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PREFACE

This book was planned and begun in 1929. Our original inten-
tion was that it should be one of the Cambridge Tracts, but it
soon became plain that a tract would be much too short for our
purpose.

Our objects in writing the book are explained sufficiently in
the introductory chapter, but we add a note here about history
and bibliography. Historical and bibliographical questions are
particularly troublesome in a subject like this, which has applica-
tions in every part of mathematics but has never been developed
systematically.

It is often really difficult to trace the origin of a familiar
inequality. It is quite likely to occur first as an auxiliary
proposition, often without explicit statement, in a memoir on
geometry or astronomy; it may have been rediscovered, many
years later, by half a dozen different authors; and no accessible
statement of it may be quite complete. We have almost always
found, even with the most famous inequalities, that we have
a little new to add.

We have done our best to be accurate and have given all
references we can, but we have never undertaken systematic
bibliographical research. We follow the common practice, when
a particular inequality is habitually associated with a particular
mathematician’s name ; we speak of the inequalities of Schwarz,
Holder, and Jensen, though all these inequalities can be traced
further back ; and we do not enumerate explicitly all the minor
additions which are necessary for absolute completeness.

We have received a great deal of assistance from friends.
Messrs G. A. Bliss, L. S. Bosanquet, R. Courant, B. Jessen,
V. Levin, R. Rado, I. Schur, L. C. Young, and A. Zygmund
have all helped us with criticisms or original contributions.
Dr Bosanquet, Dr Jessen, and Prof. Zygmund have read the
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proofs, and corrected many inaccuracies. In particular, Chap-
ter 1 has been very largely rewritten as the result of Dr Jessen’s
suggestions. We hope that the book may now be reasonably
free from error, in spite of the mass of detail which it contains.

Dr Levin composed the bibliography. This contains all the
books and memoirs which are referred to in the text, directly

or by implication, but does not go beyond them. G.H.H.
J.E. L.
G.P.

Cambridge and Ziirich

July 1934
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CHAPTER I,
INTRODUCTION

1.1. Finite, infinite, and integral inequalities. It will be
convenient to take some particular and typical inequality as a
text for the general remarks which occupy this chapter; and we
select a remarkable theorem due to Cauchy and usually known
as ‘ Cauchy’s inequality’.

Cauchy’s inequality (Theorem 7) is

(1.1.1) (@ b,+ayby+...+a,b,)?

S(al?+a2+...+a,2) (b2 +b2+... +b,?)
or

(1.12) (Za,b,)?< a2 5b 2,
1 1 1

and is true for all real values of a,, a,, ..., a,, b;, by, ..., b,. We

callay, ..., by, ... the variables of the inequality. Here the number
.of variables i finite, and the inequality states a relation between
- oértain finite sums. We call such an inequality an elementary or
Jinite inequality.

The most fundamental inequalities are finite, but we shall also
be concerned with inequalities which are not finite and involve
generalisations of the notion of a sum. The most important of such
generalisations are the infinite sums

(1.1.3) Sa,, Za,
1 —0
and the integral
b
(1.1.4) f f(x)dx
a

(wheére a and b may be finite or infinite). The analogues of (1.1.2)
corresponding to these generalisations are

(1.1.5) (2a,b,)? < $a,250,2
1 1 1

HI I



2 INTRODUCTION

(or the similar formula in which both limits of summation are
infinite), and

(1.1.6) (fbf(x)g(x)dx)zgfbfz(x) dz fb g2 (x) dx.
We call (1.1.5) an ¢nfinite, and (1.1.6) an integral, inequality.

1.2. Notations. We have often to distinguish between dif-
ferent sets of the variables. Thus in (1.1.2) we distinguish the
two sets a,, 4y, ..., @, and by, by, ..., b, . Itis convenient to have
a shorter notation for sets of variables, and often, instead of
writing ‘the set a,, a,, ..., @, we shall write ‘the set (a)’ or
simply ‘the a’.

We shall habitually drop suffixes and limits in summations,
when there is no risk of ambiguity. Thus we shall write

Za

n [=e]
for any of Za,, Za,, X a,;
1 1 —©

so that, for example,
(1.2.1) (Zab)? < Za?Zb?
may mean either of (1.1.2) or (1.1.5), according to the context.
In integral inequalities, the sef is replaced by a function; thus
in passing from (1.1.2) to (1.1.6), (a) and (b) are replaced by
fand g. We shall also often omit variables and limits in integrals,

writing [fdx
for (1.1.4): so that (1.1.6), for example, will be written as
(1.2.2) (ffodx)2 <[ f3dx [ g?da.

The ranges of the variables, whether in sums or integrals, are pre-
scribed at the beginnings of chapters or sections, or may be
inferred unambiguously from the context.

1.3. Positive inequalities. We are interested primarily in
‘positive ’ inequalities?. A finite or infinite inequality is positive if
all variables @, b, ... involved in it are real and non-negative.
An inequality of this type usually carries with it, as a trivial

a There are exceptions, as for example in §§ 8.8-8.17. There the ‘positive’ cases of
the theorems discussed are relatively trivial.
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' corollary, an apparently more general inequality valid for all real,
or even complex, a, b, .... Thus from (1.1.2) and the inequality

(1.3.1) [Zu|sZ|ul,
valid for all real or complex u, we deduce
(1.3.2) [Zab|2<s(Z|a]|b]|)?sZ|a|2Z]|b]%

where thea and b are arbitrary complex numbers. Weshall usually
be content to state our theorems in the fundamental ‘ positive’
form and to leave the derived results to the reader. Occasionally,
however, when the inequality in question is very important, we
state it explicitly in its most general form.

Similar remarks apply to integral inequalities. The independent
variable z will be real, but will (like the variable of summation v)
take either pdsitive or negative values; while the functions f(x),
g(), ... will generally assume non-negative values only. To such
_an inequality as (1.1.6), true for non-negative f, g, corresponds
the more general inequality
- (13.3) [[fode|2<[|f*dx[| g |*de,
wvalid for arbitrary complex functions f, g of the real variable x.

Numbers %, I, r, s, ... occurring as indices in our theorems are

“real but in general capable of either sign.

1.4. Homogeneous inequalities. The two sides of (1.1.2)
- are homogeneous functions of degree 2 of the a and also of the b;
and generally both sides of our inequalities will be homogeneous
furictions, of the same degree, of certain sets of variables. Since
homogeneous functions of positive degree vanish when all their
arguments vanish, both sides, if of positive degree, will vanish,
‘and so be equal, when the sets concerned consist entirely of 0’s.
Thus (1.1.2) reduces to an equality if all the a, or all the b, are 0.
-A set consisting entirely of 0’s is called a nul set, or the nul set,
if the context is unambiguous. In general the ‘<’ or ‘=’ of our
“theorems will reduce to ‘=’ when one or all of the sets involved is
nul. Sometimes this will be the only case of equality. More usually
there willbe other cases; thus plainly ‘ =’ occursin (1.1.2) if every
ais equal to the corresponding b. We shall be careful, wherever it
'is possible, to pick out explicitly such cases of equality.
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The homogeneity of an inequality in certain sets of variables
often enables us to simplify our proofs by imposing an additional
restriction (a normalisation) on them. Thus the means N, (a) of
§ 2.2 are homogeneous, of degree 0, in the weights p, and we may
always suppose, if we please, that Zp =1. Again, if we wish to
prove that

(1.4.1)  (@f+af+... +a, )< (a] +ay + ... +a, )"
when 0 <7 < s (Theorem 19), we may suppose (since both sides are
homogeneous in the a of degree 1) that Xa”=1. We have then

avr < 1, aps — (avr)s/r < avr’
and so Xa* < Xa" = 1. Without this preliminary normalisation, our
proof would run

(Zas)l/s—— as 1/s_ ar \sir\ Vs ar 1/3—
e

There is another sense of ‘homogeneity’ which is sometimes
important. Let us compare (1.4.1) above, which may be written as

(1.4.2) (Zas)Vs < (Zar)ih,
with (1.1.2). Both inequalities are homogeneous in the variables,
but (1.1.2) has a further homogeneity which (1.4.2) has not. It is,
as we may say, ‘homogeneous in X’; X, if treated as a number,
would occur to the same power on the two sides of the inequality.

The result of this homogeneity in X is that (1.1.2) remains
true if every sum which occurs is replaced by the corresponding
mean, i.e. if written in the form

2
: (1 Zab) < (1 Zaz) (1 262) .
n n n

The importance of this kind of homogeneity will appear very
clearlyin §2.10 and §6.4. Roughly, an inequality which possesses
it has an integral analogue, while one which does not, like (1.4.2),
has none.

1.5. The axiomatic basis of algebraic inequalities2. Our
subject is difficult to define precisely, but belongs partly to
‘algebra’ and partly to ‘analysis’. Algebra or analysis, like
geometry, may be treated axiomatically. Instead of saying, as

8 See Artin and Schreier (1).
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for example in Dedekind’s theory of real numbers, that we are
concerned with such or such definite objects, we may say, as in
projective geometry, that we are concerned with any system of
objects which possesses certain properties specified in a set of
axioms. We do not propose to consider the ‘axiomatics’ of
different parts of the subject in detail, but it may be worth while
to insert a few remarks concerning the axiomatic basis of those
theorems which, like (1.1.2) and most of the theorems of Ch. IT,
belong properly to algebra.

We may take as the axioms of an algebra only the ordinary
laws of addition and multiplication. All our theorems will then
be true in many different fields, in real algebra, complex algebra,
or the arithmetic of residues to any modulus. Or we may add
‘axioms concerning the solubility of linear equations, axioms
which secure the existence and uniqueness of difference and
thent Our theorems will then be true in real or complex
algebra or in arithmetic to a prime modulus.

In our present subject we are concerned with relations of in-
‘equality, & notion peculiar to real algebra. We can secure an
‘axiomatic basis for theorems of inequality by taking, in addition
to the ‘indefinables’ and axioms already referred to, one new
indefinable and two new axioms. We take as indefinable the idea
of a positive number, and as axioms the two propositions:

1. Either a s 0 or a s positive or —a 18 positive, and these
possibilities are exclusive.

II. The sum and product of two positive numbers are positive.
We say that a is negative if —a is positive, and that a is greater
(less) than b if a—b is positive (negative). Any inequality of a
purely algebraic type, such as (1.1.2), may be made to rest on
this foundation.

1.6. Comparable functions. We may say that the functions
f(a)=f(a1! Ay eees @), g(@)=g(ay,as, v )

are comparable if there is an inequality between them valid for
all non-negative real a, that is to say if either f < g for all such @ or
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f2 g for all such a. Two given functions are not usually compar-
able. Thus two positive homogeneous polynomials of different
degrees are certainly not comparable?; if 0<f<g for all non-
negative a, and both sides are homogeneous, then f and g are
certainly of the same degree.

The definition may naturally be extended to functions
f(a,b,...) of several sets of variables.

We shall be occupied throughout this volume with problems
concerning the comparability of functions. Thus the arithmetic
and geometric means of the @ are comparable: @ (a)<UA(a)
(Theorem 9). The functions & (a+b) and & (a)+ & (b) are com-
parable (Theorem 10). The functions U (ab) and A (@) A (b) are not
comparable; their relative magnitude depends upon the relations
of magnitude of the @ and b (Theorem 43). The functions

7 Epg (@), x7'(Epx(a))
are comparable if and only if yxJ/~! is convex or concave
(Theorem 85).
An important general theorem concerning the comparability of
two functions of the form

a4 a,% ... a,%,

due to Muirhead, will be found in §2.18.

1.7. Selection of proofs. The methods of proof which we use
in different parts of the book will depend on very different sets of
ideas, and we shall often, particularly in Ch. I, give a number of
alternative proofs of the same theorem. It may be useful to call
attention here to certain broad distinctions between the methods
which we employ.

In the first place, many of the proofs of Ch. II are ‘strictly
elementary’, since they depend solely on the ideas and processes
of finite algebra. We have made it a principle to give at any rate
one such proof of any really important theorem whose character
permits it.

Next we have, even in Ch. II, many proofs which are not
elementary in this sense because they involve considerations of

& Compare § 2.19.
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limits and continuity. We have also, particularly in Ch. IV,
proofs which depend upon the standard properties of differential
coefficients, as for example upon Rolle’s Theorem. All these
proofs belong to the elements of the theory of functions of one
real variable.

Later, when dealing with integrals in Ch. VI, we naturally
make use of the theory of measure and of the integral of Lebesgue.
This we take for granted, but we give a summary in §§6.1-6.3 of
the parts of the theory which we require.

Occasionally we appeal to the more remote parts of the theory
of functions of real variables; but we do this only in alternative
proofs or in the proofs of theorems of considerable intrinsic
difficulty. Thus in Ch.IV (§4.6) we use the theory of the maxima
and minims, of functions of several variables; in Ch. VII we use
the methods of the Calculus of Variations; and in Ch. IX we use
the theory of double and repeated integration. We make no use
- of complex function theory, although, in the last chapters, we
- yefer to it occasionally for purposes of illustration. The sections
“in which we do this do not belong properly to the main body of

the book.
We add a few further remarks of a more detailed character.
(i) Cauchy’sinequality (1.1.2)is a proposition of finite algebra,
as defined in §1.5. It is a recognised principle that the proof of

such a theorem should involve only the methods of the theory to
which it belongs.

(ii) Weshall be continually meeting theorems, such as Holder’s
inequality

(1.7.1) Tab < (Zak)Vk (Zp¥ )UK’
(Theorem 13), whose statusdepends upon the value of a parameter
k. If k is rational, the theorem is algebraical, and our remarks
under (i) apply. If kisirrational, a* is not an algebraical function,
and it is obvious that there can be no strictly algebraical proof.

Tt is however reasonable to demand, when we are concerned
with an inequality so fundamental as Holder’s, that our step
outside algebra shall be the absolute minimum which the nature
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of the problem necessitates. It is plain that this step will depend
upon our definition of a¥*. We may define a* as exp (kloga), and
in this case it is obviously legitimate and necessary to use the
theory of the exponential and logarithmic functions. If, as is
more usual, we define a* as the limit of a*», where %, is an appro-
priate rational approximation to k, then this limiting process
should be the only one to which we appeal.

(iii) Suppose that, adopting the last point of view, we have
proved Holder’s inequality, for rational %, in the form (1.7.1.).
We can infer its truth for irrational k by a passage to the limit.

Such a proof, however, is not usually sufficient for our purpose.
We always wish to prove a theorem of a more precise type than
(1.7.1), in which (as in Theorem 13) we establish strict inequality
except in certain specified special cases. When we pass to the
limit, ¢ <’ becomes ¢ <’, we lose touch with the cases of equality
(though these are in fact the same as in the rational case), and
our proof is incomplete. It is therefore necessary to arrange our
proofs in such a manner as to avoid such passages to the limit
wherever it is possible. The same point arises whenever we wish
to pass from a finite inequality to the corresponding infinite or
integral inequality. It recurs at intervals throughout the volume
and has often determined our choice of a particular line of proof.

(iv) The general principles which have governed our choice of
methods are as follows. When a theorem is simple and funda-
mental, like Theorems 7, 9, or 11, we prove it by several different
methods, and are careful that one of our methods at any rate
shall conform to the canons laid down under (i) and (ii). When the
theorem is subsidiary or difficult, or when a proof satisfying these
conditions would be troublesome orlong, we use whatever method
seems to us simplest or most instructive.

1.8. Selection of subjects. The principleswhich have guided
us in our selection of subjects may be summarised as follows.

(i) The first part of the book (Chs. IT-VI2) contains a syste-
matic treatment of a definite subject. Our object has been to

s Except perhaps some parts of Ch. IV.
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discuss thoroughly (with their analogues and extensions) the
simple inequalities which are ‘in daily use’ in analysis. Of these
three are fundamental, viz.

(1) the theorem of the arithmetic and geometric means
(Theorem 9),

(2) Holder’s inequality (Theorem 11),
(3) Minkowski’s inequality (Theorem 24);

and these three theorems dominate the first six chapters. We
prove them in a variety of ways, in the finite case in Ch. II, in
the infinite casein Ch. V, and in the integral case in Ch. VI; while
Ch. IIT (which contains a general account of the theory of convex
functions) is mainly occupied with their generalisations. In these
chapters, of which the most important are II, ITI, and VI, we
have aimed at a comprehensive and in some ways exhaustive
treatment.

(ii) The rest of the book (Chs. VII-X) is written in a different
spirit and must be judged by different standards. These chapters
contain a series of essays on subjects suggested by the more
systematic investigations which precede. In them there is very
little attempt at system or completeness. They are intended as
an introduction to certain fields of modern research, and we have
allowed our personal interests to dominate our choice of topics.

In spite of this (or because of it) the chapters have a certain
unity. There is much modern work, in real or complex function-
theory, in the theory of Fourier series, or in the general theory of
orthogonal developments, in which the ‘Lebesgue classes L*’
occupy the central position. This work demands a considerable
mastery of the technique of inequalities; Hdolder’s and Min-
kowski’s inequalities, and other more modern and more sophisti-
cated inequalities of the same general character, are required at
every turn. Our object has been to write such an introduction to
this field of analysis as may be made to hang naturally on the
subject matter of the early chapters.

(iii) We are interested primarily in certain parts of real analysis,
and not in arithmetic or in algebra for its own sake. The line
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between algebra and analysis is often difficult to draw, especially
in the theory of quadratic or bilinear forms, and we have often
doubted what to include or reject. We have however excluded
all developments whose main interest seemed to us to be alge-
braical.

Wehave also excluded function-theory proper, real or complex.
In the later chapters, however, we have sometimes tried to show
the significance of our theorems by sketching the lines of some of
their function-theoretic applications.

Thus (to give definite examples) our programme excludes

(1) inequalities of a definitely arithmetical character, such as
those of the theory of primes, or those which give bounds for
forms with integral variables;

(2) inequalities which belong properly to the algebraicaltheory
of quadratic forms;

(3) inequalities, such as ‘Bessel’s inequality’, which belong to
the theory of orthogonal series;

(4) inequalities, such as ‘Hadamard’s three circle theorem’,
which belong to function-theory proper:

and there is no systematic discussion of geometrical inequalities,
though we use them frequently for purposes of illustration.

It may be useful to end this introduction by a few words of
advice to readers who are anxious to avoid unnecessary immer-
sion in detail. The subject, attractive as it is, demands, for the
writer at any rate, a great deal of attention to details of a rather
tiresome kind. These details arise particularly in the exclusion of
exceptional cases, the complete specification of cases of equality,
and the conventional treatment of zero and infinite values. Such
a reader as we have in mind may be contenf, in general, to sim-
plify his task as follows. (1) He may ignore the distinction be-
tween non-negative and positive, so that the numbers and func-
tions with which he is concerned are all positive in the narrow
sense. (2) He may ignore our conventions concerning ‘infinite
values’. (3) He may assume that the parameter k or r of in-
equalities such as Holder’s and Minkowski’s is greater than 1.
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(4) He may take it for granted that ‘what goes for sums goes,
with the obvious modifications, for integrals’ (or vice versa). He
should then be able to master what is essential without undue
trouble.

This advice for ‘easy reading’ must not be taken too literally.
It is essential to understand the kind of exceptional cases which
occur, and the general principles which govern the discrimination
of cases of equality. It is not a mere academic exercise to pick
out the cases of equality in such an inequality as Holder’s; a
knowledge of these cases provides (as is shown very clearly in
§§ 8.13-8.16) a powerful weapon for the discovery of deep and
important theorems. Every reader should make it his business
to explore this inequality at any rate to the end.



CHAPTER 11
ELEMENTARY MEAN VALUES

2.1. Ordinary means. In what follows we are concerned
with sets of » non-negative numbers a (or b, ¢, ...), say

(2.1.1) Ay, Oy eens@yyenns @y (@, 20),
and a real parameter 7, which we suppose for the present not to
be zero.

We denote the ordered series (2.1.1) by (a). When we say
that ‘(a) is proportional to (b))’ we mean that there are two
numbers A and p, not both zero, such that

(2.1.2) Aa,=ub, (¥=1,2,...,n).

It will be observed that the nul set, the set (a) in which every a is zero,
is proportional to any (b). Proportionality, as we have defined it, is a
symmetrical relation between sets but not a transitive one; it becomes
transitive if we exclude the nul set from consideration.

If (a) and (b) are proportional, and neither of them is nul, then b,=0
whenever a, =0, and a, /b, is independent of » for the remaining values of ».

We write
1 1/r 12 Ur
e1n) Moo= (i) (2 2ar)”,

ny=1

except when (i) r=0 or (il) <0 and one or more of the a are
zero. In the exceptional case (ii), when (2.1.3) has no meaning,
we define I, as zero, so that

(2.1.4) M,=0 (r<0, some a zero)?.
Here and elsewhere we shall omit the suffixes and limits of sum-
mation when it can be done without ambiguity.

In particular we write

(2.1.5) A=A (a) =M, (a),

(2.1.6) 9=9(a)=M_,(a).
Finally, we write '

(2.1.7) G =06 (a)= v/(a,a5...a,)= V/([la).

@ If we admitted infinite values, there would be a corresponding case for positive r,
viz. r>0, some a infinite, M, = c.
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Thus A(a), H(a), ®(a) are the ordinary arithmetic, harmonic,
and geometric means.

We have excluded the case =0, but we shall find later (§ 2.3) that we
can interpret I, conventionally as . We are not generally concerned

with negative a, but it is sometimes convenient to use % (a) without any
restriction of sign. The definition is unchanged.

2.2, Weighted means. We shall however usually work with
a more general system of mean values. We suppose that

(2.2.1) »,>0 (v=1L12,...,n)
and write
Zpar 1r
(222)  M,= %(a>=sm,<a,p>=( = ) ,
(2.2.3) M,=0 (r<0, some a zero),
(2.2.4) =0 (a)=O(a,p)= (IIa?)Vzr,

The equations (2.1.5) and (2.1.6) stand as before, with the ad-
dition of the symbols % (a,p), H(a,p). The last remark of §2.1
applies also to the generalised 9. The weighted means reduce to
the ordinary means when p, =1 for every v.

The means being homogeneous and of degree 0 in the p’s, we
may suppose, if we please, that Zp=1. In this case we shall
replace p by ¢q; thus

(2.2.5) S):')tr (@)= mr (@,9)= (anr)llr (Zg= 1),

(2.2.6) & (a)=0(a,q)=1Ila? (Zg=1).

We shall not usually refer to the weights explicitly in our
formulae, but it is always to be understood that mean values
which are compared with one another are formed with the same
weights.

Ordinary means are special cases of weighted means. On the
other hand, weighted means with commensurable weights are
special cases of ordinary means (with a different system of a); for
we may suppose, on account of homogeneity, that the weights
are integral, and we can derive means with integral weights from
ordinary means by replacing every number by an appropriate
set of equal numbers. Means with incommensurable weights may
be regarded as limiting cases of ordinary means.
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The following obvious formulae will be used repeatedly:

(2.2.7) M, (a)={A (@)},
(2.2.8) & (a) =€t oga),

1
(2.2.9) im_,(a)=m,
(2.2.10) M, (@) ={M, (a7},

We suppose that a>0 in (2.2.8), and in the other formulae if a
suffix is negative; the formulae may be extended to cover the
missing cases by appropriate conventions. Also

(2.2.11) A(a+b)=U(a)+A®),
(2.2.12) & (ab)=6 (a) & (b),
(2.2.13) M, (b)=kM,.(a) if (b)=k(a)
(i.e.if b,=ka,, where k is independent of v),
(2.2.14) S)=kG(a) if b)=k(a),

(2.2.15) M, (@) =M, (b) ifa,Zb, for all v.

2.3. Limiting cases of M, (a). We denote by
Mina, Maxa

the smallest and largest value of an a.

1. Mina <IN, (@) <Max a, unless either all the a are equal, or
else r< 0 and an a is zero.

It is to be understood here, and in the enunciations of all later
theorems, that, when we assert that inequalities hold unless some
particular condition is satisfied, we imply that at least one of the
inequalities degenerates into an equality in the case excluded.
Here, for example, Mina =9k, (¢) =Maxa if all @ are equal, and
Mina=M, (a) < Max a in the other exceptional case.

We form our means with ¢. Since

Zq (a’ - 9'[) =0,
every a is equal to ¥, or else @ — U is positive for at least one @ and
negative for another. This proves the theorem for r=1.

In the general case we may suppose that either a >0 or else
r> 0, the cases excluded being trivial. It then follows that

{IM, (@)} =A(a")
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lies between (Mina)" and (Maxa)", which proves the theorem
generally.

2. Mina < @ (a) < Max a, unless all the a are equal or an a is zero.
In the second exceptional case @ =0. If & > 0 then

(-

8o that every a is & or at least one is greater and one less than .

3. lim M, (@) =@ (a).

r—>0
If every a is positive

M, (@) =exp (;log an’)

=exp {;log (1+rXZqloga+ 0(1’2))}

—exp (Zgloga)=Ila?=@ (a),
when r—0.

If there are some zero a, b denotes a positive a, and s is a ¢
corresponding to a b, then

M, (a,9) = (Zgar)Vr = (Zsb)Ur = (Zs)Vr M, (b, s) 0
when r—+ 0, since M, (b,s) > (b,s) and Zs < 1. When r < 0, IN,
and & are both zero, so that the result holds also when r——0.
Our proof depends on the theory of the exponential and
logarithmic functions. We show in §2.16 how a more ele-
mentary proof may be found if desired.
4. lim M, (a)=Maxa, lim I, (a)=Mina.

) r—>—o

If a; is the largest a, or one of the largest, and 7 > 0, we have
9 a =M, (@) S ay;
from which the first equation follows at once. The second is
trivial if any a is zero and follows from (2.2.9) otherwise.
We now agree to write
(2.3.1) My(a)=6(a), My(a)=Maxa, M_,(a)=Mina.
With these conventions, we have

5. M_o (@) <M, (@) <M., (a) for all finite r, unless the a are all
equal, or r <0 and an a is zero.
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2.4. Cauchy’s inequality. Itisconvenient to prove the next
theorem here although it will be superseded later by a more
complete theorem (Theorem 16).

6. M, (a)< M, (a) (r>0), unless all the a are equal.

The inequality is (Epar)? < Zp Spa?r

and is a special case of the very important theorem which
follows.

7. (Zab)?<Xa?Xb?, unless (a) and (b) are proportional®.
For Za?Zb?— (Zab)? =} X (@,b,—a,b,)%
My, v

An alternative proof is as follows. The quadratic form
2 (xa+yb)2=a2Ta?+ 2xy Tab + y2 Zb?

is positive for all z, y, and therefore has a negative discrimi-
nant, unless za,+ yb, = 0 for some «, ¥, not both zero, and all v.
To deduce Theorem 6, take +/p and a"4/p in place of @ and b.

Theorem 7 may be generalised as follows:

8. ~ Ya? Xab ... Zal |>0,
} Sla ZIb ... ZI2 |
unless the sets (a), (b), ..., (I) are linearly dependent, i.e. unless there are

numbers z, y, ..., w, not all zero, such that xa,+yb,+ ... +wl,=0 for every v.
Either proof of Theorem 7 may be extended to prove Theorem 8: we

may either express the determinant as a sum of squares of determinants,

or we may consider the non-negative quadratic form

Z(xa+yb+...+wl)?

inz,y,...,w. We do not go into details because any systematic discussion

of inequalities connected with determinants and quadratic forms would

carry us beyond the limits which we have imposed on the book.

2.5. The theorem of the arithmetic and geometric
means. We come now to the most famous theorem of the
subject.

a This is what is usually called Cauchy’s inequality: see Cauchy (1, 373). The
corresponding inequality for integrals (Theorem 181) is usually called Schwarz’s

inequality, though it seems to have been stated first by Buniakowsky: see Bunia-
kowsky (1, 4), Schwarz (2, 251).
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9. @5 (@) < A(a), unless all the a are equal.
_ The inequality to be proved may be written in either of the
' forms
(2.5.1) aPrapPe...a,Pr< (p

181+ ... +pnan)ﬂl+---+ﬂn
Py +ee P n

(2.5.2) a,ha,% ..., < Xqa
(where as usual Zg=1).

This theorem is so fundamental that we propose to give a
pumber of proofs, of varying degrees of simplicity and generality.
Of the two which we give in this section, the first is entirely
elementary. The second depends on Theorem 3 and so, at present,
on the theory of the exponential and logarithmic functions. We
shall show later (§2.16) how this proof also may be made to
conform more strictly to the canons of §1.7.

(i)*> We haveP?
a 2 — 2 2
e (105 <
unless a,=a,, and so

a.\2 a.\2 4
a102a3a4§(a1—; 2) ((l;;-lz- 4) é(a1+a21a3+a4) >

with inequality in one place or the other unless a,=a,=a;=a,.
Repeating the argument m times, we find

a1+a2+...+a2m)2”‘
b

2m
unless all the a are equal. This is (2.5.1) with unit weights and

n a power of 2.
Suppose now that » is any number less than 27. Taking

(2.5.3) 1@y ... Qom < (

by=a,, by=a,, ..., b,=a,,
a1+ 0s+...+a
bn+1=bn+2=---=b2m=“1—‘2—n‘“‘—n=91,

and applying (2.5.3) to the b, we find
by+by+ ... +b2m)2”‘ _ (WH (2m—n) %)2"‘ —9pem
2m 2m
or a,ay...a, <A",
a Cauchy (1, 375). b Euclid (1: 11 5, v 25).

ay0a,...0, A" < (
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unless all the b, and so all the a, are equal. This is (2.5.1) with
unit weights. We deduce (2.5.1), with any commensurable
weights, by the process explained in §2.2.

When the weights are incommensurable, we can replace them
by a set of commensurable approximations, prove (2.5.1) with
the approximating weights, and proceed to the limit. In this
process ‘ <’ is changed into ‘ <7, so that we do not at first obtain
a complete proof of the theorem. We may complete the proof as

follows. Write P
%=9,+q, (=12, ..,n),

where ¢, >0, ¢ >0, and ¢, is rational. Then

r'=2xq,, r'=2Xq
are rational and 7' + "' = 1. We have already proved (2.5.1) with
‘<’ for rational p, and with ‘<’ in any case. Hence

, qua zq' . qula Equ
a2 ¢ < (217
@ <(Eq’) Mo —(Eq") ’

, . (1 Y1 r
Ma2=11a? [1a?” < (f’ Zq'a) (;,—, Zq"a)

<3¢'a+2q"a=2qa.

Another way of completing the proof was shown us by R. E. A. C. Paley.
This depends on Theorem 6. From this theorem, the formula (2.2.10), and
what has been proved before, it follows that

A(a) =My (a) > Wy (@) = M2 (ad) 2 62 (ad) = G (a).
(ii)> By Theorems 6 and 3, we have
A(a) =M, (@) > My (@) > My (a) > ...> lim My-n(a) =G (a).

m—>
This proof is very concise but not quite so elementary as the
first. It may be observed that we require Theorem 3 only in the
case in which the r of Theorem 3 tends to zero through the special

sequence of values 2-™.

2.6. Other proofs of the theorem of the means. We shall
return to Theorem 9 in §§2.14-15 and again in §2.21. We add
here a few remarks about alternative proofs of the ordinary form
of the theorem with unit weights.

& Schlomilch (1).
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(i)2 If the a are not all equal, let
a,=Mina<Maxa=a,.
If we replace each of a, and a, by % (2, +a,), A(a) is unaltered,
but

8o that & (a) is increased.

Suppose now that we vary the a in such a manner that U is
constant, and that we assume the existence of a set (a*) for which
& attains a maximum value. Then the a* must be equal, since
if not we can replace them as above by another system for which
@ is greater. It follows that the maximum of @ is 9, and that this
maximum is attained only for equal a.

To prove the existence of (a*), let

D (A, 0,y @p_1)=0105...0, ;(RA—a;—...—a,_,).
Then ¢ is continuous in the closed domain
@, 20, ..., @, 1,20, a;+a,+...+a, ;=n.
It therefore attains a maximum for some system of values
af,...,a¥_, in the domain.

& This proof, the most familiar of all proofs of the theory, is due (so far as we have
been able to trace it) to Maclaurin (2). Maclaurin states the theorem in geometrical
language, as follows: ‘If the Line 4B is divided into any Number of Parts AC, CD,
DE, EB, the Product of all those Parts multiplied into one another will be a Mazi-
mum when the Parts are equal amongst themselves’. His proof is substantially that
which follows. The proof has been rediscovered or reproduced by many later writers,
for example by Grebe (1), Chrystal (1, 47).

Cauchy’s proof (§ 2.5) may be regarded as a more sophisticated form of Mac-
laurin’s, since he proves the theorem in the special case when n=2™ by a process
similar to Maclaurin’s. In general, Maclaurin’s proof is not a ‘finite’ proof. As we
have stated it, it depends on Weierstrass’s theorem on the maximum of a continuous
function. This would naturally have been taken for granted by Maclaurin (and has
also been taken for granted by many of his modern followers, such as Grebe and
Chrystal).

It is possible to avoid an appeal to Weierstrass’s theorem, but at considerable cost.

It is plain that if a,1, a,!; a,2, a,2; ... are the smallest and largest of the sets resulting
from 1, 2, ... repetitions of Maclaurin’s process, then a,® increases and a,° decreases as
& increases, so that s s
>0y, Al—>ap, oy 2.
A little consideration will show that » repetitions of the process diminish the greatest
difference of the a by at least one-half, so thata,” — a," < }(a, — a,). Hencea,® —a,5—0,
and o, =a,. It follows that all the a tend to the same limit 9. This gives a proof of
the theorem, but one a good deal less simple than that in the text.

2-2
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The reader should work out the analogous proof in which & is
kept constant and a, and a, are each replaced by +/(a;a,).

(ii) There is a variation of Cauchy’s proof which illustrates a point of
some logical importance.

An ordinary inductive proof proceeds from n to n+ 1; the truth of a
proposition P (n) follows from the hypotheses

(a) P(n)implies P(n+1),

(b) P(n)is true for n=1.

There is another mode of proof which may be called proof by ‘backward
induction’; the truth of P(n) follows from

(a’) P(n) implies P(n—1),

(b’) P(n) is true for an infinity of n.

Cauchy’s proof may be arranged as a proof of this last type. First,
Cauchy proves (b’) for n=2m, Next, if the theorem is true for n, and if %
isthe arithmetic mean of a, ,a,, ..., a,_;, then anapplication of the theorem
to the n numbers a,, ..., a,_;, A gives

A" = (M}n>ala2 an_1919
n
the result for n—1.

(iii)> Defining @, and @, asin (i), we may replace a, and a, by A

and a, +a,— . Then YU is again unchanged, and

A(ay +a,— A)—a,a,= (A—a,) (a,—A) >0,
so that @ is increased. Repeating the process we arrive, after at
most n — 1 steps, at a system of a all equal to Y. It follows that
G<A.

This proofis alittle more sophisticated but entirely elementary.
There is an alternative, which we leave to the reader, in which a,
and a, are replaced by & and a, a,/®.

(iv) There are a number of inductive proofs of the theorem: see, for
example, Chrystal (1, 46), Muirhead (3). One of the simplest runs as
follows®. Suppose that 0<a,=a,=...Za,, a,<a,, that A, and G, refer
to the first v of the @, and that it has been proved that %, ,= G, ,.
Then a,>N,_,, by Theorem 1, and

- Q[n-—l .

?I”=(n— l)mn—l"'__a_r_u=g21n~1+an -

n

& For these proofs see Sturm (1, 3), Crawford (1), Briggs and Bryan (1, 185),
Muirhead (3), Hardy (1, 32).

b Another simple proof due to R. Rado is given at the end of the chapter
(Theorem 60).
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Raising this equation to the nth power, and remembering that n> 1, we
obtain
A

n n n—1%n— An_1 n— n—1 n
Wy >, +nAy _l—n——a,,QI 1..(1,,6 1=6,.

(v) Another interesting proof was given very recently by Steffensen
(1, 2). It starts from the lemmas: ifa, ;<a,,b,_;<b,,and a,<b,, for all v,
then Za b is not decreased by exchangmg a; cmd b;, and i3 increased except
when a;=b; or a,=b, for v=+1. The lemma follows at once from the identity

{Za+(b;—a;)} {Zb+ (a;—b;)}
=XaZb+ (b;—a;) {(Zb—b;) — (Za—a;)}.
To deduce the theorem of the means, we write it in the form

(g +a+...+a;) ... (ap+a,+...+a,) S (@ +as+...+a,) ...
(ay+ay+... +ay).

If we suppose, as we may, that ¢, <a,<... <a,, and exchange n— 1 terms
of the first factor of the left-hand side against one term of each of the other
factors, we obtain
. (@ +ag+ag+...+a,) (@ +a+a+...+a3) ... (ay +a,+ap+... +ay),
which is greater, by the lemma, unless all the a are equal. The theorem
follows by repetition of the argument.

(vi) Further proofs of Theorem 9 (or of the special case considered in
this section) are given in §§ 2.14, 2.21, 3.11, and 4.2.

~ 2.7. Hélder’sinequalityand its extensions. Qurnextgroup
of theorems centres round Theorem 11 (Hdolder’s inequality)a.
10. Suppose that (a), (b), ..., (1) are m sets each of n numbers.
Then
2.7.1) G(a)+S@b)+.. +@i(l) <G@+b+...+1),
unless either (1) every two of (a b), . (l) are proportional, or
(2) there is a v such that a,= b,, =..=[,=
The theorem states that, if Zq =1, then
00,8 ... 0, + b0 b% . b It .+ 102 ] D
<(@y+bi+ ..+ 1)U (A + by + ... +1y)2
unless every two columns of the array
a, by, ..., I
@y, by, ..oy

ooy ceey ooy

& Strictly, ‘Hélder’s inequality’ is Theorem 14, or (2.8.3) of Theorem 13. The
inequality (2.7.1) was stated explicitly, for two sets and equal weights, by Minkowski
(1, 117).
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are proportional or there is a row containing only zeros. A neces-
sary and sufficient condition that all columns should be propor-
tional (i.e. that every pair of columns should be proportional) is
that @,b,—a,b,=0, a,¢,—a,c,=0, ..., for every p and v; and
this condition is also necessary and sufficient for the propor-
tionality of all rows. If we remember this, change our notation as
between rows and columns of the array, and write «, 3, ..., A for

41,92 +-+» 9, We see that Theorem 10 is equivalent to

11. If«, B, ..., A are positive and «+ B+ ... +A=1, then

(2.7.2) Sa*bB... 1N < (Za)* (Zh)B... (ZIW,
unless either (1) the sets (a), (b), ..., (I) are all proportional, or
(2) one set is nul.

The conditions for equality might also be expressed by saying
that there is one set which is proportional to all the others (the nul
set being proportional to all other sets). The case in which one set
is nul is trivial, and we may ignore it in the proof.

Here again we give two proofs.

(i) By Theorem 7, (Sab)? < Sa2 b2

unless (@) and (b) are proportional. Hence

(Sabed)* = (Za2b2)2 S (c2d2)? < Sat ShATct S8,
withinequality somewhere unless (), (b), (), (d) are proportionala,
Repeating the argument we see that

(2.7.3) (Zab ... 1)*" < Za2" Th2" ... T2,
with 2™ sets (a), (b), ..., unless all the sets are proportional. This
is equivalent to (2.7.2) when every index is 2-™.

Suppose next that M is any number less than 27, and let
(9) be the Mth set. If (ab...g) is not nul, we define 4, B, ..., L
by A =aM, ..., Q*"=gM (M sets),

H¥=K"=..=L"=ab...qg (2m— M sets),
so that AB... L=ab...g, and apply (2.7.3) to 4, B, ..., L. We

thus obtai
orus obtain (Zab...g)*" <ZaM...Zg¥ (Zab...g)*" M

(2.7.4) (Zab...g)M < ZTaMZhM ... TgM,

@ The nul set being excluded, proportionality is now transitive: see §2.1.
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unless the sets (4), (B), ..., (L), and so the sets (a), (b), ..., (9),
are proportional. This is equivalent to (2.7.2) with every index
1/M. We have supposed (@b ... g) not nul; if it is nul then (2.7.4)

is obviously true, since none of (a), (b), ..., (g) is nul.
If now a, B, ... are rational, we can write
al BI
o= _Z_lj N B = M , ooy

where o', B, ... are integers and Zo’'= M. Applying (2.7.2), with
every index 1/M, to M sets formed by «’ like sets of a, B’ sets of
b, and so on, we obtain (2.7.2) with indices «, B, ....

Finally, when «, B, ... are not all rational, we replace them by
rational approximations whose sum is 1, form (2.7.2) for these
rational indices, and proceed to the limit. In this process ‘<’
degenerates into ‘<’ and, as in § 2.5 (i), we do not at first obtain
a complete proof. We can complete the proof as follows. We
can write a=o, + oy, B=Pp;+ By, ..., where all the numbers are
positive and those with suffix 1 are rational. If then X«; =0,
Sa,=0,, 80 that o; +0,=1, and P,1=a%bbs..., Por=a%bb:...,

wehave  wiaps PSP P, (SP) (ISP
Since «,, 8;, ... are rational
S P, =3Zaxlor,. Mo < (Sa)uler .., (S

while for X P, we have a similar inequality, but with ‘<’ only.
Combining our results we obtain (2.7.2).

(i) We may deduce Theorem 11 from Theorem 9. We have in
fact (since no set is nul)

sy =) (@) (5]

a b l
gz(a§+ﬁﬂ+...+A§l)=a+ﬁ+...+)\=1.

There can be equality only if
a, b I,

v v

7 A

i.e. if (a), (b), ..., (I) are proportional.
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It will be observed that, whether «, 8, ... are rational or not,
no limiting processes are involved in the proof beyond those
already present in the proof of Theorem 9. The principle of the
proof is the same as that of the proof of Theorem 13 below given
independently by Francis and Littlewood? (1) and F. Riesz (6).

2.8. Holder’s inequality and its extensions (coniinued).
If we suppose 7 # 0, and replace a, b, ..., ! in Theorem 11 by ga’/*,
qbB, ..., qi', we obtain

12. Ifr, a, B, ..., A are positive and o+ B+ ... +A=1, then

M, (ab...1) <M, q (@) M,g(B) ... M, ()
unless (al/*), (bVB), ..., (1Y) are proportional or one of the factors on
the right-hand side is zero. If r < 0, the inequality is reversed.

It is to be observed that, when r> 0, the. second exceptional
case occurs only if one of the sets (a), (b), ... is nul, whereas when
r <0 it occurs if any number of any set is zero. When r=0
there is equality in any case.

‘We shall often find it convenient, when we are concerned with
two sets of numbers only, to use the notation

_k

k-1

k being any real number except 1. The relation (2.8.1) may also
be written in the symmetrical forms

(2.8.1) k'

1 1
PR
(the last form failing when k=0, k' =0). We say that k and %’ are
conjugate.

(2.8.2) (—1)(' —1)=1, 1

13. Suppose that k+0, k+ 1, and that k' is conjugate to k. Then

(2.8.3) Sab < (Za*)Vk (ZpF VK (k> 1)
unless (a¥) and (b*) are proportional; and
(2.8.4) Sab > (Zak)Vk (Zb*'WE (k< 1)

unless either (a¥) and (b¥) are proportional or (ab) is nul.

a See Hardy (8).
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Cauchy’s inequality (Theorem 7) is the special case k=k"=2,
in which % is conjugate to itself.

(i) Suppose that k>1. Then (2.8.3) is the special case of
Theorem 11 in which there are two sets of letters and a=1/k,
B=1/k’. This is the ordinary form of Holder’s inequality?.

(ii) Suppose that 0<k <1, so that k' <0. If any b is O then
the second factor on the right-hand side of (2.8.4) is, as in
§ 2.1, to be interpreted as 0, so that (2.8.4) is true unless (ab)
is nul. If every b is positive, we define [, u, v by

I=1/k,
so that I>1, k'=-Fkl'
and u=(ab)k, wv=>b7k,
so that ab=u!, aF=uv, b¥=1".

Then (2.8.4) reduces to (2.8.3) with u, v, I in place of a, b, k.
The exceptional case is that in which (#!) and (¢¥), i.e. (ab) and
(b¥), are proportional. If this is so then (since the b are now all
positive) the sets (a) and (b¥-1), and therefore the sets (a*) and
(b¥), are proportional.

(iii) If k<0, then 0<%’ < 1. This case is reduced to (ii) by
exchanging a and b, k and £’. Both (ii) and (iii) are included
in (2.8.4).

The inequalities remain true in the excluded cases k=0, k=1
if we adopt appropriate conventions. If k=0, £’'=0, we must
interpret (2.8.4) as

A by +agby+ ... +a, b, >n(ay...a,by ... b, )"
If k=1 we may interpret k¥’ as + oo or as —co. In the first case
we interpret (2.8.3) as Xab<MaxbZa, and in the second we
interpret (2.8.4) as Zab > Minb Za. We may leave it to the reader
to pick out the cases of equality.

We can combine (2.8.3) and (2.8.4) in the single inequality

(2.8.5)  (Zab)k¥ < (ZaF)k' (Zb¥ )k (k=+0, k=+1).

In view of the extreme importance of Holder’s inequality, we

& Holder (1). Holder states the theorem in a less symmetrical form given a little
earlier by Rogers (1).
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depart from our usual practice here and state explicitly the
derivative theorem for complex a, b.

14. If k> 1, and k is the conjugate of k, then
| Zab| = (Z|a o) (2| b[¥)¥.

There is equality if and only if (| a, |*) and (] b, |¥) are proportional
and arg a,b, s independent of v.

The only additional remark needed for the proof is that

| Zab|<Z|ab|

unless arga, b, is independent of v. We regard 0 as having any
argument we please.

The following variant of the first part of Theorem 13 is some-
times called ‘the converse of Holder’s inequality’.

15. Suppose that k> 1, that k' is conjugate to k, and that B> 0.
Then a mnecessary and sufficient condition that Za*=<A s that
Zab < AVk BY¥ for all b for which Zb* < B.

The condition is necessary, by (2.8.3). If XZa¥>A4, we can
choose the b so that Xb*¥ = B and (b¥) is proportional to (a*), and

then Sab = (Sak )ik (SH¥ )k > AVE BUK,
Hence the condition is also sufficient.

Theorem 15 is often useful for the purpose of determining an
upper bound for Za*. Any argument based on it can be changed

into one which involves only a special (b), but the form stated
here, with arbitrary (b), is sometimes more convenienta.

2.9. General properties of the means I, (z). We can now

prove a theorem which completes and supersedes some of those
of §§2.3-4.

16.» If r<s then
(2.9.1) M, (@) < M, (a),
unless the a are all equal, or 8 <0 and an a 18 zero.
We have proved this already in the special cases (i) r= —o0

@ Compare §§ 6.9 (p. 142) and 6.13 (p. 149).
b Schlomilch (1). See also Reynaud and Duhamel (1, 155) and Chrystal (1, 48).
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(Theorem 5), (ii) s = + oo (Theorem 5), (iii) 7 = 0, s = 1 (Theorem 9),
(iv) 8=2r (Theorem 6).

Suppose first that 0 <r <s, and write r =sa, so that O<a <1,

and

pat=u, Pp=v,
so that v>0 and pa*®= (pa’)*pl-*=y*v1-%, '
Then
(2.9.2) Zurpl—* < (Zu)* (Zo)l-2,

by Theorem 11, unless u,/v, is independent of v, i.e. unless a, is
independent of v. Hence

zpasm 1/sax zpas 1/s
(_Z"F ) <( Ep) ’

which is (2.9.1).
The cases in which 7 £ 0 and an a is zero are trivial and we may
ignore them. If every a is positive, and r=0 <s, we have
(Mo (@)= (G (a)* =6 (a*) < A(@*) = (M;(a))?,
by Theorem 9 and (2.2.7). The two remaining cases, r <s <0 and
r <s=0, reduce to those already discussed in virtue of (2.2.9).

172 IfO0<r<s<tthen

(2.9.3) Ms < (W)= (ML,
unless all the a which are not zero are equal.

We restrict the parameters to be positive, the complications
introduced by negative or zero values being hardly worth
pursuing systematically.

We m rite
O MmAY WHE ¢ ratt(l—a) (O<oa<l).

The inequality is then

Zqa® < (Zqa")* (Zqal)t—=
and reduces to a case of Theorem 11 when we write u=qa’,
v=ga!. The condition for equality is that () and (v) should be
proportional, and this is plainly equivalent to that stated in the
enunciation. The reader should observe the difference between
the conditions for equality in Theorems 16 and 17.

a Liapounoft (1, 2).
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We shall see later (§3.6, Theorem 87) that Theorem 17 may
be stated in a more striking form.

2.10. The sums &, (a). (i) We write
G,=6,(a)=(Za")r (r>0).
We confine our attention to positive r, leaving the construction
of a theory of &, for r < 0 as an exercise to the reader.

18. If0<r<s<tthen

(210.) &< (@ (ST,
unless all the a which are not zero are equal.

This is essentially the same theorem as Theorem 17. In fact

(2.10.2) S, (a)=n1r I, (a),
the mean IR, (a) being formed with unit weights, and (2.10.1)
reduces to (2.9.3), the powers of n disappearing.

The correspondence between Theorems 17 and 18 depends
essentially on the fact that (2.9.3) and (2.10.1) are homogeneous
in the second sense of §1.4, namely in the sign X. There is a
theorem for sums corresponding to Theorem 16, but in this
theorem, which is expressed by (2.10.3) below, the sign of
inequality is reversed; (2.10.3) is not homogeneous in X, and
is not related to (2.9.1) as (2.10.1) is related to (2.9.3).

192 If 0<r<sthen

(2.10.3) G, () < S, (a),
unless all the a but one are zero.

Since the inequality is homogeneous in the @, we may suppose
Za'=1,1i.e. S,=1> Then a,<1 for every v, and so ¢, <@, and
2oL Zar=1.

If more than one a is positive then at least one positive a is less
than 1, and then there is inequality. Theorem 19 is usually
quoted as Jensen’s inequality.

(ii) We add the theorems for &, (a) corresponding to Theorems
4 and 3.

8 Pringsheim (1), Jensen (2). Pringsheim attributes his proof to Liiroth.
b Compare the remarks on this proof in §1.4.
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20. ©,~Maxa when r->o0.

21, &,—>00 when r—0, unless all the a but one are zero.

Theorem 20 follows from (2.10.2) and Theorem 4. To prove
Theorem 21 we have only to observe that Za”= N +o0(1), where
N is the number of positive a.

(iii) Theorem 19, combined with Theorem 11, gives the follow-
ing theorem of Jensena.

22. If o, B, ..., A are positive and oo+ B+ ... +A> 1, then
Sa*bB... A< (Sa)*(Sh)B... (TINA,
unless every number of one set or all but one of each set is zero, and,
wn the latter case, those which are positive have the same rank.

Wecanwritea=ka', B=kf’,...,wherek>land o'+ B’ +...=1.
If then ak= A, b*= B, ..., we have
Sa*bB...N=SA*BF ... X < (ZA)¥ (EB)F ... (ZLY¥
= (Zak)¥k .. (SIFWE < (Za)e... (S,
by Theorems 11 and 19. There is inequality somewhere unless
the conditions for equality in both theorems are satisfied.

(iv) It is natural to consider weighted sums
T, =T, (a) = T,(a, p) = (Zpar)r.
It is plain that there can be no universal relation of the type (2.9.1) or
(2.10.3), since I, is the &, of Theorem 19 when p,=1 and is M, when
Zp,=1. The possibilities in this direction are settled by the following
theorem.

28. A necessary and sufficient condition that

(2.10.4) T =T, (O<r<s),
Sor given weights p and all a, is that Zp = 1. There 13 then inequality unless
(@) is nul, or Zp=1 and all the a are equal.

A necessary and sufficient condition that

(2.10.5) I3 (0<r<s),
Sfor given weights p and all a, is that p, = 1 for every v. There is then inequality
unless (a) 18 nul, or a;;> 0, p, =1, and the remaining a are zero.

(i) If we take a,=1 for every », then I,=(Zp)¥r, and (2.10.4) can be
true only if Xp < 1. If this condition is satisfied, and r = sx, so that 0 < < 1,

wehave s =S (pasypioe < (Spat)e (Sp)i-e < (Spad)e,

which is (2.10.4). The conditions for equality are plainly as stated.

s Jensen (2).
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(ii) If we take a;=1 and the other a zero, I,=p,'", and (2.10.5) can
be true only if p, = 1. If we assume that this condition is satisfied, write
8=rf, so that 8> 1, and assume, as we may on grounds of homogeneity,
that Zpa™=1, then pa’ <1 for every » and

Zpa*=Z (par)fp'~F < X (pa)f < Zpar,
which is (2.10.5). The conditions for equality are again plainly as stated.

2.11. Minkowski’s inequality. Our next theorem is a gene-
ralisation of Theorem 10.

24. Suppose that r is finite and not equal to 1. Then

(2.11.1)
M, (@) +M,(B)+ ... + M, O)>M, (@+b+...+1) (r>1),
(2.11.2)
Mo (@) +M,O)+.c. + M, <M (@+b+...+1) (r<]l),
unless (a), (b), ..., (I) are proportional, or r <0 and
a,=b,=...=0,=0
for some v.

There is equality for any @, b, ... when r=1. Theorem 10 is
the special case »=0. The main result remains true (and is
trivial) when =00 or r= —o0, except that the conditions for
equality require a restatement which may be left to the reader.

We take the means with ¢, and write

a+b+...+l=s, M (s)=18.
Then Sr=2Xgs" = Xqas™1 4+ Sgbs™ 1+ ... + Zqls1
=3 (g% a) (¢ 8y "+ ... +  (g¥"1) (¢ sy .

Suppose first that »>1. Applying (2.8.3) of Theorem 13 to
each sum on the right, we obtain

(2.11.3) 87 = (Zqa")Vr (Zgsm)Vr' + ... = 81 ((Zqar)Vr +...).
There is equality only if (ga”), (¢b7), ... are all proportional to
(gs7),i.e.if (a), (b), ... are proportional. Since S is positive (except
in the trivial case when every set is nul), this establishes (2.11.1)a.

Suppose next that 0 <7< 1. Unless all the sets (a), (b), ... are
nul, s,>0 for some v. If s,=0 for any particular v, then

a This proof is due to F. Riesz (1, 45).
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a,=b,=...=1,=0, and we may omit that value of » from con-
sideration. We may therefore argue as if s,> 0 for every v. In
that case (2.8.4) of Theorem 13 gives (2.11.3) with the sign of
inequality reversed, and the proof may be completed as before.

Finally, suppose that r < 0. If any s, is zero, all the means are
zero; we may therefore assume that s, > 0 forevery v. If anya, is
zero, N, (a) =0, and we may omit the letter a.2 We may therefore
argue on the assumption that every a, b, ... is positive, and then
again everything follows from (2.8.4) of Theorem 13.

When the g are equal, we obtain

25. If r is finite and not equal to 0 or 1, then

(2.11.4)
E(@+b+...+ D) < (Bar)lr ...+ (ZINYr (r>1),
(2.11.5)
CE@+b+... + )V > (Za")Vr ...+ (XY (r<1),
unless (a), (b), ..., (1) are proportional, or r<0 and a,,b,, ..., 1, are

all zero for some v.

It is (2.11.4) which is usually called Minkowski’s inequality®.
Theorem 24 is more general than Theorem 25 in appearance
only, since it may be deduced from Theorem 25 by writing
pYra, plrh, ... for a, b, ....

Theorem 24 may be given a very elegant symmetrical forme.

26. Suppose that WM™ denotes a mean taken with respect to the
suffix p, with weights p,,, and I one taken with respect to v with

wetghts q,;8 and that 0 <r < s<oco. Then
9)}3(11) gﬁr(l/«) (aiﬂ’) <M, 9)}8(1/) (a'l/«")’

except when a,,=b,c,.

The result holds generally for all r, s such that r < s, except for the
specification of the cases of equality.

& Here we use (2.2.15). b Minkowski (1, 115-117).

¢ Theorem 26 was communicated to us in 1929 by Mr A. E. Ingham. The same
formulation of Minkowski’s inequality was found independently by Jessen and
published in his paper 1. This and his later papers 2 and 3 contain many interesting
generalisations: see Theorems 136 and 137.

4 We depart here from our usual convention about ¢; 3¢ is not necessarily 1

(though we prove the inequality by transforming it into one in which we may sup-
pose Xg=1).
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We prove the theorem for 0 < 7 < s < c0, leaving the other cases
to the reader. There are various supplementary cases of equality
when 7 £ 0 or one of 7 and s is infinite.

Let s/r=k>1 and p,a;, =4, Then the inequality to be
proved is

% g s/ry1/s g % r/s\ 1/r
ar S
{v=1qv (#=1p“ “") } <{#=1p" (v=1qva’”) }

n m k\1/k m n 1/k
or {zqv(zAW)} <% (ngA;gv) .
v 1

=1 . w=1\v=1

This reduces to (2.11.1) when Xg=1, and, being homogeneous
in the ¢, is true without this restriction.

2.12. A companion to Minkowski’s inequality. The
theorem which follows is an analogue of Theorem 25 of a simpler
kind.

27. If r is positive and not equal to 1 then

(2.12.1) XZ(a+b+...+ly>Za+Z0"+...+ 2" (r>1),

(2.12.2) X(@+b+...+l)y<Za+2b"+...+ZI' (0<r<1),
unless all numbers but one of each set a,, b, ...,1, (v=1,2, ..., n)
are zero.

This follows at once from Theorem 19, since for example

(@+b+. ...+l >a"+b"+...+ 1

ifr> 1, unlessallofa, b, ..., I but one are zero. It should be noticed
that the sense of (2.12.1) and (2.12.2) is opposite to that of
(2.11.4) and (2.11.5).

What is usuallyrequired in practiceis a combination of (2.11.4)
and (2.12.2), viz.

28, Ifr>0 then
(Z(@+b+... +I"NES (Zan) B4 (Zb7)E+ ... + (ZIN)E,
where R=1if0<r<1land R=1/rifr>1.

2.13. Illustrations and applications of the fundamental
inequalities. (i) Geometrical interpretations of Holder’s and Min-
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kowski’s inequalities. Two particularly simple cases of Holder’s
and Minkowski’s inequalities are

(2.13.1) (1224 ¥1Y2+2122)% < (X2 + Y12 +2.%) (2.2 + Y52+ 2,7),

(2.13.2) VA{(2y+ )2+ (41 + Y2)* + (21 +20)%
< V(@ P+ Y2+ 2% + V(@2 + Y+ 257).
These hold for all real values of the variables, and express the
facts that (1) the cosine of a real angle is numerically less than 1,
and (2) the sum of two sides of a triangle is greater than the third
side. The exceptional cases are those in which (1) the vectors
(%1, ¥4, 21) and (2, ¥, 2,) are parallel (with the same or opposite
senses), and (2) the vectors are parallel and have the same sense.
The ordinary form of Minkowski’s inequality is the extension
of (2.13.2) to space of » dimensions with a generalised definition
of distance, viz.

Py Py= (|2 =2 "+ |1 =y "+ .. ) (rz1).
The most obvious extensions of (2.13.1) are connected not with

Holder’s inequality for general » but with a generalisation of the
case r=2 in a different direction.

29. If Zay,x,x,, where a,,=a,,, 18 a positive quadratic form

(with real, but not necessarily positive, coefficients), then

(Eap.v xp. yv)2 < an,vxp Z, Zap.v y,u. Yvs

unless (x) and (y) are proportional.

This is an immediate consequence of the fact that

Zay, (A2, + py,) (A, + py,)

is positive: compare the second proof of Theorem 7. It represents
geometrically an extension of (2.13.1) to »-dimensional space,
with oblique coordinates or a non-Euclidean metric.

To illustrate Theorem 15, take k=2, A=I2, B=1, and
rectangular coordinates. The theorem then asserts that, if
the length of the projection of a vector along an arbitrary
direction does not exceed /, the length of the vector does not
exceed /.

HI 3
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(ii) A theorem of Hadamard?. In our next theorem also we are
concerned with a set of numbers a,, real but not necessarily
Ppositive.

30. If D is the determinant whose constituents are
a, (Wv=1,2,...,n),

then *

(2.13.3) D?<Za,,%%a,2... 2a,,2.
There is equality only when

(2.13.4) Ay By + Aoy + oo+ 8y 0y =0

for every distinct pair u, v, or when one of the factors on the right-
hand side of (2.13.3) vanishes.

The geometrical significance of the theorem is that the volume
of a parallelepiped in z-space does not exceed the product of the
edges diverging from one corner, and that there is equality only
when they are orthogonal or an edge vanishes.

Suppose that Z¢,,,,, where ¢,,=c,,, is a positive quadratic
form, and that A is the determmant whose constituents are ¢,
Then the equation

(2.13.5) Cii—A  Cpp . |=0
Co1 Coa—A
i

has n positive roots® whose sum is 3¢, , and whose product is A.
Hence, by Theorem 9,

n
(2.13.6) As ("“H”J; +c’”‘) :
If c,, >0 for all u, then the form
X g =30 YT, T,
\/( m c) wk
is also positive; and if we apply (2.13.6) to this form, we obtain
(2.13.7) A=C11Ca0e0-Cpp -

3 Hadamard (1) considers determinants with complex constituents. Theorem
30 was found earlier by Kelvin and proved by Muir (1).
b See Bocher (1, 171).
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This is substantially equivalent to Hadamard’s theorem. For
the form
Z (04, Ty + g, Ty + oo + @y Ty )P =2y, 7, T,
is positive unless D=0. Also A=D?and

—_ 2 2 2
Cup =0+ @2+ .+ a2,

so that (2.13.7) is (2.13.3).

For equality in (2.13.6), all the roots of (2.13.5) must be equal,
which is only possible if ¢,,=0 whenever p+v and c,, is inde-
pendent of u. Hence, for equality in (2.13.7), we must have
0,,=0 for p+v, C,, independent of u. The last condition is
certainly satisfied, since OW= 1, and Orw= 0 is Cur="0, which is
(2.13.4).

We can extend the theorem to determinants with complex
constituents by using Hermitian instead of quadratic forms.
Further extensions have been made by Schur (2)a.

The following ingenious proof of (2.13.7) is due to Oppenheimb®.
Oppenheim’s argument establishes not only (2.13.7), and so
Hadamard’s theorem, but also the inequalities (2.13.8) and
(2.13.9) below, due to Minkowskic¢ and Fischerd respectively.

Any two positive quadratic forms Zc;,x; %, Zd,,%;x;, may be
reduced simultaneously, by a linear transformation of deter-
minant unity, to sums of squarese, say Xc,y,2, d,y,2, where
¢, and d, are positive. Then X (c;+d;)x;2;, is reduced to
3(c,+d,)y,?% and the determinants |c;|, ... of the forms
satisfy

lew|=1lc,, |dg|=1d,, |cy+dy|=1(c,+d,).

Hence, applying Theorem 10 to the sets (c,), (4,), we obtain
(2.13.8) [ [+ | dage [V < [ 03+ g |17

Suppose now that the matrix of the d is formed from that of
the ¢ by multiplying, first the first » rows, and then the first »

8 See also A. L. Dixon (1).
b Oppenheim (2). ¢ Minkowski (2).
a4 Fischer (1). e See Bocher (1, 171).
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columns, by —1.2 If then we divide (2.13.8) by 2, and raise to
the nth power, we obtain - )

(2~13'9) I Cik l = I C11++- Cun l = l C11+++Crr l l Crit,r41++ Cnn l’
where | ¢y ... ¢, | denotes the north-west diagonal minor of 7 rows
and columns in | ¢y |, and | ¢, 4 ,y4q... ¢,y | denotes the comple-
mentary south-east minor. Repeating the argument, replacing
each of the factors on the right-hand side of (2.13.9) by two
factors, and so on, we ultimately obtain (2.13.7).

(iii) The modulus of a matriz. Suppose that 4 and B are the
matrices of n rows and columns whose elements are Ay and b,w;
the elements may be complex. The matrices 4 +B and B4 are
defined as the matrices whose elements are

Uy + bw' s buaag,+ b#2 Ao+ ooe F+Oun Uy

31.b If | 4|, the modulus of the matriz A, is defined by

|4 |=v{Z|a,|%,
then |A+B|<|A4|+|B|, |BA|<|B||A|.

The first inequality is an immediate consequence of Theorem

25, with = 2. The second follows from Theorem 7, since
zlbp1a1v+"'+bynanvl2-s— = Ibp.p|2|aqvl2-
My v MV, D,

(iv) Mazima and minima in elementary geometry. We quote (as ex-
ercises for the reader) a few of the numerous applications of the funda-
mental inequalities to problems of elementary geometry.

32. The area of a triangle of given perimeter 2p s a mazximum if the sides
a, b, ¢ are equal.

[Apply Theorem 9 to p—a, p—b, p—ec.]

33. If the surface of a rectangular parallelepiped ts given, the volume is
greatest when the parallelepiped is a cube.

[Denote theedges diverging from a corner by a, b, cand apply Theorem 9
to bc, ca, ab. There is an analogous theorem for a parallelepiped in 7
dimensions; if k<n, and the surface of the k-dimensional boundary is
given, the volume is greatest when the parallelepiped is rectangular and

its edges are equal. This may be proved by combining Theorems 9 and 30
with identities between determinants.]

& Thus Xdy,2;2;, is formed from Xcy,z;a; by replacing z;, oy, (4, k=1, 2, ..., 7)
by —a;, —a; (and is therefore positive if Xcg ;2 is positive).
b See Wedderburn (1).
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384. Définition. St la Base d’une Pyramide est circonscriptible & un Cercle;
et 8i le Pié de la Hauteur est au Centre de ce Cercle: J appelle cette Pyramide
droite.

Dans une Pyramide droite toutes les Faces ont une méme Hauteur, et sont
également inclinées au Plan de la Base.

Théoréme. Soient deux Pyramides de méme Hauteur, dont les Bases sont
égales tant en Surface qu’en Contour; que l'une soit droite et que I'autre ne le
80it pas: 7’ affirme que la Surface de la premiére Pyramaide est plus petite que
la Surface de la seconde. [Lhuilier (1, 116).]

[Let & be the height, b, a side of the base, and p, the perpendicular
from the foot of the altitude on to b,. Then the lateral surface of the
second pyramid is

1Ib, V(PP +p.%) > /{(Zhb,)* + (Zp,b,)%,
by (2.11.4) of Theorem 25, unless all the p, are equal.]
(v) Some inequalities useful in elementary analysis. The following

theorems, which are easy deductions from Theorem 9, are fundamental in
the theory of the exponential and logarithmic functions.

85. If¢>0,0<m<n, then
<1+%>m<<1+§b>".
(1—%>-m><1—%>_".

36. If £>0, ¢£1, 0<m<mn, then

n(gin—1)<m(&/m—1).
We have, by Theorem 9,

m n-—-m

E\n ., n _m ¢ n—m. §
(1%) 1 <E(1+7—n>+—n—1_1+n.

If also ¢ <m, then

If £ <m, we may write — ¢ for ¢, This proves Theorem 35. Theorem 36

follows from Theorem 35 if we replace ¢ in Theorem 36 by ( 1+ %)m

2.14. Inductive proofs of the fundamental inequalities.
Our fundamental theorems are Theorems 9, 10 (or 11), and 24
(or 25), which we refer to shortly as G, H, M. We deduced H
from G2 and M from H; G is a limiting case of H, H a special
case, or anticipation, of M.

The simplest case of G is

37. (Gy): a*bB<an+bB (a+B=1).

We show first that G can be deduced from G, by induction.

& Though giving also an independent proof of H.
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Suppose that G has been proved for m lettersa, b, ... , k (or for
any smaller number), and that

a+B+...+x+A=1, a+B+...+k=o0.
Then

a*bB... k<= (aobBlo ., fxlo)o A
< (a¥obBlo.. . k<loyg+INSan+bB+ ...+ + 1A,

by G for 2 and for m letters. There is equality in the final result
only if atobfio,, ko=l a=b=...=k,
i.e. if all letters are equal. Hence G is true for m + 1 letters.

The simplest cases of H and M are

38. (H,):

ay%bP+aybf < (a1 + @)% (b +0,)8  (a+B=1).

39. (M,):

{(@y 450" + (@ + b))} < (a1 + ") + (b7 + by ) (r>1)
(with a reversed inequality when » < 1). We can deduce H, from
G, and M, from H, by specialising our deductions of H from G
and of M from H. We can also deduce H and M from H, and M,
by induction, but, since these inductive proofs are not essential
to our argument, we need only sketch them.

(i) We have

0,%0,F + a,%bof + a3 by < (a1 4 5)% (by + b,)P + 2,2 bf

< (@ + By + @5)* (by + by + by)B.

The process may be repeated, and there is no difficulty in picking
out the cases of equality. We thus obtain (2.8.3) of Theorem 13
(H for two sets of » numbers).

Next, if a4+ B+y=1, «+ =0, we have

Sa*bBcy =X (a0 bBlo)o ¢v < (Za¥/o bBlo)s (Zc)r < (Sa)™ (2b)B (Zc)r.
This process also may be repeated, and leads to the general form
of H.

We may arrange the induction differently, increasing the

number of sets first. The intermediate generalisation (H for any
number of sets of two numbers) is worth separate statement.
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40. Ifa+B+...+A=1, then
@%b B IA+a,0b.B ... I < (@) +ay)* (by +Bp)B ... (I + D),
unless a,|a,="b,/by=...=1,/l, or one of the sets is nul.

(ii) Similarly we can generalise M, in two directions. On the
one hand

{(a1+by+cy) + (@ + by + o)y}
S (a7 + a4+ {(by+ ¢y + (by+co) P
é (alr + azr)llr + (blr + b2r)1/r + (clr + 627)1/1‘,
and on the other
{(@1+by) + (@y+ by) + (@y +bs) 3
< [{(alr + azr)l/r + (blr + b2r)1/r}r + (“3 + 63)’]1/"
< (@) + @+ ag" )+ (b7 + by + byn)Vr.
Repeating and combining these processes, we arrive at the
general case.

2.15. Elementary inequalities connected with Theo-

rem 37. We can write G, in the form
a*<{an+b(1—a)}b>1

or a*—b*<ab*1l(a—bd) (0<a<l),
which is one case of a system of inequalities prominent in text-
books of analysis. The complete system is stated in Theorem 41
below. The theorem is so important that it is worth while to give
a direct proof from first principles which conforms strictly to the
criteria of §1.7.

41. If x and y are positive and unequal, then

(2.15.1) raY(x—y)>a"—y >ryl(x—y) (r<Oorr>1),

(2.15.2) ra™l(x—y)<a'—y'<ryl(x—y) (0<r<l).

There is obviously equality when r=0,r=1, or x=y. We begin
by reducing the theorem to one of its cases.

(i) We may suppose r positive. For let us assume that (2.15.1)
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has been proved when r>1, and that r<0, r= —s, so that
s+ 1>1. Then
@’ -y =g —y =gy (P —aty)
=gy~ -2t —af (y — )} >yt 2t (y — @)
=ry"~H(zx—y).
The other inequality in (2.15.1) can be treated similarly.

(ii) Let us denote the left- and right-hand inequalities in
(2.15.1) by (1a) and (1b) respectively, and similarly for (2.15.2).
If we interchange z and y, (1) and (2b) become (1 a) and (2 a).
It is therefore sufficient to prove (1b) and (2b).

(iii) We may now suppose, on grounds of homogeneity, that
y=1.

The proof of Theorem 41 is now reduced to that of the next
theorem.

42. If x is positive and not equal to 1, then

(2.15.3) r—1>r(x—1) (r>1),

(2.15.4) r—l<r(x—1) (0<r<l).

If in (2.15.3) we write r=1/s and z=y'r=y% it becomes
(2.15.4) with y, s for z, r. It is therefore sufficient to prove
(2.15.3).

If g is an integer greater than 1,2 and y > 1, then

2y
QYI>14+y+...+y2 1=ﬁ >q.
If 0 <y <1, the inequalities are reversed. Replacing y? by z, we
obtain in either case

(2.15.5) ?—;—1<q(x1/q—1)<x—-l.

Next, we have
yri—1 g2—1 y-—1

g+1 ¢ glg+1

=) el a2 s
= @D T T Y e Ty D)

8 We abandon here our usual convention concerning the meanings of ¢ and p.

@y ==y )
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The curly bracket contains ¢ (g+ 1) terms, all of which lie be-
tween y? and 1, so that

(2.15.6)
yri—-1 yi-1,
l(y—1)2< 2 >1)-
L T Ikl b R
and so, if p is any integer greater than g,
(2.15.7)

Yo—) - 1v<yp"@”;1:ap—mypw—lw (y=1).

Now it follows from (2.15.5) that
(x—1)

x?

<@?(xYa—1)2<(x—1)2

if 2> 1, while if 0<z <1 ‘the inequalities are reversed. Hence,
replacing ¥? by z in (2.15.7), we obtain
(2.15.8)
p—g@—1)* alt—1
2 plg
Suppose now that »>1. If r is ratlonal, we write r for p/g;
if r is irrational, we make p/g—r. In either case we have

(2.15.9)

po-ne s

which plainly includes (2.15.3).

This proves Theorems 42 and 41, but it will be useful to have
the inequalities corresponding to (2.15.9) when r<1. We now
replace y? by z in (2.15.7), and use (2.15.5) with ¢ replaced by ».
We thus obtain

~@-1s21 qxp/q(x 1?2 (221).

\%

—(@-1)s3(r-1a"(x-1) (r>1, 221),

" (2.15.10)
p—q (x—1)2 29 —1 _p—q
£ sz—1— £ z(x—1)2 (xz1),
2p 2t q/p 2p ( # ezl
(2.15.11)

-1

p-nE=- s 1 2

Si(1-rzx@-1)2 (0<r<l,zzl).
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We have made the proof of (2.15.3) rather more elaborate than is
necessary, in order to obtain the ‘second order’ inequalities (2.15.6)~
(2.15.11), whichare interesting in themselves. If we are concerned only to
prove (2.15.3), we can argue as follows. Instead of (2.15.6) we write
simply
y!H'l -1 yq -1

g¥1 = g’
yr—1_yi—1

p q

if p and q are integers and p >g. Hence we obtain (2.15.3) for rational r,
and so, by a passage to the limit

whence s

r—-1=r(xz—1),

for any > 1. If now 7 is irrational, we may write r =as, where « and s are
both greater than 1 and « is rational. Then

' —1l=(zt)—1>a(x*—1)=as(x—1)=r(z—1),

so that (2.15.3) is true generally.

For other proofs of Theorem 41 which satisfy the requirements, see
Stolz and Gmeiner (1, 202-208) and Pringsheim (1). Pringsheim uses the
result to obtain an elementary proof of H. Radon (1, 1351) deduces H and
M from Theorem 41, but proves this by differential calculus. The proofs
of Theorem 41 given in textbooks are usually limited to rational r; see
for example Chrystal (1, 42-45), Hardy (1, 138).

2.16. Elementary proof of Theorem 3. We have proved incidentally
in the last section a number of inequalities sharper than those stated in
Theorems 41 and 42. We lay no stress on these, since it is easy to find still
more precise inequalities by the aid of the differential calculus (see § 4.2);
but it may be interesting to show shortly how they enable us, if we desire,
to ‘elementarise’ the proof of Theorem 3.

‘We observe first that

(2.16.1) a'=1+0(r)

for fixed positive a and small (positive or negative) r;
(2.16.2) (1+u)?=1+qu+ 0 (u?)

for fixed ¢ and small u; and
(2.16.3) {1+0@)r=1+4+0(r)

for small 7. We leave the deduction of these formulae from those of the last
section to the reader.
Supposing now that 7 is small, we have a,”= 1+ u,, where u, = O(r), by

(2.16.1), and
a,W" = (1 + uu)q" =1+ U, + o (rz)’
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by (2.16.2). Hence
Q_( a9 ... @, 0" >1/’_{ (I4u)%... (1 +u,)% }1/’
@10+ ..+ qna, @ (1+w)+... .+ (1+u,)

o=
= {1+q1u1+ ik +qnuﬂ+0(7‘2)}1/'
I+qiu+ ... +qn%n
={1+0()Pr=1+0(r)> 1.

2.17. Tchebychef’s inequality. We know (Theorem 24) that
M, (@ +b) is comparable (§1.6) with M, (z) + M, (b). Itis natural
to ask whether I, (ab) is comparable with I, (a) M, (b). Theorem
43 below shows that this is not so.

We say that (a) and (b) are stmilarly ordered if

(“p. - a’v) (b,u - bv) 20,

for all u, v, and oppositely ordered if the inequality is always
reversed. It is evident that (a) and (b) are similarly ordered if
there is a permutation v,, v,, ..., v, of the suffixes such that
a,, a,, ..., a,, and b, , b,, ..., b, are both non-decreasing
sequences, and oppositely ordered if a,,, ... is non-increasing
and b,,, ... non-decreasing; and that the converses of these pro-
positions are also true.

43.2 Ifr>0, and (a) and (b) are similarly ordered, then
(2.17.1) M, (@) M, (b) <M, (ad),
unless all the a or all the b are equal. The inequality is reversed when

the sets are oppositely ordered.
It is enough, after (2.2.7), to consider the case r=1. Then

2p Zpab —Zpa Tpb=2Ep, Zp,a,b,—Zp,a,Zp,b,
=% (p,p,9,5,—p,p,9,0,)=2%(p,p,4,b,—p,p,2,b,)
=42 (p,p,9,0,— 0, 0,9.0,+p,0,4,5,—»,p,9,,)
=43%p,p,(0,—a,)(5,—b,)20,

A (a) A () = A (ab),

if the series are similarly ordered.
We can determine the cases of equality as follows. Suppose, as

or

& The integral analogue is due to Tchebychef. See Hermite (1, 46—47), Franklin (1),
Jensen (1), and Theorem 236. When r =1, I, =2, the inequality holds for any real
and similarly ordered a, b.
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we may in virtue of the remarks earlier in the section, that (a)
and (b) are non-decreasing. The double sum contains a term
P1Pn (al - an) (bl - bn)
and this can vanish only if all @ or all b are equal.
An immediate deduction is that

M. (@) M, (b) ... M,.(T) <M, (ab ... 7)
if r is positive and (a), (b), ..., ({) are all similarly ordered; in
partioular M, (a) < MWy (@)
if m is an integer greater than 1. This includes Theorem 6 and is
included in Theorem 16.

The question asked at the beginning of this section is included
in the more general question settled by the next theorem.

44. A necessary and sufficient condition that M, (ab...1) and
M, (@) M, (D) ... M, (1), where 1, s, ..., v are positive, should be com-

parable, is that
(2.17.2) LI 4
r-s i v
i which case

(2.17.8) M, (ab...l) M, (a) M, (B) ... M, (D).

The sufficiency of the condition follows at once from Theorems
12 and 16. If we take every setin (2.17.3) to be (1, 0, 0, ..., 0), we
see at once that (2.17.2) must be satisfied. A general inequality
opposite to (2.17.3) is impossible for any 7, s, ..., since a,b,...1,
may vanish for every v and yet the right-hand side be positive.

2.18. Muirhead’s theorem. In this and the four succeed-
ing sections we suppose the a to be strictly positive. We denote by

S F(ay,ay,...,a,)
the sum of the n! terms obtained from F(a,, a,, ..., @,) by the
possible permutations of the a. We shall be concerned only with
the special case

Fay,a,,...,a,)=a,4a,%...a,* (a,>0, a,=0).
We write

1
[e] =[oty, %5, ...,an]=m2!a1°‘1a2°‘2...an°‘n.
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It is plain that [«] is unaltered by any permutation of the «,
so that we may regard two sets of « as the same if they differ
only in arrangement. We may describe a mean value of the type
[«] as a symmetrical mean.

In particular
(n—=1)!
[1:0,0;“-,0]‘: ’I’L' (a1+a2+...+an)=9[(a),
11 17 n!
[ |t a0, = 8 ),

the arithmetic and geometric means with unit weights. When
o+ o+ ... +a,=1, [¢] is a common generalisation of A(a) and
& (a).

In general [«'] is not comparable with [«] in the sense of §1.6.
The problem solved in this and the next two sections is that of
determining conditions for comparability.

We say that («) is magjorised by (), and write

(@) < (@),
when the («) and («’) can be arranged so as to satisfy the fol-
lowing three conditions:

(2.18.1) T e N T e st o

(2.18.2) oz 2. 2w, @ op=...ay,;

(2.18.3) oy Foy Feeto, Sty ta, (1Sv<n).

The second condition is in itself no restriction, since we may
rearrange («’) and («) in any order, but it is essential to the state-
ment of the third. It is plain that (o)< (a).

45. A mnecessary and sufficient condition that [a'] should be
comparable with [a], for all positive values of the a, is that one of
(«’) and () should be majorised by the other. If (a')<(a) then

(2.18.4) [o'] <[]

There is equality only when (') and («) are identical or when all
the a are equal®.

& Theorem 45 is due substantially to Muirhead (2); but Muirhead considers only
integral o.
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2.19. Proof of Muirhead’s theorem. (1) The condition is
necessary. Suppose, as we may, that (2.18.2) is satisfied, and that
(2.18.4) holds for all positive a. Taking all the a equal to z, we

obtain 22 =[o'] < [a] = 222,

This can only be true both for large and for small z if (2.18.1) is
true.
Next, take
O=0y=...=A,=T, G, 1=...=0,=]1,
x being large. Since («’) and («) are in descending order, the
indices of the highest powers of x in [«'] and [«] are

o Fog e ta, o tagt...ta,

respectively. It is plain that the first cannot exceed the second,
and this proves (2.18.3).

(2) The condition is sufficient. The proof of this is rather more
troublesome, and we require a new definition and two lemmas.

We define a special type of linear transformation of the «,
which we call a transformation 7', as follows. Suppose that o
and «, are two unequal «, the first being the greater; we may write

(2.19.1) =p+7, y=p—7 (0<7=p).
If now
(2.19.2) 0So<7=p
then a transformation 7 is defined by
, T+0o T—0
oy, =p+a'=—2—T—ock+—2—T—ocl,
(2.19.3) “l'=P""=T—2T‘;_-0“k+T;TG%:

o, =a, (v£k, v£I).

If («') arises from («) by a transformation 7', we write o' = Ta.
The definition does not necessarily imply that either the « or
the «’ are in decreasing order.

It is plain that the sufficiency of our condition for compara-
bility will be established, and that we shall also have proved what
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is stated in Theorem 45 about the case of equality, if we have
proved the two following lemmas.

Lemma 1. If o' =Ta then [a'] = [a], with equality only when
all a are equal.

Lemma 2. If («')< (), but («') 78 not identical with (o), then
(«") can be derived from () by the successive application of a finite
number of transformations T'.

Proof of Lemma 1. We may rearrange (x) and («’) so that
k=1, 1=2. Then

(2.19.4) n!2[a]—n!2[«']
=n!2[p+1,p—7,05,...]—n!2[p+o,p—0,03,...]
=21a,% ... 0,%(a,PT7 AP+ 4P AP T — @ LTI AP0 — a PO a,PTO)
=21(a,0,)PTaz%... a,% (a7 —a,"t%) (@, —a," %) =20,

with equality only when all the a are equal.

Proof of Lemma 2. We suppose that the condition (2.18.2) is
satisfied, and call the number of the differences «,—a,” which
are not zero the discrepancy of () and («'); if the discrepancy
is zero the sets are identical. We prove the lemma by induction,
assuming it to be true when the discrepancy is less than r and
proving that it is then true when the discrepancy is .

Suppose then that (¢')<(«) and that the discrepancy is r>0.
Since, by (2.18.1), Z («, —«,”) =0, and not all of these differences
are zero, there must be positive and negative differences; and,
by (2.18.3) the first which is not zero must be positive. We can
therefore find k and [ so that

(2.19.5) ak, < &g, (X,I‘H_l: Kp1s oo a/l__1= %15 al’ > al.a'
We take o, =p+7, qy=p—r, as in (2.19.1), and define ¢ by
(2.19.6) a=Max(|ock'—p[,|ocl'—p[).

Then 0 <7< p, since a;, >o;. Also one or other® of
o —p=—0, o'—p=o,
® a; — o’ is the first negative difference, ay, — «;,’ the last positive difference which

-precedes it. The text assumes I —%>1; the case [ —k=1 is easier.
b Possibly both.
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is true, since o’ 2« ; and o < 7, since o’ < oz, and o’ > o;. Hence
O0so<7=p,

as in (2.19.2).

We now write

(2.19.7) o' =p+o, o '=p—0o, o/ '=a, (vFk, v¥l).

If ) —p=0, 0,/ =0, ; if ¢f —p=—0, o)’ =2 Since the pairs
o> o’ and oy, o each contribute a unit to the discrepancy r
between («’) and («), the discrepancy between («') and (a’’) is
smaller, being »r— 1 or r — 2.

Next, comparing (2.19.7) with (2.19.3), and observing that
(2.19.2) is satisfied, we see that («'’) arises from («) by a trans-
formation 7'.

Finally, («’) is majorised by («”’). To prove this we must verify
that the conditions corresponding to (2.18.1), (2.18.2) and
(2.18.3), with o'’ for «, are satisfied. For the first, we have

(2.19.8) a, +of =2p=0p+0, ' =Za=Za"’.

For the second, we observe first that
' Spt+|oy —p|Spto=u”,
o'zp=|o/—p|lzp—0o=0

and so, by (2.19.5),

=g Zep=ptr>pto=a 20 2o =g =",

a=wg=a g zaZdj=p—o>p-T=g 20y =,
and the inequalities affecting the o'’ are those required. Finally,
we have to prove that

o o et Soy oy o

Now this is true if v<k or v21, by (2.19.7) and (2.18.3); it is
true for v==F, because it is true for v=%k—1 and o, < o;,”’; and it
is true for k < v <1 because it is true for v=Fk and the intervening
o’ and o'’ are identical.

We have thus proved that («') is majorised by («"’), a set arising
from («) by a transformation 7' and having a discrepancy from
(«') less than 7. This proves Lemma 2 and so completes the proof
of Theorem 45.p

& Again, both these equations may be true.
b For another proof, see Theorems 74 and 75.
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2.20. An alternative theorem. We shall say that (a') s an
average of («) if there are n? numbers p,, such that

n n

(2.20.1) p#y ; O: “Elp#v = 1’ VEIP}LV = 1
and

(2.20.2) ay'=p,‘1¢1+10,‘2°€2+ P o/ P

Since the conditions (2.20.1) are not affected by a permutation
of the u or the v, the definition is, like that of § 2.18, independent
of the order of the « or the a’. The equations (2.19.3) show that
(p+o, p—o, a,...) is an average of (p+7, p—7, ag,...) When
(2.19.2) is satisfied.

The last two conditions (2.20.1) may also be stated as follows:
Zo', when expressed as a function of the «, is identical with Za,
and every o’ is 1 if every « is 1. From this it follows that the
relationship is transitive; if (') is an average of («), and («'’) of
(«'), then («'’) is an average of («). And from this and Lemma 2
of §2.19 it follows that if (a') < () then (o) is an average of ().

The converse is also true. For suppose that (2.20.1) and
(2.20.2) are satisfied. Then (2.18.1) follows by addition of the
equations (2.20.2). Finally, if we suppose («) and («’) in descend-
ing order, and write

Py +Doyt oo+ Py =k,
we have k, < 1 and Zk,=m, by (2.20.1); and so
0 oty et oy Shiog etk 10, F(m—k—...—k,_j)a,
S(y— m) et (0"m—1"'051'13')'*'”7“0‘7)1,= ot ogt... F oy,
which is (2.18.3).

We have therefore proved the two following theorems.

46. A necessary and sufficient condition that (o) should be an
average of () 18 that (a’)< ().

47. A necessary and sufficient condition that [o'] should be com-
parable with [«] is that one of (a') and () should be an average of the
other. If («) is an average of (o) then [o'] < [o], with equality only
as in Theorem 45.

2.21. Further theoremson symmetrical means. (1) Theo-
rems 45 and 47 fulfil two purposes. First, either theorem gives a

HI 4
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simple criterion for deciding whether two means [«] and [«'] are
or are not comparable. Secondly, the proof of Theorem 45 shows
us how, by repeated application of the transformation (2.19.3)
and the formula (2.19.4), to decompose the difference of two
comparable means into a sum of obviously positive terms. We
obtain, for example, a new and interesting proof of the theorem
of the arithmetic and geometric means (with unit weights); in fact
A(a™) -G (a)=[n,0,0,...,0]—-[1,1,...,1]
=([#,0,0,...,0]—[r—1,1,0,...,0])
+([n—1,1,0,...,0]—[n—2,1,1,0,...,0])
+(»r—2,1,1,0,...,0]—[n—3,1,1,1,0,...,0]) +
(1 ) {2 a1 —a" ) (@, — a5) + ! (a2~ a," %) (a,— ap) ag
+Z (a2 —a," %) (a,— ay) aza, + ...}
Since (a,—a,) (@) —ar)>0
unless a,=a,, the theorem follows?.
(2) 48. If oy +oy+...+o,=1, then
G (a) <[a] < A(a),
unless [a] is & (a) or UA(a), or all the a are equal.

This theorem? shows that all the [«] of degree of homogeneity 1
are comparable with & (¢) and 9 (a), though not in general com-
parable among themselves. To prove it we apply Theorem 47;
since 1

e +
n o n o
and aM=aM.1+ocp'+1.0+...+ozn.0+oz1.0+...+on_1.0,
(1/n, 1/n, ..., 1/n) is an average of («) and («) an average of

(1,0, ...,0). Or we may deduce Theorem 48 directly from
Theorem 45.

(3) Weadd two further theorems of a similar character, with indications
only of the proofs.

49. If 0<o=1, then a necessary and sufficient condition that [«'] < [a]”
is that (/)< (o). If o> 1, the condition is necessary but not sufficient.

& This proof was known before Muirhead’s work; see Hurwitz (1).
b Communicated to us by Prof. I. Schur.
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[To prove the condition necessary, follow the line of § 2.19 (1). To prove
it sufficient, combine Theorems 45 and 11. As an example
[7,0,0,...]<[5,0,0,...Ts (0<r<s);
this is M, (a) < M, (a) (Theorem 16), with unit weights. The same example
shows that the condition is no longer sufficient when ¢>1.]
50. Ifr, p, a are positive and
T.=%p,a =3,"
(in the notation of § 2.10 (iv)), then a necessary and sufficient condition that
TayTogeo. ToyT0,Toy... Tay,
Jor all a and p 18 that (¢')<(a).
[The necessity of the condition may be established as before. To prove
it sufficient we use Theorem 46 and Holder’s inequality, which give
Tn."' = Tl’,,l "'l+'ﬂ-2 a.2+...+n"mu.m
S(T, ) w1 (Toy) ks ... (T, ) um:
we have changed the notation slightly in order to avoid conflict with
that of § 2.10. The result follows by multiplication.]

2.22. The elementary symmetric functions of n positive
numbers. If

(@+a)) (@+a,)...(x+a,)=2"+c 2"+ cox™ 2 +... 4+,
n n
=x”+(1)p1x"—1+(2)p2xn—2+ vee D,

then c, is the rth elementary symmetric function of the a, i.e. the
sum of the products, r at a time, of different @, and p, the average
of these products. In this section we consider two well-known
theorems concerning the p,. We write ¢cy=p,=1.

In the notation of § 2.18

1
Cr=m2!ala2...ar,
| —7r)!
,=Q@n!—r)'c,=[1, 1,...,1,0,0,...,0],

there being r 1’s and n—r 0’s. Also p;=%(a) and p,=0E"(a),
with unit weights. The different p,, being of different degrees,
are not comparable?; but they are connected by non-linear
inequalities.

& This is a trivial case of Theorem 45.
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51. p,_1P,,1<D,% (L=r<n), unless all the a are equal.
52. p,>p.t>pit>...>p, V", unless all the a are equal.

Theorem 51, which was stated by Newtons, is actually true for
real, not necessarily positive, a; and we shall give a proof of the
more general theorem, depending on the methods of the differen-
tial calculus, in §4.3. Theorem 52 is due to Maclaurin®.

Theorem 52 is a corollary of Theorem 51, since

(PoP2) (P1P3)? (P2 Pa)® -+ (Prey Praa) <P120210% ... D
gives pf_ <prtlor ~
P> plE

This remark, together with the proof of §4.3, disposes of the
theorems, but it is interesting to consider proofs of them by the
methods of this chapter.

(i) Proof of Theorem 52 by the method of §2.6 (iii). We begin
by proving a theorem similar to but weaker than Theorem 51.
53.c ¢, ;¢.1<c,2
This theorem is weaker than Theorem 51,since p,_; p,,, <p,2is
(r+1)(n—r+1)
T rn—r) €161 <G,
To prove it we observe that a typical term in ¢,_, ¢, ., —c,?is
2052 e O Oy g e Oy
and that this occurs with the coefficient

( 28 )_(2s)<0.
s—1 8
From Theorem 53 it follows that
(2.22.1) €r_1C<CpCsy

if r<s.

a Newton (1, 173). See also Maclaurin (2).

b Maclaurin (2). See also Schlomilch (1). The inequality p,> p,/™ is a case of
Theorem 9.

¢ The theorem is stated, like Theorems 51 and 52, for positive a. It remains
true, as the proof shows, for non-negative a, unless ¢, =0 (i.e. unless all but »—1
of the a are 0).
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We can now prove Theorem 52 as follows. If the a are not all
equal, let @, =Mina, a,=Maxa. Then

(2.22.2) Oy <oy <y,
where oy =p, .
We replace a; and a, by o, and «,, choosing a, so that p, shall

be unaltered, and prove that any p, for which »> p is increased
by the substitution. The result will then follow as in § 2.6 (iii).

We have
n ’ ’ ’
u Pu=0=0105C, ,+ (a,+ay) Cu-1FCp>
where c,’ is the ¢, formed from the n —2 numbers other than a,
and a,. Since p, is to be unchanged
1850, o+ (a,+ay) 1t =0 %, o+ (gt as)c, ;+0,,
(2.22.3) (0p—a1@5)C 3= — (0 + 0ty — @y — @) -1,
(2.22.4) (oqCp—p+0Cpy) =010, + (A + a3 — ) Chm1-

The value of «, defined by (2.22.4) is positive because of (2.22.2).
Also, if p, becomes p¥,
n ’ ’
(v) (PF —p,)= (0105 — 1 @5) €, + (01 + 0 — Ay — @) €,y
and so p* —p, has the sign of
c c

’ 4

v—1 ®—1
(o + otp— g —a,) (5'—_b’ ) .

v—2 w2

The second factor is negative, by (2.22.1); and, by (2.22.3),

sgn (o + oty — @y — @p) =5gN (@1 Ay — oy %)
= sgn {o; (o + oty — &y — Ay) + Ay Ay — 0t 0o}
=sgn {(o; —a,) (o, —ag)} = — 1,
by (2.22.2). Hence p* > p,, which proves the theorem.

(ii) Proof of Theorem 51 by induction?. Suppose that Theorem
51 has been proved for » — 1 numbers, a,, a,, ..., a,_;, and that

a This proof was communicated to us independently by Messrs A. L. Dixon,
A. E. Jolliffe, and M. H. A. Newman.
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c,, p, are the c,, p, formed from these »—1 numbers, which we
shall at first suppose not all equal. Then

C,=C,+a,c,_4

n—r
and so Pp=——Dp.+— an D1~

Hence we deduce
12 (P, 4 pr-}-l "'./prz) =4+ Ba,,+ Oanz’

where A={(n=7)2=1}p, 1 Prsa— (0 =7},

B=(n—r+1)(r+1)p, 1 p,+n—r—1)(r—1)p,_o0,4+1

-2r (n - 7)19;.__11’; )
O=(r*—1)p, o P, —7*p2,

Since a,,a,, ...,a,—, are not all equal, we have, by the inductive

hypothesis,
Dry D1 <P DppPr<D2ys Doy Priy <Dy Py
so that A< —-p?2, B<2p,_,p., C<-p2,,
and n? (pr——lpr+1—p%) <= (p;—anp;—1)2§ 0.
This proves the theorem. The result is still true when
U=qy=...=0p_,

because then a, +a,=p,/p,_,-

It is also possible to prove Theorem 51 by means of identities of the
type considered in §2.21(1).

1 r=1/24\ (7,4
54. Pri=PraPry1= " . .2 ( i > ,Eq_—ll,
r(r+1) <r> <r+ 1>Z=0
where (r8)=Za% ... 0%y Wi eee Opyiy (pys— r+1‘+1)2s

the summation extending over all products formed from the a and of the type
shown.
55 ___.L._._lz( 2__ )_(n_l)z(a _a)z(c‘n—Z)g
=D in—r=1)1 ‘PrPraPra)= 17 32)" (6, g

o) S 0y - ag)? (s g ()
il e Y o 2)3('rfn ri)l) =2y = (01— 00 (@ = ay)? (@ = a0)* (] 7))
F .00
where c 1 18 the sum of the products, r — 1 at a time, of the n—2 a other than
Ay, Qg cmd 80 on.
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Theorem 54 is due to Muirhead (1), and Theorem 55 to Jolliffe (1).
Theorem 55 gives an ‘intuitive’ proof of the more general form of Theorem
51 (for real a of either sign) referred to at the beginning of this section.

2.23. A note on definite forms. The identity of Hurwitz
and Muirhead proved in § 2.21 (1) shows that, when a >0,
"+ a,"+...+a,"—na,a,...a,
can be expressed as a sum in which every term is obviously

non-negative.
If we write a, = .2, a,=1,2, ..., we obtain
(2.23.1) @2+ ... +x, 2 —nx P2, 2,2
1
=5m=T)! {Z1 (222 — 2,222) (2,2 — 2,%) + ...},
Now
(x12n—2 — xZZ’n—-Z) (x12 —_ x22)
—_ (xlz _ x22)2 (xlzn——4 + x12n——6 x22 + .o+ .%‘22""‘4)
is a sum of squares of polynomials such as (x,?—x,2) x,"2; and so
the right-hand side of (2.23.1) is a sum of squares. Finally, since
22 A A A2 — 20Ty Xy e Xy =TT A+ X2 — TP R
F A2 e X=X X (X e Ty — Ty eee Tay)P,
it follows that
(2.23.2) F=a2+...+2,2"— 202, %y... Tg, =2 P2,
i
where the P, are real polynomials of degree n. For example
28+ 8 + 28 + ub + 08 + wb — 6xyz uvw
—_ %(x2 + y2 + 22) {(y2 —_ z2)2 + (Z2 — x2)2 + (xZ — y2)2}
+ 3 (w2 + 024+ w?) {(v? — w?)2 + (w2 — u?)? + (u?— v?)%} + 3 (wyz — uvw)?
is a sum of 9+ 9+ 1 =19 squares of real polynomials.

A real form is a homogeneous polynomial F (z,,x,, ..., %,,), with
real coefficients, in the m real variables x,, %, ..., Z,,. A form F'is
said to be definite, in a certain region of the variables, ifit does not
change sign in that region, for example if > 0. We may divide

definite forms into positive and negative forms, and it is plainly
sufficient to consider positive forms. Thus the form (2.23.2) is
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positive in the region of all real values of the variables. Itis plain
that a form which has this property must be of even degree.

If F > 01in a certain region, then F is said to be strictly positive
in that region.

The form (2.23.2), and the forms considered in Theorems 7
and 55 (with z for @), can be expressed as sums of squares of real
polynomials, and it is natural to ask whether this is a general
property of definite forms. Is it truethat, if F = 0 for all real , then

F=3Pg2,
i

where the P; are real polynomials?

This problem was solved completely by Hilberta. Here we have
space only for a few fragmentary remarks. We begin by observing
that there are two cases in which the answer is immediate. We
denote the degree of F by 2n, and the number of variables by m.

If m=2, so that F = F (x,y) and » is arbitrary, then any real
factor az+by of F must occur in even multiplicity, and the
complex factors must occur in conjugate pairs az+ by, az+by.
Hence, grouping the factors appropriately, we obtain

F=p?(g+ir) (g—ir)=(p9)* + (pr)?,
where p, g, r are real polynomials.

It is a familiar theorem of algebraP that any definite quadratic
form in any number m of variables may be expressed as a sum of
at most m squares of real linear forms. Thus the answeris affirma-
tive in the two cases

(1) m=2, n arbitrary,

(2) m arbitrary, 2n=2.

Hilbert found a third case

(38) m=3, 2n=4,
and proved that any positive biquadratic form in three variables
is representable as the sum of three squares of real quadratics.
He also proved that in all other cases the answer is negative,
there being definite forms of degree 2n in m variables which can-
not be represented in the manner proposed.

a Hilbert (1). b See, for example, Bocher (1, 144-154).
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Hilbert then suggested the following theorem: any positive F
can be expressed as F=SR?
R 1

where R, is a real rational function. An equivalent theorem is: any
positive F may be expressed as a quotient of sums of squares of real
formsa.,

HilbertPgavea verydifficult proof of these theorems for ternary
forms in (z, y, z). The general theorems were first proved by
Artin°. Artin’s proof is very remarkable and comparatively
simple, but depends upon the ideas of modern abstract algebra
in a manner which makes it impossible for us to reproduce it here.

2.24. A theorem concerning strictly positive forms. The
rather fragmentary remarks of § 2.23 form a natural introduction
to the simpler problem which we consider here. We are concerned
now with forms which are strictly positive in the region of posi-
tive z. The theorem which we shall prove resembles those of
§2.23 in asserting that a positive form can be represented in a
manner which renders its positive character intuitive. It is no
longer necessary that the degree of the form should be even.

56.4 If the form F (x,, 5, ..., &,,) 18 strictly positive for
=20, XZzx>0,
then F may be expressed as
=2
T

where G and H are forms with positive coefficients. In particular

we may suppose that
H=(z+2y+... +2,)?
for a suitable p.

& Tt is evident that the first theorem implies the second (with one square only in
the denominator). And since
oz (g,

T

the second theorem implies the first.

b Hilbert (2). ¢ Artin (1).

4 Pélya (3). The theorem had been proved before (apart from the last clause) by
Poincaré (1) when m =2 and by Meissner (1) when m =3. Meissner’s method is
applicable in principle in the general case, but does not lead to so simple a result.
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For simplicity of writing we suppose m =3; no new point of
principle arises for general m.

The function F (z, ¥, 2) is positive and continuous in the closed
region

(2.24.1) z=0, y=0, 2=0, z+y+z=1,
and has a positive minimum u in that region. We write
(2.24.2) F(x,y,z):EnAaﬂy%,
the summation being over

(2.24.3) «z0, B=0, y=20, a+B+y=n;
and

(2.24.4) $(x,y,z;8)=t"2, A ,p, (xt; 1) (yt—l) (zt_l) ’

B/\y

i1 . . .
where ¢> 0 and ( o ) , ... are the usual binomial coefficients, so
that i1

=1
(o)

_1 — . —_ —
and o at\ _z(@ t) (x—28)...{x—(x—1)8}

o 1 . 2. 3 ees X
fora=1, 2, 3, ....

It is plain that ¢ (z,y,2;t) > F (z,¥,2)
when ¢->0; and if we write
é(2,y,2;0)=F (2,y,2),
then ¢ is continuous in
zz0, y=0, 220, z+y+z=1, 0=t=Z1.
There is therefore an e such that
(2.24.5)
¢(2,y,2:1)> ¢ (2,9,2,0) ~ tpu=F (z,y,2) - tpztp>0
for 0<t<eandall z, y, z in (2.24.1).
We have also
(2.24.6) (z+y+2)ir=(k—n)!Z,_,
the summation being over
k20, A20, pu=0, k+A+u=k-—n.

k!Alu!l’
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Multiplying (2.24.2) and (2.24.6), we obtain
(x+y+2)erF=((k—n)!Z, %, 4
Here we write
at+rx=a, B+A=b, y+p=c,
so that a, b, ¢ vary over
(2.24.7) a=0, b=0, ¢=0, a+b+c=k,
and «, B8, y over
(2.24.8) 0<a<a, 0SB=<b, 0=Zy=c, a+f+y=n.

potK yB+Azy+y.
B Tkl BIA Iy !

This gives
(2.24.9)
b
@+y+2ynF=(k—n)!Z, x' gvz o A"‘BY( ) (B) (s') '

In (2.24.9), X' implies summation with respect to «, 8, y over

(2.24.8) ; but, since (Z):O, (%):O, ..ifa>a, B>0, ..., we may

replace this summation by summation over (2.24.3),i.e. by Z,,.
We thus obtain

(2.24.10)

v - gm0

x2y°z°
=(k‘”’”“”2k¢(% P ;)mi/'cx

The ¢ here is positive, by (2.24.5), if k is sufficiently large, and
this proves the theorem.

(1) The theorem gives a systemaitic process for deciding whether a given
form F is strictly positive for positive z. We multiply repeatedly by Xz,
and, if the form is positive, we shall sooner or later obtain a form with
positive coefficients.

It is instructive to consider the working of the process for

F=x," 42"+ ... +2,"— (N —€) ;%5 ... X,
where ¢ is positive and small. The coefficient of
xlil xz".z xni" s
where i, + 45+ ... +2,=n(¢+1), in
¢=(2y+... +x,)" F
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is certainly positive if one of the ¢is 0. If 4, =1, ..., 3,= 1 itis
(ng)! (ng)! iy (n)!
Gl Tl Gy T~ P ey, =0 1

and has the sign of
l,b(il,":z,---sin):il(il_l)"'(il—'n'l'l) . .
+i5(tg—1) . (bg—n+ 1)+ ... —(N—€)Tylp.u. by
We require  to be positive for all ¢;,%5,...,%,.

Ifnotall of 4,,%,, ... are equal to g + 1, there is one, say ¢, ,less than g+ 1,
and one, say %,, greater than g+ 1; and changing ¢,, 7, into ¢, +1, i,—1
changes ¢ by

n{ty (23— 1) o (3 —n+2) — (23— 1) (13— 2) ... (i, —n+ 1)}

—(n—€)tg... 0, (15—1; — 1) <O.
Hence ¢ will be positive for all 4 if it is positive when every ¢ is ¢ + 1.
It will be positive in this case if
n(@+1)g(g—1)...(g—n+2)>(n—¢) (¢+1)"

1 2 n—1 €
or <1—m) (l—qu) (l—qu>>1——1—z,-
n2(n—1)
2e '

If this condition is satisfied, all the coefficients in ¢ are positive.

It follows that F'>0 for >0, Zx>0. Making ¢— 0, we obtain yet
another proof of the theorem of the means, in the form Zz" = nllz.

(2) If we write
we obtain a theorem concerning general non-homogeneous polynomials
in m—1 variables.

and a fortioria if q+1>

Tp=1=2—...—2p_4

57. If a (non-homogeneous) polynomial f(y, Xy, ...y Tp_y) 18 pOSitive in

the region 2,20, ooy 120, @ +xo+...4+2, =1,
then f (x) can be expressed in the form
Ff@=Zcx," . I (1= 2y — ... — )™,

where the a are non-negative integers and the ¢ are positive.
The theorem is a generalisation of one due to Hausdorff?.

MISCELLANEOUS THEOREMS AND EXAMPLES®
58. If «, B,y,...,A are greater than —1, and are all positive or all
Degative, then (y \ ) (14 8).. (14 2)> 1+ ot f+... +A.
[For the case a= f=... =), see James Bernoulli (1, 5, 112).]

a See Theorem 58. b Hausdorff (1). Hausdorff has n=2.
¢ Some of the theorems which follow here are mere exercises for the reader, but
most have some independent interest.
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59. If ¢>0 then

|a+blrs(1+e)[alt+ (1+,) 0]
for all (real or complex) a, b.

[See Bohr (1, 78).]

60. If A,, ®, are the arithmetic and geometric means of a,,a,; ..., a,,
with unit weights, and %,,;;, G4, those of a;,a,,...,a,,a,,,, then

n(WUp—6,)<(n+1) (Upy1 — Gpyy)
unless Apt1=0,.

[This theorem, communicated to us by Dr R. Rado, embodies another
proof of the theorem of the means. If we write a,y, =21, G, =y"*1,
then the inequality to be proved is

"l —(n+ 1) 2y™ +ny"t1>0
and this follows from Theorem 41.]

61. abgg;+l—:; (@>0,5>0,r>1),

with equality when b=a"1,
[Another form of Theorem 37. For this and the next two theorems see
Young (1, 5, 6).]

p_ (1+2)/p
62. uvgu"_z)_l+(1lii’9”> (u>0,v>—1/p, p>0).

[Replace r in Theorem 61 by 1+ p and a, b by u, (1+pv)/(1+p).]

63. w=ulogu+e~1 (u>0).
[Make p — 0 in Theorem 62. See also § 4.4(5).]
64. Ifa>0,a,0a,...a,=1" then
(L+ay) (L4ap) ... (1+az)>(1+1)n,
unless all the @ are equal.
[Chrystal (1, 51). Example of Theorem 40.]
65. If a and b are positive and p>1 or p <0, then
a? (Za)?
5717 (Zhyr 1
unless (a) and (b) are proportional. The inequality is reversed if 0<p < 1.
[Radon (1, 1351): transformation of Theorem 13.]
66. If a> 0 then ZaXa~1>n? unless all the a are equal.
[From Theorems 7 or 9 or 16 or 43.]

ab
a+b

z

67. Z(a+b) 2 <ZaZb,

unless (@) and (b) are proportional.
[Milne (1).]
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be+ca+ab abe
a+b+c 2bc+ca+¢zb<z"az;bzc’

unless (a), (b), (c) are prop'ortional.

68. Z(a+b+c)X

69. If 0<r<sand

Mr (a, b) = <a7 ; b1‘> r

then XM, (a,b)ZM_,.(a,b)<ZM,(a,b) ZM_,(a,b) <ZaZbd,
unless (a) and (b) are proportional.
70. If 0<k<1 and

’

Sabz A (Sbr)Uw

for all b, then Xak= A*.

[This is an analogue of Theorem 15 for the case 0 <k <1 (when &k’ <0).
If all a are positive, define b by

ab=a*, b=a¥1, b¥=ak,

when

(i) Takz A (Zak)U¥, SakzAF,
If all @ vanish, A must be 0 and there is nothing to prove. If some but
not all vanish, suppose that a> 0 in a set £ of y members and a=0 in
the complementary set OF of y=n— u members; and define b as above
in E, and by b= G in CE. Then

Sak=Xab= A (Tak 4+ vG* )UK = A (Sak 4+ yGF )L,
E

Making G — oo we obtain (i) again.]
71. If0<h=<a,=H,0<k=b,<K, then

= a5/ () + o/ (k)

[See Pélya and Szegé (1, 1, 57, 213), where the conditions for equality
are given.]

72. lim P40 _gn ().
r—>00 im:(a,)

If all the a are positive, there is a similar theorem for — co.

A(a)—6 (a)
A(a)

the means being formed with unit weights, then

73. If Se<l,

a
14 1 ’,
1+¢6< <1+ &
where £ is the negative and £’ the positive root of the equation

(1+z)e=2=(1—¢)"
[See Pélya and Szegé (1, 1, 58, 215).]
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74. If [yr/s eers Y 1= [yas ooos vies [81s¢ees 8/1=[815--581]
for all values of the variables involved, then
[y1s cees ¥i 9 81 s e es 8IS (Y15 oves Yar 015 e0es 81
[It follows from the first hypothesis, and the definition of the sums, that
[')’1” ceey '}’k” sl]é[')’l, soes Vs 81];
and hence, by repetition of the argument, that

(i) [p1/s cees Vi 301 oees SIS [Y1s eves Vs O1s -ees O1]e
Similarly, using the second hypothesis,
(li) [')’1’9 ceey '}’k” 81/’ seey sl’] é ['}’1” seey Yk,s 81, sy sl]'

The result follows from (i) and (ii).]

75. If (') < (o) and the o and o’ are in decreasing order, then there is
a greatest non-negative 8 for which

(1) (B)=(oy"+8, o’y oees &y, 0" —8) < ().
If § has this value then

(ﬁ) (a119 o('n/) <(Bl ’ ﬁn)
and

(iii) (Brseves Br) <(0tg s eees )y (lgk+1’ ceey ﬁn)<(°‘k+1, cees Op)
for some & between 1 and n — 1 inclusive.

[It is plain from the definitions (a) that (i) is true for §=0, (b) that the
set of § for which it is true is closed, (¢) that, if it is true for a positive §,
then it is true for any smaller positive 5. Hence there is a maximum
non-negative § for which (i) and (ii) are true.

If § has this value then either (a) 8,=a,"—8=0, or

) Bit+ .o+ Pr=ay’+ .t +d=0y+ .. oy
for a k<n; for otherwise we could increase § without disturbing (i). In
case (a)
n—1 n n n—1 n—1

a3, =ZB,=2B,= 2

1 1 1 1 1
and so B+ ...+ Bpy=0;+...+a,_;, which is (b) with k=n—1. Hence
(b) is true in any case; and then (iii) follows from the definitions.

Dr R. Rado, who communicated Theorems 74 and 75 to us, uses them
to obtain a new and elegant proof of the sufficiency of Muirhead’s criterion
(Theorem 45). The result is true for n=2 by Lemma 1 of p. 47; let us
then suppose that n> 2, that the conditions (2.18.1), (2.18.2), and (2.18.3)
are satisfied, and that the result is true for any number of variables less
than n. Then, by the inductive hypothesis,

Loy %y 1=[B1s Brls [Brs e Brl=[oys.ee i, [Bk+1’ e Bal= [“k+1s cens Oy
Hence, using Theorem 74 twice, we obtain
Lo’y ooes @ 1=[01” Bos ovvs Bz @ 1= [Brs o vvs Bal

=[Bl’ °--9Bk’ Bk+1’---ﬁn]§[°‘1’"-s Ogs Xp+1s '°'°‘n]=[°‘1’ °-°,°‘n]']
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76. If a>0, and r and s are positive integers, then

1 n\ /n
Zal"az’... a,’Z-—ﬁ-——s> ( Iy
a2 ay’ ... a, r)\s

unless all the a are equal.
[Generalisation of Theorem 66. By Theorem 45,

. rs rs 78
[r, 7, ... (s times), 0, O, ...,0]>I:;L—, PR ﬁ]'

Form the corresponding inequality with r and s interchanged and a
replaced by 1/a, and multiply.]
T7. A necessary and sufficient condition that
DL Pyt . Pron’ SP11P2o2 .. Pron,

where py, ... are defined as in § 2.22, and the « are positive, for all positive
a, is that

O +20 oo F(n—m+ Do, Zay+ 20, +...+(n—m+1)a,
for 1 <m =<n, with equality when m=1.

[The sufficiency follows from Theorem 51 ; the necessity may be proved
on thelines of §2.19(1). Dougall(1) gives a proof for integral « based on an
identity. For certain special cases, such as

pu—-Apn+/\§pﬂ-—Kpp.+x (0=«< )‘<IL)’

Putsgteeetun, =Pu, Pu, =+ Pr_s
see Kritikos (1).] KyThy g =Pu, Py, .

78. Themeans[4,4,0,0,...,0]and [,$,1,0, ..., 0] are not comparable.

[Example of Theorem 45 and illustration of Theorem 48.]

79. If a>0, and P, is the arithmetic mean of the uth roots of the
products of p different a, then

P, >P,>...>P,,
unless all the a are equal.

[Smith (1, 440). Example of Theorem 45:
[1,0,0,...,01>[%,%,0,...,0]1>[},%,%,...,0]>....]
80. If u=0, and 2, y, z are positive, then
o (2 —y) (@ —2) +y* (Y —2) (Y —2) +2* (2 —x) (2 —y) > 0,
unless x=y=z.
81. If»=0, §>0, and the a are positive and not all equal, then
[v+26,0,0,004,...]—2[v+8,8,0,04,...]+[v, 8, §, &g, ...] > 0.

[This result, communicated to us by Prof. I. Schur, is not a consequence
of Theorem 45, but follows from Theorem 80, with u=1/8.]



CHAPTER III

MEAN VALUES WITH AN ARBITRARY
FUNCTION AND THE THEORY OF
CONVEX FUNCTIONS

3.1. Definitions. The means M, () and & (a) are of the form

(3.1.1) My (@) =41 {Zg b (@)},
where ¢ (x) is one of the functions

a2, logx

and ¢—1(x) the inverse function. It is natural to consider more
general means of the type (3.1.1), formed with an arbitrary
function ¢ subject to appropriate conditions. The most obvious
conditions to be imposed upon ¢ are that it should be continuous
and strictly monotonic, in which case it has an inverse ¢~ which
satisfies the same conditions.

We require the following preliminary theorem.

82. If (i) ¢ (x) ¢s continuous and strictly monotonicin H<x < K,
(i) Hga, =K (v=1,2,...,n),
(i) ¢,>0, Zg,=1,
then (1) there is a unique M in (H, K) for which

(3.1.2) ¢ (M)=Zq¢(a),

(2) M is greater than some and less than others of the a, unless
the a are all equal.

Since ¢ () is continuous and increases or decreases from ¢ (H)
to ¢ (K) when x increases from H to K, and 2q¢ (a) lies between
these limits, there is just one I which satisfies (3.1.2). Also

Zq{p(M)—¢(a)}=0
and some terms must be positive and some negative, unless all
are zero. Hence I —a is sometimes positive and sometimes
negative, unless it is always zero.

We have assumed ¢(z) continuous in the closed interval
(H, K). The argument is still valid if ¢(z) is continuous and

HI 5
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strictly increasing in H <z < K, while ¢ (x)>—oco when z—H,
or ¢ (x)—-+ 0o when z— K, provided that we then interpret ¢ (H)
as meaning —oo, or ¢(K) as meaning +oo, and It as being H
when Xg¢(a)= —o0 or K when Zq¢(a)= +co. Here H may be
—oo or K may be +00; a particularly important case is that
in which H=0, K= +c0. In the definition which follows, and
in all the discussion of the properties of )ty later in this chapter,
it is assumed that ¢ is strictly monotonic and is either con-
tinuous in the closed interval or behaves in the manner just
explained.

We writea

(3.1.3) My =My (a) =My (@, 9) = ¢~ {Zq b (a)} = = {A [ (a)]}-
The weights g are arbitrary positive numbers whose sum is 1,
and when we compare two means it is to be understood that the
weights of the means are the same. For ¢(x)==, logz and 27,
My reduces to A, & and M, respectively.

3.2. Equivalent means. The mean I, is determined when
the function ¢ is given. We may ask whether the converse is
true: if M, =M, for all @ and g, is § necessarily the same function
as y? This question is answered by the theorem which follows.

83.0 In order that

(3.2.1) My (2) =M, (a)
for all a and q, it is necessary and sufficient that
(3.2.2) x=op+ B,

where o and B are constants and o= 0.

In the argument which follows we assume ¢ and x continuous
in the closed interval (H, K). It iseasy to see that it applies with
trivial variations in the exceptional cases mentioned in §3.1. We
shall actually prove more than we have stated, viz. that (3.2.2)
is a sufficient condition for (3.2.1) to be true for all @ and ¢, and
that it is a necessary condition for (3.2.1) to be true for all sets of

» In this chapter we define i, directly, and deduce its properties from the
definition. In Ch. VT (§§ 6.19-6.22) we shall show how I, may be defined ‘axio-

matically’, that is to say by prescription of its characteristic properties.
b Knopp (2), Jessen (2).
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two variables and weights. Later (§ 3.7) we shall prove still more,

viz. that (3.2.2) is necessary for the truth of (3.2.1) for all sets
of two variables and a fixed pair of weights.

(1) If (3.2.2) is satisfied
X {My ()} =Zq x (a) = Zg {ush (@) + B}
=aZgf(a)+ B
=g {My (@)} + B=x {My (@)},
and so M, =M, . Hence the condition is sufficient.
(ii) In proving the condition necessary, we assume only that
(3.2.1) is true for all sets of two variables and weights.
In (3.2.1) take
n=2, a;=H, a,=K, ¢q,=

where H <t < K. Then
(3.2.3)

b b B+ b O = g (B + ()|

for H<t< K; and this is also true for t=H and t=K. If we
denote the common value by z then, as ¢ varies from H to K,
z assumes all values in (H, K) and

K-t
b+ 2y =p @),

K—t CH e $E) @) @) =)
R+ = =y g =gy )
= ah () + B,

where « and B are independent of . Hence

&= x "o () + B}
for all z in (H, K); and this is (3.2.2). This completes the proof
of Theorem 83.

One corollary of Theorem 83 which is sometimes useful is this.
Since — ¢ is a linear function of ¢, and — ¢ increases if ¢ decreases,
we may always suppose, if we please, that the ¢ involved in
My (x) is an increasing function.

K—t _—H
K- Trx_@

5-2
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Theorem 83 also enables us to elucidate the apparently exceptional
status of My, = G among the means M, of Ch. I1. Since

$,(x)= / Tr-g =1
1 r
is a linear function of 2", for r+ 0, we have, by Theorem 83,
M, (a) =My, (a).
This equation is still valid for =0, since ¢y (z)=logx.
3.3. A characteristic property of the means M,. It is
natural to ask whether there is any simple property of the means

of Ch. IT which characterises them among the more general
means considered here.

84.2 Suppose that ¢ (x) is continuous in the open interval (0, o),
and that

(3.3.1) My (ka)= kM4 (a)
Jor all positive a, q, and k. Then My (a) is I, (a). In other words,
the means M, are the only homogeneous means M.

Naturally (3.3.1) does not imply ¢=a" (or logz); for, by
Theorem 83, we can replace ¢ by a¢+ 8 without changing .

That (3.3.1) is true when ¢=a" or ¢=Ilogz is obvious. We
now assume (3.3.1) and deduce the form of ¢. After Theorem 83,
we may suppose that

(3.3.2) $(1)=0;
for we may replace ¢ (x) by ¢ (z)—H(1).
We write (3.3.1) in the form
My (@) =k My (ka) =k =1 {Zqd (ka)} =My (a),

where Y ()= (kx).
It follows from Theorem 83® that
(3.3.3) ¢ (k) = o (k) ¢ () + B(E),

where « (k) and B(k) are functions of %, and «(k)=+0; and from
(3.3.2) and (3.3.3) that

(3.3.4) b (k)= B (k).

8 Nagumo (1), de Finetti (1), Jessen (4). The following simple version of de
Finetti’s proof was communicated to us by Dr Jessen.

b If we used one of the more precise forms of Theorem 83, referred to after its
enunciation in § 3.2, we should obtain a more precise form of Theorem 84, in which
homogeneity was only assumed for restricted classes of variables or weights.
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If we substitute from (3.3.4) into (3.3.3), and write y for &, we
find that

(3.3.5) b (zy)=a(y) ¢ (x)+¢(y)
for all positive z and y.

Similarly

(3.3.6) b (2y) = (x) b (y) + ¢ ();

and (3.3.5) and (3.3.6) give
a(x)—1 afy)—12
@) S

Each of these functions must reduce to a constant ¢, so that
«(y)=1+c¢(y). It then follows from (3.3.5) that

(3.3.7) b (xy)=cé (@) b (y)+¢ @)+ ()

In discussing this functional equation, we must distinguish two
cases.

(1) If¢=0, (3.3.7) reduces to the classical equation
b (2y) = () + b (¥)-

The most general solution, continuous for z > 0, is? ¢=Clog .
(2) Ifc£0,weput co(x)+1=f(x),
and the equation reduces to

fxy)=f(x)f(y),

whose general solution is f=a". Hence

xr—1
¢@)=—r"

3.4. Comparability. Our general remarks on the ‘com-
parability’ of functions of the a (§1.6) suggest the following
problem: given two functions i and x, each continuous and strictly
monotonic in (H, K), are M, and E)th comparable; i.e. 18 there an
inequality

(3.4.1) My <M,

a Provided x#1, y=+1. Since (3.3.7) is plainly true when z or y is 1, the ex-

ception is irrelevant.
b Cauchy (1, 103-105).
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(or one in the opposite sense) valid for all a and q? Theorem 16
tells us that the answer is affirmative when s and x are powers.

We write XY (@)}=¢ ().
Then ¢ is continuous and strictly monotonic, and has the inverse
¢~1=yx~1. We also write

r=i(a), a=¢(x).

Then the z are arbitrary numbers between ¢ (H) and (K); and
(3.4.1) takes the form

(3.4.2) $(Zg2) < ¢ (@)
(for all q) if y is increasing, the reversed form if x is decreasing.

We thus obtain

85. If Y and y are continuous and strictly monotonic, then a
necessary and sufficient condsition that I, and I, should be com-
parable is that ¢= xb~1 should satisfy (3.4.2), or the reversed
tnequality.

In what follows, we examine this class of functions ¢ in detail.

For arbitrary weights p, (3.4.2) becomes

(3.4.3) ¢ (%’-’f) < g% :

3.5. Convex functions. The function ¢ of §3.4 was the
resultant of two monotonic functions, and therefore itself mono-
tonic; but now we consider a ¢ subject to (3.4.2) only.

The simplest case of (3.4.2) is

3:5.1) §(25Y) st 0,

2

A function which satisfies (3.4.2) satisfies (3.5.1), but the class
of functions satisfying (3.5.1) is more general. We shall however
show that the two inequalities are equivalent for functions sub-
ject to certain not very restrictive conditions.

A function which satisfies (3.5.1) in a certain interval is called
convex in that interval. If — ¢ is convex, ¢ is concave. We may
also define convexity or concavity in an open interval. It is
often convenient to admit infinite values at the ends of the in-
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terval; it is obvious that such values must be positive for convex
and negative for concave functions.

The foundations of the theory of convex functions are due to
Jensen (2).2 Geometrically, (3.5.1) means that the middle point
of any chord of the curve y=d¢(z) lies above or on the curve;
here a curve means any, not necessarily continuous, graph. The
inequality

(3.5.2) B (9121 + 42%2) = 1 (1) + 42 b (25)

(for all g) asserts that the whole chord lies above or on the curve,
and the general inequality (3.4.2) asserts that the centre of
gravity of any number of arbitrarily weighted points of the curve
lies above or on the curve. It is geometrically intuitive that,
when the curve is continuous, the weakest condition implies the
stronger, and we shall find that much more than this is confirmed
by our analysis. We might have taken (8.4.2) or (3.5.2) as our
definition of convexity, but we have followed Jensen in starting
from the weakest definition. The most natural definitions are
perhaps (3.5.2) and another which we discuss in § 3.19. There is
some logical interest in assuming as little as possible.

It is sometimes useful to have a definition of the convexity or con-
cavity of a finite or enumerably infinite set of numbers. We shall say that
the set a,,...,a, is convex if

20,20,y +avy; (v=2,38,...,n—1),
i.e. if the second differences of the set are non-negative.

Thus we can state Theorem 51, in the less exact form with ‘<’, by
saying that the set log p is concave; the full theorem is that log p is strictly
concave (see § 3.8) unless the a are equal. When two products of powers
of the p are comparable, the inequality which holds between them may
be deduced (substantially as Theorem 52 was deduced from Theorem 51)
from the concavity of log p. This is the kernel of Theorem 77.

3.6. Continuous convex functions. We now proceed to
investigate the simplest case in which (3.4.2) and (3.5.1) are
equivalent.

If ¢ (x) satisfies (3.5.1), we have

4¢(x1+x21-x3+x4) <94 (xl—;xz)_'_zg{) (x3—|2—x4)
S ¢ (1) + ¢ (@) + ¢ (25) + ¢ (24),

& Though Holder (1) had considered the inequality (3.4.2) before Jensen.
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and so on. We thus prove

(3.6.1) ¢(xl+x2-;'”+xﬂ) §¢(xl)+¢‘(x2;+on+¢(xn)

for a particular sequence of values of », viz. n = 2™,

To prove (3.6.1) true generally, it is enough to prove also
that, if it is true for », it is true for n— 1.2 Suppose then that
(8.6.1) has been proved for » numbers, and that ,, %5, ..., %, _;
are given. Taking z, to be the arithmetic mean 9 (with equal
weights) of the » — 1 numbers, and applying (3.6.1), we obtain

n—1)A+A T+ Tyt oo+, 3+ U

p=g{Um DUy (Bt duto t s 2 2]
(@) + (@) + oo+ b (@ag) +H()
= n b

and so ¢(m)§¢(xl)+¢(x2)+.,,+¢(x _1)’

n—1

which is (8.6.1) with n—1 for n. Hence (3.6.1) is true generally.
Next, supposing that, in (3.6.1), the x form appropriate groups
of equal numbers, we obtain (3.4.2) for any commensurable q.
Finally, if & (x) is continuous, we can prove (3.4.2) without
restriction on the ¢; for we may replace the ¢ by commensurable
approximations and proceed to the limit. We thus obtain

86. Any continuous convex function satisfies (3.4.2).

As an application, we may consider Theorem 17. If s=4%(r+1¢)
we have, by Theorem 7,

(Zpa®)? < Zpar Tpd,
or {mss (a’)}z é gﬁrr (a‘) SD“Elt (a)s
or log M (@) <} {log M, (a) +log M/ (a)}-

In other words

87. log M, (a)=rlog M, (a) is a convex function of r.

From this, by appealing to Theorem 86 (or repeating the
argument by which this theorem was proved), we deduce Theorem
17 (apart from the specification of the cases of equality).

a Here we follow the lines of § 2.6 (ii). For a proof following Cauchy’s argument
more directly, see Jensen (2).



MEAN VALUES WITH ARBITRARY FUNCTIONS 73

3.7. An alternative definition2. We characterised a convex
function ¢ (z) in § 3.5 by the fact that the middle point of a chord
of the curve y = ¢ (x) lies above or on the curve. Riesz and Jessen
have made an observation which is interesting and sometimes im-
portant in applications®, viz. that, when ¢ () is continuous, it is
sufficient to require that some point of the chord should lie above
or on the curve.

88. If ¢ (x) is continuous, and there is at least one point of every
chord of the curve y = ¢ (x), besides the end points of the chord, which
lies above or on the curve, then every point of every chord lies above
or on the curve, so that ¢ (x) is convex.

Suppose that P is a chord, and R a point on the chord
below the curve. Then there is a last point S on PR and a first
point 7' on RQ in which the curve meets the chord: S may be P
and 7' may be Q. The chord ST lies entirely below the curve,
contradicting the hypothesis.

This remark gives us an alternative proof of Theorem 86. If
¢ (x) is convex, the middle point of any chord lies above or on the
curve. Hence, as we have proved, every point of the chord lies
above or on the curve. That is to say

¢ (9121 + 9222) S 416 (21) + @2 b ()
if¢,>0, ¢,>0, ¢g; +¢,=1, but ¢; and ¢, are otherwise arbitrary.
We may then proceed by induction. If ¢; +¢,+¢q;=1, then

9%+ q3x3}

(8.7.1) F (@121 + Qa2+ q3%3)=¢ {Qle +(22+¢3)
92+4s

Q2%+ Q373
<q () + (@ + (——w)
719 (1) +(92+93) ¢ Tot s

<q,9 (%) +(gs+95) 229 (xsz:{*:z:;‘ﬁ (z3)

=¢19 (@) + 09 (%) + 43 (23),
and so generally.
A corollary of Theorem 88 is

89. If ¢(x) is continuous, and every chord of y= ¢ (x) meets the
curve in a point distinct from its end-points, then ¢ () is linear.
a M. Riesz (1), Jessen (2). b See, for example, § 8.13.
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By Theorem 88, every point of every chord lies on or above the
curve. But Theorem 88 remains true if ‘above’ is replaced by
‘below’ in hypothesis and conclusion. Hence every chord of the
curve coincides with the curve.

From Theorem 89 we can deduce the refinement on Theorem 83
referred to in § 3.2. Suppose that

PHagr (@) + @b (a2)} =x"1{q1x (a1) + g2 x (a5)}
for fixed ¢,, ¢, and arbitrary a. Writing yy—'=¢, (a)=2,
a=y~1(x), we obtain
b (9121 + @2 %2) =16 (%) + 2 b (23),
so that one point at any rate of every chord of y=d¢(z) lies on
the curve. It follows from Theorem 89 that ¢ is linear.

3.8. Equality in the fundamental inequalities. We now
suppose ¢ (z) continuous and convex, and consider when equality
can occur in (3.5.1), (3.5.2), or (3.4.2).

Suppose that z; <z;<x,, that x;=gq; ¥;+ ¢, %5, and that P,
P,, ... are the points on the curve y=d¢(x) corresponding to
Zy, %y, .... If () is not linear in (x,, 2,), there is an z, in (x,, x,)
such that P, lies below the line P, P,. Suppose for example that
z, lies in (z,, #;). Then z, lies in (z,, x,), and P; lies on or below
P, P,, and therefore below P;P,. Hence (3.5.2) holds with
inequality. It follows that equality can occur in (3.5.2) only when
& () is linear in (x,, %,).

This conclusion is easily extended to the general inequality
(3.4.2). Suppose, for example, that there is equality when n=3,
and that &; <x,<x,;. Then all the signs of inequality in (3.7.1)
must reduce to equality, and ¢ (x) must be linear in each of the

intervals 0oy + das
1), (%, %)
9219
and therefore over (z,, x5).
We have thus proved
90. If ¢(x) is continuous and convex, then

(3.8.1) ¢ (Zqz) < Zq¢ (w),

(3.8.2) ¢(§§)<§%%”i),
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unless either (i) all the x are equal or (ii) ¢ (z) is linear in an interval
including all the x.

91. Any chord of a continuous convex curve lies entirely above
the curve, except for its end-points, or coincides with it.

We may say that ¢(x) is strictly convex if

(3.8.3) ¢(’”—J2r—y) <3 (@) +b )

for every unequal pair z,y. Since a strictly convex function
cannot be linear in any interval, any such function,if continuous,
satisfies (3.8.1) and (3.8.2), unless all the = are equal.

3.9. Restatements and extensions of Theorem 85.2 We
may restate Theorem 85 in the form

92. If 4 and x are continuous and strictly monotonic, and x is
increasing, then a necessary and sufficient condition that M, <M,
for all a and q is that ¢ = xp=1 should be convex®.

We shall say in these circumstances that x is convex with respect
to . Thus 2 is convex with respect to t* when s=7> 0.

The curve y = ¢ (x) has the parametric representation

z=(t), y=x()
The chord through the points on the curve corresponding to
t=1, and t=1¢,is
=), y=¢*();
whore 0= 48X+ X
is the function owp(t)+ B

which assumes the values y(¢;) and x(t,) for t=¢, and t=¢,. We
may call y =y* () the j-chord of y = x (x). In order that x should
be convex with respect to i, it is necessary and sufficient that
x <%, i.e. that every point of any i-chord of x should lie on or
above the curve.

a Jessen (2, 3).

b We have actually proved more in regard to the necessity of the condition: see
our remarks on Theorem 83.
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Theorem 92 may be generalised as follows. Suppose that

a—avl,vz,... 2 Vm

is a function of m variables v, , v,, ..., v,,, and that
m ve V1
My e My, My, (@)
is the result of taking means with respect tov,,v,, ... v, in succes-
sion.

93. Suppose that i, and x, are continuous and strictly mono-

tonic, and that X 18 increasing. Then, in order that

Mo - My, (@) < Mg ... My, (@)
for all a and q, it is necessary and sufficient that every x,, should be
convex with respect to the corresponding i, .

It is understood, of course, that the weights involved in the
operations My, and M, are the same, though they will generally
vary with pu. That the conditions are sufficient follows at once
from Theorem 92. To see that they are necessary, we have only
to suppose @ to be a function of a single v,,.

3.10. Twice differentiable convex functions. We postpone
to §3.18 any further discussion of the general properties of convex
functions, and consider now a particularly important sub-class
of such functions, viz. those which possess a second differential
coefficient.

94. Suppose that ¢ (x) possesses a second derivative ¢ (x) in the
open interval (H, K). Then a necessary and sufficient condition that
& () should be convex in the interval is

(3.10.1) ¢ (x)z 02

(i) The condition is necessary. Replacing % (x+y) and }(x—y)
by t and % in (3.5.1), and supposing that x>y, so that >0, we
obtain

2 The important case in practice is that in which (as stated in the theorem) ¢’
exists in the open interval. We usually wish, however, to assert convexity in the
closed interval. Since ¢””>0, ¢’ and ¢ are monotonic near the ends of the interval
and tend to finite or infinite limits; ¢” may tend to — c at the left-hand end and to
+ o at the right-hand end, and ¢ may tend to + « at either. The function will be
convex in the closed interval if its value at each end is not less than its limit at that
end.
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(3.10.2) d(E+h)+d(t—h)—24(t)20
for all ¢, & such that the arguments lie in the interval.
Suppose now that ¢’ (t) < 0. Then there are positive numbers
8 and % such that & (t4+u)— ' (b—u) < — Su
for 0 <u < h. Integrating this inequality from u=0 to u=h, we

obtain b(t+h)+b(t—h)—26(t) < — 3OB2,
in contradiction with (3.10.2).

(ii) The condition is sufficient. We prove that ¢ satisfies (3.4.2).
In fact, if X =2qx, we have

$(x,)=¢(X)+ (z,— X) ¢ (X) + } (&, — X)?¢" ({,)
for some £, between X and z,, and so

Zg ¢ (v) 2 $(X)=¢(Zgx).
If ¢’ (x) > 0, there can be equality only if every « is equal to X.
We have therefore proved

95.2 If ¢ (x) > 0, then ¢ () is strictly convex and satisfies (3.8.1)
and (3.8.2), unless all the x are equal.

3.11. Applications of the properties of twice differenti-
able convex functions. The following theorem, which follows
from Theorems 95 and 85, will be found particularly useful in
applications. .

96. Ifyand x are monotonic, y increasing, b= =1, and ¢'’ > 0,
then My < MM, , unless all the a are equal.

Examples. (1) If =logx, x =2, then ¢ = xyy~1=e*. Theorem 96
reduces to Theorem 9.

(2) Ifp=ar, x=2°%,where0 <r<s,thenp=a,4" > 0.Theorem
96 gives Theorem 16 (for positive indices). The other cases of
Theorem 16 may be derived similarly.

(3) Suppose that ¢ =x*, where k is not 0 or 1. Then ¢ is convex
in (0,00)if k< Oork>1,concaveif 0 <k < 1. Supposing £ > 1, and
& Holder (1).

b More strictly, from Theorem 95 and the proof of Theorem 85. By Theorem 95,
(3.4.2) is true with inequality, and so t, <IN, , unless the a are equal.
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applying Theorem 95, we find
Zgx < (Zqak)Vk
or | Zpa < (Spak )ik (Sp)K,
unless all the z are equal. If we write pz = ab, pa2* = a*, we obtain
Theorem 13, for k> 1. The other cases follow similarly.

(4) Suppose that ¢=1log (1+€*), so that
YR
¢ ()= 1+ ) >0,
and that the abscissae and weights in (3.8.1) are log(a,/a,),
log (be/by), ..., and «, B, .... We obtain
a,®b.B . I ag®boB . LA < (@ + ) (b + b5)B ... (I + L),

unless a,/a,=b,/b;=... (Theorem 40: H for any number of sets
of two numbers).

(5) Suppose that ¢=(1+a")V, where r is not 0 or 1, and
that the abscissae and weights in (3.8.2) are ay/a,, b,/b;, ... and
@y, by, .... In this case ¢ is convex if r > 1 and concave if r < 1. We

find, for example, that
{(@+by+ e + 1)+ (@ + byt oo + L)Y
< (1" +ag" ¥+ (by" + bV + o+ (I T
ifr>1and a,/a,, by/b,, ... are not all equal (M for any number of
sets of two numbers). It will be remembered that both H and
M can be extended to sets of more numbers inductively.

(6) 97. Ifa>0,p>0,then

Zploga\ Zpa Zpaloga
eXP( Zp )< Zp <eXp( Zpa )

unless all the a are equal.

We write this with p instead of ¢ for the sake of symmetry.
The first inequality is (3.8.2) reversed, with ¢(x)=logz, a
concave function. Itisequivalent to G (Theorem 9). The second
inequality is (3.8.2), with ¢(x) =z logz, a convex function.

3.12. Convex functions of several variables. Suppose that
Dis a convexdomain in the plane of (z,y), that is to say,a domain
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which contains the whole of the segment of a straight line which
connects any two of its pointsa. A function @ (z,y) is said to be
convex in D if it is defined everywhere in D and

Gz o5, BEB) <30 @, 1)+ 0, 1)
for all (z,, ¥,) and (z,, ¥,) of D.» The definition asserts more than
convexity in # and y separately; thus zy is a convex function
of z for every y, and a convex function of y for every z, but it
is not a convex function of # and y.

It is often convenient to use an alternative form of the defini-
tion just given. Suppose that z, y, u, v are given, and consider
the values of ¢ (if any) for which (x+ut, ¥+ vf) belongs to D.
Since D is convex, these values form an interval (which may be
nul). Then we say that @ (x,y) is convex in D if

(3.12.2) x @) =D (x+ut, y+vt)

is, for every =z, y, u, v, a convex function of ¢ throughout the
interval of ¢in question. The definition is equivalent to that which
we gave before, since, if

AUl =2, Y+vth=Y,, T+uly==x,, Y+Vl=1y,,
(3.12.1) becomes

x(157) s Hxw + x(w):

® is said to be concave if —® is convex.

If 2=® (z,y) is the equation of a surface in rectangular Car-
tesian coordinates, (3.12.1) asserts that the middle point of any
chord of thesurfacelies above oron the corresponding point of the

a It would be sufficient to consider rectangular domains, but convexity is the
natural limitation to impose on D. It is not part of our programme to consider
questions of analysis situs connected with convex or general domains.

b There is a wider generalisation of the notion of a convex function of a single
variable which is important in the theory of functions but with which we shall
not be concerned. The function ®(x, y) is subharmonic if its value at the centre of
any circle does not exceed its average over the circumference. In particular @ is
subharmonic if it is twice differentiable and

V2 = By + By 2 0.
For the theory of subharmonic functions see F. Riesz (5, 9), Montel (1).
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surface. If the surface is continuous we can deduce that the whole
chord lies above or on the surface, and that the centre of gravity
of any number of arbitrarily weighted points of the surface lies
above or on the surface. This is what is asserted in the following
theorem.

98. If ®(x,y) is convex and continuous, then

(3.12.3) D (Zgz, Zqy) = 2q D (2, y)-

The proof is the same as that of Theorem 86, except for the
obvious changes of notation.

There is also a theorem corresponding to Theorem 88; it is
sufficient to assert that no chord of the surface lies (except for its
end-points) entirely below the surface. All the other remarks of
§ 3.7 remain true with the obvious changes.

A theorem corresponding to Theorems 94 and 95 is

99. If ®(x,y) is twice differentiable in an open D, then a neces-
sary and sufficient condition that it should be convex in D is that the
quadratic form Q=0 u2+ 20, uv+d, 02
should be positivea for all u, v and all (x, y) of D.

If Q is strictly positive®, then (3.12.3) holds with inequality,
unless all the x and all the y are equal.

(1) The condition is necessary. If (x, y) is in D, then x(¢),
defined by (3.12.2), is convex in a neighbourhood of {=0. Hence,
by Theorem 94, x'' (0)= 0, i.e. @ =0.

(2) The condition is sufficient. If

Yg=1, X=3qx, Y=2Zqy
then
(I)(x,,y,,)=(1)(X, Y) + (xv"X)(Da:o'*' (yv'_ Y)(Dyo
+3{@, — X)) Ot + 2 (2, — X) (3, — ¥) @' + (3, — Y)2 D1},
where the index 0 indicates the point (X, Y') and theindex 1 some
point on the line joining this point to (x,, y,). It follows that
Zq O (x,y) 2@ (X,Y) =0 (Zqz, Zqy).

If @ is strictly positive, and there is equality, then z,=X,
y,=7Y for allv.

8 Q=0. b Q> 0 except for u=v=0.
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We notice that @ is positive if and only if

(3.124) @,20, 9,20 O, 0 —D 220,
and strictly positive if and only if

(3.12.5) ®,.>0, ¢,0, -0, 2>0.
It is negative if (3.12.4) holds with the signs of the first two
inequalities reversed.

The extension of the definitions and theorems of this section to
functions of more than two variables may be left to the reader.

3.13. Generalisations of Holder’s inequality. We may
write Holder’s inequality in the form
(3.13.1) A(ab) Mg (a) Mg (b)

o
r(3.13.2) Zgab < F-1{Zq F (a)} G-1{Zq G (b)},

where F (x)=x" (r>1) and G (x)=2a", »' being as usual the index
conjugate to r in the sense of § 2.8. If we write
¢=F_1> l/l:G_l’ F(a):x, G(b)=y> a=¢(x)’ b=¢(y))
we obtain
(3.13.3) Zq ¢ () (y) = b (2gx) ¥ (Zqy).
The simplest case of this is

Hé @)y (y1) + (@) Y (y2)} S ¢ {F (@ + )} {3 (1 +y2)}s
which expresses the fact that ¢ (x)(y) is a concave function of
z and y. When, as here, ¢ and iy are continuous, it is equivalent to
the more general inequality (3.13.3). Hence, reversing the argu-
ment (with general ¢ and ), we obtain

100. If F and G are continuous and strictly monotonic, then a
necessary and sufficient condition that W (ab) should be comparable
with Mz(a) Mg (b) s that F-1(x) G-(y) should be a concave or
convex function of the two variables x and y ; in the first case (3.13.1)
18 true, in the second the reverse inequality.

Asanexample we may take F (x) =27, G (y) =y°. It then follows
from Theorems 100 and 99 that

9 (ab) <M, (a) M, (b)
ifr>1,s>1land (r—1)(s—=1)=1. Ifr<1l,s<1,(1—=r)(1—=8)21,

H1 6
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the inequality is reversed. These are the only cases of com-
parability?. The argument excludes the cases r=0 and s=0,
but they may be included by using an exponential instead
of a power.

We might look for a more straightforward generalisation of
Holder’s inequality. Holder’s inequality asserts that (3.13.1)
holds if f(x) and g (x) are inverse positive powers of z, and either

(@) F(x)=2xf(x), G (x)=2g (),
or

(0) F(2)= f :f(t) d, G(z)= f “g(ya;

and we might expect that it would hold for other pairs of inverse
fand g. The theorem which follows shows that no such extension
is possible.

101. Suppose that f(x) is a continuous and strictly increasing
function which vanishes for x=0 and has a second derivative con-
tinuous for x>0, and that g(x) is the inverse function (which has
necessarily the same properties). Suppose further that F(x) and
G (x) are defined either by (a) or by (b), and that (3.13.1) is true
for all positive a, b. Then f is a power of x and (3.13.1) is Holder’s
inequality.

We consider case (@).? If, as in the proof of Theorem 100, we
write ¢ and y for F~* and G2, then ¢ () (y) must be a concave
function of z and y. Itfollows from Theorem 99 and (3.12.4)c that
¢''<0,4" =0 and

(3.13.4)  {¢' @) WF= @)@ ¢” (@) (¥)
for all positive x and y.

If ¢ () =u, ¥ (x) =v, we have

e=F@=afw, Z=fw), uw=g(;),
x=§g(””)=a(i’), ?—g@)=2,

u

u
and so
(3.13.5) ¢ (@) (x)=2.
a Compare Theorem 44. b See Cooper (4) for case (b).

¢ With the appropriate changes of sign.
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Hence ¢ (2) () + 24" ()¢’ (v) + ¢ (2) " () =0,
and so, by (3.13.4),
(¢II¢+¢¢I1)2=4¢12¢12§4¢¢¢Il II,
all the arguments being x. This is only possible if
¢Illl‘=¢¢ll=_¢l¢l, ¢Il¢+¢l¢’=0,
or ¢'i is constant. Hence, by (3.13.5), z¢'/¢ is constant, in which
case ¢ and the other functions are powers of x.

3.14. Some theorems concerning monotonic functions.
We collect here some simple theorems which will be useful later.
The first characterises monotonic functionsas (3.4.2) characterises
continuous convex functions.

102.2 A4 necessary and sufficient condition that
(3.14.1) (Zp) ¢ (Zx) = Zp (),

Sor all positive x and p, is that ¢ (x) should decrease (in the wide
~ sense) for x> 0. The opposite inequality is similarly characteristic
of increasing functions.

There 1s strict inequality if ¢ (x) decreases strictly and there is
more than one x.

(i) If ¢ decreases, ¢ (2x) < ¢ (x), whence (3.14.1) follows.

(ii) If in (3.14.1) we take n=2, 2, =2, 2,=h, p,=1, p,=p, we

obtain (L+p)$(@+1) ¢ @) +p(B).
Making p— 0, we see that ¢ (z+h) < ().

The case ¢ (x)=2* (0<a<1), p==z, gives Theorem 19.

103. A sufficient condition that

(3.14.2) () <3 (@),
Jor all positive x, is that x~'f(x) should decrease. There is strict
inequality if x~1f (x) decreases strictly and there is more than one x.

For if we write f(z)=2¢(z), then (3.14.2) becomes (3.14.1)
with p=2. The condition is not necessary, since (3.14.2) is
satisfied by any f(x) for which

f(®)>0, Maxf(z)=<2Minf(z);
for example f(z)=3+cosz.
& Jensen (2): Jensen does not refer to the necessity of the condition.
6-2
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104. If

(3.14.3) ¢ (Zpx) < Zpé (x)
for all positive x and p, then ¢ (x) ts a multiple of x.
If we take n=2, %, =z, x,=y, p,=y/2x and p,= 1} in (3.14.3),

we obtain
$(y) _$(x)
y = =
Since we can interchange x and y, ¢/x is constant.

3.15. Sums with an arbitrary function: generalisations
of Jensen’s inequality. We may define ‘sums’ involving an
arbitrary function ¢ as well as means. We write

Gy (a)=¢"1{Z¢(a)}.

Here ¢ (z) is continuous and strictly monotonic, as in § 3.1 ; but
it is necessary now to assume rather more, since X¢(a) is not,
like Xq¢(a), a mean of the values of ¢(a), and so necessarily a
possible value of ¢ (). We therefore assume that ¢ (z) is positive
for all positive # and tends to co either when x— 0 or when
z—c0. We shall also assume that the a are all positive, leaving
the reader to make the modifications appropriate when any a
is zerod,

105.> If s and yx are continuous, positive, and strictly monotonic,
then &, and &, are comparable whenever (1) s and x vary in opposite
directions, or (2)  and x vary in the same direction and x/ is
monotonic.

In case (1),
(3.15.1) Gy=6C,
if ¢ decreases and x increases. In case (2), (3.15.1) ¢s true if x/if

decreases. There 1s equality in case (1), and, if x[J is strictly mono-
tonic, also in case (2), only when there is only one a.

& Suppose, for example, that ¢(x)=2a", where >0 (the case of §2.10). Then
¢(0)=0, and we need make no distinction between two such systems of the a as
(1,1) and (1,1,0). If $(0) were positive it would be necessary to distinguish, and
the discrimination of the cases of equality in Theorem 105 would become tedious.
If ¢(x)—>00 when 2—0, then Sy (a)=0 whenever any a is zero.

b The substance of this theorem is due to Cooper (2).
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In case (1), when y increases,
&, (@)= x{x(Maxa)}=Maxa
and similarly &, (a) < Mina.
In case (2), suppose that 4 and x increase, and write
Ppla)=x, a=yl(z), xp* =f.
Then (8.15.1) reduces to (3.14.2), and is true if #~1f(x) decreases,

ie.if f{lﬁ(x)}:g(_(f_)
(@) P(@)
decreases. If ¢ and x decrease, (3.15.1) reduces to (3.14.2)
reversed, and is true if f/z increases, or if y/ decreases.
The reader will have no difficulty in distinguishing the cases of
equality. The case ) =%, x = 2" gives Theorem 19.

We may also define weighted sums analogous to those of §2.10 (iv), viz.
Ty(@)=¢"1{Zpd(a)},
where the p are arbitrary positive numbers. T4 reduces to M, if Tp=1,
to S, if every p is 1.

3.16. Generalisations of Minkowski’s inequality. If
¢ (z)=a", where r > 1, we have

(8161) W, (“—'—2*—”) <1 {My(a) + My (B},
(3.16.2) Sy (#) <3{€4(a)+84(b)},
(3.16.3) Ty (“—;—b) <3{Ty(a)+ Ty (b)),

all these inequalities being essentially equivalent and included
in Theorem 24.
The inequalities are not equivalent for general ¢; all of them

are of the form
(3.16.4) 241 {zpqs (ﬁ;—b)} <S¢ {Zpd(a)}+ ¢ H{Zpo (b)),

but the differences between the weights p are now significant.
In (3.16.1), Zp=1;in (3.16.2), p=1; in (3.16.3), the p are any
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positive numbers. We call these three cases the cases (I), (IT),
and (III). In discussing them, we shall suppose that

$>0, ¢'>0
for x> 0.

The inequality (3.16.4) asserts that ¢—1{Zpé ()} is, for given
p, a convex function of the »n variables «,, #,, ..., 2,; or, after
12,5 th —
§8.12,% that x ()= 41 {Sp (z+ut)},

where the z, p, u are fixed and the « and p positive, is convex in ¢
for all ¢ for which all z + ut are positive. If ¢ is twice differentiable
this condition is, by Theorem 94, equivalent to x''(0)=0. A
straightforward calculation shows that

(3.16.5)

{¢ 0P x"={¢' (W} Zputd” (x)— 4" (x) {Epud’ ()},

where

(3.16.6) x=x(0)=¢"{Zpo ()}
and x""=x""(0). We have therefore to consider in what circum-
stances

(3.16.7) {¢’'(x)}*Zpus” (x)—¢" (x) {Zpud’ (z)}*2 0.

It is easy to see that (3.16.7) cannot be true generally without
restriction on the sign of ¢’’. Suppose for example that ¢’ > 0 and
that ¢'’ is continuous and sometimes negative. We can then
choose z; and z, so that ¢" (z;) <0, ¢"' (x,) <0, and %, and u, so

h / ,
that PrUy @' (%) + o’ (25) =0.
In this case (3.16.7), for n = 2, reduces to
{¢' (0P {Pru?d” (1) + Pous®P” (25)} 2 0,
which is false. We shall therefore suppose in what follows that
>0, ¢'>0, "' >0.
We can write (3.16.7) in the form
$2(x) ., {Zpud’ ()}
3.16.8 = 2 Ty
(BI85 =760 Spurg @)

8 We take for granted the obvious extensions of § 3.12 from two to n variables,
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Now, by Theorem 7,

(3:169) (Spug={=vpp")u. A/(%)}zgmuwwg—f.

Hence (3.16.8) is certainly true for all z, u if

(3.16.10) b(x)= zp{iﬁ,%—’;’lzw(x),

for all z. Further, there is equality in (3.16.9) if
¢’ (x)
u=—,,——— V=1,2,...,n,
&@ :
so that (3.16.10) is both a sufficient and a necessary condition for
the truth of (3.16.8). Finally, if we write y=¢(z) and

" Th-1 2
3.16.11) D (y)=h(2) = (2 ()} = SO

(3.16.10) assumes the form

(3.16.12) D (Zpy)=Zp D (y).

We now consider the three cases (I), (II), (III) separately.

(i) In case (I), (3.16.12) is true if and only if @ (y) is a concave
function of y.

(i1) In case (IT), (3.16.12)is (3.14.2), reversed and with y, ® for
z, f. A sufficient (though not a necessary) condition is that ®/y is

an increasing function of y or, what is the same thing, that ¢¢"’ /¢'2
is a decreasing function of z.

(iii) In case (III), (3.16.12) is (3.14.3), with the appropriate
variations. It can be true generally only when @ (y) is a multiple
of y, or when ¢¢"’/¢'? is constant, in which case ¢ is of one of the
forms

(3.16.13) (ax+b)° (a>0, c>1a), eaxtd,

In these cases it is true.

There are alternative forms of the conditions (i) and (ii) which
show better their relations to one another. We shall suppose ¢"""*
continuous, aswe may do without affecting seriously the interest

& Since ¢"'>0.
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of the results. Then from

r2
o )=
we deduce D' (y)= a;:lv j”((x) +1,
O ()= o P

¢ @) da? ¢ (z)
Hence @ (y) is concave if and only if ¢'(z)/¢"' (x) is concave, or,
what is the same thing, if ¢'¢'"'/¢''? is increasing. These are
alternative forms of (i), and an alternative form of (ii) is ‘¢ /¢’
is convex’.

Summing up our conclusions, we have

106.2 Suppose that ¢'""" is continuous and that ¢ >0, ¢'>0,
¢''>0. Then

(i) st ¢s necessary and sufficient for (3.16.1) that ¢'|¢'' should
be concave, or ¢'¢""’ [$''? increasing;

(ii) ¢t is sufficient (but not necessary) for (3.16.2) that /¢’ should
be convex, or ¢’ [’ decreasing;

(iii) ¢ ¢s necessary and sufficient for (3.16.3) that ¢ should be
one of the functions (3.16.13).

We leave it for the reader to formulate the variations of this theorem,
when (for example) ¢ >0, ¢’ <0, ¢/> 0, or when the inequalities are re-
versed. It is instructive to verify that (i) is satisfied (from a certain =
onwards) when ¢ =x?/logz, where p > 1, but not when ¢ =x?logz, while
for (ii) the situation is reversed.

3.17. Comparison of sets. Theorem 105 asserts that
Gy (@) S G, (a)

for a given pair of functions iy and ¥ and all a. The theorems
of this section are of a different type, involving given sets (a)
and (a’) and a variable function ¢. We consider the conditions

under which Gy (a') =Sy (a),

@ The first results of this character are due to Bosanquet (1): Bosanquet con-
siders case (II).
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or, what is the same thing for increasing ¢,
(3.17.1)
$ (@) +6(ag) +... +b(a,) S (@) +b(ar) + ... + $(a,)

for given a and o’ and all ¢ of a certain class.

107. Suppose that the sets (a) and (a’) are arranged in descending
order of magnitude. Then a necessary and sufficient condition that
(3.17.1) should be true for all continuous and increasing ¢ is that

a’<a, (v=1,2,...,n).

The sufficiency of the condition is obvious. To prove it neces-
sary, suppose that @, >a, for some p, that ¢, <b<a,’, and that
¢* () is defined by

$*@)=0 (x<b), $*@)=1 (z>D).
Then Zo* (@) zpu>pu—12Zd*(a).
Hence (3.17.1) is false for ¢*, and therefore also false for an

appropriately chosen continuous increasing approximation to ¢*.
Ournexttheoremisconnected with the theorems of §§ 2.18-2.20.

108. In order that (3.17.1) should be true for all continuous
convex ¢, it 18 necessary and sufficient either that (1) (a’)< (@),
i.e. that (a’) 1s majorised by (a) in the sense of §2.18, or that (2) (a')
28 an average of (a) in the sense of §2.20.

If these conditions are satisfied, and ¢'' (x) exists for all x, and is
positive, then equality can occur in (3.17.1) only when the sets (a)
and (a') are identical®.

We have proved already (Theorem 46) that the two conditions
are equivalent. It is therefore enough to prove that the first is
necessary and the second sufficient. We may suppose (@) and (a’)
arranged in descending order.

(i) Condition (1) 7s necessary. Condition (1) asserts that

(3.17.2) ay"+a,+...+a,/Sa,+a,+...+a, (¥=1,2,...,n),
with equality in the case v=n.

The functions x and —x are both continuous and convex in any

& Schur (2) proves that (2) is a sufficient condition, and the remark concerning
the case of equality is also due to him. For the complete theorem, see Hardy,
Littlewood, and Pélya (2). Karamata (1) considers condition (1).
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interval. Hence,if (3.17.1) is true, Xa’ £ Zaand Z (—a') £ X (—a),
i.e. Xa' = Xa, which is (3.17.2) for v=mn, with equality.
Next, let
$(@)=0 (z5a,), $@)=2—a, (>a,).
Then ¢ (x) is continuous and convex in any interval, and ¢ (z) 2 0,
¢(x)=x—a,. Hence

a+a,+...+a, —va, <ZH(@)<Zd(a)=a,+ay+ ... +a,—va,,
which is (3.17.2).
(ii) Condition (2) s sufficient. If (o) isan average of (a), we have
@, = P10+ Pusat oot Punn;

n n
WheI‘e pl“’ g 09 le‘uy = 13 Elp,uv= ]'
= v=

for all p and v. If ¢ is convex, then

(317.3) (@) =P (@) +ooe +Dpn $(a),
and (3.17.1) follows by summation.

(iii) If there is equality in (8.17.1), there must be equality in
each of (3.17.3).

If ¢ (x)>0, and every p,, is positive, then it follows from
Theorem 95 that all the a are equal, in which case all the a’ are
also equal and the common values are the same.

In general, however, some of the p,, will be zero. We shall say
that a,” and a, are immediately connected if p,,, > 0,1.e. if @, occurs
effectively in the formula for a¢,’; and that any two elements
(whether a or a’) are connected if they can be joined by a chain of
elements in which each consecutive pair is immediately con-
nected.

Consider now the complete set.C of elements connected witha, .
We may write this set (changing the numeration of the elements
if necessary) as

() [ B P N I PN A
the a’ of C involve the a of C, and no other a, and no other o’
involves an @ of C. Hence, using the sum-properties of the p,

I Mo

S=
m

r r S
. Z puy=2 T pu,=r1;

1 v=1u=1
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so that C contains just as many a’ as a. It follows from Theorem
95, and from the equality in (3.17.3), that all ¢ immediately
connected with an a’ are equal to that a’. Hence all connected
a and a' are equal, and C contains r elements of each set, all
equal to a,.

We now repeat the argument, starting from a,,,, and we con-
clude that both (@) and (a') consist of a certain number of blocks
of equal elements, the values of the elements in corresponding
blocks being the same.

Incidentally we have proved

109. Ifd"" (x)>0, Pu>0,2p,,=1,2%p,=1,and a,y'= D2/ N B
then : ’ ’
(3.17.4) Zé(a') < Zd(a),
unless all the a and a’ are equal.

If all the a’ are equal, (3.17.4) is a special case of Theorem 95.
A special case of Theorem 108 which is often useful is

110. If ¢ (x) is continuous and convex, and | b’ | < | h |, then
(3.17.5) S(x—h)+o(x+h)Sd(x—h)+(x+h).

3.18. Further general properties of convexfunctions. We
have assumed since § 3.6 that ¢ (x) is continuous. We shall now
discard this hypothesis and consider the direct consequences of
(3.5.1). The general lesson of the theorems which follow will
be that a convex function s either very regular or very irregular,
and in particular that a convex function which is not ‘entirely
irregular’ is necessarily continuous (so that the hypothesis of
continuity is a good deal less restrictive than might have been
expected).

111. Suppose that ¢ (x) is convex in the open interval (H,K),and
bounded above in some interval i interior to (H, K). Then ¢ (x) s
continuous in the open interval (H, K). Further, ¢ (x) has everywhere
left-hand and right-hand derivatives; the right-hand derivative is
not less than the left-hand derivative; and both derivatives increase
with x.
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It follows that a discontinuous convex function is unbounded
in every interval.

We prove first that ¢ (x) is bounded above in every interval
interior to (H, K). The kernel of the proof is this. The argument

of §3.6 shows that ¢ (Zqx) < Zqé(z)

for any rational q; it was only in the passage to irrational ¢ that
we used the hypothesis of continuity. Suppose now that 7 is
(h, k) and that the upper bound of ¢ in ¢ is G. It is enough to
prove ¢ bounded above in (I, #) and (k, m), where [ and m are any
numbers such that H<l<h<k<m< K. If z is in (I, h), we can
find a ¢ in ¢ so that x divides (I, £) rationally, and then ¢ () must
lie below a bound depending on ¢ (l) and &, and so be bounded
above in (I, ). Similarly, it must be bounded above in (&, m).

To state the argument precisely, let » be the left-hand end of ¢
and G the upper bound of ¢ in ¢, and suppose that

H<l<z<h.

We can choose integers m and % >m so that

n

§=Z+E(x—-l)

lies in 4, and then

_ [mE+(n—m)l) _m n—m
se)=g MO <My 12 g

220G () < Max (6, $ ().

Hence ¢ () is bounded above in (I, k).

In proving the remainder of the theorem we may restrict our-
selves to an interval (H’, K') interior to (H, K), or, what is the
same thing, we may suppose ¢ bounded above in the original
interval. Suppose then that ¢(z) < @ in (H, K), that H<x< K,
that m and n>m are positive integers, and that 8 is a number
(positive or negative) small enough to leave =+ nd inside (H, K).
Then
¢(x+m8)=¢{m(x+n8)7;l-(n-—m)x

}§%¢(x+n8)+"—;}"¢(x),
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b(@-+18) = $(z) | (a+md)—p(x)

" i (m<mn).

or

Replacing 8§ by —8, and combining the two inequalities, we
obtain

(3.18.1) 2EFM)—4@), $@+md)—¢(@)
n m

; L $@)—d@=mb) _ $@)—d(@—nd)

m n

(the central inequality following directly from the convexity of ¢).
If in (8.18.1) we take m=1, and remember that ¢ =< G, we
find that

(3.18.2)

n

We now suppose that 8 - 0 and n — oo, but so that x + 73 remains
inside the interval. Itthen follows from (8.18.2) that ¢ (z + 8) and
¢ (x—8) tend to ¢ (x), and so that ¢ is continuous.

We next suppose 8> 0, and replace 3 in (3.18.1) by &/n. We
have then

(3.18.3) ¢(x+88)—¢(x)g¢(x+8é)'—¢(x)

g¢(x)—g$l(x—5');95(96)-25(96—5)’

where 8’ =md/n is any rational multiple of & less than 8. Since ¢
is continuous, (3.18.3) is true for any &’ <§. It follows that the
quotients on the extreme left and right decrease and increase
respectively when & decreases to zero, and so that each tends to a
limit. Hence ¢ possesses right-handed and left-handed derivatives
¢,' and ¢/, and ¢/ < &,".

Finally, we maywrite x —8'=2;,x=2,,x+ =23 (orx — 3 =1,
x=1,, ¢+ 8 =x;), when (3.18.3) gives

¢ (23) — ¢ (2,) > ¢ (25) — ¢ (24) .

T3 — T Lo — Ty
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A fortiori, if x, < xy < x3 < x,, Wwe have

b (@)= $ (@) | $ ()= (@)

Xy — g Zy— 2y

Making x;—x,, ,—>%,, we obtain

(3.18.4) b (24) 2 ' (wg) 2 ¢, (1) 2 B/ (1),
which completes the proof of the theorem.
It is plain from what precedes that

45(963) ¢ (5)

(3.18.5) b (2 2 2 ¢, (1),

ifo, Swp<ay =<
Theorem 11 1 asserts nothing about the existence of an ordinary
differential coefficient ¢’ (). It is however easy to prove that ¢’ ()
exists except perhaps for an enumerable set of values of x. The
function ¢, (z), being monotonic, is continuous except perhaps
in such a set. If it is continuous at x; then, by (3.18.4), ¢,.' ()
lies between ¢, (x;) and ¢, (x,), which tends to ¢, (x,) when
x,—>2x,. Hence ¢, (x;)= ¢, (x;), and ¢’ (x) exists for x==2;.
It is also plain from (3.18.5) that, if ¢ () is continuous and
convex in an open interval (a, b), then
(') — ¢ (x)

' —x

is bounded for all  and 2’ of any closed sub-interval of (a, b).

3.19. Further properties of continuous convex functions.
We now suppose ¢ (x) convex and continuous. It follows from
(3.18.5) that if H<¢< K and

&' (E)SAZ4,/(6)
then the line

(3.19.1) y—¢(é)=A(x—§)

will lie wholly under (on or below) the curve. In other words

112. If ¢ (x) is convex and continuous then there is at least one
line through every point of the curve y = ¢ (x) which lies wholly under
the curve.
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A line through a point of a curve which lies wholly on one side of the
curve (under or over) is called a Stitzgerade of the curve. If ¢(x) is con-
cave, then the graph of ¢ (x) has at every point a Stiitzgerade over the curve.
If ¢(x) is both convex and concave the two lines must coincide and ¢(x)
must be linear.

It is easy to see the truth of Theorem 112 directly. If é<z<z’, and
P, @, Q" are the points on the curve corresponding to £, z, z’, then P@Q lies
under PQ’, and the slope of PQ decreases as x approaches ¢, and so tends
to a limit y. Similarly, if < £ and  tends to &, the slope of QP increases
to a limit p. If u were greater than v, and z, , z, were respectively less than
and greater than £, and sufficiently near to £, then P would lie above
P, P,, in contradiction to the convexity of the curve. Hence p=v, and
(3.19.1) lies under the curve if A has any value between p and v inclusive.

In this proof we do not appeal to Theorem 111, but the proof depends
on just those geometrical ideas which underlie the more formal and
analytical argument of §3.18.

Suppose now, conversely, that ¢ (z) is continuous and has the
property assertedin Theorem 112. If z; and z, are two values of z,
P, and P, the corresponding points on the curve, and P the point
corresponding to &=} (z,+x,), then both P, and P, lie over a
certain line through P, and the middle point of P, P, lies over P.
Hence ¢ (z) is convex.

We have thus proved that the property of Theorem 112 affords
a necessary and sufficient condition for the convexity of a con-
tinuous function, and might be used as an alternative definition
of convexity. That is to say, we might define convexity, for con-
tinuous functions, as follows: a continuous function ¢ (x) is said to
be convex in (H, K) if to any & of (H, K) corresponds a number
A=AQ@) such thal 4 (6) £ Ma—8) S (a)

Jorall z of (H, K).
This definition of a convex function is quite as ‘natural’ as that implied
in (3.5.2), and it is interesting to deduce some of the characteristic pro-

perties of continuous convex functions directly from it. For example, the
inequality (3.4.2) may be proved as followsa.

Writing as usual A (b) =2gb,
and taking £ =% (a), a value which lies in the interval of variation of the a,
h;
e have ${A(a)}+A(a—§) = 4(a)
a Jessen (2).
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for a certain A=A(£) and all a. Performing the operation U on each side,
we obtain (@} -+ {U(@) — & S Aip(a)),

or ${A(a)} = U{(a)}

which is (3.4.2). It is instructive to compare this argument with that of
§3.10 (ii).

3.20. Discontinuous convex functions. Discontinuous con-
vex functions are, by Theorem 111, unbounded in every interval,
and their existence has not been proved except under the
assumption of Zermelo’s Axiom or (what is for our purpose equi-
valent) the assumption that the continuum can be well-ordered.

If

(3.20.1) f@+y)=F(x)+f(y),
then f(2x)=2f (x)
and 2 (*5Y) =S e+ 0 =1 @ +1 ).

Thus a solution of (3.20.1) is certainly convex.

It was proved by Hamel (1)2 that, if Zermelo’s Axiom is true,
there exist bases [, B, y, ...] for the real numbers, that is to say,
sets of real numbers «, B, v, ... such that every real a is expressible
uniquely in the form of a finite sum

r=ax+bB+...+IA
with rational coefficients a, b, ..., . If we assume this, we can
at once write down discontinuous solutions of (3.20.1); we give
 f(x) arbitrary values f(«), f(B), ... for z=«, B, ..., and define
[ (x) generally by
f@)=af(a)+bf(B)+... +1f (A).
Then, if y=a'a+..., we have
fle+y)=f{l@a+a)a+...}=(a+a’)f(a)+...=f(x)+f(¥).

For more detailed study of the properties of convex functions, of
the solutions of the equation (3.20.1) and of inequalities associated with
it, we may refer to Darboux (1), Fréchet (1, 2), F. Bernstein (1), Bern-
stein and Doetsch (1), Blumberg (1), Sierpiriski (1, 2), Cooper (3), and

Ostrowski (1). Blumberg and Sierpinski prove that any convex measurable
Junction ts continuous, and Ostrowski obtains a still more general result.

8 See also Hahn (1, 581).
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MISCELLANEOUS THEOREMS AND EXAMPLES

118. If ais a constant, «+0, and xy = a¢, then
) 6)((“): 64,((1), zx (a‘)=z¢>(a’)'
[The corresponding property of 9 is included in Theorem 83.]
114. An increasing convex function of a convex function is convex.

. 115. If every chord of a continuous curve contains a point which lies
above the curve, then every point of every chord, except the end-points,
lies above the curve.

116. If ¢(x) is convex and continuous, a<b<c, and ¢(a)=¢(b) = $(c),
then ¢ (x) is constant in (a, c).
117. If all the numbers are positive, then

c+y

x
x]oga+ylog%>(x+y)logm,

unless z/a=y/b.

[(xlogz)” > 0.]

118. If f(x) is positive and twice differentiable, then a necessary and
sufficient condition that log f(x) should be convex is that ff’’—f220.

119. If ¢(x) is continuous for # > 0, and one of the functions z ¢ (z) and
¢(1/z) is convex, then so is the other.
120. If $(x) is positive, twice differentiable and convex, then so are
st P(x%) (s21), eted(e®)
(the first for positive z).

121. If and x are continuous and strictly monotonie, and y increasing,
then a necessary and sufficient condition that

P (@) (@)} = x7HXD (@) - xR (@)}

for all @ and g, is that s
(y)=log {xy~* (")}
should be convex.
[Compare Theorem 92.]

122. Suppose that
(i) (1) (g — @5) + () (1 — 25) + h(5) (23— 2,) 2 0,
or (what is the same thing)
Pl (@) |
(i L bl 20,
| 1 x5 () ‘

for all @, ,, @3 of an open interval I for which @; <®,<x,. Then ¢(z) is
continuous in I, and has finite left-handed and right-handed derivatives
at every point of I.

HI 7
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If ¢(x) is twice differentiable, then (i) and (ii) are equivalent to the
differential inequality
" (x)=0.
[(i) and (ii) are alternative forms of (3.5.2), and ¢(z) is convex, so that
the theorem is a restatement of parts of Theorems 111 and 94.]

123. Suppose that

(1) ¢(@1)sin (w5 —25) + ¢(2p) sin (2, — 23) + h(w5) sin (v, —2,) = 0,
or (what is the same thing)
cosz; sinz; ¢(x;)
(ii) cosx, sinz, ¢(z,) (=0,
cosxy sinwg ¢(wg)

for all ¢, z,, z; of an open interval I for which z, <2, <z, <z; +=. Then
¢(z) is continuous in I and has finite left-handed and right-handed
derivatives at every point of I.

If 4(x) is twice differentiable, then (i) and (ii) are equivalent to the
differential inequality

¢”(x) +(2)=0.

[The result is important in the study of convex curves and of the
behaviour of analytic functions in angular domains. See Pélya (1,
320; 4, 573-576).]

124. A necessary and sufficient condition that a continuous function
¢(x) should be convex in an interval I is that, if « is any real number and ¢
any closed interval included in I, then ¢ (x) + ez should attain its maximum
in4 atone of the ends of 4. If alsox and ¢(x) are positive, then a necessary
and sufficient condition that log ¢(x) should be a convex function of logz
is that 2* ¢(x) should have the same maximal property.

[For applications of this theorem, which results immediately from the
definitions, see Saks (1).]

125. A necessary and sufficient condition that a continuous function
¢(z) should be convex in (a, b) is that

x+h
() s sg [0

for afx—h<zx<z+h=b.

[This is a corollary of Theorem 124. If ¢ (x) satisfies (i), so does ¢(z) + ax ;
and itis plain that any continuous function which satisfies (i) must possess
the property of Theorem 124.2

Theorem 125 may also be proved independently ; and there are various
generalisations. In particular we need only suppose (i) true for every z and
arbitrarily small A =h(z).] .

& For a formal proof, use Theorem 183.
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126. If $(x)is convex and continuous for all z, and not constant, then
¢ (x) tends to infinity, for one or other approach of x to infinity, in such a
manner as to be ultimately greater than a constant multiple of |z |.

127. If ¢"’>0 for >0, and ¢(0) <0, then ¢/x increases for > 0.

[This follows at once from the equations

o (D) =ed =t Jat = =a4"]

da \z
128. If ¢”’>0 for 2= 0 and

lim (x¢’—¢)=0,

then ¢/« decreases (strictly) for x> 0.

[The limit certainly exists, since ¢’ — ¢ increases. The result follows
from the equations used in proving Theorem 127. The cases considered
in Theorems 127 and 128 are the extreme cases possible when ¢’ > 0; if
neither condition is satisfied, ¢/ has a minimum for some positive x.]

129. If ¢”’> 0 for all z, ¢(0) =0, and ¢/ is interpreted as ¢’(0) for x =0,
then ¢/« increases for all .
130. If the set a,, a,, ..., @y, is convex in the sense of § 3.5, i.e. if
Aa,=a,—2a,,,+a,2,20 (»=1,2,...,2n-1),

A+ 03+ .. A Copyy ATt F Oy,
n+1 = n ’

with inequality except when the numbers are in arithmetical progression.
[Nanson (1). Add up the inequalities
r(n—r+1)A%ay =20, 7r(n—7)A%a.=0.
Theorem 130 may also be proved as an example of Theorem 108: the set

formed by the numbers 2, 4, ..., 2n, each taken » + 1 times, is majorised
by that formed by the numbers 1, 3, ..., 2n + 1, each taken »n times.]

131. If 0<x <1, then

then

11—+l 1—g"
n+1 "

V.

[Put =2 and a,=y" in Theorem 130.]

132. Cis the centre of a circle and 444, ... 4, A,an inscribed polygon,
whose vertices lie on the circle in the order indicated. C, 44, 4, are fixed
and 4,, 4,, ..., 4,_, vary. Then the area and perimeter of the polygon

test wh
are greatest when AgA =A Ag=...=A, A,.

[Let A, ,CA,=a,. Since (sinz)”’ < 0for 0 <z <, we have, by Theorem

95,

15 sin o, <sin <Z“"),
n n



100 MEAN VALUES WITH ARBITRARY FUNCTIONS

unless all the ay are equal, and a similar inequality in which «, is replaced
by 3«,. These inequalities give the two parts of the theorem. When A4,
coincides with 4, they reduce to familiar maximal properties of regular
polygons.]

133. Suppose that f and g are continuous increasing inverse functions
which vanish at the origin, that F=zf, G=xg, and that g satisfies the
. it
inequality 9(@y) <g(@)9(y).

Suppose further that Zab<AB for all positive a and b such that
ZG@(b)=G(B). Then 1
< -
ZF(a)=F(1/A)'

[Cooper (3). The result is included in Theorem 15 when f is a power
of z.]

134. If ¢(x) is convex and continuous for =0, v=1, 2, 3, ..., and the
a, are non-negative and decreasing, then

$(0)+Z{¢ (na,)— ¢[(n—1)a,l} = ¢ (Zay,).
If also ¢’(x) is a strictly increasing function, there is equality only when
the a, are equal up to a certain point and then zero.

[Hardy, Littlewood, and Pélya (2). Write

80=0, s,=a;+a+...+a, (»r=1),
and s,+(v—1)av=s,_,+va,=2z,
s,—(v—1)a,=2h, s,_;—va,=2R".
It is easily verified that | b’ | <h, with equality only if @, =0 or
a=a,=...=aq,.
It follows from Theorem 110 that
¢ (V(l,,) - ¢ {(V - l) al’} = ¢ ('SV) - ¢ (sv—l)y
and the result follows by summation.]
135. If ¢>lénd a, decreases, then
ZHi—(v—1)%a,?=(Za,).

[Example of Theorem 134.]

136. Suppose that a is a function of v,, vy, ..., vy; that ¢;, ta, ..., 4, is
a permutation of the numbers 1, 2, ..., m; and that the s and y are con-
tinuous and strictly monotonic and the x increasing. Then, in order that

My, ... Myt (@) < Myfm ... My (a)
for all @ and g, it is necessary that
(1) X is convex with respect to i, , for p=1, 2, ..., m;
(2) X, is convex with respect to s, , if A> p and Aand p correspond to an

inversion in the permutation ¢, ¢,, ..., ¢y, (i.e. if the orderis ... u, ..., A, ...
intheseries 1, 2, ..., mbut ... A, ..., u, ... In %y, %y, ...y Tpy).

[Jessen (3).]
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187. In order that

‘JJ?;: 93;; (a)= E)R;:z wt;:;(a)

for all @ and g, it is necessary and sufficient that (1) r, <s, and (2) r, =s,
(the range of 11 and X being defined as in Theorem 136).

[Jessen (3). The most important cases are:
(1) m=1, r<s.
(il) m=2, (4,,%)=(2,1), 8,=7,=28,=7,.

Thetwo cases correspond to Theorems 16 and 26. The kernel of the theorem
is contained in the statement that, whenever the two sides of the in-
equality are comparable, the inequality may be proved by repeated
application of the special cases corresponding to (i) and (ii).]

138. A continuous curve y=¢(x) defined in an open interval, say
0<z<1, has the following property: through every point of the curve
there is either (a) a line which lies under the curve, or (b) a line which lies
over the curve. Then one and the same of (a) and (b) is true at all points
of the curve, and the curve is convex or concave.

[Tt is easy to show that if S, and S, are the sets of values of z for which
(a) or (b) is true, then S, and S, are closed (in the open interval). But a
continuum cannot be the sum of two non-nul closed and exclusive sets.]

139. Supposethat ¢ () is convex and bounded belowin (H, K),and that
m(x) is the lower bound of ¢ (x) at x (the limit of the lower bound of ¢(x)
in an interval including z). Then m () is a continuous convex function;
and either (i) ¢ () is identical with m(z), or (ii) the graph of ¢ () is dense
in the region H =z = K, y =m(x).

If ¢ (x) is convex and not bounded below, its graph is dense in the strip
H<x<K.

[Bernstein and Doetsch (1).]



CHAPTER IV
VARIOUS APPLICATIONS OF THE CALCULUS

4.1. Introduction. Particular inequalities arising in ordinary
analysis are often proved more easily by some special device than
by an appeal to any general theory. We therefore interrupt our
systematic treatment of the subject at this point, and devote a
short chapter to the illustration of the simplest and most useful
of these devices. The subject-matter is arranged according to the
methods and instruments used rather than the character of the
results.

DIFFERENTIAL CALCULUS: FUNCTIONS OF ONE
VARIABLE

4.2. Applications of the mean value theorem. Our first
examples depend upon a straightforward use of the mean value
theorem

(4.2.1)  fx+h)—f(x)=hf' (x+0k) (0<O<1),

or its generalisations with higher derivatives. It is a corollary of
(4.2.1) that a function with a positive differential coefficient
increases with x.

(1) We have

log (x+ 1)—10gx=%,

where x < £ <x+ 1, when x> 0. It follows that

d 1
‘ﬂ[x{log (x+1)—loga}]=log (x+ 1)_1ng__m>07

(—%[(x—}- 1){log (x+ 1) —log x}]=1log (x + 1)—10gx—;16< 0.

1\= . . . 1\z+1
Hence ( 1+E) increases with z, while ( 1+9—c) decreases.



VARIOUS APPLICATIONS OF THE CALCULUS 103

it/
Since the latter function is (1—%) , where y=2+1>1, we

obtain
A 1\~
140. (1 +5) wncreases for x> 0; (1 —5) decreases for x> 1.

This is substantially the same as Theorem 35.
(2) Ifx>1,r>1, we have
2r=14+r(x—1)+3r(r—-1)&2(x-1)3
where 1< ¢ <z, and so

— 2
144. x'>1+r(x—1)+%r('r—l)(z—£—l) (x>1,r>1).

This inequality was found, in a less precise form, in §2.15.
(8) If x40 we have

(4.2.2) T = 1+2§+%x269x,
where 0 <f< 1, and so
142. e*>1+z (x+0).

We can deduce another proof of Theorem 9. If
Zg=1, Zqa=9,
and the a are not all equal, we can write a= (1+z), where

Zqgx =0 and the z are not all zero. Then 1 + z < e, with inequality
for at least one z, and

Ma2= AT (1 +x)? < Ae3e® =Y = Zqa.
The argument is a special case of that used at the end of § 3.19.
(4) The function f(x)=e*—1—x—%}a?
and its first two derivatives, vanish for = 0. There is no other

zero of f (z), since this would (by repeated application of Rolle’s
Theorem) involve the existence of a zero of f''' (x) =e*. Hence

e>1+z+32? (x>0), e*<l+z+i2? (x<0).
The same argument may be applied to any number of terms of

the Taylor series of various functions. When the function is e,
we obtain
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143. If n is odd then

2
(4.2.3) > 1 +x+%
If n vs even then (4.2.3) is true for x > 0 and the reversed inequality

for z<0.

xn

+.“+;b! (x=l=0).

4.3. Further applications of elementary differential
calculus. In this section we give some applications of a less
immediate character.

(1) Repeated application of Rolle’s Theorem leads easily to

the following lemmaa: if
f@,y)=cox™+cia™ty+ ...+ ¢, y™=0

has all its roots x[y real, then the same s true of all non-identical®
equations obtained from it by partial differentiations with respect
tox and y. Further, if E 18 any one of these equations, and has a
multiple root o, then o is also a root, of multiplicity one higher, of
the equation from which E is derived by differentiation.

We use this lemma to prove a theorem proved already in a
less complete form in § 2.22.

144.c If a,, a,, ..., a, are n real, positive or negative, numbers,
Po=1, and p,, is the arithmetic mean of the products of p different a,

tken pp.—lpp.—l-1<py.2 (I“L=132"'°’n_1)’

unless all the a are equal.

We suppose that no a is zero, since the specification of the
cases of equality becomes more troublesome when zero a’s are
admitted.

Let  f(@y)=(x+a.y)(@+as9)... (@+a,y)
=Po2" + (’f)plw”‘lw (Z) P2 R YR DY
Since no a vanishes, p,+0 and z/y=0 is not a root of f=0.
Hence z/y=0 cannot be a multiple root of any of the derived
& Maclaurin (2). See Pélya and Szegé (1, 11, 4547 and 230-232).

b That is to say, all equations whose coefficients are not all zero.
¢ Newton (1, 173). For further references, see § 2.22.
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equations; and therefore no two consecutive p, such as p, and
Pu+1,> can vanish. Hence the equation
D12+ 2P, %Y + Py ¥ =0,
which is obtained from f(z,y)= 0 by a series of differentiations,
is not identical; and therefore its roots are real, so that
PuaPuna=D,7-
Finally, the roots of the derived equation can be equal only if
all the roots of the original equation are equal.
It will be observed that the @ need not necessarily be positive,
as they were in §2.22.2
(2) Suppose that ¢(x)=1log(Zpa®), and (what is no real
limitation) that the a are all positive and unequal. Then
, Zpa*loga . Zpa® Zpa® (log a)?— (Zpa”log a)?
==, = >0
Zpa® (Zpa*)?
(Theorem 7). An easy calculation shows that, if a, is the
greatest a, then

$(0)=logZp, xlin; (xg'— )= —log p,.

It follows from Theorems 127 and 129 that ¢/« increases for x > 0
if Zp <1, and for all 2 if Zp=1. In the last case

2 togm (@), 1im £ (0)=log & @)

r—>0
We thus obtain further proofs of Theorems 9 and 16.
If, on the other hand, p,=1 for every v, ¢/x decreases, by
Theorem 128. In particular &, (a)=(Za®)'® decreases (Theo-
rem 19). The general case gives part of Theorem 23.

(3) The following examples have applications in ballistics.

145. logsecx<isinztanz (0<x<i}m).
146. The function 8logsecx
PO="g @y
. g
where g(x) =/ (1 +sect)dt=x+log (sec x + tan x),
0

decreases steadily from 1 to 0 as x increases from 0 to 4.
[:Use Theorem 145 to show that C%};(g%'cot z) <0 and so p'<0.:|

& Except in Theorem 55. For positive a, see Theorems 51, 54, 77, and § 3.5.
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1477. The function
/x (1+sect)logsect dt
0

o(x)= =
X logsecx[ (1+sect)dt
Jo

increases steadily from % to % as x increases from 0 to % x.

There is a general theorem which will be found useful in the proof of
Theorem 147,

148. If f, g, and f’/g’ are positive increasing functions, then f[g either
increases for all x in question, or decreases for all such x, or decreases to a
minimum and then increases. In particular, if f(0)=g(0)=0, then f/g
increases for x> 0.

To prove this, observe that

4 (f> = <£_1_‘> g

de\g/ \9" 9/9
and consider the possible intersections of the curves y=f/g, y=f'/g’. At
one of these intersections the first curve has a horizontal and the second
a rising tangent, and therefore there can be at most one intersection.

If we take ¢ as the independent variable, write f(z)=¢(g), and suppose,
as in the last clause of the theorem, that
f(0)=¢(0)=0,

or ¢(0)=0, then the theorem takes the form: if ¢(0)=0 and ¢’(g) increases
for g>0, then $/g increases for g>0. Thisis a slight generalisation of part
of Theorem 127. Theorem 148 should also be compared with Theorems 128
and 129.

4.4. Maxima and minima of functions of one variable.
A very common method for the proof of inequalities is that of
finding the absolute maximum or minimum of a function ¢ (x) by
a discussion of the sign of ¢’ (z).

(1) Since %{(l—x)eﬂ”}=—xex,
the function (1 — x) e* has just one maximum, for z= 0. Hence
149. e5'3<———1— (x<1, x+0).
-2

This is also a consequence of Theorem 142.
. d 1
(2) Since d—x(logx—x—l-l):;o——l

the function log z —x+ 1 has one maximum, for z=1. Hence
150. loge<z—1 (x>0, x+1).
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More generally log z < n (z!™ — 1), for any positive n, since we
may write zY» for z in Theorem 150. This result is also a
corollary of Theorem 36.

(3) Let  ¢(x)=1+azy— (1+aF) (14 y¥)¥,
where k>1, >0, y>0. It is easily verified that ¢(z) has a
unique maximum 0 for z*=y¥.

This gives another proof of H, (Theorem 38), and so of H
(Theorem 11).

(4) If 2 and y are positive, and &> 1, then the function

ak y¥

¢ (@)=2y— A
has the derivative y — 2** and attains its maximum 0 for z* = y*".
We deduce Theorem 61 (and so Theorems 37 and 9).

(5) The function
¢ (x)=2y—zxlogx—e¥1,

where z is positive, attains its maximum 0 for z = e?~1. We deduce
Theorem 63.

4.5. Use of Taylor’s series. If f(z) = Za,z"and g (x) = Zb, 2"
are two series with positive coefficients, and a,, <b,, for every =,
we say that f(z) is majorised by g (z), and write f< g. It is plain
that f< g and f, < ¢, imply ff;< 99, , and so on.

To illustrate the use of this idea in the proof of inequalities, we
prove

151. Ifs,=a,+a,+... +a,,where n>1 and the a are positive,
then "

(1+ay)(1+ay).. 1+a)<1+ +§T+ +§-
In fact 1+a,2<e®=, so that
IT (1 4 ax)<en=.
The result follows by adding up the coefficients of 1, x, 22, ..., 2",
and observing that there is strict inequality between the co-
efficients of z2. It may also be proved by writing the left-hand
side in the form

n(n—1)
l+np1+——ﬁ——p2+ -+,

(so that np, =s,) and using Theorem 52.
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DIFFERENTIAL CALCULUS: FUNCTIONS OF
SEVERAL VARIABLES

4.6. Applicationsof the theoryof maxima and minima of
functions of several variables. The most ‘universal’ weapon
for the discovery and proof of inequalities is the general theory
of maxima and minima of functions of any number of variables.
Suppose that we wish to prove that two functions ¢ and i of the
continuous variables x,, z,, ..., x, are comparable; let us say, to
fix ourideas, that ¢ — ¢y > 0. This will be so, if ¢ — ) has a minimum,
if and only if this minimum is non-negative; and this is a question
which can always be attacked (at any rate when the functions
are differentiable) by the standard arguments of the theory of
maxima and minima.

The method is attractive theoretically, and always opens a
first line of attack on the problem; but it is apt to lead to serious
complications in detail (usually connected with the ‘boundary
values’ of the variables), and it will be found that, however
suggestive it may be, it rarely leads to the simplest solution. We
illustrate these remarks by considering its application to the
fundamental inequalities G and H.

(1) To prove G, consider

@y, %9, ety )= 010,% .. 2, %,
1
where xnzg—(m_fhxl_'“—Qn—lxn—l):
n
in the closed and bounded domain #,>0, ..., 2,20. It is con-

tinuous, and therefore attains a maximum, which is not on the
boundary (where f vanishes). At the maximum
0=t B Il (19 1
faxl’ xl} xn Qn
and so the x are all equal to . In this case no serious complication
is introduced by the boundary valuesa.
(2) We may use H (for two sets of variables) as an illustration
of the ‘method of Lagrange’. Consider
f@y, 2y, .0, 2,)=by2y+byy+ ... + b, 2,,
2 Compare § 2.6 (i).
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where b, > 0, subject to the condition that
b (T, %g, .o y) =2+ 2k + ..+, (B>1)
is a positive constant X. The (n» — 1)-dimensional domain defined

by =0, $=X is closed and bounded, and some z vanishes at
every point of its boundary.

If the maximum is attained at an internal point, then, at that
point, do, a1
fe B,
is independent of v; and an elementary calculation shows that
f= XUk (SHF )UK = (Spk)Uk (SHE YUK,
There remains the possibility that the maximum should be
attained at a boundary point, where some z, say z,,, is zero. This
possibility may be excluded by an inductive argument, since, if

we assume that the inequality has been proved already for » — 1
variables, and that x,=0, we have

=A

n—1 n=1 \Vk /n=1 \1K
f="% b,,x,,g( > xu") ( > b,,k’) < (Sa )V (Sb YV,
1 1 1
The weakness of the method is that, if we are to argue by induc-
tion at all, it is better to prove the whole theorem inductively,
and then we come back to one of the proofs of H given already.

(3) It is quite usual that the method should, as in case (2),
prove troublesome when developed in detail; but even in such
cases it is very useful as indicating a possible solution of the
problem.

A great many of our theorems assert inequalities between two
symmetric functions f(,,%,, ..., 2,) and g (2, Z,, ..., %,), homo-
geneous of the same degree and positive for all positive . This
is true, for example, of Theorems 9, 16 and 17 (for unit weights,
the crucial case), Theorem 45 (in the case of comparability) and
Theorems 51 and 52.

When we use Lagrange’s methods we must consider the maxi-
mum of f for constant g, say for g=1. Lagrange’s equations are

G2 ore, .

ox,  ox,
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These equations have always a solution with x;=2,=...=2,,
and A is the value of f for this system of values of z. If Ais a
strict absolute maximum of f, then f=<Ag, and there is inequality
except when all the z are equal.

All this is in fact true in the cases mentioned, but there are
other cases in which the solution does not give the maximum
of f. This happens for example in Theorem 45, in the case of
non-comparability.

INTEGRAL CALCULUS

4.7. Comparison of series and integrals. There are many
inequalities which are proved most easily by arguments based on
the integral calculus; and often, by consideration of areas or
volumes, in an ‘intuitive’ way. We give here a few of the most
useful general theorems, in which the integrals considered are of
the elementary Riemann or Riemann-Stieltjes type. In Ch. VI
we shall consider inequalities between integrals systematically,
and there we shall use the general Lebesgue and Lebesgue-
Stieltjes integrals.

The theorems which follow immediately are due in principle
to Maclaurin and Cauchya.

152. If f («) decreases for @ = 0, then

FO+F @+t f )5 [ @) drSFO+£0) + oot f (0= 1),
There is inoquality if f (x) decreases strictly.

In fact f(v+1)§f:+1f(x)dx§f(v)

(with inequality if f (x) decreases strictly).
Further theorems of the same type, which we state without

proof, are:
153. Ifay<a,<ay,<..., and f(x) decreases for x = a,, then

1

@—a,)f@)= | f@)des £ @-a,)f @)

v

* ’ s Maclaurin (1, 1, 289); Cauchy (2, 222).
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154. If f(x)20, and f(x) decreases in (0, £) and increases in
(6, 1), where 0<¢<1, then

I
<! {f(o>+f( )+...+f(1)}.

155. If f(x,y) ts a decreasing function of x for fixed y and a
decreasing functz’on of y for fixed x, then

m n n—1n-—1
5 Zf(#, =f0 S y)dedys'E S f(uy)

pn=1lrv=1 w=0vr=0
Applications of these theorems, particularly to the theory of
the convergence of series, may be found in any textbook of
analysis.

4.8. Aninequality of Young. The simple but useful theorem
which follows is due to W. H. Young? and is of a different type.

156. Suppose that ¢(0)=0, and that ¢(x) is continuous and
strictly increasing for x = 0; that s (x) 18 the tnverse function, so that
i (x) satisfies the same conditions; and that @ =0,b = 0. Then

abgf:¢(x)dx+f:¢(x)dx.

There 1s equality only if b= ¢ (a).

The theorem becomes intuitive if we draw the curve y=¢ (z)
or z=y(y), and thelines x=0, x=a, y=0, y="b, and consider the
various areas bounded by them. A formal proofis included in that
of the more general theorems which follow.

A corollary of Theorem 156 is

157. If the conditions of Theorem 156 are satisfied, then
ab=<ad(a)+bi (D).
Theorem 157 is weaker than Theorem 156, but often aseffective

in applications.
We pass to more general theorems which include Theorem 156.

& W. H. Young (2).
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158. Suppose that v=1, 2, ..., n; that a, 2 0; that f,(x) is con-
tinuous, non-negative, and strictly increasing; and that one of the
£, (0) is zero. Then

nf,@)s= | 11 f,(@)-df, (@);

and there is equality only if a; =a,=...=a,.?
. The inequality may be made intuitive by considering the curve
z,=f,(t) in n-dimensional space, and the volumes bounded by the
coordinate planes and the cylinders which project the curves on
these planes.

To obtain a formal proof, put

F,(@)=f,(2) (02z=a,), F,(@)=f(a,) (®2a,),

so that F,(x) <f,(z). If we suppose, as we may, that a, is the
largest of the a,, then, since IIF, (0) =0, we have
If,(a,)=11F,(a,) J d{HF (x)}= 2 H F,(2).dF,(x)

0 pv

=3[" 1 F,@. dfv<x>§zf0 11/, o)., (@)

0 pv
and there is inequahty unless every a, is equal toa,, .

159.> Suppose that g, (x) is a system of n continuous and strictly
increasing functions each of which vanishes for x =0; that

(4.8.1) g, (z)=ux;
and that a,=0. Then
Ma, <3 f “9,(®) g
V= 0 x

There is inequality unless g,(a;) =g, (as)=...=g,(a,).
If we put
9,7 @) =x(), b,=9,(), a,=g,"(b)=x(b,)
and apply Theorem 158 to the system f, (x) = x, (), we obtain

oz “9,(y)
H,,=Hvb,,§2f ——dy, =zf 2
B=To =] e @=E] Ty

& Qppenheim (1). The proof is by T. G. Cowling. «
b Cooper (1).
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A system of n functions
_%®)
qsv (x) - z

" connected by (4.8.1) is a generalisation of a pair of inverse
functions. For suppose that n=2, g, (x)=2x¢ (), gs(x)=x¢ (),
and write (4.8.1) in the two forms

97_%%—1 (), g—z_ffw=gf1 (@).

Then
p@=29 g1, p@)=LP g0, ),

and g,7'g,, 9,79, are inverse; and the functions ¢ and ¢ of
Theorem 156 can always be represented in this form. Hence
Theorem 159 includes Theorem 156.

If in Theorem 159 we take g,(x)=2xv9,, where X¢,=1, then
(4.8.1) is satisfied, and we obtain

Hav = ZQV avllq" ’
which is Theorem 9. If in Theorem 156 we take ¢ (z) = 2*—1, where
k> 1,we have ) (x) =2*—1, and we obtain Theorem 61. If we take
¢(x)=log(xz+1), $(y)=e'—1,

and write u, v for ¢+ 1 and b+ 1, we obtain Theorem 63, for
u=1l,v=1a8

We pointed out above that Theorem 156 is intuitive from
simple graphical considerations. If instead of reckoning areas we
count up the number of lattice-points (points with integral
eoordinates) inside them, we obtain

160. If ¢(x) increases strictly with x, ¢(0)=0, and (x) is the
JSunction inverse to ¢ (x), then

mn g% [ ()] +§ [ )],

where [y] is the integral part of y.

This theorem is less interesting in itself, but illustrates a type
of argument often effective in the Theory of Numbers.

& Actually the result is true for #>0 and all v, See §4.4 (5).



CHAPTER V
INFINITE SERIES

5.1, Introduction. Our theorems so far have related to finite
sums, and we have now to consider their extensions to infinite
series. The general conclusion will be that our theorems remain
valid for infinite series in so far as they retain significance.

Two preliminary remarks are necessary.

(1) The first concerns the interpretation of our formulae. An
inequality X < ¥ (or X £ Y), where X and Y are infinite series, is
always to be interpreted as meaning ‘if Y is convergent, then X
is convergent, and X <Y (or X< Y)'. More generally, an in-
equality of the type

(5.1.1) X<ZAYb... Z¢

(or X<ZAYP...Z°, where Y,...,Z are any finite number of
infinite series, X is a finite sum, and 4, b, ..., ¢ are positive, is
to be interpreted as meaning ‘if Y, ..., Z are convergent then
X is convergent, and X satisfies the inequality’. Neglect of this
understanding would lead to confusion when it is ‘<’ which
stands in the inequality. We could read ‘Y’ as ‘o0’ in the case
of divergence; then ‘X <00’ would convey no information, but
‘X <00’ would imply the convergence of X, and this implication
would usually be false.

Some inequalities will occur which are not of the form (5.1.1).
These are usually secondary, and should be reduced to the form
(5.1.1) if there is any doubt about their interpretation. Thus

Xe<AY?
should be interpreted as
X < Ala Yb/a’
which is of the form (5.1.1); and X > Y should be interpreted
as ¥ <X.
There is one important inequality, viz.
(5.1.2) Sab > (Sak)Vk (SHF )UK,
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where k<1, k<02 which we have written deliberately in a
form unlike (5.1.1). We might have written it as

(5.1.3) ok < (Zab)k (o) kK
when 0<k<1, or as
(5.1.4) b < (Sab)¥ (Sak)—*ik

when k£ <0. These are of the form (5.1.1), and are the forms
which arise primarily in the proof of Theorem 13. We prefer the
form (5.1.2) for formal reasons, and because it shows clearly
the contrast between the two cases of the theorem, but we
must use the other forms if we wish to show explicitly and
exactly the implications about convergence.

There are a few cases where the inequality asserted is not one
between two infinite series but involves the results of other limit
operations. Thus, when we extend the inequality &(a) < Max a
(Theorem 2) we obtain an inequality between an infinite product
and the upper bound of an infinite set. Such an inequality
‘X <Y’is to be interpreted in the same way, viz. as ‘if Y is
finite then X is finite and X < Y.

(2) The second remark concerns method, and should be read in
conjunction with §1.7. Suppose, for example, that we wish to

prove the inequality (Sab)? < Sa2Sb?

for infinite series. We know the inequality for finite sums
(Theorem 7) and, everything being positive, our conclusion
follows by a passage to the limit.

We cannot extend Theorem 7, in its complete form, to infinite
series in so simple a manner, since in the limiting process ‘ <’
degenerates into ‘ <’, and we are unable to pick out the possible
cases of equality. Here and elsewhere, we must avoid limiting
processes; instead of deducing the infinite theorem from the
finite one, we must verify that the proof given for the finite
theorem remains valid, with that minimum of change required
by the new context, in the infinite case. For example, either
proof of Theorem 7 given in §2.4 may be extended to the infinite

8 (2.8.4) of Theorem 13.
8-2
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case by the addition of a few obvious comments concerning
convergence.

It will not be necessary to retrace the path followed in Ch. IT
systematically. The few new points which arise are neither
difficult nor particularly interesting, and, in so far as they are
important, recur in a more interesting form in Ch. VI. We shall
therefore arrange the substance of this chapter informally, illus-
trating and commenting upon the new possibilities, and ending
with an enumeration of some of the more important theorems
of Ch. IT which remain valid with the new interpretation.

5.2. The means IM,. We begin by some comments on a new
point which arises in the definition of the means I,. We have
now an infinity of terms @ and weights p, and there are two cases
to consider, according as Xp is convergent or divergent.

(1) If Xp is convergent we may suppose that the sum is 1 and
write g for p. In this case I, is defined, for > 0, by

(5.2.1) M, (@) = (Xgar)'r,
andmay beregarded as a ‘mean’ in the sense of § 2.2 or a ‘weighted
sum’ in the sense of §2.10 (iv). It is finite or infinite according as
Zqar is convergent or divergent.

(ii) If Zpis divergent, we can still define I, as a limit, e.g. by
n n 1/r
(5.2.2) M, (a)= lim (Zpyav'/va) ,
n-—>o \1 1

or as the corresponding upper limit lim. The latter definition is
not particularly interesting, though it would preserve most of
our theorems. If we define M, by (5.2.2), we are met by a
difficulty : the existence of M, for a given r does not ensure its exist-
ence for any other r. In fact we can determine the a so that )¢, shall
exist for a given set 7y, 7,, ..., r,, of values of r and for no others.
We shall therefore confine our attention to case (i).

For the general question of the existence of ., see, for example,
Besicovitch (1). We may illustrate the point by showing briefly how to
find a so that either of the limits

1 .1
lunﬁ(a1+a2+...+a”), llmﬁ(a12+a22+...+a,,2)

may exist without the other: here p=1.
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Take first two sequences

Oyy Olgy evey Olagy Oy Ogy «eo3  Brs Bas eoes Bars PBrs Pas oo
with period @. When a = «, both limits exist and have the values

A1=al+a2+...+aw, A2=a12+a,2+...+aw2;
w w
and when a = g they have the corresponding values B, B,.
Now take the a as follows:

oy, Oy, ..., O (repeated N, times),

Bis Bs» +.» PBw (repeated N, times),

oy, Oy, ..., Qg (repeated N, times),
It is easy to see that, by supposing the sequence N,, N,/N,, N3/N,, ... to
tend to infinity with great rapidity, we can make (a,+...+a,)/n and
(a2 + ... +a,?)/n oscillate between 4,, B; and A,, B; respectively. The
conditions for convergence will then be 4, = B, and 4,= B, respectively,
and we can obviously choose the « and 8 so that either of these conditions
shall be satisfied without the other.

We therefore restrict ourselves to case (i). We define I, , for
positive or negative r, by (5.2.1), with the convention that
M,=0 if r is negative and an a zero or Zga" divergent. We
define & (and M) by

(5.2.3) @ (a)=M,(a)=1a?=exp (Xgloga),
with the conventions that @ =oco if IIa? diverges to oo (i.e. if
Zgloga diverges to +o0), and =0 if Ila? diverges to 0 (i.e. if
Zgloga diverges to —o0). It is to be observed that loga may
have either sign, and that the definition of @ fails if Zgloga is
oscillatory. In this case @ is meaningless.

It follows from Theorems 36 and 150 that

(5.2.4) logt‘<t—r%—l—<ts—;1 (O<r<s, t>0),
unless ¢=1, when there is equality. We define log* ¢ and log— ¢ by
logtt=logt (t>1), logtt=0 (0<t=1),
log—t=logt (0<t=<1), log—t=0 (t>1),
so that
1
logtt=0, log=t<0, logt=1log*¢+log—t, log=t= —logt 7

It then follows from (5.2.4) that
1
s

0=3q logﬂzg%Z’q (=1 =-%'q(a*—1),
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where X’ denotes a summation extended over the a which ex-
ceed 1. Hence, if M () is finite for some positive s, then M, (a) is
finite for 0<r<s, and 2qlogta is convergent. We can prove
similarly that, if I_,(a) is positive for some positive s, then
IM_, (@) is positive for —s< —r< 0, and Zq log~a is convergent.
In the first case & is positive and finite or zero, in the second
it is positive and finite or infinite. If Xgloga oscillates then
Zqlogta and Zglog—a are both divergent, and this is only
possible when I, (@) =co for all positive r and I, () =0 for all
negative r. It is only in this case that the definition of & ()
can fail.

There is one new point which, as we shall see in § 5.9, affects
the specification of the cases of equality in some of our theorems.
This point arises from the possibility that, when <0, I, (@)
may be zero although no a is zero. If >0 then, as in Ch. II,
M, (a) can be zero only if (@) is nul, in which case M, (a)=0 for
all . But when r <0 there is a difference. The I, (a) of Ch. II
was zero, for such an r, if and only if some @ was zero, and then
M, (@) was zero for all r<0. It is now possible, when r <0, that
M, (a) should be zero for s <r and positive for s=r, or zero for
8 <r and positive for s>7.

Thus in Theorem 1 there were two exceptional cases;

Min a <, (a) < Max a,

unless either all the a are equal, or else r<0 and an a is zero.
All that we can say now is ‘unless either all the a are equal (in
which case both inequalities reduce to equalities) or else r < 0 and
M, (@) =0 (in which case Min @ = 0 and the first inequality reduces
to an equality)’. Substantially the same point arises in connection
with Theorems 2, 5, 10, 16, 24 and 25 (to quote only cases
referred to in our summary in §5.9).

5.3. The generalisation of Theorems 3 and 9. We use
the inequalities (5.2.4), and the equation

. tr=1
lim - =logt.

r—>0



INFINITE SERIES 119
Taking t=a/Zga=a/W, r=1in (5.2.4), we have

loga — log%[<§[— 1,

log® —log A=2q (loga—logA)<1—-1=0
with equality only if every a is . This proves the analogue of
Theorem 9.
Suppose now that M, is finite for some positive s. Then @ is
positive and finite or zero: the proof below applies to either case?.
Given € > 0, we can choose N so that

(5.3.1) p) qloga<10g(@5+e),
nsN
(5.3.2) p! q —1 <e,
n>N

and then 7, so that 0 <7, < s and

a—1
(5.3.3) Zq < X gqloga+e
ngN T n<N
for 0 <r<r,. We have then
Ty —
log@i(a):llog@i(a')gllog%(af)§%(%—1—
nsN r n>N n=N n>N
<log(@5+e)+ 2e.
Hence logM, (@)= ; log A (a")—>log & (a)

when r - +0. We leave it to the reader to prove that, if I, is
positive for some negative r, then I, - & when r—>—0.

5.4. Holder’s inequality and its extensions. The proofs of
Holder’s inequality, and other theorems of the same type, given
in Ch. IT apply equally to infinite series. We may observe in
passing that the series may be multiple series. Thus

(SZa,,b,,)? < B5a2, S50 .

s It is modelled on the proof by F. Riesz (7) of the corresponding integral
theorem: see § 6.8.
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For example, suppose that Zu,? and Zv,? are convergent, and

take

1
a'",=u"v,,, b"":W (8>0).

Since I (1 +v)~2-2 is convergent, it follows that
%0,
(n+ ,,)1+8
is convergent. This is an imperfect form of a theorem to be
proved later (Theorem 315).

The theorems concerning M, deduced from Holder’s inequality
(Theorems 16 and 17) are unchanged, except that the statement
of the second exceptional case of Theorem 16 must be modified
in accordance with our remarks at the end of §5.2. Here we
must say ‘unless s <0 and M (a)=0".

One new point of greater interest arises in connection with
this group of theorems. There is a theorem, suggested by Theorem
15 but not a corollary of it (even when it has been extended to
infinite series), which has no analogue for finite sums.

161.2 If k> 1 and Zab is convergent for all b for which Zb* is
convergent, then Za¥ is convergent.

We deduce this from another theorem due to Abel?, which is of
great interest in itself.

162. If Za,, s divergent and
A,=a;+a,+...+a,,

zz

8 Landau (1).
b Abel (1). There are theorems of the same type involving an arbitrary function
f(x). Thus, if Za,, is divergent, f(x) is positive and decreasing, and

I= f " @) e,
1

then the convergence of I involves that of Za, f(4,), and the divergence of 7 in-
volves that of Xa, f(4,_,): see, for example, de la Vallée Poussin (1, 398-399),
Littlewood (1). This theorem, though of a more general character, does not actually
include Theorem 162: it is not true that the divergence of I necessarily involves
that of Xa, f(4,). For an example to the contrary take

a, =22”’ f(x) =x—l—oa.
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8o that A, — o0, then

i = In i divergent,
4,
(ii) = Aa;‘ 5 18 convergent for every positive 3.
n
(i) We have
Apv1 | Pnye Ly An+r'—An An
+ +.ot > =1— ,
An+1 An+2 An+r An+r An+r

which tends to 1 when = is fixed and r—o0, and is therefore
greater than } for any » and some corresponding 7. This proves (i).

(ii) We may obviously suppose 0 <8 < 1. Then
AnS—An_ls_Z( 1 _L)

4,243 “\4, 2 42
is convergent. By Theorem 41, the numerator on the left is not
less than 8§4,%-2(4,—4,_;)=8a,4,51. It follows that
a?l
z A,4, P

is convergent. We prove in fact a little more than (ii).

To deduce Theorem 161, write

ab=u, ab=wuv, b¥=ur¥.

pX

We then have to prove that, if Zu, is divergent, there is a v,
such that Zu,v, is divergent and Zu, v,* convergent. We take
v,=1/U,, where U,=u,+uy+...+%,, and the conclusion
follows from Theorem 162.

5.5. The means I, (continued). There is little to be added
about the means ., but one or two further remarks are re-
quired. We begin with a remark concerning the generalisation of
Theorem 4. This theorem, in so far as it concerns positive r,
must be interpreted as follows: if the a are bounded,and a* =Maxa
18 their upper bound, then

SJEr -> SJtoo =a*,
when r—>+ 00; if the a are unbounded, but M, is finite for all positive
r, then M, — 0.
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The question of the continuity of I, for a finite positive or
negative r is no longer quite trivial. We state a comprehensive
theorem, but give no proof, since all the points involved arise in
a more interesting form in Ch. VI (§§ 6.10-6.11).

Ifa,=C, M,.= C for all » (whether C be positive or zero). We
exclude this case, and also the case in which © is meaningless,
when I, = oo for r> 0 and M, =0 for r < 0. We write

2r (a) = IOg 9er (a)
(with the conventions log co= + 00, log 0= —0).

163. Apart from the cases just mentioned, the set of values I for
which Q,(a) s finite is either the nul set or a closed, half-closed, or
open interval (u, v), where —o0<u=<v= + o0, which has r=0 as
an internal or end-point, so that w < 0 < v, but is otherwise arbitrary
(and in particular may include all real values or none). &,14s + 00
to the right, and — o to the left, of I; is a continuous and strictly
increasing function of r in the interior (if it exists) of I; and tends,
when r approaches an end-point of I from inside I,to a limit equal
to its value at the end-point.

5.6. The sums &,. The definition of &, given in § 2.10 is un-
changed, and there is little to be said about the theorems concern-
ing it, though those which involve continuity in » are naturally
less immediate. Theorem 20 must beinterpreted asmeaning ‘if &,
is convergent for some (sufficiently large) r, then it is convergent
for all greater 7 and ...", and Theorem 21 as meaning ‘if &, is con-
vergent for all positive » (however small) then...’. The extension
of Theorem 20 may be proved as follows. If & is convergent for
a positive R, then a,—0, and &, is convergent for » > R. There
is a largest a, which we may suppose on grounds of homogeneity
to be 1, and we may suppose the a arranged in descending order.

If then U =p=...=ay=1>ay.,
we have S,=(N+ayi1+anig+...)0r,
for r> R. The series here lies between 1 and
N+a§+1 +afr+2+ s
from which the theorem follows.
There is one new theorem (trivial in the finite case).
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164. If@pis convergent, then &, is continuous for r > R and con-
tinuous on the right for r= R. If &y, is divergent, but ©, convergent
for r> R, then ©,— o0 when r— R.

The proof may be left to the reader.

5.7. Minkowski’s inequality. The main arguments of
§§ 2.11-2.12 require no alteration. Theorems 24-26 suggest a
further generalisation, with both summations infinite.

1652 Ifr>1and a,, is not of the form b,,c, , then
{24, Pyt P < Zp,, (2q, 0,
n m m n

The inequality is reversed when 0 <r < 1.

There is no real loss of generality in supposing p=1,¢=1, and
the proof goes as before. Similarly, corresponding to Theorem 27,
we have

166. Z(Zay,,)>ZZa,,
n m mn

if r> 1 (with a reversed inequality if 0 <r < 1), unless, for every n,
@, = 0 for every m save one.

5.8. Tchebychef’s inequality. As one further illustration
we take Tchebychef’s inequality (Theorem 43).

We may suppose Zp = 1. The identity
n n n n n n
%py. ?pvavbv - ?p,u.ap. %pvbv = % % %py,pv (ay, - av) (bp._ bv)

shows, provided of course that neither (a) nor (b) is nul, (i) that
if (a) and (b) are simi'arly ordered then the convergence of Zpab
implies that of Zpa and Zpb, and (ii) that if (¢) and (b) are
oppositely ordered then the convergence of Zpa and Zpb implies
that of Zpab. In either case we may put »=oc0 in the identity,
and our conclusions follow as before.

5.9. A summary. The theorem which follows is substantially
an enumeration of the principal theorems of Ch. IT which remain
valid, with the glosses which we have explained in the preceding
sections, for infinite series.

a Here, as in Theorem 26, we abandon our usual convention about ¢.
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167. Theorems 1, 2,3,4,5,7,9, 10, 11, 12,13, 14, 15, 16,
17, 18, 19, 20, 21, 22, 24, 25, 27, 28 and 43 remain valid
when the series concerned are infinite, provided that the inequalities
asserted are interpreted in accordance with the conventions laid
down in § 5.1, and that the statement of the exceptional cases in
Theorems 1, 2, 5, 10, 16, 24 and 25 is modified in the manner
explained in § 5.2.

It may be worth while to supplement the last clause of the theorem
by a more explicit statement. The last words of the theorems must be
replaced by (1) ‘or else r <0 and M, (a)=0",

(2) ‘or G(a)=0’,
(5) ‘or r=0and M,(a)=0",
(10) ‘or (2) G (@+b+...+1)=0,
(16) ‘or s<0 and M,(a)=0",
(24) ‘orr=0and M, (a+b+...+1)=0’,
(25) ‘orr<0and (Z(a+b+...+1))r=0".

We may add also that (as is explained in §6.4) most of the theorems
referred to in Theorem 167 (especially those concerning 9t,) may be
derived by specialisation from the corresponding theorems for integrals.
In Ch. VI, however, we often ignore negative values of .

MISCELLANEOUS THEOREMS AND EXAMPLES

The theorems which follow are for the most part connected with
Theorems 156 and 157. We suppose in Theorems 168-175 that f(x) and
g(x) are inverse functions which vanish for x=0 and increase steadily as
«x increases, and that

F(x):/:f(u)du, G(z):/:g(t)dt.

168. If XF(a,) and ZG(b,) are convergent, then Xa,b, is convergent,
and Sa,b,<ZF (a,)+ZG(b,).

[Corollary of Theorem 156.]

169. IfXa, f(a,)and Xb,g(b,) areconvergent,thenXa,b,isconvergent,
and 2a,bp < 20, f(an) +b,g (ba).

[Corollary of Theorem 157.]

170. It is possible to choose f (and so g, F, G) and a,, in such a manner
that ZF(a,) is divergent, but XZa,b, is convergent for all b, for which
2@Q(b,) is convergent.

171. Tt is also possible to make Xa, f(a,) divergent, but Xa,b, con-
vergent whenever b, g(b,) is convergent.

[The point of the last two theorems is to show that Theorems 168
and 169 have no converses in the sense in which Theorem 161 gives a
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converse of Holder’s inequality and the convergence test deduced from it.
Theorem 171 is proved by Cooper (3), and Theorem 170, which includes
Theorem 171 and is a little stronger, may be proved in the same manner.]

172. If =

by b,

log (1/6,) logn

[Cooper (3): Theorem 172 is used in Cooper’s proof of Theorem 171.]

173. If g(x) satisfies the inequality

g(xy) =9(x)9(y),

and if Za,b, is convergent whenever Xb,g(b,) is convergent, then
2a, f(a,) is convergent. Similarly, if Za,b, is convergent whenever
2G(b,) is convergent, then X F (a,) is convergent.

[See Cooper (3) for the first form, which in this case is stronger, the
second form being a corollary.]

is convergent, then X is convergent.

174. If Xa,b, is convergent whenever XG/(b,) is convergent, then there
is a number A=A(a), depending upon the sequence (), for which XF (Aa,)
is convergent.

175. If the conditions of Theorem 174 are satisfied, and F(cx) <kF (x)
for small z, a ¢> 1, and some k, then XF(a,) is convergent.

[For the last two theorems see Birnbaum and Orlicz (1).]

176. If a, and b, tend to zero, k is positive, and

n —k/b,
Flog(lja,) =
are convergent, then Xa,b,, is convergent.

[Use Theorem 169.]

177. If >0, a,=0, and f(z)=Za,z", then f(x) is a convex function
of x and log f(x) of log .

[Plainly f’/(x) = 0. To prove the second result, let x=e~v, f(x)=g(y).
Then 99" —g’?=Za, e~ nta,e~™ — (Sna,e~")2 = 0,
by Theorem 7. The result follows from Theorem 118.]

178. If @,=0, A,> A, =0, and f(x)=Za,e % then log f(z) is a
convex function of x.

179. If a,>0and A, gps ev5Vys %, Y, ..., 2 are real, then the domain D
of convergence of the series

Zaeltwvt. . tvi=f(z,y,...,2)
is convex, and log f is a convex function of z, ¥, ...,z in D.
[Because (by the extension of Theorem 11 to infinite series)
Flet+ay(1=1), szt + 25 (1=t S{f (215 oo s 20 {F (@25 o oe s 2110
Here our conventions concerning convergence are important.]

180. 2a,2<2(Zn2a,2)} (2 (2, — an.)?)

unless a, = 0 for all n.
[See Theorem 226.]



CHAPTER VI
INTEGRALS

6.1. Preliminary remarks on Lebesgue integrals. The
integrals considered in thischapter are Lebesgue integrals, except
in §§6.15-6.22, where we are concerned with Stieltjes integrals.
It may be convenient that we should state here how much know-
ledge of the theory we assume. This is for the most part very
little, and all that the reader usually needs to know is that there
is some definition of an integral which possesses the properties
specified below. There are naturally many of our theorems which
remain significant and true with the older definitions, but the
subject becomes easier, as well as more comprehensive, if the
definitions presupposed have the proper degree of generality.

We take for granted the idea of a measurable set, usually in one
but occasionally in more dimensions. The sets which we consider
may be bounded or unbounded. The definition of measure applies
in the first instance to bounded sets: an unbounded set is said to
be measurable if any bounded part of it is measurable, and its
measure is the upper bound of the measures of its bounded
components.

We shall generally assume, without special remark, that any
set  with which we are concerned is measurable. We denote the
measure of B by mE or sometimes, where there is no risk of
ambiguity, simply by . If E is unbounded, m £ may be co.

We also take for granted the idea of a measurable function.
Sums, products, and limits of measurable functions are measur-
able. All functions definable by the ordinary processes of analysis
are measurable, and we shall confine our attention to measurable
functions; we shall not usually repeat explicitly that a function
which occurs in our work is assumed to be measurable.

Next, we take for granted the definition of the integral, of a
bounded or unbounded function, over any (bounded or un-
bounded) interval or measurable set of points. A bounded measur-
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able function is integrable over any bounded measurable set.
We call the class of (bounded or unbounded) functions integrable
over the interval or set £ in question the class L or, if it is desir-
able to emphasise the set in question, the class L (E). If f belongs
to L, we say that ‘fis L’, and write f ¢ L (and similarly for other
classes).

If f—1 then f fdr=m.
E

- Iffe L, then |f|e L. If f+ and f~ are the functions equal to f
when f is positive and negative respectively, and to zero other-
wise, so that

f+=Ma‘X(f50)5 f_=Min(f’O)! f=f++f_: lfl=f+_f—s
then f+ e L and f~ ¢ L, anda

[fdw={f+de+[f-de, [|f|dw=]f+de—[f~dz.
If £2 0, and (f), =Min (f, n), then

[fdx= Lim [ (f),d»

(substantially by definition).
If fe L, and (g is measurable and) |g | <C'|f|, then g € L.
If f1, fas ooes [n € L then

T fitasfot...+a,f)de=a[ fide+ay| fodx+ ... +a, [ f,de.

If p>0and (fis measurable and) | f |? € L, we say that f belongs
to the Lebesgue class L?, or fe L?. These classes are most im-
portant when p > 1. L is identical with L.

If the integration is over a finite interval (or bounded set), then
L7 includes every L? for which ¢>p; fe L? implies fe L?. A
bounded function belongs to every L2. These propositions are not
true for an infinite interval; f may belong to L?, in (0, c0), for one
value of p only.

If the interval is finite and fe LY, p<gq, then |f|?<1+]|f|9 so that

SfelL?.
If the interval is (0, a), where a<1, then (a) z~lU» belongs to L?~% for

—2/p
every 8> 0, but not to L?; (b) =/ <log%> belongs to L?, but not to

& We state the results for one variable and omit explicit reference to the range or
set of integration.
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L7+8;(c) log (1/x) belongs to every L?; and (d) eX/* belongs to no L?. If the
interval is (0, c0), then 27¥(1+ |logz|)~! belongs to L2 but to no other
class L2,

6.2. Remarks on nul sets and nul functions. A set of
measure zero is called a nul set. Nul sets are negligible in the
theory of integration. If f=g except in a nul set, we say that
fand g are equivalent, and write f=g. Equivalent functions have
the same integral (if any).

If f=0, we call f a nul function, and say that f is nul.

Similarly, we define ‘equivalentin E’, ‘nulin £’: fis nulin & if
J=0at all points of £ except the points of a nul set. In such cases
we shall not repeat the reference to £ when the context makes it
obvious, as for example when we are considering integrals over K.

If a property P (z) is possessed by all x except the x of a nul set,
we shall say that it is possessed by almost all x, or that P (x) is
true for almost all z, or almost always. Thus a nul function is
almost always zero.

We shall generally assume that our functions f, g, ... are almost
always finite ; but there will be occasions when we have to consider
functions infinite in a set of positive measure. Thusif fis generally
positive, but zeroin aset £ of positive measure, and r < 0, then we
must regard f7 as infinite in £, and [ f"dx as having the value co.

If E is nul then
f fde=0
E

for all f. We shall assume without special remark that a set E
over which an integral is extended is not nul.

If fz 0, then a necessary and sufficient condition that [ fdx=0 is
that f should be nul.

It may be worth while to call attention explicitly to the theorem which
replaces this in the theory of Riemann integration. We denote the class
of Riemann integrable functions by E. A necessary and sufficient con-
dition that f should be R is that f should be bounded and that its set of
discontinuities should be nul.

If f is R, and f=0, then a necessary and sufficient condition that
[fdx=0is that f=0 at all points of continuity of f.

For (1) if the condition is satisfied, then f=0 and so [fdx=0. And (2) if
it is not satisfied, then there is a point of continuity ¢ at which f(£)> 0,
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and an interval including ¢ throughout which f(x)>3%f(£); so that
Jfdx>0.

This theorem enables us to specify the cases of equalityin our inequalities
when they are restricted to functions of R. In fact most of our theorems
have a dual interpretation. The primary interpretation is that in which
the integrals are Lebesgue integrals and ‘nul’ and ‘equivalent’ are in-
terpreted as in the theory of Lebesgue. In the secondary interpretation
integrals are ‘Riemann integrals’, a ‘nul function’ is a function which is
zero at all its points of continuity, and ‘equivalent functions’ are functions
whose difference is nul in this sense.

6.3. Further remarks concerning integration. What has
beensetoutin §§6.1and 6.2isasufficient foundation for most of the
subsequent theorems: for example, for the most complete forms
of Hélder’s and Minkowski’s inequalities (Theorems 188 and
198). There will be a few occasions on which we shall have to
appeal to more difficult theorems, and we enumerate these here.

(@) Integration by parts. The theorem required is: if f and g are
integrals (absolutely continuous functions), then

[waa=[ 1] - [ r9aa.

(b) Passage to the limit under the integral sign. The two main
theorems are

(1) If | s, (@) | < (), where ¢ € L, and s, (x) tends to a limit s (x)
for all or almost all x, then

fs, (@)dx—[s(x)dx

(i) If s, (x)eL for every m, s, (x) increases with n for all or almost
all x, and lim S (x):s(x),
then [, (@)dx—>[s(x)dx.

In (ii) the integral on the right may be infinite, when the result
is to be interpreted as [s, (xr)dx—oco; in particular this happens
if 8 (x) =00 in a set of positive measure. In each of these theorems
n may be an integer which tends to infinity or a continuous
parameter which tends to a limit.

It follows from (i), as is shown in books on the theory of functions of
a real variable, that a function f(x) whose incrementary ratio

fz+h)—f(z)
h
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is bounded (and which therefore has a derivative almost everywhere) is the
integral of its derivative. Combining this remark with that at the end of
§ 3.18 we see that a continuous convex function f(x) is the integral of its
derivative f’(x), or of its one-sided derivatives f;’ (x), f,’(x). It is therefore
the integral of an increasing function. On the other hand, if f(x) is the
integral of an increasing function g(z), and > 0, then

fasn-f@=["gwanz " gwdu=s@-s@-m,

so that f () is convex. Hence the class of continuous convex functions is
identical with that of integrals of increasing functions.

An increaging function belongs to R, so that the integrals in question
exist as Riemann integrals, and the theorem could be proved without
any use of the theory of Lebesgue.

(c) Substitution. The standard theorem is: if f and g are in-
tegrable, g 2 0, G is an integral of g, and a= G (), b= G(B), then

b B
(6.3.1) j f@)do= f 1wl owy.

Here any of a, b, «, B may be infinite.

This theorem covers all cases in which we shall require the rule
for transformation of an integral by change of the independent
variable*. But we shall generally use only trivial substitutions
such as =y + a or x=ay, when the validity of the rule follows
at once from the definitions.

(@) Multiple and repeated integrals. The only theorem appealed
to is ‘Fubini’s Theorem’. If f(x,y) is (measurable and) non-
negative, and any one of the integrals

J e [coe [l

exists, then the other integrals exist, and all are equal. Here the
limits are finite or infinite, and the case of divergence is included;
if one integral diverges the others diverge.

3 We may add two additional remarks concerning the formula (6.3.1).

(1) If we suppose, as in the text, that g is non-negative and integrable, but
assume only the measurability (and not the integrability) of f, then the existence
of the right-hand side of (6.3.1) is a sufficient, as well as a necessary, condition
for the existence of the left-hand side, i.e. for the integrability of f.

(2) The integrability of f(z), though it implies that of f{G (y)}g (y), does not
imply even the measurability of f{G (y)}.
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Suppose then that f(z,y) is measurable and non-negative.
The double integral is zero if and only if f(z,y) is nul, ie. if
the set in which f(z,y) > 0 has measure zero. The first repeated
integral is zero if and only if f (x, y) is, for almost all #, nulin y; and
the second if f(z, y) is, for almost all ¥, nul in . Hence these three
senses of ‘a nul non-negative function of two variables’ are
equivalent.

6.4. Remarks on methods of proof. Inequalities proved for
finite sums may often be extended to integrals by the use of
limiting processes, but something is usually lost in the argument.
We may illustrate this by considering the analogue for integrals
of Theorem 7.

Suppose first that f(z) and g () are non-negative and Riemann
integrable in (0, 1); and take

i) o)

in Theorem 7. Dividing by n?, we obtain?

GGG =z () 22 )

and, making n—>co,

(6.4.1) (J‘:fgdac)2 = f:fzdx J: g2dx.

If we use the Lebesgue integral we must argue differently®.
Suppose that f and g are non-negative and L2 in (0, 1), and that
e, is the set in which

r— r s—1
— < 2 <«
=fi< —
Then

U fgdx) [zz( ) ( ) 2§22%e,322]%e,s,

by Theorem 7. Now

<g <f (r,s=1,2,3,...).

ie,s=zz Jrzz—e,s_:2 ff%lx

& Tt is here that ‘homogeneity in X’ (§ 1.4) is essential.
b The precise form of algument used here was suggested to us by Mr H. D. Ursell.

9-2
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and there is a similar inequality involving g. Hence, making
n—>00, we obtain (6.4.1).

In either case our final result is imperfect. Even if we can use
Theorem 7 with ‘ <’, this will degenerate into ‘ <’ when we pass
to the limit, and we shall lose touch with the cases of equality.

The passage in the opposite direction, from an integral in-
equality to an inequality for sums, is much simpler, and can be
effected by suitable specialisation. Consider, for example, the
inequality

(6.4.2) exp {f: log f(x) dx} < f:f(x)dx

(§6.7, Theorem 184). If
7,>0, ¢;+g+...+g,=1,
and we define f(x) by

f(x)=av (QI+“'+QV—1=<=x<QI+ "'+QV-—1+QV)>
it being understood that ¢, +...+¢,_, means 0 when v=1, we
obtain Theorem 9. The conditions under which inequality de-
generates into equality in Theorem 9 also follow immediately
from the corresponding conditions for (6.4.2).
This method of proof is often useful, since integrals are often

more manageable than series. We shall meet with examples in
Ch. IX.

6.5. Further remarks on method: the inequality of
Schwarz. We meet the difficulty of § 6.4, as in our treatment
of infinite series, by going back to the proofs of the theorems of
Ch. I, and observing that, with the obvious changes, they can
be applied to integrals of themost general type. Wemayillustrate
the point here by considering ‘Schwarz’s? inequality’, the ana-
logue of Theorem 7.

181. ([fgdx)*<[f2dxfg*dx, unless Af= Bg, where A and B are
constants, not both zero.

Here, and later, we suppress the limits of integration when
there is nothing to be gained by showing them explicitly; they

2 Or Buniakowsky’s (see p. 16).
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may be finite or infinite, or the integrals may be over any measur-
able set E, in which case of course Af= Bg means Af=Bgin E.
We also adopt conventions corresponding to those of §5.1:
‘X <Y’ means ‘if Y is finite then X is finite and X <Y’; and
inequalities of other forms like those mentioned in §5.1 are to be
interpreted similarly. Thus every inequality contains implicitly
an assertion about ‘convergence’, which we shall only make ex-
plicit occasionally. For example, Theorem 181 asserts implicitly
that ‘if [ f2dx and [g¢*dz are finite, then [fgdzx is finite; if f and ¢
are L2, then fgis L’.
The proofs corresponding to those of §2.4 run as follows.
(i) We have
f*def g*da— ([ fgdx)?
=3[f*(x)d2] g*(y)dy + 3| g* (@) de[f2(y)dy
—Jf(@)g (@) dz[f(y)g(y)dy
=3[dy[{f(x)g(y)—g@)[(y)}de=0.

It remains to discuss the possibility of equality. In the first
place, there is certainly equality if Af=Bg. Next, if there is
equality, and g is nul, then Af= Bg with 4=0, B=1. We may
therefore assume that ¢ is not nul, so that the set £ in which
g (y) # 0 has positive measure. If

Jayl{f(@)g(y)—g@)f(y)}Pde=0
then

(6.5.1) I{f@)g@)—g@)[fy)}Pde=0
for almost all y, and therefore for some y belonging to E. We
may therefore suppose that g(y,) + 0 and that (6.5.1) is true for

y=vo- Butthen 12 (y,)—g (@)f (5) =0
for almost all z, and this completes the proof.

(ii) The quadratic form
[ O+ pg)das= N[ f2de+ 2 [ fyda+ e[ g*da
is positive. We can now complete the proof as in §2.4.
The analogue of Theorem 181 for multiple integrals may be
proved similarly. We shall not usually mention such extensions
explicitly, but we shall occasionally take them for granted. It
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is to be understood that, when we do this, the extension may be
proved in the same manner as the original theorem.

We can translate the proof of Theorem 8 in the same manner,
and so obtain

1822 Ifrde [fgdx ... [fhdx |>0,

fHax fhgde .. HRde

unless the functions f, g, ..., b are linearly dependent, i.e. unless
there are constants 4, B, ..., C, not all zero, such that

Af+ Bg+ ...+ Ch=0.

MEANS . (f)

6.6. Definition of the means I, (f) when r+0. In what
follows the sign of integration, used without specification of the
range, refers to a finite or infinite interval (a, b) or to a measurable
set .0 f(x) is finite almost everywhere in £ and non-negative;
P (), the ‘weight function’, is finite and positive¢ everywhere in
E, and integrable over E. The parameter 7 is real and not zero.

Our hypotheses involve 0 < [pdx <oo. It is often convenient

to suppose [pda=1:
in this case (cf. §2.2) we write g for p.
We write )
J‘pfrdx 1r
©61) W= (=T o)
(6.6.2) AS) =M, (f),
so that
(6.6.3) M, (f) = {A(fr)}rs

with the following conventions. If [ pf"dx is infinite, we write
[pfrde=00, M. (f)=00 (r>0), M. (f)=0 (r<0).

& Gram (1).

b When >0 we can reduce every case to that of the interval (- o, ), by
supposing f=0 in the set complementary to Z.

¢ The hypothesis p = 0, instead of p >0, would lead to slightly different results
concerning the cases of equality (e.g. pf =pC instead of f=C). This case could be
reduced to the apparently more special case by replacing £ by the sub-set of £ in
which p > 0.
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In particular M, (f)=0 if <0 and f=0 in a set of positive
measure. If we agree further to regard 0 and co as reciprocals of
one another, we have

(6.6.4) !

=g a

This formula enables us to pass from positive to negative r, and
we shall simplify the following theorems by restricting ourselves,
for the most part, to positive 7.

If f=0; M, (f)=0 for all r. If f=C, where C is positive and
finite, then M, (f) = C for all ». If f=co,2 then M, (f)=oco for all r.
Apart from these cases, I, (f)=o00 is possible only when >0,
and I, (f)=0 when r< 0.

We define Max f, the ‘effective upper bound’ of f, as the largest
£ which has the property:

‘if € > 0, thereis a set e (¢) of positive measure in whichf> ¢ —¢€’.
If there is no such ¢, we write Max f=o00. For functions con-
tinuous in a closed interval, Maxf is the ordinary maximum.
Min f is defined similarly; Min f> 0 and

. 1
MinS = o (1)

Equivalent functions have the same Max and Min.

(6.6.5)

Suppose for example that the range of integration is (0, o), and that
f(x) and ¢(x) are the step functions defined by
fl®)y=a,, qx)=q, (n—1=Zx<n, n=1,2,3,...).
Then M, (f) = (Zga")'r =M, (a),
according to the definition of (5.2.1). Similarly
Max f=Maxa, Minf=Mina,
and (if we anticipate the definition of §6.7) ® (f) = ® (a). This specialisa-
tion enables us to include many theorems of Ch. IT and Ch. V in the
corresponding theorems of this chapter.
Alternatively wemight (asin § 6.4) suppose that the range of integration
is (0, 1), and define f(x) and ¢(z) by
f@)=a, (1t +@GaSe<qi+...+4¢) q@)=1
In this case also M, (f) reduces to M, (a).

& To admit this case is to abandon momentarily the understanding of § 6.2, that
f is assumed to be finite almost everywhere.
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183. Ifr+0and M, (f) is finite and positive, then

Minf <M, (f) <Maxf,
unless f=C.
Here r is of either sign. The proof is like that of Theorem 1.
Suppose first that »=1. Then, using a weight function ¢(z), we

have [ q(f=Mydz=0.

Hence either f=9 or f— A is positive and negative, each in a set
of positive measure. This proves the result forr = 1, and we extend
it to the general case by use of (6.6.3).

If we wish to state Theorem 183 in a form corresponding more
exactly to that of Theorem 1 and its extension in Ch. V&, we
must say ‘Min f<I,(f) <Max f unless f=C or else r<0 and
M.(f)=0’. We have then two cases of equality corresponding
exactly to those distinguished in §5.2, the ‘primary’ case in
which f=C, in which both inequalities reduce to equalities, and
the ‘secondary’ case, occurring only for <0, in which one
inequality only reduces to an equality. This distinction recurs
in many of our theorems, when r <0, as it recurred in Chs. IT
and V; but it is less conspicuous here because we often ignore
negative values of 7.

6.7. The geometric mean of a function. We define the
geometric mean & (f) by

_ _ [plog fdx
611 B()=6(f)-exp(LPEIE),
or
(6.7.2) log® (f)=UA(log f),
so that, in particular, if p=gq, [ gde=1, we have
(6.7.3) S (f)=log & () =[ glog fdz.

Certain preliminary explanations are necessary.
Since log f is not necessarily positive, the possibilities concern-
ing the convergence of J are more complex than those which we

have considered hitherto.
2 See §5.2.
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If we denote by &+ and § the integrals formed with log* f and
log—f, as I is formed with log f,» then there are four possibilities:
(@) &+ and J— both finite, (b) §t finite, F~ = — o0, (¢) F+ =0,
& finite, (d) §t =00, I~ = —oo. The four cases are exemplified
by the functions

1 .1
xz, eVr Uz exp (9—05 sin E)
in (0, 1), with ¢ (z)=1.
If M, (f) is finite for some 7 > 0, then, since

logtf<Max (er;——l , O) ,

3 (f) will be finite, and we shall be concerned only with cases (a)
and (b). In case (a), F(f) exists as a Lebesgue integral, and & (f)
is positive and finite. In case (b) we write

J(f)=—o0, G(f)=0.
Similarly, if IR, (1/f) is finite for some r > 0, we are in case (@) or
case (c); in the latter we write

'\C}(f)=oo’ @(f)ZOO
In case (d) the symbol & (f) is meaningless. In thiscase I, (f)
and I, (1/f) are infinite for every positive r, and I, (f)=0 for
every negative r.
In case (a) we have

(6.7.4) & (ch) =@%ﬁ’

both sides being positive and finite; and a moment’s consideration
shows that this equation holds in all cases, if we adopt the same
convention about 0 and co as in (6.6.4), and the additional con-
vention that one side of the equation is meaningless if the other
is meaningless.

We now prove the analogue of Theorem 9.

184. If A(f) is finite then
(6.7.5) G (f) <A,

a See § 5.2 for the definitions of logt and log—.
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unless f=C, where C 1is constant. More generally, if W, (f),
where r> 0, 18 finite, then

(6.7.6) G (f) <M, (f),

with the same reservation?.
Suppose first that r=1, M,=A. If A(f)=0, f=0, and so
J(f)=—0, B (f)=0=A(f). We may thereforesuppose A (f) > 0.
Since, by Theorem 150,
(6.7.7) logt<t—1,
if£>0, ¢+ 1, we have

f
logf—logﬁ(f)ém— 1,

AS)
%[(logf)—log%(f)égl—(f-)—l—O,

log & (f)=A(log f) <log A(f).

Equality can occur only if f= %A (f).

The result for general » now follows from (6.6.3).

In Theorem 184 we have stated the hypotheses ‘if (f) is
finite’, ‘if M, (f) is finite’ explicitly. As we have explained in
§§ 5.1 and 6.5, we shall often save space by omitting such hypo-
theses in accordance with our conventions. We shall also denote
constants by C, 4, B, a, b, ... without explanation, when there is
no danger of ambiguity. Two C’s occurring in the same con-
nection will not necessarily be the same.

We add two corollaries (extensions of Theorem 10).

185. G (f)+ 6(9) < ® (f+g), unless Af= Bg, where A, B are not both
zero, or & (f+g)=0.
We may suppose that G (f+ g)> 0. Then, by Theorem 184,
6(f+9) f+g f+g
The addition of the two inequalities of this type gives the result.
More generally

186. G(f)+0(f)+6(f)+...<G(fitfotfot-...)
(the series being finite or infinite), unless f,=0C,Zf, or ®(Zf,)=0.

8 For the proof which follows see F. Riesz (7).
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6.8. Further properties of the geometric mean. Our
next theorem corresponds to Theorem 3 (for positive 7).

187. If M, (f) is finite for some positive r, then

(6.8.1) M, (f)=>G(f)
when r—>+ 0.

It should be observed that &(f) may be finite even when
M, (f)=oo for all » > 0. This is so, for example, if f(x)=exp (z~¥),
q(z)=1, and the range is (0, 1).

When E is a closed interval or set, and f is continuous and

positive, the proof is immediate. In this case f=35>0, log fis
bounded, and

M, =[erloelgda=] [1+rlog f+O{r?(log f)*}]qdx
=1+13+0(r?),
lim log 0, =lim ~Tog {1 +73 + 0 ()} =.

There is some difficulty in extending this argument to the
general case. The difficulty can however be avoided as follows?.
By (6.7.6) and (6.7.7), we have

(68.2)  log®(f)slog M, ()= logA(f")

< g -n= [T

When r decreases to zero, (t” — 1)/r decreases (by Theorem 36) and
tends to the limit log¢. HenceP

L1
(6.8.3)  lim—{A(f")—1}=A(log f)=log & (f),
the right-hand side being finite or —co. Combining (6.8.2) and
(6.8.3) we see that
log & (f) <limlog M, (f) < im log M, (f) < log G (f),
which proves the theorem.

6.9. Holder’s inequalityforintegrals. We consider next the

a F. Riesz (7). Other, less simple, proofs have been given by Besicovitch, Hardy,
and Littlewood: see Hardy (7).
b See § 6.3 (b) (ii).
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theorems for integrals which correspond to Theorems 11-15. Tt is
convenient to introduce another definition which enables us to
shorten our statements of cases of equality. Two functions f, ¢
will be said to be effectively proportional if there are constants
A, B, not both zero, such that Af= Bg. The idea has occurred
already in Theorems 181 and 185. A nul function is effectively
proportional to any function. We shall say that f, g, &, ... are
effectively proportional if every pair are so.

188. Ifa, B, ..., A are positive and o+ B+ ... +A=1, then
(6.9.1) [f2gf...Pdx < ([ fdx)*([gdx)B... ([ ldx),

unless one of the functions is nul or all are effectively proportional.
Assuming no function nul, we have, by Theorem 9,

(ffdx){{;}f;;a;;;%ldx)ﬁf (7 ggdx)ﬂ (12 lldx) a

f(ffjlex ffngr +”):§ )dx=1,

with inequality unless
S _ 9 _ 2!
[fde™ [gdx™ """ [ldx’
As a corollary? we have

189. If k> 1 then

(6.9.2) [fgde < (¥ day® ([ g¥ deyi
unless f& and g¥ are effectively proportional.

If 0<k<1or k<O then

(6.9.3) [ fada > (J f*da)\ (f g* da)¥
unless either (a) f* and g* are effectively proportional or (b) fg s
nul.

The second half of the theorem requires a little explanation.
Suppose first that 0 <k <1 and that [¢¥dx is finite, so that ¢
is almost always positive. If then we write I=1/k, so that
I>1, and 7 )

=(w), g=v,
so that fo=u, fr=uv, g¥=0o",
& Compare § 2.8.
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then u and v are defined for almost all z, and
Juvdz < (fuldx) (fv¥ dz)

or Jf¥da < (ffgda)* (fg¥ da)*~,
unless «!, v¥ are effectively proportional or, what is the same
thing, unless f%, g¥ are effectively proportional. Since [¢* dz is
finite and not zero?, this is (6.9.3).

If [g¥ da= o0, then

(fg¥ dayi =0

(since k' < 0). Hence the right-hand side of (6.9.3) is zero, and
there is inequality unless [fgdx=0, or fg is nul.

When k<0, 0<k’<1, and the argument is substantially the
same.

As we have explained in §§ 5.1 and 6.5, the theorem contains
implicitly an assertion about convergence or finitude; if two of
the integrals involved are finite, then so is the third. The
integral which is finite if the other two are finite is [ fgdax when
k>1, [fedx if 0<k<1, and [g¥dx if k< 0.

The theorem corresponding to Theorem 161 is very important
and, like Theorem 161, is not a direct corollary of preceding
theorems.

190.0 Ifk>1and fg belongs to L for every g which belongs to L¥,
then f belongs to L¥.

We consider first the case in which (a, b) is finite (or mE finite),
and suppose that [ f¥dx=00. We can find a function f* which
(1) has only an enumerable infinity of values a;, and (2) satisfies
f*¥Sf<f*+e Since f* does not exceed a constant multiple of
f* 4 (f—f*)%, by Theorem 13, we have [ f**dx=co. Hence, if
e; is the set in which f*=a,,

Take;=o0.
It follows from Theorem 161, taking
afe;=ufk, bFe;=v¥, a;be;=uv;,

& [g¥dx=0 would involve g* =0 and so g = o0, and this possibility is excluded
by the understanding of § 6.2.
b F. Riesz (2).
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that there is a b; such that Xb,;¥ ¢, is convergent and Za,b;e, = 0.
We take g(x)=b, in ¢, (for all 7). Then
Jg¥de=2b} e,
is convergent, but
Jf*gde=Za;b,e;=c0,

and hence [ fgdx =00, contrary to the hypothesis.

If the integrals are over an infinite range, say (0, o), we can
write

when

© 1 © 1 © 1
f fodw= f Fad, f Frda= f Frdt, f ¥ da = f Gv dt,
0 0 0 0 0 0

where

FO=0- (1), eo=a-ng().

The theorem is thus reduced to the finite case.

191. If k>1, then a necessary and sufficient condition that
Jfedx < F s that [ fgdx < FYe Q¥ for all g such that [ g* dx < @.

The condition is necessary, by Theorem 189. If it is satisfied,
then [ f*dz is finite, by Theorem 190. If [ f%dxz> F, we choose g
so that g* is effectively proportional to f*, and then, by Theorem
189, [fgdu=(ffhdw) (f g¥ da) > FUR G,

The theorem may also be stated with ‘ <’ for ‘ <’ in the first
two inequalities: in order that [f*dx < F, it is necessary and
sufficient that [ fgdx < FVk GU¥ whenever [ g¥ dx < G.

We can prove Theorem 191 without appealing to the more difficult

Theorem 190. If [f*dx>F then [(f),*dx>F for sufficiently large n.
Then, choosing g effectively proportional to (f,)*~!, we have
Jfgde Z [ (flngda= (] (f),*da) 'k GV¥ > FVEGIF,

in contradiction to the hypothesis of the theorem.

Another proof of Theorem 190 (and of the associated Theorem 161)
has been given by Banach (1, 85-86).

An example of the use of Theorem 191 appears in § 6.13, in the proof of
Theorem 202, and others in Ch. IX.* In §6.13 Theorem 202 is proved in

2 See in particular §§ 9.3 and 9.7 (2).
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two different ways, of which one depends explicitly on Theorem 191 while
the other does not use it, and the logical status of Theorem 191 in proofs
of this character is explained in detail.

6.10. General properties of themeans I, (f). Weshallnow
prove a number of theorems which include the analogues of those
of §2.9. The properties to be investigated are a little more com-
plex than they were there, and we shall require some additional
conventions before we can state them comprehensively. We
suppose first that r > 0; the theorems which we prove in this case,
with those which we have proved concerning @ (f), will give us
the substance of what is required, and we shall be able to state
the results for unrestricted » more summarily, leaving most of
the details of verification to the reader.

192. If 0 <r<sand M, is finite, then

%r< ms’
unless f=C.

If r=sa, so that 0 <« < 1, we have, by Theorem 188,
fafrda={ (af)*q-*da< ([ f*da)* ([ gdayi-== (] gf*da)",
unless ¢gf*= Cq. Since ¢ > 0, this is the result required.
193. If IR, s finite for every r, then M, —Max f when r—+ co.

(i) Suppose u=Maxf finite. Then (@) M,<p, and () f>pu—e
in a set e of positive measure ¢, so that

fqu=z.:>o, M= (u—e) L, Lim I, = p—e.

(ii) Suppose Max f=co. Then, for any G >0, f> G in a set e of
positive measure, and, as above, lim I, > G.

From (6.6.4), (6.6.5) and Theorem 193 it follows that

M, —Min f

when r— — c0.

194. If 0<s<co and I, 18 finite, then M, is continuous for
0 <r<sand continuous on the left for r=s. If M,=oco, but M, is
finite for 0 <r <s, then M, — o0 when r—s.

(i) Suppose M, finite. Then

afr SqMax (1, f°),
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a majorant of class L independent of r; and the results follow
from §6.3 (b) (i).2

(ii) Suppose M,=co. We can choose n so that

I (gf*)pdz> G.
But (¢f7), is a continuous function of r, and so®

J(@f)ndx> 3G
for r>s—e. Hence [ gfrdx >} G, which proves the theorem.

6.11. General properties of the means IR, (f) (continued).
In the preceding sectionswe have, in the main,confined our atten-
tion to means for which r > 0, leaving it to the reader to deduce
the corresponding results for means of negative order from the
formulae (6.6.4) and (6.6.5). In this section we consider the
means more comprehensively. We write, as is natural after
Theorems 187 and 193,

(6.11.1) & (f)=My(f), Maxf=M, o (f), Minf=M_o, (f)-
M, (f) may be meaningless, but only if N, (f)=co for allr > 0 and
M, (f)=0forall r<O0.

We begin by disposing of two exceptional cases.

(A) If f=C then IM,= C for all r, and this is true even in the
extreme cases (=0 and C=00.¢

(B) We may have

M.=0 (r<0), M, meaningless, M,=co0 (r>0).

These cases we dismiss. We then leave it to the reader to verify
the truth of the assertions in (1) and (2) below, which cover all
cases other than the exceptional cases (A) and (B).

(1) M, <M, for —oo <7< s =00, unless (a) M, =M, =co (which
can happen only if r 2 0), or (b) IM,=IM,=0 (which can happen
only if s £ 0).

& Continuity for 7 < s can also be deduced from Theorems 111 and 197 (see § 6.12).

b By § 6.3 (b) (i).
¢ Strictly, the second case is excluded by the understanding of § 6.2.
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(2) We denote by I,_, and IM,,, the limits (which always
exist) of I, when ¢ —r from below and from above respectively.
If >0 then IMM,_(=I,, and M, o=, except when M, is
positive and finite but M, = co for ¢ > r, in which case
M, g=00>M,.
If <0 then I, ,=M,, and M,_,=IM, except when M, is
positive and finite but I, =0 for ¢ <7, in which case
M _o=0<I,.
If r=0 there are exceptional cases corresponding to each of

those indicated above. If 9, is 0 or co then either (a) M_, and
IR, o are each equal to IM,, or else (b)
9]%_0:9320:0, m_,_o:w

or M_o=0, My=M,,=o00.
If M, is positive and finite, then each of M_, and M,,, if also
positive and finite, is equal to M,; but M_, may also be 0 or M ,,
may be co.

Finally, all possibilities not explicitly excluded may actually
oceur?,

The results may be stated more symmetrically and concisely in terms of
L.=log M,:
we agree that logoco= + o0 and log0= —oc0. We put aside the cases
corresponding to cases (A) and (B) above, viz.
(a) f=C (where C may be 0 or o), when 8,.=1log C for all r;
(b) 8, meaningless, when £,= + oo for »>0 and £,= — oo for < 0.

195. Apart from the cases just mentioned, the set of values of r for which
L.=log M, is finite is either the nul set or a closed, half-closed, or open in-
terval I or (u, v), where — oo <u =o = 0, which includes the point r=0 (so
that = 0=v), but is otherwise arbitrary (so that, for example, u may be
—oo and v be + o0, or v and v may both be 0). L, is + o0 for values of r to
the right of I and — oo for values to the left.

Inside I, 8, is continuous and strictly increasing. If r tends to an end-
point of I through values of r interior to I, then L, tends to a limit ( finite
or infinite) equal to its value at the end-point in question.

6.12, ConvexityoflogIt,~. In this section (as in Theorem 17)
we suppose 7 > 0.
& See Theorem 231.
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196. If 0<r<s<t, and M, s finite, then

t—s s8—r

Me < (M)~ (M),
unless f=0 in a part of E and f= C in the complementary part.
The proof is based on Theorem 188, and is the analogue of
that of Theorem 17. For equality,

qf"= Cqf*.
As a corollary, we have
197. log M, (f)=rlog I, (f) vs a convex function of r.

Compare Theorem 87. The reader will find it instructive to
deduce the continuity of I, (Theorem 194) from Theorem 197.

6.13. Minkowski’s inequality for integrals. The inequali-
ties of the Minkowski type are derived in substantially the same
way as in §2.11. The ordinary form of Minkowski’s inequality
for integrals is

198. Ifk>1then

(6.13.1) {J(f+g+... +1)eda}Ve < ([ feda)V® + ... + ([ Ikdx)Vk,
and if 0<k<1 then

(6.13.2) {J(f+g+...+1)kda}e> ([ fedax)Ve + ... + ([ Ikdx)Vk,
unless f, g, ..., U are effectively proportional.

The inequality (6.13.2) 1s still true generally when k<0, but
there is a second case of exception, when both sides of the inequality
vanish.

We deduce this from Theorem 189 much as we deduced
Theorem 24 from Theorem 13. Since the cases of equality are
a little puzzling, we write out the proof of (6.13.2) in detail.

If S=f+g+...+1 then

(6.13.3) [Skdax=[fSk1dx+ [gS*tdx+ ...+ [I8*1dx.
Suppose first that 0<k < 1. By Theorem 19,

Sk=fetgh+ ... +1F
Hence, if [fkdx,... are finite, [S*dx is finite. Also [S*dz>0
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unless S=0andso f, g, ... are allnul. We may therefore suppose
J8*dx positive and finite.
By Theorem 189,
JfS¥tdx > ([fedx)Ve ([ Sk dx)V¥,

unless (a) f* and S* are effectively proportional or (b) f8¥-1=0.
Since k—1<0, and § is finite almost everywhere, the second
alternative can occur only if f is nul, and so reduces to a case
of the first. Hence (6.13.3) gives

(6.13.4) [S%dax>{(Jfeda)Ve+ ...+ (JIedx)V*} (f S da)l¥,
unless f, g, ..., I are effectively proportional ; and the conclusion
follows.

The argument goes similarly when k<0, provided [S*dzx is
positive and finite. If [S*dx=0 then, since k<0, S is infinite
almost everywhere, which is impossible since every f is finite
almost everywhere. If [S%dx is infinite then (again since k < 0)
Jf¥dz, ... are all infinite, and both sides of (6.13.2) are zero.
This is the second exceptional case mentioned in the enunciation,
and occurs, for example, when

f=g9g=...=1=0
in a set B of positive measure.

We have excluded the cases k=1 and k=0 from the state-
ment of Theorem 198. The first is trivial and the second is
included in Theorem 186. We leave it to the reader to state
Theorem 198 in a form corresponding to that of Theorem 24.

Corresponding to Theorem 27, we have

199. Ifk>1then

(6.13.5) [(f+g+...+1)edx>]fredx+ ... + [ *dx,
and if 0<k<1 then

(6.13.6) J(f+g+...+0)ede<[frdx+...+[l*dx,

unless, for almost all x, all but one of f, g, ..., I are zero. If all of
[ 9, ..., L are almost always positive, then (6.13.6) s true also for
k<o0.

Theorem 198, with k> 1, is a special case of the first of the
following three more general theorems, in which the series are

I0-2
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finite or infinite and the ranges of integration arbitrary. We
confine ourselves to the case k> 1; in general, the sign of in-
equality is reversed when k< 1.

200. If k>1 then

(613.7)  [J{Sf (@) dal < S{[f, () d}it,
unless Jm(@)=0C,, ¢ ().

201. Ifk>1 then

(6.13.8) [Z{] [, (@) da}e Ve < [{Zf F (x)}V* de,
unless fo@)=0C, é(x).

202. Ifk>1 then

(6.13.9)  [[{[f(@,y)dy}*da]"* < [{[ f* (2, y)da}'* dy,
unless f(@y)=¢ (@) (y).

In each theorem there is equality in the exceptional case.

Consider for example Theorem 202 (the least elementary of the
theorems). We begin by proving the theorem with ‘ <’. We give
two proofs, in the first of which we appeal to Theorem 191. In
each proof the chain of equalities and inequalities which arises
is to be interpreted in the sense ‘if the right-hand side of any
equality or inequality is finite, then so is the left-hand side, and
the two are related as stated’. The inversions of the order of
integration are justified by Fubini’s Theorem.

We write J=J @)=]f(@y)dy.
(i) In order that
(6.13.10) fJode < M*
it is, by Theorem 191, necessary and sufficient that
(6.13.11) [Jgde < M
for all g for which
(6.13.12) fg¥de<1.
Now

(6.13.13) [Jgde=[g(x)dx[ f(x,y)dy
=Jdy ([ 9(x)f (2, y)de) <[ dy (| f* (2, y)d)'%,
by Theorem 189 and (6.13.12). Hence we may take
M =[dy ([ f*da)t
in (6.13.10), which proves the theorem (with ‘<’).
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(i) If fJ*dx=0, then J =0 for almost all z, and so (for almost
all ) f=0 for almost all y. Hence, after §6.3 (d), f(x,y)=0.

We may therefore suppose that [J*dx > 0. Let us assume for
a moment that [J*dz is finite. Then
ST =T da |y = dy (7% s < [y (] e ()

= ([T da)¥ [ ([ fEda)licdy,
and so

(6.13.14) (JTEda)Ve < (] frda)idy,
which is (6.13.9), with ‘ <’ for ‘<.

In this proof we have assumed [J*¥dz finite, an assumption
which was not required in proof (i). In order to get rid of the
assumption, we must approximate to f by some function for which
the assumption is certainly justified. Suppose for example that
the integrations are over finite intervals or sets of finite measure,
that (f),, is defined as in § 6.1, and that

Then [J,*dz is certainly finite, and so
(T dx) e < [{f (f),~dx}edy < [(f feda)Vrdy.

From this (6.13.9) follows, with ‘ <’, by making n—oo.

The arguments under (i) and (ii) are essentially of the same
character, the part of the arbitrary g in (i) being played in (ii) by
the definite function

Jk-1
g= ([T dz)e
which satisfies (6.13.12) ¢f [J*dx is finite. By using this particular
g, we avoid an appeal to a rather sophisticated general theorem,
but at the cost of some additional complications. A similar alter-
native presents itself whenever we make use of Theorem 191,

It remains to discuss the possibility of equality in (6.13.9).

There will be inequality if2

[Jgde <M
for all g subject to (6.13.12). There is inequality in

fdy ([ gfde) < [ dy (] fEd)¥* (] g¥ dao)¥},
a See the last remark of § 6.9.
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unless, for almost all y, f* and g*’ are effectively proportional, i.e.
unless (for almost all y)

(6.13.15) P f*(@,y)=0(y)g" (),
where p2+ 02> 0, for almost all z. If p(y) were zero, for a y for
which (6.13.15) holds, g () would be nul, which is false. Hence,
in (6.13.15), p(y) > 0, and so

flx,y)=¢(x) (),

where ¢=g*'%, = (o/p)V. This equation holds, for almost all y,
for almost all #, and therefore, by § 6.3 (d), for almost all z, y.

The proofs of Theorems 200 and 201 follow similar lines. Thus, in
proving Theorem 201, we write

Ju=[fade
and argue as follows. In order that XJ,* < M¥, it is necessary and suffi-
cient, by Theorem 15,2 that b, J, <M whenever £b,* <1, Also
2b,J = Zb, [ fnd=[(Zb,f,) da = [da (Ef ,F)H* (Tb,2)1* < [ (Zf, 2% d;

and so on. The summation under the integral sign is justified by (ii) of
§6.3(b).

The analogue of Theorem 26 is

203. If 0<r<s then

Ema(v) gﬁrlz)f(x, Y)< m(«:) gﬁs(v)f(x, Y),

unless f(x,y) = ¢(x) Y ().
For an explicit proof see Jessen (1).

6.14. Mean values depending on an arbitrary function.
There is a theory of integral mean values involving an arbitrary
function similar to that developed in Ch. ITI. We do not set it
out in detail here because it would be so largely a repetition, in
a slightly different form, of what we have said already. We
confine ourselves to proving the analogue of Theorem 95.b

204. Suppose that o < f(x) < B, where o and B may be finite or
infinite, and that f(x) is almost always different from o« and B; that
the range of integration and the weight function p(x) satisfy the

& Extended to infinite series.

b A number of other analogues of theorems of Ch. III are stated among the
miscellaneous theorems at the end of this chapter. A fuller treatment of some of
them will be found in Jessen’s papers 2 and 3. A good deal of the content of these
papers has been incorporated, with the appropriate modifications, into Ch. III.
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conditions of § 6.6; and that ¢”’ (t) is positive and finite for a <t < B.
Then
ffpdx) J¢(f)pdx
(6.14.1) ¢(jpdx < [pdz
whenever the right-hand side exists and s finite; and there is equality
only when f=C.

It is possible that [ fpdx=oc0 or [ fpdx= —oc0; (6.14.1) is then
still true if interpreted in the obvious manner. It is not possible
(when the right-hand side is finite) that [ fpdx should not exist,
ie. [ftpdr=oc0 and [f~pdxr= —oco. For in this case a= —o0,
B=o00, and ¢(f), being convex and not constant, must tend to
infinity, with rapidity at least that of a multiple of | f|, either for
large positive or for large negative values of f,2 so that [¢ (f)pdx
cannot exist and be finite.

We take p=gq, [qdx=1, and suppose first that M ={ fedx is
finite. If f is not effectively constant, « < I < B. Also f is finite,
and « < f< B, for almost all z; so that, for almost all «,

¢ (f)=¢ M)+ (f— M) ¢ (M) + § (f — M) (),
where p lies between f and I, so that « < p < 8. Hence

Ié(f)qdzz¢ (M),
which is (6.14.1). There is equality only if (f—IM)2¢" (1) =0; but
a<p<fB,and so ¢’ (u)> 0, for almost all z, so that then f=IN.
Next suppose (say) [ fgdx= o0, so that §=o00. Then

${I(f)nada} <[ ${(f).} 9dz,
by what has been proved already. Since ¢ (f) is continuous and
monotonic forlarge f, the integral on the right tends to [¢(f) gdx,
while that on the left tends to ¢(c0). Hence ¢ (c0) is finite, in
which case ¢ is decreasing and

$ () < ¢ (f)-
It follows that
¢ (00)=¢(0) [gdz = [ (f) qdz,
with equality only if ¢ (f) = ¢ (0), a possibility which we excluded.
The case in which [ fgdx= — co may be discussed similarly.
a See Theorem 126.
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It is possible that the left-hand side of (6.14.1) should be —oo.
The reader will find it instructive to verify that the various cases
which we have contemplated can all occur.

If we take ¢ (t) = —logt, we obtain

exp (fqlogfdm) = qudx,

ie. @ (f)<A(f) (Theorem 184). If we take ¢ =t", we are led again
to Holder’s inequality, and other examples may be constructed
analogous to those of §3.11. If we take ¢ (¢)=tlog#, we find

Jofdx Jpflogfda
205. Tods <o (Tien )
unless f=C.

We can extend the result of Theorem 204 (except for the
specification of the cases of equality) to any convex and con-
tinuous ¢.

206. The inequality (6.14.1) is true whenever ¢ (t) is convexr and
continuous tn a<t< f.

After §3.19, we have
(/)2 (M) +A(f—M),

where A is any number between the left and right hand deriva-
tives of ¢ (t) for t=9M. Hence

which is (6.14.1).

STIELTJES INTEGRALS

6.15. The definition of the Stieltjes integral. We have so
far considered series and integrals separately, and all the funda-
mental theorems have appeared in dual form; thus Hélder’s
inequality is contained in Theorems 13 and 189. It is natural to
look for an extension of these theorems which combines them
into one, and we can find such an extension by using Stieltjes
integrals.

Suppose that ¢ (x) increases (in the wide sense)ina <z <b, and
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that ¢ (a)=«, ¢(b)=pB. We suppose « and B (but not necessarily
a and b) finite?. The curve

y=y@)=¢()
is a rising curve which may have an enumerable set of ordinary
discontinuities or of stretches of invariability. The inverse

function r=x(y)=x(p)

is defined uniquely except (@) in intervals (y,;, y,) of y corre-
sponding to discontinuities = ¢ of ¢ and (b) for values of y which
correspond to stretches of invariability of ¢. If we agree that
(41, ¥2) is a stretch of invariability of z(y), in which it has the
value £, then z(y) is defined except for the values (b), and is an
increasing function of y for the values of y for which it is defined.
Finally we complete the definition of z(y), as an increasing
function of y, by assigning to it, for a value (b) of y, any one of
the values of z in the stretch of invariability. These values of ¥
are enumerable, and our choice of z(y) for any of them has no
effect on the definitions which follow.
We now define the Stieltjes, or Lebesgue-Stieltjes, integral

x=b b
f(2)d () = f 1@,

of f(x) with respect :: é (), by
(6.15.1) [1@as=["re@ras

whenever the integral on the right-hand side exists as a Lebesgue
integralb.

The definition (6.15.1), due to Radon (1), reduces the theory
of Stieltjes integrals to that of Lebesgue integrals, and we may
therefore expect that no new difficulties will arise. For full dis-
cussions of this and older definitions of the Stieltjes integral, we
may refer to Hobson (1), Lebesgue (1), Pollard (1), Young (7).

s If, e.g.,, b= o, then B= lim ¢(x).
X —>0
b If g is any function of bounded variation, then g=¢ -, where ¢ and ¢ are
increasing functions, and we may define the Stieltjes integral of f with respect to g by

ffdg=ffd¢ -ffd.

We shall not require this more general definition here.
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We can define fE f(x)dé,

where ¢ is an increasing function, and E a set of values of z,
similarly, that is to say by the equation

[ teas=[_rwwras,

where & is the set of values of ¢ corresponding to £. We must
assume & measurable. The integral

J

is the variation of ¢ in E.

6.16. Special cases of the Stieltjes integral. The simplest
cases are the following:

(@) ¢==x. In this case the Stieltjes integral reduces to the
ordinary Lebesgue integral.

(b) ¢ is an integral. In this case

b b
f (@) = f 't @)

(¢) ¢ is a finite increasing step-function.

Suppose that a=a,<a,<...<a,=>, that ¢(x)=«,;, where
%< %piy, N Gy <x<ag,;, and that ¢(a;), when 1<k <n, has
any value consistent with the fact that ¢ increases. Then z (y) is
a step-function with values a,, a,, ..., a,, and

b B
(6.16.1) f fip= f f @)} dg
= (g — &) f(@y) + (g = 1) f @)+« + (@) — 0ty _o) f (@p—1)
+(B—oy-1)f(a,)
= szf(ak),

where p, is the saltus of ¢ at x =a,,. Itis plain that any finite sum
can be expressed as a Stieltjes integral; thus

$us - ff<x) dg,

where ¢ is a step-function with unit jumps at a,, a,, ..., a,,, and
u=J(ay).
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(d) These considerations extend at once to step-functions with
infinitely many discontinuities, when the Stieltjes integral is
Zpyf(a;), summed over all the discontinuities. Any convergent
infinite series may be expressed in this way as a Stieltjes integral.

6.17. Extensions of earlier theorems. It will now be clear
that all our fundamental theorems may be extended at once to
Stieltjes integrals, and that the theorems thus obtained include
those for Lebesgue integrals and also those for sums. We state
the most representative of these theorems in the next section.
Two preliminary remarks will be useful.

(1) When the Stieltjes integral is written as a Lebesgue
integral, the variable of integration is ¢. Our conditions for
equality were always of the type f=g, f=¢ except in a set of
measure zero. The exceptional set in our new theorems will be of
measure zero tn ¢, and when we state this concept again in terms
of z it becomes ‘a set of values of z in which the variation of ¢ is
zero’, i.e. a set E such that the corresponding values of ¢ form
a nul set. Our conditions for equality must therefore all be in-
terpreted in this sense. Thus ‘f is effectively proportional to g’
means that Af= By,

where A and B are constants, not both zero, except at the points
of a set over which the variation of ¢ is zero. It will be observed
that such an exceptional set cannot include any point at which
¢ (x) is discontinuous.

A similar point occurs in the definition of Maxf and Minf.
Thus Max f is the greatest number § such that, for every positive e,
[> €~ ein a set in which the variation of ¢ is positive.

(2) Many inequalities ‘X < Y’ are true for Lebesgue integrals
when their analogues for Stieltjes integrals are true only with
¢ £°. Suppose, for example, that the integrations are over (0, co)
and that [ fdx=1. Then, by Theorem 181,

(6.17.1) (Jaf da)? < [fdx [2*fda= [2*fdx,
unless a2 f=Cf or #?=C, which is untrue, so that (6.17.1) is true
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in any case. In the corresponding theorem for Stieltjes integrals
we have [dé=1 and

(6.17.2) (fzdp)2 = [dd [ardd=[a2dd.
There is equality in (6.17.2) if 22=C, i.e. if x is constant except in
a set over which the variation of ¢ is zero, or, what is the same
thing, if ¢ varies at one point only. Thusif $=0 for 0z <1,
and ¢(z)=1 for =1, then

(Jxdd)?=1=[a2dd.

6.18. The means M, (f; ¢). We write
_ . _ 1 b . llr— J‘frd(ﬁ 1r
(D=3 8)=(g= [ ras) = ()" o)
A5 6) =T (f; 4),
log fd
6(; ¢)=exp (LB122) _an, 1 9.
Jaé
These definitions presuppose that the integrals involved are
finite. If [ frdd = co, we agree (following the conventions of §6.6)
that M,=oco0 when >0 and IM,=0 when r<0. The points dis-
cussed in §§ 5.2 and 6.7 naturally recur here in connection with
the definition of &.
The theorems corresponding to Theorems 183, 184, 187, 189,

192, 193, 197, and 198 are as follows: we suppose for simplicity
of statement that r> 0.

207. Min f< M, (f) < Max f unless f=C.

208. G (f) <M. (f), and in particular & (f) < A(f),unless f=C.

209. If M.(f)is finite for some r, then M, (f)—>G (f) when
r—>+0.

210. If k>1, then

Juvd < (Jukdp)V® (Jo¥ dg)*

unless u* and v* are effectively proportional. The inequality is
reversed when 0<k<1l or k<O, except when u* and o¥ are

effectively proportional, or the left-hand side 18 zero (in which case
the right-hand side is also zero).




INTEGRALS 157

This is Holder’s inequality; there are naturally corresponding
generalisations of Theorems 11 (or 10) and 188.

211, If r<s, then M, (f) <M, (f), unless f=C.

212. If M, (f) is finite for every positive r, then M, (f)—~>Max f
when r— + 0.

213. log M, (f) ts a convex function of r.

214, If k> 1, then

[ (wt o) AJUE < (Juk )+ (oA,

unless u and v are effectively proportional. The inequality is in
general reversed if 0<k<1or k<02

AXIOMATIC TREATMENT OF MEAN VALUES

6.19. Distribution functions. In Ch. III we defined the
mean value §m¢ 93% a,q)=¢"1{Zqé(a)}
directly, and developed its charaeterlstlc properties from the
definition. Here we reverse the process and give the ‘axiomatic’
treatment promised on p. 66. It is canvenient to use the notation
of Stieltjes integration, and it is for this reason that we have
reserved the discussion until now; but the Stieltjes integrals
which we use are actually all finite sums.

In what follows we consider a special class of step-functions,
defined for all real z, which we call finite distribution functions.
We call F (z) a finite distribution function if

(i) it is constant in stretches and has only a finite number of
discontinuities,
(ii) it increases (in the wide sense) from 0 to 1, so that
F(—00)=0, F(0)=1,
(iii) F(2)=3}{F (x—0)+ F (z+ 0)} for all z.
The distribution function which has jumps ¢ at the points a

provides a representation of both the values @ and the weights ¢
involved in My (). The simplest such function is

B (x)=%(1+sgnz),

a2 We leave the specification of the exceptional cases to the reader.
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which has the single jump 1 at =0. If we write
B¢ (x)=E (x—¢),

then

(6.19.1) F(x)=2qKE,(x).
where

a=a,, q=q, v=12,...,n), Zg,=1, a;<a,<...<a,,

is the general finite distribution function with jumps ¢ at the
points a. Also

(6.19.2) " $@dF@)=2g4(),

and the mean value (3.1.3) may be written as

(6.19.3) My [F]=¢>—1( f ¢(x)dF(x)).

Any finite distribution function is 0 for < 4 and 1 for x> B,
A and B being finite numbers depending on F. In what follows
we confine our attention to a sub-class of these functions, viz.
those which satisfy

(6.19.4) F(z)=0 (x<A), F(z)=1 (x> B)
forafixed 4 and B. In these circumstances we say that F belongs
to D (4, B).

If ¢(x) is continuous and strictly monotonic in the closed
interval (4, B), then My [F] is defined, by (6.19.3), for all F of
D (4, B). The values of ¢ (x) outside (4, B) are not really involved
in (6.19.3), and we may choose them as we please; it is natural
to choose them so that ¢ () is continuous and strictly monotonic
for —co=x = 0.

6.20. Characterisation of mean values. Our object is to
prove the following theorem.

215. Suppose that there is a unique real number M [F], corre-
sponding to each F of D (A, B), with the following properties:

(1] M[E(x)]=¢ (A=£= B);

[2] if F, and F, belong to ® (A4, B), F,=F, for all x, and
F, > F, for some x, then

MLF,]<MLF,];
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[3] if F, F*, Q belong to D (4, B), and
M[F]=M[F*],
then MEF+(1=8t) Ql=M[EF*+(1-1) G]
Jor 0<t<1.

Then there is a function ¢ (x), continuous and strictly increasing
wn the closed interval (4, B), for which

(6.20.1) é)JE[F]=§)R¢[F]=¢-1( quS(x)dF(x)).

Conversely, if M[F] is defined by (6.20.1), for a ¢(x) with the
properties stated, then it satisfies [1], [2], and [3], so that these
conditions are necessary and sufficient for the representation of
MF] in the form (6.20.1).2

We begin by proving the converse half of the theorem. If I [ ']
is defined by (6.20.1), then it is obvious that it possesses property
[1], and all but obvious that it possesses property [3], since

SM[F +(1—t)G)=t[pdF + (1 —1t)[$dG

=tf¢pdF*+ (1—1t)[pdG=¢ (M[IF*+ (1-1) G]).
It remains to prove [2].

Suppose that F, and F, satisfy the conditions stated. Then

there is a positive number . and an interval («, B) such that
Fy(x)> Fy(x) +p> Fy(x)
in (o, B).> Hence

BORIED-p@RIFD= [ pars— [~ gar,
~ |7 (-Fyage
2 (- F)apzub(B)- b} >0

a See Nagumo (1), Kolmogoroff (1), de Finetti (1). We follow the lines of de
Finetti’s proof.

b There is an z, for which F(2,) > F,(,) or

3 {F1(20 = 0) + Fy (2 +0)} > } {Fa (0 — 0) + Fy (2 +0)}-

Hence either F, (2, —0) > Fy(z, —0) or Fy(x,+0) > Fy(z,+0). In the first case there
is an interval satisfying the conditions to the left of z,, in the second case one to
the right.

¢ If we remember our understanding, at the end of § 6.19, about the definition
of ¢(x) outside (4, B).
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6.21. Remarks on the characteristic properties. We
have still to show that the properties [1][3] are sufficient to
characterise the means I)t; . We insert first some general remarks
concerning the ‘significance’ of the properties.

(i) [1] asserts that ‘if all the elements of a set have the same
value, then their mean has that value’.

(ii) [2] asserts that ‘M [F] is a strictly monotonic functional
of F’. It would not be sufficient to assert that (under the condi-
tions stated) M[F,]<IM[F,], i.e. that ‘M[F] is a monotonic
functional’.

Let us consider some examples.
(a) The arithmetic mean
W(a,q)=2ga=[xzdF =U[F]
is a strictly monotonic functional of F. In this case ¢ (z) ==.

(b) We may define ‘Maxa’ as ‘the lower bound of the values of x for
which F(z)=1" (F being any finite distribution function with jumps at
the points a). Then Max a=u[F] is a functional of F which is plainly
monotonic: if F,=F, for all x, then u[F,]Su[F,]. But u[F] is not
strictly monotonic: if ¥, and F, are defined by

F,=F,=0 (x<0); F,=4%, F,=0 (0<x<l); F;=Fy,=1 (z>1),
then w[F,]=Max (0,1)=Max (1, 1) = u[ F,].

That p[F] is not representable in the form (6.20.1) follows from the
theorem itself; if it were, it would be strictly monotonic.

(¢) The geometric mean &= ® (a, ¢) is a functional of F which is not
strictly monotonic, since, for example, the sets (0, a,, ...) and (0, by, ...)
have the same ®. It is representable by the formula

® =exp (/: logxdF(x)) .

This is of the form (6.20.1), with ¢ (x) =log for x> 0; but ® is not repre-
sented in the manner prescribed by the theorem, since logx — — co when
z— 0.

(iii) If we use [3] twice, the second time with F*, G, G*, 1—¢
in place of G, F, F*, t, we see that

(6.21.1)  MM[LF+(1—1) G]=M[EF*+ (1—1t) G*]
whenever M [F]=M[F*] and M[G]=M[G*]. In other words
(@) M[tF + (1 —t) G] is determined uniquely by I [F], M [G] and t.
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More generally

(6.21.2) M[Zg, F,]=M[Zg, F,*]
if M[F,]=M[F,*] and Xg,=1.

A functional § [F] is said to be linear if

SUF +uG]=tF[F]+uF[G]:

in this case it has certainly property (a). If IR[F] satisfies (a)
or [3], of which (a) is a consequence, we may call IR[F] quasi-
linear. If also we agree to describe the property [1], as is natural,
by consistency, we may state Theorem 215 shortly as follows:

the most general consistent, strictly increasing, and quast-linear
Junctional of F is that defined by (6.20.1).

6.22. Completion of the proof of Theorem 215. The
functions £ 4 (x), By (x),and (1 —¢) E 4 (x) + tEp (x), where0< i< 1,
belong to D (4,B).2 We write

Yp()=M[(1—1) E4+1Eg],
so that J0)=M[E,]=4, $(1)=M[Ez]=DB.

Let us assume provisionally that i (¢) is strictly increasing and

continuous. Then i (¢) has an inverse
b (u) =4~ (u)
which is also continuous and increases strictly from 0 to 1 when
u increases from 4 to B. If
u=y(t), t=d¢(u),
then  M[E,J=u=@)=MM[(1—$(«) B4+ ¢(w) Ep].
Hence, using [3]in the extended form (6.21.2), and the expression
(6.19.1) for any finite distribution function F, we obtain
MF]=M[ZqE,]

=M[Z¢{(1-¢(a)) B+ ¢(a) Ep}]

=M[(1-Zq¢ () E4+(Zq¢(a)) Ep]

=(Zq¢(a))=¢"" (Zg4(a)),
the result of the theorem.

It should be observed that here ¢(4)=0, ¢(B)=1. When a ¢ has been
found, it may (after Theorem 83) be replaced by any o+ B.

8 F, and Ep are extreme cases of functions of D(4, B): if F belongs to D (4, B),
then B4 =F = Ep for all x.

HI Ix
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It has still to be proved that i (¢) is strictly increasing and
continuous.
(1) If 0t <t,<1,
then (I-t) B+t Epz(1—ty) B+, Ey
for all 2, with inequality for some z. Hence, by [2],
p)=M[(1—t,) B4+, Eg) <M[(1—1y) B4+t Eg] =3 (1)
(2) Suppose, if possible, that i (¢) has a discontinuity on the
right at ¢, where 0 <, < 1. Then we can find a ¢ such that
Plbo) <E<(ty+e)
for arbitrarily small ¢, and
Bywz Eez Bygero
for all z, with inequality for some 2. Hence, by [2],
(6.22.1)
MZE o+ 3Byl < MFE e+ 3B yp] < M[EE yore+ 3B 0]
for any ¢ of (0, 1). But if s and ¢ lie in (0, 1), then, by [1],
p(8)=M[Eyol=M[(1—s) B+ sEg],
and similarly for ¢; and, by [3],

SE +sE 1-t)E ,+tE
MIE o+ 3B y0]= ‘m[ A B+( ) 2A B:I

[ P A

Combining this with (6.22.1), we see that

¢(t0;t), ¢(t0+2t+ e)

are separated by a number, viz. M [$H;+ $E ], which is in-
dependent of €; and so, making €0,

¢(t0;-t) <¢(t0;—t+0).

Hence i has a discontinuity at 1 (¢,+¢), for all { of an interval;
and this is impossible, because the discontinuities of a monotonic
function are at most enumerable.

It follows that ¢ (£) has no right-hand discontinuity. Similarly,
it has no left-hand discontinuity. It is therefore continuous, and
this completes the proof.
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We have confined our attention to finite distribution functions, so that
all the functions F which have been considered are step-functions, and the
means are the means of Ch. ITI. There is a similar theorem in which both
hypothesis and conclusion are stronger in that they apply to a class of
functions more extensive than D (4, B). Let us denote by ©* (4, B) the
class of functions which have the properties (ii) and (iii) of § 6.19 and also
satisfy (6.19.4). We can then prove a theorem which differs from Theorem
215 only in the substitution of D* for D. The proof is very much the same,
but is slightly more elaborate in its final stages. See de Finetti (1).

MISCELLANEOUS THEOREMS AND EXAMPLES

216. ‘Velocity averaged by time is less than velocity averaged by
distance.’

2 2
[This is (/%ﬁ) </dt %?ds:/dt/(%j) dt,acaseofTheoremlSl.:l

217. If the kinetic energy of a mass M of moving homogeneous in-
compressible fluid is E, and the average velocity of its particles is V, then
E>$MV?, unless all particles have the same velocity.

[If p is the density, v the velocity of an element dS =dxzdydz, then

M=pfdS, V[dS=[vdS, E=4p[v?dS,
and the result follows from Theorem 181 (for triple integrals).]

218. A unit electric current passes through a closed plane circuit
enclosing an area 4, and exerts a force F' on a unit magnetic pole P in
the plane of and interior to the circuit. Then

24F?> (2m)?
unless the circuit is a circle whose centre is P.

[Suppose, for simplicity, that the circuit is ‘star shaped’ with respect
to P (i.e. that every point of the line from P to any point of the circuit
lies inside the circuit). Then, using polar coordinates r, § about P, and
integrals from 0 to 27,

%:/do:/(i)%<r2)%de< (f%% ([rzd())%=F§(2A)%,

unless 7 is constant.]
219. If f, (x,y) and g, (%, y) are two (finite or infinite) sets of functions

ofwandy, then (. 1y fgdudy): < £f{ f2dudy X [[g*dzdy,

unless there are two constants a and b, not both zero, such that
af, (x,y) =bg, (x,y),

for every v.

[From Theorems 7 (for infinite series) and 181 (for double integrals),
or directly, by the second method of § 2.4. The theorem illustrates the
following principle. The inequality

(1) (ZXZuv)2 = 2T ut ZETe?,
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where u and v are functions of three integral variables m, n and p, does
not differ materially from the ordinary form of Cauchy’s inequality; but
we can derive materially different inequalities from (i) by replacing dif-
ferent selections of the signs of summation by signs of integration.]

220. Suppose that the a are positive, and that g, is defined by

! = n+r—1
(1—“1x)(1—azx)...(1—a”x)—1+nq‘w+...+( ;

)q,x’+....

Then 42 <¢r1gr1 (r=1,2,...)
unless all the a are equal.

221, n<gi<gd<...
unless all the a are equal.

[Theorems 220 and 221 were communicated to us by Prof. I. Schur.
The g are means of homogeneous products of the a, like the p of § 2.22,
but now the a in a product are not necessarily different. In particular
Q=P

Theorem 221 follows from Theorem 220 as Theorem 52 followed from
Theorem 51. To prove Theorem 220 we observe that

(i) gr=(n—D![f.. [(ay2, + a2y +... +a,2,) dz; ... do,_q,
where 2, =1—-2;, —2,— ... —2,_; and the domain of integration is defined
by 2,>0, ..., 2,.,>0, 2,>0. We obtain Theorem 220 by applying
Theorem 181 (for multiple integrals) to (i).

The formula (i) leads to a more complete theorem. If the a are real
(but not necessarily positive) then the quadratic form Zq,, ¥, v, is strictly
positive; and if the a are positive, then the form Xg,;.,¥,y, is strictly
positive; except (in both cases) when all the a are equal.]

222 Ifp>1,fis L?in (0, a), and
F(a)= f “faydr,
0

then F(z)=o0(z"?)
for small 2.
[By Theorem 189,

Ff’éf:f”dt (/: dt>p4=x”‘1f:f”dt,

and the second factor tends to 0.]
223. If p>1and f is L? in (0, o), then F(x)=o0(z!?) both for small
and for large z.

[For small z, by Theorem 222. To prove the result for large x, choose X
so that

/wfpdx<s“’
X
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and suppose 2> X, Then
(F(2)— F(X))?= (/;fdt ’< (m—-X)"“/;det<ef’x”“,
F(x) < F(X)+ ext/?" < 2extl?
for sufficiently large x.]
224. If y is an integral except perhaps at x =0 and xy’? is integrable in

(0, a), then 1\4
=0 {(log 5) }
for small z.

[[ay'dx_ﬁ_ (/a d?x/axy’zdx>i.]

225. If y is an integral except perhaps at 0 and 1, and = (1 —x)y'?is
integrable in (0, 1), then y is L2 and

Oé[lyzdx—(/lydx)zgéflx(l—x)y’zdx.
0 0 0

[That yis L2 follows from Theorem 224. The first inequality is included
in Theorem 181. For the second, we have

/;yzdx——(/;ydx> = 1// {y(u) —y(v)2dudv
=/01du/;dv »/uy’(t)dt §/odu/u(v——u)dvﬁ:(y’(t))zdt
=f;(y’(t))zdt/:du/:(v—-u)dv:%/:t(l-t)y’zdt.

Of the two inequalities, the first can reduce to an equality only if y is
constant, the second only if ¥ is linear.]

226. If m>1,n> —1, and f is positive and an integral, then

Q) fo anfrdzs T H{/wmm"(tnﬁufmdx}m‘f( /:If'(’”dx)%h

with equality only when f= B exp {— Cx(m+n)/(m-1} where B2 0, C>0.
In particular

(i) /:fzdx<2 (/: mzfzde(ﬁwf"dx)},

unless f= Be~0%*; and this inequality holds whether f be positive or not,
and also for the range ( — oo, o).

[The most interesting case is (ii), which is due to Weyl (1, 345), and
is useful in quantum-mechanics.

Assume that the integrals on the right-hand side of (i) are finite. Since
[ is continuous, and n <m (n + 1)/(m — 1), that on the left-hand side is also

finite. Hence
lim gntl fm=0,

€T =0
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and so, integrating by parts over (0, z,), where (z;) is an appropriate
sequence which tends to infinity with &,

/w anfrdp= — " lim [* @+ fm=1 £ g
0 n+1lpawfo )
But, by Theorem 189,

® o m(nt1) m=1 o 1
/ xn+1fm—1 ,f' l dx < {/ x m-1 fmdx}, m (/ If’ ]mdx>7n’
0 0

0

unless f'<0 and f’ and z»tV/im=1) f are effectively proportional. This
hypothesis leads to the form of f stated.]

227. If ¢ increases,
(fga¢)*<[f2d¢[g>d¢,
unless f and g are effectively proportional (in the sense of § 6.17).
[Included in Theorem 210; wanted in Theorem 228.]

228. Ifa=0,b=0, a+b, and ¢ is non-negative and decreasing, then

(/:xa+"¢dx)z< {1 - (CT?}_%—_I:_—IY} /:xzazﬁdx/:x?'%ﬁdx,

unless = C, where 0> 0, in (0, £), and ¢ =0 in (£, ©).

[¢ may be 0. The inequality is stronger than that resulting from a direct
application of Theorem 181. It follows from Theorem 227 if we reduce the
integrals to the form considered there by partial integration. The case
a=0, b=2 was mentioned by Gauss in connection with the Theory of
Errors: see Gduss (1, 1v, 12) and Pélya and Szegd (1, 11, 114, 318).]

229. Ifa=0,5=0, a1, and ¢ is non-negative and increasing, then

(/;:m-}»b ¢dx>2> {1 —_ (%)2} /:}xm(ﬁdx/:x” qux,

unless ¢=C.

[See Pélya and Szego (1,1, 57, 214). In this case Theorem 181 gives a
reversed inequality, with the factor 1 on the right-hand side.]

230. If O<asf<Ad<ow, 0<b=g=<B<om,

v [panfpansl}{/ 40) /25) [T

[Analogue of Theorem 71: see Pélya and Szegé (1, 1, 57, 214).]

231. If we consider the closed or open intervals (in general four in
number) with end-points —a, b, where =0, =0, and suppose each of
a and b zero, positive and finite, or infinite, we obtain in all 34 types of
intervals I. Assign to each interval I a function f(x) defined for 0 <z <1
and such that log M, (f), where M, (f) is formed for the interval (0,1) and
with ¢=1, is finite just for the values of 7 in I.
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[Examples:
9 \-2fb
Iis —a<r=b; fl@)=ata (1 —z)-1/o (logm» :
Iis —0=r=oo0; fle)y=1+2%
I is the single point 0; f(w):exp(—x‘§+(1—x)_*):
I is empty; f(@)=exp(—az 1+ (1—2)72).

This contains part of the proof of what is stated near the end of § 6.11.]

232. Geometrical interpretation of Minkowski's inequality. Suppose
that a point in functional space is defined as a function of L?, two functions
defining the same point if and only if their difference is nul; and that
the distance between two points f and g is defined by

8 (L) =v{(f—9)*da}.
Then (i) the distance between two distinct points is positive; and (ii)
3(fLiR)=8(f,9)+3(9,h)-

[If we define distance by

8(f9=(fIf=gl )l (rz1),
we obtain similar results in ‘functional space L"’.]

233. The shortest distance between two given points in Euclidean space
is the straight line.

[A curve in space is given by

x=xz(t), y=y(t), z=z(f).

We may suppose that ¢ increases from 0 to 1 on the arc in question. If we
assume that z, y, z are integrals of functions of L2, then the length [ is
given by
B=[[(z2+y2+ 22)tare= My (272 +y'2+2%) 2 My (27%) + My (%) + M, (%),
by Theorem 198; and this is not less than

(Ja'dt)2+ ([ y' db) + ([ 2/ dt)® = (@, — %)% + (Y1 — Yo)* + (21 — 20)*-
If there is equality, Az’= By’ = C2’, and the curve is a straight line.]

234. If 0<p<1 and
[fgdwz A (fg> dal?’
for all g, then [fPdx = A>.

[Compare Theorem 70. If f> 0 for all z, define g by fg=f?. If f>0in
E, f=0 in CE, and the measure of CFE is finite, define g by fg=f? in E
and by g= @G in CE, and proceed as in the proof of Theorem 70. If the
measure of CF is infinite, take (for example)

g= Ge*
in CE. Then
1/’
/f’dw:/fgdx_z_fl U frdm+ Gv’fc e"’ﬁdx> ",
B ;

E

and the result again follows when G — 0.]
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235. Suppose that f and p are positive and that f has the period 2s; that

ra)=["re+opaf oo

and that the means R, refer to the interval (0, 27) and a constant weight-
function. Then

M(F) 2 M, (f) 0srs1), M(F)<M(f) (r21).

[This may be deduced from Theorem 204, or proved directly (supposing
for example 7= 1) as follows:

e — 1 [flx+t)p(t)dtY

0 (F)_Eﬁ_[dm[ fp@®dt ]
1 [ [fr@+t)pt)de(f p()de)

= 2wf de (Fp @) doy

= P s, [ di=me .

For the case r=0, see Pélya and Szeg6 (1, 1, 56, 212).]

236. We say that f(x,v,...) and g (z, ¥, ...) are similarly ordered if
{f(@Hy1, ) =f (@2 Y2y - I (@1, 915 ) =9 (%25 Y5 - )} 20,
oppositely ordered if f and — g are similarly ordered. Prove that

[f...fdedy...[[...gdzedy... <[[...dxdy ... [[... fgdzdy ...,

if f and g are similarly ordered, while the sign is reversed if f and g are
oppositely ordered. The integration is extended over any common part of
the regions of definition of f and g.

[Analogue of Theorem 43 (with r=1), due in substance to Tchebychef
(who considers only monotonic functions of one variable).]

237. If ¢ and i satisfy the conditions of Theorem 156, and

O(2)= f ", Y= "y,
then [fgde <[ ®(f)dx+[ ¥ (g) dz.

238. If f and g are positive, and k a positive constant, and flog*f and
e* are integrable, then fg is integrable.

[By Theorem 63, kfg < flog* f+ ek9-1.]
239. Iffis positive, then

/“flogl do < 2[“flog+fdx+M.

0 x 0 e

[Take g= Qlogé » k=1, in the inequality used in proving Theorem 238.]
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240 Iffis positive and L in (0, a), and
F(z)= [xfdt,
Jo
then {af(:c)logldx=/awdx+F(a)logl,
0 x 0o X a

whenever either integral is finite.

241. Suppose that a is positive and finite; that B= B(a) denotes
generally a number depending on a only; that f(x) = 0; and that

F(z)= f “jo,

a a |
J=f Sflogt fdz, K=[ —dx.
0 Jo X
Then (i) if J is finite K is also finite, and

K< BJ + B:
(ii) when f is a decreasing function the converse is also true; if K is finite
then J is finite, and J<BKlog+K +B.

[For the last two theorems see Hardy and Littlewood (8).]
242. If fis positive and L in (0, a) and

then g is L and [ag(x) dx:} af(x) dzx.
Jo 0

[Integrate by parts; or substitute for g and change the order of integra-
tion.]

243. We define M, (f), where ¢ is a continuous and strictly increasing
function, by

My () =¢7{$(f) gd=}-
Then, in order that Mo (f) = My (f)
for all f, it is necessary and sufficient that ¢ should be convex with respect
to ¢.
244. In order that
W .. M (f) S MG .. My, (f)
for all f=f(x,,2,,...,%,), it is necessary and sufficient that every i, be
convex with respect to the corresponding ¢,.
245. In order that
M .. Wiy (F) S MG ... M2 (f)
for all f, it is necessary and sufficient that (i) ¢, = p» and (ii) g =p, when

> vand the permutation by which v, , vy, ..., v, is derived from 1, 2, ..., n
involves an inversion of y and v.
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[For the last three theorems, which correspond to Theorems 92, 93 and
137, see Jessen (2, 3).]

246. Holder’s inequality may be deduced from

My Mo (f) = M® My ¥ (f)
(Theorem 203), by taking
1 , 1
fey=few) (0se<), fen=frw) (j=es1).
[See Jessen (3).]
247. If (i) ¢ (=, t) is positive, continuous, and convexin z, for z, Sz < x,,

t>0; (ii) p(2) 2 0; (iii) the integral
16)=[ 4tz 0 p0yae

is finite for ==, and x=x,; then I(z) is continuous and convex for
Ty <X <Tge
[That I(x) is bounded and convex follows immediately from the
convexity of ¢; that it is continuous, from Theorem 111.]

248. If f(x) and ¢(x) are positive and ¢(x) convex for positive z, and

I(x):m/:qs {ﬂ—”} dt

x
is finite for z =2, and 2 =w,, then I(z) is continuous and convex for
T, <X <%y
[By Theorem 119, z¢(1/x) and

2 4 [0
10551

are convex, and we can apply Theorem 247. More general results can be
derived from Theorem 120.]

249. In order that ,
b
/aqb(g(x))dxé/aw(x»dx

should be true for every convex and continuous ¢, it is necessary and

sufficient that b b

[lo@ o= ["s@) e
and [ a@-yrazs ") -y ao
for all y. ‘ ‘

[Here a* means Max (a,0), as in §6.1.]
250. If fand g are increasing functions, then an equivalent condition is

/ Jota)dos [ 1) do

fora=£5h.
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[For the two last theorems, which embody analogues for integrals of
parts of Theorem 108, see Hardy, Littlewood, and Pélya (2).]

251. If f,(¢), f5(t), ..., fi(¢) are real and integrable in (0, 1), then either
(i) there is a function z(¢) such that

1 1
fofl(t)x(t)dt>0, ,/f,(t)x(t) dt>0,
0
or (i) there are non-negative numbers ¥;, ¥,, ..., ¥;, not all zero, such that

Y1 () +Yofo (D) + ... + 4 fi(2) =0, _
252. If f1(t), f2(2), ... » f(t) are real and continuous in (0, 1), then either
(i) there are real numbers z,, ,, ... , Z,, such that
1 f1(8) + 2o fo(B) + oo TS (£)
is non-negative for all, and positive for some, ¢ of (0, 1), or (ii) thereis a
positive and continuous function y(¢) such that

[ Awywa=o,.... / ' n(t)y(0)dt=0.
0 0

[Theorems 251 and 252 are both integral analogues of an important
theorem of Stiemke (1) concerning systems of linear inequalities.
Suppose that

A (A=1,2,...,l;u=1,2,...,m)
is a rectangular array of [ rows and m columns, and that
Ly(w)=ay @1+ @ra ot oo+ Qo T
M;L(x)—__aly, Y +a2p. y2+ ser +aly.yl;
and consider the two problems:
(i) to find a real set (x) for which
Ly ()>0, Ly(x)>0,..., Li(x)>0;
(ii) to find a non-negative and non-nul set (y) for which
M, (y)=0, M,y(y)=0,..., M, (y)=0.
Since Ty L(x)=ZaxM(y),
the two problems cannot both be soluble for the same set (a),and Stiemke’s
theorem asserts that one is soluble whatever the set (a).

Theorems 251 and 252 state analogues of Stiemke’s theorem in which
the m columns or I rows are replaced by a continuous infinity of columns
orrows. These theorems, and further references to the theory of systems
of linear inequalities, which we have excluded from our programme only
on account of its algebraical and geometrical preliminaries, will be found
in Haar (1) and Dines (1).]



CHAPTER VII

SOME APPLICATIONS OF THE
CALCULUS OF VARIATIONS

7.1. Some general remarks. The ‘simplest problem of the
Calculus of Variations’ is that of determining a maximum or
minimum value of

J ()= f "F @y, ) da

for all functions y =y () for which

(1) Yo=9 (%) y1=y(,) are given,

(2) ¥’ is continuous.
Let us denote this class of functions by &. Then our object is to
find a function y="7Y ()

of &, such that either
J(y)<f P, Y, Y)de=J(Y),

- or J(y)>J(Y), for all y of & other than Y. The general theory

tells us that, if such a function Y exists, it must satisfy ‘Euler’s

equation’
oF d (oF

® e o)

Let us consider some simple examples.

1
(i) Suppose that J(y):——f y'2dx
0

and y,=0, y;=1. Then (E) is '’ =0, and the only solution satis-
fying the conditions is y=x. It is easy to verify that ¥ =x does
in fact give a minimum for J (y). For J(Y)=1 and

1 2 prl 1
1=(J~ y'dx) <f dch~ y'2dx=J (y),
0 0 0

by Theorem 181, unless y' =1, y==; so that J > 1 for all y other
than Y.
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We have in fact proved more than the problem as stated
demands, since the proof is valid whenever y is an integral. This

last hypothesis is however essential, since there are functions y
for which

(1.1.1)  y(0)=0, y)=1, y'=0, J(y)=0.

In order that y should be an integral, i.e. in order that there
should be an integrable function f(z) such that

ym=f?WM%

it is necessary and sufficient that y(z) should be ‘absolutely
continuous’. It is necessary, but not sufficient, that y(x) should
have bounded variation. In particular it is not sufficient that
¥ () should be monotonic; there are increasing functions y which
satisfy (7.1.1).

If y is the integral of f, then y’=f; an integral is the integral
of its derivative. All this is expounded in detail in books on
the theory of functions of a real variablet. The main theorem
needed in this chapter is the theorem of integration by parts,
stated in § 6.3 (a).

These remarks lead us to lay down the following convention.
Throughout this chapter it will be assumed that, whenever y and
y' occur in an enunciation or a proof, y is an integral (and so the
integral of y’). A similar assumption will be made about 3’ and y”’
(if ¥’ occurs in the problem); and the assumption naturally
applies also to letters other than y. Without this assumption, all
the problems of this chapter would lose their significance.

(ii)e Suppose that
1
J(y)= fo (¥"*+y") da,

and y, =y, = 0. The only solution of (E) satisfying the conditions

isy=0. If Y=0, J(Y)=0, but Y does not give a maximum or

minimum of J (y). It is in fact easy to construct a y of & for which
s See for example de la Vallée Poussin (2), Hobson (1), Titchmarsh (1).

b This and the next example are due to Weierstrass and are of great historical
importance.
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J (y) is as large, positively or negatively, as we please. Thus, if
Jf(#) is any function for which f(0)=f(1)=0 and

1
[ graa=o,
0

and y=Cf(x), then J(y) is large when C is large and has the
sign of C.
(iii) Suppose that

1
J(y)= f 2y'dz,
0

Yo=0,y;=1. Here J (y) > Oforally of §; but y =a™ gives J = }m,
so that there are y of § for which J (y) is as small as we please.
For y of ®, J (y) has an unattained lower bound 0. The same is
true for classes of y more general than & (for example, the class
of integrals). On the other hand, J (y) attains its bound 0 for the
function mentioned under (i) above, and also for the discon-
tinuous function which is 0 for =0 and 1 for x> 0.

7.2. Object of the present chapter. The Calculus of Varia-
tions might be expected to provide a very powerful weapon for
the proof of integral inequalities. There are however hardly any
instances of its application to inequalities of the types important
in general analysis. This may be explained on two grounds. In
the first place, the Calculus of Variations is concerned avowedly
with attained maxima or minima, while many of the most im-
portant integral inequalities assert unattained upper or lower
bounds. Secondly, the ‘continuity’ hypotheses of the classical
theory are very restrictive. It is often more troublesome to
extend an inequality, proved by variational methods for a special
class of functions, to the most general classes for which the in-
equality is required, than to construct a direct proof of the full
result. For these reasons the Calculus of Variations has been
almost ignored in this chapter of analysis.

The ideas of the Calculus are however often very useful, and
we apply them here to a number of special inequalities. When, as
in example (i) above, or Theorems 254 and 256 below, the bound
asserted by the inequality is attained, and attained by an ex-
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tremal, thatis to say by a solution of Euler’s equation, these ideas
are obviously relevant, and the result may well be one which it
would be difficult to obtain in any other way. We shall however
find that they are sometimes effective even when the bound is
unattained and the final result lies outside the scope of the theory.

Our arguments will not demand any detailed knowledge of the
theory; except in § 7.8, we shall require only its simplest formal
ideasa.

7.3. Example of an inequality corresponding to an
unattained extremum. As a first example of the use of varia-
tional methods, we select a special case of a theorem which was
first proved in an entirely different manner, and to which we
shall return in § 9.8.

253. Ify'belongsto L?(0,0), y,=0,and yis notalwayszero,then

© , yZ
J(y):f0 (43/ 2——;)dx>0.

It is necessary for our present purpose to consider the more
general integral

(7.3.1) J () =f°°(py _ ) dz (uz4).

Euler’s equation is
2y’ +xy=0 (A=1/p<}).

Its solution is y=Aax™+ Ba,
where =+ VE-N, n=}-v(E-)),
if >4, and is y=at(4 + Blogx)

if u=4. In neither case is there a solution (other than y = 0) for
which ¥’ is L2.

For this reason it is necessary to modify the problem before
we attempt to apply variational ideas. We consider

T0)= [ (wr>-2) s

& Euler’s equation and Hilbert’s invariant integral. Anything which we assume
will be found without difficulty in the books of Bliss (1) or Bolza (1).
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with y,=0, y,=1, p>4. There is then one? extremal satisfying
the conditions, viz.

(7.3.2) y=Y=am=xgtte,
where
1 1 1
(7.3.3) a=//(a—‘;,), }L‘:%——aé.
A simple calculation gives
2
(7.3.4) J(Y):.m’

and this suggests the following theorem.
254.% Ifu>4,y(0)=0,y(1)=1, and y’ is L2, then

y? 2
a35) @)= (wr-L)aez 2
where a s defined by (7.3.3). The only case of equality is that
defined by (7.3.2).

7.4. First proof of Theorem 254. We give two proofs of
Theorem 254. The first demands no knowledge of the Calculus of
Variations, though the transformations which we use are sug-
gested by our knowledge of the form of the extremal Y.

If

(7.4.1) y=attifyn=Y 47,
then
(7.4.2) J@)=J(Y)+J () +K(Y,n),
1
where K(Y,n)=2f (#Y’n'—zgl) d.
0

Since Y’ and so »” are L2, n=o (2}) for small z;¢ and so

K=2 lim (—f ——dx+|:,uY' ] f ,u.Y"ndx)
§—>0

1
=—2lim 7](,U,Y"+-§)dx=0.

5—>0J s z
& The extremal y=M3te 4 (1 - Q)zt-0

gives y,=0, y; =1 for any A; but y’ is not L?, and J(y) diverges, unless A=1.
b For this and some later theorems in this chapter see Hardy and Littlewood (10).
¢ Theorem 222.
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Hence (7.4.2) gives

(7.4.3) JW) =13, );
and it is sufficient to prove that
J(n)>0.

Here 7’ is L?, and 7 is not nul but vanishes at the ends of the
interval.

We now write n=Y{.
Then

(144) To(m)= | ' (m'hZ—Z) da
=pf:(Y§’+ Y'c)de—f: I;zfzdm

1 - 1 Y2 1 ) oo
=“L ng'deJrL (My'z-;é)gzdxq- 2,45 YY'(1' de.

ut
(7.4.5)
1 1
2"f YY' {ldo= —p(YY'Hy—p f (Y72+ YY) (2d.
8 s

Combining (7.4.4) and (7.4.5), and observing that Y is a solution
of LY
we obtain

(148)  Tsl)= (YT Pt e[ (70,
But YY'2= (%+a)(YC) =(1 +a)’7 -0
when 2—0. Hence, when we make §—0 in (7.4.6), we obtain

1
(1.4.7) T)=p (T0pdm,

which is positive unless the integrand is nul, i.e. unless {=0.

This proves the theorem. The condition u > 4 was required to
make Y’ belong to L2. We have however reduced the theorem
to dependence on the identity (7.4.7). Since

’ ’ _1‘+a ’ +
Y =n'—*—n=y —Ly,

12
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(7.4.7) and (7.4.3) give
1 2 1 2

1:48) J)= [ (2= do=Z vu[ (v =2E%0) as
and here Y has disappeared. Since both sides of (7.4.8) are con-
tinuous in x, we may now include the case u=4, a=0. The
identity may be verified directly by partial integration when its
form has been discovered (though some care is required about
convergence at the lower limit).

We are now in a position to prove Theorem 253. If we write

e=X[¢, cy(x)=Y(X),

and then replace X, Y again by z, y, we obtain

3 2 2 2 H 1 2
’2_?1; =—g l_2+a’
(7:4:9) jo (#y xg) =% 3 -HLfo (y x y) 4

where now y(0)=0, y(£)=c. If y' is L2 in (0, o), c=0 (&) for
large ¢,2 and the first term on the right tends to 0 when £ - o0.
Making £ -0, and supposing u =4, we obtain

=) , y2 =) , y 2
2__2 = -
fo (4y 902) d 4.[0 (y 295) da.

This formula, which makes Theorem 253 intuitive, is valid when-
ever y' is L% and may of course be verified directly®.

7.5. Second proof of Theorem 254. In our second proof we
make explicit the variational theory which underlies the first.

Suppose that y= Y (x), or K, is the extremal through the end-
points Py and P,, and that

(7.5.1) y=y(z,a),
or E(«), is a family of extremals containing # and depending on
a parameter «. Suppose further either that

(i) E («)covers up aregion surrounding ¥ in a (1, 1) manner, so
that just one extremal passes through every point of the region,
and « is a one-valued function of « and y ; or that

(i) every curve of E («) passes through P,, so that y(x,,«) is
independent of «, but condition (i) is satisfied in all other respects.

& Theorem 223.
b Grandjot (1) gives a number of somewhat similar identities for series.
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In these circumstances? (7.5.1) is said to define a field of ex-
tremals including £.

The slope Y (z,a)

of the extremal through a point P of the field may be expressed

as a one-valued function
p=p(y)

of x and y. Hilbert’s ‘invariant integral’ is
J*(C) =f {(F—pF,)dx+ F,dy}.
c

Here F and F), are the values of F(x,y,y’) and F, (2,y,y’)
when ¥’ is replaced by p, and the integral is taken along any
curve C which lies in the region covered by the field.

The fundamental properties of Hilbert’s integral are as follows.
(1) J*(C) depends only on the ends @, R of C; in other words
(F—pF,)dx+ F,dy=dW
is a perfect differential, and
J*(C)=Wxr—W,.
(ii) If C is the extremal E, then

J*(E)=f Fdx=J(E),
E
say. It follows that, if C' runs from P, to Py, then
J(O)=J (B)=J (C)—J*(EB)=J(C)—J*(O)
=f F(x,y,y)dx
c

- f AF @00 = PPy (0.2 de+ F, @, p)d)

= foé (x’ Y, P, ?/,) dx,
where
E@,y,pY)=F(x,y,y)-F(xyp) —Y —p) F,(xy,p).

a With the addition of certain conditions concerning the differentiability of
(, y) which it is unnecessary to repeat here: see Bolza (1, 95-105).

12-2



180 SOME APPLICATIONS OF

Here y' is the slope of C' at any point and p the slope of the
extremal through the point; and & is Weierstrass’s ‘excess-
function’. If & > 0 whenever y’' = p, then
J(E)<J(0)
and ¥ gives a true minimum of J.
In the present case we take

y:—_axiﬂ-a
as K (x). We find
p=a@+a)ei=G+a),
U 2y y®
—_ 2__J — _—
P=wri=ge H=g_ae TP0= " gmaw
1 y® Yy
T ;_af( Y dot dy):fdw,
2
where W=TL_
1-a)x

Here E=py"?—up*—(y' —p) 2up=p @y —p3*>0
unless y’' = p. The identity

J(C’)——J(E):foédx

reduces to

1 9 | y)?
Jolee =)t Zgme = e

which is (7.4.8).

This argument shows the genesis of (7.4.8), but does not prove
it, for two reasons. In the first place, F' has a singularity, and
the theory of the field breaks down, for z=0. Secondly, the
theory presupposes the continuity of y'.

In order to dispose of the first difficulty, we may take P, and
P, to be (8, 8t+a) and (1, 1). The theory then gives the identity

1 2 2 1 2
Ig_y (1"8“) ' _ l ?_/ .
L (,u,y E)dx_ 1—2q TH 1Y 2% de;

and we obtain (7.4.8), for continuous y’, by making 8 tend to
zZero.
When (7.4.8) is proved for continuous y’, it may be extended
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to general ¥’ of L? by standard processes of approximation. We
deal with this point in the next section, in a different problem
where we have no alternative elementary proof.

Similar considerations lead to the identity

(1.5.2) f(uy )d” (T—'—f)l(l'_—f)

o - a2 s

y(0)=0, y()=1, 20, k>1, u> (k k l)k K,
and A is the (unique) root of
(7.5.3) p=1)A1A-1)+1=0
which lies between 1/&’" and 1. When the form of (7.5.2) has been
determined we may put

Here

p=K,
where A= 1/k" and pX*= 1. We thus obtain

1 k
w_Y
fo(Ky xk)dx
_ k Yo (AN, M (AN
et K[ = () 2= ) (7)o

It may be verified directly, by partial integration, that this is
true whenever y’ is L¥; and we can prove as in §7.4 that the
identity remains true when the upper limit 1 is replaced by co and
the term k/(k— 1) is omitted. Since, by Theorem 41,
— bk >k (a—0b)bk1
for all positive @, b, we thus obtain a proof of a theorem (Theorem
327) which will be stated explicitly, and proved in an entirely
different manner, in §9.8.
Incidentally we obtain

E\*
255. If E>1, p> ~K,
k-1
& The theory of the field gives the form of the identity, which may then be

verified independently. The limitation to curves for which y’=0 would introduce
another slight complication into a properly variational proof.



182 SOME APPLICATIONS OF
y(0)=0,y(1)=1, and y' is L*, then

7= [ bt =5 ez iy

where X 18 the root of (7.5.3) between 1/k’ and 1.

7.6. Further examples illustrative of variational
methods. It is difficult to distinguish at all precisely between
‘elementary’ and ‘variational’ proofs, since there are many
proofs of intermediate types. We give a selection of such proofs,
worked out with varying degrees of detail,in this and the succeed-
ing sections.

(1). 256. Ify(0)=0and 2k is an even positive integer, then

1 1
(7.6.1) J y*dr < CJ y'*dx,
0 0
where
1 2k . w\%*
(7.6.2) 0= é—k——-—l (;T* Slnéjc) .

There is equality only for a certain hyperelliptic curve.

(i) We suppose first that (1) =0, in which case we may take
y(1)=1, and consider

)= =y
Euler’s equation is ’
(2k—1) Cy'#=2y" + y**-1=0,
which gives (2k—1) Cy'?* = C" — y2,
where (' is a constant of integration.
There is one extremal which passes through (0, 0) and (1, 1)

and cuts =1 at right angles. In fact, if we take =1, then y’
vanishes when y=1. Also

r={(2k—1) C}v2x a dy

— Z!Zk)1/2k

S A — g\ -V2k gy 1/2k—1 Jy, —
fo (1 — )12k Qkfo (1—u)" 12y du 57, ©0%eC 575
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there is an extremal of this type which passes through (0,0) and
(1, 1). If we denote this extremal by Y, then

1 1
J (Y)=[OY Y'%—l] - f Y{(2k—1)CY'%*-2Y" 4 Y%-1} dz=0,
0 0

since Y'(1)=0.

To prove the theorem, we must show that y= Y gives a strong
minimum; and this follows easily from the general theory. The
extremal is a rising curve of the same general form as the curve
y=sin } 7z, to which it reduces when k= 1. The curve y=aY is
also an extremal; the family y=«Y defines a field in the sense of
§7.5; and the excess-function

&E = y’2k __,ka — 2k (y’ _p)p2k—1
is positive. Hence the standard conditions for a minimum are
satisfied. This proof is genuinely ‘variational’, and (in view of the
trouble of calculating the slope-function p explicitly) it might be
difficult to find a more elementary proof.

There is however one point in the proof which demands an
additional remark. The ‘general theory’ assumes that y’ is con-
tinuous, and it may not be obvious how its conclusions, in par-
ticular in regard to the uniqueness of the solution, are extended
to the more general y considered here.

Let us denote by I27 the class of integrals y of functions of L??,
by I* the class of integrals y* of continuous functions. The general
theory shows that

(7.6.3) J(y*)>J(Y)
for a y* different from Y, while we require the same result for
any y of 122, We can approximate to a y of 1?7, different from ¥,
by a sequence of functions y*, in such a manner that

J (y)=lim J (y*);
but all that then follows from (7.6.3) is
J(y)zJ(Y),
the strict sign of inequality being lost in the passage to the limit.

The difficulty disappears if we look at the question differently.

The general theory proves not only the inequality (7.6.3) but also

the identity J @*)—J (Y)=[ & (y*)da,
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where & (y*) is the excess-function corresponding to y* and the
field y=aY. Approximating to ¥ by an appropriate sequence of
y*, we replace this identity by

J(y)—-J(Y)=[ & (y)dw,
and the integral is positive unless y =Y.

(ii) The case in which y(1)=0 may be discussed similarly,
since =0 is then an extremal satisfying the conditions, and is
included in the field y=aY used in (i).

The proof might have been arranged differently if we had
made no hypothesis about the value of y(1). The problem is
then one with a ‘variable end-point’, that of minimising J ()
for curves drawn from the origin to meet the line x=1. The
extremals cut this line ‘transversally’ (in this case orthogonally),
and all the curves y=aY satisfy this condition. The general
theory shows that all the extremals give the same value of J (y),
and this value must be 0, since it is 0 when a=0.2

7.7. Further examples: Wirtinger’s inequality. (II) Let
us consider more particularly the case k=1 of (I). Changing the
limits, the result is that

i i
(7.7.1) f y2dx<f y'2dx
0

0

if ¥ (0)=0 and y is not a multiple of sin z.
The general theory suggests that there is an identity of the type

b i
f (y"?—y?)dx= f {y —y (x)}2dx
0 0

i
or f {2 (1+4?) — 2yy' S} da=0.
0
This will plainly be true if
Yy (1+4*) de—2yddy
is an exact differential dz, and z vanishes at the limits; and this
requires —' =142, S=—tan(x+k),

a2 We owe these remarks to Prof. Bliss.
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in which case z= —iy2. If we take k=3w, J=cotx, then z
vanishes when 2= }; and since 3’ is L? and so®* y=o(z?), z also
vanishes when x=0. We thus obtain

. i i
(7.7.2) f (y"2—1vy?) dx:f (y' —ycotz)?de,
0 0
which makes (7.7.1) intuitive.

A slight modification of (7.7.2) leads to
257. Ify(0)=y(m)=0and y’ is L? then

f‘yzdx<f y'2dx
0 0

unless y=Csinz.

For y=o(a?) for small z, and y=o{(m—2)!} for x near =2 so
that y2cot 2 vanishes at both limits. Hence

(7.7.8) fr(y'z—gﬂ)dx:fﬂ(y’—ycotx)zdx.
0 0

Another modification of (7 i .2) leads to a more interesting
theorem due to Wirtinger?.

258. If y has the period 2m, y' is L?, and

2
(7.7.4) ydr=0,
0
2 2
then f y2dx<f y'2dx
0 0
unless y=Acosx+ Bsinz.

We cannot write down at once an identity similar to (7.7.2)
or (7.7.3), but with 0, 27 as limits, because y cot x will usually
have infinities in the range of integration. We may however argue
as followse.

2 Theorem 222
b See Blaschke (1, 105). The most immediate proof is by an application of
Parseval’s Theorem to the Fourier developments
y~%a,+Z (a, cos nx+b, sinnx), y ~ T (nb, cos nx —na,, sin nx)
(with ay,=0).
¢ The proof which follows was communicated to us by Dr Hans Lewy.
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The function 2(@)=y(x+7)—y(x)

has opposite signs for the arguments x and « + =, and therefore
vanishes at least once in (0, 77). We suppose that z(«)=0, where
0<a<m, and write y(x)=a. Since ' is L2, (y—a)?cot(x—oa)
vanishes for r=« and =0+ 7 ;2 and

2
f - y=aP - {y' - (- a)cot (+— )] da

= I:(y —a)?cot (x— oc)]:ﬂ= 0.

Hence, using (7.7.4), we obtain
2w 2w
f (y?2—y?)de= 27m2+f {y' — (y—a)cot (xz— a)}?dx,
0 0

which is positive unless a = 0 and
y' =ycot(rx—a), y=Csin(x—a).
There is a special interest in Theorem 258 because the proof of
the classical isoperimetric property of the circle may be based

upon it. We consider a simple closed curve C whose areais A and
whose perimeter is L, and take

2ms
(FS = *17 )

where s is the arc of the curve, as parameter, so that

z=x(¢), y=y(¢) (0=¢=2m).

We suppose for simplicity that 2’ and %’ are continuous; the
proof is valid for more general z, y. We may also suppose without
loss of generality that the centre of gravity of the perimeter lies
on the axis of z, so that

2
f ydé=0.
0
We have then

(- -

& Using Theorem 222 as in § 7.4 and above.
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e ) (o
7 e o
] v

by Theorem 258. There will be inequality unless
y=Acos¢+ Bsing
and also 2= —[ydd=—Asin¢+ Bceos¢+C,

when the curve is a circle®.

7.8. An example involving second derivatives. (III) It
is knowne that, if f has a second derivative for 2 0, and pg, puq 5 o
are the upper bounds of | f|, | f'|, |f"' |, then
pa® S A iy -
This suggests that there may be a corresponding relation between
the integrals

Josz'flpdx, Ji= w]f’lpdx’ Jy= wlf”]pdx’
0 0 0

where p > 1. The next theorem settles this question in the case
p=2.
259. Ifyandy' are L2 in (0, c0)4, then

© 2 © 0
( f y’zdx) <4f yzalmj~ y'"%dx,
0 0 0

unless y=AY(Bx), where
Y=e¥sin(zsiny—y) (y=1in),

when there is equality.

e Or -2 [ Y 5 qu according to the sense of the variation of s as we pass in

a given sense round the curve.
b The proof is in principle that of Hurwitz (2), but differs (a) in that we do not
use the theory of Fourier series and (b) in our unsymmetrical treatment of « and y.
¢ Landau (2, 3).
d In accordance with the convention of § 7.1, ¥’ is the integral of y”” and y of y’".
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If we consider the ‘isoperimetrical’ problem of the Calculus of
Variations defined by

0 [ee} co

‘J1=f y'2dx maximum, J0=f y2dx and Jy= | y''?dx given’,
0 0 0

we have to form Euler’s equation for

f : (y"2—Ay?— py''?) de.

It is a linear equation of the form
ay™"’ +by" +cy=0,

whose solutions are linear combinations of real or complex ex-
ponentials. When we try to choose the parameters in the most
advantageous way, we are led to consider the function Y.

It seems difficult to complete the proof on these lines by use
of the general theory. We shall deduce Theorem 259 from the
simpler theorem which follows.

260. Under the conditions of Theorem 259,

J ()= f (P —y2 4y ) da> 0
0

unless y=AY, when there is equality.

We give several proofs of this theorem to illustrate differences
of method. Thefirst two are, as they stand, elementary; the third,
of which we give only an outline, makes explicit the variational
theory which lies behind the other two. We begin by an obser-
vation which is necessary in any case, viz. that J, is finite.

To prove this, we have

X X X
(7.8.1) f y'idx = [yy':l —f yy'' dx.
0 0 0

Since J and J, are finite, the last integral tends to a finite limit
when X —o0. If J, were infinite, yy' and a fortior:

y*=2[yy dx
would tend to infinity, which is impossible on account of the con-
vergence of J,. Hence J, is finite, and all three terms in (7.8.1)

8 By Theorem 181,
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tend to limits. In particular yy’ tends to a limit, which can only
be 0 (again on account of the convergence of /).

(1) Our first proof proceeds rather on the lines of §7.4. It is
easily verified that

Y+Y'+Y"=0, Y(0)+Y'(0)=0, Y"(0)=0

and J(Y)=0a
We now write y=z+cY,
choosing ¢ so that z(0)=0. Then z, z’, and 2"’ are L2, z and 2’ are
o (z?) for large z,» and 22’ — 0.

Now Jy)=J (2)+2cK (Y,2)+c2J (Y),
where

K=f°° (Yo— Y& + Y2y deo
0

_ _fw(Y'+ Y“)zdx-r (Y + Y’)z”dx—fw Y2 dw
0 0 0

sz(Y+ Y+ Y") o dz=0.
0

Hence J (y)=J (), and it is enough to prove that J (z) > 0 unless
2=0. But, since z(0)= 0 and 22’ — 0 when x> 0,

@D @
J 2%dr= —f 22" dx,
0 0

and so J(z):f (2%2+2" +2"2)dx>0
0

unless z= 0. This proves Theorem 260.
(2) We may try (following the lines of §7.5 and §7.7) to reduce
Theorem 260 to dependence upon an identity. For this, we make

(7.8.2) W=y +y" =y +dy+iy' ) da
an exact differential; and the simplest choice of ¢ and i is
¢=1=1, when (7.8.2) reduces to

—d(y+y')>
Thus

X X
fo {W—y2+y"?—(y+y +y')dx= —[(y+y’)2:|0 .

a This requires a little calculation. b By Theorem 223.
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Since J,, J;, and J, are finite, the left-hand side has a limit
when X —o00.2 Also yy’— 0, and so y2+ y'2 tends to a limit, which
can only be 0. It follows that

(7.8.3)

f , Gy ) de={y (0)+y (0)F + f , Yy Yy )ds,

which is positive unless
y// + yl + y — O

and y'(0)+y(0)=0.
These conditions give y=AY.

(3) The underlying variational theory is a little more complex
than that of §7.5. If we put

(7.8.4) Yy =z,

(185)  J)=J(y2)= f C@r -y,

and suppose that
(7.8.6) y(0)=1, 2(0)=¢, y(0)=0, 2z(0)=0,
then the problem is a ‘Lagrange problem’, viz. that of minimising
J (y, z) when subject to (7.8.4) and (7.8.6).
The extremals of the field, in space (z, y, 2) are given® by
@_1(92)=0 (i) (39)=0
oy dx\oy ’ 0z dx\oz ’
where O=F—-Ay' —2z)=y2—y'?+ 22— A(y' —2),
and A is a function of « defined by the equations themselves. In
this case the equations (7.8.7) reduce to

(7.8.7)

d ’ _ . d ’
(7.8.8) 2y+(~ﬁ(2y +A)=0, )\—(—%(22 )s

and from these and (7.8.4) we find
(7.8.9) ¥y +y ' +y=0.
3 The integrals
[wyy’dz, /my’y”dz, /wyy“dx
Jo 0 0

being convergent, by Theorem 181.
b For an account of the general theory see Bliss (2).
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The most general solution of (7.8.9), for which y and 2z vanish at
infinity, is
(7.8.10) Y =ae P4 Ge P,
where p= e and the bar denotes the conjugate.
The equations (7.8.10) and
(7.8.11) z= —ape~P%®— Gpe P,
(7.8.12) A=20e~PT + 2qeF%,
define a two-parameter ‘field’ of extremals through (co, 0, 0).
The ‘slope functions’ p, ¢, and the ‘multiplier’ A of the field
are the functions
py.2), q@y2), A(y2),
obtained by expressing the slopes of the extremal, and the func-

tion A defined by (7.8.8), in terms of z, y, z. A straightforward
calculation gives

(7.8.13) p=2, q=—y—z
(7.8.14) A=2y.a2
The analogue of the Hilbert integral is

75 = [ 1@~ p0, = g, do+ 0, dy + 0,1,

This integral has properties corresponding to those of §7.5; it is
independent of the path between its end-points, and its value
along an extremal is the same as that of

J=[Fda.

Also, if E is the extremal, and C any other curve, joining the
end-points, we have

(7.8.15) %—h:%—ﬁ=%~ﬁ=fém,
C

where & is the excess-function, defined here by
&E=0 (.’,U, Y,%, y,’ z,’ A) - (x: Y,2,0,9, A) - (?/' —p)d)p - (Z’ - Q)(Dq°

& p, ¢, A are in the first instance functions of = and the parameters a, @ of the
extremal. Here, in particular,
‘= —ape Pt —gpePr=z, 2z =aplePC+aple = -y-z,
A=22" = —2ap3eP? - 2a % e—PT =2y.
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In this case it will be found that
(7.8.16) E=(y+2z+2)—(y —z)?
and Jg=(1+10)2
Since & reduces to (y+y’ +2)% when y’ =z, we obtain

fw(yﬁ—y'2+z’2)dx=(1+£)2+f0 (y+y +2)de,
0

which is (7.8.3). We have thus proved Theorem 260 in three
different ways.

We have supposed that y(0)#0, so that we can take y(0)=1. The
case in which %(0)=0 may be discussed similarlya.

Our object has been only to illustrate a method and not to discuss a
difficult general theory, and we have therefore presented the argument
very shortly. The following remarks® may help to make the method
intelligible.

(a) The integral J* constructed from a two-parameter set of extremals
is not necessarily invariant. Here we can verify the invariance of J*
directly; in fact

J¥=—[d(y+2)
This invariance ensures that our extremals form a ‘field’. The ‘reason’is
to be found in the fact that they pass through a fixed point, ¥, z, and A
all vanishing for x = co.

(b) In this case @ is quadratic, and

E={(y' =Pl Py +2 (¥ — D) (2= Q) Cpy+ (2 — 9)* o},
which leads immediately to the formula (7.8.16).

(¢) Suppose that E and C are defined as above, that B, is the positive

axis of z, and L an arbitrary curve joining (0, 1, {) to the origin. Then

Jo=do—Jp,=do—Jp=J+Jo—J] p,
:J2+JC—J2=J2+/wEdm
Jo

=(1+0) +j0 Y+ +y")de.
This is (7.8.3); the argument avoids a direct calculation of Jg. Alterna-
tively we may argue
Jog—Jg= / Edzx,
0
Jeg=JIp=J]+J 5, =(1+0)

& Compare § 7.6.
b For which we are indebted to Prof. Bliss and Mr L. C. Young.



THE CALCULUS OF VARIATIONS 193

In order to deduce Theorem 259 from Theorem 260, we apply
the last theorem to y (z/p) instead of to y (x). We thus obtain

ptdo—p*J1+Jo=| (p'y*—p*y?+y"?)dx>0.
0

Since this is true for all positive p, and in particular when
p2=J,/2J,, it follows that J,2< 4J,J, unless y (x/B) =AY (z).

7.9. A simpler problem. It is interesting to observe that the corre-
sponding theorem for the interval ( — o0, 00) is much more elementary and
of a quite different character.

261. Ifyandy” are L? in (— 0, ), then

© 2 © 0
</ y’zdx> </ yzdx/ Yy 2dx

unless y=0. The (unit) constant is the best possible.
In fact (as in the proof of Theorem 260) yy’— 0 and

/ y’zdx = / yy”dx f yzdx/ Yy de=dJyJ,.

To prove the consta.nt best possible, we take y=sinx for |z|<nm, y=0
for | x| >mnm, and round off the angles at = + nx so as to make y”’ con-
tinuous. We can plainly do this with changes in the three integrals which
are bounded when n — o0, and then each of them differs boundedly from n,

so that J2>(1—e) o,
if n is sufficiently large.

MISCELLANEOUS THEOREMS AND EXAMPLES
262, If y(0)=%(1)=0 and y’ is L?, then

1
2
fox(l —z dx<§/ y’?dx,
unless y=cz (1 —x).

(1 To=[ (-5 )

then (E) 18 x(l—x)y"+2y=0,
and y=ax (1 —z) is an extremal satisfying the conditions whatever be «.
By varying « we can define a field® round any particular extremal. It will
be found that in this case J( Y) =0 and
_1-2z o 1=2x _ 1-2x )2
P= z(1— x)y’ W= 2x(1 x)y’ & %{ Tz(1—- x)yf

a The field differs slightly in character from those described in § 7.5, since each

extremal passes through (0, 0) and (1, 0).

HI I3
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The underlying identity is

/( i) *ﬁ@'“fﬁ:%yyd”'

The theorem should be compared with Theorem 225. For fuller details,
and proofs of both theorems by means of Legendre functions, see Hardy
and Littlewood (10).]

263, If J= / yide, K = f *y’2dw, then
0 0

4JK 0)}4
unless y =ae??, > oy
264. If
(@) y(-)=-1, y(1)=1, y'(-1)=y'(1)=0

and k is a positive integer, then
4k — 1\ 2k-1
17\2k
[z (=),
with inequality unless
_4k—1 = 2k-1
V=72 *"
[This is an example of the theory of § 7.8, simpler than that in the text.
In this case g =2 qgk_ 2k(z’ _ q)qgk_l.]

2 (4k=1)/(2k~1)

265. If y satisfies (@), and has a second derivative y’’ for every z of
(—1, 1), then | y”"(x) | > 2 for some z.

[This theorem, which is easily proved directly, corresponds to the
limiting case k= o0 of Theorem 264. The extremal curve of Theorem 264

reduces to y=2x—z?sgnw.

For this curve y’'=2(1—|z|), and y”’ = — 2sgnx except for =0. There
is no second derivative at the origin.]
266, Ifyis L2 2’=y, and

y(0)=y(27) =2(0)=2(27)=0,
then

w o (xcosm—sinx)y+(1—005x)z}2
202\ dp =
/0 (y?—y?)do /O {y + 2—-2cosz—zxsinx dx.

[This identity, which gives another (though less simple) proof of
Theorem 258, is the result of treating Wirtinger’s inequality as a case of
Lagrange’s problem, on the lines of §7.8.]

2617. /w(y2+2y’2+y"2) dz>3{y(0)}?
unless ‘ y=Ce*(x+2).
268. If k=1 and y and y”’ are L* in (— o0, o) or (0, o), then
1y |Fdo)* <K (k) [ |y |Fdzf|y” |*du,
the integrals being taken over the interval in question.
[We are unable to determine the best value of K, even when k=4.]
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269, If k>1 and y and y”’ are L* and L* respectively, then

o © 1/k o 1/x
[~ vmase(f7 tuas)™ ([ 1 va)™,

unless y is nul.
270. If y’is L2, then

. ®© y4 3 0 ’ 2
(i) . ;;,daa<:z Y dx)
unless
.. =
(ii) Y=m+d’
where a and b are positive,in which case there isequality. Moregenerally, if
(iii) I>k>1, rzé—l,
and y’ is positive and L*, then
© gt B 1783
(iv) f Y dw<K ( / y'kdx) ,
0o 0
where T
-1 rI'(lfr)
v) K== I‘(l/r)l“{(l-—l)/r}] g
unless
5 _ z
(vi) y—(axr+b)1/r‘

[It is easy to prove an inequality of the type of (i) but with a less
favourable constant. Thus, if we denote the integrals in (i) by K and J

respectively, we have - 2
yi= <[ y’dt) =Jz
0

© 5,4 © 9,2
and so K=/ %dng/ Y de<agr,
0 X 0 X

by Theorem 253. We know no elementary proof of the full result. For
details of the variational proof, which is much more difficult than that
of Theorem 260, we must refer to Bliss (3).]

271. If a>1, and G (f) is the geometric mean of f over (0, ), then

[ uies oo (2} (o
o a—1 a—1 0 ’
unless f=Cexp(— Bx*1),
[See Hardy and Littlewood (7). The limiting case «=1 corresponds to
Theorem 335.]
272. In the problem
/ ” y2dx maximum, / ”

x?y?dx and f N y"2dx given’,

the Euler equation is of the form
¥y’ +(a+bx?)y=0,
and is soluble by parabolic cylinder functions. It has a solution y=e—*
if b= —a?= —(2c)2.
[Thisgivesthe variational basisfor Weyl’sinequality (see Theorem 226).]
13-2

2



CHAPTER VIII

SOME THEOREMS CONCERNING BILINEAR
AND MULTILINEAR FORMS ‘

8.1. Introduction. In this chapter we prove a number of
general theorems concerning the maxima of bilinear and multi-
linear forms. In the early part of the chapter we consider forms
in » sets of variables, but suppose the variables and coefficients
positive. Later, we abandon this restriction, but suppose that
n=2; and most of the latter part of the chapter is occupied by
the proof of an important theorem of M. Riesz concerning
bilinear forms with complex variables and coefficients.

POSITIVE MULTILINEAR FORMS

8.2. An inequality for multilinear forms with positive
variables and coefficients. We suppose that
Xis Yjs oees 2
are n sets of variables, 4, j, ..., £ running from — oo to c0; and that
DINDIND I
(2 ?

indicate respectively summation with respect to all suffixes,
summation with respect to ¢ only, and summation with respect
toj, ..., k (all suffixes except ¢). The sum
S=2ay 1%:Y; %
is called a multilinear form in the variables , vy, ..., 2. When 7 is
1, 2, or 3, the form is said to be linear, bilinear, or trilinear.
If the series are absolutely convergent, then
S= E..’L'i Z'aij_..kyj cee Zk = Ey, Z'aﬁ_“kxi vee Zk= ere e
(3 ? J J

273. Suppose that

8.21) O<asl, 0<B<1, .., O<ysl
and

-1 .
82.2) 0=2FBE YT nn B )

n—1
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that &, B, ..., y are defined by

(823) w—a=p—f=..=y—p="TET ]
(sothat 0<&=<a,...,0 <y =<vy), and that p, o, ..., T are positive and
(8.2.4) Gp+pBo+...+pr=1.
Suppose Sfurther that
2,20, ¥;20, .., 2,20, a; 20,
(8.2.5) ZzlesX, Iy <Y, .., ZWsZ,
- P "
and '

(8:2.6) T'aj; ,=A,54, Yaj ,=BSB,
2
%4}y, = O S C.

ooy

Then S=2aij.__kxiyj...zk§A&BB...OT’XD‘YB...ZV

We have in fact

- B _ o+ p4.+y—1 _ =
l—-g—B—...—y= B 1 14 =a—g=LB—B=

and so, by Theorem 11,2 )
S=3 (apxV®)a (aoyUB)B ... (a7 2117)7 (wloyUB. .. ZUly1-G—B——7

< (Baraln)d (TaoyVB)B ... (Zam2lr)? (ZalleylB .., lyi-a—p——7
= (alZ'ar)¥... (ZzW%’m)? (Bale... %zl/Y)l—a—"'—?
= (;lX)&l... (CZyr (kXY Z)1—§ “““ 4
=A%BB.. . OVX>YB... 2.

We note some special cases.

(1) If . at+B+...+y=1,

then a=a, B=B, ... ¥=v,
and the statement of the theorem becomes simpler.

(2) When n=2, the second of the conditions (8.2.2) is satis-
fied automatically. If we write®

1 1

a::—, =—,
p A q

then &:—1,, -=l,.
q p

@ Extended to infinite series: we shall not usually repeat this remark,

b In the preceding chapters the letters p and g have been reserved for the weights
of mean values. In this chapter they are not required for this purpose, and we use
them ag indices.
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Exchanging p and o, and 4 and B, we obtain
274, If

1 1
pzl, zl, —+-21, >0, 0>0, ——+—=1
? ?q P Py

Za <A, Za;°<B, ZxP=X, ZygssY,
i ] i i

AR~}

then 8 =Sa;;x;y; < AU’ Bld X1lp Ylia,
(8) An interesting and still more special case is that in which
p=o= 1’ q=7p g 1
1
275. I >1, ¢g>1, —+-=1,
i P q i

<4, Ea <B, le’<X Zy,<1<Y

1_’) = 1=
then S= ZZa Y S (BX Y (A Y e,
For the case p=q=2, see Frobenius (1) and Schur (1).

8.3. A theorem of W. H. Young. Another specialisation of
Theorem 274 leads to an inequality of W. H. Young which is
very important in the theory of Fourier series.

Suppose that o=p > 1, so that

1+ ! l<1, —1-+1>1;
¢ p q
and take a;;=a;;. Then
Zaijp = E_aﬁ/’ =Xa,,=A,
2 3
say, for every j and 7 respectively. Hence, if we write

(8.3.1) Zp= X ;Y;,
we have, by Theorem 274,

(8.3.2) 2a,z,=Za,,;2;y; < Alp XUp YVa,

Since (8.3.2) is true for all @,, for which Za,r= 4, it follows, by
Theorem 15, that S, ¢ < XPo Yo',
This must be replaced, when p=1, by z, < XVr Ye,

We have thus proved (apart from the specification of the cases
of equality) the following theorem of Young?.

& Young (3, 4, 6). Young does not consider the question of equality.
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276. If p>1, g>1, %+$>1,
and z,, 18 defined by (8.3.1), then

(8.3.3) ZZnﬁFE < (zxip)fmq?i (Ey,'l)fmp‘_p&.

Equality can occur only if all the x, or all the y, or all the x but one
and all the y but one, are zero.

We add a more direct proof which enables us to settle the
question of equality. If we write 1/p=1—A, 1/g=1—p*then
"A>0, u>0, A+u<1, and we can enunciate the theorem in the
following form.

271, If A>0, u>0, A+u<l,
2 18 defined by (8.3.1), and S, (x) as in §2.10, then
(8.3.4) G- (2) = Sy (®) Syja—p (¥)s

with equality only in the cases specified tn Theorem 276.

Let v=1—A—pu. It follows from Theorem 11 that
1 Ao w v v 1 A 1 e 101
(Buv)” = (Zurtv oty wrty oty < (Zurtr)r (Zortr) Surtrontr,
Applying this inequality, with

L U=Yn =Y, V=T,
to (8.3.1), we obtain

1 Iy 1 A 1 1
(835) znv < (z.:xiﬂ"f-v)v (Z.yj/\+v)v 3 xiM+VyjA+v’
i J i+j=n
1w A 11
(8.3.6) 2, sV @Sy T oaf Yt
e s t+i=n
Hence
1 e A 11
v v v v v +v Aty
52, @ @@ T T al Ty
n e v n i+j=n
Since the double sum here is equal to
1 1 1 1
v e s v
I3y =G (@81 W),
1 ] mtv Aty
1 1 1
we obtain %z, 6 | @& (),
n wtv Ay

and this is (8.3.4).
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We can dispose of the question of equality as follows.

If not all z, and not all y, are zero, there are »n such that
%;y;> 0 for some %, j for which ¢+j=n. We call the lattice point
corresponding to such a pair 4, j a point P,,. Then (8.3.5) is true,
for such an #, if, in the first two sums on the right, we limit
ourselves tovalues of ¢ and j corresponding to points P, . If there
is equality in (8.3.5), then, for such ¢, j the ratios

1 1 1 1
. A . A
xil*'i‘l' . yJ +v . xill«'f‘l’yj +v

do not depend on i and j, and the corresponding z;, and the
corresponding y;, are all equal. It follows that there can, for any
n, be only a finite number of points P,,.

Suppose that all these conditions are satisfied for a certain n.
Then equality will still be excluded in the next inequality (8.3.6),
unless the ¢ and j corresponding to the P, exhaust all ¢+ and j
for which ;>0 and y;>0. It follows that the total number of
positive x; and y; is finite. There is therefore a single point for
which z;y;,>0 and n=4+j is a minimum. For this » there is a
unique P, and, if there is equality in (8.3.6) for this n, then x;=0
and y;=0 except for the corresponding pair 4, j.

8.4. Generalisations and analogues. Theorems 276 and
277 have many interesting specialisations, generalisations, and
analogues. We state a number of these without proof.

278, IfA>0,u>0,...,v>0,A+p+...+v<l1,and

w,= z LiYjeesZps
it+i+.tk=n
then
i 1 W)€, @)© 1 ¥)...6 ;1 (2),

1—A—p—...—v 1—-a 1—n 1—v
unless all numbers of one set, or all but one of every set, are zero.
279. If Ch= L QuO...0y,
-+t .. H=n

2k
_K op
then 2,2 S (B, 2L )2 ! ,

unless all a but one are zero.
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Theorems 277-279, being ‘homogeneous in £’ in the sense
of § 1.4, have integral analogues.

280. IfA>0,u>0,A+u<l,
S=([" rras)”

and h(@)= f " fog@—ba,
then 31 1 (h)<31~1/ f )SfL (),

unless f or g ts nul.

281, If A>0, u>0, A+ pu<l,

8.0 = [ gra,

and h(x)=f:f(t)g(x—t)dt,

then Ri (h)<8L(f)S.L(g)’

1
1—A—p 1—A ¢ 1—w

unless f or g is nul.

282. If ks an integer and

s@=[" [ tEfE) .S

xflx—2;— ... — %) de,dy ... day_yq,
© w 2k 2k—1

then f #2(z)dx < (f [ (x) dx) .

283. If

¢>(x)=ff(x1) v f@p_)f@—2y— o — 2y ) day .o Ay g,

the integration being defined by

z; 20, XZx;Sw,

then J : P2 (x)dx = (J ’ % () dx) 2k_1.

0
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284. If f(x) has the period 2, and

e N M VA B CA
Xf(x—2y— .. —Xp_;)dxyda, ... d2y_y,

™ ™ _2k_ 2k—1
then 517—7 _”{qS (x)}2dx < (51;_[ k=1 () dx)

bt

8.5, Applications to Fourier series. Theorems 279 and 284 have
important applications in the theory of Fourier series. Here we are con-
cerned with functions and coefficients which are not positive, but the
theorems which we have proved are sufficient for the applications.

Suppose first that f(x) and g (x) are complex functions of L?, and that

5 a,er®, Xb,en®

are their complex Fourier series. Then it is well known that
(8.5.1) sa,5,= " f(2)g@) de
2]
(the bar denoting the conjugate). In particular, if f(x) is L?,
1 L4
(8.5.2) Z]an|2=2—7/_ﬂ|f|2dx.

Conversely, if X | a, |2 is convergent, there is an f(z) of L? which has the
a, as its Fourier constants and satisfies (8.5.2).

These theorems(‘Parseval’s Theorem’and ¢ the Riesz-Fischer Theorem’)
were generalised by Young and Hausdorff. We write

™ 1/p
(853)  Sy@=(Ela [, 3= (5[ 1@ |2dw) "

so that S, (a) is S,(]| a]|) as defined in §2.10, and (8.5.2) may be written

(8.5.4) Sy (a) = Ja(f)-
Young and Hausdorff proved that, if

(8.5.5) l<p=2,
then

(8.5.6) I (f)=C,(a)
and

(8.5.7) Sy (a)=3J,(f).

The limitation on p is essential. The theorems were proved first by Young
(3, 4, 6) for a special sequence of values of p and p’, viz.
2k ;L _
(8.5.8) P=gr—y, P'=2% (k=1,23,..),

and then generally by Hausdorff (2).
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We confine ourselves here to the case (8.5.8), considered by Young.
In this case (8.5.6) and (8.5.7) are corollaries of Theorems 279 and 284
respectively. For example, the ¢, of Theorem 2794 is the Fourier constant
of y=f%, and so

S =g [ 11de= o[ 412
2k 27 _» 27 ) &
=2, 2= G361, (@)
which is (8.5.6). Similarly a,* is the Fourier constant of the ¢(x) of
Theorem 284, and so (8.5.7) may be deduced from Theorem 284.

The proof of (8.5.6) and (8.5.7) for general p is decidedly more difficult:
see §8.17.

It is interesting to observe (as another application of Holder’s in-
equality) how (8.5.7) may be deduced from (8.5.6). Write

b,= I an ]P"lsgnan: ] 2 Ip’/dn
ifa,+0and |n| <N, and b, =0 otherwise; and let
g(x):Zb enis,

N
Then Sla,? = za,,,, —/ f(x)g(z)dz,
~-N

since g is a trigonometrical polynormal. Hence, using Holder’s inequality
and (8.5. 6), we obtain

Z |an|" =3() Jw (9) =35 (f) S,(0)

*3p(f)<\* |an [(p—l)p)l _Sp(f)<_%lvlanlp,>1/p

Transposing the last factor, and then making N tend to infinity, we
obtain (8.5.7).

8.6. The convexity theorem for positive multilinear
forms. In this section we prove a simple but important property
of multilinear forms with positive variables and coefficients.
The theorem which we prove is a mere corollary of Holder’s in-
equality, but it is useful, and will serve as an introduction to the
deeper theorem of §8.13.

285. Suppose that 20,20, ..., 220, and that

. Mot,ﬂ, Y
18 the upper bound of

S=2a; ,0Y;- 2
forallz,y, ..., z for which
Sale<l, Iy, ..., XL

& Now, of course, formed from complex a.
b M. Riesz (1): Riesz has n=2.
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then log M, g ..., 18 a convex function of a, B, ..., y in the region
«>0,B8>0,...,y>0.

By a convex function of nvariables «, 8, ..., y we mean (§3.12)
a function convex along anystraight line in the space of o, 8, ..., y.
We have to verify that if

520, 6,20, t+t,=1,

a=tiay iy, B=tPi+0Ps oy y=biyit+iays,
then
(8.6'1) MO‘,B,---,YéMtlfxlyBl,---:)’1M12062.32,---,)'2’
Now

S=3axy...z=2 (ax/cyBiB .. 21 (axlayPdB ,  2viv)e
< (Eaxallo‘yﬁxlﬁ .. z')’ﬂ?)tl (Zaz“z/ayﬁdﬁ s zYz/)’)lz .

Since 3 (/o) =Fgla <], ...,
the first sum on the right does not exceed M, g, ... ..; and simi-
larly the second does not exceed M, g, ... ., This proves (8.6.1).

The theorem may be extended to the closed region «=0,
B=0, ..., if we replace the conditions SzV*<1, Zy¥f<1, ... by
z=<1l,y=<1,...whena, B3, ... are zero.

Suppose for example that n =2 and

Sa;<A, Za,;<B.
i J

L) =

Then M, <A and M, <B, so that M , ,<B*A* for
O<a<l. If p>1, ¢g=p’, we may take a=1/p, 1 —a=1/g; and
then we obtain

My S Malo Mol < BY 4™,

which is equivalent to the result of Theorem 275.

GENERALITIES CONCERNING BILINEAR FORMS

8.7. General bilinear forms. So far we have been occupied
with ‘positive’ multilinear forms, i.e. forms whose variables and
coefficients are non-negative. The most important multilinear
forms are bilinear, and the remainder of this chapter, and most of
the next, is concerned, from one point of view or another, with
bilinear forms, which will not generally be positive.
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We shall denote the form whose coefficients are a;; by A, and
similarly with other letters. We change the convention of §8.1
concerning the range of the suffixes; until the end of § 8.12,4, j, ...
run from 1 to co. We write

& 0)=C,(12)= (1)
We also write
(8.7.1) Z-a,‘:jxi=X

1/r

i ?%'?/F Y.
When the form is positive

(8.7.2) A=3Za,xy,=3x, Y, =3y, X;,
) i )

the convergence of any one of these series involving the con-
vergence of the others and the equality of the three. The equations
(8.7.2) are true also for complex a, z, ¥ when the form is finite.

We shall make repeated use of the following general theorems?.

286. Suppose that /

/ 1 1 1 1
>1, >1, —4+—=1, —+5=1
P 1 pp q q
(so that p' > 1, ¢’ >A) and that a, x, y are real and non-negative.
Then the three assgrtions

(8.7.3) |4 (2,9)| <K&, (2)8,(y)
for all x, y;P

(8.7.4) Gy (X)=KG, ()
for all x;

(8.7.5) Sy (Y)=KG,(y)

for all y; are equivalent.

287. The three assertions
(i) there is inequality in (8.7.3), unless either (x;) or (y;) 1s nul;
(i1) there is inequality in (8.7.4), unless (x;) 1s nul;
(iii) there is inequality in (8.7.5), unless (y;) is nul;
are also equivalent.

a For the case p=¢=2, see Hellinger and Toeplitz (1); for ¢=p’, F. Riesz (1).
The substance of the general theorems is to be found in M. Riesz (1). The im-
portant cases are naturally those in which K has its least possible value, i.e. is the
bound of A4 (§8.8).

b Here 4 = 0; but we write | A | for A in view of Theorem 288,
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288. When the forms are finite, Theorems 286 and 287 are true
also for forms with complex variables and coefficients.

Theorem 286 is a simple corollary of Theorems 13 and 15.
It follows from (8.7.2) and Theorem 13 that

(8.7.6) 4 =§y,-X,-§@q (y) €y (X),

so that (8.7.4) is a sufficient condition for the truth of (8.7.3);
and Theorem 15 shows that it is also a necessary condition. Hence
(8.7.3) and (8.7.4) are equivalent, and similarly (8.7.3) and
(8.7.5) are equivalent.

There will be inequality in (8.7.3) unless (y;) is nul or there
is equality in (8.7.4). Hence the second assertion of Theorem 287
implies the first. If the z;, and so the X, are given, we can, by
Theorem 13, choose a non-nul (y;) so that there shall be equality
in (8.7.6). Hence, if there is equality in (8.7.4) for a non-nul
(z;), then there is equality in (8.7.3) for a non-nul (z;) and (y;).
Hence the two assertions are equivalent, and similarly the first
and third are equivalent. This proves Theorem 287.

Finally, the whole argument applies equally to complex a, , ¥
when the forms are finitea. We have only to use Theorem 14
instead of Theorem 13.

The most important case is that in which ¢=1p’, ¢'=p, when
(8.7.3), (8.7.4), and (8.7.5) become

IA | éK@p(x)@p'(y): @p (X) éK@p (x): @p‘(Y) éK@p’(y)

BOUNDED BILINEAR FORMS

8.8. Definition of a bounded bilinear form. Throughoutthe
rest of this chapter we suppose, except when there is an explicit
statement to the contrary, that the variables and coefficients in
the forms considered are arbitrary real or complex numbers.

We describe the aggregate of all sets (z) or «,, z,, ..., real or
complex, for which

(8.8.1) G,(x)=6,(|z|)=(2|z;|P)P=1
as space [p]. Here p is any positive number; but usually p> 1.

& Otherwise there are difficulties concerning the mode of summation of 4.
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Similarly we describe the aggregate of sets (x, ) for which

(8.8.2) S,(x)=1, G,(y)=1
as space [p, q]. The most important case is that in which p=g=2.
The importance of this space was first recognised by Hilbert, and
we may describe it shortly as Hilbert space.

In our general definition p or ¢ may be co, if we interpret S, ()
as Max | z |. Thus space [0, o] is the aggregate of sets (z, y) for
which |z| =1, |y| 1.

A bilinear form

(8.8.3) A=A (x,y)=2Za;r;y;
is said to be bounded in [p, q] if

(8.8.4) |4, (z,9)] =l .21 .Elaﬁxiyj <M,
r=17=

where M is independent of the z and y, and of n, for all points of
[p, q]. We call 4,, a section (Abschnitt) of A: a form is bounded
if its sections are bounded.

It is plain that (8.8.4) will hold for all points of [p, q] if it
holds whenever

(8.8.5) S, (x)=1, &,(y)=1.
In this case (8.8.4) may be written
(8.8.6) | 4, (=y)| £ M, ()8, (y),

and here both sides are homogeneous of degree 1 in 2 and in y, so
that the conditions (8.8.5) are immaterial. We might therefore
have taken (8.8.6), with unrestricted z, 7, in our definition of a
bounded form.

So far M has been any number for which (8.8.4) or (8.8.6) is
true; if so, we say that 4 is bounded by M, or M is a bound of A.
It is natural to take M to be the smallest such bound, and then
we say that M is the bound of 4.2

a If M,, is the maximum of 4,,, under the conditions

%]zilpél: %lyjlq§la
then plainly M, < M, ., and M, is bounded in n. Hence
M= lim M,
n—»r ©
exists, and is the smallest bound of 4.
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An important special case is that in which p=g¢ and
A3 =i

when 4 is said to be symmetrical. In this case a necessary and
sufficient condition that A should be bounded is that the quadratic

Jform A (x,x)=ZZa,;,x;

should be bounded. When we say that A (z, ) is bounded, we
mean, naturally, that 4 (z, y) is bounded when the x and y are
the same, i.e. that
| 4, (2, ) | =M

for all # for which &, (z)=1.

In the first place, it is obvious that the condition is necessary,
and that the bound of 4 (z, x) does not exceed that of 4 (z, y).
That the condition is sufficient follows from the identity

(8.8.7) An(x’y);_%An(x‘l‘y’x"'y)—%An(x—y’x_y)'
When p=2 we can go a little further; the bounds of A4 (z, x) and

A (x,y) are the same. In fact,if M is the bound of 4 (z, z), then
(8.8.7) gives

| 4y @y | SEME(|z+y P+ |o—y ) =3UZ (|2 *+]|y ) = M.

It is evident that, when the coefficients a are positive, 4 is
bounded if it is bounded for non-negative x and y, and that its
bound may be defined with reference only to such x and y. If

A*=ZZ I aij I x,‘y,
is bounded, 4 is said to be absolutely bounded.

8.9. Some properties of bounded forms in [p, ¢g]. The
theory of bounded forms is very important, but we cannot
develop it systematically here. We prove enough to enable us to
give an account of some special forms in which we shall be
interested in the sequel.

We take p>1, ¢>1, and, as usual,

P q

p =p——-—i’ q =é:‘i-
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289. If A has the bound M in [p, q], then
(8.9.1) Z|a; P M, Z|ayl? M
i j

Jor every j and i respectively.
Take all the x zero except z;, ;=1, and all the y zero except

Y15 Y25 o Yy By (8.8.6),
J 1q
?aljyj .

J
=1 (%] 511)
1
Since this is true for all y; and allJ, it follows, by Theorem 15, that
5oy, |¢ 5 M.

This is the second of (8.9.1), and the first is proved similarly.

Thus a necessary condition for boundedness in [2, 2] is that
Zlay|t<oo, Z|ay;|*<oo
v 7
for all j and 4. The condition

ZX | a;|2< 0
is sufficient, since then

|A2=Z|ay2E |22y | =2 ay; |22 |2 |22 | y; 1%
i,J i,J 0 i j
but this condition is by no means necessary, even when the coefficients
are positive. Thus, as we shall see in § 8.12, :

X2
is bounded. .
290. Any row or column of a bounded form is absolutely con-
vergent.

For
E‘l“ﬁxi?/g'l <yl (Z]xi lp)up(%::'aij [PV < M | y;| S, (),

by Theorem 289.

It is plain that, when a;;= 0, a necessary condition that 4 should be
bounded is that

(8.9.2) EEa,—,xiyj
should be convergent for all positive « and y in [p, ¢]. It is natural to ask
whether this is also true for bounded forms with arbitrary real or com-
plex coefficients, i.e. whether, when A4 is bounded, the series (8.9.2) is
necessarily convergent (for the z and y of [p, ¢]) in any of the recognised
senses. The answer is affirmative: if 4 is bounded, the series (8.9.2) is
convergent (indeed uniformly) in the three standard senses, as a double

HI 14
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series in Pringsheim’s sense or as a repeated sum by rows or columns.
But the idea of the convergence of the double series is irrelevant to our
present purpose (and is not very important in the general theory), and
we shall not prove these theorems. See Hellinger and Toeplitz (1) for
the case [2, 2].

8.10. The Faltung of two forms in [p, p’]. We suppose now
that g=p’". If 4 and B are bounded in [p, p'], with bounds M
and N, then, by Theorem 289,

Z|ag|PSMP, Z|b;|?" S NP,
k k

and therefore, by Theorem 13, the series

(8.10.1) f,-j=%‘.aikbk,-
is absolutely convergent. We call

F=F (4, B)=ZXfyxy;

the Faltung of A and B. The order of 4 and Bis relevant, F (4, B)
and F (B, 4) being usually different forms.

291. If A and B have the bounds M and N in [p, p'], then F is
bounded in [p, p'], and its bound does not exceed M N .

Suppose that m =n and that x;=0 for ¢>n. Then, since 4 is
bounded by M in [p, p'], we have

=M

lAm|=’ 2 Y Xy
k=1 1i=1

for all # and y for which &,(z)<1 and &, (y)<1. Hence, by
Theorem 15,

m | n »
2| X apx; SMP
k=1i=1
for m =n; and therefore
n 0
(8.10.2) 3| S age| <M.
k |i=1
Similarly
n '
(8.10.3) 2| 2 byy;| SNP.
k |j=1
But
(8.10.4)

n n n n n n
Z wax,;y’= Z 2 x.‘yyzazkbkj=z(‘z aikxi) ('2 bkjyj) .
1 i=1j=1 k k \i=1 j=1

i=1j=
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From (8.10.2), (8.10.3), (8.10.4), and Theorem 13, it follows that

> fijxiyj’ SMN,
i=1j=1

which proves the theorem.
It is plain that we can define the Faltung of 4 and B, whether
A and B are bounded or not, whenever the series

2,:*|“ik|p’ %‘bkjlp’
are convergent.

8.11. Some special theorems on forms in [2, 2].2 In this
section we confine ourselves to the classical case p=¢=2, and
suppose the variables and coefficients real (though not generally
positive). We suppose then that A is a real form, and denote by

(8.11.1) A'=ZZa;r;y;

the form obtained from A4 by exchanging suffixes in a,;.
If

(8.11.2) 2a?,, < oo
k
for all ¢, the series
(8.11.3) Cij = Dy Uy,
k

are absolutely convergent, and, by (8.10.1),
(8.11.4) C(z,y)=2Zcy2;y;

is the Faltung F (4, A4’) of A and A’. In particular C (z, %) is a
quadratic form whose section C,, is given, after (8.10.4), by

n 2
(8.11.5) O’n(x,x)=2( z a,ikxi) .
£ \i=1
We write
O (z,z)=N(4)
and call C (z,x) the norm of A. When A satisfies (8.11.2), we
say that the norm of A exists. The existence of N (4) is, after

Theorem 289, a necessary condition for the boundedness of 4.
If 4 is bounded, with bound 7, then, by Theorem 289, N (4)

a Hellinger and Toeplitz (1), Schur (1).

14-2
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is bounded, and its bound P does not exceed M2. On the other

hand, whenever N (4) exists,
P (n 2) %
() 12 ()|
i=1 1

< (Elyﬁ) {C, @, @)}

Hence, if N (A4) is bounded by P, A is bounded by P*.
Collecting our results, we obtain

[ 4, (z, y)l—l ) Yi, 2 iy i

292. A necessary and sufficient condition that a real form A should
be bounded in [2, 2] 1s that the norm N (A) of A should exist and be
bounded. If M is the bound of A, and P that of N (A4), then

P=M2
A useful corollary is
293. If A, B, ... is a finite set of forms whose norms exist, and
H (z,0)= N (4)+ N (B)+
18 bounded, with bound P, then A, B, ... are bounded, with bounds
which do not exceed P*.

In fact, if N, (4), ... are sections of N (4), ..., then N, (4), ...

are non-negative?, by (8.11.5), and
H, (x,2)=N,(4)+N,(B)+....
Hence N, (4), ... are bounded by P?.

8.12. Application to Hilbert’s forms. We now apply
Theorem 293 to two very important special forms first studied
by Hilbert.

294. The forms

A=33 S pozy i,
t+j-1 =J
where i, j=1, 2, ... and the dash implies the omission of the terms
in which 1=7, are bounded in real space [2, 2], with bounds not
exceeding .
a That is to say, assume non-negative values only for real x. The phrase ‘positive

form’ has been used in this chapter in a different sense, that of a form with non-
negative coefficients and variables.
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It is plain that each form satisfies condition (8.11.2). We write
N(A)=ZZc, x;x;, N(B)=ZZd;zy;

and calculate c;;+d,;.
If i=j, we have

(8.12.1)
00 1 @ 1 1
, =3 1.2,
Cipt+dyy= - I(H_]c 1)2 +E L (G—k)? _ZC,(,(z—k)2 a7
If i <7, then
Cytdy= 3 : +E o
G 2 G k— D(G+k-1) kl(i-k)(j—k)

B JE e
k= (1= R) (J— k) 1—Jha—n\j—k 1—k)’
the dash here excluding the values k=14 and k=j. If K is greater
than both | 7| and |j |, then

E /1 1
Zelie )

2 1 1 1 1
=F9+(]_:X+ ..-+]._+_—“K—m— ...—m) ’
with two series unbroken except for the omission of terms with
denominator 0, and the bracket tends to zero when K —>oc0.2
Hence

2 ..
(8.12.2) Cij‘i‘dij:(i—_j—)é (Z#:j).

From (8.12.1) and (8.12.2) it follows that

(8.123) N((A4A)+N(B)= —Zx 2+ 225y L @ —j)"’
The first form here has the bound % #?%; and, since
1 1
’ 2
Pl el e L

the second satisfies the condltlons of Theorem 275, and has the
bound § 7% Hence N (4)+ N (B) has the bound #2, and Theorem
294 follows from Theorem 293.b

a All terms cancel except a number independent of K.
b The proof is that of Schur (1).
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That 4 is bounded can be proved more simply: we give a number of
proofs in Ch. IX.

4 is absolutely bounded (§ 8.8), since its coefficients are positive. It is
important to observe that this is not true of B. To prove this, it is enough
to prove that

D)l LA MERP
[i=51"

for a positive set (x, y) for which Zx,2 and Zy,? are convergent. We take

@=i-t(log) ™ (i>1), y;=j-*(logj)™ (j>1)
and z; =x,, y; =y,. Then

sy S > S 2Tt ¥
“ j=1k=1 Vil = k=1 I=k+1 it
21 & 1 21 du g

=X T o2 X =3
j=1 k1= L(10g 2= 1250k ) u(logu)? "1, klog(k+ 1)’
and this series is divergent.

We shall see in Ch. IX that 4 is bounded in [p, p’]. B is also bounded
in [p, p’], but the proof is much more difficult: see M. Riesz (1, 2), Titch-
marsh (2, 3).

THE THEOREM OF M. RIESZ

8.13. The convexity theorem for bilinear forms with
complex variables and coefficients. We prove next a very
important theorem due to M. Riesz?. This, like Theorem 285,
asserts the convexity of log M , g, where M , gis the upper bound
of a form of the type 4; but in Riesz’s theorem the form is
bilinear, the a, z, y are general complex numbers, and convexity
is proved only in a restricted domain of o and S.

It is essential to Riesz’s argument that M, g should be an
attained maximum and not merely an upper bound; and we
therefore consider a finite bilinear form

(8.13.1) A=% Ea”x Y-

1=1j=

295. Suppose that M , g is the maximum of A for
n
(8.13.2) Blaios1, By #<1,
1 1

it being understood that, if a=0 or B=0, these inequalities are

a M. Riesz (1). The proof which we give of the theorem is substantially that
of Riesz. An alternative proof has been given (not quite completely) by Paley
(2, 4).
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replaced by |x;|<1 or |y;| <1. Then log M, g is convex in the
triangle

(8.13.3) 0<a<l, 0<B<1, a+fzl.

We have to prove that, if («,, 8;) and («,, B,) are two points of
the triangle (8.13.3), 0<¢<1, and

(8.13.4) a=oyt+oay(1—1), B=pit+By(1—1),
then

(8.13.5) M, <M g My,
After Theorem 88, it is enough to prove that (8.13.5) is true,
when « and B are given, for some t for which 0<t< 1.2

We define p, q, p’, ¢’ by

(813.6) w=2, B=t, T4i=1, i4i-l.

Pr 9 P P q ¢

There is no finite system (p, ¢) corresponding to the points (0, 1)
and (1, 0) of the triangle (8.13.3). These points are particularly
important, but we may disregard them in the proof, and include
them in the result, on grounds of continuity.

We may then write (8.13.2) in the form

(8.13.7) S,(®)=1, B,(y)=<1;

and the inequalities (8.13.3) are equivalent to either of
(8.13.8) gzpzl

and
(8.13.9) p'zqz1.

We shall also write, as in §8.7,
(8.13.10) X;=X;(x)=2a,z;, Y;=Y;(y)=2Za;y;,
1 7
so that

j i
or simply ’
(8.13.12) A=3Xy=2xY.

a We take for granted the continuity of M, ,g is a maximum over the
space defined by (8 13.2), a real space of 2m+5n dlmenswns (when we separate
the real and imaginary parts of the z and the y), which varies continuously with
o and B; and the proof that this maximum is continuous, though tiresome in
detail, belongs to the elements of analysis.
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Theorem 286 enables us to give another definition of M, g
which is more convenient for our present purpose. It is plain
that M, g attains its maximum for a set (%, y) in which

(8.13.13) Gy(x)=1, G, (y)=1;
and M, gis the least number K satisfying
(8.13.14) | 4| <K&, (x)&,(y)

for all such (x, y). Since both sides are homogeneous of degree 1

in z and y, the restrictions (8.13.13) are now irrelevant, and M, g

may be defined as the least K satisfying (8.13.14) for all (z, y).2
By Theorem 286, this is also the least K satisfying

(8.13.15) B, (X)< KB, (2)
for all z, or
(8.13.16) 8, (Y)<KG,(y)
for all y. We may therefore define M, g by
—Max S _yr Gy (Y)
(8.13.17) M, pg=Max CE) =Max 8,

the maxima being taken for all non-nul sets z or y.

8.14. Further properties of a maximal set (2, ). Suppose
that (2%, y*) is a set of (, y), subject to (8.13.7), for which | 4 |
attains its maximum, and that X*, Y* are the corresponding
values of X, Y. It is obvious (as we have observed already) that

(8.14.1) Sp(x¥) =1, G, (y*)=1.

Also, as in (8.7.6),

(8-14'2) IAlégq’(X)@q(y)’ [Alé@p,(Y)@p(x)
There must be equality in each of (8.14.2) when z,y have the
values z*, y*; for otherwise we could increase | 4 | by leaving
the #, X unaltered and changing the y, or by leaving the y, ¥
unaltered and changing the 2. Hence

Mo =A% y*) | =Gy (X*) B, (y*) =By (Y*) S (2*).
Further, by Theorem 14,
| X* |7 = | g;* |4,

or

(8.14.3) | X% | =]y |22,

® This is merely a repetition of an argument used already in §8.8.
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where w is positive and independent of j; and
: arg X5 y¥
is independent of j. Hence

Mo p=|A4 (% y*) | =| ZX*y* | =Z| X*y* | = 0D |y* |'=w.
Substituting in (8.14.3), and adding the corresponding result for
Y *, we obtain

(8.14.4) | X*|=M,gly*|* | Y*|=Myp|a* [P

8.15. Proof of Theorem 295. In what follows we suppose
(%, y) a maximal set (for the indices «, 8), omitting the asterisks.
We write p; =1/«;, and so on, and M, M,, M, for M, g, M, g,
M,,, g,- Our use of p,p,,... excludes the points (0, 1), (1, 0) of
the triangle, but, as we remarked in § 8.13, this will not impair
the proof.

By (8.14.4)

MGE, o (x) = (MPY S |z, |- Do )upd
= (S| ¥, [P0)5 =B, (V).
Comparing this with (8.13.17), we obtain

(8.15.1) M) e (@) < MGy, (1)
Similarly

(8.15.2) M@%;:ll)qz'(y)éMzepz(x)'
Hence, if 0<t< 1, we have

(8.15.3)

MB35 ()86 Da " ) S ML ML & (y) €y, ().
Let us assume provisionally that there is a ¢ between 0 and 1
which satisfies
1 ¢ 1—¢t 1 ¢t 1-t

(8.15.4) L L L T
P P11 P 9 &1 9
that is to say the equations (8.13.4), and that
(8.15.5) &} (2)sGE D5 (@), S0 =SG e @)
Then (8.15.3) and (8.15.5) will give
M<M My,
from which the theorem will follow.
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It remains to justify the assumptions expressed by (8.15.4)
and (8.15.5). Let us assume further that there are numbers p and
v such that

(8.15.6) O<p=l, O<v=l,

(8.15.7)

Pe=@-1)p/p+p(1=p); 6=@-1)gv+q(1-v)

By Theorem 18,2 7log &, () =log &," () is a convex function of 7;
and the z, being a maximal set, satisfy (8.13.13). Hence

(815.8) &) =G5 ()€ T (0) =BG D" (@),

and similarly
0y (@—1)q'v q(1—v) _ la-1ae'v

(8'15~9) 6q,(y)éc(;(q—l)qz’ (y)@q (y)“g(m—l)qz’ (y)

If finally
plp_ bt gv_ 1t

(8.15.10) et
then (8.15.8) and (8.15.9) will be equivalent to (8.15.5).

In order to complete the proof, it is necessary to show that
(8.15.4), (8.15.6), (8.15.7), and (8.15.10) are consistent. These
conditions contain six equations to be satisfied by the four
numbers p, ¢, p, v, and two inequalities. The first equation
(8.15.10) gives

’

’ (/= 1D)py ¢ Py ¢
—_— —_——— _—— ]_
(p/ =1 p+1 % l—t+1 pll—-t+
, 14
and P2t D1 M=Z’z(1+f_—t)='1£_%?

and the first equation (8.15.7) gives
1=(p1"‘ Dp+ 1_p2t+p1(l—t)_i+l_—t
P Pt p P1Ps P P’
which agrees with (8.15.4).

A similar argument applies to the equations involving ¢, so
that (8.15.4) is a consequence of (8.15.7) and (8.15.10). Given
P15 15 Po» Ga> and ¢, we can find p, v from (8.15.10) and p, ¢ from
(8.15.7), and these numbers will satisfy the six equations.

a Strictly, by Theorem 18 restated as Theorem 17 was restated,in Theorem, 87.
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It remains only to examine the inequalities (8.15.6). If u and v
satisfy (8.15.10), and 0<¢< 1, the inequalities are equivalent to
7 t Py

8.15.11 B b Py

( ) 71—t p,
Since (a,, B;) and («,, B,) lie in the triangle (8.13.3), we have, by
(8.13.8) and (8.13.9),

Gus=ps 42D,
and a fortior:
Py
e
We can therefore choose ¢ so as to satisfy (8.15.11), and then all
our conditions are satisfied.

It will be observed that it is only in the last paragraph that we
use the essential inequality «+ 8= 1. When the form is positive,
this inequality is irrelevant; log M, g is then, by Theorem 285,
convex in the whole of the positive quadrant of («, B).

8.16. Applications of the theorem of M. Riesz. (i) Theo-
rem 295 is easily transformed into another theorem of very
different appearance.

296. Suppose that

(816.1)  X,(@)= % ayz; (j=1,2,...,n)

i=1
and that M¥ , is the maximum of

(§ | X; l”yy
1 /

for §|x1 |Ye<1.
1
Then log M , is convex in the triangle
(8.16.2) 0<y<a<l.
In fact, by (8.13.17),
— 6q’ (X )
M, g=Max &, @)’
Sy (X) Sy (X)
i * ) M y\ )
while M¥ y Max Ea@) ax &, @)

Hence Mmﬁ:M:’y
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if y=1/¢’=1—pB; and then the conditions (8.16.2) are equivalent
to (8.13.8) or to (8.13.3). Thus M;'Zy is a convex function of
(e, 1—17), or, what is the same thing, of («, y).

(i) 297. Suppose that X; is defined by (8.16.1); that

(8.16.3) D ALESIPAL
1 1

Jor all x; and that

(8.16.4) l<p=<2.
Then

(8.16.5) Sy (X) 2mEPP G, (x),
where

(8.16.6) m=Max |a;|.

To deduce Theorem 297 from Theorem 296, we write «=1/p,
as before, and consider the line from (4, 1) to (1, 0) in the plane
(e, ). This line lies entirely in the triangle (8.16.2); and hence,

by Theorem 296,
M¥* | S (M )20 (M )2a-t

o 1= =
for § <a< 1. Itis plain from (8.16.3) that M}, <1; and
MaX|X|<m
Zlw[ =

Hence MY _ Sm2l=m@-Plp,

which is equivalent to (8.16.5).

The condition (8.16.3) is certainly satisfied (with equality) if
(8.16.1) is a ‘unitary’ substitution, i.e. a substitution which
leaves X | |2 unaltered®. This case of the theorem was found by
F. Riesz (4), and the general theorem by M. Riesz (1).

*
M¥ =

8.17. Applications to Fourier series. Out of many other
important applications of Riesz’s theorems, we select an applica-
tion of Theorem 297 to the proof of Hausdorff’s theorems®.

a In this case n=m. A real unitary substitution is orthogonal.
b See §8.5. Riesz deduces these theorems in a different manner, and gives a number

of other applications.
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(i) Suppose that m is an odd integer and

im Y
fm(0)= E eP- pr,!a

_.%m
27y
e S ).

— m—% p2uv i),
@, =mtepvmim,

The substitution is unitary, so that
DX, =2, %
Also m=m~*. Hence, by Theorem 297,

(8.17.1) ( Fon (2””) i )Wg (|, [Py,

|
The left-hand side being an approximation to J,-(f), we may
deduce Hausdorff’s theorem (8.5.6) by passages to the limit?.

(ii) If m is again an odd integer,

im
x _fm (2’”[1») = 3 a, e2rumijm

r=—3m
1
- —2vumi/m
and X, = T _E;‘m e Ty,
then simple calculations show that
X, =mta,,
and X, 2=z, |

as before. In this case Theorem 297 gives

L))

and Hausdorff’s theorem (8.5.7) follows by appropriate passages
to the limit.

We can also, as we showed in § 8.5, deduce the second theorem
from the first.

& We now write u, v for ¢, j, and extend the summations over the range

—im<pu<im.
b If f(6) is a polynomial 30
Sz, enbl
—3M
then f,,(0) =f (6) for m = M, and the theorem for f(6) follows immediately from
(8.17.1). The extension to an arbitrary f(6) depends on the theory of ‘strong
convergence’.

(la, 77 s (52
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MISCELLANEOUS THEOREMS AND EXAMPLES

298. If p>1, and a(x,y) is measurable and positive, then the three
assertions

W [ a@yieewisaysk([ra “’( f:gwdy)"",

for all non-negative f, g;

(i) [[ay([ ey in)’ s o [yras,
for all non-negative f;
(i) [[ae([Tawnowiay)” sxe [ g ay,

for all non-negative g, are equivalent. The assertions ‘there is inequality
in (i) unless f or g is nul’, ‘there is inequality in (ii) unless f is nul’,
‘there is inequality in (iii) unless g is nul’, are also equivalent.

[Analogue of Theorems 286 and 287,with ¢ =2p’. Thereis a more general
form with both p and g arbitrary.]

299. The forms

=y __ Tili '_m-l/L
A_Zzo;+j—1+>\’ B=X2 —J+A

where A> 0, and the dash is required only if J is integral, are bounded in
[2, 2], and have bounds = if A is integral, = | cosec A= | if A is non-integral.

[Schur (1), Pélya and Szegé (1, 1, 117, 290).]
800. If p>1 and A =XXa,;z;y; has a bound M in [p, p’], and
hyy=[f.(2) g;(t) dt,

where Jlfilrdt=pr, [|g;|7dE=?,
then A*=ZZa;;h;;w;y;
has a bound My,v.

[For |A*|=|[{ZZa;w.f:(¢)y;9,(¢)}dt|
S M [{Z |2 fi(t) |73V {2 y;95(2) |77 dt
SMA[Z]a; || fi(2)|Pdeye {[Zy,|7"| g,(2) | At}
= Muw(Z |, |P)2 (2| 57 )M
For the case p=p’=2, see Schur (1).]

301. ZZ’W)* '; ;44 is bounded in [2, 2].

302. Tx S—“L/—" 2:9; is bounded in [2, 2], for any real 6. If0<0 <,

the bound does not exceed Max (0, w—#0).
[For the last two theorems see Schur (1).]
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303. If a, is the Fourier sine coefficient of an odd bounded function, or
the Fourier cosine coefficient of an even bounded function, then the forms

TX0; %Yy DXy ;Y
are bounded in [2, 2]. A I

[Toeplitz (1). Suppose that z and j run from 1 to n; that x and y are
real and Trd=Tyr=1; )
that X =3Xz;cos10, X'=2XZz;sintf, Y =3y,cosjl, Y’'=2IZy,sinjo,
and that (for example)
a,,=§ f :f(()) sinndds,

where | f| S M. A simple calculation gives
%%ai_,xiy,=;2; / "(X'Y —XY)f(6) db.
11 0

Since

I [:XY £(0)do

we find the upper bound 2M for A. Similarly in the other cases.
If for example f(6) is odd and equal to }(=—6) for 0 <0 <, then M =}~
and a, =n"1. We thus obtain the result of Theorem 294 concerning B.]
804. If (i) =X ay2;y; is bounded in [p, q], (ii) £>1, I>1, and (iii) (%),
(v;) are given sets for which S, () < 0, S,p(v) <0, then

<M f O"(X2 + Y72)df=} M (Sa® + Zy?) = § M,

A =ZZ a;uv;Y;
is bounded in [pk, ¢l].
[For [A|=sM(Z|uz|?)V?(Z|vy|?)He
< M (S |usb | sk (3| ot |8 (| [P5)158(2 |y |9t
305. The form
U,

, UiV
PN Ehn ; XY
where u; and v; are given sets of numbers satisfying
Slus 21, Zlyt=1,

is bounded, but not necessarily absolutely bounded, in [0, co].

[Take p=q=2, k=1=co0 in Theorem 304.

If the form were always absolutely bounded, then Hilbert’s form B of
§ 8.12 would be absolutely bounded, which is untrue.]

306. If Wy(a)z4,H, Dy(a)=4,H,
3
then %:zHgiml(a)§A4H.

[By Theorems 16 and 17. The result is required in the proof of the
next theorem.]
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807. If perpendiculars are drawn from the corners (+ 1, +1,..., +1)of
the ‘unit cube’ in space of /m dimensions, upon any linear [m — 1] through
the centre of the cube, then the mean of the perpendiculars lies between
two constants 4 and B, independent of m and the position of the [m —1].

308. If b= <Z [ @] 2>*’ Ci= <Z [ @i 2>*’
(1 J
then P=(ZX|ay;|$)i< K (Zb;+Ze;)=K (B+0),
where K is an absolute constant.

809. A necessary condition that a form 4 =XXa,x;y;, with real or
complex coefficients, should be bounded in [o0, c0], with bound M, is that,
in the notation of the last theorem, B, C, P should be less than KM.

[For the last five theorems see Littlewood (2).]

1, 1_1

> > = <<z

810. If pz2, q=2,p =2’
r\=__ P4 4pq

“pa—p—q’ *T3pg—2p—2¢’
and 4 is bounded in [p, ¢], with bound M, then
(ZBAYAS KM, (ScMYA<KM, (LZ|ay|*)r<KM,
where b; and c; are defined as in Theorem 308, and K depends on p and

q only.
311. If 1.1y
2%p ¢
but the conditions of Theorem 810 are satisfied in other respects, then
(ZbMAS KM, (SeMA=KM, (E|ay;|MVA<KM.

1 1
312, If <2<gq, -+ <1,
p q p g

and the conditions of Theorem 310 are satisfied otherwise, then
(ZZ|ay M= KM,

1 1
313. If >1, ¢>1, =+-<1,
b q g

a;20,

A is bounded in [p, ¢], with bound M, and
/¢

A :
Bi= <Z£'.auf’> s ViT (?“ﬁ") ’

then (BBAMAS M, (SyMASM, (EZa, s M.
[For the last four theorems see Hardy and Littlewood (13).]
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814. Hilbert’s forms in [p, p’]. It will be proved in Ch. IX that the
form A of Theorem 294 is bounded in [p, p’]. The corresponding theorem
for B lies a good deal deeper. We have to show that

@ B2 |<K6, @) 8, ),

11 =)

where K = K (p) depends only on p; or, what is, after Theorem 286, the
same thing, that

(ii) =

K3

It is enough, after Theorem 295, to prove (i) or (ii) for even integral values

of p’ (or for some subsequence of these values). This demands some

special device, the most natural, from our present point of view, being
that used by Titchmarsh (2).

2'7&‘. ? §Kp'2|y,[”’.

i




CHAPTER IX

HILBERT’S INEQUALITY AND ITS
ANALOGUES AND EXTENSIONS

9.1. Hilbert’s double series theorem. The researches of
which we give an account in this chapter originate inaremarkable
bilinear form which was first studied by Hilbert, and which we
have already encountered in §8.12, viz. the form

b,

m+n’
where m and n run from 1 toco. Ourfirst theorem isTheorem 315
below, which we state with its integral analogue and with a com-
plement of a type which will occur frequently in this chapter.

315. If p>1, p'=p/(p—1),
and Za,P<4, ZbP =B,
the summations running from 1 to oo, then
(9.1.1) w5l T gup g
m+n sin(7/p)
unless () or (b) 18 nul.
316. If p>1, p'=p/(p-1),
and [[r@asr, [“@wwse,
0 0
then
(9.1.2) f ‘dedy< A T YT
0Jo Z+Y sin (7/p)

unless f=0or g=0.

317. The constant mcosec (m[p) is the best possible constant in
each of Theorems 315 and 316.

The case p=p’ =2 of Theorem 315 is ‘Hilbert’s double series theorem’,
and was proved first (apart from the exact determination of the constant)
by Hilbert in his lectures on integral equations. Hilbert’s proof was
published by Weyl (2). The determination of the constant, and the
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integral analogue, are due to Schur (1), and the extensions to general p
to Hardy and M. Riesz: see Hardy (3). Other proofs, of the whole or
of parts of the theorems, and generalisations in different directions,
have been given by Fejér and F. Riesz (1), Francis and Littlewood (1),
Hardy (2), Hardy, Littlewood, and P6lya (1), Mulholland (1,3), Owen (1),
Pélya and Szego (1, 1, 117, 290), Schur (1), and F. Wiener (1). A number
of these generalisations will be proved or quoted later.

The inequality (9.1.1) is of the same type as the general inequality
discussed in § 8.2; but Theorem 315 is not included in Theorem 275, since

1
mm+n

is divergent. It is to be observed that = cosec aw, where « = 1/p, is (in
accordance with Theorem 295) convex for 0<a<1.

9.2. A general class of bilinear forms. We shall deduce
Theorem 315 from the following more general theorem 2.

318. Suppose that p>1, p’'=p/(p— 1), and that K (x,y) has the
Jfollowing properties:

(i) K is non-negative, and homogeneous of degree —1:
G [ K e [ Ky wdy-k
0 0

and either (iii) K (z, 1) x=Y? is a strictly decreasing function of x,
and K (1,y)y=Y? of y: or, moregenerally, (iii’) K (x,1) VP decreases
from x=1 onwards, while the interval (0, 1) can be divided into two
parts, (0, §) and (¢, 1), of which one may be nul, in the first of which
it decreases and in the second of which it increases; and K (1,y)y=—17’
has similar properties. Finally suppose that, when only the less
stringent condition (iii’) is satisfied,

(iv) K (z,2)=0.
Then
(a) 22K (m,n)a,b, <k (Za,P)'? (Zb,P)V?

unless (a) or (b) is nul;

P
(b) z (ZK (m,n) am) < k?Za,?
n \m
unless (a) vs nul;
& Hardy, Littlewood, and Pélya (1). The case p=2 of the theorem is due in sub-
stance to Schur (1): Schur supposes K (2, y) a decreasing function of both variables.
15-2
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(©) > (EK (m,m) bn)p <I7'Sh 7
unless (b) is nul. "

In each case the summations are from 1 to co. Theorems 286
and 287 show that the three conclusions (a), (b), (c) are equivalent.

We may elucidate the hypotheses by the following remarks.

(1) The convergence and equality of the two integrals in condition (ii)
is & consequence of the convergence of either, because of the homogeneity
of K.

(2) The words ‘decreasing’, ... are to be interpreted in the strict sense
throughout the theorem.

(3) £mayDbeOorl,oneoftheintervals (0, £) and (£, 1) then disappearing.

(4) In the most important application, in which

1
K (z,y)= m ’
condition (iii) is satisfied. An interesting case in which condition (iii’) is
required is
1

(@+y)—laz—yl*
In this case K (, 1) has an infinity at z=1. In such cases condition (iv) is
required in order to exclude equal pairs (m, m) from the summation.

K(z,y)= (O<a<1).®

It is easy to see that, if m and n are positive integers, and the
summations are over r=1, 2, ..., then

r r\"¥?1 (=
(9.2.1) ZK(—,I) (—) —<f K (z,1)avp dx=F,
n n n Jo

__1/ 4
(9.2.2) ZK(l,i) (ﬁ) vl
m m m

For, if (iii) is satisfied, then

f K (1,y)y=v% dy=Fk.
0

r r\~¥p1  (rin
(9.2.3) K (—, 1) (—) — <f K (z,1)x~Vp dy,
n n n r—1)in
and (9.2.1) follows by summation. If only (iii’) is satisfied, we
use (9.2.3) for r > n and for r £ én, and

-1p (r+1)/n
K(f,l) (f) %<j K (z,1) a7 de

n n rin

2 See Hardy, Littlewood, and Pélya (1).
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for én <7< mn; and the result again follows by summation when

we observe that K (1,1)= 0. The proof of (9.2.2) is similar.
Hence

1pp’ Ypp’
S5K (m,n)a,,b, = Z3a,, KU» %) b, K1’ (%)

< Pl» Qllp’,

m 1p’
where P=%a,? 2K (m,n) (—)
m n n

-1/p’
l,ﬁ) (z) ! ckSa,z,
m m m

—Sa, 3K (
m n
by (9.2.2), unless (@) is nul; and similarly
Q<kZb,>
unless (b) is nul. This proves the theorem.

1
If we tak K =
we take (x,9) 7Ty
we obtain Theorem 315. It may be shown that the & of Theorem
318 is a best possible constant, but in this direction we shall not

go beyond proving Theorem 317.2

9.3. The corresponding theorem for integrals. The
theorem for integrals corresponding to Theorem 318 is

319. Suppose that p> 1, that K (x,y) is non-negative and homo-
geneous of degree — 1, and that

fwK (@, 1) e~ Vrdo= F K (1,y)y~"v dy=Fk.
0 0
Then (a)

[T g @ns@owasayss(| “pas) ([ way)”,
o [ Ta([] K@nre da) st " pra,

© [ Fe voway) s [ gray.

If K (z,y) is positive, then there is inequality vn (b) unless f=0,
in (c) unless g =0, and in (a) unless either f=0or g=0.

2 See § 9.5. The constant % is (again in accordance with Theorem 295) convex
in a=1/p.
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The theorem may be proved by the method of §9.2, which
naturally goes rather more simply in this case. We have

f f K (z,y)f(2)g(y) dzdy
- f f f(@) Kt (g)lwg (y) K (g)wdwdy < Pup QU

where P=Jf1’ (x)dxf K(z,y) (g)llp’dy= kffl’dx

and Q=Fk f g°' dy.
If K > 0, and there is equality, then
Z 1/p’ , y 1/p
(9.3.1) AfP(x) (@) = Bg?' (y) (o_c)

for almost all .2 If we give y a value for which g (y) is positive and
finite, and for which the equivalence holds, we see that f? (z) is
equivalent to a function Cz—1, and this is inconsistent with the
convergence of [fPdx. Hence either f or g is nul. It may also be
shown that the constant is the best possible.

There is another interesting method of proof due to Schur®.
We have

f ? f@)de f " K (@,9)g () dy= f " f(@)de f " oK (@, 20) g (ew0) do
0 0 0 0

=fwf(x)dxme(l,w)g(xw)dw=me(l,w)dwfmf(x)g(zw)dx
0 0 0 0

(if any of the integrals is convergent). Applying Theorem 189 to
the inner integral, and observing that

J. g*’ (vw) da = 1 f 9* (y) dy,

w
we obtain (a); and (b) and (c) are corollaries, by Theorem 191.
The case K(x,y)=1/(x+y) gives Theorem 316. We shall
return later (§9.9) to other applications.
& That is to say it is true, for almost all y, that the two sides of (9.3.1) are

equal for almost all z. See § 6.3(d).
b Schur (1). Schur supposes p=2.
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9.4. Extensions of Theorems 318 and 319. (1) The follow-
ing theorem is in some ways more and in others less general than
Theorem 318.

320. Suppose that K (x,y) is a strictly decreasing function of
and y, and also satisfies the conditions (i) and (ii) of Theorem 318;
that A,,> 0, p,, >0,

Ap=M+A+ .o +A,, My=p+pot .o+ py,;
and that p> 1. Then
ZZK (Aps My) 47 P @ by, < b (B0, 2) 1P (2,2 )11
unless (a) or (b) s nula.

The special case A,,=m, M,=n is also a special case of
Theorem 318.

We deduce Theorem 320 from Theorem 319 by a process which
has many applications?. We interpret A, and M, as 0, and take,
in Theorem 319,

f@=Ara, (A, ,Sz<A,),
9y = .”'n—llp,bn M1 sy <M,).
If we observe that

[T 7 Rewnseow syt uiea,b,K (3, M,)
Am—1dJ Mp—1

unless a,,=0 or b, =0, we obtain Theorem 320.

If K (x,y)=1/(z+y) we obtain®

v, 1
unless (a) or (b) is nul.

(2) Theorems 318 and 319 may be extended to multiple series
or integrals of any order.

321, XX

322.0 Suppose that the n numbers p, q, ..., r satisfy

1 1 1
>1 >1, .., r>1, —+4+—+. +——-1
p>1, q P q

a For the case p=2 see Schur (1).

b Cf. § 6.4; and see, for example, §9.11.

¢ Owen (1) gives a more general but less precise result.
4 For the case p=¢g=... =7 see Schur (1).
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that K (x,y, ...,z) 18 a positive function of the n variables x,y, ..., 2,
homogeneous of degree —n+ 1; and that

@ ®© 1 1
(9.4.1) f f K(,y,....2)y 1...27rdy...dz=k.
0 0
Then

f:f:'"f:K(x:?/’---,Z)f(x)g(y).--h(z)dxdy...dz
R RIRE (e
If further

y Ve, .z K(l,y,...,2), a7V  z-WrK(x,1,...,2),...
are decreasing functions of all the variables which they involve, then
XX ZK(m,n,...,8)anb, ..., S k(Za,P)V? (Tb,0)Va... (Ze)Vr.

In virtue of the homogeneity of K, the convergence of (9.4.1)
implies the convergence and equality of all the » integrals of the
same type.

Theorem 322 may be proved by straightforward generalisations
of the proofs of Theorems 318 and 319.

9.5. Best possible constants: proof of Theorem 317. We
have still to prove Theorem 317, which asserts that the constant
m cosec (m/p) of Theorems 315 and 316 is ‘the best possible’, that
is to say that the inequalities asserted by the theorems would be
false, for some a,,, b, or f(x), g (y), if 7 cosec (7/p) were replaced
by any smaller number. The method which we use illustrates an
important general principle and may be used in the proof of many
theorems of this ‘negative’ character.

We take Ap=m—1p b —p~+alD’
where ¢ is small and positive; we may suppose that e <p’/2p.
We denote by O (1) a number which may depend upon p and e,
but is bounded when p is fixed and e—0; and by o (1) a number
which satisfies these conditions and tends to zero with e. Then

1 fmx‘l‘f dx < %m"l*f <1+ f
€ 1 1
and so

(9.5.1) Za%:Zm—l“‘=é+ 0(1), Ebg’=§+0(1).

«© 1
rl-dr=1+-,
1 €
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Also
35 dm’n f f g-a+olp y—a+ap 224 dedy
m + n r+y
= f " pl-edy j " w—1tom’ du_ .
1 1/z 14+

The error in replacing the lower limit in the inner integral by
0isless than x—/a, where o is positive and independent of ¢;2 and
1 f xl-e—edy < —15 .

«x )1 o
Hence

L ® o S
(9.5.2) Z}]m+n>fl x dxfo u 1+u+ 0(1)

=;{s~in.(1.:7/§)+o(l)}+0( )= {sm( p)

It is plain from (9.5.1) and (9.5.2) that, if k¥ is any number less

than = cosec (7/p), then

22“ 2 %> b (Sag)Ve (bp '

+0(1)}.

when e is sufficiently small.

This proves that the constant in (9.1.1) is the best possible.
Since (9.1.1) can be deduced from (9.1.2) as in §9.4, it follows
that the constant in (9.1.2) is also the best possible. We could of
course also prove this directly.

An alternative method is to take

— m—1 — n—1p’
a,=m-1Vp b =n-UP

when m <y, n<p, and a,,=0, b, =0 otherwise, and to make u
tend to infinity. The principle is the same in each case; we make
a,, and b, depend upon a parameter (e or u) in such a manner
that the series involved tend to infinity when the parametertends

a Tt is less than

1/x —B8
f w0t dy =2 ",
Jo B
l+e 1 ¢

l-—=—==
where B= 7 P

and we may take «=1/2p, if e<p’/2p.
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to a limit, and compare their values for values of the parameter
near this limit. The method is effective in the proof of very
many theorems of the type of Theorem 317. The inequalities
(9.1.1) and (9.1.2) assert unattained upper bounds; except when
both sides vanish, equality cannot occur; and it is for this reason
that the introduction of a parameter (e or u) is necessary in the
proof of the complementary theorem.

9.6. Further remarks on Hilbert’s theorems2. Theorems
315 and 316 have been proved in many different ways and have
very varied applications. In this and the next section we collect a
number of remarks which concern both proofs and applications,
and are intended to illustrate the connections between the
theorems and various parts of the theory of functions.

) (1) Theorem 315 may be deduced from Theorem 316 by the
process which led us to Theorem 321. We define f(x) and ¢ (y) by
f@=a, (m—1se<m), g(y)=b, (n—15z<n),
and observe that then

f’" f=)9@) ;. vdy s Om by

m-1Jn-1 T+Y m+n

Here, however, we can go a little further, since

1 1 2

m+n-—l—a+m+n— 1+oc>m+n— 1

for 0<a <1, and so?

J‘ J‘ dxdy 1
me1d n-1 L+Y m+n—1

If now we replace m and n by m+1 and n+ 1, we obtain a
slightly sharper form of Theorem 315, viz.

323. If the conditions of Theorem 315 are satisfied, then

CE RN O T
0o om+n+1 sin(z/p)\g ™ o " )

& We describe Theorems 315 (together with the sharper Theorem 323) and 316
as ‘Hilbert’s theorems’. Strictly, Hilbert’s theorem is Theorem 315, with p =2,

b Associate elements of the integral symmetrically situated about the centre of
the square of integration.
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Several other proofs of Hilbert’s theorem, for example the proof of
Mulholland (1), the proof of Schur given in § 8.12, the proof of Fejér and
F. Riesz given below, and the proof of Pélya and Szegé (1, 1, 290), also
give the result in this form. The last three are limited to the case p=2.

(2) The proof of Fejér and F. Riesz is based upon the theory
of analytic functions, and proceeds as follows. Suppose that
f(z)=Za, 2™ is a polynomial of degree N with non-negative co-
efficients, not identically zero. Then, by Cauchy’s Theorem,

1 w
| pr@ds= =i [ peteas;

and so
1 1 T
(9.6.1) f f2(x)dx<f fi(z)dz = %f | f(e®?) |2d8,
0 -1 -
NN N
or > O <m2al.

0 om+n+l 0 "

If we make N->oco we obtain Hilbert’s theorem, with a,,=b,,
and ‘<’ for ‘ <’. The first restriction is unimportant, since,
after § 8.8, a symmetric bilinear form in [2, 2] has a bound equal
to that of the corresponding quadratic form. To replace ‘ <’ by ‘ <’
requires a refinement of the argument which we shall not discuss
here.

The second inequality in (9.6.1) may be written

1 ™ .
[ @ rassy [ (s

and in this form it is valid whether the coefficients a,, are real or
complex, and has important function-theoretic applications?.

(3) Hilbert’s original proof depended upon the identity
T n 2

(9.6.2) / ¢ {2 (—1y (a,cosrt——b,sinrt)} dt=2m(S—T),
- 1

where S=£’1‘Z‘.a’b3, T=§£‘.’g'—12§
117+s8 11 7—8

(the dash implying that pairs r, ¢ for which r =s are omitted). From this
it follows that

T 1 2 n

(9.6.3) 2#|S—T| gﬂ/ {%(- l)'(a,cosrt—-b,sinrt)} dt=7n*3% (a2+b2).
-7 \l1 1

& See Fejér and F. Riesz (1). The inequality is actually true (and in the stricter

form with ¢<’) for any f(z), except f (z) =0, for which £ |a,, |2 is convergent; and
this is a corollary of Hilbert’s theorem, if this theorem is proved in some other way.
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If a,=b,, T disappears, and we obtain
$aray 5.
(9.6.4) )1:?r+s >:a,,
and from (9.6.4), and the remark of § 8.8 quoted under (2), we deduce

nn g b n LI ] n n
(9.65 ££%0 <Za,$> <Zb$> <ir (zag+ Zb$> )
117+8 1 1 1 1
From (9.6.3) and (9.6.5) it follows that
ki n
<n <Za$ + 253);
1 1
and hence, on grounds of homogenexty, that

|35 arbe

7| = | S5 Gl

i1 1 T—

RN
g%(mg) ():b;) .
"1 1 =S8 1 1

This gives the second result of Theorem 294, except that the constant 2«
is not the best possible constant.

9.7. Applications of Hilbert’s theorems. (1) Asanapplica-
tion of Hilbert’s theorem to the theory of analytic functions we
select the following. Suppose that f(z) is regular in |2| <1 and
belongs to the ‘complex Lebesgue class L’, i.e. that

1 L

— 0

52| |fte|a0
is bounded for r < 1. If f(z) is ‘wurzelfrei’, i.e. has no zeros in
|z[<Lthen  roy_ 3¢ sneg2()= (Sa, 22,

where g(2) also is regular in |z|<1. Since [|g(re?)|2df is
bounded, X |a,, |2 is convergent, and therefore, by Theorem 323,

| @ | | @ |
m+n+1
is convergent. A fortiori
Tr el _ ! z a,a, i

v v+ 1 v V+1 fmtn=v
is convergent.

It is fairly easy, by a method which is familiar in this part of
the theory of analytic functions, to extend the conclusion to
general f (not necessarily ‘wurzelfrei’)2. We thus obtain the

& See F. Riesz (3), Hardy and Littlewood (2). We can express f as the sum of
two ‘wurzelfrei’ functions of L.



ITS ANALOGUES AND EXTENSIONS 237

theorem: if f(z) belongs to L in |z | <1, then its integrated power
series is absolutely convergent for |z|=1.2

(2) As an application of Hilbert’s series theorem to the theory
of functions of a real variable, we prove

324.0 If f(x) is real, L2, and not nul, in (0, 1), and
1
an=f x*f(x)dx (rn=0,1,2,...),
0

1

then Za2 < nf f2(z)de.
0

The constant is the best possible.

We may plainly suppose f(z)=0. Then, if (b,) is any non-
negative and non-nul sequence,

1 1
Za,b,=2b, f xnf(x) cl.');:J~ (Zb,2") f (x) de,
0 0
(Zanbn)zéjl(anw")zdxfl f2(x)dx

_sx_tnbn ffz dx<w2b2ff2(x

m+n+1

by Hilbert’s theorem. The result now follows from Theorem 15.
To prove the constant = the best possible, consider

f(x) = (1 - x)e—},
and make ¢ tend to zero.

The integrals a,, are called the moments of f(z) in (0, 1) and are
important in many theories.

Here we have deduced Theorem 324 from Theorem 323 (with
p=2) and Theorem 15 (the converse of Holder’s inequality). We
can, if we please, reverse the argument, deducing Theorem 323
(with p=2) from Theorem 324 and Theorem 191 (the integral
analogue of Theorem 15). Suppose that g (z) =Xb,, 2", where b,, is

& Hardy and Littlewood (2). The theorem may also be stated in the form ‘if a
power series g(z)==3b,2" is of bounded variation in |z| <1, then 3|b,| is conver-
gent’. For this form of the theorem, and for more precise results, see Fejér (1).

b A much more general inequality, but without the best possible value of the
constant, is proved by Hardy and Littlewood (1). See also Hardy (10).
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non-negative and not always 0, and that f(x) is any non-negative
and non-nul function. Then

1 1 1
f todo= f (2, fda=3b, f “anfdz=Za,b,,

1 2 1
( f 0 fgdx) = (Sa,b,)? < £a,?%b,? < n5b,? f [z,

by Theorem 324. Since this is true for all f, it follows, by
Theorem 191, that
fl g¥dx < 72b,?;
0
and this is equivalent to Theorem 323.

It is plain that when two inequalities, each involving a con-
stant factor, are ‘reciprocal’ in this sense, each being deducible
from the other in thisway by the converse of Hblder’s inequality,
then one constant must be best possible if the other is. We shall
meet with another application of this principle later (§9.10 (1)).

(3) As a corollary of Theorem 316 (with p = 2), we prove

325.2 Suppose that a, = 0 and that the summations run from 0 to co, and
that

(9.7.1) A@)=Za,an, A%(@)=E%,
Then
Ay Ay, (m+n)! L2
(9.7.2) széﬁzz min! 9mtntl?
(9.7.3) [ 4@ dozn [ e ax@ipraa.
0 0

It may be verified at once by expansion and term-by-term integration
that (9.7.2) and (9.7.3) are equivalent.
To prove (9.7.3) we observe that
A(76)=/me—tA*(:&:t)alt:;f;/ao ez A* (u) du
0 0
and so

/;Az(z) do = /;‘i—ﬁ </:e—“/=A*(u) du>2=/:° dy <f0°° v A* (u) du>2
=/: dw </: e g (u) du)z,

where o(w)=e"% A*(u).

& Widder (1), Hardy (9).
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This is

© w—uw ”_vw _ b ”a(u)a(’v)
/0 dw/oe oc(u)du/oe a(v)dv-ﬁ/o —atv dudv

= n/ o?(u)du= ﬂ/w {ev A*(u)}2du,
0 0
by Theorem 316.
It is easy to see that the constant = is the best possible. The relations
between the functions (9.7.1) are important in the theory of divergent
series, particularly in connection with singularities of analytic functions.

9.8. Hardy’s inequality. The two theorems which we discuss
next were discovered in the course of attempts to simplify the
proofs then known of Hilbert’s theorems?.

We might require only an imperfect form of Theorem 315: the
double series is convergent whenever ZaP? and Zb?’ are convergent. It
would then be natural to argue as follows. We divide the double
series into two parts S;, S, by the diagonal m=n, and consider
the part §; in which m < n. Then

8;=%3% "§22“""’"=2%"bn,

msn m+n msEn n

anb

where A,=a,+0a,+... +a,.

Since Zb2’ is convergent, the last series is convergent whenever
Zn~P AP is convergent, and, to prove the convergence of S, it
is enough to prove that the convergence of the last series is a
consequence of that of Za?. The convergence of S, could then be
proved in the same way.

This line of argument leads up to and is completed by the
following theorem.

326. Ifp>1,a,20,and 4,=a,+ay+...+a,, then

(9.8.1) > (‘%}p< (}{—l)p Saz,

unless all the a are zero. The constant is the best possible.

& It was a considerable time before any really simple proof of Hilbert’s double
series theorem was found.
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The corresponding theorem for integrals is

3275 Ifp>1, f(2)20, and F ()= f z F(0)dt, then

(9.8.2) f : (g)pdm (1{—1)? j : frde,

unless f=0. The constant is the best possible.

These theorems were first proved by Hardy (2), except that Hardy
was unable to fix the constant in Theorem 326. This imperfection was
removed by Landau (4). A great many alternative proofs of the theorems
have been given by various writers, for example by Broadbent (1),
Elliott (1), Grandjot (1), Hardy (4), Kaluza and Szego (1), Knopp (1).
We begin by giving Elliott’s proof of Theorem 326 and Hardy’s proof
of Theorem 327.p

(i) In proving Theorem 326 we may suppose that a; >0. For
if we suppose that a, =0, and- replace a,,,, by b,, (9.8.1) becomes

b\P  (by+b,\P »
(—2-1) +( 13 2) +...<(p—f—1) (b? +bP+...),

an inequality weaker than (9.8.1) itself.
Let us write «, for 4,/n, and agree that any number with
suffix 0 is 0. We have then

®,P— Z_) 1 e, =, — Ef_l {no, — (n—1) oy} o, P

=o,P (1 e ) + =2 p“'np_lanﬂ

=1/ p-1
np n—1
<P —_—— p— — » D [
1
=p-1 {(n—1)a?,_; —na,?}.
v N Na,?
H S p-1g < D% .
ence Ellocn p—l?an a, < o1 £0;

2 We have already encountered this theorem in Ch. VII, but the proof which we
gave there (in detail only when p=2) was intended primarily as an illustration of
variational methods and has no particular pretensions to simplicity.

b We have expanded the proofs so as to deal with the question of equality.

¢ By Theorem 9,
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and therefore, by Theorem 13,
Yo, la, < —— (Eanp)lfp (Zanp) up’,
1 1\ 1

083) Sar< P
(083) Saprs Ly

Dividing by the last factor on the right (which is certainly
positive), and raising the result to the pth power, we obtain
N p \*¥
(9.8.4) zanpg(——) Sa,”.
1 r—1/ 1
When we make N tend to infinity we obtain (9.8.1), except that
we have ‘<’ in place of ‘<’. In particular we see that Za,,? is
finite.
Returning to (9.8.3), and replacing N by co, we obtain

9.8.5) Zap<—L S r-la, <L (Sa,p)e(Sa,z)e.
p—1 p—1

There is inequality in the second place unless (a,?) and («,?)

are proportional, i.e. unless a,=Cu,, where C is independent

of n. If this is so then (since @, =0, >0) C must be 1, and then

-4, =na, for all n. This is only possible if all the a are equal,

and this is inconsistent with the convergence of Za,?. Hence

(9.8.6) So,? < 5’% (Sa, PP (Sa, )P’ ;

and (9.8.1) follows from (9.8.6) as (9.8.4) followed from (9.8.3).
To prove the constant factor the best possible, we take

a,=n"' (n<N), a,=0 (n>DN).
N1
Then Za,p =2 -,
1 n

n

A,= %v—l/p > f x—l/pdy;:p_?Li {n(p—l)/p - 1} (n<N),
1 —

1
(ﬂ)p > (__20_.)1)1__51» (n<N),
n p—1 )
where ¢, >0 when n—co. It follows that
AN N/ANP D
z (——1‘) >3 (—7{) > (———-p{ 1) (1—=mny) Za,?,

n 1
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where 7y — 0 when N —co. Hence any inequality of the type
‘4 \P D
> (J) < (—?%T) (1—6) Zanp

n
is false if @,, is chosen as above and N is sufficiently large.
An alternative procedure is to take @, =n~-P)-¢ for all n, and
to make e small. Compare §9.5: it was this procedure which we
followed there.

(il) If 0< ¢ < X, we have

x x
f (E)p dx= — 1 f Fr _qi_ 210 dx
e \® p—1);  dx

§rrrE) XPFr(X) p fX
= —_— + ——

p-1 p—1 p—1

But, by Theorem 222, £1-2 F'?(£) >0 when f? is integrable and

£—+0. Hence

o [ ([ ey )

sl G et ()™

If f is not nul in (0, X), the left-hand side of (9.8.7) is positive.
Hence (9.8.7) gives

o [ [

and when we make X 00 we obtain (9.8.2), except that ‘<’ is
replaced by ‘<’. In particular, the integral on the left-hand side

of (9.8.2) is finite.
It follows that all the integrals in (9.8.7) remain finite when

X is replaced by oo, and that

oo [ (o, [ (]

<l o

The last sign of inequality may be replaced by ‘<’ unless x—» F?

a Partial integration is justified because F? is an integral when F is an integral.
For a formal proof see Hardy (4).

x1-p F'p-1 fdx.a

¢

IIA
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and f? are effectively proportional. This would make f a power
of z, and then [ f?dz would be divergent.
Hence

N e N

unless f is nul. Since the integral on the left-hand side is positive
and finite, (9.8.2) now follows from (9.8.10) as (9.8.8) followed
from (9.8.7).
The proof that the constant is the best possible follows the
same lines as before: take f(z)=0forx < 1, f(x) =a~WP—<forx > 1.
Elliott’s proof of Theorem 326 applies to Theorem 327 also, with the

obvious modifications. The proof of Theorem 327 given in (ii) may be
adapted to series, but does not give the best possible value of the constant.

(iii) The following proof of Theorem 327 (due to Ingham) is also
interesting: we shall be content with proving the form with ‘<’. We use
Theorem 203, supposing that the intervals of integration are each (0, 1),
that the weight-functions are 1, and that

r=1, s=p>1, f(z,y)=f(2y).
Then ‘.D?ﬁ@f(my):/lf(xy) dx:M,

/
w0 )= { [ rena)” =i o) <L po ™
for z<1. Hence, by Theorem 203,

[/1<F>pd }1Ip<</1 »d 1/p/1 y p / )1/»
— = t Pdr=—*— ?dx) .
Jo\y vp = of ) . T=p—1 4
‘We then obtain the result by putting

z=Xle, f(X[e)=g(X),
replacing X, g by z, f, and making ¢ — co.

9.9. Further integral inequalities. There are many ana-
logues and extensions of Theorems 326 and 327, which have been
proved by different writers in different ways; and we give some
of these theorems here. We consider integral inequalities first,
since we can derive most of these in a simple and uniform manner
from Theorem 319, and the corresponding theorems for series
sometimes involve slight additional complications.

(1) Take, in Theorem 319,
K(z,y)=1ly (x=y), K(z,y)=0 (x>y).

16-2
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Then, if p> 1,

@ 1
k=f K(x,l)x—l/pdx=f x-lfpdxz-—L,
0 0 p—1

and all the conditions on K are satisfied. Hence (b) and (c) of
Theorem 319 give

o ol Lo (2 [

and

o Joal [0 <[ 2] [

Of these inequalities, (9.9.1) is Theorem 327, with ‘ <’ for ‘ <’;
we cannot quote ‘<’ from the general theorem because K is
not always positive. But equality in (9.9.1), with a non-nul f,
involves

D 1ip , 1/p’
[[E@nr@ow deay=—25([r2a)” ([oaa) ",
with non-nul f and g. The argument of §9.3 then shows that

(9.3.1) is true for # <y, and that f=Cz~Y? for small x, which is
inconsistent with the convergence of [ f?dwx.

Similarly we can prove that there is inequality in (9.9.2) unless
g is nul. A trivial transformation then gives

328. If p>1and
Fa)=[ 1o,
then
(9.9.3) f * Prde<pp f ® (af P da,
0 0

unless f=0. The constant is the best possible.
(2) More generally, take

K(@y) = =97

F(T)T z<y), K(x:y)=0 (xzy)

with r > 0. With r=1, we come back to (1). We now have

1
1 (o)
k=—1"— x-Yp (l —-x)’*ldx=____.__

ol )
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We are thus led to

329. If p>1,r>0, and

(9.9.4) 10 =gg [ w-orsa
then

(9.9.5) f: (g)pdx< (( , ))1 f frde,

r+l1——

unless f=0. If

(9.9.6) 5 =g | ==y @
then

jia_p
r(r+)

unless f=0. In each case the constant is the best possible.

(9.9.7) f : frde< f : (@ f)? de,

The function f, (z) of (9.9.4)is the ‘Riemann-Liouvilleintegral’»
of f(z) of order r, with ‘origin’ 0. The function (9.9.6) is the ‘Weyl
integral’ of order r, which is in some ways more convenient,
especially in the theory of Fourier series.

(3) Take

K (z,y)=
with a <1/p’. Then

K (z,y)=0 (z>y),

Ic:/1 xo-trdy= b ,
0 p—pa—1

and (b) and (c) of Theorem 319 give
o o <) [

I p’
©99) ["a ([ yprgway)” de< ({2 "o ay.

Changing the notation, we obtain
330. If p>1,7%1, and F(x) is defined by

F(w):fmf(t)dt (r>1), F(m):fwf(t)dt (r<1),
0 @
2 See §10.17. Part of Theorem 329 is proved by Knopp (3).
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then

(9.9.10) /:x‘“’F’dx< <I P ,)’/: o (af)? da,

unless f=0.%
The constant is the best possible. It is also easy to verify that, when
p=1, the two sides of (9.9.10) are equal.

9.10. Further theorems concerning series. Among the
analogues and extensions of Theorem 326 we select the following.
(1) The theorem related to Theorem 326 as Theorem 328 is to
Theorem 327 is
331> Ifp>1, then
Z(a,+ayyy+ ... )P <p?Z (na,)?,
unless (a,) 18 nul. The constant is the best possible.

This theorem is ‘reciprocal’ to Theorem 326 in the sense of
§9.7 (2), i.e. deducible from the latter theorem by the converse
of Hoélder’s inequality. It may be instructive to set out the
proof in detail, although what we say amounts to a repetition in
a special case of what we have explained more generally beforec.

If K (x,y) is defined as in §9.9 (1), then

(9.10.1)
ISK (m,n)a,b,= 22

m=n

<[5 (A b, 2y’ <L _ (54 vyie (Sh 2y’
= n (Zb, <F—1( Oy w )

bn=2

W+ ay+t...+an, —Eﬂb
n- n
n n

by Theorems 13 and 326, unless () or (b) is nul.
On the other hand

b b
= my  Tmil .
2XK (m,n)a,,b, Eam(m+m+l+...),

and the maximum of this, for all () for which Xa,?=1, is, by

Theorem 15,
b | bmis )”' s
{Z(E+m+l+'", } .

a For a direct proof see Hardy (5).
b Copson (1); see also Hardy (6).
¢ See § 8.7.
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Hence, by (9.10.1),

{2 (9’1‘ + .%.1_ +.. .)p'}llp' < _P_ (Zh, 2" yur =p'(Zh P\Up’
m m+1 p—1""" "

Changing b,, into ma,,, and p’ into p, we obtain Theorem 331.
That the constant p? is the best possible follows from the

last remark of §9.7 (2).
(2) 832. Ifp>1,4a,=0,7,>0, and
A,=M+A+ .o+, A,=M0+20,+...+7,a,,
A’IL » .p v D
then ZA, (-A_n) < (p_—T) 2, a2,
unless (a,) is nul.

This theorem, which is related to Theorem 326 as Theorem 321
is related to Theorem 315, may be proved in various ways. In the
first place,it may be deduced from Theorem 320 by aspecialisation
of K (as Theorem 327 was deduced from Theorem 319 in §9.9);
but the question of possible equality then needs a little attention.
Perhaps the simplest proof is by a direct adaptation of Elliott’s
argument in §9.8. If o, =4, /A, , we find that

1
An anp _p_fl_ An O('np—l @y, = F"—l (An—l O‘pn—l - An “np);

and the proof may be completed as in §9.8.2

The theorem may also be deduced from Theorem 327 by taking
f to be an appropriate step-function (the process by which, in
§9.4, we deduced Theorem 320 from Theorem 319). We shall not,
set this out in detail?; but the remark raises questions of which
we say something more in the next section.

9.11. Deduction of theorems on series from theorems
on integralsc. The process of deduction just referred to, and
actually used in §9.4, is very natural and often effective. It is
however apt to lead todifficulties of detail, so that direct methods
are usually preferable. We illustrate this by giving a deduction of

& For the details see Copson (1).

b For the details (which are rather troublesome) see Hardy (4).
¢ Compare §§ 6.4 and 9.4 (1).
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Theorem 326 from Theorem 327, which leads us incidentally to
a remark of considerable intrinsic interest.

We observe first that ¢t s sufficient to prove Theorem 326 on the
hypothesis that a, decreases as n tncreases. This follows from a
theorem which is of sufficient interest to be stated separately.

333. If the a, are given except in arrangement, and ¢ (u) is a
positive increasing function of u, then

(4

18 greatest when the a,, are arranged in decreasing order.

To prove Theorem 333 we have only to observe that, if v>u
and a,>a,, the effect of exchanging a, and a, is to leave 4,
unchanged when n < uor» 2 v, and to increase 4,, when u < n <.
The theorem is one of a type which we shall discuss in much
greater detail in Ch. X.

Suppose now that a, decreases, and that Theorem 327 has
been proved. We define f(z) by

f®)=a, (nm—-1Zz<n).
Then

(9.11.1) Zanp=fwfpdx.
0
If n<x<n+1, then

F(x)=a1+a2+ +an+(x_n)an+1_An—mn+1+xan+1
x % x ’

and A,—na, 20,
so that F'[x decreases from 4, /n to 4, ,,/(n+ 1) when z increases
from »n to n+ 1. Hence

F An+1
E%m (n<x<n+1)
and so
(9.11.2) fw(f)pdx; E(i‘:‘,@)p.
o\ 1\ "

Theorem 326 now follows from (9.11.1), (9.11.2), and Theorem
333.



ITS ANALOGUES AND EXTENSIONS 249

If the reader will try to deduce Theorem 331 from Theorem
328 similarly, he will find some difficulty. Something islostin the
passage from integrals to series, and it is by no means always
that (as here) the passage can be made without damage to the
final result.

9.12. Carleman’s inequality. If in Theorem 326 we write
a, for a,?, we obtain
a, VP +a, P+ ...+ anllp)l’ (.2 P Sa, .

n p—1
If we make p—>o0, and use Theorem 3, we obtain
2 (a,0y...0,)'"<eZa,;

and this suggests the more complete theorem which follows.

334.2 2 (a,05...0,) "< eZa,,

unless (a,) 18 nul. The constant is the best possible.

(9.12.1) z(

It is natural to attempt to prove the complete theorem by
means of Theorem 9; but a direct application of Theorem 9 to
the left-hand side of (9.12.1) is insufficient®. To remedy this, we
apply Theorem 9 not to a4, a,, ..., a, but to ¢;a,, ¢,a,, ..., ¢, a,,
and choose the ¢ so that, when Za, is near the boundary of
convergence, thesenumbersshall be ‘roughly equal’. Thisrequires
that ¢, shall be roughly of the order of n.

These considerations suggest the following proof. We have

CyQy.Colly...C a \ 1M
2(@10/2...61/”)1/”’:2( 1%1-V2%2 n n)

€1Cg... Cp

1
52(0162...%)—1/"7—& Z Cplm
n msn

1
=20,,C, 2 —(C1Cy...C)7 V",
m nzm N
& Carleman (1). The proof given here is due to Pélya (2). The less precise
convergence theorem (without the constant e) was found independently by other
writers, and there are a number of proofs of one form or the other of the theorem.
See Collingwood (in Valiron, 1, 186, where there is a proof due to Littlewood),
Kaluza and Szegé (1), Knopp (1), Ostrowski (2, 201-204).
1 1
b ( vee n<z= 3 =3 z -
E (8185 ... ) —E n mgna %;amngm n
but the right-hand side is generally divergent. The proof fails because the a in
a, a, ... a, are ‘too unequal’, and too much is lost in replacing ®(a) by %(a).



250 HILBERT’S INEQUALITY AND

In order that the inner summation should be easily effected,

we choose (C1C... )M =n+1,

when
(’)n 1)
C, =,

1
womn(m+1) m’

s 1 (c1€q...Cp) V=
zmMN
and then

Z(a0,...a )1/"<Za—"‘£’1”=2a 1+l m<eZa
12 n = m m m m>s

by Theorem 140, unless a,, is nul.

We can prove the constant best possible as in § 9.5. We may,
for example, take a,=1/n for n < p, @, =0 for n > u, and make u
tend to infinity.

The corresponding integral theorem is

3352 If f is not nul, then
fw exp {} fw logf(?) dt} dx < efwf(x) d.
0 xJo 0

9.13. Theorems with 0 < p < 1. We have supposed so far that
the parameter p involved in our theorems is greater than 1.
A good many of them, however, have analogues with a p less
than 1, and we give a selection of them in this section. The
characteristic difference between the two cases lies (as is to be
expected after our experience with Hélder’s and Minkowski’s
inequalities) in a reversal of the sign of inequality.

(1) 3836. If K(x,y)1is non-negative and homogeneous of degree
-1, 0<p<1, and

ij (x, 1)z~ Vrdx = fwK 1,y)y "Y' dy=Fk < oo,
0 0
then

@ [*[ K @use@owasayzi(["praa)” ([Coan)”,

o [w([ Keoroa) 2w e

Here, in accordance with the conventions of §§5.1 and 6.5,
a Knopp (1).
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(@) means ‘if the double integral, and the second integral on the
right, are finite, then the first integral on the right isfinite,and ...’;
and (b) means ‘if the integral on the left is finite, then the
integral on the right is finite, and ...°.

If we use the second method of §9.3, the proof of (@) is the same
as that of (@) of Theorem 319. The sign is reversed because we use
Holder’s inequality with p < 1. To deduce (b) from (a), we appeal
to Theorem 234. We leave it to the reader to frame the corre-
sponding theorem for p <0, and toconsider the question of equality.

We cannot take K = 1/(x+y), since then k= co. There is there-
fore no exact analogue of Hilbert’s theorem.

(2) 337. If0o<p<], f(x)=0,
fwfpdx<w,
0

and Fl)= f ® foydt,

then fm(g)p dx > (-L)p fwfp dx,
o\ 1-p) Jo
unless f=0. The constant is the best possible.

We may deduce Theorem 337, in an imperfect form, from
Theorem 336, by taking

K(z,y)=0 (@<y), K(x,y>=§, @zy),

when k=fwx“1/1’d:c=1p .
1

To prove the complete theorem in this way would involve a
discussion of the sign of inequality in Theorem 336 (and so in
Theorem 234). We therefore follow a direct method analogous to
that of §9.8.

We may suppose

frrom [1(3

finite, since otherwise there would be nothing to prove.
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We have
(9.13.1)

P et 25

Since F decreases as x increases,
p xr »
2P FP () = 2 (M) Jo< 2f (E) dt
x iz t
tends to 0 both when #—0 and when z—>o0. Hence (9.13.1)
gives in the limit

®© F » _ p o] F p-1
fo(g) dx—l‘l’ O(E) fax,

and the proof may be completed as before.
For a more complete result, corresponding to Theorem 330, see
Theorem 347.

(3) Finally we prove a theorem which is related to Theorem 326 roughly
as Theorem 337 is related to Theorem 327. The correspondence is not quite
precise, and the theorem illustrates very instructively the slight additional
complications which aresometimesinherentin a theorem concerning series.

338.2 If0<p<1land XZa,?< o, then
ZI <an + an+1 + .e .>p > (._‘p—> ? Za,nﬂ,
n 1-p
unless (a,) 8 nul. The dash over the summation on the left-hand side implies
that the term for which n =1 is to be multiplied by

1+

The constant is the best possible. =P
In Theorem 337, take
f@)=0 (0<z<1), f(x)=a, O<n=x<n+1).
Then, if 0<nZaex<n+1,
Ez(n+1—x)an+an+l+...<a,,+a,,+1+...

x z = p
Henco [ (Z) arsd(tattomtory,
1 \& 1 n
. L/F\? I (@ +ag+...)7.
while fo (5&'> dx-—(a1+a2+___)1>f0x pdx~~_1':.'r’

and the result follows from Theorem 337.

3 The substance of this theorem was communicated to us by Prof. Elliott in 1927,



ITS ANALOGUES AND EXTENSIONS 253

Some such gloss as that contained in the last clause of the theorem is
necessary; the result is not necessarily true if the dash is omitted .

9.14. A theorem with two parameters p and q. We con-
clude this chapter with a theorem which, although again an ex-
tension of Hilbert’s theorem, has peculiarities which do not occur
in any of the earlier theorems of the chapter. It involves two
independent indices p and ¢ and an undetermined constant

K (p,q).

1 1
339. I >1, ¢g>1, —+-=1,
f P q »tg
so that 0<)\=2_1_1=ll+1'§1,
p 9 P 9
th 55 Ombn <K(§a ,,)1/'1’ (§b a)”q
en < ,
11 (m+n)= PR 1

where K = K (p, q) depends on p and q only.

This theorem reduces to Theorem 315 when ¢=p’, A= 1:in that
case we know the best possible value of K. The best value has not
been found in the general case, and the problem of determining it
appears to be difficult. We shall prove later (§10.17) a deeper
theorem in which A< 1 and m+n is replaced by | m—n| (equal
values being then excluded from the summation).

It is sufficient to prove that, if Xa,?= A4, 3b,2= B, then

(9.14.1) Sa,, % b—ASKAI/p B,
m n<m( m+n )

and for this, by Theorem 13, that

(9.14.2) 54,7 < KB,
b,
where Bn= 5 m +n)"'
Now Bn<m Z b,=mB,,

and p’' > ¢. Hence
, . B\ , ,
SR SImPAB P=3 (——m:”) B, p-ama-2?,

a Take a,=1, ag=ay=...=0. Then the result is false if p >4. For an alternative
form of the result see Theorem 345.
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m m /g
Bus B, =3b, <mic (zbna) < B,
1 1
and Z_Dq;q +qg—p'A=
Hence
. . 'B,,\? 9 \2 ... ,
Eﬂmp < B@w-dky (Tn.;&) < ((_I—i) Bw'-9latl— K Br'la,

by Theorem 326. This proves (9.14.2).
Similarly we prove

340. Under the same conditions as those of Theorem 339

f f f(x:—gy(i/’\)dxdyéK(f:fpdx)llp(f: dey)llq_

MISCELLANEOUS THEOREMS AND EXAMPLES

344. If (i) @y, b,, f(2), g(y) are non-negative, (ii) the summations go
from 1 to co and the integrations from 0 to oo,

(ili) (Zap?)?=4, (Tb,»Wv'=B, ([frdz)?=F, ([g7dy)/»'=@
and (iv) p>1, then

(1) 221\75%"(_’3757)@1@'143,
@) f / LEgw) i"x(yy)) dady<pp’ FG,

unless (a,,) or (b,) or f(x) or g (y) is nul. The constants are the best possible.

[Cases of Theorems 318 and 319, (a). In order to shorten the statements
of the following theorems we agree that conditions (i), (ii), and (iii) are pre-
supposed in all of them; and that, whenever the conclusion is expressed
by an inequality X<KY (or X>KY),

with a definite K, then K has its best possible value (unless the contrary is
stated explicitly) and equality is excluded unless a sequence or function
involved in the theorem is nul.
When, on the other hand, the conclusion is
X=KY,

with an wunspecified K, then K is a function of any parameters of the
theorem.]
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342, If p>1, then

(1) Zzlog (m/n)

a,b, <‘n-2cosec2 .AB,

@) f [ log (”/w f(@)g(y) dardy <a*cosec 7. FG.
[Also cases of Theorems 318 and 319, (a). Here
k= /w 10—gicaz:"llf’dmz1r2003(302"—".]
o x—1 P

343. If p>1, then

$5 b, ™ (oo Am? 1Ip§ (b,,P’ 1/

2 3 mnlogmn “sin(w/p)\s m 2 \ 1
[Mulholland (2). Since

log mi 1 < l ,
m - m
the result is slightly stronger than that obtained by taking A,, =logm,
M,=logn in Theorem 321.]

344. If 0<p<1 then
Z(ap+pyq+...)?>p? E (na,)?.
[Copson (2). This theorem, with Theorems 326, 331, and 338, forms
a systematic set of four.]

345. If 0<p<1 then
. (an+a,,+1 + ...>v>pp Sa,o.
n

[Corollary of Theorem 344. Compare Theorem 338; here there is no
gloss, but the constant is less favourable and is presumably not the best
possible.]

346. If (a) c>1, sp=a;+as+...+a,, or (b) c<1, s,=a,+ay +...,
then

() Ins,?SKXn°(na,)? (p>1),

B) In—rs,?ZKXn°(na,)? (0<p<l).

[In each of the four cases K = K (p, ¢), as laid down under Theorem 341.
See Hardy and Littlewood (1).

We prove (o) when ¢> 1. If

dp=n"C+(n+1)"+...,

then ¢, < Kn'~°. Hence, if we agree that s,=0, we have

m m m
N8, =X (bp — bn+1) $n? = Ly (8,7 — 85—17)
1 1 1

m m Up /m 1p’
<K Xn'—*s,?"la, <K (Z n'“(na,,)") (Z n‘%,,”) ;
1 1 1
and (o) follows. Hardy and Littlewood (2) give function-theoretic

applications of («) and (B). The important case is that in which ¢=2.]
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347. Ifr and Fsatisfy theconditions of Theorem330,but 0 < p < 1, then

/x"Ff’dx> <~L) ”fx" (zf)?dx
|7—1] )
[Hardy (5).]
348, If a(y):Zame—m/ﬂ
and p>1, then

S <o e ()

[Take K (2, y) =y~'e~*/¥ and apply Theorem 319, (b). More general but
less precise results are given by Hardy and Littlewood (1), and some
function-theoretic applications by Hardy and Littlewood (2).]

349. If A, and A, satisfy the conditions of Theorem 332, then

A, (aMaghe ... arn)l/An <e ZA,a,.
[See Hardy (4).]

350. If p>1, K(x)>0, and
JK ()2 tde=4(s),
then

/ [K (29)f (@) () dxdy<¢.<;1)> ( /xp-zfpdxy/” ( /g,,, dy\)w’
/dx (/K(xy)f(y)dy>p <¢? G))/xﬂ—zfpdx,

[ean( [R@psway) <o (1) [17aa.

In particular, when K (z) =e~2, and F (z)=[ K (xy) f(y) dy is the ‘Laplace
transform’ of f(x),

/Fwdx<1“r (}}) /xv—zfvdx, /a:”—zFf’dx<I‘P<z—},> /fﬂdx.

3561. Ifalso K(z) is a decreasing function of z, and

A(z)=Sa, K (nz), A,=[a(z) K n)ds,
then / A () de < $? @)) Eno-2a,p,
EA,,”<¢1’<%> /xw—Zav(x)dx,
/x”‘ZA"(x) dz < $? <$> Sa,?,

Inr24,P<4? <]%,> /a"(x) dax.
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852. If F(z) is the Laplace transform of f(z), and 1 <p <2, then

frvanss (fra)”

_[For the last three theorems see Hardy (10). Theorem 350 may be
deduced from Theorem 319 by transformation. It is not asserted that
the constant in Theorem 352 is the best possible.]

353. If K,y ()=0,
K, (z,y)= / Ky (at) Ko(yt)dt, K, (z,y)= / K, (%, K, (4,1) dt,

Ky(z,1) ,
/—l\zz—dm—k,

then 22K, (m,n)aa, <k ZXK, (m,n)Apay.

[See Hardy (9). The theorem is one concerning quadratic, not
bilinear, forms.]

354. sxlogmn) ;o < 55 %nds,
m-—n m+ n
| log (m/n) | CQp
355. e e

[Corollaries of Theorem 353. Observe that Theorem 354, when com-
bined with Theorem 315, gives

3 log (m/n) Oy = 72 Za,?,
m—n
in agreement with Theorem 342.]

356. If c(x):/:a(t)b(x—t) dt,

A”:/m‘1 (x"a(m))j;fix, Bq=/x‘1 (xﬂb(x)>qu, cr =fx‘1 (z‘m(w))rdx.

1. 1 1
p>1, g¢>1, ;é}-)+—q-, a<l, B<l, y=a+p-1,
then C<KAB,
_T'A—T'(1-p8)
where K—‘———I,‘W .

857. If ay=by=0, c,=agb,+ab, ;+...+a,b,,
A?=3n"1(n%a,)?, BI=3Zn"1(nfb,)s, C'=Zn"l(nvc,),
P, ¢, 7, and y satisfy the conditions of Theorem 356, and 0<a<]1,
0=<B<1, then 0 <KAB, with the K of Theorem 356. If x <0or 8<0, the
inequality is true with some K.
H1 17
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858. If ag=by=...=¢y=0
and Uy =20, by, ...c,, (r;20, Zry=n),
1 1\) 2k
then Zug?<_ {I‘ (ﬁc)} (Zn2k—2q, 251k (Zp2k-2c,2k)1/k,

359. If p>1,1>0, m>0 and c(x) is defined as in Theorem 356, then
/m(l—l—'ﬂl)(ﬂ—l) c’(w)dng/x‘l‘”“’—” a”(x)dw/w(l"’”’(P“l)bl’(w)dz,

where K= {P \hr (m)} r

T(T+m)
There is equality if and only if
a(z)= Axi-1e=C2, b(x)= Baxmle Ce,
where A, B, C are non-negative constants and C is positive.
[For Theorems 356-359 see Hardy and Littlewood (3, 5, and 12).]

360. If L(x) is the Laplace transform of f(x), and ¢g=p>1, then
/‘x~(p+a—-w)/p La(x) dz < KF9.

361. If p>1,¢g>1,
1 1
=—-+4-— 1 ; Os
" p7a
and L, M are the Laplace transforms of f, g, then
/x—MLMdm_S_KFG.

362. If p>1,0=pu<1/p, and

= Am
o=E s
then Ta,?/1-up) < K4 7/(1-up)

[This may be deduced from Theorem 339 by the converse of Holder’s
inequality. Many further theorems of the same general character as
Theorems 360-362 are given by Hardy and Littlewood (1).]

363. If ), is positive and

p>1, A,=a,+as+...+a,, A+A+...+A,Zcn,

then 5 <‘%‘> "\, <KAP.

364. If A, is positive and
p>1, r>1, A+ A+...+A =Zcn,

a,b,
then P m"_‘*_ " Ampn = KAB.

The result is not necessarily true when r=1 (as it is when A, =1).

[For these two theorems, which are corresponding extensions of
Theorems 326 and 315, see Hardy and Littlewood (11).]
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365. The inequalities in Theorems 326 and 334 are the special cases
p=xt(0<t<1), p=logz, of

@) sy (Lt 2 80)) < g (g) 2a,

[Knopp (2). This remark has led Knopp to a systematic investigation
of forms of ¢ for which (i) is true. See also Mulholland (4).]

366. Suppose that ¢ and i are continuous and strictly increasing for
x>0, and have the limits 0 or —o0 when x—0; and that ¢ is convex
with respect to ¢ (§3.9). Then (i), if true for ¢, is also true for i, with
K ()= K(¢).

[Knopp (2).]

1/a 1/az 1/ax\ —1
367. Z(loge ‘e kb ) <23a,.
[Knopp (2).]

17-2



CHAPTER X
REARRANGEMENTS

10.1. Rearrangements of finite sets of variables. In what
follows we are concerned with finite sets of non-negative numbers

such as Ays By eees Bjy oeey Bs by, by, o, byy only by
Qs ooy Bgy eeny By ey Byl
we denote such sets by (a), (b), ....

Taking for example the first set, in which j assumes the values
1, 2, ..., n, we define a permutation function ¢(j) as a function
which takes each of the values 1, 2, ..., n just once when j varies
through the same aggregate of values. If

ayp=a; (j=1,2,...,n)
then we describe (a’) as a rearrangement of (a). Similar definitions
apply to other cases in which the range of variation of j is
different.

There are certain special rearrangements of (a) which are
particularly important here. These rearrangements, which we
denote by (@), (a*), (+a), (@*),
are defined as follows.

The set (@) is the set (@) rearranged in ascending order, so that,
when the values of j are 1, 2, ..., n,

@20,5...5a,.
The set (@) is defined unambiguously by the set (@) although,
when the a are not all different, there are ambiguities in the
definition of the permutation function by which we pass from
(@) to (a).

In defining the sets (at), (*a), (a*) we suppose that j varies

from —n to n. The set (at) is defined by
aytzatza_t2atza 2.

and the set (ta) by
tagzta_jzta, 2ta_ 2 ta, > ...
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There is one particularly important case, that in which every
value of an a, except the largest, occurs an even number of times,
while the largest value occurs an odd number of times. In this
case we shall say that the set (@) is symmetrical. The sets (a*) and
(*a) are then identical, and we write

at=ta= a/*,
so that a* is defined by

a*zaF=a_*za*=a_*=....

A set (a*) may be said to be symmetrically decreasing. The sets
(a*) and (*a) are sets arranged so as to be as nearly symmetrically
decreasing as possible, but with the inevitable overweight of one
side arranged systematically to the advantage of the right or the
left respectively. All these sets are defined unambiguously by (@),
though there may be ambiguities in the definitions of the
corresponding permutation functions.
We note that

(10.1.1) ajt=*a_;.

10.2. A theorem concerning the rearrangements of two
sets. We begin by proving a verysimple, but important, theorem
concerning the set (@).

368.2 If (a) and (b) are given except in arrangement, then
Zab

18 greatest when (a) and (b) are monotonic tn the same sense and
least when they are monotonic in opposite senses; that is to say

n — n n _
(10.2.1) 7;0,1 ;S Za;b; <X a;b;.
= 1 1

7
It will be observed that, since we can add up the sum Xab in
any order, we may suppose one set, say (a), arranged from the
beginning in any order we please (in particular in ascending
order).
We may express the theorem equally well by saying that the
maximum corresponds to ‘similar ordering’ of (a) and (b) in the

8 This theorem and Theorem 369 are valid for all real, not necessarily positive,
a and b.
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sense of §2.17,the minimum to ‘opposite ordering’2. The theorem
becomes ‘intuitive’ if we interpret the a as distances along a
rod to hooks and the b as weights suspended from the hooks. To
get the maximum statical moment with respect to an end of
the rod, we hang the heaviest weights on the hooks farthest from
that end.

To prove the theorem, suppose that the (a) are in ascending
order, but not the (b). Then there are a j and a k such that a; < a,
and b; > b;,. Since

we do not diminish Zab by exchanging b; and b,,. A finite number
of such exchanges leads to an ascending order of the b, so that

Sab < Xab.
The other half of the theorem is proved in the same way.

This argument establishes incidentally a variant of Theorem
368 which is sometimes useful.

369. If
(10.2.2) Sab’ < Sab

for all rearrangements (b') of (b), then (a) and (b) are similarly
ordered.

For, if (a;—a;) (b;—b;) < 0 for any j, k, we can falsify (10.2.2)
by exchanging b; and b;.

10.3. A second proof of Theorem 368. We have to consider
analogues of Theorem 368 for more than two sets of variables.
These lie a good deal deeper and cannot be proved in so simple a
manner. We therefore give a second proof of Theorem 368 which,
though quite unnecessarily complicated for its immediate object,
will serve to introduce the method which we use later. We con-
fine ourselves to the second inequality (10.2.1), and divide the
proof into three stages.

(1) Suppose first that the sets considered consist entirely of

¢ Theorem 43 (with =1 and p=1) may be expressed, in our present notation,

in the form nZd,«Zn+1_j§ Zaj ijgnzdjfaj.
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0’s and 1’s; we indicate such special sets by the use of German
letters a, b, .... Then

(10.3.1) a’=a, b%?=D
for all j. In this case
Zab<XZa, Zab=Zb,

and so Zab £ Min (Za, Zb) = Zab.
(2) Any set (a) may be decomposed into a linear combination
of sets @), (@), . (@)

of the special type considered under (1), in such a way that
(10.3.2) a;=otat+ala?+...+da (j=1,2,...,n),
and
(10.3.3) @;=oldt+a2d2+...+oa;! (j=1,2,...,m),

the coefficients « being non-negative.

The method of decomposition will become clear by con-
sidering a special case. Suppose that (a) contains (in some order)
the three numbers 4, B, C, where 0 A< B< C, so that

a,=A, a,=B, az;=C.
Then
a,=A.1+(B—A)0+(C- B)O0,

G,=A.1+(B—-A4)1+(C—- B)O0,

az=A.1+(B—A4)1+(C-B)1;
and we may write

a;=orat+ala,2+ada’,
where l=A4, «®=B—-A4, «*=C-B
and (@), (a2), (G3) are the three sets
(1,1,1), (0,1,1), (0,0,1).
If then we perform the permutation which changes (@) into (@)
and at the same time (@), ... into (a?), ...,» we obtain
a;j=otal+aa2+o3a,’.
s g means a® and of means «'?: in (10.3.1) above, a? is a power, but this use does

not recur.
b ql ig defined by this permutation.



264 REARRANGEMENTS

In the general case we proceed in the same way, writing
ay=a,.14+(Gy—a,). 0+ (@3 —a,) . 0+...,
Gy =0y 1+ (Gy— ;). 1 + (@3 —dp). 0+ ...,

This secures (10.3.3), and (10.3.2) then follows by rearrangement,
as in the special case.

(3) From (1) and (2) we can deduce the general theorem. For,
decomposing (b) as in (2), we have

a,:;‘lod’af, dj=2p;apajp, b,-=§/3"b].°, 5:?305:;0’

Zaj ;= ZEMP ﬂa za]’p B,_C!
J

po j
< ZZar B Sa,h;0=Za,b;.
po i J

10.4. Restatement of Theorem 368. It will also be useful
to restate Theorem 368 in different language. We suppose now
that, in the sets (a), (), j runs from —n to n. We write

fl@)=Za;27, g(x)=2Zb;at,
and call ay,=C(f(x))
the central coefficient of f. Plainly

C(f(z)=C(f(x)).
Also Z a,b,=Za;b_;=C(fg).

r4+s=0
The sets (a;+) and (*b_;) are similarly ordered, and if we write
fH@)=Zatal, +f(x)= Zta;ad,
so that, by (10.1.1),
[ ) ="f(z),

then Theorem 368 gives

@(fg) = +E Oarbs= zajb—j = Za.’f+ +b—i = X a’r++ba= (S (f++g)'

r+8§=

r+s=0
Hence we deduce

370. The central coefficient of

n . n .
Zaxt X bl
~n -n
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18 greatest, for all rearrangements of the a and b, when (a;) and (b_;)
are similarly ordered, in particular when (a) is (a*) and (b) ts (+b)
or when (a) is (*a) and (b) is (b*).

10.5. Theorems concerning the rearrangements of three
sets. We pass now to theorems involving three sets of variables.

371.2 Suppose that the ¢, x, and y are non-negative, and the ¢
symmetrically decreasing, so that

CE2CL=C_12Cy=C_s=... 2 Cop=C_op,

while the x and y are given except in arrangement. Then the bilinear

Jorm P

§= % X Cr—s%rYs
k

r=—ks=—
attains its maximum when (x) is (x+) and y is (y*).
It is evident that, if this is so, then the maximum must also be
attained when (z) is (tz) and (y) is (*y).
372.> Suppose that (a), (b), (c) are three sets satisfying
(10.5.1) gz, =a_,, by=b,=b_,, cy=c=c_.
Then the maximum of
2 ab.,=C(Za,zr Th,as Xe,xt),
r+s+t=0
for rearrangements of the sets which leave ay, by, c, unaltered, is
attained when (a), (b), (c) are (a*), (b*), (c*).

873.c If (a), (b), (c) are three sets, of which (c) is symmetrical in

the sense of §10.1, then
2 abegs 2 oattber= 0 tabgte*.
r+84+t=0 r+s+t=0 r+s+t=0

It will be sufficient to prove Theorem 373, since this includes
theother two theorems. In the first place, Theorem 373 is Theorem
372 freed from the restrictions (10.5.1), wholly in regard to (@)
and (b) and partly in regard to (c). To deduce Theorem 371 from
Theorem 373, we put 2k=n, x,=a_,, y,=b,, and suppose that
the @ and b outside the range (—k, k) are zero. We may observe

a Hardy, Littlewood, and Pélya (1).

b Hardy and Littlewood (4), Gabriel (1).
¢ Gabriel (3).
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finally that Theorem 370 is the simple case of Theorem 373 in
which ¢,=1 and the remaining ¢ are 0.

10.6. Reduction of Theorem 373 to a special case. We
dividethe proof of Theorem 373 intothree stages, asin §10.3.The
whole difficulty of the proof lies in stage (1), in which (a), (b), (¢)
are of types (a), (b), (¢): and we take this stage for granted for the
moment and dispose of the easier stages (2) and (3).

First, we may decompose (a), (b), (c) into sums of sets (a?),
(b9), (¢7), in such a way that

a;= YoP ajP R bj = Zﬁobja , C= Z.)/T ch ,
P o T

and aj+ =P ajp+ , +bj — Zﬁo+5ja , Cj* — Z’y" ch* .
3 [ T

Here the a, b, care all 0 or 1, the o, B, y are non-negative, and
(a point whichdoesnotarisein §10.3) the sets (¢7) are symmetrical.
Allthis is proved by the method of §10.3 (2).aWhen wehavedone
this, and proved the theorem for sets of type (a), (b), (c), we have

X abi= T aPBoy T alblC]

r+8+t=0 Py Gy T r+s+t=0
< > oP ﬁo ,y‘r 3 arp+ +Bsa' ct'r* —_ > ar+ +bs C f* "
PO, T r+8+t=0 r+s+i=0

and the proof is completed.

It remains to prove the theorem in the special case in which all
a,b, c are 0 or 1.» The set ¢, being symmetrical, contains an even
number of 0’s and an odd number of 1’s. We write

f@)=Za,x", g(x)=IZbas, h(x)=Zca'.
Since we may add any number of 0’s to the sets, we may sup-
pose that all the summations run from —n to ».

We have also

ff@)=Zata"=xF+. .. +1+.. +2F,
tg(@)=Ztbas =5+ ...+ 1+...+25,
h*(x)=3c*at = T+...+1+...+27,

& In order that the sets (¢7) obtained by the process of §10.3(2) should be
symmetrical, in the sense of § 10.1, we drop those ¢” which correspond to zero y”.

b So that, strictly, we should write a, b, ¢ for a, b, c. There is, however, no further
necessity for this notation.
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where R, R’, 8, §’, T are non-negative integers and

(10.6.1) R<R<R+1, S=8=8+1
We have to prove that
(10.6.2) € (fgh) = C(f*++gh*).

The inequality (10.6.2) may be made ‘intuitive’ by a geo-
metrical representation. Let z, y be rectangular coordinates in a
plane, and represent each non-zero coefficient of f, g, 2 by a line,
z=rfora,=1,y=sfor b,=1, and x+y= —1 for ¢,=1. If a.b,c,
contributes a unit to € (fgk), these three lines intersect. Each of
the functions f, g, k is represented by a family of parallel lines,

Y

N

BN ;

Fig. 1. Graph of f, g, A. Fig. 2. Graph of f+, tg, h*.

and €(fgh) is the total number of triple intersections of these
lines. We represent f+, *g, h* similarly; f+ is also represented by
R+ 1+ R’ vertical lines, but now these lines are shifted as near as
possible together. Typical figures are shown in Figs. 1 and 2:
here (a), (b), (c) are the sets
1,0,1,0,0,1,0,0,1;
1,1,0,0,1,1,1,0,0, 1;
1,0,1,0,0,0,1,0,1,0,0,1,0

respectively; and

R=1, R'=2, 8=2, §=3, T=2.
It is intuitive that the number of intersections is greatest when,
as in Fig. 2, the diagram is as condensed as possible.
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Our proof of (10.6.2) may be presented geometrically® and
followed on the figures. We reduce the actual case considered to
a simpler one by taking away one horizontal and one vertical line
from each figure, as is suggested by the thick lines in the figures.
We prefer however to state the proof in a purely analytical form.

10.7. Completion of the proof. There are three subordinate
cases in which the proof is easy.

(1) If R'=0, f* reduces to 1 and the result is included in
Theorem 370.

(2) If 8'=0, g reduces to 1 and again the result is included in
Theorem 370.

(3) Suppose that

(10.7.1) R+ 8T, R+8sT.
We have in any case
(10.7.2)
C(fgh)= X ab,c;sTa,Zb,=(R+1+R)(S+1+8").
r+8+t=0

But, wheén the inequalities (10.7.1) are satisfied,
C(f++gh*)=C{(x~ B+ .. 4 2BH8) (xT+... + 1 4... +2T)}
is the sum of all the coefficients of f+*¢, and therefore

(10.7.3)
C(f++gh*)= Sa,b,="Sa,Zh,= (R+1+ R')(S+1+5').

The result follows from (10.7.2) and (10.7.3).
We now consider the general case in which

R'>0, 8>0, Max(R+8', R'+8)=n>T.
We assume that the result has been proved for
Max (R+8', R'+8S)<n
and argue inductively.
Let ar be the highest power in f, 2° the lowest in g, and write

f-wp=d, gea=y, fr-a¥=§, tg-av=f.
Since R’ >0, 8’ > 0, none of these functions vanishes identically.
8 See Gabriel (3).
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Then foh=(¢+2P) (x°+ ) h= b+ xh,
where X=2°¢+ 2P0+ aPif.
Since the highest power in 2° ¢ is lower than ar+°, and the lowest
power in 2Py is higher than ¢+, there is no overlapping, and all
coefficients in y are 0 or 1. Since the sum of the coefficients in %
is 27T + 1, it follows that

C(xh)=2T+1,

(10.7.4) € (fgh) = C(¢ph) + 2T + 1.

On the other hand

(10.7.5)  frigh*=(§+a®) (@5 +§) h* = §fh* + Xh*,
where

R=a5+ 2 +2F
=g B8 4 aB 1y gB 8 RS RS,

The sequence of exponents in ¥ is an unbroken one, extending
from — R— 8’ to R'+ 8. We know that either R+ 8" or B'+ S
is greater than 7'. If R+ 8’> T then, by (10.6.1),

R+8zR+8-127T,

and so the unbroken sequence from — 7 to T, of length 27"+ 1,
is part of the sequence of exponents of y. The same conclusion
follows when R’+ S > 7. Since h* has an unbroken sequence of
exponents of length 27"+ 1, centred round the constant term,
it follows that € (xh*)=2T +1,
and so, by (10.7.5), that

(10.7.6) C(f+tgh*)=C($fh*)+ 2T + 1.

Now ¢t (x)=®Dp 4aR=q(z1),2

(@) =25+ ... + 25 1= (x1).
Also
Max(R'—1+8, R+8 —1)=Max(R'+ 8, R+8')-1=n-1,

and so, by our hypothesis,

(10.7.7) € (¢gph) < € (¢+Th*)=E{ () & (&™) h* ()}

=C{f (@) (z) h* (@)} = € ($Ph¥).
a Tt is not necessarily true that
¢t (2)=d(2)=2"B+... +2B-1,

since, if B’ = R, this polynomial is ‘overweighted’ at the wrong end. When B’=R + 1,
either formula is correct.
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Finally, comparing (10.7.4), (10.7.6), and (10.7.7), we see that
€ (fgh) = C (f++gh¥),
and the proof is completed.
10.8. Another proof of Theorem 371. There is another
proof of Theorem 371 which is interesting in itself, although it
cannot be extended to prove the more general Theorem 373.

We have to prove that, among the arrangements of the  and y
which make § a maximum, there is one in which

(10.8.1) T, —xp20, yY—yg=0
if |7 |>]|7|, |s']|>]s]
or if r=—r<0, §&=-—s5<0.

We may suppose on grounds of continuity that the z, ¥, and ¢
are all positive, that the x and the y are all different, and that the
c are different except in so far as they are restricted by c¢_,=c,,
the condition of symmetry.

We shall denote an arrangement of the x and y generally by 4.
We say that 4 is ‘correct’ if it satisfies (10.8.1); there is just one
correct arrangement C. We say that 4 is ‘almost correct’ if it
satisfies (10.8.1) except perhaps when r'= —7 or 8’ = —s; there
are, including C, 22 almost correct arrangements, and we denote
the class of such arrangements by C’. Finally we denote by K the
class of those A which give the maximum value of S. We have
to prove that Cis a K.

Given p, we can associate the x and y in pairs

(10.8.2)  (Tp—i> Tpis)y Yp—js> Ypug) (1,5=1,2,3,...),
or in pairs

(10-8'3) (xp-—’i ) xp+'i+1): (yp—j7 yp+:i+1) (i7j= O: 17 2: ')

If a suffix falls outside the interval (—£, k) then the correspond-
ing x or y is to be replaced by 0. In the first case the elements
x, and y,, are left unpaired, and the pairing may be made, by
choice of appropriate p, 4, j, to include any pair of elements the
difference of whose ranks is positive and even. In the second case
no elements are left unpaired, and the pairing may be made to
include any pair the difference of whose ranks is odd. We use
both pairings, and the arguments are essentially the same which-
ever is being used.
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Consider, for example, the pairing (10.8.2), and suppose, to fix
our ideas, that p =0, so that

lp—i|=lp+i], |p—-jls|p+jl.
We denote by I, J those values of 7 and j for which
Tpi1<%Tpir> Yp—y <Ypis>

so that the pairs corresponding to I and J do not satisfy (10.8.1).
Such pairs we call ‘wrong’, others ‘right’. If p+1 falls outside
(—k, k), but p —i inside it, then x,,,; is to be replaced by 0, and
the corresponding pair of z is certainly right. Hence, except
perhaps when p =0, there are ¢ which are not I and j which are
not J.

If, for a given p and a given pairing?, there are no wrong pairs,
we say that 4 is ‘right with respect to p’, and otherwise ‘ wrong
with respect to p’. Itis clear that C is right with respect to every
P, and that any (" is right with respect to all p except perhaps
p=0 and the pairing (10.8.2). Further, any 4 other than C
is wrong with respect to some p and pairing, and any 4 which
is not a (' is wrong either with respect to a p other than 0
or with respect to p=0 and the pairing (10.8.3).

We now (again envisaging the first pairing, andsupposingp = 0)
consider the effect on § of the substitution

Q

‘D (xp-—I’ xp+1; yp—-.]’ yp+J)
which interchanges each pair z,,_;, ,,,; and each pairy,_;, y,,,-
We divide S into nine partial sums defined as follows:

8;: r=p; s=p;

Sy r=p; s=p—j,p+j (j+J);

Sy r=p—i,p+¢ (s+1); s=p;

8, r=p; s=p—-J,p+J;

Sg: r=p—I1,p+1; s=p;

Sg: r=p—i,p+i (oF1); s=p—j,p+j (j*J);
S, r=p—t,p+i o+1); s=p—-J,p+J;

Sg: r=p—L,p+I; s=p—j,p+j (G+J);
Sy: r=p—I,p+1I; s=p—-J,p+J.
It is plain, first, that §,, §,, S;, and S are not affected by Q,,.

s Either (10.8.2) or (10.8.3). In what follows ‘right (or wrong) with respect to p’
means always ‘right (or wrong) with respect to » and the pairing under consideration’.
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Next Sy=1, ? (€1Yp—s+CsYp+s)
is not affected because c_,=c;. Similarly S; and

Sy= I’EJ (Cor45%p1Yp-g+C 1 3Tp1Ypis

+ 115 %p 1 Yp—g + €15 Cp11Yp1s)

are not affected. It remains to consider S, and Sj.

The contribution of the pair x,,_;, ,,,; to S; is

ZTp—i § (C_ivaYp—g+CigYpia) + Tpis § (CirsYp—yt CigYpts)s
and the increment produced by Q,, is
= (Tp—i—Tp 1) § (Ci—g=Citg) Up—g—Ypss)-

The total change in S, is the sum of this increment over ¢ &= I, and
is positive, provided that there are J and ¢ = I, since the three
differences written are respectively positive, positive, and
negative. Hence S, is increased if there are J and i=1I; and
similarly S; is increased if there are I and j+J. Finally, § is
increased if either of these conditions is satisfied.

If p 40, there are ¢ + I and j + J; and then § is increased unless
A is right with respect to p. In any case, whatever p, § is not
diminished.

Suppose now that 4 isnot a C'. Then 4 is wrong with respect
either to some p=0 or to p=0 and the pairing (10.8.3). The
argument above, or the similar argument based upon the pairing
(10.8.3), then shows that S is increased by 2, (or the corre-
sponding substitution based upon the other pairing), and that
Aisnota K. Hence the K are included among the ¢’. But ifa C’
is not, C, then the substitution Q, replaces it by ¢ and does not
diminish 8; and therefore C is a K.2

It does not seem to be possible to prove Theorem 373 by any
equally simple argument based upon a substitution defined
directly.

10.9. Rearrangements of any number of sets. There are

& The argument is the same in principle as that used by Hardy, Littlewood,
and Pélya (1), and substantially reproduced by Hardy and Littlewood (6). We
have however expanded it considerably, Dr R. Rado having pointed out to us that
the original form of the argument was not conclusive. Another form of the proof is
indicated in Theorem 389 at the end of the chapter.
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analogues of Theorem 373 for more than three sets (a), ..., which
may be deduced from Theorem 373 itself.

3742 If(a),(d),(c),(d),...arefinite sets of non-negative numbers,
and (c), (d), ... are symmetrical, then

(10.9.1) z ab,cd, ... < z a,ttbe*d* . ...
r+s+t+u+t...=0 r+s+t+u+...=0 )

We assume the theorem to be true when there are k£ —1 sym-
metrical sets (¢), (d), ... involved, and prove that it is true when
there are k. We shall make use of the following theorem, which is
of some interest in itself.

875. If (c*), (d*), ... are symmetrically decreasing sets, then the
set (Q) defined by

(10.9.2) Q.= = crd*..
t+u+...=n

18 symmetrically decreasing.

It is enough to prove the theorem for two sets (c*), (d*), since
its truth in general then follows by repetition of the argument.
We may agree that, when there is no indication to the contrary,
sums involving several suffixes are extended over values of the
suffixes whose sum vanishes.

It is plain that Q_, = @, . Further, for any set (x), we have

22, Q=21 Q, =22, c*d,* <3z} ¥ d,* =Tt @,
m m

by Theorem 373. It follows, by Theorem 369, that the @, are
similarly ordered to the x;;, and therefore, since @, is an even
function of m, that the set is symmetrically decreasing.

This is the most elegant proof, but there is a simpler one which does not
depend upon Theorem 373.
We drop the asterisks for convenience and suppose 7= 0. Then
Qn=Z2Cn,d s+ ZCnpy o+, 3,
the summations extending over = 1. Similarly
Qn+1 = Ecn+r dl—f + ch+l—r dr .
Subtracting, and using the equations d_,=d, and d,_,=d,_,, we obtain
Qn - Qn+1 =3 {cn+r (d-r - dl—r) + Cnii—r (dr—l - r)}
=X (cn+1-r - cn+r) (d —1—d,).
Since |n+1—7| <n+r for n=0, r= 1, each term here is non-negative.
& Gabriel (3). The case of the theorem in which all the sets are symmetrical was
proved by Hardy and Littlewood (4).

HI 18
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Returning to the proof of Theorem 374, we define @, as in

(10.9.2), and P,, by
P,= X ab,.

r+s=m
Then Za,byc,d,...=2P,cd,... 2 ZP}c*d,*...,
by the case k£ — 1 of the theorem?. That is to say,
Za,byedy ... SZPHQ,=2P} Q,=2P,, Q4um>
m m

where ¢ (m) is a permutation function for which P,, = P; (my> 1-€+
Za,bycidye,... < 2a,b,Qyum < Za, 0, Q,,*
=Za, b, Q,,=Za, th,c*d, *e, *...,
which is (10.9.1).
From Theorem 374 we can deduceP

376. Given any finite number of sets (a), (b), ..., we have
20,0_p,bg b_s, 00y, .. S Baf Ty, b by, cf Yoy, ...

—Satat btbt ctet
_Zarla_rzbslb_szc,lc_,z....

10.10. A further theorem on the rearrangement of any
number of sets. In Theorems 373 and 374 two of the sets, (a)
and (b), were arbitrary, but the remainder were subject to the
condition of ‘symmetry’. This restriction is essential; if (@), (b)
and (c) are unrestricted, it is not possible to specify the maximal
arrangement generally by means of the symbols a*, *a, ... .

There is however a less precise theorem which is often equally
effective in applications.

377. For any system of k sets (a), (b), (¢), ...

by a,bycp... < K (k) Z atbret ...,
r+s+i+...=0 r+s+it+...=0

where K = K (k) is a number depending only on k.
We suppose k= 3; the argument is essentially the same in the

general case.
We define the sets (8*), (y*) by

(10.10.1) Bk=br, yk=c! (mz20),
(10102) %, =B%, ¥%,=y% (m20);
a With P, ¢, d, ... for a, b, c, ...: since (c) is symmetrical, +c;=c.*.

b Gabriel (3). ¢ See Theorem 388 at the end of the chapter.
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and (B) and (y) as the sets into which (8*) and (y*) are changed
by the permutations which change (b*) into (b) and (c*) into (c)
respectively. Then (B) and (y) are symmetrical sets. Further,

3 + + + +
since b*, < b} and c*,, <c} when m =0, we have

brSBE, cisvE
for all », and so
(10.10.3) b,SPBns CaSvn

for all n.
We shall also require an inequality for 8% and y¥ with m <0.
We have b} <b*, ., andc} <ct, ., for n>1, and so, by (10.10.1)

and (10.10.2),
(10.10.4) B¥<b} yhschi, (m<0).

m=Om+1>
Using (10.10.3) and the symmetry of (8) and (y), we find
S= X abes X arﬁs'}’l-—s- z a: ﬁ:'y;k’
r+s+i=0 r+s+t=0 r+s5+t=0

by Theorem 373. The last sum is
(2 + X 4+ Z 4+ X )afB¥y

8=20,t=20 $<0,t=0 8=0,t<0 s<0,ti<0
and so, by (10.10.1) and (10.10.4),

(10.10.5)

+ b+ ot +p+ ot
S 2 arbfef+ X afbl g
8=0,t=0 8§<0,{=0

+ X oafbichi,+ Ioafbli e, =8+ 8+ 8+ 8,
820,1<0 §<0,¢<0

In S,, s<0and r+s+¢=0, so that either >0 or > 0. In the
first case a} <a; , and in the second ¢} <c¢/_,. Hence in any
case, in S,,

(10.10.6)  a}bf ¢t <at bf ct+atdb}l ct,.
Similarly, in S,

(10.10.7)  afbtct ,saf bfch +atbl cf,.
Finally, in 8,, s<0, t<0 and r+s+£{=0, so that r=2 and
atr<a,,and

(10.10.8) afbr et Sat ,bf et
If now we substitute into (10.10.5) the upper bounds for the
typical terms given by (10.10.6), (10.10.7), and (10.10.8), and

18-2
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observe that, in these upper bounds, the sum of the suffixes is
always 0, we obtain

Ss(1+2+42+1) X afblcif= 6Z albfct;
r+s+t=0 r+s8+t=0

which proves the theorem.

10.11. Applications. These theorems have important applications to
the theory of Fourier series. It is easy to deduce from Theorem 3762 that if

R R
fO)=X a,e®, f+(6)=Z a e,
-R -R
where a,= | a,|*, and k is a positive integer, then

/" If((i)lz’%wéfw |£+(6) |2k db;

and this relation between trigonometrical polynomials may be extended
to functions represented by general Fourier series. Series of the type

ZOL, eroi
have particularly simple properties. They converge uniformly except at

the origin and congruent points, where the function which they represent
has in general an infinite peak; and the ratio

/:Tlf+(0) [26df s T (| 7|+ 1)2k~2¢, 2k

lies between positive bounds depending only on k. We thus find, for
example, that

/n [£(8)|2*d0 S K (k) T (| r | + 1)2*~2 e, 2%,
For fuller developments see Hardy and Littlewood (9), Paley (3).

10.12. The rearrangement of a function. The theorems of
§§10.1-10.10 have analogues for functions of a continuous
variable.

Suppose that ¢ (x) is non-negative and integrable in (0, 1), so
that it is measurable and finite almost everywhere. If M (y) is
the measure of the set in which ¢(x)>y, M (y) is a decreasing
function of y. The inverse ¢ of M is defined by

${M )=y
and & (z) is a decreasing function of z defined uniquelyin (0,1) ex-
cept for at most an enumerable set of values of z, viz. those corre-

a See Gabriel (3). A less precise inequality was given by Hardy and Little-
wood (9).
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sponding to intervals of constancy of M (y). We may complete
the definition of § (x) by agreeing, for example, that

¢ (@)=1{¢(@—0)+$(x+0)}
at a point of discontinuity 2.

We call &(x) the rearrangement of ¢ (z) in decreasing order.
It is a decreasing function of # which has, in general, an infinite
peak at the origin.

The measure of the set in which & (x) =y is M(y).? It follows
that the two (in general quite different) sets in which

NE$@)<y Y1=@)<y,
have the same measure, and that the same is true of the sets in

which $@)>y, F@)>y.

We may say that the functions ¢ (x) and & (z) are equi-measur-
able’; they have equal integrals over (0, 1) and

[ F@ao=[ Fgas

for any measurable F' for which the integrals exist.

We may define ¢ (x) similarly for a ¢ (x) defined in any interval
of x, provided that, if the interval is infinite, M (y) is finite for
every positive y.

If ¢, (x) < ¢ (x) then plainly ¢, (x) < & (). Suppose in particular
that ¢, (%) is ¢ (x) in E and zero in CE. Then

E mE
(10.12.1) f qS(x)dx:fq&l(x) dx:fm &, (x)dx§j é (z)dz.
E 0 0
We shall use this inequality in § 10.19. In particular

(10.12.2) f:¢(t)dt§f:$(t)dt

if ¢ (x) is defined in (0, @) and 0=z =a.

& Compare § 6.15. _

b This becomes obvious on drawing a figure. It must be remembered that ¢ (z)
may have intervals of constancy, corresponding to discontinuities of 3 (y). It is
however easy to prove that M (y —0) =2 (y) for all y, and so that the assertion in
the text is true even for these exceptional y. In fact

1
o (y=7) = M ) =mS,
where S, is the set in which y —n"1=¢ <y, and the limit of mS, is zero.
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Another type of rearrangemernt of a function will be important
in what follows. Suppose, for example, that ¢ () is defined for all
real, or almost all real , and that M (y) is finite for all positive y.
We may define an even function ¢* (x) by agreeing that

$*{3M (y)} =y
and that ¢* (—x)=¢* (x); or, what is the same thing, that ¢*(z)
is even and ¢* ()= & (2x)
for positive x. Then ¢* (x) decreases symmetrically on each side
of the origin, where it has generally an infinite cuspidal peak. We

call ¢*(x) the rearrangement of ¢ (x) in symmetrical decreasing
order.

10.13. On the rearrangement of two functions. We begin
by proving an integral inequality corresponding to Theorem 368.

378. Whether a is finite or infinite,
f * e < f * $de.
0 0

We prove this by an argument similar to that of §10.3. In the
first place, the theorem is true for functions which assume only
the values 0 and 1. For suppose that E and F are the sets in
which ¢=1 and ¢ =1 respectively, and &, F the analogous sets
corresponding to &, . Then the first integral is m (&F), the
measure of the set £ F which is the product of £ and F, and

m(BF)<Min (mE,mF)=Min (mE,mF)=m(EF).

Next, the theorem is true for functions which assume only a
finite number of non-negative values. In fact, following the lines
of §10.3, we can represent such a function ¢ in the form

p=01h+apdyt ...+, by,
where the « are non-negative, the ¢ are always 0 or 1, and
=0y ditaadot ..+ oy by
The inequality then follows from a linear combination of in-
equalities already proved. '
Finally, we prove the theorem in the general case by approxi-
mating to ¢ and , by functions of the type just considered. We
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do not give the last two stages of the proof in detail, since the
arguments willrecur in the proofof the more difficult Theorem 379.

10.14. On the rearrangement of three functions. We come
now to what is our main object in these sections, the integral
theorem corresponding to Theorems 372 and 373.

379.2 If f(x), g(x), and h(x) are non-negative, and f* (x), g* (x),
and h*(x) are the equi-measurable symmetrically decreasing func-
tions, then

(10.14.1) I=f:ff @) g @) h(—z—y)dady

éf:of:f*(x)g*(?/)k*(—w—y)dxdy=I*.

We may plainly suppose that none of f, g, » is nul. We may
alsoreplace —x—y by + x +y without changing the significance
of the inequality.

We prove the inequality (1) for functions which are always 0
or 1, (2) for functions which take only a finite number of values,
and (3) for general functions. As with Theorem 373, the whole
difficulty lies in stage (1). We take this stage for granted for the
moment and begin by showing that, if the theorem is true in this
special case, it is true generally.

A function which takes only a finite number of non-negative
values 0, a,, @,, ..., @, can be expressed in the form

f@) =0y fi (@) + o fo () + ... + o, fr (2),
where the « are positive, the f; take only the values 0 and 1, and
fizfoz 2.
For we may suppose 0 < a,<a,<...<a,, take
W=y, Cg=Ao—Cy, .oy Up=0p—Qy_1,
and =1 (fza), =0 (f<ay),
fo=1 (fzay), =0 (f<ay),

A moment’s consideration shows that we then have also

F* (@)= oy fr* () + oo fo* (@) + ... + o, ¥ ().
& F. Riesz (8).
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If we suppose that each of f, g, b takes only a finite number of
values, and decompose them in this way, then (10.14.1) follows
from the combination of similar inequalities involving triads
Ji: 955 I

To pass from this case to the general case, we approximate to
J» 9, h by functions which take only a finite number of values. We
can approximate to f, for example, by the function f,, defined by

k k+1

k
fn=7; (;’léf<—n——, k=0, 1, 2, ey 'n/2—"1), fn='n (f;n);

and to g and A similarly. Then f, <f, f,* <f*, and similarly for
g and k. Hence (assuming that the theorem has been proved for
the special type of functions) we have

In=f°° J<°° fn(x)gn(y)hn(—x—y)dxdyé In*.-—<_ I*,

and so I=lim I, < I'*.

It remains to prove the theorem in the special case when f, g, &
assume only the values 0 and 1. It is however convenient first to
make a further reduction of the problem.

First, we may suppose that the sets F, @, and H in which
f» g, and h assume the value 1 are finite. If fwo of these sets are
infinite, then two of f*, g*, and A* are 1 for all z, in which case
I*=oob and there is nothing to prove. Suppose then that just
one of the sets, say F, is infinite. Let ¥y be the part of F in
(=N, N),let N be the smallest number for which mF, > 2n,
and define f, as being f in F, and 0 outside. Then (assuming
the theorem to have been proved when the sets are finite)

L=[" " narasay= [~ |7 proenedzay

—_—0J —

=f" wf*g*h*dxdyéfwf frg*h*dudy=TI*,

—nd -
and so I=limI, <I*.

Suppose then that f(x) assumes the value 1 in a set F of finite
measure. We can represent X in the form & +e—e’, where € is a

3 Compare the similar argument in § 10.6.
b Unless the third function is nul.
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finite set of non-overlapping intervals, and e and ¢’ are sets of
arbitrarily small measure?; and the sets in which g and A assume
the value 1 can be represented similarly. It is also plain that,
since f, g, and & do not exceed 1, small sets e, ... make a small
difference in the integrals I and I*. We may therefore suppose
that the sets in which f=1, g=1, and A=1 are finite sets of
intervals; if the theorem has been proved in this case, its truth
in the more general case follows by approximation.

Next we may suppose, on similar grounds, that the ends of all
the intervals are rational; and then, by a change of variable, that
they are integral. The theorem is thus reduced to dependence
upon the case in which each of the sets in which f=1, g=1, or
h =1 consists of a finite number of intervals (m, m + 1), where m
is an integer.

Finally we may suppose, if we please, that the number of
intervals in any or all of the sets is even, since we can replace each
interval by two by bisecting it and effecting another change of
variable.

10.15. Completion of the proof of Theorem 379. It is
convenient to replace f(x) by f(—z), as plainly we may without
affecting the result. If we do this, write s, ¢ for z, y and then make
the substitution s =x —¢, we obtain

(10.15.1)
fwf f(t—x)g(t)h(—2x)dedt= ) h(—x) x(x)dw
0152 -
I*__:fw f*(t~— *(8) h* (— ) dodt = ? ¥ (=) *x () dx
Where—m -
(10.15.3)

x@=| fe-og0d, *x@=| sre-ag o

We suppose for the moment merely that f,g, s are characteristic

a See for example de la Vallée Poussin (2, 20-23).
b *y () is naturally not to be confused with x* (z).
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functions of sets (functions assuming the values 0 and 1 only),
without using the further simplifications shown to be permissible
at the end of §10.14. We denote the sets in which f, ..., f*, ...
assume the value 1 by F, ..., F*, ...; each function vanishes out-
side the corresponding set, and F*, ... are intervals symmetric
about the origin. We suppose that
mF=mF*=2R, mG=m@*=2S, mH=mH*=2T.

With this notation?, we have

(10.15.4)

Iéf f(t—x)g(t)dwdt=f f(——s)dsf g (t)dt=4RS,

T
(10.15.5) I*=f *x (x)dx.
-7

If z is fixed, and ¢ —x describes the set F, then ¢ describes a set
F, obtained by translating F through a distance z. If we define
F* = (F*),similarly, then the functions (10.15.3) may be written
in the form

(10.15.6)  y(@)=m(F,G), *x(@)=m(F*, G*).

From this formula we can calculate *x (x). Let us suppose, as we
may, that

(10.15.7) RsS.

Then *yx (x) is continuous,

(10.15.8) *y (x)=0 (|z|=R+8), *x(x)=2R (|z|£8—-R),
and *y(x) is linear in the intervals (- R—S8, — S+ R) and
(8— R, R+ 8). The graph of *x (x) is shown in Fig. 3.

Suppose now that

(10.15.9) R+8=T.

Then it follows from (10.15.8) that

T R+S
I*=f *x(x)dw:f *x(x)de=4RS,
=T —R-8

and the result of the theorem follows from (10.15.4). We have
thus proved the theorem under the restriction (10.15.9). It is
also plainly true if R=0 or 8=0 (when F or @ is nul).

8 Chosen to emphasize the parallelism of the argument with that of §§ 10.6-7.
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So far F, @, H have been arbitrary sets of finite measure. We
now make the further specialisation explained at the end of
§ 10.14, supposing that F, G, H are sets of intervals (m, m + 1), the
numbers of intervals being 2 R, 28, 27 respectively. We may if we
pleasesuppose thesenumberseven, but we shallargue inductively,
and it is more convenient to adopt a slightly more general hypo-
thesis and to suppose only that 2R+ 28+ 27 is even. In these
circumstances R, S, and 7' are not necessarily integral, but 2R,
28, 2T and

(10.15.10) u=R+8~-T=R+8+T-2T
2R

2R—1

-R-S =T | R+S
-S+R 0] S—-R R+S-1
Fig. 3. Graph of *x and *y,.

are integral. We have already proved that the theorem is true if
=0, and it is also true if B =0 or §=0. It is therefore enough to
establish its truth when

(10.15.11) u=n>0, R>0, §8>0,
on the assumption that it is true when p=n—1.

We denote by F, the set derived from F by omitting the last
interval of F on the right; similarly @, is G less the last interval
on the right of @. Generally, sets, functions, or numbers with
suffix 1 are derived from F, and G, as the corresponding sets,
functions, or numbers without suffixes are derived from F and G;
thus f;* is the rearrangement of f,, the characteristic function of
F,, and *x, (x)is the ‘Faltung’ of f;* and g,*. F',* is the interval

( —R+ %s R— %):
and generally, R and S are replaced by R— 4% and S — 4 when we
pass from F, @ to F,, G,. By the inductive hypothesis

(10.15.12) I, 1,*
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The function *y, (x) vanishes for |z| = R+ S -1, is equal to
2R—1 for || = S— R, and is linear in the intervals remaining;
and T< R+8-1, by (10.15.10) and (10.15.11). Hence?

*x (@)= *x1 (%) =1
for - T<2< T, and, by (10.15.5),

T

(10.15.13) I*—I*= f {ox (8) — *xq (D)} dE =21
-7

We have now to consider

(10.15.14) I——Il=f:°h(—90){;((2:)——;(1 (@)} de.

Here, after (10.15.6),
(10.15.15) x @)=y (@)=m (F,G)—m (F,Gy).

This function is plainly linear in any interval (m, m+1), and
therefore assumes its extrema for integral values of x. Suppose
then that x is integral. In this case the set F, @ is composed of
full intervals (m, m + 1), and, when we remove the intervals of
F, and G furthest to the right, either one or no interval of F,G
is lost, one if the extreme interval of either set coincides with an
interval of the other set, and none if there is no such coincidence®.
Hence x () — x; () is 1 or 0 for integral , and therefore

(10.15.16) 0 x(@)—x;, ()1
for all z.
From (10.15.14) and (10.15.16) it follows that

(10.15.17) 0§1—11=f {x(—w)—xl(—x)}dx_s_f dw=2T,
H H

and from (10.15.13) and (10.15.17) that

(10.15.18) I—1,sI*—1I*
Finally (10.15.12) and (10.15.18) give I < I'*; and this completes
the proofe.

s See Fig. 3. .

b We cannot lose two intervals because the intervals removed from F, and G
are the furthest to the right of their respective sets. This is the essential point of
the proof.

¢ The proof follows the line indicated by Zygmund (1). It is, however, con-
siderably longer, and necessarily so, since Zygmund’s proof is not, as it stands,
conclusive.

We proved that (10.15.16) is true when the intervals removed from F and G are



REARRANGEMENTS 285

10.16. An alternative proof. The proof of Theorem 379 given
by Riesz is also very interesting. We can simplify it by reducing
thetheorem, asin §10.14, to the case in which f, g, k are each equal
to 1 in a finite set of intervals and to O elsewhere. We represent
the variables z, y, z on the sides of an equilateral triangle, taking
the middle point of each side as the origin and the positive direc-
tions on the sides cyclically. Then #+y +2z=0 is the condition
that the points z, ¥, z on the sides should be the three orthogonal
projections of a point of the planes.

The functions f(x), g(y), k(z) are the characteristic functions
of three sets E,, E,, E,, each consisting of a finite number of
non-overlapping intervals, and f*(x), g*(y), 2*(z) are the char-
acteristic functions of the three intervals E,*, B,*, E,* of lengths
E,,E,, B> symmetrically disposed about the three origins. If £,
is the set of those points of the plane whose three projections
belong to E,, E,, and E,, and E*,,, is defined similarly, then¢

I=sinin B ,,, I*=sininrE*,,,
and what we have to prove is that
(10.16.1) Eyp < E* .

The figure E*,,, is defined by drawing six lines perpendicular
to the sides, and is a hexagon unless one of Z,, ,, E, is greater
than the sum of the other two, in which case it reduces to a
parallelogram. We begin by proving (10.16.1) in the latter case.
Suppose for example that E,= E,+ E,. Then E*,,, reduces to

the extreme intervals on the right. It would not have been true if we had removed two
arbitrary intervals. Suppose, for example, that each of F and @ is the interval
(-4, 4), that F, consists of the two intervals (-4, —2) and (2, 4), and G, of the
interval ( -2, 2). We can pass from F, G to F,, G, in four steps, taking away one
unit interval from each set at each step; but
x(0) =X (0)=8,

instead of being less than or equal to 4. The same example shows that Zygmund’s
assertion (1, 176) ‘those [the values] of ¢ (z) in (— », «) increase at most by 2’ is
untrue unless his construction is restricted in a way which he does not state ex-
plicitly. It is essential to go closely into detail at this point, since it is the kernel of
the proof.

a If P is the point in question and @ is the centre of the triangle, then

x+y+2=PGq {cos « + cos (« +$m) + cos (x + $m)}=0.
b We use K, both for the set E, and for its measure.
¢ E,,;, when used as a measure, is of course a plane measure.
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E*,,, the set of points projecting into E,* and E,* on two of the
sides, while E,,, is included in the set E,, defined similarly.
Hence
B Ey,=cosecin. B Ey=cosec 1. B\ * E,* = E* ,= E* ,,.
This proves the theorem when E*,,, is a parallelogram.
Passing to the case of the hexagon, suppose for example that
E,>E 2E,, E;<E +E,.
We define sets E,(t), E,@t), E4(@),
and corresponding intervals B * (), B,* (¢), E3* (¢), by subtracting
from each E;a set of measure ¢ at each end . If ¢ increases from 0 to
te=3%(E,+ E,— Ey),
E,(t), B, (), Ey(t) decrease from E,, B,, E, to sets E,(t,), Ey(2y),
E,(t,) whose measures satisfy
B, (to)+ By (o) = By (ty)-
The hexagon then reduces to a parallelogram, so that
(10.16.2) gy (1) < B354 (to).
If we can prove also that
(10.16.3) E123_ E123 (to) = E*ms“ E*123 (to):

our conclusion will follow by addition.
We prove (10.16.3) by comparing the derivatives of

()= —Eis(t), ¢* ()= — E*155(2).
In the first place, the difference between E*,,, (¢) and E* 5 (¢ + k)
is a hexagonal ring whose area is AP (t) + O (h?), where P (¢) is the
perimeter of the hexagon corresponding to the value ¢, and so
de*

v P(t)y=cosec i {E,(t)+ E,(t)+ E4(t)}.

On the other hand the three sets
B \(t)—E(t+h), By(t)—Ey(t+h), Hy(t)—E;(¢+n)
o That is to say B, =Ey () + Ey(t) + By (0),
where E,’(t) lies to the left, and E,”(f) to the right, of E,(t), and
mEy () =mB," () =t.
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consist in all of six intervals, each of length %, for small . The
twelve perpendiculars to the sides of the triangle drawn through
the ends of the six intervals define a hexagonal ring* which
includes the whole of E, 43 (t) — B3 (¢4 %). The derivative ¢’ (¢)
is the total length of those parts of the outer boundary of this
ring which also belong to B, (t). Projecting these parts of the

Fig. 4. The decrement of E,,,(¢).

boundary on to the sides of the triangle, as indicated in the figure,
we see that

d do*

3—? < cosec i {E,(t)+ Ey(t)+ E4(t)} = % )
From this (10.16.3) follows by integration, and this completes
the proof of the theorem.

@ See Fig. 4. In the figure the sets £, (t+A), ... are blackened on the sides of the
triangle, the set K\ g (¢ + /) is shaded, the twelve perpendiculars are dotted, and the
boundary of Ey,3(¢) — Eyp5 (f + k) is indicated by a thick line.
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10.17. Applications. The special case of Theorem 379 corre-
sponding to Theorem 371 is

380. If h(x)is symmetrically decreasing, then
1=[" [ s@owhe-yasdy

éf f [*@)g* @) h(x—y)dedy=I*.
We shall now apply Theorems 371 and 380 to the special cases

Crg=|7r—5]|
and h(x—y)=|z—y |
381. If 4,20, b0,

1 1 1 1
10.17.1 >1, >1, —4+->1, A=2—-—=
( ) P q 7277 -7

(sothat 0<A< 1), and
SaP=A4, Zbi=BH,
a,b,
[r—s?
where the dash tmplies that r + s, and K = K (p, q) depends on p and
q only.
382. Iff(x)=0,9(y)20, p and q satisfy (10.17.1), and

[* pew=r [ swa-=c

then T=3%"- << K AvrBa,

then I= f f fl@ 9 (y I@)9W) 44y < K Fmgue.

The proofs of the two theorems are practically the same. We
give that of Theorem 382.2

It is plain, after Theorem 380, that we may replace f and g by
f* and g*. We then divide I into four parts corresponding to
the four quadrants of integration. The north-east and south-west
parts are equal, and so are the north-west and south-east parts,
and the two latter do not exceed the two former®. We need

& For that of Theorem 381 see Hardy, Littlewood, and Poélya (1); for a deduction
of Theorem 382 from Theorem 381 see Hardy and Littlewood (6).

b The north-west and south-east parts could be accounted for by the easier
argument of § 9.14.
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therefore only consider the north-east part. Hence, changing
our notation again it is sufﬁcient to prove that

where now f and g are pos1t1ve and decreasing, and F and G are
defined by integrals over (0, co). We write

J=J,+J,,
where J, and J, are integrals over the octants y<x and z<y
respectively.

We have Jy= f (x dmf
Since g (y) decreases, and ( (- )~ increases, in (0, x),

90 ays [*gway [ 2
say, by Theorem 236. Hence

L5153 [ H0e @) e de.

By Theorem 189
(10.172) J,57 L L Fup ( j :glp' (x)x—l’"‘dx)llp’.
But p’ > ¢, by (10.17.1), and
91 (%)= f:g (y)dy < GHlaxle,
again by Theorem 189. Hence

(10.17.3)
g lp’ () A <9,9(x) (Gl/q xl/q’)p’—q P = QW —ale {g___l (x_)}q
x
(since
q —Ap’ _11__9. (p )p = ———1- ~9)-

From (10.17.2) and (10.17.3) it follows that

J, < K Fips Go'—oi'a { f ” (Zl(_i))qu}m" < K Furqua,
0 X
by Theorem 327.
The discussion of J, is similar, and the theorem follows.

HI 19
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383. Suppose that f(x) is non-negative and L?, where p> 1, in
(0, c0), that

(10.17.4) O<oc<11), q=
and that

(1017.5)  fole) =155 [ @) =9y,
Then f,(x) ©s L2 in (0, 00) and

(10.17.6) f:faadng(f:fpdx)qm,

P
1—ap

b

where K=K(p,a)=K(p,q).
Suppose that g (z) is any function of L7, and that
NIRRT VL R O Y
P 9 P q

By Theorem 382,
© [ g@)f () U‘” )I/p(f” : )W
——Ldxdy< K P, d ,
fofolx—?/l v = of N qu v

and a fortior:
® [ *_fy)
[ r@o@ae=grs [ awas [ Ly

cx [ )" [ "

Since this is true for all g, it follows, by Theorem 191, that

(o "<x e

which is (10.17.6).
The proof shows that the result is also true when f,, () isdefined

b o
’ L&) =50 | 10 w=1dy.

Theorem 383 embodies a result in the theory of ‘fractional integration’.
Liouville (1) and Riemann (1, 331-344) defined the integral fq(x) of f(x),
of order «, as

(10.17.7) fal2) ﬁ*% / “1@) gy,

The lower limit a is the ‘origin of integration’; a change of origin changes
f« in a manner which is not trivial formally, though unimportant for
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theorems of the type considered here. It is easily deduced from Theorem
383a that, if f is L? in (a, b), where —oo<a<b=o0, a<1/p, and fq 13 the
integral of f, of order o and with origin a, then fois L% in (@, b). When a> 1/p,
fa is continuous, and indeed belongs to the ‘Lipschitz class’ of order

a—1/p.

In applications of the theory, f is usually periodic. It was observed by
Weyl (3) that the reference to an origin a is in this case inappropriate:
Weyl accordingly modified the definition as follows. If we suppose that
the mean value of f over a period is zero (a condition which we can always
satisfy by subtracting an appropriate constant from f), then

/:f(y) (x—y)tdy

converges at the lower limit, and we may take a= — oo in (10.17.7). Our
theorem concerning the Lebesgue classes may be extended to this case also.

10.18. Another theorem concerning the rearrangement
of a function in decreasing order. The theorem with which
we end is important primarily for its function-theoretic applica-
tions, but the proof which we give® is interesting independently.

The theorem may be stated in two forms.

384. Suppose that f(x) is non-negative and integrable in a finite
interval (0, a), that f(x) is the rearrangement of f(x) in decreasing
order, that

(10.18.1) O (2)=0 (x, f) = Max —l—fwf(t)dt,
3

0sé<a®— f
and that © (x) is the rearrangement of @ (x) in decreasing order.
Then
_ 1 (-
(10.18.2) @(x)gif ft)de
0
for 0<xz=a.

385. Suppose that f(x) satisfies the conditions of Theorem 384,
and that s (y) is any increasing function of y defined for y =2 0. Then

(10.18.3) f:s{(a (x)}dx =< J:s{;:f:f(t) dt}dx.

We begin with two preliminary remarks.

a See Hardy and Littlewood (6).
b Due to F. Riesz (10).

19-2
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(1) We shall prove Theorem 384 first and deduce Theorem 385.
Since O (z) and @ (x) are equimeasurable,

fas{G) (x)}dx=fas{@'(x)}dx.
0 0

Hence (10.18.3) follows from (10.18.2).

That (10.18.2) follows from (10.18.3), so that the two forms
of the theorem are equivalent, is a little less obvious, but is
proved in Theorem 392.2 The first implication is sufficient for our
purpose here, since it is in the second form that the theorem is
used in the applications.

(@) It Oua) =00 (w.f) =3 [ )t

then  0y(z,f)SO0(w./)=0 @] )= [ T,
by (10.12.2), and

(10.18.4) f :s{(ao (@)} de < f :s{% f :f(t)dt} dz.

This, a much more trivial inequality than (10.18.3), is the
analogue for integrals of Theorem 333.

10.19. Proof of Theorem 384. We suppose, as we may, that
a=1.
We consider a point z, for which
2,>0, O (x,)>0,

write

(10.19.1) O(zy)=p+e (P>0, e>0),
and consider the set E defined by

(10.19.2) 0sz=1, O(x)>p.

Since O (z) and O (x) are equimeasurable, & has the same measure
as the set in which ® (x) > p. This set is at least as large as the set

& See the Miscellaneous Theorems at the end of the chapter.

Theorem 385 was proved by Hardy and Littlewood (8), who deduced it by a
limiting process from the analogous theorem for finite sums (Theorem 394). Their
proof of Theorem 394 was elementary but long, and a much shorter proof was found
by Gabriel (2). Riesz ‘en combinant ce qui me parait &tre 'idée essentielle de
M. Gabriel avec un théoréme appartenant aux éléments de ’analyse’ (Lemma A
below) was able to prove the theorem directly and without limiting processes.
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in which @ (x) 2 p+e¢, and the measure of this last set is, after
(10.19.1), at least z,. Hence

(10.19.3) 2o <mE.
Now the set £ is composed of those points  for which
1 T
10.19.4 — t)dt>
(10.19.4) =) 0@>p

for some ¢ = ¢ (x) <. We can write (10.19.4) in the form

x &
(10.19.5) f £(t) dt—px>f F(t)dt—pe
0 0
or

(10.19.6) 9(x)>g(8),
say. Thus E is the set of points in which a certain continuous
function g (x) assumes a value greater than some at any rate of
the values which it has assumed before. This property enables us
to characterise the structure of E.

Lemma A. The set E 13 composed of a finite or enumerable system
of non-overlapping intervals (ay,, By). Al of these intervals are open,

and 9 () =9 (Bo);
except possibly when x=1 is a point of E, in which case there s
one interval («;,, 1) closed on the right, and g (o) < g (1), though g ()
18 not necessarily equal to g (1).2

In the first place, since g (x) is continuous, £ is an open set
(except possibly for the point 2 =1). Hence E is a set of intervals
(o> Br), open if B, < 1.

If B, < 1 then B, is not a point of &, and

(10.19.7) 9 (o) 29 (Be)
by the definition of K.

Next, suppose that «;, <; < B, and consider the minimum of
g () in the interval 0 <z <z, . This minimum cannot be attained
for o;, < x <2, since all such « belong to £, and so g (z) > g (¢) for
some ¢ <. Hence it is attained for < «;,. But oy is not a point
of E, and therefore g («;) < g () for all these x. Hence the mini-

& All that we need is that g (¢;)<g (B;); but the argument will probably be
clearer if we make the lemma complete.
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mum is attained at «;, and g¢(«;) <g(x,). Making x; - B;, we
obtain

(10.19.8) g (o) 9 (Be);
and this, with (10.19.7), proves the lemmas.
We can now prove Theorem 384. We may write (10.19.8) in

the form -
P [ f@)a
oL
and from this it follows that

Bk
p.mE’:pZ(Bk—-oc,c)ng f(x)dx=fEf(x)dx.
Hence, by (10.12.1), *

mE _
(10.19.9) p.mng f(x)dng f(x)dz;
E 0
and hence, by (10.19.1),

— 1 mE _
—e=p<——
(10.19.10) O (x,)—e¢ PE & . f(x)de.
Finally, since f(x) decreases, it follows from (10.19.10) and

(10.19.3) that .
®(x°)—€§;0f0f(x)dx'

Since e is arbitrary, this gives (10.18.1), with z, for «.

The function-theoretic applications of Theorems 384 and 385 arise
as follows. Suppose that f () is integrable and has the period 2z, that
M(6)=M(6, f)= Max 1/tf(t9+u)ﬂl’u,

a<itigm 8 o
and that N(6) is the similar function formed with |f(6+w)|. These
functions are of the same type as the ®(x) of Theorem 384, but are
generated by means taken to either side of 6.
Consider now the integral

() nOp=g [ FO+0x0 DI

where x is a kernel which involves a parameter p and satisfies the
conditions

.. ] m
(i) Xt P20, o [ x(tp)di=1.
The standard examples of such kernels are the ‘Poisson kernel’
1—7r2

X=1"%rcosi+re’

2 The argument here is due to M. Riesz (see F. Riesz, 10).
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in which p =7 is positive and less than 1, and the ‘Fejér kernel’
_sin? ing
X= nsin? 3s°

in which p=n is a positive integer. The corresponding values of h are
u(r, 8), the harmonic function defined by the ‘Poisson integral’ of f(6),
and o, (0), the Cesaro mean, of order 1, of the Fourier series of f(6).

Suppose now (a) that f(8) belongs to L*¥, where k> 1, and (b) that x
satisfies the additional condition
1
2 ) -
where A4 is independent of p. It follows from Theorems 385, with
8(y) =y*, and 327, that M () also belongs to L*.2 And itis easy to deduce
from (i), (ii), and (iii) that

x|
(iii) tﬁ|dt§A,

[R (6, p)| =AM (6),
where A is again independent of p. Hence h has a majorant (independent
of p) of the class L*.

It is easily verified that the Poisson kernel satisfies (iii). Hence
u(r, 0) possesses a majorant U(f) of the class L*. The same is true of
o,(8), but in this case the proof is not quite so simple, since the Fejér
kernel does not satisfy (iii). We can however prove that |¢,(6)| = AN(6),
and similar conclusions follow. All this is set out in detail by Hardy
and Littlewood (8).

MISCELLANEOUS THEOREMS AND EXAMPLES

386. If c,=c3=...=¢y, =0 and the sets (a), (b) are non-negative and

given except in a;rangement, then
n n
2 Xep0,b,
r=1s=1
is & maximum when (a) and (b) are both in decreasing order.
[F. Wiener (1).]

887. It is not true that
Y eb,,S Z atbgtet.
r+s+t=0 r+s+t=0

[Trivial: take (a), (b), (c) to be (0, 2, 1), (1, 2, 0), (1, 2, 1). Then
Ta,b,c;=14, Za,tbtet=12.]
388. There are sets (@), (b), (¢) such that none of the eight sums
Zatbtcet, Ztabtcet, Zattbet, ..., Ztatbte
gives the maximal sum Zabc.
[Suppose 0 <h <1 and e positive and sufficiently small; and take (a) to
be0,0,0,1,2, (b)tobe h—e¢, h, h+¢, 1, 1, and (c) to be formed of any five

different elements.]
8 See Theorem 398 below.
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389. If M@)=%|r|a,, M@y)=5|s|y,
and p 0, then the substitution Q, of §10.8 decreases u=M (x) + M (y).

[The theorem is trivial, but may be used to construct another proof of
Theorem 371, which follows the general lines of that in § 10.8 but is free
from an appeal to ‘continuity’.

We use 4, C, ¢, K as in §10.8; there may now be more than one
arrangement C. We define L as the sub-class of K formed by those mem-
bers of K for which y is least. If p+0, and 4 is wrong with respect to p,
then Q, decreases u and does not diminish S. Hence any 4 of Lisa C’;
and we can then show as in § 10.8 that L includes a C.]

390. In the notation of Theorem 373

T abegs T afthe*
r+s+t=n r+8+t=0
for every n.

[Corollary of Theorem 373.]
391. If (a), (a@'), (b), (b), (¢), and (¢’) are six sets of positive numbers
subject to (10.5.1), then

z a.a’bb/cc/ S T a*a’*b*b/*c*c *.
r+8+t=0 r+8+t=0

[Corollary of Theorem 372 if first reduced, by the method of §10.3,
to the special case in which every number is 0 or 1.]

392. If f and g are non-negative, and

@ [(str@ndes [(ag@pas
for every positive and increasing s (y), then
(ii) f=q

except perhaps for an enumerable set of values of .

[This is the theorem referred to in § 10.18, as proving the equivalence of
Theorems 384 and 385. It is an analogue of Theorem 107.

Since the integrals (i) are unaltered when we replace f and g by f and g,
we may suppose f and g themselves decreasing, so that f=f, g=§ (except
perhaps in an enumerable set of points).

If (ii) is not true for almost all z, we can find a b and a ¢ such that

(iii) b<c, f(c)>g(d).

For, if this were not so, we should have f(b+0)=<g(b) for all b, and
J(b) =g (b) at all points of continuity of the functions, and therefore except
in an enumerable set.

Supposing then that b and ¢ satisfy (iii), we choose r so that

g(b)y<r<f(c)
and define s (y) by
s(y)=0 (y<r), s(y)=1 (y=27).

Then f :a{ f@) do= ffgr deze>b2 /ggrdx= j':a{g (@)} de,

in contradiction with (i).]
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398. Ifa,, a,, ..., ay are non-negative,

Ay +Avyy+...+a,

O(n)=0(n,a)= Mfizn ey il

and a bar denotes a rearrangement in decreasing order (a notation opposite
to that of §10.1), then

O(n)=

’

Gttt +d o, o).
n = =

394. Ifthe conditions of Theorem 393 are satisfied, and s (y) is a positive
increasing function of y, then

¥ - -
zs{@(n)}§§s(‘ﬂ%;~_t&»>,
1 1

[The last two theorems are the analogues for finite sums of Theorems
384 and 385, and the reader will find it instructive to prove them by an
adaptation of the argument of {§§ 10.18-19. The earlier proofs of Hardy
and Littlewood and of Gabriel are referred to in §10.18.]

395. If €12 =...2C,>0, di=dy=...2d,>0;
€1, €y ...y €54, IS the aggregate of the ¢ and d rearranged in decreasing
order; C,=c¢;+cy+...+¢y,

and D, and E, aredefined similarly;and s(y) ispositiveand increasing; then

§(0y)+s (0>+ +s<0p)+s(Dl)+s(D>+ +s<[;)

gs(E1)+s(E23>+...+s<§”T+q">.

[This is a special case of Theorem 394. For a direct proof by induction,
due to Chaundy, see Hardy and Littlewood (8): the theorem is one of
the lemmas on which they based their proof of Theorem 394.]

396. Ifp,q, P,Qare positive integers and s(y) is positive and increasing,
then

g Ba(B) 2 ()=5 (27):
@ Lo L)< T2,
i Fo () + 3o ()= (%5):

[(i) and (ii) follow from Theorem 395 by appropriate specialisation, and
(iii), which is true whether p and g are integers or not, is a corollary. A
case of (iii) is

e 2o Zla+D)
1 —gla + 1 — 16 =71 — glia+d)

(a>0,b>0,0<x<]1):

this may naturally be proved independently (and with ¢ <’), for example
as an application of Theorem 103.]

397. Ifa, b, «, B are positive and s positive and increasing, then

+a b +b+a+
/a 8 (g'>dx+/ +ﬁs <9> dnga Bs(gj-—l))dw.
a z b x a+b x
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398. If k>1, and O () is defined as in Theorem 384, then

/@"(m)dx< /f" z) dx.

[From Theorems 385 and 327. There is of course a corresponding theo-
rem for finite sums. This theorem has particularly important applications.]

399. In order that anintegrable function ¢ (z) should have the property
1
[ls@@aezo,
0

for all positive, increasing, and bounded s(z), it is necessary and sufficient

that )

f $(t)dt=0 (0=x=1).
@

[To prove the condition necessary, specialise s(x) appropriately; to
prove it sufficient, integrate partially or use the second mean value
theorem. The condition is certainly satisfied if there is a ¢ between 0
and 1 such that ¢(z)= 0 for > ¢, ()< 0 for x< ¢, and

/:qb(x)dac:o.

Theorem 397 is a special case of this theorem (after a simple trans-
formation).]

400. If E and ¢ are functions of « subject to
0=dE=dzx, 0=¢<uz,

E@x)—E (¢ <kE(1)—E*(1)
then /(){_x—g—} S -1 (k> 1),
1E (x)— B (§) 1

[Suppose that f (x) is always 0 or 1, and that E (z) is the measure of the
part of (0, z) in which f(x) =1, and apply Theorem 385.]
1.1 11
401. If >1, ¢>1, 421, A=2—=--=-=,
P ? P 9 r q
n<i-} r<1-l, nyrzo,
P q

and h+k>0 if1+§= 1, then

N e i U OIS

[Here, and in Theorems 402 and 403, K denotes a positive number
depending only on the parameters of the theorem (here p, g, &, k).]

1 r
< = <
402. If p>1, 0sSa<-—, qu__I ,

then /m 2 ”‘V+PV“)/Pf,qdm_S_K <[ mfpdw>a/w’
0 0
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where f, is defined as in (10.17.5). The result is still true if «=1/p, when
the second condition on ¢ may be omitted.
[For the last two theorems see Hardy and Littlewood (6). The case

q=p gives w »
f (x‘“fa)"dm§Kf frdx:
0 0

compare Theorem 329.]
403. The result of Theorem 383 is not necessarily true when p=1.

[Define f(x) by -
@)=y (ogy)” (0<esd), =0 (w>1),
where 8> 1. Then
x -B
fa(x)=K/ 1<log1«> (z—y)tdy
o¥N Y Koot (P11 1\—Bd R _1(1 1418
> Kae [ 14 (log )" dy= K= (o)

1
Here p=1, q=I—;—a;
fis L, but fo is L? only if
B-1 -
g 1, B>2-a.]

404. Suppose that f(x) is defined in (—1, 1) and has a continuous
derivative f’(x) which vanishes only at a finite number of points, and that
f@)z0, f(—1)=f(1)=0.

Then the length of the curve y=f(x) is greater than that of y=f*(z),
unless f(z)=f*(x).

[See Steiner (1, 11, 265). If 0<y< Y =Maxf then (except perhaps for
a finite number of values of y) the equation y=f(x) has an even number
2n (depending on y) of roots. If we denote these roots, in ascending order,
by @, 23, ..., Z3,, and the derivative of z, with respect to y by z.’, then,
by Theorem 25,

g Y
2 [T spE(-1rn mhays [ S0 rambay.
0 0
There is equality only if n=1 for all y, and =, = —,.]

405. Suppose that f(z, y) = 0 for all z, y, and that the measure M (z) of
the set in which f(«, y) =z is finite for all positive z; define p(z) by
M(2)=mp*;
and write ¥ @, y)=pH{V(*+4*)},
where p~! is the inverse of p. Then (under appropriate conditions of
regularity) the area of the surface z=f(z, y) is greater than that of
z=f*(, y).
[See Schwarz (1). The theorem is important in itself and interesting
because it involves a two-dimensional analogue of the notion of f*(z).]
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