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PREFACE 

This book was planned and begun in 1929. Our original inten­
tion was that it should be one of the Cambridge Tract8, but it 
soon became plain that a tract would be much too short for our 
purpose. 

Our objects in writing the book are explained sufficiently in 
the introductory chapter, but we add a note here about history 
and bibliography. Historical and bibliographical questions are 
particularly troublesome in a subject like this, which has applica­
tions in every part of mathematics but has never been developed 
systematically. 

It is often really difficult to trace the origin of a familiar 
inequality. It is quite likely to occur first as an auxiliary 
proposition, often without explicit statement, in a memoir on 
geometry or astronomy; it may have been rediscovered, many 
years later, by half a dozen different authors; and no accessible 
statement of it may be quite complete. We have almost always 
found, even with the most famous inequalities, that we have 
a little new to add. 

We have done our best to be accurate and have given all 
references we can, but we have never undertaken systematic 
bibliographical research. We follow the common practice, when 
a particular inequality is habitually associated with a particular 
mathematician's name; we speak of the inequalities of Schwarz, 
Holder, and Jensen, though all these inequalities can be traced 
further back; and we do not enumerate explicitly all the minor 
additions which are necessary for absolute completeness. 

We have received a great deal of assistance from friends. 
Messrs G. A. Bliss, L. S. Bosanquet, R. Courant, B. Jessen, 
V. Levin, R. Rado, 1. Schur, L. C. Young, and A. Zygmund 
have all helped us with criticisms or original contributions. 
Dr Bosanquet, Dr Jessen, and Prof. Zygmund have read the 
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proofs, and corrected many inaccuracies. In particular, Chap­
ter m has been very largely rewritten as the result of Dr Jessen's 
suggestions. We hope that the book may now be reasonably 
free from error, in spite of the mass of detail which it contains. 

Dr Levin composed the bibliography. This contains all the 
books and memoirs which are referred to in the text, directly 
or by implication, but does not go beyond them. G.H.H. 

Cambridge and Zilrich 
July 1934 

J.E.L. 
G.P. 
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CHAPTER I, 

INTRODUCTION 

1.1. Finite, infinite, and integral inequalities. It will be 
convenient to take some particular and typical inequality as a. 
text for the general remarks which occupy this chapter; and we 
select a remarkable theorem due to Cauchy and usually known 
as 'Cauchy's inequality'. 

Cauchy's inequality (Theorem 7) is 

(1.1.1) ("tbl +asba+ ... +anbll)2 

~ (a1S + ass + ... +anS) (b12 + b22 + ... +bn2) 

or 
11. 11. 11. 

(1.1.2) (~"b,,)2 ~ ~a" 2 ~bv 2, 
1 1 1 

a.nd is "true for all real" values of av a2 , ... , an' bl , b2 , ... , bn . We 
" :oaJlllJ. .... , blJ ... the variables of the inequality. Here the number 
olva.ria.bles is finite, and the inequality states a relation between 
certain finite sums. We call such an inequality an elementary or 
jinite inequality. 

The most fundamental inequalities are finite, but we shall also 
be concerned with inequalities which are not finite and involve 
generalisations of the notion of a sum. The most important of such 
generalisations are the infinite sums 

co OC> 

(1.1.3) ~a", ~ a" 
1 -co 

and the integral 

( 1.1.4) 

(where a and b may be finite or infinite). The analogues of (1.1.2) 
corresponding to these generalisations are 

co OC> 00 

(1.1.5) (~a"b,,)2 ~ ~av 2 2:.b,,2 
1 1 1 

HI 



2 INTRODUCTION 

(or the similar formula in which both limits of summation are 
infinite), and 

(1.1.6) (f:f(X) g (x) dXy ~ f:f2(x)dx f: g2(x)dx. 

We call (1.1.5) an infinite, and (1.1.6) an integral, inequality. 

1.2. Notations. We have often to distinguish between dif­
ferent sets of the variables. Thus in (1.1.2) we distinguish the 
two sets al' a2, ... , an and bv b2, ... , bn . It is convenient to have 
a shorter notation for sets of variables, and often, instead of 
writing 'the set av a2, ... , an' we shall write 'the set (a)' or 
simply 'the a'. 

We shall habitually drop suffixes and limits in summations, 
when there is no risk of ambiguity. Thus we shall write 

~a 

for any of 

so that, for example, 

(1.2.1) (~ab)2~~a2~b2 

may mean either of (1.1.2) or (1.1.5), according to the context. 
In integral inequalities, the set is replaced by a function; thus 

in passing from (1.1.2) to (1.1.6), (a) and (b) are replaced by 
f and g. We shall also often omit variables and limits in integrals, 
writing ffdx 

for (1.1.4): so that (1.1.6), for example, will be written as 

(1.2.2) (ffgdx)2 ~ff2dx f g2dx. 

The ranges of the variables, whether in sums or integrals, are pre­
scribed at the beginnings of chapters or sections, or may be 
inferred unambiguously from the context. 

1.3. Positive inequalities. We are interested primarily in 
'positive' inequalitiesa. A finite or infinite inequality is positive if 
all variables a, b, ... involved in it are real and non-negative. 
An inequality of this type usually carries with it, as a trivial 

" There are exceptions, as for example in §§ 8.8-8.17. There the 'positive' cases of 
the theorems discussed are relatively trivial. 
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. corollary, an apparently more general inequality valid for all real, 
or even complex, a, b, ...• Thus from (1.1.2) and the inequality 

(1.3.1) l1:ul~1:lul, 
valid for all real or complex u, we deduce 

(1.3.2) l1:ab 12~(1: I a 1/ b 1)2~1: I a 121: I b 1 2, 

wheretheaandb are arbitrary complex numbers. We shall usually 
be content to state our theorems in the fundamental 'positive' 
form and to leave the derived results to the reader. Occasionally, 
however, when the inequality in question is very important, we 
state it explicitly in its most general form: 

Similar remarks apply to integral inequalities. The independent 
variable x will be real, but will (like the variable of summation v) 

t,ake either pdsitive or negative values; while the functions f(x), 
tf(z), ... will generally assume non-negative values only. To such 
an inequality as (1.1.6), true for non-negative f, g, corresponds 
*Inole general inequality 

<1', ••• ' '. 

"(1.3.3) Iffgdx PA~f IflsdxJ I g ISdx, 
~ for arbitrary complex functions f, g of the real variable x . 
. Numbers k, I, r, 8, ... occurring as indices in our theorems are 

....t but in general capable of either sign. 

1.4. Homogeneous inequalities. The two sides of (1.1.2) 
are homogeneous functions of degree 2 of the a and also of the b; 
and generally both sides of our inequalities will be homogeneous 
fwlctions, of the same degree, of certain sets of variables. Since 
homogeneous functions of positive degree vanish when all their 
arguments vanish, both sides, if of positive degree, will vanish, 
'and so be equal, when the sets concerned consist entirely of O's. 
Thus (1.1.2) reduces to an equality if all the a, or all the b, are O. 

·A set consisting entirely of O's is called a nul set, or the nul set, 
if the context is unambiguous. In general the ' ~ , or ' ~ , of our 

.,rthOOrems will reduce to ' = ' when one or all of the sets involved is 
nul. Sometimes this will be the only case of equality. More usually 
there will be other cases; thus plainly' =' occurs in (1.1.2) ifevery 
a is equal to the corresponding b. We shall be careful, wherever it 

. is possible, to pick out explicitly such cases of equality. 
1-2 
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The homogeneity of an inequality in certain sets of variables 
often enables us to simplify our proofs by imposing an additional 
restriction (a normalisation) on them. Thus the means Wlr(a) of 
§ 2.2 are homogeneous, of degree 0, in the weights p, and we may 
always suppose, if we please, that ~p = 1. Again, if we wish to 
prove that 

(1.4.1) (a1s+a2s + ... +anS)1/s ;:;;; (a{ + a{ + ... + anr)1/r 

when 0 < r < s (Theorem 19), we maysuppose (since both sides are 
homogeneous in the a of degree I) that ~ar= I. We have then 

a/;:;;; I, a/=(avr)s/r;:;;;a"r, 
and so ~as ;:;;; ~ar = I. Without this preliminary normalisation, our 
proof would run 

(~aS)1/s = J ~}1/8 = J ~ (!£.)s/r}1/8 < (~ ~)l/S = I 
(~ar)l/r 1 ~ (~ar)8Ir 1 ~ar = ~ar . 

There is another sense of 'homogeneity' which is sometimes 
important. Let us compare (1.4.1) above, which may be written as 

(1.4.2) (~aS)l/s;:;;; (~ar)1/r, 

with (1.1.2). Both inequalities are homogeneous in the variables, 
but (1.1.2) has a further homogeneity which (1.4.2) has not. It is, 
as we may say, 'homogeneous in ~ '; ~,if treated as a number, 
would occur to the same power on the two sides of the inequality. 

The result of this homogeneity in ~ is that (1.1.2) remains 
true if every sum which occurs is replaced: by the corresponding 
mean, i.e. if written in the form 

'(~~ab r;:;;; (~~a2) (~~b2). 
The importance of this kind of homogeneity will appear very 
clearly in § 2.10 and § 6.4. Roughly, an inequality which possesses 
it has an integral analogue, while one which does not, like (1.4.2), 
has none. 

1.5. The axiomatic basis of al~ebraic inequalities a. Our 
subject is difficult to define precisely, but belongs partly to 
'algebra' and partly to 'analysis'. Algebra or analysis, like 
geometry, may be treated axiomatically. Instead of saying, as 

a See Arlin and Schreier (1). 
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for example in Dedekind's theory of real numbers, that we are 
concerned with such or such definite objects, we may say, as in 
projective geometry, that we are concerned with any system of 
objects which possesses certain properties specified in a set of 
axioms. We do not propose to consider the 'axiomatics' of 
different parts of the subject in detail, but it may be worth while 
to insert a few remarks concerning the axiomatic basis of those 
theorems which, like (1.1.2) and most of the theorems of Ch. II, 
belong properly to algebra. 

We may take as the axioms of an algebra only the ordinary 
laws of addition and multiplication. All our theorems will then 
'b! true in many different fields, in real algebra, complex algebra, 
'01: the arithmetio of residues to any modulus. Or we may add 
:axioms concerning the solubility of linear equations, axioms 
.1I"bioh secure the existence and uniqueness of difference and 
,,~i Our theorems 'will then be true in real or complex 
'iItp_ er in &rithmetic to a prime modulus. 

hour 'present subject we are concerned with relations of in­
".,ity, & noticm peculiar to real algebra. We can secure an 
~ma.tic. basis for theorems of inequality by taking, in addition 
to the • indefinables' and axioms already referred to, one new 
indefinable and two new axioms. We take as indefinable the idea 
of a poaitive number, and as axioms the two propositions: 

I. Either a i8 0 or a is p08itive or - a i8 positive, and these 
po88ibilities are exclusive. 

II. The 8um and product of two positive numbers are positive. 

We say that a is negative if - a is positive, and that a is greater 
(less) than b if a-b is positive (negative). Any inequality of a 
purely algebraic type, such as (1.1.2), may be made to rest on 
this foundation. 

1.'8. Comparable functions. We may say that the functions 

f(a) = f(a1 , a2 , ''', an), g (a) =g (aI' a2 , ... , an) 

are comparable if there is an inequality between them valid for 
all non-negative real a, that is to say if either f ~ g for all such a or 
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f~g for all such a. Two given functions are not usually compar­
able. Thus two positive homogeneous polynomials of different 
degreet;l are certainly not comparablea; if O-;£j-;£g for all ntm­
negative a, and both sides are homogeneous, then j and g are 
certainly of the same degree. 

The definition may naturally be extended to functions 
j(a,b, •.• ) of several sets of variables. 

We shall be occupied throughout this volume with problems 
concerning the comparability of functions. Thus the arithmetic 
and geometric means of the a are comparable: &(a)-;£~(a) 
(Theorem 9). The functions &(a+b) and &(a)+&(b) are com­
parable (Theorem 10). The functions ~ (ab) and ~ (a) ~ (b) are not 
comparable; their relative magnitude depends upon the relations 
of magnitude of the a and b (Theorem 43). The functions 

I/J-l('2:.pI/J(a», X-l('2:.pX(a» 

are comparable if and only if XI/J-l is convex or concave 
(Theorem 85). 

An important general theorem concerning the comparability of 
two functions of the form 

'2:.a1 "ta2~'" an C<n, 

due to Muirhead, will be found in §2.18. 

1.7. Selection of proofs. The methods of proof which we use 
in different parts of the book will depend on very different sets of 
ideas, and we shall often, particularly in Ch. II, give a number of 
alternative proofs of the same theorem. It may be useful to call 
attention here to certain broad distinctions between the methods 
which we employ. 

In the first place, many of the proofs of Ch. II are 'strictly 
elementary', since they depend solely on the ideas and processes 
of finite algebra. We have made it a principle to give at any rate 
one such proof of any really important theorem whose character 
permits it. 

Next we have, even in Ch. II, many proofs which are not 
elementary in this sense because they involve considerations of 

.. Compa.re § 2.19. 



INTRODUCTION 7 

limits and continuity. We have also, particularly in Oh. IV, 
proofs which depend upon the standard properties of differential 
coefficients, as for example upon Rolle's Theorem. All these 
proofs belong to the elements of the theory of functions of one 
real variable. 

Later, when dealing with integrals in Oh. VI, we naturally 
make use of the theory of measure and ofthe integral of Lebesgue. 
This we take for granted, but we give a summary in §§ 6.1-6.3 of 
the parts of the theory which we require. 

Occasionally we appeal to the more remote parts of the theory 
of functions of real variables; but we do this only in alternative 
proofs or in the proofs of theorems of considerable intrinsic 
difficulty. Thus in Ch. IV (§4.6) we use the theory of the maxima 
a.nd minima of functions of several variables; in Oh. VII we use 
the methods of the Calculus of Variations; and in Ch. IX we use 
the theory of double and repeated integration. We make no use 

. of amnplex function theory, although, in the last chapters, we 
Iefer to it occasionally' for purposes of illustration. The sections 
ill whiof:l. we do this do not belong properly to the main body of 
the book. 

We add a few further remarks of a more detailed character. 

(i) Cauchy's inequality (1. 1.2) is a proposition offinite algebra, 
as defined in § 1.5. It is a recognised principle that the proof of 
such a theorem should involve only the methods of the theory to 
which it belongs. 

(ii) We shall be continually meeting theorems, such as Holder's 
inequality 

(1. 7.1) '1:.ab ;;;; ('1:.ak )l/k ('1:.bk')l/k' 

(Theorem 13), whose status depends upon the value of a parameter 
k. If k is rational, the theorem is algebraical, and our remarks 
under (i) apply. If k is irrational, ak is not an algebraical function, 
and it is obvious that there can be no strictly algebraical proof. 

It is however reasonable to demand, when we are concerned 
with an inequality so fundamental as Holder's, that our step 
outside algebra shall be the absolute minimum which the nature 
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of the problem necessitates. It is plain that this step will depend 
upon our definition of ak • We may define ak as exp (kloga), and 
in this case it is obviously legitimate and necessary to use the 
theory of the exponential and logarithmic functions. If, as is 
more usual, we define ak as the limit of akn , where kn is an appro­
priate rational approximation to k, then this limiting process 
should be the only one to which we appeal. 

(iii) Suppose that, adopting the last point of view, we have 
proved Holder's inequality, for rational k, in the form (1.7.1.). 
We can infer its truth for irrational k by a passage to the limit. 

Such a proof, however, is not usually sufficient for our purpose. 
We always wish to prove a theorem of a more precise type than 
(1.7.1), in which (as in Theorem 13) we establish strict inequality 
except in certain specified special cases. When we pass to the 
limit, ' < • becomes ' ~ " we lose touch with the cases of equality 
(though these are in fact the same as in the rational case), and 
our proof is incomplete. It is therefore necessary to arrange our 
proofs in such a manner as to avoid such passages to the limit 
wherever it is possible. The same point arises whenever we wish 
to pass from a finite inequality to the corresponding infinite or 
integral inequality. It recurs at intervals throughout the volume 
and has often determined our choice of a particular line of proof. 

(iv) The general principles which have governed our choice of 
methods are as follows. When a theorem is simple and funda­
mental, like Theorems 7, 9, or 11, we prove it by several different 
methods, and are careful that one of our methods at any rate 
shall conform to the canons laid down under (i) and (ii). When the 
theorem is subsidiary or difficult, or when a proof satisfying these 
conditions would be troublesome or long, we use whatever method 
seems to us simplest or most instructive. 

1.8. Selection of subjects. The principles which have guided 
us in our selection of subjects may be summarised as follows. 

(i) The first part of the book (Chs. II-VIa) contains a syste­
matic treatment of a definite subject. Our object has been to 

a Except perhaps some parts of Oh. IV. 
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discuss thoroughly (with their analogues and extensions) the 
simple inequalities which are 'in daily use' in analysis. Of these 
three are fundamental, viz. 

(1) the theorem of the arithmetic and geometric means 
(Theorem 9), 

(2) Holder's inequality (Theorem 11), 

(3) Minkowski's inequality (Theorem 24); 

and these three theorems dominate the first six chapters. We 
prove them in a variety of ways, in the finite case in Ch. II, in 
the infinite case in Ch. V, and in the integral case in Ch. VI; while 
Ch. III (which contains a general account of the theory of convex 
functions) is mainly occupied with their generalisations. In these 

_ chapters, of which the most important are II, III, and VI, we 
have aimed at a comprehensive and in some ways exhaustive 
treatment. 

(ii) The rest of the book (Chs. VII-X) is written in a different 
spirit and must be judged by different standards. These chapters 
contain a series of essays on subjects suggested by the more 
systematic investigations which precede. In them there is very 
little attempt at system or completeness. They are intended as 
an introduction to certain fields of modern research, and we have 
allowed our personal interests to dominate our choice of topics. 

In spite of this (or because of it) the chapters have a certain 
unity. There is much modern work, in real or complex function­
theory, in the theory of Fourier series, or in the general theory of 
orthogonal developments, in which the 'Lebesgue classes Lk' 
occupy the central position. This work demands a considerable 
mastery of the technique of inequalities; Holder's and Min­
kowski's inequalities, and other more modern and more sophisti­
cated inequalities of the same general character, are required at 
every turn. Our object has been to write such an introduction to 
this field of analysis as may be made to hang naturally on the 
subject matter of the early chapters. 

(iii ) We are interested primarily in certain parts of real analY8i8, 
and not in arithmetic or in algebra for its own sake. The line 



10 INTRODUCTION 

between algebra and analysis is often difficult to draw, especially 
in the theory of quadratic or bilinear forms, and we have often 
doubted what to include or reject. We have however excluded 
all developments whose main interest seemed to us to be alge­
braical. 

We have also excluded function -theory proper, real or complex. 
In the later chapters, however, we have sometimes tried to show 
the significance of our theorems by sketching the lines of some of 
their function-theoretic applications. 

Thus (to give definite examples) our programme excludes 

(1) inequalities of a definitely arithmetical character, such as 
those of the theory of primes, or those which give bounds for 
forms with integral variables; 

(2) inequalities which belong properly to the algebraical theory 
of quadratic forms; 

(3) inequalities, such as 'Bessel's inequality', which belong to 
the theory of orthogonal series; 

(4) inequalities, such as 'Hadamard's three circle theorem', 
which belong to function-theory proper: 
and there is no systematic discussion of geometrical inequalities, 
though we use them frequently for purposes of illustration. 

It may be useful to end this introduction by a few words of 
advice to readers who are anxious to avoid unnecessary immer­
sion in detail. The subject, attractive as it is, demands, for the 
writer at any rate, a great deal of attention to details of a rather 
tiresome kind. These details arise particularly in the exclusion of 
exceptional cases, the complete specification of cases of equality, 
and the conventional treatment of zero and infinite values. Such 
a reader as we have in mind may be content, in general, to sim­
plify his task as follows. (1) He may ignore the distinction be­
tween non-negative and positive, so that the numbers and func­
tions with which he is concerned are all positive in the narrow 
sense. (2) He may ignore our conventions concerning 'infinite 
values'. (3) He may assume that the'parameter k or r of in­
equalities such as Holder's and Minkowski's is greater than 1. 
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(4) He may take it for granted that 'what goes for sums goes, 
with the obvious modifications, for integrals' (or vice versa). He 
should then be able to master what is essential without undue 
trouble. 

This advice for 'easy reading' must not be taken too literally. 
It is essential to understand the kind of exceptional cases which 
occur, and the general principles which govern the discrimination 
of cases of equality. It is not a mere academic exercise to pick 
out the cases of equality in such an inequality as Holder's; a 
knowledge of these cases provides (as is shown very clearly in 
§§ 8.13-8.16) a powerful weapon for the discovery of deep and 
important theorems. Every reader should make it his business 
to explore this inequality at any rate to the end. 



CHAPTER II 

ELEMENTARY MEAN VALUES 

2.1. Ordinary means. In what follows we are concerned 
with sets of n non-negative numbers a (or b, c, ... ), say 

(2.1.1) al>a2 , ••• ,ay, ... ,an (ay~O), 

and a real parameter r, which we suppose for the present not to 
be zero. 

We denote the ordered series (2.1.1) by (a). When we say 
that '(a) is proportional to (b)' we mean that there are two 
numbers A and fL, not both zero, such that 

(2.1.2) Aay=fLby (v=I,2, ... ,n). 

It will be observed that the nul set, the set (a) in which every a is zero, 
is proportional to any (b). Proportionality, as we have defined it, is a 
symmetrical relation between sets but not a transitive one; it becomes 
transitive if we exclude the nul set from consideration. 

If (a) and (b) are proportional, and neither of them is nul, then bv = 0 
whenever av = 0, and ap/bv is independent of v for the remaining values of v. 

We write 

(2.1.3) 

except when (i) r = 0 or (ii) r < 0 and one or more of the a are 
zero. In the exceptional case (ii), when (2.1.3) has no meaning, 
we define WCr as zero, so that 

(2.1.4) WCr=O (r< 0, some a zero)a. 
Here and elsewhere we shall omit the suffixes and limits of sum­
mation when it can be done without ambiguity. 

In particular we write 
(2.l.5) 9(=9(a)=m1 (a), 

(2.l.6) $) = $) (a) = m_da). 
Finally, we write 

(2.1.7) @=@(a)= V(a1 a2 ••• an )= V(Ila). 

a If we admitted infinite values, there would be a corresponding case for positive r, 
viz. r>O, some a infinite, IJJIr = 00. 



ELEMENTARY MEAN VALUES 13 

Thus m:(a), ~(a), @(a) are the ordinary arithmetic, harmonic, 
and geometric means. 

We have excluded the case r=O, but we shall find later (§ 2.3) that we 
can interpret 9)10 conventionally as <D. We are not generally concerned 
with negative a, but it is sometimes convenient to use ~(a) without any 
restriction of sign. The definition is unchanged. 

2.2. Weighted means. We shall however usually work with 
a more general system of mean values. We suppose that 

(2.2.1) Pv>O (1'=1,2, ... ,n) 

and write 

(2.2.2) 

(2.2.3) 

(2.2.4) 

( 'f,par)l/r 
WCr= WCr(a) = WCr(a,p) = 'f,p , 

WCr=O (r<O, some a zero), 

@=@(a)=@(a,p)=(I1aP)l/l:p. 

The equations (2.1.5) and (2.1.6) stand as before, with the ad­
dition of the symbols m:(a,p), ~(a,p). The last remark of §2.1 
applies also to the generalised m:. The weighted means reduce to 
the ordinary means whenpv= 1 for every 1'. 

The means being homogeneous and of degree 0 in the p's, we 
may suppose, if we please, that 'f,p = 1. In this case we shall 
replace p by q; thus 

(2.2.5) WCr(a)=WCr(a,q)=('f,qaT)l/r ('f,q=l), 

(2.2.6) @(a)=@(a,q)=I1aQ ('f,q= 1). 

We shall not usually refer to the weights explicitly in our 
formulae, but it is always to be understood that mean values 
which are compared with one another are formed with the same 
weights. 

Ordinary means are special cases of weighted means. On the 
other hand, weighted means with commensurable weights are 
special cases of ordinary means (with a different system of a); for 
we may suppose, on account of homogeneity, that the weights 
are integral, and we can derive means with integral weights from 
ordinary means by replacing every number by an appropriate 
set of equal numbers. Means with incommensurable weights may 
be regarded as limiting cases of ordinary means. 
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The following obvious formulae will be used repeatedly: 

(2.2.7) W1r(a)={~(ar)}IJr, 

(2.2.8) 

(2.2.9) 

(2.2.10) 

@(a)=em(lOga), 

1 
W1-r(a) = W1r(1/a) ' 

W1rs (a) = {W1s (aT )}1'r. 

We suppose that a> 0 in (2.2.8), and in the other formulae if a 
suffix is negative; the formulae may be extended to cover the 
missing cases by appropriate conventions. Also 

(2.2.11) ~(a+b)=~(a)+~(b), 

(2.2.12) @(ab)=@(a)@(b), 

(2.2.13) W1r (b) = kW1r(a) if (b)=k(a) 

(i.e. ifbv=kav, where k is independent of v), 

(2.2.14) @(b)=k@(a) if (b)=k(a), 

(2.2.15) W1r(a);;;9J1r (b) if av;;;b" for all v. 

2.3. Limitin~ cases of W1r(a). We denote by 
Min a, Maxa 

the smallest and largest value of an a. 

1. Min a < W1r (a) < Max a, unle88 either all the a are equal, or 
el8e r < 0 and an a i8 zero. 

It is to be understood here, and in the enunciations of all later 
theorems, that, when we assert that inequalities hold unless some 
particular condition is satisfied, we imply that at least one of the 
inequalities degenerates into an equality in the case excluded. 
Here, for example, Min a = W1r (a) = Max a if all a are equal, and 
Mina=W1r (a) ;;; Max a in the other exceptional case. 

We form our means with q. Since 
~q(a-~)=O, 

every a is equal to ~, or else a - ~ is positive for at least one a and 
negative for another. This proves the theorem for r= 1. 

In the general case we may suppose that either a> 0 or else 
r> 0, the cases excluded being trivial. It then follows that 

{mr(a)Y= ~(aT) 
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lies between (Mina)T and (Maxa)T, which proves the theorem 
generally. 

2. Min a < @(a) < Max a, unless all thea are equal oranais zero. 

In the second exceptional case @ = O. If @ > 0 then 

rr(:r=l, 
so that every a is @ or at least one is greater and one less than @. 

3. limIDer(a)=@(a). 
r-+O 

If every a is positive 

when r-+O. 

IDer (a) = exp (~log 'i:.qar) 

= exp H log (1 + r'i:.q loga + o (r2)) } 

-+exp ('i:.qloga) = rraq=@(a), 

If there are some zero a, b denotes a positive a, and s is a q 
corresponding to a b, then 

IDer (a, q) = ('i:.qar)l/r = ('i:.sbr)1/r = ('i:.s)l/r IDer (b, s )-+0 

when r-++ 0, since IDer (b, s)-+@(b,s) and 'i:.s < 1. When r < 0, IDer 
and @ are both zero, so that the result holds also when r-+- O. 

Our proof depends on the theory of the exponential and 
logarithmic functions. We show in § 2.16 how a more ele­
mentary proof may be found if desired. 

4. lim IDer(a) = Max a, lim IDer(a) = Mina. 
T-'>--CO 

If ak is the largest a, or one of the largest, and r> 0, we have 
qk 1/r ak ;2; IDer (a) ;2; ak; 

from which the first equation follows at once. The second is 
trivial if any a is zero and follows from (2.2.9) otherwise. 

We now agree to write 
(2.3.1) IDeo (a) =@ (a), IDeco (a) = Max a, IDe_co (a) = Mina. 

With these conventions, we have 

5. IDe_co (a) <IDer(a) < IDeoo (a) for all finite r, unless the a are all 
equal, or r;2; 0 and an a is zero. 
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2.4. Cauchy's inequality. It is convenient to prove the next 
theorem here although it will be superseded later by a more 
complete theorem (Theorem 16). 

6. im,.(a) < im2r(a) (r> 0), unless all the a are equal. 

The inequality is 

and is a special case of the very important theorem which 
follows. 

7. (~ab)2<~a2~b2, unless (a) and (b) areproportional a. 

For ~a2~b2_ (~ab)2=! ~ (afl-bv-aAY. 
/,-, v 

An alternative proof is as follows. The quadratic form 

~ (xa+yb)2=x2~a2+ 2xy ~ab+ y2~b2 

is positive for all x, y, and therefore has a negative discrimi­
nant, unless xav + ybv = 0 for some x, y, not both zero, and all v. 

To deduce Theorem 6, take y'p and ar y'p in place of a and b. 

Theorem 7 may be generalised as follows: 

8. I ~a2 ~ab ~.a .. l 1>0, 
I ~~~ ~~~ ~l2 I 

unless the sets (a), (b), ... , (l) are linearly dependent, i.e. unless there are 
numbers x, y, ... , w, not all zero, such that xav+ybv+ ... +wlv= Ofor every v. 

Either proof of Theorem 7 may be extended to prove Theorem 8: we 
may either express the determinant as a sum of squares of determinants, 
or we may consider the non-negative quadratic form 

~ (xa+yb+ ... +wl)2 

in x, y, ... , w. We do not go into details because any systematic discussion 
of inequalities connected with determinants and quadratic forms would 
carry us beyond the limits which we have imposed on the book. 

2.5. The theorem of the arithmetic and geometric 
means. We come now to the most famous theorem of the 
subject. 

a This is what is usually called Cauchy's inequality: see Cauchy (1,373). The 
corresponding inequality for integrals (Theorem 181) is usually called Schwarz's 
inequality, though it seems to have been stated first by Buniakowsky: see Bunia­
kowsky (1, 4), Schwarz (2, 251). 



ELEMENTARY MEAN VALUES 17 

9. @(a)< 2l (a), unless all the a are equal . 

. , The inequality to be proved may be written in either of the 
fpl1lls 

(2.5.1) 

(2.5.2) alqla2q2 ... anqn < 'i:.qa 
(where as usual 'i:.q= 1). 

This theorem is so fundamental that we propose to give a 
llJIillber of proofs, of varying degrees of simplicity and generality. 
Of the two which we give in this section, the first is entirely 
elementary. The second depends on Theorem 3 and so, at present, 
on the theory of the exponential and logarithmic functions. We 
shall show later (§ 2.16) how this proof also may be made to 
conform more strictly to the canons of § 1.7. 

(i)a We have b 

al a2 = (al ;_azr _ (al ;azr < (al ; a2r, 
unless a l = a2 , and so 

< (al + az)Z (a3 + a4)2 < (al + a2 + a3 + a4)4 
al aZa3 a4 = 2 2 = 4 ' 

with inequality in one place or the other unless al = a2 = a3 = a4 • 

Repeating the argument m times, we find 

( (al +az+ ... +a2m)2m 
2.5.3) a l az··· azm < 2m ' 

unless all the a are equal. This is (2.5.1) with unit weights and 
n a power of 2. 

Suppose now that n is any number less than 2m. Taking 

bl=al, b2 =aZ' ... , bn=an, 

bn+l =bn+2 = ... =bzm= a l +a2: ..• +an 2l, 

and applying (2.5.3) to the b, we find 

,UZm-n (bl+bz+ ... +b2m)2m _(n2l+(2m-n)2l)2m _",(zm a1 az ... an «< 2m - 2m -« , 

or alaZ ... an < 2ln, 
a Cauchy (1,375). l> Euclid (1: n5, v 25). 

HI 2 
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unless all the b, and so all the a, are equal. This is (2.5.1) with 
unit weights. We deduce (2.5.1), with any commensurable 
weights, by the process explained in § 2.2. 

When the weights are incommensurable, we can replace them 
by a set of commensurable approximations, prove (2.5.1) with 
the approximating weights, and proceed to the limit. In this 
process' < ' is changed into' ;'£ " so that we do not at first obtain 
a complete proof of the theorem. We may complete the proof as 
follows. Write 

qv=q~+q~ (v= 1,2, ... ,n), 

wnere q~ > 0, q~ > 0, and q~ is rational. Then 

r' = l:q~ , r" = l:q~ 
are rational and r' +r" = 1. We have already proved (2.5.1) with 
, <' for rational p, and with ';'£' in any case. Hence 

II q' ..... q a II q" < ..... q a (~ , ):i.q' (~ " ):£q" 
a < l:q' , a = l:q" , 

( I )r' ( I )r" IIaq = IIaq' IIaq" < i' l:q' a r" l:q" a 

;'£ l:q' a + l:q" a = l:qa. 

Another way of completing the proof was shown us by R. E. A. C. Paley. 
This depends on Theorem 6. From this theorem, the formula (2.2.10), and 
what has been proved before, it follows that 

I]{(a) = W11 (a) > W1~ (a) = W112(a~) ~ G>2(a~) = G> (a). 

(ii)a By Theorems 6 and 3, we have 

5ll(a)=im1 (a»imt (a»imt (a» ... > lim im2-m(a)=@(a). 
m-+oo 

This proof is very concise but not quite so elementary as the 
first. It may be observed that we require Theorem 3 only in the 
case in which the r of Theorem 3 tends to zero through the special 
sequence of values 2-m• 

2.6. Other proofs of the theorem of the means. We shall 
return to Theorem 9 in §§ 2.14-15 and again in § 2.21. We add 
here a few remarks about alternative proofs of the ordinary form 
of the theorem with unit weights. 

• Schlomilch (1). 
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(i)& If the a are not all equal, let 

a l =Mina<Maxa=a2 • 

If we replace each of a l and a2 by l (al +a2), m:(a) is unaltered, 
but 

(a l +a2)2 --2- >al a2 , 

so that @(a) is increased. 
Suppose now that we vary the a in such a manner that m: is 

constant, and that we assume the existence of a set (a*) for which 
@ attains a maximum value. Then the a* must be equal, since 
if not we can replace them as above by another system for which 
@ is greater. It follows that the maximum of@ is m:, and that this 
maximum is attained only for equal a. 

To prove the existence of (a*), let 

rp (aI' a2, ... , an-I) = a l a2 ... an_1 (nm:- a l - •.• -an-I)· 

Then rp is continuous in the closed domain 

al;;;;O, •.. , an-I;;;; 0, al +a2+···+an_l ;;::;nm:. 
It therefore attains a maximum for some system of values 
at, ... , a~_1 in the domain. 

a This proof, the most familiar of all proofs of the theory, is due (so far as we have 
been able to trace it) to Maclaurin (2). Maclaurin states the theorem in geometrical 
language, as follows: 'If the Line AB is divided into any Number of Parts AC, CD, 
DE, EB, the Product of all those Parts multiplied into one another will be a Maxi· 
mum when the Parts are equal amongst themselves'. His proof is substantially that 
which follows. The proof has been rediscovered or reproduced by many later writers, 
for example by Grebe (1), Chrystal (1, 47). 

Cauchy's proof (§ 2.5) may be regarded as a more sophisticated form of Mac· 
Ja.urin's, since he proves the theorem in the special case when n=2m by a process 
Bimilar to Maclaurin's. In general, Maclaurin's proof is not a 'finite' proof. As we 
have stated it, it depends on Weierstrass's theorem on the maximum of a continuous 
function. This would naturally have been taken for granted by Maclaurin (and has 
aJao been taken for granted by many of his modem followers, such as Grebe and 
Chrystal). 

It is possible to avoid an appeal to Weierstrass's theorem, but at considerable cost. 
It is plain that if all, al; al', a.2 ; ••• are the smallest and largest of the sets resulting 
from 1, 2, ... repetitions of Maclaurin's process, then alsincreases and a.sdecreases as 
8 increases, so that 

A little consideration will show that n repetitions of the process diminish the greatest 
difference of the a by at least one-half, sothata.n -aln ~ !ta. - all. Hence a." -als..;.-O, 
and "'1 ="' •. It follows that all the a tend to the same limit \.11. This gives a proof of 
the theorem, but one a good deal less simple than that in the text. 
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The reader should work out the analogous proof in which @ is 
kept constant and a1 and az are each replaced by V(a1 a2). 

(ii) There is a variation of Cauchy's proof which illustrates a point of 
some logicaJ importance. 

An ordinary inductive proof proceeds from n to n + 1; the truth of a 
proposition P(n) follows from the hypotheses 

(a) P(n) implies P(n+ 1), 

(b) P(n) is true for n= 1. 

There is another mode of proof which may be called proof by 'backward 
induction'; the truth of P(n) follows from 

(a' ) P(n) implies P(n-l), 

(b' ) P(n) is truefor an infinity of n. 

Cauchy's proof may be arranged as a proof of this last type. First, 
Cauchy proves (b' ) for n=2m• Next, if the theorem is true for n, and if~ 
is the arithmetic mean of a l , as, ... , a"_l' then an application of the theorem 
to the n numbers at> ... , a"_l' ~ gives 

<lYn _ (a l + ... + a .. 1 + ~)n Qt 
"'" - n > a l as ... an_l "'"' 

the result for n - 1. 

(iii)a Defining a1 and az as in (i), we may replace a1 and a2 by 2{ 
and a1 + a2 - 2{. Then 2{ is again unchanged, and 

2{ (a1 +az- 2{) -a1 az= (2{- a1) (az- 2{) > 0, 

so that @ is increased. Repeating the process we arrive, after at 
most n-l steps, at a system of a all equal to 2{. It follows that 
@<2{. 

This proof is a little more sophisticated but entirely elementary. 
There is an alternative, which we leave to the reader, in which a1 

and a2 are replaced by @ and a1 a2/@. 
(iv) There are a number of inductive proofs of the theorem: see, for 

example, Chrystal (1, 46), Muirhead (3). One of the simplest runs as 
follows b • Suppose that O<al~aS~ ... ~a .. , a l <an, that ~p and G'i p refer 
to the first v of the a, and that it has been proved that ~n-l~ G'ifl-l. 

Then a" > ~fl-l' by Theorem I, and 

Qt (n-l)~ .. l+ a ,,_<lY +an-~"_1 
"'"n n - "'"n-l n . 

" For these proofs see Sturm (1, 3), Crawford (1), Briggs and Bryan (1, 185), 
Muirhead (3), Hardy (1, 32). 

b Another simple proof due to R. Rado is given at the end of the chapter 
(Theorem 60). 



ELEMENTARY MEAN VALUES 21 

Raising this equation to the nth power, and remembering that n> I, we 
obtain 

2ln >2ln +n2ln-lan-2ln-l a 2ln-l~a (l)n-l=(l)n. 
n n-l n-l n n n-l- n n-l n 

(v) Another interesting proof was given very recently by Steffensen 
(1,2). It starts from the lemma: ij av_ l ~ av , bV _ l ~ bv ' and a v ~ bv ,jar all II, 
then ~a ~b is not decreased by exchanging at and bi , and is increased except 
when at = bi or av = bvjor ",*, i. The lemma follows at once from the identity 
{~a+ (b;-ai)} fEb + (ai - bi)} 

= ~a~b+ (bi-ai) {(~b-bi) - (~a-ai)}. 

To deduce the theorem of the means, we write it in the form 

(al +al + ... +al ) ... (an +an + ... +an) ~ (al +a2 + ... +an) ... 
(al +a2 + ... + an)· 

If we suppose, as we may, that al ~ a2 ~ ••• ~ an' and exchange n - I terms 
of the first factor of the left-hand side against one term of each of the other 
factors, we obtain 

(al +a2 +a3 + ... +an) (al +a2 +a2 + ... +a2) ••• (al +an +an + ... +an ), 

which is greater, by the lemma, unless all the a are equal. The theorem 
follows by repetition of the argument. 

(vi) Further proofs of Theorem 9 (or of the special case considered in 
this section) are given in §§ 2.14, 2.21, 3.11, and 4.2. 

2.7. Holder's inequality and its extensions. Our next group 
of theorems centres round Theorem 11 (Holder' s inequality)a. 

10. Suppose that (a), (b), ... , (l) are m sets each of n numbers. 
Then 

(2.7.1) @(a)+@(b)+ ... +@(l) <@(a+b+ ... +l), 

unles8 either (1) every two of (a), (b), ... , (l) are proportional, or 
(2) there is a v such that ay = bv = ... = ly = o. 

The theorem states that, if 2:,q = 1, then 
alqla2q2 ... anqn + blQlb2Q2 ... bn Qn + ... + llQll2Q2 ... In Q" 

< (al + b1 + ... + ll)Ql (a2 + b2 + ... + l2)Q2 ... , 

unless every two columns of the array 

aI' b1 , ••. , II 
... , 

... , ... , ... , 
a Strictly, 'Hiilder's inequality' is Theorem 14, or (2.8.3) of Theorem 13. The 

inequality (2.7.1) was stated explicitly, for two sets and equal weights, by Minkowski 
(1, 117). 
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are proportional or there is a row containing only zeros. A neces­
sary and sufficient condition that all columns should be propor­
tional (i.e. that every pair of columns should be proportional) is 
that a,..b,,-avb,..=O, a,..cv-avc,..=O, ... , for every I-' and v; and 
this condition is also necessary and sufficient for the propor­
tionality of all rows. If we remember this, change our notation as 
between rows and columns of the array, and write ot, fJ, ... , A for 
Ql' Q2' ... , Qn' we see that Theorem 10 is equivalent to 

11. If ot, fJ, ... , A are positive and ot+ fJ+ ... +A= 1, then 
(2.7.2) 1;aot bfl ... 1)..< (1;a)ot(1;b).B .•• (1;1)\ 

unless either (1) the sets (a), (b), ... , (1) are all proportional, or 
(2) one set is nul. 

The conditions for equality might also be expressed by saying 
that there is one set which is proportional to all the others (the nul 
set being proportional to all other sets). The case in which one set 
is nul is trivial, and we may ignore it in the proof. 

Here again we give two proofs. 

(i) By Theorem 7, (1;ab)2 < 1;a21;b2 

unless (a) and (b) are proportional. Hence 
(~abcd)4;;; (~a2b2)21; (c2d2)2;;; 1;a41;b41;c41;d4, 

with inequality somewhere unless (a), (b), (c), (d) areproportionala• 

Repeating the argument we see that 
(2.7.3) (1;ab ... l)2m < 1;a2m 1;b2m ... 1;l2m, 

with 2m sets (a), (b), ... , unless all the sets are proportional. This 
is equivalent to (2.7.2) when every index is 2-m• 

Suppose next that M is any number less than 2m , and let 
(g) be the Mth set. If (ab ... g) is not nul, we define A, B, ... , L 

by A2m=aM, ... , G2m=gM (M sets), 

H2m=K2m= ... = L2m=ab ... g (2m-M sets), 

so that AB ... L=ab ... g, and apply (2.7.3) toA,B, ... ,L. We 
thus obtain (~b )2m M m 

~a ... g < 1;a ... 1;gM (1;ab ... g)2 -M 
or 

(2.7.4) (1;00 ... g)M < 1;aM1;bM ... 1;gM, 

a The nul set being excluded, proportionality is now transitive: see § 2.1. 
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unless the sets (A), (B), ... , (L), and so the sets (a), (b), ... , (g), 
are proportional. This is equivalent to (2.7.2) with every index 
11M. We haV'e supposed (ab ••• g) not nul; if it is nul then (2.7.4) 
is obviously true, since none of (a), (b), ... , (g) is nul. 

If now IX, f3, ... are rational, we can write 

... , 

where IX', f3', ... are integers and ~IX' =M. Applying (2.7.2), with 
every index 11M, to M sets formed by IX' like sets of a, (3' sets of 
b, and so on, we obtain (2.7.2) with indices IX, f3, .... 

Finally, when IX, f3, ... are not all rational, we replace them by 
rational approximations whose sum is 1, form (2.7.2) for these 
rational indices, and proceed to the limit. In this process' < ' 
degenerates into';£' and, as in § 2.5 (i), we do not at first obtain 
a complete proof. We can complete the proof as follows. We 
can write IX = IXI + 1X2' f3 = f3l + f32' ... , where all the numbers are 
positive and those with suffix 1 are rational. If then ~IXI = aI' 

~1X2= a2' so that al + a2 = 1, and PIal = alXlb/3l ... , P 2a2= a1X2 b/32 ... , 
we have 

Since lXI' .Bl' ... are rational 

~Pl = ~aIX1/al ... l\/al < (~a)1X1/al ... (~l),"/al; 

while for ~P2 we have a similar inequality, but with';£' only. 
Combining our results we obtain (2.7.2). 

(ii) We may deduce Theorem 11 from Theorem 9. We have in 
fact (since no set is nul) 

~alXb/3 ... l>' (a )IX( b)/3 (l)>' 
(~a)1X (~b)/3 ... (~li = ~ ~a ~b ... ~l 

;£ ~ ( IX ;a + f3 :b + ... + A ~) = IX + f3 + ... + A = 1. 

There can be equality only if 

av bv lv ( 1 2 ) 
~a = ~b = ... = ~l v = , , ... , n , 

i.e. if (a), (b), ... , (l) are proportional. 
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It will be observed that, whether IX, {3, ... are rational or not, 
no limiting processes are involved in the proof beyond those 
already present in the proof of Theorem 9. The principle of the 
proof is the same as that of the proof of Theorem 13 below given 
independently by Francis and Littlewooda (1) and F. Riesz (6). 

2.8. Holder's inequality and its extensions (continued). 
If we suppose r=l= 0, and replace a, b, ... ,1 in Theorem 11 byqarlrx, 
qbrlP, ... , qlrl\ we obtain 

12. If r, IX, {3, ... , A are positive and IX + (3 + ... + A = I, then 

SJRr(ab ... l) < SJRr/rx(a) SJRrIP(b) ... SJRrl).(l) 

unless (al/rx ), (bliP), ... , (Ill).) are proportional or one of the factors on 
the right-hand side is zero. If r < 0, the inequality is reversed. 

It is to be observed that, when r> 0, the second exceptional 
• 

case occurs only if one of the sets (a), (b), ... is nul, whereas when 
r < 0 it occurs if any number of any set is zero. When r= 0 
there is equality in any case. 

We shall often find it convenient, when we are concerned with 
two sets of numbers only, to use the notation 

( ) k' k 
2.8.1 = k-1' 

k being any real number except 1. The relation (2.8.1) may also 
be written in the symmetrical forms 

(2.8.2) (k-1)(k'-1)=1, ~+:,=1 
(the last form failing when k= 0, k' = 0). We say that k and k' are 
conjugate. 

13. Suppose that k =1= 0, k =1= I, and that k' is conjugate to k. Then 
(2.8.3) 'i:.ab < ('i:.ak)l/k ('i:.bk')l/k' (k> 1) 

unless (ak) and (bk') are proportional; and 
(2.8.4) 'i:.ab> ('i:.ak)l/k ('i:.bk')l/k' (k < I) 

unlcss either (ak) and (bk') are proportional or (ab) is nul. 

a See Hardy (8). 
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Cauchy's inequality (Theorem 7) is the special case k= k' = 2, 
in which k is conjugate to itself. 

(i) Suppose that k> 1. Then (2.8.3) is the special case of 
Theorem 11 in which there are two sets of letters and IX= 11k, 
p= 11k'. This is the ordinary form of Holder's inequalitya. 

(ii) Suppose that 0 < k < 1, so that k' < O. If any b is 0 then 
the second factor on the right-hand side of (2.8.4) is, as in 
§ 2.1, to be interpreted as 0, so that (2.8.4) is true unless (ab) 
is nul. If every b is positive, we define 1, u, v by 

so that 

and 

so that 

1 = 11k, 

1>1, k'=-kl' 

u=(ab)k, v=b-k, 

ab=u1, ak=uv, bk' =1l. 

Then (2.8.4) reduces to (2.8.3) with u, v, 1 in place of a, b, k. 
The exceptional case is that in which (u1) and (d'), i.e. (ab) and 
(bk'), are proportional. If this is so then (since the b are now all 
positive) the sets (a) and (bk'-l), and therefore the sets (ak) and 
(bk ') , are proportional. 

(iii) If k < 0, then 0 < k' < 1. This case is reduced to (ii) by 
exchanging a and b, k and k'. Both (ii) and (iii) are included 
in (2.8.4). 

The inequalities remain true in the excluded cases k = 0, k = 1 
if we adopt appropriate conventions. If k = 0, k' = 0, we must 
interpret (2.8.4) as 

a l bi +a2b2 + ... +anbn > n(a1 ... anbl ... bn)l/n. 

If k = 1 we may interpret k' as + 00 or as - 00. In the first case 
we interpret (2.8.3) as ~ab<Maxb~a, and in the second we 
interpret (2.8.4) as ~ab > Min b ~a. We may leave it to the reader 
to pick out the cases of equality. 

We can combine (2.8.3) and (2.8.4) in the single inequality 

(2.8.5) (~ab)kk'«~ak)k'(~bk')k (k=l=O, k=l=I). 

In view of the extreme importance of Holder's inequality, we 

a Holder (1). Holder states the theorem in a less symmetrical form given a little 
earlier by Rogers (1). 
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depart from our usual practice here and state explicitly the 
derivative theorem for complex a, b. 

14. IJ k > 1, and k' i8 the conjugate oj k, then 

I ~ab I ~ (~ I a Ik)1'k (~ I b Ik')lIk'. 

There i8 equality iJ and only iJ ( I av I k) and ( I bv I k') are proportionaZ 
and arg avbv is independent oj v. 

The only additional remark needed for the proof is that 

l~abl<~labl 
unless argavbv is independent of v. We regard 0 as having any 
argument we please. 

The following variant of the first part of Theorem 13 is some­
times called 'the converse of Holder's inequality'. 

15. Supp08e that k> 1, that k' i8 conjugate to k, and that B> O. 
Then a neces8ary and 8ufficient condition that ~ak ~ A i8 that 
~ab ~ A 11k Bl/k' Jor all b Jor which ~bk' ~ B. 

The condition is necessary, by (2.8.3). If ~ak>A, we can 
choose the b so that ~bk' = Band (bk') is proportional to (ak), and 

then ~ab = (~ak)llk (~bk')llk' > A 11k BIlk'. 

Hence the condition is also sufficient. 
Theorem 15 is often useful for the purpose of determining an 

upper bound for ~ak. Any argument based on it can be changed 
into one which involves only a special (b), but the form stated 
here, with arbitrary (b), is sometimes more convenienta• 

2.9. General properties of the means imr(a). We can now 
prove a theorem which completes and supersedes some of those 
of §§ 2.3-4. 

16.b IJ r < 8 then 

(2.9.1) 

unle88 the a are all equal, or 8 ~ 0 and an a i8 zero. 

We have proved this already in the special cases (i) r=-oo 

a Compare §§ 6.9 (p. 142) and 6.13 (p. 149). 
b Schlomilch (I). See also Reynaud and Duhamel (1, 155) and Chrystal (1, 48). 
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(Theorem5), (ii) 8 = + 00 (Theorem 5), (iii) r = 0, 8 = 1 (Theorem 9), 
(iv) 8 = 2r (Theorem 6). 

Suppose first that 0 < r < 8, and write r=8C1., so that 0 < CI. < 1, 
and paS=u, p=v, 

80 that v> 0 and pasrx = (paS)rxpl-rx = urxv1- rx• 
Then 

(2.9.2) 

by Theorem 11, unless uv/vv is independent of v, i.e. unless av is 
independent of v. Hence 

(}:~;srxrsrx < (}:f;srs , 

which is (2.9.1). 
The cases in which r ~ 0 and an a is zero are trivial and we may 

ignore them. If every a is positive, and r = 0 < 8, we have 

(WCo(a))s= (@(ans=@(aS) < m (as) = (WC,i(a))8, 

by Theorem 9 and (2.2.7). The two remaining cases, r < 8 < ° and 
r < 8= 0, reduce to those already discussed in virtue of (2.2.9). 

17.a If 0 < r < 8 < t then 

(2.9.3) 

unles8 all the a which are not zero are equal. 

We restrict the parameters to be positive, the complications 
introduced by negative or zero values being hardly worth 
pursuing systematically. 

We may write 
8 = rCl. + t ( 1 - CI.) (0 < IX < 1). 

The inequality is then 
}:qaS < (}:qaT)rx (}:qat )l-rx 

and reduces to a case of Theorem 11 when we write u=qar, 

v=qat• The condition for equality is that (u) and (v) should be 
proportional, and this is plainly equivalent to that stated in the 
enunciation. The reader should observe the difference between 
the conditions for equality in Theorems 16 and 17. 

a Liapounoff (1, 2). 



28 ELEMENTARY MEAN VALUES 

We shall see later (§3.6, Theorem 87) that Theorem 17 may 
be stated in a more striking form. 

2.10. The sums 6 r (a}. (i) We write 
6 r = 6 r(a} = (~ar}l/r (r> 0). 

We confine our attention to positive r, leaving the construction 
of a theory of 6 r for r ~ 0 as an exercise to the reader. 

18. If 0 < r < s < t then 
t-s s-r 

(2.10.1) 6: < (6~)t-r (6!)t-r, 

unless all the a which are not zero are equal. 

This is essentially the same theorem as Theorem 17. In fact 

(2.1O.2) 6 r (a} = nl/r mr (a), 

the mean IDCr(a} being formed with unit weights, and (2.1O.1) 
reduces to (2.9.3), the powers of n disappearing. 

The correspondence between Theorems 17 and 18 depends 
essentially on the fact that (2.9.3) and (2.1O.1) are homogeneous 
in the second sense of § 1.4, namely in the sign ~. There is a 
theorem for sums corresponding to Theorem 16, but in this 
theorem, which is expressed by (2.10.3) below, the sign of 
inequality is reversed; (2.10.3) is not homogeneous in ~, and 
is not related to (2.9.1) as (2.10.1) is related to (2.9.3). 

19.0. IfO<r<s then 

(2.10.3) 6 s (a} < 6 r (a}, 

unless all the a but one are zero. 

Since the inequality is homogeneous in the a, we may suppose 
~ar= I, i.e. 6 r = 1.b Then av~ I for every v, and so av8~a/ and 

~as~~ar= I. 

If more than one a is positive then at least one positive a is less 
than I, and then there is inequality. Theorem 19 is usually 
quoted as Jensen's inequality. 

(ii) We add the theorems for 6 r (a) corresponding to Theorems 
4 and 3. 

& Pringsheim (1). Jensen (2). Pringsheim attributes his proof to Liiroth. 
b Compare the remarks on this proof in § 1.4. 
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20. 6.-+Maxa when r-+oo. 

21. 6.-+00 when r-+O, unless all the a but one are zero. 

Theorem 20 follows from (2.10.2) and Theorem 4. To prove 
Theorem 21 we have only to observe that "L.ar=N +0(1), where 
N is the number of positive a. 

(iii) Theorem 19, combined with Theorem 11, gives the follow­
ing theorem of Jensena . 

22. If IX, fJ, ... , ,\ are positive and IX + fJ + ... +,\ > 1, then 
"L.arx.bf3 ••• 1A < {"L.a)rx. {"L.b)tl ... ("L.Z)\ 

unless every number of one set or all but one of each set is zero, and, 
in the latter case, those which are positive have the same rank. 

We can write IX = klX', fJ= kfJ', ... , where k > 1 and IX' + fJ' + ... = 1. 
If then ak=A, bk= B, ••. , we have 

"L.arx.btl ••. ZA="L.Arx.'Btl' ... ]}' ~ ("L.A)rx.' {"L.B)tl' ... ("L.L)A' 
= ("L.ak)rx.lk ..• {"L.lk)Alk ~ {"L.a)rx. ..• ("L.l)\ 

by Theorems 11 and 19. There is inequality somewhere unless 
the conditions for equality in both theorems are satisfied. 

(iv) It is natural to consider weighted sums 
::tr = ::tr(a} = ::tr(a,p) = CEpar)l/r. 

It is plain that there can be no universal relation of the type (2.9.1) or 
(2.1O.3), since ::tr is the 6 r of Theorem 19 when Pv= 1 and is 9Jl,. when 
:Epv = 1. The possibilities in this direction are settled by the following 
theorem. 

23. A necessary and sufficient condition that 
(2.10.4) ::tr ;;2 ::t. (0 < r < s), 

for given weights p and all a, is that :Ep ~ 1. There is then inequality unless 
(a) is nul, or :Ep = 1 and all the a are equal. 

A necessary and sufficient condition that 
(2.10.5) ::ts ;;2::tr (O<r<s), 

for given weights p and all a, is that Pv;;;; 1 jor every II. There is then inequality 
unless (a) is nul, or ak > 0, Pk = 1, and the remaining a are zero. 

(i) If we take a v = 1 for every II, then ::tr= CEp}l/r, and (2.10.4) can be 
true only if:EP;;2 1. If this condition is satisfied, and r = soc, so that 0 < oc < 1, 
we have 

which is (2.1O.4). The conditions for equality are plainly as stated. 

a Jensen (2). 
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(ii) If we take ak= 1 and the other a zero, 'X,.=Pk1/r, and (2.10.5) can 
be true only if Pk ~ 1. If we assume that this condition is satisfied, write 
s=rp, so that P> 1, and assume, as we may on grounds of homogeneity, 
that 1:par = 1, then par ~ 1 for every II and 

1:pa' = 1: (par)flpl-fl ~ 1: (par)fl ~ 1:par, 

which is (2.10.5). The conditions for equality are again plainly as stated. 

2.11. Minkowski's inequality. Our next theorem is a gene­
ralisation of Theorem 10. 

24. Suppose that r is finite and not equal to 1. Then 

(2.11.1) 

mr(a) + mr(b) + ... + mr(l) > mr(a+b + ... + l) (r> 1), 

(2.11.2) 

mr(a) + mr(b) + ... + mr(l) < mr(a+b + ... + l) (r< 1), 

unless (a), (b), ... , (l) are proportional, or r~O and 

av=bv='" =lv=O 
for some v. 

There is equality for any a, b, ... when r= 1. Theorem 10 is 
the special case r = O. The main result remains true (and is 
trivial) when r=oo or r= -00, except that the conditions for 
equality require a restatement which may be left to the reader. 

We take the means with q, and write 

a+b+ ... +l=s, mr(s) = S. 

Then Sr = 'J:.qsr = 'J:.qasr- l + 'J:.qbsr-l + ... + 'J:.qlsr-l 

= 'J:. (ql/r a) (ql/r sy-l + ... + 'J:. (ql/rl) (q1/r sY-I. 

Suppose first that r> 1. Applying (2.8.3) of Theorem 13 to 
each sum on the right, we obtain 

(2.11.3) Sr ~ ('J:.qar)l/r ('J:.qsr)1/r' + ... = sr-I(('J:.qar)l/r+ ... ). 

There is equality only if (qar), (qbr) , ... are all proportional to 
(qsr), i.e. if (a), (b), ... are proportional. Since S is positive (except 
in the trivial case when every set is nul), this establishes (2.11.1 )a. 

Suppose next that O<r< 1. Unless all the sets (a), (b), ... are 
nul, Sv> 0 for some v. If Sv = 0 for any particular v, then 

a This proof is due to F. Riesz (1, 45). 
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a" = b" = .. , = I" = 0, and we may omit that value of v from con­
sideration. We may therefore argue as if s" > 0 for every v. In 
that case (2.8.4) of Theorem 13 gives (2.11.3) with the sign of 
inequality reversed, and the proof may be completed as before. 

Finally, suppose that r < o. If any s" is zero, all the means are 
zero; we may therefore assume that s" > 0 for everyv. If anya"is 
zero, mr (a) = 0, and we may omit the letter a. a We may therefore 
argue on the assumption that every a, b, ... is positive, and then 
again everything follows from (2.8.4) of Theorem 13. 

When the q are equal, we obtain 

25. If r is finite and not equal to 0 or 1, then 

(2.11.4) 
(~(a + b + ... + It)l{r < (~ar)l/r + ". + (~lr)l{r (r> 1), 

(2.11.5) 
(~(a + b + '" + W)1/r > (~a?lr + ... + (~lr)l/r (r < 1), 

unless (a), (b), ... , (l) are proportional, or r < 0 and a", b", ... , I" are 
all zero for some v. 

It is (2.11.4) which is usually called Minkowski's inequalityb. 
Theorem 24 is more general than Theorem 25 in appearance 
only, since it may be deduced from Theorem 25 by writing 
pi/ra, pl/rb, ... for a, b, .... 

Theorem 24 may be given a very elegant symmetrical formc. 

26. Suppose that m(l-'l denotes a mean taken with respect to the 
suffix fL, with weights PI-" and m("l one taken with respect to v with 
weights q,,;d and that O<r<s<oo. Then 

m ("1m (1-'1 (a ) < m (l-'lm (,,1 (a ) 
srI-''' r 8 1-''' , 

except when al-''' = bl-' c" . 
The result holds generally for all r, s such that r < s, except for the 

specification of the cases of equality. 
a Here we use (2.2.15). b Minkowski (1, 115-117). 
c Theorem 26 was co=unicated to us in 1929 by Mr A. E. Ingham. The same 

formulation of Minkowski's inequality was found independently by Jessen and 
published in his paper 1. This and his later papers 2 and 3 contain many interesting 
generalisations: see Theorems 136 and 137. 

d We depart here from our usual convention about q; L;q is not necessarily 1 
(though we prove the inequality by transforming it into one in which we may sup· 
pose L;q=l). 
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We prove the theorem for 0 < r < s < 00, leaving the other cases 
to the reader. There are various supplementary cases of equality 
when r ~ 0 or one of rand s is infinite. 

Let sfr=k> 1 and pp.a~v=Ap.v' Then the inequality to be 
proved is 

L~l qv C~lp. a~v r'r} Vs < L~lp. C~/va~v rsrr 

or t~lqvC~lAp.vrrk < ~~1 C~lqvA~vrk. 
This reduces to (2.11.1) when 1:q= 1, and, being homogeneous 
in the q, is true without this restriction. 

2.12. A companion to Minkowski's inequality. The 
theorem which follows is an analogue of Theorem 25 of a simpler 
kind. 

27. If r is positive and not equal to 1 then 

(2.12.1) 1: (a+ b + ... + It > 1:ar + 1:br + ... + 1:lr (r> 1), 

(2.12.2) 1:(a+b+ ... +l)T<1:ar+1:br+ ... +1:lr (O<r< 1), 

unless all numbers but one of each set av' bv, ... , lv (v= 1,2, ... , n) 
are zero. 

This follows at once from Theorem 19, since for example 

(a+b+ ... +l)T>ar +br+ ... +lr 

ifr> 1, unless all of a, b, ... , l but one are zero. It should be noticed 
that the sense of (2.12.1) and (2.12.2) is opposite to that of 
(2.11.4) and (2.11.5). 

What is usually reg uired in practice is a combination of (2.11.4) 
and (2.12.2), viz. 

28. If r > 0 then 

(1: (a + b + ... + lnR ~ (1:ar)R + (1:br)R + ... + (1:lr)R, 

where R= 1 ifO<r ~ 1 and R= Ifr ifr> 1. 

2.13. Illustrations and applications of the fundamental 
inequalities. (i) Geometrical interpretations of Holder's and Min-
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kow8ki'8 inequalitie8. Two particularly simple cases of Holder's 
and Minkowski's inequalities are 

(2.13.1) (X1 X2 + YIY2 + Zl Z2)2 < (X12 + Y12+ Z12) (X22 + Y22 + Z22), 

(2.13.2) y{(Xl + X2)2 + (Yl + Y2)2 + (Zl + Z2)2} 
< Y(X12+Y12+Z12)+ y(X22+Y22+Z22). 

These hold for all real values of the variables, and express the 
facts that (1) the cosine of a real angle is numerically less than 1, 
and (2) the sum of two sides of a triangle is greater than the third 
side. The exceptional cases are those in which (1) the vectors 
(Xl' YI' Zl) and (X2' Y2' Z2) are parallel (with the same or opposite 
senses), and (2) the vectors are parallel and have the same sense. 

The ordinary form of Minkowski's inequality is the extension 
of (2.13.2) to space of n dimensions with a generalised definition 
of distance, viz. 

PIP2=(lx1 -x2Ir +IYI-Y2Ir + ... )IJr (r~l). 

The most obvious extensions of (2.13.1) are connected not with 
Holder's inequality for general r but with a generalisation of the 
case r = 2 in a different direction. 

29. If ~a!,vx!,xv' where a!,v=av!" i8 a p08itive quadratic form 
(with real, but not nece88arily p08itive, coefficient8), then 

(~a!,vx!,yV>2 < ~a!,vx!, Xv ~a!,vY!,Yv' 

unle88 (x) and (y) are proportional. 

This is an immediate consequence of the fact that 

~a!,v (Ax!' + fLY!') (Axv + fLYv) 

is positive: compare the second proof of Theorem 7. It represents 
geometrically an extension of (2.13.1) to n-dimensional space, 
with oblique coordinates or a non-Euclidean metric. 

To illustrate Theorem 15, take k=2, A=l2, B=l, and 
rectangular coordinates. The theorem then asserts that, if 
the length of the projection of a vector along an arbitrary 
direction does not exceed l, the length of the vector does not 
exceed 1. 

HI 3 
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(ii) A theorem of Hadamarda• In our next theorem also we are 
concerned with a set of numbers ap'v real but not necessarily 
positive. 

30. If D is the determinant whose constituents are 

then 
ap'v (fL,v=1,2, .•. ,n), 

(2.13.3) D2~~alK2~a2K2 ..• ~anK2. 

There is equality only when 

(2.13.4) aP.l av1 + ap.2 aV2+··· + ap.navn = 0 

for every distinct pair fL, v, or when one of the factors on the right­
hand side of (2.13.3) vanishes. 

The geometrical significance of the theorem is that the volume 
of a parallelepiped in n-space does not exceed the product of the 
edges diverging from one corner, and that there is equality only 
when they are orthogonal or an edge vanishes. 

Suppose that ~cp.vxp.xv' where Cp.v = cvp.' is a positive quadratic 
form, and that d is the determinant whose constituents are Cp.v. 
Then the equation 

(2.13.5) =0 

has n positive rootsb whose sum is ~cp.p. and whose product is d. 
Hence, by Theorem 9, 

(2.13.6) d~(Cll+C22: ... +Cnnr. 

If cp.p. > 0 for all fL, then the form 

~ Cp.v _ ~c 
£..J ./( )xP.xv-£..J p.vxp.xv 

V c,..p.cvv 
is also positive; and if we apply (2.13.6) to this form, we obtain 

(2.13.7) 

& Hadamard (1) considers determinants with complex constituents. Theorem 
30 was found earlier by Kelvin and proved by Muir (1). 

b See Bocher (1,171). 
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This is substantially equivalent to Hadamard's theorem. For 
the form 

~ (a1KX1 + a 2K x 2 + ... + a nK X n )2= ~cftVxftXV 

is positive unless D=O. Also a=D2 and 

so that (2.13.7) is (2.13.3). 
For equality in (2.13.6), all the roots of (2.13.5) must be equal, 

which is only possible if cftV = 0 whenever p, '* v and cftft is inde­
pendent of p,. Hence, for equality in (2.13.7), we must have 
o ftv = 0 for p, '* v, 0 ftft independent of p,. The last condition is 
certainly satisfied, since 0 ftft = 1, and 0 ftV = 0 is cftV = 0, which is 
(2.13.4). 

We can extend the theorem to determinants with complex 
constituents by using Hermitian instead of quadratic forms. 
Further extensions have been made by Schur (2)a. 

The following ingenious proof of (2.13.7) is due to Oppenheimb • 

Oppenheim's argument establishes not only (2.13.7), and so 
Hadamard's theorem, but also the inequalities (2.13.8) and 
(2.13.9) below, due to Minkowskic and Fischerd respectively. 

Any two positive quadratic forms ~Cikxixk' ~dikXiXk may be 
reduced simultaneously, by a linear transformation of deter­
minant unity, to sums of squarese, say ~cvYI,2, ~dvYv2, where 
Cv and d v are positive. Then ~(Cik+dik)XiXk is reduced to 
~(cv+dv)Yv2, and the determinants ICikl, ... of the forms 
satisfy 

I Cik I = ITcv ' I d ik I = ITdv , I Cik + d ik I = IT (cv + d v )' 

Hence, applying Theorem 10 to the sets (cv ), (dv ), we obtain 

(2.13.8) 

Suppose now that the matrix of the d is formed from that of 
the C by multiplying, first the first r rows, and then the first r 

a See also A. L. Dixon (1). 
b Oppenheim (2). c Minkowski (2). 
d Fischer (1). e See Bocher (1, 17l). 
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columns, by -La If then we divide (2.13.8) by 2, and raise to 
the nth power, we obtain ' 

(2.13.9) I Cik I = I Cll ••• Cnn I ~ I Cll ••• Crr II Cr+1,r+1'" Cnn I, 
where I Cll ••• Crr I denotes the north -west diagonal minor of r rows 
and columns in I Cik I, and I cr +1. r+1 ... cnn I denotes the comple­
mentary south-east minor. Repeating the argument, replacing 
each of the factors on the right-hand side of (2.13.9) by two 
factors, and so on, we ultimately obtain (2.13.7). 

(iii) The modulus of a matrix. Suppose that A and B are the 
matrices of n rows and columns whose elements are afLV and bfLV; 

the elements may be complex. The matrices A +B and BA are 
defined as the matrices whose elements are 

ufLV+ bfLV ' bfLlalV + bfL2 a ZV +'" + bfLnanv' 

31.b If I A I, the modulus of the matrix A, is defined by 

I A 1= y'{:E I afLV \2}, 
then \ A + B \ ~ \ A \ + \ B \, I BA \ ~ I B \I A \. 

The first inequality is an immediate consequence of Theorem 
25, with r= 2. The second follows from Theorem 7, since 

:E 1 bfLl a lv+'" + bfLnanv 12 ~ :E 1 bfLP 12\ a qV 12. 
~v ~~~q 

(iv) Maxima and minima in elementary geometry. We quote (as ex­
ercises for the reader) a few of the numerous applications of the funda­
mental inequalities to problems of elementary geometry. 

32. The area of a triangle of given perimeter 2p is a maximum if the Bides 
a, b, c are equal. 

[Apply Theorem 9 to p-a, p-b,p-c.] 

33. If the surface of a rectangular parallelepiped is given, the volume is 
greatest when the parallelepiped is a cube. 

[Denote the edges diverging from a corner by a, b, c and apply Theorem 9 
to bc, ca, abo There is an analogous theorem for a parallelepiped in n 
dimensions; if k<n, and the surface of the k·dimensional boundary is 
given, the volume is greatest when the parallelepiped is rectangular and 
its edges are equal. This may be proved by combining Theorems 9 and 30 
with identities between determinants.] 

a Thus ~dikxixk is formed from ~cikxixk by replaoing Xi' Xk (i, k= 1,2, ... ,r) 
by -Xi' -xk (and is therefore positive if ~cikxixk is positive). 

b See Wedderburn (I). 
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34. Definition. Si la Base d' une Pyramide est circonacriptible d un C ercle; 

et Bi le Pie dela Hauteur est au Centre de ce Cercle: J'appelle cette Pyramide 
droite. 

Dana une Pyramide droite toutes les Faces ont une meme Hauteur, et sont 
egalement inclinees au Plan de la Base. 

Theoreme. Soient deux Pyramides de meme Hauteur, dont les Bases Bont 
egales tant en Surface qu'en Contour; que l'une sait droite et que l'autre ne le 
Boit pas: j' affirme que la Surface de la premiere Pyramide est plus petite que 
la Surface de la seconde. [Lhuilier (1, 116).] 

[Let h be the height, bv a side of the base, and Pv the perpendicular 
from the foot of the altitude on to by. Then the lateral surface of the 
second pyramid is 

t~bvv'(h2 +Pv2) > t v'{(~hbv)2 + (~Pvbv)2}, 
by (2.11.4) of Theorem 25, unless all the Pv are equal.] 

(v) Some inequalities useful in elementary analysis. The following 
theorems, which are easy deductions from Theorem 9, are fundamental in 
the theory of the exponential and logarithmic functions. 

85. If g> 0, 0 < m < n, then 

(1+£f «I+~r· 
If also g < m, then 

( g)-m ( g)-n I-m > I-n . 
86. If g>o, g=l=l, O<m<n, then 

n(g1111_1)<m(g1lm_l). 

We have, by Theorem 9, 
m n-m 

( 1+1)nl"""'-<~(I+i)+n-ml==I+C 
m n m n n 

If g<m, we may write -g for g. This proves Theorem 35. Theorem 36 

follows from Theorem 35 if we replace g in Theorem 36 by (1 ± £) m • 

2.14. Inductive proofs of the fundamental inequalities. 
Our fundamental theorems are Theorems 9,10 (or 11), and 24 
(or 25), which we refer to shortly as G, H, M. We deduced H 
from Ga and M from H; G is a limiting case of H, H a special 
case, or anticipation, of M. 

The simplest case of G is 
37. (Go): acx bf3 <alX+bfJ (lX+fJ=l). 
We show first that G can be deduced from Go by induction. 

a Though giving also an independent proof of H. 
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Suppose that G has been proved for m letters a, b, .•. , k (or for 
any smaller number), and that 

a.+{3+ .•• +K+A=l, a.+{3+ ••• +K=a. 
Then 

alXbP ••• kKt>.= (alX/ubP/u ..• kK/U}Ul>' 

~ (alX/ubP/u ... kK/U)a+lA~aa.+b{3+ •.. +kK+lA, 

by G for 2 and for m letters. There is equality in the final result 

only if alX/ubP/u ••• kK/U=l, a=b= .•. =k, 

i.e. if all letters are equal. Hence G is true for m + I letters. 
The simplest cases of Hand Mare 

38. (Ho): 

al lX b/1 + a2IX bi < (al + a2)1X (b l + b2)P (a. + (3= I). 

39. (Mo): 

{(al +bl)r + (a2+ b2t}l/r < (a{ + a{)l/r + (b{ + b{)1/r (r> I) 

(with a reversed inequality when r< I). We can deduce Ho from 
Go and Mo from Ho by specialising our deductions of H from G 
and of M from H. We can also deduce Hand M from Ho and Mo 
by induction, but, since these inductive proofs are not essential 
to our argument, we need only sketch them. . 

(i) We have 

allXbIP+a2IXbi+aalXbi3 ~ (al +a2)1X (b l +b2)P +aalXb:l 

~ (al +a2+aa)lX(bl +b2 +ba)!3· 

The process may be repeated, and there is no difficulty in picking 
out the cases of equality. We thus obtain (2.8.3) of Theorem 13 
(H for two sets of n numbers). 

Next, if a.+ {3+y= I, a.+ {3= a, we have 

"f.alXbPc'y ="f. (a OOu b!3/U)U c" ~ ("f.a lX/ub!3/U)U ("f.c)" ~ ("f.a)1X ("f.b)!3 ("f.c)". 

This process also may be repeated, and leads to the general form 
ofH. 

We may arrange the induction differently, increasing the 
number of sets first. The intermediate generalisation (H for any 
number of sets of two numbers) is worth separate statement. 
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40. If rx.+ (3+ ... +'>1= 1, then 

a l rxbi3 . .. l/' + a2 rxbi3 ••• ll' < (al + a2)rx (bl + b2 )f3 ••• (ll + l2)\ 

unless al /a2 = bl /b2 = ... = ll/l2 or one of the sets is nul. 

39 

(ii) Similarly we can generalise Mo in two directions. On the 
one hand 

{(al + bl + cl)r + (a2 + b2 + c2Y}l/r 

~ (a{ + a2r )l/r + {(b l + C1Y + (b2 + C2y}l/r 

~ (a{ + anl/r + (b{ + b{)lir + (C{ + cnl/r, 

and on the other 

{(al + blY + (a 2 + b2Y + (aa + ba)r}l/r 
~ [{ (a{ + a{)l/r + (b{ + b2r)1/ry + (aa + ba)r]lir 

~ (a{ + a{ + a{)l/r + (b{ + b{ + b{)l/r. 

Repeating and combining these processes, we arrive at the 
general case. 

2.15. Elementary inequalities connected with Theo­
rem 37. We can write Go in the form 

a rx < {arx.+ b (1- rx.)}b rx- l 

or arx_brx < rx.b rx- l (a-b) (O<rx.< 1), 

which is one case of a system of inequalities prominent in text­
books of analysis. The complete system is stated in Theorem 41 
below. The theorem is so important that it is worth while to give 
a direct prooffrom first principles which conforms strictly to the 
criteria of § 1.7. 

41. If x and yare positive and unequal, then 

(2.15.1) rxr-l(x-y) >xr_yr>ryr-l(x_y) (r< 0 or r> 1), 

(2.15.2) rxr-l(x_y)<xr_yr<ryr-l(x_y) (O<r< 1). 

There is obviously equality when r = 0, r = 1, or x = y. We begin 
by reducing the theorem to one of its cases. 

(i) We may suppose r positive. For let us assume that (2.15.1) 
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has been proved when r>l, and that r<O, r=-s, so that 
s+l> 1. Then 

:If - '!/ = X-S - y-S = x-Sy-S-l (yS+l_ XSy) 
= x-Sy-S-l{yS+l_ xs+1- XS (y - x)} > x-Sy-S-lsx8 (y - x) 
=r'!/-l (x-y). 

The other inequality in (2.15.1) can be treated similarly. 

(ii) Let us denote the left- and right-hand inequalities in 
(2.15.1) by (la) and (lb) respectively, and similarly for (2.15.2). 
If we interchange x and y, (1 b) and (2 b) become (1 a) and (2 a). 
It is therefore sufficient to prove (1 b) and (2 b). 

(iii) We may now suppose, on grounds of homogeneity, that 
y=I. 

The proof of Theorem 41 is now reduced to that of the next 
theorem. 

42. If x is positive and not equal to 1, then 

(2.15.3) :If-l>r(x-l) (r>I), 

(2.15.4) :If-I <r(x-l) (O<r< 1). 

If in (2.15.3) we write r= l/s and x=yl/r=ys, it becomes 
(2.15.4) with y, s for x, r. It is therefore sufficient to prove 
(2.15.3). 

If q is an integer greater than l,a and y> 1, then 
yq-l 

q~> l+y+ ... +~-l=_-1 >q. 
y-

If 0 < y < 1, the inequalities are reversed. Replacing ~ by x, we 
obtain in either case 

x-I 
(2.15.5) -- < q(xl/q-l) < x-I. 

x 
Next, we have 

~+1-1 ~-1 = y-l (q~_~-1_~-2_ .. , -1) 
q+ 1 q q(q+ 1) 

= ~~;+1!~ {yq-l+ (~-1+~-2)+ .. , + (~-1+~-2+ '" + I)}. 

a We abandon here our usual convention concerning the meanings of q and p. 
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The curly bracket contains iq (q + 1) terms, all of which lie be­
tween yq and 1, so that 

(2.15.6) 

i (y_I)2;; y:+:~ I_yq; 1;; lyq (y_I)2 (y ~ 1); 

and so, if p is any integer greater than q, 

(2.15.7) 
yP-I yq-I 

Hp-q)(y-I)2;;-p---q-;; l(p-q)yP (y_I)2 (y~I). 

Now it follows from (2.15.5) that 

(x-I)2 <q2(Xl/q_I)2< (x-l)2 
x2 

if x> 1, while if 0 < x < 1 the inequalities are reversed. Hence, 
replacing ~ by x in (2.15.7), we obtain 

(2.15.8) 

p-q(x-l)2 <xP{q-I (x-I)<P- q xP{q(x-I)2 (x~l). 
2q x2 > piq > 2q 

Suppose now that r> 1. If r is rational, we write r for plq; 
if r is irrational, we make piq-H. In either case we have 

(2.15.9) 

t(r-I) (X:21)2 ~xr; 1 _ (x-I) ~l(r-l) xr(x-l)2 (r> I, x ~I), 

which plainly includes (2.15.3). 
This proves Theorems 42 and 41, but it will be useful to have 

the inequalities corresponding to (2.15.9) when r< 1. We now 
replace yP by x in (2.15.7), and use (2.15.5) with q replaced by p. 
We thus obtain 

(2.15.10) 
p-q (x-I)2 ~{p-I p-q 
-- ;:x-l---;:--x(x-l)2 (x~I), 

2p x2 qip 2p 

(2.15.11) 
(x-l)2 xr-l,,; 

l(l-r) ~x-I---:;;:HI-r)x(x-I)2 (O<r< 1, x~I). x2 - r -
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We have made the proof of (2.15.3) rather more elaborate than is 
necessary, in order to obtain the 'second order' inequalities (2.15.6)­
(2.15.11), which are interesting in themselves. If we are concerned only to 
prove (2.15.3), we can argue as follows. Instead of (2.15.6) we write 
simply 

whence 

ya+1_1 ya_l 
~>-q-' 

yP-l ya_l 
-p->-q-' 

ifp and q are integers andp>q. Hence we obtain (2.15.3) for rational r, 
and so, by a passage to the limit 

xr-l~r(x-l), 

for any r> 1. If now r is irrational, we may write r=rx.8, where rx. and 8 are 
both greater than 1 and rx. is rational. Then 

xr-l=(x8)"-1 > rx.(x8-1)~ rx.8(x-l)=r(x-l), 

so that (2.15.3) is true generally. 
For other proofs of Theorem 41 which satisfy the requirements, see 

Stolz and Gmeiner (1,202-208) and Pringsheim (1). Pringsheim uses the 
result to obtain an elementary proof of H. Radon (1, 1351) deduces Hand 
M from Theorem 41, but proves this by differential calculus. The proofs 
of Theorem 41 given in textbooks are usually limited to rational r; see 
for example Chrystal (1, 42-45), Hardy (1, 138). 

2.16. Elementary proof of Theorem 3. We have proved incidentally 
in the last section a number of inequalities sharper than those stated in 
Theorems 41 and 42. We lay no stress on these, since it is easy to find still 
more precise inequalities by the aid of the differential calculus (see § 4.2); 
but it may be interesting to show shortly how they enable us, if we desire, 
to 'elementarise' the proof of Theorem 3. 

We observe first that 

(2.16.1) ar = 1+0(r) 

for fixed positive a and small (positive or negative) r; 

(2.16.2) 

for fixed q and small U; and 

(2.16.3) 

for small r. We leave the deduction of these formulae from those of the last 
section to the reader. 

Supposing now that r is small, we have a/= 1 +u., where u.= O(r), by 
(2.16.1), and 
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by (2.16.2). Hence 

Q'j ( a1g1r ... ang"r )l!r { {I +U1)gl ... (I +un)a" }l!r 
m,. = q1 a{+ ... +q"anr = qdl+u1)+ .. ·+qn{l+u,,) 

= {I +q1u1 + ... +qnun + 0 {r 2 )}1!r 
1+q1U1+ .. ·+qnu n 

= {I + 0 {r2W!r = 1 + 0 (r) ->- 1. 

43 

2.17. Tchebychef's inequality. We know (Theorem 24) that 
9Rr (a+ b) is comparable (§ 1.6) with 9Rr (a) + 9Rr (b). It is natural 
to ask whether 9Rr (ab) is comparable with 9Rr (a) 9Rr (b). Theorem 
43 below shows that this is not so. 

We say that (a) and (b) are similarly ordered if 

(ap. -av) (bp. -by) ~ 0, 

for all ft, v, and oppositely ordered if the inequality is always 
reversed. It is evident that (a) and (b) are similarly ordered if 
there is a permutation VI' V2 ' ... , Vn of the suffixes such that 
a"l' a"2' ... , avn and bV,' bV2 ' ... , bvn are both non-decreasing 
sequences, and oppositely ordered if aV,' ... is non-increasing 
and bV" ... non-decreasing; and that the converses of these pro­
positions are also true. 

43.a If r > 0, and (a) and (b) are similarly ordered, then 

(2.17.1) 9Rr (a)9Rr (b) <9Rr (ab), 

unless all the a or all the b are equal. The inequality is reversed when 
the sets are oppositely ordered. 

or 

It is enough, after (2.2.7), to consider the case r = 1. Then 

~P ~pab - ~pa ~pb = ~Pp. ~Pv a" b" - ~Pp. ap' ~p" bv 
= ~~ (p/LPva"b,,- p/Lp"ap.bv) = ~~ (PVP/Lap. b/L -p"p/Lavb/L) 
= t~~ (pp.p"avbv-pp.p"ap.bv + p"pp.a/Lbp. - PVP/La" b/L) 
= t ~~Pp.Pv (a/L - av) (b/L - by) ~ 0, 

~(a) ~(b) ~ ~(ab), 

if the series are similarly ordered. 
We can determine the cases of equality as follows. Suppose, as 

.. The integral analogue is due to Tchebychef. See Hermite (1, 46-47), Franklin (1 ), 
Jensen (1), and Theorem 236. When r= 1, Wlr='ll, the inequality holds for any real 
and similarly ordered a, b. 
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we may in virtue of the remarks earlier in the section, that (a) 
and (b) are non-decreasing. The double sum contains a term 

PIPn(a1-an)(bl-bn) 

and this can vanish only if all a or all b are equal. 
An immediate deduction is that 

imr (a) imr (b) ... imr (l) < imr (ab .. . l) 

if r is positive and (a), (b), ... , (l) are all similarly ordered; in 
particular 

if rn is an integer greater than 1. This includes Theorem 6 and is 
included in Theorem 16. 

The question asked at the beginning ofthis section is included 
in the more general question settled by the next theorem. 

44. A nece88ary and 8ufficient condition that imr(ab ... l) and 
ims(a)im/(b) ... imv(l), where r, 8, ••• , v are p08itive, 8hould be com­
parable, i8 that 

(2.17.2) 

in which case 

(2.17.3) 

III 1 
-~-+-+ ... +-; r - 8 t v 

The sufficiency of the condition follows at once from Theorems 
12 and 16. Ifwe take every set in (2.17.3) to be (1, 0, 0, ... ,0), we 
see at once that (2.17.2) must be satisfied. A general inequality 
oppo8ite to (2.17.3) is impossible for any r, 8, •.• , since ayby ... ly 
may vanish for every v and yet the right-hand side be positive. 

2.18. Muirhead's theorem. In this and the four succeed­
ing sections we suppose the a to be strictly positive. We denote by 

~! F(al ,a2, ... ,an) 

the sum of the n! terms obtained from F (al , a2, ... , an) by the 
possible permutations of the a. We shall be concerned only with 
the special case 

F(al,a2, ... ,an)=al"'la2"'2 ... anOi.n (ay> 0, OCy~O). 

We write 
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It is plain that [oc] is unaltered by any permutation of the oc, 
so that we may regard two sets of oc as the same if they differ 
only in arrangement. We may describe a mean value of the type 
[oc] as a 8ymmetrical mean. 

In particular 
(n-1) ! 

[1,0,0, ... ,0]= , (al +a2 + ... +an)=m(a), 
n. 

[~,~, ... ,!.] = n !, al1nal1n ... anl1n=@(a), 
n n' n n. 

the arithmetic and geometric means with unit weights. When 
OCl + OC2 + ... + OCn = 1, [oc] is a common generalisation of m (a) and 
@(a). 

In general [oc'] is not comparable with [oc] in the sense of § 1.6. 
The problem solved in this and the next two sections is that of 
determining conditions for comparability. 

We say that (oc') is majori8ed by (oc), and write 

(oc')-«(oc), 

when the (oc) and (oc') can be arranged so as to satisfy the fol­
lowing three conditions: 

(2.18.1) 

(2.18.2) 

(2.18.3) 

OCl' + OC2' + ... + ocn ' = OCI + OC 2 + ... + ocn ; 

OCl' ~ oc2' ~ ••• ~ ocn ', OCI ~ OC2 ~ ••• ~ ocn ; 

OCl' + OC2' + ... + ocv';;:; OCl + oc2 + ... + OCv (1;;:; v< n). 

The second condition is in itself no restriction, since we may 
rearrange (oc') and (oc) in any order, but it is essential to the state­
ment of the third. It is plain that (oc) -< (oc). 

45. A neces8ary and 8ufficient condition that [oc'] should be 
comparable with [oc], for all positive values of the a, is that one of 
(oc') and (oc) should be majorised by the other. If (oc'}-«(oc) then 

(2.18.4) [oc'] ;;:; [oc]. 

There is equality only when (oc') and (oc) are identical or when all 
the a are equala• 

a Theorem 45 is due substantially to Muirhead (2); but Muirhead considers only 
integral ex. 
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2.19. Proof of Muirhead's theorem. (1) The condition is 
necessary. Suppose, as we may, that (2.18.2) is satisfied, and that 
(2.18.4) holds for all positive a. Taking all the a equal to x, we 
obtain 

This can only be true both for large and for small x if (2.18.1) is 
true. 

Next, take 
al =a2 =···=av =x, av+I =···=an =1, 

x being large. Since (IX') and (IX) are in descending order, the 
indices ofthe highest powers of x in [IX'] and [IX] are 

lXI' + 1X2' + .,. + IXv', IXI + 1X2 + ... + IXv 

respectively. It is plain that the first cannot exceed the second, 
and this proves (2.18.3). 

(2) The condition is sufficient. The proof of this is rather more 
troublesome, and we require a new definition and two lemmas. 

We define a special type of linear transformation of the IX, 
which we call a transformation T, as follows. Suppose that IXk 
and IXI are two unequal IX, the first being the greater; we may write 

(2.19.1) IXk=P+T, IXI=P-T (O<T~p). 

If now 

(2.19.2) O~a<T~p 

then a transformation T is defined by 

(2.19.3) , T-a T+a 
IXI =p-a=~lXk+2:;:-1X1' 

IXv' = IXv (v =1= k, v =1= l). 

If (IX') arises from (IX) by a transformation T, we write IX' = TIX. 
The definition does not necessarily imply that either the IX or 
the IX' are in decreasing order. 

It is plain that the sufficiency of our condition for compara­
bility will be established, and that we shall also have proved what 
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is stated in Theorem 45 about the case of equality, if we have 
proved the two following lemmas. 

Lemma 1. If rx' = Trx then [rx/];:;; [rx], with equality only when 
all a are equal. 

Lemma 2. If (rx')-«rx), but (rx') is not identical with (rx), then 
(rx') can be derived from (rx) by the successive application of a finite 
number of transformations T. 

Proof of Lemma 1. We may rearrange (rx) and (rx') so that 
k= 1, l=2. Then 

(2.19.4) n! 2[rx]-n! 2 [rx'] 

=n! 2[P +T,P-T,rxa, ... ] -n!2 [p+ O',p-O',rxa' ... ] 
- ~ t a "3 a <Xn (a p+,r a p--r + a P-T a p+r _ a p+a a p-a _ a p-a a p+a) 
-'a"'n 1 2 1 2 1 2 1 2 

= ~ ! (a1 a2 )p--r aa "3 ••• an "n (a1 -r+a - a2 -r+a) (a1 T-a - a2 -r-a) G; 0, 

with equality only when all the a are equal. 

Proof of Lemma 2. We suppose that the condition (2.18.2) is 
satisfied, and call the number of the differences rxv - rxv' which 
are not zero the discrepancy of (rx) and (rx/); if the discrepancy 
is zero the sets are identical. We prove the lemma by induction, 
assuming it to be true when the discrepancy is less than rand 
proving that it is then true when the discrepancy is r. 

Suppose then that (rx')-«rx) and that the discrepancy is r>O. 
Since, by (2.18.1), ~ (rxv- rxv') = 0, and not all of these differences 
are zero, there must be positive and negative differences; and, 
by (2.18.3) the first which is not zero must be positive. We can 
therefore find k and l so that 

(2.19.5) rxk'<rxk' rx'k+l=rxk+l' ... , rx'l-l=rxl-l' rx/>rx/.a 

We take ()(k=P+T, rxl=P-T, as in (2.19.1), and define a by 

(2.19.6) O'=Max(lrxk' - pi, Irx/ - pi)· 

Then 0 < T ;;;; P, since rxk> rxl' Also one or otherb of 

rx/-p= -a, rxk'-p=O', 

.. cx! - cxz' is the first negative difference, cxk - CXk' the last positive difference which 
. precedes it. The text assumes l- k > 1; the case l- k = 1 is easier. 

b Possibly both. 
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is true, since (Xk' ~ (X/ ; and a < 7, since (Xk' < (Xk and (X/ > (Xl' Hence 

O;;?a<7;;?p, 
as in (2.19.2). 

We now write 

(2.19.7) (Xk"=p+a, (X/,=p-a, (Xv" = (Xv (v=l=k, v=l=l). 

If (Xk' - p = a, (l.k" = (l.k'; if (1./ - p = - a, (I./, = (I./.a Since the pairs 
(l.k, ('/* and (1.1' (1./ each contribute a unit to the discrepancy r 
between ((I.') and ((I.), the discrepancy between «(I.') and «(I.") is 
smaller, being r-l or r- 2. 

Next, comparing (2.19.7) with (2.19.3), and observing that 
(2.19.2) is satisfied, we see that «(I.") arises from ((I.) by a trans­
formation T. 

Finally, ((I.') is majorised by ((I."). To prove this we must verify 
that the conditions corresponding to (2.18.1), (2.18.2) and 
(2.18.3), with (I." for (I., are satisfied. For the first, we have 

(2.19.8) (l.k" +(I./'=2p=(l.k+(l.l' ~(I.'=~(I.=~(I.". 

For the second, we observe first that 

(l.k' ;;? P + I (l.k' - pi;;? p + a = (l.k", 

(1./ ~p-I (X/ -p I ~p-a=(I./, 
and so, by (2.19.5), 

(X"k-1 = (l.k-1 ~ (l.k=P +7 >p + a= (I."k ~ (I.'k~ (I.'k+1 = (l.k+1 = (I."k+1' 

(1."'-1 = (1.1-1 = (1.'1-1 ~ (1.'1 ~ (1."1= P - a >p -7= (l.l~ (l.l+1 = (1."1+1; 

and the inequalities affecting the (I." are those required. Finally, 
we have to prove that 

(1.1' + (1.2' + ... + (I./;;? (1.1" + (1.2" + ... + (l.v". 

Now this is true if v<k or v~l, by (2.19.7) and (2.18.3); it is 
true for v = k, because it is true for v = k - 1 and (l.k' ;;? (l.k"; and it 
is true for k < v < l because it is true for v = k and the intervening 
(I.' and (I." are identical. 

We have thus proved that «(I.') is majorised by ((I."), a set arising 
from ((I.) by a transformation T and having a discrepancy from 
«(I.') less than r. This proves Lemma 2 and so completes the proof 
of Theorem 45. b 

a Again, both these equations may be true. 
b For another proof, see Theorems 74 and 75. 
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2.20. An alternative theorem. We shall say that (oc') i8 an 
average of (oc) if there are n2 numbers Pp.v such that 

n n 
(2.20.1) Pp.v;:;; 0, ~ Pp.v= 1, ~ Pp.v= 1 

/-'=1 v=l 
and 

(2.20.2) ocp.' =PJLIOCI +PP.2 OC2+ ... +Pp.nocn' 
Since the conditions (2.20.1) are not affected by a permutation 
of the p. or the v, the definition is, like that of § 2.18, independent 
of the order of the oc or the oc'. The equations (2.19.3) show that 
(p+a, p-a, OCs, ••. ) is an average of (P+T, P-T, 0Cs, ••• ) when 
(2.19.2) is satisfied. 

The last two conditions (2.20.1) may also be stated as follows: 
:I:oc', when expressed as a function of the oc, is identical with ~oc, 
and every oc' is 1 if every oc is 1. From this it follows that the 
relationship is transitive; if (oc') is an average of (oc), and (oc") of 
(oc')" then (oc") is an average of (oc). And from this and Lemma 2 
of § 2.19 it follows that if (oc') -< (oc) then (oc') i8 an average of (oc). 

The converse is also true. For suppose that (2.20.1) and 
(2.20.2) are satisfied. Then (2.18.1) follows by addition of the 
equations (2.20.2). Finally, if we suppose (oc) and (oc') in descend­
ing order, and write 

P1v+P2v+'" +Pmv=kv• 
we have kv ~ 1 and 2:.kv= m, by (2.20.1); and so 
OCl' + OC2' + ... + ocm ' ~ kl OCI + ... + km- l OCm- 1 + (m - kl - ... - km- l ) OCm 

~ (oci - ocm ) + ... + (ocm- l - ocm ) + mocm = OCI + OC2 + ... + ocm , 

which is (2.18.3). 
We have therefore proved the two following theorems. 

46. A neces8ary and 8ufficient condition that (oc') 8hould be an 
average of (oc) i8 that (oc') -< (oc). 

47. A neces8ary and sufficient condition that [oc'] 8hould be com­
parable with roc] i8 that one of (oc') and (oc) 8hould be an average of the 
other. If (oc') i8 an average of (oc) then roc'] ~ roc], with equality only 
a8 in Theorem 45. 

2.21. Further theorems on symmetrical means. (1) Theo­
rems 45 and 47 fulfil two purposes. First, either theorem gives a 

HI 4 
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simple criterion for deciding whether two means [IX] and [IX'] are 
or are not comparable. Secondly, the proof of Theorem 45 shows 
us how, by repeated application of the transformation (2.19.3) 
and the formula (2.19.4), to decompose the difference of two 
comparable means into a sum of obviously positive terms. We 
obtain, for example, a new and interesting proof of the theorem 
of the arithmetic and geometric means (with unit weights); in fact 

2{(an ) _@(an )= En, 0, 0, ... , 0] - [1,1, ... ,1] 

= ([n, 0, 0, ... , 0] - En-I, 1,0, "', OJ) 
+ ([n-I, 1,0, ... ,0] - [n- 2,1,1,0, ... , OJ) 

+ ([n-2, 1, 1,0, ... ,0] - [n- 3,1,1,1,0, ... ,0])+ ... 
1 

= 2 (n !) p::: ! (aln- l - a2n - l ) (al - a2 ) + ~ ! (al n-2 - a2n - 2 ) (al - a2 ) aa 

+ ~! (aln-a - a2n -a) (al - a2 ) aaa4 + ... }. 
Since 

unless ar=as, the theorem followsa. 

(2) 48. If IXl + 1X2 + ... + IXn = 1, then 

@(a) < [IX] < 2{(a), 

unless [IX] is @ (a) or 2{ (a), or all the a are equal. 

This theoremb shows that all the [IX] of degree of homogeneity 1 
are comparable with @(a) and 2{(a), though not in general com­
parable among themselves. To prove it we apply Theorem 47; 
since 

1 IXl 1X2 IXn 
-=-+-+ ... +­
n n n n 

and 1Xp. = 1Xp.' 1 + 1Xp.+1' ° + ... + IXn' ° + IXl · ° + .,. + 1Xp.-1 . ° , 
(lin, lin, ... , lin) is an average of (IX) and (IX) an average of 
(1,0, ... ,0). Or we may deduce Theorem 48 directly from 
Theorem 45. 

(3) We add two further theorems of a similar character, with indications 
only of the proofs. 

49. If 0 < u ~ 1, then a necessary and sufficient condition that [(X'] ~ [(X]" 
is that «(X')-«u(X). If u > 1, the condition is necessary but not sufficient. 

a This proof was known before Muirhead's work; see Hurwitz (1). 
b Communicated to us by Prof.!' Schur. 
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[To prove the condition necessary, follow the line of § 2.19 (1). To prove 
it sufficient, combine Theorems 45 and 11. As an example 

[r,O,O, ... ]~[8,O,O, ... yI8 (O<r<8); 

this is 9R,.(a) ~ 9R,(a) (Theorem 16), with unit weights. The same example 
shows that the condition is no longer sufficient when 0'> 1.] 

50. If r, p, a are positive and 

Tr= 'i:..pva/=l:,.' 

(in the notation of § 2.10 (iv», then a neces8ary and 8ufficient condition that 

Tal'Tat' '" TfJ-n'~ Ta"Ta •..• Tan 

for aU a and p i8 that (ot')-«ot). 

[The necessity of the condition may be established as before. To prove 
it snfficient we use Theorem 46 and Holder's inequality, which give 

T a/,: = T'I'I "1+'1'2 0.2+" '+'I'm am 

~ (T"1)81'1 (Ta2 )8p.2 '" (Tam)'l'm: 

we have changed the notation slightly in order to avoid conflict with 
that of § 2.10. The result follows by multiplication.] 

2.22. The elementary symmetric functions of n positive 
numbers. If 

(x+al ) (x+a2) ... (x+an) =xn+clxn-l+c2Xn-2+ ... +cn 

=xn + (7) Pl xn- l + (;) P2 xn- 2+ ... +Pn, 

then Cr is the rth elementary symmetric function of the a, i.e. the 
sum of the products, r at a time, of different a, and Pr the average 
of these products. In this section we consider two well-known 
theorems concerning the Pr . We write Co = Po = 1. 

In the notation of § 2.18 

1 ~f 
f ( _ ) f "'" • a l a2 ••• ar , r. n r. 

r!(n-r)! 
Pr= f cr =[l,l, ... ,l,O,O, ... ,O], 

n. 

there being r l's and n-r O's. Also Pl =S!£(a) and Pn=@n(a), 
with unit weights. The different Pn being of different degrees, 
are not comparablea ; but they are connected by non-linear 
inequalities. 

.. This is a trivial case of Theorem 45. 

4-2 
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51. Pr-1 Pr+1 < Pr 2 (1 ~ r < n), unless all the a are equal. 

52. P1 > pi> PsI> ... > Pn lIn, unless all the a are equal. 

Theorem 51, which was stated by Newtona, is actually true for 
real, not necessarily positive, a; and we shall give a proof of the 
more general theorem, depending on the methods of the differen­
tial calculus, in §4.3. Theorem 52 is due to Maclaurinb• 

Theorem 52 is a corollary of Theorem 51, since 

(POP2) (PIPS)2 (P2P4)3 •.. (Pr-1Pr+1)7 <P12P24PS6 • .. Pr2r 

o-lves pr <pr+1or 
0- r+1 r 

P1/r >pl/(r+1). 
r r+1 

This remark, together with the proof of § 4.3, disposes of the 
theorems, but it is interesting to consider proofs of them by the 
methods of this chapter. 

(i) Proof of Theorem 52 by the method of §2.6 (iii). We begin 
by proving a theorem similar to but weaker than Theorem 51. 

53.C Cr_1Cr+1 <cr 2• 

This theorem is weaker than Theorem 51, since Pr-l Pr+1 < Pr 2 is 

(r+ l)(n-r+ 1) 2 

( ) cr-lcr+l <cr' r n-r 

To prove it we observe that a typical term in cr- 1 cr+1 - Cr 2 is 

a12a22 ; •• a2r_sar_8+1 ..• ar+s 

and that this occurs with the coefficient 

From Theorem 53 it follows that 

(2.22.1) 

if r<s. 

a Newton (1, 173). See also Maclaurin (2). 
b Maclaurin (2). See also Schliimilch (1). The inequality PI> Pnl / n is a case of 

Theorem 9. 
C The theorem is stated, like Theorems 51 and 52, for positive a. It remains 

true, as the proof shows, for non.negative a, unless cr = 0 (i.e. unless all but r-l 
of the a are 0). 
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We can now prove Theorem 52 as follows. If the a are not all 
equal, let a1 = Min a, a2 = Max a. Then 

(2.22.2) 

where Ot1 = p,/il-'. 

We replace a1 and a2 by Ot1 and Ot2' choosing Ot2 so that PI-' shall 
be unaltered, and prove that any Pv for which v> J-t is increased 
by the substitution. The result will then follow as in §2.6 (iii). 

We have 

(:) PI-' = ci-' = a1 a2c~-2 + (a1 + a2) C~-1 + c~, 
where cr' is the Cr formed from the n -2 numbers other than a1 

and a2• Since PI-' is to be unchanged 

a1 a2c~_2 + (a1 + a2) C~-1 + c~ = Ot1 Ot2C~_2 + (Ot1 + O(2) C~_1 + c~, 
(2.22.3) (Ot10t2-a1a2)c'I-'_2= -(Ot1+0t2-a1-a2)c'I-'_I' 

(2.22.4) (Ot1 C~-2 + C~-I) Ot2 = a1 a2c~-2 + (a1 + a2 - Otl) C~-1' 

The value of Ot2 defined by (2.22.4) is positive because of (2.22.2). 
Also, if Pv becomes P:, 

(:) (p~ -Pv) = (Ot1 Ot2-a1 a2) <-2 + (Ot1 + Ot2-a1 -a2) <-1: 

and so p: -Pv has the sign of 

(C~-1 C~-1) (Ot1+0t2-a1-a2) -,----,- • 
cv- 2 CI-'-2 

The second factor is negative, by (2.22.1); and, by (2.22.3), 

sgn (Otl + Ot2-al-a2) =sgn (a1a2- Ot1 0(2) 
= Sgn{OtI (Otl + Ot2-a1 -a2) +a1 a2- Otl Ot2} 
=sgn{(OtI-al) (Ot1 -a2)}= -1, 

by (2.22.2). Hence p: > Pv' which proves the theorem. 

(ii) Proof of Theorem 51 by inductiona. Suppose that Theorem 
51 has been proved for n-l numbers, aI' az, ... , an-I, and that 

.. This proof was communicated to us independently by Messrs A. L. Dixon, 
A. E. Jolliffe, and M. H. A. Newman. 
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c;, P; are the Cr , Pr formed from these n-I numbers, which we 
shall at first suppose not all equal. Then 

Cr = c; + anc;_l 

and so 
n-r, r , 

PI'=--Pr+ -anPr-l· n n 
Hence we deduce 

where 
n2(Pr_lPr+1-Pr2)=A + Ban + Oan2, 

A ={(n-r)2-I}p;_lP;+1- (n-r)2p;Z, 

B= (n-r+ I) (r+ I)P;_IP;+ (n-r-l) (r-l)p;_2P;+1 
- 2r (n - r) P;-l p;, 

0= (r2-I)p;_2p;-r2p;~1. 

Since aI' a2, ••• , an - 1 are not all equal, we ha'Ve, by the inductive 
hypothesis, 

P;-lP;+1 <p?, P;-2Pr<P;~1' P;-2P;+1 <P;-lP;, 
so that A < -p;Z, B < 2p;-lP;, 0 < -P;~l' 

and n2 (Pr-l Pr+1 - p;) < - (p; - an P;_1)2 ~ o. 
This proves the theorem. The result is still true when 

a l =a2 = ... =an- l , 

because then an =l= a 1 = P;/P;-l . 

It is also possible to prove Theorem 51 by means of identities of the 
type considered in § 2.21 (I). 

2 _ 1 r-l(2i) (r,i) 
54. Pr -Pr-lPr+l- (n) ( n ).~ i i+l' 

r(r+l) t-O 
r r+ 1 

where (r, i) = 1;a1 2 ••• a2r_i_l ar_i ... ar+i_l (ar+i- ar+i+l)2, 

the summation extending over all products formed from the a and of the type 
shown. 

55. {(r-l)! (~~r-l) !} 2 (Pr2-Pr_lPr+l) = (n-l) 1; (a1 -a2)2 (c~.:::-f)2 
2!(n-3) ~( )2( )2( n-4)2 

+ (r-I) (n-r-l) .... a1 -a2 as-a, cr_ 2 

3!(n-5) ~()2( )2( )2(n-6)2 
+ (r-l)(r-2)(n-r-l)(n-r-2) .... a1 -a2 as-a, as-a6 cr_ 3 

+ ... , 
where c~,:::-; is the sum of the products, r - 1 at a time, of the n - 2 a other than 

aI' a2, and so on. 
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Theorem 54 is due to Muirhead (I). and Theorem 55 to Jolliffe (1). 
Theorem 55 gives an 'intuitive' proof of the more general form of Theorem 
51 (for real a of either sign) referred to at the beginning of this section. 

2.23. A note on definite forms. The identity of Hurwitz 
and Muirhead proved in § 2.21 (1) shows that, when a> 0, 

al n + a2 n + ... + ann - nal a2 ... an 

can be expressed as a sum in which every term is obviously 
non-negative. 

If we write a l =XI 2, a2 =x22 , ... , we obtain 

(2.23.1) XI2n + ... +xn2n-nxI2x22 ... xn2 

1 
2 (n-l)! {~! (XI2n- 2- x22n-2)(x12- X22) + ... }. 

Now 
(x12n-2_x22n-2) (XI2_X22) 

= (X12_X22)2 (XI2n- 4 + x12n-6x22 + ... +X22n- 4) 

is a sum of squares of polynomials such as (xI2_x22)xln-2; and so 
the right-hand side of (2.23.1) is a sum of squares. Finally, since 

xin+ ... +X§~ - 2nxl x2 '" X2n = xin + ... +x;n -nxI2 ... xn2 

+X;'tl + '" +x§~-nx;+l'" x~n +n{xl ··· Xn -xn+1'" X2n )2, 

it follows that 

(2.23.2) F =X12n + ... +x2n 2n_ 2nxl x2 ... x2n = ~Pi2, 
i 

where the Pi are real polynomials of degree n. For example 

X6+y6+ Z6+ U6+ V6 +w6_ 6xyzuvw 

= t (X2+ y2 + Z2) {{y2 _Z2)2 + (Z2 _X2)2 + (x2 _ y2)2} 

+ t(U2+V2+W2){(V2_W2)2+ (W2_U2)2+ (U2_v2)2} + 3 (xyz- UVW)2 

is a sum of 9 + 9 + 1 = 19 squares of real polynomials. 
A real form is a homogeneous polynomial F (Xl' X 2 , ••• , xm), with 

real coefficients, in the m real variables Xl' X 2 , ••• , xm . A form F is 
said to be definite, in a certain region of the variables, if it does not 
change sign in that region, for example if F ~ o. We may divide 
definite forms into positive and negative forms, and it is plainly 
sufficient to consider positive forms. Thus the form (2.23.2) is 
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positive in the region of all real values of the variables. It is plain 
that a form which has this property must be of even degree. 

If F > 0 in a certain region, then F is said to be 8trictly pOBitive 
in that region. 

The form (2.23.2), and the forms considered in Theorems 7 
and 55 (with x for a), can be expressed as sums of squares of real 
polynomials, and it is natural to ask whether this is a general 
property of definite forms. l8 it true that, if F ~ 0 for all real x, then 

F=~Pi2, 
i 

where the Pi are real polynomialB? 

This problem was solved completely by Hilberta. Here we have 
space only for a few fragmentary remarks. We begin by observing 
that there are two cases in which the answer is immediate. We 
denote the degree of F by 2n, and the number of variables by m. 

Ifm=2, so that F=F(x,y) and n is arbitrary, then any real 
factor ax + by of F must occur in even multiplicity, and the 
complex factors must occur in conjugate pairs ax+by, iix+by. 
Hence, grouping the factors appropriately, we obtain 

F =p2 (q+ir) (q-ir)= (pq)2+ (pr)2, 

where p, q, r are real polynomials. 
It is a familiar theorem of algebrab that any definite quadratic 

form in any number m of variables may be expressed as a sum of 
at most m squares of real linear forms. Thus the answer is affirma­
tive in the two cases 

(1) m=2, n arbitrary, 
(2) m arbitrary, 2n = 2. 

Hilbert found a third case 

(3) m=3, 2n=4, 

and proved that any positive biquadratic form in three variables 
is representable as the sum of three squares of real quadratics. 
He also proved that in all other cases the answer is negative, 
there being definite forms of degree 2n in m variables which can­
not be represented in the manner proposed . 

.. Hilbert (1). b See, for example, BlIcher (1, 144-154). 
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Hilbert then suggested the following theorem: any positive F 
can be expressed as F = 'L.Rt 2, 

i 

where Ri is a real rational function. An equivalent theorem is: any 
positive F may be expressed as a quotient of sums of squares of real 
forms a• 

Hilbert b gave a very difficult proof of these theorems for ternary 
forms in (x, y, z). The general theorems were first proved by 
ArtinO. Artin's proof is very remarkable and comparatively 
simple, but depends upon the ideas of modern abstract algebra 
in a manner which makes it impossible for us to reproduce it here. 

2.24. A theorem concerning strictly positive forms. The 
rather fragmentary remarks of § 2.23 form a natural introduction 
to the simpler problem which we consider here. We are concerned 
now with forms which are strictly positive in the region of posi­
tive x. The theorem which we shall prove resembles those of 
§ 2.23 in asserting that a positive form can be represented in a 
manner which renders its positive character intuitive. It is no 
longer necessary that the degree of the form should be even. 

56.d If the form F (Xl' x2 ' ••• , xm ) is strictly positive for 

x ~ 0, 'L.x> 0, 

then F may be expressed as 
G 

F=H' 

where G and H are forms with positive coefficients. In particular 
we may suppose that 

H = (Xl +x2+ ... +Xm)P 
for a suitable p. 

" It is evident that the first theorem implies the second (with one square only in 
the denominator). And since 

~1= :E (!L0.t)2, 
:Eh/ i,i :Eh;" 

the second theorem implies the first. 
b Hilbert (2). c Artin (1). 
d Polya (3). The theorem had been proved before (apart from the last clause) by 

Poincare (1) when m=2 and by Meissner (1) when m=3. Meissner's method is 
applicable in principle in the general case, but does not lead to so simple a result. 
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For simplicity of writing we suppose m= 3; no new point of 
principle arises for general m. 

The function F (x, y, z) is positive and continuous in the closed 
region 

(2.24.1) x~O, y~O, z~O, x+y+z= 1, 

and has a positive minimum fL in that region. We write 
x ex y{3zy 

(2.24.2) F(x,y,z)=L.nAex{ly '[3' " ex. . y. 
the summation being over 

(2.24.3) ex~O, [3~0, y~O, ex+[3+y=n; 

and 

(xt-l) (yt-l) (zt-l ) (2.24.4) cp(x,y,z;t)=tnL.n A ex{3y ex [3 y' 

where t> 0 and (X~l) , ... are the usual binomial coefficients, so 

that 

and t ex = --'..-~,----=---::--'-::---'---'---~ (xt-l ) x(x-t)(x- 2t) ... {x- (ex-1)t} 
ex 1.2.3 ... ex 

for ex= 1, 2, 3, .... 

It is plain that cp(x,y,z;t)-+F(x,y,z) 

when t-+O; and if we write 

cp (x, y, z; 0) = F (x, y, z), 

then cp is continuous in 

x~O, y~O, z~O, x+y+z=l, O~t~l. 

There is therefore an € such that 

(2.24.5) 
cp (x, y,z; t) > cp (x,y,z; 0) - tfL= F (x, y, z) - tfL ~ tfL > 0 

for 0 < t< € and all x, y, z in (2.24.1). 
We have also 

xl<y>"zl-' 
(2.24.6) (x+y+z)k-n=(k-n)!L.k_n 'A' " 

K • • fL. 
the summation being over 

K~O, A~O, fL~O, K+A+fL=k-n. 



ELEMENTARY MEAN VALUES 

Multiplying (2.24.2) and (2.24.6), we obtain 
X"'+K y{3+>' zY+/L 

(x+y+z)k-nF=(k-n)!~n~k_nA",{3y , 'f3'A' , ,. 
rx.K . . '1"1-" 

Here we write 

rx+K=a, f3+A=b, Y+I-'=c, 

so that a, b, c vary over 

(2.24.7) a~O, b~O, c~O, a+b+c=k, 

and rx, 13, I' over 

(2.24.8) O~rx~a, O~f3~b, O~Y~c, rx+/3+y=n. 

This gives 

(2.24.9) 

Xaybzc (a) (b) (C) (x+y+z)k-nF=(k-n)!~ka!b!c! ~' A",{3y rx /3 y' 
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In (2.24.9), ~' implies summation with respect to rx, fJ, y over 

(2.24.8); but, since (:) = 0, (~) = 0, ... if rx > a, fJ> b, ... , we may 

replace this summation by summation over (2.24.3), i.e. by ~n' 
We thus obtain 

(2.24.10) 

Xaybzc (a) (b) (C) (x+y+z)k-nF=(k-n)!~ka!b!c!~nA",{3y!X /3 y 

(a b c 1) Xaybzc 
= (k-n)!kn~k4> Te' Te' Te; Te albIc!' 

The 4> here is positive, by (2.24.5), if k is sufficiently large, and 
this proves the theorem. 

(1) The theorem gives a systematic process for deciding whether a given 
form F is strictly positive for positive x. We multiply repeatedly by ~x, 
and, if the form is positive, we shall sooner or later obtain a form with 
positive coefficients. 

It is instructive to consider the working of the process for 

F=Xl"+X2"+ ... +xn"- (n- E) X1X2 ... x,,, 
where E is positive and small. The coefficient of 

xlilX2i2 ... xnin, 

where i l +i2 + ... +i,,=n(q+ 1), in 

cP = (Xl + ... +X,,)M F 
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is certainly positive if one ofthei is O. Ifil ;;; 1, ... , in;;; 1 it is 

(nq) I (nq) ! (nq)! 
(. )",., +"(' )'" + ... -(n-~)(. 1)'(" 1)' ' ~l-n '~2'~S' ... ~l' ~2-n ·~s· ... ~l- . ~a- .... 

and has the sign of 
.p(il ,i2, ... ,in)=il (ii-I) ... (il-n+ 1) 

+i2 (i2-I) ... (i2 -n+ 1) + ... - (n-~) ilia ... in. 

We require.p to be positive for all il, i a, ... , in' 
If not all ofil' i 2 , .,. are equal to q+ 1, there is one, sayil , lessthanq+ 1, 

and one, say i 2 , greater than q+ 1; and changing il' i2 into i l + 1, i 2-1 
changes .p by 

n{idic 1) ... (il -n+2)-(i2 -I)(i2 -2) •.. (i2 -n+ In 
- (n-~) is .. , in (i2-il -1) < O. 

Hence'" will be positive for all i if it is positive when every i is q + 1. 
It will be positive in this case if 

n (q+ 1) q(q-I) ... (q-n+ 2) > (n-~) (q+ I)n 

or (1 __ 1 ) (1 __ 2 ) ... (I_n-I) >I-~. 
q+I q+I q+I n' 

and a fortiori a if 
n 2 (n-I) 

q+ 1> 2e . 

If this condition is satisfied, all the coefficients in '" are positive. 
It follows that F>O for x>O, ~x>O. Making ~""*O, we obtain yet 

another proof of the theorem of the means, in the form ~xn ;;; nITx. 

(2) If we write xm=I-xl- ... -Xm-1 

we obtain a theorem concerning general non-homogeneous polynomials 
in m - 1 variables. 

57. If a (non-homogeneous) polynomial f(Xl ,X2 , •• _, xm_l ) is positive in 

the region xl;;;O, .. _, xm_I;;;O, xl+x2+",+xm_l~I, 
thenf(x) can be expressed in the form 

f(x) = ~CXlal ••• x~-=-t (1- x l - •.• - xm_l)am, 
where the a are non-negative integers and the c are positive. 

The theorem is a generalisation of one due to Hausdorf'fb. 

MISCELLANEOUS THEOREMS AND EXAMPLES" 

58. If a, fJ, y, ... , A are greater than -1, and are all positive or all 
negative, then 

(1 + a) (1 + fJ) ... (1 + A) > 1 + a+ fJ + ... + A. 

[For the case a= fJ= ... =A, see James Bernoulli (1,5, 112).J 

• See Theorem 58. b Hausdorff (1). Hausdorff has n=2. 
" Some of the theorems which follow here are mere exercises for the reader, but 

most have some independent interest. 
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59. If c> 0 then 

la+bI2~(1+c)laI2+ (l+~) Ibl 2 

for all (real or complex) a, b. 

[See Bohr (1, 78).] 

61 

60. If Ill .. , (!in are the arithmetic and geometric means of aI' a2 , ••• , a", 
with unit weights, and Ill,,+!, (!in+! those of aI' aa' ... , an' an+! , then 

n (Ill" - (!in) < (n + 1) (Illn+! - (!in+!) 

unless an+! = (!i n . 

[This theorem, communicated to us by Dr R. Rado, embodies another 
proof of the theorem of the means. If we write an+l=xn+!, (!in=yn+!, 
then the inequality to be proved is 

x"+1- (n+ I)xy" +nyn+1 > 0 

and this follows from Theorem 41.] 

61. 

with equality when b=ar - 1 • 

[Another form of Theorem 37. For this and the next two theorems see 
Young (1, 5, 6).] 

uP-I (1 +PV)(HPI/P 
62. uv~u--p+ l+p (u>O,v>-Ijp,p>O). 

[Replace rin Theorem 61 by I+p and a, b by u, (1 +pv)j(I+p).] 

63. uv~ulogu+e·-I (u>O). 

[Make p -+ 0 in Theorem 62. See also § 4.4 ( 5).] 

64. If a> 0, alaa ... a,,=l", then 

(1 +al ) (1 +aa)'" (1 +a,,) > (1 +1)", 
unless all the a are equal. 

[Chrystal (1,51). Example of Theorem 40.] 

65. If a and b are positive and p > 1 or p < 0, then 
a P (~a)P 

~ bP- I > (~b)P-I' 
unless (a) and (b) are proportional. The inequality is reversed if 0 < p < 1. 

[Radon (1,1351): transformation of Theorem 13.] 

66. If a > 0 then ~a ~a-I > n 2, unless all the a are equal. 

[From Theorems 7 or 9 or 16 or 43.] 

ab 
67. ~(a+b) ~a+b <~a~b, 

unless (a) and (b) are proportional. 

(Milne (1).] 
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68. 
bc+ca+ab abc 

1: (a+b+c) 1: +b+ 1: b + b < 1:a 1:b 1:c, ace ca+a 

unless (a), (b), (c) are proportional. 

69. If O<r<s and 
( ar + bT)l/T 

Mr(a,b)= -2- , 

then 1:Mr (a, b) 1:M_r (a, b) < 1:M.(a, b) 1:M_. (a, b) < 1:a1:b, 

unless (a) and (b) are proportional. 

70. If 0 < k < 1 and 

for all b, then 1:ak ~ A k. 

[This is an analogue of Theorem 15 for the case 0 < k < 1 ( when k' < 0). 
If all a are positive, define b by 

ab=ak , b=ak-l, bk'=ak, 
when 

(i) 

If all a vanish, A must be 0 and there is nothing to prove. If some but 
not all vanish, suppose that a> 0 in a set E of fL members and a = 0 in 
the complementary set OE of v=n- fL members; and define b as above 
in E, and by b = G in OE. Then 

1:ak = 1:ab ~ A (1:a k + vGk')l/k' = A (1:ak + vGk')l/k'. 
E 

Making G -;. 00 we obtain (i) again.] 

71. IfO<h;£av;£H, O<k;£bv;£K, then 

1;£~~:;~2;£! {J(~~) + J(;~)r· 
[See P6lya and Szego (1, I, 57, 213), where the conditions for equality 

are given.] 

72. 
Imr+l (a) 

lim ""'1'+1 9J100 (a). 
7-;'00 9J1~(a) 

If all the a are positive, there is a shnilar theorem for - 00. 

73. If III (a) - (!j (a) < < 1 
III (a) E, 

the means being formed with unit weights, then 

1+~<~<I+e, 

where ~ is the negative and e the positive root of the equation 

(1 +x) e-"= (1- E)n. 

[See P6lya and Szego (1, I, 58, 215).] 



ELEMENTARY MEAN VALUES 63 

74. If 
for all values of the variables involved, then 

[Yl', ••• , Yk', 31', ••. , 3/] ~ [Yl' ••• , Yk' 31, ••• , 3l ]· 

[It follows from the first hypothesis, and the definition of the sums, that 

[Yl', ••• , Yk', 31] ~ [Yl' ••• , Yk, 31]; 

and hence, by repetition of the argument, that 

(i) [Yl', .•• , Yk', 31, •.• , 3l ] ~ [Yl> .•• , Yk, 31, ••• , 3l ]· 

Similarly, using the second hypothesis, 

(ti) [Yl', ••• , Yk', 31', ••• , 3/] ~ [Yl', ••• , Yk', 31, ••. , 3l ]· 

The result follows from (i) and (ti).] 

75. If «(X')-«(X) and the (X and (x' are in decreasing order, then there is 
a greatest non-negative 3 for which 

(i) (13) = «(Xl' + 3, (X2', ••• , (X' n-l, Cl:n' - 3) -< «(X). 

If 3 has this value then 

(ti) 

and 

(ill) (131' ···,f3k)-«(Xl' ••• , (Xk)' (f3k+l' ••• , f3n)-< «(Xk+l , .•• , (Xn) 

for some k between 1 and n - 1 inclusive. 
[It is plain from the definitions (a) that (i) is true for 3=0, (b) that the 

set of 3 for which it is true is closed, (c) that, if it is true for a positive 3, 
then it is true for any smaller positive 3. Hence there is a maximum 
non-negative 3 for which (i) and (ti) are true. 

If 3 has this value then either (a) f3n = (Xn' - 3 = 0, or 

(b) 131 + . _. + 13k = (Xl' + ... + (Xk' + 3 = (Xl + ... + (Xk 

for a k<n; for otherwise we could increase 3 without disturbing (i). In 
case (a) 

n-l n n n-l n-l 

~ (Xv~~(Xv =~f3v= ~ f3v~ ~ (Xv 
I I I I I 

and so 131 + ... + f3n-l = (Xl + ... + (Xn_l' which is (b) with k = n - 1. Hence 
(b) is true in any case; and then (iii) follows from the definitions. 

Dr R. Rado, who co=unicated Theorems 74 and 75 to us, uses them 
to obtain a new and elegant proof of the sufficiency of Muirhead's criterion 
(Theorem 45). The result is true for n = 2 by Le=a 1 of p. 47; let us 
then suppose thatn> 2, that the conditions (2.18.1), (2.18_2), and (2_18.3) 
are satisfied, and that the result is true for any number of variables less 
than n. Then, by the inductive hypothesis, 

[(Xl', (Xn'] ~ [131' f3n], [131' ••• , 13k] ~ [(Xl' •• _, (Xk]' [f3k+l" •• , f3n] ~ [(Xk+l" •• , (Xn]· 

Hence, using Theorem 74 twice, we obtain 

[(Xl', ••. , (Xn'] = [(Xl', 132' • _., f3n-l' (Xn'] ~ [131' ••• , f3n] 

= [131' •• -, 13k, f3k+l' ••• f3n] ~ [(Xl> ••• , (Xk' (Xk+l' ••• (Xn] = [(Xl' ••• , (Xn]-] 
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76. If a > 0, and r and a are positive integers, then 

1:a/ azr ••• as' 1: S 8
1 

8> (n) (n) , aIaZ ... ar r a 
unless all the a are equal. 

[Generalisation of Theorem 66. By Theorem 45, 

[r, r, ... (a tImes), 0, 0, ... ,0] > -, -, ... , - . . [ra ra raJ 
n n n 

Form the corresponding inequality with r and a interchanged and a 
replaced by 11a, and multiply.] 

77. A necessary and sufficient condition that 

PIal' P2a2 ••. Pnan' ;:;;"PIalp2a2 .•• p"an, 

where PI' ••• are defined as in § 2.22, and the oc are positive, for all positive 
a, is that 

ocm' + 21X'm+l + ... + (n-m+ 1) IXn' ~ IXm + 2IXm+l + ... + (n-m+ 1) IX" 

for 1;:;;" m;:;;,. n, with equality when m = l. 
[The sufficiency follows from Theorem 51; the necessity may be proved 

on the lines of § 2.19 ( 1). Dougall (1) gives a prooffor integral oc based on an 
identity. For certain special cases, such as 

Pp.-Io.P"H ;:;;"P,,-KP,,+K (0;:;;" K < i\ < 1-'), 

see Kritikos (1).] P"I+P.2+···+"r;:;;"P"lP"2··· PI'" 

78. The means [t, t, 0,0, ... ,0] and [t, 1, 1, 0, ... ,0] are not comparable. 

[Example of Theorem 45 and illustration of Theorem 48.] 

79. If a> 0, and PI' is the arithmetic mean of the I-'th roots of the 
products of I-' different a, then 

P I >P2 > ... >P"" 
unless all the a are equal. 

[Smith (1,440). Example of Theorem 45: 

[1,0,0, ... , 0] > [t, t, 0, ... ,0]> [t,t,t, ... ,0] > .... ] 

80. If I-' ~ 0, and x, y, z are positive, then 

xl' (x-y) (x-z)+y" (y-z) (y-x)+z" (z-x) (z-y» 0, 

unless x=y=z. 

81. If v ~ 0, 3> 0, and the a are positive a.nd not all equal, then 

[v+23, 0, 0, 1X4' •.. ]- 2 [v+ 3, 3, 0, 1X4' ... ] + [v, 3, 3, 1X4' ••. ]>0. 

[This result, communicated to us by Prof. I. Schur, is not a consequence 
of Theorem 45, but follows from Theorem 80, with I-' = viS.] 



CHAPTER III 

MEAN VALUES WITH AN ARBITRARY 
FUNCTION AND THE THEORY OF 

CONVEX FUNCTIONS 

3.1. Definitions. The means 9JCr (a) and @(a) are ofthe form 

(3.1.1) 9JC",(a) = rP-l{"2:.qrP(a)}, 

where rP(x) is one of the functions 

xr, logx 

and rP-1 (x) the inverse function. It is natural to consider more 
general means of the type (3.1.1), formed with an arbitrary 
function rP subject to appropriate conditions. The most obvious 
c(mditions to be imposed upon rP are that it should be continuous 
and strictly monotonic, in which case it has an inverse rP-1 which 
gatisfies the same conditions. 

We require the following preliminary theorem. 

82. If (i) rP (x) i8 continuoU8 and 8trictly monotonic in H ~ x ~ K, 

(ii) H~av~K (v=1,2, ••• ,n), 
(iii) qv> 0, "2:.qv = 1, 

then (1) there i8 a unique 9JC in (H, K)for which 

(3.1.2) rP(9JC) = "2:.qrP (a), 

(2) 9JC i8 greater than 80me and les8 than other8 of the a, unles8 
the a are all equal. 

Since rP(x) is continuous and increases or decreases from rP(H) 
to rP(K) when x increases from H to K, and "2:.qrP(a) lies between 
these limits, there is just one 9JC which satisfies (3.1.2). Also 

"2:.q{rP(9JC) -rP(a)}= 0 

and some terms must be positive and some negative, unless all 
are zero. Hence 9JC -a is sometimes positive and sometimes 
negative, unless it is always zero. 

We have assumed rP(x) continuous in the closed interval 
(H, K). The argument is still valid if rP(x) is continuous and 

HI 5 
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strictly increasing in H <x<K, while 4>(x)-+-oo when x-+H, 
or 4> (x)-++oo when x-+K, provided that we then interpret 4> (H) 
as meaning -00, or 4>(K) as meaning +00, and WC as being H 
when J:.q4> (a) = -00 or K when J:.q4>(a) = +00. Here H may be 
- 00 or K may be + 00; a particularly important case is that 
in which H = 0, K = + 00. In the definition which follows, and 
in all the discussion of the properties of WC", later in this chapter, 
it is assumed that 4> is strictly monotonic and is either con­
tinuous in the closed interval or behaves in the manner just 
explained. 

We write a 

(3.1.3) wc'" = WC'" (a) = WC'" (a, q) = 4>-1 {J:.q4> (an = 4>-1{~ [4> (am. 
The weights q are arbitrary positive numbers whose sum is 1, 
and when we compare two means it is to be understood that the 
weights of the means are the same. For 4>(x)=x, logx and xr, 

WC'" reduces to ~, & and WCr respectively. 

3.2. Equivalent means. The mean WC'" is determined when 
the function 4> is given. We may ask whether the converse is 
true: if WC'" = WCx for all a and q, is rp necessarily the same function 
as X? This question is answered by the theorem which follows. 

83.b In order that 

(3.2.1) 

for all a and q, it i8 neces8ary and 8ufficient that 

(3.2.2) X = ~rp + fl, 
where ~ and fl are con8tant8 and ~ =!= o. 

In the argument which follows we assume rp and X continuous 
in the closed interval (H, K). It is easy to see that it applies with 
trivial variations in the exceptional cases mentioned in § 3.1. We 
shall actually prove more than we have stated, viz. that (3.2.2) 
is a sufficient condition for (3.2.1) to be true for all a and q, and 
that it is a necessary condition for (3.2.1) to be true for all sets of 

a In this chapter we define WI</> directly, and deduce its properties from the 
definition. In Ch. VI (§§ 6.19-6.22) we shall show how WI</> may be defined 'axio­
matically " that is to say by prescription of its characteristic properties. 

b Knopp (2), Jessen (2). 
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two variables and weights. Later (§ 3.7) we shall prove still more, 
viz. that (3.2.2) is necessary for the truth of (3.2.1) for all sets 
of two V'ariables and a fixed pair of weights. 

(i) If (3.2.2) is satisfied 

x {ffiCx (a)} = ~q X(a) = ~q{ocif; (a) + f3} 
=oc~qif;(a)+f3 

= ocif; {ffiC", (a)} + f3 = X{ffiC", (a)}, 

and so ffiCx = ffiC",. Hence the condition is sufficient. 

(ii) In proving the condition necessary, we assume only that 
(3.2.1) is true for all sets of two variables and weights. 

In (3.2.1) take 

n=2, a1 =H, a2 =K, 

where H <t<K. Then 

(3.2.3) 

{ K -t t-H } {K -t t-H} if;-l K_Hif;(H)+K_Hif;(K) =X-1 K_Hx(H)+ K_HX(K) 

for H <t<K; and this is also true for t=H and t=K. If we 
denote the common value by x then, as t varies from H to K, 
x assumes all values in (H, K) and 

K-t t-H 
K_Hif;(H)+ K_Hif;(K)=if;(x), 

K-t t-H if; (K)-if;(x) if;(x)-if;(H) 
K_Hx(H)+ K_Hx(K)= if;(K)-if;(H)X(H) + if;(K)-if;(H)X(K) 

= ocif; (x) + {3, 

where oc and f3 are independent of x. Hence 

x= x-l{ocif; (x) + {3} 

for all x in (H, K); and this is (3.2.2). This completes the proof 
of Theorem 83. 

One corollary of Theorem 83 which is sometimes useful is this. 
Since - cp is a linear function of cp, and - cp increases if cp decreases, 
we may always suppose, if we please, that the cp involved in 
~cf>(x) is an increasing function. 

5·2 
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Theorem 83 also enables us to elucidate the apparently exceptional 
status of lUlo = (fj among the means Wl,. of Ch. II. Since 

<Pr(X)=j"'tr-ldt=Xr-1 
I r 

is a linear function of x', for r * 0, we have, by Theorem 83, 
m.(a) = m.p,(a). 

This equation is still valid for r= 0, since <Po (x) =logx. 

3.3. A characteristic property of the means WCr • It is 
natural to ask whether there is any simple property of the means 
of Oh. II which characterises them among the more general 
means considered here. 

84.a Suppose that ,p(x) is continuous in the open interval (0, 00), 
and that 

(3.3.1) WC'" (ka) = kWC", (a) 
for all positive a, q, and k. Then WC",(a) is WCr(a). In other words, 
the means WCr are the only homogeneous means WC",. 

Naturally (3.3.1) does not imply ,p=xr (or logx); for, by 
Theorem 83, we can replace,p by rJ.,p+ f3 without changing WC",. 

That (3.3.1) is true when ,p=xr or ,p=logx is obvious. We 
now assume (3.3.1) and deduce the form of,p. Mter Theorem 83, 
we may suppose that 

(3.3.2) ,p(1)= 0; 

for we may replace ,p(x) by,p(x)-,p(l). 
We write (3.3.1) in the form 

WC'" (a) = k-1WC", (ka) = k-1,p-lf2:.q,p(ka)} = WC",(a), 

where if; (x) =,p (kx). 

It follows from Theorem 83 b that 

(3.3.3) ,p (kx) = rJ. (k),p (x) + f3 (k), 

where cx(k) and f3(k) are functions of k, and cx(k) ,*0; and from 
(3.3.2) and (3.3.3) that 

(3.3.4) ,p (k) = f3 (k). 
a Nagumo (1), de Finetti (1), Jessen (4). The following simple version of de 

Finetti's proof was communicated to us by Dr Jessen. 
b If we used one of the more precise forms of Theorem 83, referred to after its 

enunciation in § 3.2, we should obtain a more precise form of Theorem 84, in which 
homogeneity was only assumed for restricted classes of variables or weights. 
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If we substitute from (3.3.4) into (3.3.3), and write y for k, we 
find that 

(3.3.5) r/J (xy) = IX (y) r/J (x) + r/J (y) 

for all positive x and y. 
Similarly 

(3.3.6) r/J(xY)=IX(x)r/J(y)+r/J(x); 

and (3.3.5) and (3.3.6) give 

IX (x) -1 lX(y)-1 a 

r/J(x) = r/J(y) . 

Each of these functions must reduce to a constant c, so that 
IX (y) = 1 + cr/J (y). It then follows from (3.3.5) that 

(3.3.7) r/J (xy) = cr/J (x) r/J (y) + r/J (x) + r/J (y). 

In discussing this functional equation, we must distinguish two 
cases. 

(1) If c= 0, (3.3.7) reduces to the classical equation 

r/J (xy) = r/J (x) + r/J (y). 

The most general solution, continuous for x > 0, is b r/J = 0 log x. 

(2) If c =!= 0, we put cr/J (x) + 1 = f(x), 

and the equation reduces to 

f(xy) = f(x)f(y), 

whose general solution is f = xr. Hence 

xr-l 
r/J(x)=-c-· 

3.4. Comparability. Our general remarks on the 'com­
parability' of functions of the a (§ 1.6) suggest the following 
problem: given two functions if; and x, each continuous and strictly 
monotonic in (H, K), are SJJC", and SJJCx comparable; i.e. is there an 
inequality 

(3.4.1) SJJC", ;;:; SJJCx 

a Provided X=F1, y=Fl. Since (3.3.7) is plainly true when x or y is 1, the ex­
ception is irrelevant. 

b Cauchy (1, 103-105). 
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(or one in the oppo8ite 8en8e) valid for all a and q~ Theorem 16 
tells us that the answer is affirmative when tf; and X are powers. 

We write X {tf;-l (x)} = cP (x). 

Then cP is continuous and strictly monotonic, and has the inverse 
cP-1=tf;X-1. We also write 

x=tf;(a), a=tf;-l(x). 

Then the x are arbitrary numbers between tf;(H) and tf;(K); and 
(3.4.1) takes the form 

(3.4.2) cPC~qx)~'ZqcP(x) 

(for all q) if X is increasing, the reversed form if X is decreasing. 

We thus obtain 

85. If tf; and X are continuou8 and 8trictly monotonic, then a 
nece88ary and 8ufficient condition that IDe", and IDex 8hould be com­
parable i8 that cP = Xtf;-l 8hould 8ati8fy (3.4.2), or the rever8ed 
inequality. 

In what follows, we examine this class of functions cP in detail. 
For arbitrary weights p, (3.4.2) becomes 

,/.. ('ZPX) < 'ZpcP (x) 
(3.4.3) 'f' 'Zp = 'Zp . 

3.5. Convex functions. The function cP of § 3.4 was the 
resultant of two monotonic functions, and therefore itself mono­
tonic; but now we consider a cP subject to (3.4.2) only. 

The simplest case of (3.4.2) is 

(3.5.1) cP(X;Y)~cP(X};cP(Y). 

A function which satisfies (3.4.2) satisfies (3.5.1), but the class 
of functions satisfying (3.5.1) is more general. We shall however 
show that the two inequalities are equivalent for functions sub­
ject to certain not very restrictive conditions. 

A function which satisfies (3.5.1) in a certain interval is called 
convex in that interval. If - cP is convex, cP is concave. We may 
also define convexity or concavity in an open interval. It is 
often convenient to admit infinite values at the ends of the in-
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terval; it is obvious that such values must be positive for convex 
and negative for concave functions. 

The foundations of the theory of convex functions are due to 
Jensen (2).a Geometrically, (3.5.1) means that the middle point 
of any chord of the curve y=1>(x) lies above or on the curve; 
here a curve means any, not necessarily continuous, graph. The 
inequality 

(3.5.2) 1> (qIXI +Q2 X2) ~Ql 1> (Xl) +Q21>(X2) 
(for all Q) asserts that the whole chord lies above or on the curve, 
and the general inequality (3.4.2) asserts that the centre of 
gravity of any number of arbitrarily weighted points of the curve 
lies above or on the curve. It is geometrically intuitive that, 
when the curve is continuous, the weakest condition implies the 
stronger, and we shall find that much more than this is confirmed 
by our analysis. We might have taken (3.4.2) or (3.5.2) as our 
definition of convexity, but we have followed Jensen in starting 
from the weakest definition. The most natural definitions are 
perhaps (3.5.2) and another which we discuss in § 3.19. There is 
some logical interest in assuming as little as possible. 

It is sometimes useful to have a definition of the convexity or con­
cavity of a finite or enumerably infinite set of numbers. We shall say that 
the set a1 , ••• , an is convex if 

2a p ;;;;ap _ 1 +aV+1 (v=2,3, ... ,n-I), 
i.e. if the second differences of the set are non-negative. 

Thus we can state Theorem 51, in the less exact form with';;;; " by 
saying that the set logp is concave; the full theorem is that logp is strictly 
concave (see § 3.8) unless the a are equal. When two products of powers 
of the p are comparable, the inequality which holds between them may 
be deduced (substantially as Theorem 52 was deduced from Theorem 51) 
from the concavity of logp. This is the kernel of Theorem 77. 

3.6. Continuous convex functions. We now proceed to 
investigate the simplest case in which (3.4.2) and (3.5.1) are 
equivalent. 

If 1> (x) satisfies (3.5.1), we have 

41> (Xl + X2: x3+ X4) ~ 21> (Xl ~X2) + 21> (X3; X4) 

~ 1> (Xl) + 1> (x2 ) + 1> (x3 ) + 1> (x4 ), 

a Though Holder (1) had considered the inequality (3.4.2) before Jensen. 
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and so on. We thus prove 

(3.6.1) c/> (Xl +X2: ••• +Xn);;;; c/>(XI)+c/>(X2~+ ••• +c/>(xn) 

for a particular sequence of values of 'It, viz. n= 2m. 
To prove (3.6.1) true generally, it is enough to prove also 

that, if it is true for n, it is true for n-l.3 Suppose then that 
(3.6.1) has been proved for n numbers, and that Xl' X2, ••• , Xn- l 
are given. Taking Xn to be the arithmetic mean m: (with equal 
weights) of the n-l numbers, and applying (3.6.1), we obtain 

c/>(m:}=c/> {(n-l~ m:+ m:} =c/> (Xl +X2+ •• ~ +Xn_l + m:) 

< ~(XI) + c/>(X2} + ••• +c/>(Xn- l } + c/>(m:) 
= , n 

and so 

which is (3.6.1) with n-l for n. Hence (3.6.1) is true generally. 
Next, supposing that, in (3.6.1), the X form appropriate groups 

of equal numbers, we obtain (3.4.2) for any commensurable q. 
Finally, if c/>(x) is continU0'U8, we can prove (3.4.2) without 

restriction on the q; for we may replace the q by commensurable 
approximations and proceed to the limit. We thus obtain 

86. Any continuous convex function satisfies (3.4.2). 

As an application, we may consider Theorem 17. If s = 1- (r + t) 
we have, by Theorem 7, 

(!:paB}2;;;; !:par!:pat, 

or {imBB(a)}2;;;;im/(a}IDl,'(a}, 

or log imsB (a) ;;;; I {log im/(a) + log im/(a)}. 

In other words 

87. log im,.r (a) = r log im,. (a) is a convex function of r. 
From this, by appealing to Theorem 86 (or repeating the 

argument by which this theorem was proved), we deduce Theorem 
17 (apart from the specification of the cases of equality) . 

.. Here we follow the lines of § 2.6 (ii). For a proof following Cauchy's argument 
more directly, see Jensen (2). 
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3.7. An alternative definitiona. We characterised a convex 
function cP (x) in § 3.5 by the fact that the middle point of a chord 
of the curve y = cP (x) lies above or on the curve. Riesz and Jessen 
have made an observation which is interesting and sometimes im­
portant in applications b, viz. that, when cp(x) is continuous, it is 
sufficient to require that some point of the chord should lie above 
or on the curve. 

88. If cp (x) is continuous, and there is at least one point of every 
chord of the ·curve y = cp (x), besides the end points of the chord, which 
lies above or on the curve, then every point of every chord lies above 
or on the curve, so that cp (x) is convex. 

Suppose that PQ is a chord, and R a point on the chord 
below the curve. Then there is a last point S on P R and a first 
point Ton RQ in which the curve meets the chord: S may be P 
and T may be Q. The chord ST lies entirely below the curve, 
contradicting the hypothesis. 

This remark gives us an alternative proof of Theorem 86. If 
<p (x) is convex, the middle point of any chord lies above or on the 
curve. Hence, as we have proved, every point of the chord lies 
above or on the curve. That is to say 

cp (ql Xl + q2 X2);£ ql cp (Xl) + q2CP (x2) 
if ql > 0, q2> 0, ql + q2 = 1, but ql and q2 are otherwise arbitrary. 
We may then proceed by induction. If ql +q2+q3= 1, then 

(3.7.1) { q2X2+q3X3} cP (ql Xl + q2 X2 + q3 X3) = cP ql Xl + (q2 + q3) =-=-----=---=-=--'" 
q2+q3 

;£ ql cP (Xl) + (q2 + q3) cP (q2;:: ;;X3) 

;£ ql cP (Xl) + (q2 + q3) q2CP (X;~:~: cP (X3) 

= ql cP (Xl) + q2CP (X2) + q3CP (x3), 
and so generally. 

A corollary of Theorem 88 is 

89. If cP (x) is continuous, and every chord of y= cP (X) meets the 
curve in a point distinct from its end-points, then cp(x) is linear. 

a M. Riesz (1), Jessen (2). b See, for example, § 8.13. 
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By Theorem 88, every point of every chord lies on or above the 
curve. But Theorem 88 remains true if 'above' is replaced by 
'below' in hypothesis and conclusion. Hence every chord of the 
curve coincides with the curve. 

From Theorem 89 we can deduce the refinement on Theorem 83 
referred to in § 3.2. Suppose that 

if;-l {ql if; (al ) + q2if; (a2)} = X-I {qlX (al ) + q2X (a2)} 

for fixed ql' q2 and arbitrary a. Writing Xif;-I=4>, if;(a)=x. 
a=if;-l(x), we obtain 

4> (ql Xl + q2 X2) = ql4> (Xl) + q24> (X2), 
so that one point at any rate of every chord of y = 4> (x) lies on 
the curve. It follows from Theorem 89 that 4> is linear. 

3.8. Equality in the fundamental inequalities. We now 
suppose 4> (x) continuous and convex, and consider when equality 
can occur in (3.5.1), (3.5.2), or (3.4.2). 

Suppose that Xl < Xa < X2 , that Xs = ql Xl + q2 X2, and that PI' 
P2 , ••• are the points on the curve y=4>(x) corresponding to 
Xl' X2 , •••• If 4> (X) is not linear in (xl> x2), there is an X4 in (Xl' x2) 
such that P 4 lies below the line PI P 2 • Suppose for example that 
x4lies in (Xl' xa). Then xalies in (X4' x2), and Palies on or below 
P4 P 2 , and therefore below PI P 2 • Hence (3.5.2) holds with 
inequality. It follows that equality can occur in (3.5.2) only when 
4>(x) is linear in (Xl' x2). 

This conclusion is easily extended to the general inequality 
(3.4.2). Suppose, for example, that there is equality when n = 3, 
and that Xl < X 2 < Xa. Then all the signs of inequality in (3.7.1) 
must reduce to equality, and 4> (x) must be linear in each of the 
intervals 

and therefore over (Xl' Xa). 
\Ve have thus proved 
90. If 4> (x) is continuous and convex, then 

(3.8.1) 4> (I:,qx) < I:,q4> (x), 

J. (I:,PX) I:,P4> (x) 
(3.8.2) 'P I:,P < I:,P , 
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unless either (i) all the x are equal or (ii) q; (x) is linear in an interval 
including all the x. 

91. Any chord of a continuous convex curve lies entirely above 
the curve, except for its end-points, or coincides with it. 

We may say that q;(x) is strictly convex if 

(3.8.3) q;(X;Y) < i{q;(x) +q;(y)} 

for every unequal pair x, y. Since a strictly convex function 
cannot be linear in any interval, any such function,if continuous, 
satisfies (3.8.1) and (3.8.2), unless all the x are equal. 

3.9. Restatements and extensions of Theorem 85.a We 
may restate Theorem 85 in the form 

92. If if; and X are continuous and strictly monotonic, and X is 
increasing, then a necessary and sufficient condition that '1R", ~ '1Rx 
for all a and q is that q; = Xif;-l should be convex b. 

We shall say in these circumstances that X is convex with respect 
to 0/. Thus t S is convex with respect to t r when 8 ~ r > o. 

The curve y=q;(x) has the parametric representation 

x=if;(t), y=X(t). 

The chord through the points on the curve corresponding to 
t=tl and t=t2 is 

x=o/(t), y= if;* (t), 

h * - if;(t2)-if;(t) () if;(t)-if;(t1 ) (t) 
were if; (t) - if; (t2) _ if; (t1 ) X tl + if; (t2) - if; (t1 ) X 2 

is the function rxif; (t) + f3 
which assumes the values X(tl) and X(t2) for t=tl and t=t2. We 
may call y = if;* (x) the if;-chord of y = X (x). In order that X should 
be convex with respect to 0/, it is necessary and sufficient that 
X ~ if; * , i.e. that every point of any if;-chord of X should lie on or 
above the curve. 

" Jessen (2, 3). 
b We have actually prove d more in regard to the necessity of the condition: see 

our remarks on Theorem 83. 
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Theorem 92 may be generalised as follows. Suppose that 

a=ay, • y ••••• ,Ym 

is a function of m variables VI> V2 ' ••• , Vm , and that 
an Vm an v, an Vi ( ) 
~,J~ </1m ••• ~,J~ </I. ~,J~ </Ii a 

is the result of taking means with respect to VI' V2 ' ••• Vm in succes­
sion. 

93. Suppose that if;p. and Xp. are continuous and strictly mono­
tonic, and that Xp. is increasing. Then, in order that 

anVm anV1 ( ) < anVm anV1 ( ) 
~,J~</Im ••• ~,J~</I, a = ~,J~Xm ••• ~,J~Xl a 

for all a and q, it is necessary and sufficient that every Xp. should be 
convex with respect to the corresponding if;p.. 

It is understood, of course, that the weights involved in the 
operations m",p' and mxp' are the same, though they will generally 
vary with fL. That the conditions are sufficient follows at once 
from Theorem 92. To see that they are necessary, we have only 
to suppose a to be a function of a single v p. • 

3.10. Twice differentiable convex functions. We postpone 
to § 3.18 any further discussion of the general properties of convex 
functions, and consider now a particularly important sub-class 
of such functions, viz. those which possess a second differential 
coefficient. 

94. Suppose that cP (x) possesses a second derivative cP" (x) in the 
open interval (H, K). Then a necessary and sufficient condition that 
cP (x) should be convex in the interval is 

(3.10.1) cP"(x)?;o.a 

(i) The condition is necessary. Replacing t(x+y) and l(x-y) 
by t and h in (3.5.1), and supposing that x> y, so that h> 0, we 
obtain 

a The important case in practice is that in which (as stated in the theorem) q," 
exists in the open interval. We usually wish, however, to assert convexity in the 
closed interval. Since q,"?; 0, q,' and q, are monotonic near the ends of the interval 
and tend to finite or infinite limits; q,' may tend to - 00 at the left-hand end and to 
+ 00 at the right-hand end, and q, may tend to + 00 at either. The function will be 
convex in the closed interval if its value at each end is not less than its limit at that 
end. 
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(3.10.2) cp(t+h)+cp(t-h)- 2cp(t) ~ 0 

for all t, h such that the arguments lie in the interval. 
Suppose now that cp" (t) < o. Then there are positive numbers 

o and h such that cp' (t+u) _cp' (t-u) < -ou 

for O<u:f:.h. Integrating this inequality from u=o to u=h, we 
obtain 

cP (t+ h) + cp(t- h) - 2cp(t) < - ioh2, 

in contradiction with (3.10.2). 

(ii) The condition is sufficient. We prove that cp satisfies (3.4.2). 
In fact, if X = ~qx, we have 

cp (xv) = cp (X) + (xv - X) cp' (X) + i (xv - X)2 cp" (gv) 

for some g v between X and xv' and so 

~q cp (x) ~ cp (X) = cp (~qx). 
If cp" (x) > 0, there can be equality only if every x is equal to X. 

We have therefore proved 

95.a If cp" (x) > 0, then cp (x) is strictly convex and satisfies (3.8.1) 
and (3.8.2), unless all the x are equal. 

3.11. Applications of the properties of twice differenti­
able convex functions. The following theorem, which follows 
from Theorems 95 and 85,b will be found particularly useful in 
applications. 

96. If if; and X are monotonic, X increasing, cp = xif;-l, and cp" > 0, 
then 'ifR", < 'ifRx' unless all the a are equal. 

Examples. (1) If if; = log x, X=x, then cp = Xif;-l= eX. Theorem 96 
reduces to Theorem 9. 

(2) Ifif; = xr, x= XS, where 0 < r < s, then cp = xs/r, cp" > o. Theorem 
96 gives Theorem 16 (for positive indices). The other cases of 
Theorem 16 may be derived similarly. 

(3) Suppose that cp = xk, where k is not 0 or 1. Then cp is convex 
in (0,00) if k < 0 or k > 1, concave if 0 < k < 1. Supposing k > 1, and 

.. Holder (1). 
b More strictly, from Theorem 95 and the proof of Theorem 85. By Theorem 95, 

(3.4.2) is true with inequality, and so 9J1",<9J1x' unless the a are equal. 
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applying Theorem 95, we find 

~qx < (~qxk)1/k 

or ~px < (~pXk)Ilk (~p )Ilk', 

unless all the x are equal. If we write px = ab, pxk = ak, we obtain 
Theorem 13, for Ie> 1. The other cases follow similarly. 

(4) Suppose that 4>=log(l+eX ), so that 

4>~' (x) = (1 :xeX )2 > 0, 

and that the abscissae and weights in (3.8.1) are log (a2/aI ), 

log(b2/bl ), "', and (J(., {3, ..•. We obtain 

a l IXb/3 •• • ll' + a2 IXbi •• • l/' < (al + a2)IX (b l + b2)f3 ••• (ll + l2)\ 

unless a2/al = b2/b I = ... (Theorem 40: H for any number of sets 
of two numbers). 

(5) Suppose that 4>=(I+xr)I/r, where r is not ° or 1, and 
that the abscissae and weights in (3.8.2) are a2/al , b2/b l , .,. and 
aI' bl , .••• In this case 4> is convex ifr > 1 and concave ifr < 1. We 
find, for example, that 

{(al + bI + ... + llY + (a2 + b2 + ... + l2y}1/r 

< (a{ + a{)1/r + (b{ + b{)1/r + ... + (l{ + l{)1ir 

if r > 1 and a2/aI , b2/b l , ••• are not all equal (M for any number of 
sets of two numbers). It will be remembered that both Hand 
M can be extended to sets of more numbers inductively. 

(6) 97. Ija>O,p>O, then 

(~p log a) ~pa (~pa log a) exp ~ <~<exp ~ , .:..p.:..p .:..pa 

unless all the a are equal. 

We write this with p instead of q for the sake of symmetry. 
The first inequality is (3.8.2) reversed, with 4> (x) = log x, a 
concave function. It is equivalent to G (Theorem 9). The second 
inequality is (3.8.2), with 4>(x)=xlogx, a convex function. 

3.12. Convex functions of several variables. Suppose that 
Dis a convex domain in the plane of (x,y), that is to say, a domain 
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which contains the whole of the segment of a straight line which 
<lonnects any two of its pointsa. A function <I> (x, y) is said to be 
convex in D if it is defined everywhere in D and 

(3.12.1) <I>(XI~X~, Yl~Y2)~H<I>(XI' YI) + <I> (X2' Y2)}' 

for all (Xl' YI) and (X2' Y2) of D.b The definition asserts more than 
{lonvexity in X and Y separately; thus xy is a convex function 
of x for every Y, and a convex function of Y for every x, but it 
is not a con vex function of X and y. 

It is often convenient to use an alternative form of the defini­
tion just given. Suppose that x, y, u, v are given, and consider 
the values of t (if any) for which (x+ut, y+vt) belongs to D. 
Since D is convex, these values form an interval (which may be 
nul). Then we say that <I> (x, y) is convex in D if 

(3.12.2) x(t)=<I>(x+ut, y+vt) 

is, for every x, y, u, v, a convex function of t throughout the 
interval of t in question. The definition is equivalent to that which 
we gave before, since, if 

x+utl =xl , y+vtl =YI' x+ut2=X2, y+vt2=Y2' 

(3.12.1) becomes 

<I> is said to be concave if -<I> is convex. 
If z=<I>(x,y) is the equation of a surface in rectangular Car­

tesian coordinates, (3.12.1) asserts that the middle point of any 
<lhord of the surface lies above or on the corresponding point of the 

a It would be sufficient to consider rectangular domains, but convexity is the 
natural limitation to impose on D. It is not part of our programme to consider 
questions of analysis situs connected with convex or general domains. 

b There is a wider generalisation of the notion of a convex function of a single 
variable which is important in the theory of functions but with which we shall 
not be concerned. The function <I>(x, y) is 8ubharmonic if its value at the centre of 
any circle does not exceed its average over the circumference. In particular <I> is 
subharmonic if it is twice differentiable and 

V2<I> = <I>xx+ <I>yy;;;O. 

For the theory of subharmonic functions see F. Riesz (5, 9). Montel (1). 
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surface. If the surface is continuous we can deduce that the whole 
chord lies above or on the surface, and that the centre of gravity 
of any number of arbitrarily weighted points of the surface lies 
above or on the surface. This is what is asserted in the following 
theorem. 

98. If$ (x, y) is convex and continuous, t"4en 

(3.12.3) <I> (Zqx, Zqy) ~ Zq $ (x, y). 

The proof is the same as that of Theorem 86, except for the 
obvious changes of notation. 

There is also a theorem corresponding to Theorem 88; it is 
sufficient to assert that no chord of the surface lies (except for its 
end-points) entirely below the surface. All the other remarks of 
§ 3.7 remain true with the obvious changes. 

A theorem corresponding to Theorems 94 and 95 is 

99. If <I> (x, y) is twice differentiable in an open D, then a neces­
sary and sufficient condition that it should be convex in D is that the 
quadratic form Q =<I>xx u 2 + 2<1>XY uv +$yy v2 

should be positive a for all u, v and all (x, y) of D. 
If Q is strictly positive b , then (3.12.3) holds with inequality, 

unless all the x and all the yare equal. 

(I) The condition is necessary. If (x, y) is in D, then X(t), 
defined by (3.12.2), is convex in a neighbourhood of t = O. Hence, 
by Theorem 94, X" (0);;;; 0, i.e. Q;;;; o. 

(2) The condition is sufficient. If 
Zq=l, X=Zqx, Y=Zqy 

then 

<I>(xy,yy)=$(X, Y) + (xy-X)$xo+ (Yy_ Y)$yO 
+ H(Xy_X)2$xx1 + 2 (xv-X) (Yv- Y) $x/ + (Yv- Y)2<1>y/}, 

where the index 0 indicates the point (X, Y) and the index I some 
point on the line joining this point to (xv, yy). It follows that 

Zq<l> (x, y);;;; $ (X, Y) =<1> (Zqx, Zqy). 

If Q is strictly positive, and there is equality, then Xv = X, 
Yv= Y for all v. 

8 Q~O. b Q> 0 except for u=v=O. 
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We notice that Q is positive if and only if 

(3.12.4) cPxx ;;:; 0, cPyy ;;:; 0, cPxxcPyy-cPXy2;;:; 0, 

and strictly positive if and only if 

(3.12.5) cPxx > 0, cPxxcPyy-cPxi> 0. 

It is negative if (3.12.4) holds with the signs of the first two 
inequalities reversed. 

The extension of the definitions and theorems of this section to 
functions of more than two variables may be left to the reader. 

3.13. Generalisations of Holder's inequality. We may 
write Holder's inequality in the form 

(3.13.1) 2f(ab)2WCF(a)WCa (b) 
.or 

(3.13.2) "Eqab 2 F-l {"Eq F (a)} G-l {"Eq G (b)}, 

where F(x)=xr (r> 1) and G(x)=xT', r' being as usual the index 
conjugate to r in the sense of § 2.8. If we write 

~=F-l, if;=G-1, F(a)=x, G(b)=y, a=~(x), b=if;(y), 

we obtain 
(3.13.3) "Eq~(x) if;(y) 2 ~ ("Eqx) if; ("Eqy). 

The simplest case of this is 

t {~(Xl) if; (Yl) + ~(X2) if; (Y2)} 2 ~ {t (Xl + x2)} if;{l (Yl + Y2)}' 
which expresses the fact that ~ (x) if; (y) is a concave function of 
x and y. When, as here, ~ and if; are continuous, it is equivalent to 
the more general inequality (3.13.3). Hence, reversing the argu­
ment (with general ~ and if;), we obtain 

100. If F and G are continuous and strictly monotonic, then a 
necessary and sufficient condition that 2{ (ab) should be comparable 
with WCF(a)WCa(b) is that F-l(X)G-l(y) should be a concave or 
convex function of the two variables X and y; in the first case (3.13.1) 
is true, in the second the reverse inequality. 

As an exam pIe we may take F (x) = xr , G (y) = ys. It then follows 
from Theorems 100 and 99 that 

2{(ab) 2 WCr(a)WCs(b) 

if r > 1, s > 1 and (r - 1) (s - 1) ;;:; 1. If r < 1, s < 1, (1 - r)( 1 - s) ;;:; 1, 
HI 6 
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the inequality is reversed. These are the only cases of com­
parability&. The argument excludes the cases r = 0 and s = 0, 
but they may be included by using an exponential instead 
of a power. 

We might look for a more straightforward generalisation of 
HOlder's inequality. Holder's inequality asserts that (3.13.1) 
holds iff(x) and g (x) are inverse positive powers of x, and either 

(a) F (x) = xf(x), G(x) = xg(x), 
or 

(b) F(x)= J:f(t)dt, G(x)= J>(t)dt; 

and we might expect that it would hold for other pairs of inverse 
f and g. The theorem which follows shows that no such extension 
is possible. 

101. Suppose that f(x) is a continuous and strictly increasing 
function which vanishes for x = 0 and has a second derivative con­
tinuous for x> 0, and that g(x) is the inverse function (which has 
necessarily the same properties). Suppose further that F (x) and 
G(x) are defined either by (a) or by (b), and that (3.13.1) is true 
for all positive a, b. Thenf is a power of x and (3.13.1) is Holder's 

inequality. 
We consider case (a).b If, as in the proof of Theorem 100, we 

write cp and if; for F-l and G-1, then cp (x) if; (y) must be a concave 
function of x and y. It follows from Theorem 99 and (3.12.4)C that 
cp" ;:;; 0, if;" ;:;; 0 and 

(3.13.4) {cp' (x) if;' (y)}2;:;; cp (x) if; (y) cp" (x) if;" (y) 

for all positive x and y. 
If cp (x) = u, if; (x) = v, we have 

x=F(u)=uf(u), ~=f(u), u=g(~), 
x 
-=if;(x)=v, 
u 

and so 
(3.13.5) cp (x) if; (x) =X. 

a Compare Theorem 44. b See Cooper (4) for case (b). 
c With the appropriate changes of sign. 
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Hence rP" (x),p (x) + 2rP' (x),p' (x) + rP (x),p" (x) = 0, 

and so, by (3.13.4), 
«(I/' ,p + rP,p")2 = 4rP'2 ,p'2 ~ 4rP,prP" ,p", 

all the arguments being x. This is only possible if 

f',p = rP,p" = - rP',p', rP",p + rP',p' = 0, 

or rP',p is constant. Hence, by (3.13.5), xrP'lrP is constant, in which 
case rP and the other functions are powers of x. 

3.14. Some theorems concerning monotonic functions. 
We collect here some simple theorems which will be useful later. 
The first characterises monotonic functions as (3.4.2) characterises 
continuous convex functions. 

102.a A necessary and sufficient condition that 

(3.14.1) ('2:.p)rPC2:.x) ~ '2:.prP(x), 

for all positive x and p, is that rP(x) should decrease (in the wide 
sense) for x> 0. The opposite inequality is similarly characteristic 
of increasing functions. 

There is strict inequality if rP (x) decreases strictly and there is 
more than one x. 

(i) If rP decreases, rP('2:.x) ~ rP (x), whence (3.14.1) follows. 

(ii) If in (3.14.1) we take n= 2, Xl =x, x2=h, Pl = 1, P2=P, we 
obtain 

(1 +p) rP (x+ h) ~ rP (x) + PrP (h). 

Making p-+O, we see that rP(x+h) ~ rP(x). 
The case rP(x)=x rx- l (0< oc< 1), p=x, gives Theorem 19. 

103. A sufficient condition that 

(3.14.2) f('2:.x) ~ '2:.f(x), 

for all positive x, is that x-lf(x) should decrease. There is strict 
inequality if x-l f(x) decreases strictly and there is more than one x. 

For if we write f(x)=xrP(x), then (3.14.2) becomes (3.14.1) 
with p=x. The condition is not necessary, since (3.14.2) is 
satisfied by any f(x) for which 

f(x) > 0, Maxf(x) ~ 2 Minf(x); 

for example f(x) = 3 + cos x. 

a Jensen (2): Jensen does not refer to the necessity of the condition. 

6-2 
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104. If 

(3.14.3) cp ('Lpx) ~ 'Lpcp (x) 

for all positive x and p, then cp (x) is a multiple of x. 

If we take n= 2, Xl =x, x2 =y, PI =y/2x and P2= t in (3.14.3), 
we obtain 

cp(y} <cp(x} 
y = x 

Since we can interchange x and y, cp/x is constant. 

3.15. Sums with an arbitrary function: generalisations 
of Jensen's inequality. We may define 'sums' involving an 
arbitrary function cp as well as means. We write 

S,p (a) = cp-l {~cp (a)}. 

Here cp(x} is continuous and strictly monotonic, as in § 3.1; but 
it is necessary now to assume rather more, since ~cp(a) is not, 
like ~qcp (a), a mean of the values of cp (a), and so necessarily a 
possible value of cp(x). We therefore assume that cp(x) is positive 
for all positive x and tends to 00 either when x~ 0 or when 
x~oo. We shall also assume that the a are all positive, leaving 
the reader to make the modifications appropriate when any a 

is zeroa• 

105.b IfifJ and X are continuous,positive, and strictly monotonic, 
then S", and Sx are comparable whenever (I) ifJ and X vary in opposite 
directions, or (2) ifJ and X vary in the same direction and X/ifJ is 
monotonic. 

In case (I), 

(3.15.1) 

if ifJ decreases and X increases. In case (2), (3.15.1) is true if x/ifJ 
decreases. There is equality in case (1), and, if x/ifJ is strictly mono­
tonic, also in case (2), only when there is only one a. 

a Suppose, for example, that 4>(x) =xr , where r > 0 (the case of § 2.10). Then 
4>(0)=0, and we need make no distinction between two such systems of the a as 
(1,1) and (1,1,0). If 4>(0) were positive it would be necessary to distinguish, and 
the discrimination of the cases of equality in Theorem 105 would become tedious. 
If 4>(x)~oo when x~O, then 6</>(a) =0 whenever any a is zero. 

b The substance of this theorem is due to Cooper (2). 



MEAN VALUES WITH ARBITRARY FUNCTIONS 85 

In case (1), when X increases, 

e>x(a) ~ X-1 {X(Maxa)}=Maxa 

and similarly e>", (a) ~ Mina. 

In case (2), suppose that ifi and X increase, and write 

ifi(a)=x, a=ifi-1 (x), xifi-1 =j. 

Then (3.15.1) reduces to (3.14.2), and is true if x-1f(x) decreases, 
i.e. if 

f {ifi (x)} X (x) 
ifi(x) = ifi(x) 

decreases. If ifi and X decrease, (3.15.1) reduces to (3.14.2) 
reversed, and is true if fix increases, or if xlifi decreases. 

The reader will have no difficulty in distinguishing the cases of 
equality. The case ifi=xB, X=xr gives Theorem 19. 

We may also define weighted sums analogous to those of §2.10(iv), viz. 

~</>(a) = </>-1 {~p </>(a)}, 

where the p are arbitrary positive numbers. ~</> reduces to 9Jl</> if ~p = 1. 
to 6cp if every p is 1. 

3.16. Generalisations of Minkowski's inequality. If 
cf>(x)=xr, where r> 1, we have 

(3.16.1) m", (a;b) ~ Hm",(a) +m.p (b)}, 

(3.16.2) 

(3.16.3) 

all these inequalities being essentially equivalent and included 
in Theorem 24. ~ 

The inequalities are not equivalent for general cf>; all of them 
are of the form 

(3.16.4) 2cf>-1 {~Pcf> (a; b)} ~ cf>-1 {~pcf> (a)} + cf>-l{~pcf> (b)}, 

but the differences between the weights p are now significant. 
In (3.16.1), ~p= 1; in (3.16.2), p= 1; in (3.16.3), the p are any 
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positive numbers. We call these three cases the cases (I), (II), 
and (III). In discussing them, we shall suppose that 

rP> 0, rP' > 0 
for X>O. 

The inequality (3.16.4) asserts that rP-I{~prP(X)} is, for given 
p, a convex function of the n variables Xl' X 2 , ••• , Xn; or, after 
§3.12,a that 

where the X, p, u are fixed and the X and p positive, is convex in t 
for all t for which all X + ut are positive. If rP is twice differentiable 
this condition is, by Theorem 94, equivalent to X" (0) ~ o. A 
straightforward calculation shows that 

(3.16.5) 
{rP' (X)}3 X" = {rP' (X)}2 ~pU2rP" (x) - rP" (X) {~purP' (X)}2, 

where 

(3.16.6) X = X (0) = rP-I{~prP (x)) 

and X"=X"(O). We have therefore to consider in what circum­
stances 

(3.16.7) {rP' (X)}2 ~pU2rP" (x) - rP" (X) {~purP' (X)}2 ~ O. 

It is easy to see that (3.16.7) cannot be true generally without 
restriction on the sign of rP". Suppose for example that rP' > 0 and 
that rP" is continuous and sometimes negative. We can then 
choose Xl and X 2 so that rP" (Xl) < 0, rP" (x2 ) < 0, and UI and U 2 so 
that 

In this case (3.16.7), for n= 2, reduces to 

{rP' (X)}2 {PI U12 rP" (Xl) + P2U22rP" (X2)} ~ 0, 

which is false. We shall therefore suppose in what follows that 

rP> 0, rP' > 0, rP" > O. 

We can write (3.16.7) in the form 

(3.16.8) 

a We take for granted the obvious extensions of § 3.12 from two to n variables. 
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Now, by Theorem 7, 

(3.16.9) (~pUcfo')2= {~V(P<f/')u. J(p::2) r ~~pu2cfo"~p ::~. 
Hence (3.16.8) is certainly true for all x, u if 

{cfo' (x)}2 
(3.16.10) ifi(x)~~p cfo"(x) =~pifi(x), 

for all x. Further, there is equality in (3.16.9) if 

cfo' (x) 
u= cfo" (x) (v=1,2, ... ,n), 

so that (3.16.10) is both a sufficient and a necessary condition for 
the truth of (3.16.8). Finally, if we write y=cfo(x) and 

(3.16.11) cI>(y)=ifi(x) = ifi{cfo-l(y)} = {~:,[t;~;r;W' 
(3.16.10) assumes the form 

(3.16.12) cI> (~py) ~ ~p cI> (y). 

We now consider the three cases (I), (II), (III) separately. 

(i) In case (I), (3.16.12) is true if and only ifcI> (y) is a concave 
function of y. 

(ii) In case (II), (3.16.12) is (3.14.2), reversed and with y, cI> for 
x,J. A sufficient (though not a necessary) condition is thatcI>/yis 
an increasing function ofyor, what is the same thing, thatcfocfo" /cP'2 
is a decreasing function of x. 

(iii) In case (III), (3.16.12) is (3.14.3), with the appropriate 
variations. It can be true generally only when cI> (y) is a multiple 
of y, or when cfocfo" /cP'2 is constant, in which case cfo is of one of the 
forms 

(3.16.13) 

In these cases it is true. 
There are alternative forms of the conditions (i) and (ii) which 

show better their relations to one another. We shall suppose cfo"" 
continuous, as we may do without affecting seriously the interest 

S Since c!," >0. 
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of the results. Then from 

we deduce 

¢>'2(X) 
<I> (y) = ¢>" (x) 

, d ¢>' (x) 
<I> (y) = dx ¢>" (x) + 1, 

" 1 d2 ¢>' (x) 
<I> (y) = ¢>' (x) dx2 ¢>" (x) . 

Hence <I> (y) is concave if and only if ¢>' (x) /¢>" (x) is concave, or, 
what is the same thing, if ¢>' ¢>'" /¢>"2 is increasing. These are 
alternative forms of (i), and an alternative form of (ii) is '¢>/¢>' 
is convex'. 

Summing up our conclusions, we have 

106.a Suppose that ¢>"" is continuous and that ¢> > 0, ¢>' > 0, 
¢>" > 0. Then 

(i) it is necessary and sufficient for (3.16.1) that ¢>' /¢>" should 
be concave, or ¢>' ¢>'" /¢>"2 increasing; 

(ii) it is sufficient (but not necessary) for (3.16.2) that ¢>/¢>' should 
be convex, or ¢>¢>" /¢>'2 decreasing; 

(iii) it is necessary and sufficient for (3.16.3) that ¢> should be 
one of the functions (3.16.13). 

We leave it for the reader to formulate the variations of this theorem, 
when (for example) .p> 0, .p' < 0, </>" > 0, or when the inequalities are re­
versed. It is instructive to verify that (i) is satisfied (from a certain x 
onwards) when .p=xl>{logx, where p> 1, but not when .p=xl>logx, while 
for (ii) the situation is reversed. 

3.17. Comparison of sets. Theorem 105 asserts that 

@)",(a);:;:; @)x(a) 

for a given pair of functions ifi and X and all a. The theorems 
of this section are of a different type, involving given sets (a) 
and (a') and a variable function ¢>. We consider the conditions 
under which 

.. The first results of this character are due to Bosanquet (1): Bosanquet con­
siders case (II). 
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or, what is the same thing for increasing cP, 

(3.17.1) 
cP (al ') + cP (a2') + ... + cp (an') ~ cp (al ) + cP (a2 ) + ... + cp (an) 

for given a and a' and all cp of a certain class. 

107. Suppose that the sets (a) and (a') are arranged in descending 
Qrder of magnitude. Then a necessary and sufficient condition that 
(3.17.1) should be true for all continuous and increasing cp is that 

av'~av (v=1,2, ... ,n). 

The sufficiency of the condition is obvious. To prove it neces­
sary, suppose that ap" > ap' for some ft, that ap' < b < ap'" and that 
4>* (x) is defined by 

cp* (x) = 0 (x ~ b), cp* (x) = 1 (x> b). 

Then '2:.CP* (a') ~ ft > ft - 1 ~ '2:.CP* (a). 

Hence (3.17.1) is false for cp*, and therefore also false for an 
appropriately chosen continuous increasing approximation to CP*. 

Our next theorem is connected with the theorems of §§ 2.18-2.20. 

108. In order that (3.17.1) should be true for all continuous 
convex cp, it is necessary and sufficient either that (1) (a')-«a), 
i.e. that (a') is majorised by (a) in the sense of § 2.18, or that (2) (a') 
is an average of (a) in the sense of § 2.20. 

If these conditions are satisfied, and cp" (x) exists for all x, and is 
positive, then equality can occur in (3.17.1) only when the sets (a) 
and (a') are identicala• 

We have proved already (Theorem 46) that the two conditions 
are equivalent. It is therefore enough to prove that the first is 
necessary and the second sufficient. We may suppose (a) and (a') 
arranged in descending order. 

(i) Oondition (1) is nece88ary. Condition (1) asserts that 

(3.17.2) aI' +a2' + ... +av' ~al +a2 + ... +av (v= 1,2, ... ,n), 

with equality in the case v = n. 
The functions x and -x are both continuous and convex in any 

a Schur (2) proves that (2) is a sufficient condition, and the remark concerning 
the case of equality is also due to him. For the complete theorem, see Hardy, 
Littlewood, and P6lya (2). Karamata (1) considers condition (1). 
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interval. Hence,if(3.17.1) is true, ~a' ~~aand~ (-a') ~~( -a), 
i.e. ~a' = ~a, which is (3.17.2) for v=n, with equality. 

Next, let 
cp(x)=O (x~av)' cp(x)=x-av (x>av). 

Then cp (x) is continuous and convex in any interval, and cp (x) ~ 0, 
cp(x)~x-av. Hence 

aI' +a2' + ... +a/ -vav ~ ~cp(a') ~ ~cp(a) =al +a2+ ... +av-vav, 
which is (3.17.2). 

(ii) Oondition(2) is sufficient. If (a') is an average of (a), we have 

ap" = Pp.l a l + Pp.2 a2 + ... + Pp.n an' 
n n 

where Pp.v~O, ~pp.v=l, ~pp.v=1 
1-'=1 "=1 

for all fL and v. If cp is convex, then 

(3.17.3) cp (ap.') ~Pp.l cp (al ) + ... + Pp.n cp (an), 
and (3.17.1) follows by summation. 

(iii) If there is equality in (3.17.1), there must be equality in 
each of (3.17.3). 

If cp" (x) > 0, and every Pp.v is positive, then it follows from 
Theorem 95 that all the a are equal, in which case all the a' are 
also equal and the common values are the same. 

In general, however, some of the P p.v will be zero. We shall say 
that ap" and av are immediately connected if Pp.v > 0, i.e. if av occurs 
effectively in the formula for ap"; and that any two elements 
(whether a or a') are connected if they can be joined by a chain of 
elements in which each consecutive pair is immediately con­
nected. 

Consider now the complete set 0 of elements connected withal' 
We may write this set (changing the numeration of the elements 
if necessary) as 

(0) al ,a2, ..• ,ar , al',a2', ••• ,as'; 

the a' of 0 involve the a of 0, and no other a, and no other a' 
involves an a of O. Hence, using the sum-properties of the P, 

S l' r s 
s= ~ ~ Pp.v= ~ ~ pp.v=r; 

1-'=1"=1 "=11-'=1 
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so that 0 contains just as many a' as a. It follows from Theorem 
95, and from the equality in (3.17.3), that all a immediately 
connected with an a' are equal to that a'. Hence all connected 
a and a' are equal, and 0 contains r elements of each set, all 
equal to lZt. 

We now repeat the argument, starting from ar +1' and we con­
clude that both (a) and (a') consist of a certain number of blocks 
of equal elements, the values of the elements in corresponding 
blocks being the same. 

Incidentally we have proved 

109. If cp" (x) > 0, p!-'v > 0, "J.:,p!-'v = 1, "J.:,p!-'v = 1, and a!-" = "J.:,P!-'vav, 

then 
I'- v v 

(3.17.4) 

unless all the a and a' are equal. 

If all the a' are equal, (3.17.4) is a special case of Theorem 95. 
A special case of Theorem 108 which is often useful is 

110. If cp (x) is continuous and convex, and I h' I ~ I hi, then 

(3.17.5) cp (x- h') + cp (x+ h') ~ cp (x- h) + cp (x+ h). 

3.18. Further ~eneral properties of convex functions . We 
have assumed since § 3.6 that cp(x) is continuous. We shall now 
discard this hypothesis and consider the direct consequences of 
(3.5.1). The general lesson of the theorems which follow will 
be that a convex function is either very regular or very irregular, 
and in particular that a convex function which is not 'entirely 
irregular' is necessarily continuous (so that the hypothesis of 
continuity is a good deal less restrictive than might have been 
expected). 

111. Suppose that cp(x) is convex in the open interval (H,K),and 
bounded above in some interval i interior to (H, K). Then cp(x) is 
continuous in the open interval (H, K). Further, cp (x) has everywhere 
left-hand and right-hand derivatives; the right-hand derivative is 
not less than the left-hand derivative; and both derivatives increase 
with x. 
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It follows that a discontinuous convex function is unbounded 
in every interval. 

We prove first that c/>(x) is bounded above in every interval 
interior to (H, K). The kernel of the proof is this. The argument 

of § 3.6 shows that c/> CJ:.qx) ~ '2:.qc/> (x) 

for any rational q; it was only in the passage to irrational q that 
we used the hypothesis of continuity. Suppose now that i is 
(h, k) and that the upper bound of c/> in i is G. It is enough to 
prove c/> bounded above in (l, h) and (k, m), where land m are any 
numbers such that H < 1 < h < k < m < K. If x is in (l, h), we can 
find a g in i so that x divides (l, g) rationally, and then c/> (x) must 
lie below a bound depending on c/>(l) and G, and so be bounded 
above in (l, h). Similarly, it must be bounded above in (k, m)o 

To state the argument precisely, let h be the left-hand end of i 
and G the upper bound of c/> in i, and suppose that 

H <l<x<h. 

We can choose integers m and n > m so that 

n 
g=l+-(x-l) 

m 
lies in i, and then 

c/>(x)=c/> {mg+ (n-m) l} ~ m C/>W + n-m c/>(l) 
n n n 

m n-m 
~~- G+--c/>(l)~Max{G, c/>(l)}. 

n n 

Hence c/>(x) is bounded above in (l, h). 
In proving the remainder of the theorem we may restrict our­

selves to an interval (H', K') interior to (H, K), or, what is the 
same thing, we may suppose c/> bounded above in the original 
interval. Suppose then that c/>(x) ~ G in (H, K), that H < x< K, 
that m and n> m are positive integers, and that S is a number 
(positive or negative) small enough to leave x+nS inside (H, K). 
Then 

c/>(x+mS)=c/> {m(x+nS) + (n-m)x} ~ m c/>(x+nS)+ n-m c/>(x) 
n n n' 
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or -,-CP -'-( x_+_n_8 )=-----.:cp=---('---Cx ) ~ cP (x + m8) - cP (x) (m < n). 
n m 

Replacing 8 by - 8, and combining the two inequalities, we 
obtain 

(3.18.1) cp(x+n8)-cp(x) ~ cp(x+m8)-cp(x) 
n m 

~ cp(x) -cp(x-m8) ~ cp(x) -cp(x-n8) 
m n 

(the centralinequality following directly from the convexity of cp). 
If in (3.18.1) we take m= 1, and remember that cp~ G, we 

find that 

(3.18.2) 

G-cp(x) ~ cp(x+ 8) _ cp(x) ~ cp(x) _ cp(x- 8) ~ cp(x) - G. 
n n 

We now suppose that 0--* 0 and n--*oo, but so that x ± n8 remains 
inside the interval. Itthen follows from (3.18.2) that cp(x+ 8) and 
cp (x - 0) tend to cp (x), and so that cp is continuous. 

We next suppose 0> 0, and replace 8 in (3.18.1) by oln. We 
have then 

(3.18.3) 
cp (x + 8) - cp (x) > cp (x + 0') - cp (x) 

8 = 0' 

> cp(x) -cp(x-o') > cp(x)-cp(x- 8) 
= 8' = 0 ' 

where 8' =moln is any rational multiple of 0 less than O. Since cp 
is continuous, (3.18.3) is true for any 8' < O. It follows that the 
quotients on the extreme left and right decrease and increase 
respectively when 8 decreases to zero, and so that each tends to a 
limit. Hence cp possesses right-handed and left-handed derivatives 
cpr' and CPt', and CPt' ~ cPr' • 

Finally, we may write x- 8' =x1 , x=x2 , x+8=xa (orx- 8=xl , 

x=x2 , x+8'=xa), when (3.18.3) gives 

cp (xa) - cp (x2 ) ~ cp (x2 ) - cp (Xl) 
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A fortiori, if Xl < X2 < Xa < X4, we have 

4> (X4) - 4> (Xa) ~ 4> (X2) - 4> (Xl) 
X4- Xa X2-XI 

Making Xa~X4' X2~XI' we obtain 

(3.18.4) 

which completes the proof of the theorem. 
It is plain from what precedes that 

(3.18.5) 4>/ (x4) ~ 4> (xa) - 4> (x2) ~ 4>r' (Xl)' 
Xa- X2 

if ~ ~ x2 < Xa ~ x4 • 

Theorem 111 asserts nothing about the existence of an ordinary 
differential coefficient 4>' (x). It is however easy to prove that 4>' (x) 
exists except perhaps for an enumerable set of values of x. The 
function 4>/ (x), being monotonic, is continuous except perhaps 
in such a set. If it is continuous at Xl then, by (3.18.4), 4>r' (Xl) 
lies between 4>/ (Xl) and 4>/ (x4), which tends to 4>/ (Xl) when 
X4~XI' Hence 4>r'(xl )=4>/(X1), and 4>' (x) exists for x=x1 • 

It is also plain from (3.18.5) that, if 4> (x) is continuous and 
convex in an open interval (a, b), then 

I 4> (X)=:(X) I 
is bounded for all X and x' of any closed sub-interval of (a, b). 

3.19. Further properties of continuousconvexfunctions. 
We now suppose 4> (x) convex and continuous. It follows from 
(3.18.5) that if H <g<K and 

4>,' (g) ~ A ~ 4>r' (g) 
then the line 

(3.19.1) 

will lie wholly under (on or below) the curve. In other words 

112. If 4> (x) is convex and continuous then there is at lea8t one 
line through every point of the curve y = 4> (x) which liea wholly uiuler 
the curve. 
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A line through a point of a curve which lies wholly on one side of the 
(lurve (under or over) is called a StiUzgerade of the curve. If cp(x) is con­
(lave, then the graph of rp (x) has at every point a Stiitzgerade over the curve. 
If cp(x) is both convex and concave the two lines must coincide and rp(x) 
nlUst be linear. 

It is easy to see the truth of Theorem 112 directly. If ~<x<x', and 
P, Q, Q' are the points on the curve corresponding to~, x, x', then PQ lies 
under PQ', and the slope of PQ decreases as x approaches ~,and so tends 
to a limit v. Similarly, if x < ~ and x tends to ~, the slope of QP increases 
to a limit fL. If fL were greater than v, and Xl' X2 were respectively less than 
and greater than ~, and sufficiently near to ~, then P would lie above 
P 1 P 2' in contradiction to the convexity of the curve. Hence fL ~ v, and 
(3.19.1) lies under the curve if ,\ has any value between fL and v inclusive. 

In this proof we do not appeal to Theorem 111, but the proof depends 
on just those geometrical ideas which underlie the more formal and 
analytical argument of § 3.18. 

Suppose now, conversely, that cp (x) is continuous and has the 
property asserted in Theorem 112. If Xl and X 2 are two values of x, 
PI and P 2 the corresponding points on the curve, and P the point 
corresponding to g = ! (Xl + x2 ), then both PI and P 2 lie over a 
certain line through P, and the middle point of PI P 2 lies over P. 
Hence cp(x) is convex. 

We have thus proved that the property of Theorem 112 affords 
a necessary and sufficient condition for the convexity of a con­
tinuous function, and might be used as an alternative definition 
of convexity. That is to say, we might define convexity, for con­
tinuous functions, as follows: a continuous function cp(x) is said to 
be convex in (H, K) if to any g of (H, K) corresponds a number 

A=A(g) such that cp(g)+A(X-g)~cp(x) 

Jor all X of (H, K). 

This definition of a convex function is quite as 'natural' as that implied 
in (3.5.2), and it is interesting to deduce some of the characteristic pro­
perties of continuous convex functions directly from it. For example, the 
inequality (3.4.2) may be proved as followsa • 

Writing as usual ~(b)=I:qb, 

and taking ~= ~(a), a value which lies in the interval of variation of the a, 
we have 

cp {~(a)} + '\(a -~) ~ cp(a) 

a Jessen (2). 
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for a certam A=A(~) and all a. Performing the operation ~ on each side, 
we obtain 

or 
"'{~(a)}+A {~(a) -~};;;; ~{"'(a)}, 

"'{~(a)};;;; ~{"'(a)}, 

which is (3.4.2). It is instructive to compare this argument with that of 
§ 3.10 (ii). 

3.20. Discontinuous convex functions. Discontinuous con­
vex functions are, by Theorem 111, unbounded in every interval. 
and their existence has not been proved except under the 
assumption of Zermelo'sAxiom or (what is for our purpose equi­
valent) the assumption that the continuum can be well-ordered. 

If 

(3.20.1) 

then 

and 

f(x+y)=f(X) + f(y), 

f(2x)=2f(x) 

2f(X;Y) =f(x+y) = f(x) + j'(y). 

Thus a solution of (3.20.1) is certainly convex. 
!twas proved by Hamel (l)a that, if Zermelo's Axiom is true, 

there exist base8 [IX, /3, y, ... J for the real numbers, that is to say, 
sets of real numbers IX, /3, y, ... such that every real a is expressible 
uniquely in the form of a finite sum 

x=alX+b/3+ ... +IA 
with rational coefficients a, b, ... , I. If we assume this, we can 
at once write down discontinuous solutions of (3.20.1); we give 
f(x) arbitrary values f(IX), 1(/3), .. , for X=IX, /3, ... , and define 
f(x) generally by . 

f(x) = af(lX) + bf(/3) + ... + If (A). 

Then, if y = a'lX + ... , we have 

f(x+y)=f {(a+a')IX+ ... }= (a+a')f(lX) + ... =f(x) + f(y). 

For more detailed study of the properties of convex functions, of 
the solutions of the equation (3.20.1) and of inequalities associated with 
it, we may refer to Darboux (1), Frechet (1,2), F. Bernstein (1), Bern­
stein and Doetsch (1), Blumberg (1), Sierpirl.ski (1, 2), Cooper (3), and 
Ostrowski (1). Blumberg and Sierpirl.ski prove that any convex measurable 
function i8 continuous, and Ostrowski obtains a still more general result. 

• See also Hahn (1, 581). 
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MISCELLANEOUS THEOREMS AND EXAMPLES 

113. If IX is a constant, IX =1= 0, and X = IXcp, then 

6 x(a)= 6q,(a), Xx(a)=Xq,(a). 

[The corresponding property of 9R is included in Theorem 83.] 

114. An increasing convex function of a convex function is convex. 

115. If every chord of a continuous curve contains a point which lies 
above the curve, then every point of every chord, except the end-points. 
lies above the curve. 

116. If cp(x) is convex and continuous, a<b<e, and cp(a) = cp(b) = cp(e). 
then cp(x) is constant in (a, e). 

117. If all the numbers are positive, then 

unless xja=y/b. 
[(xlogx)">O.] 

x log: +ylog~b > (x+y) 10gx+Yb' 
a a+ 

118. If f(x) is positive and twice differentiable, then a necessary and 
sufficient condition that logf(x) should be convex is thatff" _f'2,?:: O. 

119. If cp(x) is continuous for x> 0, and one of the functions xcp(x) and 
cp(ljx) is convex, then so is the other. 

120. If cp(x) is positive, twice differentiable and convex, then so are 

xiis+l ) cp(x-B) (8,?:: 1), ei'"cp(e-'") 

(the first for positive x). 

121. If.p and X are continuous and strictly monotonic, and X increasing, 
then a necessary and sufficient condition that 

.p-l {.pQ, (al ) ••• .pq~( an)} ~ X-I h a, (al ) ••• xQn (an)}, 

for all a and q, is that 

should be convex. 

[Compare Theorem 92.] 

122. Suppose that 

(i) cp(xl ) (xa - x2)+ cp(X2) (Xl - xa) +cp(Xa) (X2 - Xl) '?:: 0, 

or (what is the same thing) 
1 Xl cp(x l ) 

(ii) 1 X2 cp(x2) ,?::O, 

1 xa c/>(xs) 

for all Xl> X 2 ' Xs of an open interval I for which Xl <X2<X~. Then cp(x) is 
continuous in I, and has finite left-handed and right-handed derivatives 
at every point of 1. 

HJ 7 
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If c/>(x) is twice differentiable, then (i) and (ti) are equivalent to the 
differential inequality 

c/>" (x) ?;, O. 

[(i) and (ii) are alternative forms of (3.5.2), and c/>(x) is convex, so that 
the theorem is a restatement of parts of Theorems 111 and 94.] 

123. Suppose that 

(i) c/>(xl ) sin(xa -xs) +c/>(xs) sin (Xl -Xs) +c/>(xs) sin (XI -Xl)?;' 0, 

or (what is the same thing) 

(ii) 

COSXl sinxl c/>(XI) 

COSXg sinxg c/>(Xg) ?;,O, 

cos xs sinxs c/>(xs) 

for all Xl' Xg, Xs of an open interval I for which Xl <X2 <XS <Xl + 'IT. Then 
c/>(x) is continuous in I and has finite left-handed and right-handed 
derivatives at every point of I. 

If c/>(x) is twice differentiable, then (i) and (ii) are equivalent to the 
differential inequality 

c/>"(X)+c/>(X)?;' O. 

[The result is important in the study of convex curves and of the 
behaviour of analytic functions in angular domains. See Polya (I, 
320; 4, 573-576).] 

124. A necessary and sufficient condition that a continuous function 
c/>(x) should be convex in an interval I is that, if 0( is any real number and i 
any closed interval included inI, then c/> (x) + = should attain its maximum 
ini atone of the ends of i. If alsox andc/>(x) are positive, then a necessary 
and sufficient condition that logc/>(x) should be a convex function of logx 
is that X"'c/>(x) should have the same maximal property. 

[For applications of this theorem, which results immediately from the 
definitions, see Saks (1).] 

125. A necessary and sufficient condition that a continuous function 
.p(x) should be convex in (a, b) is that 

1 f",+h 
(i) c/>(x) ~ 2h x-h c/>(t)dt 

for a~x-h<x<x+h~b. 

[This is a corollary of Theorem 124. If c/>(x) satisfies (i), so does c/>(x) + =; 
and it is plain that any continuous function which satisfies (i) must possess 
the property of Theorem 124." 

Theorem 125 may also be proved independently; and there are various 
generalisations. In particular we need only suppose (i) true for every x and 
arbitrarily small h=h(x).] 

a For a formal proof, use Theorem 183. 
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126. If c/>(x) is convex and continuous for all x, and not constant, then 
c/>(x) tends to infinity, for one or other approach of x to infinity, in such a 
manner as to be ultimately greater than a constant multiple of 1 x I. 

127. If </>">0 forx>O, and </>(0);;;20, then c/>/x increases for X>O. 
[This follows at once from the equations 

X2:X(~)=x</>'-</>' :x (xc/>'-c/»=x</>".] 

128. If </>"> 0 for x~ 0 and 

lim (X</>'-</»;;;20, 
x-+oo 

then c/>/x decreases (strictly) for x> O. 

[The limit certainly exists, since x</>' - <P increases. The result follows 
from the equations used in proving Theorem 127. The cases considered 
in Theorems 127 and 128 are the extreme cases possible when <p" > 0; if 
neither condition is satisfied, <p/x has a minimum for some positive x.] 

129. If c/>" > 0 for all x, <p(0) = 0, and c/>/x is interpreted as <p' (O) for x= 0, 
then <PIx increases for all x. 

130. If the set aI' a 2 , ••• , a 2n+1 is convex in the sense of § 3.5, i.e. if 

.:l2av= av- 2avH +av+2~ 0 (v= 1, 2, ... , 2n-l), 

then a 1 +a3 + ... +a2n+1 > ~2 +a4 + ... +a2n 

n+l = n ' 

with inequality except when the numbers are in arithmetical progression. 

[Nanson (I). Add up the inequalities 

r{n-r+l).:l2a2r_l~0, r{n-r).:l2a2r~0. 

Theorem 130 may also be proved as an example of Theorem 108: the set 
formed by the numbers 2, 4, ... , 2n, each taken n + 1 times, is majorised 
by that formed by the numbers 1, 3, ... , 2n+ 1, each taken n times.] 

131. If O<x< 1, then 
l_xn+l I-x" 
-n+l>-n- Vx. 

[Put X=y2 and a.=y· in Theorem 130.] 

132. G is the centre of a circle and AoAl '" AnAo an inscribed polygon, 
whose vertices lie on the circle in the order indicated. G, A o' An are fixed 
and Au A 2 , ... , A n_1 vary. Then the area and perimeter of the polygon 

are greatest when AoAl =A1 A 2 = ... =An_lAn. 

[Let A V_ 1 GA. = IXv' Since {sin x)" < 0 for 0 < x < 1T, we have, by Theorem 
95, 

1", . . (l:lXv) r;,,",smlX.<sm n ' 
7·2 
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unless all the cx.. are equal. and a similar inequality in which cx.. is replaced 
by tcx.v ' These inequalities give the two parts of the theorem. When An 
coincides with Ao. they reduce to familiar maximal properties of regular 
polygons.] 

133. Suppose that i and g are continuous increasing inverse functions 
which vanish at the origin. that F = xi. G = xg. and that g satisfies the 
inequality g(xy);£ g(x) g(y). 

Suppose further that }:ab;£AB for all positive a and b such that 
}:G(b);£G(B). Then 

}:F(a);£ F(i/A)" 

[Cooper (3). The result is included in Theorem 15 when i is a power 
of x.] 

134. If </>(x) is convex and continuous for x~O. 1'= 1, 2. 3 •...• and the 
a v are non-negative and decreasing. then 

</>(O)+}: {</> (nan) - </> [(n -1) a n]};£ </> (}:a,,). 
If also </>'(x) is a strictly increasing function. there is equality only when 
the av are equal up to a certain point and then zero. 

[Hardy. Littlewood. and P6lya (2). Write 

80 =0. 8v =aI +aZ + ... +a. (v~I). 

and 8.+ (v-I) a.=8v_ I + vav = 2x. 
8.- (v-I) av = 2h. 8._1 -vav = 2h'. 

It is easily verified that I h' I ;£ h. with equality only if a. = 0 or 

a l =az= ... =av • 

It follows from Theorem 110 that 
</> (va.) - </> {(v - 1) a.};£ </> (8v) - </> (8v_ I ). 

and the result follows by s=ation.] 

135. If q> 1 and a. decreases. then 
}: {vq - (v - 1 )q} a.q;£ (}:a.)q. 

[Example of Theorem 134.] 

136. Suppose that a is a function of 1'1' Vz • ...• I'm; that it. i z •••.• im is 
a permutation of the numbers 1.2, ... , m; and that the.p and X are con­
tinuous and strictly monotonic and the X increasing. Then. in order that 

9Jl~ m .•. 9Jl~' (a) ;£ 9Jl~iim . .. 9Jlx• i, ( a ) 
m 1 m Q 

for all a and q. it is necessary that 

(1) X/L is convex with respect to .p/L' for fL= 1,2, ...• m; 

(2) XI\ is convex with respect to.pl" if A> fL and A and fL correspond to an 
inversion in the permutation iI' i z •...• im (i.e. if the order is ... fL • ••.• A •... 
in the series 1.2 •... , m but ... A, ...• fL' ... in i l • i 2 •••• , im ). 

[Jessen (3).] 
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137. In order that 

m;m ... m;l(a) ~ m;im ... m;il(a) 
m 1 10m 'tl 

for all a and q, it is necessary and sufficient that (1) rlL~slL and (2) rlL~sA 
(the range of fL and>.. being defined as in Theorem 136). 

[.Jessen (3). The most important cases are: 

(i) m= 1, r<s. 

(ii) m=2, (i1 ,i2)=(2, 1), s2=r2~sl=rl' 

The two cases correspond to Theorems 16 and 26. The kernel of the theorem 
is contained in the statement that, whenever the two sides of the in­
equality are comparable, the inequality may be proved by repeated 
application of the special cases corresponding to (i) and (ii).] 

138. A continuous curve y=cf>(x) defined in an open interval, say 
O<x< 1, has the following property: through every point of the curve 
there is either (a) a line which lies under the curve, or (b) a line which lies 
over the curve. Then one and the same of (a) and (b) is true at all points 
of the curve, and the curve is convex or concave. 

[It is easy to show that if Sa and Sb are the sets of values of x for which 
(a) or (b) is true, then Sa and Sb are closed (in the open interval). But a 
continuum cannot be the sum of two non-nul closed and exclusive sets.] 

139. Supposethatcf>(x) is convex and bounded below in (H,K),and that 
m(x) is the lower bound of cf>(x) at x (the limit of the lower bound of cf>(x) 
in an interval including x). Then m(x) is a continuous convex function; 
and either (i) cf>(x) is identical with m(x), or (ii) the graph of cf>(x) is dense 
in the region H~x~K, y~m(x). 

If cf> (x) is convex and not bounded below, its graph is dense in the strip 
H~x~K. 

[Bernstein and Doetsch (1).] 



CHAPTER IV 

VARIOUS APPLICATIONS OF THE CALCULUS 

4.1. Introduction. Particular inequalities arising in ordinary 
analysis are often proved more easily by some special device than 
by an appeal to any general theory. We therefore interrupt our 
systematic treatment of the subject at this point, and devote a 
short chapter to the illustration of the simplest and most useful 
of these devices. The sUbject-matter is arranged according to the 
methods and instruments used rather than the character of the 
results. 

DIFFERENTIAL CALCULUS: FUNCTIONS OF ONE 

VARIABLE 

4.2. Applications of the mean value theorem. Our first 
examples depend upon a straightforward use of the mean value 
theorem 

(4.2.1) f(x+h)-f(x)=hf' (x+8h) (0<8<1), 

or its generalisations with higher derivatives. It is a corollary of 
(4.2.1) that a function with a positive differential coefficient 
increases with x. 

(1) We have 
1 

log (x+ 1) -logx= g' 

where x< g <x+ 1, when x> O. It follows that 

d 1 
-d [x{log(x+ 1) -logx}]=log(x+ 1)-logx--1 > 0, 

x x+ 

d 1 
-d [(x+ 1) {log (x+ 1)-logx)] = log (x+ 1)-logx-- < o. 

x x 

( I)X ( l)x+1 Hence 1 +;; increases with x, while 1 +;; decreases. 
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( l)-V Since the latter function is 1-y ,where y=x+ 1 > 1, we 

obtain 

140. (1 ~~r increases for x> 0; (l-D -x decreases for x> 1. 

This is substantially the same as Theorem 35. 

(2) If x> 1, r> 1, we have 

xT= 1+r(x-l)+!r(r-l)gr-2(x-l)2, 

where 1 < g < x, and so 

141. xT>I+r(X-l)+tr(r-I)(X:lr (x> 1, r> 1). 

This inequality was found, in a less precise form, in § 2.15. 

(3) If x =!= 0 we have 

(4.2.2) eX= 1 +x+ !x2e{!x, 

where 0 < 8 < 1, and so 

142. 

We can deduce another proof of Theorem 9. If 

'£.q = 1, '£.qa = m:, 
and the a are not all equal, we can write a= (1 +x)m:, where 
'£.qx = 0 and the x are not all zero. Then 1 + x ~ eX, with inequality 
for at least one x, and 

ITaq = m: IT (1 + x)q < m:elqx = m: = '£.qa. 

The argument is a special case of that used at the end of § 3.19. 

(4) The function f(x)=ex-l-x-!x2, 

and its first two derivatives, vanish for x = o. There is no other 
zero off (x), since this would (by repeated application of Rolle's 
Theorem) involve the existence of a zero of f'" (x) = eX. Hence 

eX> l+x+!x2 (x>O), eX< l+x+tx2 (x<O). 

The same argument may be applied to any number of terms of 
the Taylor series of various functions. When the function is eX, 
we obtain 
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143. If n is odd then 
x2 xn 

(4.2.3) eX> l+x+ 2! + ... +n1 (x=!=O). 

Ifn is even then (4.2.3) is true for x > 0 and the reversed inequality 
for x<o. 

4.3. Further applications of elementary differential 
calculus. In this section we give some applications of a less 
immediate character. 

(1) Repeated application of Rolle's Theorem leads easily to 
the following lemmaa ; if 

f(x,y)=coxm+clxm-ly+ ... +cmym= 0 

has all its roots x/y real, then the same is true of all non-identical b 

equations obtained from it by partial differentiations with respect 
to x and y. Further, if E is anyone of these equations, and has a 
multiple root oc, then oc is also a root, of multiplicity one higher, of 
the equation from which E is derived by differentiation. 

We use this lemma to prove a theorem proved already in a 
less complete form in § 2.22. 

144.C If a l , a2, ... , an are n real, positive or negative, numbers, 
Po = 1, and PI-' is the arithmetic mean of the products of f.t different a, 
then 2 PI-'-lPI-'+l < PI-' (f.t= 1,2, ... , n -1), 
unless all the a are equal. 

We suppose that no a is zero, since the specification of the 
cases of equality becomes more troublesome when zero a's are 
admitted. 

Let f(x,y)= (x+aly) (x+a2y) ... (x+any) 

=Poxn+ (7)Plxn-ly+ G) P2 xn- 2y2+ ... +Pnyn. 

Since no a vanishes, Pn=!=O and x/y=O is not a root of f=O. 
Hence x/y = 0 cannot be a multiple root of any of the derived 

a Maclaurin (2). See P6lya and Szego (1, II, 45-47 and 230-232). 
b That is to say, all equations whose coefficients are not all zero. 
c Newton (1, 173). For further references, see § 2.22. 
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equations; and therefore no two consecutive p, such as P/L and 
P/L+1' can vanish. Hence the equation 

P/L-l x2 + 2p/L xy + p/L+1y2 = 0, 
which is obtained fromj(x, y) = 0 by a series of differentiations, 
is not identical; and therefore its roots are real, so that 

P/L-IP/L+1 ~ p/ . 
Finally, the roots of the derived equation can be equal only if 
all the roots of the original equation are equal. 

It will be observed that the a need not necessarily be positive, 
as they were in § 2.22.a 

(2) Suppose that c/> (x) = log (:2:paX), and (what is no real 
limitation) that the a are all positive and unequal. Then 

c/>' = :2:paXloga C/>" = :2:pax :2:pax (loga)2 - (:2:paX log a)2 > 0 
:2:pax ' (:2:paX) 2 

(Theorem 7). An easy calculation shows that, if ar is the 
greatest a, then 

c/> (0) = log :2:p, lim (xc/>' - c/» = -logPr· 
X-+co 

It follows from Theorems 127 and 129 that c/>/x increases for x > 0 
if :2:p ~ 1, and for all x if :2:p = 1. In the last case 

c/> (x) = log imx(a), lim c/> (x) = c/>' (0) = log & (a). 
x x-+o x 

We thus obtain further proofs of Theorems 9 and 16. 
If, on the other hand, Pv ~ 1 for every v, c/>/x decreases, by 

Theorem 128. In particular 6 x (a) = (:2:ax )l/X decreases (Theo­
rem 19). The general case gives part of Theorem 23. 

(3) The following examples have applications in ballistics. 

145. logsecx<isinxtanx (O<X<l1T). 

146. Thefunction 

where 

8logsecx 
p(x)= (g(xj)"2-' 

g(x) = fox (1 + sect) dt=x+ log (secx+tanx), 

decreases steadily from 1 to 0 as x increases from 0 to b. 

[use Theorem 145 to show that ifx (g3 p' cotx) < 0 and so p' < O.J 

a Except in Theorem 55. For positive a, see Theorems 51, 54,77, and § 3.5. 
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147. Thefunction 

fX (l+sect)logsect dt 
a(x)= 0 x 

. logsecx{ (l+sect)dt 
• 0 

increases steadily from t to t as x increases from 0 to t 7T. 

There is a general theorem which will be found useful in the proof of 
Theorem 147. 

148. Iff, g, and f'lg' are positive increasing functions, then fig either 
increases for all x in question, or decreases for all such x, or decreases to a 
minimum and then increases. In particular, if f(O)=g(O)=O, then fig 
increases for x> O. 

To prove this, observe that 

d~(~=(~-~)~ 
and consider the possible intersections of the curves y=flg, y=f'lg'. At 
one of these intersections the first curve has a horizontal and the second 
a rising tangent, and therefore there can be at most one intersection. 

If we take g as the independent variable, write f(x) = rf(g), and suppose, 
as in the last clause of the theorem, that 

f(O)=g(O)=O, 
orrf(O)= 0, then the theorem takes the form: if rf(O)= 0 and rf'(g) increases 
for g> 0, then rflg increases for g> O. This is a slight generalisation of part 
of Theorem 127. Theorem 148 should also be compared with Theorems 128 
and 129. 

4.4. Maxima and minima of functions of one variable. 
A very common method for the proof of inequalities is that of 
finding the absolute maximum or minimum of a function cp (x) by 
a discussion of the sign of cpt (x). 

d 
(1) Since dx {(I-x)eX }= -xex , 

the function (1- x) eX has just one maximum, for x = O. Hence 

1 
149. eX < -- (x < 1, x =l= 0). 

I-x 

This is also a consequence of Theorem 142. 
d 1 

(2) Since dx(logx-x+I)=;;-1 

the function log x - x + 1 has one maximum, for x = 1. Hence 

150. logx<x-I (x>O, x=l=I). 
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More generally log x < n (Xl/In - 1), for any positive n, since we 
may write xl/n for x in Theorem 150. This result is also a 
corollary of Theorem 36. 

(3) Let 4> (x) = 1 + xy - (1 + xk)1/k (1 + yk')l/k', 

where k> 1, x> 0, y> o. It is easily verified that 4> (x) has a 
unique maximum 0 for Xk=yk'. 

This gives another proof of Ho (Theorem 38), and so of H 
(Theorem 11). 

(4) If x and yare positive, and k> 1, then the function 
Xk yk' 

4>(x)=xy-7C-Y 

has the derivative y - x k1k', and attains its maximum 0 for Xk = yk'. 
We deduce Theorem 61 (and so Theorems 37 and 9). 

(5) The function 
4> (x) =xy-xlogx- eY-l, 

where x is positive, attains its maximum 0 for x = eY - l • We deduce 
Theorem 63. 

4.5. Use of Taylor's series. Iff(x) = ::Ean xn and g(x) = ::Ebnxn 

are two series with positive coefficients, and an ~ bn for every n, 
we say thatf(x) is majorised by g(x), and write f-< g. It is plain 
that f -< g and fl -< gl imply ffl -< ggl' and so on. 

To illustrate the use ofthis idea in the proof of inequalities, we 
prove 

151. If 8n = a l + a2 + ... + an, where n> 1 and the a are positive, 

then 
( ) ) ( ) sn sn 2 sn n 
1 + a l (1 + a2 ••• 1 + an < 1 + If + 2T + ... + nT . 

In fact 1 + avx-< eavx, so that 
II (l+ax)-<esnx . 

The result follows by adding up the coefficients of 1, x, X2, ••• , xn , 

and observing that there is strict inequality between the co­
efficients of x2• It may also be proved by writing the left-hand 
side in the form 

n(n-1) 
1 + npl + 1. 2 P2 + ... + Pn 

(so that npl = sn) and using Theorem 52. 
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DIFFERENTIAL CALCULUS: FUNCTIONS OF 

SEVERAL VARIABLES 

4.6. Applicationsofthe theory of maxima and minima of 
functions of several variables. The most 'universal' weapon 
for the discovery and proof of inequalities is the general theory 
of maxima and minima of functions of any number of variables. 
Suppose that we wish to prove that two functions cp and if; of the 
continuous variables Xl' X2, •.. , Xn are comparable; let us say, to 
fix ourideas, that cp -if; ~ O. This will be so, if cp -if; has a minimum, 
if and only if this minimum is non -negative; and this is a question 
which can always be attacked (at any rate when the functions 
are differentiable) by the standard arguments of the theory of 
maxima and minima. 

The method is attractive theoretically, and always opens a 
first line of attack on the problem; but it is apt to lead to serious 
complications in detail (usually connected with the 'boundary 
values' of the variables), and it will be found that, however 
suggestive it may be, it rarely leads to the simplest solution. We 
illustrate these remarks by considering its application to the 
fundamental inequalities G and H. 

(1) To prove G, consider 

where 

f(xl , x 2 , ••• , xn- l ) = XIQlX2Q2 ••• xnQn, 

I 
xn=-(Ilf-qlxl - ... -qn-Ixn-l)' 

qn 

in the closed and bounded domain Xl ~ 0, ... , Xn ~ O. It is con­
tinuous, and therefore attains a maximum, which is not on the 
boundary (wherefvanishes). At the maximum 

O = ~ of = qy _ qn qy ( 
f ':l v=1,2, ... ,n-1), 

UXy Xy Xn qn 
and so the X are all equal to Ilf. In this case no serious complication 
is introduced by the boundary valuesa • 

(2) We may use H (for two sets of variables) as an illustration 
of the 'method of Lagrange'. Consider 

f(XI ,X2, ... ,xn)=blxl +b2x2+ •.. +bnxn' 
a Compare § 2.6 (i). 
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where by> 0, subject to the condition that 

cP (Xl' X2, ..• , Xn) =xl k +xl+ ... +Xnk (k> 1) 

is a positive constant X. The (n-l)-dimensional domain defined 
by x;;;; 0, cP = X is closed and bounded, and some X vanishes at 
every point of its boundary. 

If the maximum is attained at an internal point, then, at that 
point, 

is independent of v; and an elementary calculation shows that 
j= Xl/k ('2:.bk')I/k' = ('2:.xk)lIk ('2:.bk')l/k'. 

There remains the possibility that the maximum should be 
attained at a boundary point, where some x, say xn ' is zero. This 
possibility may be excluded by an inductive argument, since, if 
we assume that the inequality has been proved already for n-l 

variables, and that xn = 0, we have 

j= nfbpXp;;::; cfXpkrk Cfbpk'Y'k' < ('2:.xpk)l/k ('2:.bpk')1/k'. 

The weakness of the method is that, if we are to argue by induc­
tion at all, it is better to prove the whole theorem inductively, 
and then we come back to one ofthe proofs ofR given already. 

(3) It is quite usual that the method should, as in case (2), 
prove troublesome when developed in detail; but even in such 
cases it is very useful as indicating a possible solution of the 
problem. 

A great many of our theorems assert inequalities between two 
symmetric functionsj(xl ,x2 , ••• ,xn) and g(XI,X2' .•. ,xn), homo­
geneous of the same degree and positive for all positive x. This 
is true, for example, of Theorems 9, 16 and 17 (for unit weights, 
the crucial case), Theorem 45 (in the case of comparability) and 
Theorems 51 and 52. 

When we use Lagrange's method~ we must consider the maxi-
mum of j for constant g, say for g = 1. Lagrange's equations are 

oj =' og ( 1 ') ) 
':l 1\ ':l V=,~, ... , n . 
uXp uXp 
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These equations have always a solution with Xl = X 2 = ... = xn , 

and A is the value of f for this system of values of x. If A is a 
strict absolute maximum of f, then f~ AI], and there is inequality 
except when all the X are equal. 

All this is in fact true in the cases mentioned, but there are 
other cases in which the solution does not give the maximum 
of f. This happens for example in Theorem 45, in the case of 
non-comparability. 

INTEGRAL CALCULUS 

4.7. Comparison of series and integrals. There are many 
inequalities which are proved most easily by arguments based on 
the integral calculus; and often, by consideration of areas or 
volumes, in an 'intuitive' way. We give here a few of the most 
useful general theorems, in which the integrals considered are of 
the elementary Riemann or Riemann-Stieltjes type. In Ch. VI 
we shall consider inequalities between integrals systematically, 
and there we shall use the general Lebesgue and Lebesgue­
Stieltjes integrals. 

The theorems which follow immediately are due in principle 
to Maclaurin and Cauchya. 

152. If f(x) decreases for X ~ 0, then 

f(l) + f(2) + ... + f(n) ~ J~ f(x)dx ~f(O) + f(l) + ... + f(n-1). 

There is inequality if f(x) decreases strictly. 

In fact J"+1 
f(v+ 1) ~ " f(x)dx ~f(v) 

(with inequality iff(x) decreases strictly). 
Further theorems of the same type, which we state without 

proof, are: 

153. If ao < a l < a2 < ... , andf(x) decreases for x~ ao, then 

V~l (a y- ay_l)f(ay) ~ J :nf(X) dx ~ "~1 (ay- av-l)f(av- l )' 

a Maclaurin (1, I, 289); Cauchy (2, 222). 
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154. If f(x) ~ 0, and f(x) decreases in (0, g) and increases in 
(g, 1), where ° ~ g ~ 1, then 

~ {!(~) +f(~) + ... + f(n: I)} ~ J>(X)dX 

~ ~ {f(O) + f(~) + ... + f(I)}. 

155. If f(x, y) is a decreasing function of x for fixed y and a 
decreasing function of y for fixed x, then 

~~1 v~>(fL'V) ~ J~ J: f(x,y)dxdy~ :~~ :~>(fL'v). 
Applications of these theorems, particularly to the theory of 

the convergence of series, may be found in any textbook of 
analysis. 

4.8. An inequality of Young. The simple but useful theorem 
which follows is due to W. H. Younga and is of a different type. 

156. Suppose that ~(O)=o, and that ~(x) is continuous and 
~trictly increasing for x ~ 0; that ifJ (x) is the inverse function, so that 
~ (x) satisfies the same conditions; and that a ~ 0, b ~ 0. Then 

ab ~ J: ~(x)dx+ J: ifJ(x)dx. 

There is equality only if b = ~ (a). 

The theorem becomes intuitive if we draw the curve y = ~ (x) 
or x = ifJ (y), and the lines x = 0, x = a, y = 0, y = b, and consider the 
various areas bounded by them. A formal proof is included in that 
of the more general theorems which follow. 

A corollary of Theorem 156 is 

157. If the conditions of Theorem 156 are satisfied, then 

ab~a~(a)+bifJ(b). 

Theorem 157 is weaker than Theorem 156, but often as effective 
in applications. 

We pass to more general theorems which include Theorem 156 . 

.. w. H. Young (2). 
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158. Suppose that v= 1,2, ... , n; that av~O; thatfv(x) is con­
tinuous, non-negative, and strictly increasing; and that one of the 
lv (0) is zero. Then 

ITfv(av);;;;;:Efa. IT fp.(x).dfv(x); 
o 11-*' 

and there is equality only if al = a2 = '" = an.a 

. The inequality may be made intuitive by considering the curve 
Xv =fv (t) in n-dimensional space, and the volumes bounded by the 
coordinate planes and the cylinders which project the curves on 
these planes. 

To obtain a formal proof, put 

Fv(x)=fv(x) (O;;;;;x;;;;;av), Fv(x)=fv(av) (x~av)' 

so that Fv(x) ;;;;;fv(x). If we suppose, as we may, that an is the 
largest of the av, then, since ITF v (0) = 0, we have 

ITfv(av) = ITFv(an) = fa..d{ITFv (x)} = :E fa.. IT F p. (x) .dFv(x) 
o • 0 11-*' 

= :Efa. IT F p. (x) .dfv(x);;;;; :Efa. IT fp. (x) .dfv (x); 
• 0 11-9=' • 0 11-*' 

and there is inequality unless every av is equal to an' 

159.b Suppose that gv (x) is a system of n continuous and strictly 
increasing functions each of which vanishes for x = 0; that 

(4.8.1) ITgv-l(X)=X; 

and that av ~ O. Then 

ITav;;;;;:Efa·gv(X) dx. 
o x 

There is inequality unless gl (~) =g2(a2)= ... =gn(an). 

If we put 

gv-1(x) = Xv (x), bv=gv(av), av=gv-l(bv)= Xv (bv) 

and apply Theorem 158 to the systemfv(x) = Xv (x), we obtain 

f
b. X fa. g (y) 

ITav= IT Xv (bv) ;;;;;:E -(-) dxv (x) =:E _v_ dy. 
o Xv x 0 y 

a Oppenheim (1). The proof is by T. G. Cowling. 
b Cooper (1). 
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A system of n functions 

rpll(X)=YII;X) 

connected by (4.8.1) is a generalisation of a pair of inverse 
functions. For suppose that n=2, gl(X)=Xrp(x), g2(x)=xifi(x). 
and write (4.8.1) in the two forms 

Then 

rp (x) = gl (x) = Y2 -l{gl (x)}, 
X 

x 
Y2-1(X) = gl-l (x). 

ifi (x) = Y2;X) = gl-1{g2 (x)}, 

and Y2-1g1' gl-lg2 are inverse; and the functions rp and ifi of 
Theorem 156 can always be represented in this form. Hence 
Theorem 159 includes Theorem 156. 

If in Theorem 159 we take y,,(x)=xl/qv, where ~q,,=I, then 
(4.8.1) is satisfied, and we obtain 

ITa" ~ ~qva//qv, 

which is Theorem 9. If in Theorem 156 wetakerp(x)=xk-l, where 
k> 1, we have ifi(x) =Xk'-l, and we obtain Theorem 61. If we take 

rp(x)=log(x+ 1), ifi(y)=eY -l, 

and write u, v for a+ 1 and b+ 1, we obtain Theorem 63, for 
u~ 1, v~ l.a 

We pointed out above that Theorem 156 is intuitive from 
simple graphical considerations. Ifinstead of reckoning areas we 
count up the number of lattice-points (points with integral 
eoordinates) inside them, we obtain 

160. If rp(x) increases strictly with x, rp(O)=O, and ifi(x) is the 
function inverse to rp (x), then 

m n 
mn ~ ~ [rp (fL)] + ~ [ifi (v)], 

o 0 

where [y] is the integral part of y. 

This theorem is less interesting in itself, but illustrates a type 
of argument often effective in the Theory of Numbers. 

a Actually the result is true for u>O and all v. See § 4.4 (5). 

HI 8 



CHAPTER V 

INFINITE SERIES 

5.1. Introduction. Our theorems so far have related to finite 
sums, and we have now to consider their extensions to infinite 
series. The general conclusion will be that our theorems remain 
valid for infinite series in so far as they retain significance. 

Two preliminary remarks are necessary. 

(1) The first concerns the interpretation of our formulae. An 
inequality X < Y (or X;;:; Y), where X and Yare infinite series, is 
always to be interpreted as meaning 'if Y is convergent, then X 
is convergent, and X < Y (or X;;:; Y)'. More generally, an in­
equality of the type 

(5.1.1) X < ~Ayb ... Zc 

(or X;;:; ~Ayb ... ZC), where Y, ... , Z are any finite number of 
infinite series, ~ is a finite sum, and A, b, ... , c are positive, is 
to be interpreted as meaning 'if Y, ... , Z are convergent then 
X is convergent, and X satisfies the inequality'. Neglect of this 
understanding would lead to confusion when it is '<' which 
stands in the inequality. We could read' Y' as '00' in the case 
of divergence; then 'X;;:; 00' would convey no information, but 
'X < 00' would imply the convergence of X, and this implication 
would usually be false. 

Some inequalities will occur which are not of the form (5.1.1). 
These are usually secondary, and should be reduced to the form 
(5.1.1) if there is any doubt about their interpretation. Thus 

Xa<AYb 
should be interpreted as 

X < Alia Ybla, 

which is of the form (5.1.1); and X> Y should be interpreted 
as Y <X. 

There is one important inequality, viz. 

(5.1.2) ~ab > (~ak)1/k (~bk')1lk', 



INFINITE SERIES 115 

where k < I, k =l= O,a which we have written deliberately in a 
form unlike (5.1.1). We might have written it as 

(5.1.3) I:ak < (I:ab)k (I:bk')-kik' 

when O<k< I, or as 

(5.1.4) 

when k < o. These are of the form (5.1.1), and are the forms 
which arise primarily in the proof of Theorem 13. We prefer the 
form (5.1.2) for formal reasons, and because it shows clearly 
the contrast between the two cases of the theorem, but we 
must use the other forms if we wish to show explicitly and 
exactly the implications about convergence. 

There are a few cases where the inequality asserted is not one 
between two infinite series but involves the results of other limit 
operations. Thus, when we extend the inequality &(a)<Maxa 
(Theorem 2) we obtain an inequality between an infinite product 
and the upper bound of an infinite set. Such an inequality 
'X < Y' is to be interpreted in the same way, viz. as 'if Yis 
finite then X is finite and X < Y'. 

(2) The second remark concerns method, and should be read in 
conjunction with § 1. 7. Suppose, for example, that we wish to 

prove the inequality (I:ab)2;:;:; I:a2I:b2 

for infinite series. We know the inequality for finite sums 
(Theorem 7) and, everything being positive, our conclusion 
follows by a passage to the limit. 

We cannot extend Theorem 7, in its complete form, to infinite 
series in so simple a manner, since in the limiting process ' < ' 
degenerates into' ;:;:; " and we are unable to pick out the possible 
cases of equality. Here and elsewhere, we must avoid limiting 
processes; instead of deducing the infinite theorem from the 
finite one, we must verify that the proof given for the finite 
theorem remains valid, with that minimum of change required 
by the new context, in the infinite case. For example, either 
proof of Theorem 7 given in § 2.4 may be extended to the infinite 

a (2.8.4) of Theorem 13. 

8-2 
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case by the addition of a few obvious comments concerning 
convergence. 

It will not be necessary to retrace the path followed in Ch. II 
systematically. The few new points which arise are neither 
difficult nor particularly interesting, and, in so far as they are 
important, recur in a more interesting form in Ch. VI. We shall 
therefore arrange the substance of this chapter informally, illus­
trating and commenting upon the new possibilities, and ending 
with an enumeration of some of the more important theorems 
of Ch. II which remain valid with the new interpretation. 

5.2. The means IDlr• We begin by some comments on a new 
point which arises in the definition of the means IDlr. We have 
now an infinity of terms a and weights p, and there are two cases 
to consider, according as l:p is convergent or divergent. 

(i) If l:p is convergent we may suppose that the sum is 1 and 
write q for p. In this case IDlr is defined, for r> 0, by 

(5.2.1) IDlr(a) = (l:qar)l/r, 

and may be regarded as a 'mean' in thesenseof§2.20ra 'weighted 
sum' in the sense of § 2.10 (iv). It is finite or infinite according as 
l:qar is convergent or divergent. 

(ii) If l:p is divergent, we can still define IDlr as a limit, e.g. by 

IDlr(a)= lim (~p"a"r/~pJ))l/r, 
n-'>-oo 1 1 

(5.2.2) 

or as the corresponding upper limit lim. The latter definition is 
not particularly interesting, though it would preserve most of 
our theorems. If we define IDlr by (5.2.2), we are met by a 
difficulty: the exi8tence of IDlr for a given r does not en8ure its exi8t­
ence for any other r. In fact we can determine the a so that IDlr shall 
exist for a given set r 1> r 2' ... , r m of values of r and for no others. 
We shall therefore confine our attention to case (i). 

For the general question of the existence of IDl,., see, for example, 
Besicovitch (1). We may illustrate the point by showing briefly how to 
:find a so that either of the limits 

lim 1 ( ) li 1 (S S 2) n llJ. + as + ... + an , m n llJ. + as + ... + an 

may exist without the other: here p = 1. 
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Take first two sequences 
eXI' 1%2' • ~ ., IX'tU, (Xl' 1%2' ..• ; f31' /32' ••• , fJw, /31' /32' .... 

with period w. When a = IX, both limits exist and have the values 

A _IXI+lXa+···+IX",. A _1X12+ lXa2+ ..• + 1X",.2. 
1- 'jjJ '2- 7J1 ' 

and when a=f3 they have the corresponding values B I , B a• 

Now take the a as follows: 

lXI' lXa, ... , IX",. (repeated NI times), 

f31' f32 , f3",. (repeated Na times), 

lXI' lXa' IX",. (repeated N3 times), 
... , ........................... 
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It is easy to see that, by supposing the sequence N I , Na/NI' N 3/Ng , ... to 
tend to infinity with great rapidity, we can make (al + ... +a.,)/n and 
(aIa+ ... +a.,2)/n oscillate between AI' BI and A g , Ba respectively. The 
conditions for convergence will then be Al = BI and Ag = Ba respectively, 
and we can obviously choose the IX and f3 so that either of these conditions 
shall be satisfied without the other. 

We therefore restrict ourselves to case (i). We define ffi'l:r' for 
positive or negative r, by (5.2.1), with the convention that 
ffi'l:r = 0 if r is negative and an a zero or '£.qar divergent. We 
define @ (and ffi'l:o) by 

(5.2.3) @(a)=ffi'l:o(a)=IIaq=exp('£.qloga), 
with the conventions that @ = 00 if IIaq diverges to 00 (i.e. if 
'£.q log a diverges to + 00), and @ = 0 if IIaq diverges to 0 (i.e. if 
'£.qloga diverges to -00). It is to be observed that loga may 
have either sign, and that the definition of @ fails if '£.q log a is 
oscillatory. In this case @ is meaningless. 

It follows from Theorems 36 and 150 that 
tr-l tB-l 

(5.2.4) logt<--<-- (0<r<8, t>O), 
r 8 

unless t= 1, when there is equality. We define log+ t and log- t by 
log+t=logt (t> 1), 10g+t=0 (O<t~ 1), 
log-t=logt (O<t;;; 1), 10g-t=O (t> 1), 

so that 
1 

log+ t~ 0, log- t ~ 0, log t=log+ t+log- t, log- t= -log+ t' 
It then follows from (5.2.4) that 

1 1 
0;;; '£.q log+ a;;; r '£.' q (ar - 1) ;;;.; '£.' q (as - 1), 
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where ~' denotes a summation extended over the a which ex­
ceed 1. Hence, if ffils (a) is finite for some positive 8, then ffilr (a) is 
finite for 0 < r < 8, and ~q log+ a is convergent. We can prove 
similarly that, if ffil-s (a) is positive for some positive 8, then 
ffil-r (a) is positive for - 8 < -:- r < 0, and ~q log- a is convergent. 
In the first case @ is positive and finite or zero, in the second 
it is positive and finite or infinite. If ~q log a oscillates then 
~q log+ a and ~q log- a are both divergent, and this is only 
possible when ffilr (a) = 00 for all positive rand ffilr (a) = 0 for all 
negative r. It is only in this case that the definition of @ (a) 
can fail. 

There is one new point which, as we shall see in § 5.9, affects 
the specification of the cases of equality in some of our theorems. 
This point arises from the possibility that, when r ~ 0, ffilr(a) 
may be zero although no a is zero. If r> 0 then, as in Ch. II, 
ffilr(a) can be zero only if (a) is nul, in which case ffilr(a) = 0 for 
all r. But when r ~ 0 there is a difference. The ffilr(a) of Ch. II 
was zero, for such an r, if and only if some a was zero, and then 
ffilr(a) was zero for all r ~ o. It is now possible, when r ~ 0, that 
ffils(a) should be zero for 8 < r and positive for 8;;;; r, or zero for 
8~r and positive for 8>r. 

Thus in Theorem 1 there were two exceptional cases; 

Min a < ffilr(a) < Max a, 

unless either all the a are equal, or else r < 0 and an a is zero. 
All that we can say now is 'unless either all the a are equal (in 
which case both inequalities reduce to equalities) or else r < 0 and 
ffilr(a) = 0 (in which case Min a = 0 and the first inequality reduces 
to an equality)'. Substantially the same point arises in connection 
with Theorems 2, 5, 10, 16, 24 and 25 (to quote only cases 
referred to in our summary in § 5.9). 

5.3. The generalisation of Theorems 3 and 9. We use 
the inequalities (5.2.4), and the equation 

tr-l 
lim -- =logt. 
r--*O r 
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Taking t=a/'Zqa=a/W-, r= I in (5.2.4), we have 

a 
loga-Iog W- ~ IJ(-I, 

log® -logW-= 'Zq (loga-IogW-) ~ I-I = O. 
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with equality only if every a is W-. This proves the analogue of 
Theorem 9. 

Suppose now that SJRs is finite for some positive 8. Then ® is 
positive and finite or zero: the proof below applies to either casea • 

Given e> 0, we can choose N so that 

(5.3.1) 'Z qloga<log(®+e), 
n;i,N 

(5.3.2) 
as-l 

'Z q--<e, 
n>N 8 

and then ro so that 0 < ro < 8 and .. 
ar-l 

(5.3.3) 'Z q--< 'Z qloga+e 
n~N r n~N 

for O<r<ro• We have then 

log ® (a) =!log ® (ar) ~ !logW- (ar) ~ W-(ar) - 1 
r r r 

Hence 

ar - I ar - 1 as - 1 
'Z q--+ 'Z q--< 'Z qloga+e+ 'Z q--
n~N r n>N r n~N n>N 8 

< log (® + e)+ 2e. 

1 
10gSJRr (a) =-logW- (ar)-3>log® (a) 

r 

when r -3> + o. We leave it to the reader to prove that, if SJRr is 
positive for some negative r, then SJRr -3> ® when r -3> - o. 

5.4. Holder's inequality and its extensions. The proofs of 
HOlder's inequality, and other theorems of the same type, given 
in Ch. II apply equally to infinite series. We may observe in 
passing that the series may be multiple series. Thus 

('Z'ZafLV bfLV)2 ~ ~a~v 'Z'Zb~v' 

a It is modelled on the proof by F. Riesz (7) of the corresponding integral 
theorem: see § 6.8. 
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For example, suppose that ~Up. 2 and ~vv 2 are convergent, and 
take 

b = 1 (ib 0). 
p.v (fL+v)l-Hl 

Since ~~ (fL+v)-2-2a is convergent, it follows that 

~~ up'vv 
(fL+ V )1+a 

is convergent. This is an imperfect form of a theorem to be 
proved later (Theorem 315). 

The theorems concerning mr deduced from Holder's inequality 
(Theorems 16 and 17) are unchanged, except that the statement 
of the second exceptional case of Theorem 16 must be modified 
in accordance with our remarks at the end of § 5.2. Here we 

must say 'unless 8~0 and ms(a)=O'. 
One new point of greater interest arises in connection with 

this group of theorems. There is a theorem, suggested by Theorem 
15 but not a corollary of it (even when it has been extended to 
infinite series), which has no analogue for finite sums. 

161.a If k > 1 and ~ab i8 convergent for all b for which ~bk' is 
convergent, then ~ak i8 convergent. 

We deduce this from another theorem due to Abelb, which is of 
great interest in itself. 

162. If ~an is divergent and 

An=a1 +a2 + ... +an , 

a Landau (1). 
bAbel (1). There are theorems of the same type involving an arbitrary function 

f(x). Thus, if l:an is divergent, f(x) is positive and decreasing, and 

1= ("'f(X)dX, 
• 1 

then the convergence of I involves that of l:anf(An)' and the divergence of I in­
volves that of l:anf(An_l): see, for example, de la Vallee Poussin (1, 398-399), 
Littlewood (1). This theorem, though of a more general character, does not actually 
include Theorem 162: it is not true that the divergence of I necessarily involves 
that of l:an f(An)' For an example to the contrary take 

1 
an = 22n. f(x)--­

- x log x· 



INFINITE SERIES 121 

80 that An -':>-00, then 

(i) ~ ~n i8 divergent, 
n 

(ii) ~ A a~+s i8 convergent for every p08itive 8. 
n 

(i) We have 

an+I an+2 an+r An+r - An 1 _ An --+ --+ + -- > --'-'-';---'-' 
An+I An+2 ... An+r = An+r An+r' 

which tends to 1 when n is fixed and r-':>-oo, and is therefore 
greater than t for any n and some corresponding r. This proves (i). 

(ii) We may obviously suppose 0 < 8 < l. Then 

~AnS-An_lS ~(1 1 ) 
A liAs= AS-As 

n-I n n-I n 

is convergent. By Theorem 41, the numerator on the left is not 
less than 8 AnS-I (An -An-I) = 8 an AnS-I. It follows that 

~ an 
AnAn_i 

is convergent. We prove in fact a little more than (ii). 
To deduce Theorem 161, write 

ak=u, ab=uv, bk'=uvk'. 

We then have to prove that, if ~un is divergent, there is a Vn 
such that ~unvn is divergent and ~unvnk' convergent. We take 
Vn = 1jU n' where Un = U I + u2 + .... + Un' and the conclusion 
follows from Theorem 162. 

5.5. The means Wl:r (continued). There is little to be added 
about the means Wl:r , but one or two further remarks are re­
quired. We begin with a remark concerning the generalisation of 
Theorem 4. This theorem, in so far as it concerns positive r, 
must be interpreted as follows: if the a are bounded, and a * = Max a 
i8 their upper bound, then 

Wl:r -':>- Wl:oo = a*, 

when r -':>- + 00; if the a are unbounded, but Wl:r i8 finite for all p08itive 
r, then Wl:r-':>-oo. 
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The question of the continuity of imr for a finite positive or 
negative r is no longer quite trivial. We state a comprehensive 
theorem, but give no proof, since all the points involved arise in 
a more interesting form in Ch. VI (§ § 6.10-6.11). 

If an = 0, imr = 0 for all r (whether 0 be positive or zero). We 
exclude this case, and also the case in which @ is meaningless, 
when imr=oo forr>O and imr=O forr<O. We write 

2r(a) = logimr(a) 
(with the conventions log 00 = + 00, log 0 = - (0). 

163. Apart from the cases just mentioned, the set of values I for 
which 2r (a) is finite is either the nul set or a closed, half-closed, or 
open interval (u, v), where -oo~u~v~ +00, which has r=O as 
an internal or end-point, so that u ~ 0 ~ v, but is otherwise arbitrary 
(and in particular may include all real values or none). 2r is + 00 

to the right, and - 00 to the left, of I; is a continuous and strictly 
increasing function of r in the interior (if it exists) of I; and tends, 
when r approaches an end-point of I from inside I, to a limit equal 
to its value at the end-point. 

5.6. The sums 6 r • The definition of 6 r given in § 2.10 is un­
changed, and there is little to be said about the theorems concern­
ing it, though those which involve continuity in r are naturally 
less immediate. Theorem 20 must be interpreted as meaning 'if6r 

is convergent for some (sufficiently large) r, then it is convergent 
for all greater rand ... ', and Theorem 21 as meaning 'if 6 r is con­
vergent for all positive r (however small) then ... '. The extension 
of Theorem 20 may be proved as follows. If 6 R is convergent for 
a positive R, then an -+ 0, and 6 r is convergent for r > R. There 
is a largest a, which we may suppose on grounds of homogeneity 
to be 1, and we may suppose the a arranged in descending order. 
If then a l =a2 = .. · =aN= 1 > aN+l' 
we have 6 r= (N +a~V+l +a~+2+ ... )l/r, 
for r> R. The series here lies between 1 and. 

N R R 
+aN+1 +aN+2 +···, 

from which the theorem follows. 
There is one new theorem (trivial in the finite case). 
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164. If e>R i8 convergent, then e>r i8 continuou8 for r > Rand con­
tinuou8 on the right for r = R. If e>R i8 divergent, but e>r convergent 
for r> R, then e>r-+oo when r-+ R. 

The proof may be left to the reader. 

5.7. Minkowski's inequality. The main arguments of 
§§ 2.11-2.12 require no alteration. Theorems 24-26 suggest a 
further generalisation, with both summations infinite. 

165.a Ifr> 1 and arnn i8 not of the form brncn , then 

{~qn (~Prnarnny}l/r < ~Pm (~qna;-"n)l/r. 
n m m n 

The inequality i8 rever8ed when 0 < r < 1. 

There is no real loss of generality in supposing P = 1, q = 1, and 
the proof goes as before. Similarly, corresponding to Theorem 27, 
we have 

166. ~ (~arnnY > ~ ~a;-"n 
n m mn 

if r> 1 (with a rever8ed inequality if 0 < r < 1), unles8, for every n, 
amn = 0 for every m 8ave one. 

5.8. Tchebychef's inequality. As one further illustration 
we take Tchebychef's inequality (Theorem 43). 

We may suppose ~P = 1. The identity 
n n n n nn 

~PjL ~pvavbv - ~PjL ajL ~Pvbv = t ~ ~PjLPV (ajL - av) (bjL - by) 
1 1 1 1" 1 1 

shows, provided of course that neither (a) nor (b) is nul, (i) that 
if (a) and (b) are similarly ordered then the convergence of ~pab 
implies that of ~pa and ~pb, and (ii) that if (a) and (b) are 
oppositely ordered then the convergence of ~pa and ~pb implies 
that of ~pab. In either case we may put n=oo in the identity, 
and our conclusions follow as before. 

5.9. A summary. The theorem which follows is substantially 
an enumeration of the principal theorems of Ch. II which remain 
valid, with the glosses which we have explained in the preceding 
sections, for infinite series. 

a Here, as in Theorem 26, we abandon our usual convention about q. 
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167. Theorems 1, 2,3, 4, 5, 7, 9, 10, 11, 12, 13, 14, 15, 16, 
17, 18, 19, 20, 21, 22, 24, 25, 27, 28 and 43 remain valid 
when the 8eries concerned are infinite, provided that the inequalities 
as8erted are interpreted in accordance with the conventions laid 
down in § 5.1, and that the 8tatement of the exceptional cases in 
Theorems 1,2, 5, 10, 16,24 and 25 i8 modified in the manner 
explained in § 5.2. 

It may be worth while to supplement the last clause of the theorem 
by a more explicit statement. The last words of the theorems must be 

replaced by (1) 'or else r<O and IDlr(a)=O', 

(2) 'or <V(a)=O', 
(5) 'or r;;;;O and IDlr(a)=O', 

(10) 'or (2) <V (a+b+ ... +1)=0', 
(16) 'or s;;;; 0 and IDl.(a) = 0', 

(24) 'orr;;;;O and 9Jl.(a+b+ ... +l)=O', 
(25) 'or r<O and (~(a+b+ ... +1Y)l/r=0'. 

We may add also that (as is explained in § 6.4) most of the theorems 
referred to in Theorem 167 (especially those concerning IDlr) may be 
derived by specialisation from the corresponding theorems for integrals. 
In Ch. VI, however, we often ignore negative values of r. 

MISCELLANEOUS THEOREMS AND EXAMPLES 

The theorems which follow are for the most part connected with 
Theorems 156 and 157. We suppose in Theorems 168-175 that!(x) and 
g (x) are inverse functions which vanish for x = 0 and increase steadily as 
x increases, and that 

F(x) = f:!(U)dU, G(x) = J: g(t)dt. 

168. If ~F(a .. ) and ~G(b,,) are convergent, then ~a"b .. is convergent, 

and ~a .. b,,;;;;~F(a .. )+~G(b,,). 
[Corollary of Theorem 156.] 

169. In:::a,,!(a .. ) and ~b .. g(b,,) are convergent, then~a"bnisconvergent, 

and ~anbn;;;; ~a.J(a .. ) + ~b"g(b .. ). 
[Corollary of Theorem 157.] 

170. It is possible to choose! (and so g, F, G) and a" in such a manner 
that ~F(an) is divergent, but ~a"b .. is convergent for all b .. for which 
~G(b .. ) is convergent. 

171. It is also possible to make ~a .. !(a .. ) divergent, but ~a .. b" con­
vergent whenever ~b"g(b,,) is convergent. 

[The point of the last two theorems is to show that Theorems 168 
and 169 have no converses in the sense in which Theorem 161 gives a 
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converse of Holder's inequality and the convergence test deduced from it. 
Theorem 171 is proved by Cooper (3), and Theorem 170, which includes 
Theorem 171 and is a little stronger, may be proved in the same manner.] 

172. If 1: log ~i/b,,) is convergent, then 1: 1:;n is convergent. 

[Cooper (3): Theorem 172 is used in Cooper's proof of Theorem 171.] 

173. If g(x) satisfies the inequality 
g(xy) ~g(x) g(y), 

and if 1:a"bn is convergent whenever 1:bn g(bn) is convergent, then 
1:a"f(a,,) is convergent. Similarly, if 1:an b" is convergent whenever 
1:G(bn ) is convergent, then 1:F(an ) is convergent. 

[See Cooper (3) for the first form, which in this case is stronger, the 
second form being a corollary.] 

174. If 1:anbn is convergent whenever 1:G(bn) is convergent, then there 
is a number >'=>'(a), depending upon the sequence (a), for which 1:F(>.an ) 

is convergent. 

175. If the conditions of Theorem 174 are satisfied, and F (ex) ~ kF (x) 
for small x, a e> I, and some k, then 1:F(an) is convergent. 

[For the last two theorems see Birnbaum and Orlicz (1).] 

176. If an and bn tend to zero, k is positive, and 

~ an ~ -k/b 
.:... log (I/an )' .:...e n 

are convergent, then 1:an b" is convergent. 
[Use Theorem 169.] 

177. If x>O, an~O, andf(x)=1:an x", thenf(x) is a convex function 
of x and logf(x) oflogx. 

[Plainly f"(x)~O. To prove the second result, let x=e-Y,f(x)=g(y). 
Then gg" - g/2 = 1:ane-nll1:n2ane-ny - (1:na"e-nll)2 ~ 0, 

by Theorem 7. The result follows from Theorem 118.] 

178. If a,,~O, >.,,>>'n_l~O, and f(x)=1:ane-An"', then logf(x) is a 
convex function of x. 

179. If a" > 0 and>.,., i1-n' .•• , v,,, x, y, ... , Z are real, then the domain D 
of convergence of the series 

1:aeAZ+iLlI+ ... +vz =](x, y, ... , z) 

is convex, and log] is a convex function of x, y, ... , z in D. 

[Because (by the extension of Theorem 11 to infinite series) 
] {Xlt+X2 (I-t), ... , zl t+Z2 (1- t)} ~ {f (Xl' ... ,Zl)}t {f(X2' ... , Z2)P-t. 

Here our conventions concerning convergence are important.] 

180. 1:an 2 < 2 (1:n2a n2)t (1: (an - an+l )2)!, 

unless an = 0 for all n. 

rSee Theorem 226.] 



CHAPTER VI 

INTEGRALS 

6.1. Preliminary remarks on Lebesgue integrals. The 
integrals considered in this chapter are Lebesgue integrals, except 
in §§ 6.15-6.22, where we are concerned with Stieltjes integrals. 
It may be convenient that we should state here how much know­
ledge of the theory we assume. This is for the most part very 
little, and all that the reader usually needs to know is that there 
is some definition of an integral which possesses the properties 
specified below. There are naturally many of our theorems which 
remain significant and true with the older definitions, but the 
subject becomes easier, as well as more comprehensive, if the 
definitions presupposed have the proper degree of generality. 

We take for granted the idea of a measurable set, usually in one 
but occasionally in more dimensions. The sets which we consider 
may be bounded or unbounded. The definition of measure applies 
in the first instance to bounded sets: an unbounded set is said to 
be measurable if any bounded part of it is measurable, and its 
measure is the upper bound of the measures of its bounded 
components. 

We shall generally assume, without special remark, that any 
set E with which we are concerned is measurable. We denote the 
measure of E by mE or sometimes, where there is no risk of 
ambiguity, simply by E. If E is unbounded, mE may be 00. 

We also take for granted the idea of a measurable function. 
Sums, products, and limits of measurable functions are measur­
able. All functions definable by the ordinary processes of analysis 
are measurable, and we shall confine our attention to measurable 
functions; we shall not usually repeat explicitly that a function 
which occurs in our work is assumed to be measurable. 

Next, we take for granted the definition of the integral, of a 
bounded or unbounded function, over any (bounded or un­
bounded) interval or measurable set of points. A bounded measur-
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able function is integrable over any bounded measurable set. 
We call the class of (bounded or unbounded) functions integrable 
over the interval or set E in question the class Lor, if it is desir­
able to emphasise the set in question, the class L (E). Iffbelongs 
to L, we say that 'fis L', and writef E L (and similarly for other 
classes). 

Iff=l then fEfdx=mE. 

Iff E L, then If I E L. Iff+ andf- are the functions equal tof 
when f is positive and negative respectively, and to zero other­
wise, so that 

f+=Max(j, 0), f-=Min(j, 0), f=f++f-, Ifl=f+-f-, 

thenf+ E L andf- E L, anda 

ffdx=ff+dx+ ff-dx, f If I dx=ff+dx- ff-dx. 

Iff~O, and (f)n = Min (j,n), then 

ffdx= lim f (j)n dx 
n-+co 

(substantially by definition). 
Iff E L, and (g is measurable and) I g 1<0 If I, then gEL. 
Iff1>f2' .. ·,fn E L then 

J (adl +ad2+'" +anfn)dx=a1 ff1dx+a2f f2 dx + ... +anffndx. 

Ifp> 0 and (jis measurable and) Ifl p E L, we saythatfbelongs 
to the Lebesgue class LP, or f E LP. These classes are most im­
portant when p ~ l. L1 is identical with L. 

If the integration is over a finite interval (or bounded set), then 
Lp includes every Lq for which q>p; fELq implies fEY. A 
bounded function belongs to every Lq. These propositions are not 
true for an infinite interval;fmay belong to LP, in (0, (0), for one 
value of p only. 

If the interval is finite andj€Y, p<q, then Ijlp<I+IfI«, so that 
j€LP. 

If the interval is (0, a), where a < I, then (a) x-lip belongs to Lp-I! for 

( 1)-2IP every 3>0, but not to LP; (b) x-lip loga; belongs to LP, but not to 

.. We state the results for one variable and omit explicit reference to the range or 
set of integration. 
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LP+S; (c) log (1/x) belongs to every Lp; and (d) ella: belongs to no LP. lithe 
interval is (0, ocr), then x-t (1 + jlog x j )-1 belongs to L2 but to no other 
class Lp. 

6.2. Remarks on nul sets and nul functions. A set of 
measure zero is called a nul set. Nul sets are negligible in the 
theory of integration. If f = g except in a nul set, we say that 
f and g are equivalent, and write f= g. Equivalent functions have 
the same integral (if any). 

Iff= 0, we calIf a nul function, and say thatf is nul. 
Similarly, we define 'equivalent in E', 'nul inE':fis nulinE if 

f = ° at all points of E except the points of a nul set. In such cases 
we shall not repeat the reference to E when the context makes it 
obvious, as for'example when we are considering integrals over E. 

If a property P (x) is possessed by all x except the x of a nul set, 
we shall say that it is possessed by almost all x, or that P(x) is 
true for almost all x, or almost always. Thus a nul function is 
almost always zero. 

We shall generally assume that our functionsf, g, ... are almost 
always finite; but there will be occasions when we have to consider 
functions infinite in a set of positive measure. Thus iff is generally 
positive, but zero in asetE of positive measure, and r < 0, then we 
must regardJr as infinite in E, and f Jrdx as having the value 00. 

If E is nul then J 
fdx=O 

E 

for all f. We shall assume without special remark that a set E 
over which an integral is extended is not nul. 

If f;;::; 0, then a necessary and sufficient condition that f f dx = 0 is 
that f should be nul. 

It may be worth while to call attention explicitly to the theorem which 
replaces this in the theory of Riemann integration. We denote the class 
of Riemann integrable functions by R. A necessary and sufficient con­
dition that j should be R is that j should be bounded and that its set of 
discontinuities should be nul. 

If j is R, and j'?;. 0, then a necessary and suificient condition that 
ffdx = 0 is that j = 0 at all points of continuity of j. 

For (1) if the condition is satisfied, thenf= 0 and so ffdx= O. And (2) if 
it is not satisfied, then there is a point of continuity ~ at which j(~) > 0, 
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and an interval including ~ throughout which f(x) > H(~); so that 
fjdx>O. 

This theorem enables us to specify the cases of equality in our inequalities 
when they are restricted to functions of R. In fact most of our theorems 
have a dual interpretation. The primary interpretation is that in which 
the integrals are Lebesgue integrals and 'nul' and 'equivalent' are in­
terpreted as in the theory of Lebesgue. In the secondary interpretation 
integrals are 'Riemann integrals', a 'nul function' is a function which is 
zero at all its points of continuity, and 'equivalent functions' are functions 
whose difference is nul in this sense. 

6.3. Further remarks concerning integration. What has 
been set out in §§ 6.1 and 6.2is a sufficient foundation for most ofthe 
subsequent theorems: for example, for the most complete forms 
of HOlder's and Minkowski's inequalities (Theorems 188 and 
198). There will be a few occasions on which we shall have to 
appeal to more difficult theorems, and we enumerate these here. 

(a) Integration by part8. The theorem required is: iff and g are 
integral8 (ab80lutf,ly continuou8 function8), then 

f~fgldX=[fgJ~ - f~f'gdX. 
(b) Pa88age to the limit under the integral 8ign. The two main 

theorems are 
(i) If 18n (x) I < 4> (x), where 4> € L, and 8n (x) tend8 to a limit 8 (x) 

for all or alm08t all x, then 

f 8n (x)dx-+ f 8 (x)dx. 

(ii) If 8n (x) € L for every n, 8n (x) increases with n for all or alm08t 

all x, and lim8n (x)=8(x), 

then f8n (x)dx-+f8 (x)dx. 

In (ii) the integral on the right may be infinite, when the result 
is to be interpreted as f8n(x)dx-+ex); in particular this happens 
if 8 (x) = ex) in a set of positive measure. In each of these theorems 
n may be an integer which tends to infinity or a continuous 
parameter which tends to a limit. 

It follows from (i), as is shown in books on the theory of functions of 
a real variable, that a functionf(x) whose incrementary ratio 

f(x+h)-f(x) 
h 

HI 9 
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is bounded (and which therefore has a derivative almost everywhere) is the 
integral of its derivative. Combining this remark with that at the end of 
§ 3.18 we see that a continuous convex functionf(x) is the integral of its 
derivative f'(x), or of its one-sided derivativesf/ (x),fr'(x). It is therefore 
the integral of an increasing function. On the other hand, if f(x) is the 
integral of an increasing function g(x), and h> 0, then 

JX+h fX 
f(x+h)-f(x)= g(u)du?; g(u)du=f(x)-f(x-h), 

x x-h 

so thatf(x) is convex. Hence the class of continuous convex functions is 
identical with that of integrals of increasing functions. 

An increasing function belongs to R, so that the integrals in question 
exist as Riemann integrals, and the theorem could be proved without 
any use of the theory of Lebesgue. 

(c) Substitution. The standard theorem is: if f and g are in~ 
tegrable, g ~ 0, G is an integral of g, and a = G (oc), b = G({3), then 

(6.3.1) f: f(x)dx= f: f{G(y)}g(y)dy. 

Here any of a, b, oc, {3 may be infinite. 

This theorem covers all cases in which we shall require the rule 
for transformation of an integral by change of the independent 
variablea . But we shall generally use only trivial substitutions 
such as x = y + a or x = ay, when the validity of the rule follows 
at once from the definitions. 

(d) Multiple and repeated integrals. The only theorem appealed 
to is 'Fubini's Theorem'. If f(x,y) is (measurable and) non­
negative, and anyone of t~e integrals 

f: f~ fdxdy, f: dx f~ fdy, f~ dy f: fdx 

exi8ts, then the other integral8 exist, and all are equal. Here the 
limits are finite or infinite, and the case of divergence is included; 
if one integral diverges the others diverge. 

s We may add two additional remarks concerning the formula (6.3.1). 
(1) If we suppose, as in the text, that g is non-negative and integra'ble, but 

assume only the measurability (and not the integrability) of f, then the existence 
of the right-hand side of (6.3.1) is a sufficient, as well as a necessary, condition 
for the existence of the left-hand side, i.e. for the integrability of f. 

(2) The integrability of f (x), though it implies that of f {G (y)} g (y), does not 
imply even the measurability of f {G (y)}. 
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Suppose then that J(x,y) is measurable and non-negative. 
The double integral is zero if and only if J(x, y) is nul, i.e. if 
the set in which J(x, y) > 0 has measure zero. The first repeated 
integral is zero ifand onlyifJ(x, y) is, for almost all x, nuliny; and 
the second ifJ(x, y) is, for almost all y, nul in x. Hence these three 
senses of 'a nul non-negative function of two variables' are 
equivalent. 

6.4. Remarks on methods of proof. Inequalities proved for 
finite sums may often be extended to integrals by the use of 
limiting processes, but something is usually lost in the argument. 
We may illustrate this by considering the analogue for integrals 
of Theorem 7. 

Suppose first thatJ(x) and g (x) are non-negative and Riemann 
integrable in (0, 1); and take 

av=J(~), bv=g(~) 
in Theorem 7. Dividing by n 2 , we obtaina 

and, making n-+oo, 

(6.4.1) (f>gdXY ~ f~PdX f~ g2dx. 
If we use the Lebesgue integral we must argue difierentlyb. 

Suppose that J and g are non-negative and L2 in (0, 1), and that 
ers is the set in which 

Then 

r-1 J2 r 
--~ <-, n n 

8-1 8 __ ~g2<_ 
n n 

(r,8= 1,2,3, ... ). 

(f>gdXY ~ [~~ (~r (~r ersJ ~~~~ers~~~ers, 
by Theorem 7. Now 

r 1 r-1 1 f1 
~ -ers=~~ ers+~~--ers~-+ Pdx, 

n n n 0 

.. It is here that 'ho geneity in :E' (§ 1.4) is essential. 
b The precise form of a ument used here was suggested to US by Mr H. D. Ursell. 

9-2 
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and there is a similar inequality involving g. Hence, making 
n-+oo, we obtain (6.4.1). 

In either case our final result is imperfect. Even if we can use 
Theorem 7 with' < " this will degenerate into ' ~ , when we pass 
to the limit, and we shall lose touch with the cases of equality. 

The passage in the opposite direction, from an integral in­
equality to an inequality for sums, is much simpler, and can be 
effected by suitable specialisation. Consider, for example, the 
inequality 

(6.4.2) exp {J: log f(x) dX} < J: f(x) dx 

(§6.7, Theorem 184). If 

qv>O, ql+q2+···+qn=l, 

and we definef(x) by 

f(x) =a" (ql + ... +q,,-l ~ x< ql + ... + q,,-l + q,,), 

it being understood that ql + ... +qv-l means 0 when V= I, we 
obtain Theorem 9. The conditions under which inequality de­
generates into equality in Theorem 9 also follow immediately 
from the corresponding conditions for (6.4.2). 

This method of proof is often useful, since integrals are often 
more manageable than series. We shall meet with examples in 
Ch. IX. 

6.5. Further remarks on method: the inequality of 
Schwarz. We meet the difficulty of § 6.4, as in our treatment 
of infinite series, by going back to the proofs of the theorems of 
Ch. II, and observing that, with the obvious changes, they can 
be applied to integrals of the most general type. We may illustrate 
the point here by considering 'Schwarz'sa inequality', the ana­
logue of Theorem 7. 

181. (ffgdx)2 < ff2dx f g2dx, unless Af=: Bg, where A and Bare 
constants, not both zero. 

Here, and later, we suppress the limits of integration when 
there is nothing to be gained by showing them explicitly; they 

a Or Buniakowsky's (see p. 16). 
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may be finite or infinite, or the integrals may be over any measur­
able set E, in which case of course Af=. Bg means Af=. Bg in E. 
We also adopt conventions corresponding to those of § 5.1: 
, X < Y' means 'if Y is finite then X is finite and X < Y'; and 
inequalities of other forms like those mentioned in § 5.1 are to be 
interpreted similarly. Thus every inequality contains implicitly 
an assertion about' convergence', which we shall only make ex­
plicit occasionally. For example, Theorem 181 asserts implicitly 
that 'if J Pdx and J g2dx are finite, then Jfgdx is finite; if f and g 
are L2, then fg is L'. 

The proofs corresponding to those of § 2.4 run as follows. 

(i) We have 

Jf2dx J g2dx - (Jfgdx)2 
= Hf2(x)dxJ g2(y)dy+ H g2(x)dxJf2(y)dy 

-Jf(x)g(x)dxJf(y)g(y)dy 
= i J dy J {f(x) g (y) - g (x)f(y)}2dx ~ O. 

It remains to discuss the possibility of equality. In the first 
place, there is certainly equality if Af=.Bg. Next, if there is 
equality, and g is nul, then Af=. Bg with A = 0, B= 1. We may 
therefore assume that g is not nul, so that the set E in which 
g (y) =1= 0 has positive measure. If 

then 
(6.5.1 ) 

J dy J {f(x) g (y) - g (x)f(y)}2dx = 0 

J {f(x) g (y) - g (X)f(y)}2dx = 0 

for almost all y, and therefore for some y belonging to E. We 
may therefore suppose that g(yo) =1= 0 and that (6.5.1) is true for 

y=Yo· But then f(x)g(Yo)-g(x)f(yo) = 0 

for almost all x, and this completes the proof. 

(ii) The quadratic form 

J (>..f+ fLg)2dx=,\2 Jf2dx+ 2,\fLJfgdx+ fL2 J g2dx 

is positive. We can now complete the proof as in § 2.4. 
The analogue of Theorem 181 for multiple integrals may be 

proved similarly. We shall not usually mention such extensions 
explicitly, but we shall occasionally take them for granted. It 
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is to be understood that, when we do this, the extension may be 
proved in the same manner as the original theorem. 

We can translate the proof of Theorem 8 in the same manner, 
and so obtain 

182.a Jf2dx Jfgdx Jfhdx >0, 

Jhfdx Jhgdx 

unless the functions f, g, "', 71, are linearly dependent, i.e. unless 
there are constants A, B, ''', 0, not all zero, such that 

Af+ Bg+ ... + Oh=. O. 

MEANS SJJtr(f} 

6.6. Definition of the means SJJtr(f) when r =t= O. In what 
follows the sign of integration, used without specification of the 
range, refers to a finite or infinite interval (a, b) or to a measurable 
set E.b f(x} is finite almost everywhere in E and non-negative; 
p (x), the 'weight function', is finite and positivec everywhere in 
E, and integrable over E. The parameter r is real and not zero. 

Our hypotheses involve 0 < J pdx < 00. It is often convenient 
to suppose J pdx= I: 

in this case (cf. § 2.2) we write q for p. 
We write 

(6.6.1) 

(6.6.2) 

so that 
(6.6.3) 

(r =t= O), 

with the following conventions. If J pJr dx is infinite, we write 

JpJrdx=oo, SJJtr(f}=oo (r>O), IDl,.(f)=O (r<O). 

a Gram (1). 
b When r>O we can reduce every case to that of the interval (- ro. ro). by 

supposing 1=0 in the set complementary to E. 
C The hypothesis p ;;;:; 0, instead of p > 0, would lead to slightly different results 

concerning the cases of equality (e.g. pI == pC instead of I == C). This case could be 
reduced to the apparently more special case by replacing E by the sub-set of E in 
whichp>O. 
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In particular IDI:T (f) = 0 if r < 0 and f = 0 in a set of positive 
measure. If we agree further to regard 0 and 00 as reciprocals of 
one another, we have 

(6.6.4) 

This formula enables us to pass from positive to negative r, and 
we shall simplify the following theorems by restricting ourselves, 
for the most part, to positive r. 

If f= 0; IDI:T(f) = 0 for all r. If f= C, where C is positive and 
finite, then IDI:r(f) = C for all r. If f= oo,a then IDI:r (f) = 00 for all r. 
Apart from these cases, IDI:r (f) = 00 is possible only when r> 0, 

and IDI:r (f) = 0 when r < o. 
We define Maxf, the 'effective upper bound' off, as the largest 

g which has the property: 

'if e > 0, there is asete (e) of positive measure in whichf> g- e'. 

If there is no such g, we write Maxf=oo. For functions con­
tinuous in a closed interval, Maxf is the ordinary maximum. 
Minfis defined similarly; Minf~ 0 and 

(6.6.5) Minf=Max\l/f). 

Equivalent functions have the same Max and Min. 

Suppose for example that the range of integration is (0, co), and that 
f(x) and q(x) are the step functions defined by 

f(x)=an, q(x)=qn (n-l;o;;x<n, n=1,2,3, ... ). 

Then 9J1,.(f) = (.~::qar)l/r = 9Jlr(a), 

according to the definition of (5.2.1). Similarly 

Maxf = Max a, Minf= Min a, 

and (if we anticipate the definition of § 6.7) <» (1) = <» (a). This specialisa­
tion enables us to include many theorems of Ch. II and Ch. V in the 
corresponding theorems of this chapter. 

Alternatively we might (as in § 6.4) suppose that the range ofintegration 
is (0,1), and definef(x) and q(x) by 

f(x)=an (ql+···+qn-l;o;;X<ql+ ... +qn), q(x)=l. 

In this case also 9J1,.(f) reduces to 9J1,.(a). 

a To admit this case is to abandon momentarily the understanding of § 6.2, that 
f is assumed to be finite almost everywhere. 
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183. If r * 0 and 9Rr (f) is finite and p08itive, then 

Minf < 9Rr (f) < Maxf, 
Unles8 f= 0. 

Here r is of either sign. The proof is like that of Theorem 1. 
Suppose first that r= 1. Then, using a weight function q(x), we 
have f q(f- Sll)dx= O. 

Hence either f = Sll or f - Sll is positive and negative, each in a set 
of positive measure. This proves the result forr = 1, and we extend 
it to the general case by use of (6.6.3). 

If we wish to state Theorem 183 in a form corresponding more 
exactly to that of Theorem 1 and its extension in Ch. Va, we 
must say 'Minf<9Rr (f) <Maxf unless f=O or else r<O and 
9Rr (f) = 0'. We have then two cases of equality corresponding 
exactly to those distinguished in § 5.2, the 'primary' case in 
which f= 0, in which both inequalities reduce to equalities, and 
the 'secondary' case, occurring only for r < 0, in which one 
inequality only reduces to an equality. This distinction recurs 
in many of our theorems, when r < 0, as it recurred in Chs. II 
and V; but it is less conspicuous here because we often ignore 
negative values of r. 

6.7. The geometric mean of a function. We define the 
geomet~c mean & (f) by 

(6.7.1) & (f) = & (f,p) = exp (fp f;~~dX) , 
or 

(6.7.2) log & (f) = Sll (log f), 

so that, in particular, ifp=q, f qdx= 1, we have 

(6.7.3) .3 (f) = log & (f) = f q log fdx. 

Certain preliminary explanations are necessary. 
Since log f is not necessarily positive, the possibilities concern­

ing the convergence of.3 are more complex than those which we 
have considered hitherto. 

a See §5.2. 
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Ifwe denote by,s<+ and,s<- the integrals formed with log+ i and 
log-i, as,s< is formed with logi,a then there are four possibilities: 
(a) ,s<+ and ,s<- both finite, (b) ,s<+ finite, ,s<- = -00, (c) ,s<+ =00, 

,s<- finite, (d) ,s<+ = 00, ,s<- = - 00. The four cases are exemplified 
by the functions 

x, eVe, e1/X , exp (:2sin~) 
in (0,1), with q(x)=l. 

If iJRr (f) is finite for some r> 0, then, since 

log+ i;;; Max (ir ~ 1 , 0) , 

,s<+ (f) will be finite, and we shall be concerned only with cases (a) 

and (b). In case (a), ,s< (f) exists as a Lebesgue integral, and & (f) 
is positive and finite. In case (b) we write 

,s<(f) = -00, & (f) = o. 
Similarly, if iJRr(l/f) is finite for some r> 0, we are in case (a) or 
case (c); in the latter we write 

,s< (f) = 00, & (f) = 00. 

In case (d) the symbol & (f) is meaningless. In this case iJRr (f) 
and iJRr(l/f) are infinite for every positive r, and iJRr(f) =0 for 
every negative r. 

In case (a) we have 

(6.7.4) 

both sides being positive and finite; and a moment's consideration 
shows that this equation holds in all cases, if we adopt the same 
convention about 0 and 00 as in (6.6.4), and the additional con­
vention that one side of the equation is meaningless if the other 
is meaningless. 

We now prove the analogue of Theorem 9. 

184. If m (f) is finite then 

(6.7.5) &(f)<W-(f), 

a See § 5.2 for the definitions of log+ and log-. 
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unles8 f= C, where C i8 con8tant. More generally, if SJRr(f), 
where r> 0, is finite, then 

(6.7.6) 

with the 8ame reservationa. 

Suppose first that r= 1, SJRr= m:. If m:(f) = 0, f= 0, and so 
3(f)= -ct:), @(f)=0= m:(f). We may therefore suppose m: (f) > 0. 

Since, by Theorem 150, 

(6.7.7) logt< t-I, 

ift> 0, t=f= 1, we have 
f logf-Iogm:(f) ~ m:(f) -1, 

(If <m:(f) _ 
n(logf)-logm:(f) = m:(f) -1- 0, 

log @ (f) = m: (log f) ~ log m: (f). 

Equality can occur only if f= m: (f). 
The result for general r now follows from (6.6.3). 
In Theorem 184 we have stated the hypotheses 'if m:(f) is 

finite', 'if SJRr (f) is finite' explicitly. As we have explained in 
§§ 5.1 and 6.5, we shall often save space by omitting such hypo­
theses in accordance with our conventions. We shall also denote 
constants by C, A, B, a, b, ... without explanation, when there is 
no danger of ambiguity. Two C's occurring in the same con­
nection will not necessarily be the same. 

We add two corollaries (extensions of Theorem 10). 

185. G>(f)+ G>(g) < G>(f+g), unless Af=Bg, where A, B are not both 
zero, or G> (f + g) = O. 

We may suppose that G>(f+g»O. Then, by Theorem 184, 

G>~)~)g) G> (f~g) ~ 21 (f~g)' 
The addition of the two inequalities of this type gives the result. 

More generally 

186. G>(fl) + G>(f2) + G>(fa) + ... < G> (fl + f2+ fa + ... ) 
(the series being finite or infinite), unless fn= On '£.fn or G>('£.fn) = O. 

a For the proof which follows see F. Riesz (7). 
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6.8. Further properties of the geometric mean. Our 
next theorem corresponds to Theorem 3 (for positive r). 

187. If SJRr (f) is finite for some positive r, then 

(6.8.1) SJRr(f)~@)(f) 

when r~+O. 
It should be observed that @)(f) may be finite even when 

SJRr (f) = 00 for all r > O. This is so, for example, if f(x) = exp (x-i), 
q (x) = 1, and the range is (0, 1). 

When E is a closed interval or set, and f is continuous and 
positive, the proof is immediate. In this case f~ I) > 0, logfis 
bounded, and 

SJR/= f erIog t qdx= f [1 +rlogf+O{r2 (logf)2)] qdx 
= 1 +r3+ o (r2), 

lim log SJRr = lim ~log {1 + r3 + 0 (r2)} = 3. 
r 

There is some difficulty in extending this argument to the 
general case. The difficulty can however be avoided as followsa • 

By (6.7.6) and (6.7.7), we have 
1 

(6.8.2) log@)(f) ~logSJRr(f)=rlog2{(fr) 

~~{2{(fr) -1}= fJr -1 qdx. 
r r 

When r decreases to zero, W -1)/r decreases (by Theorem 36) and 
tends to the limit log t. Henceb 

(6.8.3) lim~{2{(fr) -1}= 2{(logf) = log@) (f), 
r 

the right-hand side being finite or -00. Combining (6.8.2) and 
(6.8.3) we see that 

log@) (f) ~ lim log SJRr(f) ~ lim log SJRr(f) ~ log@)(f), 

which proves the theorem. 

6.9. Holder's inequalityforintegrals. We consider next the 
.. F. Riesz (7). Other, less simple, proofs have been given by Besicovitch, Hardy, 

and Littlewood: see Hardy (7). 
b See § 6.3 (b) (ii). 
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theorems for integrals which correspond to Theorems 11-15. It is 
convenient to introduce another definition which enables us to 
shorten our statements of cases of equality. Two functions f, g 
will be said to be effectively proportional if there are constants 
A, B, not both zero, such that Af=. Bg. The idea has occurred 
already in Theorems 181 and 185. A nul function is effectively 
proportional to any function. We shall say that f, g, h, ... are 
effectively proportional if every pair are so. 

188. If a., f3, ... , A are positive and a.+ f3+ ... +A= 1, then 
(6.9.1) I j'Y.gf3 ... l>'dx < (f fdx)rx (f gdx)f3 ... (f Idx)>., 

unless one of the functions is nul or all are effectively proportional. 

Assuming no function nul, we have, by Theorem 9, 

(ffdX!~;~d~)r~~IldX)>' f(f!dxr (f:dXY'" (f l~Xr dx 

~ f(f;~X+f:~x+"'+flA;x)dX=I, 
with inequality unless 

f g _ 1 
ffdx= fgdx='" = fldx' 

As a corollarya we have 

189. If k> 1 then 
(6.9.2) Ifgdx < (ffkdx)1/k (f gk' dx)1/k' 

unless fk and gk' are effectively proportional. 
If 0 < k < 1 or k < 0 then 
(6.9.3) f jgdx > (f f kdx)1/k (f gk' dx)1/k' 

unless either (a) jk and gk' are effectively proportional or (b) fg is 
nul. 

The second half of the theorem requires a little explanation. 
Suppose first that 0 < k < 1 and that f gk' dx is finite, so that g 
is almost always positive. If then we write 1= 11k, so that 

1> 1, and f=(uv)l, g=v-l, 

so that fg=u1, fk=uv, gk' = vI', 

.. Compare § 2.8. 



INTEGRALS 

then u and v are defined for almost all x, and 

J uvdx < (J u1dx)111 (J vI' dx)1!l' 

or Jjkdx < (Jfgdx)k (J gk' dx)1-k, 
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unless u l , vI' are effectively proportional or, what is the same 
thing, unless jk, gk' are effectively proportional. Since J gk' dx is 
finite and not zeroa, this is (6.9.3). 

If J gk' dx = 00, then 
(J gk' dX)l/k' = 0 

(since k' < 0). Hence the right-hand side of (6.9.3) is zero, and 
there is inequality unless Jfgdx= 0, or fg is nul. 

When k < 0, 0 < k' < 1, and the argument is substantially the 
same. 

As we have explained in §§ 5.1 and 6.5, the theorem contains 
implicitly an assertion about convergence or finitude; if two of 
the integrals involved are finite, then so is the third. The 
integral which is finite if the other two are finite is J fgdx when 
k> 1, Jfkdx if 0 < k < 1, and J gk' dx if k < o. 

The theorem corresponding to Theorem 161 is very important 
and, like Theorem 161, is not a direct corollary of preceding 
theorems. 

190.b If k > 1 and fg belongs to L for every g which belongs to Lk', 
then f belongs to Lk. 

We consider first the case in which (a, b) is finite (or mE finite), 
and suppose that Jjkdx=oo. We can find a functionj* which 
(1) has only an enumerable infinity of values ai' and (2) satisfies 
f* ~f <f* + E. Since jk does not exceed a constant multiple of 
f*k+(f_f*)k, by Theorem 13, we have Jf*kdx=oo. Hence,if 
ei is the set in which f* = ai' 

'i:,alei=oo. 

It follows from Theorem 161, taking 

alei=ul, bl'ei=vl', aibiei=uivi, 

a J gk' dx = 0 would involve gk' == 0 and so g == 00, and this possibility is excluded 
by the understanding of § 6.2. 

b F. Riesz (2). 
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that there is a bi such that "Zbl' ei is convergent and "Zai bi e1 = 00. 
We take g(x)=bi in ei (for all i). Then 

J gk'dx = "Zb,r ei 
is convergent, but 

J f*gdx= "Zaibiei= 00, 

and hence J fgdx = 00, contrary to the hypothesis. 
If the integrals are over an infinite range, say (0, 00), we can 

write 

when 

t 
X=-­

I-t' 

I: fgdx = I: FGdt, I: fkdx = I~ Fkdt, I: gk' dx = I: Gk' dt, 

where 

F(t)= (I-t)-2/kf(I ~t)' G(t)= (I_t)-2/k' g(I ~t)' 
The theorem is thus reduced to the finite case. 

191. If k> 1, then a necessary and sufficient condition that 
J fk dx ;;; F is that J fg dx ;;; Fl/k Gl/k' for all g such that J gk'dx ;;; G. 

The condition is necessary, by Theorem 189. If it is satisfied, 
thenJ fkdx is finite, by Theorem 190. If J fkdx > F, we choose g 
so that gk' is effectively proportional to fk, and then, by Theorem 

189, J fg dx = (J fk dx )l/k (J gk' dx )l/k' > Fl/k Gl/k'. 

The theorem may also be stated with ' < ' for' ;;; , in the first 
two inequalities: in order that Jfkdx< F, it is necessary and 
sufficient that J fgdx < Fl/k Gl/k' whenever J gk' dx;;; G. 

We can prove Theorem 191 without appealing to the more difficult 
Theorem 190. If ffkdx>F then f(j)nkdx>F for sufficiently large n. 
Then, choosing g effectively proportional to (fn)k-l, we have 

ffgdx ~ f (j)ngdx = (f (j)nkdx)l/kGl/k' > Fl/kGl/k', 

in contradiction to the hypothesis of the theorem. 
Another proof of Theorem 190 (and of the associated Theorem 161) 

has been given by Banach (1,85-86). 
An example of the use of Theorem 191 appears in §6.13, in the proof of 

Theorem 202, and others in Ch. IX.a In § 6.13 Theorem 202 is proved in 

" See in particular §§ 9.3 and 9.7 (2). 
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two different ways, of which one.depends explicitly on Theorem 191 while 
the other does not use it, and the logical status of Theorem 191 in proofs 
of this character is explained in detail. 

6.10. General properties ofthemeans 'mr(f). We shall now 
prove a number of theorems which include the analogues of those 
of §2.9. The properties to be investigated are a little more com­
plex than they were there, and we shall require some additional 
conventions before we can state them comprehensively. We 
suppose first that r > 0; the theorems which we prove in this case, 
with those which we have proved concerning @ (f), will give us 
the substance of what is required, and we shall be able to state 
the results for unrestricted r more summarily, leaving most of 
the details of verification to the reader. 

192. If 0 < r < sand 'ms is finite, then 

'mr<'ms, 
unlessf=- O. 

If r= soc, so that 0< oc< 1, we have, by Theorem 188, 
f qrdx= f (qfs)rx q1-rx dx < (f qjBdx)rx (f qdX)l-rx= (f qjBdx)rx, 

unless qfS =- Oq. Since q > 0, this is the result required. 

193. If'mr is finite for every r, then 'mr~Maxfwhen r~+oo. 

(i) Suppose j-t=Maxf finite. Then (a) 'mr~j-t, and (b) f>j-t-€ 
in a set e of positive measure " so that 

{qdX=, > 0, 'mr~ (j-t- E) ,1(r, lim 'mr ~ j-t- E. 

(ii) Suppose Maxf=oo. Then, for any G> O,f> G in a set e of 
positive measure, and, as above, lim 'mr ~ G. 

From (6.6.4), (6.6.5) and Theorem 193 it follows that 

'mr~Minf 
when r~-oo. 

194. If 0 < s < 00 and 'ms is finite, then 'mr is continuous for 
O<r<sand continuous on the left for r=s. If'ms=oo, but 'mr is 
finite for 0 < r < s, then 'mr~oo when r~s. 

(i) Suppose 'ms finite. Then 
qr ~ q Max (1, fS), 
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a majorant of class L independent of r; and the results follow 
from § 6.3 (b) (i).a 

(li) Suppose IDls=co. We can choose n so that 

J (qf8)n dx > G. 

But (qfr)n is a continuous function of r, and SOb 

J (qr)n dx > tG 
forr>8-e. HenceJ qfrdx> tG, which proves the theorem. 

6.11. General properties of the means IDlr(f) (continued). 
In the preceding sections we have, in the main, confined our atten­
tion to means for which r ~ 0, leaving it to the reader to deduce 
the corresponding results for means of negative order from the 
formulae (6.6.4) and (6.6.5). In this section we consider the 
means more comprehensively. We write, as is natural after 
Theorems 187 and 193, 

(6.11.1) @(f)=IDlo(f), Maxf=IDl+oo(f), Minf=IDl_oo(f). 

IDlo (f) may be meaningless, but only if IDlr (f) = co for all r > 0 and 
IDlr (f) = 0 for all r < O. 

We begin by disposing of two exceptional cases. 

(A) Iff=. C then IDlr= C for all r, and this is true even in the 
extreme cases C = 0 and C = cO.C 

(B) We may have 

IDlr = 0 (r < 0), IDlo meaningless, IDlr = co (r > 0). 

These cases we dismiss. We then leave it to the reader to verify 
the truth of the assertions in (1) and (2) below, which cover all 
cases other than the exceptional cases (A) and (B). 

(1) IDlr < IDls for - co ~ r < 8 ~ co, unless (a) IDlr = IDls = co (which 
can happen only ifr~O), or (b) IDCr=IDls=O (which can happen 
only if 8 ~ 0). 

a Continuity for r < 8 can also be deduced from Theorems 111 and 197 (see § 6.12). 
b By § 6.3 (b) (i). 
c Strictly, the second case is excluded by the understanding of § 6.2. 
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(2) We denote by WCr- o and WCr+o the limits (which always 
exist) of WCt when t.-+r from below and from above respectively. 

If r> 0 then WCr - o = WCr , and WCr+o = WCr except when WCr is 
positive and finite but WC(=oo for t>r, in which case 

WCr+o = 00 > WCr • 

If r < 0 then WCr+o = WCr , and WCr - o = WCr except when WCT is 
positive and finite but WC(=O for t<r, in which case 

WCr- o= 0 < WCr • 

If r = 0 there are exceptional cases corresponding to each of 
those indicated above. If WCo is 0 or 00 then either (a) WC-o and 
WC+o are each equal to WCo, or else (b) 

WC_o= WCo= 0, WC+o=oo 

or WC_o = 0, WCo = WC+o = 00. 

If WCo is positive and finite, then each of WC_o and WC+o, if also 
positive and finite, is equal to WCo; but WC-o may also be 0 or WC+o 
may be 00. 

Finally, all possibilities not explicitly excluded may actually 
occura . 

The results may be stated more symmetrically and concisely in terms of 

Er=log Wl,.: 
we agree that log 00 = + 00 and log 0 = - 00. We put aside the cases 
corresponding to cases (A) and (B) above, viz. 

(a) f= 0 (where 0 may be 0 or (0), when Er=log 0 for all r; 

(b) Eo meaningless, when Er = + 00 for r> 0 and Er = - 00 for r < O. 

195. Apart from the cases Just mentioned, the set of values of r for which 
Er = log im, is finite is either the nul set or a closed, half·closed, or open in­
terval I or (u, v), where - OO~u~'l)~ 00, which includes the point r= 0 (so 
that u~O~v), but is otherwise arbitrary (so that, for example, u may be 
- 00 and v be + 00, or u and v may both be 0). Er is + 00 for values of r to 
the right of I and - 00 for values to the left. 

Inside I, Er is continuous and strictly increasing. If r tends to an end­
point of I through values of r interior to I, then Er tends to a limit (finite 
or infinite) equal to its value at the end-point in question. 

6.12. ConvexityoflogWC/. In this section (as in Theorem 17) 
we suppose r> O. 

3 See Theorem 231. 

HI 10 
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196. If 0 < r < s < t, and SJJCt is finite, then 
t-s s-r 

SJJCss < (SJJC/)t-r (SJJC/)t-r, 

unless f == 0 in a part of E and f == C in the complementary part. 

The proof is based on Theorem 188, and is the analogue of 
that of Theorem 17. For equality, 

qr==Cqp. 
As a corollary, we have 

197. logSJJC/ (J) =r1og SJJCr (J) is a convex function of r. 

Compare Theorem 87. The reader will find it instructive to 
deduce the continuity of SJJCr (Theorem 194) from Theorem 197. 

6.13. Minkowski's inequality for integrals. Theinequali­
ties of the Minkowski type are derived in substantially the same 
way as in § 2.11. The ordinary form of Minkowski's inequality 
for integrals is 

198. If k > 1 then 

(6.13.1) {f (f+ g+ ... + 1 )kdx}I/k < (f jkdX)l/k + ... + (f lkdx)1/k, 

and if 0 < k < 1 then 

(6.13.2) {f (J + g + ... + 1 )kdx}1/k > (J jkdx)1/k + ... + (f lkdx)l/k, 

unless f, g, ... , 1 are effectively proportional. 
The inequality (6.13.2) is still true generally when k<O, but 

there is a second case of exception, when both sides of the inequality 
vanish. 

We deduce this from Theorem 189 much as we deduced 
Theorem 24 from Theorem 13. Since the cases of equality are 
a little puzzling, we write out the proof of (6.13.2) in detail. 

If S = f + g + ... + 1 then 

(6.13.3) fSkdx=ffSk-ldx + fgSk-ldx+ ... + flSk-ldx. 

Suppose first that 0< k < 1. By Theorem 19, 

Sk 2=fk +gk+ ... + lk. 

Hence, if ffkdx, ... are finite, f Skdx is finite. Also f Skdx > 0 
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unless S=.O and so f, g, ... are all nul. We may therefore suppose 
J Skdx positive and finite. 

By Theorem 189, 

JfSk-ldx> (ffkdx)1/k (J Skdx)1/k', 

unless (a)jk and Sk are effectively proportional or (b) fSk- 1 =.0. 
Since k -1 < 0, and S is finite almost everywhere, the second 
alternative can occur only if f is nul, and so reduces to a case 
of the first. Hence (6.13.3) gives 

(6.13.4) J Skdx > {(f jkdx)1/k + ... + (flkdx)l/k} (J Skdx)1lk', 

unless f, g, ... , l are effectively proportional; and the conclusion 
follows. 

The argument goes similarly when k < 0, provided J Skdx is 
positive and finite. If J Sk dx = 0 then, since k < 0, S is infinite 
almost everywhere, which is impossible since every f is finite 
almost everywhere. If J Skdx is infinite then (again since k < 0) 
Jjkdx, '" are all infinite, and both sides of (6.13.2) are zero. 
This is the second exceptional case mentioned in the enunciation, 
and occurs, for example, when 

f=g=···=l=O 

in a set E of positive measure. 
We have excluded the cases k = 1 and k = 0 from the state­

ment of Theorem 198. The first is trivial and the second is 
included in Theorem 186. We leave it to the reader to state 
Theorem 198 in a form corresponding to that of Theorem 24. 

Corresponding to Theore~ 27, we have 

199. If k > 1 then 

(6.13.5) f(f+ g+ '" + l )kdx > J fkdx+ ... + J lkdx, 

and if 0 < k < 1 then 

(6.13.6) J(f+g+ ... +l)kdx<Jfkdx+ '" + Jlkdx, 

unless, for almost all x, all but one off, g, ... , l are zero. If all of 
f, g, ... , l are almost always positive, then (6.13.6) is true also for 
k<O. 

Theorem 198, with k> 1, is a special case of the first of the 
following three more general theorems, in which the series are 

10-2 
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finite or infinite and the ranges of integration arbitrary. We 
confine ourselves to the case k> 1; in general, the sign of in­
equality is reversed when k < 1. 

200. If k > 1 then 
(6.13.7) [f P~fm (x)}kdx]l/k < ~ {J fmk (X)dX}I/k, 

unless fm(x)-= CmCP (x). 

201. If k> 1 then 
(6.13.8) [~{J fn (X)dX}k]l/k < I {~fn k (x)}1/kdx, 

unless fn (x) -= CnCP (x). 

202. If k > 1 then 
(6.13.9) [HI f(x, y) dy}kdx ]l/k < HI jk (x, y)dx}I/kdy, 

unless f(x,y)-= cp(x) z/J(y). 

In each theorem there is equality in the exceptional case. 
Consider for example Theorem 202 (the least elementary of the 

theorems). We begin by proving the theorem with' ;:;; '. We give 
two proofs, in the first of which we appeal to Theorem 191. In 
each proof the chain of equalities and inequalities which arises 
is to be interpreted in the sense 'if the right-hand side of any 
equality or inequality is finite, then so is the left-hand side, and 
the two are related as stated'. The inversions of the order of 
integration are justified by Fubini's Theorem. 

We write 

(i) In order that 
(6.13.10) 

J = J (x) = I f(x, y)dy. 

it is, by Theorem 191, necessary and sufficient that 
(6.13.11) IJgdx;:;;M 

for all g for which 
(6.13.12) 

Now 

Igk'dx;:;; 1. 

(6.13.13) I Jgdx=I g(x)dxIf(x,y)dy 
= I dy (f g (x)f(x, y)dx);:;;I dy (f jk(x, y)dx)1/k, 

by Theorem 189 and (6.13.12). Hence we may take 
M = I dy (f fkdx)l/k 

in (6.13.10), which proves the theorem (with';:;; '). 
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(ii) Iff Jkdx = 0, then J = 0 for almost all x, and so (for almost 
all x) f= 0 for almost all y. Hence, after § 6.3 (d), f(x, y) == O. 

We may therefore suppose that f Jkdx > O. Let us assume for 
a moment that f Jkdx is finite. Then 
f Jkdx= fJk-1dx f fdy= f dy fJk- 1 fdx ~f dy{(f jkdx)1/k (fJkdx)1/k'} 

= (f Jkdx)l/k' f (f fkdx)l/kdy, 
and so 

(6.13.14) 

which is (6.13.9), with '~' for' <'. 
In tp.is proof we have assumed f Jkdx finite, an assumption 

which was not required in proof (i). In order to get rid of the 
assumption, we must approximate to fby some functionforwhich 
the assumption is certainly justified. Suppose for example that 
the integrations are over finite intervals or sets of finite measure, 
that (f)n is defined as in § 6.1, and that 

J n = f (f)n dy. 

ThenfJnkdx is certainly finite, and so 

(fJ nkdx )1/k ~f{f (f)n kdx}1/kdy ~f(f jkdX)l/kdy. 

From this (6.13.9) follows, with '~', by making n--'?oo. 

The arguments under (i) and (ii) are essentially of the same 
character, the part of the arbitrary g in (i) being played in (ii) by 
the definite function 

Jk-l 
g= (fJkdx)l/k' , 

which satisfies (6.13.12) iff Jkdx isfinite. By using this particular 
g, we avoid an appeal to a rather sophisticated general theorem, 
but at the cost of some additional complications. A similar alter­
native presents itself whenever we make use of Theorem 191. 

It remains to discuss the possibility of equality in (6.13.9). 
There will be inequality if a 

fJgdx<M 

for all g subject to (6.13.12). There is inequality in 
f dy (f gfdx)::;;f dy{(f jkdX)l/k (f gk' dX)l/k'}, 

a See the last remark of § 6.9. 
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unless, for almost all y, fk and gk' are effectively proportional, i.e. 
unless (for almost all y) 

(6.13.15) p (y)jk(x, y) = u(y) gk' (x), 

where p2+u2 >0, for almost all x. If p(y) were zero, for a y for 
which (6.13.15) holds, g(x) would be nul, which is false. Hence, 
in (6.13.15), p(y) > 0, and so 

f(x, y) = if> (x) if; (y), 

where if>=gk'lk, if; = (u/p)llk. This equation holds, for almost all y, 
for almost all x, and therefore, by § 6.3 (d), for almost all x, y. 

The proofs of Theorems 200 and 201 follow similar lines. Thus, in 
proving Theorem 201, we write 

In=ffn dx 

and argue as follows. In order that 'J:.J nk < Mk, it is necessary and suffi­
cient, by Theorem 15,& that 'J:.bnJ n <M whenever 'J:.bnkl ;£ 1. Also 

'J:.bnJ n = 'J:.bnJfn dx = f('J:.bnfn) dx;£f dx ('J:.f nk)1/k ('J:.bnk/ )llkl ;£f('J:.fnk)l/k dx; 

and so on. The summation under the integral sign is justified by (ii) of 
§ 6.3 (b). 

The analogue of Theorem 26 is 

203. If O<r<s then 
lffi.(Y) lffir ("') f(x, y) < lm.("') lffi.(Y) f(x, y), 

unless f(x, y) == cp{x) y,{y). 
For an explicit proof see Jessen (1). 

6.14. Mean values depending on an arbitrary function. 
There is a theory of integral mean values involving an arbitrary 
function similar to that developed in Ch. III. We do not set it 
out in detail here because it would be so largely a repetition, in 
a slightly different form, of what we have said already. We 
confine ourselves to proving the analogue of Theorem 95.b 

204. Supp08e that (1.. ~f(x) ~ fJ, where (1.. and fJ may be finite or 
infinite, and that f (x) i8 alm08t alwaY8 different from (1.. and fJ; that 
the range of integration and the weight function p (x) 8ati8fy the 

a Extended to infinite series. 
b A number of other analogues of theorems of Oh. III are stated among the 

miscellaneous theorems at the end of this chapter. A fuller treatment of some of 
them will be found in Jessen's papers 2 and 3. A good deal of the content of these 
papers has been incorporated, with the appropriate modifications, into Oh. III. 



INTEGRALS 151 

conditions of § 6.6; and that~" (t) is positive andfinitefor rx < t < f1. 
Then 

(6.14.1) ~ (ffpdX) ~f ~(f)pdx 
fpdx - fpdx ' 

whenever the right-hand side exists and is finite; and there is equality 
only whenf-=. O. 

It is possible that f!pdx=oo or ffpdx= -00; (6.14.1) is then 
still true if interpreted in the obvious manner. It is not possible 
(when the right-hand side is finite) that f fpdx should not exist, 
i.e. ff+pdx=oo and f!-pdx= -00. For in this case rx= -00, 
fJ = 00, and ~ (f), being convex and not constant, must tend to 
infinity, with rapidity at least that ofa multiple of If I, either for 
large positive or for large negative values off,a so that f ~ (f)pdx 
cannot exist and be finite. 

We take p=q, fqdx= 1, and suppose first that SJR=ffqdx is 
finite. Iff is not effectively constant, rx < SJR < fJ. Also f is finite, 
and rx <f < fJ, for almost all x; so that, for almost all x, 

~ (f) = ~ (SJR) + (f- SJRH' (SJR) + Hf- SJR)2<fo" (p,), 

where p, lies between f and SJR, so that rx < p, < fJ. Hence 

f ~ (f) qdx;;;; ~ (SJR), 

which is (6.14.1). There is equality only if (f - SJR)2~" (p,) -=. 0; but 
rx < p, < /3, and so f' (p,) > 0, for almost all x, so that thenf-=. SJR. 

Next suppose (say) ffqdx=oo, so that fJ=oo. Then 

~{f (f)n qdx};;:;f ~ {(f)n}qdx, 

by what has been proved already. Since ~ (f) is continuous and 
monotonic for large f, the integral on the right tends to f ~ (f) q dx, 
while that on the left tends to ~(oo). Hence ~(oo) is finite, in 
which case ~ is decreasing and 

~(oo)<~(f). 
It follows that 

~ (00)= ~ (oo)fqdx;;:;f ~ (f) qdx, 

with equality only if ~ (f) -=. ~ (00), a possibility which we excluded. 
The case in which f fqdx= - 00 may be discussed similarly. 

a See Theorem 126. 
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It is possible that the left-hand side of (6.14.1) should be -co. 
The reader will find it instructive to verify that the various cases 
which we have contemplated can all occur. 

If we take cp (t) = -logt, we obtain 

exp (f q logfdX) ~ f qfdx, 

i.e. @l (f) ~ 2( (f) (Theorem 184). If we take cp = tr, we are led again 
to Holder's inequality, and other examples may be constructed 
analogous to those of § 3.11. If we take cp (t) = t log t, we find 

205. fpfdx (fPfIOgfdX ) 
fpdx < exp fpfdx ' 

unlessf= O. 
We can extend the result of Theorem 204 (except for the 

specification of the cases of equality) to any convex and con­
tinuous cpo 

206. The inequality (6.14.1) is true whenever cp(t) is convex and 
continuous in ct. < t < {3. 

After § 3.19, we have 

cp(f) ~ cp(m) +'\(f- m), 

where ,\ is any number between the left and right hand deriva­
tives of cp (t) for t = m. Hence 

N(f)qdx~cp(m), 

which is (6.14.1). 

STIELTJESINTEGRALS 

6.15. The definition of the Stieltjes inte~ral. We have so 
far considered series and integrals separately, and all the funda­
mental theorems have appeared in dual form; thus Holder's 
inequality is contained in Theorems 13 and 189. It is natural to 
look for an extension of these theorems which combines them 
into one, and we can find such an extension by using Stieltjes 
integrals. 

Suppose that cp (x) increases (in the wide sense) in a ~ x ~ b, and 
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that cp(a)=(X., cp(b)=f3. We suppose (X. and f3 (but not necessarily 
a and b) finitea. The curve 

y=y(x)=cp(x) 
is a rising curve which may have an enumerable set of ordinary 
discontinuities or of stretches of invariability. The inverse 
function x=x(y)=x(cp) 

is defined uniquely except (a) in intervals (Yl' Y2) of Y corre­
sponding to discontinuities x=g of cp and (b) for values ofywhich 
correspond to stretches of invariability of cpo If we agree that 
(Yl' Y2) is a stretch of invariability of x (Y), in which it has the 
value g, then x(y) is defined except for the values (b), and is an 
increasing function of y for the values of y for which it is defined. 
Finally we complete the definition of x (y), as an increasing 
function of y, by assigning to it, for a value (b) of y, anyone of 
the values of x in the stretch of invariability. These values of y 
are enumerable, and our choice of x (y) for any of them has no 
effect on the definitions 'which follow. 

We now define the Stieltjes, or Lebesgue-Stieltjes, integral 

f:~: f(x) dcp (x) = f:f(X) dcp, 

of f(x) with respect to cp (x), by 

(6.15.1) f:f(X)dcp = f:f{x(cp)}dcp, 

whenever the integral on the right-hand side exists as a Lebesgue 
integralb • 

The definition (6.15.1), due to Radon (1), reduces the theory 
of Stieltjes integrals to that of Lebesgue integrals, and we may 
therefore expect that no new difficulties will arise. For full dis­
cussions of this and older definitions of the Stieltjes integral, we 
may refer to Hobson (1), Lebesgue (1), Pollard (1), Young (7). 

aIf,e.g.,b=oo,then.B= lim c/>(xl. 
x-+co 

b If g is any function of bounded variation, then g = c/> - .p, where c/> and .p are 
increasing functions, and we may define the Stieltjes integral off with respect to g by 

Jldg=Jldc/> - Jfdr/;· 
We shall not require this more general definition here. 
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We can define 

where cf; is an increasing function, and E a set of values of x, 
similarly, that is to say by the equation 

f Ef(X)dcf; = f e.f{x(cf;)}dcf;, 

where E is the set of values of cf; corresponding to E. We must 
assume E measurable. The integral 

f E dcf; 
is the variation of cf; in E. 

6.16. Special cases of the Stieltjes integral. The simplest 
cases are the following: 

(a) cf;=x. In this case the Stieltjes integral reduces to the 
ordinary Lebesgue integral. 

(b) cf; is an integral. In this case 

f:f(X) dcf; = f>(X) cf;' (x) dx. 

(c) cf; is afinite increasing step-function. 

Suppose that a=al <az< ... <an=b, that cf;(x)=rxk' where 
rxk<rxk+l' in ak<x<ak+l' and that cf;(ak), when 1 <k<n, has 
any value consistent with the fact that cf; increases. Then x(y) is 
a step-function with values aI' az, ... , an' and 

(6.16.1) f>dcf;= f:f{X(cf;)}dcf; 

= (rxl - rx)f(al ) + (rxz - rxl)f(az) + ... + (rxn - l - rxn-z)f(an- l ) 
+ ([3 - rxn_l)f(an) 

= L,pd(ak)' 

where Pk is the saltus of cf; at x = ak • It is plain that any finite sum 
can be expressed as a Stieltjes integral; thus 

~Uk = f f(x) dcf;, 

where cf; is a step-function with unit jumps at aI' az , ... , an' and 
uk=f(ak )· 
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(d) These considerations extend at once to step-functions with 
infinitely many discontinuities, when the Stieltjes integral is 
"'2:,Pkf(ak), summed over all the discontinuities. Any convergent 
infinite series may be expressed in this way as a Stieltjes integral. 

6.17. Extensions of ear Her theorems. It will now be clear 
that all our fundamental theorems may be extended at once to 
Stieltjes integrals, and that the theorems thus obtained include 
those for Lebesgue integrals and also those for sums. We state 
the most representative of these theorems in the next section. 
Two preliminary remarks will be useful. 

(1) When the Stieltjes integral is written as a Lebesgue 
integral, the variable of integration is~. Our conditions for 
equality were always of the type f =- g, f = g except in a set of 
measure zero. The exceptional set in our new theorems will be of 
measure zero in ~, and when we state this concept again in terms 
of x it becomes 'a set of values of x in which the variation of ~ is 
zero', i.e. a set E such that the corresponding values of ~ form 
a nul set. Our conditions for equality must therefore all be in­
terpreted in this sense. Thus 'f is effectively proportional to g' 
means that 

Af=Bg, 

where A and B are constants, not both zero, except at the points 
of a set over which the variation of ~ is zero. It will be observed 
that such an exceptional set cannot include any point at which 
~ (x) is discontinuous. 

A similar point occurs in the definition of Maxf and Minf. 
Thus Maxf is the greatest number g such that, for every positive E, 

f> g - E in a set in which the variation of ~ is positive. 

(2) Many inequalities' X < Y' are true for Lebesgue integrals 
when their analogues for Stieltjes integrals are true only with 
, ;;;: '. Suppose, for example, that the integrations are over (0, (0) 
and that ffdx= 1. Then, by Theorem 181, 

(6.17.1) (J xfdx)2 <ffdx f x2fdx= fx2fdx, 

unless x2 f =- Cf or x2 =- C, which is untrue, so that (6.17.1) is true 
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in any case. In the corresponding theorem for Stieltjes integrals 
we have f dcf> = 1 and 

(6.17.2) (fxdcf»2 ~ f dcf> f x2 dcf> = f x2 dcf>. 

There is equality in (6.17.2) if x2 == 0, i.e. if x is constant except in 
a set over which the variation of cf> is zero, or, what is the same 
thing, if cf> varies at one point only. Thus if cf>= 0 for 0 ~ x < 1, 
and cf>(x) = 1 for x~ 1, then 

(fxdcf>}2= 1 = fx2 dcf>. 

6.18. The means SJRr(f; cf». We write 

( 1 fb )1/1' (ftr dcf»l/r 
SJRr (f) = SJRr (f; cf» = f3 _ IX a tr dcf> = f dcf> (r =!= 0), 

m (f; cf» = SJRl (f; cf», 

( flogfdcf» 
(JJ(f; cf»=exp fdcf> =SJRo(f; cf». 

These definitions presuppose that the integrals involved are 
finite. If ffrdcf> = 00, we agree (following the conventions of § 6.6) 
that SJR,. = 00 when r > 0 and SJRr = 0 when r < o. The points dis­
cussed in §§ 5.2 and 6.7 naturally recur here in connection with 
the definition of (JJ. 

The theorems corresponding to Theorems 183, 184, 187, 189, 
192, 193, 197, and 198 are as follows: we suppose for simplicity 
of statement that r> O. 

207. Min f < SJRr (f) < Maxf unless f== O. 

208. (JJ (f) < SJRr (f), and in particular (JJ (f) < 91 (f), unless f == O. 

209. If SJR,.(f) is finite for some r, then SJRr(f)--*(JJ(f) when 
r--* + O. 

210. If k> 1, then 
f uVdcf> < (f ukdcf> )l/k (f vk' dcf> ) 11k' 

unless uk and vk' are effectively proportional. The inequality is 
reversed when 0 < k < 1 or k < 0, except when Uk and vii;' are 
effectively proportional, or the left-hand side is zero (in which case 
the right-hand side is also zero). 
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This is Holder's inequality; there are naturally corresponding 
generalisations of Theorems 11 (or 10) and 188. 

211. If r < s, then SJRr(f) < SJRs(f), unless f= C. 

212. If SJRr (f) is finite for every positive r, then SJRr (f) -+ Maxf 
when r-+ + 00. 

213. log SJR/ (f) is a convex function of r. 

214. If k> 1, then 

{f(u+v)kd<p}1/k< (fUkd<p)l/k+ (fVkd<p)l/k, 

unless u and v are effectively proportional. The inequality is in 
general reversed if 0 < k < 1 or k < o.a 

AXIOMATIC TREATMENT OF MEAN VALUES 

6.19. Distribution functions. In Ch. III we defined the 
mean value SJRe/> = SJRe/> (a, q) = <p-1 {l:q<p (a)} 

directly, and developed its characteristic properties from the 
definition. Here we reverse the process and give the 'axiomatic' 
treatment promised on p. 66. It is c.onvenient to use the notation 
of Stieltjes integration, and it is for this reason that we have 
reserved the discussion until now; but the Stieltjes integrals 
which we use are actually all finite sums. 

In what follows we consider a special class of step-functions, 
defined for all real x, which we call finite distribution functions. 
We call F(x) a finite distribution function if 

(i) it is constant in stretches and has only a finite number of 
discontinuities, 

(ii) it increases (in the wide sense) from 0 to 1, so that 

F(-oo)=O, F(oo)=I, 

(iii) F(x)=!{F(x-O)+F(x+O)} for all x. 

The distribution function which has jumps q at the points a 
provides a representation of both the values a and the weights q 
involved in SJRe/> (a). The simplest such function is 

E (x) =! (1 + sgnx), 

a We leave the specification of the exceptional cases to the reader. 
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which has the single jump 1 at x=O. If we write 

then 
(6.19.1) 

where 

E,(x) = E(x-e), 

a=a", q=q" (v=I,2, ... ,n), :Eq,,=I, a1 <a2 < ... <an , 

is the general finite distribution function with jumps q at the 
points a. Also 

(6.19.2) 

and the mean value (3.1.3) may be written as 

(6.19.3) mcf>[F] = 4>-1 (f:oo 4>(X)dF(X»). 

Any finite distribution function is 0 for x < A and 1 for x> B, 
A and B being finite numbers depending on F. In what follows 
we confine our attention to a sub-class of these functions, viz. 
those which satisfy 

(6.19.4) F (x) = 0 (x < A), F (x) = 1 (x> B) 

for a fixed A and B. In these circumstances we say that F belongs 
to il (A, B). 

If 4> (x) is continuous and strictly monotonic in the closed 
interval (A, B), then mcf>[F] is defined, by (6.19.3), for all F of 
iJ (A, B). The values of 4> (x) outside (A, B) are not really involved 
in (6.19.3), and we may choose them as we please; it is natural 
to choose them so that 4> (x) is continuous and strictly monotonic 
for -oo~x~oo. 

6.20. Characterisation of mean values. Our object is to 
prove the following theorem. 

215. Suppose that there is a unique real number m[F], corre­
sponding to each F ofC£J (A, B), with the following properties: 

[1] m[E,(x)]=e (A~e~B); 

[2] if Fl and F2 belong to C£J(A, B), Fl~F2forallx, and 
Fl> F2forsome x, then 

m[F1] < m[F2]; 
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[3] if F, F*, G belong to 'Il (A, B), and 

IDe [F] = IDe [F*], 
then IDe [tF + (l-t) G]=IDe[tF*+ (l-t) G] 

for O<t< 1. 
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Then there is a function cfo(x), continuous and strictly increasing 
in the closed interval (A, B), for which 

(6.20.1) IDe[F] = IDe.p [F] = cfo-1 (J:oo cfo (x) dF(X)) • 

Conversely, if IDe[F] is defined by (6.20.1), for a cfo(x) with the 
properties stated, then it satisfies [1], [2], and [3], so that these 
conditions are necessary and sufficient for the representation of 
IDe[F] in the form (6.20.I).a 

We begin by proving the converse half of the theorem. If IDe [F] 
is defined by (6.20.1), then it is obvious that it possesses property 
[1], and all but obvious that it possesses property [3], since 

cfo (IDe [tF + (I-t) GJ) =tfcPdF + (1- t)fcfodG 
= tfcPdF* + (1- t)JcfodG=cfo (IDe [tF* + (I-t) G]). 

It remains to prove [2]. 
Suppose that F 1 and F 2 satisfy the conditions stated. Then 

there is a positive number p, and an interval (ct., (3) such that 

F1 (x»F2 (x)+p,>F2 (x) 
in (ct., (3).b Hence 

cfo(IDe[F2])-cfo(IDe[F1]) = J:oo cfo dF2- J:oo cfodFl 

= J:oo (F1 -F2)dcfoC ;;; r (Fl - F 2 ) dcfo;;; p,{cfo (f3) - cfo (ct.)} > o. 

8 See Nagumo (1), Kolmogoroff (1), de Finetti (1). We follow the lines of de 
Finetti's proof. 

b There is an Xo for which Fl (xo) > Fo (xo) or 

t {FI(XO - 0) + FI(xO +O)}> t {F2(XO - 0) +F2(XO +O)}. 

Hence either FI(xO - 0) > F2 (xO - 0) or FI(XO+O) > F2(xO +0). In the first case there 
is an interval satisfying the conditions to the left of xo, in the second case one to 
the right. 

C If we remember our understanding, at the end of § 6.19, about the definition 
of .p (x) outside (A, B). 
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6.21. Remarks on the characteristic properties. We 
have still to show that the properties [1]-[3] are sufficient to 
characterise the means 'iJJl;,p. We insert first some general remarks 
concerning the 'significance' of the properties. 

(i) [I] asserts that 'if all the elements of a set have the same 
value, then their mean has that value' . 

(ii) [2] asserts that ''iJJl; [F] is a strictly monotonic functional 
of F'. It would not be sufficient to assert that (under the condi­
tions stated) 'iJJl;[Fl]~'iJJl;[F2]' i.e. that ''iJJl;[F] is a monotonic 
functional' . 

Let us consider some examples. 

(a) The arithmetic mean 

2l(a,q)='L.qa=fxdF= 2l[F] 

is a strictly monotonic functional of F. In this case cP(x) =x. 

(b) We may define 'Maxa' as 'the lower bound of the values of x for 
which F(x) = I' (F being any finite distribution function with jumps at 
the points a). Then Max a = p. [F] is a functional of F which is plainly 
monotonic: if Fl?;; F2 for all x, then P.[Fl];£ p.[F2]. But p.[F] is not 
strictly monotonic: if F 1 and F 2 are defined by 

F 1=F2=0 (x<O); F1=i, F 2 =0 (O<x<I); Fl=F2=1 (x>I), 

then P.[Fl] = Max (0, l)=Max(l, 1)=p.[F2]. 

That p.[F] is not representable in the form (6.20.1) follows from the 
theorem itself; if it were, it would be strictly monotonic. 

(c) The geometric mean (l) = (l) (a, q) is a functional of F which is not 
strictly monotonic, since, for example, the sets (0, a2 , ... ) and (0, b2 , ... ) 

have the same (l). It is representable by the formula 

(l) =exp (/000 logxdF(x)). 

This is of the form (6.20.1), with cP(x)=logxforx>O; but (l) is not repre­
sented in the manner prescribed by the theorem, since log x --+ - 00 when 
x--+ O. 

(iii) If we use [3] twice, the second time with F*, G, G*, 1- t 
in place of G, F, F*, t, we see that 

(6.21.1) 'iJJl;[tF+ (l-t) G] ='iJJl; [tF* + (I-t) G*J 

whenever 'iJJl;[F] = 'iJJl;[F*J and 'iJJl;[GJ='iJJl;[G*J. In other words 

(a) 'iJJl; rtF + (1- t) GJ is determined uniquely by 'iJJl; [F], 'iJJl; [G] and t. 
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More generally 
(6.21.2) m[~qvFv]=m[~qvFy*] 

if m[Fv]=m[Fy*] and ~qv= 1. 

A functional ty [F] is said to be linear if 

ty rtF +uG] = tty [F] +uty [G]: 

in this case it has certainly property (a). If m[F] satisfies (a) 
or [3], of which (a) is a consequence, we may call m[F] quasi­
linear. If also we agree to describe the property [1], as is natural, 
by consistency, we may state Theorem 215 shortly as follows: 
the most general consistent, strictly increasing, and quasi-linear 
functional of F is that defined by (6.20.1). 

6.22. Completion of the proof of Theorem 215. The 
functionsEA (x), EB{x),and{1-t) EA (x) + tEB (x), where 0 < t< 1, 
belong to 'Il (A,B).a We write 

1s(t) =m[(1- t) EA + tEB], 

so that 1s(O)=m[EA]=A, 1s(1)=m[EB]=B. 

Let us assume provisionally that 1s (t) is strictly increasing and 
continuous. Then 1s (t) has an inverse 

¢>(u) = 1s-1 (u) 

which is also continuous and increases strictly from 0 to 1 when 
u increases from A to B. If 

u=1s(t), t=¢>{u), 

then m [Eu] = u= 1s{t) = m[(l- ¢>(u)) EA + ¢>(u) EB]. 

Hence, using [3] in the extended form (6.21.2), and the expression 
(6.19.1) for any finite distribution function F, we obtain 

m[F]=m[~qEa] 
=m[~q{(I-¢>{a)) EA + ¢>(a) EB}] 
= m[{1- ~q¢>{a)) EA + (~q¢>{a)) E B] 
= 1s {~q¢> (a)) = ¢>-1 (~q¢> (a)), 

the result of the theorem. 
It should be observed that here p(A) =0, p(B) = 1. When a p has been 

found, it may (after Theorem 83) be replaced by any r1.</>+ {3. 

" E ... and EB are extreme cases of functions of !l(A, B): if F belongs to !l(A, B), 
then E ... ;;;,F ;;;,EB for all x. 

HI II 
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It has still to be proved that if; (t) is strictly increasing and 
continuous. 

(1) If O~tl <t2~ 1, 
then (I-tl) EA +tIEB ~ (I-t2) EA + t2EB 
for all x, with inequality for some x. Hence, by [2], 

if; (tl ) = ilJC[(I- tl ) EA + tl EB] < ilJC[(I- t2) EA + t2 EB] = if; (t2)· 

(2) Suppose, if possible, that if;(t) has a discontinuity on the 
right at to, where 0 ~ to < 1. Then we can find a t such that 

if;(to)<t<if;(to+E) 
for arbitrarily small E, and 

E .p(to) ~ E t ~ E .p(to+€) 
for all x, with inequality for some x. Hence, by [2], 

(6.22.1) 

ilJC [tE .p(lo) + tE .p(l)] < WC[tE g + tE .p(I)J < We [tE .p(to+€) + tE .p(l)] 

for any t of (0, 1). But if sand t lie in (0, 1), then, by [1], 

if;(s) = ilJC [E.p(s)] = ilJC [(I-s) EA +sEB], 

and similarly for t; and, by [3], 

ffi1[lE IE ]_ffi1[(I-S)EA+SEB (I-t)EA+tEB] 
~.I~ 2 .p(s) +"2 .p(l) - ~.I~ 2 + 2 

= ilJC [ (1-s; t) E A + s; t E B] = if; C; t) . 
Combining this with (6.22.1), we see that 

if; Co; t) , if; Co + ; + E) 
are separated by a number, viz. ilJC[tEt + tE.p(t)] , which is in­
dependent of E; and so, making E-+O, 

if; Co; t) < if; Co; t + 0) . 
Hence if; has a discontinuity at t (to + t), for all t of an interval; 
and this is impossible, because the discontinuities of a monotonic 
function are at most enumerable. 

It follows that if; (t) has no right-hand discontinuity. Similarly, 
it has no left-hand discontinuity. It is therefore continuous, and 
this completes the proof. 
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We have confined our attention to finite distribution functions, so that 
all the functions F which have been considered are step-functions, and the 
means are the means of Ch. III. There is a similar theorem in which both 
hypothesis and conclusion are stronger in that they apply to a class of 
functions more extensive than :D (A, B). Let us denote by :D* (A, B) the 
class of functions which have the properties (ii) and (iii) of § 6.19 and also 
satisfy (6.19.4). We can then prove a theorem which differs from Theorem 
215 only in the substitution of:D* for:D. The proof is very much the same, 
but is slightly more elaborate in its final stages. See de Finetti (I). 

MISCELLANEOUS THEOREMS AND EXAMPLES 

216. 'Velocity averaged by time is less than velocity averaged by 
distance.' 

[ThiS is (f~dt)2 <f dtf:: ds= fdtf(~)2 dt, a case of Theorem 181.] 

217. If the kinetic energy of a mass M of moving homogeneous in­
compressible fluid is E, and the average velocity of its particles is V, then 
E>tMV2, unless all particles have the same velocity. 

[If p is the density, v the velocity of an element dS=dxdydz, then 

M=pJdS, VJdS=JvdS, E=ipJv2dS, 
and the result follows from Theorem 181 (for triple integrals).] 

218. A unit electric current passes through a closed plane circuit 
enclosing an area A, and exerts a force F on a unit magnetic pole P in 
the plane of and interior to the circuit. Then 

2AF2 > {27T )3 

unless the circuit is a circle whose centre is P. 
[Suppose, for simplicity, that the circuit is 'star shaped' with respect 

to P (i.e. that every point of the line from P to any point of the circuit 
lies inside the circuit). Then, using polar coordinates r, 0 about P, and 
integrals from 0 to 27T, 

i ! i 
27T= jdO= fG) (r2/t dO< (r:) (fr2dO) =Ff{2A)i, 

unless r is constant.] 

219. Ifjv{x,'J) and gv{x,y) are two (finite or infinite) sets of functions 

of x and y, then {LJJjgdxdy)2< LJJf2dxdy LJJ g2dxdy, 

unless there are two constants a and b, not both zero, such that 
ajv (x, y) == bgv (x, y), 

for every v. 

[From Theorems 7 (for infinite series) and 181 (for double integrals), 
or directly, by the second method of § 2.4. The theorem illustrates the 
following principle. The inequality 

(i) {LLLUV)2 ~ LLLU2 LLL1.,2, 
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where u and v are functions of three integral variables m, nand p, does 
not differ materially from the ordinary form of Cauchy's inequality; but 
we can derive materially different inequalities from (i) by replacing dif­
ferent selections of the signs of summation by signs of integration.] 

220. Suppose that the a are positive, and that q, is defined by 

I (n+r-I) 
(1 - )(1- ) (1- )=I+nqlx+ ... + q,x'+ .... alx asx ... anx r 

Then 
unless all the a are equal. 

221. 
unless all the a are equal. 

[Theorems 220 and 221 were communicated to us by Prof. I. Schur. 
The q are means of homogeneous products of the a, like the p of § 2.22, 
but now the a in a product are not necessarily different. In particular 

ql=Pl' 
Theorem 221 follows from Theorem 220 as Theorem 52 followed from 

Theorem 51. To prove Theorem 220 we observe that 

(i) q,= (n-I)! If ... f(alxl + aaxs + ... +a"x,,), da;l ... da;"-l' 

where Xn = 1-Xl - Xs - '" - X"-1 and the domain of integration is defined 
by x1 >0, ... , X"-1> 0, x,,> 0. We obtain Theorem 220 by applying 
Theorem 181 (for multiple integrals) to (i). 

The formula (i) leads to a more complete theorem. If the a are real 
(but not necessarily positive) then the quadratic form }:.qr+.YrY. is strictly 
positive; and if the a are positive, then the form }:.qr+s+1YrY. is strictly 
positive; except (in both cases) when all the a are equal.] 

222, Ifp> I,jis LJ'in (0, a). and 

F(x)= J:j(t)dt, 

then 

for small x. 
[By Theorem 189, 

F~~ J:j~dt(f: dtY- 1 =x~-lf:j~dt, 
and the second factor tends to 0.] 

223. Ifp> I and j is L'P in (0, co), then F(x) = o (x1/",) both for small 
and for large x. 

[For small x, by Theorem 222. To prove the result for large x, choose X 
so that 
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and suppose x>X. Then 

(F(x) - F(X»"= (f:fdtY ~ (X-X),,-l f:f"dt< €"xP-l, 

F(x) < F(X) + €x1 / P' < 2€x1 / P' 

for sufficiently large x.] 

224. If y is an integral except perhaps at x = 0 and xy'2 is integrable in 
(0, a), then 

y=o {(log~y} 

[ty' dx ~ (I: :x faXy'2dx ) t. ] 

for small x. 

225. If y is an integral except perhaps at 0 and I, and x (I - x) y'2 is 
integrable in (0, I), then y is L2 and 

o~ f>2 dX- (f>dXY ~t f: x(I-X)y'2dx. 

[That yis L2 follows from Theorem 224. The first inequality is included 
in Theorem 181. For the second, we have 

f~ y2dx- (f>dXY =t fJ~{Y(U) -y(v)}2dudv 

= fOIdU f:,dV (f>'(t)dty ~ f:dU f: (v-u)dv J: (y'(t»2dt 

= f~ (Y' (t»2dt f: du ftl (v - u) dv= t f: t(l- t) y'2dt. 

Of the two inequalities, the first can reduce to an equality only if y is 
constant, the second only if y is linear.] 

226. If m > I, n> - 1, andf is positive and an integral, then 

(i) 10'" xnfmdx~n: 1 {foOO x"'n~-~l)fmdxr;;:l (fooo !!, !mdx )~, 
with equality only whenf= Bexp{ - Ox(m+nl/(m-ll}, where B~O, 0>0. 

In particular 

(ii) 

unless f = Be-ex'; and this inequality holds whether f be positive or not, 
and also for the range (- 00,00). 

[The most interesting case is (ii), which is due to Weyl (1, 345), and 
is useful in quantum-mechanics. 

Assume that the integrals on the right-hand side of (i) are finite. Since 
f is continuous, and n<m(n+ l)/(m-l), that on the left-hand side is also 
finite. Hence 

lim xn+l jm=o, 
x ....... x; 
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and so, integrating by parts over (0, Xk)' where (Xk) is an appropriate 
sequence which tends to infinity with k, 

{'" xnjmdx= - ~ lim fXk xn+ljm-lj'dx. 
10 n+l k_oo 0 

But, by Theorem 189, 

fo'" xnHjm-l l1' I dx< {f' x":';~illrdx} m,,;:l (10'" If' Imdx )~, 
unless 1';;2 ° and l' and x(nHl/(m-ll j are effectively proportional. This 
hypothesis leads to the form of j stated.] 

227. If rp increases, 
(fjgdrp)2 <ff2drpf g2drp, 

unless j and g are effectively proportional (in the sense of § 6.17). 

[Included in Theorem 210; wanted in Theorem 228.] 

228. If a~ 0, b ~ 0, a,*b, and rp is non-negative and decreasing, then 

(f:xa+brpdX r < {1- (a:b! lY} f: 2a rpdX f X2b rpdX, 

unless rp= 0, where 0>0, in (0, ~), and </>=0 in (~, co). 
[g may be 0. The inequality is stronger than that resulting from a direct 

application of Theorem 181. It follows from Theorem 227 if we reduce the 
integrals to the form considered there by partial integration. The case 
a = 0, b = 2 was mentioned by Gauss in connection with the Theory of 
Errors: see Gauss (1, IV, 12) and P6lya and Szego (1, II, 114, 318).] 

229. If a ~ 0, b ~ 0, a,* 1, and rp is non-negative and increasing, then 

(f:xaHrpdX r> {1- (a:b! lY} f:x2a rpdX f01X2b </>dX, 

unless 1> = O. 

[See P6lya and Szego (1, I, 57, 214). In this case Theorem 181 gives a 
reversed inequality, with the factor 1 on the right-hand side.] 

230. If O<a;;2j;;2A < co, O<b;;2g;;2B<co, 

then J f2dx fg2dX ;;2G {J(~~) + JC~~)} J jgdx J. 
[Analogue of Theorem 71: see P6lya and Szego (1, I, 57,214).] 

231. If we consider the closed or open intervals (in general four in 
number) with end-points - a, b, where a ~ 0, b ~ 0, and suppose each of 
a and b zero, positive and finite, or infinite, we obtain in all 34 types of 
intervals 1. Assign to each interval I a functionj(x) defined for O<x< 1 
and such that 10gWl,.(f), where IJRr(f) is formed for the interval (0, 1) and 
with q = 1, is finite just for the values of r in I. 
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[Examples: 

f(x) = Xl/a (1- Xl-lib (log _~)-2/b: 
I-x 

lis -a<r~b; 

lis -oo~r~oo; f(x)=I+x 2: 

I is the single point 0; f(x) =exp (_x- i + (I-x)-t): 
lis empty; f(x)=exp(-x-I+(I-x)-l). 

This contains part of the proof of what is stated near the end of § 6.11.] 

232. Geometrical interpretation of Minkowski's inequality. Suppose 
that a point in functional space is defined as a function of L2, two functions 
defining the same point if and only if their difference is nul; and that 
the distance between two points f and g is defined by 

8 (j,g) =Y{f(j-g)2dx}. 

Then (i) the distance between two distinct points is positive; and (ii) 

.3 (j, h) ~ 8 (j, g) + 8 (g, h). 
[If we define distance by 

8(j,g)=(flf-glrdx)l/r (r~l), 

we obtain similar results in 'functional space Lr'.] 

233. The shortest distance between two given points in Euclidean space 
is the straight line. 

[A curve in space is given by 

x=x(t), y=y(t), z=z(t). 

We may suppose that t increases from 0 to I on the arc in question. If we 
assume that x, y, z are integrals of functions of L2, then the length l is 
given by 

l2 = U(X'2 + y'2 + z'2)i dt]2 = ill1t (X'2 + y'2 + Z'2) ~ ill1t (X'2) + ill1t (y'2) + ill1t (Z'2), 

by Theorem 198; and this is not less than 

(f x' dt)2 + (f y' dt)2 + (f Z' dt)2 = (Xl - XO)2 + (YI - YO)2 + (Zl - ZO)2. 

If there is equality, Ax'=:: By'=:: Oz', and the curve is a straight line.] 

234. IfO<p<1 and 
ffgdx ~A (f gP' dX)I/P' 

for all g, thenffPdx~AP. 
[Compare Theorem 70. Iff> 0 for all x, define g by fg=fP. Iff> 0 in 

E, f= 0 in OE, and the measure of OE is finite, define g by fg=f P in E 
and by g= G in OE, and proceed as in the proof of Theorem 70. If the 
measure of OE is infinite, take (for example) 

g= Gex2 

in OE. Then 

ff PdX = ffgdx~A (fEfPdX+ GP' f CE ep ' x2 dxy/P' , 

and the result again follows when G ~ 00.] 
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285. Suppose that f and p are positive and that f has the period 217'; that 

F(x) = f:1tf(X +t)p(t) dt/ f:"P(t)dt; 

and that the means 9R,. refer to the interval (0,217') and a constant weight­
function. Then 

9R,.(F);?; 9R,.(f) (O;:;ir;:;i 1), 9R,.(F);:;i 9R,.(f) (r;?; 1). 

[This may be deduced from Theorem 204, or proved directly (supposing 
for example r;?; 1) as follows: 

9R,.'(F) = ~ (dX [ff(X + t)p(t) dt]r 
217'. fp(t)dt 

<~Jdxfr(XH)p(t)dt<f p(t)dt)l'-l 
= 217' (fp(t)dt)' 

=_!.. fp(t)dtffr(xH) dx =~ff'(U)dU= 9R,.'(f). 
217' f p (t) dt 217' 

For the case r=O, see P6lya and Szego (1, I, 56,212).] 

236. We say thatf(x,y, .•• ) and g(x,y, ••. ) are 8imilarly ordered if 

{f(X1'Yl"") - f(X S'Y2' ••• )}{g(X1,Yl' .•. ) -g(XS'Y2' .•• )};?; 0, 

oppositely ordered iff and - g are similarly ordered. Prove that 

JJ .. ·fdxdY ... JJ ... gdxdy ... ;:;iJJ ... dxdy ... JJ .. ·fgdxdy ... , 

if f and g are similarly ordered, while the sign is reversed iff and g are 
oppositely ordered. The integration is extended over any common part of 
the regions of definition off and g. 

[Analogue of Theorem 43 (with r= 1), due in substance to Tchebychef 
(who considers only monotonic functions of one variable).] 

237. If c/J and", satisfy the conditions of Theorem 156, and 

<I>(X)=jX c/J(t)dt, 'I"(x) = r ",(t)dt, 
o • 0 

then ffgdx;:;if<I>(f)dx+f'l"(g)dx. 

238. Iff and g are positive, and k a positive constant, and flog+-f and 
ekg are integrable, thenfg is integrable. 

[By Theorem 63, kfg;:;iflog+f+eku - 1.] 

239. Iff is positive, then 

f afIOg!dx;:;i2jafIOg+fdX+ 4Ya. 
o x 0 e 

[Take g= t log!, k = 1, in the inequality used in proving Theorem 238.] 
x 
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240 Iff is positive and Lin (0, a), and 

F(x)= ("jdt, 
• 0 

fa 1 !aF(X) 1 f(x)log-dx= -dx+F(a)log-, 
.0 X 0 X a 

then 

whenever either integral is finite. 

169 

241. Suppose that a is positive and finite; that B= B(a) denotes 
generally a number depending on a only; thatf(x)~O; and that 

F(x)= !:f(t)dt, 

J=!afIOg+fdX, K= fa !'.dx. 
o • 0 X 

Then (i) if J is finite K is also finite, and 

K<BJ+B: 

(ii) whenf is a decreasing function the converse is also true; if K is finite 
then J is finite, and J <BKlog+ K+B. 

(For the last two theorems see Hardy and Littlewood (8).] 

242. Iff is positive and Lin (0, a) and 

g= J:f~t) dt, 

then g is Land 

[Integrate by parts; or substitute for g and change the order of integra­
tion.] 

243. We define Wt<j>(f), where cp is a continuous and strictly increasing 
function, by 

Wt<j>(f) = cp-l {fcp (f)qdx}. 

Then, in order that Wt<j> (f) ;?; Wt,p (f) 
for allf, it is necessary and sufficient that .f should be convex with respect 
to cp. 

244. In order that 

Wt~:--. Wt~:(f);?; Wt~: ... Wt~:(f) 
for allf=f(x1 ,x2 , ••• ,xn ), it is necessary and sufficient that every.f. be 
convex with respect to the corresponding cp •• 

245. In order that 

Wt~~ ... m(~~(f) ;?;Wt~~~ ... m(~~~(f) 
for allf, it is necessary and sufficient that (i) q. ~p. and (ii) q". ~p. when 
1-'> v and the permutation by which"1> "2' ... , v" is derived from 1, 2, ... , n 
involves an inversion of I-' and v. 
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[For the last three theorems, which correspond to Theorems 92, 93 and 
137, see Jessen (2, 3).] 

246. HOlder's inequality may be deduced from 
ffi'llu ffi'lo"'(f) ~ ffi'lo'" ffi'l11l(f) 

(Theorem 203), by taking 

f(x,y)=A'P(y) (o~x<~), f(x,y)=fa'P'(y) G~X~I). 
[See Jessen (3).] 

247. If (i) cp(x, t) is positive, continuous, and convex in x, for Xl ~ X ~ x2• 
t> 0; (ii) pet) ~ 0; (iii) the integral 

l(x)= j~ cp(x, t)p(t)dt 

is finite for X=X l and X=X2; then lex) is continuous and convex for 

Xl <x<xa" 
[That lex) is bounded and convex follows immediately from the 

convexity of cp; that it is continuous, from Theorem 111.] 

248. Iff(x) and cp(x) are positive and cp(x) convex for positive x, and 

l(x)=xj'" cp {f(t)t dt 
o X J 

is finite for x=xl and X=X2' then lex) is continuous and convex for 

Xl <X<X2· 
[By Theorem 119, xcp(ljx) and 

f(t) ~ cp {f(t)t 
·f(t) X J 

are convex, and we can apply Theorem 247. More general results can be 
derived from Theorem 120.] 

249. In order that 

f: cp(g(x»dx~ f: cp(f(x»dx 

should be true for every convex and continuous cp, it is necessary and 
sufficient that 

f:9(X)dX= f:f(X)dX 

and 

for all y. 
f: (g(x)-y)+dx~ f:(f(X)-y)+ dx 

[Here a+ means Max (a, 0), as in §6.1.] 

250. Iff and 9 are increasing functions, then an equivalent condition is 

f>(X)dX~ J:f(X)dx 
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[For the two last theorems, which embody analogues for integrals of 
parts of Theorem 108, see Hardy, Littlewood, and P6lya (2).] 

251. Iff1(t),f2(t), ... ,flit) are real and integrable in (0,1), then either 
(i) there is a function x(t) such that 

I:f1 (t) x(t)dt > 0, •.. , III(t) x(t) dt> 0, 

ar (ii) there are non-negative nUDlbers Yu Y2' ... , Yl' not all zero, such that 

yd1(t)+yd2(t)+ ... +yzil(t) == 0. 
252. If f1 (t), f2(t), ... , fm(t) are real and continuous in (0, 1), then either 

(i) there are real numbers Xl' X2' ... , Xm such that 

Xd1(t) +Xd2(t) + ... +xmfm(t) 

is non-negative for all, and positive for some, t of (0, 1), or (ii) there is a 
positive and continuous function y(t) such that 

f>l(t)Y(t)dt=O, ... , f>m(t)y(t)dt=O. 

[Theorems 251 and 252 are both integral analogues of an important 
theorem of Stiemke (1) concerning systems of linear inequalities. 
Suppose that 

aAIL (.\=1,2, ... ,l;p.=1,2, ... ,m) 

is a rectangular array of 1 rows and m colUDlns, and that 

LA (x)=aA1 Xl +aA2 X2+ ... +aAmXm, 

MIL (X) =allL YI +a2IL Y2+ ... +azILYI; 

and consider the two problems: 

(i) to find a real set (x) for which 

L1(x»0, L 2(x»0, ... , Lz(x»O; 

(ii) to find a non-negative and non-nul set (y) for which 

MI(y)=O, "~2(y)=0'···'"~m(Y)=0. 

Since L.yL(x) = L.xM (y), 

the two problems cannot both be soluble for the same set (a), and Stiemke' s 
theorem asserts that one is soluble whatever the set (a). 

Theorems 251 and 252 state analogues of Stiemke's theorem in which 
the m colUDlns or I rows are replaced by a continuous infinity of columns 
or rows. These theorems, and further references to the theory of systems 
of linear inequalities, which we have excluded from our programme only 
on account of its algebraical and geometrical preliminaries, will be found 
in Haar (1) and Dines (1).] 



CHAPTER VII 

SOME APPLICATIONS OF THE 
CALCULUS OF VARIATIONS 

7.1. Some general remarks. The 'simplest problem of the 
Calculus of Variations' is that of determining a maximum or 
minimum value of 

J (y) = IX> F (x, y, y') dx 
Xo 

for all functions y = y (x) for which 

(1) Yo=y(xo), Yl =y(x1) are given, 
(2) Y' is continuous. 

Let us denote this class of functions by~. Then our object is to 
find a function Y= Y(x) 
of,W, such that either 

J(y)< F(x, Y, Y'}dx=J(Y}, IXI 

Xo 

or J (y) > J (Y), for all y of ~ other than Y. The general theory 
tells us that, if such a function Y exists, it must satisfy 'Euler's 
equation' 

(E) 

Let us consider some simple examples. 

(i) Suppose that J (y) = I: y'2dx 

and Yo= 0, Yl = 1. Then (E) is y" = 0, and the only solution satis­
fying the conditions is y=x. It is easy to verify that Y =X does 
in fact give a minimum for J (y). For J (Y) = 1 and 

1= (I:y'dxf < I>xI:y'2dX=J(y), 

by Theorem 181, unless y'=. 1, y=x; so that J> 1 for all yother 
than Y. 
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We have in fact proved more than the problem as stated 
demands, since the proof is valid whenever y is an integral. This 
last hypothesis is however essential, since there are functions y 
for which 

(7.1.1) y(O)=O, y(l)=l, y'-=O, J(y)=O. 

In order that y should be an integral, i.e. in order that there 
should be an integrable function f(x) such that 

y(x) = J:f(U) du, 

it is necessary and sufficient that y(x) should be 'absolutely 
continuous'. It is necessary, but not sufficient, that y(x) should 
have bounded variation. In particular it is not sufficient that 
y(x) should be monotonic; there are increasing functions y which 
satisfy (7.1.1). 

If y is the integral of f, then y' -=f; an integral is the integral 
of its derivative. All this is expounded in detail in books on 
the theory of functions of a real variablea . The main theorem 
needed in this chapter is the theorem of integration by parts, 
stated in § 6.3 (a). 

These remarks lead us to lay down the following convention. 
Throughout this chapter it will be assumed that, whenever y and 
y' occ'ur in an enunciation or a proof, y is an integral (and so the 
integral of y'). A similar assumption will be made about y' and y" 
(if y" occurs in the problem); and the assumption naturally 
applies also to letters other than y. Without this assumption, all 
the problems of this chapter would lose their significance. 

(ii)b Suppose that 

J (y)= J: (y'2+ y '3)dx, 

and Yo = Yl = o. The only solution of (E) satisfying the conditions 
is y= o. If Y = 0, J (Y) = 0, but Y does not give a maximum or 
minimum of J (y). It is in fact easy to construct a y ofSl; for which 

a See for example de la Vallee Poussin (2), Hobson (1), Titchmarsh (1). 
b This and the next example are due to Weierstrass and are of great historical 

importance. 
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J (y) is as large, positively or negatively, as we please. Thus, if 
f(x) is any function for whichf(O) =f(l) = 0 and 

J: f' 3 dx > 0, 

and y=Of(x), then J(y) is large when 0 is large and has the 
sign of O. 

(iii) Suppose that 

J (y) = J: xy'2dx, 

yo= 0, Yl = 1. Here J (y) > 0 for all y ofSi'; but Y = xm gives J =Jm, 
so that there are y of St' for which J (y) is as small as we please. 
For y of st', J (y) has an unattained lower bound O. The same is 
true for classes of y more general than st' (for example, the class 
of integrals). On the other hand, J (y) attains its bound 0 for the 
function mentioned under (i) above, and also for the discon­
tinuous function which is 0 for x = 0 and I for x > O. 

7.2. Object of the present chapter. The Calculus of Varia­
tions might be expected to provide a very powerful weapon for 
the proof of integral inequalities. There are however hardly any 
instances of its application to inequalities of the types important 
in general analysis. This may be explained on two grounds. In 
the first place, the Calculus of Variations is concerned avowedly 
with attained maxima or minima, while many of the most im­
portant integral inequalities assert unattained upper or lower 
bounds. Secondly, the 'continuity' hypotheses of the classical 
theory are very restrictive. It is often more troublesome to 
extend an inequality, proved by variational methods for a special 
class of functions, to the most general classes for which the in­
equality is required, than to construct a direct proof of the full 
result. For these reasons the Calculus of Variations has been 
almost ignored in this chapter of analysis. 

The ideas of the Calculus are however often very useful, and 
we apply them here to a number of special inequalities. When, as 
in example (i) above, or Theorems 254 and 256 below, the bound 
asserted by the inequality is attained, and attained by an ex-



THE CALCULUS OF VARIATIONS 175 

tremal, that is to say by a solution of Euler's equation, these ideas 
are obviously relevant, and the result may well be one which it 
would be difficult to obtain in any other way. We shall however 
find that they are sometimes effective even when the bound is 
unattained and the final result lies outside the scope of the theory. 

Our arguments will not demand any detailed knowledge of the 
theory; except in § 7.8, we shall require only its simplest formal 
ideasa . 

7.3. Example of an inequality corresponding to an 
unattained extremum. As a first example of the use of varia­
tional methods, we select a special case of a theorem which was 
first proved in an entirely different manner, and to which we 
shall return in § 9.8. 

253. ffy' belong8 toL2(0, (0), yo= O,and yi8 not alway8 zero, then 

J(y)= f~ (4Y'2_~:)dx>0. 
It is necessary for our present purpose to consider the more 

general integral 

(7.3.1) J(y)= f~(fLY'2_~~)dX (fL~4). 
Euler's equation is 

x2y" +"Ay= 0 ("A = l/fL ~ i). 
Its solution is y=Axm + Bxn , 

where m= l+ v(i-"A), n= l- v(i--"A), 

if fL > 4, and is y= xl (A + Blogx) 

if fL= 4. In neither case is there a solution (other than y= 0) for 
which y' is L2. 

For this reason it is necessary to modify the problem before 
we attempt to apply variational ideas. We consider 

J(y)= f: (fLY'2_~) dx 

a Euler's equation and Hilbert's invariant integral. Anything which we assume 
will be found without difficulty in the books of Bliss (1) or Bolza (1). 
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with Yo = 0, Yl = 1, P. > 4. There is then onea extremal satisfying 
the conditions, viz. 

(7.3.2) 
where 

(7.3.3) 

Y= Y =xm=xi+a, 

A simple calculation gives 
2 

(7.3.4) J(Y)= I-2a' 

and this suggests the following theorem. 

254. b If p.> 4, y(O)= 0, y(I)= 1, and y' is L2, then 

(7.3.5) J(y)= J: (p.Y'2-~:)dX~ I~2a' 
where a is defined by (7.3.3). The only case of equality is that 
defined by (7.3.2). 

7.4. First proof of Theorem 254. We give two proofs of 
Theorem 254. The first demands no knowledge of the Calculus of 
Variations, though the transformations which we use are sug­
gested by our knowledge of the form of the extremal Y. 

If 

(7.4.1) y=xHa+~= Y +~, 

then 
(7.4.2) J (y) = J (Y) + J (~) + K (Y, ~), 

where K (Y,~)= 2 J: (p.y'~'- !;)dX. 

Since Y' and so~' are L2, ~ =0 (xi) for small x;c and so 

K=2lim (_fl Y;dx+[p.Y'~Jl _fl p.YII~dX) 
6-+ 0 6 X 6 8 

= -2 lim fl ~(p.YII+ ~)dx=O. 
8-+ 0 8 X 

a The extremal 

gives Yo=O, Yl =1 for any,\; but y' is not L2, and J(y) diverges, unless ,\=l. 
b For this and some later theorems in this chapter see Hardy and Littlewood (10). 
c Theorem 222. 
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Hence (7.4.2) gives 

(7.4.3) 

and it is sufficient to prove that 

J(YJ»O. 
Here r/ is L2, and 'YJ is not nul but vanishes at the ends of the 
interval. 

We now write 'YJ= y,. 
Then 

fl . 2) 
(7.4.4) Ja('YJ)= 8 (,u'YJ'2- ~2 dx 

=p-fl (yr + Y',)2dX-fl Y2f2 dx 
8 8 X 

=,u f81 Y2r2dx+ f81 (,uY'2_~:) '2dx+ 2,u f81 YY' ,,' dx. 

But 
(7.4.5) 

2,u f81 YY' a'dx= -,u(YY',2)a-,u f81 (Y'2+ YY"),2dx. 

Combining (7.4.4) and (7.4.5), and observing that Y is a solution 
of 

we obtain 

(7.4.6) 

But 

J o (7J) = -,u (YY' '2)0 +,u Isl (Y,')2dx. 

YY',2= (t+a) (Y,)2 = (t + a) 'YJ 2-+ 0 
X X 

when x-+O. Hence, when we make 8-+0 in (7.4.6), we obtain 

(7.4.7) J('YJ)=,uf:(Y02dX, 

which is positive unless the integrand is nul, i.e. unless S = O. 
This proves the theorem. The condition ,u> 4 was required to 

make Y' belong to L2. We have however reduced the theorem 
to dependence on the identity (7.4.7). Since 

Y r' , t+a ,t+a ." ='YJ - --'YJ=Y ---y x x' 
HI 12 
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(7.4.7) and (7.4.3) give 

(7.4.8) J(y)= I: (JLY'2_~:) dx= 1! 2a + JL I: (y' - !;a y)2 dx; 

and here Y has disappeared. Since both sides of (7.4.8) are con­
tinuous in JL, we may now include the case JL = 4, a = o. The 
identity may be verified directly by partial integration when its 
form has been discovered (though some care is required about 
convergence at the lower limit). 

We are now in a position to prove Theorem 253. If we write 

x=Xjg, cy(x)= Y(X), 
and then replace X, Y again by x, y, we obtain 

(7.4.9) I: (JLY'2-~)dX= 1 !2a l+JL I: (y' - !;a y)2dx, 

where now y(O)=O, y(g)=c. If y' is L2 in (0, (0), c=o(gi) for 
large g,a and the first term on the right tends to 0 when g-+oo. 
Making g -+ 00, and supposing JL = 4, we obtain 

I~ (4Y'2_~) dX=4I~ (Y'- :Xf dx. 

This formula, which makes Theorem 253 intuitive, is valid when­
ever y' is L2, and may of course be verified directlyb. 

7.S. Second proof of Theorem 254. In our second proof we 
make explicit the variational theory which underlies the first. 

Suppose that y = Y (x), or E, is the extremal through the end­
points Po and P l , and that 

(7.5.1) y=y(x,oc), 
or E (oc), is a family of extremals containing E and depending on 
a parameter oc. Suppose further either that 

(i) E (oc) covers up a region surrounding E in a (1,1) manner, so 
that just one extremal passes through every point of the region, 
and oc is a one-valued function of x and y; or that 

(ti) every curve of E(oc) passes through Po, so that y(xo,oc) is 
independent of oc, but condition (i) is satisfied in all other respects. 

& Theorem 223. 
b Grandjot (1) gives a number of somewhat similar identities for series. 
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In these circumstances a (7.5.1) is said to define a field of ex­
tremals including E. 

The slope y' (x, IX) 

of the extremal through a point P of the field may be expressed 
as a one-valued function () 

p=p x,y 

of x and y. Hilbert's 'invariant integral' is 

J*(C)= J c {(F -pFp)dx+ Fpdy}. 

Here F and Fp are the values of F(x,y,y') and Fy'(x,y,y') 
when y' is replaced by p, and the integral is taken along any 
curve 0 which lies in the region covered by the field. 

The fundamental properties of Hilbert's integral are as follows. 

(i) J* (0) depends only on the ends Q, R of 0; in other words 

(F-pFp)dx+Fpdy=dW 

is a perfect differential, and 

J*(O)= WR - WQ • 

(ii) If 0 is the extremal E, then 

J*(E)= J E Fdx=J(E), 

say. It follows that, if 0 runs from Po to PI' then 

J(O)-J (E)= J(O)- J*(E)= J(O)- J*(O) 

= J c F (x, y, y') dx 

-J c{(F(x,y,p)-pFp(x,y,p»dx+ Fp(x,y,p)dy} 

= J /~ (x, y, p, y') dx, 

where 

E (x,y,p,y') = F (x, y, y') - F (x,y,p) - (y' -p) Fp (x,y,p). 

a With the addition of certain conditions concerning the differentiability of 
o:(x,y) which it is unnecessary to repeat here: see BoIza (1,95-105). 

12-2 
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Here y' is the slope of C at any point and p the slope of the 
extremal through the point; and E is Weierstrass's 'excess­
function'. If E > 0 whenever y' =F p, then 

J(E)<J(O) 

and E gives a true minimum of J. 
In the present case we take 

y=IXXt+a 

as E (IX). We find 

p = IX (t + a) x-Ha = (t + a) ~ , 
y2 2y y2 

F=f1,p2- x2' Fp= (t-a)x' F-pFp= - (t-a)x2' 

where 

J* =~ J( - Y:dx + 2y dy) = JdW, 2-a x x 
y2 

W=(-l-)-' z-a x 
Here E =p..y'2_ p..p2_ (y' - p) 2p..p=p..(y' _p)2> 0 

unless y' = p. The identity 

J(O)-J(E)= Ic Edx 

reduces to 

II (p..y,z_J£) dx-~-~ =/LJl {v' - (~+a) '!i}2 dx, 
o x 2 1- 2a 0 2 x 

which is (7.4.8). 
This argument shows the genesis of (7.4.8), but does not prove 

it, for two reasons. In the first place, F has a singularity, and 
the theory of the field breaks down, for x = O. Secondly, the 
theory presupposes the continuity of y'. 

In order to dispose of the first difficulty, we may take Po and 
PI to be (0, ok+a) and (1, I). The theory then gives the identity 

Il( y'2_y2)dx=2(1-02a)+ J l{Y'_(!+a)?t}Z dx' 
Il p.. x2 I - 2a p.. Il 2 x ' 

and we obtain (7.4.8), for continuous v', by making 0 tend to 
zero. 

When (7.4.8) is proved for continuous v', it may be extended 
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to general y' of L2 by standard processes of approximation. We 
deal with this point in the next section, in a different problem 
where we have no alternative elementary proof. 

Similar considerations lead to the identity 

fl( yk) 1 
(7.5.2) 0 f-ty'k- xk dX=(k_l)(l_A) 

+f-t f: {Y'k-e:r -k(y' - A:) (~r-l}dx.a 
Here 

y(O)=o, y(l)=l, y'~O, k>l, f-t>(k~lr=K, 
and A is the (unique) root of 

(7.5.3) f-t (k-l)Ak-l (A-l)+ 1 = 0 

which lies between 11k' and 1. When the form of (7.5.2) has been 
determined we may put 

f-t=K, 

where A= 11k' and f-tAk= 1. We thus obtain 

f: (KY'k_~:)dX 
k f 1 {' (Ay)k ( AY) (Ay)k-l} = k-l +K 0 y'''- X -k y' - x -x dx. 

It may be verified directly, by partial integration, that this is 
true whenever y' is Lk; and we can prove as in §7.4 that the 
identity remains true when the upper limit 1 is replaced by 00 and 
the term kl(k-l) is omitted. Since, by Theorem 41, 

ak-bk> k (a-b)bk- 1 

for all positive a, b, we thus obtain a proof of a theorem (Theorem 
327) which will be stated explicitly, and proved in an entirely 
different manner, in § 9.8. 

Incidentally we obtain 

255. If ( k )k 
k> 1, f-t> 1-1 =K, 

a The theory of the field gives the form of the identity, which may then be 
verified independently. The limitation to curves for which y' ~ 0 would introduce 
another slight complication into a properly variational proof. 
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y(O)=O, y(I)= 1, and y' is Lk, then 

Jl( yk) 1 
J= 0 fLy'k- xk dX~(k_I)(I_'\)' 

where'\ is the root of (7.5.3) between 11k' and 1. 

7.6. Further examples illustrative of variational 
methods. It is difficult to distinguish at all precisely between 
'elementary' and 'variational' proofs, since there are many 
proofs of intermediate types. We give a selection of such proofs, 
worked out with varying degrees of detail, in this and the succeed­
ing sections. 

(I). 256. If y (0) = 0 and 2k is an even positive integer, then 

(7.6.1) 

where 

(7.6.2) 

J: y2kdx~ oJ: y'2kdx, 

1 (2k. 7T )2k 
0= 2k-I ~sm2k . 

There is equality only for a certain hyperelliptic curve. 

(i) We suppose first that y (1) =!= 0, in which case we may take 
y(I)= 1, and consider 

J(y)= J: (Oy'2k_ y2k)dx. 

Euler's equation is 

(2k - 1) Oy'2k-2 y" + y2k-l = 0, 

which gives (2k-l) Oy'2k= O'_y2k, 

where 0' is a constant of integration. 
There is one extremal which passes through (0, 0) and (1, 1) 

and cuts X= 1 at right angles. In fact, if we take 0' = 1, then y' 
vanishes when y = 1. Also 

x={(2k-l) 0}1/2kJ (1- ~;k)1/2k 
and, since 

J
l dy 1 Jl(l- )-1/2k 1/2k-1 d _~ 7T 
o (1- y2k)1/2k 2k 0 u u u - 2k cosec 2k' 
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there is an extremal of this type which passes through (0,0) and 
(1, 1). If we denote this extremal by Y, then 

J (Y) = [ OYY'2k-lJ: - f: Y {(2k-l) OY'2k-2 Y" + Pk-l}dx= 0, 

since Y'(I)=O. 
To prove the theorem, we must show that y = Y gives a strong 

minimum; and this follows easily from the general theory. The 
extremal is a rising curve of the same general form as the curve 
y = sin t7TX, to which it reduces when k = 1. The curve y = r:t. Y is 
also an extremal; the family y = r:t. Y defines a field in the sense of 
§ 7.5; and the excess-function 

€ =y'2k_ p 2k_ 2k (y' _p)p2k-l 

is positive. Hence the standard conditions for a minimum are 
satisfied. This proof is genuinely 'variational' , and (in view of the 
trouble of calculating the slope-function p explicitly) it might be 
difficult to find a more elementary proof. 

There is however one point in the proof which demands an 
additional remark. The 'general theory' assumes that y' is con­
tinuous, and it may not be obvious how its conclusions, in par­
ticular in regard to the uniqueness of the solution, are extended 
to the more general y considered here. 

Let us denote by 12p the class of integrals y of functions of L2P , 

by 1* the class ofintegrals y* of continuous functions. The general 
theory shows that 

(7.6.3) J(y*»J(Y) 

for a y* different from Y, while we require the same result for 
any y of 12P • vVe can approximate to a y of J2P, different from Y, 
by a sequence of functions y*, in such a manner that 

J (y) = lim J (y*); 

but all that then follows from (7.6.3) is 
J(y)~J(Y), 

the strict sign of inequality being lost in the passage to the limit. 
The difficulty disappears if we look at the question differently. 

The general theory proves not only the inequality (7.6.3) but also 

the identity J (y*) - J (Y) = f E (y*) dx, 
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where €. (y*) is the excess-function corresponding to y* and the 
field y= <xY. Approximating to y by an appropriate sequence of 
y*, we replace this identity by 

J(y) - J( Y)= f €. (y)dx, 

and the integral is positive unless y= Y. 

(ii) The case in which y(l)=O may be discussed similarly, 
since y = 0 is then an extremal satisfying the conditions, and is 
included in the field y=<xY used in (i). 

Th~ proof might have been arranged differently if we had 
made no hypothesis about the value of y(l). The problem is 
then one with a 'variable end-point', that of minimising J(y) 
for curves drawn from the origin to meet the line x = 1. The 
extremals cut this line' transversally' (in this case orthogonally), 
and all the curves y = <X Y satisfy this condition. The general 
theory shows that all the extremals give the same value of J (y), 
and this value must be 0, since it is 0 when <X = o.a 

7.7. Further examples: Wirtinger's inequality. (II) Let 
us consider more particularly the case k = I of (I). Changing the 
limits, the result is that 

(7.7.1) J:" y2dx< J:" y'2dx 

ify(O)= 0 and y is not a multiple of sinx. 
The general theory suggests that there is an identity of the type 

J:" (y'2_ y2)dx= J:" {y'-ytf;(x)}2dx 

or J:" {y2(1 + tf;2) - 2yy' tf;}dx= O. 

This will plainly be true if 

y2(1 +tf;2)dx- 2ytf;dy 

is an exact differential dz, and z vanishes at the limits; and this 
requires 

a We owe these remarks to Prof. Bliss. 
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in which case z= _ rpy2. If we take k=i7T, rp=cotx, then z 
vanishes when x = i7T; and since y' is L2 and soa y = 0 (xi), z also 
vanishes when X= 0. We thus obtain 

. (7.7.2) fi rr fir. o (y'2_ y2)dx= 0 (y' -ycotx)2dx, 

which makes (7.7.1) intuitive. 
A slight modification of (7.7.2) leads to 

257. If y (0) = Y (7T) = ° and y' i8 L2, then 

f: y 2 dx< f: y'2dx 

unle88 y= Csinx. 

For y=o(x!) for small x, and y=O{(7T-X)!} for x near 7T,a so 
that y2 cotx vanishes at both limits. Hence 

(7.7.3) f: (y'2_ y2)dx= f: (y' -ycotx)2dx. 

Another modification of (7.7.2) leads to a more interesting 
theorem due to Wirtinger b. 

258. If y has the period 27T, y' i8 L2, and 

(7.7.4) 

then 

'Unle88 

f: rr 
ydx=O, 

f:r. y 2 dx < f:" y'2dx 

y=A cosx+ Bsinx. 

'Ve cannot write down at once an identity similar to (7.7.2) 
or (7.7.3), but with 0, 27T as limits, because ycotx will usually 
have infinities in the range of integration. 'Ve may however argue 
as follmvs c. 

a Theorem 222 
b See Blaschke (1, 105). The most immediate proof is by an application of 

Parseval's Theorem to the Fourier developments 
y~tao+1: (an cosnx+bn sinnx), y' ~ 1: (nbn cos nx-nan sinnx) 

(with ao=O). 
C The proof which follows was communicated to us by Dr Hans Lewy. 
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The function z(x)=Y(X+7T)-Y(X) 

has opposite signs for the arguments x and x + 7T, and therefore 
vanishes at least once in (0, 7T). We suppose that z(ex)=O, where 
O~ex<7T, and write y(ex)=a. Since y' is L2, (y-a)2cot(x-ex) 
vanishes for x = ex and x = ex + 7T ; a and 

J2lT 
o [y'2_ (y- a)2- {y' - (y- a) cot (x- ex)}2]dx 

= [(y-a)2cot (x-ex)J:lT =0. 

Hence, using (7.7.4), we obtain 

J:1T (y'2_ y2)dx= 27Ta2+ f :1T{y' - (y-a)cot(x- ex)}2dx, 

which is positive unless a = 0 and 

y'=ycot(x-ex), y= Csin(x-ex). 

There is a special interest in Theorem 258 because the proof of 
the classical isoperimetric property of the circle may be based 
upon it. We consider a simple closed curve C whose area is A and 
whose perimeter is L, and take 

,1.= 27TS 
't' L' 

where 8 is the arc of the curve, as parameter, so that 

x=x(cp), y=y(cp) 

We suppose for simplicity that x' and y' are continuous; the 
proofis valid for more general x, y. We may also suppose without 
loss of generalitY,that the centre of gravity of the perimeter lies 
on the axis of x, so that 

f 21T 
o ydcp=O. 

We have then 

( dX)2 (dY) 2 = {(dX)2 (dy)2} L2 = L2 
dcp + dcp ds + ds 47T2 47T2 ' 

.. Using Theorem 222 as in § 7.4 and above. 
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by Theorem 258. There will be inequality unless 

y=A cos e/> + Bsine/> 

and also x= - Jyde/> = -A sine/>+ Bcose/>+ 0, 

when the curve is a circle b. 
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7.8. An example involving second derivatives. (III) It 
is knownc that, iffhas a second derivative for x ~ 0, and 11-0,11-1,11-2 

are the upper bounds of If I, If' I, If" I, then 

11-1 2 ~ 411-011-2 • 

This suggests that there may be a corresponding relation between 
the integrals 

J o= J~ IflPdx, J 1 = J~ If' IPdx, J 2= J~ If" IPdx, 

where p ~ 1. The next theorem settles this question in the case 
p=2. 

259. If y and y" are L2 in (0, OO)d, then 

(J~ y'2dXf < 4 J~ y2dxJ~ y"2dx, 

unless y=AY(Bx), where 

Y = e-!x sin (x sin y- y) (y = l7T), 

when there is equality. 

a Or - 2 f 211" Y ~~ d.p, according to the sense of the variation of 8 as we pass in 
. 0 ""f' 

a given sense round the curve. 
b The proof is in principle that of Hurwitz (2), but differs (a) in that we do not 

use the theory of Fourier series and (b) in our unsymmetrical treatment of x and y. 
c Landau (2, 3). 
d In accordance with the convention of § 7.1, y' is the integral of y" and y of y'. 
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If we consider the 'isoperimetrical' problem of the Calculus of 
Variations defined by 

'J1 = f~Y'2dXmaximum, J o= f~ y2dxand J 2= f~Y"2dXgiVen" 
we have to form Euler's equation for 

f~ (y'2 - >..y2 -l-'y"2) dx. 

It is a linear equation of the form 

ay"" + by" +cy=O, 

whose solutions are linear combinations of real or complex ex­
ponentials. When we try to choose the parameters in the most 
advantageous way, we are led to consider the function Y. 

It seems difficult to complete the proof on these lines by use 
of the general theory. We shall deduce Theorem 259 from the 
simpler theorem which follows. 

260. Under the conditions of Theorem 259, 

J(y)= f: (y2_ y'2+ y"2)dx> 0 

unless y = A Y, when there is equality. 

We give several proofs of this theorem to illustrate differences 
of method. The first two are, as they stand, elementary; the third, 
of which we give only an outline, makes explicit the variational 
theory which lies behind the other two. We begin by an obser­
vation which is necessary in any case, viz. that J 1 is finite. 

To prove this, we have 

(7.8.1) f: y'2dx= [yy']: - f: yy" dx. 

Since J o and J 2 are finite, the last integral tends to a finite limita 

when X -+ 00. If J 1 were infinite, yy' and a fortiori 

y2=2fyy'dx 

would tend to infinity, which is impossible on account of the con­
vergence of J o• Hence J 1 is finite, and all three terms in (7.8.1) 

a By Theorem 181. 
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tend to limits. In particular yy' tends to a limit, which can only 
be ° (again on account of the convergence of J o). 

(1) Our first proof proceeds rather on the lines of § 7.4. It is 
easily verified that 

Y + Y'+ Y"=O, Y(O)+ Y'(O)=O, Y"(O)=O 

and J(Y)= O.a 

We now write y=z+cY, 

choosing c so that z(O) = 0. Then z, z', and z" are L2, z and z' are 
o (xi) for large X,b and zz' -? o. 

Now J(y)=J(z)+2cK(Y,z)+c2J(Y), 

where 

K = J~ (Yz- Y'z' + Y"z")dx 

=-J~(Y'+Y")ZdX- J~(Y+Y')Z"dX- J~Y'Z'dX 

= J~ (Y + Y' + Y")z'dx=O. 

Hence J (y) = J (z), and it is enough to prove that J (z) > 0 unless 
Z= o. But, since z(O)= 0 and zz'-?O when x-?oo, 

J~ z'2dx= - J~ zz" dx, 

and so J(z)= J~ (Z2+ZZI/+ZI/2)dx> 0 

unless Z= O. This proves Theorem 260. 

(2) We may try (following the lines of § 7.5 and § 7.7) to reduce 
Theorem 260 to dependence upon an identity. For this, we make 

(7.8.2) {y2 _ y'2 + y"2_ (y" + ~y + o/y')2}dx 

an exact differential; and the simplest choice of ~ and 0/ is 
~=o/= 1, when (7.8.2) reduces to 

-d(y+y')2. 
Thus J: {y2_ y'2+ y"2_ (y+y' +y")2}dx= - [(Y+Y')21\':"· 

a This requires a little calculation. b By Theorem 223. 
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Since J o, J 1 , and J 2 are finite, the left-hand side has a limit 
when X -+OO.a Also yy' -+ 0, and so y2 + y'2 tends to a limit, which 
can only be O. It follows that 

(7.8.3) 

J~ (y2_ y'2+ y"2)dx={y(0) +y' (0)}2+ J~ (y+y' + y")2dx, 

which is positive unless 
y"+y' +y=O 

and y' (0) + y(O) = o. 
These conditions give y = A Y. 

(3) The underlying variational theory is a little more complex 
than that of § 7.5. If we put 

(7.8.4) y'=z, 

(7.8.5) 

and suppose that 

(7.8.6) y(O)= 1, z(O)=', y(oo)=O, z(oo)=O, 

then the problem is a 'Lagrange problem', viz. that of minimising 
J(y, z) when subject to (7.8.4) and (7.8.6). 

The extremals of the field, in space (x, y, z) are givenb by 

( ) 3<1> _ !£ (3<1» _ 0 ~~ _ ~ (3<1» _ 0 
7.8.7 3y dx 3y' -, 3z dx 3z' - , 

where <1>= F-A(Y' - Z)=y2_ y '2+ Z'2_ A(y' -z), 

and A is a function of x defined by the equations themselves. In 
this case the equations (7.8.7) reduce to 

(7.8.8) 2Y+;x(2Y'+A)=0, A=;x(2Z'), 

and from these and (7.8.4) we find 

(7.8.9) y"" +y" +y=O. 

a The integrals 

r'" yy'dx, f'" y'y" dx, J"" yy" dx 
• 0 0 0 

being convergent, by Theorem 181. 
b For an account of the general theory see Bliss (2). 
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The most general solution of (7.8.9), for which y and z vanish at 
infinity, is 

(7.8.10) y = ae-PX + ae-px, 

where p = eirri and the bar denotes the conjugate. 
The equations (7.8.10) and 

(7.8.11) Z= -ape-px-ape-Px , 

(7.8.12) A= 2ae-Px + 2ae-px, 

define a two-parameter 'field' of extremals through (00, 0, 0). 
The 'slope functions' p, q, and the 'multiplier' A of the field 
are the functions 

p (x, y, z), q (x, y, z), A (x, y, z), 

obtained by expressing the slopes of the extremal, and the func­
tion A defined by (7.8.8), in terms of x, y, z. A straightforward 
calculation gives 

(7.8.13) 

(7.8.14) 

p=z, q= -y-z, 

A= 2y.a 

The analogue of the Hilbert integral is 

J*= J [(<I>-p<Pp-q<l>q)dx+<I>pdy+<I>qdz]. 

This integral has properties corresponding to those of § 7.5; it is 
independent of the path between its end-points, and its value 
along an extremal is the same as that of 

J=fFdx. 

Also, if E is the extremal, and 0 any other curve, joining the 
end-points, we have 

(7.8.15) JC-JE=JC-J;=Jc-J~= J c fidx, 

where fi is the excess-function, defined here by 

fi =<1> (x, y, z, y', z', A) -<I> (x, y, z,p, q, A) - (y' - p)<I>p - (z' - q)<I>q. 

a p, q, ,\ are in the first instance functions of x and the parameters a, a of the 
extremal. Here, in particular, 

y'== -ape-px-ape-Px==z, z'==ap2e-PX +ap2e-Px== -y-z, 

,\ ==2z" == - 2ap3 e-pX - 2ap3 e-pX ==2y. 



192 SOME APPLICATIONS OF 

In this case it will be found that 

(7.8.16) E = (Y+Z+Z')2- (y' _Z)2 

and JE = (1 + 0 2 • 

Since E reduces to (y + y' + Z)2 when y' = z, we obtain 

J: (y2_ y'2+ Z'2)dx= (1 + ')2+ J: (y+y' +z')2dx, 

which is (7.8.3). We have thus proved Theorem 260 in three 
different ways. 

We have supposed that y(OH'O, so that we can take y(O)= 1. The 
case in which y( 0) = 0 may be discussed similarlya. 

Our object has been only to illustrate a method and not to discuss a 
difficult general theory, and we have therefore presented the argument 
very shortly. The following remarksb may help to make the method 
intelligible. 

(a) The integral J* constructed from a two-parameter set of extremals 
is not necessarily invariant. Here we can verify the invariance of J* 
directly; in fact 

J*= -Jd(Y+Z)2. 

This invariance ensures that our extremals form a 'field'. The' reason' is 
to be found in the fact that they pass through a fixed point, y, z, and ,.\ 
all vanishing for x = CfJ. 

(b) In this case <1> is quadratic, and 

E = H(y' - p)2 <1>"" + 2 (y' - p) (z' - q) <1>"Q + (z' - q)2 <1>QQ}' 
which leads immediately to the formula (7.8.16). 

(c) Suppose that E and C are defined as above, that Eo is the positive 
axis of x, and L an arbitrary curve joining (0, 1,0 to the origin. Then 

~=~-~=~-~=~+~-~~ 

* * * foo =JL+JO-JC=JL + Edx 
() 

= (l + ~)2 + f~ (y + y' + y")2dx. 

This is (7.8.3); the argument avoids a direct calculation of J E • Alterna­
tively we may argue 

a Compare § 7.6. 
b For which we are indebted to Prof. Bliss and lIfr L. C. Young. 
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In order to deduce Theorem 259 from Theorem 260, we apply 
the last theorem to y(x/p) instead of to y(x). We thus obtain 

p4Jo- p2J1 + J 2= f~ (p4y2_ p2yf2+y"2)dx> O. 

Since this is true for all positive p, and in particular when 
p2= J 1/2Jo, it follows that J 12 < 4JOJ 2 unless y(x/B) =AY (x). 

7.9. A sim.pler problem.. It is interesting to observe that the corre­
sponding theorem for the interval (- 00,00) is much more elementary and 
of a quite different character. 

261. If Y and y" are L2 in ( - 00, 00), then 

(f:" y f2 dXy < J~" y2dx J:" y"2dx 

unless y = O. The (unit) constant is the best possible. 

In fact (as in the proof of Theorem 260) yy' -;. 0 and 

J 12= (f:" y'2dXr = ( - J~" yylldXy <J:" y 2dx J~" y"2dx= J OJ 2 • 

To prove the constant best possible, we take y=sinx for I x I ~n1T, y= 0 
for I x I >n1T, and round off the angles at x= ± n1T so as to make y" con­
tinuous. We can plainly do this with changes in the three integrals which 
are bounded when n -;. 00, and then each of them differs boundedlyfrom n1T, 
so that 

if n is sufficiently large. 

MISCELLANEOUS THEOREMS AND EXAMPLES 

262. If y(O) =y(l) = 0 and y' is L2, then 

unless y=cx(l-x). 

[If J (y) = J: (ty'2 - x J~ X)) dx, 

then (E) is X (l-x)y" + 2y= 0, 

and y = !XX (1- x) is an extremal satisfying the conditions whatever be IX. 

By varying ex we can define a field a round any particular extremal. It will 
be found that in this case J ( Y) = 0 and 

_1-2x _ 1-2x 2 _ {' 1-2x )2 
P-x(l-x)y, W- 2x (1-x)y, .§"-t y-x(l-x)Yf' 

a The field differs slightly in character from those described in § 7.5, since each 
extremal passes through (0, 0) and (1, 0). 

HI 
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The underlying identity is 

fl( yS) Jl( 1-2x)S 
o jy'S-x(l_x) dx=t 0 Y'-x(l-x)Y dx. 

The theorem should be compared with Theorem 225. For fuller details, 
and proofs of both theorems by means of Legendre functions, see Hardy 
and Littlewood (10).] 

268. If J == 10'" ySdx, K == 10'" y'2dx, then 

unless y==ae-ba:. 

264. If 

4JK> {y(0)}4 

(a) y(-I)==-l, y(l)==l, y'(-I)==y'(I)==O 

and k is a positive integer, then 

J~l (y")2lcdx~ 2 (::= ~rlc-l , 
with inequality unless 

_ 4k-1 _ 2k-1 (41c-l)/(2lc-l) 
y- 2k x 2k x • 

[This is an example of the theory of § 7.8, simpler than that in the text. 
In this case 

265. If Y satisfies (a), and has a second derivative y" for every x of 
(-I, I), then I y"(x) I > 2 for some x. 

[This theorem, which is easily proved directly, corresponds to the 
limiting case k == 00 of Theorem 264. The extremal curve of Theorem 264 
reduces to '!J== 2x-x2 sgnx. 

For this curve y' == 2( I-I x I), and y" == - 2 sgn x except for x == O. There 
is no second derivative at the origin.] 

266. If y is L2, Z' == y, and 

then 
y(O) =y(2'IT)=z(0) =z(2'IT) = 0, 

[2,. (y'2_ y2)dx= [2" {Y' + (xcosx-sinx)y+ (I.-cosx) Z}2 dx. 
Jo Jo 2-2cosx-xsmx 

[This identity, which gives another (though less simple) proof of 
Theorem 258, is the result of treating Wirtinger's inequality as a case of 
Lagrange's problem, on the lines of § 7.8.] 

267. 10'" (y2+2y'2+y"2)dx>Hy(0)}2 

unless y=Ce-"'(x+2). 

268. If k~ I and y and y" are LTc in (-00, (0) or (0, (0), then 

(J I y'l lc dx)2;§;K(k)J I y l lcdxf I y" I Tcdx, 

the integrals being taken over the interval in question. 

[We are unable to determine the best value of K, even when k= 4.] 
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269. If k> 1 and y and y" are Lk and Lk' respectively, then 

f~oo y'2dx< (f~oo j y jkdx) 11k (f~oo I y" I k' dx Y'k', 
unless y is nul. 

270. If y' is L2, then 

(i) fa
oo ~dx<% (fo" y'2dx r 

unless 

(ii) 
x 

y= ax+b' 

195 

where a andb are positive, in which case there is equality. More generally, if 
Z 

(iii) l>k> 1, r=k -1, 

and y' is positive and Lk, then 

(iv) 

where 

(v) 

unless 

f 00 y! (f" )!Ik o x!-rdx<K 0 y'kdx , 

K 1 [ rr(Z/r) ] 
=Z-r-l r(l/r)r{(l-I)/r} , 

(vi) x 
y= (axr+b)l/r' 

[It is easy to prove an inequality of the type of (i) but with a less 
favourable constant. Thus, if we denote the integrals in (i) by K and J 
respectively, we have 

and so K=foo y4 dX5. J f oo y2 dx<4J2 
a x 3 - a x 2 ' 

by Theorem 253. We know no elementary proof of the full result. For 
details of the variational proof, which is much more difficult than that 
of Theorem 260, we must refer to Bliss (3).] 

271. If IX> 1, and (Jj(f) is the geometric mean off over (0, x), then 

fo
oo x«-l (Jj~(f) dx< ~~ 1 {r (IX~ 1) r- (/000 

fdx r, 
unless f===- Oexp( _BX~-l). 

[See Hardy and Littlewood (7). The limiting case IX = 1 corresponds to 
Theorem 335.] 

272. In the problem 

'f~oo y 2dx maximum, f~oo x 2 y2dx and f:ooy'2 dX given', 

the Euler equation is of the form 
y" + (a+bx2) y= 0, 

and is soluble by parabolic cylinder functions. It has a solution y = e-·'" 
if b= _a2= _(2C)2. 

[This gives the variational basis for Weyl' sinequality (see Theorem226 ).] 

I3-2 



CHAPTER VIII 

SOME THEOREMS CONCERNING BILINEAR 
AND MULTILINEAR FORMS 

8.1. Introduction. In this chapter we prove a number of 
general theorems concerning the maxima of bilinear and multi­
linear forms. In the early part of the chapter we consider forms 
in n sets of variables, but suppose the variables and coefficients 
positive. Later, we abandon this restriction, but suppose that 
n = 2; and most of the latter part of the chapter is occupied by 
the proof of an important theorem of M. Riesz concerning 
bilinear forms with complex variables and coefficients. 

POSITIVE MULTILINEAR FORMS 

8.2. An inequality for multilinear forms with positive 
variables and coefficients. We suppose that 

Xi' Yj' ••• , Zk 

are nsets of variables, i,j, ... , k running from -00 to 00; and that 
Z,Z,Z' 

i i 

indicate respectively summation with respect to all suffixes, 
summation with respect to i only, and summation with respect 
toj, ... , k (all suffixes except i). The sum 

S=Zaij ... kxiYj",Zk 

is called a multilinear form in the variables X, y, ... , z. When n is 
1, 2, or 3, the form is said to be linear, bilinear, or trilinear. 

If the series are absolutely convergent, then 

S = ZXi Z' aij ... kYj ... Zk = ZYj Z' aij ... kxi ... Zk = .... 
i i j j 

273. Suppose that 

(8.2.1) 0< ex;;;;; 1, 0< f3;;;;; 1, ... , O<y;;;;; 1 

and 

(8.2.2) ex+f3+ ••• +y-l Mi (f3 ) 0;;;;; 1;;;;; n ex, , ••• ,y; 
n-
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that i'i., ~, ..• , ji are defined by 
_ - _ cx:+,8+ ... +y-1 

(8.2.3) cx:-cx:=,8-,8= ... =y-y= 1 
n-

(so that 0;;£ i'i.;;£ cx:, ... , 0;;£ ji;;£ y), and that p, a, ... , T are positive and 

{8.2.M i'i.p + ~a+ ... +5h= l. 
Suppose further that 

(8.2.5) 

and 

xd';o, Yj'?;,O, ... , zk'?;,O, 
~xlla<;;£X, ~y/If3;;£ Y, ... , 
i j 

aij ... k'?;, 0, 
~Zk l/y ;;£ Z, 
k 

(8.2.6) ~'a~j ... k=Ai;;£A, ~'afj ... k=Bj;;£B, 
i J 

... , ~'aij ... k= Ok;;£ O. 
k 

Then S = ~aij ... kxiYj ... Zk;;£ A iY. B~ ... OY Xa< yf3 ... Zy. 

We have in fact 

1-i'i.-~- ... -ji= cx:+,8+ ... 7y - 1 = cx:-i'i.=,8-~= ... , 
n-

and so, by Theorem 11,a 
S = ~ (aP x1/a<)iY. (aayllf3)li ... ·(aTz1/Y)Y (Xl/a<yl/f3 ... Zl/Y)1-iY.-li-···-y 

;;£ (~aPx1/a<)iY. (~aayllf3)li ... (~aTzl/y)y (~Xl/exyl/f3 ... Zl/Y)1-7i-fj- ... -y 

= (~xl/a<~' aP)iY. ... (~Zl/Y~' aT)Y (~Xl/ex ... ~Zl/y)l-iY.-···-Y 
i i k k i k 

;;£ (AX)iY. ... (OZ)Y (XY ... Z)1-iY.-···-Y 
= A iY. B~ ... CY Xex yf3 ... Zy. 

We note some special cases. 

(1) If cx:+,8+ ... +y=l, 
then i'i.=cx:, ~=,8, ... , ji=y, 
and the statement of the theorem becomes simpler. 

(2) When n= 2, the second of the conditions (8.2.2) is satis­
fied automatically. If we write b 

then 

1 1 
rx==-, /3= -, 

p q 
1 - 1 

i'i.=?, ,8= p'. 

a Extended to infinite series: we shall not usually repeat this remark. 
b In the preceding chapters the letters p and q have been reserved for the weights 

of mean values. In this chapter they are not required for this purpose, and we use 
them as indices. 



198 SOME THEOREMS CONCERNING 

Exchanging p and u, and A and B, we obtain 

274. If 
IIp u 

p~l, q~I, -+-~I, p>O, u>O, ,+,=1, 
p q P q 

:I:ai/ ~ A, :I:ait ~ B, :I:x(> ~ X, :I:Yl ~ Y, 
i j i j 

then S=:I:aijXiYj~Al/p' Bl/q'Xl/p Yl/q. 

(3) An interesting and still more special case is that in which 
p=u= 1, q=p'. 

275. If 

then 

1 1 
p>l, q>I, -+-=1, 

P q 

:I:aij ~ A, :I:aij ~ B, :I:x(> ~ X, :I:Yjq ~ Y, 
i j i i 

S = :I::I:aijXi Yi ~ (BX)l/P (A y)l/q. 

For the case p=q= 2, see Frobenius (1) and Schur (1). 

8.3. A theorem of W. H. Youn~. Another specialisation of 
Theorem 274 leads to an inequality of W. H. Young which is 
very important in the theory of Fourier series. 

Suppose that u = p > 1, so that 
1 1 1 1 1 
,+-=-< 1, -+-> 1; 
P q'p pq 

and take aij = ai+j' Then 

:I:ai/ = :I:ai/ = :I:anP = A, 
i i 

say, for every j and i respectively. Hence, if we write 

(8.3.1) zn= :I: XiYj, 
i+j=n 

we have, by Theorem 274, 
(8.3.2) :I:anzn = :I:ai+jxiYj ~ A lip Xl/p Yl/q. 

Since (8.3.2) is true for all an for which :I:anP=A, it follows, by 
Theorem 15, that :I:znP' ~ Xp'lp Yp'lq. 

This must be replaced, when p = 1, by Zn ~ Xl/p yl/q. 
We have thus proved (apart from the specification of the cases 

of equality) the following theorem ofYounga• 

r. Young (3,4, 6). Young does not consider the question of equality. 
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1 1 
276. If p> 1, q> 1, -+-> 1, 

P q 
and Zn is defined by (8.3.1), then 

pq q p 
(8.3.3) '£.znp+q- pq ~ ('£.xl)p+q-pq ('£.Yl) p+q-pq. 

Equality can occur only if all the x, or all the y, or all the x but one 
and all the y but one, are zero. 

We add a more direct proof which enables us to settle the 
question of equality. If we write lip = 1-A, 11q = 1-ft;*then 

. A> 0, ft> 0, 1..+ ft< 1, and we can enunciate the theorem in the 
following form. 

277. If 1..>0, ft>O, A+ft< 1, 

Z is defined by (8.3.1), and 6 r (x) as in §2.10, then 

(8.3.4) el/{l-A-f<) (z) ~ eifel-A) (x) elf(I-f<) (y), 

with equality only in the cases specified in Theorem 276. 

Let v = 1 - A - ft. It follows from Theorem 11 that 
1 A /L v vilA 1/L 11 

('£.UV)-;; = ('£.uA+v v/L+v u A+v V<L+V);; ~ ('£.uHv);; ('£.v/L+vf '£.uA+vV/L+v • 

Applying this inequality, with 

U=Yn-i=Yj' V=Xi' 
to (8.3.1), we obtain 

1 1/L 110. 11 

(8.3.5) Zn -;; ~ ('£.x/+vf ('£.y/+vfv '£. x/+vy/+v, 
i j i+j=n 

1 /L All 

(8 3 6) -;;<I."'v(/L+v)( )~V(A+V)( ) '£. /L+V A+v . . Zn = i!::> 1 X '.::.> 1 Y Xi Yj • 
/L+v A+v i+j=n 

Hence 
1 /L All 

'£.Zn;; ~ 6 v r+ v) (x) 6 v iA+V
) (y) '£. '£. x/+v y/+ V 

• 

n /L+;; A+v n i+j=n 

Since the double sum here is equal to 
1 1 1 1 

~ ~ /L+v A+v _ ~/L+v ( ) c:::A+V( ) "'" "",Xi Yj - '=' 1 X 0 1 Y, 
i j /L+v A+v 

.! .! ! 
we obtain '£.Znv ~ 6 ~ (x) 6 ~ (Y), 

n 

and this is (8.3.4). 
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We can dispose of the question of equality as follows. 
If not all x, and not all y, are zero, there are n such that 

XiYj> 0 for some i, j for which i + j = n. We call the lattice point 
corresponding to such a pair i, j a point P n' Then (8.3.5) is true, 
for such an n, if, in the first two sums on the right, we limit 
ourselves to values of i andj corresponding to points Pn . If there 
is equality in (8.3.5), then, for such i, j the ratios 

1 1 1 1 
~ -

xt+ v : y/+ v : xt+vy/+ v 

do not depend on i and j, and the corresponding Xi' and the 
corresponding Yj' are all equal. It follows that there can, for any 
n, be only a finite number of points P n' 

Suppose that all these conditions are satisfied for a certain n. 
Then equality will still be excluded in the next inequality (8.3.6), 
unless the i and j corresponding to the P n exhaust all i and j 
for which Xi> 0 and Yj> O. It follows that the total number of 
positive Xi and Yj is finite. There is therefore a single point for 
which xiYj > 0 and n = i + j is a minimum. For this n there is a 
unique P n and, if there is equality in (8.3.6) for this n, then Xi= 0 
and Yj = 0 except for the corresponding pair i, j. 

8.4. Generalisations and analogues. Theorems 276 and 
277 have many interesting specialisations, generalisations, and 
analogues. We state a number of these without proof. 

278. If A> 0, /L> 0, ... , v> 0, A+/L+ ... + v< 1, and 

wn = ~ XiYj· .. Zk' 
i+i+ ... +k=n 

then 
e; 1 (w) ;;; e; 1 (X) e; 1 (y) ... e; 1 (z), 

0-"1----,;,.---'1'-'---•• -. --v 1-;" 1-1'- I-v 

unless all numbers of one set, or all but one of every set, are zero. 

279. If 

-~ 2k-l 
then ~Cn 2 ;;; (~an2k-l) , 

unless all a but one are zero. 
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Theorems 277-279, being' homogeneous in ~ , in the sense 
of § 1.4, have integral analogues. 

280. If A> 0, Il-> 0, A+Il-< 1, 

and 

then 

3r (f) = (J:oo r dX) 14
r 

h(x)= J:oof(t)g(X-t)dt, 

3 1 (h) <3 1 (f)3 1 (g), 
l-A-fJ. I-A 1-1-' 

unless for g is nul. 

281. IfA>O, Il->O, A+Il-<l, 

3r(f) = J~ rdx, 

and h(x) = J:f(t)g(X-t)dt, 

then 3 1 (h) < 3 1 (f) 3 1 (g), 
l-A-I-' I-A' 1-1-' 

unless f or g is nul. 

282. If k is an integer and 

283. If 

cf> (x) = J f(xl ) .. ·f(Xk-l)f(x- Xl - ••• -Xk_l)dxl · .. dXk_l' 

the integration being defined by 

Xi;;; 0, ~Xi:;; X, 

then J oo (JOO 2k )2k-1 
o cf>2 (x) dx:;; 0 f 2k- 1 (x) dx . 
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284. If f(x) has the period 217, and 

4>(x)= (217~k-l f~,,- .. .J~J(Xl)f(X2) ···f(Xk - 1 ) 

xf(x-x1 - ••• -Xk_1)dx1dx2 ... dXk_1 , 

then ~f"- {4>(x)}2dx;?;(~frr j2Z~1(X)dx)2k-l 
217 _,,- 217 _,,-

8.5. Applications to Fourier series. Theorems 279 and 284 have 
important applications in the theory of Fourier series. Here we are con­
cerned with functions and coefficients which are not positive, but the 
theorems which we have proved are sufficient for the applications. 

Suppose first thatJ(x) and g(x) are complex functions of L2, and that 
00 00 

1: an en;"" 1: bn en;", 

are their complex Fourier series. Then it is well known that 

(8.5.1) 

(the bar denoting the conjugate). In particular, ifJ(x) is L2, 

(8.5.2) 1:la,,12=- IJ1 2 dx. 1 fIT 
27T -rr 

Conversely, if 1: 1 an 12 is convergent, there is anJ(x) of L2 which has the 
an as its Fourier constants and satisfies (8.5.2). 

These theorems ( 'Parseval 's Theorem' and' the Riesz· Fischer Theorem') 
were generalised by Young and Hausdorff. We write 

(8.5.3) ( 1 fIT )l/P 
6 p(a) = (1: 1 an 1 P)l/P, 'Jp(f) = 27T _".iJ(x) 1 pdx ; 

so that 6 p (a) is 6 p (1 a I) as defined in § 2.10, and (8.5.2) may be written 

(8.5.4) 6 2 (a) = 'J2(f). 
Young and Hausdorff proved that, if 

(8.5.5) 1 <p;£ 2, 

then 

(8.5.6) 

and 
(8.5.7) 6 p' (a);£ 'Jp(f). 

The limitation on p is essential. The theorems were proved first by Young 
(3,4, 6) for a special sequence of values of p and p', viz. 

(8.5.8) P=2:~I' p'=2k (k=I,2,3, ... ), 

and then generally by Hausdorff (2). 
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We confine ourselves here to the case (8.5.8), considered by Young. 
In this case (8.5.6) and (8.5.7) are corollaries of Theorems 279 and 284 
respectively. For example, the cn of Theorem 279& is the Fourier constant 
of if;=fk, and so 

~;~(f)=2~ /:"IfI 2kdX = 2~ /:) if; 12 dx 

= ~ 1 Cn 12;;; 6;~/(2k-l) (a), 

which is (8.5.6). Similarly ank is the Fourier constant of the cf>(x) of 
Theorem 284, and so (8.5.7) may be deduced from Theorem 284. 

The proof of (8.5.6) and (8.5.7) for general p is decidedly more difficult: 
see § 8.17. 

It is interesting to observe (as another application of Holder's in· 
equality) how (8.5.7) may be deduced from (8.5.6). Write 

bn= 1 an 1 p'-l sgnan = 1 an Ip'/an 
if an =1= 0 and 1 n 1 ;;; N, and bn = 0 otherwise; and let 

g(x) = ~bnenix. 
N ,N - 1 f" --
~ lanl p = ~anbn=2 f(x) g(x) dx, 
-N -N 7T -" 

Then 

since g is a trigonometrical polynomial. Hence, using Holder's inequality 
and (8.5.6), we obtain 

N 
~ lanlp';;;~p(f)~p,(g);;;~p(f) 6 p(b) 
-N 

( 
N \ l/p ( N )l/P 

= ~p(f) _~) an 1 (p'-l) p) = ~p(f) _~I an 1 P' • 

Transposing the last factor, and then making N tend to infinity, we 
obtain (8.5.7). 

8.6. The convexity theorem for positive multilinear 
forms. In this section we prove a simple but important property 
of multilinear forms with positive variables and coefficients. 
The theorem which we prove is a mere corollary of HOlder's in­
equality, but it is useful, and will serve as an introduction to the 
deeper theorem of § 8.13. 

285.b Suppose that a ~ 0, x ~ 0, "', Z ~ 0, and that 

is the upper bound of 
M 1X,j3, ... ,y 

S = '2:.aij ... k xiYj'" Zk' 

for all x, y, "', zfor which 
'2:.x1/1X 21, '2:.yl/j3 21, ... , '2:.z1/y 21; 

a Now, of course, formed from complex a. 
b M. Riesz (1): Riesz has n=2. 
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then 10gMIX,p, ... ,y i8 a convex function of 0(;, (3, ... , Y in the region 
0(;>0, (3)0, ... , y>O. 

By a convex function of n variables 0(;, (3, ... , y we mean (§ 3.12) 
a function convex along any straight line in the space of cx, (3, ... , y. 

We have to verify that if 

tl;;;:;O, t2 ;;;:;0, tl +t2=1, 

cx = tl CXl + t2cx2' (3 = tl (3l + t2(32' ..• , y = tl Yl + t2Y2' 
then 

(8.6.1) 

Now 

S = "i:.axy ••• z = "i:. (axIX1/IXyPl/P ... zy1/y)t1 (axIX2/ IX y f32/f3 ..• ZYb)f2 

~ ("i:.axIX1/ IX y f31/f3 ••• ZytIY}tl ("i:.axIX2!IX y f3.Jf3 ••• ZY2iy}t2 • 

Since "i:. (XIX1/IX}1/IXl = "i:.xl!1X ~ 1, ... , 

the first sum on the right does not exceed M IXl> /3" ... , 'Yl; and simi-
1arly the second does not exceed M IX2, /32, "',1'2' This proves (8.6.1). 

The theorem may be extended to the closed region cx;;;:; 0, 
(3;;;:; 0, ... , if we replace the conditions "i:.x11IX ~ 1, "i:.yl!f3 ~ 1, ... by 
x ~ 1, Y ~ 1, ... when cx, (3, ... are zero. 

Suppose for example that n = 2 and 

"i:.ai(~ A, "i:.aij ~ B. 
i j 

Then MO,l~A and Ml,O~B, so that MIX,l_IX~BIXAI-IX for 
O<cx<1. Ifp>l, q=p', we may take cx=l/p, 1-cx=1/q; and 
then we obtain 

~f < M l /P M 1/q < Blip A l{q 
IIp,l/q = 1,0 0, 1 = , 

which is equivalent to the result of Theorem 275. 

GENERALITIES CONCERNING BILINEAR FORMS 

8.7. General bilinear forms. So far we have been occupied 
with 'positive' multilinear forms, i.e. forms whose variables and 
coefficients are non-negative. The most important multilinear 
forms are bilinear, and the remainder of this chapter, and most of 
the next, is concerned, from one point of view or another, with 
bilinear forms, which will not generally be positive. 
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We shall denote the form whose coefficients are aij by A, and 
similarly with other letters. We change the convention of § 8.1 
concerning the range of the suffixes; until the end of § 8.12, i,j, ... 
run from 1 to 00. We write 

We also write 

(t)r(x)=(t)r(1 x 1)= (~I Xi Irtr. 

(8.7.1) '2:.aijXi =Xj , '2:.aijYj= Yi • 
i j 

When the form is positive 
(8.7.2) A = '2:. '2:.aij xi Yj= '2:.xi Y i = '2:.yj X j , 

i j i j 

the convergence of anyone of these series involving the con­
vergence of the others and the equality of the three. The equations 
(8.7.2) are true also for complex a, x, Y when the form is finite. 

We shall make repeated ;lse of the following general theoremsa• 

286. Suppose that 
/ 1 1 1 1 

p>l,/q>l, p+p,=l, q+q;=l 

(so that p' > 1, q' >i) and that a, x, yare real and non-negative. 
/ 

Then the three ass/rtions 
(8.7.3) / IA(x,y)I;;::;KSp(x)Sq(Y) 

for all x, y;b / 

(8.7.4) Sq,(X);;::;KSp(x) 
for all x; 

(8.7.5) Sp,(Y);;::; KSq(Y) 
for all Y; are equivalent. 

287. The three assertions 

(i) there is inequality in (8.7.3), unless either (Xi) or (Yj) is nul; 

(ii) there is inequality in (8.7.4), unless (Xi) i8 nul; 

(iii) there i8 inequality in (8.7.5), unles8 (Yj) is nul; 
are also equivalent. 

a For the case p=q=2, see Hellinger and Toeplitz (1); for q=p'. F. Riesz (1). 
The substance of the general theorems is to be found in M. Riesz (1). The im­
portant cases are naturally those in which K has its least possible value, i.e. is the 
bound of A (§ 8.8). 

b Here A ;;; 0; but we write I A I for A in view of Theorem 288. 
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288. When the forms are finite, Theorems 286 and 287 are true 
also for forms with complex variables and coefficients. 

Theorem 286 is a simple corollary of Theorems 13 and 15. 
It follows from (8.7.2) and Theorem 13 that 

(8.7.6) A = ~YjXj ;;£®q(Y)®q'(X), 
:J 

so that (8.7.4) is a sufficient condition for the truth of (8.7.3); 
and Theorem 15 shows that it is also a necessary condition. Hence 
(8.7.3) and (8.7.4) are equivalent, and similarly (8.7.3) and 
(8.7.5) are equivalent. 

There will be inequality in (8.7.3) unless (Yj) is nul or there 
is equality in (8.7.4). Hence the second assertion of Theorem 287 
implies the first. If the Xi' and so the X j , are given, we can, by 
Theorem 13, choose a non-nul (Yj) so that there shall be equality 
in (8.7.6). Hence, if there is equality in (8.7.4) for a non-nul 
(Xi), then there is equality in (8.7.3) for a non-nul (Xi) and (Yj)' 
Hence the two assertions are equivalent, and similarly the first 
and third are equivalent. This proves Theorem 287. 

Finally, the whole argument applies equally to complex a, x, Y 
when the forms are finitea• We have only to use Theorem 14 
instead of Theorem 13. 

The most important case is that in which q = p', q' = p, when 
(8.7.3), (8.7.4), and (8.7.5) become 

IA I;;£K®p(x)®p'(Y)' ®p(X);;£K®p(x), ®p,(Y);;£K6p'(Y)' 

BOUNDED BILINEAR FORMS 

8.S. Definition of a bounded bilinear form. Throughoutthe 
rest of this chapter we suppose, except when there is an explicit 
statement to the contrary, that the variables and coefficients in 
the forms considered are arbitrary real or complex numbers. 

We describe the aggregate of all sets (x) or Xl' X 2 ' "', real or 
complex, for which 

(8.8.1) ®p(x)=®p (I X 1)= (~I Xi Ip)lJp;;£l 

as space [p]. Here p is any positive number; but usually p> 1. 

" Otherwise there are difficulties concerning the mode of summation of A. 
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Similarly we describe the aggregate of sets (x, y) for which 

(8.8.2) @)p (x) ~ I, @)q (y) ~ I 

as space [p, q]. The most important case is that in whichp=q= 2. 
The importance of this space was first recognised by Hilbert, and 
we may describe it shortly as Hilbert space. 

In our generaldefinitionp or q may be 00, if we interpret 6 00 (x) 
as Max I x I. Thus space [00, 00] is the aggregate of sets (x, y) for 
which I x I ~ I, I y I ~ 1. 

A bilinear form 

(8.8.3) A = A (x, y) = 'E'EaijXiYi 

is said to be bounded in [p, q] if 

(8.8.4) IAn (x, y) I = I i~l j~l aijxiYi \ ~ M, 

where M is independent of the x and y, and of n, for all points of 
[p, q]. We call An a section (Abschnitt) of A: a form is bounded 
if its sections are bounded. 

It is plain that (8.8.4) will hold for all points of [p, q] if it 
holds whenever 

(8.8.5) 

In this case (8.8.4) may be written 

(8.8.6) I An (x, y) I ~ M@)p(x)@)q(Y), 

and here both sides are homogeneous of degree I in x and in y, so 
that the conditions (8.8.5) are immaterial. We might therefore 
have taken (8.8.6), with unrestricted x, y, in our definition of a 
bounded form. 

So far M has been any number for which (8.8.4) or (8.8.6) is 
true; if so, we say that A is bounded by M, or M is a bound of A. 
It is natural to take M to be the smallest such bound, and then 
we say that M is the bound of A.a 

" If M" is the maximum of A". under the conditions 
n n 
~lxiIP;:;:;l. ~IYjlq;:;:;l. 
1 1 

then plainly M,,;:;:;M"+ l and M,. is bounded in n. Hence 

M= lim M" 
n~oo 

exists, and is the smallest bound of A. 
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An important special case is that in which p = q and 

when A is said to be symmetrical. In this case a necessary and 
sufficient condition that A should be bounded is that the quadratic 
form A (x, x) = }:,}:,aijxtxj 

should be bounded. When we say that A (x, x) is bounded, we 
mean, naturally, that A (x, y) is bounded when the x and yare 
the same, i.e. that 

1 An (x, x) 1 ~ M 

for all x for which Sp (x) = 1. 
In the first place, it is obvious that the condition is necessary, 

and that the bound of A (x, x) does not exceed that of A (x, y). 
That the condition is sufficient follows from the identity 

(8.8.7) An (x, y) = iAn(x+ y, x+ y) - iAn (x-y, x-y). 

When p= 2 we can go a little further; the bounds of A (x, x) and 
A (x, y) are the same. In fact, if M is the bound of A (x, x), then 
(8.8.7) gives 

1 An (x, y) 1 ~ iM}:, (I x+y 12+ 1 x-y 12) =lM}:, (I x 12+ 1 Y 12) ~M. 
It is evident that, when the coefficients a are positive, A is 

bounded if it is bounded for non-negative x and y, and that its 
bound may be defined with reference only to such x and y. If 

A * =}:,}:, 1 aij I XiYj 

is bounded, A is said to be absolutely bounded. 

8.9. Some properties of bounded forms in [p, qJ. The 
theory of bounded forms is very important, but we cannot 
develop it systematically here. We prove enough to enable us to 
give an account of some special forms in which we shall be 
interested in the sequel. 

We take p > 1, q> 1, and, as usual, 

, P q,-_L 
P =p-1' -q-1' 
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289. If A has the bound M in [p, q], then 

(8.9.1) ~ I aij Ip' ;;:;MP', ~ I aij Iq' ;;:;Mq' 
i j 

for every j and i re8pectively. 

Take all the x zero except XI, XI = 1, and all the y zero except 
Yl' Y2' ... , YJ· By (8.8.6), 

l~aIjYjl ;;:;M(* I Yj Iqrq· 
Since this is true for all Yj and allJ, it follows, by Theorem 15, that 

'" I Iq' < Mq' "": aIj = . 
J 

This is the second of (8.9.1), and the first is proved similarly. 

Thus a necessary condition for boundedness in [2, 2] is that 

~ 1 aii 12 < 00, ~ 1 aii 12 < 00 
i j 

for all j and i. The condition 

is sufficient, since then 
~~ 1 aii 12 <00 

1 A 12~~ 1 ali 12~ 1 x;2yll =~ 1 aii 12~ 1 Xi 12~ 1 Yi 12; 
i,j i,j i"j i j 

but this condition is by no means necessary, even when the coefficients 
are positive. Thus, as we shall see in § 8.12, 

is bounded. 

290. Any row or column of a bounded form i8 ab80lutely con­
vergent. 

For 
~ I aijxiYj I ;;:; I Yj I (~ I Xi IP)lip (~ I aij Ip')lip' ;;:; M I Yj 16p (X), 
iii 

by Theorem 289. 

It is plain that, when ai;;;;; 0, a necessary condition that A should be 
bounded is that 

(8.9.2) ~~aiixiYi 
should be convergent for all positive X and Y in [p, q]. It is natural to ask 
whether this is also true for bounded forms with arbitrary real or com­
plex coefficients, i.e. whether, when A is bounded, the series (8.9.2) is 
necessarily convergent (for the x and Y of [p, q]) in any of the recognised 
senses. The answer is affirmative: if A is bounded, the series (8.9.2) is 
convergent (indeed uniformly) in the three standard senses, as a double 

HI 14 
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series in Pringsheim's sense or as a repeated sum by rows or columns. 
But the idea of the convergence of the double series is irrelevant to our 
present purpose (and is not very important in the general theory), and 
we shall not prove these theorems. See Hellinger and Toeplitz (1) for 
the case [2, 2]. 

8.10. The Faltung of two forms in [p, p']. We suppose now 
that q=p'. H A and B are bounded in [P,p'], with bounds M 
and N, then, by Theorem 289, 

~ I aik IP ~MP, ~ I bkj Ip I ~Np', 
k k 

and therefore, by Theorem 13, the series 
(8.10.1) fii='i:.aikbkj 

k 

is absolutely convergent. We call 
F = F (A, B) = 'i:.~fi1xiYi 

the FaltungofA and B. The order of A and Bisrelevant, F (A, B) 
and F (B, A) being usually different forms. 

291. If A and B have the bounds M and N in [p, p'], then F is 
bounded in [p, p'], and its bound does not exceed MN. 

Suppose that m;;;; n and that Xi = 0 for i > n. Then, since A is 
bounded by M in [p, p'], we have 

IAml=1 ~ Yk £aikXil~M 
k=l i=l 

for all x and Y for which iSp (x) ~ 1 and iSp'(Y) ~ 1. Hence, by 
Theorem 15, 

~ I i'; aikXilP ~MP 
k=l i=l 

for m;;;; n; and therefore 

(8.10.2) ~ I £ aikxi IP ~ Mp. 
k i=l 

Similarly 

(8.10.3) 

But 
(8.10.4) 

£ i'; fijXiYj = £ i'; XiYj ~ aikbkj = 'i:. ( i'; aikXi) I i'; bkiYi ) . 
i=l j=l i=l j=l k k i=l \;=1 
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From (8.10.2), (8.10.3), (8.10.4), and Theorem 13, it follows that 

li~lj~/jXiYjl ~MN, 
which proves the theorem. 

It is plain that we can define the Faltung of A and B, whether 
A and B are bounded or not, whenever the series 

~Iaiklp, ~Ibk·lp' 
k k 1 

are convergent. 

8.11. Some special theorems on forms in [2, 2].a In this 
section we confine ourselves to the classical case p = q = 2, and 
suppose the variables and coefficients real (though not generally 
positive). We suppose then that A is a real form, and denote by 

(8.11.1) A'=~~ajixiYj 

the form obtained from A by exchanging suffixes in aij . 
If 

(8.11.2) 

for all i, the series 

(8.11.3) 

are absolutely convergent, and, by (8.10.1), 

(8.11.4) O(x,Y)=~~CijXiYj 

is the Faltung F(A,A') of A and A'. In particular O(x,x) is a 
quadratic form whose section On is given, after (8.10.4), by 

(8.11.5) 

We write 
O(x,x)=N(A) 

and call a (x, x) the norm of A. When A satisfies (8.11.2), we 
say that the norm of A exists. The existence of N (A) is, after 
Theorem 289, a necessary condition for the boundedness of A. 

If A is bounded, with bound M, then, by Theorem 289, N (A) 

.. Hellinger and Toeplitz (1), Schur (1). 
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is bounded, and its bound P does not exceed M2. On the other 
hand, whenever N(A) exists, 

IAn(X,Y)I=/.£ Yi.£ aiixi /;;;;;(.£ Yi2)!{.£ (.£ aiixi)2}! 
J=l ,=1 J=l )=1 t=l 

;;;;; (.~ Yl)! {On (X,X))!. 
)=1 

Hence, if N (A) is bounded by P, A is bounded by pit. 
Collecting our results, we obtain 

292. A necessary and sufficient condition that a real form A should 
be bounded in [2, 2] is that the norm N (A) of A should exist and be 
bounded. If M is the bound of A, and P that of N (A), then 

P=M2. 
A useful corollary is 

293. If A, B, ... is a finite set of forms whose norms exist, and 

H (x, x) =N(A)+N(B)+ ... 

is bounded, with bound P, then A, B, ... are bounded, with bounds 
which do not exceed Pit. 

In fact, if Nn(A), ... are sections of N(A), "', then Nn(A), ... 
are non-negative a, by (8.11.5), and 

Hn (x, x) =Nn(A)+Nn{B)+ .... 

Hence N n (A), ... are bounded by pit. 

8.12. Application to Hilbert's forms. We now apply 
Theorem 293 to two very important special forms first studied 
by Hilbert. 

294. The forms 

where i, j = 1, 2, ... and the dash implies the omission of the terms 
in which i = j, are bounded in real space [2, 2], with bounds not 
exceeding 'TT. 

a That is to say, assume non-negative values only for real x. The phrase' positive 
form' has been used in this chapter in a different sense, that of a form with non­
negative coefficients and variables. 
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It is plain that each form satisfies condition (8.11.2). We write 

N(A)=~~CijXiXj' N(B)=~~dijXiYj 

and calculate Cij + dij . 
If i=j, we have 

(8.12.1) 

d _ ~ 1 ;;, 1 _ .;;, 1 _ 1 2 
Cii+ ii- ~ (. k 1)2+ ~ -(' k)2- ~ -(' k)2- S7T • 

k=l ~+ - k=l ~-, -oo~-

If i =t= j, then 
00 1 00 1 

cjj+dij = ~ C k )(. k ) + ~' C k)(' k k=l~+-IJ+-l k=l~- J-') 

= ~/ . 1. ~ i' (~ __ . 1_), 
k=-oo(~-k)(J-k) ~-Jk=-oo J-k ~-k 

the dash here excluding the values k = i and k = j. If K is greater 
than both I i I and Ij I, then 

~, (_1 __ 1 ) 
k=-K j-k i-k 

=~.+(. lK + ... +. l K -. lK-"'-' l K ), 
~-J J- J+ ~- ~+ 

with two series unbroken except for the omission of terms with 
denominator 0, and the bracket tends to zero when K -J>- co.a 

Hence 

(8.12.2) Cij+dij =(. 2 ')2 (i=t=j). 
~-J 

From (8.12.1) and (8.12.2) it follows that 
2 

(8.12.3) N(A)+N(B)= ~ ~Xi2+2~~' (t~~2' 

The first form here has the bound i7T2; and, since 

~, 1 _~, 1 1 2 
~ -(' ')2-~ -(' ')2<S7T, 
i ~-J j ~-J 

the second satisfies the conditions of Theorem 275, and has the 
bound i 7T2• Hence N (A) + N (B) has the bound 7T2, and Theorem 
294 follows from Theorem 293.b 

a All terms cancel except a number independent of K. 
b The proof is that of Schur (1). 
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That A is bounded can be proved more simply: we give a number of 
proofs in Ch. IX. 

A is absolutely bounded (§ 8.8), since its coefficients are positive. It is 
important to observe that this is not true of B. To prove this, it is enough 
to prove that 

~~I XiY; _~ 
.... "" ji-jj-"-' 

for a positive set (x, y) for which ~Xi2 and ~y;2 are convergent. We take 

xi=i-!(logi)-l (i> 1), y;=j-!(logj)-l (j> 1) 

and Xl =X2' YI =Y2' Then 

~~' I ~iY;'j ~ ~ i: k-IXHkY; ~ 1: k-l i: XIYl 
t - J j=1/C=1 k=l l=k+l 

= i: ~ ~ __ 1_ > l: ! foco du _ i: 1 
k=l k 1=H1l (log l)2 = k=l k HI U (logU)2 -k=1 k log (k+ 1)' 

and this series is divergent. 
We shall see in Ch. IX that A is bounded in [p, p']. B is also bounded 

in [p,p'], but the proof is much more difficult: see M. Riesz (1,2), Titch­
marsh (2, 3). 

THE THEOREM OF M. RIESZ 

8.13. The convexity theorem for bilinear forms with 
complex variables and coefficients. We prove next a very 
important theorem due to M. Riesza• This, like Theorem 285, 
asserts the convexity of log M 0/,,8' where M 0/,,8 is the upper bound 
of a form of the type A; but in Riesz's theorem the form is 
bilinear, the a, x, yare general complex numbers, and convexity 
is proved only in a restricted domain of ex: and fJ. 

It is essential to Riesz's argument that M 0/,,8 should be an 
attained maximum and not merely an upper bound; and we 
therefore consider a finite bilinear form 

(8.13.1) 
'In n 

A = ~ ~ aijxiYj' 
i=l j=1 

295. Suppose that JtIO/,,8 is the maximum of A for 
'In n 

(8.13.2) ~IXill/O/~l, ~IYjll/,8~l, 
1 1 

it being understood that, if ex: = ° or fJ = 0, these inequalities are 

& M. Riesz (1). The proof which we give of the theorem is substantially that 
of Riesz. An alternative proof has been given (not quite completely) by Paley 
(2,4). 
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replaced by I Xi I ~ 1 or I Y j I ~ 1. Then log M lX,,8 is convex in the 
triangle 

(8.13.3) 0~ex.~1, 0;?;f3~1, ex.+f3;;;1. 

We have to prove that, if (ex.l' fJI) and (ex.2, fJ2) are two points of 
the triangle (8.13.3), 0 < t < 1, and 

(8.13.4) ex. = ex.lt+ ex.2(1-t), fJ= fJlt+ f32(1-t), 

then 

(8.13.5) M <Mt M 1 - t 1X,,8 = 1X1, {31 IX., {3 •• 

After Theorem 88, it is enough to prove that (8.13.5) is true, 
when ex. and fJ are given, for some t for which 0 < t < La 

We define p, q, p', q' by 

1 1 1 1 1 1 
(8.13.6) ex.=-, f3=-, -+-= 1, -+-= 1. 

p q p p' q q' 

There is no finite system (p, q) corresponding to the points (0, 1) 
and (1, 0) of the triangle (8.13.3). These points are particularly 
important, but we may disregard them in the proof, and include 
them in the result, on grounds of continuity. 

We may then write (8.13.2) in the form 

(8.13.7) 6 p (x);?;1, 6q(:1})~1; 

and the inequalities (8.13.3) are equivalent to either of 

(8.13.8) q';;;p;;; 1 

and 

(8.13.9) 

We shall also write, as in § 8.7, 

(8.13.10) Xj=Xj(X) = L.aijXi , Y i = Yi(y)=L.aijYj, 
i j 

so that 

(8.13.11) 

or simply 

(8.13.12) 

A = L.XjYj = L.Xi Y i 
j i 

A=L.Xy=L.xY. 

8 We take for granted the continuity of Mo.,{3' Mo..fj is a maximum over the 
space defined by (8.13.2), a real space of 2m+2n dimensions (when we separate 
the real and imaginary parts of the x and the y), which varies continuously with 
IX and ,8; and the proof that this maximum is continuous, though tiresome in 
detail, belongs to the elements of analysis. 
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Theorem 286 enables us to give another definition of M O/.,p 
which is more convenient for our present purpose. It is plain 
that M O/.,p attains its maximum for a set (x, y) in which 

(8.13.13) ep(x)= 1, eq(y)= 1; 

and MO/.,p is the least number K satisfying 
(8.13.14) I A I ;;;;;Kep(x)eq(y) 

for all such (x, y). Since both sides are homogeneous of degree 1 
in x and y, the restrictions (8.13.13) are now irrelevant, and M O/..P 
may be defined as the least K satisfying (8.13.14) for all (x, y).a 

By Theorem 286, this is also the least K satisfying 
(8.13.15) eq,(X) ;;;;; Kep (x) 

for all x, or 
(8.13.16) ep,(Y);;;;;Keq(y) 

for all y. We may therefore define M 0/., P by 
_ eq'(X) _ ep'(Y) 

(8.13.17) MO/.,p-Max ep(x) -Max eq(y) , 

the maxima being taken for all non-nul sets x or y. 

8.14. Further properties of a maximal set (x, y). Suppose 
that (x*, y*) is a set of (x, y), subject to (8.13.7), for which I A I 
attains its maximum, and that X*, y* are the corresponding 
values of X, Y. It is obvious (as we have observed already) that 

(8.14.1) e p (x*) = 1, eq(y*) = 1. 
Also, as in (8.7.6), 

(8.14.2) IAI;;;;;eq'(X)eq(y), IAI;;;;;ep,(y)ep(x). 

There must be equality in each of (8.14.2) when x, y have the 
values x*, y*; for otherwise we could increase I A I by leaving 
the x, X unaltered and changing the y, or by leaving the y, Y 
unaltered and changing the x. Hence 

MO/.,p= I A (x*,y*) I =eq,(X*) eq(y*)= ep,(Y*)ep(x*). 

Further, by Theorem 14, 

I X/ Iq' = wq' I y/ Iq, 
or 

(8.14.3) 

a This is merely a repetition of an argument used already in § S.S. 
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where w is positive and independent ofj; and 

argXjyj 
is independent ofj. Hence 

Mct..p= 1 A(x*,y*) 1 = I 2:.X*y* 1 =2:.1 X*y* 1 =w2:.1 y* Iq=w. 

Substituting in (8.14.3), and adding the corresponding result for 
Yi*' we obtain 

(8.14.4) I X/ I = M ct..,81 y;* Iq-l, I Yi* I = M ct..,81 Xi* Ip-l. 

8.15. Proof of Theorem 295. In what follows we suppose 
(x, y) a maximal set (for the indices IX, /3), omitting the asterisks. 
We write PI = 1/1X1' and so on, and M, M 1, M2 for Mct.,i3' Mct.l,,81' 

M ct.2. ,82' Our use of p, PI' ... excludes the points (0, 1), (1,0) of 
the triangle, but, as we remarked in § 8.13, this will not impair 
the proof. 

By (8.14.4) 

M®~--= . .\)P" (x) = (MPl' 2:.1 Xi 1(P-l)Pl')1'Pt' 

= (2:.1 Y i IP l')I/Pl' = ®Pl' (Y). 

Comparing this with (8.13.17), we obtain 

(8.15.1) M®~-_\)P" (x);:;:; M 1®ql (y). 

Similarly 

(8.15.2) 

Hence, if ° < t < 1, we have 
(8.15.3) 
M~(P-l)t ( )~(q-l)(1-t)( )< J1".tMl-t~t (y)~l-t(X) 

o,::;>(p-l)p,' X O(q-l)q.' Y =.J.uI 2 o,::;>q, o,::;>P' • 
Let us assume provisionally that there is a t between 0 and 1 

which satisfies 
1 t I-t 1 t I-t 

(8.15.4) -=-+-, -=-+-, 
P PI P2 q ql q2 

that is to say the equations (8.13.4), and that 

(8.15.5) ®~;-t (x);:;:; ®~=g;" (x), ®~, (y);:;:; ®i~=m!,-t) (y). 

Then (8.15.3) and (8.15.5) will give 

M;:;:;MiM~-t, 

from which the theorem will follow. 
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It remains to justify the assumptions expressed by (8.15.4) 
and (8.15.5). Let us assume further that there are numbers fL and 
v such that 

(8.15.6) 

(8.15.7) 

P2= (P-l)PI' fL+p(l- fL), ql = (q-l)q2'v+q(l- v). 

By Theorem 18,a r log CSr (x) = log CS/ (x) is a convex function of r; 
and the x, being a maximal set, satisfy (8.13.13). Hence 

(8 15 8) ~P2 (x) < ~(p-l)p,' I" (x) ~p (1-1") (x) = ~(p-I)P<I" (x) 
•• 0p. = O(p-l)p,' Op O(p-l)p" 

and similarly 

(8 15 9) ~q, (y) < C(q-l)q2 v (y) ~q(l-v) (y) = ~(q-l)q2:V (y) 
•. Oq, = O(q-l)q2 Oq O(q-l)q2' 

If finally 

(8.15.10) 
PI' fL t q2' V 1- t 
P;--I-t' q;=-t-' 

then (8.15.8) and (8.15.9) will be equivalent to (8.15.5). 
In order to complete the proof, it is necessary to show that 

(8.15.4), (8.15.6), (8.15.7), and (8.15.10) are consistent. These 
conditions contain six equations to be satisfied by the four 
numbers p, q, fL, v, and two inequalities. The first equation 
(8.15.1O) gives 

( , I) t t 
(p '-1) +1= PI - P2_+1=P2_+1 

I fL PI' 1 - t PI 1 - t 

and , ( t) P2 P2 + PI fL = P2 I + 1 _ t = 1 - t ; 

and the first equation (8.15.7) gives 

1 (PI'-I)fL+1 P2t+PI(1-t) t I-t 
-= , = =-+--, 
P P2+Pl fL PIP2 PI P2 

which agrees with (8.15.4). 
A similar argument applies to the equations involving q, so 

that (8.15.4) is a consequence of (8.15.7) and (8.15.10). Given 
PI> ql' P2' q2' and t, we can find fL' v from (8.15.10) and p, q from 
(8.15.7), and these numbers will satisfy the six equations. 

a Strictly, by Theorem 18 restated as Theorem 17 was restated~ in Theorem~ 87. 
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It remains only to examine the inequalities (8.15.6). If I-" and v 
satisfy (8.15.10), and 0 < t < 1, the inequalities are equivalent to 

(8.15.11) 

Since (ocl , f3l) and (oc2' (32) lie in the triangle (8.13.3), we have, by 
(8.13.8) and (8.13.9), 

and a fortiori 
ql <PI' 
Q2' = P2 • 

We can therefore choose t so as to satisfy (8.15.11), and then all 
our conditions are satisfied. 

It will be observed that it is only in the last paragraph that we 
use the essential inequality oc+ f3~ 1. When the form is positive, 
this inequality is irrelevant; log M .. ,~ is then, by Theorem 285, 
convex in the whole of the positive quadrant of (oc, (3). 

8.16. Applications of the theorem of M. Riesz. (i) Theo­
rem 295 is easily transformed into another theorem of very 
different appearance. 

296. Suppose that 
m 

(8.16.1) Xj(x)= I: aijxi (j = 1, 2, ... , n) 
i=l 

and that M:, Y is the maximum of 

(:i: I Xi IllY)" 
1 / 

m 
for I: I Xi Ill .. ~ 1. 

1 

Then log M* is convex in the triangle ",y 
(8.16.2) O~y~oc~1. 

In fact, by (8.13.17), 

while 

Hence 

6 q, (X) 
M .. ,,e=Max 6 p (x) , 

M* = Max 6 1/y (X) = Max 6 1/y (X) • 
"'y 61/ .. (x) 6 p (x) 

M a=M* IX, j..J IX,,, 
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if y= l/q' = 1-{3; and then the conditions (8.16.2) are equivalent 
to (8.13.8) or to (8.13.3). Thus M!,y is a convex function of 
(oc, 1-y), or, what is the same thing, of (oc, y). 

(ii) 297. Suppose that Xi is defined by (8.16.1); that 

(8.16.3) 

for all x; and that 

(8.16.4) 

Then 

(8.16.5) 

where 

(8.16.6) 

n m 
~ 1 Xi 12;;; ~ 1 Xi 12 
1 1 

n1 = Max 1 aij I· 
To deduce Theorem 297 from Theorem 296, we write oc = lip, 

as before, and consider the line from (t, t) to (1, 0) in the plane 
(oc, y). This line lies entirely in the triangle (8.16.2); and hence, 
by Theorem 296, 

M* ~ (M* )2(1-ex)(M* )2ex-1 a,l-ex - t,! 1,0 

for t < oc < 1. It is plain from (8.16.3) that Mf. t;;; I; and 

* _MaxlXI < 
M 1,o- ~Ixl =n1. 

Hence M* ~ m2ex- 1 = m(2-p)lp 
et:, 1-0;: - , 

which is equivalent to (8.16.5). 
The condition (8.16.3) is certainly satisfied (with equality) if 

(8.16.1) is a 'unitary' substitution, i.e. a substitution which 
leaves ~ 1 x 12 unaltereda . This case of the theorem was found by 
F. Riesz (4), and the general theorem by M. Riesz (1). 

8.17. Applications to Fourier series. Out of many other 
important applications of Riesz's theorems, we select an applica­
tion of Theorem 297 to the proof of HausdorfI's theorems b • 

a In this case n=m. A real unitary substitution is orthogonal. 
b See § 8.5. Riesz deduces these theorems in a different manner, and gives anum ber 

of other applications. 
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(i) Suppose that m is an odd integer and 

tm 
Im(B)= :s ep.Bixp.,a 

-tm 
tm 1 (27TV) 

Xv= :s ap.vxp.=.! 1m -- , 
-tm v m m 

aP.I/ = m-t e2p.vrri/m. 

The substitution is unitary, so that 

:s 1 Xv 12 =:S 1 Xp.12. 
Also 11l = m-1• Hence, by Theorem 297, 

t8.17.1) (~ :sllmC~V) !PY1P' ~ (:S 1 Xp.IP)l/P. 

The left-hand side being an approximation to 3p .(f), we may 
deduce Hausdorff's theorem (8.5.6) by passages to the limit b • 

(ii) If m is again an odd integer, 

and 

then simple calculations show that 

XI/=m1a", 
and :s 1 Xv 12 =:S 1 Xp.12 
as before. In this case Theorem 297 gives 

(:S 1 a" Ip')liP' ~ (~:s I 1m (2;:) nl/p
; 

and Hausdorff's theorem (8.5.7) follows by appropriate passages 
to the limit. 

We can also, as we showed in § 8.5, deduce the second theorem 
from the first. 

8 We now write p., II for i,j, and extend the summations over the range 

-im<p.<im. 
b If f (0) is a polynomial PI . 

2: xp.ep.8't, 
-lJ1" 

then fm (0) =f (0) for m ~ M, and the theorem for f (0) follows immediately from 
(8.17.1). The extension to an arbitrary f(O) depends on the theory of 'strong 
convergence' . 
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MISCELLANEOUS THEOREMS AND EXAMPLES 

298. If P > 1, and a (x, y) is measurable and positive, then the three 
assertions 

(i) 10"'1000 a (x,y)f(x)g(y)dxdy;£K (foOOP'dXY'1' (/oOOg1"dyY'2", 

for all non-negative f, g; 

(li) foOOdy(f'a(x,Y)f(X)dxY ;£K1' fooof1'dx, 

for all non-negative f; 

(iii) f: dx (/000 a(x,y)g(y)dyr' ;£K1" foOOgP'dy, 

for all non-negative g, are equivalent. The assertions 'there is inequality 
in (i) unless for g is nul', 'there is inequality in (ii) unless f is nul', 
'there is inequality in (iii) unless g is nul', are also equivalent. 

[Analogue of Theorems 286 and 287, with q = p'. There is a more general 
form with bothp and q arbitrary.] 

299. The forms 
A ~~ x'Yf B = ~~' . X'.Yf = i+j-l+A' ~-J+A 

where A> 0, and the dash is required only if A is integral, are bounded in 
[2, 2], and have bounds 17 if A is integral, 17 I cosec A17 I if A is non-integral. 

[Schur (1), P6lya and Szego (1, 1,117,290).] 

300. If p > 1 and A = ~~a'lx'Yf has a bound M in [p, p'], and 

where 

then 

h'I=Jf.(t) gl(t) dt, 

J If, l1'dt;£f£1', J I gl 11"dt;£v1" , 

has a bound M f£V. 

[For I A * I = I J {~~aiixd,(t)YIgI(t)}dt I 
;£M H~ I xd,(t) Ip}lI1' {~I YlgI(t) 11'}1/P' dt 

;£ M {f~ I Xi 11' If,(&) l1'dt}lI1' {f~IY/I1" I gl(t) 11" dt}1/P' 

;£ Mf£V(~ lx, 11')lI1'(~ I Y/IP')l/fJ'. 
For the case p =p'= 2, see Schur (1).] 

(ij)l(/L-ll 
301. ~~'. . XiYI is bounded in [2, 2]. 

~/L-J/L 

302. ~~,sin~i-.i)8 XiYf is bounded in [2,2]. for any real 8. If 0;£8;£17, 
~-J 

the bound does not exceed Max (8, 17-8). 

[For the last two theorems see Schur (I).] 
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303. If a,. is the Fourier sine coefficient of an odd bounded function, or 
the Fourier cosine coefficient of an even bounded function, then the forms 

are bounded in [2, 2]. 
'Z'Za,+j Xi Yj' 'Z'Zai_; Xi Y f 

[Toeplitz (1). Suppose that i and j run from 1 to n; that X and yare 
real and . 

'ZX,2 = 'Zy? = I; 

that X ='Zx,cosiO, X' = 'Zx,siniB, Y = 'Zy;cosjfJ, Y' = 'ZYi sinjfJ, 

and that (for example) 

2f" a,.=- f(B)sinnfJdfJ, 
7T 0 

where If I ~M. A simple calculation gives 

nn 2f" 'Z'Zai_;x,Yj=- (X'Y -XY')f(fJ)dfJ. 
1 1 7T 0 

Since 

I fo"XY'f(fJ)dfJ I ~tM fO"(X2+ Y'2)dfJ=tM7T('ZX2+'Zy2) =tM7T, 

we find the upper bound 2M for A. Similarly in the other cases. 

If for examplef(fJ) is odd and equal to t(7T-fJ) for O<fJ< 7T, then M = t7T 
and a .. =n-1• We thus obtain the result of Theorem 294 concerning B.] 

304. If (i) 'Z'Za,;x,y; is bounded in [p, q], (ii) k> I, l> I, and (iii) (u,), 
(v;) are given sets for which 6"k'(U) < 00, 60dv) < 00, then 

A = 'Z'Zaiju,v;xiY; 
is bounded in [pk, qlJ. 

[For IA I ~ M('Z I UXlp)lIP('Z Ivy 10)110 

~ M('Z I u Pk' I )llpk'('Z I vol' I )W'('Z I X IPk)llpk('Z I Y Iql)1lq!.] 

305. The form 
...,..." U,Vj 
.... ~ '--.X,Yj, 

~-J 

where u, and Vj are given sets of numbers satisfying 

'Zlu,12~1, 'ZlvjI2~1, 

is bounded, but not necessarily absolutely bounded, in [00, ooJ. 

[Take p = q = 2, k = 1 = 00 in Theorem 304. 
If the form were always absolutely bounded, then Hilbert's form B of 

§ 8.12 would be absolutely bounded, which is untrue.J 

306. 1£ 

then 

9J12(a)~A2H, 9J14(a)~A4H, 

~2:H~9J11(a)~A4H. 
4 

[By Theorems 16 and 17. The result is required in the proof of the 
next theorem.] 
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307. If perpendiculars are drawn from the corners ( ± 1, ± 1, ... , ± 1) of 
the 'unit cube' in space of m dimensions, upon any linear [m - 1] through 
the centre of the cube, then the mean of the perpendiculars lies between 
two constants A and B. independent of m and the position of the [m-l]. 

308. If b;= (~I ali 12)*. ci = (11 aul2)*. 
then p= (2:2: 1 ail 1 ~)I~K (2:b j+ 2:Ci) =K (B+ 0), 

where K is an absolute constant. 

309. A necessary condition that a form A=2:2:aijX,Yj, with real or 
complex coefficients, should be bounded in [00, 00], with boundM, is that, 
in the notation of the last theorem, B, 0, P should be less than KM. 

[For the last five theorems see Littlewood (2).] 

310. If >2 >2 1 1<1 
p= ,q= 'p+q=2' 

,\= pq, 4pq 
pq-p-q P. 3pq-2p-2q' 

and A is bounded in [p, q], with bound M, then 

(2:bl)l/l\~KM, (2:c/)l/l\~KM, (2:2: I aij 1")1/1' ~KM, 

where bJ and Ct are defined as in Theorem 308, and K depends on p and 
q only. 

311. If 
111 
:$-+-<1 2-p q , 

but the conditions of Theorem 310 are satisfied in other respects, then 

(2:b/)*~KM, (2:cl)lJI\~KM, (2:2:laiil'\)l/I\~KM. 

312. If 
1 1 

p<2<q, -+ < 1, 
P q 

and the conditions of Theorem 310 are satisfied otherwise, then 

(2:2: I ail 11\)1/1\ ~ KM. 

313. If 
1 1 

p> I, q> I, -+-< I, 
P q 

aij;;;O, 

A is bounded in [p, q], with bound M, and 

f3j = (~ail) lip', Yi = (1ail) l/a', 

then (2:f3/)*~M, (2:Yl)l/l\~M, (2:2:ail)l/I\~l\II. 

[For the last four theorems see Hardy and Littlewood (13).] 
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314. Hilbert'8 forma in [p, p']. It will be proved in Ch. IX that the 
form A of Theorem 294 is bounded in [p, p']. The corresponding theorem 
for B lies a good deal deeper. We have to show that 

(i) In n,XiYi I 1:1: .--, ~K61>(x) 6J)'(y), 
1 1 1,-J 

where K =K (P) depends only on p; or, what is, after Theorem 286, the 
same thing, that 

(ii) 

It is enough, after Theorem 295, to prove (i) or (ii) for even integral values 
of p' (or for some subsequence of these values). This demands some 
special device, the most natural, from our present point of view, being 
that used by Titchmarsh (2). 

HI 15 



CHAPTER IX 

HILBERT'S INEQUALITY AND ITS 
ANALOGUES AND EXTENSIONS 

9.1. Hilbert's double series theorem. The researches of 
which we give an account in this chapter originate in a remarkable 
bilinear form which was first studied by Hilbert, and which we 
have already encountered in § 8.12, viz. the form 

l:l: ambn 
m+n' 

where m and n run from 1 to 00. Our first theorem is Theorem 315 
below, which we state with its integral analogue and with a com­
plement of a type which will occur frequently in this chapter. 

315. If p>l, p'=p/(P-l), 

and l:amP ;;:;; A, l:bnP ';;:;; B, 

the BUmmations running from 1 to 00, then 

() l:l: ambn < . 17 Al/p BliP' 
9.1.1 m+n sm(l7/p) 

unles8 (a) or (b) iB nul. 

316. If p>l, p'=p/(p-l), 

and f~fP(X)dx;;:;;F, f~ gP'(y)dy;;:;;G, 

then 

(9.1.2) fal fa:> f(x)g(y) dxdy< . 17 Flip Gl/p', 
o 0 x+y sm(l7/p) 

unles8f=0 or g=O. 

317. The constant 17 cosec (l7/p) i8 the best p088ible constant in 
each of Theorema 315 and 316. 

The case p = p' = 2 of Theorem 315 is 'Hilbert's double series theorem', 
and was proved first (apart from the exact determination of the constant) 
by Hilbert in his lectures on integral equations. Hilbert's proof was 
published by Weyl (2). The determination of the constant, and the 
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integral analogue, are due to Schur (1). and the extensions to general p 
to Hardy and M. Riesz: see Hardy (3). Other proofs. of the whole or 
of parts of the theorems, and generalisations in different directions, 
have been given by Fejer and F. Riesz (1), Francis and Littlewood (1), 
Hardy (2), Hardy, Littlewood, andP6lya (1). Mulholland (1,3), Owen (1), 
P6lya and Szego (1. I, 117,290). Schur (1), and F. Wiener (1). A number 
of these generalisations will be proved or quoted later. 

The inequality (9.1.1) is of the same type as the general inequality 
discussed in § 8.2; but Theorem 315 is not included in Theorem 275. since 

Z --.!-
mm+n 

is divergent. It is to be observed that 17" cosec 01;17", where", = lip. is (in 
accordance with Theorem 295) convex for 0<01;< 1. 

9.2. A general class of bilinear forms. We shall deduce 
Theorem 315 from the following more general theorem a. 

318. Suppose that p > 1, p' = p/(p -1), and that K (x, y) has the 
following properties: 

(i) K is non-negative, and homogeneous of degree - 1 : 

(ii) J~K(X, 1) x-l/Pdx = J~ K(l,y)y-lIp'dy=k: 

and either (iii) K (x, 1) x-l/p is a strictly decreasing function of x, 
andK (l,y)y-l/P' ofy: or, more generally, (iii')K (x,l)x-lJP decreases 
from X= 1 onwards, while the interval (0, 1) can be divided into two 
parts, (0, g) and (g, 1), of which one may be nul, in thefirst of which 
it decreases and in the second of which it increases; and K (1, y) y-l/p' 
has similar properties. Finally suppose that, when only the less 
stringent condition (iii') is satisfied, 

(iv) 

Then 

K(x,x)=O. 

(a) 2:..2:..K (m, n) ambn < k (2:..amP)lIP (2:..bnP')lIP' 

unless (a) or (b) is nul; 

(b) 

unless (a) is nul; 

a Hardy, Littlewood, and P6lya (1). The case p =2 of the theorem is due in sub­
stance to Schur (1): Schur supposes K (x, y) a decreasing function of both variables. 

15-2 
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(c) ~(~K(m,n)bnr' <kP'''LbnP' 

unles8 (b) is nul. 

In each case the summations are from 1 to 00. Theorems 286 
and 287 show that the three conclusions (a), (b), (c) are equivalent. 

We may elucidate the hypotheses by the following remarks. 

(1) The convergence and equality of the two integrals in condition (ii) 
is a. consequence of the convergence of either, because of the homogeneity 
ofK. 

(2) The words 'decreasing', ... are to be interpreted in the strict sense 
throughout the theorem. 

(3) ~ may be 0 or 1, one of the intervals (0, ~) and (~, 1) then disappearing. 

(4) In the most important application, in which 

1 
K(x,y)=-+ ' x y 

condition (iii) is satisfied. An interesting case in which condition (iii') is 
required is 

1 
K(x'Y)=(X+y)l a.lx-yl" (O<ot<I).a 

In this case K (x, 1) has an infinity at x= 1. In such cases condition (iv) is 
required in order to exclude equal pairs (m, m) from the summation. 

It is easy to see that, if m and n are positive integers, and the 
summations are over r= 1,2, ... , then 

( r ) (r)-l/P 1 foo (9.2.1) "LK n,1 n n< 0 K(x,I)x--liP dx=k, 

(9.2.2) "LK( 1,:) (:r1/
p,! < f~ K (l,y)y-l/p' dy=k. 

For, if (iii) is satisfied, then 

(9.2.3) K(~, 1) (~)-liP ~<fr/n K(x, 1) x-l/P dx, 
n n n (r-l)/n 

and (9.2.1) follows by summation. If only (iii') is satisfied, we 
use (9.2.3) for r> n and for r ~ gn, and 

K -,1 - -< K (x, I)X-1lP dx ( r ) (r)-lIP 1 f<r+l)/n 
n n n r/n 

.. See Hardy, Littlewood, and P61ya (1). 
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for ~n < r < n; and the result again follows by summation when 
we observe that K (1,1)= o. The proof of (9.2.2) is similar. 

Hence 

'Z'ZK (m n) a b = 'Z'Za Kl/p m b Kllp' !!'.. ( ) l/PP' ( )l/PP' 
'mn m n n m 

~ Pllp Qllp', 

( )
lIP' 

P='ZamP'ZK(m,n) m 
m n n 

where 

= 'Za p'ZK 1- - -<k'Za P ( n) (n)-l/p, I 
m m n 'm m m m , 

by (9.2.2), unless (a) is nul; and similarly 
Q< k'ZbnP' 

unless (b) is nul. This proves the theorem. 

If we take 
I 

K(x,y)=­
x+y 

we obtain Theorem 315. It may be shown that the k of Theorem 
318 is a best possible constant, but in this direction we shall not 
go beyond proving Theorem 317.a 

9.3. The corresponding theorem for integrals. The 
theorem for integrals corresponding to Theorem 318 is 

319. Suppose that p > I, that K (x,y) is non-negative and homo­
geneous of degree - I, and that 

f~ K(x, 1)x-1/Pdx= f~ K(l,y)y-I/P'dy=k. 

Then (a) 

f~ f~ K(x,Y)f(x)g(Y)dXdY~k(f~ fPdxtP (f~ gP'dytP', 

(b) f~ dY(f~ K(x,Y)f(x)dXr ~kP f~ fPdx, 

(c) f~ dx(f~ K(x,y)g(Y)dyt ~kP'f~ gP'dy. 

If K (x, y) is positive, then there is inequality in (b) unless f= 0, 
in (c) unless g= 0, and in (a) unless either f= 0 or g= O. 

a See § 9.5. The constant k is (again in accordance with Theorem 295) convex 
in cc= lip. 
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The theorem may be prov:ed by the method of § 9.2, which 
naturally goes rather more simply in this case. We have 

J J K (x, y)f(x) g (y) dxdy 

= J J f(x) KI/P (~rpp'g(y) KI/P' (~rpp, dxdy:;;;; Pl/p Ql/P', 

where P= J jP(x)dx J K(X,Y)(~rp'dY=k J jPdx 

and Q=k J gP'dy. 

If K > 0, and there is equality, then 

(9.3.1) ( X)l/P' (y)lIP AfP (x) y = BgP' (y) ;; 

for almost all y. a If we give y a value for which g (y) is positive and 
finite, and for which the equivalence holds, we see that fP (x) is 
equivalent to a function OX-I, and this is inconsistent with the 
convergence of JjPdx. Hence either for g is nul. It may also be 
shown that the constant is the best possible. 

There is another interesting method of proof due to 8churb • 

We have 

J~ f(x)dx J~ K(x,y)g(y)dy= J~ f(x)dx J~ xK(x,xw)g(xw)dw 

= J~ f(x)dx J~K(I'W)g(XW)dW= J~K(l,W)dW J~ f(x)g(xw)dx 

(if any of the integrals is convergent). Applying Theorem 189 to 
the inner integral, and observing that 

JgP'(XW)dx=~J gP'(y)dy, 

we obtain (a); and (b) and (c) are corollaries, by Theorem 191. 
The case K(x, y)= 1/(x+y) gives Theorem 316. We shall 

return later (§ 9.9) to other applications. 

& That is to say it is true, for almost all y, that the two sides of (9.3.1) are 
equal for almost all x. See § 6.3 (d). 

b Schur (1). Schur supposes p=2. 
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9.4. Extensions of Theorems 318 and 319. (1) The follow­
ing theorem is in some ways more and in others less general than 
Theorem 318. 

320. Suppose that K (x, y) is a strictly decreasing function of x 
and y, and also satisfies the conditions (i) and (ii) of Theorem 318; 
that Am> 0, fLn> 0, 

Am =A1 +A2+ ... +Am, Mn= fLl + fL2+ ... + fLn; 

and that p > 1. Then 

~~K (Am' Mn) Am lip' fLn l/p am bn < k (~amP)l/P (~bnP')l/P' 

unless (a) or (b) is nula . 

The special case Am = m, Mn = n is also a special case of 
Theorem 318. 

We deduce Theorem 320 from Theorem 319 by a process which 
has many applications b • We interpret Ao and Mo as 0, and take, 
in Theorem 319, 

f(x)=Am -lip am 

g (y) = fLn -lip' bn 

(Am - l ~ x < Am), 

(Mn - 1 ~ y < Mn)· 

If we observe that 

J::-,J::-, K (x, y)f(x)g(y)dxdy > Aml/P' fLn1!PambnK (Am' Mn) 

unless am = ° or bn = 0, we obtain Theorem 320. 
If K(x,y)= l/(x+y) we obtainc 

A lip' II. lip 7T 
321. ~~ m on a b < . (~a p)l/p (~b P')l!P' 

Am+Mn m n sm(7T/p) m n 

unless (a) or (b) is nul. 

(2) Theorems 318 and 319 may be extended to multiple series 
or integrals of any order. 

322.d Suppose that the n numbers p, q, ... , r satisfy 

1 1 1 
p>1, q>1, ... , r>1, -+-+ ... +-=1; 

p q r 

" For the case p=2 see Schur (1). 
b Cf. § 6.4; and see, for example, § 9.11. 
cOwen (1) gives a more general but less precise result. 
d For the case p=q= ... =r see Schur (1). 
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that K (x,y, ... , z) is a positive function of the n variables x, y, ... , z, 
homogeneous of degree - n + 1; and that 

Joo J"" I I (9.4.1) 0'" 0 K(l,y, ... ,z)y-q ... z-rdy ... dz=k. 

Then 

J~ J~ ... J~ K(x,y, ... ,z)f(x)y(y) ... h(z)dxdy ... dz 

(J "" )l/P (J"" )l/q (Joo )l/r ~ k 0 fPdx 0 ~dy ... 0 hrdz . 

Iffurther 
y-l/q ... z-l/r K (1, y, ... , z), x-lip ..• Z-l/r K (x, 1, ... , z), .:. 

are decreasing functions of all the variables which they involve, then 
l:l: ... l:K(m, n, •.. ,s)ambn ... cs ~ k (~amP)l/P (~bnq)l/q ... (~c/)l/r. 

In virtue of the homogeneity of K, the convergence of (9.4.1) 
implies the convergence and equality of all the n integrals of the 
same type. 

Theorem 322 may be proved by straightforward generalisations 
Qfthe proofs of Theorems 318 and 319. 

9.5. Best possible constants: proof of Theorem 317. We 
have still to prove Theorem 317, which asserts that the constant 
7Tcosec (7Tlp) of Theorems 315 and 316 is 'the best possible', that 
is to say that the inequalities asserted by the theorems would be 
false, for some am, bn or f(x), y(y), if 7Tcosec (7Tlp) were replaced 
by any smaller number. The method which we use illustrates an 
important general principle and may be used in the proof of many 
theorems of this 'negative' character. 

We take am=m-<1+E)lp, bn=n-<1+E)lp', 

where £ is small and positive; we may suppose that £ <p'/2p. 
We denote by 0 (1) a number which may depend upon p and £, 

but is bounded when p is fixed and £-+0; and by 0 (1) a number 
which satisfies these conditions and tends to zero with £. Then 

-= x-I-Edx<~m-I-E<l+ x-1- Edx=1+-, 1 Joo co Jco 1 
£ I 1 I £ 

and so 
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Also 

~~ ambn >JooJoo X-(I+E)/Py-<I+E)(p,dxdy 
m+n 1 1 x+y 

= x-1-£dx U-<I+E)(P' __ . J OO JOO du 
1 l/x 1 +u 

The error in replacing the lower limit in the inner integral by 
o is less than x-ex/rx, where rx is positive and independent of €;a and 

- x-1- ex-£ dx < -. 1 Joo 1 
rx 1 rx2 

Hence 

(9.5.2) ~~ ambn > JOO X-1-£dxJoo u-(I+£)/p' du + 0(1) 
m+n 1 0 l+u 

=~{. ~! )+O(l)}+O(l)=!{. ~! )+O(l)}. 
€ SIllTrP € SIllTrP 

It is plain from (9.5.1) and (9.5.2) that, if k is any number less 
than Trcosec (Tr/p), then 

when € is sufficiently small. 
This proves that the constant in (9.1.1) is the best possible. 

Since (9.1.1) can be deduced from (9.1.2) as in § 9.4, it follows 
that the constant in (9.1.2) is also the best possible. We could of 
course also prove this directly. 

An alternative method is to take 

am=m-1/P, bn=n-1/P' 

when m;;;; fL' n;;;; fL' and am = 0, bn = 0 otherwise, and to make fL 
tend to infinity. The principle is the same in each case; we make 
am and bn depend upon a parameter (€ or fL) in such a manner 
that the series involved tend to infinity when the parameter tends 

a It is less than 

r l~ x-~ 
• 0 u-(He)/p'du={J' 

where P=l_l ;< =~ -?; 
and we may take IX = 1/2p, if E < p' /2p. 
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to a limit, and compare their values for values of the parameter 
near this limit. The method is effective in the proof of very 
many theorems of the type of Theorem 317. The inequalities 
(9.1.1) and (9.1.2) assert un attained upper bounds; except when 
both sides vanish, equality cannot occur; and it is for this reason 
that the introduction of a parameter (€ or f-L) is necessary in the 
proof of the complementary theorem. 

9.6. Further remarks on Hilbert's theorems a • Theorems 
315 and 316 have been proved in many different ways and have 
very varied applications. In this and the next section we collect a 
number of remarks which concern both proofs and applications, 
and are intended to illustrate the connections between the 
theorems and various parts of the theory of functions. 

(I) Theorem 315 may be deduced from Theorem 316 by the 
process which led us to Theorem 321. We definef(x) and g(y) by 

f(x)=am (m-1;;;;x<m), g(y)=bn (n-1;;;;x<n), 

and observe that then 

fm In f(x)g(Y~dxdy~ ambn . 
m-l n-l x+y m+n 

Here, however, we can go a little further, since 

1 1 2 ----- + > ----::-
m+n-1-oc m+n-1+oc m+n-1 

for 0 < oc < 1, and so b 

f m fn dxdy 1 
m-l n-l x+y > m+n-1' 

If now we replace m and n by m+ 1 and n+ 1, we obtain a 
slightly sharper form of Theorem 315, viz. 

323. If the conditions of Theorem 315 are satisfied, then 

~ ~ m n < ~aP ~bp' 
00 00 a b 7T (00 )l1P (00 ) lip' 

o 0 m+n+ 1 sin (7T!p) 0 m 0 n 

a We describe Theorems 315 (together with the sharper Theorem 323) and 316 
as 'Hilbert's theorems'. Strictly, Hilbert's theorem is Theorem 315, with p = 2. 

b Associate elements of the integral symmetrically situated about the centre of 
the square of integration. 
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Several other proofs of Hilbert's theorem, for example the proof of 
Mulholland (1), the proof of Schur given in § 8.12, the proof of Fejer and 
F. Riesz given below, and the proof of P6lya and Szego (1, I, 290), also 
give the result in this form. The last three are limited to the case p = 2. 

(2) The proof of Fejer and F. Riesz is based upon the theory 
of analytic functions, and proceeds as follows. Suppose that 
f(z) = ~anzn is a polynomial of degree N with non-negative co­
efficients, not identically zero. Then, by Cauchy's Theorem, 

f
l j2(x)dx= -if" j2(eill )eilldB; 
-1 0 

and so 

(9.6.1) f>2(X)dX< f~/2(X)dX~! f~"lf(eill) 12dB, 

~ N aman N 
oc ~ I<w~~. 

o 0 m+n+ 0 

If we make N -+00 we obtain Hilbert's theorem, with am = bm 
and ' ~ , for ' < '. The first restriction is unimportant, since, 
after § 8.8, a symmetric bilinear form in [2, 2] has a bound equal 
to that of the corresponding quadratic form. To replace '~' by' <' 
requires a refinement of the argument which we shall not discuss 
here. 

The second inequality in (9.6.1) may be written 

f~llf(X) 12dx~ t f~" If(eill ) 12dB, 

and in this form it is valid whether the coefficients an are real or 
complex, and has important function-theoretic applications a • 

(3) Hilbert's original proof depended upon the identity 

(9.6.2) f:/ {~( -1)'(arCosrt-brsinrt)} 2 dt=2'TT(S- T), 

where S=:£~ arbs, T=~:E' arbs 
llr+s llr-s 

(the dash implying that pairs r, sforwhich r=s are omitted). From this 
it follows that 

(9.6.3) 2TrIS - TI ~ 'TTf" {:E (- l)"{arcosrt- br sin rt)}2 dt= 'TT2:E (a; + b;). 
-7t 1 1 

a See Fejer and F. Riesz (1). The inequality is actually true (and in the stricter 
form with' < ') for any f (z), except f (z) = 0, for which l: I an 12 is convergent; and 
this is a corollary of Hilbert's theorem, if this theorem is proved in some other way. 
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If a. = b .. T disappears, and we obtain 

(9.6.4) 

and from (9.6.4), and the remark of § 8.8 quoted under (2), we deduce 

(9.6.5) " nab (,,)1 (n)l (" n) :E:E ---.!......! ~ 'IT :Ea~ :Eb~ ~ I'IT :Ea~+ :Eb~ • 
1 1 r+8 1 1 1 1 

From (9.6.3) and (9.6.5) it follows that 

ITI= I~~:;, a,b'/~'IT(~a~+~b~); 
I 1 1 r-8 1 1 

and hence, on grounds of homogeneity, that 

! ~£, arbs/ ~ 2'IT (~a~)i (~b~)l. 
'1 1 r-8 1 1 

This gives the second result of Theorem 294, except that the constant 2'IT 
is not the best possible constant. 

9.7. Applications of Hilbert's theorems. (I) As an applica­
tion of Hilbert's theorem to the theory of analytic functions we 
select the following. Suppose that f(z) is regular in I z 1< 1 and 
belongs to the 'complex Lebesgue class L', i.e. that 

2~ J~" If(rei8) I dO 

is bounded for r < 1. If f(z) is 'wurzelfrei', i.e. has no zeros in 

I z I < I, then f(z) = 'L.cnzn=g2(z) = ('L.anzn)2, 

where g(z) also is regular in 1 z 1 < 1. Since f 1 g(rei8) 12 dO is 
bounded, 'L.lan 12 is convergent, and therefore, by Theorem 323, 

'L.I am II an I 
m+n+I 

is convergent. A fortiori 

is convergent. 

'L.hl='L._l_] 'L. a a ! 
v v+ 1 v v+ 1, m+n=v m n, 

It is fairly easy, by a method which is familiar in this part of 
the theory of analytic functions, to extend the conclusion to 
general f (not necessarily 'wurzelfrei')a. We thus obtain the 

a See F. Riesz (3), Hardy and Littlewood (2). We can express J as the sum of 
two 'wurzelfrei' functions of L. 
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theorem: if f(z) belongs to L in I z I < 1, then its integrated power 
series is absolutely convergent for I z I = 1. a 

(2) As an application of Hilbert's series theorem to the theory 
of functions of a real variable, we prove 

324.b Iff(x) is real, L2, and not nul, in (0, 1), and 

an= I: xnf(x)dx (n= 0,1,2, ... ), 

then ~a;;, < 7T I: f2 (x) dx. 

The constant is the best possible. 

We may plainly suppose f(x) ~ O. Then, if (bn ) is any non­
negative and non-nul sequence, 

~anbn=~bn I: xnf(x)dx= I: (~bnxn)f(x)dx. 

(~anbn)2 ~ I: (~bnxn)2dx I: f2 (x) dx 

=~~ bmbn 1 ·II f2(X)dX<7T~b;;,·II f2(x)dx, 
m+n+ 0 0 

by Hilbert's theorem. The result now follows from Theorem 15. 
To prove the constant 7T the best possible, consider 

f(x) = (1- xY-l, 

and make € tend to zero. 
The integrals an are called the moments off (x) in (0, 1) and are 

important in many theories. 
Here we have deduced Theorem 324 from Theorem 323 (with 

p=2) and Theorem 15 (the converse of Holder's inequality). We 
can, if we please, reverse the argument, deducing Theorem 323 
(with p=2) from Theorem 324 and Theorem 191 (the integral 
analogue of Theorem 15). Suppose that g (x) = ~bnxn, where bn is 

" Hardy and Littlewood (2). The theorem may also be stated in the form' if a 
power series g(z) = :£bnzn is of bounded variation in 1 z 1 < 1, then :£1 bn 1 is conver­
gent'. For this form of the theorem, and for more precise results, see Fejer (1). 

b A much more general inequality, but without the best possible value of the 
constant, is proved by Hardy and Littlewood (1). See also Hardy (10). 
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non-negative and not always 0, and that j(x) is any non-negative 
and non-nul function. Then 

f>gdX= f: C~bnxn)jdx='2:.bn f: xnjdx= '2:.anbn , 

(f>gdX r = ('2:.anbn? ~ '2:.an2'2:.bn2 < Tr'2:.bn2 f>2 dX, 

by Theorem 324. Since this is true for all j, it follows, by 
Theorem 191, that f: g2dx < Tr'2:.bn2; 

and this is equivalent to Theorem 323. 
It is plain that when two inequalities, each involving a con­

stant factor, are 'reciprocal' in this sense, each being deducible 
from the other in this way by the converse of Holder's inequality, 
then one constant must be best possible if the other is. We shall 
meet with another application of this principle later (§ 9.10 (1)). 

(3) As a corollary of Theorem 316 (with p = 2), we prove 

325." Suppose that an;:;; 0 and that the summations run from 0 to 00, and 
that 

(9.7.1) 

Then 

(9.7.2) 

(9.7.3) 

LL aman <7TLL(m+n)! aman 
m+n+l = m!n! 2m+n+1 ' 

f: A2(X)dx~7T fo'" {e-"'A*(x)}2dx. 

It may be verified at once by expansion and term-by-term integration 
that (9.7.2) and (9.7.3) are equivalent. 

To prove (9.7.3) we observe that 

A(x)= e-tA*(xt)dt=- e-U/"'A*(u)du f oo If 00 

o x 0 
and so 

f: A2(X)dx= f:~~ (foOO e-U/'" A *(u)du r = fl°O dy (fooo e-UlI A*(u)du r 
= fooo dw (foOO e-UW ot(u) dU) 2, 

where ot(u) =e-U A *(u). 

• Widder (1), Hardy (9). 
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This is 

[00 dw [00 e-UW rx.(u) du [" e-VW rx.(v) dv== ['" ['" rx.(u) rx.(v) dudv 
Jo Jo Jo JoJo u+v 

by Theorem 316. 
It is easy to see that the constant 1T is the best possible. The relations 

between the functions (9.7.1) are important in the theory of divergent 
series, particularly in connection with singularities of analytic functions. 

9.S. Hardy's inequality. The two theorems which we discuss 
next were discovered in the course of attempts to simplify the 
proofs then known of Hilbert's theoremsa . 

We might require only an imperfect form of Theorem 315: the 
double series is convergent whenever ~~ and ~b~' are convergent. It 
would then be natural to argue as follows. We divide the double 
series into two parts 8 1 , 8 2 by the diagonal m = n, and consider 
the part 8 1 in which m ~ n. Then 

81=~~ ambn~~~ambn=~Anbn, 
rn;;;an m+n rn;;;an n n 

where 

Since ~b~' is convergent, the last series is convergent whenever 
~n-P A~ is convergent, and, to prove the convergence of 8 1 , it 
is enough to prove that the convergence of the last series is a 
consequence of that of~~. The convergence of 8 2 could then be 
proved in the same way. 

This line of argument leads up to and is completed by the 
following theorem. 

326. lfp> 1, an ~ 0, and An=a1 +a2 + .. , +an , then 

(9.8.1 ) ~(~nr «p~lr~~, 
unless all the a are zero. The constant is the best possible. 

a It was a considerable time before any really simple proof of Hilbert's double 
series theorem was found. 
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The corresponding theorem for integrals is 

327.a lip> 1,/(x)~0, and F(x)= I:/(t)dt, then 

(9.8.2) 

unless 1= O. The constant is the best possible. 

These theorems were first proved by Hardy (2), except that Hardy 
was unable to fix the constant in Theorem 326. This imperfection was 
removed by Landau (4). A great many alternative proofs of the theorems 
have been given by various writers, for example by Broadbent (1), 
Elliott (1), Grandjot (1), Hardy (4), Kaluza and Szego (1), Knopp (1). 
We begin by giving Elliott's proof of Theorem 326 and Hardy's proof 
of Theorem 327. b 

(i) In proving Theorem 326 we may suppose that a1 > O. For 
if we suppose that a1 = 0, and" replace an+! by bn, (9.8.1) becomes 

(~r + el ; b2 r + ... < (p ~ 1 r (b i P + b2P + ... ), 

an inequality weaker than (9.8.1) itself. 
Let us write Cl.n for An/n, and agree that any number with 

suffix 0 is O. W e have then 

CI. P-~oc P-1a =oc P-L..{noc -(n-l)oc l}OC p-l n p-l n n n p-l n n- n 

Hence 

=oc P(l- np )+(n-l)1?oc p-Ioc I 
n p-l p-l n n-

~OCnP(l-P~l)+ ;=~{(P-l)OCnP+Cl.Pn_Jc 
1 

=~~l- {(n-l) ocP n-I-nocnP}. p-

N P N NCI. P 
~oc P---~CI. P-Ia ::; __ ~N_::;O' 
In p-lln n- p-l-' 

a We have already encountered this theorem in Ch. VII, but the proof which we 
gave there (in detail only when p=2) was intended primarily as an illustration of 
variational methods and has no particular pretensions to simplicity. 

b We have expanded the proofs so as to deal with the question of equality. 
C By Theorem 9. 
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and therefore, by Theorem 13, 

(9.8.3) 

Dividing by the last factor on the right (which is certainly 
positive), and raising the result to the pth power, we obtain 

(9.8.4) ~ocr,P::; (J_)P ~anP. 
1 - p-l 1 

When we make N tend to infinity we obtain (9.8.1), except that 
we have '~' in place of ' < '. In particular we see that ~ocnP is 
finite. 

Returning to (9.8.3), and replacing N by 00, we obtain 

(9.8.5) 

There is inequality in the second place unless (anP ) and (ocnP ) 

are proportional, i.e. unless an = Oocn, where 0 is independent 
of n. If this is so then (since a l = OC1 > 0) 0 must be 1, and then 

< An = nan for all n. This is only possible if all the a are equal, 
and this is inconsistent with the convergence of ~anP. Hence 

(9.8.6) ~oc? < p~ 1 (~anP)l/P (~ocnP)1/p'; 

and (9.8.1) follows from (9.8.6) as (9.8.4) followed from (9.8.3). 
To prove the constant factor the best possible, we take 

Then 

an=n-lIP (n~N), an=O (n>N). 

NI 
~ar,P=~ -, 

1 n 

An=I:,v-1/P > In x-1/Pdx=1_{n(p-l)/P-I} (n~N), 
1 1 p-l 

( An)P> (_J>_)P 1- En (n ~ N), 
n p-l n 

where En -+ 0 when n -+ 00. It follows that 

~(~nr >¥(~nr >(p~lr(I-1JN)~a?, 
HI r6 
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where 7JN-»oO when N -»000. Hence any inequality of the type 

'A)P ( )P 1:(nn < P~I (I-e)1:anP 

is false if an is chosen as above and N is sufficiently large. 
An alternative procedure is to take an = n-(l/P)-E for all n, and 

to make e small. Compare § 9.5: it was this procedure which we 
followed there. 

(ii) Ifo<g<X, we have 

f X(F)P dx= __ I_fX FP_~_Xl-Pdx 
< x p-l < dx 

e-p Fp (g) Xl-p Fp (X) p f x 
= - +--- x1-PFp-1fdx.a 

p-l p-l p-l § 

But, by Theorem 222, gl-P Fp (g) -»0 0 when fP is integrable and 
g -»0 O. Hence 

f X(F)P p fX(F)P-l (9.8.7) - dX2=-- -- fdx 
o x p-I 0 x 

2= p ~ 1 {f: ( ~r dx rp
' (f: fp dx tP. 

If f is not nul in (0, X), the left-hand side of (9.8.7) is positive. 
Hence (9.8.7) gives 

(9.8.8) J: (:r dx 2= (p~ Ir J: jPdx; 
and when we make X-»ooo we obtain (9.8.2), except that' <' is 
replaced by , 2= '. In particular, the integral on the left-hand side 
of (9.8.2) is finite. 

It follows that all the integrals in (9.8.7) remain finite when 
X is replaced by 00, and that 

Jco (F)P P fco (F)P-l (9.8.9) - dx::; --1 - fdx 
o x - P- 0 x 

2= P~ I {f~ (~r dxrp'(f~ fPdx tP. 

The last sign of inequality may be replaced by , <' unless x-P Fp 
a Partial integration is justified because FP is an integral when F is an integral. 

For a formal proof see Hardy (4). 
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and fP are effectively proportional. This would make f a power 
of x, and then J fPdx would be divergent. 

Hence 

(9.8.10) fro (F)P P {fro (F)P }lIP' (fro )l/P - dx<-- - dx fPdx 
o x p-1 0 x 0 

unless f is nul. Since the integral on the left-hand side is positive 
and finite, (9.8.2) now follows from (9.8.10) as (9.8.8) followed 
from (9.8.7). 

The proof that the constant is the best possible follows the 
same lines as before: take f (x) = 0 for x < 1,f (x) = x-(l/pH for x ~ l. 

Elliott's proof of Theorem 326 applies to Theorem 327 also, with the 
obvious modifications. The proof of Theorem 327 given in (ii) may be 
adapted to series, but does not give the best possible value of the constant. 

(iii) The following proof of Theorem 327 (due to Ingham) is also 
interesting: we shall be content with proving the form with';£'. We use 
Theorem 203, supposing that the intervals of integration are each (0,1), 
that the weight-functions are 1, and that 

r= 1, 8=P> 1, f(x,y) =f(xy). 

Then 1JR1<x)f(xy) = (1 f(xy) dx = F (y) , Jo y 

1JR,,<V)f(xy) = U;t"(xY)dY} 11" = HffP(t)dt} lip ;£ HJ>"(t)dt} 11" 

for x ;£ 1. Hence, by Theorem 203, 

f (1(~)" dy}l/" ;£((1 fP dtylll (1 X-l/"dx=~(flf"dx)l/". Uo y Jo I Jo p-1 0 

We then obtain the result by putting 

x=Xjc, f(Xjc) =g(X), 

replacing X, g by x, j, and making c ->- 00. 

9.9. Further integral inequalities. There are many ana­
logues and extensions of Theorems 326 and 327, which have been 
proved by different writers in different ways; and we give some 
of these theorems here. We consider integral inequalities first, 
since we can derive most of these in a simple and uniform manner 
from Theorem 319, and the corresponding theorems for series 
sometimes involve slight additional complications. 

(1) Take, in Theorem 319, 

K(x,y)=l/y (x~y), K(x,y)=O (x>y). 
r6-2 
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Then, if p > 1, 

k=Joo K(x, I)X-1/Pdx=J1 x-l/Pdx=~, 
o 0 p-I 

and all the conditions on K are satisfied. Hence (b) and (c) of 
Theorem 319 give 

(9.9.1) J: dy(t J: f(X)dxr ~ (p~ Ir J: fPdx 

and 

(9.9.2) J: dx(J:g~)dYr~(p~Ir'f: gP'dyo 

Of these inequalities, (9.9.I)is Theorem 327, with' ~'for' < '; 
we cannot quote' <' from the general theorem becftuse K is 
not always positive. But equality in (9.9.1), with a non-nul f, 
involves 

J J K (x, y)f(x) g(y) dxdy= p~ 1 (JfPdX Y'P (JgP' dx tP', 

with non-nul f and g. The argument of § 9.3 then shows that 
(9.3.1) is true for x<y, and that f-=Ox-1/P for small x, which is 
inconsistent with the convergence of f fP dx. 

Similarly we can prove that there is inequality in (9.9.2) unless 
g is nul. A trivial transformation then gives 

328. If P > 1 and 

F(x)= J:f(t)dt, 

then 

(9.9.3) J: FPdx<pP J: (xj)Pdx, 

unless f-= O. The constant is the best possible. 

(2) More generally, take 
1 (y-xt-1 

K(x'Y)=r(r) yr (x<y), K(x,y)=O (xGY) 

with r> O. With r= 1, we come back to (1). We now have 

r(I-~) 
k~r~r)f: ,,-"P(I-x)Hdx~ r(r+l~~)' 
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Weare thus led to 

329. If p> I, r> 0, and 

(9.9.4) I fX fr(x)=r(r) 0 (x-tY-1f(t)dt, 

then 

(9.9.5) foo (f~)P dx< f r (I-t) rJOOfPdX' 

o x lr(r+I-t)J 0 

unles8 f= o. If 

(9.9.6) 

then 

(9.9.7) 

unles8 f= o. In each ca8e the con8tant i8 the best possible. 

The functionfr (x) of (9.9.4)is the 'Riemann-Liouville integral' a 

off(x) of orderr, with 'origin' O. The function (9.9.6) is the 'Weyl 
integral' of order r, which is in some ways more convenient, 
especially in the theory of Fourier series. 

(3) Take 
Y"'-l 

K(x,y)= Xii (x;ay), K(x,y)=O (x>y), 

with 01:< lip'. Then 

k= (1 x-o.-1/pdx= P , Jo p-pOl:-I 

and (b) and (c) of Theorem 319 give 

(9.9.8) 

(9.9.9) 

Changing the notation, we obtain 

330. lfp> 1, r*l, and F(x) is defined by 

F(x)= f:f(t)dt (r> 1), F(x)= f: f(t)dt (r< 1), 

a See § 10.17. Part of Theorem 329 is proved by Knopp (3). 
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then 

(9.9.10) 

unle8sf=O.a 
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The constant is the best possible. It is also easy to verify that, when 
p= I, the two sides of (9.9.10) are equal. 

9.10. Further theorems concerning series. Among the 
analogues and extensions of Theorem 326 we select the following. 

(1) The theorem related to Theorem 326 as Theorem 328 is to 
Theorem 327 is 

331.b If p > 1, then 

~ (an +an+1 + ... )P <pP ~ (nan)P, 

unles8 (an) i8 nul. The constant i8 the best po88ible. 

This theorem is 'reciprocal' to Theorem 326 in the sense of 
§ 9.7 (2), i.e. deducible from the latter theorem by the converse 
of HOlder's inequality. It may be instructive to set out the 
proof in detail, although what we say amounts to a repetition in 
a special case of what we have explained more generally beforec• 

If K (x, y) is defined as in § 9.9 (1), then 

(9.10.1 ) 

~~K(m,n)ambn= ~~ambn=~al +a2 + ... +anbn=~Anb 
m~n n n n n 

~ {~ (~n y} 1/p (~bnp')1lp' < p ~ 1 (~amP)1/P (~bnP')1/P', 
by Theorems 13 and 326, unless (a) or (b) is nul. 

On the other hand 

~~K(m,n)ambn=~am(::+ !m:~ + ... ); 

and the maximum of this, for all (a) for which ~amP= 1, is, by 
Theorem 15, 

{ ( b b )P'}1/P' 
~ ;+ m~~ +... . 

a For a direct proof see Hardy (5). 
b Copson (1); see also Hardy (6). 
c See § 8.7. 
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Hence, by (9.10.1), 

{~ (~ + !m;; + ... t'} lip' < P ~ 1 (~bnP')1Jp' = p' (~bnP')l/p' . 
Changing bm into mam , and p' into p, we obtain Theorem 331. 

That the constant pP is the best possible follows from the 
last remark of § 9.7(2). 

(2) 332. Ifp>l,an~O,An>O,and 

An=Al +A2 + ... +An, An=Alal +A2a2 +· .. +Anan, 

then ~An(~:t < (p~ It ~AnanP, 
unless (an) is nul. 

This theorem, which is related to Theorem 326 as Theorem 321 
is related to Theorem 315, may be proved in various ways. In the 
first place, it may be deduced from Theorem 320 by a specialisation 
of K (as Theorem 327 was deduced from Theorem 319 in § 9.9); 
but the question of possible equality then needs a little attention. 
Perhaps the simplest proof is by a direct adaptation of Elliott's 
argument in § 9.8. If IXn = An/An, we find that 

\ P P \ p-1a < 1 (A PAP)' 
I\nlXn ---ll\n lXn n=--I n-l lX n-l- nlXn , p- p-

and the proof may be completed as in § 9.8.a 

The theorem may also be deduced from Theorem 327 by taking 
f to be an appropriate step-function (the process by which, in 
§ 9.4, we deduced Theorem 320 from Theorem 319). We shall not 
set this out in detail b ; but the remark raises questions of which 
we say something more in the next section. 

9.11. Deduction of theorems on series from theorems 
on integrals c • The process of deduction just referred to, and 
actually used in § 9.4, is very natural and often effective. It is 
however apt to lead to difficulties of detail, so that direct methods 
are usually preferable. We illustrate this by giving a deduction of 

8 For the details see Copson (1). 
b For the details (which are rather troublesome) see Hardy (4). 
C Compare §§ 6.4 and 9.4 (1). 
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Theorem 326 from Theorem 327, which leads us incidentally to 
a remark of considerable intrinsic interest. 

We observe first that it is sufficient to prove Theorem 326 on the 
hypothesis that an decreases as n increases. This follows from a 
theorem which is of sufficient interest to be stated separately. 

333. If the an are given except in arrangement, and 1> (u) is a 
positive increasing function of u, then 

is greatest when the an are arranged in decreasing order. 

To prove Theorem 333 we have only to observe that, if v> f.L 

and av > a/k' the effect of exchanging a/k and av is to leave An 
unchanged when n < f.L or n?; v, and to increase An when f.L ~ n < v. 
The theorem is one of a type which we shall discuss in much 
greater detail in Ch. X. 

Suppose now that an decreases, and that Theorem 327 has 
been proved. We define f(x) by 

Then 

(9.11.1) 

f(x)=an (n-1~x<n). 

If n< x< n+ 1, then 

F (x) a l +a2 + ... +an + (x-n)an+1 
--= -"'---=------'-'----~ 

x x 

and An - nan+1 ?; 0, 

so that FIx decreases from An/n to A n+1/{n+ 1) when x increases 
from n to n + 1. Hence 

and so 

(9.11.2) 

~>An+1 
x =n+1 (n<x<n+1) 

fOO(F)P 00 (A )P 
o ~x dx ?; ~ -,;: . 

Theorem 326 now follows from (9.11.1); (9.11.2), and Theorem 
333. 
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If the reader will try to deduce Theorem 331 from Theorem 
328 similarly, he will find some difficulty. Something is lost in the 
passage from integrals to series, and it is by no means always 
that (as here) the passage can be made without damage to the 
final result. 

9.12. Carleman's inequality. If in Theorem 326 we write 
an for anP, we obtain 

(9.12.1) ~(all/p+a211P: ... +anl/pr «p~lr~a'l1' 

If we make p-H:tJ, and use Theorem 3, we obtain 
~ (a1 a2 ... an)1/n ~ e ~an; 

and this suggests the more complete theorem which follows. 

334.a ~ (a1 a2 ... an)l/n < e~an' 
unless (an) is nul. The constant is the best possible. 

It is natural to attempt to prove the complete theorem by 
means of Theorem 9; but a direct application of Theorem 9 to 
the left-hand side of (9.12.1) is insufficient b . To remedy this, we 
apply Theorem 9 not to a1, a2 , ... , an but to c1a1, c2a2, ''', cnan, 
and choose the C so that, when ~an is near the boundary of 
convergence, these numbers shall be 'roughly equal'. This requires 
that cn shall be roughly of the order of n. 

These considerations suggest the following proof. We have 

~ ( )l/n_ ~ (C1 a1· c2a2 .. • Cn an) l/n ,:., a1a2···an -,:., 
c1 C2 .. • cn 

1 
~ ~ (c1 c2 ... cn)-l/n - ~ cmam 

n nm;:;;n 
I = ~ amcm ~ - (c1 c2 •• , cn)-lln. 

m n<:;;m n 
.. Carleman (1). The proof given here is due to Polya (2). The less precise 

convergence theorem (without the constant e) was found independently by other 
writers, and there are a number of proofs of one form or the other of the theorem. 
See Collingwood (in Valiron, 1, 186, where there is a proof due to Littlewood), 
Kaluza and Szego (1), Knopp (I), Ostrowski (2, 201-204). 

"'" ( )l/n < "'" 1 '" __ "'" "'" 1 . ,4..,j \a1 a2 ••• an =,4..,j - ~ am - .:..am £.J -, 

n n nm~n 'In n;;;m n 

but the right-hand side is generally divergent. The proof fails because the a in 
al aa'" an are 'too unequal', and too much is lost in replacing @(a) by ~l(a). 
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In order that the inner summation should be easily effected, 
we choose 

when 
(m+ l)m 

C = ----,-.----m mm-l 

1 

and then 

~ ( )l/n '" am cm _ ~ ( 1 )m ~ a1 a2 ···an ~"'"'-m- am l+m <e am' 

by Theorem 140, unless am is nul. 
We can prove the constant best possible as in § 9.5. We may, 

for example, take an = lin for n ~ fL, an = 0 for n > fL, and make fL 
tend to infinity. 

The corresponding integral theorem is 

335.a If f is not nul, then 

J~ expgJ:Iogf(t)dt}dx<eJ~ f(x)dx. 

9.13. Theorems with 0 <p < 1. We have supposed so far that 
the parameter p involved in our theorems is greater than 1. 
A good many of them, however, have analogues with a pless 
than 1, and we give a selection of them in this section. The 
characteristic difference between the two cases lies (as is to be 
expected after our experience with Holder's and Minkowski's 
inequalities) in a reversal of the sign of inequality. 

(1) 336. If K (x, y) is non-negative and homogeneous of degree 
-1, O<p< 1, and 

J~ K(x, l)x-I/Pdx= J~ K (l,y)y-l/P' dy=k< 00, 

then 

(a) J~ J~ K (x,y)f(x)g(y)dxdy~ k (J~ fPdx tP (J~ gP' dy tP', 

(b) J~dY(J~K(x,Y)f(X)dXr~kP J~fP(X)dx. 
Here, in accordance with the conventions of §§ 5.1 and 6.5, 

a Knopp (1). 
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(a) means 'if the double integral, and the second integral on the 
right, are finite, then the first integral on the right is finite, and ... '; 
and (b) means 'if the integral on the left is finite, then the 
integral on the right is finite, and ... '. 

Ifwe use the second method of §9.3, the proof of (a) is the same 
as that of (a) of Theorem 319. The sign is reversed because we use 
Holder's inequality with p < 1. To deduce (b) from (a), we appeal 
to Theorem 234. We leave it to the reader to frame the corre­
sponding theorem for p < 0, and to consider the question of equality. 

We cannot take K = 1/(x+y), since then k=oo. There is there­
fore no exact analogue of Hilbert's theorem. 

(2) 337. IjO<p< l,j(x);;;O, 

f~ jPdx< 00, 

and F(x)= f: j(t)dt, 

then f~(~r dX>(I~pr f~ jPdx, 

unless j= o. The constant is the best possible. 

We may deduce Theorem 337, in an imperfect form, from 
Theorem 336, by taking 

when 

I 
K(x,y)=O (x<y), K(x,y)=- (x;;;y), 

y 

k=foo x-l!Pdx=~. 
1 l-p 

To prove the complete theorem in this way would involve a 
discussion of the sign of inequality in Theorem 336 (and so in 
Theorem 234). We therefore follow a direct method analogous to 
that of § 9.S. 

We may suppose 

f: j(t} dt, f~ (fr dx 

finite, since otherwise there would be nothing to prove. 
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We have 

(9.13.1) 

JX(~)P dx = _1 [X1-P Fp (X)]X + ~_JX(~)P-l fdx. 
~ x 1-p ~ 1-p ~ x 

Since F decreases as x increases, 

x1- p Fp (x)= 2( F~X)y !x~ 2 J:x (~r dt 

tends to 0 both when x~o and when x~oo. Hence (9.13.1) 
gives in the limit 

- dx--- - fdx, JOO(F)P _ P JOO(F)P-l 
o x I-p 0 x 

and the proof may be completed as before. 
For a more complete result, corresponding to Theorem 330, see 

Theorem 347. 

(3) Finally we prove a theorem which is related to Theorem326 roughly 
as Theorem 337 is related to Theorem327. The correspondence is not quite 
precise, and the theorem illustrates very instructively the slight additional 
complications which are sometimes inherent in a theorem concerning series. 

338.8 IfO<p< 1 and ~anP<oo, then 

~' (an +a~+l + ... y > (1 ~pr ~anP' 
unless (an) is nul. The dash over the summation on the left-hand side implies 
that the term for which n = 1 is to be multiplied by 

I 
1+-1-' -p 

The constant is the best possible. 

In Theorem 337, take 

f(x)=O (O<x< 1), f(x)=a n (O<n~x<n+ 1). 

Then, if O<n~x<n+ 1, 

~_ (n+ I-x)an+an+l + ... <an+an+l + ... 
x- x = n . 

Hence to (~r dx~~ (an+an;:l + "'y. 
while fl (!)P dx= (a1 +a2+ ... )pfl x-Pdx= (a1 +a2+ ... )P; 

o x 0 I-p 

and the result follows from Theorem 337. 
a The substance of this theorem was communicated to us by Prof. Elliott in 1927. 
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Some such gloss as that contained in the last clause of the theorem is 
necessary; the result is not necessarily true if the dash is omitted a• 

9.14. A theorem with two parameters p and q. We con­
clude this chapter with a theorem which, although again an ex­
tension of Hilbert's theorem, has peculiarities which do not occur 
in any of the earlier theorems of the chapter. It involves two 
independent indices p and q and an undetermined constant 
K(p,q). 

339. If 

so that 

p>l, 

1 1 1 1 
O<A=2----=-+-~ 1 P q p' q'- , 

00 co a b ( 00 )liP ( 00 )l/q 
then ~~ ( m n)A~K ~amP ~bnq , 

1 1 m+n 1 1 

where K = K (p, q) depends on p and q only. 

This theorem reduces to Theorem 315 when q=p', A= I: in that 
case we know the best possible value of K. The best value has not 
been found in the general case, and the problem of determining it 
appears to be difficult. We shall prove later (§IO.17) a deeper 
theorem in which A< 1 and m+n is replaced by I m-n I (equal 
values being then excluded from the summation). 

It is sufficient to prove that, if ~amP =A, ~bnq= B, then 

(9.14.1) ~am ~ ( bn )A ~ KAI/P Bl/q, 
m n~m m+n -

and for this, by Theorem 13, that 
(9.14.2) ~fimP' ~ KBp'/q, 

m 

where Q _ ~ bn 
fJm-n~m (m+n)A' 

Now fim ~ m-A 2: bn = m-A Bm 
n;;;am 

and p' ~ q. Hence 

~Q P' < ~ -p'AB P' = ~ (Bm)qB p'-q q-p'~ ~fJm = ~m '" ~ m m • m 

a Take a1 =1, a2 =aa='''=O. Then the result is false ifp>!. For an alternative 
form of the result see Theorem 345. 
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But 

and 

HILBERT'S INEQUALITY AND 

Bm=~bn;;;a ml/q' (~bnq)l/q ;;;a Bl!qml/q', 

p' -;q +q-p').=O. 
q 

Hence 

I:,PmP';;;a B{P'-q)/qI:, (-::t;;;a C~ It B{P'-q)!q+l=KBP'!q, 

by Theorem 326. This proves (9.14.2). 
Similarly we prove 

340. Under the same conditions as those oj Theorem 339 

f OOfOO J(x)g(y) dxdy;;;a K(fOO JPdx)l/P (fOO ~dy)l/q. 
o 0 (X+y)A 0 0 

MISCELLANEOUS THEOREMS AND EXAMPLES 

341. If (i) am, b,., j(x), g(y) are non-negative, (ii) the summations go 
from 1 to 00 and the integrations from 0 to 00, 

(iii) (~amP)l!P=A, (~b,/)')1!p'=B, (ffPdx)l!'P=F, (fgP'dy)l!P'=G, 

and (iv) p > 1, then 

(1) 

(2) 

~~ amb,. 'AB 
Max (m, n) <pp , 

If j(x)g(y) dxdy<pp' FG 
Max (x,y) , 

unless (am) or (b,,) orj(x) or g(y) is nul. The constants are the best possible. 

[Cases of Theorems 318 and 319, (a). In order to shorten the statements 
of the following theorems we agree that conditions (i), (ii), and (iii) are pre­
supposed in all of them; and that, whenever the conclusion is expressed 

by an inequality X <KY (or X>KY), 

with a definite K, then K has its best possible value (unless the contrary is 
stated explicitly) and equality is excluded unless a sequence or function 
involved in the theorem is nul. 

When, on the other hand, the conclusion is 

X~KY, 

with an unspecified K, then K is a function of any parameters of the 
theorem.] 
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(I) 

(2) 
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If p> I, then 

1:1: log (m/n) a b <7T2cosec2~.AB 
m-n m,. p' 

ff log (x/y) f(x)g(y)dxdy< 7T2cosec2~. FG. 
x-y p 

[Also cases of Theorems 318 and 319, (a). Here 

k= --x-1 PdX=7T2 cosec2 -.] 1.00 log x / 7T 
o x-I p 

343. If p > I, then 
00 00 a b 7T ( 00 a P' 1/ P 00 (b P') 1/ p' 1: 1: m n < 1: --.!!L) 1: ~ 
2 2 mnlogmn sin (7T/p) 2 m 2 n • 

[Mulholland (2). Since 

log 1n±I <.! 
m m' 

the result is slightly stronger than that obtained by taking Am=logm, 
M,.=logn in Theorem 321.] 

344. If 0 <p < I then 
1: (an +a"+1 + ... )P>pP1: (nan)P. 

[Copson (2). This theorem, with Theorems 326, 331, and 338, forms 
a systematic set of four.] 

345. If 0 <p < I then 

1: (a,. + an+! + ... ) P P 1: P n >p a,.. 

[Corollary of Theorem 344. Compare Theorem 338; here there is no 
gloss, but the constant is less favourable and is presumably not the best 
possible.] 

346. If (a) 0>1, s,.=a1+a2 + ... +a", or (b) e<l, sn=a .. +a,,+I+"" 
then 

(0() 

(f3) 
1:n-Cs,.P ~K 1:n-C (na,,)P (p> 1), 
1:n-cs .. p~K1:n-C(na .. )P (O<p< 1). 

[In each of the four cases K =K (p,e), as laid down under Theorem 341. 
See Hardy and Littlewood (1). 

We prove (0() when 0> 1. If 
4>,. = n-C + (n+ 1)-C + ... , 

then 4> .. < Kn1- C• Hence, if we agree that so= 0, we have 
m rl1 m 
1:n-cs,,P = 1:(4),. -4>,,+1) snP ~ 1:4> .. (S,.'P -S"-IP) 
1 1 1 

'" (m ) lip (m ) lip' 
~K ~nl-CSn'P-la .. ~K ~n-C(na,,)p ~n-cs .. p ; 

and (0() follows. Hardy and Littlewood (2) give function-theoretic 
applications of (0() and (fJ). The important case is that in which e = 2.] 
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347. Ifr and F satisfy the conditions of Theorem330, but O<p< 1, then 

fx-r FPdx> (-~)Pfx-r(xf)PdX. /r-l/ 
[Hardy (5).] 

348. If 

[Take K (x, y) =y-1e-a:/y and apply Theorem 319, (b). More general but 
less precise results are given by Hardy and Littlewood (1), and some 
function-theoretic applications by Hardy and Littlewood (2).] 

349. If,\" and An satisfy the conditions of Theorem 332, then 

LAn (a1""a2A2 ... a nAn )l/An < e LAnan. 

[See Hardy (4).] 

350. If p> 1, K(x) >0, and 

then 
f K(x) xs-ldx= cp(s), 

I jK (xy)f(x) g(y) dxdy< cpG) (jX P- 2jP dX fP (jgPldytPI, 

jdX (jK(XY)f(Y)dY r < cpP (~) jXP- 2jP dX, 

[XP- 2dx(jK(xY )f(Y)dYY <CPP(~/) jfPdx. 

In particular, when K(x) =e-a:, and F(x) =f K(xy)f(y) dy is the 'Laplace 
transform' off(x), 

JFPdX<rp~) jXP- 2fPdx, jXP- 2 F PdX<P(-t) jfPdX. 

351. If also K(x) is a decreasing function of x, and 

then 

A (x) = LanK(nx), An=f a(x)K(nx) ax, 

jAP(X) dx< cpP G) LnP- 2a nP, 

LAnP<CPP(~) jXP- 2a p(X)dX, 

jXP-2AP(X)dX<cpP(~/) LanP, 

LnP- 2 AnP < cpP (}, ) jap(x) dx. 
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352. If F(x) is the Laplace transform of1(x), and l<p~2. then 

fFP'dX~~~ (j1PdxY'ip. 
[For the last three theorems see Hardy (10). Theorem 350 may be 

deduced from Theorem 319 by transformation. It is not asserted that 
the constant in Theorem 352 is the best possible.] 

353. If Ko(x};;;O, 

Kl (x,y) = f Ko(xt)Ko(yt)dt, Ks (x,y) = f Kdx,t)Kl (y,t) dt, 

then 

j Kdx,l)d -k vX x-, 

~~2 (m, n) ama" ~ k ~~l (m, n) ama". 

[See Hardy (9). The theorem is one conoerning quadratic, not 
bilinear, forms.] 

354. 

355. ~~ ~og(~!n); ama,,:::;;2~~M am(a~}. 
ax m,n - ax m,n 

[Corollaries of Theorem 353. Observe that Theorem 354, when com­
bined with Theorem 315, gives 

~~log(m/n} < 2~ 2 
m-n am a,,='1T am' 

in agreement with Theorem 342.] 

356. If c(x}= f~Ca(t)b(X-t}dt, 

AP= f x-l(xo.a(X)r~X' Bq= f X-I (X~b(X)y dx, or= f X-I (XY C (X»)' dx. 

111 
p>l, q>l, r~p+q' oc<l, (3<1, y=oc+{3-1, 

then 

where 

357. If 

O<KAB, 

K_ r (l-oc)r(I-{3) 
- r(l-y} • 

AP= ~n-l (no.a,,}P, Bq= ~n-l (nflb,,)Q, Or= ~n-l (nYc,,)', 

p, q, r, and y satisfy the conditions of Theorem 356, and 0 ~ oc < 1, 
O~ {3< 1, then O<KAB, with theK of Theorem 356. If oc<Oor {3<O, the 
inequality is true with some K. 

HI 17 
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358. If 

HILBERT'S INEQUALITY AND 

ao=bo="'=co=O 
and u .. =:Ea,.,b ..... crk (ri~O, :Eri=n), 

then :Eu,,8<~ {r (2~)} 81< (l:;n1k-2a,,2k)1/k ... (:En2k-8c,,21:)1/k. 

359. Ifp> I, l>O, m>O and c(x) is defined 88 in Theorem 356, then 

f x(1-I-m'(l>-I'cl>(x)dx~K f x(l-I)(l>-I)al>(x)dx f X(I-m) (l>-l' bl>(x)dx. 

_ {r(l) r(m).}l>-l 
where K- r(l+m) • 

There is equality if and only if 
a(x)=AxI-1e-C", b(x) = Bxm-1e-C", , 

where A, B, a are non-negative constants and a is positive. 

[For Theorems 356-359 see Hardy and Littlewood (3. 5, and 12).] 

360. If L(x) is the Laplace transform off(x). and q~p> I. then 

f rx;(l>+a-l>a'/l> La(x)dx~KFq. 

361. Ifp>l, q>l. 
1 1 

u=-+--l;e:O r p q -, 

and L, M are the Laplace transforms off. g. then 

f x-fJ.LMdx~KFG. 
362. If p> 1, O~/L< lip. and 

IX -:E am 
,,- m(m+n)1 fJ.' 

then :Eex .. l>/(I-fJ.l» ~KAl>/(1-fJ.l». 

[This may be deduced from Theorem 339 by the converse of Holder's 
inequality. Many further theorems of the same general character as 
Theorems 360-362 are given by Hardy and Littlewood (1).] 

363. If A .. is positive and 
p> I, A .. =al +a2 + ... +a .. , Al +AS+ ... +A .. ~cn, 

then :E (~"r A,,~KAl>. 
364. If An is positive and 

p>l, r>l. A{+A"+ ... +A, .. ~cn, 

then :E:E amb" A ~KAB. m+n m+,,_ 

The result is not necessarily true when r= 1 (as it is when An= I). 

[For these two theorems, which are corresponding extensions of 
Theorems 326 and 315, see Hardy and Littlewood (11).] 
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365. The inequalities in Theorems 326 and 334 are the special cases 
.p=xt (0 <t< 1), .p =logx, of 

(i) ~.p-l (.p(a1 )+ .';': + </>(an)) < K(</» ~an. 

[Knopp (2). This remark has led Knopp to a systematic investigation 
of forms of </> for which (i) is true. See also Mulholland (4).] 

366. Suppose that </> and .p are continuous and strictly increasing for 
x>O, and have the limits 0 or -00 when x-+O; and that </> is convex 
with respect to .p (§3.9). Then (i), if true for </>, is also true for.p, with 
K(.p)~K(</». 

[Knopp (2).] 

( ellal+ella.+ ... +e11an)-1 
367. ~ log < 2 ~an' n 

[Knopp (2).] 

17-2 



CHAPTER X 

REARRANGEMENTS 

10.1. Rearrangements of finite sets of variables. In what 
follows we are concerned with finite sets of non-negative numbers 
such as 

a-n' ... , ao' ... , aj , ... , an: 

we denote such sets by (a), (b), ... . 
Taking for example the first set, in whichj assumes the values 

1, 2, ... , n, we define a permutation function r/> (j) as a function 
which takes each of the values 1, 2, ... , n just once whenj varies 
through the same aggregate of values. If 

aq,(j)=a/ (j= 1, 2, ... ,n) 

then we describe (a') as a rearrangement of (a). Similar definitions 
apply to other cases in which the range of variation of j is 
different. 

There are certain special rearrangements of (a) which are 
particularly important here. These rearrangements, which we 

denote by (a), (a+), (+a), (a*), 

are defined as follows. 
The set (a) is the set (a) rearranged in ascending order, so that, 

when the values ofj are 1, 2, "', n, 

al ~ a2 ~ ... ~ an . 
The set (a) is defined unambiguously by the set (a) although, 
when the a are not all different, there are ambiguities in the 
definition of the permutation function by which we pass from 
(a) to (a). 

In defining the sets (a+), (+a), (a*) we suppose that j varies 
from - n to n. The set (a+) is defined by 

ao+ ~ a l + ~ a_l + ~ a2+ ~ a_2+ ~ .. , 

and the set (+a) by 

+ao ~ +a_1 ~ +al ~ +a_2 ~ +a2 ~ •••• 
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There is one particularly important case, that in which every 
value of an a, except the largest, occurs an even number of times, 
while the largest value occurs an odd number of times. In this 
case we shall say that the set (a) is symmetrical. The sets (a+) and 
(+a) are then identical, and we write 

a+=+a=a*, 
so that a* is defined by 

ao* ~ a1* =a_1* ~ a2*=a_2* ~ .... 

A set (a*) may be said to be symmetrically decreasing. The sets 
(a+) and (+a) are sets arranged so as to be as nearly symmetrically 
decreasing as possible, but with the inevitable overweight of one 
side arranged systematically to the advantage of the right or the 
left respectively. All these sets are defined unambiguously by (a), 
though there may be ambiguities in the definitions of the 
corresponding permutation functions. 

We note that 

(10.1.1) 

10.2. A theorem concernin~ the rearran~ements of two 
sets. We begin by proving a very simple, but important, theorem 
concerning the set (a). 

368.a If (a) and (b) are given except in arrangement, then 

'2:,ab 

is greatest when (a) and (b) are monotonic in the same sense and 
least when they are monotonic in opposite senses; that is to say 

n _ n n_ 

(10.2.1) '2:, ajbn+l_j ~ '2:, ajbj ~ '2:, ajbj • 
j=l 1 1 

It will be observed that, since we can add up the sum '2:,ab in 
any order, we may suppose one set, say (a), arranged from the 
beginning in any order we please (in particular in ascending 
order). 

We may express the theorem equally well by saying that the 
maximum corresponds to 'similar ordering' of (a) and (b) in the 

a This theorem and Theorem 369 are valid for all real, not necessarily positive, 
a and b. 



262 REARRANGEMENTS 

sense of §2.17, the minimum to 'opposite ordering'a. The theorem 
becomes 'intuitive' if we interpret the a as distances along a 
rod to hooks and the b as weights suspended from the hooks. To 
get the maximum statical moment with respect to an end of 
the rod, we hang the heaviest weights on the hooks farthest from 
that end. 

To prove the theorem, suppose that the (a) are in ascending 
order, but not the (b). Then there are aj and a k such that aj ;:::; ak 
and bj > bk • Since 

ajbk + akbj - (ajb j + akbk) = (ak- aj) (b j - bk) ~ 0, 

we do not diminish 'L.ab by exchanging bj and bk . A finite number 
of such exchanges leads to an ascending order of the b, so that 

'L.ab;:::; 'L.ab. 

The other half of the theorem is proved in the same way. 
This argument establishes incidentally a variant of Theorem 

368 which is sometimes useful. 

369. If 

(10.2.2) 'L.ab';:::; 'L.ab 

for all rearrangements (b') of (b), then (a) and (b) are 8imilarly 
ordered. 

For, if (aj - ak ) (bj - bk ) < 0 for any j, k, we can falsify (10.2.2) 
by exchanging bj and bk • 

10.3. A second proof of Theorem 368 . We have to consider 
analogues of Theorem 368 for more than two sets of variables. 
These lie a good deal deeper and cannot be proved in so simple a 
manner . We therefore give a second proof of Theorem 368 which, 
though quite unnecessarily complicated for its immediate object, 
will serve to introduce the method which we use later. We con­
fine ourselves to the second inequality (10.2.1), and divide the 
proof into three stages. 

(1) Suppose first that the sets considered consist entirely of 

a Theorem 43 (with r= 1 and p = 1) may be expressed, in our present notation, 
in the form 
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O's and I's; we indicate such special sets by the use of German 
letters a, b, .... Then 

(10.3.1 ) 

for all j. In this case 
~ab ~ ~a, ~ab ~ ~b, 

and so ~ab~Min(~a,~b)=~ab. 

(2) Any set (a) may be decomposed into a linear combination 
of sets 

of the special type considered under (I), in such a way that 

(10 3 2) - 1 1+ 2a 2+ + I I (. I 2 ) .. aj - rx aj rx j ..• rx aj J = , , ... , n , 

and 

(10.3.3) aj =rx1 a/+rx2 al+ ... +rx1a/ (j=I,2, ... ,n), 

the coefficients rx being non-negative. 
The method of decomposition will become clear by con­

sidering a special case. Suppose that (a) contains (in some order) 
the three numbers A, B, 0, where 0 ~ A ~ B ~ 0, so that 

Then 
a1 =A, a2 =B, as=O. 

al =A.I + (B-A)O+ (0- B)O, 

a2 =A.I + (B-A) 1+ (0- B)O, 

as = A .1 + (B - A) 1 + (0 - B) 1 ; 

and we may write 

where 

aj = rxi a/ + rx2 al + rxsa/, 

rxI=A, rx2 =B-A, rxs=O-B 

and (aI ), (a2 ), (as) are the three sets 

(1,1,1), (0,1,1), (0,0, I). 

If then we perform the permutation which changes (a) into (a) 

and at the same time (aI ), .•• into (aI ), .•• ,b we obtain 

aj= rx1 a/ + rx2al+ rxsa/ . 

.. ai means a(i) and rxi means rx(i): in (10.3.1) above, a2 is a power, but this use does 
not recur. 

b a1 is defined by this permutation. 
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In the general case we proceed in the same way, writing 

al =al.1 + (a2-al)' 0+ (tis-a2) .0+ ... , 
a2 =al.1 + (a2-al).1 + (tis-a2)' 0 + ... , 

This secures (10.3.3), and (10.3.2) then follows by rearrangement, 
as in the special case. 

(3) From (I) and (2) we can deduce the general theorem. For, 
decomposing (b) as in (2), we have 

aj="i:.(xpat, aj="i:.(xpa.t, bj="i:.jJO'fJ/, 5j ="i:.{JCTb/, 
P P (T (T 

"i:.ajbj= "i:."i:.cxP {JCT"i:.at'fJ/ 
i P (T i 

~ "i:."i:.cxP {JCT "i:.a.tb/ = "i:.a/jj • 
pIT i i 

10.4. Restatement of Theorem 368. It will also be useful 
to restate Theorem 368 in different language. We suppose now 
that, in the sets (a), (b),j runs from -n to n. We write 

f(x) = "i:.ajxi, g(x)="i:.bjxi, 

and call ao=@:(f(x)) 

the central coefficient off. Plainly 
@:(f(X-I))=@:(f(X)). 

Also "i:. arbs="i:.ajb_i=@:(fg). 
r+s=O 

The sets (a/) and (+b-i) are similarly ordered, and if we write 

f+(x)="i:.a/xi, +f(x) = "i:.+ aj xi, 

so that, by (1O.l.1), 
f+(x-l ) = +f(x), 

then Theorem 368 gives 

@:(fg)= "i:. arbs="i:.ajb_j~"i:.a/+b_j= "i:. ar++bs=@:(f++g). 
r+s=O r+s=O 

Hence we deduce 

370. The central coefficient of 
n n 
"i:. aixi "i:. bjxi 
-n -n 
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is greatest,for all rearrangements of the a and b, when (aj) and (b_ j ) 

are similarly ordered, in particular when (a) is (a+) and (b) is (+b) 
or when (a) is (+a) and (b) is (b+). 

10.5. Theorems concerning the rearrangements of three 
sets. We pass now to theorems involving three sets of variables. 

371.a Suppose that the c, x, and yare non-negative, and the c 
symmetrically decreasing, so that 

CO;;::;c1 =C_1 ;;::;C2 =C_2 ;;::; ••• ;;::;C2k=C_2k, 

while the x and yare given except in arrangement. Then the bilinear 
form k k 

S = ~ ~ Cr_sXrYs 
r=-ks=-k 

attains its maximum when (x) is (x+) and y is (y+). 

It is evident that, if this is so, then the maximum must also be 
attained when (x) is (+x) and (y) is (+y). 

372.b Suppose that (a), (b), (c) are three sets satisfying 

(10.5.1) ao ;;::; ar=a_r , bo ;;::; bs= b_s, co;;::; Ct= C_t· 

Then the maximum of 

~ arbsct = ~ (~arxr ~bsxs ~Ctxt), 
r+8+t=0 

for rearrangements of the sets which leave ao, bo, Co unaltered, is 
attained when (a), (b), (c) are (a*), (b*), (c*). 

373.C If (a), (b), (c) are three sets, of which (c) is symmetrical in 
the sense of § lO.l, then 

~ arbsct~ ~ ar++b8ct*= ~ +arbs+ct· 
r+s+t=O r+8+t=0 r+s+t=O 

It will be sufficient to prove Theorem 373, since this includes 
the other two theorems. In the first place, Theorem 373 is Theorem 
372 freed from the restrictions (10.5.1), wholly in regard to (a) 
and (b) and partly in regard to (c). To deduce Theorem 371 from 
Theorem 373, we put 2k=n, xr=a_r, ys=bs , and suppose that 
the a and b outside the range (- k, k) are zero. We may observe 

a Hardy, Littlewood, and P6lya (1). 
b Hardy and Littlewood (4), Gabriel (1). 
c Gabriel (3). 
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finally that Theorem 370 is the simple case of Theorem 373 in 
which co= 1 and the remaining c are O. 

10.6. Reduction of Theorem 373 to a special case. We 
divide the proof of Theorem 373 into three stages, as in § 10.3. The 
whole difficulty ofthe proof lies in stage (1), in which (a), (b), (c) 
are of types (a), (b), (c): and we take this stage for granted for the 
moment and dispose of the easier stages (2) and (3). 

First, we may decompose (a), (b), (c) into sums of sets (aP), 
(bU ), (CT ), in such a way that 

aj = 1:IXP at, bj = 1:Wb/, ' cj = 1:yT c/ ' 
P <T T 

and a/=1:lXpat+, +bj=1:f1u+b/', c;*=1:yTc/*. 
P <T T 

Here the a, b, C are all 0 or 1, the IX, f1, yare non-negative, and 
(a point which does not arise in § 10.3) the sets (CT ) are symmetrical. 
All this is proved by the method of §10.3 (2).aWhenwehavedone 
this, and proved the theorem for sets of type (a), (b), (c), we have 

1: arbsc/= 1: IXP f1U yT 1: UrPbsUc{ 
r+s+t=O p,<T,T r+s+t=O 

~ 1: IXPf1U yT 1: arP++b"Uc{*= 1: ar++bsct*, 
p, <T, T r+s+t=O r+8+t=0 

and the proof is completed. 
It remains to prove the theorem in the special case in which all 

a, b, care 0 or l.b The set c, being symmetrical, contains an even 
number ofO's and an odd number of l's. We write 

f(x)=1:ar xT , g(x)=1:bs XS, k(x)=1:ctr . 

Since we may add any number of O's to the sets, we may sup­
pose that all the summations run from -n to n. 

We have also 

f+(x)=1:ar+xT =x-R+ ..• + 1 + ... +XR', 

+g(x) = 1:+bsXS= x-s' + ... + 1 + ... +xs , 

k*(x)=1:ct*r = x-T + ... + 1 + ... +XT, 

a In order that the sets (tT ) obtained by the process of § 10.3(2) should be 
symmetrical, in the sense of § 10.1, we drop those cT which correspond to zero yT. 

b So that, strictly, we should write a, b, c for a, b, c. There is, however, no further 
neoessity for this notation. 
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where R, R', S, S', T are non-negative integers and 

(10.6.1) R~ R'~ R+ 1, S~ S' ~ S+ 1. 

We have to prove that 

(10.6.2) Cf,(fgk) ~ Cf,(f++gk*). 

The inequality (10.6.2) may be made 'intuitive' by a geo­
metrical representation. Let x, y be rectangular coordinates in a 
plane, and represent each non-zero coefficient off, g, k by a line, 
X=f for ar = 1, y=8 for bs= 1, and x+y= -t for 0t= 1. If arbsot 

contributes a unit to Cf,(fgk), these three lines intersect. Each of 
the functions f, g, k is represented by a family of parallel lines, 

y 

y 
Fig. 1. Graph of J, g, h. Fig. 2. Graph ofJ+, +g, h"'. 

and Cf,(fgh) is the total number of triple intersections of these 
lines. We represent f+, +g, k* similarly; f+ is also represented by 
R + 1 + R' vertical lines, but now these lines are shifted as near as 
possible together. Typical figures are shown in Figs. 1 and 2: 
here (a), (b), (0) are the sets 

1,0, 1, ~ 0,1,0,0,1; 

1, 1,0,0, 1, 1, 1,0,0, 1; 

1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, ° 
respectively; and 

R= 1, R'=2, S=2, S'=3, T=2. 
It is intuitive that the number of intersections is greatest when, 
as in Fig. 2, the diagram is as condensed as possible. 
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Our proof of (10.6.2) may be presented geometricallya and 
followed on the figures. We reduce the actual case considered to 
a simpler one by taking away one horizontal and one vertical line 
from each figure, as is suggested by the thick lines in the figures. 
We prefer however to state the proof in a purely analytical form. 

10.7. Completion of the proof. There are three subordinate 
cases in which the proof is easy. 

(1) If R' = 0, j+ reduces to 1 and the result is included in 
Theorem 370. 

(2) If 8' = 0, +g reduces to 1 and again the result is included in 
Theorem 370. 

(3) Suppose that 

(10.7.1) R+8'~T, R'+8~T. 

We have in any case 

(10.7.2) 
f£(jgh)= I: a,.bsct~ I:a,.I:bs = (R+ I+R')(8+ 1 + 8'). 

r+s+t-O 

But, when the inequalities (10.7.1) are satisfied, 

f£(j++gh*) = f£{(x-<R+S'l+ ... +xR'+S)(X-T + ... + 1 + ... +XT)} 

is the sum of all the coefficients ofj++g, and therefore 

(10.7.3) 
f£(j++gh*) = I: arbs = I:a,.I:bs = (R + 1 + R') (8 + 1 + 8'). 

r,8 r 8 

The result follows from (10.7.2) and (10.7.3). 
We now consider the general case in which 

R'>O, 8'>0, Max(R+8', R'+8)=n>T. 
We assume that the result has been proved for 

Max(R+8', R'+8)<n 
and argue inductively. 

Let xl' be the highest power inj, xO" the lowest in g, and write 
j-xI'=g;, g.:...xO"=.p, j+-xR'=;P, +g-x-s'={i. 

Since R' > 0, 8' > 0, none of these functions vanishes identically. 
a See Gabriel (3). 
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Then fgh= (c/J +xP )(xa + if;) h= c/Jif;h+ Xh, 
where X=xac/J+xP+a +xPif;. 
Since the highest power in xac/J is lower than xP+a, and the lowest 
power in xPif; is higher than xJ>+a, there is no overlapping, and all 
coefficients in X are 0 or 1. Since the sum of the coefficients in h 
is 2T + 1, it follows that 

.(t(xh) ~ 2T+ 1. 
(10.7.4) (t(fgh)~(t(c/Jif;h)+2T+1. 

On the other hand 

(10.7.5) j++gh*= (¢+XB') (x-B' + (f)h*= ¢(fh*+ xh*, 
where 

X = x-s' ¢ + XB'-B' + xB'ifi 
= x-B- S' + ... + xR'-S'-1 + xR'-s' + xB'-S'+1 + ... + XR'+S. 

The sequence of exponents in X is an unbroken one, extending 
from - R - 8' to R' + 8. We know that either R + 8' or R' + 8 
is greater than T. If R+ 8' > T then, by (10.6.1), 

R' + 8 ~ R + 8' - 1 ~ T, 
and so the unbroken sequence from - T to T, of length 2T + 1, 
is part of the sequence of exponents of X. The same conclusion 
follows when R' + 8> T. Since h* has an unbroken sequence of 
exponents of length 2T + 1, centred round the constant term, 
it follows that (t (xh*) = 2T + 1, 

and so, by (10.7.5), that 

(10.7.6) (t (f++gh*) = (t (¢(fh*) + 2T + 1. 

Now c/J+(x) = X-(B'-I) + ... +XB= ¢ (x-I),a 

+if;(x) = x-B + ... + XS'-I = (f (X-I). 
Also 

Max(R'-1+ 8, R+8'-I)=Max(R' + 8, R+ 8')-I=n-1, 
and so, by our hypothesis, 

(10.7.7) (t (c/Jif;h) ~ (t (c/J++if;h*) = (t {¢ (X-I) (f (X-I) h* (x)} 
= (t{¢ (x) (f (x) h* (X-I)) = (t (¢(fh*). 

a It is not necessarily true that 
"'+(x)=~(x)=x-R+ ... +xR'-l, 

since, if R' =R, this polynomial is 'overweighted' at the wrong end. When R' =R + 1, 
either formula is correct. 
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Finally, comparing (10.7.4), (10.7.6), and (10.7.7), we see that 
(f (fgh) ~ (f(f++gh*), 

and the proof is completed. 

10.8. Another proof of Theorem 371. There is another 
proof of Theorem 371 which is interesting in itself, although it 
cannot be extended to prove the more general Theorem 373. 

We have to prove that, among the arrangements of the x and Y 
which make S a maximum, there is one in which 

(10.8.1) xr-xr'~O, Ys-Ys,~O 

if I r' I > I r I , Is' I > lsi 
or if r'= -r<O, s'= -s<O. 
We may suppose on grounds of continuity that the x, y, and C 

are all positive, that the x and the yare all different, and that the 
c are different except in so far as they are restricted by c_n = Cn , 

the condition of symmetry. 
We shall denote an arrangement of the x and y generally by A. 

We say that A is 'correct' if it satisfies (10.8.1); there is just one 
correct arrangement O. We say that A is 'almost correct' if it 
satisfies (10.8.1) except perhaps when r' = -r or s' = -s; there 
are, including 0, 22k almost correct arrangements, and we denote 
the class of such arrangements by 0'. Finally we denote by K the 
class of those A which give the maximum value of S. We have 
to prove that 0 is a K. 

Given p, we can associate the x and y in pairs 

(10.8.2) (Xp_i' Xp+i), (yp-i' Yp+i) (i,j = 1,2,3, ... ), 
or in pairs 

(10.8.3) (Xp_i,Xp+i+l)' (YP -j'YP+i+1) (i,j=0,1,2, ... ). 
If a suffix falls outside the interval ( - k, k) then the correspond­
ing x or Y is to be replaced by O. In the first case the elements 
xp and YP are left unpaired, and the pairing may be made, by 
choice of appropriate p, i, j, to include any pair of elements the 
difference of whose ranks is positive and even. In the second case 
no elements are left unpaired, and the pairing may be made to 
include any pair the difference of whose ranks is odd. We use 
both pairings, and the arguments are essentially the same which­
ever is being used. 
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Consider, for example, the pairing (10.8.2), and suppose, to fix 
our ideas, that p ~ 0, so that 

Ip-il~lp+il, Ip-jl~lp+jl· 
We denote by I, J those values of i andj for which 

xp_1 < xP+I' Yp-J < YP+J' 
so that the pairs corresponding to I and J do not satisfy (10 .8.1 ). 
Such pairs we call' wrong', others' right'. If p + i falls outside 
( - k, k), but p - i inside it, then Xp+i is to be replaced by 0, and 
the corresponding pair of x is certainly right. Hence, except 
perhaps when p = 0, there are i which are not I and j which are 
not J. 

If, for a given p and a given pairinga, there are no wrong pairs, 
we say that A is 'right with respect to p', and otherwise' wrong 
with respect to p'. It is clear that 0 is right with respect to every 
p, and that any 0' is right with respect to all p except perhaps 
p=O and the pairing (10.8.2). Further, any A other than 0 
is wrong with respect to some p and pairing, and any A which 
is not a 0' is wrong either with respect to a p other than 0 
or with respect to p= 0 and the pairing (10.8.3). 

We now (again envisaging the first pairing, and supposingp ~ 0) 
consider the effect on 8 of the substitution 

Op (xP_I> xP+I; Yp-J' Yp+J) 

which interchanges each pair XP_1 , xp+1 and each pair YP-J' Yp+J' 
We divide 8 into nine partial sums defined as follows: 

81 : r=p; 8=p; 
8 2 : r=p; 8=p-j, p+j (j=tJ); 
8 3 : r=p-i, p+i (i=t1); 8=p; 
8 4 : r=p; 8=p-J, p+J; 
8 5 : r=p- I, p+ I; 8=p; 
8 6 : r=p-i,p+i (i=t1); 8=p-j,p+j (j=tJ); 
8 7 : r=p-i,p+i (i+1); 8=p-J,p+J; 
88 : r=p -I, p+1; 8=p-j, p+j (j=tJ); 
8 9 : r=p-1,p+1; 8=p-J,p+J. 

It is plain, first, that 8 1 , 8 2 , 8 3 , and 8 6 are not affected by Op. 
" Either (10.8.2) or (10.8.3). In what follows 'right (or wrong) with respeot to p' 

means always' right (or wrong) with respect to p and the pairing under consideration' • 
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Next 84=XP~ (cJYP-J+c-JYP+J) 
J 

is not affected because C_J=CJ • Similarly 81) and 

89 = ~ (C-1+JXp-IYP-J+C-I-JXp-IYP+J 
l,J 

+ c1+J xP+IYp-J + cI - J xP+I Yp+J) 

are not affected. It remains to consider 8 7 and 8s• 
The contribution of the pair x p _ i , xp+i to 8 7 is 

Xp_i~ (C-i+JYp-J + C-i-JYp+J) + xp+i ~ (Ci+JYP-J + Ci-JYp+J)' 
J J 

and the increment produced by Q p is 

- (Xp_i-Xp+i)~ (Ci-J-Ci+J) (YP-J-YP+J)' 
J 

The total change in 8 7 is the sum of this increment over i :f= I, and 
is positive, provided that there are J and i:f= I, since the three 
differences written are respectively positive, positive, and 
negative. Hence 8 7 is increased if there are J and i:f=I; and 
similarly 8s is increased if there are I and j:f= J. Finally, 8 is 
increased if either of these conditions is satisfied. 

If p :f= 0, there are i:f= I andj :f= J; and then 8 is increased unless 
A is right with respect to p. In any case, whatever p, 8 is not 
diminished. 

Suppose now that A is not a 0'. Then A is wrong with respect 
either to some p:f=O or to p=O and the pairing (10.8.3). The 
argument above, or the similar argument based upon the pairing 
(10.8.3), then shows that 8 is increased by Q p (or the corre­
sponding substitution based upon the other pairing), and that 
A is not a K. Hence the K are included among the 0'. But if a 0' 
is not 0, then the substitution Qo replaces it by 0 and does not 
diminish 8; and therefore 0 is a K. a 

It does not seem to be possible to prove Theorem 373 by any 
equally simple argument based upon a substitution defined 
directly. 

10.9. Rearrangements of any number of sets. There are 
a The argument is the same in principle as that used by Hardy, Littlewood, 

and P6lya (1), and substantially reproduced by Hardy and Littlewood (6). We 
have however expanded it considerably, Dr R. Rado having pointed out to us that 
the original form of the argument was not conclusive. Another form of the proof is 
indicated in Theorem 389 at the end of the chapter. 
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analogues of Theorem 373 for more than three sets (a), ... , which 
may be deduced from Theorem 373 itself. 

374.a If(a), (b), (c), (d), ... are finite sets of non-negative numbers, 
and (c), (d), ... are symmetrical, then 

(10.9.1) ~ arbsctdu"'~ ~ ar++b8 ct*d'l/ .... 
r+s+t+u+ ... =O r+s+t+u+ ... =O· 

We assume the theorem to be true when there are k-l sym­
metrical sets (c), (d), ... involved, and prove that it is true when 
there are k. We shall make use of the following theorem, which is 
of some interest in itself. 

375. If (c*), (d*), ... are symmetrically decreasing sets, then the 
set (Q) defined by 

(10.9.2) Qn = ~ c/*du * ... 
t+u+ ... =n 

is symmetrically decreasing. 

It is enough to prove the theorem for two sets (c*), (d*), since 
its truth in general then follows by repetition of the argument. 
We may agree that, when there is no indication to the contrary, 
sums involving several suffixes are extended over values of the 
suffixes whose sum vanishes. 

It is plain that Q-n = Qn. Further, for any set (x), we have 

~xm Qm = ~xm Qn = ~xmci*du * ~ ~x;:A*du * =~x~ Qm' 
m m 

by Theorem 373. It follows, by Theorem 369, that the Qm are 
similarly ordered to the x~, and therefore, since Qm is an even 
function of m, that the set is symmetrically decreasing. 

This is the most elegant proof, but there is a simpler one which does not 
depend upon Theorem 373. 

We drop the asterisks for convenience and suppose n ~ O. Then 
Q1l= ZC,,+r d_, + Zc,,+1_,dr_1, 

the summations extending over r ~ 1. Similarly 

Q"+l = ZCn+,d1_, + ZC"+l_,d,. 
Subtracting, and using the equations d_, = d, and d1_ r = dr_I' we obtain 

Q" - Qn+l = Z {cn+,(d_r-d1_ r) + c,,+l_r(dr_1-dr)} 
= Z (C,,+l_r - c,,+r) (dr_1 - dr)' 

Since In + 1- r I < n + r for n ~ 0, r ~ 1, each term here is non-negative. 

s Gabriel (3). The case of the theorem in which all the sets are symmetrical was 
proved by Hardy and Littlewood (4). 

HI 18 
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Returning to the proof of Theorem 374, we define Qn as in 
(10.9.2), and Pm by 

Pm= :E arbs· 
r+s=m 

Then :Earbsetdu'" =:EP me,du ... ~ :EP;et*du* ... , 
by the case k-l of the theorems.. That is to say, 

:EarbA du .•. ~ :EP; Qn = :EP; Qm = :EP m Qq,(mJ' 
m m 

where cp(m) is a permutation function for which Pm= Pt(m); i.e. 

:Ea,.bset duev '" ~ :Earbs Qq,(m) ~ :Ear ++bs Qm * 
= :Ear + +bs Qm = :Ear ++bset* du * ev * ... , 

which is (10.9.1). 
From Theorem 374 we can deduce b 

376. Given any finite number of sets (a), (b), ... , we have 

:Ea1'1 a-rabB! b_S2 etl e_f .... ~ :Ea~ +ar.b~ +bS2et +e, ... . 
- ~a+a+ b+ b+ e+e+ 
-..:.. 1', -". s, -s, I, -t.···· 

10.10. A further theorem on the rearran~ement of any 
number of sets. In Theorems 373 and 374 two of the sets, (a) 
and (b), were arbitrary, but the remainder were subject to the 
condition of 'symmetry'. This restriction is essential; if (a), (b) 
and (e) are unrestricted, it is not possible to specify the maximal 
arrangement generally by means of the symbols a+, +a, .... c 

There is however a less precise theorem which is often equally 
effective in applications. 

377. For any system of k sets (a), (b), (e), ... 

~ a,.bsCt ... ~K(k) :E a:b:et ... , 
r+s+t+ ... =O r+s+t+ ... =O 

where K = K (k) is a number depending only on k. 

We suppose k= 3; the argument is essentially the same in the 
general case. 

We define the sets ({1*), (y*) by 

(10.10.1) f3!=b~, y!=e~ (m~O), 

(10.10.2) f3!m=f3!, Y!m=Y! (m~O); 
a With P, e, d, ... for a, b, c, ... : since (c) is symmetrical, +ct=ct. 
b Gabriel (3). C See Theorem 388 at the end of the chapter. 
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and (fJ) and (y) as the sets into which (fJ*) and (y*) are changed 
by the permutations which change (b+) into (b) and (c+) into (c) 
respectively. Then (fJ) and (y) are symmetrical sets. Further, 
since b"!:.m;;;::; b~ and c"!:.m;;;::; c~ when m i:;; 0, we have 

for all n, and so 

(10.10.3) 

for all n. 

b;; ;;;::; fJ~ , c;; ;;;::; y~ 

We shall also require an inequality for 13:' and y:' with m < O. 
We have b;;;;;::; b"!:.n+l and c;;;;;::; c"!:.n+l for n i:;; 1, and so, by (10.10.1) 

and (10.10.2), 

(10.10.4) fJ!;;;::;b~+!, y:';;;::;C~+l (m<O). 

Using (10.10.3) and the symmetry of (fJ) and (y), we find 

S= }.; arbA;;;::; }.; ar fJ8Yt;;;::; }.; a:fJ;yi, 
r+8+t=0 r+8+1=0 r+s+I=O 

by Theorem 373. The last sum is 

( }.; + }.; + }.; + }.; ) a: fJ; yi ; 
8;':;0,t;,:;0 8<0,1;':;0 8;':;0,1<0 8<0,t<0 

and so, by (10.10.1) and (10.10.4), 

(10.10.5) 
S;;;::; }.; a: bi ct + }.; a: bi+l ct 

8;':;0, t;,:;O 8<0, t;,:;o 

+ }.; a: bi ct+! + }.; a: bi+! ct+l = 8 1 + 8 2 + 8 3 + 8 4 , 
8;':;0,1<0 8<0,1<0 

In 8 2 , 8 < 0 and r + 8 + t = 0, so that either r> 0 or t > O. In the 
first case a:;;;::; a:- 1 and in the second ct;;;::; Ct-l' Hence in any 
case, in 8 2 , 

(10.10.6) a: bi+l ct ;;;::; a:-1 bi+l ct + a: bi+l ct-l' 

Similarly, in S3' 

(10.10.7) a: bict+l ;;;::;a:-1 bict+1 +a:bi-l ct+!· 
Finally, in 84 , 8<0, t<O and r+8+t=0, so that ri:;;2 and 
a: ;;;::; a:-2 , and 

(10.10.8) 

If now we substitute into (10.10.5) the upper bounds for the 
typical terms given by (10.10.6), (10.10.7), and (10.10.8), and 

18-2 
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observe that, in these upper bounds, the sum of the suffixes is 
always 0, we obtain 

S~ (1+ 2+ 2+ 1) ~ a: b:ct = 6~ a:b:ct; r+s+t=O r+s+t=O 
which proves the theorem. 

10.11. Applications. These theorems have important applications to 
the theory of Fourier series. It is easy to deduce from Theorem 376a that if 

R R f«() = :E a.e,ei, f+«() = :E rx,.er8i , 
-R -R 

where rx,.= 1 a. 1+, and k is a positive integer, then 

f:..If«() 12kd() ~ f:..I f+«() 12k d(); 

and this relation between trigonometrical polynomials may be extended 
to functions represented by general Fourier series. Series of the type 

:Erx,.er9i 

have particularly simple properties; They converge uniformly except at 
the origin and congruent points, where the function which they represent 
has in general an infinite peak; and the ratio 

f:"If+«() 12kd()::E (I r 1 + 1)2k-2rx,.2k 

lies between positive bounds depending only on k. We thus find, for 
example, that 

f:..I f«() 12kd()~K(k):E (I r 1 + 1)2k-2rx,.2k. 

For fuller developments see Hardy and Littlewood (9). Paley (3). 

10.12. The rearrangement of a function. The theorems of 
§§ 10.1-10.10 have analogues for functions of a continuous 
variable. 

Suppose that cp(x) is non-negative and integrable in (0, 1), so 
that it is measurable and finite almost everywhere. If M (y) is 
the measure of the set in which cp (x) ~ y, M (y) is a decreasing 
function of y. The inverse q; of M is defined by 

q;{M(y)}=y; 

and q;(x) is a decreasing function ofx defined uniquely in (0, 1) ex­
cept for at most an enumerable set of values of x, viz. those corre-

a See Gabriel (3). A less precise inequality was given by Hardy and Little­
wood (9). 
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sponding to intervals of constancy of M (y). We may complete 
the definition of 1> (x) by agreeing, for example, that 

1> (x) = H1> (x- 0) + 1> (x+ On 
at a point of discontinuitya. 

We call 1>(x) the rearrangement of cP(x) in decreasing order. 
It is a decreasing function of x which has, in general, an infinite 
peak at the origin. 

The measure of the set in which ;p (x) ~ y is M(y).b It follows 
that the two (in general quite different) sets in which 

Y1;i: cP (x) < Y2' Y1;i:;P (x) < Y2 
have the same measure, and that the same is true of the sets in 
which cP(x»y, ;P(x»y. 

We may say that the functions cP (x) and ;p (x) are' equi-measur­
able'; they have equal integrals over (0, 1) and 

J: F(;P)dx= J: F(cP)dx 

for any measurable F for which the integrals exist. 
We may define 1> (x) similarly for a cP(x) defined in any interval 

of x, provided that, if the interval is infinite, M (y) is finite for 
every positive y. 

If cP1 (x);i: cP (x) then plainly 1>1 (x) ;i:;P (x). Suppose in particular 
that cP1 (x) is cP (x) in E and zero in CEo Then 

(10.12.1) J EcP(x)dx= J cP1(x)dx= J~E 1>1 (x)dX;i: J~E 1> (x)dx. 

We shall use this inequality in § 10.19. In particular 

(10.12.2) J: cP(t)dt;i: J: 1>(t)dt 

if cP (x) is defined in (0, a) and O;i: x;i: a . 
.. Compare § 6.15. _ 
b This becomes obvious on drawing a figure. It must be remembered that </> (x) 

may have intervals of constancy, corresponding to discontinuities of M (y). It is 
however easy to prov£' that M (y - 0) =M (y) for all y. and so that the assertion in 
the text is true even for these exceptional y. In fact 

M (y-~) -M(y)=mSn 

where Sn is the set in whlch y-n-1-;;i,</><y, and the linlit ofmSn is zero. 
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Another type of rearrangement of a function will be important 
in what follows. Suppose, for example, that cP (x) is defined for all 
real, or almost all real x, and that M (y) is finite for all positive y. 
We may define an even function cp*(x) by agreeing that 

cp*{!M(y)}=y 

and that cp* (- x) = cp* (x); or, what is the same thing, that cp* (x) 
is even and cp* (x) =;p (2x) 

for positive x. Then cp* (x) decreases symmetrically on each side 
of the origin, where it has generally an infinite cuspidal peak. We 
call cp* (x) the rearrangement of cp (x) in symmetrical decreasing 
order. 

10.13. On the rearrangement of two functions. We begin 
by proving an integral inequality corresponding to Theorem 368. 

378. Whether a is finite or infinite, 

J: cpifJdx ~ J: ;Pipdx. 

We prove this by an argument similar to that of § 10.3. In the 
first place, the theorem is true for functions which assume only 
the values 0 and 1. For suppose that E and F are the sets in 
which cp= 1 and ifJ= 1 respectively, and E, F the analogous sets 
corresponding to ;p, ip. Then the first integral is m(EF), the 
measure of the set EF which is the product of E and F, and 

m(EF) ~Min(mE,mF)=Min (mE,mF)=m(EF). 

Next, the theorem is true for functions which assume only a 
finite number of non-negative values. In fact, following the lines 
of § 10.3, we can represent such a function cp in the form 

cp = IXI CPI + 1X2 CP2 + ... + IXnCPn' 
where the IX are non-negative, the cP are always 0 or 1, and 

;p = IXI ;PI + 1X2 ;P2 + ... + IXn ;Pn . 
The inequality then follows from a linear combination of in­
equalities already proved. 

Finally, we prove the theorem in the general case by approxi­
mating to cP and ifJ, by functions of the type just considered. We 
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do not give the last two stages of the proof in detail, since the 
arguments will recur in the proof of the more difficult Theorem 379 . 

10.14. On the rearrangement ofthreefunctions. We come 
now to what is our main object in these sections, the integral 
theorem corresponding to Theorems 372 and 373. 

379.a If f(x), g(x), andh(x) are non-negative, andf*(x), g*(x), 
and h*(x) are the equi-measurable symmetrically decreasing func­
tions, then 

(10.14.1) 1= J:oo J:oof(x)g(y)h( -x-y)dxdy 

~ J:ooJ:oof*(x)g*(y)h*( - x-y)dxdy= 1*. 

We may plainly suppose that none of f, g, h is nul. We may 
also replace - x - y by ± x ± y without changing the significance 
oftheinequality. 

We prove the inequality (1) for functions which are always 0 
or 1, (2) for functions which take only a finite number of values, 
and (3) for general functions. As with Theorem 373, the whole 
difficulty lies in stage (1). We take this stage for granted for the 
moment and begin by showing that, if the theorem is true in this 
special case, it is true generally. 

A function which takes only a finite number of non-negative 
values 0, ai' a2 , ••• , an can be expressed in the form 

f(x) = !XIii (x) + !X2f2 (x) + ... + !Xnfn (x), 

where the !X are positive, theft take only the values 0 and 1, and 

fl~f2~ ... ~fn· 

For we may suppose 0 < a1 < a2 < ... < an' take 

and fl = 1 (f~al)' 

f2= 1 (j~a2)' 

= 0 (f< a1), 

=0 (j<a2), 

A moment's consideration shows that we then have also 

f* (x) = !XIii * (x) + !Xd2 * (x) + ... + !Xnfn * (x). 
a F. Riesz (8). 
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If we suppose that each of f, g, h takes only a finite number of 
values, and decompose them in this way, then (1O.14.1) follows 
from the combination of similar inequalities involving triads 

fi' gi' hk •a 

To pass from this case to the general case, we approximate to 
f, g, h by functions which take only a finite number of values. We 
can approximate tof, for example, by the functionfn defined by 

fn=~ (~;;;;'f<k+1, k=O, 1,2, ... , n2 -1), fn=n (f~n); 
n n n 

and to g and h similarly. Then fn ;;;;,f, fn * ;;;;,1*, and similarly for 
g and h. Hence (assuming that the theorem has been proved for 
the special type of functions) we have 

In= f:ro f:rofn(X)gn(y)hn( -x-y)dxdy;;;;, In *;;;;' 1*, 

and so I = lim In;;;;' 1*. 
It remains to prove the theorem in the special case whenf, g, h 

assume only the values 0 and 1. It is however convenient first to 
make a further reduction of the problem. 

First, we may suppose that the sets P, G, and H in which 
f, g, and h assume the value 1 are finite. If two of these sets are 
infinite, then two of f*, g*, and h * are 1 for all x, in which case 
1* = COb and there is nothing to prove. Suppose then that just 
one of the sets, say P, is infinite. Let P N be the part of P in 
( - N, N), let N be the smallest number for which mP N ~ 2n, 
and define fn as being f in P Nand 0 outside. Then (assuming 
the theorem to have been proved when the sets are finite) 

In= f:rof:JnghdXdy;;;;' f:rof:rof~g*h*dXdY 

= f:nf:J*g*h*dxdy ;;;;, f:rof:J*g*h*dxdy=I*, 

and so I = lim In;;;;' 1*. 

Suppose then that f(x) assumes the value 1 in a set E of finite 
measure. We can represent E in the form E +e-e', where fi is a 

8 Compare the similar argument in § 10.6. 
b Unless the third function is nul. 
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finite set of non-overlapping intervals, and e and e' are sets of 
arbitrarily small measure a ; and the sets in which g and h assume 
the value 1 can be represented similarly. It is also plain that, 
since j, g, and h do not exceed 1, small sets e, ..• make a small 
difference in the integrals I and 1*. We may therefore suppose 
that the sets in which j= 1, g= 1, and h= 1 are finite sets of 
intervals; if the theorem has been proved in this case, its truth 
in the more general case follows by approximation. 

Next we may suppose, on similar grounds, that the ends of all 
the intervals are rational; and then, by a change of variable, that 
they are integral. The theorem is thus reduced to dependence 
upon the case in which each of the sets in which j = 1, g = 1, or 
h= 1 consists of a finite number of intervals (m, m+ 1), where m 
is an integer. 

Finally we may suppose, if we please, that the number of 
intervals in any or all of the sets is even, since we can replace each 
interval by two by bisecting it and effecting another change of 
variable. 

10.15. Completion of the proof of Theorem 379. It is 
convenient to replacej(x) by j( -x), as plainly we may without 
affecting the result. If we do this, write 8, t for x, y and then make 
the substitution 8 = x - t, we obtain 

(10.15.1) 

1= f:oof:oof(t-x)g(t)h( -x)dxdt= f:oo h( -x) X(x)dx, 

(10.15.2) 

1*= f:oof:ooj*(t-X)g*(t)h*( -x)dxdt= f:oo h*( -x) *X(x)dx, 

where 

(10.15.3) 

X(x)= f:oof(t-x)g(t)dt, *X(x)= f:oof*(t-x)g*(t)dt. b 

We suppose for the moment merelythatj, g, h are characteristic 
a See for example de la Vallee Poussin (2, 20--23). 
b *x (x) is naturally not to be confused with x* (x). 
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functions of sets (functions assuming the values 0 and 1 only), 
without using the further simplifications shown to be permissible 
at the end of § 10.14. We denote the sets in which/, "', /*, .,. 
assume the value 1 by F, ... , F*, ... ; each function vanishes out­
side the corresponding set, and F*, ... are intervals symmetric 
about the origin. We suppose that 

mF=mF*=2R, mG=mG*=2S, mH=mH*=2T. 

With this notation a, we have 
(10.15.4) 

I ~ J:"" J:",,/(t-X)g(t) dxdt= J:",,/( -s)ds f:"" g (t)dt= 4RS, 

(10.15.5) I*=fT *X(x)dx. 
-T 

If x is fixed, and t-x describes the set F, then t describes a set 
F", obtained by translating F through a distance x. If we define 
F*",= (F*)", similarly, then the functions (10.15.3) maybe written 
in the form 

(10.15.6) 

From this formula we can calculate *X (x). Let us suppose, as we 
may, that 

(10.15.7) R~S. 

Then *X (x) is continuous, 

(10.15.8) *X(x)=O (lxl~R+S), *X(x)=2R (lxl~S-R), 

and *X (x) is linear in the intervals (- R - S, - S + R) and 
(S-R, R+ S). The graph of*X(x) is shown in Fig. 3. 

Suppose now that 
(10.15.9) R+S~T. 

Then it follows from (10.15.8) that 

1*=fT *x(X)dx=JR +S *X(x)dx=4RS, 
-T -R-S 

and the result of the theorem follows from (10.15.4). We have 
thus proved the theorem under the restriction (10.15.9). It is 
also plainly true if R = 0 or S = 0 (when F or G is nul). 

a Chosen to emphasize the parallelism of the argument with that of §§ 10.6-7. 
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So far F, G, H have been arbitrary sets of finite measure. We 
now make the further specialisation explained at the end of 
§ 10.14, supposing that F, G, H are sets ofintervals (m, m+ 1), the 
numbersofintervalsbeing 2R, 28, 2Trespectively. We may if we 
please suppose these numbers even, but we shall argue inductively, 
and it is more convenient to adopt a slightly more general hypo­
thesis and to suppose only that 2R + 28 + 2T is even. In these 
circumstances R, 8, and T are not necessarily integral, but 2R, 
28, 2T and 

(10.15.10) p.= R+ 8- T= R+ 8+ T - 2T 

R+S 

Fig. 3. Graph of *x and *Xl' 

are integral. We have already proved that the theorem is true if 
p. ~ 0, and it is also true if R = 0 or 8 = O. It is therefore enough to 
establish its truth when 

(10.15.11) p.=n>O, R>O, 8>0, 

on the assumption that it is true when p. = n - 1. 
We denote by F1 the set derived from F by omitting the last 

interval of F on the right; similarly G1 is G less the last interval 
on the right of G. Generally, sets, functions, or numbers with 
suffix 1 are derived from F1 and G1 as the corresponding sets, 
functions, or numbers without suffixes are derived from F and G; 
thusf1* is the rearrangement of ft, the characteristic function of 
F1, and *X1 (x) is the 'Faltung' off1* and Y1*' F1* is the interval 

(-R+t, R-t), 
and generally, Rand 8 are replaced by R -! and 8 - t when we 
pass from P, G to FI> G1 • By the inductive hypothesis 

(10.15.12) 11 ~ 11*, 
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The function *XI (x) vanishes for I x I ~ R + S - 1, is equal to 
2R - 1 for I x I ~ S - R, and is linear in the intervals remaining; 
and T~R+S-l, by (10.15.10) and (10.15.11). Hencea 

*x(x)-*XI(x)=1 

for - T~x~ T, and, by (10.15.5), 

(10.15.13) I*-II*=JT {*X(t)-*XI(t)}dt=2T. 
-T 

We have now to consider 

(10.15.14) I - II = J:oo h( - x){X(x) - Xl (x)}dx. 

Here, after (10.15.6), 

(10.15.15) X (x) - Xl (x) =m (FxG) -m (FIxGI)· 

This function is plainly linear in any interval (m, m + 1), and 
therefore assumes its extrema for integral values of x. Suppose 
then that x is integral. In this case the set F x G is composed of 
full intervals (m, m + 1), and, when we remove the intervals of 
F x and G furthest to the right, either one or no interval of F x G 
is lost, one if the extreme interval of either set coincides with an 
interval of the other set, and none if there is no such coincidence b. 

Hence X (x) - Xl (x) is 1 or 0 for integral x, and therefore 

(10.15.16) 0 ~ X (x) - Xl (x) ~ 1 

for all x. 
From (10.15.14) and (10.15.16) it follows that 

(10.15.17) 0 ~ 1- II = J H {X( -x) - Xl (-x)}dx~ J H dx=2T, 

and from (10.15.13) and (10.15.17) that 
(10.15.18) I-Il~I*-II*. 

Finally (10.15.12) and (10.15.18) give I ~ 1*; and this completes 
the proofc• 

a See Fig. 3. 
b We cannot lose two intervals because the intervals removed from F z and G 

are the furthest to the right of their respective sets. This is the essential point of 
the proof. 

C The proof follows the line indicated by Zygmund (1). It is, however, con· 
siderably longer, and necessarily so, since Zygmund's proof is not, as it stands, 
conclusive. 

We proved that (10.15.16) is true when the intervals removed from F and G are 
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10.16. An alternative proof. The proof of Theorem 379 given 
by Riesz is also very interesting. We can simplify it by reducing 
the theorem, as in §10.14, to the casein whichj, g, hare each equal 
to 1 in a finite set of intervals and to 0 elsewhere. We represent 
the variables x, y, z on the sides of an equilateral triangle, taking 
the middle point of each side as the origin and the positive direc­
tions on the sides cyclically. Then x+y+z=O is the condition 
that the points x, y, z on the sides should be the three orthogonal 
projections of a point of the planea • 

The functionsj(x), g(y), h(z) are the characteristic functions 
of three sets E1, E 2, Ea, each consisting of a finite number of 
non-overlapping intervals, and j*(x), g*(y), h*(z) are the char­
acteristic functions of the three intervals E1 *, E2 *, Ea * of lengths 
Ev E 2,Ea,b symmetrically disposed about the three origins. IfE12a 

is the set of those points of the plane whose three projections 
belong to E1, E 2, and Ea, and E*123 is defined similarly, thenc 

I = sin i7T E123 , 1* = sin i7T E*123' 

and what we have to prove is that 

(10.16.1) 

The figure E* 123 is defined by drawing six lines perpendicular 
to the sides, and is a hexagon unless one of E1, E 2 , E3 is greater 
than the sum of the other two, in which case it reduces to a 
parallelogram. We begin by proving (10.16.1) in the latter case. 
Suppose for example that E3~E1+E2' Then E*123 reduces to 

the extreme interval8 on the right. It would not have been true if we had removed two 
arbitrary intervals. Suppose, for example, that each of F and G is the interval 
( - 4, 4), that F. consists of the two intervals ( - 4, - 2) and (2, 4), and G. of the 
interval (-2,2). We can pass from F, G to F., G. in four steps, taking away one 
unit interval from each set at each step; but 

X (0) - X. (0) =8, 

instead of being less than or equal to 4. The same example shows that Zygmund's 
assertion (1,176) 'those [the values] ofg, (x) in (- 00, 00) increase at most by 2' is 
untrue unless his construction is restricted in a way which he does not state ex­
plicitly. It is essential to go closely into detail at this point, since it is the kernel of 
the proof. 

s If P is the point in question and G is the centre of the triangle, then 

x +y+z=PG {cos a:+cos (a:+f1T) +C08 (a: + trr)} =0. 
b We use El both for the set El and for its measure. 
c E123 , when used as a measure, is of course a plane measure. 
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E* 12' the set of points projecting into E1 * and E2 * on two of the 
sides, while E 123 is included in the set E12 defined similarly. 
Hence 

E 123 ~ E 12 = cosec i7T.E1E 2=cosec i7T.E1* E2* = E*12= E*12a· 

This proves the theorem when E* 123 is a parallelogram. 
Passing to the case of the hexagon, suppose for example that 

E3>E1'i;,E2, E 3<E1+E2 • 

We define sets E1 (t), E2 (t), E3 (t), 

and corresponding intervals E1 * (t), E2 * (t), E3 * (t), by subtracting 
from each Eja set of measure t at each enda • Ift increases from 0 to 

to= !(E1 + E 2 - E 3 ), 

E 1(t), E2(t), E3(t) decrease from E 1, E 2 , E3 to sets E 1(tO)' E2(tO)' 

E3 (to) whose measures satisfy 

E1 (to) + E2 (to) = Ea (to)· 

The hexagon then reduces to a parallelogram, so that 

(10.16.2) E 123 (to) ~ E*12a(to). 

If we can prove also that 

(10.16.3) 

our conclusion will follow by addition. 
We prove (10.16.3) by comparing the derivatives of 

c/> (t) = - E 123 (t), c/>* (t) = - E* 123 (t). 

In the first place, the difference between E*123 (t) and E*123 (t+ h) 
is a hexagonal ring whose area is hP (t) + 0 (h2 ), where P (t) is the 
perimeter of the hexagon corresponding to the value t, and so 

dc/>* -fit =P(t) = cosec i7T{E1 (t) + E2 (t) + Ea (tn· 

On the other hand the three sets 

El (t) -E1(t+h), E2(t) -E2(t+h), Ea(t) -E3(t+h) 

a That is to say 

where El'(t) lies to the left, and E{'(t) to the right, of E1(t), and 

mEl'(t)=mEl"(t)=t. 
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consist in all of six intervals, each of length h, for small h. The 
twelve perpendiculars to the sides of the triangle drawn through 
the ends of the six intervals define a hexagonal ringa which 
includes the whole of E 123 (t) - E123 (t + h). The derivative cp' (t) 
is the total length of those parts of the outer boundary of this 
ring which also belong to E123 (t). Projecting these parts of the 

I 
I 
I 

«] 
I 
I 
I 

Fig. 4. The decrement of E123(t). 

boundary on to the sides of the triangle, as indicated in the figure, 
we see that 

dcp 1 dcp* 
dt ~ coseca1T{E1 (t)+E2 (t)+E3(t)}=df· 

From this (10.16.3) follows by integration, and this completes 
the proof of the theorem. 

a See Fig. 4. In the figure the sets El (t + k), ..• are blackened on the sides of the 
triangle, the set E12S (t + k) is shaded, the twelve perpendiculars are dotted, and the 
boundary of E 12S (t) -E123(t+k) is indicated by a thick line. 
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10.17. Applications. The special case of Theorem 379 corre­
sponding to Theorem 371 is 

380. If h(x) is symmetrically decreasing, then 

1= J:oo J:oo f(x)g(y)h(x-y)dxdy 

;;; J:oo J:oo f*(x)g*(y)h(x-y)dxdy= 1*. 

We shall now apply Theorems 371 and 380 to the special cases 

c =Ir-sl-A r-s 
and h(x-y)= I x-y I-A. 

381. If ar~O, bs~O, 

1 1 1 I 
(10.17.1) p>l, q>l, p+q>l, A=2-p- q 

(so that O<A< 1), and 
~arP=A, ~bsq=B, 

then T = ~~' - arbs :s; K A lip Bl/q 
Ir-sI A- , 

where the dash implies that r =F s, and K = K (p, q) depends on p and 
q only. 

382. If f(x) ~ 0, g(y) ~ 0, p and q satisfy (10.17.1), and 

then 

J:oo fP(x)dx=F, J:oo ~(y)dy=G, 
I =Joo Joo f(x)g(Yl dxdy;;; KFl/PGl/q. 

-00 -00 I x-y I 
The proofs of the two theorems are practically the same. We 

give that of Theorem 382.a 
It is plain, after Theorem 380, that we may replacef and g by 

f* and g*o We then divide I into four parts corresponding to 
the four quadrants of integration. The north-east and south-west 
parts are equal, and so are the north-west and south-east parts, 
and the two latter do not exceed the two former b. We need 

a For that of Theorem 381 see Hardy, Littlewood, and P6lya (1); for a deduction 
of Theorem 382 from Theorem 381 see Hardy and Littlewood (6). 

b The north-west and south-east parts could be accounted for by the easier 
argument of § 9.14. 
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therefore only consider the north-east part. Hence, changing 
our notation again, it is sufficient to prove that 

J =foc foc f(x)Y(Yl dxdy~ KFl/PGl/q, 
o olx-yl 

where now f and yare positive and decreasing, and F and G are 
defined by integrals over (0, (0). We write 

J=Jl +J2 , 

where J land J 2 are integrals over the octants y ~ x and x ~ y 
respectively. 

We have fOO fX y(y) 
J l = f(x)dx ( )xdy. 

o 0 x-y 

Since g (y) decreases, and (x- y)-A increases, in (0, x), 

f
x y(y) fX fX dy Xl-A 

x o(x_y)Ady~ /(y)dy O(X-y)A 1_AY1 (x), 

say, by Theorem 236. Hence 

I fOCl Jl~ 1-~ 0 f(X)Yl (x) x-Adx. 

By Theorem 189 

(10.17.2) Jl~ l~AFl/P(f~ YlP'(X)X-P'AdXY'P'. 

Butp'>q, by (10.17.1), and 

gl (x) = f>(y)dy ~ Gl/q xl/q', 

again by Theorem 189. Hence 
(10.17.3) 

YlP' (X)X-P'A ~ glq (x) (Gl/qxl/q')p'-qx-P'A= G(P'-q)lq {Yl ~X)} q 

(since 
p' - q I p' - q (1 1) I q 
(j'-AP =(j'- pl+? p = -q'-1= -q). 

From (10.17.2) and (10.17.3) it follows that 

J l ~ K Flip G(P'-q)/p'q {f: (!Q. ~X)r dXrp, ~ KFlIPGl/q, 

by Theorem 327. 
The discussion of J 2 is similar, and the theorem follows. 

HI 
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383. Suppose that f(x) is non-negative and LV, where p> 1, in 
(0, 00), that 

(10.17.4) 

and that 

(10.17.5) 

1 
O<IX<-, 

p 

Then fIX (x) is Lq in (0, 00) and 

(10.17.6) J~flXqdX~K(J~fPdXrp, 
where K = K (p, IX) = K (p, q). 

Suppose that g(x) is any function of Lq', and that 

1 1 1 1 
A=I-IX=I--+-=2----. 

P q P q' 
By Theorem 382, 

J"'Joo g(x)f(Yl dxdy~ K(Joo PdX)l/P (Joo~, dX)l/q" 
o olx-yl 0 0 

and a fortiori 

Joo 1 Joo JX f(y) 
/IX(X) g(x) dx= r (IX) 0 g(x) dx 0 (x- y)},dy 

~ K (J~ fP dx tP (J~ gq' dx tq
' • 

Since this is true for all g, it follows, by Theorem 191, that 

(Joo )1/q (Joo )1IP 
o flXqdx ~ K 0 fPdx , 

which is (10.17.6). 
The proof shows that the result is also true when fIX (x) is defined 

by 1 Joo fIX (x) = r(lX) x f(y) (y-x)lX-ldy. 

Theorem 383 embodies a result in the theory of 'fractional integration'. 
Liouville (1) and Riemann (I, 331-344) defined the integral jOt (x) ofj(x), 
of order IX, as 

(10.17.7) 1 fX jOt(x) = r(IX) /(y)(X_y)a.-ldy. 

The lower limit a is the 'origin of integration'; a change of origin changes 
JOt in a manner which is not trivial formally, though unimportant for 
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theorems of the type considered here. It is easily deduced from Theorem 
383a that, iff i8 LP in (a, b), where - 00 < a < b;;2 00, IX < lip, and f", i8 the 
integral off, of order IX and with origin a, thenf",i8 LQ in (a, b). When IX> lip, 
f", is continuous, and indeed belongs to the 'Lipschitz class' of order 
IX-lip· 

In applications of the theory, f is usually periodic. It was observed by 
Weyl (3) that the reference to an origin a is in this case inappropriate: 
Weyl accordingly modified the definition as follows. If we suppose that 
the mean value off over a period is zero (a condition which we can always 
satisfy by subtracting an appropriate constant fromf), then 

J:J(Y) (x_y)o.-ldy 

converges at the lower limit, and we may take a= -00 in (10.17.7). Our 
theorem concerning the Lebesgue classes may be extended to this case also. 

10.18. Another theorem concerning the rearrangement 
of a function in decreasing order. The theorem with which 
we end is important primarily for its function-theoretic applica­
tions, but the proof which we giveb is interesting independently. 

The theorem may be stated in two forms. 

384~ Suppose that f(x) is non-negative and integrable in a finite 
interval (0, a), that l(x) is the rearrangement of f(x) in decreasing 
order, that 

(10.18.1) 1 JX 0(x)=0(x,j)=Max _c f(t)dt, 
o~,;<xx !o § 

and that 0 (x) ~s the rearrangement of e (x) in decreasing order. 
Then 

(10.18.2) 

for O<x~a. 

0(x)~~JX1(t)dt 
x 0 

385. Suppose that f(x) satisfies the conditions of Theorem 384, 
and that s (y) is any increasing function of y defined for y;;;; O. Then 

( 10.18.3) 

We begin with two preliminary remarks. 

a See Hardy and Littlewood (6). 
b Due to F. Riesz (10). 

19-2 
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(1) We shall prove Theorem 384 first and deduce Theorem 385. 
Since 0 (x) and 0 (x) are equimeasurable, 

f: s{0 (x)}dx= f: s{0 (x)}dx. 

Hence (10.18.3) follows from (10.18.2). 
That (10.18.2) follows from (10.18.3), so that the two forms 

of the theorem are equivalent, is a little less obvious, but is 
proved in Theorem 392. a The first implication is sufficient for our 
purpose here, since it is in the second form that the theorem is 
used in the applications. 

(2) If 0 0 (x) = 0 0 (x,j) =!fil: f(t)dt 
x 0 

0 0 (x,f) ~ 0 0(x,j)=0 (x,J) =!f)(t)dt, 
x 0 

then 

by (10.12.2), and 

(10.18.4) f: s{00(x)}dx~ f: sHf:J(t)dt}dX. 

This, a much more trivial inequality than (10.18.3), is the 
analogue for integrals of Theorem 333. 

10.19. Proof of Theorem 384. We suppose, as we may, that 
a=l. 

We consider a point Xo for which 

xo>O, 0(xo»0, 
write 

(10.19.1) 
and consider the set E defined by 

(10.19.2) O~x~l, 0(x»p. 

Since 0 (x) and 0 (x) are equimeasurable, E has the same measure 
as the set in which 0 (x) > p. This set is at least as large as the set 

.. See the Miscellaneous Theorems at the end of the chapter. 
Theorem 385 was proved by Hardy and Littlewood (8), who deduced it by a 

limiting process from the analogous theorem for finite sums (Theorem 394). Their 
proof of Theorem 394 was elementary but long, and a much shorter proof was found 
by Gabriel (2). Riesz 'en combinant ce qui me parait ~tre !'idee essentielle de 
M. Gabriel avec un theoreme appartenant aux elements de l'analyse' (Lemma .A 
below) was able to prove the theorem directly and without limiting processes. 
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in which 0 (x) ~p + E, and the measure of this last set is, after 
(10.19.1), atleastxo. Hence 

(10.19.3) xo~mE. 

Now the set E is composed of those points x for which 

(10.19.4) ~fxf(t)dt>p 
X-s ~ 

for some g=g(x) <x. We can write (10.19.4) in the form 

(10.19.5) f:f(t)dt-px> f>(t)dt-pg 

or 

(10.19.6) g(x»g(g), 

say. Thus E is the set of points in which a certain continuous 
function g (x) assumes a value greater than some at any rate of 
the values which it has assumed before. This property enables us 
to characterise the structure of E. 

Lemma A. The set E is composed of a finite or enumerable system 
of non-overlapping intervals (OCk' f3k)' All of these intervals are open, 
and 

except possibly when x = 1 is a point oj E, in which case there is 
one interval (ock' 1) closed on the right, and g (OCk) ~ g (1), though g (ock) 
is not necessarily equal to g(I).a 

In the first place, since g (x) is continuous, E is an open set 
(except possibly for the point x = 1). Hence E is a set of intervals 
(ock' f3k)' open if f3k < 1. 

If f3k < 1 then f3k is not a point of E, and 

(10.19.7) g(ock) ~g(f3k) 
by the definition of E. 

Next, suppose that OCk < Xl < f3k' and consider the minimum of 
g(x) in the interval 0 ~X~Xl' This minimum cannot be attained 
for OCk < x ~ Xl' since all such x belong to E, and so g (x) > g (g) for 
some g < x. Hence it is attained for x ~ OCk' But OCk is not a point 
of E, and therefore g(OCk) ~g(x) for all these x. Hence the mini-

.. All that we need is that g (lXk);;[, g (fJk); but the argument will probably be 
clearer if we make the lemma complete. 
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mum is attained at OCk' and g(OCk)~g(Xl). Making X1 -+{3k' we 
obtain 

( 10.19.8) 

and this, with (10.19.7), proves the lemmaa. 

We can now prove Theorem 384. We may write (10.19.8) in 

the form Jflk 
P({3k-ock) ~ f(x)dx, 

IXk 

and from this it follows that 

p .mE =p'Z ({3k - OCk) ~ 'ZJllk f(X)dx=J f(x)dx. 
IXk E 

Hence, by (10.12.1), 

(10.19.9) p.mE~ JEf(X)dX~ J~E!(X)dX; 
and hence, by (10.19.1), 

1 JmE 
(10.19.10) e(xo)-€=P~mE 0 !(x)dx. 

Finally, since !(x) decreases, it follows from (10.19.10) and 
(10.19.3) that 

Since € is arbitrary, this gives (10.18.1), with Xo for x. 

The function-theoretic applications of Theorems 384 and 385 arise 
as follows. Suppose thatj(O) is integrable and has the period 2-n, that 

1ft M(O)=M(IJ,j)= Max - j(O+u)du, 
O<ltl;£" t 0 

and that N(O) is the similar function formed with Ij(O+u)l. These 
functions are of the same type as the 0(x) of Theorem 384, but are 
generated by means taken to either side of O. 

Consider now the integral 

(i) 1 f" h(O,P)=2-; _/(O+t)x(t,p)dt, 

where X is a kernel which involves a parameter p and satisfies the 
conditions 

(ii) 1 rTf x(t,p);;;;O, 2- x(t,p)dt=l. 
7T" -1T 

The standard examples of such kernels are the 'Poisson kernel' 
I-r2 

X = I - 2r cos t + r2 ' 

a The argument here is due to M. Riesz (see F. Riesz, 10). 
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in which p=r is positive and less than 1, and the 'Fejer kernel' 

sin2 !nt 
X=nsin 2 !t' 
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in whichp=n is a positive integer. The corresponding values of hare 
u(r, 0), the harmonic function defined by the 'Poisson integral' of J(O), 
and (Tn (0), the Cesaro mean, of order 1, of the Fourier series of f (0). 

Suppose now (a) that f(O) belongs to Lk, where k> 1, and (b) that X 
satisfies the additional condition 

(iii) 1 J" I ax I 217 _". t at Idt;£A, 

where A is independent of p. It follows from Theorems 385, with 
s(y) =yk, and 327, that M(O) also belongs to Lk.s And itis easy to deduce 
from (i), (ii), and (iii) that 

Ih(O, p)1 ;£AM(O), 

where A is again independent of p. Hence h has a rnajorant (independent 
of p) oj the class P. 

It is easily verified that the Poisson kernel satisfies (iii). Hence 
u(r, 0) possesses a majorant UfO) of the class Lk. The same is true of 
(Tn(O), but in this case the proof is not quite so simple, since the Fejer 
kernel does not satisfy (iii). We can however prove that I (Tn (0)1 ;£AN(O), 
and similar conclusions follow. All this is set out in detail by Hardy 
and Littlewood (8). 

MISCELLANEOUS THEOREMS AND EXAMPLES 

386. If C2~C3~ •.. ~c2n~0 and the sets (a), (b) are non-negative and 
given except in arrangement, then 

11 11 

L L cr+8 ar bs 
r=l 8=1 

is a maximum when (a) and (b) are both in decreasing order. 

[F. Wiener (1).] 

387. It is not true that 
L arb,ct ;£ L ar+b.+ct+. 

r+s+t=O r+s+t=o 
[Trivial: take (a), (b), (c) to be (0, 2,1), (1, 2,0), (1, 2,1). Then 

La.bsct= 14, Lar+b.+ct+= 12.] 

388. There are sets (a), (b), (c) such that none of the eight sums 
La+b+c+, L+ab+c+, La++bc+, L+a+b+c 

gives the maximal sum Labc. 
[Suppose O<h< 1 and E positive and sufficiently small; and take (a) to 

be 0, 0, 0, 1, 2, (b) to beh-E, h, h+E, 1, 1, and (c) to be formed of any five 
different elements.] 

s See Theorem 398 below. 
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389. If M(x)=1: I r IX .. M(y)=1: 181 Y., 
and p:j::O, then the substitution 0., of § 10.8 decreases f'=M (x) +M (y). 

[The theorem is trivial, but may be used to construct another proof of 
Theorem 371, which follows the general lines of that in § 10.8 but is free 
from an appeal to 'continuity'. 

We use A, a, 0', K as in § 10.8; there may now be more than one 
arrangement O. We define L as the sub-class of K formed by those mem­
bers of K for which f' is least. If p :j:: 0, and A is wrong with respect to p, 
then 0., decreases f' and does not diminish S. Hence any A of L is a 0 ' ; 
and we can then show as in § 10.8 that L includes a a.] 

390. In the notation of Theorem 373 

1: arb.et ;£ 1: at +b.et* 

for every n. 
r+s+t~n r+s+t~o 

[Corollary of Theorem 373.] 

391. If (a), (a/), (b), (b /), (e), and (e /) are six sets of positive numbers 
subject to (10.5.1), then 

1: a,a/b.b/ete/;£ 1: a,*a/*b.*b/*et*e/*. 
r+s+t~o r+s+t~o 

[Corollary of Theorem 372 if first reduced, by the method of § 10.3, 
to the special case in which every number is 0 or 1.] 

392. Ifj and g are non-negative, and 

(i) f:S{f(X)}dX;£ f:8{g(x)}dX 

for every positive and increasing 8 (y), then 

~) /;£g 
except perhaps for an enumerable set of values of x. 

[This is the theorem referred to in § 10.18, as proving the equivalence of 
Theorems 384 and 385. It is an analogue of Theorem 107. 

Since the integrals (i) are unaltered when we replacej and g by / and g, 
we may suppose j and g themselves decreasing, so that j = /, g = g (except 
perhaps in an enumerable set of points). 

If (ii) is not true for almost all x, we can find a b and a e such that 
(iii) b<e, j(e»g(b). 

For, if this were not so, we should have j(b+O);£g(b) for all b, and 
j (b) ;£ g (b) at all points of continuity of the functions, and therefore except 
in an enumerable set. 

Supposing then that band e satisfy (iii), we choose r so that 

g(b)<r<j(e) 
and define 8 (y) by 

8(y)=0 (y<r), s(y)= 1 (y~r). 

Then f a8{f(X)}dx=j dx~e>b~f dx=j\{g(x)}dx, 
o j;;:'r g;;:'r 0 

in contradiction with (i).] 
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393. If a1, aa, ... , aN are non-negative, 

O ( ) - 0 ( ) - M av + a V +1 + '" + an n - n,a - ax l' 
l~v~n n-v+ 

and a bar denotes a rearrangement in decreasing order (a notation opposite 
to that of § 10.1), then 

0(n) ~al +a2~'" +an (1 ~n~N). 

894. If the conditions of Theorem 393 are satisfied, and s (y) is a positive 
increasing function of y, then 

l:s{0 (n)} ~~s (al +aa+ ... +an ). 
lIn 

[The last two theorems are the analogues for finite sums of Theorems 
384 and 385, and the reader will find it instructive to prove them by an 
adaptation of the argument of i§§ 10.18-19. The earlier proofs of Hardy 
and Littlewood and of Gabriel are referred to in § 10.18.] 

395. If Cl~C2~"'~C",>0, dl~da~ ... ~d.>O; 
e1 , ea, ••• , e",+o is the aggregate of the c and d rearranged in decreasing 
order; On=cI +c2 + ... +Cn, 
andD n and En are defined similarly ; and s (y) is positive and increasing; then 

S(01)+S (~a) + ... +s (~",) +S(D1)+S (~2) + ... +s (~.) 

~S(EI)+S (~~) + ... +S (!~+;). 
[This is a special case of Theorem 394. For a direct proof by induction, 

due to Chaundy, see Hardy and Littlewood (8): the theorem is one of 
the lemmas on which they based their proof of Theorem 394.] 

396. Ifp,q,P, Qarepositive integers and s(y) is positive and increasing, 
then 

(i) 

(ii) 

:fs (E.) + 'f,s r'I)::; l)~'l s (p + q), 
1 n 1 \n - 1 n 

1J+P (P) q+Q (q\ p+q+P+(J (p+q) 1: s - + 1: s -)::; 1: s -- , 
1,+1 n q+l n - p-j-q+1 n 

(iii) ~s (~) +~s(~)~~s(p:q). 
[(i) and (ii) follow from Theorem 395 by appropriate specialisation, and 

(iii), which is true whether p and q are integers or not, is a corollary. A 
case of (iii) is 

Xl/a X11b x1/(a+b) 
1- xl/a + 1- Xl/b ~ 1_x1/(a+b) (a> 0, b> 0, 0< x < 1): 

this may naturally be proved independently (and with' < '), for example 
as an application of Theorem 103.] 

397. If a, b, 0(, fJ are positive and s positive and increasing, then 

J:+a8 (~)dX+ f:H s(~) dx~ J:::+a+~ s(a;b)dx. 



298 REARRANGEMENTS 

398. If k > 1, and 0 (x) is defined as in Theorem 384, then 

fa0k(X)dX~ (-~)kfafk(X)dX. o .k-l 0 

[From Theorems 385 and 327. There is of course a corresponding theo­
rem for finite sums. This theorem has particularly important applications.] 

399. In order that an integrable function f (x) should have the property 

f>(X)f(X)dx~O, 
for all positive, increasing, and bounded s(x), it is necessary and sufficient 
that 

[To prove the condition necessary, specialise s(x) appropriately; to 
prove it sufficient, integrate partially or use the second mean value 
theorem. The condition is certainly satisfied if there is a g between 0 
and 1 such that f(x) ~ 0 for x> g, f(x) ~ 0 for x < g, and 

f: f(x)dx=O. 

Theorem 397 is a special case of this theorem (after a simple trans­
formation).] 

400. If E and g are functions of x subject to 

O~dE~dx, o~g<x, 

then f l {E(X)-EW}kdx~kE(I)-Ek(l) (k>I), 
o x- g - k-l 

flE(X)-EWdx~E(I) {l+log _1_}. 
o x-g - E(I) 

[Suppose thatf(x) is always 0 or 1, and that E (x) is the measure of the 
part of (0, x) in whichf(x) = 1, and apply Theorem 385.] 

1 1 1 1 
401. If p> 1, q> 1, -+-~ 1, A=2----, 

P q- P q 

h<I-~ 
p' 

k ·f 1 1 and h + > 0 1 - + - = 1, then 
p q 

h+k~O, 

(~ f'" f(x) g(y) dxdy~K ( ('" f P dx)l/P ( ('" gQdx)l/Q. 
Jo 0 xhyklx_ylA h k Jo Jo 

[Here, and in Theorems 402 and 403, K denotes a positive number 
depending only on the parameters of the theorem (here p, q, h, k).] 

402. If 

then 
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wheref(f. is defined as in (10.17.5). The result is still true if oc~ lip, when 
the second condition on q may be omitted. 

[For the last two theorems see Hardy and Littlewood (6). The case 

q=p gives Joo Joo 
o (x-"f(f.)Pdx~K 0 fPdx: 

compare Theorem 329.J 

403. The result of Theorem 383 is not necessarily true when p = 1. 

[Define f(x) by 
1 ( 1)-fl f(x)=x logx (O<x~t), =0 (x>i), 

where fJ> 1. Then 

f(f.(x) =K J: HlOg~rfl (x-y) .. -ldy 

. JX 1 ( 1 \ -fl (1' I-fl > Kxu- l - log -) dy=Kx .. - l log-) • 
oy y \ X 

1 
Here p=l, q=l-oc; 

fis L, butf(f. is Lq only if 
fJ-l 
I_oc>l, .B>2-oc.] 

404. Suppose that f(x) is defined in (-1, 1) and has a continuous 
derivativef'(x) which vanishes only at a finite number of points, and that 

f(x)~O, f(-I)=f(I)=O. 
Then the length of the curve y=f(x) is greater than that of y=f*(x), 
unless f(x) =1* (x). 

[See Steiner (1, II, 265). If 0 < y < Y = Maxf then (except perhaps for 
a finite number of values of y) the equation y=f(x) has an even number 
2n ( depending on y) of roots. If we denote these roots, in ascending order. 
by Xl' x z ..... x zn • and the derivative of xv with respect to y by xv'. then. 
by Theorem 25. 

2/; {I +[fE( -l)vxv']2}idy~ /; ~(l +x/2)idy. 

There is equality only if n= 1 for all y, and Xl = -xz.J 

405. Suppose thatf(x, y)~O for all X.y, and that the measure M(z) of 
the set in whichf(x, y)~z is finite for all positive Z; define p(z) by 

M(Z)=7Tp2; 

and write f*(x, y)=p-l{v'(XZ+yZ)}, 

where p-l is the inverse of p. Then (under appropriate conditions of 
regularity) the area of the surface z=f(x, y) is greater than that of 

z=f*(x. y). 

[See Schwarz (1). The theorem is important in itself and interesting 
because it involves a two-dimensional analogue of the notion ofj*(x).] 
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