interface of a
dielectric and a conductor. By SnelPs law

(68) ki cos 0i - V*i ~
fc| sin2

,

and from (60) and (61) it follows that

pq =
(69) g

2
p
2 = a? |8J i sin2

,

g
2 + p

2 =
[4af/3

2 + (a
2

/3
2

a| sin2

It can easily be verified from these relations that

(70) ki cos

where

(71) tan =
;

2 g

Upon substituting (70) into the Fresnel equation (14) for the reflected

component of the electric vector polarized normal to the plane of inci-

dence, one obtains

b?

/7<>\ -p /*n*2 w* ^0 A*2 V Q'
2

~f~ P
2
^ -r*

V'^ ^21 = ^ il/0.

COS

The fraction must be rationalized to give amplitude and phase. Then

(73) E2J_
= p^e-^-L EO_L,

and after a relatively simple calculation we find

2 = Qu2g MI cos )
2

PI>

ton A =
-1

COS )
2

COS

cos 2
0o
- MKg2 + p

2
)

The other component of polarization is found in the same way but
the computation is considerably more tedious. According to (20),
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the second Fresnel equation is

**

/TCN TT ^2 cos (a? |8i + 2ij8if) /ii2VV + P
2 e 2

(75) Had. = t> -ttoj..

The lengthy process of rationalizing this expression may be skipped over

and the result set down at once. We abbreviate

(76) n2 X E2
|i

=
p|[e-^ll n X Eon,

and find

2 = *
"

Pi) COS 00
""

=P "

[M2(ttf
~

0!) cos + Mi<*2?]
2 + [2/i2ai0i cos

+ P
2 -

<xj sin 2
) cos

-tan d
||

=

If the conductor is nonmagnetic, so that MI = M2, the expression for the

amplitude pj|
factors into the form deduced by Pfeiffer 1 in the course of

his optical studies:

(Q 2 cos )
2 + p

2
(q 2 sin tan )

2 + p2

p||2
- JL* t J- ! i -1

;
i-

As in the case of total reflection, the two components of polarization

are reflected from an absorbing surface according to different laws.

Consequently an incident wave which is linearly polarized, but whose direc-

tion of polarization is neither normal nor parallel to the plane of incidence,

will be reflected with elliptic polarization. The polarization is determined

by the ratio

(79) le''<ir*jL> =
pe**.^ '

PJL

Only in the case of nonmagnetic materials do the expressions for p and 6

reduce to a relatively simple form. If /xi
=

jx 2 ,
one finds after another

laborious calculation that

2 (<7 <*2 sin 0p tan )
2 + p

2

P ""

(q + <*2 sin tan )
2 + p 2

'
'

, 2 2 p sin tan
tan o =

a\ sin 2 tan 2 -
(q

2 + p
2
)

The reflection coefficients are again defined as the ratio of the energy

flows in the incident and reflected waves. Thus

(81) RL =
PJL

2
, fill

=
Pll

2
-

In the case of normal incidence R =
JB||

=
-B,

R, Diss. Giessen, 1912; Ktoia, Zoc. a'<., p. 242. Cf. also WILSBY,

loc. cit., p. 393.
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The degree of polarization is commonly measured by the ratio

(83) s = I^MJIHM
2

_ 1 -
PV,v ; 2

~

where g*
= El\\/El, the ratio of the incident intensities.

When one considers that the quantities q and p are functions of the

angle of incidence as well as of all the parameters of the medium [Eqs.
(60)], the complexity of what appeared at first to be the simplest of

problems the reflection of a plane wave from a plane, absorbing surface

is truly amazing. The formulas are far too involved to be understood
from a casual inspection, and the nature of the reflection phenomena
becomes apparent only when one treats certain limiting cases. Of

these, one of the most important for electrical theory is that in which

Case I. tjl
= -~* 1. Then

(84)

as was shown on page 504, and

cos

2

(85) (l
+^ co-

,)'
+ 1

, * ^ A*l"2 2 COS 00
tan 5 1 c^. -.

**,-!

Since jui/Vz
== MI/MO = Kmi is the magnetic permeability of the conductor

and 2/<>
= *ei is the specific inductive capacity of the dielectric, we may

write

(86) *==-' = = 2.11X10-,

where v is the frequency. In the case of all metallic conductors

C 1, and (85) reduces further to

Pi.
2 ^ 1 2s cos

,

tan S.L
~ 2x cos .

This approximation is obtained by applying the binomial theorem to

(85), and it is valid as long as the square of Mi2/M2i can be neglected
with respect to its first power. Likewise in the case of polarization

parallel to the plane of incidence
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(88)

p|1
2 _ 2 cos 2

0o 2x cos 0o + x*

2 cos 2
6<> + 2x cos +

2x cos
tan OH

=
-5
-r-r-

11 x 2 cos 2

Here the square term in x has been retained since at a certain value of

the numerator of py
2 becomes very small. This critical angle is obvi-

ously the analogue of the Brewster angle discussed above. The minimum
value of

p||

2
corresponds to an angle of incidence satisfying the relation

\/2 cos 0o = x. Consequently if the minimum is sharply defined the

ratio MiAi can be determined directly from the observed reflecting

properties of the material.

It is clear from these results that the reflection coefficients of the

metals are practically independent of the angle of incidence and differ

by a negligible amount from unity even at the highest radio frequen-

cies. Thus at an air-copper surface, Km i
=

1, *2 =
1, <TI

= 5.82 X 10 7

mhos/meter, so that x = 2.77 X 10~ 8
^/~v. In the case of iron the con-

ductivity is about one-tenth as large and the permeability
1 may be of the

order of 10s
,
but x is still exceedingly small, even at wave lengths of a few

centimeters. The formula

(89) R = 1 - 4.22 X 10-4

to which (87) and (88) reduce at normal incidence, was verified in the

infrared region of the spectrum by Hagen and Rubens. 2

The results of their measurements are shown in the following table

at X = 12/z and X = 25.5M, where I/A
= 10~ 4 cm. The theoretical values

with which they are compared were calculated from the electrostatic

values of the conductivities. At wave lengths less than 12/x the devia-

1 At ultrahigh frequencies the permeability may be very much smaller.

pare the measurements by Glathart, Phys. Rev., 56, 833, 1939.
a HAGJDN and RUBENS, Ann. Physik, 11, 873, 1903.

Com-
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tions become more marked and at optical wave lengths there is no

correspondence. These figures are extremely significant. They imply
that as long as we are concerned only with metals, the macroscopic electro-

magnetic theory is valid for all wave lengths greater than about 10~3
cm., or

frequencies less than about 3 X 10 18
cycles/sec.

The reflection of radio waves from the surface of the sea or land gives
results of another order. Consider first the case of an air-sea surface,

for which /cm i
= *e2 = 1, <TI

= 3 mhos/meter, and x = 1.22 X 10~4 V7.
Since the approximations (87) and (88) are valid only when x <C 1, we
are limited now to frequencies less than 10 6

cycles/sec. Let us take, for

example, a 600-kc. broadcast, fre-

quency, X = 500 meters. Thenz =
0.094. In Fig. 94 are plotted the

reflection coefficients J?x and JR|| of

waves polarized normal and parallel

to the plane of incidence as func-

tions of the angle of incidence. One
will note that Rj. > R\\, and that at

86.2 deg. the coefficient jBj reaches

its minimum. Hence, if the electric

vector of the incident wave is linear-

ly polarized in a direction that is

neither normal nor parallel to the

plane of incidence, the wave reflected

from the surface of the sea will be

elliptfcaHy polarized. Moreover, if

the transmitting antenna is vertical,

FIG. 94. Reflection coefficients of plane
radio waves from the surface of the sea.

the wave will be polarized in the plane of incidence; thus, if it meets
the sea at a grazing angle, it may be almost completely absorbed.

If now the frequency is increased, or if the wave is incident upon
fresh water or earth for which the conductivity is usually of the order of
10~4 or less, the approximations (87) and (88) no longer hold but the
character of the reflection phenomena is not greatly modified. We have
then to consider

Case II. ti\
=
jl 1. By (52) and (53), page 277,

(90) ai^-VTlf fa~ 188.3
""

If the frequency is sufficiently high on ^> fa, Eqs. (60) above reduce to

(91) P
2 ^ 0, ?

2 ~
a\
-

al sin 2
.



510 BOUNDARY-VALUE PROBLEMS [CHAP. IX

Then

(92)

y2 sin 2 cos

PII

i *2 sin 2

cos 0p

cos

*e2 sn

cos *2 sn

To this approximation, only the dielectric properties of the medium
enter and (92) is identical with the results obtained in Sec. 9.6. The

next order would introduce a small correction in fa.
1

Let us take for example a fresh-water surface. /c 2
=

1,

L

~ 2 X 10~4
mho/meter. Then

4.45 X 104

=
81,

i c- 1.88 X 10-V, /3i ^ 4.18 X 10-3
.

v

The approximation (92) holds, therefore, if v > 10 6
. The constants for

earth and rock vary widely, but we may take as typical the case Ke i
=

6,

0-1
~ 10~5

. Then

TfJl
= 3 X 104 ^ 5.1 X 10- 8

, fa z* 7.7 X 10~4
,

so that again (92) is valid for v > 10 6
. At frequencies greater than 10 6

cycles/sec., fresh water and dry earth or rock act as dielectrics in so far as

their reflecting properties are concerned. The transmitted wave is of course

rapidly attenuated due to the fac-

tor fa. The reflection coefficients

for these two cases have been plotted

in Fig. 95 against angle of incidence.

Such curves have been verified ex-

perimentally by Pfannenberg.
2

Although in the case of metals

the formulas hold for frequencies

extending into the infrared, this is

not true for dielectric or poorly con-

ducting materials. At wave
lengths of the order of a few centi-

meters most dielectrics exhibit a

marked increase in absorption ow-

ing to causes other than electrical

conductivity. Thus at a wave

length of 2.8 cm., the value of ft for

distilled water computed on the basis

of an electrical conductivity a = 2 X 10"4
mho/meter is 4.2 X 10~3

,
while

1 An account of various approximation formulas useful in optics is given by Kdnig,

loc. cit., p. 246.

2 PFANNENBERG, Z. Physik, 37, 768, 1926.

45

Q , degrees

FIG. 95. Reflection coefficients of plane
radio waves from earth and fresh-water

surfaces at frequencies greater than one

megacycle per second.
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the measured value 1
is 494 (m.k.s. units, distance in meters!). This is an

extreme case corresponding to dipole resonance of the water molecule, but
it is obvious that under such circumstances the approximations (92) are

invalid. The general formulas may always be applied, even in the optical

spectrum, provided the values of a and ft are those determined by
measurements at a specific frequency.

PLANE SHEETS
9.10. Reflection and Transmission Coefficients. We shall consider

only the case of normal incidence, which is of considerable practical

<*i> V/A^7A (*,)

E
t,Ht

FIQ. 96. Reflection and transmission of plane waves by a plane sheet at normal incidence,

interest. Three arbitrary homogeneous media characterized by the

propagation factors k\, k 2 ,
k z are separated by plane boundaries as shown

in Fig. 96. We need deal only with the magnitudes of the vectors and
write for the incident and reflected waves in medium (1) :

(1) E- = E eikiz
~

itat H- = ^V E.

(2) Er
= 77 -

n.r
ti

The field within the sheet (2) must be expressed in terms of both positive
and negative waves.

ff 2L (E+ fik* * TO V,-*-' Q ^
COJU 2

while the transmitted wave is

(A\ Z7* - -. T/i j-iikiz itdt
(?) & t & 3 e K wt

,

It will be convenient to employ here the intrinsic impedance concept
introduced in Sec. 5.6, page 282. For a plane wave in a homogeneous,
isotropic medium

Ht
=

(5) Z = co/i,-

1
BXz, Physik. Z., 40, 394, 1939.
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We shall now define the impedance ratios

/A\

(6)

and note that

(7)

In terms of the impedance ratios the boundary conditions lead to

four relations between the five amplitudes.

Upon solving for the amplitudes of the reflected and transmitted waves,
one finds

w _ (1
~ g)(l

l

We shall now define the complex ratios

^
~~

1 j_ 7
~~

*7 _|_ 17
~~

?'
1 + ^,-fc Z^ + Zy

The physical significance of these ratios is apparent when one notes that

+ 0*rf/ + MA) 2
"

'

The /2,-jfc
are the reflection coefficients at normal incidence for the plane

interface dividing two semi-infinite media [Eq. (82), page 506]; the

quantity rjk is the complex ratio of the amplitudes of reflected and incident

waves. The reflection coefficient at an interface is zero when the intrinsic

impedances of the adjoining media are equal.

In terms of these r#, (9) reduces to

Eo (1 + Zu)(l + Z23) 1 + r 12r23

The reflection and transmission coefficients of the sheet are equal to the
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squares of the absolute values of these ratios. We write

7 w I^^M
"ik = */-

(14)

tan 7jfc =

tan i =n *

One will note that 7,* = 7*?, but 6,*
= +$*/. Upon introducing these

phase angles into (13), and then multiplying each ratio by its conjugate
value, we obtain

(16)

K .

E
cos (*

-

(17) T =

1 +2
77T 2

lo

tn e~ 2f> 'd cos ( + 5 28 + +

M2/3 3)
2
]

1+2 V#i2# 2? e- 2^d cos (612

Equation (17) can be reduced to the form

(18) T

M3 a? + PI [(1
- Bn)(l ~ ^23)

- 4

by applying the formulas

1 - fi/*(20)

9.11. Application to Dielectric Media. The interference phenomena

represented by (16) and (18) have frequently been applied to the measure-

ment of the optical constants of materials in the infrared and electrical

as well as the visible regions of the spectrum.
1 To make clear the

1
See, for example, Drude, "Lehrbuch der Optik," Chap. II, 1900. The method

has been used in the infrared by Czerny and his students. Czerny, Z. Physik, 66,

600, 1930; Barnes and Czerny, Phys. Rev., 38, 338, 1931; Cartwright and Czerny,

Z. Physik, 86, 209, 1933; Woltersdorff, ibid., 91, 230, 1934. Recently the same
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physical behavior of the reflection coefficient as the thickness of the sheet

is varied, we shall treat the simple case of a thin dielectric sheet separating

two semi-infinite dielectric media as in Fig. 96. The inductive capacities

of the three media are 61, c2 , 3. 0i ft 2
= =

0, and consequently

ala = 523 = o. Then

(21)

(22)

ak

p = 7*23)
2

V e*

sin 2

rr
/Jfc ,

sn

and <*2
= 27r/X 2 ,

where X2 is Me wove fenj/tA within the sheet. Now if e 2

lies between 1 and c 3 in value, the product ri2r23 is positive and R oscillates

FIG. 97. Reflection coefficients of plane dielectric sheets as functions of thickness and
dielectric constant.

as a function of d. The minimum value of R occurs at d = X 2/4, and is

zero when ri 2
= r28 ; i.e., when 2 is the geometric mean of 1 and e8 ,

or

2
= V^a- Under these conditions all the energy is transmitted from

medium (1) into medium (2), none is reflected at the surface. The intro-

duction of a quarter-wave length sheet of the proper dielectric constant

accomplishes the same purpose as the matching of impedance at the junction

of two electrical transmission lines. In Fig. 97 curves are plotted which

show the effect of a dielectric sheet at the interface of air and water.

This principle has been applied recently to the manufacture of

optically "invisible" glass. The reflection of light from a glass surface

is reduced almost to zero by coating with a film of the proper index of

refraction.

method has been applied to ultrahigh-frequency radio waves. See for example

Baz, Phys. Z.
y 40, 394, 1939, and Pfister and Roth, Hochfreq. und Elektroak., 51, 166,

1938, who have extended the formula for the reflection coefficient to arbitrary angles

of incidence.
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9.12. Absorbing Layers. If the medium on either side of the sheet

is the same, Eqs. (16) and (18) reduce to

[(1 sin*
- # 12 e- 2^) 2 + 4# 12 e~w*d sin 2

A further simplification is achieved by defining

(25) 5i2
= -| In 72 12 ,

which when introduced into (23) and (24) leads to

sin2 aid + sinh2

(26)

(27)

n __~

V
0,2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2

d in centimeters

FIG. 98. Reflection coefficient of a plane sheet of water of thickness d cm., Xo = 9.35 cm.,
03 = 5.95 cm.- 1

, /32
= 0.456 cm." 1

.

The reflection and transmission coefficients are again oscillating functions

of the thickness d, but the amplitude of the oscillations is no longer con-

stant. In Fig. 98, R is plotted against d for a thin sheet of water at a

free-space wave length of 9.35 cm. The medium on either side of the

sheet is air. We have previously noted that the attenuation factor of

water in this region is very much larger than can be accounted for by
the electrical conductivity alone. The observed values are a2

= 595

meters" 1
, 2

== 45.6 meters'" 1
. Within the sheet the wave length is

X2
= a X /a2

= 1.05 cm., and the minima occur approximately at half-

wave-length intervals. In general, the smaller the attenuation factor,

the more nearly do the minima coincide with the half-wave-length points.

In the case of commercial insulators 2 is at least 104 times as large as 2 ,

so that X2 ,
and hence a^ can be determined directly from the observed
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oscillations of the reflection coefficient. The numerical values of the

minima are determined by the losses, and a curve such as that of Fig. 98

provides one of the best means of finding /32 at ultrahigh frequencies.

In the case of a metal sheet the attenuation is so great, and the reflec-

tion coefficient so nearly unity, that transmission, through even the

thinnest sheets, is wholly negligible. The transmission coefficient

through a copper sheet 1/z thick (10~
4
cm.)? at 108

cycles/sec, for example,

is less than 10~ 6
. However, this calculation gives a wholly erroneous

impression of the effectiveness of shielding, for it applies only to plane

surfaces of infinite extent. The reflection losses from surfaces whose

radius of curvature is small compared to the wave length is by no means

always large,
1 and the only significant general criterion is the value of

the attenuation factor 2 ,
or its reciprocal, the skin depth, defined on

page 504.

SURFACE WAVES

9.13. Complex Angles of Incidence. The possibilities of the Fresnel

equations are far from exhausted by the discussion of the preceding

sections, for it has been confined exclusively to real angles of incidence.

These equations represent the formal solution of a boundary-value prob-
lem which analytically is valid for complex as well as real angles. Com-

plex angles of refraction already have occurred in connection with total

reflection and reflection from conducting surfaces. There the associated

plane waves proved to be inhomogeneous: the planes of constant ampli-
tude fail to coincide with the planes of constant phase. Thus one may
reasonably anticipate that a complex angle of incidence will be associated

with an inhomogeneous primary wave. We shall not consider at this

point how such waves are generated, but recall that in Sees. 6.8 and 7.7

it was shown that cylindrical and spherical waves of the most general

type can be represented as a superposition of plane waves whose direc-

tional cosines include complex as well as real values.

If the angle of incidence is real, the primary wave gives rise in general

to a reflected wave at the surface of discontinuity. Only in the case of

a plane wave polarized in the plane of incidence and meeting the inter-

face of two semi-infinite dielectrics at the Brewster angle (page 497) does

there occur an exception to this rule. There is always a reflected wave
if one of the media is conducting. If, however, complex angles of inci-

dence are admitted, the reflection coefficients can be made to vanish

whatever the nature of the media.

We shall consider in some detail the case of a wave whose electric

vector is parallel to the plane of incidence. Letting r\\ represent as in

1 A point well illustrated in the case of cylindrical shields by Schelkunoff, Bell

System Tech. /., 13, 532, 1934.
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(15), page 513, the ratio of the reflected to the incident magnetic vector,
the Fresnel equation (19), page 494, gives for this case

(1)

where

(2)

r
11

cos 0o
- cos

cos + Zu cos

as defined on page 512. In order that there shall be no reflected wave
the numerator of (1) must vanish. This condition, together with SnelTs

law, leads to the two relations

(3) cos 0i = 2 2 i cos , sin 0i = Zu sin
,

which determine the angles of incidence and refraction. Upon elimi-

nating 0i one obtains

(4) sin2
6t>
=

12

To simplify matters we shall assume that the interface of the two
media coincides with the surface x = 0. The x-axis is normal to the

Fia. 99. Refraction of the planes of constant phase characteristic of a surface wave.

surface and is positive in the direction leading from medium (1) into

medium (2), as shown in Fig. 99. The plane of incidence is parallel to

the xz-plane; consequently, the field has only the one magnetic com-

ponent Hv . The electric vector lies in the plane of incidence and has in
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general both the components E9 and E,. The field is transverse magnetic.
1

Since the magnetic vector is tangent to the surface of discontinuity, its

transition from one medium to the other is continuous; hence, by Sec. 9.4

Hy
= Ceik ~* coa e*+* 8in

*)-<, (x > 0),w Hv
= Ce'*^- xc08 ^+* flin ^)-^ (x < o),

where C is an arbitrary constant.

Next we shall let

(6) h = fc2 sin do = &i sin 0i,

and define the real and imaginary parts of the factors appearing in the

exponents of (5) as follows:

h = a + t'0,

(7) i&2 cos

t'fci cos

The signs of the radicals have been so chosen that the field will vanish for

infinite values of x. Then in terms of (7),

,ox Hv
= C*2, (x > 0),W # = C^ t , (x < 0),

where

,g^
^i = exp[+pix -

Qz + i(-qix + z) torf],

^2 = exp[ p 2 j^2 + i( qzx + az) t"co(|.

Let us consider first the nature of the incident wave. We note that

the planes of constant phase are defined by

(10) q& + az = constant,

while the planes of constant amplitude satisfy

(11) p& ftz
= constant.

The planes of constant phase and constant amplitude are not coincident.

The real angle of incidence \I/Q is the angle made by the normal to the

planes of constant phase with the positive z-axis. It satisfies the relation

(12) x cos ^ + z sin \I/Q
= constant,

whence

(13) cos ^o = ,

***
> sin ^ =

/
a2 + ql V a2 + gf

The planes of constant phase are propagated in the direction of their

positive normal with a phase velocity

(14) t>2

1 See Sec. 6.1, pp.
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a velocity which is less than the normal velocity of a homogeneous plane
wave in an infinite medium of the same character. On the other hand,
the velocity parallel to the z-axis of a given point on a phase plane may be

greater than the velocity in free space. The reason is clear from Fig. 100-

The wave length X 2 is the distance between two planes of corresponding

phase measured in the direction of the normal.

(15) X 2
=

The distances between the same two planes measured along the x- and

z-axes, respectively, are

(16) X,
Xz 2" ^ X * 2?r

cos sin

The phase point must travel these distances in the course of one period
so that the apparent velocities are

(17)
CO
-'

CO
-'

and these quantities have values which lie between

The normal to the planes of constant

amplitude makes an angle \I/'Q with the

z-axis, satisfying the relation

and infinity.

(18) x cos $Q + Z sir

whence

o
= constant,

(19) tan^ = -

FIG. 100. The component of phase
velocity parallel to the z-axis may be
greater than the velocity of light.

Planes of constant amplitude, which in

the case of large conductivity are ap-

proximately at right angles to planes of

constant phase, have not been drawn in Fig. 99.

Turning next to the transmitted wave in the region x < 0, we see

from (9) that the planes of constant phase and constant amplitude are

defined respectively by

(20) qix + az = constant

and

(21) p

whose normals make angles

flz
= constant,

and \l/[ with the negative x-axis defined

(22)
j. i

a
tan wi = > tan rf = 1.
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The phase velocity is

(23) vi

The components of the electric vector are best calculated from the

field equation

(24) E = ^ V X H,

which resolved into rectangular components gives

_ tcoM dHv iw/i dHv

From (8) and (9), it follows that

( +
(26)

2
. (* > 0),

A/2

COJUl /

(27)
l

(* < 0),

Physically, the field described by (8), (26), and (27) is associated with

a current in the z-direction whose distribution with respect to y is uniform.

Such a field is transverse magnetic, and the longitudinal component of

electric field accounts for the losses in either medium, since EZHV is the

component of energy flow normal to the interface. The transverse com-

ponent Ex,
on the other hand, gives rise to an energy flow parallel to the

plane. The whole problem is comparable to the limiting case of a

current propagated along a wire whose radius becomes infinite. The

other symmetry, corresponding to the condition r =
0, leads to trans-

verse electric waves and may be interpreted as the limiting problem of

propagation along a solenoid of very large radius. In this case the cur-

rent is transverse to the elements of the cylindrical surface.

9.14. Skin Effect. If both media are perfect dielectrics, the angle

is real in the case of TU
= and is identical with the Brewster polarizing

angle. Of much greater practical interest is the case in which medium

(1) is a conductor and medium (2) a dielectric. One may then assume

that |Z 12
|

2
1. According to (4) and (6)

(28) A2 =
fcf

,,
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which can now be expanded in powers of Zi 2 .

(29) h = A

of which we shall retain in the present approximation only the square
term. Since by hypothesis the conductivity of (2) is zero, we may write

2 2 1

/q/Y\ 72 ^1 2//2&> /Xi 2 1 ~ irji
i,OU; Z 12 ~2 A

' V .
= -3 : r->

M2 i/zior -f- KTiniw /i2ci 1 + Tjf

where as above 771
= cn/eiw. Then

(31) A -

Note that a, the real part of this expression, is less than &2 and that,

consequently, the velocity in the z-direction of a point on a plane of

constant phase is greater than that of a free wave in the dielectric. We
Saw above that this is only an apparent velocity and that the true phase
velocity is in fact less than that fixed by k 2 .

We now make the further assumption that ijf 1, and that 1/r??

can, therefore, be neglected with respect to 1/rn. To this approximation

(32)
6V\ \ M2

Thus the velocity in the z-direction is essentially the characteristic phase
velocity of the medium and the attenuation approaches zero with

increasing conductivity.
To the same approximation

(33) k\

which by (7) leads to

(34)

Likewise,

(35) k\
- V

(36)

From these results one will note, first, that

(37) 2L~??
9s P
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whence it appears from (13) and (19) that the planes of constant amplitude
in the incident wave are normal to the planes of constant phase. As a\ > oo

,

tan ^o ~~* and ^o *
fl"/2. As the conductivity increases, the planes of

constant phase in the dielectric become very nearly normal to the surface of the

conductor.

Within the conductor, the corresponding relations are determined

by (22).

(38) tan \(/i
~ tan \l/[

~
,

Mi^i .,

As <TI > oo
9
both ^i and \[/( approach zero. The planes of constant ampli-

tude and constant phase within the conductor are very nearly parallel to the

interface. At the same time the wave length becomes very small, for

(39) Xi

It will be recalled that in the case of metals <n is of the order of 10 7

mhos/meter. The deviation of
\I/Q from ?r/2 and of \l/i from zero is then

completely negligible, and the wave length in meters within the metal is

Conductor

FIG. 101. The solid lines represent planes of constant phase, the dotted lines planes of
constant amplitude.

in magnitude of the order v~*. Even in the case of sea water, at a

frequency of 1 megacycle/sec., the forward tilt of the phase planes above
the surface amounts to only some 10' of arc. The forward tilt of a radio

wave propagated over dry earth may be more marked. The relation of

the planes of constant phase and constant amplitude is then somewhat
as illustrated in Fig. 101. It must be remembered, however, that in such
a case the assumption r?f ^> 1 is not necessarily justified.

Upon introducing the approximations (32), (34), and (36) into (26)
and (27), we obtain for the field components the expressions

(40)

(41)

Note that the tangential component E is continuous at the boundary
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x = and equal in magnitude to (MIW/VI)* times the magnitude of the

tangential component of magnetic field. As <n ,
the longitudinal

electric field vanishes.

The normal and tangential components of E differ in phase by 45 deg.

(A more exact calculation shows this angle to be less than 45 deg. in

the case of poor conductors.) Consequently the locus of the resultant

electric vector at any point is an ellipse. At a point within the dielectric

just above the surface, the ellipse is inscribed within a rectangle whose
sides are 2a2

=
2(jLt2/2)*, 262

=
20uia>/<ri)*, 62 <C a^ as shown in

Ex

E,

k- 2&2
-

FIG. 102a.
Locus of the electric

vector at a point in

the dielectric.

E,

FIG. 102&. Locus of the
electric vector at a point in the
conductor.

Fig. 102a. Since the particular value of z is of no importance, the

coordinates of the ellipse are

(42) Ez = 02 cos ut,
=

2 cos

The electric vector in the dielectric rotates in a counterclockwise direction.

The ellipse is identical in form at other points of the dielectric but

reduced in size by reason of the attenuation factor.

Within the conductor the electric vector describes an ellipse bounded

by a rectangle whose sides are 2i =
2a>( 2ju 2)Vcr

i;
26 1

=
2(^ico/<ri)*,

61 ^> ai. The coordinates of the ellipse are

(43) Ex = cos E8
= 61 cos

Ez is now retarded with respect to Ex and, consequently, within the

conductor the electric vector rotates in a clockwise direction.

The depth of penetration within the conductor is determined by the

damping factor pi, whose reciprocal is exactly the factor 5 defined on

page 504. The current density in the 2-direction is Jn <riEg) and the

total current passing through an infinite strip 1 meter in width parallel

to the #?/-plane in the conductor is
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(44) / = ^
J^

1

J ^ E, dx dy = (?-"+ .

On the other hand, the current through such a strip of depth d is

(45) A/ = 7(1
- 6-P*HW).

Since p\ is very large in the case of good conductors, the current is con-

fined almost entirely to a thin "skin" in the neighborhood of the surface.

One will note, moreover, that the phase of a current filament varies

with its depth. This effect may be expressed in terms of an internal

self-inductance.
1

PROPAGATION ALONG A CIRCULAR CYLINDER

9.15. Natural Modes. A circular cylinder of radius a and infinite

length is embedded in an infinite homogeneous medium. The propaga-

tion constant of the cylinder is ki, that of the external medium k%. No
restriction is imposed as yet upon the conductivity of either. The

components of the field in circular coordinates were derived in Sec. 6.6.

This field must be finite at the center and, consequently, the wave func-

tions within the wire will be constructed from Bessel functions of the

first kind. Outside the cylinder the Hankel functions H ensure the

proper behavior at infinity. According to (36) and (37), page 361, we

have at all interior points, r < a,

<
= 2 </n(Xir) 6-

(i) Ef = - 2 fS J*M < + TT /:(M 6" Fn>
n mm 00 L l

l/n(Xir) a ]Fn >

= 2

1 See the treatment by Sommerfeld in Riemann-Weber, "Differentialgleiehungen

der Physik," Vol. II, pp. 507-511, 7th ed., 1927.
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At all exterior points, r > a,

' = 2 s^W):-
(3) Ef - - 2 [$:

fli'CX*-) < +^ tf<"'(X,r)
6']

Fn,

o

;= 2 tfTO*) atf
1

.,

H' =

H''
= 2

In these relations

X? = kl
- A2

, X| = k\
- A 2

,

(5) JF
7

* = exp(in0 + ihz iuf),

and the prime above a cylinder function denotes differentiation with

respect to the argument Xr.

The coefficients of the expansions and the propagation factor A are

as yet undetermined. However, at the boundary r a, the tangential

components of the field are continuous, and this condition imposes a

relation between the coefficients. From the continuity of the tangential

components of E, we obtain

(6) w2 n ^u' a* ' u~ W n
~~

~tf>
n v*'

Jn(u) a'n
= #il)

(tO <,

while from the tangential components of H

1 Tt / \ 1
fvfl T / \ T f v'v^

(7)

""~ - - -- ' -

Jn(u) 6 = Hi(i;) b'n ,

where

(8) w =
Xia, v = X 2a.

Equations (7) and (8) constitute a homogeneous system of linear

relations satisfied by the four coefficients c, 6j>, a;, 6;. The system
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admits a nontrivial solution only in case its determinant is zero. The

propagation factor h is determined by the condition that the determinant of

(6) and (7) shall vanish. Expansion of this determinant leads to the

transcendental equation

fa JM
U JnM

- .

i) W H?(V)

whose roots are the allowed values of the propagation factor h and so

determine the characteristic or natural modes of propagation. These

roots are discrete and form a twofold infinity. The Bessel functions are

transcendental; thus, for each value of n there is a denumerable infinity

of roots, any one of which can be denoted by the subscript m. Any root

of (9) can then be designated by hnm .

No general method can be stated for finding the roots of (9), but

fortunately it is possible to make approximations in practical problems

involving metallic conductors which greatly simplify the solution. One

will observe from (6) that if the conductivity is finite, a superposition of

electric and magnetic type waves is necessary to satisfy the boundary con-

Jitions, except in the symmetrical case n = 0. The field is not transverse,

with respect to either the electric or the magnetic vector. If, however,

the conductivity of either medium is infinite, the boundary conditions

can be fulfilled by either a transverse magnetic or a transverse electric

field. In this case the problem is completely determined by either the

conditions

(10) Si = 0, E, =
0, (r

=
a),

or, alternatively, by

(11) (rffi)-0 f gjff.-O, (r
=

a),

taken from (14), page 484, noting that the tangential components of H
do not vanish. In case the cylinder is a perfect conductor embedded in a

dielectric, the allowed transverse magnetic and transverse electric modes

are determined by roots respectively of the equations

- =-
U, u.

The amplitudes oj and 6* are now quite independent and are determined

solely by the nature of the excitation. In the inverse case of a dielectric

cylinder bounded externally by a perfect conductor, the transverse

magnetic and transverse electric modes are determined by the roots

respectively of

^(u) _ JM =
J'M

~
0>

J.()
u'
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In practice the conductivity of a metal, while not infinite, is yet so very

large that the cylinder functions in such a region can be replaced by their

asymptotic representations. It is then found that in each possible mode,
either a transverse electric or transverse magnetic wave predominates.
A small component of opposite type which spoils the transversality may
be considered a correction term taking account of the finiteness of the

conductivity.

If only the symmetrical mode n = is excited, the field is independent
of 6 and the coefficients a

, 60 are independent of one another, whatever

the conductivity. From (6) it is apparent that in this case the transverse

magnetic wave satisfies

Jo(ti) oj
= H^(v) aj,

,

at the boundary, while for the transverse electric wave

Vi(u) &$
=
?#?>(! 68,

([K\
U V

U '
Jo(u) b< = H$>(v) 6J.

The allowed transverse magnetic modes are then determined by the

roots ACm of the transcendental equation

fcf J l (u) k\

while the transverse electric modes are found from

u ti

9.16. Conductor Embedded in a Dielectric. We shall discuss only

the case of waves that are predominantly transverse magnetic, corre-

sponding to the practically important problem of an axial current in a

long, straight wire. 1 The axially symmetric solution, n =
0, shall be

considered first. It will then be shown that the asymmetric modes,
if excited, are immediately damped out and, consequently, never play

a part in the propagation of current along a solid conductor.

Suppose, first, that the conductivity of the cylinder is infinite.

According to (12) the propagation factor is then determined by

(18)
*(

o - ou; - "

1 In the case of transverse electric waves the lines of current are circles concentric

With the axis of the conductor. This solution may, therefore, be applied to the study
of propagation along an idealized solenoid. Cf. Sommerfeld, Ann. Physik, 15, 673,

1904. If the conductor is solid the transverse electric modes are damped out.
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If v is very small, Hp(v) can be represented approximately by

where 7 = 1.781. These expressions are obtained by evaluating the

integral (39), page 367, in the neighborhood of the origin. The Hankel

function is evidently multivalued, and as in the case of the logarithm we

use only its principal value. This principal value can be defined most

easily in terms of the asymptotic expression

(20) H<(v) c

which holds when v 1, p v. If one puts v = \v\e*+,
then the

principal value of H^l)
(v) lies in the domain ir/2 < <j> < 3?r/2. The

principal value or branch of H^(v) vanishes at all infinite points of the

positive-imaginary half plane. It is only with the roots of the principal

branch that we are concerned, and it can be shown that the principal

branches of Hp(v) and Hp(v) have none. 1
Consequently, the ratio

Z7(l)f.A v,i
.
~ _

in g = o

has only the solution v = 0, and hence h = & 2 . // the cylinder is infinitely

conducting, the field is propagated in the axial direction with a velocity

determined solely by the external medium. If this is free space, the waves

travel along the cylinder without attenuation and with the velocity of

light.

In case the conductivity of the cylinder, while not infinite, is very

large, as of a metal, h differs from fc2 but there will be at least one mode

for which the difference is small, so that v = a -\/k\ h 2 is a small quan-

tity. The approximation (21) still applies to the right side of (16).

On the left side we note that \ki\y> fc 2 ;
since kt~*\h\, w~fcial.

The Bessel functions J<*(u) and Ji(u) can, therefore, be replaced by their

asymptotic representations. The imaginary part of u is positive. One

will remember that ki = ai + ifti and that, if <n is very large, i c^ fa.

Then in virtue of (18), page 359,

(22) lim = lim tan a
v '

^-JoCw) *-* L

Equation (16) now assumes the form

whose right-hand member is independent of h.

1 SOMMBRFBLD, in Riemaim-Weber, loc. dt. t p. 461.
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This equation for h can be solved easily by successive approximations.
The method proposed by Sommerfeld 1

goes as follows. Let

- ty
2 ^ k*a

'-"TSV
In =

ij.

The quantity ?; is known and is to be determined. Now the logarithm

of is a slowly varying function with respect to itself. Hence, if the

nth approximation has been found, the (n + l)th is obtained from

(25) n+i In n = 77,

or

(26) J
= ^

In 2-

In 2-

In 2-

ln-2-

The convergence can be demonstrated for complex as well as real values

of 77. Roots of (24) which lie near = 1 or which are associated with

other branches than the principal of the logarithm are rejected. It turns

out that In is a negative number of the order 20, and the convergence
is hastened by assuming this value for In . From (24), with suitable

approximations,

(27) rj
~

(1 + {)1.75 X 10-"a?
,

where v is the frequency and a is expressed in meters.

To illustrate, the following numerical example is quoted from Som-

merfeld. 2 The wire is of copper, 1 mm. in radius. The frequency is

10 9
cycles/sec, and the outside medium is air. Then (27) gives

17
= -(1 + i)7.25 X 10~7

.

Assuming In =
20, we obtain for the first approximation

fc
=

(1 + 03.6 X 10- 8
,

In fc
= -16.8 + i|

= -(16.8
-

0.78i).

1
G^ttinger Nachr., 1899. Described in Riemann-Weber, loc. cit., p. 529.

2 KIEMANN-WEBER, loc. cit., p. 530.
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Similarly

fc
=

jJL-
=

(4.1 + 4.5010-',

In {,
= -(16.7 -0.83f),

?s = j^
= (4.2 + 4.5i)10-8.

3 differs but slightly from 2 and the series may be broken off here.

The smallness of justifies the initial approximations for the Bessel and

Hankel functions. Returning now to (24), we calculate the value of v,

and hence of the propagation factor A, for a = 1 mm.

h ~ & 2[1 + (6.0 + 6.4i)10-
6
]
= a + ift.

The phase velocity along the wire is

F~c(l - 6.0 X 10- 5
),

while the distance the wave must travel to be reduced to 1/e of its initial

amplitude is z = 770 meters. Although the velocity differs an inappreci-

able amount from that of free space, the damping at this high frequency

and for this size of wire (about No. 12, Brown and Sharpe gauge) is rela-

tively high from the point of view of a communication line.

If the radius a is extremely small, the quantity u^aki may also be

small in spite of a large conductivity. To illustrate this point, Sommer-

feld has worked out the case of a platinum wire, conductivity one-eighth

that of copper, a = 2/x
= 2 X 10~ 6 meter and v = 3 X 10 8

cycles/sec.

One then finds that w ~ (1 + i)0.19, and consequently the Bessel

functions JQ(U) and J\(u) cannot be replaced by their asymptotic expres-

sions. In the case cited the value of u is so small that one can put

approximately JQ(U) =
1, Ji(u) = u/2, and proceed according to the

same method outlined above. One obtains

h c- 0.083 + 0.061 i.

The phase velocity proves to be only 76 per cent of its free-space value

and the attenuation is so large that the amplitude is reduced to 1/e of its

initial value in a distance z 16 cm.

Thus far we have considered only one root of the determinantal

equation (16), the root which in the case of high conductivity makes

hc^k2 and leads to what will be termed the principal wave. There are

other roots, however, for which, v = a V&i ~ h 2
is very large. With

the help of the asymptotic expressions for the Hankel functions, (22),

page 359, we may now approximate (16) by

If the left side of (28) is very large, the roots are given to the first approxi-
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mation by Ji(u) = 0. But the roots of Ji(u) lie on the real axis of the

w-plane. Consequently the imaginary part of h 2 must be equal to the

imaginary part of k\. This means that in the case of metallic conductors
the attenuation factor ft of h = a + i@ is of the order 2 X 10~3 v^/^,
and hence the complementary waves corresponding to the other roots of (16)
are damped out at once.

The roots of (17), which give the modes of axially symmetric transverse

electric waves can be investigated according to the same procedure.

However, since there is no "
magnetic conductivity," there is also no

principal wave characterized by low attenuation. All axially symmetric
transverse electric waves in a solid metal cylinder are damped out too

quickly to be observable.

In the asymmetric case we have seen that the field is a linear com-
bination of transverse magnetic and transverse electric modes. The
existence of a principal wave with small attenuation implies that h ~ & 2 ,

t><$C 1. Since n is now different from zero, this would lead to extremely

large values of the right-hand member of (9), a condition that could be
fulfilled only by nearly infinite values of the conductivity <n. It turns

out that even with a conductivity as high as that of copper, the imaginary

part of the propagation factor h is still very large and the attenuation

such as to preclude the existence of asymmetric waves at any finite

distance from the source.

The results of this study may be summed up as follows. There are an
infinite number of modes of propagation along a solid conducting cylinder.

The amplitudes of these modes are the coefficients an and bn ,
whose values

are determined by the initial excitation the nature of the source. Of
all these modes, however, only one, the principal mode, a symmetric,
transverse magnetic wave, possesses a relatively low attenuation. All

others are damped out within a centimeter or two from the source, even at

frequencies as low as 60 cycles/sec. We shall see in the next section that

the field of the principal wave within the conductor tends to concentrate

in a thin skin near the surface. At high frequencies the center of the

cylinder is essentially free of field and current, with a correspondingly
small conversion of energy into heat. On the other hand the field and

current distribution within the cylinder in the case of complementary
waves is nearly uniform. The "skin effect" is then external, and the

conversion into heat correspondingly large. As the conductivity of the

cylinder is decreased, the attenuation of the principal wave increases,

while that of the complementary waves is diminished until finally, in the

limit of a perfect dielectric cylinder, we find the principal wave to have

vanished and the complementary waves propagated without attenuation.

9.17. Further Discussion of the Principal Wave. We have seen that

in the case of a solid conducting cylinder only the principal wave plays an
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important role. Our next task is to put the results of the preceding

section in the form best adapted to numerical discussion. The first step

is to express the coefficients aj and a? in terms of the total conduction

current in the cylinder, since this is usually the quantity most easily

measured. The current density parallel to the axis at any point within

the cylinder is J, = <n#j, and the total current, therefore,

r r2T r
(29) 7=1 I Jn r dBdr = ^ira\(Ti \ Jo(Xir) r dr elhz

~
l(

Jo Jo Jo

By (26), page 360,

(30) f Jo(Xir) r dr = f J^X^) = f .

Jo Xx o Xi

so that

The amplitude of the total current is defined by

(32) 7 = 706**-*"*,

and hence

Likewise by (14),

The longitudinal and transverse impedances were defined on page 354

by the relations

(35) Er
= Z,H9, E* = ~ZrH9 .

Then from (30), page 360, or directly from Eqs. (1) to (4), in Sec. 9.15,

one obtains

Ze - , z* - 22 *
(r > a\^ -

k\
' *r

ik\ H?(\*r)
J (T > a} '

It will be noted in passing that by (16),

(38) Z\ = Z% at r = a.

The continuity of the tangential components of E and H at the "boundary is

ensured by matching the radial impedances at r = a.

The surface impedance Z9 is defined as the ratio of longitudinal e.m.f.

measured at the surface of the conductor to the total current.

(39) En
= ZJ at r = a,
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whence by (1) and (33),

7 __ Xi /o(Xia)- ~--
~f\
-'

2x00-1

Finally, upon introducing the expressions for aj and aS into (2) and
(4), one obtains

From these relations and the various impedance functions the components
of the field can be determined at any point.

The approximation <TI/CICO 1 is valid for all metallic conductors.
In all practical cases it can be assumed, therefore, that

Thus one obtains for the longitudinal impedances

(43) Vm
~

01

Outside the cylinder the longitudinal impedance approaches the intrinsic

impedance of the dielectric medium. Inside the cylinder it is a pure
imaginary; the mean axial flow of energy within the cylinder is, therefore,
zero. For

(44) Si -

The transport of energy along the cylinder takes place entirely in the external

dielectric. The internal energy surges back and forth and supplies the
Joule heat losses.

The transverse impedance at an internal point reduces to

V*W r *\/ _ r .

J\(r

If r \/Wi<ri oo, the ratio /o(Xir)/Ji(Xir) i, as in (22) above. In
this limit

(46)

or exactly the relation obtained in (40), page 522, for a surface wave

propagated over an infinite plane. The conclusions to be drawn from
this result are of the greatest practical importance. If by r we under-
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stand a radius of curvature of any highly conducting surface, it is plausible

to assume that when r VWi^i 1, one can approximate

tV

(47)

where E% and H2 are components tangent to the surface and orthogonal

to each other. To the same approximation it can be assumed that the

intensity of the magnetic field at the surface of a metallic conductor

differs negligibly from the intensity at the same point were the con-

ductivity infinite. Consequently a problem involving metallic guides

5

can be solved first on the assumption of perfect conductivity. An

approximation to the proper value of tangential component of E is next

found from (47), and the losses of the system then determined by cal-

culating the energy flow into the metal and assuming that this is con-

verted entirely into heat. Examples of this procedure will be given later.

In Fig. 103 are plotted the magnitude and phase angle of the ratio

The values are taken from the tables of Jahnke

and Emde. 1 It is apparent that even for values of x as low as x = 3,

the deviation from the asymptotic value -i is very small. In m.k.s,

units

(49)

* "Tables of Functions," 2d ed., pp. 316-317, 1933.

= 2.81 X 10-' V"cim<ri, -,
= 2.
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and the conductivity of metals is of the order of 107
mhos/meter. The

radius of the wire must be expressed in meters. Consequently at low

frequencies x may be very much less than one unless the radius is rela-

tively large. Take, for example, the case of a No. 12-gauge copper wire,

r = 1.026 mm. Then x = 0.022 -\Tv. At v = 60 cycles/sec., x = 0.17.

At v = 10 6
cycles/sec., x =

6.9, and from the curves of Fig. 103 it is

clear that for this and all higher frequencies the field near the surface of

the wire is very nearly the same as that in the neighborhood of an infinite

plane.

The external radial impedance (37), with the help of (21), reduces to

(50) Z'r ^ -J e * ~ + ico/z2 1 1 - fa\ (j\ a y A/2

Inside the magnetic field is given approximately by

(51) , H i ~ -^ ~^r VWi^iO

while outside, if r is not too large,

(52) Hi =

r In

^ ^^- Conductor

FIG. 104. Structure of the field near the surface separating conductor and dielectric.

The structure of the field can be visualized by noting that |Zj| <K \Z}\,

\Z'\ >> \Z*\. Consequently |JS*| \E*\, \E
e

r \ |JS?j|.
Inside the cylinder

the lines of E run almost parallel to the axis, trailing behind the

wave; outside they leave the surface almost radially, with a very slight

forward slant. The charge on the surface of the cylinder is propagated
as a wave in the axial direction. Thus there are alternate bands of

positive and negative surface charge moving with the field. Lines of E
emerge from a positive band and return to a neighboring negative band.
A few terminate at infinity. The structure is pictured roughly in

Fig. 104.
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The current distribution within the cylinder is expressed by the

quantity

/~\ rr Jo(kir) Jn(X
f KOl I I _ >_ ' /-v/ __ _

{**' i/
J /I N

,

which is the ratio of current density at any internal point r to the current

density at the surface. Here x = r VWifri> as before, and XQ = a vWi0"i-

If z <SC 1, t/ may be calculated from the power series representations of

the Bessel function; if x 1, the asymptotic expansions can be used.

Tables of this ratio are given in Jahnke and Emde and also appear in

many handbooks and texts on electrical engineering. In Fig. 105 the

ratio of the current densities is plotted

as a function of the radius for several

values of the parameter XQ. For suffi-

ciently large values of XQ and x the

asymptotic expression for U becomes

Xo-0

(54) J7
G

^*/-<
\r

where 5 = \/2/co^i<7i is the depth of pen-

etration first defined on page 504. The

magnitude of the current density ratio

therefore,s

FIG. 105. Current distribution in a

cylinder of circular cross section.

J (x

(55)
- e

o r

a

rrV

Xo = a

V^Tl The current density decreases exponen-
'

tially from the surface inwards and, to

"*1 -

this approximation, in the same man-

ner as the field near an infinite, plane conductor. If a 5, the center of

the cylinder is practically free of current; if a < 5, the current layers inter-

fere with one another. One may assume for conductors of arbitrary cross

section that the field and current distributions near the surface differ negligi-

bly from those near the surface of an infinite plane provided the radius of cur-

vature is very much greater than the skin depth.

In conclusion we shall derive the classical expression for the alter-

nating-current resistance of the cylinder. According to (39) the surface

impedance Z. is the ratio of the longitudinal component of electric field

at a point on the surface of the wire to the total current. The circuit

equation for a unit length of line is

(56) E. = RI+Lft=(R-h
where R is the a.c. resistance and L the internal inductance per unit
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length. Then

(57) Z. = 72 - iuL =

and hence

/KO\ /4, wu XQ / oyxQ y z; T
(,os; p-

~___-
rrre*,

where again XQ
= a vWi*i> and J? = 1/xaVi is the direct-current

resistance per unit length. The magnitude and phase of the Bessel

function ratio can be taken directly from Fig. 103. If x <3C 1, we
obtain

ft- wL - 1 /zoY . 1

or

If ^o ^> 1, as in the case of a well-developed skin effect, the asymptotic

expansion of (58) leads to the Rayleigh formula

9.18. Waves in Hollow Pipes. An interesting application of the

general theory developed in Sec. 9.15 has been made to the propagation
of waves along dielectric cylinders bounded externally by a medium of

different inductive capacity or by a metallic sheath. The propagation
of electromagnetic waves through tubes was discussed first in detail by
Rayleigh,

1 while the theory of transmission along dielectric wires was

investigated some years later by Hondros and Debye2 and confirmed

experimentally by Schriever. 3 Until recently no great practical impor-
tance was attached to this work because of the difficulty in generating
waves of sufficiently high frequency. Progress in the development of

short-wave oscillators has largely overcome this obstacle and the possi-

bilities of such a mode of guiding waves were examined independently
in 1936 by workers at the Bell Laboratories 4 and by Barrow.* Since

then numerous contributions to the subject have appeared.

At extremely high frequencies the losses in the best available com-

mercial dielectrics are considerable; for this reason there is obvious

1 RAYLEIGH, Phil. Mag., 43, 125, 1897.
2 HONDROS and DEBYE, Ann. Physik, 32, 465, 1910.

8 ZAHN, Ann. Physik, 49, 907, 1916; SCHRIEVER, Ann. Physik, 63, 645, 1920.
4 SOUTHWORTH, Bell System Tech. /., 16, 284, 1936; CARSON, MEAD, and SCHEL-

KUNOFP, ibid., p. 310.

1 BARROW, Proc. Inst. Radio Engrs., 24, 1298, 1936.
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advantage to a wave guide from which all dielectric supports within

the field have been eliminated. This can be accomplished by propagating
the wave within a hollow cylinder whose walls are highly conducting.
A further advantage is due to the absence in such a system of stray field

outside the metal cylinder. At the extreme frequencies that prove

necessary, even a very thin sheath acts as a perfect shield. We may
assume, therefore, that the interior of the cylinder is a perfect dielectric,

while the exterior is an infinite, conducting medium. The allowed

modes of propagation are in general given by (9). If the conductivity

of the external cylinder is finite, there will always be some small degree

of coupling between the transverse magnetic and transverse electric

modes except in the axially symmetric case. Practically, however, the

conductivity of a metal is so high that this effect can usually be neglected

and each mode treated as belonging to one type or the other. A wave
that is essentially transverse magnetic is now commonly called an E
wave (longitudinal component of E) ; a wave that is essentially transverse

electric is called an H wave (longitudinal component of H).

We shall consider first the nondissipative case in which the conduc-

tivity of the external medium is infinite. The allowed modes of E and

H waves are given by the roots of (13) and at once we come upon a funda-

mental difference with respect to the earlier problem of a solid metal

cylinder. It was noted above that the principal branches of the Hankel

functions H (

Q
I)
(V) and H^(v) have no zeros and consequently their ratio

vanishes only at v = 0. This led to the principal wave, for which

h c^ fc 2 . When the conductivity of the wire was finite, certain com-

plementary waves could be excited but these disappeared immediately
because of their high attenuation. Now, on the other hand, the situation

is just reversed. The functions Jn (u) and J'n (u) have an infinity of real

zeros so long as n is real, and the zeros of Jn (u) and Jn+i(u) can be shown

to be interlaced (to separate one another).
1 Therefore Jn (a) and

J f

n(u) cannot vanish simultaneously and the modes of E waves are

determined by

(62) J n (u)
=

0,

while the modes of H waves are found from the roots of

(63) J'n(u) =
0,

where u = Xia = a V&! ~~ ^ 2
- Now u = is not a root of J*(u) 0.

It does satisfy Jn(u) = for n > 0, but in this case the field itself van-

ishes, as is apparent from Eqs. (1), page 524. Consequently there is no

principal wave in hollow pipes. If such guides are to be useful for com-

1 WATSON, "Theory of Bessel Functions," Chap. XV, Cambridge University

Press, 1922.



SBC. 9.18] WAVES IN HOLLOW PIPES 539

munication purposes, it must be shown that the attenuation of the

modes allowed by (62) and (63), corresponding to the complementary
modes of the previous analysis, is relatively small.

For each order n of (62) there is a denumerable set of roots, any one

of which will be designated unm . The propagation factor hnm corre-

sponding to the indicated mode of E wave is, therefore,

(64) hnm =
()'

If ki is real and greater than unm/a, then hnm is real and the wave is

propagated without attenuation. If ki < unm/a }
hnfn is a pure imaginary

and the attenuation is such that the mode is immediately suppressed.
In this sense the tube acts as a high-pass wave filter. Cutoff takes place

at the critical frequency vnm . In a dielectric k\ = a V^iMiJ hence,

//r\
(65) vnm =

The same condition can be expressed in terms of a critical wave length

(66) Xnra
nm

with the understanding that Xnm is the length of a wave of frequency

Vnm propagated in an unbounded medium k\. If the frequency is less

than j>nm, or the free wave length greater than Xnm, the mode is suppressed.

The first few roots of (62) are found to be

Uoi = 2.405, w02
= 5.520, u03

= 8.654,

(67) tin = 3.832, uu = 7.016, ...........
,

UH = 5.136, ...........
,

............

The longest possible free wave length corresponds to the mode MOI, and is

(68) Xoi = 2.61a.

Thus the limit is very roughly the diameter of the tube, so that a hollow-

pipe wave guide can be of practical utility only in the centimeter wave

band.

The allowed modes of the transverse electric, or H waves, are deter-

mined in the same manner. Designating the roots of (63) by u'nm ,
we find

(69) u'01
= 3.832, w'02 = 7.016, ,

i/n = 1.84, u( 2
=

5.33, ,

The formulas for the propagation constant and critical frequency are

identical with (64) and (65). It appears that of all possible modes, the
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HII component of the H wave has the longest critical free wave length,

but in practice this advantage is outweighed by the fact that it also

suffers a more rapid attenuation than some of the others.

The character of the propagation in the neighborhood of the critical

frequencies can be made clear by graphs of phase and group velocities.

We write the propagation factor of any allowed mode in the form

(70)
h

Then the phase velocity is

(71) vnm =

where Vi = 1/VTiMi is the phase velocity in an unbounded medium whose

propagation constant is fci, while the group velocity, according to (17),

page 333, is

(72)

Vnm ~ "77
r=

I

do)

Phase and group velocities are

related by

(73) VnmVnm = V\.

The relation of phase and group
velocities to the impressed fre-

quency is shown in Fig. 106. One
will note that the phase velocity in

the tube is always greater than that

in the free medium. It increases

with decreasing frequency and

approaches infinity near the cutoff

frequency vnm . The group velocity

decreases with decreasing frequency
and is zero at v = vnm . The dis-

persion is normal and becomes very

large in the neighborhood of i>nm .

The components of the field within the tube can be written down
directly from (1) and (2), page 524. In virtue of (70) and (65), we have

FIG. 106. Phase and group velocities in

a hollow pipe, vi l/\/ei/ii.

(74) K\ ~ -

v a
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For any mode of U-wave type, the field is

541

(75)

R-O..J,.

H, - T *_ ^
r-un

For any mode of #-wave type, one finds

COS

sin
nB

sin

cos
nO

The arbitrary amplitudes anm and 6nm will be determined by the

initial excitation. There are theorems analogous to those of Fourier

analysis which govern the representation of a function f(r/a) in terms of

Bessel functions. Suppose that f(t) is a function defined arbitrarily in

the interval ^ t < 1, and that T |**/(0| dt exists. Let

(79) anm =
2 f 1

/2
, . tf(t)Jn(tunm) dt.

n+i(unm) Jo

Let x = r/a be any internal point of an interval (xi, x^) such that

< xi < x 2 < 1 and such that/(0 has limited total fluctuation in (xi, x2).

Then the Fourier-Bessel series

(80) 0)
-

0)]

m -1
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converges and its sum is the right-hand side of (80).
1 Of the modes

which are excited, only those will be propagated whose propagation

factors hnm are real.

It may be noted in passing that at the critical frequency v = vnrn ,
the

energy flow takes place entirely in the transverse plane. There is no

flow parallel to the axis of the cylinder. The longitudinal impedance of

the E waves is

- Er

which approaches zero as v > vnm} while for the H waves

Let us calculate next the total energy flow in the axial direction. The

time average of this quantity is

(83) W,

where

(84) S. = $Re(Er8e - EQfir}.

For the E waves

fr YT co

nl-Wnm) -

\a /J s

^ cos>

+
runrn _

a sm

The sin2 n0 and cos2 nQ factors reduce to TT after integration. Let r = ax.

Then in virtue of the recurrence relations (24) and (25) on page 359 and

the condition Jn(unn,) = 0, we obtain

/*!

=
^-

I [/2-l(^n

and, therefore,

(87) tT. - IM
1 WATSON, toe. eft., Chap. XVIII.
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Likewise for the H waves,

By using the same recurrence formulas and the relation J'n (u'nr̂ =
0,

this integrates to give for the total energy flow

m w. = !M '

There remains the question of dissipation. If the conductivity of the

walls is finite, the propagation factors hnm have a small imaginary part

which gives rise to an attenuation of the field as it travels along the axis

of the tube. These complex propagation constants must now be deter-

mined from Eq. (9). The calculation is simplified to some extent by
the fact that the Hankel functions may be replaced by their asymptotic

representations, owing to the large conductivity of the outer metal

cylinder; the roots of (9) will differ, therefore, by a very small amount

from the values obtained from (62) and (63) for the case of infinite

conductivity. They can be determined without great difficulty by

expanding the functions Jn(u) and J'n (u) about the points unn. and u'nm .

It will be more instructive at this point to calculate the attenuation

by the approximate method outlined on page 534. If the conductivity

is infinite, the tangential components EM and EQ are zero at r a; if the

cylinder is metal, the skin depth 5 will certainly be very much less than

the radius a. Then to a very good approximation, at r = a

Thus we can compute the radial flow of energy into the metal; since this

outflow is at the expense of the flow down the tube, we can find the

attenuation. The propagation factor is written in the form

(91) hnm = Qfnm + tfnm.

The mean radial flow per unit length at the surface of the cylinder is

(92) Wr
=

f*"
Sra d9,

where

(93) Sr
= $
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For the E waves

(94) W,- -I

while for the transverse electric, or H waves, one obtains

[CHAP. IX

To the same approximation the axial flow is still given by (87) and

(89) when these expressions are multiplied by an attenuation factor

exp(-2/3nmz) or exp(-2jO). The rate at which W, decreases along

the axis is

(96) dz

Consequently the attenuation factors of the E waves are given by

(97) fin
-"'~- '" l

for the H waves,

(98) ) +
1 -

These results are valid only when v is greater than the critical frequency.

If either a or v approaches infinity, the attenuation factors of the

E waves approach the limit
,
where

(99)

which increases in the normal manner as the square root of the frequency.

In Fig. 107 the attenuation ratios /W0o and 0L/0o are plotted as func-

tions of VQI/V for the two lowest modes of E and H waves. POI is the

critical frequency of the fundamental Boi wave. In the neighborhood of

the critical frequencies the attenuation increases with great rapidity.

Most notable is the behavior of the attenuation curve of the #01 wave,

which decreases with increasing frequency and approaches zero as v > > .

A further investigation shows, however, that this anomalous behavior is

not common to all hollow tubes, but is peculiar to certain symmetrical
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cross sections, such as the circle and square. The stability of the lower

modes with respect to small changes in cross section has been discussed

FIQ. 107. Attenuation ratios of E and H waves. VQI = critical frequency of Eo\ wave.

by Brillouin 1 and by Chu 2 in connection with the propagation of waves in

hollow tubes of elliptic and rectangular cross section.

COAXIAL LINES

9.19. Propagation Constant. The most serious disadvantage of the

hollow-tube transmission line is the absence of a principal mode of

oscillation and the consequent limitation to wave lengths which are of

the order of the diameter of the tube or less. This difficulty can be

overcome by introducing an axial conductor. A principal mode then

exists which allows propagation at all frequencies in the space bounded

by two concentric cylinders. The coaxial line shares with the hollow

tube the advantage of confining the field to its interior and thus elimi-

nating interference with external circuits at high frequencies. Its losses,

on the other hand, tend to be larger due to skin effect in the central

conductor and imperfect insulation at the points of support.

In practice the outer cylinder is, of course, of finite thickness. At low

frequencies the skin depth may exceed this thickness, in which case the

field penetrates to the outside. The technical problem of
"
cross talk"

1 BRILLOUIN, Electrical Communication, 16, 350, 1938.
8 CHU, /. Applied Phys., 9, 583, 1938. See also CHU and BARROW, Proc. In*t.

Radio Engrs., 26, 1520, 1938.
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between telephone cables and of interference caused by currents induced

in communication lines through shielded power cables is a very serious

one. However, an exhaustive discussion of such problems has no place

here, for it is our purpose merely to illustrate the application of electro-

magnetic theory. Coaxial lines now play a very important part in radio

and telephone communication at frequencies

greater than 100 kc./sec. and the analysis of

this section will be restricted to frequencies

of this order.

We assume, therefore, that the skin depth
is very much less than the thickness of the

outer conducting cylinder, which can hence be

assumed to have an infinite outer radius. In

Fig. 108 the concentric cylinders (1) and (3) are
FIG. 108. Cross section of j , *., ., . . ,. . . ,~^

a coaxial line. conductors, while the intermediate region (2)

is a dielectric to which, however, it may be

necessary to ascribe a small conductivity. The inner and outer radii

are a\ and a2 . Only the symmetric, transverse magnetic modes (E waves)
need be considered. Asymmetric modes can be excited, but unless the

wave length is of the same order as the difference a 2 ai, their propaga-
tion constants will be pure imaginaries and they will be immediately

damped out. The components of the field are taken directly from (36)

and (37), page 361, for the case n 0. Let I be the total current in the

central conductor and IQ its amplitude.

(1) / =

Then exactly as in Sec. 9.17, we have for the central conductor, r <

(2) #,< =

The longitudinal and radial impedances are defined by the relations

(3) Ef
= ZJI9 , E, = -ZrHe.

For the region (1) we have, as in Sec. 9.17,

o(Xir)
'

k\'
*
"

ik\

To construct a solution appropriate to the intermediate region (2)

which can be fitted at both internal and external boundaries, two inde-

pendent Bessel functions must be used. Which two is not important,
since every solution can be represented as a linear combination of any
pair of independent solutions. If the radii a\ and a^ are very large, the

region (2) is bounded effectively by two plane surfaces. To represent a
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solution under these circumstances one would naturally use sine and
cosine functions. Now it will be recalled (page 359) that if the argument

p is very large, the function \fpJo(p) ++- cos ( p j)>
while the

function of the second kind \/P NO(P) > */- sin ( p ?) Conse-

quently we shall write for the region ai < r < a2 ,

(5) #,<*> = -~L (A Jfar) + B tfi(X,r)]e-*",
2

in which A and are undetermined coefficients. The components of

E (2) are then obtained from (3) and the relations

+fa\ 7(2) _ t
7(2) _W * ~

kl
' * r

~

In the outer conductor the proper behavior of the field at infinity is

ensured by choosing a Hankel function, as in Sec. 9.15. If r > a2,

(7) H9
=

7(8) -
r
~

The coefficients A, B, and C are next determined from the boundary
conditions. At both r = ai and r = a2 the z-components of E and the

^-components of H are continuous. These two conditions are equivalent

to the continuity of the radial impedance functions. Hence

= Z< 2
>, at r = ai,

= Z< 8
>, at r = 02,

or

MiXi t

ftj

These are homogeneous equations in A and B and yield the ratio of A to

fi, but not their independent values. From (10) there follows
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The roots of this determinantal equation are the characteristic values

Aom, (w =
1, 2, 3 . . . )> which fix the allowed symmetric modes of

propagation.
9.20. Infinite Conductivity. The complexity of (11) is such that one

must resort to approximate methods of determining the roots. Let ua

consider first the relatively simple case in which the inner and outer cylin-

ders are perfect conductors. We recall that Xf = k\ A 2
, X| = k\ A2

.

The imaginary part of h must remain finite, otherwise the wave would not

be propagated. Hence, as the conductivity approaches infinity, Xi ki 9

X8 fc 3 ;
at the same time the absolute values of both ki and kz approach

infinity. Then (11) reduces to

A # (X2ai)

B J (X2ai)

If X 2 is very small, J (X2ai) ^ J (X 2a 2)
a* 1; for the functions No we

use the approximation (12), page 358. It is then apparent that the

principal root of (12) corresponds to X2
=

0, or

(13) h = fa.

There is a principal wave whose propagation constant is that of the medium

bounded by the two infinitely conducting cylinders.

There are also complementary waves. If X 2 is very large, the

asymptotic representations (18) and (19), page 359, are valid and (12)

takes the form

(14) sin X2(a2
-

ai) ^ 0,

whose roots are

(15) h**^ <kl -
> tm =

1, 2, 3,

tTLir

If fc 2 is real and greater than- > then hQm is real and the wave is
a2 ai

propagated without attenuation. If, however, &2 is less than --
>

then A m is a pure imaginary and the attenuation is such that the wave is

immediately suppressed. All this is comparable to the hollow tube dis-

cussed in Sec. 9.18. The critical frequencies occur at

(16) FO.^
2ir(a2

-
and critical wave lengths at

(17) X0m -
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In communication practice the distance a2 ai usually amounts to a

few centimeters at the most and complementary waves are completely

ruled out. The same considerations apply to the asymmetric modes,
so that henceforth we shall deal only with the principal wave.

In (5) put A = and note that as X2 > 0, Ni(X2r) 2/7rX2r. Then
for sufficiently small values of X2 the magnetic field between the con-

ductors is equal to
D

(18) H9
= 6*..-*ii

r

The major part of the conduction current follows the surface of the inner

and outer cylinders. If the intervening dielectric has some conductivity,

there will also be a transverse component of current from one cylinder to

the other, with a resultant decrease in current amplitude along the line.

The longitudinal current carried by the inner cylinder can be found

directly from Ampere's law. It is 27rai//0 (2>
,

if 7/0
(2) is measured at

r = a\. Hence

(19) B

where Jo is the conduction-current amplitude along the inner conductor.

(20) *.

(21) Z<2> = , Z = 0,
AC 2

(22) E<2> = ^f -, E = 0.V ' T

The transverse voltage at any point along the line is by definition

(23) 7-

while the ratio of the transverse voltage to the current in an infinite line

is called its characteristic impedance Zc .

(24) i-l'-S 1

where ZQ
=

a>/i2/&2 is the intrinsic impedance of a medium whose propaga-

tion constant is & 2 ,
as derived in (83), page 283.

Consider for a moment the distributed parameter line represented

schematically in Fig. 109. L is the series inductance; R, the series

resistance; C, the shunt capacity; and (?, the shunt conductance; all per

unit length of line and uniformly distributed. The equations governing
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the distribution of current and transverse voltage along the line are

easily shown to be

(25)

(26) =-C -GF =-((?- ;

The quantity Z = R iuL is the series impedance; Y = G t'coC is the

L R

Fio. 109. Schematic representation of a distributed parameter transmission line.

shunt admittance of the line. Upon solving (25) and (26) simultaneously,
one obtains the so-called

"
telegrapher's equation/'

(27)

or

(28) = ZYV,

with an identical equation for the current. The propagation constant

is i \/YZ and the characteristic impedance

(29)

as in Sec. 5.6.

If now we differentiate (23) with respect to z, the result is

dV
dz

In the present instance the series resistance is zero; consequently, it

follows that the series inductance per unit length of the coaxial line is

(30)
T M2 lr>

*L =
;=r- m
2ir ai

henrys/meter.

The propagation constant is & 2 ,
from which the shunt admittance is

found to be

(31) y= 27rfc? 1 2rr ,

i 02
In'

The shunt conductance and shunt capacity are, therefore,

(32) G = - mhos/meter,
i 02
In

C = farads/meter.

In
02
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It will be observed that L and C satisfy the fundamental relation

(33) LC =
2/i 2 .

9.21. Finite Conductivity. In practice the cylindrical guides are of

metal whose conductivity, although not infinite, is very large. To a

very good approximation the distribution of the field between the coaxial

cylinders is the same as in the case of perfect conductors, but the propaga-
tion factor must be modified to take into account the additional attenua-

tion. To simplify the problem it will be assumed that both inner and

outer cylinders are of the same material, as is ordinarily the case. Then

Xi = X 3 ^ fci.

Since X 2 , although no longer zero, must still be very small, the approxima-
tions (12), page 358, are valid.

(35)

y = 1.781.

Then with reference to (11) we have

2

Mii r /> n \ ^
x 7,2

^ uA 2ai; c^
H2\2Ki

We have admitted the possibility of a small conductivity in the inter-

mediate dielectric k^ but this may be neglected in estimating orders of

magnitude. Thus assuming for the moment that k% c^ o?/c, we have for

copper

(38)
*

V '
2f

Remembering that ai and a 2 are measured in meters and hence are also

small quantities, it is apparent that the denominators of the determinantal

equation (11) can be replaced by unity and, therefore,

whence we obtain
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02 M2

(41)

But X| = &i
- A 2 and so finally

.

___ w
a2j

= *,(!
-

A*).

The approximate value of the ratio A/B as expressed in (39) can now

be introduced into (5) to determine the magnetic field intensity at any

point in the dielectric. One obtains

7T 6>jU 2Af LI* 2/*2 \tCOCTi Ji(Xi \/t) ai -

A logarithmic term has been dropped as obviously negligible. We assume

that the conductivity <r2 of the dielectric is very small, if not zero. Then

the second term of (43) increases essentially with the three-halves power

of the frequency. An easy computation will show as in (38) that unless

ai is very small, or r very large, this second term is entirely negligible with

respect to the first, even at frequencies as high as 10 10
cycles/sec. The

constant B is determined by the condition 27raifl
r

^
(2) = I at the surface

of the inner conductor, so that very nearly

(44) H'
W -&?

as in the previous case of perfect conductivity. Physically this means

that the conduction and displacement currents in the dielectric are

negligible with respect to the conduction current carried by the inner

conductor.

The radial electric field intensity is

C45,

and the transverse voltage

(46) V-

This gives for the characteristic impedance
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the series impedance Z and shunt admittance Y of the line follow directly

from the relations

v48)

Z=-ihZe, Y=-i.
fie

The approximate value of the shunt admittance and in practical cases

it is an exceedingly good approximation is

(49) 7~ _. = !

or exactly the same expression as was obtained in the case of infinitely

conducting guides. For the series impedance, on the other hand, we
obtain

(50) Z ~ -
(1
-

Afc)' In -2 = R - iuL.
ATT &\

The behavior of the line from an engineering standpoint is now com-

pletely determined by the Eqs. (25) and (26).

If x\ ^> 1, as is usually the case, one can replace the cylinder functions

by their asymptotic values

/.(*! VI) _ . ^ .

/i(
'

Then

(52) A
M2 \oxri

This correction term is small, so that (Afc)
2 can be discarded. The

series resistance and inductance are now

D 1 f^Ti/l ,
l\ u / xR^ = J (-+--] ohms/meter,

(53)
r a 11 r-/i AHLM2 I i #2 I

1 1
/ Ml I J- A \ * ,

c^ jr- In
1 7= * I

1
I henrys/meter.

Zir L di \/ 4?r M2 \ w\ \fli a2/ J

For copper guides, ai = 5.8 X 10 7
mhos/meter, and we obtain

R ~ 0.416 X 10-7 v/v (
~ + ) ohms/meter,

/r>\ \Ol &2/
(54)

X

^l

7

L~ 2 X 10-7 In 5! + 5!= Ji (1 + I ) henrys/meter.
L fli ou.z \ v \ai flj/ j
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The attenuation is calculated from the propagation factor

h = fc2 (l
-

Afc)
= a + ip.

At very high frequencies the losses in the dielectric spacers rise rapidly,
but when v is less than a megacycle the shunt conductance of a well-

constructed line can often be neglected. If we assume that & 2
= w \/2M2,

the attenuation factor reduces to

<>

In engineering practice it is customary to define the attenuation in terms

of the logarithm of the power ratio. Ten times the logarithm to the base

10 of the ratio of output power to input power expresses the attenuation in

decibels. Since the power ratio is exp( 2f3z), the attenuation per unit

length of line is

(56) Ndb = -200 logic e = - 8.686 decibels/meter.

OSCILLATIONS OF A SPHERE

9.22. Natural Modes. The problems of the plane and the cylinder
treated previously in this chapter concern infinite surfaces which serve

as guides to traveling waves. The sphere, on the other hand, is an

example of a body bounded by a closed surface within which there can

be set up a system of standing waves.

We shall suppose that the sphere, of radius a and characterized

electrically by the constant ki, is embedded in an infinite homogeneous
medium fc 2 . The field will be represented in terms of the spherical,

vector wave functions discussed in Sees. 7.11 to 7.14. According to

(12), page 394,

(1) E = -
(a M + 6 N ) H = ~

Here the subscript n stands for all indices, of which there are in the present
case three. The functions may be odd or even, and the indices m and n
will determine the number of nodes with respect to the spherical angles

<t> and 6. It will be recalled that the radial component of every function

Me is zero. Hence, if the coefficients an are all zero, only the bn being
o
m*

excited, the field has a radial component of E but the magnetic vector

is always perpendicular to the radius vector. There must be, therefore,
a distribution of electric charge on the surface of the sphere. The

oscillations whose amplitudes are represented by the coefficients bn are of
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electric type. They have in the past been referred to also as transverse

magnetic, or E waves. If, on the other hand, only the an are excited, the

field is such as would be produced by oscillating magnetic charges on the

surface of the sphere and the field is said to be of magnetic type. These

oscillations may also be said to be transverse electric, or H waves.

Let us consider first an oscillation of magnetic type.

Jj, = (Aemn-IVLeTnn -f- AomnNLomn))

" " \A emnN emn -f- AomnNotnn)*
ZCO/X

The coefficients A e^
are as yet arbitrary and the frequency w will shortly

o

be determined by the boundary conditions. The functions M e and
o
mn

Ne must now be chosen such that the field is finite at the origin and is
O
mn

regular at infinity. By (11) and (12), page 416, we have when R < a:

a -

(3)
"

sin0

fjiR
_^ n \"- T i) y^ ^jn(kiR) e-* '.

1

^ =
-Sok asi^ 5

where yi,n is the tesseral harmonic

(5) Yi,n
= (A* cos m</. + A*.,, sin

and the prime in (4) denotes differentiation with respect to the argument
kiR.

The external field in the region R > a is obtained by replacing in (3)

and (4) FU by Y'mn ,

(6) Y'mn = (A;mn cos m* + Ajmn sin

fci and iii by A;2 and ^ 2 ,
and jn(kiK) by

At the surface of the sphere the continuity of the tangential com-

ponents leads to the relations
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all four reducing to the conditions

with an identical pair relating the odd coefficients A^ and A^n . Let

now

(9) p = kzdj ki = Nk2 , kia = Np.

Then the boundary conditions (8) are satisfied only by a discrete set of

characteristic values pna which are the roots of the transcendental equation

Since the allowed values of p belong to a discrete set, it follows that

there is a corresponding set of natural frequencies, or modes of oscillation.

According to (9),

(11) Pna
= (^.2/*2 + tW^*^)**

2
;

hence, the natural frequencies of the magnetic modes are

. M2<T2
*

2

As in every characteristic-value problem, the amplitudes of the allowed

modes are determined by the initial distribution of the field. Suppose

that within the sphere at the instant t = the radial component of H* is

a specified function of the form /i(0, ^)f^(R). We note first that the

natural frequencies <on, are independent of the distribution in <. The

coefficients A\ are uniquely determined by f(d, <) as in (18), page 403.
o

The series

(13) HI -
V ' *

where Y*n = ^ F* n ,
then depends in the desired manner on 6 and <

tn-O

at t = 0. But there are an infinite number of such series, one for each

root s of (10). Each of these series can be multiplied by another coeffi-

cient A\ and the summation extended over s.
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in which the A* are to be determined so that (14) matches /2(-R) at
t = 0. The representation of arbitrary functions in Fourier-Bessel
series is treated by Watson,

1 and the theory can be adapted to the spher-
ical Bessel functions jn(kjt). Finally, we note that before summing one
can multiply the particular solutions by kjt and then differentiate with
respect to the same variable. No change is necessary in the coefficients

^w but tlle summation over s is modified to fit the conditions imposed

on either H9
i or II'+*. A field has now been determined which ful-

fills the specified conditions within the sphere at t = 0. The factor

exp( z'wnaO fixes the behavior at all subsequent times, and in virtue
of the uniqueness theorem of Sec. 9.2 the field is also determined at all

external points.

The oscillations of electric type are quite independent of the magnetic
modes, but the fields and natural frequencies are determined in exactly
the same manner. In place of (2) we have in this case

E = (-0mnNemn -f- 50mnNomn),

(15) kH =
~. CBemnMeinn + BomnNLomn),
ifWfJL

and the field at any internal point R < a is

r

(16) E,< = -

(17)

The amplitudes of the internal and external fields are related by the

boundary conditions

_
(18)

o "

}'
= B't

which lead to the transcendental equation

1 WATSON, loc. tit., Chap. XVIII.
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for the characteristic values pn . The natural frequencies wn are obtained

from (12).

9.23. Oscillations of a Conducting Sphere. We shall suppose the

sphere to be conducting, but the medium in which it is embedded to be a

perfect dielectric. 1 Consider first the limiting case in which 0*1 > .

The two determinantal equations (10) and (19) now reduce to

(20) h?(p) =0, [p/e(p)]' =
0,

whose roots are respectively the characteristic values of the magnetic
and electric modes. However, each function h(p) can be represented

as an exponential times a polynomial, Sec. 7.4, page 405. The roots in

question are the roots of these polynomials and are, therefore, finite in

number for each function of finite order n. Take, for example, the first

electric mode for which n = 1. By (31), page 405,

(21) Ai(p) = --<
P

(22) [p hp(p)Y = ~\ ^"(p
2 + ip

-
1),v y LA-

p2

and the desired roots are those of p
2 + tp 1 = 0, or pu = 0.86 fO.5,

p 12
= 0.86 t'0.5. Since <?%

=
0, the natural frequencies are given by

(23)

hence, in the case of the lowest electric mode

0.5

(24) e-*1* = e

The amplitude is reduced to the eth part of its initial value in the time

required for a wave to travel a distance equal to the diameter of the

sphere. The wave length in the external medium is X =
^-^ a = 7.3a.

Since the conductivity is infinite, the damping must be attributed entirely

to loss of energy by radiation. This loss is very rapid, even in the case

of the lowest mode, and in the example just cited the amplitude is reduced

to the eth part of its initial value in a time equal to the 0.27th part of a

complete period.

The first few characteristic values for the problem of the infinitely

conducting sphere are tabulated below. The minimum damping factor

is that of the lowest electric mode.

1 DBTB, Ann. Physik, 80, 57, 1909.
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When the sphere is of metal, the conductivity is finite, but N is very

large none the less. We may expect, therefore, to find roots of (10)

and (19) in the neighborhood of those of (20). If \Np\ 1, the

asymptotic representation of (10) is

Let the deviation from any root pnt of the equation h }

(p)
= be Apn,.

The right side of (25) is expanded in a Taylor series about p = pn .

Retaining only the linear term, we obtain

(26)
1

,tan / Ar
n + l

f Npna
--

2~~
*

)

which determines the corrections to be applied to the natural frequencies

of the magnetic modes. Likewise for the electric modes, we replace (19)

by

(27)(27) tantan

Let pna be a root of

conductivity.

(28) [p

From (4), page 400,

(29) P[p/#

hence,

(30) ApM c

' = and Apn- the deviation due to a finite

- n(n

n(n + 1)
tan Np

i
= 0;

n + 1
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Thus, in the case of the fundamental electric mode, one obtains

(31) -tPl c- -0.50 iO.86 l ~ -

since the tangent of a very large complex number is +i. In the case of a

metal sphere

(32) "-!==!!!.
Ma</V ^/2 <TI

It will be recalled finally that in our study of the natural modes of

propagation along a cylinder, the principal wave corresponded to the

condition: \& very large inside the cylinder and X 2a nearly zero outside.

A complementary set of waves was shown to exist, however, for which

Xia was small. The same circumstances arise in the case of the sphere.

Debye has pointed out that sets of roots can be found for (10) and (19)

such that Np is a finite number even when N itself is very large. If the

conductivity of the sphere is finite, the damping of the oscillations is

extremely rapid, as was the case of the complementary cylindrical waves.

On the other hand, if the sphere is a perfect dielectric, the characteristic

values are real: there is no damping ,
whence it appears that these modes do

not radiate.

9.24. Oscillations in a Spherical Cavity. So far as it is possible to

foresee at the present time, ultrahigh-frequency radio circuits will be

reduced eventually to hollow-tube transmission lines and cavity reso-

nators. The latter are electromagnetic analogues of the Helmholtz

resonators used in acoustics. Such systems do not radiate; one may,

therefore, ascribe to them definite values of electric and magnetic energy,

and consequently effective inductance, capacitance, and resistance

parameters which depend solely on the configuration. The damping
results from a penetration of the field into the metal walls a distance

equal approximately to the skin depth.

The character of the oscillations in a resonator can be illustrated by
the example of a spherical cavity. Let us suppose now that the interior

of the sphere is a perfect dielectric, so that k\ = o> V^iMi, while the external

region has an infinite conductivity. Then N =
0, and the characteristic

values of the magnetic and electric modes are determined respectively by

(33) jn(M -
0, [kiajnfaa)]'

= 0.

Let un. be the roots of jn(kia) = 0. The lower of these roots are

iin = 4.50, ti ls
=

7.64,

1*21
==

5.8, .

Since kia co V^iMi <*> the characteristic frequencies of the magnetic
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modes are given by

(35) vn. -

561

Formally this is identical with Eq. (65), page 539, for the characteristic

frequencies of a hollow pipe. The free wave length, or wave length at

the same frequency in an unbounded medium, is

(36)

The longest allowable wave length among the magnetic modes is

Xn = 27ra/4.5 = 1.4a. In this case the field has only the components

E+y HR ,
and Ho, and the charge flows along parallels of latitude. The

VJ
E H

FIG. 110. The lowest magnetic mode of oscillation in a spherical resonator, showing the
field in a meridian plane.

distribution of the electric and magnetic lines of force in a meridian plane

is illustrated by Fig. 110.

The roots of the second of Eqs. 33 will be denoted by u'M and the

characteristic frequencies of the electric modes by ^. Apart from a

prime, the formulas (35) and (36) remain valid and a calculation shows

that the free wave length of the fundamental electric mode is

X'n = 2ra/2.75 = 2.28a.

This is the lowest of all possible modes, both electric and magnetic.

The axially symmetric case corresponds to an oscillating flow of charge

along meridian lines from pole to pole; the magnetic lines follow parallels

of latitude. The lines of force in a meridian plane are shown in Fig. 111.

At any internal point of the sphere, when m =
0, n =

1, we have from

(16) and (17):
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M2 '75
f)J

sin j/2.75 |j
e~

where c*/n = 2.75/a

The surface current density K at any point on the wall of the cavity

is K = n X H, where n is a unit vec-

tor directed radially inwards and H is

measured on the cavity side of the

surface. Since there is only the single

component H^ }
the current density is

directed along meridian lines. The

total charge crossing the equator per

second is

(38) / = 2-n-aK

= 27ra i J- A ji(2.75) e-*-'-

E H
FIG. 111. The lowest electric mode

of oscillation in a spherical resonator,

showing the field in a meridian plane.

(39)

An equivalent inductance and re-

sistance for the oscillating system car

be defined in terms of this current.

The average magnetic energy withir
.

the Cavity is

f f
[j/2.75

B sin' 6 dd dR

The integral can be evaluated without difficulty either by applying

general formulas for the integration of cylindrical Bessel functions, o

directly by noting that

(40)

We find

(41)

whence

(42)

=
-J^R (

COS klR "
k^y

T = y iAV X 0.054.

1 HANSEN, /. Applied Phys., 9, 654, 1938,
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Next we define an inductance L by the formula

(43) T = |LI
2 = |L/7.

If the current I in (43) is arbitrarily taken to be that which crosses the

equator, the equivalent inductance is by (38), (42), and (43)

(44) L = 0.077/iia henrys.

Thus far it has been assumed that the conductivity of the walls is

infinite, in which case EQ vanishes at R = a and the attenuation is zero.

If, however, the walls are metallic, the tangential component of E at the

surface may be obtained from the approximation (47), page 534. At
R = a

(45) E. ^ J*& H, e~* ~ iA J^^ sin 0^(2.75) e^""**
\ 0"2 \ 0"2Ml

There is now a radial flow of energy into the metal whose mean density is

(46) SR = ReS*R = -^= 51 fe sin 2
j*(2.75).

2 V 2 Mi \ ^2

The energy lost per unit time is obtained by integrating (46) over the

surface of the sphere.

(47) W = a2

f^ I*' Ss sin
JO JO 0<T2 Ml '

where 5 = * /~r
^s ^e skin depth defined on page 504. An equiva-

lent series resistance 61 is expressed by

(48) W = (R/ 2 =
i<Rl/,

whence

2 1 0.2121
(49) (R =

37TCT2

The parameter Q, defined as the ratio of inductive reactance to series

resistance, is often used as a measure of circuit efficiency. The Q of the

cavity oscillating at its fundamental frequency is

(50) Q-- 0.725
|

DIFFRACTION OF A PLANE WAVE BY A SPHERE

9.26. Expansion of the Diffracted Field. A periodic wave incident

upon a material body of any description gives rise to a forced oscillation

of free and bound charges synchronous with the applied field. These
constrained movements of charge set up in turn a secondary field both
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inside and outside the body. The resultant field at any point is then

the vector sum of the primary and secondary fields. In general the

forced oscillations fail to match the conditions prevailing at the instant

the primary field was first established. To ensure fulfillment of the

boundary conditions at all times, a transient term must be added, con-

structed from the natural modes with suitable amplitudes. Such tran-

sient oscillations, however, are quickly damped by absorption and

radiation losses, leaving only the steady-state, synchronous term.

The simplest problem of this class and at the same time one of great

practical interest is that of a plane wave falling upon a sphere. As in the

preceding section, we shall suppose the sphere of radius a and propaga-
tion constant ki to be embedded in an infinite, homogeneous medium & 2 .

A plane wave, whose electric vector is linearly polarized in the x-direction,

is propagated in the direction of the positive z-axis. The expansion of

this incident field in vector spherical wave functions has been given in

(36), page 419.

E, = aJSo*""-" = EQe~^ jg t

J^
+ *

(1)

where EQ is the amplitude and

(2) m<J>
= -

jn(k*R) Pi(cos 8) <t>iz
-

g
n bill U bill

(3) ng
= n("

fc

+ 1}
jn(k,R) Pi(cos 0)

*

s
* u + [k2R jn (Jc2R)}'

iCcos .)

-s
* is,

the prime denoting differentiation with respect to the argument
The induced secondary field must be constructed in two parts, the one

applying to the interior of the sphere and the other valid at all external

points with the necessary regularity at infinity. By analogy with the

problem of plane boundaries discussed in Sees. 9.4 to 9.9, these two parts

will be referred to as transmitted and reflected waves, although such

terms are strictly appropriate only when the wave length is very much
smaller than the radius of the sphere. Let us write

00

Er
-

(4)

TT _ ^2 TH ^_V,

W/Z2 -^-J
W"" 1
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valid when R > a, and

(5)

H<
-~

,
n = 1

which hold when R < a. The functions m< 8) and n< 3) are obtained by
o
ln

o
ln

replacing jn (k 2R) by h (

n
l)
(k 2R) in (2) and (3). &i replaces fc 2 in (5).

The boundary conditions at R = a are

/
fi

x ii X (Ei + Er)
= u X E f,

^ ;
ii X (H* + Hr)

= i x X H,.

These lead to two pairs of inhomogencous equations for the expansion
coefficients.

<ti(Np) ~ <^'(P) = J(P),
=

Ml[p Jn(p)]',

_

where again

(9) ki = Nk 2 , p kza, kid = JVp.

This system is now solved for the coefficients of the external field

If the conductivity or inductive capacity of the sphere is large relative

to the ambient medium, and at the same time the radius a is not too small,

then \Np\ ^> 1 and (10) and (11) can be greatly simplified by use of the

asymptotic expressions

jn(Np)
~

-TJT-
COS ( Np

(12)
Ap V

[Npjn(Np)Y
~" SI11

!

In this case

Since /^(p) = jw (p) + inn (p), these coefficients can also be put in the

form

(14) aj ^ tV^" sin yn , 6J ^ tV>; sin -y'n ,
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where

(15) tan Tn - tan 7
'

n
=

v J nn (p)
In

To sum up, we have found that the primary wave excites certain

partial oscillations in the sphere. These are not the natural modes

discussed in Sec. 9.22, for all are synchronous with the applied field.

These partial oscillations and their associated fields, however, are of

electric and magnetic type for the same reasons that were set forth in

Sec. 9.22. The coefficients an are the amplitudes of the oscillations of

magnetic type, while the bn are the amplitudes of electric oscillations.

Whenever the impressed frequency co approaches a characteristic fre-

quency con8 of the free oscillations, resonance phenomena will occur.

Now the characteristic frequencies of the magnetic oscillations have been

shown to satisfy (10), Sec. 9.22. But this is just the condition which

makes the denominator of aj, in (10) above, vanish. Likewise the

natural frequencies of the electric oscillations satisfy (19) in Sec. 9.22,

which is the condition that the denominator of 6J shall vanish. Note,

however, that the cona are always complex, whereas the frequency co of the

forcing field is real. Consequently the denominators of a and br
n can

be reduced to minimum values, but never quite to zero, so that the

catastrophe of infinite amplitudes is safely avoided.

In Fig. 112 the electric and magnetic lines of force are shown for the

first four partial waves of electric type. The drawings are reproduced
from the original paper by Mie. 1

The incident wave is linearly polarized with its electric vector parallel

to the x-axis. At very great distances from the sphere the radial com-

ponent of the secondary field vanishes as 1/.K
2

,
while the tangential

components Ero and Er
<t>
diminish as 1/-R. In this radiation zone the

field is transverse to the direction of propagation. Moreover, the com-

ponents Ere and Er<i>
are perpendicular to each other and differ, in general,

in phase. The secondary radiation from the sphere is elliptically polarized.

There are two exceptional directions. When <t> 0, we note that

Er<t>

=
0, and when <f>

= ir/2 we have Ere
= 0. Consequently, when

viewed along the x- or the i/-axis, the secondary radiation is linearly

polarized. Inversely, if the primary wave is unpolarized, as in the case

of natural light, the secondary radiation exhibits partial polarization

dependent upon the direction of observation. This effect has been

studied in connection with the scattering of light by suspensions of

colloidal particles. The most complete numerical investigation of the

problem thus far in the visible spectrum has been made by Blumer. 2

1 MIE, Ann. Physik, 25, 377, 1908.
* BLUMER, Z. Physik, 32, 119, 1925; 88, 304, 1926; 38, 920, 1926; 39, 195, 1926.
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First Mode

Second Mode

Third Mode

T " ~"

l^P^I

I

Fourth Mode

Electric Lines of Force Magnetic Lines of Force

FIG. 112. Lines of force corresponding to the first four modes of electric type*
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9.26. Total Radiation. The resultant field at any point outside the

sphere is the sum of the primary and secondary fields.

(16) E = E< + Er, H = Hi + Hr.

The radial component of the total complex flow vector is

(17) S*R = $(E,8<,
-

E*ffo),

which can be resolved by virtue of (16) into three groups:

(18) S* = \(EiR - &,#) + MEreSrt - Er+ffr*-)

+ ^(E^R T<t> + EreHi<t> Entire Er<t>Hie).

Let us draw about the diffracting sphere a concentric spherical surface of

radius R. The real part of S* integrated over this sphere is equal to the

net flow of energy across its surface. To simplify matters we shall

assume the external medium (2) to be a perfect dielectric, so that

fc2
= co \/2M2. If the diffracting sphere is also nonconducting, the net

flow across any surface enclosing the sphere must be zero. If, however,

energy is converted into heat within the sphere, the net flow is equal to

the amount absorbed and is directed inwards. We shall call the total

energy absorbed by the sphere Waj

S%R* sin d<t> dO.

The first term on the right-hand side of (18) measures the flow of energy
in the incident wave. When integrated over a closed surface this gives

zero so long as 0*2
= 0. The second term obviously measures the outward

flow of the secondary or scattered energy from the diffracting sphere, and
the total scattered energy is

(20) W. = \ Re I I (Ereffr*
- E

r<t>
re)R

2 sin dB d$." JO JO

To maintain the energy balance the third term of (18) must be equal in

magnitude to the sum of the absorbed and scattered energies.

(21) Wt
= Wa + W, = -5 Re f

'

f
*

(EisST, + Eff -
& Jo Jo

sin B d6 d<p.

Wt measures, therefore, the total energy derived from the primary wave
and dissipated as heat and scattered radiation.

To calculate W8 and Wt we allow R to grow very large and introduce

the asymptotic values

1 / n + 1 \
(22) jn (p)

~ - cos ( p s *
)p \ ^ /
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into the field functions (2) and (3). The integrals can then be evaluated

with the help of Eq. (20), page 417,

0, ifn

and the relation

(24)
o sm sm 6

One finds for the scattered energy

(25) W. = *

for the sum of absorbed and scattered energies,

(26) F<
= *f A/l

fie2 (2n + 1)(a; + 6:) '

n 1

The mean energy flow of the incident wave per unit area is

(27) 5'~3
The scattering cross section of the sphere is defined as the ratio of the total

scattered energy per second to the energy density of the incident wave.

(28) Q. =
<2n + X ) ^<l

2 + M 2
) meters2 '

n-1

Likewise one may define the cross section Qt by

00

(29) Q< = Re (2ri + D( + 6i) meters2
.

n-1

If the conductivity or inductive capacity of the sphere is so large that

\Np\ ^> 1, then the approximations (14) and (15) can be introduced and

the cross sections reduce to

(30) Q. = (2n + l)(sin
2 Tn + sin* 7i),

(31) Qt = TT Re >, t(2n + l)(e*
v* sin jn + e^' sin

fci ^J
n 1
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If the sphere is nonabsorbing, yn and y'n are real, in which case it is

obvious that Qa
= Q t .

9.27. Limiting Cases. Although in appearance, the preceding for-

mulas are exceedingly simple, the numerical calculation of the coefficients

usually presents a serious task. There are two limiting cases which can

be handled with ease. If
|p|

=
\kia\ ^> 1, the functions jn(p) and

/&n
1}
(p) may be replaced by their asymptotic values. The quantity p is

essentially the ratio of radius to wave length, so that this is the case of a

sphere whose radius is very much larger than the wave length. Results

obtained by this method should approach those deduced from the

Kirchhoff-Huygens principle of Sees. 8.13 to 8.15. If, on the other hand,
the wave length is very much larger than the radius of the sphere, so that

|p| <3C 1, the radial functions can be expressed by the first term or two

of their expansions in powers of p.

Case I.
|p| 2> 1. If the asymptotic representations (12) and (22)

are substituted into (10) and (11), one obtains for the coefficients

(32)

(33)
JJLI tan y + i

where

f<>A\ n + 1 , T n + 1

(34) x = p
-

2 TT, y = Ap --^
v.

What is apparent here is also true in the general case: the expansion

coefficients are oscillating functions of p and the order n. Small changes
in either p or n may give rise to wide variations in the values of the

coefficients. The absolute magnitudes of the coefficients oscillate

between the limits zero and one.

If in (32) we replace n by n + 1, it will be observed that aj^ c^ 6j.

The amplitude of an electric oscillation of order n is approximately of the same

magnitude as the amplitude of the magnetic oscillation of next higher order.

The asymptotic expressions used in the derivations of (32) and (33)

are valid only so long as the order n is very much less than the arguments

|p|
and \Np\. Asymptotic formulas for the Bessel functions which hold

for all orders have been found by Debye, who has also shown that the

number of terms to be retained in the series expansions is just equal to

the number
\p\.

1 Methods of summing the coefficients have been dis-

cussed by Jobst. 2

Case II. |p[ <K 1. From Sec. 7.4, page 405, we take the expansions

of the radial functions in powers of p or Np.

1 DEBYE, loc. cit.

8 JOBST, Ann. Physik, 76, 863, 1925; 78, 158, 1925.
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(35) JM - 2-
+ 3)

(36)

The coefficients can now be expanded in powers of p.

. 2 2
n!(n + 1)!

+1
/

(n + 1) V"
"

Ml
(2n) l(2n + 1) ! mn
Mt[(n + 1) + (n + 3)# 2

]
-

Mi[(n + 3) + (n + 1)JV
2
] t\

3
p '

(n + 3)#2]
-

M2JV'[(n + 3) + (n

(2n + 2)(2n + 3)
p

If
|p|

is so small that all powers above the fifth can be neglected, only the

first four coefficients need be considered.

MI

-
M.
-

H [Mi(2

Furthermore, if MI = ^2, these expressions reduce to

* Ml
~

l 5

15 SMI
Z P

r^(40)

fa ~ L j^
2

1 p5
2 ""

15 2N 2 + 3
p

So long as the conductivity remains finite, the rule still holds that the

magnetic oscillation of order n + 1 is of the same magnitude as the

electric oscillation of order n.

When the ratio of radius to wave length is so small that p
8 can be

neglected with respect to p
3
, only the first-order electric oscillation need

be taken into account. This case was first investigated by Lord Ray-
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leigh. The amplitude of the oscillation is then

2i Nz -1 .

(41) jSa4 __ ]gT
_

gp
P.

If this value is introduced in the expressions (2), (3), and (4), it will be

noted on comparison with (30), page 436, that the field of the fundamental

mode is that of an electric dipole, oriented along the x-axis and with a dipole

moment equal to

N 2 1

(42) P4i^r+2 fl1^
Reference to (32), page 206, shows this to be identical with the result

obtained in the electrostatic case. The amplitude of the scattered or

diffracted radiation at great distances from a small sphere increases,

therefore, as the square of the frequency; and the energy, as the fourth

power. This is the celebrated Rayleigh law of scattering which was

applied by its discoverer to explain the blue of the sky. The light which

reaches us from the heavens, unless the observer is looking directly at the

sun, has been scattered by dust particles or the molecules of the atmos-

phere. Since the wave length of visible light is much longer than the

radius of these submicroscopic particles, the fourth-power law is valid and

the short wave lengths in the natural sunlight are strongly scattered rela-

tive to those near the red end of the spectrum. If one looks directly at

the sun, the opposite effect is observed, for as the blue suffers the

greatest scattering, its intensity in the direct beam is weakened relative

to the red, which now predominates. This effect is accentuated when

the sun is near the horizon, so that the path lies in a region heavy with

dust particles.

The varied shades of mist and smoke can be accounted for in the same

fashion, and it is well known that the colors of colloidal suspensions of

metallic particles in liquids or gases often differ completely from the

true color of the metal itself. However, as the radius of the particle

increases, terms of higher order play an increasingly important part.

The extremely selective character of the Rayleigh scattering disappears

and it becomes impossible to predict the pattern of the diffracted radia-

tion on any basis other than the results of a difficult computation. The

higher order terms can be interpreted as electric and magnetic multipoles.
1

An experimental test of the theory for radio waves has been made by

Schaefer. 2

The diffraction of a plane wave by an ellipsoidal body can be treated

in the same manner as the sphere, but the analytical properties of the

* GANS and HAPPEL, Ann. Physik, 29, 277, 1909.

SCHABFEB and WILMSEN, Z. Physik, 24, 345, 1924.
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wave functions are very much more complex. An approximate solution

has been given by Cans 1 and a more rigorous analysis by Herzfeld. 2 The
most thorough investigation to date is that of Moglich.

3 In no case,

however, have the numerical calculations been carried far enough to be

particularly useful, and the many practical applications of the theory
make it desirable that further work be done along this line.

EFFECT OF THE EARTH ON THE PROPAGATION OF RADIO WAVES

9.28. Sommerfeld Solution. The classical investigation of the effect

of a finitely conducting plane upon the radiation of an oscillating dipole
was published by Arnold Sommerfeld in 1909. 4 Since that time an
enormous amount of work has appeared on the subject and it may be

fairly said that no aspect of the problem of radio wave propagation has

received more careful attention. It is impossible within the confines

of this chapter to give a complete account of the theory, but it should

prove instructive to see how the problem is set up. As in all but the

simplest diffraction problems, the real difficulties arise with the neces-

sity of reducing the formal solution to a state that permits numerical

computation.
The first problem attacked by Sommerfeld was that of a vertical

dipole located at the surface of a plane, finitely conducting earth. The
axis of the dipole coincides with the z-axis of a rectangular coordinate

system and the plane z = represents the earth's surface. All points for

which z < lie within the earth, whose propagation constant is ki. The

propagation constant of the air in the region z > is k 2
=

co/c. A point
of observation is located by the cylindrical coordinates r, <, z, and its

radial distance from the origin is

(1) R = VV 2 + z*.

These relations are illustrated in Fig. 113.

The field is cylindrically symmetrical about the z-axis, and in the

neighborhood of the origin it must grow infinite like that of a dipole.

Now the field of a dipole, we recall from (7), page 432, can be represented

by an axial Hertzian vector which behaves as 1/R as R > 0. We shall

write, therefore, the z-component of the Hertzian vector of the resultant

field as the sum of two parts:

1 GANS, Ann. Physik, 37, 881, 1912; 47, 270, 1915; 61, 465, 1920.
2 HERZFELD, Wiener Ber., 120, 1587, 1911.
3
M6GLICH, Ann. Physik, 83, 609, 1927.

4
SOMMERFELD, Ann. Physik, 28, 665, 1909; Jahrbuch d. drahtl. Telegraphic, 4,

157, 1911. These earlier papers contain an error in algebraic sign which was cor-

rected in the Ann. Physik, 81, 1135, 1926. Also in Riemann-Weber, loc. dt., p. 542.

Some of the consequences of this error appear, however, to have been overlooked.
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(2)

H(r, z)
~ e 2 ; r,

(z < 0),

(z > 0).

The first term accounts for the singularity at the origin. The dipole

moments have arbitrarily been chosen such that the coefficient of this

term is unity, and a common time factor exp( tco) has been suppressed.

The functions Fi and F2 are finite everywhere, including the point R =
0,

and satisfy the wave equation and the radiation condition at infinity.

They represent the contribution of the diffracted wave and are to be

Earth :

FIG. 113. Vertical electric dipole located at the surface of a plane, finitely conducting
earth.

chosen such as to ensure the fulfillment of the boundary conditions at

z = 0. The field vectors are derived from the Hertzian vectors through

(3) E = VV H +

whence the tangential components are

(4) Er =
-fiTft

H*

H = x n,

fc
2 an

icou dr

It may be assumed for the earth that jui
=

ju 2
=

//o. At any point on

the plane z = the functions (2) must satisfy the condition

(5) (Z
=

0).

These relations hold for all values of r and can, therefore, be integrated

with respect to r. The functions and their derivatives vanish as r > oo
,

so that the constant of integration must be zero. Thus the boundary

conditions reduce to

To find functions Fi and F 2 that satisfy these conditions, we shall

expand both the
"
primary excitation" e^'/R and the

"
secondary excita-
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tion" F in terms of cylindrical wave functions. In Sec. 6.6 it was shown
that every electromagnetic field within a homogeneous, isotropic medium
might be represented by the superposition of elementary cylindrical wave
functions of the type

(7) \//(r, <, z) e in+ Jn(\/k
2 h 2

r) e ihz
.

In the present instance the fields are symmetric and consequently n = 0.

As a parameter we shall choose X 2 = k 2 h 2 rather than h, and multiply
each wave function by an amplitude /(X) dependent upon X. This

parameter can assume any complex value. The sign of the root

ih = \A 2 k* must be chosen such that the fields vanish as z > 00.

We do this by making the real part of \A 2 k 2
always positive. Then

the conditions at the origin and at infinity are fulfilled by a discontinuous

Hertz vector whose radial and azimuthal components are zero and whose

^-component is

1 f a

(8)

^ ~
* G* 1* +

J
.

/l(X)J (Xr)e+ ^^ (Z < 0) '

H 2
= - eik'R + /2(X)J (Xr)e-

Vx'-**'*
d\, (z > 0).# Jo

The next step is to represent the known primary excitation in the

same manner. To this end we make use of the Fourier-Bessel theorem

(53), page 371. If /(r) vanishes as r > oo such that the integral of

/(r) \/r converges absolutely, then

/* 00 /* 00

(9) /(r)
= XdX pdp/(p)J (Xp)Jo(Xr).

Jo Jo

For /(r) we take first e ikr
/r.

eikr C * f
(10)

L_ = XdXJo(Xr) d
r Jo Jo

Integration over p can be effected if the Bessel function J (Xp) is replaced

by its integral representation (37), page 367.

=;j- r d& pdp^+xcoBflp^-L r
27T J^ T

^
Jo 27TZ J_ T COS

j

It is assumed here that k has a positive imaginary part so that the

integrand vanishes at the upper limit. fc 2 is in fact real, but for purposes

of integration the atmosphere can be assigned a very small conductivity

which may be reduced to zero after the integral has been evaluated. The
last integral is equivalent to an integration about a closed contour. Let

(12) u = e*, du = iu dft.
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Then

(13)
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i J-f k + X cos
,

2ku + X(l + u 2
) TrX

where the path of integration is the unit circle about the origin in the

complex it-plane and where u\ and u 2 are the roots of

(14)

The product of the roots is unity, so that u\ lies inside the circle and

outside.

du

u

by Cauchy's theorem (133), page 315. Consequently

(16)

- - '
J'M

This represents the primary excitation eikR/R at all points on the

plane z = as a sum of elementary cylindrical waves whose amplitudes
are expressed by the function X(X

2 & 2
)~*. A representation at any

other point follows directly from (7).

(17)

1 f '

6t*iR =K JO

i r e

R
e

Jo

\d\,

-
z

x dx,

(z < 0),

(z > 0).

For the Hertzian vector of the resultant field, we now have

111 - L IA
X

(18)

n,.r
Jo

-rJon2
=

Xi-*^
dX,

The functions /i(X) and /2(X) are next determined from the boundary
conditions (6). A slight difficulty is encountered with the first of these

relations, for if (17) is differentiated under the sign of integration with

respect to z and z then placed equal to zero, the integrals diverge. But
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Sommerfeld points out that

d
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and hence in this case the primary excitation in (IS) can be ignored. A
simple calculation leads us then to the result:

(20)

/i(X)
=

/i(X)
=

-
k\ k\ VX2 -

kl + JfcJ \A* -
*!'

Upon substitution of these expressions into (18), we find at last

(21)

where

(22)

< 0),

> 0),

N -

A formal solution has been obtained in terms of infinite integrals express-

ing the Hertzian vector of the resultant field at all points both above and

below the surface.

9.29. Weyl Solution. It was recognized from the outset by Sommer-

feld that his solution could be interpreted as a bundle of plane waves

reflected and refracted from the earth's surface at various angles of

incidence. This point of view was developed later by Weyl.
1 Its basis

is an integral representation of the function htf
}

(kR) demonstrated in

Sec. 7.7. According to (66), page 410,

(23) ikR

As in Fig. 70, page 407, the wave normal of each elementary wave makes

an angle a with the z-axis and an angle /3 with the x-axis. The point of

observation at P is located by the spherical coordinates (B, 0, <), while

the angle between the radius vector R and the wave normal k is y. Thus

k R = kR cos 7,

77
= cos T = sin 6 sin a cos (0 0) + cos cos a,

^ ' R cos 7 = x sin a cos j8 + t/ sin a sin + 2 cos a.

1 WEYL, Ann. Pfcyaifc, 60, 481, 1919.
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If the integration in (23) be carried out with respect to y instead of tj,

we have

e r
1
'"

(25) ^ =
J

e*xvsmyd7

i r r
27T J J

7 (fry

where ^ is an equatorial angle in a system of polar coordinates whose

axis coincides with the radius vector R. But sin y dy d^ is an element of

area on a unit sphere concentric with the origin and the value of the

integral is invariant to a rotation of the reference axes. Hence,

(26)

e*R ik f 2' f2

!_ = ! eikR cos ? sin a da dp.R 27T Jo JO

This is the desired representation of the spherical wave function in terms

of plane waves. Sommerfeld's representation (17) is obtained from (26)

by carrying out the integration with respect to ft. Weyl points out,

however, that in so doing one loses the freedom to rotate the coordinate

system into an orientation that facilitates evaluation of the integrals.

For this purpose the axis of the radius vector R is more appropriate than

the z-axis normal to the surface of the earth.

Let us suppose that the dipole is located a distance z above the surface

of the earth. The resultant field II 2 at any point for which z > can be

expressed as the sum of the direct or primary field H
,
and the reflected

field n f . In the region ^ z <> z between the dipole and the earth the

primary radiation is represented by

(27) n =^
T

-I. /*2T /2~~
tC

s>ikz[x sin as cos 0a+y sin at sin 0>-f (zo z) co ail= ! r r
2ir Jo Jo

where

(28) d!22
= sin a2 da* d)52 .

In this region a2 is the angle made by the wave normal with the negative

z-axis, as shown in Fig. 114. It is thus also the angle of incidence at

which an elementary plane wave meets the earth's surface.

The Hertz potential Hr of the reflected field can be constructed from

plane waves in the same manner. Each elementary wave of the bundle

will have the form
/ gt'M* sin at cos Pt+V sin as sin fa+ (*o-f *) COS

ai]^
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Likewise the refracted, or transmitted, field in the domain z < is con-

structed from the elementary waves

ft g**
JZ coe a >**i(* sni ai cos /3i-fV sin ai sin pi z cos ai)

The undetermined functions fr and ft are reflection and refraction coeffi-

Air k>

Earth

FIQ. 114. The radiation from a dipole can be represented by superposition of plane waves
which are reflected and refracted at the surface of the earth.

cients. To simplify the notation we write

(29)

Then at all points in the domain Q < z <> ZQ the resultant field is

k2 r = fc 2(x sin a 2 cos j8 2 + y sin 2 sin

ki r = ki(x sin a\ cos $\ + y sin ai sin

7 /*2r /2

(30) n, = f f (/r"R Jo Jo

At all points for which z < 0,

(31)

., /2r /2

n x
= L-l I I

2?r J Jo

At z 0, the boundary conditions lead to

(32) ^ =^
Imposing these relations on (30) and (31), one obtains first

(33) fci sin ai = fc 2 sin 2 , fti
=

2 .

The elementary waves form a circular cone about the z-axis and the angles of

reflection and refraction satisfy Snell's law (8), page 491. A further

calculation gives for the coefficients:
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fcl COS Oiz
~

fc 2 COS OL\ __ Zfj COS CX 2 V^fi 1 + COS 2
2

~~

&i cos a 2 + & 2 cos ai Zfi cos a:2 + V^ii - 1 + cos 2
2

'

cos

cos o:2 + &2 cos o?i

1 2#2i cos

#2
3
i Zf ! cos a 2

where Z2 i
= v.Jk\/n\k*. Now the lines of magnetic field intensity are

circles whose centers lie on the z-axis. The meridian planes in Fig. 114

are also planes of incidence, whence it is apparent that the magnetic

vector of each elementary wave is normal to its plane of incidence, while

its electric vector is parallel to this plane although not transverse to the

direction of propagation. Reference to (19), page 494, shows that apart

from a factor in /*, the functions fr and ft are the Fresnel reflection and

refraction coefficients for a plane wave.

When z > z
, Eq. (30) must be modified such as to vanish properly at

infinity. We now measure a from the positive z-axis and write

r. (*2K
/2~*

(35) H 2
= ?~ I (/, eik coa " + e- ik">

2?r Jo Jo

If finally ZQ
=

0, this reduces to

-frS f** f2

H2
=^ /t (

wkt Jo Jo
(36)

while beneath the surface

(37)

Bin a, cos (*-*) +z cos a,]

Hi
r /2r /2
-1

I
2*" Jo jo

i c09 (*-^a)
"

It is now a simple matter to effect the transition to Sommerfeld's

solution. By (80), page 412, we have

(38)

i r2r

e
ih* =

^f-^r Jo

Let

(39) X = fc2 sin 2 ,
h = &2 cos a2

= i

When 2
==

0, X = 0, and when a =
^

~~ ioo\=oo. In virtue of these

relations, (36) transforms to
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iw n~**
n 2

= TT ft(
#2 JO

-2fc? f"^
JO M

sn *** cos sn

while the same substitutions transform (37) to

/ 00 T (\ \

(41) HI = 2k\ I A/ e* Vxa~* l

'*XdX,
Jo N '

where TV is the function defined by (22). Thus the formal solution of

Weyl is identical with that of Sommerfeld in the special case ZQ = 0.

Air

Y////////////////777/

Earth

FIG. 115. An image of the dipole ia located in the earth at the point z = *o

In the general case where z ^ 0, we replace fr in (35) by

(42)

Then (35) can be resolved into three distinct parts, reducing in virtue of

(27) and (40) to

(43)

where Ri and R$ are the distances shown in Fig. 115. This expression

holds for all values of z > 0. The resultant field at the point of observa-

tion is thus composed of a direct contribution from the vertical electric

dipole at z = +2o, a contribution from its image at z = z
,
and a

supplementary term which takes into account the effect of a finite con-

ductivity of the earth. If ki oo, the last term of (43) approaches

(44)

and

(45)

by virtue of Eq. (17).

lim 2fc! f
*^ e-v^

fci-o JO -tV

x^ =
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Identical results have been obtained by Niessen 1
through an applica-

tion of the Kirchhoff-Huygens method discussed in Sec. 8.13. The surface

integrals are extended over the plane earth and over small spheres
which exclude the singularities occurring at the source and the point of

observation.

9.30. Van der Pol Solution. An interesting and useful transformation

of the Sommerfeld-Weyl expressions has been discovered by van der Pol. 2

Starting from the integral for the reflected field

(46) H =
~ re~H = f

*
*J

Jo kl

obtained from (18) and (20), it is shown that the total field primary and

reflected at any point above the earth's surface can be expressed as a

volume integral extended over a certain domain in real space. The
successive steps in the demonstration involve properties of Bessel func-

tions which have been discussed in the earlier pages of this volume.

Details will be omitted here. For all values of z > 0, van der Pol obtains

the expression

tAi\ TT
*'*' eik*Rl

i

(47) n'- -- +

#2

gtWZi _ 1 f eik>Ri d 2 /C*P\

~5T
~

* Jv ~ST W* \T)
The volume element dv = p dp df d/3, and the domain of integration is

O^p^oo, O^f^oo, 0^jS^27T. The distance p = vV + f
2
i

and the quantity Ri is a "complex distance" defined by

(48) Ri = A/p
2 + 2pr cos ^ ~2 ^ ' - -1- - J **

The sign of the root is chosen such that (48) has a positive real part, and

it is assumed that Jfc 2 is real. The domain of integration can be inter-

preted as the half space below the geometrical image of the source. This

is the shaded part of Fig. 116. The variables p, f, ]8 are thus cylindrical

coordinates with the image point at z = -ZQ taken as an origin, f is

measured positive downwards.

When the conductivity of the earth is large, the propagation constant

fci has a large imaginary part. Consequently the wave -^t )
is

rapidly attenuated and contributes an appreciable amount to the integral

only when p is small. In other words, only that part of the lower medium

1
NIESSEN, Ann. Physik, 18, 893, 1933.

2 VAN DER POL, Phyaica, 2, 843, 1935.
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(earth) in the immediate neighborhood, but below, the geometrical image
sends secondary waves to the observer. In the limit of infinite conductivity
the region containing the effective sources of secondary radiation shrinks

to a point coincident with the geometrical image itself.

An analogous, somewhat simpler, solution is given also by van der Pol

for the case of a magnetic dipole, and the method can be extended to

include horizontal dipoles. Since any source of electromagnetic radiation

can be represented in terms of a distribution of electric and magnetic

dipoles, the bearing of these calculations on many other problems of

physical optics and electromagnetic theory is apparent. One might
mention, in passing, the rather complicated phenomena associated with

i%

Fia. 116. In the van der Pol solution the domain of integration is the half-space below the

plane z = ZQ.

total reflection, which we have treated only for the idealized case of an

infinite plane wave.

9.31. Approximation of the Integrals. The several methods of

approach to the problem of reflection from a plane surface all lead to

integral representations of the field, or more precisely of its Hertzian

vector, that are easily shown to be identical. A much more difficult

task, which has occupied the attention of many investigators, is the

reduction of these integrals to practical formulas for the field intensity.

Sommerfeld's attack was based on a deformation of the path of integra-

tion in the complex X plane. The function 1/N defined in (22) has

branch points at X = ki and X = fc 2 ,
and a pole at

(49) Xo = -

The corresponding Riemann surface has four sheets; on only one of these

are the conditions fulfilled necessary for the convergence of the integral

at infinity. According to Sommerfeld the path of integration can be

resolved on this sheet into three parts: the first a loop from infinity about
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the branch point X = +k\, the second a similar loop about X = +k z ,

and the third any small circle about the pole at X = X . The contribu-

tions of the loops about the branch points are Q\ and Q 2 >
while the residue

at the pole gives a term P, so that H 2
= Qi + Qz + P- The terms Qi

and Q2 were developed in inverse powers of the distance from the dipole,

the dominant terms of the series being proportional respectively to

e iklR/R and eiktR/R. Consequently Qi and Q 2 were interpreted as "space

waves." On the other hand, for P Sommerfeld obtained a function of

the form

(3 < 0),

which was interpreted as a "
surface wave."

Historically these surface waves are of considerable interest. The

guiding of a plane electromagnetic wave along the plane interface

separating a dielectric and a good conductor seems to have been first

investigated by Cohn 1 and shortly thereafter by Uller. 2 Zenneck 3
recog-

nized the bearing of these researches on the propagation of radio waves

and showed that the field equations admit a solution that can be inter-

preted as a surface wave guided by a plane interface separating any
two media. This solution is identical with the surface wave derived in

another manner in Sec. 9.13. Zenneck was quite clear as to the limita-

tions of his results. He showed that a wave with a forward tilt, following

a plane earth and attenuated in the vertical as well as the horizontal

direction is compatible with Maxwell's equations, and that such a wave

would explain many of the observed phenomena of radio transmission.

There was no proof as yet, on the other hand, that a radio antenna does

in fact generate a wave of this type. Sommerfeld's 1909 paper undertook

to complete the demonstration, and the term P of Eq. (50) was inter-

preted as the surface wave component (in cylindrical coordinates) of the

total field.

Doubt as to the validity of Sommerfeld's resolution was first raised

by Weyl in his 1919 paper. Weyl obtains an asymptotic series represen-

tation of the diffracted field by applying the method of
"
steepest descent "

(page 368) to the integral (36). In case |fci|/fc 2 ^> 1, WeyPs solution

also reduces to a form which can be interpreted as the superposition of a

space and a surface wave, but the Weyl surface wave is rot identical with

that of Sommerfeld and Zenneck.

1 COHN, "Das elektromagnetische Feld," Leipzig, 1900.
* ULLEB, Rostock Diss., 1903.

1 ZBNNBCK, Ann. Physik, 23, 846, 1907.
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The discrepancy between the two forms of solution has been examined

more closely in recent years, although it can hardly be said that the

problem is closed. Burrows 1 has pointed out that numerically the

transmission formulas based on Sommerfeld's results differ from those

of Weyl by just the surface wave term P, and has made careful measure-

ments which support the results of Weyl. The discrepancy is large only
when the displacement current in the ground is comparable to the con-

duction current. Asymptotic expansions have been given by Wise2

and by Rice 3 which show that the term P in Sommerfeld's solution is

canceled when all terms of the series for Qi, Q 2 ,
and P are taken into

account. Finally, attention was called by Norton4 to an error in sign

occurring in Sommerfeld's 1909 paper. This error docs not appear in

the 1926 paper, but the numerical results given there are accurate only
when the conductivity of the earth is large.

From a practical standpoint the situation can be summed up as

follows: The results of Sommerfeld, and the charts of Rolf 5 which are

based upon them, cannot be relied upon when the displacement current

is appreciable, as is the case at ultrahigh frequencies. The formulas of

van der Pol, Nicssen, Burrows and Norton6 are for the most part exten-

sions of Weyl's results. Field intensities calculated by these formulas are

in accord with each other and apparently in good agreement with experi-

ment. The same is true of the results obtained by Strutt,
7 who applies

an alternative method to obtain an asymptotic solution.

To give some idea of the character of the formulas to be used for

practical calculations, we present a summary of the results obtained by
Norton for the vertical electric dipole. The Hertz vector of the resultant

field at any point above the earth's surface is

L Vr y
>

where V is the infinite integral expressed by the third term of (43).

The approximate formula proposed for V is

(52) V =
[(1

- RV)F + 1 + R9 ]^>K\
where

fw\ P gfi cos 6 1
- yZJi - sin2 0i

(53) Hv = _^i__
.. .. .

>

cos 0i + \AZii sin2
0i

1 BURROWS, Nature, Aug. 15, 1936; Proc. Inst. Radio Engrs., 26, 219, 1937.
2 WISE, BeM System Tech. J., 16, 35, 1937.
3
RICE, Bell System Tech. J., 16, 101, 1937.

4 NORTON, Nature, 136, 954, June 8, 1935; Proc. Inst. Radio Engrs., 25, 1192, 1937.
8 ROLF, Proc. Inst. Radio Engrs., 18, 391, 1930.
8 NORTON, Proc. Inst. Radio Engrs., 24, 1367, 1936; 26, 1203, 1937.

*STRUTT, Ann. Physik, 1, 721, 1929; 4, 1, 1930; 9, 67, 1931.
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(54) cos 0i =
*

p
*Q

> Zn =
7T

1
-

N ' HI #2

#, is the Fresnel reflection coefficient for a plane wave incident at an

angle 0i. The apparent source is in this case at a distance z bekw the

surface. (See Fig. 115.) The function F is defined by

(55) F =
[1 + iV er erfc(-i

where

2z

(56)
'

(57)

-7=V* J-V^

.
Z2

2
i cos 0i V 4P=
, Sn

Since

one may also write

where \ is the free-space wave length. A detailed numerical discussion

of the function F is given by Norton.

In order that the final formula shall express the field intensity of a

current element, the Hertzian vector is multiplied by an appropriate

amplitude factor. According to (44), page 431, the Hertz vector of a

linear current element / dz is

eikR

Upon multiplication of (51) by il ok/47re2 and applying (3), Norton

finds for the ^-component of electric field intensity in volts per meter the

expression
.,. F pikiRt

(62) dE. = -^ / dz I sin' 6Z^- + B. sin2
l
_

_ -p \

.,
-- "^.

(Z|t
-

^fx + sins
. 1 I

+ higher order terms in -

*-*

The terms in 1/721 and l/R\ referred to represent the contributions of the

"static" and "induction" fields and may be neglected at distances of

ten wave lengths or so from the source. The angle 2 is defined by
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(63) cos 2
= i^2.

KZ

An analogous expression can be obtained for the component dEr ,
which

together with (62) determines the tilt or polarization of the field.

In the special case of a current element on or very near the earth

z = and Ri = R^ = R, #1 = #2 = B. The total electric field intensity

at any point such that R^>\ can then be expressed as the vector sum
of two components,

(64) dEBpaoe
= - / dz sin 6 (1 + fi.)

^
(65) dE.Mf .

= ^p I dz (1
- RJF

47T H

\az + ar
:X a, + ar^ (1

+ 2^J VZJi ~ sin*

where a<? is a unit vector tangent to the meridian circle through the point
of observation in the direction of increasing 6 and, consequently, per-

pendicular to the radius vector R, while az and ar are the unit vectors in a

cylindrical coordinate system parallel to the z- and r-directions. As the

conductivity of the ground approaches infinity, Rv 1. The component

(65) then vanishes and the total field (64) at any point reduces to that of

a dipole and its image. If the conductivity is finite, Rv > 1 as 6 > T/2.

Near the surface of the earth, (64) now vanishes and the total field is

represented by the term (65) alone. In virtue of this resolution one

must agree with Norton that the terms "space" and "surface" waves are

fully justified, even though the "surface wave" (65) is not identical with

that predicted by Zenneck and Sommerfeld. Equation (65) is an

expression for the "ground wave" which accounts for the major part of

long-wave radio transmission, while (64) is the "high-angle" radiation

which is reflected from the ionosphere to give rise to strong signals at

great distances.

Extension of the formal solution from a plane to a spherical earth

offers no serious difficulties. The field of the dipole or current element

must be expressed in terms of spherical vector wave functions by such

methods as were discussed in Chap. VIII. Since, however, the radius of

the earth is vastly greater than the wave length, the convergence of the

series representations of the field is poor and the difficulties of reducing

the formal solution to practical terms have appeared truly formidable.

Recently much progress has been made in overcoming these purely

analytical troubles and a detailed discussion of the diffraction of a

dipole field by a finitely conducting sphere for all values of the radius/

wave-length ratio has been given by van der Pol and Bremmer. 1

1 VAN DER POL and BREMMER, Phil. Mag. t 24, 141, 825, 1937; 25, 817, 1938.
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Problems

1. A plane wave reflected from a plane surface at normal incidence is expressed b$

t = A(e** -f r e-tfc

')e~
tw
S

where the reflection coefficient r is the ratio of reflected to incident amplitude. Let

r -6-**

and show that

$ == 2iAe~i sin (kz iy).

Note that the relative phase of the two waves at z = is equal to twice the imaginary

part of 7, and that the ratio of amplitudes without regard to phase is e~2Re(^.

2. Plane waves are reflected at the plane boundary separating two dielectrics.

Let n \fci/z be the relative index of refraction and assume the primary wave to be

incident in medium (1) and refracted in medium (2). Let r be the ratio of the ampli-

tude of the reflected to that of the incident electric vector. Show that when E is

normal to the plane of incidence

n cos 0o vl ~ n* sin2 0o
r. = . =>

n cos 0o 4- V 1 ~ n* sm*
#o

and for E parallel to the plane of incidence

cos OQ n \/l n2 sin2

r a . ^r=>
cos + nV 1 n2 sm2 0o

where 0o is the angle of incidence.

3. Plane waves are reflected at the plane interface of two dielectrics whose induc-

tive capacities differ by a very small amount. Following the notation of Problem 2,

let n = 1 + An and show that r^
c^

r,,, both equal approximately to

1 - Vl ~ 2 An tan 2 0~ <
- VV - 0.657 X 10~4 An

T '^ ; f*^ -y

1 + \fl - 2 An tan 2
<t> + V 4>

2 - 0.657 X 10~4 An

where </>=- 0o and in the second formula is expressed in degrees.

Apply this result to the reflection of radio waves from an air-mass boundary hi

the troposphere. Assume An = 10~4 and plot r as a function of <. Under what

circumstances can total reflection occur?

4. A plane wave is reflected at normal incidence from an earth surface. Assume
the specific inductive capacity to be 9, and the conductivity to range from 10~2 to

10~8 mho/meter due to variations in moisture content. Plot the shift in phase at the

surface of reflection as a function of conductivity for a 10- and for a 500-meter wave.

6. Referring to the theory of total reflection developed in Sec. 9.7, calculate for

this case the time average of the components of energy flow normal and parallel to

the surface of reflection, hi both the first and the second medium.
6. A 20-cm. wave from a radio altimeter strikes at normal incidence a sheet of

ice which has formed over a body of salt water. Calculate the approximate thickness

of ice which will lead to a minimum value of the reflection coefficient. What is tnis

minimum value? Assume the conductivity of the ice to be negligible.
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T Surface waves are set up at the plane interface of two dielectric media in the

manner described in Sec. 9.13. Discuss the field and the nature of the energy flow.

Show that the angle of incidence necessary to establish such waves is in this case iden-

tical with the Brewster angle.

8. The effect of a variable transition layer on the reflection of waves passing from
one medium to another is a question of considerable importance and approximate solu-

tions have on occasion led to erroneous conclusions. The true nature of the phe-
nomenon has been clarified through an investigation by Wallot, Ann. Physik, 60,

734, 1919.

Assume that media (1), (2), and (3) are separated by plane surfaces at z =
and z = d as in Fig. 96, page 511. The conductivity of all three media is zero.

Regions (1) and (3) are homogeneous dielectrics with constant inductive capacities
i and 8 . The inductive capacity of (2) is a function of z of the form

2
=* ci(l + az)

n
,

the constant a being related to the thickness d by the relation

l

/^
ad

A linearly polarized plane wave passes from medium (1) into medium (2) at normal
incidence. Let

Ex E(z) -*, Hv H(z) e- Mf
.

Introduce a new variable w defined by

w W Q
= I Vc dz

and show that the field equations are

dE iun Tr dH=#, -i
dw -' dw

.. e .. e

E -\ E + wV-^ " H + w2uf = 0.
2 2e

the dot indicating differentiation with respect to w. For the assumed variation of

2 we have

n+2

_)~2~~

or

2n

Vn+2
2
=

i I

Let

^ n +
1^P "

n -t- 2*

and find for the field equations
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and show that in the transition layer

E - - P

[A

H - * J- (
Y

\M \WQ/
(A 4- B #<2)

(co

Determine the constants A and B from the boundary conditions and obtain expres-

sions for the ratios of reflected and transmitted amplitudes to the amplitude of the

incident wave. Show that reflection is only appreciable when the thickness of the

transition layer is of the order of the wave length, and that in the limit of an infinitely

thin layer one obtains the classical expression for the reflection coefficient. Note

that the theory applies also to the propagation of current and voltage along a trans-

mission line with varying parameters.
9. An infinite plane slab of thickness 2a is embedded in another medium. The

propagation constants of the slab and external material are respectively k\ and k*.

Show that either transverse electric or transverse magnetic waves can be propagated

along the slab. In the case of transverse magnetic waves with H parallel to the

slab show that the propagation factor h determining the phase velocity and attenuation

of the allowed waves in the direction of propagation is given by the roots of

tanh a

The problem is solved most quickly by applying the wave functions of Problem 1,

Chap. VI, and by matching normal wave impedances at each surface.

10. Determine the pressure exerted by a plane electromagnetic wave incident on

a plane surface as a function of the angle of incidence and the type of polarization.

11. A plane wave is incident at an angle 6 upon an infinite slab of material

bounded by parallel plane faces and of thickness d. The constants of the slab are

, /n, <r and the medium on either side is free space. Calculate the pressure exerted

by the wave on the slab. (Debye, Ann. Physik, 30, 57, 1909; Lebedew, Ann. Physik,

6, 433, 1901; Nichols and Hull, Ann. Physik, 12, 225, 1903.)

12. A vertical electric dipole is located at z = z
,
r = 0, in medium (1) whose

propagation constant is k\. Medium (2) is an infinite slab with plane boundaries at

z a < Z and z = 0, and with a propagation constant fc2 . The half space z <
is occupied by material of infinite conductivity. Assuming the primary field to be

show that the Hertz vector of the secondary or reflected fieldof the form
R

in the first medium is

-rJo
XdX

vw^
'x2

kl tanh (\A2
^2 )
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where r is the horizontal distance from the source to the point of observation. (Van
der Pol and Bremmer, Phil. Mag., 24, 825, 1937.)

13. In most practical cases the field and current distribution within a metallic

conductor, even at very high radio frequencies can be determined to a satisfactory

approximation from the equations

E - twA, B = V X A, J
V2A 4- tw/urA =0, V A = 0.

(Cf. Problem 20, Chap. V.) This neglects entirely the effect of the external field on
the propagation factor within the conductor and assumes the time to enter as a factor

exp(-to>0. At a surface separating the conductor from an external dielectric the
normal component of J is zero, and both J and A must be finite everywhere.

Apply these equations to find the distribution of longitudinal current over the
circular cross section of a very long, straight wire. Find an expression for the longi-
tudinal component of at the surface of the wire in the form

E. = RI+ Lv
~
at

where 7 is the total current, R the resistance, and Z/ the internal inductance, both per
unit length. Compare with the results of Sec. 9.17.

14. A tubular conductor of circular cross section has an outer radius a and inner

radius b. Obtain expressions for the current density, alternating-current resistance,
and internal inductance per unit length.

16. An alternating magnetic field is directed perpendicular to a long conducting
cylinder of radius a. In the region considered the field is uniform and the wave length

y^ a. Calculate the power dissipated per unit length by eddy currents induced in

the conductor. (See Frenkel, "Elektrodynamik," Vol. II, p. 392.)

16. A thin, conducting, plane sheet of infinite extent is placed in a homogeneous,
alternating magnetic field. The frequency is sufficiently low that the "skin depth'

1

is very much greater than the thickness of the lamination. Find expressions for the

vector potential of the induced eddy currents and the power dissipated per unit area.

17. Following the general theory of Sec. 6.2, discuss the propagation of waves

along perfect cylindrical conductors. In an orthogonal system of cylindrical coordi-

nates u l
,
u z

, z, assume Ez
= H = and show that the components of the field can be

derived from two scalar functions <j> and ^ by the formulas

E _!*.,1
*"

hi aw 1
'

i

and that these potential and stream functions satisfy

d<f> a* la* 6V
5-

+ 5"" ' ^ +

dz* d\

a / /ij a</> \ a ., _

du l \hi du 1
/ dr*

'
~

*-* '
"

'
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Ate

where A* and pertain to the external dielectric. Let q be the charge per unit length,

/ the current on a particular conductor, and C a closed contour linking this conductor

only and lying in a plane z = constant. Show that

f d* 1 f WI dSj / = -- I

JC dn JC dn

the differentiation being in the direction of the outward normal.

The theory applies to any number of parallel conductors of constant but arbitrary

cross section provided the sum of the charges q in any transverse plane is zero. Other-

wise the functions and \l/
are irregular (logarithmic) at infinity. In the case of two

parallel conductors a and 6 we have qa =
06. The capacity and inductance per

unit length are defined by

4>a <f>b fa

exactly as in the static regime. Pro^e that in m.k.s. units

MC = LC

and show that current and charge satisfy

C

^_ LC !? =
,

?v_ LCw_
dz 2 dl* dz* dt*

18. The theory of propagation along a system of parallel, cylindrical conductors

discussed in Problem 17 was extended by Abraham to the case of finite conductivity.

The solution is approximate but valid and useful in most cases of technical impor-

tance. One assumes (a) that the waves are transverse magnetic. We have seen in

Sec. 9.15 that, apart from the case of an axially symmetric field, this is not strictly

correct, but the error involved is, in general, extremely small. Assume, next, that the

field is harmonic and take for the scalar potential

<t>
= - =/(uS uV^-K

dz

Show that at any point in the conductor or in the dielectric the components of the

field are given by

*,__!-* *f
--!J*

hi du l
fa aw2
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Calculate the z-component of the complex Poynting vector S* and integrate this over

the entire transverse zy-plane. Let the value of this integral be W*. Show that

2/y 2'Y

jp* - x magnetic energy in dielectric + : X magnetic energy in conductor,
WJU l<TfJLi

dW*-- -. jouie heat + 2tw (electric energy magnetic energy),
dz

where the subscript e refers to the external or dielectric medium, i to the conductor,

and all quantities are per unit length of line. Now make the following assumptions:

(6) In the dielectric the longitudinal component yEz is very small relative to the

transverse field, and consequently in this medium the components Ei y E^ Hi, HI
have the values computed in the case of perfect conductivity. Furthermore, the

values of capacity C and external inductance Le are unchanged, with /*c = LtC as

in Problem 17. The contribution of the longitudinal component to the electric

energy in the dielectric is negligible.

(c) In the metal the intensity of the transverse electric components is negligible

with respect to the longitudinal component, and the electric energy is negligible with

respect to the magnetic energy.

Consider a pair of conductors carrying equal currents in opposite directions. Let

R be twice the alternating-current resistance per unit length per conductor, Lt the

internal inductance per unit length of the double circuit. Both these quantities

are functions of the frequency and depend upon the proximity of the conductors as

well as upon their cross sections. They are obtained approximately by the method

outlined in Problem 13. Remembering that the energies involved are time averages,

show that

2

dz

The second term in W* can be neglected and one obtains for the propagation factor

19. According to Problem 18 the propagation factor for waves along a pair of

parallel, cylindrical conductors is given by

Let 7 -= a -|- ift and L J/ + L
et
the total inductance per unit length. Show that



594 BOUNDARY-VALUE PROBLEMS [CHAP. IX

/flV
,

If >:> '
a ^~

H

20. A Lecher wire system consists of two long parallel wires of circular cross ec-

tion. The distance between centers is 2a and the radius of each wire is 6. Show that

the capacitance and external self-inductances are

C =-
7
-

. v
- farads/meter,7 '

T , , .

^Le
- In l I henrys/meter.

If a y>> b, the effect of one wire on the current distribution in the other can be neg-
lected and the resistance and internal self-inductance per meter per conductor are

given approximately by the formulas at the end of Sec. 9.17. To obtain an idea of

the orders of magnitude assume the wires to be 2 mm. in radius (about a No. 6 gauge)
and of copper, spaced 10 cm. Calculate C, Le ,

Lt ,
R for frequencies of 10 8

,
10 5

,
and

102
cycles/sec, and compute the attenuation in decibels per meter. Discuss the

effect of a change in spacing or radius on the various parameters.
21. When leakage through the dielectric is considered in the preceding problems,

one obtains Eq. (27), page 550, for the general equation of propagation of current

along a pair of parallel conductors.

This equation was first studied in detail by Lord Kelvin in connection with submarine
cables. By the methods of the Fourier or Laplace transform discussed in Chap. V,
obtain a general solution in terms of initial conditions imposed on current and voltage.
Show that by an appropriate choice of parameters the velocity and attenuation can

be made independent of frequency so that a signal is propagated without distortion.

22. The feasibility of an Atlantic cable was first demonstrated in a theoretical

paper published by Lord Kelvin in 1855. For the case in question the self-inductance

and leakage could be neglected with respect to the series resistance and the potential
with respect to ground was governed by

dV

According to Kelvin the time necessary to produce a given potential at a distance z

from the origin is proportional to CR multiplied by the square of the distance. Verify
this result.

23. The problem of eliminating "cross talk" between pairs of telephone lines by
means of cylindrical shields is of great technical importance. To reduce the problem
to a form which can be handled satisfactorily it is usually assumed that variation

along the line can be neglected, so that the field is essentially two-dimensional. This

proves justifiable as long as the wave length is very much greater than the distances

between wires and between wires and shield. Show first that on this assumption the
field equations resolve into two groups:
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r ~
~k* r ~ai'

9 ~
Wlfr'

(II) He - -
',

t'w/i dr

fc
2

Interference caused by a field of type (I) is commonly called "electrostatic" cross

talk; that associated with a field of type (II) is known as "electromagnetic" cross
talk. The terms are unfortunate and misleading but firmly entrenched in engi-

neering literature.

Group (II) represents the field of one or more alternating-current filaments.
Show that the field due to a single filament / is

whose radial impedance is

Et iwjj. Hfi
l

\kr)
' =

"We
=
~T#F(H'

A current solenoid or vortex line produces a field of type (I), but such a field is also

generated by pairs of charged filaments of opposite sign, whence the term "electro-

static" interference.

24. A transmission line consists of two parallel wires of radius 6 whose separation
between centers is 2a. The inductance and capacitance per unit length are known
from the results of Problem 20. So far as the external field is concerned, the system
is equivalent to a pair of current filaments of strength / and opposite sign, and a pair
of line charges of strength q per unit length and opposite sign. A study of the problem
in bipolar coordinates shows that the location of these filaments does not coincide

exactly with the centers of the wires, but the effect of the deviation on the field can
be ignored except perhaps in the immediate neighborhood of the wire itself. Let the
central line between conductors coincide with the z-axis of a cylindrical coordinate

system. At distances from this axis which are very much less than the wave length
the field is governed by the equations of Problem 23.

Show that at points whose distance r from the central axis ^> a, the field of a
current pair or doublet is

EI = - aIH[
l

^(kr) cos Oe~i(at
,

2

ikal __m ,_ N .Hr
= - H^^kr) sm e~vut

,

He = ~lH( l

\kr) - krH(kr)]coB Be'***,2 T

and find expressions for the field of a corresponding charge doublet.
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25. Extend the results of Problem 24 with the help of the addition formula (11),

Sec. 6.11, and show that any pair of eccentric filaments can be replaced by a system

of line sources on the central axis emitting cylindrical waves of different orders.

26. The transmission line described in Problem 24 is enclosed by a coaxial copper

shield of inner radius c and thickness 5. Assume c ^> a and obtain expressions for the

field penetrating the shield. Discuss the results in terms of the frequency and dimen-

sions of the system. Consider fields of both electric and magnetic type. (On this

and the preceding problems see the discussion and bibliography by Schelkunoff,

Bell System Tech. Jour., 13, 532, 1934.)

27. A hollow tube of rectangular cross section is bounded by thick metal walls.

The inner dimensions are x -
a, y = b. Assuming first perfect conductivity, obtain

expressions for the allowed modes of the transverse electric field (H waves) and the

corresponding transverse magnetic modes (E waves). The components of the field

can be written down directly from the results of Problem 1, Chap. VI. If the tan-

gential components of E are to vanish at the boundaries, the fields must be periodic

in the x- and ^/-directions and hence h\ = mir/a, hi = mr/b. Correspondingly, the

various orders of E wave are designated by Em>n
',

for an // wave of order m, n, one

writes Hm>n .

Find expressions for the phase velocity, group velocity, wave length within the

tube, critical frequency, and critical wave length. Sketch the lines of electric and

magnetic field intensity for the first few orders for both E and H waves. The # ,i

wave has the simplest structure, the lowest critical frequency, and the lowest attenua-

tion in the case of tubes of finite conductivity. For these reasons it is the mode com-

monly used in practice.

Assuming the walls to be metal of finite conductivity, derive an approximate

expression for the attenuation of the H ,i wave in decibels per meter. Show that

there are optimum values of the ratio a/6 and the frequency leading to a minimum

attenuation.

28. Find the lowest natural frequency for electromagnetic oscillations in a cavity

whose form is that of a right circular cylinder of radius a and length I. The walls

are metal of conductivity a. Calculate the equivalent inductance, resistance, and the

parameter Q for this mode. Follow the procedure of Sec. 9.24.

29. Discuss the propagation of transverse electric and transverse magnetic waves

in a perfectly conducting hollow tube of elliptic cross section.

30. The axis of an infinitely long, circular cylinder of radius a coincides with the

2-axis of a coordinate system. The propagation factor of the cylinder is fa, that of

the external medium is k z . A plane wave whose direction is that of the positive

z-axis is incident upon the cylinder. Derive expressions for the diffracted field and

the scattering cross section. Obtain approximate formulas for the case a/\ <K 1.

Discuss the two cases:

o. Electric vector of the incident wave parallel to z-axis;

b. Magnetic vector of the incident wave parallel to 2-axis.

The theory has been confirmed experimentally by Schaefer, Ann. Physik, 31, 455,

1910; Zeit. Physik, 13, 166, 1923.

31. A plane, linearly polarized wave is scattered by a spherical body of radius a.

The material of the sphere has a propagation factor fcij that of the external medium,

which is assumed to be nonconducting, is k z . Let R be the radius vector from the

center of the sphere to a point of observation. The plane containing R and the axis

of propagation is called the plane of vision. The plane containing the direction of

polarization of the incident wave and the axis of propagation is the plane of oscillation.

Let < be the angle between the plane of vision and the plane of oscillation, and the
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angle between R and the axis of propagation. Let X be the wave length in the
external medium. Show that, if X ^> a, the intensity of the scattered Rayleigh
radiation is given by

1.2 _
Kl

k\
(cos

2 e cos 2
< -f sin 2

where /S is the mean value of the scattered intensity and SQ that of the incident wave.
Discuss the polarization of the scattered radiation.

32. Linearly polarized light is scattered by very small, nonconducting, spherical

particles. Show that in a direction parallel to the electric vector of the incident light
the intensity of the scattered radiation varies inversely as the eighth power of the

wave length. Polarized white light scattered in this direction appears as a purer blue
than when viewed at other angles and the effect is referred to as TyndalPs "residual

blue."

33. Discuss the attenuation of ultrahigh-frequency radio waves due to scattering in

rain and fog from the following data, taken from Humphreys, "Physics of the Air."

Express the decrease in intensity in decibels per kilometer.

34. Calculate the force exerted by a plane, linearly polarized wave on a dielectric

sphere, assuming the wave length to be very large relative to the radius of the sphere.

(Debye, Ann. Physik, 30, 57, 1909.)

36. A plane, linearly polarized electromagnetic wave is incident upon a perfectly

conducting sphere. Assuming the wave length to be very large relative to the radius

of the sphere, calculate the total force exerted on the sphere. (Debye, Ann. Physik,

30, 57, 1909.)

Estimate the change in the result in case the sphere were of copper.
36. A spherical cavity 17.5 cm. in radius, such as was described in Sec. 9.24, is

bounded by thick copper walls. Calculate the frequency and logarithmic decrement
of the lowest possible mode of oscillation. Repeat for a similar sphere of half the

radius.

37. An oscillating electric dipole is located at a point whose distance from the

center of a sphere is b. The radius of the sphere is a, with a < 6, and the dipole is

oriented in the radial direction. The propagation factor of the sphere is k\; that of

the external medium is k z . Show that the Hertz vector of a field satisfying the bound-

ary conditions and behaving as e
lk*R

/ik*R at the dipole is

when r > o, and

n-O

n -f > (2n 4- 1) (1 4-
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when r < a, where

[CHAP. IX

Tl d

-[;5
fc !**

Rn =

and where # is the distance from the dipole to the observer, r the distance from the

center to the observer, and 6 the polar angle measured from the dipole axis. The
Hertz vector is radial.

38. The axis of an infinite, perfectly conducting, right circular cone coincides with

the negative z-axis of a coordinate system. The vertex of the cone is at the origin

and its generators make an angle = with the positive z-axis. The external

space is dielectric. Investigate the natural modes of propagation on the cone. (Mac-

donald, "Electric Waves," Cambridge University Press, 1902.)

39. Discuss the radiation from the open end of a semi-infinite, straight wire

carrying an oscillating current by allowing * in the results of Problem 38. Com-

pare this with Problem 9, Chap. VIII.

40. In Problem 9, Chap. VII, expressions were found for a field with rotational

symmetry in spheroidal coordinates. Apply this theory to a perfectly conducting

prolate spheroid whose eccentricity differs only slightly from unity. Calculate the

frequency of the fundamental mode of oscillation and carry the approximations far

enough to give an expression for the damping due to radiation. (Abraham, Math.

Ann., 52, 81, 1899.)

41. A circular loop of wire 15 meters in radius carries a 60-cycle alternating

current of 10 amp. The loop lies on a fiat surface of earth whose constants are

/o =
4, a 10~ 4 mho/meter.

a. Calculate the electric field intensity in volts per meter at a point on the surface

of the earth whose distance from the center of the loop is r.

b. What is the effective resistance at the driving point of the loop? Neglect
losses in the wire and assume that all dissipation is due to the finite conductivity
of the earth.

(Note: At this low frequency the loop is equivalent to a vertical magnetic dipole.

The field can be calculated by the methods of Sees. 9.28 to 9.31, and the losses

determined from the mean vertical energy flow at the surface of the earth.)

42. Consider a system of conductors and dielectrics characterized by the param-
eters e, M> o-. The media are isotropic but not necessarily homogeneous. Sharp
boundary surfaces may be replaced by layers of rapid transition. There are two
kinds of impressed forces, the one Fi causing dielectric polarization, the other F 2

producing conduction currents. Thus

D e(E F 2).

Fi and F2 are continuous functions of position. These forces are started during an

infinitely short interval At, ending at the instant t = 0, and henceforth remain con-

stant. Let

be the work done on the system by the impressed forces from the initial instant to

the time t, and
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dv F2 TW = I dt I (

Jo Jv

ihe total generation of heat at the final rate, where J is the final value of current den-

sity. Then if U and T are the electric and magnetic energies of the field in the final

state, show that

A = W -f 2(U -
T).

The theorem was stated first by Heaviside, "Electrical Papers/
1

Vol. II, page 412,
and proved by Lorentz, Proc. Natl. Acad. Sd.

y 8, 333, 1922. A similar theorem for
electrical circuits is expressed in Pierce, "Electric Oscillations," page 40, 1st ed., 1920.





APPENDIX I

A. NUMERICAL VALUES OF FUNDAMENTAL CONSTANTS

Permittivity of free space ,

6 = 8.854 X 10~ 12 ~ ^- X 10~9
farad/meter.oOT

Permeability of free space /j ,

Mo = 47T X 10~ 7 = 1.257 X 10- henry/meter.

c = J =* 2.998 X 10 8 ~ 3 X 10 8
meters/sec.

*

1/co
= 1.129 X 10 11

meters/farad.

l/Mo = 7.958 X 10 6
meters/henry.

^ = 376.7 ohms.

^ J = 59.95 ~ 60 ohms.
to

(

- = 2.654 X 10-3 mho.

Propagation constant k = a + t/3,

,,
= L. 1.796 X 10 10 ~ 1.8 X 10 10

,

W VKe VK,

where <r is the conductivity in mhos per meter; v, the frequency; and /c,

the specific inductive capacity e/e .

ifo>i, ~
)9
~ 1.987 X 10~ 3 V^m ^ 2 X 10~3 Vw<m ,

/b = a

where Km = specific magnetic permeability

If 11 1,

B. DIMENSIONS OF ELECTROMAGNETIC QUANTITIES

The quantities appearing in the table below are expressed in terma

of mass M, length L, time T, and charge Q. In the Giorgi m.k.s. system
601
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used exclusively in this book mass is measured in kilograms, length in

meters, time in seconds, and charge in coulombs.

C. CONVERSION TABLES
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The quantities listed in the preceding tables are unaffected by the

question of rationalization. The m.k.s. units employed in this book are

rationalized. The c.g.s. electromagnetic and electrostatic systems are

ordinarily unrationalized. Ccnversion factors for the three most

important quantities affected by rationalization are tabulated below.

In case the c.g.s. units are also rational, the factors 4?r are suppressed.



APPENDIX H
FORMULAS FROM VECTOR ANALYSIS

Scalar functions are represented in the following by Greek letters;

Roman letters are used for vectors.

(1) a-bxc = b-cxa = c-axb
(2) a X (b X c) = (a c)b

-
(a b)c

(3) (a X b) -
(c X d) = a - b X (c X d)

= a-(bdc b-cd)
= (a-c)(b-d) - (a-d)(b-c)

(4) (a X b) X (c X d) = (a X b - d)c
-

(a X b c)d

(5) V(<t> + # = V* + V0
(6) V(0tfO = <t>Vt + i^70

(7) V (a + b) = V a + V b

(8) V X (a + b) = V X a + V X b

(9) V Oa) = a V<t> + 0V a

(10) V X (a) =
V<t> X a + <t>V X a

(11) V(a-b) = (a-V)b + (b-V)a + aX (VX b) +b X (VXa)
(12) V-(aXb) = b-VXa-a-VXb
(13) V X (a X b) = aV b - bV a + (b - V)a -

(a V)b

(14) V X V X a = VV a - V 2a

(15) V X V<f>
=

(16) V V X a =

If r = ix + ]y -f" k^ is the radius vector drawn from the origin to the

point (:r, y, z), then

(17) V-r-3, vxr = 0.

In the following formulas V is a volume bounded by the closed sur-

face S. The unit vector n is normal to S and directed positively outwards.

(18)

(19)

(20) fvxarfy= f n X Ada
t/V JS

Let S be an unclosed surface bounded by the contour

(21)
JT

n X V0 da = f
<t> ds

(22) jTvxa-nda
604
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CONDUCTIVITY OF VARIOUS MATERIALS

Metals and Alloys
Conductiv ity ^,

mhos/meter
Material at 20C.

Aluminum, commercial hard drawn 3 . 54 X 10T

Constantin, 60%Cu, 40%Ni 0.20 X 107

Copper, annealed 5 . 8005 X 107

Copper, hard drawn 5 . 65 X 107

German silyer, 18% Ni 0.30 X 107

Gold, pure drawn 4 . 10 X 107

Iron, 99.98% pure 1 .0 X 107

Steel 0.5-1.0X107

Steel, manganese . 14 X 10T

Lead 0.48 X 107

Magnesium 2 . 17 X 107

Manganin, 84% Cu, 12% Mn, 4% Ni , 0.23 X 107

Mercury . 1044 X 107

Monel metal . 24 X 107

Nichrome . 10 X 107

Nickel 1 .28 X 107

Silver, 99.98% pure 6 . 139 X 107

Tin 0.869 X 107

Tungsten 1 .81 X 107

Zinc, trace Fe 1 .74 X 107

Dielectrics

Approximate conductivity,
Material mhos/meter at 20C.

Bakelite (average range) 10"" 8 10~ 10

Celluloid 10~ R

Ceresin <2X lO' 17

Fiber, hard 5 X 10~

Glass, ordinary 10" 1 *

Glyptol 10~ 14

Hard rubber 10- l^-10- l

Marble 10- 7-10~
Mica 10-u-10- 1

Paraffin 10- J*-10-U
Porcelain 3 X ICT 1 *

Quartz, crystal

U to axis 10-"
JL to axis 3 X 10"li

605
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Approximate conductivity,

Material mhos/meter at 20C.

Quartz, fused <2X 10~17

Rosin 2 X lO'14

Shellac 10-"

Slate 10-

Sulfur 10-15

Wood, paraffined lO-MLO"11

Alcohol, ethyl, 15C 3.3 X 10^

Alcohol, methyl 7.1 X 10~<

Petroleum 10~ 14

Water, distilled, 18C 2 X 10~<

The conductivities of geological materials vary so greatly from one

locality to the next that only approximate values can be given. The

following figures indicate orders of magnitude:

Sea water, 3 to 5 mhos/meter. Samples taken from the Atlantic

Ocean off the coasts of Massachusetts and New Jersey showed a con-

ductivity of 4.3 mhos/meter.
Fresh water, 10~3 mhos/meter. The conductivity of small fresh-

water lakes may be five or ten times larger.

Wet ground, 10~2 to lO'3 mhos/meter.

Dry ground, 10~4 to 10~5 mhos/meter.

SPECIFIC INDUCTIVE CAPACITY OF DIELECTRICS

The values tabulated below are approximately independent of fre-

quency at frequencies less than one megacycle per second. Atmospheric

pressure and 20C. unless otherwise stated.

Gases *

Air, 0C 1 .00059

40 atmospheres 1 . 0218

80 atmospheres 1 .0439

Carbon dioxide, 0C 1 .000985

Hydrogen, 0C 1 .000264

Water vapor, 145C 1 .00705

Liquids *,

Acetone, 0C 26.6

Air, -191C 1 .43

Alcohol,

amyl 16.0

ethyl 25.8

methyl 31 .2

Benzene 2.29

Glycerin, 15C 56.2

Oils,

castor 4 . 67

linseed 3 . 35

petroleum 2.13

Water, distilled 81.1
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Solids K.

Asphalt 2.68
Diamond 16.5

Glass,

flint, density 4.5 9 . 90

flint, density 2.87 6 .61

lead, density 3.0-3.5 5.4-8.0

Gutta-percha 3 . 3-4.9
Marble 8.3
Mica 5 . 6-6 .

Paper (cable insulation) 2 . 0-2 . 5

Paraffin 2.1

Porcelain 5.7

Quartz,
to axis 4 . 69

||
to axis 5 . 06

Rubber
*

2.3-4.0

Shellac 3.1

Slate -. 6.6-7.4

Sulphur,

amorphous 3 . 98

cast, fresh 4.22

Wood, dry
red beech JL to fibers 3 . 6-7 . 7

red beech
||
to fibers 2.5-4 8

oak J. to fibers 3.6-6.8

oak
||
to fibers 2.5-4.2

The data in this appendix have been taken largely from the " Smith-

sonian Physical Tables " and the " Handbook of Chemistry and Physics.
"

These references should be consulted for other materials and for the

temperature coefficients.



APPENDIX IV

ASSOCIATED LEGENDRE FUNCTIONS

Pofr) = 1

Pi(z) = z = cos

p\(z) = (1
- z2

)*
= sin 6

P2 (2)
= (3z

2 -
1)
= i(3 cos 20 + 1)

P\(z) = 3(1
- z2

)*z
= f sin 20

P|00 = 3(1
- 22

)
= |(1

- cos 26)

P3 (z)
= i

(5^ - 3) =
i.(5 cos 30 + 3 cos 0)

P\(z) = 1(1
- 2

)*(52
2 -

1)
= | (sin + 5 sin 30)

P|() = 15(1
- z2

)z
= ^(cos - cos 30)

P\(z) = 15(1
- z2

)?
= -^(3 sin - sin 30)

P4 (z)
= i(35z

4 - 30z2 + 3) = ^(35 cos 40 + 20 cos 20 + 9)

pi(z) = |(l
- 22

)H7z
3 -

3z) = A (2 sin 20 + 7 sin 40)

PJ(z) = -(1 - z2
)(7z

2 -
1)
= ff(3 + 4 cos 20 - 7 cos 40)

P\(z) = 105(1 - z^z = ig^(2 sin 20 - sin 40)

P\(z) = 105(1 - 22)
2 = -4^(3

- 4 cos 20 + cos 40)



INDEX

Abraham, 422, 439, 475

Absorption coefficient, 324

Adams, 150

Addition theorem, for circularly cylindri-

cal waves, 372-374

for elliptic waves, 387

for Legendre polynomials, 408

for spherical Bessel functions, 413-414

Admittance of coaxial line, 550, 553

Angle of incidence, complex, 516

Anisotropic media, 11, 73, 341

Antenna, horizontal, over earth, 583

vertical, 573-587

Antennas, directional, 448-454

linear, 438^448, 454r-457, 477

Attenuation, approximate calculation,

533-534

along coaxial line, 554

in hollow pipe, 543-544

Attenuation factor 0, 276

Axial vectors, 67, 72

B

Baker, 463, 464

Barnes, 513

Barrow, 537, 545

Bateman, 32, 388, 389

Baz, 511, 514

Bechmann, 455, 459

Bergmann, 443, 500

Bessel equation, 199

Bessel functions, 356-360

modified, 390-391

Biot-Savart law, 232, 254

Bipolar coordinates, 55

Blumer, 566

B6cher, 201

Bochner, 312

Bontsch-Bruewitsch, 448

Born, 322, 463

Boundary conditions, 34-38, 163-165,

243, 247, 483-485

homogeneous, 485

Boussinesq, 389

Bremmer, 587, 591

Brewster angle, 497, 508, 516, 520

Brillouin, 334, 338-339, 455, 545

Burrows, 585

Campbell, 289, 299

Carslaw, 287, 298, 399

Carson, 537

Carter, 449

Cartwright, 513

Cauchy theorem, 315

Cavendish, 170

Cavity, ellipsoidal, 213-215

spherical, 206

oscillations in, 560-563

Cavity definitions of E and D, 213-215

Characteristic values, 376

for sphere, 556, 558-562

Charge, conservation of, 4

magnetic, 228-229, 241, 464

Charge density, electric, definition of, 2

surface, 35, 467

Chu, 464, 470, 545

Circular polarization, 500

Clausius-Mossotti law, 140, 148, 151

Coaxial lines, 545-554

Cohn, 584

Complementary waves, 531

in coaxial line, 548

Complex field vectors, 32-34

Complex quantities, algebra of, 135-136

Compressibility, 96

Conductivity, complex, 326

definition of, 14

Conductors, properties of, 109, 164, 325

Conformal transformations, 217, 224

Connected spaces, 227, 238

Conservative field, definition of, 105

600
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Continuity, equation of, 5

in four dimensions, 72

Contraction, tensor, 68

Contravariant components, 41, 48, 60

Convection current, 79

Convergence of potential integrals, 170-

172, 186, 187

Copson, 463, 464

Coulomb law, 160-170, 174, 179, 239, 241

Courant-Hilbert, 403

Covariant components, 41, 48, 60

Cross section, scattering, 569

Cross talk, 545, 594-595

Curl, an antisymmetric tensor, 68

in curvilinear coordinates, 47, 49

definition of, 7

of a four-vector, 69

Current, convection, 79

definition of, 3

Current density, definition of, 3

surface, 37, 243, 246-247, 467, 484

Current distribution, relation to electro-

static potential, 222-223

Curtis, measurement of c, 16

Curvilinear coordinates, 38

Cylinder functions, circular, 356-360

Cylindrical coordinates, 198-199

circular, 51

elliptic, 52

parabolic, 54

Cylindrical wave functions, circular,

360-361

elliptic, 380

Czerny, 513

D

Debye, 369, 415, 537, 558, 570

Decibel, 344, 554

Depolarizing factor, 206, 213

Diamagnetic media, 13

Diffraction, of dipole field by sphere, 587

Kirchhoff-Huygens theory, 460-470

of plane wave by ellipsoid, 572

by sphere, 563-573

Diffusion, 279, 347

Dilatation, 92, 95

Dimensional analysis, 489

Dipole, electric, 174, 175-176, 179, 181

oscillating, 433, 434-437, 477

magnetic, 235, 583

oscillating, 433, 437-438

Dirichlet problem, 461

Discontinuities, of A, 247
of B, 246, 250

of E, 188, 191, 193

of potential, 189, 192

of surface distributions, 468-470

Dispersion, anomolous, 324

in dielectrics, 321-325

in metals, 325-327

normal, 324

Displacement current, 9

Divergence, in curvilinear coordinates,

45, 49

definition of, 4

invariance, 63, 64

tensor, 68, 69

Dorsey, 16

Double-layer distributions, 188-192, 193,

238

Drude, 513

E

E waves, 341, 555

in coaxial line, 546

in hollow pipe, 538-545

Earnshaw's theorem, 116

Eichenwald, 499

Eikonal, 343

Einstein, 75

Eisenhart, 349

Electric type, field of, 30, 350, 526,

555, 566

Electrostatic problem, formulation, 194-

195

Electrostriction, 149-151

Ellipsoid, in an electrostatic field, 207-

217

magnetized, 257

in a magnetostatic field, 258

Ellipsoidal coordinates, 58

Ellipsoidal harmonics, 207

Elliptic coordinates, 52, 200

Elliptic polarization, 280, 500, 506, 509,

566

Energy, elastic, 93

electrostatic, 104r-118

of anisotropic medium, 141

magnetic, in spherical cavity, 562

magnetostatic, 118-130

of anisotropic medium, 153

velocity of propagation, 342
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Energy density, electrostatic, 110, 131

magnetic, 124, 131

Energy flow, 131-137

in plane wave, 281

Epstein, 344

Equipotentials, 161

condition for, 218

Error function, 290, 586

Ether, 102

Ewald, 347

F

Faltung theorem, 312-313, 320

Farad, 21

Faraday law of induction, 8, 348

Fermat, 344

Ferromagnetic media, 13, 125, 155

Force, on body immersed in fluid,

151-152, 155, 158

between current elements, 266

on cylinder in magnetic field, 261

on dipole, 176

on distribution of charge, 96, 103

on distribution of current, 96, 103

on element of fluid, 139, 145

on element of solid, 144-145, 153-155
on element of surface, 148-149, 155

Forsterling, 322

Foster, 289, 299

Four-current, 70, 78, 81, 471

Four-potential, 72, 78, 81, 471-473

Four-tensor, 69

Four-vector, 64

Fourier integrals, 288-292
Fourier series, 285-287

Fourier transforms, 289, 294, 298, 299,
302

Fourier-Bessel integral, 369-371, 575

for spherical functions, 412

Fourier-Bessel series, 541

Frenkel, 475

Fresnel's equations, 492-494, 495, 501,

516-517, 588

G

Galilean transformation, 77

Gans, 572, 573

Geometrical optics, 343

Giorgi, 17

Glathart, 508

Glazebrook, 17

Goldstein, 376

Gradient, in curvilinear coordinates, 44,
49

Grazing incidence, 509
Green's theorem, 165, 192-193, 424, 460

in four dimensions, 471

vector form, 250, 464

Gross, 499

Group velocity, 330-333, 339
in hollow cylinder, 540

Guillemin, 283

H

H waves, 341, 555

in hollow pipe, 538-545

Hadamard, 284, 461

Hagen, 327, 508

Hague, 266

Hall effect, 14

Hankel functions, 359

Hansell, 449

Hansen, 393, 562

Happel, 572

Harmonic functions, 182

Heaviside, 132, 310, 346, 599

Helmholtz, 145

coils, 263

resonators, 560

Henry, definition, 22

Hertz, 28

Hertz vectors, 28-32, 185
for arbitrary source, 431
for cylindrical field, 349-351
relation to vector wave functions, 394
for spherical field, 415

Herzfeld, 573

Hobson, 201, 404

Hollmann, 449

Hollow pipes, 537-545

rectangular cross section, 596

Hondros, 537

Hund, 449

Huygen's principle, 428, 460-470, 570,
582

Hysteresis, 122, 125, 126, 133

Ignatowsky, 464

Images, 193-194
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Images, of antenna, 583

Impedance, characteristic, 283, 549

of coaxial line, 552-553

of coaxial line, 546-547, 549

of cylindrical conductor, 532-537

of cylindrical field, 354

intrinsic, of medium, 283

of plane wave, 282-284, 512

surface, 532

Impedance matching, relation to bound-

ary conditions, 512, 514, 532, 547

Impulse function, 291, 425

Ince, 210, 309, 375

Index of refraction, 275, 321-324, 329,

495

Inductance, of coaxial line, 550, 553

of long, straight wire, 537

mutual, 263

self-, 264

Induction field, 586

Inductive capacities, 10-11

complex, 34, 323

Inertia, of electromagnetic field, 104

Infinity, regularity at, 167-169, 485

Integral representations, of Bessel func-

tions, 367, 369, 389

of elliptic wave functions, 380-389

of Hankel functions, 367, 389

of spherical Bessel functions, 410

of wave functions, 361-364

International Electrotechnical Commis-

sion, 18

Invariance of Maxwell's equations, 80

Invariants in space-time, 81-82

Ionosphere, 327

Jeans, 194, 201

Jobst, 570

Jordans' lemma, 315, 335, 474

K

Kellogg, 172, 188

Kelvin, 214, 221, 594

Kemble, 150, 224

Kennelly, on m.k.s. units, 17

Kennelly-Heaviside layers, 329

Kirchhoff diffraction theory, 462-464

Kirchhoff solution of wave equation, 427

Kdnig, 503, 506, 510

Korteweg, 145

Kottler, 464, 468

Labus, 444

Lamb, 388

Laplace transformation, 309-318

Laplace's equation, 162, 167

solution by definite integrals, 218

solution in orthogonal coordinates,

197-201

Laplacian, invariance of, 63, 64

in curvilinear coordinates, 47, 49

Larmor, 145, 464

Legendre equation, 199

Legendre functions, 400404

associated, 182, 608

Legendre polynomials, 173

Lieiiard, 475

Lindenblad, 449

Linder, 266

Lines of force, 161

Livens, 134, 145

Lorentz, 59, 321, 322, 599

Lorentz transformation, 77, 78, 81, 475

Love, 143, 464

M

Macdonald, 134, 464, 478

McPetrie, 449

Macroscopic theory, limits of, 2, 327, 509

Magnetic charge, 228-229, 241, 464

Magnetic current, 464

Magnetic flux, definition of, 8

Magnetic moment, 229

Magnetic shells, 237

Magnetic type, field of, 30, 351, 526, 555,

566

Magnetization, 13, 229, 235, 236-237

Magnetomotive force, definition of, 21

Magnetostatic problem, formulation,

254r-256

Magnetostriction, 156

Manneback, 445

Mason and Weaver, 110, 134, 194

Mathieu equation, 200, 375-377

Mathieu functions, 376-380

Mead, 537

Metal optics, 503

Metrical coefficients. 42
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Michelson, 74, 75

Mie, 60, 415, 566

Minkowski, 59, 60, 81

Moglich, 573

Momentum, conservation of, 104

electromagnetic, 103-104, 157-158

Morley, 74, 75

Morse, 376, 387, 404, 470

Multipoles, 162, 176-183, 236, 431-434,

572

N

Neumann problem, 461

Newton, unit of force, 20

Niessen, 582

Norton, 585

Octupole, 181

Ohm's law, 14

Operational calculus, 310

Optic axes, 342

Orthogonal transformations, 61, 63

Parabolic coordinates, 54

Paraboloidal coordinates, 57

Paramagnetic media, 13

Pauli, 60, 75, 158

Penetration factor, 504, 536

Permanent magnets, 129

Permeability, at high frequencies, 508

Pfannenberg, 510

Pfeiffer, 506

Pfister, 514

Phase of plane wave, 274

Phase constant a, 276

Phase velocity, 274, 276, 337-340

in conducting medium, 502

in dupersive medium, 324

greater than c, 518-519

in hollow cylinder, 540

hi ionized medium, 327, 329

Phillips, 188, 189

Picht, 499

Piecewise continuity, 286

Pierce, 599

Pistalkors, 455

Planck, 463

Plane of incidence, 490

Plane of vision, 596

Plane waves, inhomogeneous, 340, 360,

511

Pockels, 142, 143, 145, 461

Poincare", 346, 461

Point charge, 104, 162

moving, 473-475

Poisson, 228

Poisson ratio, 95

Poisson-Parseval formula, 387

Poisson's equation, 162, 166-167, 230

Polar vectors, 67, 72

Polarization, circular, 280, 500

electric, 11-12, 183-185

elliptic, 280, 500, 506, 509, 566

linear, 280

magnetic, 11-13, 242-245

of moving dielectric in magnetic field,

266

Polarization potentials, 30, 185

Polarization vectors, definition of, 11

Polarizing angle, 497

Potential, complex, 32-34

elastic, 94

electrostatic, 160

in two dimensions, 219-220

polarization, 30, 185

retarded, 428-430

scalar, 23-28

of magnetostatic field, 226-228

vector, 23-28, 226

of current distribution, 233-235, 253

of magnetized body, 242

Poynting theorem, 131-137, 457-458

Poynting vector, 132

complex, 135-137

Principal axes, of strain, 89, 92

of stress, 86, 87

Principal wave, in coaxial line, 548

in cylindrical conductor, 530, 531-537

in hollow pipes, 538

Propagation, along coaxial line, 545-554

along cylindrical conductor, 527-537,

591-594

in hollow pipes, 537-545

in homogeneous conductor, 277-278,

297-309, 318-321

in homogeneous dielectric, 274-276,

292-297

along an infinite plane surface, 517-524

in ionized media, 327-330

of radio waves, over flat earth, 57&-58T

over spherical earth, 587
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Propagation factor, for circular cylinder,

526, 529

for coaxial line, 548, 552, 554

for hollow cylinder, 539-540

Propagation factor k, 273, 276

Q

C, for spherical cavity, 563

Quadrupole, 177, 179, 182, 433-434, 480

Quantum theory, 2

Quasi-stationary state, 225, 438

R

Radiation, from antenna arrays, 449-

454

from electric dipole, 436-437

from linear antenna, 441-444

from magnetic dipole, 438

from quadrupole, 434, 480

from sphere, 568-570

from traveling wave, 445

Radiation condition, 485-486

Radiation field of current element, 440

Radiation reaction, 476

Radiation resistance, of linear antenna,

444

of magnetic dipole, 438

of traveling wave, 446

Rayleigh, 537, 572

Reciprocal vectors, 39, 60

Reciprocity theorem, 479

Reflection, by conductor, 505

by dielectric, 495

by earth's surface, 579

total, 497-500, 583

Reflection coefficient, 496, 506, 508, 510,

579, 585

of plane sheet, 513-515

Refraction, in conductor, 501-505

in dielectric, 495

of dipole radiation in earth, 579-582

Refractive index, 275, 321-324, 329, 495

Regular curve, definition of, 4

Regular surface, definition of, 4

Relativity postulates, 74-75

Relaxation time, 15

Residue at a pole, 315

Retarded potentials, 428-430

Rice, 585

Righi, 28

Ritz, 75

Rolf, 585

Rosa, 16

Roth, 514

Rubens, 327, 508

Rubenstein, 470

Rubinowicz, 463, 488

Runge, 343

3

Sacerdote, 150

Scalars, invariant and variant, 62, 65

Scattering from sphere, 568-569, 572, 597

Schaefer, 499, 572

Schelkunoff, 282, 350, 464, 470, 516,

537, 596

Schriever, 537

Sellmeyer, 321

Shea, 503

Shear modulus, 95

Shielding, 504

Signal velocity, 338-340

Silberstein, 32

Similitude, 488-490

Single-layer distributions, 187-188, 192,

193

Six-vector, 69

Skin effect, in cylindrical conductor, 531

at a plane surface, 520-524

Skin-depth factor, 504, 536, 563

Smith, 484

Smythe, 201

Snell's laws, 491, 501, 579

for conducting medium, 502

Solenoid, field of, 232-233

Solid angle, 189

Sommerfeld, 18, 59, 60, 242, 334, ?t>7,

391, 475, 485, 524, 527, 528, 573

Sommerfeld and Runge, 343

Southworth, 537

Spectral density, 289

Sphere, in an electrostatic field, 201-207

natural oscillations of, 554-563

Spherical Bessel functions, 404-40G

Spherical coordinates, 52, 199

Spherical harmonics, 182, 403

Spherical wave functions, 404

Spheroidal coordinates, 56, 200

Spheroidal wave functions, 420-422

Stationary field, properties of, 225

Steepest descent, method of, 368
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Step function, 289, 316

Stoke's theorem, 6

Strain, components of, 91

definition of, 87

Strain quadric, 89

Streamlines, 3

Stress, definition of, 85

Stress quadric, 87, 101

Stress tensor, electromagnetic, 98-99,

147, 154

Strutt, 376, 585

Surface charge, relation to polarization,

184

Surface wave, 584-587

Susceptibility, electric and magnetic, 12

measurement of, 258

Tedone, 464

Telegrapher's equation, 346, 550

Tensor, definition of, 65, 68

symmetric and antisymmetric, 66

Tensor product, 82

Tensor-divergence theorem, 99

Tesseral harmonics, 403, 555

Thomson's theorem, 114, 138

Titchmarsh, 288

Tonolo, 464

Toroidal coordinates, 218

Torque, on dipole, 176, 242

on ellipsoid, 215-217

Total reflection, 495, 497-500, 583

Transmission coefficient, 496

Transversality, 470, 476

Transverse electric field, 351, 499, 526-

527, 538

Transverse magnetic field, 350, 499, 518,

520, 526-527, 538, 555

Transverse voltage, 549

Transverse waves, 271

U

Uller, 584

Uniqueness of solution, 196-197, 256-

257, 486-488

Unit vectors, 41, 48

Unitary vectors, 39, 60

Units, 16-23, 238-241, 489

electromagnetic, 17, 240

electrostatic, 240

Gaussian, 241

m.k.s., 18-23, 241

practical, 17, 21

rationalized, 239

Van der Pol, 582, 587, 591

Van Vleck, 480, 481

Vector wave functions, 393, 395

cylindrical, 395-399

spherical, 414-418

Voigt, 143

W

Wallot, 18, 589

Watson, 201, 298, 320, 358, 369, 404, 538,

542, 557

Wave-front velocity, 337-340

Weber, unit of flux, 20

Weyl, 577, 584
Whittaker and Watson, 201, 211, 286,

315, 362, 375

Wiechert, 475

Wiener, 312

Wilmotte, 449

Wilmsen, 572

Wilsey, 503, 506

Wise, 585

Woltersdorff, 513

Young's modulus, 95

Z

Zahn, 537

Zenneck, 584

Zonal harmonics, 402




























