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PREFACE

The pattern set nearly 70 years ago by Maxwell’s Treatise on Electric-
ity and Magnetism has had a dominant influence on almost every subse-
quent English and American text, persisting to the present day. The
Treatise was undertaken with the intention of presenting a connected
account of the entire known body of electric and magnetic phenomena
from the single point of view of Faraday. Thus it contained little or
no mention of the hypotheses put forward on the Continent in earlier
years by Riemann, Weber, Kirchhoff, Helmholtz, and others. It is
by no means clear that the complete abandonment of these older theories
was fortunate for the later development of physics. So far as the
purpose of the Treatise was to disseminate the ideas of Faraday, it was
undoubtedly fulfilled; as an exposition of the author’s own contributions,
it proved less successful. By and large, the theories and doctrines
peculiar to Maxwell—the concept of displacement current, the identity
of light and electromagnetic vibrations—appeared there in scarcely
greater completeness and perhaps in a less attractive form than in the
original memoirs. We find that all of the first volume and a large part
of the second deal with the stationary state. In fact only a dozen pages
are devoted to the general equations of the electromagnetic field, 18 to
the propagation of plane waves and the electromagnetic theory of light,
and a score more to magnetooptics, all out of a total of 1,000. The
mathematical completeness of potential theory and the practical utility of
circuit theory have influenced English and American writers in very
nearly the same proportion since that day. Only the original and
solitary genius of Heaviside succeeded in breaking away from this course.

For an exploration of the fundamental content of Maxwell’s equations
one must turn again to the Continent. There the work of Hertz, Poin-
caré, Lorentz, Abraham, and Sommerfeld, together with their associates
and successors, has led to a vastly deeper understanding of physical
phenomena and to industrial developments of tremendous proportions.

The present volume attempts a more adequate treatment of variable
electromagnetic fields and the theory of wave propagation. Some atten-
tion is given to the stationary state, but for the purpose of introducing
fundamental concepts under simple conditions, and always with a view
to later application in the general case. The reader must possess a
general knowledge of electricity and magnetism such as may be acquired

from an elementary course based on the experimental laws of Coulomb,
v
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Ampere, and Faraday, followed by an intermediate course dealing with
the more general properties of circuits, with thermionic and electronic
devices, and with the elements of electromagnetic machinery, termi-
nating in a formulation of Maxwell’s equations. This book takes up
at that point. The first chapter contains a general statement of the
equations governing fields and potentials, a review of the theory of units,
reference material on curvilinear coordinate systems and the elements of
tensor analysis, concluding with a formulation of the field equations in
a space-time continuum. The second chapter is also general in char-
acter, and much of it may be omitted on a first reading. Here one will
find a discussion of fundamental field properties that may be deduced
without reference to particular coordinate systems. A dimensional
analysis of Maxwell’s equations leads to basic definitions of the vectors
E and B, and an investigation of the energy relations results in expres-
sions for the mechanical force exerted on elements of charge, current, and
neutral matter. In this way a direct connection is established between
observable forces and the vectors employed to describe the structure of a
field.

In Chaps. III and IV stationary fields are treated as particular cases
of the dynamic field equations. The subject of wave propagation is
taken up first in Chap. V, which deals with homogeneous plane waves.
Particular attention is given to the methods of harmonic analysis, and
the problem of dispersion is considered in some detail. Chapters VIand
VII treat the propagation of cylindrical and spherical waves in unbounded
spaces. A necessary amount of auxiliary material on Bessel functions
and spherical harmonics is provided, and consideration is given to vector
solutions of the wave equation. The relation of the field to its source,
the general theory of radiation, and the outlines of the Kirchhoff-Huygens
diffraction theory are discussed in Chap. VIII.

Finally, in Chap. IX, we investigate the effect of plane, cylindrical,
and spherical surfaces on the propagation of electromagnetic fields.
This chapter illustrates, in fact, the application of the general theory
established earlier to problems of practical interest. The reader will
find here the more important laws of physical optics, the basic theory
governing the propagation of waves along cylindrical conductors, a
discussion of cavity oscillations, and an outline of the theory of wave
propagation over the earth’s surface.

It is regrettable that numerical solutions of special examples could
not be given more frequently and in greater detail. Unfortunately the
demands on space in a book covering such a broad field made this imprac-
tical. The primary objective of the book is a sound exposition of
electromagnetic theory, and examples have been chosen with a view to
illustrating its principles. No pretense is made of an exhaustive treat-
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ment of antenna design, transmission-line characteristics, or similar
topics of engineering importance. It is the author’s hope that the
present volume will provide the fundamental background necessary for
a critical appreciation of original contributions in special fields and satisfy
the needs of those who are unwilling to accept engineering formulas
without knowledge of their origin and limitations.

Each chapter, with the exception of the first two, is followed by a
set of problems. There is only one satisfactory way to study a theory,
and that is by application to specific examples. The problems have been
chosen with this in mind, but they cover also many topics which it was
necessary to eliminate from the text. This is particularly true of the
later chapters. Answers or references are provided in most cases.

This book deals solely with large-scale phenomena. It is a sore
temptation to extend the discussion to that fruitful field which Frenkel
terms the ‘“ quasi-microscopic state,”” and to deal with the many beautiful
results of the classital electron theory of matter. In the light of con-
temporary developments, anyone attempting such a program must soon
be overcome with misgivings. Although many laws of classical electro-
dynamics apply directly to submicroscopic domains, one has no basis
of selection. The author is firmly convinced that the transition must be
made from quantum electrodynamics toward classical theory, rather
than in the reverse direction. Whatever form the equations of quantum
electrodynamics ultimately assume, their statistical average over large
numbers of atoms must lead to Maxwell’s equations.

The m.k.s. system of units has been employed exclusively. There
is still the feeling among many physicists that this system is being forced
upon them by a subversive group of engineers. Perhaps it is, although
it was Maxwell himself who first had the idea. At all events, it is a good
system, easily learned, and one that avoids endless confusion in practical
applications. At the moment there appears to be no doubt of its uni-
versal adoption in the near future. Help for the tories among us who
hold to the Gaussian system is offered on page 241.

In contrast to the stand taken on the m.k.s. system, the author
has no very strong convictions on the matter of rationalized units.
Rationalized units have been employed because Maxwell’s cquations are
taken as the starting point rather than Coulomb’s law, and it seems
reasonable to make the point of departure as simple as possible. As a
result of this choice all equations dealing with energy or wave propagation
are free from the factor 4r. Such relations are becoming of far greater
practical importance than those expressing the potentials and field
vectors in terms of their sources.

The use of the time factor e—%* instead of e*** is another point of
mild controversy. This has been done because the time factor is invar-
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iably discarded, and it is somewhat more convenient to retain the positive
exponent et* for a positive traveling wave. To reconcile any formula
with its engineering counterpart, one need only replace —z by -+j.

The author has drawn upon many sources for his material and is
indebted to his colleagues in both the departments of physics and of
electrical engineering at the Massachusetts Institute of Technology.
Thanks are expressed particularly to Professor M. F. Gardner whose
advice on the practical aspects of Laplace transform theory proved
invaluable, and to Dr. S. Silver who read with great care a part of the
manuscript. In conclusion the author takes this occasion to express his
sincere gratitude to Catherine N. Stratton for her constant encourage-
ment during the preparation of the manuscript and untiring aid in the
revision of proof.

Jurius ApaMs STRATTON.

CAMBRIDGE, Mass.,
January, 1941.
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ELECTROMAGNETIC THEORY

CHAPTER 1
THE FIELD EQUATIONS

A vast wealth of experimental evidence accumulated over the past
century leads one to believe that large-scale electromagnetic phenomena
are governed by Maxwell’s equations. Coulomb’s determination of the
law of force between charges, the researches of Ampére on the interaction
of current elements, and the observations of Faraday on variable fields
can be woven into a plausible argument to support this view. The
historical approach is recommended to the beginner, for it is the simplest
and will afford him the most immediate satisfaction. In the present
volume, however, we shall suppose the reader to have completed such a
preliminary survey and shall credit him with a general knowledge of the
experimental facts and their theoretical interpretation. Klectromagnetic
theory, according to the standpoint adopted in this book, is the theory of
Maxwell’s equations. Consequently, we shall postulate these equations
at the outset and proceed to deduce the structure and properties of the
field together with its relation to the source. No single experiment
constitutes proof of a theory. The true test of our initial assumptions
will appear in the persistent, uniform correspondence of deduction with
observation.

In this first chapter we shall be occupied with the rather dry business
of formulating equations and preparing the way for our investigation.

MAXWELL’S EQUATIONS

1.1. The Field Vectors.—By an electromagnetic field let us under-
stand the domain of the four vectors E and B, D and H. These vectors
are assumed to be finite throughout the entire field, and at all ordinary
points to be continuous functions of position and time, with continuous
derivatives. Discontinuities in the field vectors or their derivatives
may occur, however, on surfaces which mark an abrupt change in the
physical properties of the medium. According to the traditional usage,
E and H are known as the intensities respectively of the electric and
magnetic field, D is called the electric displacement and B, the magnetic
induction. Eventually the field vectors must be defined in terms of the

experiments by which they can be measured. Until these experiments
1
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are formulated, there is no reason to consider one vector more funda-
mental than another, and we shall apply the word intensity to mean
indiscriminately the strength or magnitude of any of the four vectors
at a point in space and time.

The source of an electromagnetic field is a distribution of electric
charge and current. Since we are concerned only with its macroscopic
effects, it may be assumed that this distribution is continuous rather
than discrete, and specified as a function of space and time by the den-
sity of charge p, and by the vector current density J.

We shall now postulate that at every ordinary point in space the field
vectors are subject to the Maxwell equations:

(1) vxE+§£—=O,
aD
) VXH- =]

By an ordinary point we shall mean one in whose neighborhood the
physical properties of the medium arc continuous. It hasbeen noted that
the transition of the field vectors and their derivatives across a surface
bounding a material body may be discontinuous; such surfaces must,
therefore, be excluded until the nature of these discontinuities can be
investigated.

1.2. Charge and Current.—Although the corpuscular nature of elec-
tricity is well established, the size of the elementary quantum of charge
is too minute to be taken into account as a distinct entity in a strictly
macroscopic theory. Obviously the frontier that marks off the domain
of large-scale phenomena from those which are microscopic is an arbi-
trary one. To be sure, a macroscopic element of volume must contain
an enormous number of atoms; but that condition alone is an insufficient
criterion, for many crystals, including the metals, exhibit frequently a
microscopic “grain” or “mosaic”’ structure which will be excluded from
our investigation. We are probably well on the safe side in imposing
a limit of one-tenth of a millimeter as the smallest admissible element
of length. There are many experiments, such as the scattering of light
by particles no larger than 10~ mm. in diameter, which indicate that
the macroscopic theory may be pushed well beyond the limit suggested.
Nonetheless, we are encroaching here on the proper domain of quantum
theory, and it is the quantum theory which must eventually determine
the validity of our assumptions in microscopic regions.

Let us suppose that the charge contained within a volume element Ay
is Ag. The charge density at any point within Av will be defined by the
relation

&) Aq = p Av.
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Thus by the charge density at a point we mean the average charge per
unit volume in the neighborhood of that point. In a strict sense (3)
does not define a continuous function of position, for Av cannot approach
zero without limit. Nonetheless we shall assume that p can be repre-
sented by a function of the coordinates and the time which at ordinary
points is continuous and has continuous derivatives. The value of the
total charge obtained by integrating that function over a large-scale
volume will then differ from the true charge contained therein by a
microscopic quantity at most.

Any ordered motion of charge constitutes a current. A current dis-
tribution is characterized by a vector field which specifies at each point
not only the intensity of the flow but also its dircction. As in the study
of fluid motion, it is convenient to imagine streamlines traced through
the distribution and everywhere tangent to the direction of flow. Con-
sider a surface which is orthogonal to a system of streamlines. The
current density at any-point on this surface is then defined as a vector J
dirccted along the streamline through the point and equal in magnitude
to the charge which in unit time crosses unit area of the surface in the
vicinity of the point. On the other hand the current I across any surface
S is equal to the rate at which charge crosses that surface. If n is the
positive unit normal to an element Aa of S, we have

4) Al = J-nAa.

Since Aa is a macroscopic element of area, Eq. (4) does not decfine the
current density with mathematical rigor as a continuous function of
position, but again one may represent the distribution by such a function
without incurring an appreciable error. The total current through S is,
therefore,

(5) I==J;]-nda.

Since electrical charge may be either positive or negative, a convention
must be adopted as to what constitutes a positive current. If the flow
through an element of area consists of positive charges whose velocity
vectors form an angle of less than 90 deg. with the positive normal n,
the current is said to be positive. If the angle is greater than 90 deg., the
current is negative. Likewise if the angle is less than 90 deg. but the
charges are ncgative, the current through the element is negative. In
the case of metallic conductors the carriers of electricity are presumably
negative electrons, and the direction of the current density vector is
therefore opposed to the direction of electron motion.

Let us suppose now that the surface S of Eq. (5) is closed. We shall
adhere to the customary convention that the positive normal to a closed
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surface 18 drawn outward. In virtue of the definition of current as the
flow of charge across a surface, it follows that the surface integral of the
normal component of J over S must measure the loss of charge from the
region within. There is no experimental evidence to indicate that under
ordinary conditions charge may be either created or destroyed in macro-
scopic amounts. One may therefore write

(6) f] nda——ifvpdv,

where V is the volume enclosed by S, as a relation cxpressing the con-
servation of charge. The flow of charge across the surface can originate
in two ways. The surface S may be fixed in space and the density p
be some function of the time as well as of the coordinates; or the charge
density may be invariable with time, while the surface moves in some
prescribed manner. In this latter event the right-hand integral of (6)
is a function of time in virtue of variable limits. If, however, the surface
is fixed and the integral convergent, one may replace d/dt by a partial
derivative under the sign of integration.

) f] nda——f-a—”dv

We shall have frequent occasion to make use of the divergence theorem
of vector analysis. Let A(z, y, 2) be any vector function of position
which together with its first derivatives is continuous throughout a
volume V and over the bounding surface 8. The surface S is regular
but otherwise arbitrary.! Then it can be shown that

(8) fsA.nda=ﬁ,v.Adv.

As a matter of fact, this relation may be advantageously used as a
definition of the divergence. To obtain the value of V - A at a point P
within V, we allow the surface S to shrink about P. When the volume V
has become sufficiently small, the integral on the right may be replaced
by VV - A, and we obtain

(9) v. A—E_%VJA n da.

1 A regular element of arc is represented in parametric form by the equations
z = z(t), y = y(t), z = 2(¢) such that in the interval @ <t < b =z, y, 2 are continuous,
single-valued functions of ¢ with continuous derivatives of all orders unless otherwise
restricted. A regular curve is constructed of a finite number of such arcs joined end
to end but such that the curve does not cross itself. Thus a regular curve has no
double points and is piccewise differentiable. A regular surface element is a portion
of surface whose projection on a properly oriented plane is the interior of a regular
closed curve. Hence it does not intersect itself. Cf. Kellogg, ‘ Foundations of Poten-
tial Theory,” p. 97, Springer, 1929.
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The divergence of a vector at a point is, therefore, to be interpreted as the
integral of its normal component over an infinitesimally small surface
enclosing that point, divided by the enclosed volume. The flux of a
vector through a closed surface is a measure of the sources within; hence
the divergence determines their strength at a point. Since S has been
shrunk close about P, the value of A at every point on the surface may
be expressed analytically in terms of the values of A and its derivatives
at P, and consequently the integral in (9) may be evaluated, leading in
the case of rectangular coordinates to

_0A. | 94, , oA,
=%z T dy L

(10) V.A

On applying this theorem to (7) the surface integral is transformed
to the volume integral

(11) : fV(V-J+g—f)du=0.

Now the integrand of (11) is a continuous function of the coordinates
and hence there must exist small regions within which the integrand does
not change sign. If the integral is to vanish for arbitrary volumes V, it
is necessary that the integrand be identically zero. The differential
equation

(12) A B

expresses the conservation of charge in the neighborhood of a point.
By analogy with an equivalent relation in hydrodynamics, (12) is fre-
quently referred to as the equation of continuity.

If at every point within a specified region the charge density is con-
stant, the current passing into the region through the bounding surface
must at all times equal the current passing outward. Over the bounding
surface S we have

(13) j;J.nda=o,
and at every interior point
(14) v-J=0.

Any motion characterized by vector or scalar quantities which are
independent of the time is said to be steady, or stationary. A steady-
state flow of electricity is thus defined by a vector J which at every point
within the region is constant in direction and magnitude. In virtue of
the divergenceless character of such a current distribution, it follows
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that in the steady state all streamlines, or current filaments, close upon
themselves. The field of the vector J is solenoidal.

1.3. Divergence of the Field Vectors.—Two further conditions satis-
fied by the vectors B and D may be deduced directly from Maxwell’s
equations by noting that the divergence of the curl of any vector vanishes
identically. We take the divergern.ce of Eq. (1) and obtain

B 9

(15) V-—g—avoB—O.

The commutation of the operators V and 9/dt is admissible, for at an
ordinary point B and all its derivatives are assumed to be continuous.
It follows from (15) that at every point in the field the divergence of B
is constant. If ever in its past history the field has vanished, this con-
stant must be zero and, since one may rcasonably suppose that the
initial generation of the field was at a time not infinitely remote, we
conclude that

(16) V.B =0,

and the field of B is therefore solenoidal.
Likewise the divergence of Eq. (2) leads to

(17) V-J+%V-D=0,
or, in virtue of (12), to

(18) g—t(V-D——p)=0.

If again we admit that at some time in its past or future history the field
may vanish, it is necessary that

(19) VD =p.

The charges distributed with a density p constitute the sources of the
vector D.

The divergence equations (16) and (19) are frequently included as
part of Maxwell’s system. It must be noted, however, that if one assumes
the conservation of charge, these are not independent relations.

1.4. Integral Form of the Field Equations.—The properties of an
electromagnetic field which have been specified by the differential equa-
tions (1), (2), (16), and (19) may also be expressed by an equivalent
system of integral relations. To obtain this equivalent system, we apply
a second fundamental theorem of vector analysis.

According to Stokes’ theorem the line integral of a vector taken
about a closed contour can be transformed into a surface integral extended
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over a surface bounded by the contour. The contour C must either be
regular or be resolvable into a finite number of regular arcs, and it is
assumed that the otherwise arbitrary surface S bounded by C is two-
sided and may be resolved into a finite number of regular elements. The
positive side of the surface S is related to the positive direction of circu-
lation on the eontour by the usual convention that an observer, moving
in a positive sense along C, will have the positive side of S on his left.
Then if A(z, y, 2) is any vector function of position, which together with
its first derivatives is continuous at all points of S and C, it may be shown
that

(20) j;A-ds=j;(VxA)-nda,

where ds is an element of length along C and n is a unit vector normal to
the positive side of the clement of area da. This transformation can
also be looked upon as an equation defining the curl. To determine the
value of V X A at a point P on S, we allow the contour to shrink about P
until the enclosed area S is reduced to an infinitesimal element of a plane
whose normal is in the direction specified by n. The integral on the
right is then equalto (V X A) - nS, plusinfinitesimals of higherorder. The
projection of the vector V X A in the direction of the normal is, therefore,

1

(21) (VxA)-n—léLx})SLAds.

The curl of a vector at a point is to be interpreted as the line integral of
that vector about an infinitesimal path on a surface containing the point,
per unit of enclosed area. Since A has been assumed analytic in the
neighborhood of P, its valuc at any point on C may be expressed in
terms of the values of A and its derivatives at P, so that the evaluation of
the line integral in (21) about the infinitesimal path can actually be
carricd out. In particular, if the element S is oriented parallel to the
yz-coordinate plane, one finds for the z-component of the curl

94, 04,

(22) (V X A)z = ‘51;‘ "é?

Proceeding likewise for the y- and z-components we obtaip

_ 04, 04,\ | .[94. 04, 941_%)
(23) V"A—l(a—y‘"&“)“(w “a—x)“(ax 3y

i j k
|8 9 9
T oz dy oz

A, A, A
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Let us now integrate the normal component of the vector dB/d¢ over
any regular surface S bounded by a closed contour C. From (1) and
(20) it follows that

9B
(24) J;E-ds+Lat-nda—0.

If the contour is fixed, the operator d/dt may be brought out from under
the sign of integration.

(25) fE-ds=—"—fB-nda.
c at Js
By definition, the quantity

(26) <I>=J;B-nda

is the magnetic flux, or more specifically the flux of the vector B through
the surface. According to (25) the line integral of the vector E about any
closed, regular curve in the field is equal
to the time rate of decrease of the magnetic
flux through any surface spanning that
= curve. The relation between the direction
of circulation about a contour and the posi-
tive normal to a surface bounded by it is
Fio. 1—Convention celating illustrated in Fig. 1. A positive direction
direction of the positive normal about C is chosen arbltrarily and the flux
:b;?nt:echizz%t:(g of circulation i3 then positive or negative according to
the direction of the lines of B with respect
to the normal. The time rate of change of ® is in turn positive or nega-
tive as the positive flux is increasing or decreasing.

We recall that the application of Stokes’ theorem to Eq. (1) is valid
only if the vector E and its derivatives arc continuous at all points of S
and C. Since discontinuities in both E and B occur across surfaces

arking sudden changes in the physical properties of the medium, the
question may be raised as to what extent (25) represents a general law
of the electromagnetic field. One might suppose, for example, that the
contour linked or pierced a closed iron transformer core. To obviate
this difficulty it may be imagined that at the surface of every material
body in the field the physical properties vary rapidly but continuously
within a thin boundary layer from their values just inside to their values
just outside the surface. In this manner all discontinuities are eliminated
from the field and (25) may be applied to every closed contour.

The experiments of Faraday indicated that the relation (25) holds
whatever the cause of flux variation. The partial derivative implies a
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variable flux density threading a fixed contour, but the total flux can
likewise be changed by a deformation of the contour. To take this into
account the Faraday law is written generally in the form

d
27 LE-ds dth n da.

It can be shown that (27) is in fact a consequence of the differential
field equations, but the proof must be based on the electrodynamlcs of
moving bodies which will be touched upon in Sec. 1.22.

In like fashion Eq. (2) may be replaced by an equivalent integral
relation,

(28) fH-ds=I+-d~fD-nda.
c dt Js

where I is the total current linking the contour as defined in (5). In the
steady state, the integral on the right is zero and the conduction current I
through any regular surface is equal to the line integral of the vector H
about its contour. If, however, the field is variable, the vector dD/d¢
has associated with it a field H exactly equal to that which wouid be
produced by a current distribution of density

(20) y=5

To this quantity Maxwell gave the name ‘“displacement current,”’ a term
which we shall occasionally employ without committing ourselves as
yet to any particular interpretation of the vector D.

The two remaining field equations (16) and (19) can be expressed in
an equivalent integral form with the help of the divergence theorem.
One obtains

(30) §SB.nda =0,

stating that the total flux of the vector B crossing any closed, regular
surface is zero, and

31) §SD-nda=j;pdv=q,

according to which the flux of the vector D through a closed surface is
equal to the total charge ¢ contained within. The circle through the
sign of integration is frequently employed to emphasize the fact that a
contour or surface is closed.
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MACROSCOPIC PROPERTIES OF MATTER

1.6. The Inductive Capacities ¢ and y.—No other assumptions have
been made thus far than that an electromagnetic field may be charac-
terized by four vectors E, B, D, and H, which at ordinary points satisfy
Maxwell’s equations, and that the distribution of current which gives
rise to this field is such as to ensure the conservation of charge. Between
the five vectors E, B, D, H, J there are but two independent relations, the
equations (1) and (2) of the preceding section, and we are therefore obliged
to impose further conditions if the system is to be made determinate.

Let us begin with the assumption that at any given point in the field,
whether in free space or within matter, the vector D may be represented
as a function of E and the vector H as a function of B.

1) D = D(E), H = H(B).

The nature of these functional relations is to be determined solely by the
physical properties of the medium in the immediate neighborhood of the
specified point. Certain simple relations are of most common occurrence.

1. In free space, D differs from E only by a constant factor, as does H
from B. Following the traditional usage, we shall writc
@) D=¢E H-=1lB.

Ko
The values and the dimensions of the constants ¢ and u, will depend
upon the system of units adopted. In only onc of many wholly arbitrary
systems does D reduce to E and H to B in empty space.

2. If the physical properties of a body in the neighborhood of some
interior point are the same in all directions, the body is said to be Zso-
tropic. At every point in an isotropic medium D is parallel to E and H
is parallel to B. The relations between the vectors, moreover, are linear
in almost all the soluble problems of electromagnetic theory. For the
isotropic, linear case we put then

@3) D = ¢, H=}-12B.

The factors e and p will be called the inductive capacities of the medium.
The dimensionless ratios

(4) Kg = -'e-; Km = ",‘"J

are independent of the choice of units and will be referred to as the
specific inductive capacities. The properties of a homogeneous medium
are constant from point to point and in this case it is customary to refer
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to «, as the dielectric constant and to k. as the permeability. In general,
however, one must look upon the inductive capacities as scalar functions
of position which characterize the electromagnetic properties of matter
in the large.

3. The properties of anisotropic matter vary in a different manner
along different directions about a point. In this case the vectors D and
E, H and B are parallel only along certain preferred axes. If it may be
assumed that the relations are still linear, as is usually the case, one
may express each rectangular component of D as a linear function of the
three components of E.

Dz = ellE':v + eley + ElaE,,
(5) Dy = enll, + 622Ey + ézaEz,
D, = e1l; + e:E, + essE..

The coefficients ¢, of this lincar transformation arc the components of a
symmetric tensor. An analogous relation may be set up between the
vectors H and B, but the occurrence of such a linear anisotropy in what
may properly be called macroscopic problems is rare.

The distinction between the microscopic and macroscopic viewpoints
is nowhere sharper than in the interpretation of these parameters e and g,
or their tensor equivalents. A microscopic theory must deduce the
physical properties of matter from its atomic structure. It must enable
one to calculate not only the average field that prevails within a body but
also its local value in the neighborhood of a specific atom. It must tell
us how the atom will be deformed under the influence of that local field,
and how the aggregate effect of these atomic deformations may be
represented in the large by such paramecters as € and u.

We, on the other hand, are from the present standpoint sheer behav-
iorists. Our knowledge of matter is, to use a large word, purely phe-
nomenological. Eachsubstanceisto be characterized electromagnetically
in terms of a minimum number of parameters. The dependence of the
parameters ¢ and u on such physical variables as density, temperature,
and frequency will be established by experiment. Information given by
such measurements sheds much light on the internal structure of matter,
but the internal structure is not our present concern.

1.6. Electric and Magnetic Polarization.—To describe the electro-
magnetic state of a sample of matter, it will prove convenient to intro-
duce two additional vectors. We shall define the electric and magnetic
polarization vectors by the equations

(6) P =D — ¢E, M=£—B——H.
0

The polarization vectors are thus definitely associated with matter and



12 THE FIELD EQUATIONS (Crar. I

vanish in free space. By means of these relations let us now eliminate
D and H from the field equations. There results the system

oB
VXE+6—t—0’

) VXB-€o#o%=uo<]+%—1;+VXM),

V.B =0, V-E=e—1-(p—V-P),
0

which we are free to interpret as follows: the presence of rigid material
bodies tn an electromagnetic field may be completely accounted for by an
equivalent distribution of charge of density —V P, and an equivalent

distribution of current of density %—1; + Vv X M.

In isotropic media the polarization vectors are parallel to the corre-
sponding field vectors, and are found experimentally to be proportional
to them if ferromagnetic materials are excluded. The electric and
magnetic susceptibilitics x. and x. are defined by the relations

€] P = x,eE M=x,H.

Logically the magnetic polarization M should be placed proportional to B.
Long usage, however, has associated it with H and to avoid confusion
on a matter which is really of no great importance we adhere to this
convention. The susceptibilities x. and x. defined by (8) are dimension-
less ratios whose values are independent of the system of units employed.
In due course it will be shown that E and B are force veetors and in this
sense are fundamental. D and H are derived vectors associated with
the state of matter. The polarization vector P has the dimensions of D,
not E, while M and H are dimensionally alike. From (3), (6), and (8) it
follows at once that the susceptibilities are related to the specific induc-
tive capacities by the cquations

9 Xe = ke — 1, Xm = Kkm — 1.

In anisotropic media the susceptibilities are represented by the com-
ponents of a tensor.

It will be a part of our task in later chapters to formulate experiments
by means of which the susceptibility of a substance may be accurately
measured. Such measurements show that the electric susceptibility is
always positive. In gases it is of the order of 0.0006 (air), but in liquids
and solids it may attain values as large as 80 (water). An inherent
difference in the nature of the vectors P and M is indicated by the fact
that the magnetic susceptibility x» may be either positive or negative.
Substances characterized by a positive susceptibility are said to be
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paramagnetic, whereas those whose susceptibility is negative are called
diamagnetic. 'The metals of the ferromagnetic group, including iron,
nickel, cobalt, and their alloys, constitute a particular class of substances
of enormous positive susceptibility, the value of which may be of the
order of many thousands. In view of the nonlinear relation of M to H
peculiar to these materials, the susceptibility x,, must now be interpreted
as the slope of a tangent to the M-H curve at a point corresponding to a
particular value of H. To include such cases the definition of suscepti-
bility is generalized to

M
(10) Xm = 5“[?"

The susceptibilities of all nonferromagnetic materials, whether para-
magnetic or diamagnetic, are so small as to be negligible for most practical
purposes.

Thus far it has been assumed that a functional relation exists
between the vector P or M and the applied field, and for this reason
they may properly be called the induced polarizations. Under certain
conditions, however, a magnetic field may be associated with a ferro-
magnetic body in the absence of any external excitation. The body is
then said to be in a state of permanent magnetization. We shall main-
tain our initial assumption that the field both inside and outside the
magnet is completely defined by the vectors B and H. But now the
difference of these two vectors at an interior point is a fized vector Mo,
which may be called the intensity of magnetization and which bears no
functional relationship to H. On the contrary the magnetization M,
must be interpreted as the source of the field. If an external field is
superposed on the field of a permanent magnet, the intensity of magneti-
zation will be augmented by the induced polarization M. At any interior
point we have, thercfore,

(11) B = po(H + M + M,).

Of this induced polarization we can only say for the present that it is a
function of the resultant H prevailing at the same point. The relation
of the resultant field within the body to the intensity of an applied field
generated by external sources depends not only on the magnetization
M, but also upon the shape of the body. There will be occasion to
examine this matter more carefully in Chap. IV.

1.7. Conducting Media.—To Maxwell’'s equations there must now
be added a third and last empirical relation between the current density
and the field. We shall assume that at any point within a liquid or
solid the current density is a function of the field E.

(12) J = J(B).
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The distribution of current in an ionized, gaseous medium may depend
also on the intensity of the magnetic field, but since electromagnetic
phenomena in gaseous discharges are in general governed by a multitude
of factors other than those taken into account in the present theory, we
shall exclude such cases from further consideration.!

Throughout a remarkably wide range of conditions, in both solids
and weakly ionized solutions, the relation (12) proves to be linear.

(13) J =oE.

The factor ¢ is called the conductivity of the medium. The distinction
between good and poor conductors, or insulators, is relative and arbitrary.
All substances exhibit conductivity to some degree but the range of
observed values of ¢ is tremendous. The conductivity of copper, for
example, is some 107 times as great as that of such a “good”’ conductor
as sea water, and 10'° times that of ordinary glass. In Appendix III
will be found an abbreviated table of the conductivities of representative
materials.

Equation (13) is simply Ohm’s law. Let us imagine, for example, a
stationary distribution of current throughout the volume of any con-
ducting medium. In virtue of the divergenceless character of the flow
this distribution may be represented by closed streamlines. If a and b
are two points on a particular streamline and ds is an element of its
length, we have

(14) j;bE-ds=J;bg-ds.

A bundle of adjacent streamlines constitutes a current filament or tube.
Since the flow is solenoidal, the current I through every cross section of
the filament is the same. Let S be the cross-sectional area of the filament
on & plane drawn normal to the direction of flow. S need not be infini-
tesimal, but is assumed to be so small that over its area the current
density is uniform. Then SJ-:ds = I ds, and

b b q
(15) fE.ds=If-ds.

a a (TS
The factor,

*1
(16) R = }; G'Tg-ds,

! It is true that to a very slight degree the current distribution in a liquid or solid
conductor may be modified by an impressed magnetic field, but the magnitude of this
so-called Hall effect is so small that it may be ignored without incurring an appreciablo
error.
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is equal to the resistance of the filament between the points a and b.
The resistance of a linear section of homogeneous conductor of uniform
cross section S and length I is

11

(17) R = o_g)

a formula which is strictly valid only in the case of stationary currents.

Within a region of nonvanishing conductivity there can be no permanent
distribution of free charge. This fundamentally important theorem can
be easily demonstrated when the medium is homogeneous and such that
the relations between D and E and J and E are linear. By the equation
of continuity,

% _v. 9 _
(18) V-J+g=V-E+=0

On the other hand in a.homogeneous medium

(19) V-E=%m
which combined with (18) leads to

dp , 0
(20) % + . p=0.

The density of charge at any instant is, therefore,

—%

(21) p = po€ € ,

the constant of integration p, being equal to the density at the time ¢ = 0.
The initial charge distribution throughout the conductor decays expo-
nentially with the time at every point and in a manner wholly inde-
pendent of the applied field. If the charge density is initially zero, it
remains zero at all times thereafter.

The time

(22) T

I

Qlm

required for the charge at any point to decay to 1/e of its original vaiue
is called the relaxation time. In all but the poorest conductors r is
exceedingly small. Thus in sea water the relaxation time is about
2 X 10~10 gec.; even in such a poor conductor as distilled water it is not
greater than 19-% sec. In the best insulators, such as fused quartz, it
may nevertheless assume values exceeding 10° sec., an instance of the
extraordinary range in the possible values of the parameter o.
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Let us suppose that at £ = 0 a charge is concentrated within a small
spherical region located somewhere in a conducting body. At every
other point of the conductor the charge density is zero. The charge
within the sphere now begins to fade away exponentially, but according
to (21) no charge can reappear anywhere within the conductor. What
becomes of it? Since the charge is conserved, the decay of charge
within the spherical surface must be accompanied by an outward flow,
or current. No charge can accumulate at any other interior point; hence
the flow must be divergenceless. It will be arrested, however, on the
outer surface of the conductor and it is here that we shall rediscover the
charge that has been lost from the central sphere. This surface charge
makes its appearance at the exact instant that the interior charge begins
to decay, for the total charge is constant.

UNITS AND DIMENSIONS

1.8. The M.K.S. or Giorgi System.—An electromagnetic fleld thus
far is no more than a complex of vectors subject to a postulated system of
differential equations. To proceed further we must establish the physical
dimensions of these vectors and agree on the units in which they are
to be measured.

In the customary sense, an ““absolute’ system of units is one in which
every quantity may be measured or expressed in terms of the three
fundamental quantities mass, length, and time. Now in electromagnetic
theory there is an essential arbitrariness in the matter of dimensions
which is introduced with the factors ¢; and uo connecting D and E, H
and B respectively in free space. No experiment has yet been imagined
by means of which dimensions may be attributed to either ¢ or po as
an independent physical entity. On the other hand, it is a direct conse-
quence of the field equations that the quantity

1
(1) ¢ \/éoﬂo
shall have the dimensions of a velocity, and every arbitrary choice of ¢
and po is subject to this restriction. The magnitude of this velocity
cannot be calculated a priori, but by suitable experiment it may be
measured. The value obtained by the method of Rosa and Dorsey of
the Bureau of Standards and corrected by Curtis! in 1929 is

1
2) ¢ = ——= = 2.99790 X 108 meters/sec.,
\/Go#o
1 Rosa and DorseY, A New Determination of the Ratio of the Electrostatic Unit
of Electricity, Bur. Standards, Bull. 3, p. 433, 1907. Curris, Bur. Standards J.

Research, 8, 63, 1929,
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or for all practical purposes
(3) c=3 X108 meters/sec.

Throughout the carly history of electromagnetic theory the absolute
electromagnetic system of units was employed for all scientific investiga-
tions. In this system the centimeter was adopted as the unit of length,
the gram as the unit of mass, the second as the unit of time, and as a
fourth unit the factor u, was placed arbitrarily equal to unity and con-
sidered dimensionless. The dimensions of ¢ were then uniquely deter-
mined by (1) and it could be shown that the units and dimensions of
every other quantity entering into the theory might be expressed in
terms of centimeters, grams, seconds, and po. Unfortunately, this abso-
lute system failed to meet the needs of practice. The units of resistance
and of electromotive force were, for example, far too small. To remedy
this defect a practical system was adopted. Kach unit of the practical
system had the dimensions of the corresponding electromagnetic unit and
differed from it in magnitude by a power of ten which, in the case of
voltage and resistance at least, was wholly arbitrary. The practical
units have the great advantage of convenient size and they are now
universally employed for technical measurements and computations.
Since they have been defined as arbitrary multiples of absolute units, they
do not, however, constitute an absolute system. Now the quantities
mass, length, and time are fundamental solely because the physicist has
found it expedient to raise them to that rank. That there are other
fundamental quantities is obvious from the fact that all electromagnetic
quantities cannot be expressed in terms of these three alone. The
restriction of the term ““absolute” to systems based on mass, length, and
time is, therefore, wholly unwarranted; one should ask only that such a
system be self-consistent and that every quantity be defined in terms of
a minimum number of basic, independent units. The antipathy of
physicists in the past to the practical system of electrical units has been
based not on any firm belief in the sanctity of mass, length, and time,
but rather on the lack of self-consistency within that system.

Fortunately a most satisfactory solution has been found for this
difficulty. In 1901 Giorgi,! pursuing an idea originally due to Maxwell,
called attention to the fact that the practical system could be converted
into an absolute system by an appropriate choice of fundamental units.
It is indeed only necessary to choose for the unit of length the inter-

1 Grora1: Unitd Razionali di Elettromagnetismo, Atti dell’ A.E.I., 1901. An
historical review of the development of the practical system, including a report of the
action taken at the 1935 meeting of the International Electrotechnical Commission
and an extensive bibliography is given by Kennelly, J. Inst. Elec. Engrs., 18, 235~
245, 1936. See alsc GLazeBrook, The M.K.S. System of Electrical Units, J. Inst.
Elec. Engrs., 18, pp. 245-247.
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national meter, for the unit of mass the kilogram, for the unit of time the
second, and as a fourth unit any electrical quantity belonging to the
practical system such as the coulomb, the ampere, or the ohm. From
the field equations it is then possible to deduce the units and dimensions
of every electromagnetic quantity in terms of these four fundamental
units. Moreover the derived quantities will be related to each other
exactly as in the practical system and may, therefore, be expressed in
practical units. In particular it is found that the parameter p, must
have the value 4r X 10~7, whence from (1) the value of ¢, may be calcu-
lated. Inversely one might equally well assume this value of o as a
fourth basic unit and then deduce the practical series from the field
equations.

At a plenary session in June, 1935, the International Electrotechnical
Commission adopted unanimously the m.k.s. system of Giorgi. Certain
questions, however, still remain to be settled. No official agreement
has as yet been reached as to the fourth fundamental unit. Giorgi him-
self recommended that the ohm, a material standard defined as the
resistance of a specified column of mercury under specified conditions
of pressure and temperature, be introduced as a basic quantity. If
#o = 4w X 1077 be chosen as the fourth unit and assumed dimensionless,
all derived quantities may be expressed in terms of mass, length, and
time alone, the dimensions of each being identical with those of the corre-
sponding quantity in the absolute electromagnetic system and differing
from them only in the size of the units. This assumption leads, however,
to fractional exponents in the dimensions of many quantities, a dircet
consequence of our arbitrariness in clinging to mass, length, and time
as the sole fundamental entities. In the absolute electromagnetic sys-
tem, for example, the dimensions of charge are gramst - centimeterst, an
irrationality which can hardly be physically significant. These fractional
exponents are entirely eliminated if we choose as a fourth unit the
coulomb; for this reason, charge has been advocated at various times as a
fundamental quantity quite apart from the question of its magnitude.!
In the present volume we shall adhere exclusively to the meter-kilogram-
second-coulomb system. A subsequent choice by the I.E.C. of some
other electrical quantity as basic will in nowise affect the size of our units
or the form of the equations.?

1See the discussion by Wavrvrot: Elekirotechnische Zeitschrift, Nos. 44-46, 1922.
Also SoMMERFELD: ‘‘ Ueber die Electromagnetischen Einheiten,”’ pp. 157-165, Zeeman
Verhandelingen, Martinus Nijhoff, The Hague, 1935; Phystk. Z. 86, 814-820, 1935.

% No ruling has been made as yet on the question of rationalization and opinion
seems equally divided in favor and against. If one bases the theory on Maxwell’s
equations, it seems definitely advantageous to drop the factors 4r which in unrational-
ized systems stand before the charge and current densities. A rationalized system
will be employed in this book.
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To demonstrate that the proposed units do constitute a self-consistent
system let us proceed as follows. The unit of current in the m.k.s.
system is to be the absolute ampere and the unit of resistance is to be
the absolute ohm. These quantities are to be such that the work
expended per second by a current of 1 amp. passing through a resistance
of 1 ohm is 1 joule (absolute). If R is the resistance of a section of
conductor carrying a constant current of I amp., the work dissipated in
heat in ¢ sec. is

4) W = IRt joules,

By means of a calorimeter the heat generated may be measured and thus
one determines the relation of the unit of electrical energy to the unit
quantity of heat. It is desired that the joule defined by (4) be identical
with the joule defined as a unit of mechanical work, so that in the electrical
as well as in the mechanical case

(5) ) 1 joule = 0.2389  gram-calorie (mean).

Now we shall define the ampere on the basis of the equation of continuity
(6), page 4, as the current which transports across any surface 1 coulomb
in1sec. Then the ohm is a derived unit whose magnitude and dimensions
are determined by (4):

watt . kilogram - meter?
2 2 ’
ampere coulomb? - second

(6) 1 ohm =1

since 1 watt is equal to 1 joule/sec. The resistivity of a medium is
defined as the resistance measured between two parallel faces of a unit
cube. The reciprocal of this quantity is the conductivity. The dimen-
sions of ¢ follow from Eq. (17), page 15.

1 __; coulomb? - second

(7)1 unit of conductivity = ohm - meter ~ ~ kilogram - meter®

In the United States the reciprocal ohm is usually called the mho,
although the name siemens has been adopted officially by the I.E.C.
The unit of conductivity is therefore 1 siemens/meter.

The volt will be defined simply as 1 watt/amp., or

watt _ _ kilogram - meter?
ampere coulomb - second?

(8) lvolt =1

Since the unit of current density is 1 amp./meter?, we deduce from the
relation J = ¢E that

watt _ ¢ volt _ . kilogram - meter
ampere - meter meter coulomb - second?

(9) lunitof E=1
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The power expended per unit volume by a current of density J is there-
fore E - J watts/meter. It will be noted furthermore that the product
of charge and electric field intensity E has the dimensions of force. Let a
charge of 1 coulomb be placed in an electric field whose intensity is
1 volt/meter.

volt joule kilogram - meter

(10) 1 coulomb X 1 meter 1 meter 1 second?

The unit of force in the m.k.s. system is called the newton, and is equiva-
lent to 1 joule/meter, or 10° dynes.
The flux of the vector B shall be measured in webers,

(11) b = fs B:.nda webers,

and the intensity of the field B, or flux density, may therefore be expressed
in webers per square meter. According to (25), page 8,

ad webers
(12) J; E-ds = Tdt second

The line integral j; ®E . ds is measured in volts and is usually called the

electromotive force (abbreviated e.m.f.) between the points a and b,
although its value in a nonstationary field depends on the path of integra-
tion. The induced e.m.f. around any closed contour C is, therefore,
equal to the rate of decrease of flux threading that contour, so that
between the units there exists the relation

weber
4 1 volt =1 second’
or
. ) . \
(14) 1 weber = 1 joule _ . kilogram - meter

ampere coulomb - second

It is important to note that the product of current and magnetic flux
is an energy. Note also that the product of B and a velocity is measured
in volts per meter, and is therefore a quantity of the same kind as E.

. _ 4 weber _ kilogram
(15) 1 unit of B = 1 meter? coulomb - second
. weber meter volt .
(16) 1 unitof |B||v|=1 meter? X 1 —cond = ! meter = 1 unit of |E|.

The units which have been deduced thus far constitute an absolute
system in the sense that each has been expressed in terms of the four
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basic quantities, mass, length, time, and charge. That this system is
identical with the practical series may be verified by the substitutions

(17) 1 kilogram = 102 grams, 1 meter = 102 centimeters,
1 coulomb = 4 abcoulomb.

The numerical factors which now appear in each relation are observed
to be those that relate the practical units to the absolute electromagnetic
units. For example, from (6),

(18) 1ohm =1 kilogram - meter? _ 102 grams - 10¢ centimeters?
) " " coulomb? - second 102 abcoulomb? - seconds
= 10° abohms;

and again from (8),

kilogram - meter? _ 10% grams - 104 centimeters?
coulomb - second? =  10~! abcoulomb - second?
= 10% abvolts.

(19) 1volt =1

The series must be completed by a determination of the units and
dimensions of the vectors D and H. Since D = ¢E, H = %B, it is

necessary and sufficient that ¢ and po be determined such as to satisfy
Eq. (2) and such that the proper ratio of practical to absolute units be
maintained. We shall represent mass, length, time, and charge by the
letters M, L, T, and Q, respectively, and employ the customary symbol [4]
as meaning ‘“‘the dimensions of 4.”” Then from Eq. (31), page 9,

(20) j; D:nda=g¢q coulombs
and, hence,

_ coulombs _ @
@1) D] = ~reter ~ I

coulombs  Q2T*?

(22) [eol = [E—J = Volt - meter ML?®

The farad, a derived unit of capacity, is defined as the capacity of a
conducting body whose potential will be raised 1 volt by a charge of
1 coulomb. It is equal, in other words, to 1 coulomb/volt. The
parameter ¢ in the m.k.s. system has dimensions, and may be measured
in farads per meter.

By analogy with the electrical case, the line integral j; ’ H . ds taken

along a specified path is commonly called the magnetomotive force
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(abbreviated m.m.f.). In a stationary magnetic field
(23) j; H.ds=1 amperes,

where I is the current determined by the flow of charge through any
surface spanning the closed contour C. If the field is variable, I must
include the displacement current as in (28), page 9. According to (23)
a magnetomotive force has the dimensions of current. In practice,
however, the current is frequently carried by the turns of a coil or winding
which is linked by the contour C. If there are n such turns carrying a
current I, the total current threading C is nl ampere-turns and it is
customary to express magnetomotive force in these terms, although
dimensionally » is a numeric.

(24) [m.m.f.] = ampere-turns,
whence

_ ampere-turns _ @
(25) [H] = meter LT

It will be observed that the dimensions of D and those of H divided by a
velocity are identical. For the parameter uo we find

B volt - second ML
(ko] = = oL B0

kmH | ~ ampere - meter Q2

(26)

As in the case of ¢ it is convenient to express uo in terms of a derived
unit, in this case the henry, defined as 1 volt-second/amp. (The henry
is that inductance in which an induced e.m.f. of 1 volt is generated when
the inducing current is varying at the rate of 1 amp./sec.) The parameter
uo may, therefore, be measured in henrys per meter.

From (22) and (26) it follows now that

1 L?
@) [ - T

and hence that our system is indeed dimensionally consistent with
Eq. (2). Since it is known that in the rationalized, absolute c.g.s.
electromagnetic system po is equal in magnitude to 4w, Eq. (26) fixes also
its magnitude in the m.k.s. system.

gram - centimeters _ dr 103 kilogram - 10—2 meter

(28) o= dr abcoulombs? 102 coulombs?

or

’

kilogram - meters _ 1.257 X 10~ henry

= ~7
(20) o = 4w X 10 coulombs? meter
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The appropriate value of ¢ is then determined from

1 t
2 c= = 2.998 X 108 Mmeters
@ V €otso second
to be
- _12 coulomb? - seconds? _1p farad farad
(30) € = 8.854 X 10 Kilogram - meter? = 8.854 X 10 oter

It is frequently convenient to know the reciprocal values of these factors,

@1 “—10 = 0.7958 X 10° ’;‘Zflirys, : 0.1129 X 1012 T,
and the quantities
(32) \/g—(:) = 376.6 ohms, i! = 2.655 X 10~% mho,

0

recur constantly throughout the investigation of wave propagation.

In Appendix I there will be found a summary of the units and dimen-
sions of electromagnetic quantities in terms of mass, length, time, and
charge.

THE ELECTROMAGNETIC POTENTIALS

1.9. Vector and Scalar Potentials.—The analysis of an electromagnetic
field is often facilitated by the use of auxiliary functions known as poten-
tials. At every ordinary point of space, the field vectors satisfy the
system

(1)vxE+9’—3=o, (III) V- B = 0,
mvxE-2 =3, @V v.D=,

According to (IIT) the field of the vector B is always solenoidal. Conse-
quently B can be represented as the curl of another vector A,.

1 B =V X A,

However A, is not uniquely defined by (1); for B is equal also to the curl
of some vector A,

(2 B=V XA,
where
3) A=A —W,

end ¢ is any arbitrary scalar function of position.
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f now B is replaced in (I) by either (1) or (2), we obtain, respectively,

dA,\ _ dA\ _
(4) VX(E"}‘—&*)—O, VX(E+'5[)—O
Ao A
Thus the fields of the vectors E + —~ and E + 5t &re irrotational and
equal to the gradients of two scalar functions ¢o and ¢.
— v — A

(35) E=—Vg ETI

0A
(6) E=—-V¢p — w5
The functions ¢ and ¢, are obviously related by

a
@) b= g0+ 9.

The functions A are vector potentials of the field, and the ¢ are scalar
potentrals. Ao and ¢, designate one specific pair of potentials from which
the field can be derived through (1) and (5). An infinite number of
potentials leading to the same field can then be constructed from (3)
and (7).

Let us suppose that the medium is homogeneous and isotropic, and
that € and u are independent of field intensity.

8) D=¢E, B=uH

In terms of the potentials

- — 9A _1 \
)] D= e(qu-l—at)r H—#VXA,
which upon substitution into (II) and (IV) give

J92A
(10) VXVXA-i-ueVad’—i—peatz:y],
(1) vo+v. .21,

ot
All particular solutions of (10) and (11) lead to the same electromagnetic
field when subjected to identical boundary conditions. They differ
among themselves by the arbitrary function . Let us impose now upon
A and ¢ the supplementary condition

(12) VA 4+ pe %l; =
To do this it is only necessary that ¢ shall satisfy

9 L)
(13) V’\P—ue%—-v Ao+p£3t—;
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where ¢ and A, are particular solutions of (10) and (11). The potentials
¢ and A are now uniquely defined and are solutions of the equations

2
(14) vaxA—vv.A+#e%{z§=‘J’
02¢ 1
2p — ,.0¢__ _1
(15) Vd) ME at2 ep.

Equation (14) reduces to the same form as (15) when use is made of
the vector identity

(16) VXVXA=VV:-A—V-VA.

The last term of (16) can be interpreted as the Laplacian operating on
the rectangular components of A. In this case

2
17 VA — pue %?% = —u]J.
The expansion of the operator V- VA in curvilinear systems will be
discussed in Sec. 1.16, page 50.
The relations (2) and (6) for the vectors B and E are by no means
general. To them may be added any particular solution of the homo-
geneous equations

(Ia) vxE—l—%B:O, (Illa) V-B = 0,

o) vxH-2 =0, (Vo) v-D =0.
From the symmetry of this system it is at once evident that it can be

satisfied identically by

. « OA*
(18) D=-VXA* H=-V¢ ~ 3’
from which we construct
]
(19) = v x A", B=—p(v¢*+-a—§t—~-
The new potentials are subject only to the conditions
J’2A*
V2A* — pue 5 = 0,
62 *
(20) vigr — ueZh =0,
aop*

. * —_— =
Ve+A* 4+ ue 3 0.
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A general solution of the inhomogeneous system (I) to (IV) is, therefore,

*
1) B=vxA-ul2 v,
(22) = —vs -2 v xa,

provided p and e are constant.

The functions ¢* and A* are potentials of a source distribution which
is entirely external to the region considered. Usually ¢* and A* are put
equal to zero and the potentials of all charges, both distant and local,
are represented by ¢ and A.

At any point where the charge and current densities are zero a
possible field is ¢o = 0, Ag = 0. The function ¢ is now any solution
of the homogeneous equation

2

23) Vi — pe %tif — 0.

Since at the same point the scalar potential ¢ satisfies the same equation,
¢ may be chosen such that ¢ vanishes. In this case the field can be
expressed in terms of a vector potential alone.

(24) B-=vx4a E=-2,
(25) V2A—ue9(%=0, V-A=0.

Concerning the units and dimensions of these new quantities, we
note first that E is measured in volts/meter and that the scalar potential
¢ is therefore to be measured in volts. If ¢ is a charge measured in
coulombs, it follows that the product q¢ represents an energy expressed
in joules. From the relation B = ¥ X A it is clear that the vector
potential A may be expressed in webers/meter, but equally well in either
volt-seconds/meter or in joules/ampere. The product of current and
vector potential is therefore an energy. The dimensions of A* are found
to be coulombs/meter, while ¢* will be measured in ampere-turns.

1.10. Homogeneous Conducting Media.—In view of the extreme
brevity of the relaxation time it may be assumed that the density of
free charge is always zero in the interior of a conductor. The field
equations for a homogeneous, isotropic medium then reduce to

(Ib)vxE+%—]t3-=0, (IIIb) V- B = 0,

(I1b) VXH—%IT)—aE=0, (IVb) V-D = 0.
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We are now free to express either B or D in terms of a vector potential.
In the first alternative we have

0A

(26) B=VxA E=-v$-—

If the vector and scalar potentials are subjected to the relation
@27 V- &-[-ye +pa¢—0

a possible electromagnetic field may be constructed from any pair of
solutions of the equations

d92A oA

(28) VA — ME —7 5 EYD - MO —é—t" = 0,
d%¢ dé

(29) - Vi — pe— R Vi 0.

As in the preceding paragraph one will note that the field vectors are
invariant to changes in the potentials satisfying the relations

(30) s=w+  A=M-w,

where &y, Ay are the potentials of a possible field and ¢ is an arbitrary
scalar function. In order that A and ¢ satisfy (27) it is only necessary
that ¢ be subjected to the additional condition

92 d
(31) V’l/'—#e—g- Ay, Ao+ueﬂ'+uv¢o.

ot at at
To a particular solution of (31) one is free to add any solution of the
homogeneous equation

% 6‘//

2, — _—

(32) VY — e Sy — w5 = 0.

Frequently it is convenient to choose y such that the scalar potential
vanishes. The field within the conductor is then determined by a single
vector A.

(33) B=VxA, E——%—“t‘,

N A 9A
(34) VA — pe at2-—ya—(—,’—£=0, v-A=0.

The field may also be defined in terms of potentials ¢* and A* by
(35) D=-vxA*, H=-ve*—220_7ps

at
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If ¢* and A* are to satisfy (28) and (29), it is necessary that they be
related by

*

(36) V- A*-l—ue-————O

The field defined by (35) is invariant to all transformations of the poten-
tials of the type

37) ¢* = o8 + 2 "‘b

+2y%, AT = AP - W,

where as above ¢¥ and A} are the potentials of any possible electro-
magnetic field. To ensure the relation (36) it is only necessary that ¢*
be chosen such as to satisfy

2., % * *
AL AL |

2.0,%
(38) VAT = pe at ot

Finally, by a proper choice of y* the scalar potential ¢* may be made
to vanish.

%
(39) D=-vxaY, H=-2_7a
27 % *
(40) viar — w2 B0, vear=o

1.11. The Hertz Vectors, or Polarization Potentials.—We have seen
that the integration of Maxwell’'s cquations may be reduced to the
determination of a vector and a scalar potential, which in homogeneous
media satisfy one and the same differential equation. It was shown by
Hertz! that it is possible under ordinary conditions to define an electro-
magnetic field in terms of a single vector function.

Let us confine ourselves for the present to regions of an isotropic,
homogeneous medium within which there are neither conduction currents
nor free charges. The field equations then reduce to the homogeneous
system (Ia)-(IVa). We assume, for reasons which will become apparent,
that the vector potential A is proportional to the time derivative of a

vector II.

Il
(41) A = ue 7’—{'
Consequently,
611 0211
(42) B = pueV X — 3’ E=—-V¢ — pe— i

1 Hrrz, Ann. Physik, 86, 1, 1888. The general solution is due to Righi: Boloyna
Mem., (5) 9, 1, 1901, and Il Nuovo Cimento, (5) 2, 2, 1901.
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and, when in turn this expression for E is introduced into (Ila), it is
found that

9

(43) T

(VXVXH+V¢+ueaatI;)=O.

We recall that at points where there is no charge, the scalar function ¢
is wholly arbitrary so long as it satisfies an equation such as (23). In
the present instance it will be chosen such that

(44) ¢ = —V.IL

Then upon integrating (43) with respect to the time, we obtain
o1

(45) VXVXIO— VYV I+ pe—5 G = constant.

The particular value of the constant does not affect the determination of
the field and we are thercfore free to place it equal to zero. Equation
(IVa) is also satisfied, for the divergence of the curl of any vector vanishes
identically. Then we may state that every solution of the vector equation

(46) VXVXHO~—VV. H+peaatr2[=0
determines an electromagnetic field through

2
“n B=ueVX—a—l;I-, E=VV-1’I-—-pe§a—tI—2I-

The condition that ¢ shall satisfy (23) is fulfilled in virtue of (46). One
may replace (46) by

9’1

(48) VI — pe — 30

=0,

provided V2 is understood to operate on the rectangular components of II.
Since the vector D as well as B is solenoidal in a charge-free region,

an alternative solution can be constructed of the form

. o
(49) A*=pe—— ¢

611* ur*
T H=VV-II* — ue 5

* _v.n*,

(50) D= —puev X

where IT* is any solution of (46) or (48).

From these results we conclude that the electromagnetic field within
a region throughout which ¢ and x are constant, p and J equal to zero,
may be resolved into two partial fields, the one derived from the vector It
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and the other from the vector IT*. The origin of these fields lies exterior
to the region. To determine the physical significance of the Hertz
vectors it is now necessary to relate them to their sources; in other words,
we must find the inhomogeneous equations from which (48) is derived.

Let us express the vector D in terms of E and the electric polariza-
tion P. According to (6), page 11, D = ¢E + P. Then in place of
(Ile) and (IVa), we must now write
(1) vxH-oZ =2, v~E=—;1;v~P.

It may be verified without difficulty that these two equations, as well
as (Ia) and (IIla), are still identically satisfied by (47), provided only
that e be replaced by ¢ and that IT be now any solution of

91

(52) VI — peo Fiie —-—:‘—OP

The source of the vector II and the electromagnetic field derived from it is a
distribution of electric polarization P. In due course we shall interpret
the vector P as the electric dipole moment per unit volume of the medium.
Since I is associated with a distribution of electric dipoles, the partial
field which it defines is sometimes said to be of electric type, and IT itself
may be called the electric polarization potential.

In like manner it can be shown that the field associated with IT* is
set up by a distribution of magnetic polarization. According to (6),
page 11, the vector B is related to H by B = po(H + M), which when
introduced into (Ia) and (IIIa) gives

(53) VxE+uo§;T-I=—yoa—al\;£: V-H= —-V-M.

Then these equations, as well as (IIa) and (IVa), are satisfied identically
by (50) if we replace there p by po and prescribe that IT* shall be a
solution of

oy *
(54) VIAL* — e -a—atr!z— = —M.
We shall show later that the polarization M may be interpreted as the
density of a distribution of magnetic moment. The partial field derived
from IT* may be imagined to have its origin in magnetic dipoles and is
said to be a field of magnetic type.

The electric polarization P may be induced in the dielectric by the
field E, but it may also contain a part whose magnitude iscontrolled
by wholly external factors. In the practical application of the theory
one is interested usually only in this independent part Pg, which will be
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shown to represent the electric moment of dipole oscillators activated by
external power sources. The same is true for the magnetic polarization,
To represent these conditions we shall write (6), page 11, in the modified
form

(55) D = E + P, H=%B—-Mo,

in which Py and M, are prescribed and independent of E and H, and
where the induced polarizations of the medium have again been absorbed
into the parameters e and u. Then the electromagnetic field due to these
distributions of Py and M, is determined by

R om*

(56) E—VV-H—ue~6t2—uVX—~at;
oIt ouT*

(57) H = eV.X a0 + vVv.m* — He 3

when I and IT* are solutions of

2 2y *
(58) Vil — .Ufa—I‘I‘ = —-—%—Po, VAL* — pe ———aaltz =

at? —Mo.

In virtue of the second of Eqs. (58) and of the identity (16) we may also
write (57) as

(59) H=ev x4+ vxvxm— M

Since B = V X A, it is evident from this last relation that the vector
potential A may be derived from the Hertzian vectors by putting

(60) A=/.te%lt1+uVXH*—V1//,
where ¢ is an arbitrary scalar function. The associated potential ¢ is

= —v. %,
(61) $=—V-I+4 =

with ¢ subject only to the condition that it satisfy

o
(62) V2|P — Me€ az‘ = 0.

The extension of these equations to a homogeneous conducting
medium follows without difficulty. The reader will verify by direct
substitution that the system (Ib)-(IVb), in a medium which is free of
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fized polarization Py and M,, is satisfied by

*
(63) E = vxvxn—uvxag
om .
(64) H=V X e—gt—-i-all +VXVXI*,
VXVXII—VV. H+peat2+uo'n=0,
(65) 211* an*
VXVXO*— VYV II*+ ue —>- 5 + po—— = 0.

1.12, Complex Field Vectors and Potentials.—It has been shown by
Silberstein, Bateman, and others that the equations satisfied by the
fields and potentials may be reduced to a particularly compact form by
the construction of a complex vector whose real and imaginary parts are
formed from the vectors defining the magnetic and electric fields.! The
procedure has no apparent physical significance but frequently facilitates
analysis.

Consider again a homogeneous, isotropic medium in which D = ¢E,
B = pH. If now we define Q as a complex field vector by

(66) Q = B + iV euE,
the Maxwell equations (I)-(IV) reduce to

@ vxQ+iall-w, v-Q=ift,

The vector operation V X Q may be eliminated from (67) by the
simple expedient of taking the curl of both members. By the identity
(16) we obtain

(68) vv-Q - viQ +ivav x 2 = uy x J,

which, on replacing the curl and divergence of Q by their values from
(67), reduces to

’Q 1

69 V e — V . — .

(69) Q- = —u ( X J —iVen ad at \/en Vp)

When this last equation is resolved into its real and imaginary com-
! SILBERSTEIN, Ann. phys., 22, 24, 1907. Also Phil. Mag. (6) 28, 790, 1912.

?ATEMAN, “Electrical and Optlcal Wave Motion,” Chap. I, Cambridge University
Tess
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ponents, one obtains the equations satisfied individually by the vectors
E and H.

9?H
(70) VH — eu—éﬁ = -V X]J,

aJ
2 =
(71) V2E — ep 6t2 Ear + Vp.

Next, let us define Q in terms of complex vector and scalar potentiais
L and ® by the equation

(72) Q=VxL~—iveal—ivavs,
subject to the condition
(73) v-Lt+ad =0

Tt will be verified without difficulty that (72) is an integral of (67) pro-
vided the complex potentials satisfy the equations

2L
(74) VL — HaE = —uJ,
9% 1
2 = —=
(75) V% — eu—— ETD 2P

If the real and imaginary parts of these potentials are written in the
form

(76) L=A—i\/’€ZA*, ¢=¢_i\/§¢*,

and substituted into (72), one finds again after separation of reals and
imaginaries the general expressions for the field vectors deduced in
Egs. (21) and (22).

If the free currents and charges are everywhere zero in the region
under consideration, Eq. (67) reduces to

(77) VXQ+1.‘\/e;L——0 vV.Q=0.

The electromagnetic field may now be expressed in terms of a single
complex Hertzian vector I".

(78) Q—erX +'L\/—6VXVXI‘,

where I is any solution of

(79) v — T

epsﬁ = 0.
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If, finally, I is defined as
(80) r=mHn- z& n*

and substituted into (78), one finds again after separation into real and
imaginary parts exactly the expressions (47) and (50) for the electric
and magnetic field vectors.

When the medium is conducting, the field equations are no longer
symmetrical and the method fails. The difficulty may be overcome
if the field varies harmonically. The time then enters explicitly as a
factor such as etit, After differentiating with respect to time, the
gystem (Ib)-(IVb) may be made symmetrical by introducing a complex

inductive capacity € = ¢ + ¢ -g-

BOUNDARY CONDITIONS

1.13. Discontinuities in the Field Vectors.—The validity of the field
equations has been postulated only for ordinary points of space; that is
to say, for points in whose neighborhood the physical properties of the
medium vary continuously. However, across any surface which bounds
one body or medium from another there occur sharp changes in the
parameters ¢, g, and ¢. On a macroscopic scale these changes may
usually be considered discontinuous and hence the ficld vectors themselves
may be expected to exhibit corresponding discontinuities.

Let us imagine at the start that the surface S which bounds medium
(1) from medium (2) has been replaced by a very thin transition layer
within which the parameters ¢, p, o vary rapidly but continuously from
their values near S in (1) to their values near S in (2). Within this
layer, as within the media (1) and (2), the field vectors and their first
derivatives are continuous, bounded functions of position and time.
Through the layer we now draw a small right cylinder, as indicated in
Fig. 2a. The elements of the cylinder are normal to S and its ends lie
in the surfaces of the layer so that they are separated by just the layer
thickness Al. Fixing our attention first on the field of the vector B, we

have
(1) j)' B-nda =0,

when integrated over the walls and ends of the cylinder. If the base,
whose area is Aa, is made sufficiently small, it may be assumed that B
has a constant value over each end. Neglecting differentials of higher
order we may approximate (1) by

(2) (B - n; + B - nj)Aa + contributions of the walls = 0.
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The contribution of the walls to the surface integral is directly pro-
portional to Al. Now let the transition layer shrink into the surface S.
In the limit, as Al — 0, the ends of the cylinder lic just on either side
of 8 and the contribution from the walls becomes vanishingly small.
The value of B at a point on S in medium (1) will be denoted by B, while

D €pu.0y
Fia. 2a.—For the normal boundary condition.

the corresponding value of B just across the surface in (2) will be denoted
by B;. We shall also indicate the positive normal to S by a unit vector
n drawn from (1) into (2). According to this convention medium (1)
lies on the negative side of S, medium (2) on the positive side, and
n; = —n., Then as Al — 0, Aa — 0,

(3) (Bz o Bl) n = 0;

the transition of the normal component of B across any surface of discon-

tinuity tn the medium ts continuous. Equation (3) is a direct consequence

of the condition V - B = 0, and is sometimes called the surface divergence.
@ €510,

2 n
T

S 7 > S

N,
D) epuy.oy
Fig. 2b.—For the tangential boundary condition.

The vector D may be treated in the same manner, but in this case
the surface integral of the normal component over a closed surface is
equal to the total charge contained within it.

(4) §D-nda=q.

The charge is distributed throughout the transition layer with a den-
sity p. As the ends of the cylinder shrink together, the total charge ¢
remains constant, for it cannot be destroyed, and

(5) q = p Al Aa.

In the limit as Al — 0, the volume density p becomes infinite. It is then
convenient to replace the product p Al by a surface density w, defined as



36 THE FIELD EQUATIONS [Crar. I

the charge per unit area. The transition of the normal component of the
vector D across any surface S is now given by

(6) (Dz - D1) ‘Nl = w.

The presence of a layer of charge on S results in an abrupt change in the
normal component of D, the amount of the discontinuity being equal to the
surface density measured tn coulombs per square meter.

Turning now to the behavior of the tangential components we replace
the cylinder of Fig. 2a by a rectangular path drawn as in Fig. 2b. The
sides of the rectangle of length As lie in either face of the transition layer
and the ends which penetrate the layer are equal in length to its thick-
ness Al. This rectangle constitutes a contour Cp about which

) LE dS—I—f——-no da = 0,

where So is the area of the rectangle and n, its positive normal. The
direction of this positive normal is determined, as in Fig. 1, page 8, by
the direction of circulation about Co. Let =1 and =2 be unit vectors in
the direction of circulation along the lower and upper sides of the rec-
tangle as shown. Neglecting differentials of higher order, one may
approximate (7) by

(8) (E-=1+ E-x;) As + contributions from ends = —%?— n, As Al
As the layer contracts to the surface S, the contributions from the seg-
ments at the ends, which are proportional to Al, become vanishingly
small. If n is again the positive normal to S drawn from (1) into (2),
we may define the unit tangent vector = by

) © =1 X n.
Since
(10) noXn-E=ny-nXE,

we have in the limit as Al — 0, As — 0,

(11) ng - [n X (E; — E) + lAilIE)lo (%3 Al)] =

The orientation of the rectangle — and hence also of ny — is entirely
arbitrary, from which it follows that the bracket in (11) must equal
Zero, or

oB

(12) n X (Ez - El) — lim — Al
Al—0 at
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The field vectors and their derivatives have been assumed to be bounded;
consequently the right-hand side of (12) vanishes with Al.

(13) n X (Ez - El) = 0.

The transition of the tangential components of the vector E through a surface
of discontinuity is continuous.

The behavior of H at the boundary may be deduced immediately
from (12) and the field equation

(14) fH-ds——f@-noda=fJ-noda.
Co So ot So
We have
(15) n X (H; — H;) = lim (Q + ]) Al.
Al—0 at

The first term on the right of (15) vanishes as Al — 0 because D and its
derivatives are bounded. If the current density J is finite, the second
term vanishes as well. It may happen, however, that the current
I = J - ngAs Al through the rectangle is squeezed into an infinitesimai
layer on the surface S as the sides are brought together. It is con-
venient to represent this surface current by a surface density K defined
as the limit of the product JAlas Al -0 and J — «. Then

(16) n X (H, — H)) =K.

When the conductivities of the contiguous media are finite, there can be
no surface current, for E is bounded and hence the product ¢E Al van-
ishes with Al. In this case, which is the usual one,

17 n X (H, — H,) =0, (finite conductivity).

Not infrequently, however, it is necessary to assume the conductivity
of a body to be infinite in order to simplify the analysis of its field. One
must then apply (16) as a boundary condition rather than (17).
Summarizing, we are now able to supplement the field equations by
four relations which determine the transition of an electromagnetic

field from one medium to another separated by a surface of discontinuity.
(18) n- (Bz - Bl) = 0, n X (Hz - Hl) =K,
n X (E; — E;) =0, n-(D; — D)) =a.

From them follow immediately the conditions for the transition of the
normal components of E and H.

(19) n-(Hg—&H1)=0a. n-(Eg—z—‘El)=‘—"—-
2

M2
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Likewise the tangential components of D and B must satisfy
(20) n X (Dz — 2])1) = 0, n X (Bg - E'z B1> = yzK.
1

COORDINATE SYSTEMS

1.14. Unitary and Reciprocal Vectors.—It is one of the principal
advantages of vector calculus that the equations defining properties
common to all electromagnetic fields may be formulated without reference
to any particular system of coordinates. To determine the peculiarities
that distinguish a given field from all other possible fields, it becomes
necessary, unfortunately, to resolve each vector equation into an equiva-
.ent scalar system in appropriate coordinates.

In a given region let

(1) ul = fl(xy Y, z)) u? = f2<1;; Y, Z), ud = f3(xr Y, 2),

be three independent, continuous, single-valued functions of the rec-
tangular coordinates z. y, z. These equations may be solved with respect
to z, y, 2, and give

(2) T = ﬁal(ul: u?, u3)7 Yy = ‘P2(u1: u?, us)) 2= ‘P3(u1; u?, us)’

three functions which are also independent and continuous, and which
are single-valued within certain limits. In general the functions ¢; as
well as the functions f; are continuously differentiable, but at certain
singular points this property may fail and due carc must be exercised in
the application of general formulas.

With each point P(z, y, z) in the region there is associated by means of
(1) a triplet of values u?, u? u?; inversely (within limits depending on the
boundaries of the region) there corresponds to each triplet u!, u?, u? a
definite point. The functions u!, u?, u? are called general or curvilinear
coordinates. Through each point P there pass three surfaces

3) u! = constant, u? = constant, u® = constant,

called the coordinate surfaces. On each coordinate surface one coordi-
nate is constant and two are variable. A surface will be designated by
the coordinate which is constant. Two surfaces intersect in a curve,
called a coordinate curve, along which two coordinates are constant and
one is variable, A coordinate curve will be designated by the variable
coordinate.

Let r denote the vector from an arbitrary origin to a variable point
P(z, y, 2). The point, and consequently also its position vector r, may
be -onsidered functions of the curvilinear coordinates u’, u?, u3.

(4) = r(u!, u? u®).
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A differential change in r due to small displacements along the coordinate
curves is expressed by

or or Jr
(5) dr = W du! + W du® + a——u—,‘t’ dud.

Now if one moves unit distance along the ul-curve, the change in r is
directed tangentially to this curve and is equal to dr/du'. The vectors

or ar ar
(6) a; = -b—uj’ a; = 5—17; az; = W’
are known as the unitary vectors associated with the point P. They
constitute a base system of reference for
all other vectors associated with that
particular point.

(7) dr = a; du' + a; du? + as dus.

It must be carefully noted that the
unitary vectors are not necessarily of unit
length, and their dimensions will depend
on the nature of the general coordinates.
The three base vectors ai, a,, a3 de-
fine a parallelepiped whose volume is

(8) V =a;- (az X 8.3) = ag°* (as X a;) Fia. 3.—Base vectors for a curvilinear
= az- (a; X ag). coordinate system.

The three vectors of a new triplet defined by
1
9) at= —ll;(az X a3), a? = 7 (as X ai), at = %(al X az),

are respectively perpendicular to the planes determined by the pairs
(as as), (as a1), (a1, a2). Upon forming all possible scalar products of
the form a‘ - a;, it is easy to see that they satisfy the condition

(10) al-a; = §;,

where 8; is a commonly used symbol denoting unity when ¢ = j, and
zero when ¢ £ j. The unitary vectors can be expressed in terms of the
system al, a?, a® by relations identical in form.

(11) a; = Il—, (a2 X a?), a; = %(a8 X al), = %,—(a1 X a?).

Any two sets of noncoplanar vectors related by the Egs. (8) to (11) are
said to constitute reciprocal systems. The triplets al, a2, a® are called
rectprocal unitary vectors and they may serve as a base system quite
as well as the unitary vectors themselves.
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If the reciprocal unitary vectors are employed as a base system, the
differential dr will be written

(12) dr = a'du, + a?dus + a’du,.

The differentials dus, du,, dus are evidently components of dr in the direc-
tions defined by the new base vectors. The quantities u,, us, us are
functions of the coordinates u!, u?, u3, but the differentials du,, du,, dus
are not necessarily perfect. On the contrary they are related to the
differentials of the coordinates by a set of linear equations which in
general are nonintegrable. Thus equating (7) and (12), we have

3

(13) dr = 2;& dui = i af du;.

j=1

Upon scalar multiplication of (13) by a‘and by a; in turn, we find, thanks
to (10):

3 3
(14) du; = E a; - a; du’, dut = 2 a'- al du;.
i=1 i=1

It is customary to represent the scalar products of the unitary vectors
and those of the reciprocal unitary vectors by the symbols

(15) gi = ai- a; = gj;,
(16) g*l == a‘. . al = gﬁ'

The components of dr in the unitary and in the reciprocal base systems
are then related by

3 3
17) du, = Y gudw,  dui =3 gii dus.

i=1 j=1

A fixed vector F at the point P may be resolved into components
either with respect to the base system ai, a,, a;, or with respect to the
reciprocal system al, a2, a3.

18 F= 3 a3 e

The components of F in the unitary system are evidently related to those
in its reciprocal system by

3 3
(19) fi=Zod = 2%,

and in virtue of the orthogonality of the base veators a; with respect to
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the reciprocal set a‘ as expressed by (10), we may also write
(20) j"'=F-a‘, f,'=F‘a,'.

It follows from this that (18) is equivalent to

3
(21) F= éx (F - a')a; = 2\1 (F - a;)al.

The quantities f* are said to be the contravariant components of the
vector F, while the components f; are called covariant. A small letter
has been used to designate these components to avoid confusion with the
components Fy, Fy, F3 of F with respect to a base system coinciding with
the a; but of unit length. It has been noted previously that the length
and dimensions of the unitary vectors depend on the nature of the
curvilinear coordinates. An appropriate set of unit vectors which, like
the unitary set a;, are tangent to the w*-curves, is defined by

(22) iy =—2t . = 1 a;, i3= 1 ag, is= 1 as,
Vai-ai Vo Vg2 Vgs

and, hence,

(23) F = Fii; + Fii; + Fsis,

with

(24) Fi=Vgaf.

The F; are of the same dimensions as the vector F itself.

The vector dr represents an infinitesimal displacement from the point
P(u', u? u® to a neighboring point whose coordinates are u! + dul,
u? + du?, u® 4+ dud. The magnitude of this displacement, which con-
stitutes a line element, we shall denote by ds. Then

3 3 3 3

25) ds?=dr.dr = a;-a;dvidw = a‘ - af du; du;;
(25) ig ,Z:i ' .-g ,21 "
or, in the notation of (15) and (16),

3 3
(26) ds* = 3 gydudw = 3 g¥ duduy.

1,5=1 $,5=1

The g, and g* appear here as coefficients of two differential quadratic
forms exvressing the length of a line element in the space of the general
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coordinates uf or of its reciprocal set v They are commonly called the
metrical coefficients.

It is now a relatively simple matter to obtain expressions for elements
of arc, surface, and volume in a system of curvilinear coordinates. Let
ds; be an infinitesimal displacement at P(u!, u?, u®) along the u!-curve.

(27) dS1 = a, dul, d81 = IdSll = g1 dul.
Similarly, for elements of length along the u2- and u®curves, we have

(28) dss = Vgndu?,  ds; = \/gsdud.

Consider next an infinitesimal parallelogram in the u!-surface bounded
by intersecting u* and u3-curves as
indicated in Fig. 4. The area of such
an element is equal in magnitude to

(29) day = ldSz X dSa[
= |ag X a3 du? du®

= \/(az X a3) « (a2 X a3) du? dud.
By a well-known vector identity

(30) (ax b)-(cx d)
= (a-c)(b-d) — (a-d)(b-c),

where a, b, ¢, d are any four vectors,
Fig. 4.—Element of area in the u!l-surface. and hence

(31) (az X a3) « (a2 X a3) = (az- ay)(as - as) — (az+ a;3)(as* ay)
= gas0ss — @iz

For the area of an element in the ul-surface we have, therefore,
(32) day = V g20 — g3s du? dud,

and similarly for elements in the u* and u®surfaces,

(33) das = Vgsgu — gh du® dul,
das = V/g1g22 — 32 du' du’.

Finally, a volume element bounded by coordinate surfaces is written as
(34) dv = ds; + dss X ds; = a1+ a; X asdu’ du? du’.

1f now in (21) we let F = a; X a; we have

(35) as X a3 = (al-as X 85)a; + (a- az X a5)a; + (a®+ a3 % a;)ay
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or, on replacing the a by their values from (8) and (9),

a;
a8, X & [(az X a3 - a; X as)a; +

(as X ay-a, X az)a; + (a1 X az-a, X as)ag).

(36) a;-a; X a3 =

The quantities within parentheses can be expanded by (30) and the terms
arranged in the form

(B7) (ai-a: X 85)% = a; - a;[(az- a2)(as + a5) — (az - a5)(as * ay)]
+ a1+ asf(az- as)(as- a;)) — (az- a1)(as- as)]
+ ai-as(az - a1)(as- a;) — (az- az)(as-as)l.

If finally the scalar products in (37) are replaced by their g;;, we obtain
as an expression for a volume element

(38) dv = Vg du! du? du?,
in which
Ji11 Jiz2 g1
(39) g = |g21 @22 @28
gs1 sz (33

A corresponding set of expressions for the elements of arec, area, and
volume in the reciprocal base system may be obtained by replacing the
gii by the g%, but they will not be needed in what follows.

Clearly the coefficients g;; are sufficient to characterize completely
the geometrical properties of space with respect to any curvilinear system
of coordinates; it is therefore essential that we know how these coefficients
may be determined. To unify our notation we shall represent the
rectangular coordinates z, y, z of a point P by the letters z!, x2, z3 respec-
tively. Then

(40) ds? = (dzV)? + (dz?)? + (dz?)2
In this most elementary of all systems the metrical coefficients are
(41) gii = Oijy (6 = 1, 8;; = 0 when ¢ 5 3).

From the orthogonality of the coordinate planes and the definition (9),
it is evident tha{ the unitary and the reciprocal unitary vectors are
identical, are of unit length, and are the base vectors customarily repre-
sented by the letters i, j, k.

Suppose now that the rectangular coordinates are related functionally
to a set of general coordinates as in (2) by the equations

(42) z' = z'(ul, u? ud), z? = z2(ul, u?, ud), z® = 23(ul, u? ud.
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The differentials of the rectangular coordinates are linear functions of the
differentials of the general coordinates, as we sce upon differentisting
Eqgs. (42).

or! or! dar!

1 = 9 1 2 9% g3

dz Jui dul + EW du? + T dud,
Jx? dx? ox?

2 — 1 2 3

(43) de? = s dul + o5 du? + o dud,
ox3 dx? dz3

3 — 2 g1 9t g2 2 4,3

dz Il dut + T du? + o dud.

According to (26) and (40)

3 3 3
(44) ds? = 2 > gi dut dui = ) (dz4)?,
1=17=1 k=1
whence on squaring the diffcrentials in (43) and equating coefficients
of like tcrms we obtain

5 gy = J 0 et artast
U7 uiou! T dutdw | dut 0w
1.16. The Differential Operators.—The gradient of a scalar function
(ul, u2, u3) is a fixed vector defined in direction and magnitude as the
maximum rate of change of ¢ with respect to the cordinates. The
variation in ¢ incurred during a displacement dr is, therefore,

3
(46) d$ = Vo-dr = > gq"; dui.

1=1

Now the duf are the contravariant components of the displacement vector
dr, and hence by (20),

“n dut = a'.dr.

This value for du’ introduced into (46) leads to
S

(48) (v¢ - Zai 5%) .dr=0

and, since the displacement dr is arbitrary, we find for the gradient of a
scalar function in any system of curvilinear coordinates:

3
(49) v = 2 al g%—‘
=

In this expression the reciprocal unitary vectors constitute the base
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gystem, but these may be replaced by the unitary vectors through the
transformation

3
0 o= S g

1=1

The divergence of a vector function F(ul, u2, 43 at the point P may

be deduced most easily from its definition in Eq. (9), page 4, as the
limit of a surface integral of the normal component of F over a closed
surface, per unit of enclosed volume. Consider those two ends of the
volume element illustrated in Fig. 5 which
lie in u2-surfaces. The left end is located
at u? the right at w? 4 du® The area
of the face at w? is (a; X as)du! du?, the
order of the vectors being such that
the normal is directed outward, i.e., to
the left. The net contribution of these
two ends to the outward flux is, therefore,

(51) [F- (as X a1) dul dulurygus
-+ [F . (al X 83) du! dus]“,,

the subscripts to the brackets indicating
that the enclosed quantities are to be
evaluated at u? 4+ du? and u? respective- Tre. 5.—Element of volume in a
ly. For sufficiently small values of du?, curvilinear coordinate system.

(51) may be approximated by the linear term of a Taylor expansion,

(52) (%2- (F - a5 X a; du du? du¥),

a; X a; having been replaced by —a; X a;.. Now by (21), (20), and
(37) we have

(53) F-a; X a; = F-a%a,-a; X a1) = f2/;
hence the contribution of the two ends to the surface integral is
(54) (% (f2Vg) dut du? dus.

Analogous contributions result from the two remaining pairs of faces.
These are to be measured per unit volume; hence we divide by dv = /g
du! du? du® and pass to the limit du! — 0, du?— 0, du®— 0, ensuring
thereby the vanishing of all but the linear terms in the Taylor expansion.
The divergence of a vector F referred to a system of curvilinear coordi-
nates is, therefore,

1~y 9 ,,
(55) v-F=75§aw (F V).
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The curl of the vector F is found in the same manner by calculating
the line integral of F around an infinitesimal closed path. According
to Eq. (21), page 7, the component of the curl in a direction defined
by a unit normal n is

1
(56) (VXF)-n—gRSLF-dS.

Let us take the line integral of F about the contour of a rectangular
element of area located in the u!-surface, as indicated in Fig. 6. The
sides of the rectangle are a, du? and az du®. The direction of circulation
is such that the positive normal is in the
sense of the positive u!-curve. The con-
tribution from the sides parallel to u3-curves
is
(F - a3 du)uzyaur — (F « a3 dud)us;

from the bottom and top parallel to u?-
curves, we obtain

_ (F L : D du2)ua+dua + (F L¥: D} du”),,a.

Approximating these differences by the
linear terms of a Taylor expansion, we

Fia. 6.—Calculation of the curl

in curvilinear coordinates. obtain for the line integral
i O (F-ay) | dur dus
(57) W(F'aa)"m( 'az) u” aus.

This quantity must now be divided by the area of the rectangle, or
4/ (a; X a;5) - (a2 X a3) du2dud. As for the unit normal n, we note that
the reciprocal vector al, not the unitary vector ai, is always normal to the
ul-surface. Its magnitude must be unity; hence

al

Val-al

These values introduced into (56) now lead to

(58) n=

al
1

Va-a
1 ) 3
T V(@ X a) - (2 X a3) [5;2 (F-a5) — 55 (F'az)],

(59) (VXF)-

By (9) and (37)
(60) a; X a; = [a;+ (a2 X a3)]a! = '\/;]_al;
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hence (59) reduces to

(61) (VxF)-a‘-——-;/l—a[aiw(F-aa)—%(F-aﬁ]-

The two remaining components of V X F are obtained from (61) by
permutation of indices. Then by (21)

3
(62) VXF= (v X F.aa,

1=

Remembering that F - a; is the covariant component f;, we have for the
curl of a vector with respect to a set of general coordinates

1 afs _ afs f1 af,o,
(63) VX F= Tg[(w au> 1+ (au3 aul aq
ofy  of .
+ Jul 6_14;) 33]

Finally, we consider the operation V2¢, by which we must understand
V-:V¢o. We need only let F = V¢ in (55). The contravariant com-
ponents of the gradient are

3 3
T — . = i, .Qd_’-— t,ai
(64) fi=F a*—ga a’au,-~j21.wau,
Then
(65) V-Vé =V = —— Zgaw(w\/&au,)

1.16. Orthogonal Systems.—Thus far no restriction has been imposed
on the base vectors other than that they shall be noncoplanar. Now it
happens that in almost all cases only the orthogonal systems can be
usefully applied, and these allow a considerable simplification of the
formulas derived above. Oblique systems might well be of the greatest
practical importance; but they lead, unfortunately, to partial differential
equations which cannot be mastered by present-day analysis.

The unitary vectors ai, as, a3 of an orthogonal system are by definition
mutually perpendicular, whence it follows that a‘ is parallel to a; and
is its reciprocal in magnitude.

(66) al=——a; = —a,
Furthermore

67) 28, = @3-83 = 83 a; = 0;
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hence g; = 0, when 7 > j. It is customary in this orthogonal case to
introduce the abbreviations

(68) hy = Vg, h: = \/gas, hs = Vgas,
11— 1 — l.
(69) =R

The h; may be calculated from the formula

@ i () + o) + (G2

although their value is usually obvious from the geometry of the system.
The elementary cell bounded by coordinate surfaces is now a 1ectangular
box whose edges are

(V1) dsy = hydu?, dse = ha du?, dss = hs du?,

and whose volume is

(72) dv = hihohs du du® dud.

All off-diagonal terms of the determinant for g vanish and hence
(73) Vg = hihshs.

The distinction between the contravariant and covariant components
of a vector with respect to a unitary or reciprocal unitary base system is
essential to an understanding of the invariant properties of the differential
operators and of scalar and vector products. However, in a fixed refer-
ence system this distinction may usually be ignored. It is then con-
venient to express the vector F in terms of its components, or projections,
Fi, F3, F5 on an orthogonal base system of unit vectors iy, i, isz. By (22)
and (66)

(74) a; = h.'i,', al = %—i;.
In terms of the components F; the contravariant and covariant com-
ponents are

(75) ﬁ‘:%_FS': fi = hiFs.
Also

(76) F = Flil +F2i2 +F;i3,
(77) i,' * ik = 8,‘;.

The gradient, divergence, curl, and Laplacian in an orthogonal system
of curvilinear coordinates can now be written down directly from the
results of the previous section.
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From (49) we have for the gradient

3

106,

(78) v‘#:EEﬁ%”‘
7=1

According to (55) the divergence of a vector F is

1

(79) V-F = Tk [éml (hohsF'y) + W (hahxr?) + Ew (hlths)]

For the curl of F we have by (63)

1 ) : 1 [o
Folia [auz (hal's) — 5 (thz)] i+ 55 [—3 (hiFy)

~ 3l (haFa)] is + 7“172 [(ml (hoF'y) — Fw) (thx)] is.

(80) VXF=-—

It may be remarked that (80) is the expansion of the determinant

h1i1 h2i2 haia
1 ja o 9|
h1h2h3 Ju! ou? oud

hiFy  hoFy  haly

(81) VXF=

Finally, the Laplacian of an invariant scalar ¢ is

1 [ 0 (ks 06\ . & (hehs 00 he 36
82) V¢ = 57 [6u1( Ry aul) + a_uz< ha au2> * 5w (TJ aud J

By an invariant scalar is meant a quantity such as temperature or
energy which is invariant to a rotation of the coordinate system. The
components, or measure numbers, F, of a vector F are scalars, but they
transform with a transformation of the base vectors. Now in the
analysis of the field we encounter frequently the operation

(83) VXVXF=VV.F - V.VF

No meaning has been attributed as yet to V. VF. In a rectangular,
Cartesian system of coordinates #!, x2, 3, it is clear that this operation is
equivalent to

3°F ; 9% ;
(84) V:VF = VF = 2 (a(x‘)2 + a(z?)? a(x:‘)’) tis

¢.e., the Laplacian acting on the rectangular components of F. In gener-
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alized coordinates V X V X F is represented by the determinant

85) VXVXF=

1,
haha 2
3
Ju?
ks
hahy

[ 2 0y — 2 |

1,

hahs !

3

oul

| 2 ) = 2 (|

hgha 2 3 u3 2
1,
mh
3
ud

h a ]
}’;;;2 [W (hoF) — Ewe (thx)]

The vector V - VF may now be obtained by subtraction of (85) from the
expansion of VV «F, and the result differs from that which follows
a direct application of the Laplacian operator to the curvilinear com-

ponents of F.

1.17. The Field Equations in General Orthogonal Coordinates.—In
any orthogonal system of curvilinear coordinates characterized by the
coefficients Ay, hs, ks, the Maxwell equations can be resolved into a set of
eight partial differential equations relating the scalar components of the

field vectors.

1 d B
hh[uz(sEs)_;ﬁ?’(h"’EZ) +—-——1=0.
<I> [ = (huEs) — 3‘2; (B0 |+ =
] aB
3 1 oD
e o -y
an [ ) = 2 oty | - 22
Z!}T[ 0 (hal) — s () ] .3_—’2% _
(I11) 5% (hahsB) + 5 (hahle) + o (hlths) = 0.
(Iv) 361;‘1 (hohsDy) + (hah1Dz) + (hltha) = hihohap.
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It is not feasible to solve this system simultaneously in such a manner
as to separate the components of the field vectors and to obtain equations
satisfied by each individually. In any given problem one must make the
most of whatever advantages and peculiarities the various coordinate
systems have to offer.

1.18. Properties of Some Elementary Systems.—An orthogonal
coordinate system has been shown to be completely characterized by the
three metrical coefficients, hi, hs, hs. These parameters will now be
determined for certain elementary systems and in a few cases the differ-
ential operators set down for convenient
reference.

1. Cylindrical Coordinates.—Let P’ be
the projection of a point P(z, , 2) on the
z-plane and r, 8 be the polar coordin-
ates of P’/ in this plane (Fig. 7). The
variables

v 1}
()

L e D
\\
\

86) u'=r, u? =0, ut =g,

<

B

are called circular cylindrical coordin- g
ates. They are related to the rectan- *

a ) F1a. 7.—Coordinates of the circular
gular coordinates by the equations cylinder.

@7 Z =7 cos 0, ¥y = rsin 0, 2=z

The coordinate surfaces are coaxial eylinders of circular cross section
intersected orthogonally by the planes § = constant and z = constant.
The infinitesimal line element is

(88) ds? = dr? + r2 d6? + dz2,
whence it is apparent that the metrical coefficients are
(89) h1 = 1, hz =T, hs = 1.
If ¢ is any scalar and F a vector function we find:
_1[_/ 1 a\l/ |P
V= ar vt gty
1 an aF
A F——-—-(F,)+r 30 +-——;
(90) (1 oFs _ oF\, oF,  oF, 14
VXF=Ga %)t \m )i [;57(’”
_1am],
r a0 |™

lof o 1 92 9?
vy =?Ia"(" ¢) gt g
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2. Spherical Coordinates.—The variables
91) ul =7, u? =9, u = ¢,
related to the rectangular coordinates by the transformation
(92) 2 = rsin 0 cos ¢, y = r sin 0 sin ¢, z =rcos

are called the spherical coordinates of the point P. The coordinate
surfaces, r = constant, are concentric spheres intersected by meridian
planes, ¢ = constant, and a family of cones, § = constant. The unit
vectors iy, iy, i3 are drawn in the direc-

3
* tion of tncreasing r, 0, and ¢ such as to
constitute a right-hand base system, as
indicated in Fig. 8. The line element
z i, is
i
| ’ (93) ds* = dr? 4 r2d6?
/MY, + r% sin? § d¢?,
xz
: 7 whence for the metrical coefficients we
£ 7 \| obtain
(94) h1 = 1, hz =T,
1 hs = r sin 6.
%
Fig. 8.—Spherical coordinates. These values lead to
1 61,’/ 1 d¢y.
v""'ar 1796 2-l--rsmt‘)aqs
19 oFs
v F_—— 1)+1' n0«30(81n0F2)+r51n06¢
(95) 1 [ oF ] [ 1 oF,
VXF= r sin 6 (sin 6Fs) — ¢ Lt sin 6 9¢
o\ | oF
———(Tﬁs)]lz'f'r[ (Fz) ]13,
zI/ 9 W 1 az‘p
V=5 ar T e r” sn26\"" %35) * manr o957

3. Elliptic Coordinates.—Let two fixed points P, and P, be located at
2 = ¢ and £ = —c¢ on the z-axis and let r, and r; be the distances of a
variable point P in the z-plane from P; and P,. Then the variables

(96) ul = §, u? =1, u =z,

defined by equations

(% g=0tn, o n-n
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are called elliptic coordinates. From these relations it is evident that

(98) t21, -ls=7=1

The coordinate surface, £ = constant, is a cylinder of elliptic cross
section, whose foci are P, and P,. The semimajor and semiminor axes
of an ellipse £ are given by

(99) a = ct, b=cVE -1,
and the eccentricity is

c 1
(100) e = E = —E"

The surfaces, 3 = constant, represent a family of confocal hyperbolic

X
R
N|O
g ]
D
N0
7 \la
/
v=3n/2 i v="n/2
/ Yy
V="

Fia. 9.—Coordinates of the elliptic cylinder. Ambiguity of sign is avoided by placing
¢ = cosh %, 7 = cos v.

cylinders of two sheets as illustrated in Fig. 9. The equations of these
two confocal systems are

Y . 2y
£z+£z__1"c’ 11— q
from which we deduce the transformation

(102) z=cty, y=cVE-DHAL-7), z=z

The variable 5 corresponds to the cosine of an angle measured from the
z-axis and the unit vectors iy, i; of a right-hand base system are therefore

(101)

= o2
= ¢4
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drawn as indicated in Fig. 9, with i; normal to the page and directed
from the reader.
The metrical coefficients are calculated from (102) and (70), giving

[E2 = 2 Tz _ 2
(103) h1 = C %2—:-11'1-! hg = CJSI — :27 h; = 1.

4. Parabolic Coordinates.—If r, 6 are polar coordinates of a variable
point in the z-plane, one may define two mutually orthogonal families
of parabolas by the equations

(104) £ = /2r sin g, n = V/2r cos g

The surfaces, £ = constant and n = constant, are intersecting parabolic

¢=5 Y n=56

7=—14 S

7=-5

Fia. 10.—Parabolic coordinates.

cylinders whose elements are parallel to the z-axis as shown in Fig. 10.
The parameters

(105) ut = ¢, u? = 9, ud = —z

are called parabolic coordinates. Upon replacing » and 6 in (104) by
rectangular coordinates we find

(106) £ = \/m - X, 7t = '\/m + =,

¢
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whence for the transformation from rectangular to parabolic coordinates
we have

(107) =3 —-#), y=t, 2=-z
The unit vectors i, and i, are directed as shown in Fig. 10, with i; normal

to the page and away from the reader. The calculation of the metrical
coefficients from (107) and (70) leads to

(108) hi=hy=E+n, hy=1.

5. Bipolar Coordinates—Let P, and P, be two fixed points in any
z-plane with the coordinates (a, 0), (—a, 0) respectively. If f is a
parameter, the equation

(109) (z — a coth £)? 4+ y% = a2 csch? ¢,

describes two families of circles whose centers lie on the z-axis. These
two families are symmetrical with respect to the y-axis as shown in

o
i
R
n={/,
134N 4 A
¢ 1S
=\7T/3 .
i L
=‘2 2 >
¢ 7= Ss
n=m/g
D
7/
v, N
— 7 7=0
n=2r
n=137/p
n={57/3
7 =|Tm/

F1a. 11.—Bipolar coordinates.

Fig. 11. The point Py at (a, 0) corresponds to & = -+ o, whereas its
image P; at (—a, 0) is approached when £ = — . The locus of (109),
when ¢ = 0, coincides with the y-axis. The orthogonal set is likewise
a family of circles whose centers all lie on the y-axis and all of which pass
through the fixed points Py and P,. They are defined by the equation,

(110) z* + (y — a cot 9)? = a? cse? 9,
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wherein the parameter » is confined to the range 0 < 7 < 2». In order
that the coordinates of a point P in a given quadrant shall be single-
valued, each circle of this family is separated into two segments by the
points P, and P;. A value less than = is assigned to the arc above the
z-axis, while the lower arc is denoted by a value of 7 equal to = plus
the value of 5 assigned to the upper segment of the same circle.

The variables

(111) ul=¢§  ul=9, U=y,

are called bipolar coordinates. From (109) and (110) the transformation
to rectangular coordinates is found to be

a sinh ¢ _ a sin 7

(112) = Cosh £ — cos Y= Cosh £ — cos

Il
N

The unit vectors i, and i, are in the direction of increasing ¢ and 4 as
indicated in Fig. 11, while i; is directed away from the reader along the
z-axis. The calculation of the metrical coefficients yields

a
(113) by = hs = cosh £ — cosn

6. Spheroidal Coordinates.—The coordinates of the elliptic cylinder
were generated by translating a system of confocal ellipses along the
z-axis. The spheroidal coordinates are obtained by rotation of the
ellipses about an axis of symmetry. Two cases are to be distinguished,
according to whether the rotation takes place about the major or about
the minor axis. In Fig. 9 the major axes are oriented along the z-axis of
a rectangular system. If the figure is rotated about this axis, a set of
confocal prolate spheroids is generated whose orthogonal surfaces are
hyperboloids of two sheets. If ¢ measures the angle of rotation from
the y-axis in the z-plane and r the perpendicular distance of a point
from the z-axis, so that

(114) Yy = r cos ¢, 2z = rsin ¢,
then the variables
(115) ut=§ ul=9q, ul=9,

defined by (97) and (114) are called prolate spheroidal coordinates. In
place of (101) we have for the equations of the two confocal systems

x? r2 _ x? r?

E;'i‘

(116)



Sec. 1.18] PROPERTIES OF SOME ELEMENTARY SYSTEMS 57
from which we deduce

(17) z=ctn, y=cV (- 1)1 — 1 cos ¢,

z=cV (- 1)1 — 7 sin ¢,
(118) E=z1, —-1=7=<1 05¢s=2m

A calculation of the metrical coefficients gives

T2 % 2 _ 2
(119) hy = c\/%—_—”f, hy = c 4 /i—_—% hs =cV(E = DI — 9.

When the ellipses of Fig. 9 are rotated about the y-axis, the spheroids
are oblate and the focal points Py, P describe a circle in the plane y = 0.
Let r, ¢, y, be cylindrical coordinates about the y-axis,

(120) = 7 COS ¢, T = rsin ¢.

If by P, and P, we now understand the points where the focal ring of
radius ¢ intercepts the plane ¢ = constant, the variables ¢ and # are
still defined by (97); but for the equations of the coordinate surfaces we
have

1-2 y2 o f _ y2 _ 2

(121) £2+£2_1—c; 7 1_,’2—0’

from which we deduce the transformation from oblate spheroidal

coordinates
(122) ul=¢§  ul=aq, uP=¢,

to rectangular coordinates

(123) z=cinsing, y=cV({E—-DI—1), z=céncos ¢

The surfaces, £ = constant, are oblate spheroids, wherecas the orthogonal
family, n = constant, are hyperboloids of one sheet. The metrical
coeflicients are

2 _ p2 2 _ n2
(124) h1 = %—:—ﬂf) hz = C,"El — ;’2: h3 = Cfn.

The practical utility of spheroidal coordinates may be surmised from
the fact that as the eccentricity approaches unity the prolate spheroids
become rod-shaped, whereas the oblate spheroids degenerate into flat,
elliptic disks. In the limit, as the focal distance 2¢ and the eccentricity
approach zero, the spheroidal coordinates go over into spherical coordin-
ates, with § — r, n — cos 6.

7. Paraboloidal Coordinates.—Another set of rotational coordinates
may be obtained by rotating the parabolas of Fig. 10 about their axis
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of symmetry. The variables

(125) ut = §, u? = 1, ud = ¢,
defined by
(126) z = {ncos ¢, y = fnsin ¢, z = 3(E2 — 99,

are called paraboloidal coordinates. The surfaces, £ = constant,
n = constant, are paraboloids of revolution about an axis of symmetry
which in this case has been taken coincident with the z-axis. The plane,
y = 0, is cut by these surfaces along the curves

(127) 2% = 2§ (—; - Z), 12 = 2n? (172‘2 + z),

which are evidently parabolas whose foci are located at the origin and
whose parameters are £2 and 7% The metrical coefficients are

(128) hl = h2 = —\/52——_{____7’2, h3 _ 277-

8. Ellipsoidal Coordinates.—The equation
2 2 2
(129) %+%§+§5=1, (@a>b>c),

is that of an ellipsoid whose semiprincipal axes are of length a, b,c. Then

xﬂ y2 zz _ _
sritErEtere b (&> =,

(130 2L Y L P (—e2>a> b))
) dtn B fa @t T ’
o B, (<> —a
a+ ¢ b2 + ¢ 02+§’— ’ e a?),

are the equations respectively of an ellipsoid, a hyperboloid of one sheet,
and a hyperboloid of two sheets, all confocal with the ellipsoid (129).
Through each point of space there will pass just one surfacc of each kind,
and to each point there will correspond a unique set of values for & 1, §.
The variables

(131) ul = §, u? = 1, ud =g,
are called ellipsoidal coordinates. The surface, & = constant, is a

hyperboloid of one sheet and 7 = constant, a hyperboloid of two sheets.
The transformation to rectangular coordinates is obtained by solving
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(130) simultancously for z, y, 2. This gives

-

(£ 4+ a®)(n + a®) (¢ + a?)]
| (b% — a2)(e? — a?) ’

_ L [E+G ) + by

(132) y - it: (02 _ b2)(a’ _ bz) ] )
E+ e+ AE + )]

(a* = ¢?)(b* = ¢?)

z ==+

-

z2= =%

The mutual orthogonality of the three families of surfaces may be verified
by calculating the coefficients gi; from (132) by means of (45). They are
zero when ¢ # j; for the diagonal terms we find

_1 G-neE-9 |
h_2[@+aME+WXﬂ+ﬂ]’

1 =00 -9 d
(133) M—E[h+aﬂh+bmn+ﬁj’

n =_1_[ ¢ — ¢ =) ]‘,
? CF+aC+0)E + )

It is convenient to introduce the abbreviation

(134) Ro = /(s + a’)(s + b*)(s + ¢*), (s=&m 0

For the Laplacian of a gcalar ¢ we then have

4 Cord (r 2
@—mu—om—n[“ @maim J

+ @ — DR, ( w) & g (R‘ ag)]

THE FIELD TENSORS

1.19. Orthogonal Transformations and Their Invariants.—In the
theory of relativity one undertakes the formulation of the laws of physics,
and in particular the equations of the electromagnetic field, such that
they are invariant to transformations of the system of reference.
Although in the present volume we shall have no occasion to examine the
foundations of the relativity theory, it will nevertheless prove occasion-
ally advantageous to employ the symmetrical, four-dimensional notation
introduced by Minkowski and Sommerfeld and to deduce the Lorentz
transformation with respect to which the field equations are invariant.
To discover quantities which are invariant to a transformation from one
system of general curvilinear coordinates to another, it is essential that

(135) V¥ =
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one distinguish between the covariant and contravariant components
of vectors and between unitary and reciprocal unitary base systems.
For our present purposes it will be sufficient, however, to confine the
discussion to systems of rectangular, Cartesian coordinates in which, as
we have seen, covariant and contravariant components are identical.!

Let iy, iz, i; be three orthogonal, unit base vectors defining a rectangu-
lar coordinate system X whose origin is located at the fixed point O, and
let r be the position vector of any point P with respect to O.

(1) I = oy + Zolz + Zslyy
and since
(2 ij - ix = Ojk,

the coordinates of P in the system X are
(3) T =T° ik.

Suppose now that i}, i, iz are the base vectors of a second rectangular
system X' whose origin coincides with O and which, therefore, differs
from X only by a rotation of the coordinate axes. Since

4) r = ayiy + zad; + a3,
the coordinates of P with respect to X’ are
(5) x;'=r'i;'=$1i1'i;+xzi2'i;~+x3i3'i;~;

wach coordinate of P in X' is a linear function of its coordinates in X,
whereby the coefficients

(6) ap = i+ i

of the linear form are clearly the direction cosines of the coordinate axes
of X’ with respect to the axes of X. A rotation of a rectangular coordi-
nate system effects a change in the coordinates of a point which may be
represented by the linear transformation

3
Q) i = Y, anz, (G=1,23).
k=1

The coefficients a;; are subject to certain conditions which are a
consequence of the fact that the distance from O to P, that is to say, the

1This section is based essentially on the following papers: MiNnkowski, Ann.
Physik, 47, 927, 1915; SomMmERFELD, Ann. Physik, 82, 749, 1910 and 33, 649, 1910;
M1, Ann. Physik, 87, 511, 1912; PauLs, Relativititstheorie, in the Encyklopédie der
mathematischen Wigsenschaften, Vol. V, part 2, p. 539, 1920.
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magnitude of r, is independent of the orientation of the coordinate system.

3 3

®) 2 (z)? = E ()™
;=
3 3 3 3

9) (:I: )= 321 (121 atht) ( 21 kzk) = ‘-21 kgl TiZk (JZ:,I a,-,ajk);
whence it follows that

3 1 wheni =k

10 A = 6y = . ]

( ) jz; Qj\Qik Wk 0, when 7 > k.

Equation (10) expresses in fact the relations which must prevail among
the cosines of the angles between coordinate axes in order that they be
rectangular and which are, therefore, known as conditions of orthog-
onality. The system (7), when subject to (10), is likewise called an
orthogonal transformation. As a direct consequence of (10), it may be
shown that the square of the determinant |a;| is equal to unity and hence
laxl = +1. Any set of coefficients aj which satisfy (10) define an
orthogonal transformation in the sense that the relation (8) is preserved.
Geometrically the transformation (7) represents a rotation only when
the determinant |au| = 41. The orthogonal transformation whose
determinant is equal to —1 corresponds to an inversion followed by a
rotation.

Since the determinant of an orthogonal transformation does not
vanish, the z; may be expressed as linear functions of the zj. These
relations are obtained most simply by writing as in (5):

(11) Ty =1 ik = x;_i; . i + I’zlé . i + x;i; . ik,
or
3
(12) T = 2 anx, *k=1,23),
P

whence it follows from (8) that

(13) 2 @i = O

Jj=1
Let A be any fixed vector in space, so that

(14) A= 2 Ay = 2 Ay

The component A} of this vector with respect to the system X' is given by

(15) A; =A. i;- = 32 2 a,);Ak,
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thus the rectangular components of a fixed vector upon rotation of the
coordinate system transform like the coordinates of a point. Now
while every vector has in general three scalar components, it does not
follow that any three scalar quantities constitute the components of a
vector. In order that three scalars A1, A, Az may be interpreted as the
components of a vector, it is necessary that they transform like the coordinates
of a point.

Among scalar quantities one must distinguish the variant from the
tnvariant. Quantities such as temperature, pressure, work, and the like
are independent of the orientation of the coordinate system and are,
therefore, called invariant scalars. On the other hand the coordinates
of a point, and the measure numbers, or components, of a vector have
only magnitude, but they transform with the coordinate system itself.
We know that the product A + B of two vectors A and B is a scalar, but a
scalar of what kind? In virtue of (12) and (13) we have

3 3 3 3 3
(16) A-B = kgl 4By = 121(2;1 a,~kA;-) (; a,,,B;) ~ ,; A'B!;

the scalar product of two vectors is invariant to an orthogonal transformation
of the coordinate system.
Let ¢ be an invariant scalar and consider the triplet of quantities

= 9¢ -
1an B; = v Z=1,23).
Now by (12),
or
(18) ach = ay,
and hence
3

' _ _(9_(2 _ a¢a axk - . .
(19) Bi = ozt 2 0z 0T) ; aBy;
the B;transform like the components of a vector and therefore the gradient of ¢ ,

3

(20) Vd) = ax lk,

calculated at a point P, is a fixed vector associated with that point.
Let A; be a rectangular component of a vector A, and

GA.'_

0x;

21) B, =
Then by (18) and (15),

, _ 0A;
CREE LT TRUED o

=] j=1
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whence, from (10), it follows that

(23) é B; = (E alkal,) 2 B;; .

l J=1

the divergence of a vector is invariant to an orthogonal transformation of the
coordinate system.

Lastly, since the gradient of an invariant scalar is a vector and since
the divergence of a vector is invariant, it follows that the Laplacian

%¢

(24) Ve =veve= Do

1=1

18 tnvariant to an orthogonal transformation.

The transformation properties of vectors may be extended to mani-
folds of more than three dimensions. Iet 24, 24, 23, 24 be the rectangular
coordinates of a point P with respect to a reference system X in a four-
dimensional continuum. The location of P with respect to a fixed origin O
is determined by the vector

(25) r= 2 T, e dp = b
j=1

The linear transformation
4
(26) x; = 2 Q,xTk, (j = 1) 2: 3; 4):
k=1

will be called orthogonal if the coefficients satisfy the conditions

(27) 2 Q0 = 61]0

i=1

The characteristic property of an orthogonal transformation is that it
leaves the sum of the squares of the coordinates invariant:

4
(28) 2 (x)? = 2 ()2
i= i=1

The square of the determinant formed from the aj; is readily shown to be
positive and equal to unity, and hence the determinant itself may equal
+1. However, if (26) is to include the identical transformation

(29) x; = Xj (.7 = 1; 2’ 3: 4)r

it is obvious that the determinant must be positive. Henceforth we
shall confine ourselves to the subgroup of orthogonal transformations
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characterized by (27) and the condition

The transformation then corresponds geometrically to a rotation of the
coordinate axes.

A four-vector is now defined as any set of four variant scalars
A; (¢ = 1, 2, 3, 4) which transform with a rotation of the coordinate
system like the coordinates of a point.

4 4
(31) A; = E a,'kAk, Ak = E a,kAf.
k=1 1=1

It is then easy to show, as above, that the scalar product of two four-
vectors and the four-dimensional divergence of a four-vector are invariant
to a rotaticn of the coordinate system.

4 4
(32) A.-B= 2 AsBi = >, A1B],
=1 7=1
QoA ~Q oA
. == v == ,.'
(33) o-A 2 3z; 4l 0T}
1=1 J=1
Furthermore the derivatives of a scalar,
(34) B; = g—;’_ (¢=1,23,4)

transform like the components of a four-vector and hence the four-
dimensional Laplacian of an invariant scalar,

4 o6 4 %%
T e
1 v i=1 1

@35 O%¢ =

1=

is also invariant to an orthogonal transformation.

1.20. Elements of Tensor Analysis.—Although most physical quanti-
ties may be classified either as scalars, having only magnitude, or as
vectors, characterized by magnitude and direction, there are certain
entities which cannot be properly represented by either of these terms.
The displacement of the center of gravity of a metal rod, for example,
may be defined by a vector; but the rod may also be stretched along the
axis by application of a tension at the two ends without displacing the
center at all. The quantity employed to represent this stretching must
thus indicate a double direction. The inadequacy of the vector concept
becomes all the more apparent when one attempts the description of a
volume deformation, taking into account the lateral contraction of the



Sec. 1.20] ELEMENTS OF TENSOR ANALYSIS 65

rod. In the present section we shall deal only with the simpler aspects
of tensor calculus, which is the appropriate tool for the treatment of such
problems.

In a three-dimensional continuum let each rectangular component
of a vector B be a linear function of the components of a vector A.

By = Tyudy+ Tid: 4+ T34,

(36) Bz = TuAi + T2As+ Tud,,
TuAy + TsAsz + Tads.

F
I

In order that this association of the components of B with the components
of A in the system X be prescrved as the coordinates are rotated, it is
necessary that the coefficients 7'y transform in a specific manner. The
T, are therefore variant scalars. A tensor—or more properly, a tensor of
rank two—will now be defined as a linear transformation of the com-
ponents of a vector A into the components of a vector B which is invariant
to rotations of the coordinate system. The nine coefficients T of the
linear transformation are called the tensor components.

To determine the manner in which a tensor component must trans-
form we write first (36) in the abbreviated form

3
(37) B; = 3 Tad,, (G=123).
k=1

If (37) is to be invariant to the transformation defined by

3 3
’
(38) ;= E QAjxTk, E Ay = di,
k=1 1=1

then the T must transform to 77 such that

3
(39) B = 3 Ty4l, (i=1,23).
l=1

Multiply (37) by a:; and sum over the index j.

w
W
[

(40) 2 a.,B,- = a.-,-T,-kA;..
j=1 Jj=1k=1
But
3 3
(41) Bi=3 aB;, Ai=3 andl,

and, hence,

(42) B= 3 (3
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The components of a tensor of rank two transform according to the law

3 3
(43) w= 2 2 aanTa, G, 1=1,2,3);
J=1k=1

inversely, any sel of nine quantities which transform according to (43)
constitutes a tensor.

By an analogous procedure one can show that the reciprocal trans-
formation is

3
\44) =2

If the order of the indices in all the components of a tensor may be
changed with no resulting change in the tensor itself, so that Tix = T4,
the tensor is said to be completely symmetric. A tensor is completely
antisymmetric if an interchange of the indices in each component results
in a change in sign of the tensor. The diagonal terms T'; of an anti-
symmetric tensor evidently vanish, while for the off-diagonal terms,
Tia = —Tr. It is clear from (43) that if Tj = Ty, then also T = Tf.
Likewise if Ti = — T}, it follows that Ty = —T}. The symmetric or
antisymmetric character of a tensor is invariant to a rotation of the
zoordinate system.

The sum or difference of two tensors is constructed from the sums or
differences of their corresponding components. If 2R is the sum of the
tensors 2S and ?T,! its components are by definition

’
a.,-au, T,- I8

IMw

(45) Rik = Slk + Tik) (j; k= 1) 2) 3)

In virtue of the linear character of (43) the quantities Rj transform like
the S; and T, and, therefore, constitute the components of a tensor 2R.
From this rule it follows that any asymmetric tensor may be represented
as the sum of a symmetric and an antisymmetric tensor. Assuming R
to be the given asymmetric tensor, we construct a symmetric tensor 2S
from the components

(46) Sie = (B + Ruj) = Sy
and an antisymmetric tensor *T from the components
(47) Tw = %(Bn — Bii) = —Th.

Then by (45) the sum of 2S and 2T so constructed is equal to 2R.
In a three-dimensional manifold an antisymmetric tensor reduces to
three independent components and in this sense resembles a vector. The

1 Tensors of second rank will be indicated by a superseript as shown.
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tensor (36), for example, reduces in this case to

B;=0—Tund, 4+ TiA,,
(48) By = TyuA1+ 0 — T34,
Ba = _‘TISAI + TszAz + 0.

These, however, arc the components of a vector,

(49) B=TXA,

wherein the vector T has the components

(50) Ty = Ts, Ty = Ty, T3 = T

Now it will be recalled that in vector analysis it is customary to distin-
guish polar vectors, such as are employed to represent translations and
mechanical forces, from azxial vectors with which there are associated
directions of rotation. Geometrically, a polar vector is represented by a
displacement or line, whereas an axial vector corresponds to an area. A
typical axial vector is that which results from the vector or cross product
of two polar vectors, and we must conclude from the above that an axial
vector is in fact an antisymmetric tensor and its components should
properly be denoted by two indices rather than one. Thus for the com-
ponents of T = A X B we write

(51) Ti = AiBx — AiB; = — Ty, (G, k=1,2,3).

If the coordinate system is rotated, the components of A and B are
transformed according to

3

3
(52) A; = };a;,Aﬁ, B, = 3 aaB,
=

i=1
Upon introducing these values into (51) we find

3 3
(53) AiBy — AuB; = 3> anau(A}B; — ALB),
l=131=1

a relation which is identical with (44) and which demonstrates that the
components of a ‘“vector product” of two vectors transform like the
components of a tensor. The essential differences in the properties of
polar vectors and the properties of those axial vectors by means of which
one represents angular velocities, moments, and the like, are now clear:
axial vectors are vectors only in their manner of composition, not in
their law of transformation. It is important to add that an antisym-
metric tensor can be represented by an axial or pseudo-vector only in a
three-dimensional space, and then only in rectangular components.
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Since the cross product of two vectors is in fact an antisymmetric
tensor, one should anticipate that the same is true of the curl of a vector.
That the quantity 94,/dz:, where A; is a component of a vector A, is
the component of a tensor is at once evident from Eq. (22).

3 3
i S 2 oA,
(54) ax; - - 12710003 a“xk .

=1

The components of v X A,

dA 94 ; .
(55) Tik = "&t_: - :3?: = —Tki) (.71 k= 1) 2: 3)’

therefore, transform like the components of an antisymmetric tensor.
The divergence of a tensor is defined as the operation
3
. aT; .
(56) (le 2T)i = —67:6 = Dy, (7= 1,2, 3).
=1
The quantities B; are easily shown to transform like the components of
8 vector.
T, < AT, ~a~ T ;e
— .__‘— —] » o _.—1.
(57) oz g RPN 2 E Gudidne 57!

k=1 j=1

or, on summing over ! and applying the conditions of orthogonality,

3 a7 3 3 aT 3
- i " IIikY — . B-
CHEEED - EDT > 2y PRt

1

The divergence of a tensor of second rank is a vector, or tensor of first rank.
The divergence of a vector is an tnvariant scalar, or tensor of zero rank.
These are examples of a process known in tensor analysis as contraction.

As in the case of vectors, the tensor concept may be extended to mani-
folds of four dimensions. Any set of 16 quantities which transform
according to the law,

4 4
(59) b= 2 wwanTa,  (G,1=1,23,4),
j=1 k=1
or its reciprocal,
4 4
(60) T,']. = 2 a.-,-an,T,-’,, (j k=123 4)

will be called a tensor of second rank in a four-dimensional manifold.
As in the three-dimensional case, the tensor is said to be completely
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symmetric if T = Thj, and completely antisymmetric if Ti = =Ty,
with Tj; = 0. In virtue of its definition it is evident that an anti-
symmetric four-tensor containg only six independent components.
Upon expanding (59) and replacing Tx; by — T, then re-collecting terms,
we obtain as the transformation formula of an antisymmetric tensor the
relation

4 4 4 4
(61) T, = _;_ 2 (asom — agay) Ty = E 2
=1 i=1 k=1

j=1

aij Ok

ar anlTm (6 >3).

Any six quantities that transform according to this rule constitute an
antisymmetric four-tensor or, as it is frequently called, a siz-vector.

In three-space the vector product is represented geometrically by the
area of a parallelogram whose sides are defined by two vectors drawn
from a common origin. The components of this product are then the
projections of the area on the three coordinate planes. By analogy, the
vector product in four-space is defined as the “area’ of a parallelogram
formed by two four-vectors, 4 and B, drawn from a common origin.
The components of this extended product are now the projections of the
parallelogram on the siz coordinate planes, whose areas are

(62) T,']., = A,'Bk - AkB,' = —Tk,', (j, k = 1, 2, 3, 4).
The vector product of two four-vectors is therefore an antisymmetric

four-tensor, or six-vector.,
If again A is a four-vector, the quantities

(63) T)k = o Qi‘i_] = _Tkh (jy k= 1) 2: 3’ 4))

can be shown as in (54) to transform like the components of an anti-
symmetric tensor. The T, may be interpreted as the components of
the curl of a four-vector.

As in the three-dimensional case the divergence of a four-tensor is
defined by

4
0T jx
rene

£~ %

(64) (div 2T)J = (j =1,2 3, 4))

a set of quantities which are evidently the components of a four-vector.
1.21. The Space-time Symmetry of the Field Equations.—A remark-

able symmetry of form is apparent in the equations of the electromagnetic

field when one introduces as independent variables the four iengths

(65) T =2, z3 =Y, T3 = 2, T4 = 1ct,

where ¢ is the velocity of light in free space. When expanded in rec-
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tangular coordinates, the equations

oD

(II)‘va—W

=J) (IV)V'D=p)

are represented by the system
0H; dH, . 9D,

0+5&;'—5;;_1C—‘E=J1,
My g O 0D
(66) Ty T3 0xs
aHy _oHy o . 9Dy _
oz, 9z, L T
. 0D, . 0D, . 9D, .
165?1—}_10%;—*_10—3;;_’-0_1”'

We shall treat the right-hand members of this system as the components
of a “four-current’ density,

(67) J1=Jz, J2=Jy, J3=Jz, J4=’I:Cp,

and introduce in the left-hand members a set of dependent variableg
defined by

G11 =0 Glz = H3 G13 = —Hz G14 = —1'CD1
(68) G21 = —Ha G22 =0 Gza = H1 G24 = —‘iCDz
G = H, G, = —H; Gy =0 Gss = —ucD;

Gu = ’L.CD1 G42 = l'CDz G43 = ’iCDx G44 = 0.

Then in the reference system X, Eqgs. (II) and (IV) reduce to
4

(69 S = (i=1,2,39.

0Tk

Only six of the Gj are independent, and the resemblance of this set
of quantities to the components of an antisymmetric four-tensor is
obvious. Since the divergence of a four-tensor is a four-vector, it follows
from (69) that +f the G,x constitute a tensor, then the J; are the com-
ponents of a four-vector; inversely, if we can show that J is indeced a
four-vector, we may then infer the tensor character of *G. However,
we have as yet offered no evidence to justify such an assumption. In
the preceding sections it was shown that the vector or tensor properties
of sets of scalar quantities are determined by the manner in which they
transform on passing from one reference system to another. Evidently
an orthogonal transformation of the coordinates zx corresponds to a
simultaneous change in both the space coordinates z, y, z and the time ¢,
and only recourse to experiment will tell us how the field intensities may
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be expected to transform under such circumstances. In Sec. 1.22 we
shall set forth briefly the experimental facts which lead one to conclude
that the Ji are components of a four-vector, and the Gjx the components
of a field tensor; in the interim we regard (69) and the deductions that
follow below merely as concise and symmetrical expressions of the field
cquations in a fixed system of coordinates.

The two homogeneous equations

(I)vxE+%3=0, (III) v-B = 0,

are represented by the system

9B, _OE, , . 9B,

Ot om " om T, =0
_?@+0+§&+i09§3=0’
(70) EXR dzs x4
0B, 0By 4 9Bs_ 4
oz, Ox, “ors T
B, 4By 9By , . _
R P e

After division of the first three of these equations by 4c, an antisym-
metrical array of components is defined as follows:

Fiu=0 F12=Bs F13=_BZ F“:—%El
Fy = —Bs Foyu=0 Foy = By Fy=—1E,
c
(71) ’
F61=B2 F32=—B]_ F33=0 11134=—EE3
F41=§E1 F42=£E2 F43=£E3 F‘4=0.

Then all the equations of (70) are contained in the system

aF.‘,' aFk.: aF,k -

(72) e + bz; + Fraie 0,
where ¢, j, k are any three of the four numbers 1, 2, 3, 4.

The arrays (68) and (71) are congruent in the sense that in each the

real components pertain to the magnetic field, while the imaginary com-

ponents are associated with the electric field. To indicate this partition

it is convenient to represent the sets of components by the symbols

(73) WF = (B, - g E), °G = (H, —icD).
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Now the field equations may be defined equally well in terms of the
“dual”’ systems:

(74) F* = (—g E, B), :G* = (—icD, H),
or
F&=0 Fﬁ:-ﬁE, F;’,=£Eg F& = B,
, F;1=§E3 =0 F;‘3=-—2E1 F& = B,
75) . .
Fi= 2B Fhp=2E  Fs=0 % =B
Fn = —B, rz = —B; Frz = —B; TA = 0,

and a corresponding system for the components of 2G*. Upon intro-
ducing these values into (I) and (III), and (II) and (IV), respectively,
we obtain

(76) %%= G=1234,
() e w”+ﬁk.u(wa=Lz&u

It has been pointed out by various writers that this last representation
is artificial, in that (74) implies that E is an axial vector in three-space
and B a polar vector, whereas the contrary is known to be true. The
representation

OF | oFu | oFu _ C
(72) + xi + —6—.‘5‘ - 0) (7‘7 I k= 17 2’ 3) 4):
4
G .
(69) e =i (G=1,239),
k=1

must in this sense be considered the “natural’’ form of the field equations.
To these we add the equation of continuity,

) v-I+ 2=,

which in four-dimensional notation becomes

8J
(78) ;gaa_o
If the components F;; are defined in terms of the components of a
“four-potential”’ ® by
9P 9d;
(79) Fp = —

’87’_‘ axk (.7: k= 1: 2) 3) 4):
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one may readily verify that Eq. (72) is satisfied identically. Now in
three-space the vectors E and B are derived from a vector and scalar
potential.

dA

(80) E=——V¢-—-—a—t-; B=vXA;
or, in component form,

TN CAY Y 04, A,
1) B =5 (c 4’) 52 BT T om

where the indices ¢, j, k are to be taken in cyclical order. Clearly all
these equations are comprised in the system (79) if we define the com-
ponents of the four-potential by

(82) = A4A;, B = A, Py =4, b= % é.

As in three dimensions, the four-potential is useful only if we can
determine from it the field 2G(H, —:cD) as well as the field 2F(B, ——2 E).

Some supplementary condition must, therefore, be imposed upon @ in
order that it satisfy (69) as well as (72); thus it is necessary that the
components G;; be related functionally to the F;z. We shall confine the
discussion here to the usual case of a homogeneous, isotropic medium and
assume the relations to be linear. To preserve symmetry of notation
it will be convenient to write the proportionality factor which charac-
terizes the medium as yjx, so that

(83) Gir = virF is;
but it is clear from (68) and (71) that!

(84) v = —‘1; whenj, k =1, 2, 3, vixt = e€? when jor k = 4.

These coefficients are in fact components of a symmetrical tensor, and
with a view to subsequent needs the diagonal terms are given the values

(85) i = % G=1,23), 7u=nucct

Equation (69) is now to be replaced by
4

dF; ,
(86) 2 Vit = T (G=1,234).
=1

! A medium which is anisotropic in either its electrical properties or its magnetic
properties may be represented as in (83) provided the coordinate system is chosen to
coincide with the principal axes. This also is the case if its principal axes of elec-
trical anisotropy coincide with those of magnetic anisotropy.
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Upon introducing (79) we find that (86) is satisfied, provided @ is &
solution of

4
a2 .
(87) 2 o () = —J, (G=1234),
=1 k
subject to the condition
Q 9
(88) 2 3z (Vi) = 0, G=123,4).
=1
This last relation is evidently equivalent to
(89) v-A+ue‘Z—‘f=0,
and (87) comprises the two equations
024 ; .
vai T ME€ at21 = '—I"'Ji; (.7 = 1; 27 3))
¢ 1
(90) Vip — pe o = TP

In free space poeo = ¢72, vjx = po !, for all values of the indices. Equa-
tions (87) and (88) then reduce to the simple form:

4 4
9P, a .
(91) E: L= —p.oJ,', s =0, (.7 = 1, 2: 3) 4)'

dx? ox
T Ok =y ok

1.22. The Lorentz Transformation.—The physical significance of
these results is of vastly greater importance than their purely formal
elegance. A serics of experiments, the most decisive being the celebrated
investigation of Michelson and Morley,! have led to the establishment of
two fundamental postulates as highly probable, if not absolutely certain.
According to the first of these, called the relativity postulate, it is impossible
to detect by means of physical measurements made within a reference
system X a uniform translation relative to a second system X’. That
the earth is moving in an orbit about the sun we know from observations
on distant stars; but if the earth were enveloped in clouds, no measure-
ment on its surface would disclose a uniform translational motion in
space. The course of natural phenomena must therefore be unaffected
by a nonaccelerated motion of the coordinate systems to which they are
referred, and all reference systems moving linearly and uniformly relative
to each other are equivalent. For our present needs we shall state the
relativity postulate as follows: When properly formulated, the laws of

1 MiceersoN and MorLey, Am. J. Sci., 8, 34, 1887.
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physics are invariant to a transformation from one reference system to
another moving with a linear, uniform relative velocity. A direct conse-
quence of this postulate is that the components of all vectors or tensors
entering into an equation must transform in the same way, or covariantly.
The existence of such a principle restricted to uniform translations was
established for classical mechanics by Newton, but we are indebted to
Einstein for its extension to electrodynamics.

The second postulate of Einstein is more remarkable: The velocity
of propagation of an eleciromagnetic disturbance in free space ts a universal
constant ¢ which is independent of the reference system. This proposition
is evidently quite contrary to our experience with mechanical or acoustical
waves in a material medium, where the velocity is known to depend
on the relative motion of medium and observer. Many attempts have
been made to interpret the experimental evidence without recourse to
this radical assumption, the most noteworthy being the electrodynamic
theory of Ritz.! The results of all these labors indicate that although a
constant velocity of light is not necessary to account for the negative
results of the Michelson-Morley experiment, this postulate alone is con-
sistent with that experiment and other optical phenomena.?

Let us suppose, then, that a source of light is fixed at the origin O
of a system of coordinates X(z, y, z). At the instant { = 0, a spherical
wave is emitted from this source. An observer located at the point
z, y, zin X will first note the passage of the wave at the instant ¢f, and the
equation of a point on the wave front is therefore

(92) 2+ y? 4 22 — %2 = 0.

The observer, however, is frec to measure position and time with respect
to a second reference frame X'(z’, ¢, 2’) which is moving along a straight
line with a uniform velocity relative to O. For simplicity we shall assume
the origin 0’ to coincide with O at the instant £ = 0. According to the
second postulate the light wave is propagated in X’ with the same
velocity as in X, and the equation of the wave front in X’ is

(93) 'yt =i =0,

By t’ we must understand the time as measured by an observer in X’
with instruments located in that system. Here, then, is the key to the
transformation that connects the coordinates z, y, 2, { of an observation
or event in X with the coordinates z’, ¥/, 2/, ¢’ of the same event in X’: it
must be linear and must leave the quadratic form (92) invariant. The
linearity follows from the requirement that a uniform, linear motion of a
particle in X should also be linear in X’.

1 Rirz, Ann. chim. phys., 18, 145, 1908.
1 An account of these investigations will be found in Pauli’s article, loc. cit., p. 549.
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Let

(94) 2 =z, 22 =Y, z3 = 2, x4 = 1ict,

be the components of a vector R in a four-dimensional manifold
X (z1, 23, T3, Z4).

(95) R* =z} + 2} + a3 + 2i.

The postulate on the constancy of the velocity ¢ will be satisfied by the
group of transformations which leaves this length invariant. But in
Sec. 1.19 it was shown that (95) is invariant to the group of rotations in
four-space and we conclude, therefore, that the transformations which
take one from the coordinates of an event in X to the coordinates of that
event in X' are of the form

4
(26) zp =Y ana, (G=1,23,4),
E=1
where
4
(27) z )il = O, (G k=123, 4),

the determinant |a;| being equal to unity.

We have now to find these coefficients. The calculation will be
simplified if we assume that the rotation involves only the axes x; and x4,
and the resultant lack of generality is inconsequential. We take, there-
fore, 1 = z1, 3 = %5, and write down the coefficient matrix as follows:

x Z3 Z3 24
(96) ) 1 0 0 0
z5 0 1 0 0

3 0 0 a3 Q34

A 0 0 Qg Gy

The conditions of orthogonality reduce to
(97)  afs +al; =1, a}s +af =1, Q33034 + G43044 = 0.

If we put ass = o, as = 108, we find from (97) that awu = *aq,
ass = FiaB, «a/1 — B2 = +1. Only the upper sign is consistent with
the requirement that the determinant of the coefficients be positive unity,
and this in turn is the necessary condition that the group shall contain

the identical transformation. In terms of the single parameter 8 the
coefficients are

(98) A3z = Ay = ——1———, Agq = —0g3 = _i__;
Vi@ Viep
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for the transformation itself, we have

(99) T = 24, x5

, 1 : , -
73 = Vi@ (zs + Bz4), Ty = 71—1:_;82 (T4 — 1Bza).

Reverting to the original space-time manifold this is equivalent to

Zo,

PO LA
T =z y =19,

(100) , 1 , 1 B
b UL v A D

The parameter 8 may be determined by considering z’, 3/, 2’ to be the
coordinates of a fixed point in X’. The coordinates of this point with
respect to X are z, ¥, 2.  Since d2’ = 0, it follows that

dz v
and hence the rotation defined in (96) and (97) is equivalent to a transla-
tion of the system X’ along the z-axis with the constant velocity » relative
to the unprimed system X.
The transformation

’ [
r =2z, Yy =Y,

z’=~—_—l———(z—-vt), t’=—,_—1——(t——%z),
NV

(102)

02

obtained from (100) by substitution of the value for 8, or its inversion,

(103) z = -——_,1-—-———2 & + ot)), t = L = (t’ + % z'):
v v c
N N

has been named for Lorentz, who was the first to show that Maxwell’s
equations are invariant with respect to the change of variables defined
by (102), but not invariant under the ““Galilean transformation:”

(104) 2=z —u, U =1t

All known electromagnetic phenomena may be properly accounted for
if the position and time coordinates of an event in a moving system X'
be related to the coordinates of that event in an arbitrarily fixed system
X by a Lorentz transformation. The Galilean transformation of classical
mechanics represents the limit approached by (102) when » K¢, and
may be interpreted as the relativity principle appropriate to a world in
which electromagnetic forces are propagated with infinite velocity.
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1.23. Transformation of the Field Vectors to Moving Systems.—We
shall not dwell upon the manifold consequences of the Lorentz transforma-
tion; the Fitzgerald-Lorentz contraction, the modified concept of simul-
taneity, the variation in apparent mass, the upper limit ¢ which is imposed
upon the velocity of matter, belong properly to the theory of relativity.
The application of the principles of relativity to the equations of the
electromagnetic field is essential, however, to an understanding of the
four-dimensional formulation of Sec. 1.21.

The Lorentz transformation has been deduced from the postulate on
the constancy of the velocity of light and has been shown to be equivalent
to a rotation in a space zi, Z2, T3, 4 = tct. Now according to the rela-
tivity postulate, the laws of physics, when properly stated, must have
the same form in all systems moving with a relative, uniform motion;
otherwise, it would obviously be possible to detect such a motion. In
Secs. 1.19 and 1.20 it was shown that the curl, divergence, and Laplacian
of vectors and tensors in a four-dimensional manifold are invariant to a
rotation of the coordinate system. Therefore, to ensure the invariance
of the field equations under a Lorentz transformation it is only necessary
to assume that the four-current J and the four-potential @ do indeed
transform like vectors, and that the quantities F, 2G transform like
tensors. In other words, we base the vector and tensor character of these
four-dimensional quantities directly on the two postulates.

The four-current J satisfies the equation

4
(78) O-J= >at=
1

Under a rotation of the coordinate system the components transform as

4
(105) Jh = 2 il

k=1
or, upon introducing the values for aj from (98),

1 ___ (-
(106) Jz - Jz) Ju - th

S S o1 (v,
J: = '\/T———ﬂi . vp), P = '\/T—_B_"' p c? Jz)
with its inverse transformation
1 , 1
A7) Jo= s i), = e (4 5 0L)

We shall assume henceforth that the reference system X’ is fixed within a
material body which moves with the constant velocity v relative to the
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system X. This latter may usually be assumed at rest with respect to
the earth. If the velocity v is very much less than the speed of light,
Eq. (107) is approximately equal to

(108) J. = J, + vp, p=7p.

An observer on the moving body measures a charge density p’ and a
current density J,; his colleague at rest in X finds the current J, aug-
mented by the convection current vp'.

In like manner the rclations between the electric and magnetic
vectors defining a given field in a fixed and in a moving system are
obtained directly from the rule (61) for the transformation of the com-
ponents of an antisymmetric tensor. Upon substitution of the appro-
priate values for the coefficients aj, one obtains for the components of F :

’ —_ —
12 = A1102:F 1 = Fm,

's = anasslfis + anasFis = —\/1—’———1—::;65 (F13 + 18F14),

= 0110iF 13 + anauFy = \/____ (F1s — 18F13),

(109) 28 = Q20@33l 23 + A20034F 24 = \/i__ (Fas + i6F34),
Fly = ang0esFas + angaiFa = :/_11?52 (Fas — i6F33),

75 = (A33044 — A34043)F 34 = Fyy,
and, hence,

B= L L B2< .+ 2 E) B, = \/r“—— (E: — vB,),
(110) B, = \/i—-_l—:_—ﬁ(B,, - —:—ZE) E, = \/.1___ (E, + vB,),
B; = .B‘, Ez = Eg

|

The restriction to translations along the z-axis may be discarded by
writing v as a vector representing the translational velocity of X’ (the
moving body) in any direction with respect to a fixed system X. Sincein
(110) the orientation of the z-axis was arbitrary, we have in general

aiy Brv=Bu By = Ey,
B'_L=——!——(B—%VXE)7
v1-g ¢ L
E, = -\ﬁ(E+VX B).,
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where || denotes components parallel, 1 components perpendicular to
the axis of translation. Dropping terms in ¢~2, as is justifiable whenever
the body is moving with a velocity » << 3 X 108 meters/second, we
obtain the approximate formulas

By = By, E'\ = E,,
B’y = B,, E'y=E,+ (vXB),.

The implication of these results is striking indeed: the electric and
magnetic fields E and B have no independent cxistence as separate

(112)

entities. The fundamental complex is the field tensor °F = (B, *z E);

the resolution into electric and magnetic components is wholly relative
to the motion of the observer. When at rest with respect to permancnt
magnets or stationary currents, one measures a purely magnetic field B.
An observer within a moving body or system X', on the other hand,
notes approximately the same magnetic field, but in addition an electro-
static field of intensity E' = v X B. Or, inversely, the moving body
may carry a fixed charge. To an observer on the body, moving with the
charge, the field is purely electrostatic, whereas his colleague aground
finds a magnetic field in company with the electrie, identifying quite
rightly the moving charge with a current.

From the tensor *G = (H, —icD) are calculated in like fashion the
transformations of the vectors H and D from a fixed to a moving system.

H'y = H|, D'y = Dy,

(113) 1 1

H,=—L1 H—_vxD D=
L 1—;32( vX )J.) 1 '\/1——@’

1
® + P vX H),.
The invariance of Maxwell’s equations to uniform translations amounts

to this: if the vector functions E, B, H, D define an electromagnetic ficld
in a system X, the equations

’
v'xE'+%%=0, v/ .B' =0,

(114) D’
leH/____é_Z’_=Jr’ V'-D'=p’,

are satisfied in a system X’ which moves with the constant velocity v
relative to X, the operator ¥/ implying that differentiation is to be effected
with respect to the variables 2/, y’, 2. An observer at rest in X’ inter-
prets the vectors E’, B’y H’, D’ as the intensities of an electromagnetic
field satisfying Maxwell’s equations. Clearly the ratios of D to E and

H to B are not preserved in both systems. The macroscopic parameters
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€, 1, o are also subject to transformation, which may be ascribed to an
actual change in the structure of matter in motion. In practice one is
interested usually in the mechanical and electromotive forces, measured in
the fized system X, which act on moving matter, rather than in the trans-
formed field intensities E’, B/, H', D’. The determination of these
forces and of the differential equations which they satisfy within the
framework of the relativity theory was accomplished by Minkowski in
the course of his investigation on the electrodynamics of moving bodies.

The vector character of the four-potential is demonstrated by Eq.
(79) which expresses the field tensor ?F as the curl of ®. Under a Lorentz
transformation

4
(115) ‘I); = 2 P (G=1234,
k=1

or, in terms of vector and scalar potentials,

Al = A, A, = A,
1 v 1
A;=“:—__——. A,—"“ ,=‘_——:.—:. ""'UA‘.
G _m( - ¢), ¢ = ¢ )
As in the case of the field vectors, the resolution into vector and scalar
potentials in three-space is determined by the relative motion of the
observer.
In conclusion it may be remarked that a rotation of the coordinate
system leaves invariant the scalar product of any two vectors. It was
in fact from the required invariance of the quantity

(117) R-R = R? = 22 4 y? + 22 — c¥?,

(116)

that we deduced the Lorentz transformation. Since the current density
J and the potential ® have been shown to be four-vectors, it follows that
the quantities

Jr=J2 4 JI 4 JE — c%p?

(118) 2= AL+ A3+ A1 T,
¢’J=A#]2+Any+A:J:“¢py

are true scalar invariants in a space-time continuum. There are, more-
over, certain other scalar invariants of fundamental importance to the
general theory of the electromagnetic field. From the transformation
formula Eq. (59) the reader will verify that if %S and T are two tensors
of second rank, the sums

4 4 4 4
(119) STy = invariant, S,;xTx; = invariant,
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are invariant to a rotation of the coordinate axes. These quantities
may be interpreted as scalar products of the two tensors. Let us form
first the scalar product of ?F with itself. According to (71) and (119)

we find
4 4

(120) SSr=2 (B2 - :—2E2) — invariant.
1=1 k=1

Next we construct the scalar product of ?F with its dual ?F* defined in
(75).

4 4 .
(121) E 2 FuF% = — 4% B.E = invariant.
1=1 =1

From the tensor 2G and its dual 2G* may be constructed the invariants

4 4
(122) G%, = 2(H? — ¢?D?) = invariant
4 4
(123) 2 > GaG = —4icH - D = invariant.
=1 i=t
Proceeding in the same fashion, we obtain
4 4 4 4
(124) 2 FuGa = E 2 FAG% = 2(B-H — E. D)
=1 k=1 j=1 k=1
= invariant,
4 4 4 4 1
(125) 2 PGt = >, S PG = —2 (cB D+ _E. H)
7=1 k=1 j=1 k=1

= invariant.

The invariance of these quantities in configuration space is trivial; they
are set apart from other scalar products by the fact that they preserve the
same value in every system moving with a uniform relative velocity.



CHAPTER II
STRESS AND ENERGY

To translate the mathematical structure developed in the preceding
pages into experiments which can be conducted in the laboratory, we
must calculate the mechanical forces exerted in the field upon elements of
charge and current or upon bodies of neutral matter. In the present
chapter it will be shown how by an appropriate definition of the vectors
E and B these forces may be deduced directly from the Maxwell equations.
In the course of this investigation we shall have to take account of the
elastic properties of material media. A brief digression on the analysis of
elastic stress and strain will provide an adequate basis for the treatment
of the body and surface forces exerted by eclectric or magnetic fields.

STRESS AND STRAIN IN ELASTIC MEDIA

2.1. The Elastic Stress Tensor.—Let us suppose that a given solid or
fluid body of matter is in static equilibrium under the action of a specified
system of applied forces. Within
this body we isolate a finite volume z
V by means of a closed surface S, as
indicated in Fig. 12.

Since equilibrium has been as-
sumed for the body and all its parts,
the resultant force F exerted on the
matter within S must be zero. Con-
tributing to this resultant are volume
or body forces, such as gravity, and (0] y
surface forces exerted by elements of
matter just outside the enclosed
region on contiguous clements /4
within. Throughout V, therefore, TFic. 12.—A region V bounded by a surface

o L. S in an elastic medium under stress.
we suppose force to be distributed
with a density £ per unit volume, while the force exerted by matter outside
S on a unit area of S will be represented by the vectort. The components
of t are evidently normal pressures or tensions and tangential shears. The
condition of translational equilibrium is expressed by the equation

(1) j;,fdv+j;tda=0.
83
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To ensure rotational equilibrium it is necessary also that the resultant
torque be zero, or

@ J;,rxfdv+j;rxtda=0,

where r is the radius vector from an arbitrary origin O to an element of
volume or surface.

The transition from the integral relations (1) and (2) to an equivalent
differential or local system expressing these same conditions in the
immediate neighborhood of an arbitrary point P(z, y, z) may be accom-
plished by a method employed in Chap. I. The surface S is shrunk
about P and the components of t are expanded in Taylor series. The
integral can then be evaluated over the surface and on passing to the
limit the conditions of equilibrium are obtained in terms of the deriva-
tives of t at P. This labor may be avoided by applying theorems already
at our disposal. Let n be the unit, outward normal to an element of S.
There are then three vectors X, Y, Z which satisfy the equations

3) t: = X.n, t,=Y:.n, t,=2Z-n.

The quantity X, is clearly the z-component of force acting outward on a
unit element of area whose orientation is fixed by the normal n. The
expansion of the scalar products in the form

t. = Xon, + Xyny + Xon,,
(4) tu = anz + Yyny + Y,n,,
t.=2Zm, + Zmn, + Zmn,

may also be interpreted as a linear transformation of the components of
n into the components of t, the components 7., n,, n, being the direction
cosines of n with respect to the coordinate axes. The equilibrium of the
z-components of forces acting on matter within S is now expressed by

(5) fvf,dv+fsx-nda=o,

which in virtue of the divergence theorem and the arbitrariness of V is
equivalent to the condition that at all points within S

(6) f:+V-X=0
For the y- and z-components we have, likewise,
@) Sy +V.Y=0, fi+V:-Z=0.

The rotational equilibrium expressed by (2) imposes further condi-
tions upon the nine components of the three vectors X, Y, Z. The
z-component of this equation is, for example,

(®) j;, (yfs — 2fy) dv + j; (yts — zt,) da = 0.
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Introduction of the values of ¢, and ¢, defined in (3) leads to
© [, W=y dv+ [, 0Z - %) -nda =0,

which, again thanks to the divergence theorem and the arbitrariness of
V, is equivalent to

(10) yf: —2fy + V- (YZ — 2Y) = 0.

But

(11) VeWZ) =yV-Z+Z.-Vy=yvV.Z+Z,
Equation (10) reduces to

(12) y(f:+Vv-2) —2(f+Vv-Y)+Z, - Y, =0;
or, on taking account of (7),

(13) Z,=Y,

In like manner there may be derived from the y- and z-components of
(2) the symmetry relations

(14) X, =Y, Xi=Z.

The nine components X,, X,, . . . Z,, representing forces exerted on
unit elements of area, are called stresses. The diagonal terms X, Y,, Z.
act in a direction normal to the surface element and are, therefore,
pressures or tensions. The remaining six components are shearing
stresses acting in the plane of the element. These nine quantities con-
stitute the components of a symmetrical tensor, as is evident from (4)
and the fact that t and n are true veetors (¢f. Sec. 1.20).  For the sake of
a condensed notation we shall henceforth represent the components of the
stress tensor by T'jz, where

(15) Xz = Tll; Xy = ley o e Ya = TZI, ... Z: = T88~

In order that a fluild or solid medium under stress shall be in static
equilibrium it is necessary that at every point

(16) f+ div T = 0, T,')c = T),,'.

Imagine an infinitesimal plane element of area containing a point
(z, ¥, 2) in a stressed medium. The stresses acting across this surface
element will, in general, be both normal and tangential, but there are
three distinct orientations with respect to which the stress is purely
normal. Now if the resultant force t acting on unit area of a plane ele-
ment is in the direction of the positive normal n, one may put

a7 t = \n,
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where M is an unknown scalar function of the coordinates z, y, 2, of the
element. When this condition is imposed upon Egs. (4) one obtains the
homogeneous system

3
(18) M= 3 Tam, G=1,2,3).
k=1

In order that these homogeneous equations be self-consistent, it is
necessary that their determinant shall vanish; whence it follows that the
scalar function A can be determined from

Tiu—N\N Ti Tis
(19) T Ta— N T =0,
Ts1 T3 Tss — X\

provided, of course, that the stress components T’ with respect to some
arbitrary coordinate system are known. The secular equation (19) has
three roots, N, N3, A, and these fix, through Eq. (18), three orientations of
the surface element which we shall designate respectively as n®, n®, n®,
If the roots are distinct, the preferred directions defined by the unit
vectors n®, n®, n©@—called the principal axes of stress—are mutually
perpendicular. Let us consider, for example, n‘® and n®, According
to (18),

3 3
(20) )\anj-“’ = 2 Tjk’ﬂ;‘“), )\b’n;-b’ = 2 T,-,,n},”’.
k=1 k=1

Multiply the first of these equations by n{®, the second by n§®, subtract
the second from the first and sum over j.

3 3 3
(21) Mo — M) E nOn® = 2 2 Ta(nPn® — nPn@).

i=1 i=1 k=1
The right-hand sum vanishes, leaving
(22) (e — \p)n® «n® = 0,

If \a # N5, the vector n® must be orthogonal to n® as stated.

The physical significance of the principal axes may be made clear in
another manner. At a point P in a stressed medium the symmetrical
tensor 2T associates with a unit vector n the resultant force t acting on a
unit surface element normal to n. Let the origin of a rectangular coordi-
nate system be located at P. The scale of length in this new system is
arbitrary and we may suppose that the components of n, drawn from P,
are £, 1, . Now the scalar product of the vectors t and n, which we shall
call ®, is a quadratic in £, », ¢.

(23) ®(¢,7m,8) =ten = Tut? + Tan? + Tast? 4+ 2T 180 + 2T2am¢
+ 2T;,tt.
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The surface ® = constant is called the stress quadric. By a rotation of
the coordinate axes (23) can be reduced to the square terms alone, and
it is clear that the principal axes n®, n®, n(® must coincide with the
principal axes of the quadric. One will observe, furthermore, that

(24) t = }va.

This property enables one to find the stress across any surface element at
P by graphical construction. We shall suppose the stress to be such that
the quadric is an ellipsoid and draw about P the surface ® = 1. The
radius vector from P to any point P’ on this surface is n. According to
(24) the resultant force acting on an element at P whose normal is n is in
the direction of V&, or normal to & =1 at P’. The magnitude of t
according to (23) is equal to the reciprocal of the projection NP’ indicated

b

Fia. 13.—Graphical determination of stress on an element of area at the point P from the
stress quadric.

in Fig. 13. Along the principal axes, a, b, ¢, the normal to the surface

= 1 coincides with the vector n and the stress on the element at P is
purely normal. If these principal stresses are known, the quadric can
be constructed and the stress on an arbitrarily oriented element deter-
mined graphically.

2.2. Analysis of Strain.—If surface and volume forces arc applied to
a perfectly rigid body, the resultant motion may be described in terms of
a translation of the body as a whole and a rotation about its center of
mass. If, however, the body is deformable, its parts suffer also relative
displacements which increase until equilibrium is reestablished by internal
forces evoked in the deformation. The changes in the relative positions
of the parts of a body under stress are called strains.

In an unstressed, continuous medium a point P is located with respect
to an arbitrary, fixed origin by the radius vector r. Under the influence
of applied forces the medium undergoes a deformation, in the course of
which the matter located initially at P moves to a point P’ atr’ =1 + s.
The displacement s corresponding to a given deformation depends on
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the coordinates of the initial point P; we assume s to be a continuous
function of r. Consider now any neighboring point P; located by the
radius vector r;. The initial position of P; with respect to P is fixed by
the vector ér, where

(25) or =r; — 1.

The displacement of P during the deformation is s;, a function of r;.
The relative displacement of two neighboring points P and P; occasioned
by the deformation is therefore

(26) s =8, — 8 = s(r + or) — s(x).

Since s(r + &r) is continuous, it may be expanded in a Taylor series;
for points in a region sufficiently small about P we need retain only the
linear term

27) 8s = (or- V)s;
or, in component form,
3
_ 381 .
(28) 8s; = Z S o (G=1,23).

(The indices 1, 2, 3 again replace the subscripts z, y, z for convenience in
summing.)

The nine derivatives 9s;/dx; are the components of a tensor (cf.
Eq. (54), Sec. 1.20) which is in general asymmetrical. However, it can
be resolved after the manner of Eqgs. (46) and (47), page 66, into a
symmetric part,

_ 135 | o -
(29) ajk = ) (61], + a.’L','), (J; k= 1; 2’ 3)’
and an antisymmetric part,
_1(s _ o -
(30) b,'k = —2- ErS 313,'), (], k= 1, 2, 3)

The components of this antisymmetric tensor are evidently identical with
the components of an axial vector b, defined by

(31) b =3V X s,

(32) b1 = baa, bz = bis, bs = ba1

The relative displacement &s can likewise be split up into a part &s’

associated with the symmetric tensor a;, and a part 8s’ associated with
the antisymmetric tensor b Then, by (28) and (30),

(33) 3’ =Db X &r = $(V X §) X ér.

Physically this implies that the matter contained within an infinitesimal
volume about P is subjected to a rotation as a rigid selid; the rotation
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takes place about an instantaneous axis through P in the direction of
V X s, and in circular measure is equal to |V X s|. This local rotation
is brought about by stresses whose curl does not vanish.

Whereas the relative positions of points in the immediate vicinity
of P are preserved by the local rotation (33), the symmetric tensor (29)
defines a local deformation—an actual stretching and twisting. We ask
first whether there are any vectors ér drawn from P whose direction is
unchanged after the deformation; that is to say, are there any points

P,, Fig. 14, which in the course of the , P!
deformation will move along the line P 9= (5r-9)s
defined by ér? The necessary condi- L%

tion is that

(34) §s’ =\ or,

where M is an unknown scalar function
of the coordinates of P; or

3

@5\ 8z; = 3, andzy, (§=1,2,3).

E=1 0
The parameter N is found from the Fra. 14.—Vectors characterizing the de-
condition that the determinant of this ~ [or™ation of a continuous medium.
homogeneous system shall vanish and, as in the analogous case of the
stress tensor discussed in the preceding paragraph, it is easy to show that
the three roots fix three principal axes which in general are mutually
orthogonal. Along these principal axes of strain, and along them only,
the deformation consists of a pure stretching. The nature of the deforma-
tion along any other axes can be visualized with the aid of a strain quadric
such as (23). Let the point Py, Fig. 14, have the coordinates &1, £, £s
with respect to P and construct the surface

3 3
(36) ¥ = r.ds’ = 2 a;x§i = constant.

=1 k=1
If all lines issuing from P are extended, or if all are contracted, the quadric
is an ellipsoid; if some lines are extended and others contracted, the sur-
face is an hyperboloid. The relative displacement of P; with respect to
P is given by
37 8s’ = 4V,
The radius vector from P to P; on the surface ¥ = 1is ér. In Fig. 15
it has been assumed that this surface is an ellipsoid. The direction of

the relative displacement 8s’ due to the deformation is that of the normal
erected at P, and its magnitude is equal to the reciprocal of the projection
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NP; of the radius vector ér on the normal. Obviously the vectors é&s’
and dr are parallel only along the principal axes of the ellipsoid. These
axes represent also the directions of maximum and minimum contraction
or extension.

There is an interesting physical interpretation to be given to the
tensor components ax If before a deformation the relative position
of two points P and P,, Fig. 14, is fixed by or, their relative position
after the deformation is or' = or + &s’, the prime over 8s’ indicating
that local rotations are excluded. Suppose now that ér is directed along

b

Fia. 15.—Graphical determination of strain at the point P from the strain quadric.

the z;-axis, so that éx; = 623 = 0. Then ér’ is a vector whose com-
ponents are

(38) 51:1 = (1 + au) 52?1, 51; = Q21 5131, Bxg = a31 51:1.
The absolute value of the distance between P and P, after deformation is
39) [or] = V(1 + aw)? + a&;, + af, oz,

and the relative change in length is

/ —
(40) M =g = %)

5.’51 6x1

obtained by expanding (39) and discarding all terms of higher order
than the first. Similar expressions can be found for deformations of line
elements lying initially along the z.- and zs-axes, whence we conclude that
the diagonal components aj; = 9s;/dz; represent extensions of linear ele-
ments which in the unstrained state are parallel to the coordinate axes.

Again let da be a linear element which in the unstrained state is
parallel to the z;-axis and éb be a linear element initially parallel to the
zo-axis. A local deformation transforms the vector éa = i; 6z, into an
element

(41) éa’ = 11(1 + an) 0z1 + 12091 0zy + 13051 824,
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while at the same time 6b = i, éz, is transformed into
(42) 5b’ = ilam 52}2 + ig(l + agg) 5.’212 + i;asz 6:::2.

In the initial state 6a and 6b are mutually orthogonal, but after the
deformation, they form an angle which differs but little from x/2 and

which we shall denote by7—2r — 12

(43) sa’ - 5b’ = |éa’| |ob’| cos (g — 012>-
But
(44) Ccos (‘% - 012) = gin 01 ~ 012,
and, hence,
(45) 612 = a12(1 + an) + aa(l + az2) + aass;
or, on neglecting terms of higher order than the first,
_ _ 081 , 9sp
(46) 012 = a1z + Ga1 = 3z, T oz,

Thus, in general, the coefficient ajx, with j # k, measures one-half the
cosine of the angle made by two Linear clements after o deformation, which
in the unstrained state were directed along a pair of orthogonal coordinate
azxes.

Conforming to this interpretation, it is customary to write the com-
ponents of the deformation tensor in a slightly altered manner. The
coefficients defined by

ey =B 0 0
u 611 2= 6.’132 61‘1 bt
_ 682 _ 882 383 _
(47) €22 = ErR €23 = Waxs + 5;2 = €32
_ 883 _ 683 681 _
€3 = 5z, R PN P

are called the components of strain, and the components of the relative
displacement of any two points P and P; due to a local deformation
are therefore

58; = €11 5.’171 + %612 5.’132 + %613 5173,
(48) 58; = %621 51131 + €22 62?2 + %—623 6173,
sy = Jes1 821 + Fess 0% + €33 8%s.

If the origin of the arbitrary coordinate system zi, z,, 3 is located at the
point P and the axes then rotated into coincidence with the principal
axes of the strain ellipsoid associated with that point, all components of
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strain are reduced to zero with the exception of those lying on the main
diagonal. We shall measure distances along the principal axes of strain
by the coordinates ui, Uz, u3. Then the components of any local deforma-
tion with respect to P are

(49) 8s,,, = €1 duy, 85y, = g dug, 8sy, = es dus,
where
50 0s,, 08y, 9s,,
= —) = —— = —
(50) T % 2T wm %7 Bus

and where Sui, Sus, Su; are the components of ér with respect to the
principal axes. The coefficients ey, e,, e; are called the principal strains,
or principal extensions.

Associated with the deformation of an infinitesimal region there is a
change in the element of volume. If 8a, éb, éc are three vectors defining
a parallelepiped, its volume is given by

da, édas daj
(51) 8V = (6a X db) - 6c = |8b; 4bs  Bbyl.
5C1 502 503

Without loss of generality we may choose for this initial element a rec-
tangular block whose sides are parallel to the coordinate axes.

(52) éa = i1 61?1, b = iz 5:52, éc = i3 0x3.

The deformation transforms these vectors as in (41) and (42), whence
for the volume after strain we find

1+ an Q21 asy
(53) 8V’ = (58.' X 5b') . 8¢’ = a2 1+ ase a3s| 0x1 8x4 0.
a3 ass 1 4 ass

Expansion of this determinant and discard of all terms of higher order
than the first lead to
V' — &V

F1%
for the change of volume per unit volume—a quantity called the cubical
dilatation.

In summary, the analysis has shown that the most general displace-
ment of particles in the neighborhood of a point may be resolved into a
translation and a local rotation, upon which there is superposed a deforma-
tion characterized by the strain components e; and accompanied by a
change in volume. The rotational component of the total strain can
be induced only by rotational stresses—force functions, that is to say,
whose curl is not everywhere zero.

(54) =@+ ap+ayp=V-s
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2.3. Elastic Energy and the Relations of Stress to Strain.—Under the
Influence of external forces the particles composing an elastic fluid or
solid suffer relative displacements. These strains, in turn, evoke internal
forces which, in the case of static equilibrium, eventually compensate
the applied stresses. The work done by the applied volume and surface
forces in displacing every point of the medium an amount s is

(55) oW = [f-osdv+ [t osda.
According to Eq. (3)

(56) t-o8s =6s.Xn+ 6s,Y.-n + 8s.Z-n,
and, hence,

(57) ft.asda=fv.(xas,+Yss,,+zas,)dv.
Now

(58) VeXds;) =0,V X+ XV 8s,,

and by (6) f- = —V -X. Thus (55) reduces to
(59) aW=f(x-vas,+Y-vas,+z-vas,)dv.

The components of the integrand may, however, be written

a z a 2 6 z
(60) X.v 58; = T115 (5%) + Tu& (-(% + T136 (-5%)7 etc.,
which in the notation of Eqs. (47) leads to

(61) W = f (T'11 8e11 + Taz degs + T35 Sess + T'1a Se1z + Tas Seas
+ T 5631) dv

for the work done by the applied stresses against the elastic restoring
forces in the course of an infinitesimal change in the state of strain. If it
be assumed that this change takes place so slowly that the variation in
kinetic energy may be neglected, and that no heat is added or lost in the
process, then §W must be equal to the increase in the potential energy U
stored up in the elastically deformed medium. The elastic energy
stored in unit volume will be denoted by u, whence

(62) oW = U = f su dv.

The energy density u at any point must depend on the local state of
strain and it may, therefore, be assumed that

(63) U = u(eu, €13y * * esa),
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or
(64) U = f (6u denr + 5622 + 563: + 5612 + — 5623
+ 56_3; 5631) dv.

The strain components ej are arbitrary; hence it follows that the com-
ponents of applied stress (which in static equilibrium are equal and
opposite to the induced elastic stresses) can be derived from a scalar
potential function,
ou

(65) Ty = dem
The existence of an elastic potential, which has been demonstrated
here for the case of quasi-stationary, adiabatic deformations, may be
shown for isothermal changes as well.

When the deformations are not excessive, the components of elastic
stress may be expressed as linear functions of the components of strain.

T = cuen + C1ze22 4+ Ci3e3s + C14€12 + C15€23 + C1e€31,

(66) NI

The coefficients ¢, are called the elastic constants of the medium. The
elastic potential u is in this case a homogeneous quadratic function of the
strain components. The existence of a scalar function u(e;) satisfying
(65) and (66) imposes on the elastic constants the conditions

(67) Cmn = Cam (n; m = 1: 27 * 6)7

whereby the number of parameters necessary to specify the relation of
stress to strain in an anisotropic medium reduces from 36 to 21. Any
further reduction is accomplished by taking advantage of possible sym-
metries in the structure of the medium. If, in particular, the substance
Is elastically isotropie, the quadratic form % must be invariant to orthog-
onal transformations of the coordinate system, and the number of inde-
pendent constants then reduces to two. The elastic potential assumes
the form

(68) u = F\ilens + €2z + €ss)® + No(edy + eda + €25+ Feds + Feds 4 ded).
whence. by (65)
T = M(en + ez + ess) + 2he1n, T12 = Nses,

(69) To = )\1(611 + es2 + eaa) + 22652, Tes = A2€a23,
Tss = M(e1s + €2z + ess) + 2Nzess, Ta = Nees1.
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Now the conditions of static equilibrium are expressed by
(16) f4+v.T = 0.

Upon introducing the components (69) into the expanded divergence
and expressing the strain components e,; in terms of the deformation s,

we find
(70) f + ()\1 + )\g)VV *S + )\2V2s =0

as the equation determining the deformation of an isotropic body sub-
jected to a volume force f. The constants of integration are evaluated
in terms of data specifying either the displacement of points on the
bounding surface, or the distribution of stress over that surface.

The parameters A\; and A\, are positive quantities. A, is called the
rigidity, or shear modulus, for it measures the strains induced by tan-
gential, or shearing, stresses. No simple physical meaning can be
attached to \;; hawever, it may be defined in terms of the better known
constants E and o, where Young’s modulus E is the ratio of a simple
longitudinal tension to the elongation per unit length which it produces,
and where the Posson ratio o is the ratio of lateral contraction to longi-
tudinal extension of a bar under tension. Then

= Eo e B
1T 0 Fod =20 2T 20 + o)

An ideal fluid supports no shearing stress, and hence \; = 0. The
stress acting on any clement of a closed surface within the fluid is, there-
fore, a normal pressure,

(72) Ty =Ty = Tss = —p, Tis = Tes = T35 = 0,

the negative sign indicating that the stress is directed inward. The
components of strain ey, ess, e33 are all equal and

(71)

(73) p = —Mlewr + €22 + €33) = —A\V + s,
while the equation of equilibrium reduces to
(74 f—vp=0.

Let V, be the initial volume of an element of fluid, V, its volume at a
pressure p;, and V. its volume at a pressure p,. From the definition
(54) of the cubical dilatation V - s we have
V.-V

1 Vo 0, D2

and for sufficiently small changes,

V= Vo

(75) P1= —M 7.

=N\

—v
(76) Py — D1 = -\ Yi.vo__}.
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For an infiritesimal change in pressure

(77) dp = _)\1%, = N\ -(-11-_1:)

where 7 is the density of the fluid. The reciprocal of \; is in this case
called the compressibility.

ELECTROMAGNETIC FORCES ON CHARGES AND CURRENTS

2.4. Definition of the Vectors E and B.—An electromagnetic field is
defined according to our initial hypotheses by four vectors E, B, D and H
satisfying Maxwell’s equations. The physical nature of these vectors
will be expressed in terms of experiments by means of which they may be
measured. Now it is easy to show that pE and J X B are quantities
whose dimensions are those of force per unit volume. For by Sec. 1.8

__coulombs _, volts _ kilograms
1 [E] = meter? meter = second? - meter?

__amperes ., webers _ kilograms
2 [J x B] = meter? meter? ~ second? - meter?

We are, therefore, free to define the vectors E and B as forces exerted
by the field on unit elements respectively of charge and current. More
precisely, we shall suppose that charge is distributed throughout a volume
V with a macroscopically continuous density p. Then E is defined such
that the net mechanical force acting on the charge is

3) m:ﬁmw
distributed with a volume density
4 f, = pE.

If V is sufficiently small, the field within this region at any instant may
be assumed homogeneous, so that in the limit

(5) F,=Eﬁ,pdv=qE, (V —0).

In like manner the association of the magnetic vector B with the
force exerted on a unit volume element of current through the equation

(6) f. = J X B,
leads to
) F,,,=fVJXde

as the net force exerted on a volume distribution of current. If the
current is confined to a linear conductor of sufficiently small cross section,
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B may be assumed homogeneous and the current lines parallel to an
element of length ds. The force acting on a linear current element is then

®) dFn = I ds X B.

Whereas the force exerted by an electric field on an element of charge is
directed along the vector E, the force exerted on an element of current
in a magnetic field is normal to the plane defined by the element ds
and the vector B.

This arbitrariness in our definition of E and B is inevitable. The
mutual forces exerted by charges upon charges or currents upon currents
can be measured, but the field vectors themselves are not independent
entities accessible to direct observation. z
The definitions of E and B based on Egs.
(3) and (7) have been shown by purely
dimensional considerations to be compat-
ible with Maxwell’s equations. In the
following we shall have to show that the
properties of a field of the vectors E and B
defined in this manner and satisfying
these equations are in complete accord B
with experiment. From the forces ex- xFlo.lﬁ.———Directionofforceexerted
erted by charges and currents may be on a current element I ds in a mag-
determined the work necessary to estab- Detic field B.
lish a field; from energy relations in turn it will be possible to deduce the
forces exerted on ponderable elements of neutral matter,

2.6. The Electromagnetic Stress Tensor in Free Space.—Let us sup-
pose that a certain bounded region of space contains charge and current
distributions but is free of all neutral dielectric or magnetic materials.
The field is produced in part by the charges and currents within the
region, in part by sources which are exterior toit. At every interior point

dE,

&

(DvxE+%=m (ITT) V-B = 0,

(II)VXB_ﬂ0€0%=#OJ’ (IV)v-E:%(;p

Let (I) be multiplied vectorially by &E, (II) by the vector B. Upon
adding and transposing terms we find

@)MVXEXE+%WXEXB=]XB+q%mxm.

In a rectangular system of coordinates the first term of (9) may be
represented by the determinant
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i j k

OE, JE, _6£,__8E. dE, JE.

oy 9z 0z dr Oz oy
E, E, E,

(10) (VXE)XE-=

The z-component of this vector is

. 0B, . 3H., . 0E. . oF,

(11) [(v XE) X E]'l_Ez'EE“'*'Ey"a?'i"E,a—z Es 9z
dE, oE,
“Eva“Eﬁ;

9 (g _Lpe
=2 (m-1m)+ ]

Now the quantities

3y ) + 5 (F E.) — E.V-E.

(12) 89 = «(BZ — 3£, 89 = «BE.E,, S8 = «k.E,

transform like the components of a tensor [Eq. (43), page 66] and the
first three terms on the right of (11) constitute therefore the z-component
of the divergence of a tensor 2S®, The remaining components are
calculated from the y- and z-components of ¢(V X E) X E, such that
we are led to the identity

(13) &(V X E) X E = div 28©® — (E V- E,
the components of ?S® being tabulated below.

TasLe I.—ComponenTs S? or THE TENsOR 2S© 1N Free Seacm

J\k 1 2 3

1 «E? — 3 9 g2 «E:E, ol E,
2 «E,E, «Fy — 5 B «E,E,
3 «FE.E. BB, eoEf - gE’

The transformation of (Vv X B) X B is effected similarly, giving

(14)

1 wxB) xB=dvsm - LBv.B,
Mo Ko

where the components of 2S(™ are as represented in Table TI.
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TasLe IL—ComroneNTs 7’ oF THE TENsoR 2S™ IN FrEE SPack

g
J <

-1_ 2 .l_ 2 1 1

i b B; e B o B.B, P B.B,
1 1, 1 1

2 Mo B,B. Mo By - 2po B Ho B.B.

3 L p.B, 155, lp_Llp
Ho Ho Ko 2u0

Upon replacing the first two terms of (9) by (13) and (14) and taking
account of (III) and (IV), we obtain an identity of the form

(15) div2S=Ep+JxB+eogz(ExB),

wherein the components of the tensor 2S are

(16) S = S + S,
and where
3.3y 5 s
v IS — 1, 9Sm
an div S = 2 zl, =

Equation (15) is a relation through which the forces exerted on elements
of charge and current at any point in otherwise empty space may be
expressed in terms of the vectors E and B alone.

Let us integrate this identity over a volume V. Now the integral
of the divergence of a tensor throughout V is equal to the integral of a
vector over the surface bounding V. To demonstrate this tensor ana-
logue of the vector divergence theorem, let n be the outward unit normal
at a point on the bounding surface and consider S; to be the z-component
of a vector whose y- and z-components are zero. The component of this
vector in the direction of the normal n is S11n., whence by the divergence
theorem

__ a'Sll
(18) fSlln, da = f s dv.

. Likewise it is apparent that

aS
f Siny da = f—#dv,

(19)
men. da =faS“ dv.
0z
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Upon adding these three identities, we obtain

120) f(Slmz'f"Snng-i—Snn,) da = f(é)Su+ BS12+ 6813)

The integrand on the right is the z-component of div 28, and consequently
(21) ts = Sun, + Sy + Sian,

is the z-component of a vector t which according to (20) is to be integrated
over the surface bounding V. Proceeding similarly for the other com-
ponents, we have the general theorem:

(22) f tda = f div %S dv,

where the components of t are
3

(23) ti = 2 Sixns, G=12273),
=1

or, in abbreviated notation,

(24) t=12S.n,

Applied to Eq. (15), the divergence theorem (22) leads to

(25) f’S-nda=F.+F + €0 fEdev

with F, and F,, representing, as in Eqgs. (3) and (7), the resultant forces
acting respectively on the charge and the current contained within V.
Consider first stationary distributions of charge and current. The
fields are then independent of time and the third term on the right of (25)
is zero. Equation (25) now states that the force exerted on stationary
charges or currents can be expressed as the integral of a vector over any
regular surface enclosing these charges and currents. It does not state
that the volume forces F, and F,, are maintained in equilibrium by the
force 2S.n distributed over the surface. The equilibrium must be
established with mechanical forces of some other type, and in fact it will
be shown shortly that a charge distribution cannot possibly be maintained
in static equilibrium under the action of electrical forces alone. To be
more specific, let us imagine a stationary charge distribution to be divided
into two parts by an arbitrary closed surface . The force exerted by
the external charges on those within 2 must in some manner be trans-
mitted across this surface. The net force on the interior charges may,
according to (25), be correctly calculated on the assumption that the
force transmitted across an element of area da is 2S® .n da, and the
components Sff are hence effective stresses in the electrostatic field.
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Associated with every point in the field there is a stress quadric from
which may be determined the normal and tangential components of
transmitted stress on an element whose normal is n. To find the prin-
cipal axes of this quadric with respect to the direction of the field we shall
adopt the procedure described in Sec. 2.1. The secular determinant (19)
of that section assumes in the present instance the form

eo(E; — $E?) — \ eoELE, eE.E,
(26) «E,E, c«(E} — FE?) — A el E, = 0.
el E, «FE.E, (B2 — 3E%) — )\

When expanded and reduced by taking account of the relation
E: + E} + E = B?,

Eq. (26) proves equivalent to

(27) - 8\ + 4E2\? — 2E4\ — E® = 0,

The roots of (26) are, therefore,

(28) xa=gEa M=xﬁ=—§Ea

from which it is apparent that the stress quadric has an axis of symmetry.

Let n® be a unit vector fixing the direction of the principal axis
associated with A;. According to (18) page 86, the components of
n@® with respect to an arbitrary reference system must satisfy

(B2 — E)n{® + E.En® + E,En® = 0,
(29) E,Exn® 4 (EX — E*n{® + E,En® = 0,

E.Exn® + E.En® + (B2 — E)n® = 0.
From the theory of homogeneous equations it is known that the ratios of
the unknowns n{¥, n{®, n{® are as the ratios of the minors of the deter-
minant of the system, whence one may easily verify from (29) that
(30) n@®:n®:n® = E;:E,:E,.

The major axts of the electric stress quadric at any point in the field is directed
along the vector E at that point. The stress transmitted across an element
of surface whose normal is oriented in this direction is a simple tension,

(31) tw=§wmm

The stress across any element of surface containing the vector E—t.e.,
an element whose normal is at right angles to the lines of force—is also
normal but negative, and corresponds therefore to a compression

(32) t® = —DErp®, @ = —2 g2,
3 2 2
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Suppose, finally, that the normal of a surface element in the field ig
oriented in an arbitrary direction specified by n. Let the z-axis of a
coordinate system located at the point in question be drawn parallel to E
and choose the z-axis perpendicular to the plane through E and n. The
angle made by n with the direction of E will be called 6. Then

E.=E, =0, |El = E,,
n, = 0, Ny = sin 6, n, = cos 6,

whence according to Eq. (23) the stress components are
33) . =0, by = —-%9 E?&in 6, t. = %’Ez cos 6.

The absolute value of the stress transmitted across any surface element,
whatever its orientation, is therefore

= & g
(34) It =3 2

Furthermore t lies in the plane of E and n in a direction such that E
bisects the angle between n and t as illu-
z strated in Fig. 17.

In the light of this representation it is
easy to comprehend the efforts of Faraday
and Maxwell to reduce the problem of elec-
tric and magnetic fields of force to that of
an elastic continuum. To both, the con-
cept of a force propagated from one point in
space to another without the intervention
of a supporting medium appeared wholly
untenable, and in the absence of anything

Fia. 17.—Relation of tension t R | p i
transmitted across an element of Iore tangible an all-pervading ““ether

surface in an electrostatic field to

tho field intonsity E. was eventually postulated to fill that role.

There was then attributed to the stress
components of the field, even in space free of matter, a physical
reality, and a valiant attempt was made to associate with the ether
properties analogous to the strains of elastic media. These efforts did
not bear fruit. Subsequent research has shown that electromagnetic
phenomena may be formulated without employment of any fixed refer-
ence system, and that there are no grounds for the assumption that force
can be propagated only by actual contact of contiguous elements of mat-
ter or ether. On the modern view, the representation of an electrostatic
field in terms of the stress components S has no essential physical
reality. All that can be said—and all that it is necessary to say—is
that the mutual forces between elements of charge can be correctly
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calculated on the assumption that there exists throughout the field a
fictitious state of stress as described.

Since the tensors 2S( and 2S® are of identical form, the discussion of
the foregoing paragraphs applies in its entirety to the field of a stationary
distribution of current. The force exerted by external sources on the
current within an arbitrary closed surface is obtained by integrating over
this surface a stress whose absolute value is

(35) 1t = 5 B

and whose direction with respect to the orientation of a surface element
and the direction of the field B is as in Fig. 17.

If in Eq. (23) the components S;; are introduced from Tables I and IT,
it is apparent that the stress transmitted across an element of area whose
positive normal is n may be written vectorially as

(36) t® = 280 . n = (E - n)E — —g’ En,
1 1
(m) — 2Q(m) , = - N —_ .
37) t S n P (B.n)B e Bn

Over any volume bounded by a regular, closed surface Z we have there-
fore for stationary distributions of charge and current:

(38) JIMEmm—gpqmwiﬁm@,
(39) ‘LEﬂBmm—E%WQdmiLJXBW

2.6. Electromagnetic Momentum.—In a stationary field the net force
transmitted across a closed surface = bounding a region containing neither
charge nor current is zero. If, however, the field is variable, it is clear
from Eq. (25) that this is not the case. How, then, are we to interpret
the apparent action of a force on volume elements of empty space?
Since the dimensions of ¢E = D are QL~2%, and those of B = uH are
MQ@Q-1T-1, it is evident that the quantity

(40) g=mExB=§ExH
is dimensionally a momentum per unit volume. The dimension Q drops

out of the product D X B and this conclusion, therefore, is not simply a
consequence of the particular system of units employed. The identity

d
(41) L“S-nda—afvgdv
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can be interpreted on the hypothesis that there is associated with an
electromagnetic field a momentum distributed with a density g. The
total momentum of the field contained within V is

42) G = fV gdy kg.-meters/sec.,

and (41) now states that the force transmitted across Z is accounted for
by an increase in the momentum of the field within =. The vector
’S - n measures the ¢nward flow of momentum per unit area through Z,
while the quantity —S;. may be interpreted as the momentum which in
unit time crosses in the j-direction a unit element of surface whose normal is
ortented along the k-axis.

A direct consequence of this hypothesis is the conclusion that New-
ton’s third law and the principle of conservation of momentum are
strictly valid only when the momentum of an electromagnetic field is
taken into account along with that of the matter which produces it. Let
us suppose that within the closed surface 2 there are charges distributed
with a density p, and that the motion of these charges may be specified

by a current density J. The force exerted on the charged matter within
2 is then

(43) F.+ F, = f(pE+J><B) dv=%(‘rm,

where Guew is the total linear momentum of the moving, ponderable
charges. The conservation of momentum theorem for a system com-
posed of charges and field within a bounded region is, therefore, expressed
according to Eq. (25) by

(44) g‘ (Gmeeh + Goleetroma:) = f 2S n da.
¢ z

If the surface Z is extended to enclose the entire field, the right-hand
side of (44) must vanish, and in this case

(45) Guesr + Gutootromaz = cONStant.

There appears to be associated with an electromagnetic field an inertia
property similar to that of ponderable matter.

ELECTROSTATIC ENERGY

2.7. Electrostatic Energy as a Function of Charge Density.—A finite
charge concentrated in a region so small as to be of negligible extent
relative to other macroscopic dimensions will be referred to as a point
charge. Now the force exerted on such a point charge ¢ in the field of a
stationary charge distribution is ¢E, and the work done in a displacement
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of ¢ from a point r = r, to & second point r = r, is

(1) W=qj:’E-ds.

Since the curl of E vanishes at every point in an electrostatic field, the
vector E is equal to the negative gradient of a scalar potential ¢, and we
have

2) E.-ds= —V¢.-ds = —do¢,

where d¢ is the change in potential along an element ds of the path of
integration. From this it follows clearly that the work done in a dis-
placement of ¢ from r; to r; is independent of the choice of path and is a
function solely of the initial and terminal values of the potential.

®) W= —q [ do = qlo(r) — o(ra)]

In particular, the work done in the course of a displacement about a
closed path is zero. A field of force is said to be conservative if the work
done in a displacement of a system of particles from one configuration
to another depends only on the initial and final configurations and is
independent of the sequence of infinitesimal changes by which the finite
displacement is effccted. The conservative nature of the electrostatic
field is established by (3), or more precisely by the condition v X E = 0.
Displacements and variations in a static field must be understood to occur
so slowly as to be equivalent to a sequence of stationary states. Such
changes are said in thermodynamics to be reversible.

In Chap. III it will be shown that if all the sources of an electrostatic
field are located at finite distances from some arbitrary origin the poten-
tial and field intensities become vanishingly small at points which are
sufficiently remote. The work done by a charge ¢ as it recedes from an
initial point r = r; to ry = o is, therefore,

(4) W = q¢(x).

Obviously the scalar potential itself may be interpreted as the work done
against the forces of the field in bringing a unit charge from infinity to
the point r, or as the work returned by the system as a unit element of
charge recedes to infinity.

® 8z, 9,2 = — [ E-ds.

We shall use the term energy of an electrostatic system somewhat
loosely to mean the work done on the system in carrying its elements of
charge from infinity to the specified distribution by a sequence of reversi-
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ble steps. It will be assumed that the temperature of all dielectric or
magnetic matter in the field is held constant.!
The energy of a point charge ¢z in the field of a single point source ¢, is

(6) U = g2,

where ¢2; is the potential at ¢; due to ¢;. Now the work done in bringing
¢z from infinity to a terminal point in the field of ¢; would be returned
were ¢, allowed next to recede to infinity, and therefore

(7 U = q1¢12.

The mutual energy of the two charges may consequently be expressed by
the symmetrical relation

8 U = 3(q1¢12 + q2021).
If first g, and then g3 be introduced into the field of ¢, the energy is
) U = qad21 + qs(da1 + ¢32),

which in virtue of the reciprocal relations between pairs is equivalent to

(10) U = 3(¢12 + é13)q1 + 3(d21 + d23)q2 + 3(bs1 + ¢32)0s.

By induction it follows that the energy of a closed system of n point
charges is

(11 U= %E 2 biigs = E s

where ¢; is the potential at ¢; due to the remaining n — 1 charges of the
system.

Note that (11) is valid only if the system is complete, or closed. If
on the contrary the n charges are situated in an external field of potential
¢, & term appears which does not involve the factor . In this case

(12) U= Do+ 1D oa

i=1 1=]

Let us consider now a region of space ¥V within which there are to be
found fixed conductors and dielectric matter. Within the dielectrics
charge is distributed with a volume density p, while over the surfaces of
these dielectrics and on the conductors there may be thin layers of charge
of surface density w. At a point (z, y, z) within V the potential of the
distribution plus that of possible sources situated outside V is ¢. The
work required to increase the charge at (z, y, z) by an infinitesimal

1 The energy in question is in fact the free energy in a thermodynamic sense.
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amount 8¢ is ¢ &g, and the increase in energy resulting from an increase
in the volume density of charge by an amount ép, or the surface density
by an amount dw, at every point in V is

(13) 6U1=f¢6pdv+f¢5wda.

The second integral is to be extended over all surfaces within V bearing
charge. On the other hand, the addition of an element of charge &g at
(z, y, 2) increases the potential at all points both inside and outside V
by an amount ¢, with a resultant increase of the energy of the charges
already existing within V of

(14) 8U2=fp8¢dv+fw8¢>da.

The work 86U, done on the system in building up the charge density is
equal to the potential energy dU. stored in the field provided the system
is closed; provided, .that is, that the region V of integration is extended
to include all charges contributing to the field. In that case

5U = 6U1 = 6Uz,

(15) 5U=%J‘(¢5P+p5¢)dv+%f(¢8w+w6¢)da,

which upon integration leads to

(16) U=-21-f¢pdv+%f¢wda

ag the electrostatic energy of a charge system referred to the zero state
p=ow=01

2.8. Electrostatic Energy as a Function of Field Intensity.—Let us
imagine for a moment that conductors have been eliminated from the field
and that all surface discontinuities at the boundaries of dielectrics are
replaced by thin but continuous transition layers. Charge is distributed
throughout the dielectric with a density p, but we shall assume that this
distribution is confined to a region of finite extent: the potential and
intensities of the field vanish at infinity. Regions free of matter are, of
course, to be considered as dielectrics of unit inductive capacity. The
work required to increase the charge density at every point in the field
by an amount &p is

(17) oU = [ ¢ dp v,

where ¢ is the potential due to the initial distribution p. Now the
increment in charge density is related to a variation of the vector D

1 The convergence of these integrals will be demonstrated in Chap. III.
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by the equation

(18) 3 = §(V.D) = V. (D).

Furthermore,

{(19) ¢V-{D) =V.($8D) — sD.Vé = V- (¢ D) + E - 3D,
and hence (17) is equivalent to

(2 8U=fE-6de+fv-(¢6D)dv.
or, upon application of the divergence theorem, to
(21) 6U=fVE-6de+fg¢5D-nda,

where S is a closed surface bounding a volume V. This region V need
not include all the charges that contribute to the ficld. If, however, we
allow the surface S to expand into
a sphere of infinite radius about
some arbitrary origin, the contri-
bution of the surface integral
vanishes; for ¢ will be shown later
to diminish as 1/r at sufficiently
large distances from the origin,
and D as 1/72. The surface S in-
creases with increasing radius as
r2, and the surface integral there-
fore vanishes as 1/r. The incre-
ment of energy stored in the
electrostatic field can be calculated
from the integral

F1g. 18.—Conductors bounded by the (22) SU = f E.sD dy

surfaces S;, Si ..., embedded in a
dielectric medium.

extended over all space.

In practice the charge is rarely distributed throughout the volume of a
dielectric but is spread in a thin layer of density w over the surfaces of
conductors. These conductors may be considered as electrodes of
condensers, and the increase in the energy of the field is the result, for
example, of work done by the electromotive forces of batteries in the
process of building up the charge on the electrodes. Let us suppose that
there are n conductors, whose surfaces we shall denote by S:, embedded
in a dielectric of infinite extent. One of these surfaces, let us say S,, will
be assumed to enclose all the others as illustrated in Fig. 18. To ensure
the continuity of the potential and field necessary for the application of
the divergence theorem, surfaces of abrupt change in the properties of the
dielectric may again be replaced by thin transition layers without in
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any way affecting the generality of the results. The work required to
increase the charge density on the surfaces S; by an amount éw is

(23) oU = 2‘, [, ¢ 80 da.
i=1

The sum of these n surface integrals can be represented as a single integral
by the artifice of drawing finlike surfaces from the interior conductors to
Sa. as indicated in Fig. 18. The integration starts at a point P on S,,
extends on one side of the fin to @, then over S; and then returns to P
over the opposite face of the fin. The surface P@ carries no charge and
contributes nothing to the integral. The interior of S, is thus reduced

n

to a simply connected region® bounded by a single surface S = 2 Ss.

t=1
(24) §U = j;  bw da.

In Sec. 1.13 it was shown that at any surface of discontinuity the
normal and tangential components of the vectors D and E satisfy the
conditions

(25) n- (Dz - T)l) = W, n X (Ez - E1) = 0.

The positive normals to the surfaces S; are directed into the dielectric,
and since n in Sec. 1.13 was drawn from medium (1) into medium (2),
the index (1) now denotes the interior of the conductors whereas (2)
refers to the dielectric. In Chap. III we shall have occasion to consider
in some detail the electrostatic properties of conductors, but for the
present we need only accept the elementary fact that the field at any
interior point of a conductor is zero. Were it otherwise, a movement of
free charge would occur, contrary to the assumption of a stationary state.
The interior and surface of a conductor are, therefore, a region of constant
potential. The charge density at interior points is zero [Eq. (21), page
15] and whatever charge the conductor carries is distributed on the
surface in such a way as to bring about the vanishing of the interior field.
Since E]_ = D; = 0,

(26) n'Dz=w, an2=0;

at a point just outside the conductor the tangential component of E
is zero and the normal component of D is equal to the surface density
of charge.

Upon introducing the first of these relations into (24) and dropping
the index. we obtain

27) aU=j;,¢aD-nda.
1 See Sec. 4.2, p. 227.
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To express this result as an integral extended throughout the volume of
dielectric bounded by the surfaces S; we again apply the divergence
theorem, but must note that n in (27) is directed info the dielectric; the
sign must therefore be reversed.

@&av=—fv«wm@=wamnﬂfwwmwu

If the density of charge throughout the dielectric is zero or constant,
V. (D) = 0, and we find as in (22) that the work expended by the
batteries in building up the electrode charges by an amount §w is

(29) aU=waDm

an integral extended over the entire space occupied by the field, and that
this work is stored in the field as electrostatic energy.

Since the energy 8U appears to be stored in the field, as the potential
energy of an extended spring is in some manner stored within it, it is
not unreasonable to suppose that the electrostatic energy is distributed
throughout the field with a density

(30) ou = E . D, joules/meter3

It is difficult either to justify or disprove such a hypothesis. The
transformation from a surface integral to a volume integral is obviously
not unique, for there might be added to ¢ 8D in (27) any vector whose
normal component integrated over S is zero. Furthermore, it may be
questioned whether the term “energy density” has any physical sig-
nificance. Energy is a function of the configuration of a system as a
whole. The objection has been stated in a rather quaint way by Mason
and Weaver,! who suggest that it is no more sensible to inquire about the
location of energy than to declare that the beauty of a painting is dis-
tributed over the canvas in a specified manner. However ingenious,
such an analogy seems not entirely well founded. The energy of an
inhomogeneously stressed elastic medium is certainly concentrated
principally in regions of greatest strain and in this case the elastic energy
per unit volume has a very definite physical sense. Granting that the
analogy of the electrostatic to the clastic field is not a close one, and that
we can be certain only of the correctness of the expression (29) integrated
over the entire field, it is nevertheless plausible to assume that the
energy is localized in the more intense regions of the field in the manner
prescribed by (30).

To find the total energy stored in a field, the increment §U must be
integrated from the initial state D = 0 to the final value D.

1 Mason and WEeaveRr, “The Electromagnetic Field,” p. 266, Tniversity ¢ {
Chicago Press, 1929.
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(31) U=ﬁ,j;DE-6de.

In case the medium is ¢sofropic and linear, such that e in the relation
D = ¢E is a function possibly of position but not of E, we have

E-aD=§‘aE2,

and hence
(32) U=3 fv E? dv.

2.9. A Theorem on Vector Fields.—Let P and Q be two vector func-
tions of position which throughout all space satisfy the conditions

(33) VXP=0, vV.Q =0,

and which are continuous and have continuous derivatives everywhere
except on a closed, regular surface S;. The transition of the tangential
components of P and of the normal components of Q across the surface .S,
is assumed continuous, but arbitrary discontinuities are permissible
in the normal components of P and the tangential components of Q.
The prescribed conditions over S; are, therefore,

(34) nX P, —-P)=0 n:(Q—-Q)=0

The unit normal n is drawn outward from S; and vectors in the immediate
neighborhood of this outer face are denoted by the subscript +, whereas
those located just inside the surface are denoted by the subscript —.
Finally, it is assumed that the sources of the fields P and Q are located
at finite distances from an arbitrary origin and that P and Q vanish at
infinity such that
(35) lim 7P = 0, lim rQ = 0.

r— o r— 0
Then it can be shown that the integral over all space of the scalar product
of an irrotational vector P and a solenoidal vector Q s zero, provided P and
Q and their dertvatives are continuous everywhere except on a finite number
of closed surfaces across which the discontinuities are as specified in (34).
For since V X P = 0, we may write P = —V¢ and, hence,

(36) P.-Q=-V-(¢Q) + ¢v-Q.

‘We shall denote the volume enclosed by the surface Si by Vi, and that
“exterior to it by Vs, so that the complete field of P and Q is V1 + V.
The last term of (36) vanishes and therefore

@7 j;H_V’P-Q dy = "fv."‘(”’Q) dy — fvlv-(qSQ) dv.

To apply the divergence theorem to this expression we observe that V,
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is bounded by 8;, and that V3 is bounded on the interior by S, and on the
exterior by a surface S which recedes to infinity. In view of the behavior
of P and Q at infinity as specified by (35), the integral of ¢Q - n over S is
zero. The positive normal to a closed surface is conventionally directed
outward from the enclosed volume; the two integrals of ¢Q «n over S,
are therefore of opposite sign but of equal magnitude in virtue of (34).
Equation (37) transforms to

(38) j;l+mp.de= —j;l¢Q+'nda+.[gl¢Q_-nda=0,

as stated. The extension of this theorem to a finite number of closed
surfaces S; of discontinuity is elementary.

2.10. Energy of a Dielectric Body in an Electrostatic Field.—The
useful theorem of the preceding section may be applied to the solution of
the following problem. Let us suppose that an electrostatic field E, has
been established in a dielectric medium. To simplify matters we shall
assume that this medium is 7sotropic and linear, and hence characterized
by an inductive capacity e; which is either constant or at the most a
scalar function of position. A nonconducting body whose inductive
capacity is e, is now introduced into the field E;, while the sources of E,
are maintained strictly constant. We wish to know the energy of the
foreign dielectric body due to its position in the ficld.

The initial energy U,, representing the total work done in establish-
ing the initial field, is obtained by evaluating

(39) U, =%fE1‘D1 dv

over all space. After the introduction of the body the modified field at
any point is E, and the difference E; = E — E; is thus the field resulting
from the polarization of the body. The volume occupied by the foreign
body we denote by V,, that of the medium exterior to it by V,. The
energy of the field in this new state is

(40) U, = %f E-D do,
Vi+V2

and the change

(41) U=U,—U1=-12-f (E-D — E, - Dy) dv
V14 Va2

must be the energy of the body in the external field E,, and consequently
equal to the work done in introducing it. Equation (41) is equivalent to

1 1
42) U=; -(D - 1 — E)-D, dv.
“42) 2J;|+V'E (D ~Dydv +5 fv oy, (B —E)-Didv
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The curl of E is zero evarywhere, and the divergence of D — D, is zero
since the initial source dist:ibution is fixed. Across the surface which
bounds the medium e, from the medium ¢; the conditions

43) n X (Ex —E) =0, n-[D~-Dy)y—~D-D,)]=0,

are satisfied provided the surface carries no charge. Then by the theorem
of Sec. 2.9 the first integral of (42) is zero, leaving

(44) =%fV| (E_EI)'Dldv‘*‘%J‘V’ (E—El)-Dldv.

Since Dy = €;E;, the second integral of (44) is equivalent to

(45) —;—L(E—Ex)-Dldv=%L (D — D)) - E, dv.

The conditions of Sec. 2.9 are satisfied by v X E; = 0,V . (D — D;) = 0,
so that ’

(46) f El-(D—Dl)dv=f E,- (D — D)) dv
V1+Vs Vi

+‘L El'(D—D1)dv=0,
and hence

47) %LZE1'(D—D1)dU='—%LlEl'(D—Dl)du

Upon introducing (47) into (44), we obtain an expression for the energy
of a dielectric body embedded in a dielectric medium in terms of an
integral extended, not over all space, but over its own volume alone.

(48) U= %fv (Ez+D, — E,- D)) dy,

or, since D; = ¢E;, D = ¢E within V,,

(49) U=%L1(E'D1—E1'D)dv=%L‘(61—62)E°E1dv.

In case the external medium is free space, the inductive capacity ¢
reduces to ¢. Then, since the resultant field within the body is related
to its polarization according to Sec. 1.6, by

(50) D = éoE + P = GzE, P = (éz - Go)E,

U may be written

1
(51) U———EJ;lP-Eldv.
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The potential energy of a dielectric body in free space and in a fixed external
field E; is equal to —3P « Ey per unit volume.

It is the variation of this potential energy U expressed by (49) or (51)
with respect to a small displacement that will lead us to the mechanical
forces exerted on polarized dielectrics. It will be observed that the
energy is negative if e; > €, and decreases in this case with decreasing e,
increasing e,, or increasing field intensity E;. 'We may anticipate, there-
fore, that if e > €1, the body will be impelled toward regions of intense
field or diminishing inductive capacity ;. Onthe other handif e; > €, as
might be the case of a solid immersed in a liquid of high inductive capac-
ity, the forces exerted on the body will tend to expel it from the field.

A direct consequence of (49) is the theorem that any increase in the
inductive capacity of a dielectric results in a decrease in the total energy of
the field. Let us suppose again that E; is the field of a fized set of charges
in a dielectric medium whose inductive capacity is e = €(z, y, 2). If at
every point € is increased by an infinitesimal amount ¢, the consequent
variation in the electrostatic energy will according to (49) be equal to

(52) U = —%f&e E* db,

for the product 6¢E - E; will then differ from de E? by an infinitesimal of
second order.

The energy of an electrostatic field is now completely determined by
the distribution of charge p and w, and by the inductive capacity e(z, y, 2).
Equation (52) expresses the variation in energy resulting from a slight
change in the properties of the dielectric, in the course of which the
charges are held constant.

(53) U= —% f J; E?de dv, (constant charge).
The variation
(54) 6U=f¢6pdv+f¢6wda=fE-6Ddu

expresses, on the other hand, the increment of energy resulting from a
small change in the density of charge, in the course of which the proper-
ties of the dielectric are held constant.

2.11. Thomson’s Theorem.—Charges placed on a system of fixed con-
ductors embedded in a dielectric will distribute themselves on the surfaces of
these conductors such that the energy of the resultant electrostatic field is a
mintmum.

The proof of this and the following theorems will be confined to the
case of a linear, isotropic dielectric. Let us suppose that there are n
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conductors bounded by the surfaces S;, (: = 1,2, . . . , n), each bearing
a charge ¢;. Discontinuities in the properties of the dielectric may be
replaced by thin transition layers without affecting the generality of the
theorem and we shall, therefore, assume the inductive capacity e of the
medium to be a continuous but otherwise arbitrary function of position.
It may also be assumed that there is a density of charge throughout the
volume of the dielectric, although such a condition does not often occur
in practice.

At every point within the dielectric the field of the charges in equi-
librium must satisfy the conditions:

(55) V:D =p, VXE=0, E=-Vv¢;

over the surface of cach conductor S;

(56) ¢; = constant, j; D.nda

qs;

at infinity the potential vanishes as 1/r.1

Suppose that ¢’, E’y D’ is any other possible electrostatic field; it satis-
fies the conditions (55), but not necessarily (56), and is known to differ
somewhere, if not everywhere, from ¢, E, D. Since the volume distri-
bution p and the fotal charge on the conductors is fixed we have

(57) V.(D' —D) =0, L(D'—D)-nda=0.

If U and U’ are the electrostatic energies of the two fields, their difference
is

(58) U'-—U=%fE'-D’dv—%fE-de,

or, since D’ = ¢E/,

(59) U’—U=%f(E’——E)-(D’—D)dv+fE-(D’-—D)dv.

The second term on the right vanishes, for we see that on putting E = P,
D’ — D = Q, the conditions of the theorem demonstrated in Sec. 2.9
are satisfied. There remains

(60) U —U = % f (B — E) d,

which is an essentially positive quantity. The theorem is proved, for
it E’ differs in any region of space from E the resultant energy U’ will be
greater than U. The condition of electrostatic equilibrium is character-

1 See Sec. 3.5, p. 167.
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ized by a minimum value of electrostatic energy and one therefore con-
cludes that for the determination of equilibrium the energy U plays the
same role in electrostatics as the potential energy in mechanics.

2.12. Earnshaw’s Theorem.—A charged body placed in an electro-
static field cannot be maintained in stable equilibrium under the influence of
the electric forces alone.

We shall suppose that the initial field is generated by a set of charges
g, 0 =1, ..., n), distributed on n fixed conductors whose bounding
surfaces are denoted by S;. These conductors are embedded in a dielec-
tric whose inductive capacity € may be a continuous function of position
but in which there is no volume distribution of charge. We note first
that neither the potential nor any of its partial derivatives can assume a
maximum or a minimum value at a point within the dielectric; for if ¢
is to be an absolute maximum it is necessary that the three partial deriva-
tives 92¢/dx?, 92¢/dy?, 0%¢/dz* shall all be negative at the point in ques-
tion, but this condition is incompatible with Laplace’s equation

¢ | ¢
(61) e + F + = =0.
Likewise the existence of an absolute minimum requires that these three
derivatives shall be positive, which again is inconsistent with (61).
The same argument applies also to the derivatives of the potential.

Let us suppose now that a charge ¢, is placed on a conducting surface
So. The distributions on all the conductors are momentarily assumed to

be fixed and S, is introduced into the field of the other n charges. If w,
is the surface density of charge on S,, the energy of this conductor is

(62) Uo=3 f duo da,
So

where ¢ is the potential of the initial field. Let z, ¥, 2 be the coordinates
of any point which is fixed with respect to Sy and £, 9, {, those of any
point on the surface. The potential on S, due to the other n charges
may be represented by a Taylor series in terms of its value and the value
of its derivatives at z, y, 2,

¢ 99 ¢
(©3) ¢(6 7, 8) = oe, 4,2 + 55 (=) + 50 =) + 3¢~ 2)
+ ce e
hence the energy, too, may be referred to the potential and its derivatives
at this point. But since ¢ cannot be a minimum at x, y, 2, it is always
possible to displace the conductor S, in such a way that the energy U,

i3 decreased. If after this displacement the charges, which thus far
have been assumed to be “frozen” on the surfaces S,, S;, are released,
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these surfaces will again become equipotentials and by Thomson’s
theorem the energy of the field will be still further diminished. A
minimum value of the energy function U,(z, ¥, z) does not exist in the
electrostatic field and consequently the conductor S, is never in static
equilibrium.

2.13. Theorem on the Energy of Uncharged Conductors.—The iniro-
duction of an uncharged conductor into the field of a fixed set of charges
diminishes the total energy of the field.

The conditions are the same as in the previous theorem but the
surface Sy now carries no charge. Let E, D be the vectors characterizing
the field before, E’, D’ the field after the introduction of the conductor S,.
The change in energy is

(64) U—U'=%fE-de—%fE’-D’dv.

The volume integrals are to be extended through all space, but since the
field vanishes in the interior of the surfaces So, S;, the contribution from
these regions is zero. Let V be the volume of the field exterior to the n

conductors S; before the introduction of So, and ¥V, the volume bounded
by So. Then

(65) V1 = V - Vo

represents the volume of the region occupied by the field after the intro-
duction of Sy, and Eq. (64) may be written in the form

_ ,_1f a1 w.p
©) U-U =3 ED—}| B.-Dav
=1f E-de+1f (E-D — E'- D) dy
2 Yo 2 V1

_1 . 1 _EY-(D - D
= 2];0E de+2fV1(E E)-(D—-D')dv
+ fv E' - (D — D')dv
The last integral on the right can be shown to vanish. For
E-D—-D)=—-v¢'-(D—-D)=—V-[¢/(D~ D]
+¢'V.([D — D",
and V. (D — D’) = 0. By the divergence theorem,

(67) fv. E:D-=D)dv= fv, V.[¢/(D — D)]dv

= @ -p)nam,

t=1
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where the ¢} are the potentials of the conducting surfaces S;. The
total charge on each surface is constant, so that

(68) Dinde= [ D-nda=g

and hence

(69) ‘Li (D! —D)-nda = 0.

The diffcrence between the initial and final energies is, therefore,
(70) U-U = % fm B2 dv + % fVle(E — B2 dy,

an essentially positive quantity.

MAGNETOSTATIC ENERGY

2.14. Magnetic Energy of Stationary Currents.—Let us consider a
stationary distribution of current confined to a finite region of space.
This current may be supported by conducting matter, or result from the
convection of charges in free space. The equation of continuity reduces
to v +J = 0, in virtue of which we may imagine the distribution to be
resolved into current lines closing upon themselves. A current tube or
filament may be constructed from the current lines passing through an
infinitesimal element of area. The tube is bounded by those lines which
pass through points on the contour of the element. At every point
on the surface of a tube the flow is tangential; no current leaves the tube
and conscquently the net charge trans-
ported across every cross section of the
tube in a given time is the same.

We shall calculate first the potential
energy of a single, isolated current filament
in the ficld B of fixed external sources.
Fic. 19.—Illustrating displacement The current carried by the filament is I

of a current filament. . el .
and it follows an initial contour designated
in Fig. 19 as C1. The force exerted by the field on a linear element of the
filament is

) f=1ds X B.

Suppose now that the filament C, is translated and deformed in such a
manner that every element ds is displaced by the infinitesimal amount ér
into the contour C;. The displacement dr is assumed to be a continuous
function of position about C; but is otherwise arbitrary. The work
done by the force (1) in the displacement of the element ds is

(2) f.or = I(ds X B).dr = IB-. (or X ds).
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Let S; be any regular surface spanning the contour C;. A second
surface S, is drawn to span C., but in such a way as to pass through C,
and then coincide with S; The surface

(3) Sa = Sz - Sl

is, therefore, a band or ribbon of width ér bounded by the curves C; and
C,. If das is an element of S; we have clearly

{4) or X ds = n3 daa,

where n; is the positive unit normal to S;. The positive faces of S,
and S, are determined by the usual convention that an observer, circu-
lating about the contours in the direction of the current, shall have the
positive face at his left. The magnetic fluxes threading Cy and C, are

(5) P, = 5 B- n; dal, P, = j;z B-. n, daz;
hence the net change in flux resulting from the displacement is
(6) 6(I>=<I>2——<I>1=j;B-n3da3.

On the other hand the total work done by the mechanical forces is
obtained by integrating (2) around the closed contour Ci, whence in
virtue of (4) we find

) 6W=§le-6r=16®.

If now it be assumed that in the course of the virtual displacement ér
the external sources and the current I are maintarned strictly constant,
then the work done by the mechanical forces is compensated by a decrease
in a potential energy function U.

8) SU = —sW = —I 50,
or
(9) =-1¢>=—IfSB.nda,

where S represents any surface spanning the current filament. Inversely,
the mechanical forces and torques on a current filament in a magneto-
static field can be determined from a variation of the function U while
holding constant the current I and the strength of the sources.

If or is a real rather than a virtual displacement, work must be
expended to keep the current constant. The change 6@ in the flux
induces an electromotive force

50
(10) V_LE-ds._—-S?
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where 8 is the time required to effect the displacement. This induced
e.m.f. must be counterbalanced by an equal and opposite applied e.m.f.
V’. The work expended by the applied voltage on the circuit in the time
8t is

(11) V'I 8t = +1 6&.

The work done by the transverse mechanical forces in a small displacement
of a linear circuit 1s exactly compensated by the energy expended by longi-
tudinal electromotive forces mecessary to maintain the current constant.
The total work done on the circuit is zero.

Let us suppose now that the source of the field B is a second current
filament. Thus we imagine for the moment that the current distribution
consists of just two isolated, closed filaments I, and I,. The fields
generated by these currents are respectively B; and B,. The potential
energy of circuit I, in the external field B, is

12) Us = —1I, _]; Bi- 0, da,,

where S is any surface spanning the filament 7,. Likewise the potential
energy of circuit I, in the field of I, is

(13) Un = —I [ B:-nmidas.

Ui, and U, are scalar functions of position and circuit configuration
whose derivatives give the forces and torques exerted by one filament
on the other. From the equality of action and reaction it follows that

(14) Um = Uz1 = U,
and hence the mutual potential energy may be expressed as
(15) U e —%‘11(1)1 - %ng)z,

where ®, is the magnetic flux threading the filament I,.

The mutual energy U, which reduces to zero when the separation
of the filaments becomes infinite, is not equal to the total work that must
be done in approaching them from infinity to some finite mutual configura-
tion, and therefore does not represent the total energy of the system.
For let us suppose that I, is allowed a small displacement under the
forces exerted by I, with a resultant decrease —d&U in the potential
energy. To maintain the current I, constant during the displacement,
an equal amount of work 6W must be done on the circuit I, to compensate
the effect of the induced e.m.f. Thus far the net change in energy is zero.
But now we must note that the displacement of I, results in a change
in the flux threading I, and gives rise, therefore, to an induced e.m.f. V,
opposing the current I,. If I,is to be maintained constant, a voltage V|
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must be impressed on the circuit I; compensating V: and doing work
at the rate I,Vi. The induced e.m.f., however, depends only cn the
relative motion of I, and I,. The work done by the electromotive forces
induced in circuit (1) by the displacement of circuit (2) must equal that
which would be done were (2) fixed and an equal and opposite displace-
ment imparted to (1). The work done on (1) is therefore 6W. In sum,
when the mechanical forces acting on the two filaments are allowed to
do work, there is a decrease in the mutual potential energy of amount
— 38U, but this is offset by the work 26W which must be done on the
system to maintain I, and I, constant. If the total magnetic energy
of the system be denoted by 7', the variation in T associated with a
relative displacement at constant current is

(16) 3T = 26W — U = sW = —sU,
or, by (15),
(17) T = %Iﬁtl + %Izq’z.

In general, if the current system is composed of n distinet current fila-
ments, the magnetic energy is

(18) r=21a,
=1
where ®; is the flux threading circuit 7 due to the other n — 1circuits.

Equation (18) is an expression for the work necessary to bring n
closed current filaments from an initial position at infinity to some speci-
fied finite configuration. The cross section of any filament is very small
but does not vanish, and a filament in the sense that we have used it here
is not, therefore, a line singularity. Each filament or tube may be sub-
divided into a bundle of thinner filaments carrying fractions of the initial
current. In the limit of vanishing cross section, the current carried
by the filament is infinitesimally small, as is also the energy necessary
to establish it. Consequently the total energy of a current distribution
is simply the mutual energy of the infinitesimal filaments into which the
distribution can be resolved.

Now in practice a current distribution in a conducting medium cannot
be established by the mathematically simple expedient of collecting
together current filaments from infinity, and although (18) proves to be
correct for the magnetic energy of n circuits in & medium for which the
relation of H to B is linear, this is not necessarily true in general. In
place of a continuous distribution let us consider for the moment =
linear circuits embedded in any magnetic material. The resistance of
the ¢th circuit is B; and at any instant the current it carriesis Is. Toeach
circuit there is now applied an external e.m.f. V; generated by chemical
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or mechanical means. These applied voltages give rise to variations
in the currents and corresponding variations in the magnetic flux thread-
ing each circuit. If V;is the voltage induced by a variation in ®;, the
relation of current to total e.m.f. in the circuit at any instant is

(19) Vi+ Vi= Rd;;
. dd;

or, since V; = -

(20) Vi = R+ 5

The power expended by the impressed voltage V; is ViI:, and conse-
quently the work done on the sth circuit in the interval 8¢ is

(21) W = R.I? ot 4+ I; o®;.

Of this work the amount R.I% 8t is dissipated as heat, while the quantity
I; 5%, is stored as magnetic encergy.! A variation in the magnetic energy
of the n filaments is therefore related to increments in the fluxes by

(22) oT =3 1. 6%,
1=1

and the total energy expended on the system, apart from that dissipated
in ohmic heat loss within the conductors, as the currents are slowly
increased from zero to their final values, is

oo

(23) T = 2} L " I 6,

&, is the flux threading the ¢th circuit at the initial instant when all
currents are zero. This initial flux will be zero if there is no remnant
magnetization of the medium about the circuits. Equation (23) can
be interpreted as available energy stored in the magnetic ficld only when
the relation of I; to ®; is single-valued (no hysteresis), and (23) reduces
to (18) only when the relation of H to B and consequently of I; to ®;is
linear, such that I; 6®; = ®; éI..

It is a simple matter to extend (23) from a finite number of current
filaments to a continuous distribution of current. Within this dis-
tribution let us choose arbitrarily a surface element do. The current
lines passing through points of do constitute a current tube, which, in
virtue of the stationary character of the distribution, closes upon itself.
If J is the current density, the scalar product J - n do = dI is constant

1 A portion of the energy I: 6%, may, however, be made unavailable because of
hysteresis effects. See Sec. 2.16.
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over every cross section of the tube. Let B’ be the magnetic field at any
point within the tube produced by all those current filaments which lie
outside. The increment in the energy of the current dI due to an
infinitesimal increase in the ficld of the external filaments is

(24) 8(dT) = dI 8¢ = dI f 6B’ . n da,

the integral to be extended over any surface bounded by the contour of
the filament dI. If A’ is the vector potential of the field B’, then
B’ = v X A’ and (24) may be transformed by Stokes’ theorem to a line
integral following the closed contour of the filament.

(25) 5dT) =J -ndo fﬁ SA’ - ds.

Now the total vector potential A along any central line of the tube dI is
equal to A’ plus the contribution of the current dI = J - n do itself; but
as the cross-secttonal arca do — 0, the latter contribution vanishes, so
that in the limit A’ may be replaced by A, Since furthermore the cur-
rent density vector J, the unit vector n normal to do, and the element
of length ds along the tube are parallel to onc another within a tube of
infinitesimal cross section, one may write in place of (25):

(26) 5(dT) = Sﬁ J - 6A do ds.

The product do ds = dv represents the volume of an infinitesimal length
of tube. The total increment in the energy of the distribution is to be
found by summing the contributions of all the tubes into which it has
been resolved, and this summation is clearly equivalent to an integration
of the product J - 6A over the entire volume occupied by current.

(27) 5T =f]-6Adv.

The work required to set up a continuous current distribution by means
of applied electromotive forces is, therefore, in general

(28) T=[[7 ad.

In case the relation between the current and the vector potential which
it produces is linear, this reduces to

(29) T = %f J-Ado.

2.16. Magnetic Energy as a Function of Field Intensity.—We shall
suppose that discontinuities in the magnetic properties of matter in the
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field can be represented by layers of rapid but continuous transition.
The field may be due in part to currents, in part to permanent magnets
or residually magnetized matter, but all sources are located within a
finite radius of some arbitrary origin. It will be demonstrated in Chap.
IV that under these circumstances the vectors A and B vanish at infinity
as 7! and r~2 The current density J at any point is related to the
vector H at the same point by

(30) J=VxH
Furthermore, by a well-known identity,

Bl) J-oA=0A-VXH=V-.(HX) +H-vx A
=V.(HX oA) + H- B.

Upon introducing (31) into (28) and applying the divergence theorem,
we obtain

32) T=fyj:H-dde-{—ﬁj;‘:(deA).nda,

where V is any volume bounded by a surface S enclosing all the sources
of the field. If the surface S is allowed to recede toward infinity, the
second integral of (32) vanishes, for the integrand diminishes as r—3
whereas S grows only as r%. Therefore the work done by impressed
e.m.fs. (such as might be derived from batteries or generators) in building
up a magnetic field from the initial value By to the final value B can be
represented by the integral

(33) T=fdvj::H-dB

extended over all space. It is to be emphasized that (33) is the energy
associated with the establishment of a current distribution in the presence
of magnetic materials, and does not include the internal energy of per-
manent magnets or the mutual energy of systems of permanent magnets.

The magnetic properties of all materials exclusive of the ferromagnetic
group differ but slightly from those of free space; the relation between B
and H is linear within wide limits of field intensity, the factor u in the
relation B = pH is very nearly equal to po, and there is no appreciable
remnant magnetism. Under these circumstances the work done in
building up the field to a value B is returned as the field is again decreased
to zero. Equation (33) integrates to

(34) T = % f uH? dv,

which we interpret as the energy stored in the magnetic field. Asin the
corresponding electrostatic case we may suppose this energy to be dis-
tributed throughout the field with a density uH? joules/meter.?
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2.16, Ferromagnetic Materials.—The relation of H to B for ferro-
magnetic substances is in general nonlinear and multivalued. In an
initial, unmagnetized state the vectors B and H are zero. If the field is
now built up slowly by means of impressed electromotive forces applied
to conducting circuits, the function B = B(H) at any point in the ferro-
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F16. 20.—Typical magnetization curve for annealed sheet steel.
magnetic material follows a curve of the form indicated by Fig. 20.
According to (33) the work done in magnetizing a unit volume of the
substance is represented by the shaded area in the figure. Were the
function B(H) single-valued, a decrease in the field from H,, B; to zero
would follow the same curve and the entire energy (33) would be avail-
able for useful work. Actually, the return usually follows a path such

as that indicated in Fig. 21. Starting B

at H,, the field is decreased until

H = 0. The associated value of By

B = B;, however, is still positive. /71‘
To reduce B to zero, negative values Bl /% |
must be imparted to H, meaning ; yi% l
physically that H must be increased _H1{ ~Hy/ |/H, H, H
in the opposite direction. At ! Bz

H = —H; the vector B ig zero, and =  l=<=="-—- -B,

as H continues to increase in negative

value a point is eventually reached

where simultaneously H = —H,, Fia. 21.—Hysteresis loop.

B = —B;. The return to the positive values H,, B, follows the sym-
metrical path through B = —B;, H=0and B =0, H = +H,;. At all
points along the segment B,B; the value of B is greater than its initial
value on the dotted curve for the same value of H; the change of B lags
behind that of H and the substance is said to exhibit hysteresis.
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Let w be the work done per unit volume of magnetic material in chang-
ing the field from the value B, to B.

(35) w=sz~dB=H-B‘:l—j;:B-dH.

If the variation of the field is carried through a complete cycle following
the hysteresis loop from B; through B;, —Bj, —B; and returning to By,
the net work done per unit volume is

(36) w = —SﬁB.dH,

a quantity evidently represented by the enclosed area of the hysteresis
loop illustrated in Fig. 21. The net work done per cycle throughout the
entire field is

37) =—fdv§B-dH.

Q is the hysteresis loss, an irretrievable fraction of the field energy dis-
sipated in heat.

2.17. Energy of a Magnetic Body in a Magnetostatic Field.—Let us
suppose that a magnetic field B from fived sources has been cstablished
in a magnetic medium. We shall
assume that the rclation of B; to H;
islinear and that the mediumisisotropic.
Then By = uHi, where uy is at most a
scalar function of position which reduces
to a constant in case the medium is
homogeneous. The energy of the field
is

F1a. 22.—The region V), is occupied

by a magnetic body embedded in the (38) T, = }2_ f H,-B, dv,

homogeneous, isotropic medium V2.

extended over all space. Now reduce the intensity of the sources to
zero and introduce into a suitable cavity formed in the first medium a
body which we shall assume to be unmagnetized but whose magnetic
properties are otherwise arbitrary. Asin Sec. 2.10 the volume occupicd
by the embedded body will be denoted by V., Fig. 22, and the entire
region exterior to it by V,. If the external sources are currents, the
work which must be done in order to restore them to their initial intensity
is

B B
(39) Tz=f dvf HdB=—1—f H-de+fdvf H . dB.
Vit Va 0 2 Jwv " 0

The ultimate field B differs at every point from the initial field B, by
an amount B; = B — B; arising from the change in polarization of the
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matter contained within ¥,. The increase in the work necessary to build
up the current strength to the initial value is

40) T=7T, - Tl:éfv (H-B—-H,-B)) dv

B
+ dv(f H-dB—lHl-B1>.
Vi 0 2

It has been assumed that throughout the region V, exterior to the body
the relations between B and H are linear:

(41) B1 = [1.1H1, B == [1.1H in Vz.
The first integral in (40) is therefore equivalent to

(42) %L(H.B—Hl-Bl)du=%ﬁ2(H—H1)-(B+Bl)du.

By hypothesis the initial and final current distributions in the source are
identical, so that in both V3 and V, the conditions
(43) V-(B + By =0, VX H-H,) =0,

are satisfied, while over the surface bounding V', we have according to
(18), page 37,

n-[(B+ By, — (B+By)]=0,
nXx[H-H) — H-H)]=0.

(44)

The theorem of Sec. 2.9 may be applied, giving

(45) %fmv’ (H — Hy) - (B + By) dv = %fv (H — H) - (B + By do

+%fV’(H—H1)-(B+B1)dv=0,

or

46) %fw(n—nl).(BJrBl)dv

=_%fVl(H-—H1)-(B+Bl)dv.

The additional work required to build up the currents in the presence of
the body can thus be expressed in terms of integrals extended over the
volume occupied by the body. Upon introducing (46) into (40), we
obtain

B
7 T=%L<H1-B—H-31~H-B+2ﬁ H-dB>dv.
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If hysteresis effects are negligible (H is a single-valued function of B),
the quantity 7' may be interpreted as the energy of the body in the mag-
netic field of any system of constant sources; and the variation of 7'
resulting from a virtual displacement of the body determines the mechan-
ical forces exerted upon it. If furthermore the magnetic properties of
the material within V, can be characterized by a permeability us, so that
B = u,H, then (47) reduces to

1 1
(48) =§fV1(H1-B—H-Bl)dv=§j;l(y2—u1)H-Hldv.

The body was assumed to be initially free of residual magnetism; con-
sequently the vectors B and H within V, are related to the induced mag-
netic polarization M by Sec. 1.6,

(49) B = I.to(H + M)v
and, when B = u,H, this leads to

o el e (D

If, therefore, the cavity V' was initially free of magnetic matter we may
put u; = wo and write (48) in the form

(51) T=%  M-Bid,

an expression which corresponds to (51), page 113, for the electrical case
in all but algebraic sign. This distinction, however, is fundamental.
Whereas in the electrostatic case the work done by the external forcesin a
virtual displacement is accompanied by a decrease of the potential
energy U, we shall learn soon that the mechanical forces exerted on a
magnetized body are to be determined from the increase in T, so that T
in this sense behaves as a kinetic rather than a potential energy.

A useful analogue of Eq. (52), page 114, may be deduced for the
magnetostatic field from (48). Suppose again that B; is the field of
fized sources—either currents or permanent magnets—and that at cvery
point in space the permeability is specified by u = u(x, y, ), a continuous
function of position. If now the permeability is varied by an infinitesi-
mal amount du, the consequent change in the magnetic energy is

(52) 5T = %f 5 H? do;

therefore, the magnetic energy of a distribution of matter in a fixed field is

(53) = %f dv f e dy (B = pokm)
Ko
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provided the matter is initially unmagnetized and u is independent of H.
For paramagnetic material g > po, ks > 1, but in the case of diamag-
netic matte . < po and the magnetic energy of the initial field is dimin-
ished by the introduction of diamagnetic bodies.

2.18. Potential Energy of a Permanent Magnet.—A rigorous analysis
of the energy of material bodies in a magnetic field becomes very much
more difficult when these bodies are permanently magnetized. In that
case there is a residual field, which we shall denote by B,, H,, associated
with the magnet even in the absence of external sources. The relation of
B, to Hy may still be expressed in the form

(54) Bo = po(Ho + My),

but M, the intensity of magnetization, is now quite independent of Hy,
being determined solely by the previous history of the specimen. If an
external field is applied, there will be induced an additional component
of magnetization which, as in the past, we denote by M. This induced
polarization M depends primarily on the resultant field H within the
magnet (vanishing as H reduces to Hy), but also on the state of the mag-
net and its permanent or residual magnetization M.

(55) B = pH + M(H, M) + M.

The resultant field H at an interior point is determined furthermore by
the shape of the magnet as well as by the intensity and distribution of the
external sources.

We shall content ourselves with the derivation of a simple and fre-
quently used cxpression for the potential energy of a system of perma-
nent magnets. The proof rests on assumptions which are approximately
fulfilled in practice; namely, that the magnetization M, is absolutely
rigid and that the induced magnetization M in one magnet arising from
the external field of another is of negligible intensity with respect to M,.
The field at all points, both inside and outside a magnetized body occupy-
ing a volume V', is exactly that which would be produced by a stationary
volume distribution of current throughout V, of density

(56) J=Vv XM,

together with a current distribution on the surface S bounding V; of
density!

(57 K=M, Xn,

where n is the unit outward normal to S. As a direct consequence of the
analysis of Sec. 2.14 and in particular of Eq. (9), it follows that the poten-
tial energy of the magnet V;in the field of other permanent magnets or of

1 See Secs. 1.6 and 4.10.
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constant currents 1s

(58) U=—fV1J-Adv—j;K-Ada,

or, in virtue of (56) and (57),

(59) U=—ﬂ,l(vxMo)-Adv—-j;(MOXn)-Ada.
Now

(60) AcVXMy=V:(MyXA) +M:-V XA,
(61) MxXA):n=0nXMy)-A=—(M, Xn):-A,

so that upon applying the divergence theorem and putting B = Vv X A,
(59) reduces to

(62) U= — fv, M, B dv.

In (62) one may consider dm = M, dv to be the magnetic moment of
an element dv of the magnet. Its potential energy in the resultant field
Bis dU = —B-dm. The resultant field B is composed of the initial
field B, of all external sources, plus the field B; due to all other elements
of the same magnet V;. Therefore the work necessary to construct the
magnet by collecting together permanently magnetized elements in the
absence of an external field should be

(63) Uy = — ﬁ, M, - B, dv.

These elements must be held together by forces of a nonmagnetic char-
acter. The work necessary to introduce the magnet as a rigid whole
from infinity to a point within the ezfernal field B, is then

(64) U, = -fV1Mo-B1dv,

and the force exerted on a unit volume of the magnet by the external
sources is

(65) f=+v(Mo-By.

The difference of (64) and (51) is accounted for when we note that
(64) is only the potential energy of the magnetized body in the external
field, while (51) includes the work involved in building up the magnetiza-
tion from zero to M, and is based on the assumption that there exists a
linear relation between B; and Hj, and consequently between B; and M.
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ENERGY FLOW

2.19. Poynting’s Theorem.—In the preceding sections of this chapter
it has been shown how the work done in bringing about small variations in
the intensity or distribution of charge and current sources may be
expressed in terms of integrals of the field vectors extended over all space.
The form of these integrals suggests, but does not prove, the hypothesis
that electric and magnetic energies are distributed throughout the field
with volume densities respectively

(1) u= [E.dD, w= [*H-dB.

The derivation of these results was based on the assumption of reversible
changes; the building up of the field was assumed to take place so slowly
that it might be represented by a succession of stationary states. It is
essential that we determine now whether or not such expressions for the
energy density remain valid when the ficlds are varying at an arbitrary
rate. It is apparent, furthermore, that if our hypothesis of an energy
distribution throughout the field is at all tenable, a change of field inten-
sity and energy density must be associated with a flow of energy from
or toward the source.

A relation between the rate of change of the energy stored in the field
and the energy flow can be deduced as a general integral of the field

equations.
(I)VXE+%=0, (I1II) v.B

(II)VXH—%I%:J, (IV) v-D = p.

0,

We note that E-J has the dimensions of power expended per unit

volume (watts per cubic meter) and this suggests scalar multiplication of
(II) by E.

@) E-va—E-%=E-J.
In order that each term in (I) may have the dimensions of energy per
unit volume per unit time it must be multiplied by H.

B

3) H.VXE+H.- 2 -

0.

Upon subtracting (2) from (3) and applying the identity
4) V- EXH)=H-VXE-E.V X H,
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we obtain

®) vV-ExH+E-J=-E-2-m.2

Finally, let us integrate (5) over a volume V bounded by a surface S.

(6) ”L(EXH)-nda+fVE-]’dv= —fV(E’%]—?'*'H'%—}:)dv.

This result was first derived by Poynting in 1884, and again in the
same year by Heaviside. Its customary interpretation is as follows.
We assume that the formal expressions for densities of energy stored in
the electromagnetic field are the same as in the stationary regime. Then
the right-hand side of (6) represents the rate of decrease of electric and
magnetic energy stored within the volume. The loss of available stored
energy must be accounted for by the terms on the left-hand side of (6).
Let o be the conductivity of the medium and E’ the intensity of tmpressed
electromotive forces such as arise in a region of chemical activity—the
interior of a battery, for example. Then

™ J=o®+E), E=1

o

E,

and hence

®) fVE-Jdv=fV%szv——fVE’-Jdv.

The first term on the right of (8) represents the power dissipated in
Joule heat—an irreversible transformation. The second term expresses
the power expended by the flow of charge against the impressed forces,
the negative sign indicating that these impressed forces are doing work
on the system, offsetting in part the Joule loss and tending to increase
the energy stored in the field. If, finally, all material bodies in the field
are absolutely rigid, thereby excluding possible transformations of
electromagnetic energy into elastic energy of a stressed medium, the
balance can be maintained only by a flow of electromagnctic energy
across the surface bounding V. This, according to Poynting, is the
significance of the surface integral in (6). The diminution of electro-
magnetic energy stored in V is partly accounted for by the Joule heat
loss, partly compensated by energy introduced through impressed forces;
the remainder flows outward across the bounding surface S, representing
a loss measured in joules per second, or watts, by the integral

©) f;8-nda= [ (ExH- nda.
The Poynting vector S defined by
(10) S=EXH watts/meter?,
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may be interpreted as the intensity of energy flow at a point in the field;
i.e., the energy per second crossing a unit area whose normal is oriented
in the direction of the vector E X H.

It has been tacitly assumed that the medium is free of hysteresis
effects. In case the relation between B and H is multivalued, energy to
the amount @ [Eq. (37), page 126] is dissipated in the medium in the
course of every complete cycle of the hysteresis loop. If the field is
harmonic in time with a frequency », there will be » cycles/sec. and con-
sequently the hysteresis will also participate in the diminution of mag-
netic energy at the rate of »Q joules/sec.

In the absence of ferromagnetic materials the relations between the
field intensities are usually linear, and if the media are also isotropic
Poynting’s theorem in its differential form reduces to

11) A\ (EXH)+ J2+ (E’-{- H2>=E’~].

As a general integral of the field equations, the validity of Poynting’s
theorem is unimpeachable. Its physical interpretation, however, is open
to some criticism. The remark has already been made that from a
volume integral representing the total energy of a field no rigorous con-
clusion can be drawn with regard to its distribution. The energy of the
electrostatic field was first expressed as the sum of two volume integrals.
Of these one was transformed by the divergence theorem into a surface
integral which was made to vanish by allowing the surface to recede to
the farther limits of the field. Inversely, the divergence of any vector
function vanishing properly at infinity may be added to the conven-
tional expression u = $E - D for the density of electrostatic energy with-
out affecting its total value. A similar indefiniteness appears in the
magnetostatic case.

A question may also be raised as to the propriety of assuming that
E. i?lt) nd H . —IE represent the rate of change of energy density for
rapid as well as quasi-static changes. Such an assumption seems plaus-
ible, but we must note in passing that a transformation of the energy
function expressed in terms of the field vectors to an expression in terms
of the densities of charge and current leads now to difficulties with surface
integrals. Let

(12) %}’ = ( 5 TH)d

be the rate at which work is done on the system by external forces. Upon
introducing the potentials
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(13) E=-vo—2 B=vxA,

and applying the identities

oD 3
Vo @——V-(¢5;)—¢—V-D,

(14)
H.vxA_vy. (AXH) A ¢ xH,

at at

we obtain

@) W [(6245 B ar- (4D +mxD) nae,

where S is a surface enclosing the entire electromagnetic field. Now in
the stationary or quasi-stationary state the potentials can be shown to
vanish at infinity as r—! and the fields as r—2; the integral over an infinite
surface then vanishes. It will be shown in due course, however, that
the fields of variable sources vanish only as r»—! and in this case the last
term of (15) cannot be discarded by the simple expedient of extending the
integral over an infinitcly remote surface. On the other hand we know
that fields and potentials are propagated with a finite velocity. If,
therefore, the field was first established at some finite instant of the past,
a surface may be imagined whose elements are so distant from the source
that the field has not yet arrived. The intensity over S is then strictly
zero and under these circumstances

(16) aW j ( aA) dv.

Finally, it must be granted that even though the total flow of energy
through a closed surface may be represented correctly by (9), one can-
not conclude definitely that the intensity of energy flow at a point is
S = E X H; for there might be added to this quantity any vector
integrating to zero over a closed surface without affecting the total flow.

The classical interpretation of Poynting’s theorem appears to rest to
a considerable degree on hypothesis. Various alternative forms of the
theorem have been offered from time to time,! but none of these has the
advantage of greater plausibility or greater simplicity to recommend it,
and it is significant that thus far no other interpretation has contributed
anything of value to the theory. The hypothesis of an energy density

! MacponaLp, “Electric Waves,” Cambridge University Press, 1902. Livexs,
““The Theory of Electricity,”” Cambridge University Press, pp. 238 f., 1926. MasoN
and WeAvER, “The Electromagnetic Field,” University of Chicago Press, pp. 264 f.,
1929,
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in the electromagnetic field and a flow of intensity S = E X H has, on
the other hand, proved extraordinarily fruitful. A theory is not an
absolute truth but a self-consistent analytical formulation of the relations
governing a group of natural phenomena. By this standard there is
every reason to retain the Poynting-Heaviside viewpoint until a clash
with new experimental evidence shall call for its revision.

2.20. The Complex Poynting Vector.—If we now let h =u 4w
represent the density of clectromagnetic energy at any instant and

= %J 2 — E’.J the power expended per unit volume in thermo-

chemical activity, the Poynting theorem for a field free from hysteresis
effects may be written

an v-s+§%+q=o.

In a stationary field & is independent of the time, so that (17) reduces to
(18) vV-S+Q=0.

Q may be positive or negative as the work done by the impressed elec-
tromotive forces E’ is less or greater than the energy dissipated in heat.
Accordingly the energy flows from or toward a volume element depending
on its action as an energy source or sink.

The sources and their fields in most practical applications of electro-
magnelic theory are periodic functions of the time. The mean value of
the energy density A is constant and 8h/dt = dh/dt = 0, the bar indi-
cating a mean value obtained by averaging over a period. In the case of
periodic fields, therefore,

19 V-S+Q=0, or L§-nda+ﬂ@dv=0.

When there are no sources within V, the energy dissipated in heat
throughout V is equal to the mean value of the inward flow across the
surface S.

The advantages of complex quantities for the treatment of periodic
states are too well known to be in need of detailed exposition. The
reader may be reminded, however, that certain precautions must be
observed when dealing with products and squares. Throughout the
remainder of this book we shall usually represent a harmonic variation
in time as a complex function of the coordinates multiplied by the factor
e, Thus if A is the quantity in question, we write

(200 A =A™ = (a+ if)e ™ = (a + i8)(cos wf — ¢ sin wt),

where « and g are real functions of the coordinates z, y, 2. The conjugate
of A is obtained by replacing ¢ = 4/ —1 by —1, and is indicated by the
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sign 4.
(21) A = (a — iB)e™.

Although it is convenient to employ complex quantities in the course of
analytical operations, physical entities must finally be represented by
real functions. If A satisfies a linear equation with real coefficients,
then both its real and its imaginary parts are also solutions and either
may be chosen at the conclusion of the calculation to represent the
physical state. However, in the case of squares and products, we must
first take the real parts of the factors and then multiply, for the product
of the real parts of two complex quantities is not equal to the real part of
their product. We shall indicate the real part of A by Re(A) and the
imaginary part by Im(4).

Re(A) = a cos wt + B sin wt = Va? + B?sin (ot + ¢),
(22) Im(A) = B cos wt — asin wt = Va? + B2 cos (wt + ¢),
¢ = tan—* 2.
B
The square of the amplitude—or magnitude—of A is obtained by multi-
plication with its conjugate.
(23) Ad = a2 + B2
The real part of A is also given by

A+ 4
2

(24) Re(A) =

The product of the real parts of two complex quantities A, and A. is,
therefore, equal to

(25) Re(A,) - Re(Aq) = 1(A1 + Ax)SA} + Zz)~
=1(A4.+ A4 + A A+ A.A)).

The time average of a periodic function A is defined by

- 1
(26) A—;J;Adt,

where 7 is the period. If A is a simple harmonic function of the time,
its mean value is of course zero. The mean value of such functions as
cos wt sin wt also vanishes, and we have consequently from (25) the result

27 Re(4d)) - Re(A») = LA, + A4 = $(aas + BiBa),

or
(28) e(A1) - Re(4s) = $Re(4.14,).
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According to the preceding formulas the mean intensity of the energy
flow in a harmonic electromagnetic field is

(29) S = Re(E) X Re(H) = 1Re(E x H),

the real part of the complex vector 4E X H. The properties of this
so-called complex Poynting vector are interesting. We shall denote it by
(30) S* = JE x H.

Let us suppose that the medium is defined by the constants ¢, u, ¢ and
that the field contains the time only in the factor e~*t. Then the
Maxwell equations in regions free of impressed electromotive forces E’ are

(31) V X E = 1wuH, V X H = (¢ — 1we)E.
The conjugate of the second equation is
(32) : v X H = (¢ + iweE,

which when united with the first as in Sec. 2.19 leads to
(33) V-S"‘=—1}aE-f§+iw<gH-ﬁ——%E-ﬁ)’

or in virtue of (28) and (23),
(34) V.S* = —Q + 20(@ — %).

The divergence of the real part of S* determines the energy dissipated in
heat per unit volume per second, whereas the divergence of the imaginary
part is equal to 2w times the difference of the mean values of magnetic and
electric densities. Throughout any region of the field bounded by a
surface S we have

(35) Re j; S*.nda = total energy dissipated,

and

36) Im j; S*.nda = 2w X difference of the mean values of magnetio
and electric energies.
FORCES ON A DIELECTRIC IN AN ELECTROSTATIC FIELD

2.21. Body Forces in Fluids.—Let us consider an electrostatic field
arising from charges located on the surfaces of conductors embedded in
an isotropic dielectric. To simplify the analysis we shall assume for the
moment that throughout the entire field the dielectric medium has no
discontinuities other than those occurring at the surfaces of the con-
ductors. It will be assumed furthermore that D = ¢E, where ¢ is a
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continuous function of position. The total electrostatic energy of the
field is thercfore

) U =%feE2dv

extended over all space.

The position of any point in the dielectric with respect to a fixed
reference origin is specified by the vector r. Every point of the dielectric
is now subjected to an arbitrary, infinitesimal displacement s(r). It is
supposed, however, that the conductors are held rigid and the displace-
ment of dielectric particles in the neighborhood of the conducting surfaces
is necessarily tangential. The displacement or strain results in a varia-
tion in the parameter ¢ with a corresponding change in the clectrostatic
energy equal to

@) U = —% 5eE? db.

At the same time a slight readjustment of the charge distribution will
occur over the surfaces of the conductors. Initially the surface charges
were in static equilibrium and the initial energy (1), according to Thom-
son’s theorem, Sec. 2.11, is & minimum with respeet to infinitesimal varia-
tions in charge distribution. The variation in energy associated with
the redistribution is, thercfore, an infinitesimal of second order which
may be neglected with respect to (2).

Consider the dielectric material contained initially in a volume dv;.
The displacement is accompanied by a deformation, so that after the
strain this element of matter may occupy a volume Eq. (54), page 92.

3 dve = (1 4 V +8) dvs.

The mass of the element is conserved and hence if the density of matter
is denoted by = we have

(4) T1 dU1 = T2(1 + V. S) dvl,
or, for an infinitesimal change,
(5) fr=r1p—11=—1V-s.

The inductive capacity e is a function of position in the diclectric and
also of the density 7. The element which after the displacement finds
itself at the fixed point r was located before the displacement at the
point r — s, and the contribution to de arising from the inhomogeneity
of the dielectric is therefore —s -« Ve. If it be assumed that e depends
only on r and 7, the total variation is

Je Je
(6) 65——S-Ve+5;51'——S-Ve——rg;v‘s.
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The change in electrostatic encrgy associated with the deformation is

) =—f(F2Ve-s+E2r——V s)dv
Now

Jde Jde Jde
2 = 2r — — 8.V 2r — )
(8) E T Ves=V. (E o s> s (E T 67)

and hence

©®) 6U=f[%E“’Ve—%V(E%%{)]-sdv—}—f%v-(E%g—:s)dv.

These volume integrals are to be extended over the entire field. The
surfaces of the conductors, within which the field is zero, shall be denoted
by Sy, Sz, . . ., Sa. A surface Sp is drawn to enclose within it all
conductors and all parts of the diclectric where the ficld is of appreciable
intensity. Within the volume bounded extcrnally by Se and internally

by Si, Si ..., S. the function E%* = s is continuous. Thus the

divergence theorem may be applied to the second integral of (9), giving

1 66 o
(10) fév-(E275;s)dv—EL E~T—s n da.

Over S, the intensity of E is zero, while over the rigid conductors S;,
, S» the normal component of s has been assumed zero. The
integral (10) therefore vanishes.

If one neglects the cffect of gravitational action, it may be assumed
that the only body force f is that exerted by the field on elements of
dielectric. The work done by this force per unit volume during the
displacement is f - s, and hence according to the principle of conservation
of energy,

(11) ff-sdv=—f[ EZVe—-1~V<2——]-sdv.

The displacement s is arbitrary and we find
N 1 O¢),
(12) f= 2EVE+2V(E2T-(;’—7-_)

In case there are also charges distributed throughout the dielectric, a
term pE must be added.

The last term of (12) is associated with the deformation of the dielec-
tric. The assumption that ¢ can be expressed as a function of position
and density alone is admissible for liquids and gases but is not necessarily
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valid in the case of solids. To a very good approximation the relation
of dielectric constant x, (¢ = xep) to density in gases, liquids, and even
some solids is expressed by the Clausius-Mossotti law,

xk—1 _ 3Cr
k+ 2 “1-0Cr

where C is a constant determined by the nature of the dielectric. Through
a simple calculation this leads to
de

(14) ro =3 k= Dk+2).

= Cr, or k—1

(13)

The force exerted by the field on a unit volume of a liquid or gas is,
therefore,

(15) f= —g-"Esz + gv [E2(k — 1)(k + 2)].

2.22. Body Forces in Solids.—The volume force (12) exerted on a
dielectric by an electrostatic field has been derived on the assumption
that the variation in the inductive capacity ¢ during an infinitesimal
displacement can be accounted for by the inhomogeneity of the dielectric
and the change in density associated with the deformation. It is clear,
however, that deformations in solids may occur without any accompany-
ing change of volume, and that a rigorous theory must therefore express
the variation of € in terms of the components of strain. Since the
dielectric is presumed to be in static equilibrium, the mechanical forces
exerted by the field will be balanced by elastic forces induced during the
deformation. Our problem is to find these forces and to determine the
resultant deformation of the dielectric due to the applied field. We shall
confine the investigation to media whose electric and elastic properties in
the unstrained state are tsotropic. Since the variations in e are dependent
on the components of strain, it is hardly to be expected that a solid will
remain electrically isotropic after the strain is applied. Our first task
is to set up an expression for the electrostatic energy of an anisotropic
dielectric.

In Sec. 2.8 it was shown that the electrostatic energy density within
a dielectric is

(16) u=j;DE-dD

without regard to the relation of D to E. We shall now assume that in
an anisotropic medium the components of D are linear functions of the
components of E.

3
a7 D; = Y eals, (G=1,23).
J=1
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Since the quantities Ei, D; transform like the components of vectors it is
clear that the e; are the components of a tensor of second rank. By a
rotation of the coordinate system this tensor may be referred to principal
axes defined by the unit vectors a, b, ¢ such that

(18) Da = GaEa, Db = ebEb, Dc = é.-,Ec.
Then
19) E.dD = ¢E.dE, + EydE, 4 e.E.dE. = D . dE.

The energy density in an anisotropic, linear medium is, therefore,

1
(20) u=3E E > BB (e = ).

We have next to calculate the change in the energy resulting from a
variation of the parameters e;; while holding the charges fixed. A review
of the proof of Sec. 2.10 shows that it may be adapted directly to our
present needs. To avoid confusion of subscripts we shall replace the
index 1 in Sec. 2.10 by a prime to denote initial conditions. Thus the
dielectric in the field was characterized initially by the coefficients €
Within a region V), these values are changed to e,:. The total change in
the energy of the field, according to Eq. (49), page 113, is

@1) U=%f (E-D' — E' - D) dv,
V1

or in virtue of (17)

22) U= -—lf [(e11 — ) ELE] + (e22 — €05) BBy + (€33 — €h3) E3Ef
+ (e12 — €12) (B2EY + ErE}) + (exs — ehg) (E3E) + E,E})
+ (&1 — €,) (ELE5 + E3EY)] do.

In case the variations in ¢, are infinitesimal, this becomes

(23) 5U = ——21- fv (aénE% + 5622E§ + 5633E§ + 25612E1E2

+ 25623E2E3 + 25631E3E1) dv.
Finally, the parameters ¢;; must be related to the components of
strain. For sufficiently small deformations we may put
3 3
(24) Ses = 22 ait, Serm,  aif =
=1 m=1

O¢€;x
oe 2

The 81 coefficients aj%, are the components of a tensor of rank four. In
virtue of the relations ¢ = exj, €im = emi, we have

'k — ok — k
(25) at = i = alk,.
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Then of the 81 — 9 = 72 nondiagonal terms, only 36 are indeperdent and
the total number of independent coeflicients is reduced to 36 + 9 = 45.
To reduce the system still further use must be made of symmetry condi-
tions and we now introduce the limitation to a medium which is initially
isotropic,! though not necessarily homogencous.

The variation in the density of the clectrostatic energy due to a small
deformation is

(26) Su= —>x 2 2 2 2 GEE By Seim.

=11l=1 m=

The coefficients ai%, have fixed values characteristic of the diclectric at
each point, but varying from point to point in case the medium is inhomo-
geneous. Now since the dielectric is assumed to be initially isotropic,
Eq. (26) must be invariant to a reversal in the direction of any coordinate
axis and to the interchange of any two coordinate axes. Thus a reversal
of the axis z; reverses the signs of E; and e, k # j, but leaves all other
factors unchanged. As a consequence, certain coefficients must vanish
if du is to be unaffected by the reversal or exchange of axes. In fact it is
evident that all but three classes of cocfficients are zero, namely:

(27) a% = ay, a%ik = Qg ajllg = Qs, (.7 7= k)'
Equation (26) is thereby reduced to

(28) ou = '—g{a]_(El 5611 + E2 5622 + E3 5633)
+ a. (E2 + E? ) dey + (E2 EZ) deaa + (Ez + E) 5633]
+ 4a3(ELE; de1z + EE; degs + E3E) desn)}.

Now éu must also be invariant to a rotation of the coordinate axes
and this implies a further relation between the parameters ai, a,, as.
The condition is easily found by rewriting (28) in the form

3 3
29) ou= ——%[(al — a; — 4ay) E E3 de;; + a B* 2 dej;
=1 j=1

+ 4a3(E} de1s + Ej deqe + E3 dess + E1Eq ey,
+ E,E; dess + E3E, 5631)])

3

in which E? = E? + E? 4+ E} The sum 2 e;; is, according to (54),
i=1

page 92, the cubical dilatation, a quantity not dependent on the coordi-

nate system. The middle term of (29) is, therefore, invariant to a rota-

tion of the reference system. The same is true also of the last term; for

if the strains e;; are replaced by the coefficients 2a;. of Sec. 2.2, this last

1 The anisotropic case is discussed by PockeLs, Encyklopidie der mathematischen
Wissenschaften, Vol. V, Part II, Teubner, 1906.
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term is an invariant quadric similar in form to the strain quadric of
Eq. (36), page 89. Only the first term of (29) is variant with the coor-
dinates and it is necessary that!

(30) a; — a; — 4as = 0, a; = %(al - a2).

The variation in the density of electrostatic energy due to the local
deformation, or pure strain, of an isotropic dielectric is finally

(31) 6u, = —:};[(alEﬁ + agEg + azEg) 6611 + (azE% + a1E§ + a2E§) 5622
+ (a:F% + asE} + a1E%) dess
+ (al - az)(ElEz de1s + EqE;5 deqs + EE, 5631)]-

The subscript s has been added to emphasize the fact that this is only
that portion of the total variation which arises from a pure strain. The
most general deformation of an clastic medium, it will be remembered,
is composed of a translation, a local rotation defined by (33), page 88,
and the local strain defined by (29), page 88, of which we have taken
account in (31). In an anisotropic dielectric the local rotation gives
rise to variations in the tensor components e;x and consequently a system
of torques must act on each volume element.? In the initially isotropie
medium considered here these rotational variations are absent. The
variation in the density of electrostatic energy associated with an infini-
tesimal translation ds of an inhomogencous dielectric was calculated in
Sec. 2.21.

(32) Su, = LEVe- s,

where ¢ is the inductive capacity in the unstrained, isotropic state.
A deformation of the dielectric occasions a variation in the elastic
energy as well as in the electrostatic energy. According to (68), page 94,

(33) Bu, = ()\1V «S + 2)\2811) 8011 + ()\,V *S + 2)\2822) 5622
4 (MV « s 4 2N\se33) deas + Na(ern dera + €3 deas + €31 Bean).

Now the work done by the mechanical forces acting on the dielectric
within the volume V; and over the surface S; bounding V, during an
infinitesimal displacement s must equal the decreasc in the total available
energy, elastic plus electrostatic. We write, therefore, for the energy
balance:

! The procedure followed here in reducing the constants of electrostriction to two
is identical with that which leads to the reduction of the elastic constants c,, Sec. 2.3,
to the two parameters A\; and X;. See, for example, Love, “Treatise on the Mathe-
matical Theory of Elasticity,” Chap. VI, 4th cd., Cambridge Press, 1927. The
determination of these constants for various classes of anisotropic crystals was made
by Voigt, “Kompendium der theoretischen Physik,” Vol. I, pp. 143-144, Leipzig,
1895. His results are cited by Love, loc. cit.

1 PockELs, loc. cit., p. 353.
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(39) Llf-asdv+fglt-8sda= —-val(u.—}—u.+u¢)dv.

It will be convenient to resolve the total body force per unit volume f
arbitrarily into the two components £’ and "/, where
(35) ff = —1E?Ve

is the contribution resulting from the inhomogeneity of the dielectric
and where £/ is the foree associated with a pure strain. The latter must
satisfy the relation

(36) j;xf”-ésdv_}_f&t".asda = ——6fo (ue + u,) dv.

The resolution into translational and strain components of body and
surface force is such that

(37) fV fd+ f(tda=0, [ v+ [ t'da=o0.
Then by Sec. 2.3, the left-hand side of (36) may be transformed to

(38) 6W" = fVl ( ;’1 6811 + Té; 5622 + ’” 5633 ‘+‘ T 5612 + T;é 5623
+ T3 desy) dv.

The variations in the strain components are arbitrary and hence on
equating coefficients of corresponding terms from (31) and (33) we obtain

M= —(MV -8 + 2Nen) + $(a1E? + a.EE + a.E?),
Tis = —(MV - S + 2Mex) + $(a:F} + a:F} + a.F3),
33 = —(MV -5 + 2Nsess) + 3(a:E} + a.E} 4 a,E}),
(39)

a, — az
i’
12 = —N\ge1z +

EIE’Z;

T3z = —X\zess + E'zEa,

T3 = —Xeea + — G E:E,.

These are the components of a stress tensor whose negative divergence
gives us the resultant body force associated with a strain. If the body
force is solely of electrical origin, as will be the case when gravitational
action is neglected, the divergence of the elastic stresses will vanish and
we obtain for the z-component of force:

@) i =—32 - (@i} + 0} + aaFY) — [(a, — a3)EsEy)

2 az ((a1 — a2) E.EY,
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with analogous expressions for fy and fi’. To these are added the com-
ponents of f from (35) to obtain the total body force exerted by an
electrostatic field in an isotropic dielectric.

The parameters a; and a; must in general be determined for a given
substance by measurement. Physically the parameter a; expresses
the increment of e corresponding to an elongation parallel to the lines of
field intensity, while a, determines this increment for strains at right
angles to these lines.

If the dielectric within V' is homogeneous and contains no charge, the
gradient of e is zero and the vector E satisfies V-E =0, V X E = 0.
In this case f = 0 and the resultant force £’ = £ reduces to

(41) f = —L(a; + a;)VE™

In a liquid or gas the shearing strains ej are all zero and hence by
Eqs. (24) and (27) a3 = @} = 0, ay = a; = a. Furthermore there can
be no preferred directions in the dielectric properties of a fluid and con-
sequently e = 0 when j 5 k, e11 = €2 = €33 = e. In place of (24) we
may write:

Je de Je
(42) de = 52-1—1 5811 + 5—6—2—2 5822 + 5& 5933.
Denoting the cubical dilatation by A = e + €33 + ess, we have
Je de
(43) a—-é—e‘;j—-’é-xy de = a 6A.
Now by (5)
de Je 0T Jde
(44) ETNR = TN =

and consequently the total force per unit volume exerted by an electro-
static field on a fluid dielectric is

v Jo (0 2)
as was deduced directly in Sec. 2.21.

The derivation of the volume forces from an energy principle as in
the foregoing paragraphs seems to have been proposed first by Korteweg!
and developed by Helmholtz?> and others. A complete account of the
theory with references to the older literature is given by Pockels.? The
energy method has been eriticized by Larmor* and Livens® who propose

1 KorTEWEG, Wied. Ann., 9, 1880.

2 HeLmuaOLTZ, Wied. Ann., 18, 385, 1881.

3 PockeLs, Arch. Math. Phys., (2) 12, 57-95, 1893, and in the Encyklopéadie der
mathematischen Wissenschaften, Vol. V, Part II, pp. 350-392, 1906.

¢ LARMOR, Phil. Trans., A. 190, 280, 1897.

s Livens, Phil. Mag., 32, 162, 1916, and in his text ‘The Theory of Electricity,”
p. 93, Cambridge University Press, 1926.

(45) =
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alternative expressions for the forces. These criticisms, however, do not
appear to be well founded. Objections to the particular form of the
energy integral employed by Helmholtz are satisfied by a more careful
procedure. Livens has undertaken a generalization of the energy method
to media in which the relation between D and E is nonlinear in order to
show that it leads to absurd results; in so doing he has omitted the essen-
tial term associated with the deformation. The alternative expressions
for the volume force proposed by Livens may on the other hand be derived
very simply, in both the electric and magnetic cases, by assuming that
polarized matter is equivalent to a region occupied by a charge of density

p' = =V .P and current of density J' = %—1: + VXM (¢f. Sec. 1.6).

The forces may then be calculated exactly as in Sec. 2.5. Such a pro-
cedure would be justifiable were the medium absolutely rigid. According
to the Livens theory one calculates the force exerted by the field on the
polarized matter, and then introduces these forces into the equations of
elasticity to determine the deformation. The deformation, however,
affects the polarizations and the two parts of the problem cannot, in
general, be handled separatcly in any such fashion. Under certain
conditions, particularly in fluids, the two theories lead to identical results,
but in most circumstances they differ. There appears to be little reason
to doubt that the energy method of Korteweg and Helmholtz is funda-
mentally sound.

2.23. The Stress Tensor.—We shall suppose again that S, is a closed
surface drawn within an isotropic dielectric under electrical stress. The
properties of the dielectric are assumed to be continuous across this
surface and at all interior points; it is not, in other words, a surface of
discontinuity bounding a whole dielectric body. The total force exerted
on the matter and charge within S; is

1 14
(46) F = fv, (pE — 5 Bve+ £ )dv.

We wish to show now that the force F can be represented by a surface
integral over S;. To this end it is only necessary to express the integrand
as the divergence of a tensor. The term f”/ appears already in this form
in (40) and therefore needs no further transformation. In the first term
we replace p by V + D and then make use of the identity

4" E*Ve = V(eE?) — 2(D - V)E,
which holds only when Vv X E = 0. It follows without difficulty that the
components of the vector pE — $E2Ve are

3
1 . Jde a ) _l_(?_ .
(48) oB; — 5 B* 5> 2;,; (EiDy) = 53, (- D),
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and the integrand of (46) can thus be expressed as the divergence of a
tensor 28,

(49) pE — 3E*Ve+f' = v .18,
whose components S;; are tabulated below.
1
Su =5 (Bl — E} - B}) — 5 (a1 + a:B} + a:F3),

ay

Sz = eE©\E; + 2 —2— E.\E, = Sy,
(50) 2
Sla = éElEs + 2 ) it E1E3 = Sal,
Su=5(F — By — ) — (a8} + aaB} + asF3),

.............................................

Upon applying the divergence theorem expressed in Egs. (22) and
(23), page 100, it appears that the force F cxerted on the charge and
dielectric matter within S; is equivalent to the integral over S; of a
surface force of density

(51) t= (e + 9%’3) E(E-n) — %—%E’zn,

where n is as usual the outward unit normal to an element of S;. To
maintain equilibrium an equal and opposite force per unit area must be
exerted by the material outside S; on the particles composing ;.

The tensor components (50) and the surface force t differ from the
corresponding expressions developed for free space in Sec. 2.5 in that €
is replaced by e and the deformation is accounted for by the constants a,
and a,, thus giving rise to additional terms which may well be important.
At any point on the surface S; the vector t lies in the plane of E and n,
but is no longer oriented such that E bisects the angle between n and t
as was the case illustrated by Fig. 17, page 102.

2.24. Surfaces of Discontinuity.—Throughout the previous analysis
it has been assumed that abrupt discontinuities in the properties of the
medium, such as must occur across surfaces bounding dielectric bodies,
may be replaced by layers of rapid but continuous transition. As the
transition layer becomes vanishingly thin, a discontinuity is generated
that gives rise to infinite values for the gradient of e. But the volume
within the layer also vanishes and we must seek the limit of the force f
per unit volume to learn what total force is exerted on the resultant
surface of discontinuity.

In Fig. (23) the crosshatched area represents a section of a transition
layer between dielectric media (1) and (2). The force exerted by the
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field on the matter and charge within this layer can be found by inte-
grating (51) over the two faces. The two essential parameters that
characterize an isotropic dielectric will be denoted as

as — ay € az.

(52) a=et—"5— B = 5

The force acting on unit area in the direction from medium (1) towards
(2) as the thickness of the layer approaches zero is then

(53) t = [«E(E - n)]; + [«E(E - n)], — [BE*n], — [BE*n],,

the subscripts indicating that the values are to be taken on either side

of 8. It should be noted that n; = —n,.
Very few reliable measurements of the constants a; and a, for solids
have been reported in the literature. The traction t may, however, be
computed in the case of an interface separat-

St ing two fluids to which the Clausius-Mossotti
_ . ) . law can be applied. According to Eqs. (43)
Dielectric (1) Dielectric (2) and (14),
(54) a, = a; = —Tgf =~ - D +2).
nW ™ Then for a fluid,
(55) a=¢ B= —-‘é’(nz—zx—z).

-4/2 At the interface the tangential components of

S, E are continuous, E;; = E;;, and in the

_Fie. 23.—Section of a tran- absence of surface charge we have also

E'itéﬁfitrilf VO eeparating WO B, = eF.;. Theficld Ein (53) may, there-

fore, be expressed in terms of its intensity in

either medium. The values of o and 8 from (55) introduced into (53)
lead to

(56) t= %"{Kl (K22 + 4k2ks — 6kkd — 32 + 26 + 2)E2,
2

+ [kake — 2) — ka(xs — 2)]E,21} ng.

The traction exerted by the field on the interface of two fluids is normal
to the surface, directed from medium (1) toward (2), a necessary con-
sequence, of course, of the fact that a fluid supports no shearing stress.

In case medium (2) is air, k2 may be placed approximately equal to
unity. Equation (56) then reduces to

€o(K1 - 1)2

(57) t=

(2E%; — E)ng.
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The traction is a maximum when E is normal to the surface, and is in
the direction of diminishing inductive capacity (cf. page 114). However,
if E lies in the surface, E,; = 0, and the traction becomes negative,
implying a pressure exerted by the field on dielectric «i.

Another case of interest is that in which medium (1) is a conductor.
Then E; = 0, Eiy = 0 and (53) reduces to

(58) t=(a— AEin = S B

all quantities having their values just outside the metal surface in the
dielectric (1). In casec this dielectric is a fluid,

1 O€\ ., 10 .
(59) t= 5(6 +TE_) E,,n = 5-57: (E’T)Eﬂn.

These expressions are valid whether or not the conductors are charged,
for E, is reclated to the surface charge by ¢E, = w. But Egs. (58) and
(59) do not represent the resultant force per unit area exerted on the surface,
for they will be compensated to a certain degree by stresses or pressures
generated by the field within the diclectric. These we shall now investi-
gate. Only in case medium (1) is free space or a gas of negligible induc-
tive capacity can this internal pressure be ignored. We have then
Jde

T = 0 and (59) becomes

(60) = }¢B%in = jwE,n,

where w is the charge per unit area.

2.2b. Electrostriction.—The elastic deformation of a dielectric under
the forces exerted by an electrostatic field is called electrostriction. The
displacement s at any interior point of an isotropic substance must
satisfy Eq. (70), page 95:

(61) f + ()\1 + )\2)VV o8+ N\V2% = 0,

where now the body force f = f+ f”’ is given in general by (35) and
(40). To these there may be added, when the occasion demands, a
force Ep to account for a volume charge, and a gravitational force g.
Solutions of (61) must be found in an appropriate system of coordinates.
These solutions are subject to boundary conditions over a surface bound-
ing the dielectric. On this surface either the applied stresses or the
displacement must be specified. Thus if the surface is free, stresses
will be exerted upon it by the field and from these may be determined the
boundary values of s.

In solids the effect is small and easily masked by deformations arising
from extraneous causes. The attractive forces between metal electrodes
in contact with the dielectric may bring about deformations within the
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volume of the dielectric which have nothing to do with electrostriction.
Experimental data on the subject are not abundant and frequently
contradictory. The theory of electrostriction in a cylindrical condenser,
however, has been developed in considerable detail. The method
described above was applied by Adams,! and his results were later
reconciled by Kemble? with the earlier work of Sacerdote.®? An extensive
list of references is given by Cady in the International Critical Tables.4

The electrostriction of fluids is more amenable to calculation, for the
shearing modulus A; is then zero and \; is equal to the reciprocal of
the compressibility. According to (73), page 95, the pressure within the
fluid is related to the volume dilatation by p = —\V .- s. This expres-
sion, together with the body force f from Eq. (45), introduced into (61),
leads to the relation

1 1 3
(62) —5 B*Ve + §v(Ezra-f) —vp=0

between pressure and field intensity at any point in the fluid. To inte-
grate this equation the functional dependence of both pressure and
inductive capacity on the density r must be specified. In a chemically
nomogeneous liquid or gas, one may assume that p = p(r), € = ¢(7),
and that the dependence on position is implicit in the independent variable

7. 'Then
V(E29—er> =1V (E2 gf) + E”éE vr,
or dr dr
(63) ;
Ve = —d-; VT,
and hence (62) reduces to
1 o de) _ 1

A scalar function P(p) of pressure is now defined such that
(65) P@) = | Lap, vwP=1vp
Do 7(p) ! T ’

where po is the pressure at a point in the fluid where E = 0. If dsis an
element of length along any path connecting two points whose pressures
are respectively p and po, then VP - ds = dP, and (64) is satisfied by

1 1. . de
6 Sdp =5 B2 25
(66) Lo P =3 g
! Apams, Phil. Mag., (6) 22, 889, 1911.
2 KeMBLE, Phys. Rev., (2) 7, 614, 1916.
3 SACERDOTE, Jour. physique, (3) 8, 457, 1899; 10, 196, 1901.
¢ International Critical Tables, Vol. VI, p. 207, 1929.
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In liquids dp =\, %, Eq. (77), page 96, or

P —po

(67) = Tob M .

The parameter A1, the reciprocal of the compressibility, is a very large
quantity and hence r ~r,. For liquids, therefore,
de

1
(68) P—Po=3 E2r 7

or, upon applying the Clausius-Mossotti law,
(69) p—po =3 E¥c — (x + 2).

In gases (67) is replaced by the relation p = 7%7—1, where R is the
gas constant, T the absolute temperature, and M the molecular weight.!
2.26. Force on a Body Immersed in a Fluid.—The results of our

analysis may be summed up profitably by a consideration of the following

Fia. 24.—A solid body immersed in a fluid dielectric.

problem. In Fig. 24, a dielectric or conducting body is shown immersed
in a fluid. An electrostatic field is applied and we desire an expression
for the resultant force on the entire body. Let us draw a surface S; enclosing
the body and located in the fluid just outside the boundary S. On every
volume element of the solid there is a force of density

(70) f = pE — $E?Ve + {",
where £/ is given by Eq. (40), and on each element of the surface of dis-

continuity there is a traction given by (53). Rather than evaluate the
integrals of f and t over the volume and bounding surface S, we need only

! ABranam, BeckEr, and Doueart, “The Classical Theory of Electricity and
Magnetism,” p. 98, Blackie, 1932.
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calculate the integral of t from Eq. (51) over the surface S;. Since S;

lies in the fluid, a; = a2 = —7 g; and (51) reduces to
= < T 9¢ p
(71) t =¢E(E-n) 5 En + 33 E™,

where n is the unit normal directed from the solid into the fluid and e
and 7 apply to the fluid. Now the integral of this traction over S; gives
the force exerted directly by the field on the volume and surface of the
body. But the field, as we have just seen, also generates a pressure
(68) in the fluid which at every point on 8; acts normally tnward, t.e.,
toward the solid. The resultant force per unit area transmitted across
S is, therefore, equal to (71) diminished by (68), and the net force
exerted by the field on the solid—the force which must be compensated
by exterior supports—is

(72) F = L l [eE(E-n) - gEzn] da.

Thus to obtain the resultant force on an entire body we need not know
the constants a; and a, within either the solid or the fluid, for the forces
with which they are associated are compensated locally by elastic stresses.
Furthermore, since the fluid is in equilibrium, it is not essential that S,
lie in the immediate neighborhood of the body surface S. The net force
on the liquid contained between S; and an arbitrary enclosing surface S,
is zero and consequently

(73) fs [GE(E .n) — gEzn] da = fs , [eE(E .n) — -25E2n] da,

if we adhere to the convention that n is directed outward from the enclosed
region. The surface S, may, therefore, be chosen in any manner that
will facilitate integration, provided only that no foreign bodies are
intersected or enclosed.

In case the solid is a conductor, the field E is normal at the boundary.
The resultant force on an isolated conductor is then

, _1 0 _1
(74) F—QLleEnda—EL‘wEda,

where w is the charge density on S. This last is true, of course, only for a
surface S; just outside the conductor.

It should be evident now that the force on one solid embedded in
another can be calculated only when the nature of the contact over their
common surface is specified; the problem is complicated by the fact that
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tangenvial shearing stresses as well as normal pressures must be com-
pensated by elastic stresses across the boundary.

FORCES IN THE MAGNETOSTATIC FIELD

2.27. Nonferromagnetic Materials.—The analysis of Sec. 2.22 may
be applied directly to the magnetostatic field in all cases where the rela-
tion between B and H is of the form

3

(1) B,’ = 2 #ika (J =1, 2) 3)’
k=1

with the components u;x of the permeability tensor functions possibly of

position but independent of field intensity. The change in magnetic

energy of an isotropic body resulting from a variation in u is given by
Eq. (52), Sec. 2.17.

@) ‘ W=%fmm@,

and the generalization of this expression to an anisotropic body occupying
the volume V, is

(3) oT = %J;’ (5F11H§ + 5#22H§ + 5#33H§ + 25M2H1Hz
+ 28}1.23H2H3 + 28;1.31H3H1) dv.

This variation may be expressed in terms of the components of strain,
assuming & linear relation between the components of the permeability

and strain tensors.
3 3

. aJ
4) b = > Voo, bh =
1=1 m=1 ™

If we assume further that in the unstrained state the medium is isotropic,
the coefficients bk, reduce to two,

— Ouii T TR S
©) b=k b=t g bi—b) =5

so that the variation in magnetic energy due to a pure strain is

© 67 = 3 [ 1GuHE b3+ BT o Ol + 0T + D) e

+ (boH? + boHE + biHE) dess + (ba — bz)(H1H: der2
+ H2H3 5623 + Hst 5631)] dv.

Equation (6) differs formally from (31), page 143, only in algebraic
sign. Now the electrostatic energy U represents the work done in
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building up the field against the mutual forces between elements of
charge. The magnetic energy T, on the other hand, represents work
done against the mutual forces exerted by elements of current, plus
the work done against induced electromotive forces. The work required
to bring about a small displacement or deformation of a body in a mag-
netic field is done partly against the mechanical forces acting on the body,
partly on the current sources to maintain them constant.! When the
work done against the induced electromotive forces is subtracted from
the total magnetic energy, there remains the potential energy of the
mutual mechanical forces, and this we found in Sec. 2.14 to be equal and
opposite to T.

) 3U = —oT.

The forces exerted by the field on the body within V1 are to be calculated
from (6) with sign reversed.

In complete analogy with the electrostatic case we now find that
the body force exerted by a magnetic field on a medium which in the
unstrained state is isotropic, whose permeability is independent of field
intensity, which is free of residual magnetism, but which may carry a
current of density J, is

3
®) fi=n( x H); - H 2L 2 2%[(& — ba)H,H]
i —

19 \
5 a5, 2H)-

If the medium is homogeneous and carries no current, (8) reduces to

(9) f= —}(b1 + b)) VH2
Inagasorliquidby = b, = —r _‘;i:, and (8) can be written in the form
_ 1 1 ou
(10) f—p]xH—ﬁﬂzw+~v H*r =)
2 ar

As in the electrostatic case, the body force whose components are
given by (8) can be expressed as the divergence of a tensor 2S,

(11) f=v.15,

whose components are

sﬁ_—;(,‘_{_lﬁ_;ﬂ)}zg_‘%b?[p’

! This remark does not apply if the source is a permanent magnet; in that case the
energy of the field is not given by T = 3/B H dv.
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(12)

b — b .
S,‘k=(ﬂ+22 1H,‘H;,, 0¢k)
The force exerted by the magnetic field on the matter within a closed
surface 81 is, therefore, the same as would result from the application over
8 of a force of surface density

(13) t=(“+ll’—-g——b‘)n(n-n)—~”—2§£2mn.

Likewise the force per unit area exerted on a surface of discontinuity
can be obtained by calculating (13) on either side of the surface. The
result is the magnetic equivalent of (53). A case of particular importance
is that of a magnetic body immersed in a fluid whose permeability to a
sufficient approximation is independent of density and equal to o, the
value in free space. Let the body be represented by the region (1) in
Fig. 23 and the fluid by the region (2). The force per unit area on the
bounding surface is then found to be

(14) t=tito [ o+ (ﬁl_’";_'“’) Hﬁl] n, + %2 Hin, + O - % .|,

where the constants by, b, apply to the magnetic body and H; is measured
just inside its surface.

Not very much is known about the parameters b, and b,, although
there are indications that they may be very large. They must, of course,
be determined if the elastic deformation of a body is to be calculated.
In most practical problems, fortunately, one is interested only in the net
force acting on the body as a whole. The forces arising from deforma-
tions are compensated locally by induced elastic stresses and conse-
quently terms involving by and b, will drop out. As in the electric case,
the resultant force exerted by a magnetostatic field on a nonferromagnetic
body immersed in any fluid is obtained by evaluating the integral

(15) F = L 1 [yH(H -n) — L2‘H2n] da

over any surface enclosing the body.

2.28. Ferromagnetic Materials.—The preceding formulas apply to
ferromagnetic substances in sufficiently weak fields. If, however, the
permeability 4 depends markedly on the intensity of the field, the energy
of a magnetic body can no longer be represented in the form of Eq. (2)
or (3) and we must use in their place the integral derived in Sec. 2.17.

B
) T=i| (m-B-H-B,—H.B+2| H.dB)dn.
2 "1 0
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An analysis of the volume and surface forces for such a case has been
made by Pockels,* who also treats briefly the problem of magnetostriction.
The phenomena of magnetostriction are governed, however, by several
important factors other than the simple elastic deformation considered
here. A specimen of iron, for example, which in the large appears
isotropic, exhibits under the microscope a fine-grained structure. The
properties of the individual grains or microcrystals are strongly aniso-
tropic. Of thesame order of magnitude as these grains but not necessarily
identified with them are also groups or domains of atoms, each domain
acting as a permanent magnet. In the unmagnetized state the orienta-
tion of the magnetic domains is random and the net magnetic moment
is zero. A weak applied field disturbs thesc little magnets only slightly
from their initial positions of equilibrium. A small resultant moment is
induced and under these circumstances the behavior of the iron may be
wholly analogous to a polarizable diclectric in an electric field. As the
intensity of the field is increased, however, the domains begin to flip over
suddenly to new positions of cquilibrium in line with the applied field,
with a consequent change in the clastic properties of the specimen. A
dilatation in weak fields may be followed by a contraction as the field
becomes more intense, quite contrary to what would be predicted by the
magnetostriction theory when applied to strictly isotropic solids. We
are confronted here with a problem in which the macroscopic behavior of
watter cannot be treated apart from its microscopic structure.

FORCES IN THE ELECTROMAGNETIC FIELD

2.29. Force on a Body Immersed in a Fluid.—The expressions

(1) SU = —%fE’zaedv, 6T=%fH26udv,

for the energy of a body in a stationary electric or magnetic field have
been based in Secs. 2.10 and 2.17 on the irrotational character of the
vectors E and H — H, as well as upon their proper behavior at infinity.
In a variable field these conditions are not satisfied and therefore (1)
cannot be applied to the determination of the force on a body or an ele-
ment of a body without a thorough revision of the proof. At best the
analysis will contain some element of hypothesis, for our assumption that

the quantities E - —(—’;T) and H. %3 represent the energy densities in an

electromagnetic field is, after all, only a plausible interpretation of
Poynting’s theorem.

1 PockanLs, loc. cit., p. 369.
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In Sec. 2.5 it was shown that the total force transmitted by an elec-
tromagnetic field across any closed surface = in free space is expressed
by the integral

2 F= f [eo(E-n)E +—1~(B-n)B —1(e0E2+lB2>n]da.

z Ko 2 Ko
Subsequently we were able to demonstrate for stationary fields that if
the surface 2 is drawn entirely within a fluid which supports no shearing
stress, the net force is given by (2) if only we replace ¢ and po by their
appropriate values in the fluid.

@ F= L [e(E .n)E + p(H.n)H — :}2 (eE? + uHZ)n] da.

This is the resultant force on the charge, current, and matter within =.
The matter within Z need not be fluid and there may be sharp surfaces of
discontinuity in its physical properties; the rclations between E and D,
and B and H, however, are assumed to be linear.

Now since (2) is valid in the dynamic as well as in the stationary
regimes, there is reason to suppose that (3) may be applied also to variable
fields. It is not difficult to marshal support for such a hypothesis,
particularly from the theory of relativity. Howecver, the right-hand side
of (3) must now be interpreted in the sense of Sec. 2.6 not as the force
exerted by the field on the matter within = but as the inward flow of
momentum per unit time through Z. We denote the total mechanical
momentum of the matter within Z, including the ponderable charges, by
Gues, and the electromagnetic momentum of the field by G,. Then

@) L (Gum+6)= f [e<E *)E + w(H - m)H — 3 (B + um)n] da.

The surface integral (4) may be transformed into a volume integral.
For in the first place:

) Z fz E'nda =, J; V(<E?) do.
Then
6 $V(E?) = 3E*Ve + D-V)E+ D X V X E.

@ ©-vE=10E+ (-% (D,E) + 'a% (D.E) — EV-D.

®) fv [;;—95 (D.E.) + ;% (DB + 2 (D,E,,)] i = L (D - ), da,

and this obviously cancels the z-component of the vector ¢(E - n)E in
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(8). Proceeding similarly with the magnetic terms and then making
use of the relations V X E = —0B/df, v X H = %’i— +J,V:D = p, we

are led to

©) %(GM+G,)=fv[pE+JxB—%E2Ve—%H*w

3
+ 5 (D X B)] dv.

The increase in the mechanical momentum is the result of the forces
exerted by the field on charges and neutral matter.

d
(10) F = % Gowan

If, therefore, the right-hand side of (9) can be split into two parts identi-
fied with Gpe and G., the force can be determined. Just how this
resolution is to be made is by no means obvious and various hypotheses
have been suggested.! According to Poynting’s theorem the flow of
energy, even within ponderable matter, is determined by the vector

(11) S=EXH joules/sec.-meter?.

Abraham and von Laue take for the density of electromagnetic
momentum

(12) go = HoeeS = Z%S kg./sec.-meter?,

Then according to this hypothesis, the resultant force on the charges,
currents, and polarized matter within = is

_ 1 1., Kmke — 1 3S
(13) F= fV (pE +JXB 2E2Ve 2H Vu + po 797) dv,

or
(14) F = L [e(E *n)E + p(H-n)H — % (eE* + sz)n] da

1d
—EEELEX Hdv.

Practically, the exact form of the electromagnetic momentum term
is of no great importance, for the factor 1/c? makes it far too small to be
casily detected.

! Paunl, Encyklopidie der mathematischen Wissenschaften, Vol. V, Part 2,
pp. 662-667, 1906.
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On the grounds of (13) it is somectimes stated that the force exerted
by an electromagnetic field on a unit volume of isotropic matter is

(15)  £=pE+J X B — 2 EVe — 2wy 4 e 2138,
Such a conclusion is manifestly incorrect, for (15) does not include the
forces associated with the deformation. As previously noted, these
strictive forces are compensated locally by elastic stresses and do not
enter into the integrals (13) and (14) for the resultant force necessary
to maintain the body as a whole in equilibrium.



CHAPTER II1
THE ELECTROSTATIC FIELD

From fundamental equations and general theorems we turn our
attention in the following chapters to the structure and properties of
specific fields. The simplest of these are the fields associated with
stationary distributions of charge. Of all branches of our subject, how-
ever, the properties of electrostatic fields have received by far the most
adequate and abundant treatment. In the present chapter we shall
touch only upon the more outstanding of these properties and of the
methods which have been developed for their analysis.

GENERAL PROPERTIES OF AN ELECTROSTATIC FIELD
3.1. Equations of Field and Potential.—The equations satisfied by
the field of a stationary charge distribution follow directly from Max-
well’s equations when all derivatives with respect to time are placed
equal to zero. We have, then, at all regular points of an electrostatic
field:

MVXE=0, (I)V-D=op

According to (I) the line integral of the field intensity E around any
closed path is zero and the field is conservative.

The consecrvative nature of the field is a necessary and sufficient con-
dition for the existence of a scalar potential whose gradient is E.

1) E = —vs
The algebraic sign is arbitrary but has been chosen negative to conform
with the convention which directs the vector E outward from a positive

charge. Equation (1) docs not define the ‘potential uniquely, for there
might be added to ¢ any constant ¢, without invalidating the condition

(2) V X V(¢ + ¢0) = 0.
In Chap. II it was shown that the scalar potential of an electrostatic

field might be interpreted as the work required to bring a unit positive
charge from infinity to a point (z, y, 2) within the field:

@®) @ y,2) = — [ E-dr.

We shall show below that the field of a system of charges confined to a

finite region of space vanishes at infinity. The condition that ¢ shall

vanish at infinity, therefore, fixes the otherwise arbitrary constant ¢.
160
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Those surfaces on which ¢ is constant are called equipotential sur-
faces, or simply equipotentials. At every point on an equipotential the
field intensity E is normal to the surface. For let

4) ¢(z, ¥, z) = constant
be an equipotential, and take the first differential.

_ 9¢ 9¢ 9% 4, =
(5) d¢—azdx+aydy+azdz—0.

The differentials dz, dy, dz, are the components of a vector displace-
ment dr along which we wish to determine the change in ¢, and since
d¢ = 0, this vector must lie in the surface, ¢ = constant. The partials
9¢/0z, d¢/dy, 9¢/dz, on the other hand, are rates of change along the
z-, y-, z-axes respectively and as such have been shown to be the com-
ponents of another vector, namely the gradient

©) Vo =32 higt x5l -

d¢ is manifestly the scalar product of these two and, since this product
vanishes, the vectors must be orthogonal. An exception occurs at those
points in which the three partial derivatives vanish simultaneously.
The field intensity is zero and the points are said to be points of
equilibrium,

The orthogonal trajectories of the equipotential surfaces constitute a
family of lines which at every point of the field are tangent to the vector
E. They are the lines of force. It is frequently convenient torepresent
graphically the field of a given system of charges by sketching the projec-
tion of these lines on some planc through the field. Let ds represent a
small displacement along a line of force, where

) ds =ids' 4+ jdy + kdz,
the primes being introduced to avoid confusion with a variable point
(z, y, z) on an equipotential. Then, since by definition the lines of

force are everywhere tangent to the field-intensity vector, the rectangular
components of ds and E(z’, ¢/, ') must be proportional.

8) E, = Ndo/, E, = \dy, E, =\d7.

The differential equations of the lines of force are, therefore,

) dz’ _ dy’ _ dz’
E.(«',y,2)  E@,y,7) E(,v,7)

The relations between the components of D and those of E are almost
invariably linear. If the medium is also isotropic, one may put

(10) D =¢E = —eV9,
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whence, by (II), ¢ must satisfy
(11) V. (Vo) = eV + Ve Vo = —p.

In case the medium is homogeneous, ¢ must be a solution of Poisson’s
equation,

(12) Vi = —% p.

At points of the field which are free of charge (12) reduces to Laplace’s
equation,
13) vi¢ = 0.

The fundamental problem of electrostatics is to determine a scalar
function ¢(z, y, 2) that satisfies at every point in space the Poisson equa-
tion, and on prescribed surfaces fulfills the necessary boundary condi-
tions. A much simpler inverse problem is occasionally encountered:
Given the potential as an empirical function of the coordinates repre-
senting experimental data, to find a system of charges that would produce
such a potential. The density of the necessary continuous distribution
is immediately determined by carrying out the differentiation indicated
by Eq. (12). There will in general, however, be supplementary point
charges, whose presence and nature are not disclosed by Poisson’s
equation. At such points the potential becomes infinite and, inversely,
one may expect to find point charges or systems of point charges located
at the singularities of the potential function. The nature of these
systems, or multipoles as they are called, is the subject of a later section,
but a simple example may serve to illustrate the situation.

Let the assumed potential be

1 eor
(14) - 747—;; T:
where r is the radial distance from the origin to the point of observation
and ais a constant. By virtue of the spherical symmetry of this function,
Poissons’s equation, when written in spherical coordinates, reduces to
10(,96) _ _1

7ar\ or I
on differentiation one finds for the density of the required continuous
charge distribution

(15)

(16) P= "t —

The charge contained within a sphere of radius r is obtained by integrat.
ing p over the volume, or

17) f " pdv = eor(ar + 1) — 1.
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If the radius is made infinite, the total charge of the continuous die-
tribution is seen to be

(18) fpde = —1.

But this is not the total charge required to establish the potential (14).
For at r = 0 the potential becomes infinite and we must look for a point
charge located at the singularity. To verify this we need only apply
(IT) in its integral form. If ¢ is a point charge at the origin,

(19) j;D-nda=q+prdv,

the surface integral extending over a sphere S bounding the volume V.
(20) D, = —e‘-;—:—s . i (f:- + %) e,

(21) ) f D.da = (ar + 1)e—,

and, hence,

(22) qg= +1.

The potential defined by (14) arises, therefore, from a positive unit
charge located at the origin and an equal negative charge distributed
about it with a density p, the system as a whole being neutral.

3.2. Boundary Conditions.—The transition of the field vectors across
a surface of discontinuity in the medium was investigated in Sec. 1.13
and the results of that section apply directly to the electrostatic case.
The two media may be supposed to meet at a surface S and the unit
normal n is drawn from medium (1) into medium (2), so that (1) lies
on the negative side of S, medium (2) on the positive side. Then

(23) n X (E; — El) = 0, n- (Dz - Dl) = w,

where w is the density of any surface charge distributed over S.

It will be convenient to introduce the unit vector t tangent to the
surface S. The derivatives d¢/0n and d¢/dt represent respectively the
rates of change of ¢ in the normal and in a tangential direction. Then
the boundary conditions (23) can be expressed in terms of the potential by

3¢ ad\ _ 9%\ _ . (2% _ _
24) (ﬁ>z - (ﬁ>1 =0 - (51—1 2 1 (311)1 -

From the conservative nature of the field it follows also that the potential
itself must be continuous across 8, for the work required to carry a small
charge from infinity to either of two adjacent points located on opposite
sides of S must be the same Hence

(25) d1 = ¢
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The two conditions

are independent.

Conductors play an especially prominent role in electrostatics. For
the purposes of a purely macroscopic theory it is sufficient to consider
a conductor as a closed domain within which charge moves freely. If
the conductor is a metal or electrolyte, the flow of charge is directly
proportional to the intensity E of the electric field: J = ¢E. Charge is
free to move on the surface of a conductor but can leave it only under
the influence of very intense external fields or at high temperatures
(thermal emission). If the conductor is in electrostatic equilibrium all
flow of charge has ceased, whence it is evident that at every interior
point of a conductor in an electrostatic field the resultant field intensity E
18 zero, and at every point on its surface the tangential component of E is zero.
Furthermore the electrostatic potential ¢ within a conductor is constant and
the surface of every conductor is an equipotential. Let us suppose that an
uncharged conductor is introduced into a fixed external field E,. In the
-first instant there occurs a transient current. According to Sec. 1.7,
no charge can accumulate at an interior point, but a redistribution will
occur over the surface such that the surface density at any point is w,
subject to the condition

(27) fs wda = 0.

This surface distribution gives rise to an induced or secondary field of
intensity E;. Equilibrium is attained when the distribution is such that
at every interior point

(28) Eo + E, = 0.

Likewise, if a charge ¢ is placed on an isolated conductor, the charge
will distribute itself over the surface with a density » subject to (28)
and the condition

(29) fywda=q.

We shall denote the interior of a conductor in electrostatic equilibrium
by the index (1) and the exterior dielectric by (2). Then at the surface S

(30) E1=Dx=0, nXEg=O, n-D2=w,

or in terms of the potential,

a
(31) ¢ = constant, 523:2:: —w.
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If a solution of Laplace’s equation can be found which is constant over
the given conductors, the surface density of charge may be determined
by calculating the normal derivative of the potential.

CALCULATION OF THE FIELD FROM THE CHARGE DISTRIBUTION

3.3. Green’s Theorem.—Let V be a closed region of space bounded
by a regular surface S, and let ¢ and ¢ be two scalar functions of position
which together with their first and second derivatives! are continuous
throughout V and on the surface 8. Then the divergence theorem
applied to the vector yV¢ gives

(1) [,V wve) o = [ ¥ve) -nda.
Upon expanding the divergence to
2) V-({YVe) = VY :-V¢ + YV -Vo = Vy. V¢ + yV2¢,
and noting that '
_ 99
(3) Vé-n = anr

where d¢/dn is the derivative in the direction of the positive normal,
we obtain what is known as Green’s first identity:

al 2 _ -ai
4) fyv¢-v¢dv+JV‘pV¢dv—Lwanda.

If in particular we place y= ¢ and let ¢ be a solution of Laplace’s
equation, Eq. (4) reduces to

) fv (Vo) dv =fs¢ggda.

Next let us interchange the roles of the functions ¢ and y; i.e., apply
the divergence theorem to the vector ¢Vy.

— | s
) fvw VY dv + fv oV dv = qu = da.

Upon subtracting (6) from (4) a relation between a volume integral and a
surface integral is obtained of the form

29 — - 9 _ M
@ [ eve-evna= (12— eP)a

known as Green’s second identity or also frequently as Green’s theorem.

! This condition is more stringent than is necessary. The second derivative of one
function ¥ need not be continuous.
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3.4. Integration of Poisson’s Equation.—By means of Green’s
theorem the potential at a fixed point (', 3, 2’) within the volume V can
be expressed in terms of a volume integral plus a surface integral over S.
Let us suppose that charge is distributed with a volume density p(z, y, 2).
We shall assume that p(z, y, 2) is bounded but is an otherwise arbitrary
function of position. An arbitrary, regular surface S is now drawn
enclosing a volume V, Fig. 25. It is not necessary that S enclose all
the charge, or even any of it. Let O be an arbitrary origin and z = 2/,
y =1y, 2 =2, a fixed point of observation within ¥. The potential
at this point due to the entire charge distribution is ¢(z’, y’, 2’). For

Y
Vi

F1a. 25.—Application of Green's theorem to a region ¥ bounded externally by the surface S
and internally by the sphere Si.

the function ¥ we shall choose a spherically symmetrical solution of
Laplace’s equation,

, 1
(8) lll(il), Y, 25 x,) Yy, z’) = ;”

where r is the distance from a variable point (z, y, 2) within V to the
fixed point (z’, ¥, 2’).

© r=vV@E -2+ ¢ -9+ E -2

This function ¢, however, fails to satisfy the necessary conditions of
continuity at r = 0. To exclude the singularity, a small sphere of
radius 7 is circumscribed about (z’, ¥/, 2’) as a center. The volume V is
then bounded externally by S and internally by the sphere S;. Within
V both ¢ and ¢ now satisfy the requirements of Green’s theorem and
furthermore V% = 0. Thus (7) reduces to

Vi gy = log 9 (1
(10) fv T dv—L+s,[’r an ¢6n T)]da'

the surface integral to be extended over both S and S;. Over the sphere
S, the positive normal is directed radially toward the center (2, ¢/, 2),
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since this is out of the volume V. Over 8, therefore,

3% _ _d¢ 3 (1 1
(1) " o [a_n O] =7

Since r; is constant, the contribution of the sphere to the right-hand side

of (10) is
_ ¢ 1
7’:; L‘ 67‘ d 7‘% d) da

If  and d¢/3r denote mean values of ¢ and 3¢/dr on S 1, this contribution
is

L3 1, s
4 6 ~ 4rrig,
which in the limit r;— 0 reduces to —4r¢(z’, ¥, 2’). Upon introducing
this value into (10) the potential at any interior point (2, y/, 2') is

12) ¢@ v, 2) = 41r V¢'d +41rf[la—?_¢_ 1>]da,

T an r
or in terms of the charge densuty when the medium is homogeneous,
1
v2¢ = —=p
€

’ ’ ’ ______1_ .e —1— -1-99— o
13)  ¢@,¢, ) =g~ V,.dv+44rL[ran ()]

In case the region V bounded by S contains no charge, (13) reduces to

(14 0@, 0, ) = & [ |22 =6 2 (1] e

It is apparent that the surface integrals in (13) and (14) represent the
contribution to the potential at (z’, ¥/, 2’) of all charges which are exterior
to 8. If the values of ¢ and its normal derivative over S are known, the
potential at any interior point can be determined by integration. Equa-
tion (14) may be interpreted therefore as a solution of Laplace’s equation
within V satisfying specified conditions over the boundary. The integral

(15) 6,1, ) = £ [ 2w

is a particular solution of Poisson’s equation valid at (2, ¥/, 2'); the
general solution is obtained by adding the integral (14) of the homo-
geneous equation V2?¢ = 0. If there are no charges exterior to S, the
surface integral must vanish.

3.5. Behavior at Infinity.—Let us suppose that every element of a
charge distribution is located within a finite distance of some arbitrary
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origin 0. We imagine this distribution to be confined within the interior
of a surface S; which also contains the origin 0. The distances r, 7, and
R are indicated in Fig. 26.

(16) r = (R? 4+ 2 — 2r,R cos 6)%.
The potential at any point P(z’, 3’, 2’) outside S; is then

R | p(@, y, 2) dv
17 o', v, 2) = Z‘Ir—éfvl (R? + 3 — 2r,R cos 0)}

As P recedes to infinity, the terms 7} and 2riR cos # become negligible

Fiag. 26.—Figure to accompany Sec. 3.5.

with respect to R?, and in the limit as R — « we find

. _ 1 _ _1_ q
(18) fim ¢ = fv," =z 7

where ¢ is the total charge of the system. A potential function is said
to be regular at infinity if R¢ is bounded as R — «. The field intensity
E = —V¢ at great distances is directed radially from O and the function
R?E| is bounded.

All real charge systems are contained within domains of finite extent
and their fields are, therefore, regular at infinity. Frequently, however,
the analysis of a problem is simplified by assuming the external field to
be parallel. Such a field does not vanish at infinity and can only arise
from sources located at an infinite distance from the origin.

It is important to note that a closed surface S divides all space into
two volumes, an interior V, and an exterior V,, and that if the functions
¢ and ¢ are regular at infinity Green’s theorem applies to the external
region V; as well as to V,. For certainly the theorem applies to a closed
region bounded internally by S and externally by another surface S..

If now S, recedes towards infinity, the quantities ¥ 3—% and ¢ g—gvanisb
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as 1/r* and the integral over S; approaches zero. Consequently

d¢ Wy

24 — = 99 _

a | wve-evpa=[(v2-s¥)a,

but the positive normal at points on S is now directed out of V, and
therefore ¢nfo V1. Let us suppose, for example, that a charge system is
confined entirely to the region ¥y within S. - The potential at any point
(=, ¥, 2') in V, outside S may be calculated from (17), or equally well

from a knowledge of ¢ and d¢/dn on S, applying (14) as indicated in
Fig. 27.

<

Fia. 27.—Application of Green’s theorem to the exterior V3 of a closed surface S.

3.6. Coulomb Field.—According to (18) the potential of a charge ¢ in
a homogeneous medium at distances very great relative to the dimensions
of the charge itself approaches the value

1gq
’ oL 1,
(20) d)(l',y,Z) —41“7,

If q is located at (z, y, 2), the distance from ¢ to the point of observation
(', ¥, ) is
(21) r=VE - F G -9 F @ =9

Let now r° represent a unit vector directed from the source; .e., from
(z, y, 2) towards («/, ¥/, 2’). Then

(22) v (%) - —v (.:_) - _7]:_21-0’

where the prime above the gradient operator denotes differentiation
with respect to the variables (z/, ¥/, 2’) at the point of observation.
The field intensity at this point is

1
(23) E@,¢,7) = =V'¢ = L.

The field of a point charge is inversely proportional to the square of the dis-
tance and 1is directed radially outward when g is positive. This is the law
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established experimentally by Coulomb and Cavendish which is usually
taken as a point of departure for the theory of electrostatics. The term
“point charge’ is employed here in the sense of a charge whose dimen-
sions are negligible with respect to . Mathematically one may imagine
the dimensions of ¢ to grow vanishingly small while the density p is
increased such that ¢ is maintained constant. In this fashion a point
singularity is generated and (23) is then valid at all points except r = 0.
There is no reason to believe that such singularities exist in nature, but
it is convenient to interpret a field at sufficient distances as that which
might be generated by systems of mathematical point charges. We
shall have occasion to develop this concept in the subsequent section.

The potential at (z’, ¥/, 2’) is obtained by integrating the contribu-
tions of charge elements dg = p dv over all space.

'] 4 1 ) )
(24) do@, v, 7) = 2B 0 g,

1 1 1 1
(25) dE = ~Zre p(z, ¥, 2)V’ (;) dv = y. o(z, ¥, 2)V (;) dv.

The field intensity due to a complete charge distribution in a homo-
geneous, isotropic medium is, therefore,

(26) E@, ¢, 7)) = Z}l—'—ef oz, y, 2)V (%) dv.

3.7. Convergence of Integrals.—The proof of convergence of the
integrals for potential and field intensity is implicit in the method by
which they have been derived, but an alternative treatment will be
described which may serve as a model for proofs of this kind. Since the
element of integration at (z, y, 2) can coincide with (z/, ¥/, 2’), with the
result that the integrand becomes infinite at this point, it is not obvious
that the integral has a meaning. It will be shown that, although an
improper integral of this type cannot be defined in the ordinary manner
as the limit of a sum, it can by suitable definition be made to converge
absolutely to a finite value.

Let the point Q(z/, ¥, 2’) at which the field is to be determined be
surrounded by a closed surface S of arbitrary shape, thus dividing the
total volume V occupied by charge into two parts: a portion V', repre-
senting the volume within S and a portion V; external to 8. Throughout
Vs the integral of Eq. (26) is bounded and consequently the charge
outside S contributes a finite amount to the resultant field intensity at @,
8 contribution E.,

@) B, 1 9) = g, [, oo 99 (1) o

47e
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The contribution of the charge within S to the field intensity at Q may
be called E;. If now the field intensity E = E; + E, at Q is to have a
definite significance, it is necessary that E,; vanish in the limit as S
shrinks about Q. A moment’s reflection will indicate that this is indeed
the case for, although the denominator of the integrand vanishes as the
square of the distance, the element of charge in the numerator is propor-
tional to the volume ¥V, which vanishes as the cube of a linear dimension.
It has been tacitly assumed that the charge density p is finite at every
point in the volume V. There exists, therefore, a number m such that
lol < m, and |p/7| < m/r, at every point in V. It; follows, furthermore,
for this upper bound m that

(28) oV (%) < :l:,
and
(29) fvl pv (1> d| < m f @,

The surface 8 bounding the volume V' is of arbitrary form, and so, to
avoid the awkwardness of evaluating the integral over this region, a
sphere of radius a concentric with Q is circumsecribed about V,. The
volume element of integration is positive; consequently the integral
extended throughout ¥, must be less than, or at the most equal to, the
integral extended throughout the volume enclosed by the circumscribed
sphere.

dv

(30) L3 S

4
3™
which evidently vanishes with . The contribution of the charge within
S to the ficld at @ becomes vanishingly small as S shrinks about Q and
hence (26) converges for interior as well as exterior points of a charge
distribution.

The potential integral

(31) ¢(23’, y'; z,) = Z}r_e f P_(x___*, Y, Z) dy

r

is also an improper integral when the point of observation is taken within
the charge but, since the denominator of the integrand vanishes only
&3 the first power of r, the proof above holds here a fortiori. If p is a
bounded, integrable function of position, (31) is a continuous function
of the coordinates z’, ¥, 2/, has continuous first derivatives, and satisfies
the condition E = —V’'¢ everywhere. It can be shown, furthermore,
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that if p and all its derivatives of order less than n are continuous, the poten-
tial ¢ has continuous derivatives of all orders less than n + 1.}

EXPANSION OF THE POTENTIAL IN SPHERICAL HARMONICS

3.8. Axial Distributions of Charge.—We shall suppose first that an
element of charge ¢ is located at the point z = ¢ on the z-axis of a rec-
tangular coordinate system whose origin is at 0. We wish to express the
potential of ¢ at any other point P in terms of the coordinates of P with
respect to the origin O. The rectangular coordinates of P are x, ¥, 2,
but since the field is symmetric about the z-axis it will be sufficient to
locate P in terms of the two polar coordi-
nates r and 6, Fig. 28. The distance from
g to Pisrpand the potential at Pis, therefore,

r; P . 1
1 ¢(r, 0) = dmers

the medium being assumed homogeneous
and isotropic.

2) re = (r2 4 ¢ — 2r¢ cos 6)},

Fra. 28.—Figure to accompany There are now two cases to be considered.
Sec. 3.8. .
The first and perhaps less common is that
in which P lies within a spherc drawn from O as a center through {.
Then r < ¢ and we shall write

1 1 r\? T —

The bracket may be expanded by the binomial theorem if

r 2 r
<§_‘) b ZECOSG

< 1, the resultant series converges abso-

z

<1l

rl2

T +
lutely and consequently the various powers may be multiplied out and
the terms rearranged at will. If the terms of the series are now orderad

in ascending powers of /¢, we find

1 1 r r\* (3 1
4) E=E[1+?coso+<?) <§c0820——2—>+ ],

18ee for example KrLroca, “Foundations of Potential Theory,” Chap. VI,
Springer, 1929, or PriLLips, ‘Vector Analysis,” pp. 122 f., Wiley, 1933.

If furthermore

r
2—-cos 0
e
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which shall be written in the abbreviated form

(5) ;1; = %2 Pa(cos 6) <§) r <9).

n=0
The coefficients of r/{ are polynomials in cos 6 and are known as the
Legendre polynomials.
Py(cos 6) = 1,
Py(cos 6) = cos 6,
Py(cos 6) = 3(3 cos? § — 1) = 1(3 cos 20 + 1),
Py(cos 6) = (5 cos® 8 — 3 cos 6) = }(5 cos 3 + 3 cos 6).

....................................................

(6

The absolute value of the coefficients P, is never greater than unity;
hence the expansion converges absolutely provided r < [¢].

In the second casc P lies outside the sphere of radius {, such that
r > ¢. The corresponding expansion is obtained by interchanging r
and ¢ in (3) and (5).

) %— = % [1 + (§>2 ~ 2% cos or,
(8) —-——RE_OP cose)<> (r>70).

This last result may be obtained in a slightly different manner.
Consider the inverse distance from the point z = { to P as a function of {
and expand in a Taylor series about the origin, { = 0.

® J4) = & = (*+ 52 = 20t cos 0)7,
(1) S = 1O +¢ [af 2]+ 515

Now in rectangular coordinates, r; is

(11) o=l +y? + (= DT,

and

(12) at (n) T & ( )

Hence.

13) [a,gi’(f)]r-o = (=1r [i’g’%]r-o = (=" a,g.z(’?)

and, since f(0) = 1/r, we have
) s L=l e GE (D

n!  dz*
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The potential at a point P outside the sphere through ¢ can be written
in either of the forms

. Pn(cos 6) . (=" o
(15) ¢ = 41re 2 § e T Age 2 g Tl az“( )’

from which it is apparent that

P,(cos ) _ (=D o (1
(16) T gl @<_)

Finally, let us suppose that charge is distributed continuously along
a length I of the z-axis with a density p = p(¢). The potential at a
sufficiently great distance from the origin is

an e 0 = E bn = 47“2 f NONT S L)

n=0
The leading term of this expansion,
' 11 1
(18) ¢o—;1;;;f p($) dt = ‘4*1;6;."

where ¢ is now the fotal charge on the line, is evidently the Coulombd
potential of a point charge g located at the origin. However, the density
may conceivably assume negative as well as positive values such that
the net charge

l
(19) q=ﬁpmdr

is zero. The dominant term approached by the potential when r> lis
then

(20) b1 = 1e PI(COS 0) f o(O)¢ dt = L2 cos 0_
The quantity
(21) p= J; p()¢ dt

is called the dipole moment of the distribution. In general, we shall
write

1  Pn(cos 6)
(22) bn = dre pm Tt
and define
l
(23) po = [ oo as

as an axial multipole of nth order.
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3.9. The Dipole.—In order that the potential of a linear charge dis-
tribution may be represented by a dipole it is necessary that the net
charge be zero—the system as a whole is neutral—and that the distance
to the point of observation be very great relative to the length of the line.
We have seen that the potential ¢, is that which would be generated by a
mathematical point charge located at the origin. ¢, has a singularity
at r = 0, for a true point charge implies an infinite density. We now
ask whether a configuration of point charges can be constructed which
will give rise to the dipole potential ¢1.

Let us place a point charge +q at a point z = 1 on the z-axis and an
equal negative charge —g at the origin. According to Eq. (8) the
potential at a distant point is

(24) =14 (—1— — l) _ gl cost + higher order terms.

T 4re\rs 1) 4me r?
The product p = ¢l is evidently the dipole moment of the configuration
Suppose now that I — 0, but at the same time ¢ is increased in magnitude

in such a manner that the product p remains constant. Then in the
limit a double-point singularity is generated whose potential is

_pecosfd  p a1l

(25) = Gme T Tdmed ;)

everywhere but at the origin. A direction has been associated with a
point. The dipole moment is in fact a vector p directed, in this case,
along the z-axis. The unit vector directed along r from the dipole
towards the point of observation is again r° and the potential is,
therefore,!

(26) oy = Pl =~ L gy (_)

The field of a dipole is cylindrically symmetrical about the axis;
hence in any meridian plane the radial and transverse components of
field intensity are

@ g 106 _ 1psing
"7 7700 T dre 13

1In (26) r = 4/ 2% 4+ y? + 22 and V(1/r) implies differentiation at the point of
observation. If the dipole were located at (z, ¥, z) and the potential measured at

1 1 1 1
- 0 Y ) Y 'l =) = —_ -}
(+', ¥’y 2"), we should have ¢(z’, ¥/, 2') ep V(r> +4"p v(r) See
Eq. (22), p. 169.
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The potential energy of a dipole in an external field is most easily
determined from the potential energies of its two point charges. Let a
charge +¢ be located at a point a, and a charge —q at b displaced from
the first by an amount 1, in an external field whose potential is ¢(z, y, 2).
The potential energy of the system is then

(28) U = q¢(a) — qo(b),
orasb —aq,
(29) U=qdp=ql-V¢p=—p-E = —pFE cos 6,

where 0 is the angle made by the dipole with the external field E.

F1a. 29.—Lines of force in a meridian plane passing through the axis of a dipole p.

The force exerted on the dipole by the external field is equal to the
negative gradient of U when the orientation is fixed.

(30) F = V(P * E)O constante

On the other hand a change in orientation at a fixed point of the field also
leads to a variation in potential energy. The torque exerted on a dipole
by an external field is, therefore,
(31) T = U —pkE sin 6,

a6
or vectorially,

(32) T=pXE.

3.10. Axial Multipoles.—Let us refer again to Eq. (17) for the poten-
tial of a linear d:stribution of charge. This expansion is valid at all
points outside a sphere whose diameter is the charged line. Now the
first term ¢, of the series is just the potential that would be produced
by a point charge ¢ located at the center of the sphere. The second term
¢1 represents the potential of a dipole p located at the same origin. We
shall show that the remaining terms ¢, may likewise be interpreted
as the potentials of higher order charge singularities clustered at the
center.
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The dipole, whose moment we now denote as p», was constructed

by placing a negative charge —g at the origin and a positive charge 4¢
at a point z = [, along the axis. The two are then allowed to coalesce
such that p» = g, remains constant. The potential of the resultant
singularity is
(33) b= 2 %)
The singularity of next higher order is constructed by locating a dipole
of negative moment —p®™ at the origin and displacing from it another
equal positive moment by the small amount 1. For the present we
confine ourselves to the special case wherein the axes of both dipoles
as well as the displacement 1, are directed along the z-axis. The potential
of the resultant configuration is

(34) $2=1+ 1s (6?>r . + o= ¢y
or by virtue of (12)
(35) b= b (D) + -

An axial quadrupole moment is defined as the product
(36) p® = 2(pPh) = 2(qloly).

The mathematical quadrupole is generated by letting I, — 0, I, — 0,
g — « such that the product (36) remains finite. The potential of this
configuration is then strictly

1 p® @2 (1
(37) P2 = fre 2r 6z2<)

at all points excluding » = 0.

By induction one constructs charge singularities, or multipoles, of
yet higher order. In each case a multipole of order n — 1 and negative
moment —p™~Y is located at the origin and an equal positive multipole
P~V displaced from it by I.. In the general case to be dealt with below,
the displacements are arbitrary in direction; if, as in the present special
case, all are along the same straight line, the multipole is said to be axial.
The potential is given approximately by the first term of a Taylor series,
which again by (12) may be written

Gt o (1)
(38) P = e (n— 1! 3z \r +

The n-pole moment is defined as the limit of the product
39) p» = np™=l,_,
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when [, —»0 and p™~? — o« in such a manner that p—Vl, remains
finite. The potential of a point charge of nth order is then

(40) b = p™ (=) o~ (_11_‘), (n=20,1,++-).

4re nl 9d2»

The potential of an arbitrary distribution of charge along a line s identical,
outside a sphere whose diameter coincides with the line, with the potential
of a system of multipoles located at the origin. The moments of these
multipoles can be determined from the charge distribution by (23).
3.11. Arbitrary Distributions of Charge.—We shall consider next a
charge which is distributed in a completely arbitrary manner in any
finite region of a homogeneous, isotropic dielectric, or upon the surfaces
of conductors embedded in such a dielectric. The region containing
charge lies within a sphere of finite radius R drawn about the origin O
of a coordinate system. We wish to express the potential of the dis-
2z tribution at a point P outside the sphere

Ene) P/(x’ %2 in terms of the coordinates of P with
' M respect to O.
/| - ! The rectangular coordinates of P
k-?!//&'s L/ < : are z, y, z and its polar coordinates
L%x//j/ : ! r, 0, ¥, where
o Q\\j 1‘ 3 (41) z=r sig 6 cos v,
SN :\\\ : y = rsin 0 sin ¢, 2z =rcos .
S=-7N ~~
% N = We calculate first the potential at P of

x an element of charge dg = p dv located
F1a. 30.—Tigure to accompany Sec. 3.11. at the variable point E; n, ¢ If ra
Fig. 30, is the distance from dg to P, the contribution of this element is

d 1 dq
(42) d¢=_Ltde-1 .
47e 7y 4me \/(x — 824+ @Y -2+ (z—¢)?
The denominator of this function can be expanded about the origin in
powers of £ 7, ¢ exactly as in Eq. (14), and one obtains

43) d¢=4—1—dQ{%-[f:x<r>*z‘"ay<)“az<i)] 2
+%[E aiﬁ(l)”zaay ()”zazﬂowg’f’jay(l)
+ ni’a az()+ “azaxc)]_”'}.

The expansion converges provided ry = V£ + 92+ {2 < R, r > R.
Next we integrate (43) over the entire charge distribution; 7.e., with

respect to the coordinates & %, {, noting that r = \/z? 4+ y%2 + 22 is
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independent of this integration. Once again we shall write ¢ as the

sum of partial potentials ¢,, ¢ = 2 ¢n. Then the first term of the

n=0
expansion is
= 1p°
(44) $o = dre 1
where
(45) PO =q= [t n ) adv

is the total charge. At sufficiently large distances relative to R the potential
of an arbitrary distribution of charge may be represented approximately
by the Coulomb potential of a point charge located at the origin.

The second term, which is dominant when the net charge is zero, is

- ek s())

where p® is a vector dipole moment whose rectangular components are

47 P = f pEdv, PP = f pndv, PP = f P dv.

The potential of any distribution whose net charge s zero may be approxi-
mated at large distances by the potential of a dipole located at the origin
whose components are determined by (47).

In like manner the partial potential ¢, arises from a quadrupole whose
components are

(48)
pe = f pén dv, Pﬁ’ = f prfdv, P = f psEdv.

Whereas the dipole moment is a vector, the quantities defined in (48)
constitute the components of a tensor of second rank. 'The multipole
moments of higher order determined from subsequent terms of the
expansion (43) are likewise tensors of higher rank.

3.12. General Theory of Multipoles.—Lct 1; be a vector drawn from
the origin O to the point Q(%, », {) whose direction cosines with the coor-

o)
dinate axes z, ¥, z are respectively ai, 8:, vi. Let g;e f.(z, y, 2) be the

potential at the point P(x, y, 2) due to a charge singularity —p® of any
order located at the origin. If now a charge singularity of equal magni-
tude but positive sign be placed at the outer extremity of the vector 1,,
the potential at P due to the pair of multiple points will be

o
(49) Pir1 = % fi (@ — i,y — Biliy 2 — vili) — fi(x, y,2)],
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for it is to be noted that the change in potential at (r, y, 2) arising from a
displacement of the source from the origin to a point  whose coordinates
are £ = ali, 1 = Buli, ¢ = vl is identical with that resulting from an
equal but opposite displacement of P to a point (x — & y — 4, 2 — ¢)
during which the source remains fixed at the origin. Expanding by
Taylor’s theorem, we have

(50)  diyi(r, y, 2) = . ( oL + Bz f f) + terms of higher
0
order in [;.

The expression in parentheses is evidently the derivative of f; with
respect to the direction specified by the vector 1.

o feedeadend

The multipole moment of order ¢ + 1 is again defined in terms of the
moment of order ¢ by the limit of

(52) p(i-H) = (7' + 1)p(i)l5: (7: = 07 17 te )’
as [;— 0 and p® — » in such a manner that their product remains

finite. The potential at any point (z, ¥, 2) due to a multipole of moment
p¢*tD located at the origin is then

o= L Pt of -
(53) P = TG Do 0L

A single point charge may be considered as a singularity of zero
order and ‘“moment” p® = q.

o andan) an()

The potential of a dipole oriented in any direction specified by the vector
1o is consequently

1 9 (1
(55) b= (1)5[0(”)

The quadrupole is next generated by displacing the dipole parallel to
its axis in a direction specified by the vector 1,. For its potential we find
from (53) and (55)

1p® o° (1
(56) %2 = Lo o1 30, al,( )

Thus by induction the potential of the general multipole of nth order is

_ (=1)mp o (1)
(57) O = dre wl dlgalh L \r
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The construction of a quadrupole and an octupole is visualized in Figs.
31a, 31b.

The result of applying the operator

N 9 3590
(58) a"l: = a;az +B|ay+7saz

n times to the function —:; (% 4+ y* 4+ 2%~ must be of the form

(59) bn = _1‘ ™ Y"

4]
4re P rrtl

where Y, is a function of the cosines of the angles u; between r and the
n axes l;, and of the direction cosines a, 8;, v: of the angles made by the

+ -
L| 4 -
I,
Il - +
. 1,
F1a. 31a.—Quadrupole. F1a. 31b.—Octupole.

vectors 1; with the coordinate axes. But the angles u; are related to
the spherical coordinates 6, ¢ of P by the equation

(60) cos pui = (e cos ¢ + Bs sin ¢) sin 6 + v; cos 6,

which may be demonstrated by calculating the distance QP = Ty, Fig.
30, both in terms of 7y = I, r, and the angle p:, and in terms of its projec-
tions on the coordinate axes. Thus Y, is a function of the angles 6 and ¢,
and hence of position on the surface of a unit sphere. For the dipole
term we have

1 a (1 9 (1 a1
(61) b1 = g~ 2 [ao % (;) + /305-3; (—;) + Y03, (—7:)]
M

1 p@
= H—F(aox + Boy + v02).

Upon replacing rectangular by spherical coordinates, Eqs. (41), this
becomes

1 p® . .
(62) ¢1 = 7— 2 [(ay cos ¥ + B, sin ¥) sin 8 + v, cos 6],

4me 71
or

(1 '
(83) é1= 5 2 [(as cos ¥ + B sin ¥)Pi(cos 0) + 7o PY(cos 0)],
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where the functions Pp(cos 6) are the assoctated Legendre functions
defined by
(64) Pm(cos 6) = sin™ @ L

mn Pn(COS 0).

Between the four constants p®, o, B, 7o, there exists one relation,
namely of + 82 + 4% = 1, and there remain, consequently, three arbi-
trary parameters which determine the magnitude and orientation of the
dipole.

Proceeding to the quadrupole term, we obtain

(65) &2 = i 3(—:—) { (7071 - —‘ﬂﬁ—ﬂ?&) (3 cos? 6 — 1)

weE T

[(ﬂwx + B1yo) sin ¢ + = (vcal + vic0) cos w] sin 26

+ [Z (aoB1 + 1B0) sin 29 + i (aoa1 + BoB1) cos 2‘#] 3 sin? 9};
or, with reference to (64),

(66) ¢ = 4 e 7,3 [azoPo(COS 0) + (@21 cos ¢ =+ bay sin Y)P}(cos 6)
+ (as2 cos 2¢ + b, sin 2¢)Pi(cos 6)].

Between the six direction cosines there are two relations of the form
o 4+ B% 4+ 4% = 1; consequently there are, together with the arbitrary
moment p®, five completely arbitrary constants which are sufficient to
determine the magnitude and orientation of the quadrupole.

A solution of Laplace’s equation is called a harmonic function. Since
the coordinates r, 9, ¢ are arbitrary, each term ¢, in the expansion of ¢
must itself satisfy Laplace’s equation and is, therefore, harmonic. Gen-
eralizing, we conclude that the harmonic function ¢, representing the
potential of a multipole of nth order is a homogeneous polynomial of nth
degree in z, y, 2. Upon transformation to spherical coordinates 7, 6, ¥,
the function ¢, can be expressed in the form (59), where the spherical
surface harmonic Y,(6, ¢) is now explicitly

n

n
67) Y,00,y) = 2 Ym(0,¢) = 2 (@nm cos myY + bpm sin my)Pm(cos 6).
m=0 m=0
The harmonic of nth order contains 2n + 1 arbitrary constants sufficient
to determine the moment and orientation of the axes of the corresponding
multipole. If charge be distributed in arbitrary manner within a sphere
of finite radius, the potential at all points outside the sphere must he
harmonic and it must furthermore be regular at infinity. These condi-
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tions are satisfied by

(68) &(r, 6, )= 4—3}; E po Yo(6: ¥),

nt
n=0 et
If the charge distribution is known, the components of the multipole
moments are determined as in Sec. 3.11; if the distribution is unknown
but an external field is specified, these constants are obtained from the
boundary conditions as we shall shortly see.

DIELECTRIC POLARIZATION

3.13. Interpretation of the Vectors P and II.—Al{hough the two vec-
tors E and D are sufficient to characterize completely an electrostatic
field in any medium, it is convenient to introduce a third vector P
defined in Sec. 1.6 as the difference of these two fields,

(1) P =D — ¢E.

The vector P vanishes in free space and therefore is definitely associated
with the constitution of the dielectric. The divergence equation then
becomes

@ v-E=;‘;(p—-v-P),

from which one concludes that the effect of a dielectric on the field may

be accounted for by an equivalent charge distribution whose volume
density is

3) p=—V.P,

At every interior point of the dielectric the potential satisfies a modified
Poisson equation, '

4) Vip = —;1—0 (0 + o).

The validity of (4) is no longer contingent upon the isotropy and homo-
gencity of the medium. If, however, there are surfaces of discontinuity,
such as the boundaries of a dielectric, the vector D is subject to the
condition

®) n.(D; - D) =0,
6 ne(E—E) = o—ln.@®-P)=Lw+aw)
€0 €0 €0
The primary sources of an electrostatic field are the “real”” charges whose
volume and surface densities are respectively p and w. The effect of

riged dielectric bodies on the potential may be completely accounted for
by distributions of induced, or “bound,” charges of volume density p’
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and a density
(7 W =—n.P;— Py

over each surface of discontinuity, the unit vector n being drawn from
medium (1) into (2). If (1) is dielectric and (2) free space, the induced
surface charge is simply ' = n - P;, where n is the outward normal.
In the case of a transition from a dielectrie (2) to a conductor (1) bearing
a free surface charge w, there results a net surface charge w — n - Py,
since P, vanishes within the conduc*or.

The potential at any fixed point either within a dielectric or exterior
to it can be expressed by

8) o, y,2) = 1 fﬂdv+”l—fw+n.(Plﬁpz)da.

47eg r 47 r

The surface integrals are to be extended over all surfaces of discontinuity.
It need scarcely be remarked that this analysis in most cases is purely
formal, for in order to know P it is usually necessary to calculate first
the potential.

The physical significance of the vector P becomes apparent if we trans-
form (8) with the help of the identity

(©) lr'-l’=v.(§)_p.v(;).

The dielectric may be resolved into partial volumes ¥; bounded by
surfaces S; of discontinuity. For each partial volume

(10) f v-(g) dv =f Penig,
Vs r & T

On summing these integrals over the partial volumes and remembering
that n; is directed out of V; and hence in to a contiguous Vi, one finds
that (8) reduces to

PP | P 1 w 1 1
(11) qb(z,y,z)—mf;dv+mf—7_—da+jg_e—ofP-V(;)dv.

The third integral is now clearly the potential produced by a continuous
distribution of dipole moment, and P is, therefore, to be interpreted as
the dipole moment per unit volume, or polarization of the dielectric.
According to (11) a dielectric body in the primary field of external
sources gives rise to an induced secondary field such as is generated by a
distribution of dipoles of moment P per unit volume.

In a purely macroscopic theory this is really all that can be said about
the polarization vector. Macroscopically a charged conductor behaves
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as though the charge were distributed with a continuous density, though
in fact we know it to be constituted of discrete electronic charges. Like-
wise, neutral matter under the influence of an external field acts as though
dipoles were distributed as a continuous function of position. Now we
know that neutral atoms and molecules are in fact constituted of equal
numbers of positive and negative elementary charges. A microscopic
electrodynamics must show how the electrical moments of each atom—
or at least their most probable values—can be calculated. Then by a
suitable process of averaging over large-scale volume elements the polari-
zation per unit volume will be determined from the atomic moments
and the transition effected from microscopic to macroscopic quantities.

A word at this point is in order concerning the physical significance
of the Hertz vector IT introduced in a more general connection in Sec.
1.11. We shall suppose that the density of free charge p within the
dielectric is zero. If the potential ¢ is expressed as the divergence of a
vector function K,

(12) ¢ = —V- I,
then Poisson’s equation assumes the form V. <V2II + el P) =0, and
0

this condition will certainly be satisfied if

1p.

(13) Vil = —
€

The vector IT is determined from the polarization by evaluating the

integral

1) 1@,y - o [ 2EL2a,

" dmey T
whence II is sometimes referred to as the polarization potential.

DISCONTINUITIES OF INTEGRALS OCCURRING IN POTENTIAL THEORY

3.14. Volume Distributions of Charge and Dipole Moment.—Accord-
ing to the foregoing analysis, a conductor is simply a region of zero field
bounded by a surface bearing a layer of charge of density w, while a rigid
dielectric may be represented either by an equivalent volume distribution
of density p’ = —V P bounded by a surface layer ’, or as a region
occupied by a continuous distribution of dipoles whose moment per
unit volume is P. The boundary conditions, which heretofore have
been deduced from the field equations, must evidently follow directly
from the analytic properties of the integrals expressing the potential
and its derivatives in terms of volume and surface densities of charge
and dipole moment.
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In Sec. 3.7 it was established that the improper integrals

I | p(z, y, 2)
(1) ¢(x7ylz) - 41f€0f r dv;
roar o 1 1
(2) E(x Y Y, 2 ) = 47“0! P(x; Y, Z)V (F) dl),

are convergent and continuous functions of z', y', 2’ provided only that the
charge density is bounded and piecewise continuous; i.e., that the volume
occupied by the charge can be resolved into a finite number of partial
volumes within each of which p is finite and continuous. Thus on either
side of a surface bounding a discontinuous change in p, ¢ and E will have
the same values, although the derivatives of E will in general be dis-

-~
-_—

—_——
———

a= r

#1a. 32.—Transition of potential and field intensity at the surface of a uniform spherical
charge of unit radius.

continuous. Consider, for example, a spherical distribution of constant
density po and radius a. At a point inside, the field E is found most
simply by taking account of the spherical symmetry and applying the

Gauss law, f E-.nda = ;l—f pdv. At a distance r from the origin,
0

r < a, we have

1 1 r
®) E =g pir = =0

)
d7ey * ad

(r < a),

where g is the total charge contained within the sphere. Likewise at any
external point

_ 1y
(4) E = mﬁ) (7‘ > a).
The potential is calculated from the integral ¢ = — f : E dr, giving
¢=__g_ Idr=Lg (r>a),

s )
4rep J o 12 dreg r

(5) a r
o1 [ Ly 1 -9 (3_7
¢ = dmeg J « 12 dr 41reoj; rdr = 8meg (a a3>’ (r <a
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In Fig. 32, ¢ and its first derivative E are plotted as functions of r.
Note that although E passes continuously through the surface r = a,
its slope—the second derivative of ¢—suffers an abrupt change because
of the failure in continuity of the density p.

Consider next a volume distribution of dipole moment of density P.
The potential at any exterior point is

Pty =1 [ p.y (L
(6) ¢(x,y,z)—4ﬂofP V<r>dv.
This can be resolved into three integrals of the type
1 a1 1 9 P,
) ¢1—%J‘P=%(;>dv——“4—ﬂ;5&7f7dv

From what has just been proved regarding (1) it follows that (6) converges
within the dipole distribution as well as at points exterior to it, and is a
continuous function of position provided only P(z, y, z) is bounded and
precewise continuous. Since a dielectric body is equivalent to a region of
dipole moment, we have here proof of the continuity of the potential
across a diclectric surface without recourse to an energy principle.

Across a surface of discontinuity in P, the normal derivative of (6),
and consequently the normal component of E, is discontinuous. The
magnitude of this discontinuity can be determined most readily by
reverting from the volume distribution of moment to the equivalent
volume and surface-charge distribution defined in Sec. 3.13. The vector
E passes continuously into the volume charge, but we shall now show that
its normal component suffers an abrupt change in passing through a
layer of surface charge.

3.15. Single-layer Charge Distributions.—Let charge be distributed
over a surface S with a density » which we shall assume to be a bounded,
piccewise continuous function of position on S. The potential at any
point not on S is
® 0, ) = oo [ 20D da,
where r as usual is drawn from the charge element w(z, ¥, 2) da to the
point of observation. If now (z/, ¥/, 2’) lies on the surface, the integral
(8) is improper and its finitcness and continuity must be examined.
About the point (2, ¥', 2’) on S let us circumscribe a circle of radius a.
If the radius is sufficiently small, the circular disk thus defined may be
assumed plane. Now the potential at (2, ', 2’) due to surface charges
outside the disk is a bounded and continuous function of position in the
vicinity of (z/, ¢/, 2’). Call this portion of the potential ¢s. There
remains a contribution ¢; due to the charge on the disk itself. The
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surface density v is bounded, and we proceed as in Sec. 3.7. There exists
a number m such that at every point on the disk |o| < m, [w/r] < m/r.

w m [*1 ma
J‘;l;da <-2-€—oj; ;rdr—%,

where 8, indicates that the surface integral is to be extended over the
disk. The resultant potential at an arbitrary point (', ¥, 2’) on the
surface is, hence,

(10) ¢ = ¢1+ ¢

Both ¢; and ¢, have been shown to be bounded, and ¢ is also continuous.
But ¢; vanishes with the area of the disk and consequently, since ¢
differs as little as desired from a continuous function, it is itself con-
tinuous. The specialization of the disk to circular form is no restriction
on the generality of the proof, since the circle may be considered to be
circumscribed about a disk of arbitrary shape. The potential due to
a surface distribution of charge is a bounded, continuous function of posttion
at all points, both on and off the surface. The function defined by (8),
therefore, passes continuously through the surface.
The integral expression of the field intensity,

1
() |61 = Tre.

€0

1 1
'4 ' / — —
(11) E@,y,2) = e )s w(z, ¥, 2)V (r) da,

is continuous and has continuous derivatives of all orders at points not
on the surface, but suffers an abrupt change as the point («/, y’, 2')
passes through §. The nature of the discontinuity may be determined
directly from (11),! but we shall content ourselves here with the simple
method employed in Sec. 1.13 based on the divergence and rotational
properties of E. The transition of the vector E through the layer S is
subject to a discontinuity defined by

(12) E, —E_ = loun,

€0
where n is the unit normal drawn outward from the positive face of the
surface. If now by w we understand the true plus the bound charge,
w —n - (P — P_), then (12) is equivalent to
(13) (60E+ + P+) n — (G(E- + P_) n = (D+ - D_) N = w.

This specifies at the same time the transition of E at a surface of dis-
continuity in a dipole distribution.

3.16. Double-layer Distributions.—It frequently happens that the
potential of a charge distribution is identical with that which might be

1 ¢f. KeLLOGG, loc. cit.; PHILLIPS, loc. cit., Chap VI.
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produced by a layer of dipoles distributed over a surface. We imagine
such a surface distribution to be generated by spreading positive charge
of density +w over the positive side of a regular surface S, and an identical
distribution of opposite sign on its negative side. The result is a double
layer of charge separated by the infinitesimal distance 1. The dipole
moment per unit area, or surface density =, is a vector directed along the
positive normal to S and is defined as the limit

(14) < =nlim (o) as I — 0, w=—> @,

The dipole moment corresponding to an element of area da on the double
layer is 7 da, and its contribution to the poten-
tial at a fixed point 2/, 9/, 2’) not on the sur-
face is

1 7cosé 1 1
(15) d¢ = 4’—‘— da = Z-*—‘E‘V(;) da.

ey T3 Teg

Now c_(lrsz_f) da measures exactly the solid angle

d at the point of observation (z/, y/, 2’) sub-
tended by the element of area da. This angle P,
is positive if the radius vector r drawn from ;.0 4 ‘subtends a positive
', ¥, 2') to the element da makes an acute solidt_ angle1 utt PPx and a
angle with the positive normaln. Thusin Fig, 78"V angeat fa

33 the element da subtends a positive angle at P; and a negative one at Ps.
The potential due to the entire distribution may be written

Fia. 33.—The element of

16) o, ¢, 2) = o | =@, 4,2 V(L) da = —2 | raq,
S r 4

47eg weo J a

where is the solid angle subtended at (', %', 2’) by the surface S. That
the second integral must be preceded by a negative sign is evident, if one
notes that dQ is positive when the layer is viewed from the lower or
negative side, where the potential is certainly negative.

The potential ¢ has distinct values on opposite sides of a double layer.
Suppose first that the surface S is closed and that the distribution is of
constant density, so that r may be taken outside the integral sign. The
positive layer lies on the outer side of S so that ¢ has the same direction
as the positive normal. There is a well-known theorem on solid angles
which applies to this case: “If S forms the complete boundary of a three-
dimensional region, the total solid angle subtended by S at P is zero,
if P lies outside the region, and 4= if P lies inside.””! The potential

at any interior point of 8 is, therefore, ¢_ = —El T; at any exterior point
0

! On the analytic properties of solid angles see Phillips, loc. cit., p. 112,
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¢4+ = 0. The difference in potential on either side of the double layer is

(17) br— b ==,
€

Next we observe that (17) represents correctly the discontinuity in ¢
as one traverses the double layer also when S is an open surface. For S
may be closed by adding an arbitrary surface S’. At every point within
or without this closed surface the resultant potential can be resolved into
two parts, a fraction ¢ due to the distribution on S, and a fraction ¢', due
to that on §’. Inside the closed surface the resultant potential is again

—;1- 7; outside, it vanishes. Thus, as we traverse the surface S, ¢ + ¢
0

changes discontinuously by an amount —}0 7; but ¢', due to the layer &',
is certainly continuous across S and hence the entire discontinuity is in ¢,
as specified by (17).

It remains to show that (17) is also valid when 7 is a function of
position on 8. About an arbitrary point P on the surface S draw a cirele
of radius a. Let the radius a be so small that, over the area enclosed by
the circle,  may be assumed to have a constant value 7o. The potential
¢ in the neighborhood of P may again be resolved into two parts, a
fraction ¢’ due to the infinitesimal circular disk and a fraction ¢’’ due
to that portion of the dipole layer lying outside the circle. ¢’ is con-

tinuous at P. ¢’ on the other hand suffers a discontinuous jump of } To
(1]

on crossing the circular disk. The resultant potential ¢ = ¢’ 4 ¢"
must, therefore, exhibit a discontinuity of the same amount and, in the
limit as @ — 0, we find that (17) holds for variable distributions if for r we
take the value at the point of transition through S.

These results might be interpreted to mean that the work done in
moving a unit positive charge around a closed path which passes once
through a surface bearing a uniform dipole distribution of density 7, is

ie—lfo, depending on the direction of circuitation. The potential in

0

presence of such a double layer is a multivalued function; for to its value

at (2/, ¥/, 2) one may add —}mr, where m is any positive or negative
0

integer. To obtain a different value of ¢ one need only return to the
initial point after traversing the surface S. All this appears to be in
contradiction to the conservative nature of the electrostatic field. Asa
matter of fact, the mathematical double layer constitutes a singular
surface which has no true counterpart in nature. We shall show below
by means of Green’s theorem that the potential within a closed domain
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bounded by a surface S due to external charges is identical with that
which might be produced by a certain dipole distribution over S. This
equivalent double layer, however, does not lead to correct values of ¢
outside S.

The application of the integral § E'nda = elq to a small right
0

cylinder, the ends of which lie on either side of the double layer, after the
manner of Sec. 1.13, indicates at once that there is no discontinuity in
the normal component of the field vector E across the surface since the
total charge within the cylinder is now zero.

(18) (B, —E_)-n = 0.

The line integral of E around a closed path, however, is no longer neces-
sarily zero; consequently we anticipate a possible discontinuity in the
tangential components. ILet the
contour start at 1, Fig. 34, at which
point the dipole density is . The
difference in potential between
points 1 and 2 is, according to (17),

/__—yEt&-

1 Fic. 34.—Transition of the tangential com-
¢1 — ¢ = —7. (Note that the ponents of E across a double layer.
€

intensity E is given by the derivative of the potential, not the difference in
potential across the discontinuity. The normal derivative is continuous.)
If Al is the length of the path tangential to the surface, the density at 3 is
r 4 Vr - Al, and the potential difference between 4 and 3 is

¢4—¢3=€—1(T+VT-AI).

Now the quantity (é2 — ¢1) + (¢s — ¢2) + (4 — ¢3) + ($1 — ¢4) is

identically zcro; hence,
(19)  —Lrt (bo— ) LG TroA) + (b= ) = 0.

Abbreviating ¢s — ¢1 = A¢y, ¢3 — ¢ = Ad_, (19) reduces to

Ady  Ap. _ 1

(20) Al T Al T G—OVT't’

where t is a unit vector tangent to S. The limit of —A¢/Al as I —0
is the component of E in the dircction of t, so that in virtue of the con-
tinuity of the normal component of E the transition of the field vector is
specified by

1) E, —E_ = —elovf.
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Clearly Vr signifies here the gradient of r in the surface and is, therefore,
a vector tangent to S. The proof is subject to the assumption that r and
its first derivatives are continuous over S.

3.17. Interpretation of Green’s Theorem.—In Sec. 3.4 it was shown
that the potential at any interior point of a region V bounded by a closed,
regular surface S could be expressed in the form

Voo ___}_ p 1 lad’ _._1_ —(?—l
(22) ¢(x1yﬁz)—41r€fvrdv+zr Sr;’)?;da 41 s¢8n T da‘

From the analysis of the preceding paragraph we are led to interpret this
result in the following way. The volume integral represents, of course,
the contribution of the charge within S, and the surface integrals account
for all charges exterior to it. However, the first of these surface integrals
is also equivalent to the potential of a single layer of charge distributed
over S with a density

(23) w = e%%
and the second can evidently be interpreted as the potential of a double
layer on S whose density is

(24) T = €b.

The charges outside S may be replaced by an equivalent single and double
layer, the densities of which are specified by (23) and (24), without modifying
in any way the potential at an interior point. The potential outside S
produced by these surface distributions corresponds in no way, however,
to that arising from the true distribution. On the contrary, it is most
important to note that these equivalent surface layers, which give rise to
the proper value of the potential at all interior points of S, are just those
required to reduce both potential and field E to zero al every point outside.
We observe first that the single layer gives rise to a discontinuity in the
normal derivative of ¢ equal to

().~ (¢). -2

The normal derivative in Eq. (23) must be calculated on the inner or
negative side of S, since this alone belongs to V. Replacing (9¢/n)_—
by its value (23), it follows that (d¢/dn)+ = 0. Furthermore, the dis-
continuity in potential due to the double layer is specified by (17), which
together with (24) shows that ¢, = 0. That ¢ and its derivatives vanish
everywhere outside S is readily shown by applying (22) to the volume V,
exterior to 8. Since there are now no charges in V,, V¢ = 0. At
infinity the potential is regular, and consequently the potential within
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V. is determined solely by the values of ¢, and (3¢/dn),. on S. But
these have just been shown to vanish. The function ¢(2’, ¥/, ') of (22)
is continuous and has continuous derivatives. The field intensity E
outside 8 is, therefore, also zero.

From the foregoing discussion it is clear that one may always close
off any portion of an electrostatic field by a surface, reducing the field
and potential outside to zero, and taking account of the effect of external
charges on the field within by proper single- and double-layer distribu-
tions on the bounding surface. It is instructive to consider these results
from the standpoint of the field intensity E. The single layer introduces
the proper discontinuity in the normal component E,, but does not affect
the transition of the tangential component. The double layer, on the
other hand, in no wise affects the transition of the normal component, but
may be adjusted to introduce the pro-

!

per discontinuity in E,, or according y
to (21),

1d
(26) Eg_. = 'e——d:l’ EH_ = 0,

where [ is any direction tangent to S.
If in particular the surface S is an
equipotential, n X E = 0, and no
dipole distribution is necessary; the
field inside S due to external charges
can then be accounted for by a single

layer of density w = e aa—z on the

equipotential.

3.18. Images.—An important ap-
plication of these principles is to be
found in the theory of images. The ]
equipotential surfaces of a pair of L-a ’K'a"l
equal point charges, one positive and Fre- 35-‘;(;‘51?::}?:2‘;‘; ‘zfi ?nii‘;’;: theorem
the other negative in a homogeneous )
dielectric of inductive capacity e, form a family of spheres whose centers
lie along the line joining the charges. Let the surface S be repre-
sented by any equipotential about —gq, Fig. 35. This surface thus
divides all space into two distinct regions, and in view of the regularity
of the potential at infinity, Green’s theorem applies to both, S being the
bounding surface in either case; ¢.e., either region may be taken as the
“interior” of S. If, therefore, the charge —¢ be removed, the field in
the region occupied by +-¢ is unmodified if a charge of density w is spread
over S as specified by (23). Inversely, if the charge +¢ be located as
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shown with respect to a conducting sphere, a surface charge w will be
induced upon it such that it becomes an equipotential. The contribution
of this induced charge to the field outside the conductor S is now deter-
mined most simply by replacing the surface distribution by the equivalent
point charge —¢. The charge —gq is said to be the image of +q with
respect to the given sphere. In case the equipotential surface is the
median plane 2’ = 0, the calculation is extremely simple. The potential
at any point (2/, y’, 2) to the right of 2’ = 0 is

1
27 ’ 7 ' = q -
( ) ¢(x’y}z) 47]’6 [_\/(xl —_ a)2 +y12+212

1
VE +ar+yt+ é”]
The normal derivative at 2’ = 0 must be taken in the direction of the

negative z’-axis, since the region on the right of 2’ = 0 is to be considered
the interior of the equipotential.

_9¢ __ 1 aq .
(28) ( axr>x,=0 - 21!'6 ((12 + y12 + z’z)!,

hence by (23) the charge density is

(29) w = "——:!.— (—lg)

where r? = a? + y'? + 2'%1

BOUNDARY-VALUE PROBLEMS

3.19. Formulation of Electrostatic Problems.—The analysis of the
preceding sections enables one to calculate the potential at any point in
an electrostatic field when the distribution of charge and polarization is
completely specificd. In practice, however, the problem is rarely so
clementary. Ordinarily only certain external sources, or an applied
field, are given from which the polarization of dielectrics and the surface
charge distribution on conductors must be determined such as to satisfy
the boundary conditions over surfaces of discontinuity.

Among electrostatic problems of this type are to be recognized two
classes: the homogeneous boundary-value problem and the inhomogeneous
problem. To illustrate the first, consider an isolated conductor embedded
in a dielectric. A charge is placed on the conductor and we wish to know
its distribution over the surface and the potential of the conductor with
respect to earth or to infinity. At all points outside the conductor the

10n the method of images, see JeaNs, ¢ Mathematical Theory of Electricity and
Magnetism,” 5th ed., Chap. VIII, Cambridge University Press; or MasoN and
WEAVER, “The Electromagnetic Field,” pp. 109ff., University of Chicago Press,
1929.
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potential must satisfy Laplace’s equation. At infinity it must vanish
(regularity), and over the surface of the conductor it must assume a
constant value. We shall show that these conditions are sufficient to
determine ¢ uniquely. The density of surface charge can then be deter-
mined from the normal derivative of ¢, subject to the condition that
Jw da over the surface of the conductor must equal the total charge.

An inhomogeneous problem is represented by the case of a dielectric
or conducting body introduced into the fized field of external sources.
A charge is then induced on the surface of a conductor which will dis-
tribute itself in such a manner that the resultant potential is constant over
its surface. The integral [wda is now zero. Likewise there will be
induced in the diclectrics a polarization whose field is superposed on the
primary field to give a resultant field satisfying the boundary conditions.

A schedule can be drawn up of the conditions which must be satisfied
in every boundary-value problem. To simplify matters we shall assume
henceforth that the dielectrics are isotropic and homogeneous except
across a finite number of surfaces of discontinuity.

(1) v2¢ = 0 at all points not on a boundary surface or within external
sources;

(2) ¢ is continuous everywhere, including boundaries of dielectrics or of
conductors, but excluding surfaces bearing a double layer;

(3) ¢ s finite everywhere, except at external point charges introduced as
primary sources;

4) e <§9) — & (—6—9) = 0 across a surface bounding two dielectrics;
omn/g an/i

(5) € gg = —uw at the interface of a conductor and dielectric;

(6) On the surface of a conductor either
(a) ¢ s a known constant ¢, or
b) ¢ s an unknown constant and

9 ja = —q.:
Le%da— Qi

(7) ¢ s regular at infinity provided all sources are within a finite
distance of the origin.

In (4) it is assumed that the interface of the diclectrics bears no charge,
as is almost invariably the case. The normal is dirccted from (1) to (2),
and in (5) from conductor into dielectric.

An clectrostatic problem consists in finding among all possible solu-
tions of Laplace’s equation the particular one that will satisfy the con-
ditions of the above schedule over the surfaces of specified conductors
and dielectrics.
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8.20. Uniqueness of Solution.—Let ¢ be a function which is harmonic
(satisfies Laplace’s equation) and which has continuous first and second
derivatives throughout a region V and over its bounding surface S.
According to Green’s first identity, (5), page 165, ¢ satisfies

1) fv (V) dy = J; ¢ %% da.

Suppose now that ¢ = 0 on the surface S. Then fV (Vé)2dv = 0. The

integrand is an essentially positive quantity and consequently V¢ must
vanish throughout V. This is possible only if ¢ is constant. Over the
boundary ¢ = 0 and, since by hypothesis ¢ is continuous throughout V,
it follows that ¢ = 0 over the entire region.

Now let ¢; and ¢, be two functions that are harmonic throughout the
closed region V and let

(2 ¢ = é1 — o

Then if ¢, and ¢a are equal over the boundary S, their difference vanishes
identically throughout V. A function which is harmonic and which
possesses conlinuous first- and second-order derivatives in a closed, regular
region V is uniquely determined by its values on the boundary S.

Consider next a system of conductors embedded in a homogeneous
dielectric whose potentials are specified. We wish to show that the
potential at every point in space is thereby uniquely determined. The
reasoning of the preceding paragraph is applied to a volume V which
is bounded interiorly by the surfaces of the conductors, and on the
exterior by a sphere of very large radius B. Let us suppose that there are
two solutions, ¢1 and ¢,, that satisfy the prescribed boundary conditions.
Then on the surfaces of the conductors, ¢ = ¢; — ¢ = 0. Since ¢,
and ¢, are assumed to be solutions of the problem, they must both satisfy
the conditions of Sec. 3.19; hence their difference ¢ is harmonic, has the
value zero over the conductors, and is regular at infinity. The surface
integral on the right-hand side of (1) must now be extended over both
the interior and exterior boundaries. Over the interior boundary ¢ = 0;
hence the integral vanishes. On the outer sphere d¢/dn = d¢/9R. If
R approaches infinity, ¢ vanishes as 1/R and d¢/0R as 1/R2. The

integrand ¢ g—% thus vanishes as 1/R?, whereas the area of the sphere

becomes infinite as R2. The surface integral over the exterior boundary
is, therefore, zero in the limit R — «. It follows too that the volume
integral in (1) must vanish when extended over the entire space exterior
to the conductors, and we conclude as before that if the two functions ¢,
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and ¢. are identical on the boundaries they are,identical everywhere:
there is only one potential function that assumes the specified constant
values over a given set of conductors.

The left-hand side of (1) may also be made to vanish by specifying
that d¢/dn shall be zero over the enclosing boundary 8. Then through-
out ¥ we have again V¢ = 0, whence it follows that ¢ is constant every-
where, although not necessarily zero since the condition d¢/dn = 0 does
not imply the vanishing of ¢ on 8. One concludes, as above, that if the
normal derivatives d¢:/dn and d¢,/dn of two solutions are identical on the
boundaries, the solutions themselves can differ only by a constant. In
other words, the potential vs uniquely determined except for an additive
constant by the values of the normal derivative on the boundaries. But the
normal derivalive of the potential is in turn proportional to the surface
charge density and, consequently, there is only one solution corresponding
to a given set of charges on the conductors.

In case there are dielectric bodies present in the field the requirement
that the first derivatives of ¢, as well as ¢ itself, shall be continuous is no
longer satisfied and (1) cannot be applied directly. However, the region
outside the conductors may be resolved into partial volumes V; bounded
by the surfaces S; within which the dielectric is homogeneous. To each
of these regions in turn, (1) is then applied. The potential is continuous
across any surface S; and the derivatives on one side of S; are fixed in
terms of the derivatives on the other. It is easy to see that also in this
more general case the electrostatic problem is completely determined by the
values either of the potentials or of the charges specified on the conductors of
the system.

3.21. Solution of Laplace’s Equation.—It should be apparent that
the fundamental task in solving an electrostatic problem is the determina-
tion of a solution of Laplace’s equation in a form that will enable one to
satisfy the boundary conditions by adjusting arbitrary constants. There
are a certain number of special methods, such as the method of images,
which can sometimes be applied for this purpose. Apart from the theory
of integral equations, the only procedure that is both practical and
general in character is the method known as “separation of the variables.”
Let us suppose that the surface S bounding a conductor or dielectric body
satisfies the equation

(3) fl(x; Y, Z) = C.

We now introduce a set of orthogonal, curvilinear coordinates u!, u?, u?,
as in Sec. 1.14, such that one coordinate surface, say 4! = C, coincides
with the prescribed boundary (3). If then a harmonic function ¢(u!,
u?, u®) can be found in this coordinate system, it is evident that the normal
derivative at any point on the boundary is proportional to the derivative
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of ¢ with respect to u!, and that the derivatives with respect to u? and u?
are tangential.

According to (82), page 49, Laplace’s equation in curvilinear coordi-
nates is

3
3 (Vg ds\ _ B
“4) Ea—u, R g;,) =0, Vg = hihsh,.

Let us suppose that the scale factors h; satisfy the condition

(5) \h/g = M fi(u")f2(u?)fs(u?).

Each of the product functions f,(u*) depends on the variable % alone,
but the factor M, does not contain u®. It may, however, depend on the
other two. We next assume that ¢ likewise may be expressed as a prod-
uct of three functions of one variable each.

(6) ¢ = F1(ut)F2(u?)F3(u®).
Then (4) can be written in the form
3
M; d oF.\ _
(7 inlm%(ﬁw)—o

If finally the M; are rational functions, Eq. (7) ean be resolved into three
ordinary differential equations. The method is best described by
example.

1. Cylindrical Coordinates.—From (1), page 51, we have

1
®) Vi=r, }/'éa‘=7': J=7, L/z»é=r,

whence by inspection
) fi=r, Ja=fa=1, M,=M;=1, M, ==

Equation (7) becomes

1 o oF, 1 0%, | 1 0°Fs _
(10) Fyor (""a?) tr, a0 TR e =~ O

The first two terms of (10) do not contain z; the last term is independent of
r and ¢. A change in z cannot affect the first two terms and thercfore
the last term must be constant if (10) is to be satisfied identically for any
range of z.

1 d’F,

(11) F37d_z? = —01.
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The arbitrary constant Cy, called the separation constant, has been chosen
negative purely as a matter of convenience and the partial derivative
has been changed to a total derivative since F; is a function of z alone.

Upon replacing the third term of (10) by —C, and multiplying by r?
one obtains

r d oF 1 1 9%F 2 _ 4

(12) EE(T-&;)-‘I‘E-TW -——7'01.
It is again apparent that the second term of (12) is constant, leading to
two ordinary cquations,

aw
(13) ~ 0; + C.F, = 0,
1d dFy
(14) Fd_r<r_‘dr> (Cx-i— >F1=

The equations for F', and F; are satisfied by exponential functions of
real or imaginary argument depending on the algebraic sign attributed
to the separation constants; F'; is a Bessel function. In the not uncommon
case of a potential ¢ which is independent of 2z, we find Fs constant,
Cy = 0, and in place of (14)

(15) dr( i ) = C,

2. Spherical Coordinates.—From (2), page 52, we have

. Vg Vi Vg _ 1
= r2 -5 =72 e T R T sind
(16) /g = r2sin o, g =TS ot =sing o Sr =
whence
(17) J1=1% J2 = sin 6, fs=1,
Mi=1, M,=3 My=

r? r? sin? 6

Equation (7) reduces to

1 o ( ,oF, 1 o(. _oF, 1 oF;
SO (T 6r> t asmer, oFJE)(S“‘ ao) T irsnrer, g~ %
where ¥ has in this casc been employed in place of ¢ to represent the

azimuthal angle. Separation of the variables leads to the three ordinary
equations

1d{( ,dF:
(19a) ﬁTl E ( dr > Cl,
(190) Si; 6 adé sin 6 cgf(; ) C; — Cysin? 4,
2
(19¢) ‘fjf: O, = 0,

Of these three, only the Legendre equation (19b) is of any complexity.
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3. Elliptic C'oordinates.—According to (3), page 52, we have

(20) Vi _ -1 I Y D Gk ) B
ki N1-—o* h -1 ®HOVE-na-m»
which by inspection lead to
f1=V£1_17 f2=\/1_772) f3=1:
(21)
M=l M= ) My= S8 )
T eI TE-na-m
The Laplace equation for the elliptic cylinder is

ey YEZL18 (et 1) 4 VI 9 (=)

14
T F, at F,
c’(E” — %) 3%,
Fa 622 -

which upon separation gives

2
(23a) 1 d?F;

Fydt
(23b) \/EF— 14d (\/ £ — ) ¢ty = Cy,
(23¢) 1 2— n’ d (‘\/ dF2> + ¢*?Cy = —C,.

Both F, and F; are M. athzeu Sfunctions, but simplify notably when C; = 0
as is the case when ¢ is uniform along the length of the cylinder.
4. Spheroidal Coordinates.—According to (6), page 56, we have

@) Yoo, Mlooq-n, MI___c&=1

“Cl,

5 2 BT E-Da -
= -1, =1 — 9% =4
(25) Si=¢§ . Af c n ]‘f c(&t — 9?)
Mi=y—p M=g—p M= _qpa-a¢

Laplace’s equation reduces to

19 dF, 19 dF,
@ gale -5 rna[a-ni]
£ -7 g
(E’ — 1A — 7°)F; ay*
which separates into the three ordinary equations

=0,

1 dFy _
(27(1) F; W = Cl,
1d dF, C,
(21) fale-n®| - % -a
1d z Cl
(276) F—:% [(1 - 112) -d—n-:l - 1= q’ = "‘C:.
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Equations (27b) and (27¢), which obviously are identical, are satisfied
by the associated Legendre functions.

The criteria stated on page 198 for the separability of Laplace’s
equation are not the most general known, but they include all coordinate
systems of common use. A more general set of separable coordinate
surfaces, of which the toroidal surfaces formed by rotating a set of bipolar
coordinates is an example, has been investigated by Bécher.!

It would lead us too far afield to discuss the properties of the various
functions satisfying the equations enumerated above and the methods
of determining the arbitrary constants. We shall have constant occasion
throughout the remainder of this volume to employ Legendre and Bessel
functions. The reader is referred to the classic treatises of Hobson? and
Watson®, and to Whittaker and Watson. Detailed application of
boundary-value methods to electrostatics will be found in Jeans® and in
Smythe.b

PROBLEM OF THE SPHERE

3.22. Conducting Sphere in Field of a Point Charge.—Consider a
conducting sphere of radius 7; whose center is located at the origin of the

coordinate system. The sphere is embed- z
ded in a homogeneous, isotropic dielectric 2=¢
of inductive capacity e¢a. Atz =¢ >nr ~~~_n

on the z-axis, there is located a point
charge ¢, Fig. 36. We wish to find the
potential and the distribution of charge
on the sphere.

Let ¢o be the potential of the source ¢q
and ¢, the potential of the induced charge
distribution on the sphere. The resultant
potential at any point outside the sphere
is¢ = ¢ + ¢1. Theinduced potential ¢; 74
must be single-valued, a condition satisfied Fie.36.—Spherein the field of a point
only when the separation constant C,, charge located at z = {.

Eq. (19¢), page 199, is the square of an integer: C; = m?, m =0, +1,
+2, . ... Likewise the only solutions of (19b) which are finite and
single-valued over the sphere are the associated Legendre function

1 #4Ueber die Reihenentwickelungen der Potentialtheorie,”” Dissertation, 1894.

3 HossoN, ‘“‘Spherical and Ellipsoidal Harmonics,”” Cambridge University Press,
1931.

3 WaTson, ““Treatise on the Theory of Bessel Functions,” Cambridge University
Press, 1922.

4 WairtAkErR and WatsoN, ‘‘Modern Analysis,”” Cambridge University Press,
1922,

§ JeANS, loc. cit.

¢ SMYTHE, ‘““Static and Dynamic Electricity,” McGraw-Hill, 1939,
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Pm(cos 6), imposing on C; the value C; = n(n 4+ 1),n=10,1,2, . .
Under these circumstances (19a) is satisfied by either r» or r~»=1, The
condition that the potential be single-valued is fulfilled by the function

0

(1) ¢ = E E (a,.,,.r + ""') Pm7(cos 0)e™v,
n=0m=0

where Gnm, bum are arbitrary constants. But ¢; must also be regular at
infinity, which nccessitates our placing @um = 0. Furthermore, the
primary potential ¢, is symmetric about the z-axis; consequently m = 0
in this case. The potential of the induced distribution is, therefore,
represented by the series

(2) ¢1 = 2 2+1P (cos 6).

n=0

The expansion of the primary potential ¢, in spherical coordinates
was carried out in Sec. 3.8. When r < ¢,

3) o = L 4—1re§‘ (g,) P,(cos 6),

and the resultant potential on the surface r = 7 is

4) $(ry, 0) = 2 [;g%;?(%)n + Tl:+1] P.(cos 0) =

Now ¢, is a constant, and since (4) must hold for all values of 6, it follows
that the coefficients of P,(cos 6) must vanish for all values of n greater
than zero. The coefficients b, are thus determined from the set of
relations

7-1 q qT2"+1

(5) b = ri¢y — 4 e g_ b, = 41(‘6 e T (n > O)
At any point outside the sphere

_ 1 g q Q 737+ Pa(cos 6)
(6) ¢ 4res Ty rz r 4re, < feauty ol

To determine the charge density, we compute the normal derivative
on the surface.

s
(7) ( romry 41['622 (2n + 1) g-n+1 n(COS 0) —_ .7.:1_.,

n=0



8uc. 3.22] CONDUCTING SPHERE IN FIELD 203

and the induced charge density is

®) o= —e <g§>= = ——2 @n + 1) S,MP n(cos 6) 4 2% ‘2""
The total charge on the sphere is
(9) a1 = [ [ et sin 0 doay.
Now a well-known property of the Legendre functions is their orthogonality.
(10) j;" P, (cos 6)Pn(cos 6) sin § do = 0, n # m.

We may take m = 0, Po(cos 6) = 1, and lcarn that P,(cos 6) vanishes
when integrated from 0 to 7 if n > 0.

(11) " q1 = _q% + 477627'1()5..
The potential of the sphere is, thercfore,
(12) PR N

dresr;  4dmes &

q1 representing an excess charge that has been placed on the isolated
sphere. If the sphere is grounded, ¢, may be put equal to zero.

It is interesting to observe that the potential ¢; of the tnduced dis-
tribution at any point outside the sphere is that which would be produced

3
by a charge 4mwe:bg = ¢1, a dipole moment 4red; = r_;, ete., all located

—q
$
at the origin and oriented along the z-axis (Sec. 3.8). There is, however,
another simple interpretation. The point z = {’, Fig. 36, where {¢’ = 72,
is said to be the inverse of z = ¢ with respeet to the sphere. The recip-
rocal distance from this inverse point to the point of observation is, by

(8), page 173,

(13) L.l E (£ ) Pa(eos ) = S P_w__(r‘;gi 0.

Thus the resultant potential (6) may be written

(14) dresp = L - 0011 ot QI + ol
rs §r ¢r

Outside the sphere the potential is that of a charge ¢ at z = ¢, an tmage

—q "1 Jocated at the inverse point z = {’, a charge ¢, (which

harge ¢ =
charge q ¢
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is zero when the sphere is uncharged) located at the origin, and a charge
q% at the origin which raises the potential of the floating sphere to the

proper value in the external field.

3.23. Dielectric Sphere in Field of a Point Charge.—At any point
outside the sphere, whose conductivity is zero and whose inductive
capacity is e, the potential is

cos 6

(15) ¢+=¢o+¢f—mr+2bP(n+1)

The notation ¢+ will be employed to denote a potential or field at points
outside, or on the positive side, of a closed surface. The expansion of ¢,
in inverse powers of r does not hold within the sphere, for the potential
must be finite everywhere. We resort, therefore, to an alternative solu-
tion of Laplace’s equation obtained from (1) by putting the coefficients
bam equal to zero. At any interior point the resultant potential is

16 ¢ = anr*P,(cos 6), r <ry).
(16) E (r <)
¢~ includes the contribution of the charge q as well as that of the induced
polarization, for the singularity occasioned by this point charge lies
outside the region to which (16) is confined. In the neighborhood of the
surface, r < |{[, so that ¢, can be expanded as in (3). Just outside the
sphere,

(17 o+ = 2 [47“2 su({) + rm] P (cos 6).

Across the surface

Jdot dp~
(18) ¢t = ¢, €2 ;:_ =6 _84)7’ (r = r)).
A calculation of the coefficients from these boundary conditions leads to
0 = q 2n +1
T drttineg + (0 + De
(19) 2n+4-1
b — q 7‘1 €y — €1 n

41!' g""H' €2 ney + (n + 1)62
The potential at any point outside the sphere is

(20) ot = g . ga—a N n rint1 P, (cos 6)
- 47“27'2 4T €2 o ney + (n + 1)62 {n+1 ol

while at an interior point

1) - q 2n 4+ 1 A

_4, mpﬂ P,(cos 6).
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It is important to observe that a region of infinite inductive capacity
behaves like an uncharged conductor. As ¢, becomes very large, it will
be noted that the first term in the series (20) corresponding to n = 0
vanishes, so that in the limit one obtains (6) for the case ¢, = 0.

3.24. Sphere in a Parallel Field.—As the point source ¢ recedes from
the origin, the field in the proximity of the sphere becomes homogeneous
and parallel. We shall consider the case of a sphere embedded in a
diclectric of induct