Photographische Photometrie der Jupiterscheibe

Inaugural-Dissertation

zur

Erlangung des Doktorgrades

bei der

Naturwissenschaftlichen Fakultät der Schlesischen Friedrich-Wilhelms-Universität zu Breslau

vorgelegt von

Johannes Plaetschke

aus Breslau

Tag der mündlichen Prüfung: 19. Juli 1939

Springer Fachmedien Wiesbaden GmbH 1 9 3 9

Referent: Prof. Dr. E. Schoenberg Korreferenten: Prof. Dr. Cl. Schaefer Prof. Dr. W. Steubing

ISBN 978-3-662-26869-8 ISBN 978-3-662-28335-6 (eBook) DOI 10.1007/978-3-662-28335-6

Gedruckt mit Genehmigung der Naturwissenschaftlichen Fakultät der Schlesischen Friedrich=Wilhelms=Universität zu Breslau Aus photographischen Aufnahmen des Jupiter durch fünf Farbfilter am Breslauer 11 m-Spiegel wurde die Helligkeitsverteilung längs des hellen Äquatorstreifens und längs eines dunklen Seitenstreifens für fünf Wellenlängenbereiche abgeleitet. Sie wurden mit den von BARABASCHEFF in drei anderen Spektralbereichen erhaltenen verglichen. - Es zeigt sich, daß der Helligkeitsabfall nach dem Rande mit zunehmender Wellenlänge stärker wird, woraus auf anwachsende Absorption bei größerer Wellenlänge zu schließen ist, entsprechend der Zunahme der Absorptionsbanden im langwelligen Jupiterspektrum. Im dunklen Streifen ist der Abfall geringer als im hellen Streifen. - Sodann wurden bisher unveröffentlichte visuelle Farbfilterbeobachtungen SCHOENBERGS bearbeitet. Aus ihnen, sowie für die genannten acht photographischen Bereiche wurden die Schwächungskoeffizienten bei Vernachlässigung der Streuung abgeleitet. Diese nehmen im allgemeinen mit größerer Wellenlänge zu und sind für den dunklen Streifen kleiner als für den hellen Streifen, während der Verlauf mit der Wellenlänge für beide Streifen sehr ähnlich ist. Aus den für den dunklen Streifen geringeren Schwächungskoeffizienten, der zum mindesten für die langwelligen Strahlen im wesentlichen auf reine Absorption zurückzuführen ist, wird auf höheres Niveau dieses Streifens geschlossen. - Für die verschiedenen Farben zeigt sich ein verschiedener Kontrast zwischen den Streifen. Er nimmt mit zunehmender Wellenlänge ab. Als Folge des verschieden schnellen Abfalls der Helligkeit nach dem Rande des Planeten bei dem dunklen und dem hellen Streifen ändert sich der Kontrast nach dem Rande in dem Sinne, daß er für die kurzwelligen Strahlen geringer wird, für die langwelligen etwas anwächst. -Die visuellen Beobachtungen SCHOENBERGS beziehen sich auf eine andere Epoche (1927 bis 1930). Die hieraus abgeleiteten Schwächungskoeffizienten haben bedeutend größere Werte, aber einen ähnlichen Verlauf wie die aus den photographischen Beobachtungen von 1933 folgenden. Man muß daraus auf eine verschiedene Durchsichtigkeit der Jupiteratmosphäre in den beiden Perioden schließen, was bei dem veränderlichen Aussehen der Planetenoberfläche nicht überrascht.

Einleitung und Problemstellung. Der Zweck dieser Arbeit soll sein, die Helligkeitsverteilung auf der Jupiterscheibe, insbesondere längs des hellen Äquatorstreifens und längs eines dunklen Streifens, wie sie sich aus photographischen Aufnahmen mit verschiedenen Farbfiltern ergibt, festzustellen und aus dieser Helligkeitsverteilung physikalische Schlüsse über die Jupiteratmosphäre und über die Jupiteroberfläche zu ziehen.

Zeitschrift für Astrophysik. Bd. 19.

Es liegen bisher Untersuchungen dieser Art von E. SCHOENBERG¹), N. BARABASCHEFF²) und N. BARABASCHEFF und B. SEMEJKIN³) vor. Die erste Arbeit beruht auf visuellen Beobachtungen ohne Farbfilter am 200 mm-Zeiss-Refraktor mit 3,6 m Brennweite und am 244 mm-Refraktor von FRAUNHOFER mit 4,33 m Brennweite in Dorpat aus den Jahren 1914 bis 1916. Die zweite Arbeit fußt auf photographischen Aufnahmen des Planeten, ebenfalls ohne Filter, am 40zölligen Reflektor der Sternwarte in Simeis aus dem Jahre 1927, während in der dritten photographische Aufnahmen durch drei Farbfilter am 200 mm-Zeiss-Refraktor in Charkow aus dem Jahre 1933 zugrunde gelegt wurden. Eingehend theoretisch behandelt wurde das Problem durch E. SCHOENBERG in seiner "Theoretischen Photometrie"⁴).

Die Problemstellung ist folgende: Der Planet Jupiter ist von der Sonne beleuchtet und reflektiert einen gewissen Teil dieses Lichtes zur Erde. Wir sehen eine etwa 40 Bogensekunden große Scheibe, die aber nicht gleichmäßig hell erscheint, sondern außer helleren und dunkleren Streifen auch eine Helligkeitsabnahme nach dem Rande aufweist. Eine Erklärung für diese Randverdunkelung wird in der kugelförmigen, genauer rotationsellipsoidischen Gestalt des Jupiterkörpers und der Wirkung seiner Atmosphäre zu suchen sein. Die näher dem Rande zu gelegenen Punkte des Jupiters werden durch den schrägen Einfall der Sonnenstrahlen etwa nach cos i geringere Lichtmengen erhalten. Durch eine Atmosphäre würden die Randpunkte wegen der größeren Lichtwege dunkler oder heller erscheinen, je nachdem in der Atmosphäre die Absorption oder die Streuung überwiegt. Die Aufgabe einer genauen Photometrie der Jupiteroberfläche müßte es sein, aus der Helligkeitsverteilung das Reflexionsgesetz der Jupiteroberfläche und die Größe der Absorption und Streuung seiner Atmosphäre zu finden.

Ihre strenge Lösung ist äußerst schwierig und erfordert Beobachtungen in vielen Spektralbereichen. Durch meine Aufnahmen in fünf Filtern, diejenigen von BARABASCHEFF in drei anderen Farben und die visuellen, bisher nicht veröffentlichten Beobachtungen von E. SCHOENBERG in fünf Farben, die ich bearbeitet habe, ist es möglich gewesen, die Fetsstellung zu treffen, daß die Diffusion in der Jupiteratmosphäre gering ist. Bei ihrer

¹) Photometrische Untersuchungen über Jupiter und das Saturnsystem, Annales Academiae Scientarum Fennicae, Serie A, Tom XVI, Nr. 5 (Helsinki 1921). — ³) Photographische Photometrie der Jupiterscheibe, Publ. of the Kharkiv Astronomical Observatory, Vol. 3 u. 4 (1933). — ³) Photographische Photometrie des Planeten Jupiter und Untersuchungen der Jupiter- und Saturnatmosphären, ZS. f. Astrophys. 8, 179, 1934. — ⁴) Handbuch der Astrophysik II, 1 1929 u. Enzukl. d. mathem. Wissensch. VI. B 831 1932.

Vernachlässigung konnten die Werte der Transmissionskoeffizienten (Tr. k.) für eine ganze Reihe von Wellenlängen abgeleitet werden. Sie zeigen deutlich die Einwirkung der Absorptionsbanden des Jupiterspektrums im langwelligen Teile desselben. Der Verlauf der Schwächungskoeffizienten der Atmosphäre mit der Wellenlänge ist für den hellen äquatorialen und den nördlichen dunklen Streifen ähnlich. Aber die Lichtschwächung über dem dunklen Streifen ist deutlich geringer als über dem hellen Streifen, woraus man auf ein höheres Niveau des dunklen Streifens schließen muß. Eine genauere Diskussion dieser Schwächungskoeffizienten mit Hilfe der strengen Theorie einer streuenden und absorbierenden Atmosphäre wird einer anderen Arbeit vorbehalten. In dieser Arbeit sollen meine eigenen photographischen und die visuellen Beobachtungen von SCHOENBERG sowie die photographischen Beobachtungen von BABABASCHEFF über die Helligkeitsverteilung bearbeitet und bis zu den obengenannten, für die Physik des Planeten so wichtigen Schlüssen mit Hilfe einer elementaren Theorie diskutiert werden.

Die Formeln zur Berechnung von i, ε und α . Alle Formeln, die eine theoretische Helligkeitsverteilung auf der Jupiterscheibe geben wollen, also theoretische Helligkeiten für einzelne Punkte der Jupiteroberfläche berechnen lassen, enthalten Einfallswinkel i und Reflexionswinkel ε für diese Punkte. Das sind die Winkel zwischen einfallendem und reflektiertem Strahl gegenüber der Normalen. Außerdem wird noch der Phasenwinkel α benutzt. Das ist der Winkel am Zentrum des Planeten zwischen den Richtungen zur Sonne und zur Erde. Er bestimmt bekanntlich den beleuchteten Teil der sichtbaren Planetenscheibe und berechnet sich aus dem Dreieck Sonne-Erde-Planet folgendermaßen:

$$\cos \alpha = \frac{r^2 + \Delta^2 - R^2}{2 r \Delta}, \qquad (1)$$

wobei r der Abstand Sonne-Planet, Δ der Abstand Erde-Planet, R der Abstand Sonne-Erde ist.

Aus den linearen Koordinaten auf der elliptischen Planetenscheibe, wobei der Anfangspunkt im Mittelpunkt liegt, berechnen sich die Winkel iund ε nach dem Handbuch der Astrophysik II, 1, S. 85 ff. wie folgt.

Gegebene Größen:

- u, v planetozentrische lineare Koordinaten der Punkte auf der Planetenscheibe,
- a, c Halbachsen des Planeten,
- c numerische Exzentrizität des Planeten,

- B, L geozentrische sphärische Koordinaten des Planetenzentrums, bezogen auf die Ebene des Jupiteräquators,
- B', L' heliozentrische sphärische Koordinaten des Planetenzentrums, bezogen auf die Ebene des Jupiteräquators.

Es werden Hilfsgrößen mit folgender Bedeutung berechnet:

- v, μ reduzierte planetozentrische Breite und Länge der Punkte der Jupiteroberfläche (Abplattung ist berücksichtigt),
- φ planetographische Breite (Winkel zwischen Normale und Äquatorebene),
- k Lot aus dem Zentrum des Planeten auf eine Tangentialebene zu seiner Oberfläche, die durch das Zentrum der Erde geht,
- Q (wie unten angegeben).

Die Gleichungen zur Berechnung von i und ε lauten:

$$\cos \nu \sin (\mu - L) = \frac{u}{a},$$

$$\cos \nu \cos (\mu - L) = -\frac{a \sin B}{k^2} \nu - \frac{c \cos B}{k} \sqrt{Q} 1,$$

$$k^2 = a^2 \sin^2 B + c^2 \cos^2 B,$$

$$Q = 1 - \frac{u^2}{a^2} - \frac{\nu^2}{k^2},$$

$$tg\varphi = \frac{tg \nu}{\sqrt{1 - e^2}},$$

$$\cos \epsilon = -\sin B \sin \varphi - \cos B \cos \varphi \cos (\mu - L),$$

$$\cos i = -\sin B' \sin \varphi - \cos B' \cos \varphi \cos (\mu - L').$$
(2)

Die Theorie. Für die diffuse Reflexion an der undurchsichtigen festen Oberfläche oder Wolkenoberfläche des Jupiter gibt es eine große Zahl von Formeln, die anwendbar wären. In diesen Formeln ist L die auf die Flächeneinheit senkrecht auffallende Lichtmenge, q die vom Flächenelement ds in der Richtung ε reflektierte Lichtmenge.

Den Beobachtungen an matten Substanzen entspricht am besten die LAMBEBTSche Formel:

$$q = \Gamma_1 \cos i \cos \varepsilon \, ds, \tag{3}$$

wobei $\Gamma_1 = \frac{AL}{\pi}$ und A die LAMBERTsche Albedo bedeutet.

¹) Das erste Glied der rechten Seite hat das Minuszeichen und nicht das Pluszeichen, wie irrtümlicherweise im Handbuch der Astrophysik II, 1, S. 87 steht.

Die einfache SEELIGERsche Formel:

$$q = \Gamma_2 \frac{\cos i \cos \varepsilon}{\cos i + \cos \varepsilon} ds, \qquad (4)$$

wobei $\Gamma_2 = \frac{L\mu}{\varkappa}$, enthält den Diffusionskoeffizienten μ und den Absorptionskoeffizienten \varkappa der Oberflächenschicht des Körpers.

Eine dritte Formel:

$$q = \Gamma_3 \cos \varepsilon \, ds, \tag{5}$$

die stets gleichmäßige Helligkeit über die ganze Scheibe gibt, kann als Näherungsformel für Gesetze wie das SEELIGERsche in der Nähe der Opposition ($i = \epsilon$) gelten, obwohl sie als Gesetz wegen der Unabhängigkeit vom Einfallswinkel *i* sinnlos ist. Das LAMBERTsche Gesetz zeigt einen stärkeren Helligkeitsabfall nach dem Rande hin.

Die scheinbare Helligkeit eines Punktes ergibt sich aus den genannten Formeln zu

$$h = \frac{q}{ds\cos\varepsilon} \,. \tag{6}$$

Es gibt noch eine Reihe komplizierterer Formeln, die von LOMMEL, FESSENKOFF und SCHOENBERG. Sie beruhen auf sehr speziellen Voraussetzungen und berücksichtigen zum Teil die Abhängigkeit des Streuungskoeffizienten μ vom Phasenwinkel α . Da aber der Phasenwinkel sich bei Jupiter nur wenig ändert, können die Beobachtungen keine Entscheidung für dieses oder jenes Gesetz bringen. Ich verzichte daher auf die Anwendung dieser Formeln, die eine Helligkeitsverteilung zwischen dem LAMBERTschen und dem cos ε -Gesetz ergeben würden. Im übrigen kann schon bei kleinen Unebenheiten der Oberfläche ein Gesetz, das bei Opposition des Planeten streng gilt, bereits wenig außerhalb der Opposition wegen des Schattenwurfs der Unebenheiten der Oberfläche ungültig werden, wodurch die Anwendung eines komplizierten, wenn auch theoretisch gut fundierten Gesetzes illusorisch würde. Ich will deshalb bei der diffusen Reflexion an der atmosphärelosen Jupiteroberfläche nur die drei zuerst genannten Gesetze in Betracht ziehen.

Bei Berücksichtigung einer Atmosphäre über der Jupiteroberfläche mit Streuung und Absorption müßte die Formel von E. SCHOENBERG angewandt werden, die er im Anschluß an eine Theorie von KING über die Diffusion und Absorption des Lichtes in Gasen abgeleitet hat ¹). Die

¹) Handbuch der Astrophysik II, 1, S. 208-225.

Helligkeit eines Elements der Planetenoberfläche setzt sich danach aus drei Komponenten zusammen:

- h_1 ist die Helligkeit des durch die Sonne direkt beleuchteten Oberflächenelementes, für welches das Reflexionsgesetz $f(i, \varepsilon)$ der Oberfläche gilt. Die Strahlung wird auf dem Hin- und Rückweg durch die Atmosphäre nach dem Exponentialgesetz geschwächt.
- h_2 ist die Helligkeit des Oberflächenelements infolge der diffusen Beleuchtung durch die Atmosphäre. Sie ist auf dem Rückwege durch die Atmosphäre geschwächt.
- h_3 stellt die Helligkeit der Atmosphärensäule dar, die sich für den Beobachter auf das Oberflächenelement projiziert.

Die Helligkeit des Oberflächenelements ist dann:

$$J = h_{1} + h_{2} + h_{3}$$

$$= J_{0} \frac{A_{\lambda}}{\pi} f(i,\varepsilon) e^{-C_{\lambda}(\sec i + \sec \varepsilon)} \sec \varepsilon$$

$$+ J_{0} \frac{A_{\lambda}}{2\pi} e^{-C_{\lambda}\sec \varepsilon} \sec \varepsilon \frac{c_{\lambda}}{C_{\lambda}} \Big\{ C_{\lambda} e^{-C_{\lambda}} \cdot G[C_{\lambda}(\sec i - 1)] \\
+ \frac{1}{2} \frac{c_{\lambda}}{C_{\lambda}} \cdot E(C_{\lambda}, i) \cdot \Phi(C_{\lambda}, 0) \Big\},$$

$$+ J_{0} \frac{8}{16\pi} (1 + \cos^{2} \alpha) \frac{c_{\lambda}}{C_{\lambda}} \Big\{ C_{\lambda} \sec \varepsilon \cdot G[C_{\lambda}(\sec i + \sec \varepsilon)] \\
+ \frac{1}{2} \frac{c_{\lambda}}{C_{\lambda}} \cdot E(C_{\lambda}, i) \cdot \Phi(C_{\lambda}, \varepsilon) \Big\}. \quad (7)$$

Dabei sind:

- J_0 der Betrag der außeratmosphärischen Sonnenstrahlung auf die Einheit der Fläche,
- A_1 die Albedo des Oberflächenelements für die gegebene Wellenlänge λ ,
- C_{λ} der Schwächungskoeffizient der gesamten Atmosphäre des Planeten für die Wellenlänge λ ,
- c_{λ} der Streuungskoeffizient oder Diffusionskoeffizient für die Wellenlänge λ .
- Die Funktionen G, E und Φ hängen nur von i, ε und C_i ab. Sie sind zum Teil recht kompliziert und sind im Handbuch (S. 274–280) nach den Argumenten C, i und ε tabuliert.

Die Formel berücksichtigt die Streuung höherer Ordnung nach der RAYLEIGHschen Formel [Faktor $(1 + \cos^2 \alpha)$] bei der Annahme einer planparallelen Schichtung der Atmosphäre. *i* und ε dürfen deshalb 80^o nicht überschreiten. Der Schwächungskoeffizient C_{λ} darf höchstens den Wert 0,90 haben. Größere Werte von *i*, ε und C_{λ} werden bei den Messungen auch nicht benötigt.

Der Schwächungskoeffizient C_{λ} setzt sich aus dem Streuungskoeffizienten c_{λ} und dem Absorptionskoeffizienten γ_{λ} additiv zusammen, so daß also

$$C_{\lambda} = c_{\lambda} + \gamma_{\lambda}. \tag{8}$$

Weiter ist der Transmissionskoeffizient

$$p_{\lambda} = e^{-C_{\lambda}} \tag{9}$$

und

$$c_{\lambda} = \beta \cdot \lambda^{-4}, \quad \beta = \frac{32}{3} \pi^3 \frac{(n-1)^2 H}{N} = \frac{32}{3} \pi^3 \frac{(n_0 - 1)^2 N H}{N_0^2}, \quad (10)$$

wobei die Beziehung $\frac{n-1}{n_0-1} = \frac{N}{N_0}$ berücksichtigt wurde. *n* ist der Berechnungsexponent der Atmosphäre, *N* die Anzahl der Teilchen pro ccm unter den herrschenden Bedingungen, n_0 und N_0 unter Normalbedingungen (0^o C und 760 mm Druck), *H* die Höhe der homogenen Atmosphäre.

Die Formel (7) gilt für Gase oder nicht absorbierende feste Teilchen bis zu Durchmessern von $\frac{1}{2}\lambda$. Bis auf die Voraussetzung RAYLEIGHscher Streuung ist die SCHOENBERGsche Theorie ganz allgemein. Sie umfaßt den Fall einer undurchsichtigen Gasatmosphäre (Venus), für die das Reflexionsgesetz an der Oberfläche bedeutungslos wird, weil die Helligkeit für kurzwellige Strahlen im wesentlichen durch die dritte Komponente h_3 bestimmt ist; sie genügt aber auch so durchsichtigen Atmosphären wie derjenigen von Mars, bei der nur in den violetten Strahlen die Streuung bedeutend wird, für die anderen Farben aber die Helligkeit der Oberfläche durch die erste Komponente h_1 bestimmt ist. Die Jupiteroberfläche nimmt, wie der Anblick im Fernrohr lehrt, was die Schärfe der Zeichnung betrifft eine mittlere Stellung zwischen Mars und Venus ein. Deshalb und wegen der geringen Änderung der Phase ist die Anwendung der allgemeinen Theorie bei Jupiter besonders schwierig. Sie ist aber nicht zu umgehen, wenn man die Dichte der Jupiteratmosphäre (Loschmidtsche Zahl) über den Niveaus der hellen und dunklen Streifen und den Unterschied dieser Niveaus bestimmen will.

Praktisch wird man bei einer Atmosphäre wie derjenigen von Jupiter in erster Näherung die Streuung vernachlässigen und die Tr. k. aus der relativen Helligkeit der Punkte mit verschiedenen Lichtwegen in der Atmosphäre, aber von der gleichen Albedo berechnen. Das sind die Punkte innerhalb des äquatorialen hellen Streifens oder diejenigen des nördlichen dunklen Streifens.

Für solche Punkte würde bei Vernachlässigung des zweiten und dritten Gliedes das Verhältnis der Helligkeiten nach Formel (7) und (9) sich in folgender Weise darstellen:

$$\log \frac{h_n}{h_0} + \log \frac{\sec \varepsilon_0}{\sec \varepsilon_n} + \log \frac{f(i_0 \varepsilon_0)}{f(i_n \varepsilon_n)} = \log p[(\sec i_n + \sec \varepsilon_n) - (\sec i_0 + \sec \varepsilon_0)].$$
(11)

Mit Hilfe dieser Formel können aus den gemessenen relativen Helligkeiten, den Winkeln und unter Annahme eines Reflexionsgesetzes Transmissionskoeffizienten p_{λ} und mit Hilfe von Formel (9) Schwächungskoeffizienten C_{λ} berechnet werden. Mit diesen Näherungswerten von C_{λ} kann an eine Anwendung der strengen Theorie herangetreten werden.

Die Aufnahmen. Meine photographischen Jupiteraufnahmen wurden am SCHMIDTschen 11 m-Horizontalspiegelteleskop der Breslauer Sternwarte erhalten. Das Spiegelsystem mußte zu diesem Zwecke eingehend justiert werden, was durch Deklinationsbeobachtungen hellerer Sterne, Nivellement und durch Autokollimation geschah, wobei Lichtstrahlen einer im Brennpunkt des Spiegels befindlichen künstlichen Lichtquelle in sich selbst reflektiert wurden. Der Hauptspiegel von 50 cm Öffnung wurde auf 25 cm abgeblendet, da sich bei größerer Öffnung Astigmatismus störend bemerkbar machte. Die Aufnahmen erfolgten auf verschiedenen Plattensorten und mit verschiedenen Farbfiltern. Das reichlich 2 mm große Brennpunktsbild wurde versuchsweise mit einer Negativlinse auf etwa 5 mm vergrößert. Wegen der durch Vergrößerung und die Farbfilter bedingten langen Belichtungszeit wurde jedoch auf vergrößerte Bilder verzichtet, und es wurden nur direkte Brennpunktsbilder benutzt. Die Kassette befand sich in einem Kreuzschlitten, so daß auf einer Platte ganze Reihen von Jupiterbildern erhalten werden konnten. Diese hatten meist sehr verschiedene Belichtungszeiten.

Um von jeder Platte eine gute Schwärzungskurve zu erhalten, wurde auf jeder Platte eine Reihe von Jupiterbildern von gleicher Belichtungszeit durch einen ZEISSschen Graukeil aufgenömmen, der vor der Platte lag. Die Schwärzungen der Streifenmittelpunkte dieser "Keilbilder" gaben in Verbindung mit den durch die gegenseitigen Abstände der Keilbilder und durch den Schwächungsgradienten des Keils bestimmten Intensitätsdifferenzen die gewünschten Schwärzungskurven. Die Keilbilder wurden meist ohne Farbfilter aufgenommen, hatten aber dieselbe Belichtungszeit,

wie die photometrierten Jupiterbilder der Platte. Von den zahlreichen Platten, die vom 14. März bis 10. Mai 1933, etwas nach der Jupiteropposition (9. März), erhalten wurden, wählte ich zwei Platten, die hinsichtlich der Güte der Bilder, der verwandten Filter und Plattensorte und einer genügenden Anzahl von Keilbildern am geeignetsten erschienen, aus. Es ist dies eine Agfa-Superpan-Platte der damaligen Herstellungsart und eine blauviolettempfindliche Matterplatte, von denen die erste am 21., die zweite am 23. März 1933 benutzt wurde. Auf der Platte "29 Superpan" sind acht brauchbare Keilbilder mit je 24⁸ Belichtungszeit vorhanden. Für die übrigen Aufnahmen wurde ein SCHOTTsches Gelbfilter und die beiden roten Wrattenfilter 71 A und 70 verwandt. Bei den gelben Aufnahmen haben zwei Aufnahmen zu je 3⁸ die günstigsten Schwärzungsverhältnisse, während das in der Belichtungszeit besser passende Bild mit 25^s viel zu schwarz ist, um verwertet werden zu können. Da aber zufälligerweise bei dieser Platte die aus den Keilbildern zu 24⁸ erhaltene Intensitätsschwärzungskurve sich mit der aus Gelbaufnahmen erhaltenen Zeitschwärzungskurve zur völligen Deckung bringen läßt, also mit dieser identisch ist, so konnte ich, obwohl die gelben Bilder eine andere Belichtungszeit haben, auch bei diesen die aus den Keilbildern erhaltene Intensitätsschwärzungskurve verwenden.

Unter den Aufnahmen mit Filter 71 A ist ein Bild zu 24^s sowie je eins zu 22^s und 25^s, die verwertet wurden. Von den Aufnahmen mit Filter 70 wurde ein Bild zu 25^s und zum Vergleich ein Bild zu 30^s photometriert. Die mittlere Zeit der Aufnahme war 1933 März 21 21.14 Uhr W. Z.

Die Platte "39 Matter" enthält fünf brauchbare Keilaufnahmen zu 5⁸ ohne Filter. Auf der Platte befinden sich außerdem zahlreiche äußerst scharfe Aufnahmen, die mit SCHOTTschem Violettfilter und ebensolchem Blaufilter gemacht worden waren. Es wurden drei Violettbilder zu 5⁸ und drei Blaubilder zu 5⁸ zum Photometrieren ausgesucht. Die mittlere Zeit ihrer Aufnahme war 1983 März 25 23.27 Uhr W.Z.

Die Güte der Bilder war an beiden Tagen sehr gut. Sie konnte zwischen den Aufnahmen durch ein seitlich angebrachtes Okular, in welches das Jupiterbild mit Hilfe eines totalreflektierenden Prismas geworfen wurde, kontrolliert werden. Die Brennweite des Spiegels war 1090 cm. Eine Bogensekunde entsprach also 0,0529 mm auf der Platte.

Die Photometrierung. Die Photometrierung der Bilder erfolgte mit dem lichtelektrischen Registrierphotometer von ZEISS. Es wurde mit einer Übersetzung von 1:44,2 immer längs des hellen und dunklen Streifens und auch längs des Meridians photometriert. Die Spaltgröße betrug bei

Filter	Nr. des	D1 -44-5	Zeit der Aufnahme	Belich-		Phot	Anzahl de ometrieru	er ingen
	Bildes	Platte	Weltzeit dauer 1933		Schwärzung	Mittel- streifen	Seiten- streifen	Meridian
70" rot 70" rot	$\frac{1}{2}$		März 21 21 ²⁵ März 21 21 ²⁶	25⁵ 30	genügend gut	3 1	2	2
71 A' rot 71 A' rot 71 A' rot	3 4 5	Superpa	März 21 21 ¹³ März 21 21 ¹³ März 21 21 ¹⁴	22 24 25	gerade genügend	1 3 1	$\frac{-}{2}$	2
Gelb Gelb	6 7	53	März 21 21 ⁰⁴ März 21 21 ⁰⁴	3 3	gut gut	2 2	2 1	2 1
Blau Blau Blau	8 9 10	atter	März 25 23 ³⁶ März 25 23 ³⁶ März 25 23 ³⁶	5 5 5	gut gut gut	2 1 1	2 1 1 -	1 1 1
Violett Violett Violett	11 12 13	39 Wi	März 25 23 ²⁰ März 25 23 ²⁰ März 25 23 ²⁵	5 5 5	gut gut gut	1 2 2	1 1 1	1 1 1

Tabelle 1.

Anwendung des Planarobjektivs $0,115 \times 0,083$ mm. Das entspricht bei der Spaltbreite 2,"17 und bei der Spaltlänge in der Photometrierrichtung 1,"57 auf der Jupiterscheibe. Der photometrierte nördliche Streifen (Seitenstreifen) war vom hellen Äquatorstreifen (Mittelstreifen) 41," entfernt, während die Mitte des Äquatorstreifens wegen der Neigung der Äquatorebene von 1, 85 ebenfalls noch 0,"6 nördlich der scheinbaren Jupitermitte lag. Die Empfindlichkeit des Photometers war so eingestellt, daß die Ausschläge sowohl für Plattengrund wie für völlige Dunkelheit (Nullage) gerade noch im Registrierbereich lagen. Als Schwärzungen wurden die Quotienten aus den zugehörigen Photometerausschlägen und dem Ausschlag für Plattengrund definiert.

Die Schwärzungskurven und die Untersuchung des Keils. Auf jedem Registrierpapier befinden sich außer der Kurve des jeweils photometrierten Jupiterstreifens, den Ausschlägen für völlige Dunkelheit (Nullmarken) und für den Plattengrund eine ganze Anzahl von Schwärzungsmarken, die durch kurze Photometrierung der Streifenmitten der Keilbilder entstanden sind. Infolge der zwei benutzten Streifen (Mittel- und Seitenstreifen des Jupiters) entstanden jeweils zwei Reihen von Schwärzungsmarken, die später zu einer genügend langen Schwärzungskurve zusammengefaßt werden konnten.

Zur Konstruktion der Intensitätsschwärzungskurven benötigte ich noch die Keilkonstante des benutzten Graukeils bzw. den genauen Verlauf der Schwächung durch den Keil. Ich erhielt diesen Verlauf durch Photometrierung des Keils am Registrierphotometer. Da die Ausschläge am Registrierphotometer — wie ich durch eine Untersuchung feststellte — den auf die lichtlelektrische Zelle auftreffenden Lichtmengen im allgemeinen nicht proportional sind, die erhaltene Registrierkurve also noch nicht die gewünschte Schwächungskurve des Keils im Intensitätsmaß darstellt, eichte ich die Photometerausschläge durch Variation der Präzisionsspalteinstellung, die an einer Mikrometerschraube sehr genau abgelesen werden konnte, d. h. ich variierte meßbar die Lichtmengen, die auf die Zelle fielen. Auf das Registrierpapier kamen deshalb noch sogenannte "Treppen", Reihen von Ausschlägen, die verschiedenen Einstellungen des Präzisionsspalts entsprachen. Es ergaben sich für den 90 mm langen Keil folgende Schwächungsdifferenzen in Größenklassen pro mm (Tabelle 2, 2. Zeile). In der ersten Zeile stehen die Abstände auf dem Keil.

Abstände mm	Abstände Schwächung Abstän mm promm mm		Schwächung pro mm	Abstände mm	Schwächung pro mm	
Helle	s Ende	25	0 ^m 054	65	0 ^m 052	
0		50 25	003	70	003	
1	0 ^m 057	40	052	80	049	
5	057	45	052	85	048	
10	055	50	052	88	048	
15	053	55	052			
20 054		60	052	Dunkles Ende		

Tabelle 2.

Aus den Abständen der Keilbilder des Planeten vom Keilende wurden so die Intensitätsverhältnisse der Keilbilder, aus den Intensitätsverhältnissen und den Schwärzungen der Keilbilder wurden für jedes Registrierpapier bzw. jede Gruppe von Registrierpapieren die benötigten Schwärzungskurven erhalten. Bei der Platte "39 Matter" war es notwendig, für die stärksten Schwärzungen die Schwärzungskurve etwas zu extrapolieren, und zwar gerade dort, wo die Kurve nicht mehr geradlinig verläuft, sondern die obere Krümmung einsetzt. Einen Einfluß hat diese Tatsache auf die größten Helligkeiten bei violetten Mittelstreifen, die dadurch bis zu 0703 unsicher werden, was aber etwa dem mittleren Fehler der Einzelhelligkeiten entspricht. Die beiden stillschweigenden Voraussetzungen — Gleichheit der Schwärzungskurven für alle Teile der Platte und Gleichheit der Schwärzungskurven für Aufnahmen mit und ohne Farbfilter — brauchen gar nicht streng erfüllt zu sein. Einmal wurden immer mehrere Bilder an verschiedenen Stellen der Platte photometriert und gemittelt. Zum anderen sind die Spektralbereiche der ohne Filter erhaltenen Keilaufnahmen von denen der photometrierten Filterbilder nicht allzu verschieden, da ja auf der violettblauempfindlichen Matterplatte violette und blaue Bilder, auf der stark gelbrotempfindlichen Superpanplatte gelbe und rote Bilder photometriert wurden. Die Photometrierung der obengenannten Jupiterbilder erfolgte meist zweimal, zum Teil dreimal, um weitere Fehler auszuschalten.

Auswertung der Photogramme. Bestimmung der Mitten. Die genaue Größe der Bilder auf den beiden Platten betrug entsprechend einem Winkeldurchmesser des Planeten von $44,1 \times 41,2$ März 21.9 und $44,0 \times 41,1$ März 26,0 (laut Jahrbuch) auf der Platte "29 Superpan" $2.33 \times 2.18 \text{ mm}$ und auf der Platte "39 Matter" 2,33 × 2,17 mm. Dem entsprach eine Kurvenlänge auf dem Registrierpapier von 103 bzw. 100 mm für Mittelund Seitenstreifen. Die Meßabstände auf dem Registrierpapier betrugen 2,2 mm, was auf dem Jupiterbild der Platte 0,05 mm oder 0,94 gleichkommt. Die Meßpunkte wurden vom Streifenmittelpunkt aus gezählt. weil die Ränder oft schwer zu definieren waren. Die Bestimmung dieses Mittelpunktes auf der Registrierkurve machte wegen der Kornschwankungen und des verschieden steilen Abfalls der Helligkeit nach beiden Seiten (Jupiter außerhalb der Opposition) einige Schwierigkeiten. Es wurde zunächst auf jeder Registrierkurve ein vorläufiger Mittelpunkt durch Halbierung von Horizontalschnitten durch die Kurve konstruiert. Nach der Umwandlung der Photometerausschläge in Intensitätsverhältnisse und Berechnung der Einfallswinkel i wurde ein neuer Mittelpunkt entsprechend einer angenommenen LAMBERT-Verteilung $(J \sim \cos i)$ bestimmt. Die Nullpunktsverschiebung betrug dabei im Höchstfalle 0,99 Einheiten des Meßpunktabstandes oder 2,1 mm auf dem Registrierpapier oder 0,040 Einheiten des halben Äquatordurchmessers. Die Einzelkurven waren erst dadurch untereinander vergleichbar geworden und konnten gemittelt werden. Eine letzte Glättung der Kurven entfernte noch übriggebliebene Intensitätsschwankungen, die auf Plattenkorn und Details auf der Jupiteroberflächezurückzuführen sind.

Bei den Meridianphotogrammen ist die Mitte identisch mit der Mitte der Jupiterscheibe. Diese liegt aber wegen der Neigung der Äquatorehene 0",6 oder 0,6 Meßabstände von der Mitte des hellen Äquatorstreifens entfernt und kann dadurch am besten bestimmt werden, daß man auf den Photogrammen vom hellen Mittelstreifen um diesen Abstand nach Süden geht. Bei den violetten, gelben und blauen Bildern war die Mittenbestimmung wegen der durch den hellen Mittelstreifen hervorgerufenen ausgeprägten Spitze leicht durchzuführen, während das bei den roten Bildern wegen des geringen Kontrastes zwischen den Streifen und des infolgedessen langsamen Helligkeitsabfalles von der Mitte aus nur schwer möglich war. Der Helligkeitsabfall nach den Polen zu konnte im Gegensatz zu den Streifenphotometrierungen zur Mittenbestimmung wegen einer möglichen verschiedenen Helligkeit der beiden Pole nicht herangezogen werden. Die Bilder rot I sind später wegen der sehr ungenauen Mittenbestimmung fallen gelassen worden.

Untersuchung auf Randeffekte. Eine wichtige Frage ist noch die der Randhelligkeiten des Jupiters. Die photographischen Jupiterbilder können, insbesondere am Rande, durch mancherlei Effekte (Diffraktion am Objektiv und photographische Effekte auf der Platte) in ihrer Größe und in ihrer Helligkeit leicht verfälscht werden.

Durch Photographie eines künstlichen Jupiters versuchte ich, diese Effekte zu erfassen. Der künstliche Jupiter bestand in einem Diapositiv eines stark überbelichteten Jupiterbildes, das nur noch schwach die Streifen zeigte. Das Diapositiv wurde durch ein dicht dahinterliegendes Lämpchen, das durch einen 4 Volt-Akkumulator Strom erhielt, erleuchtet. Um eine gleichmäßige Erhellung zu erzielen, schaltete ich eine Milchglasscheibe zwischen das mattierte Osramlämpchen und das Diapositiv. Das Licht dieses künstlichen Jupiters befand sich im Brennpunkt des Hohlspiegels und wurde durch Autokollimation nahezu in sich selbst reflektiert und auf einer dicht unterhalb des künstlichen Jupiters befindlichen Matterplatte aufgenommen. Auch hier nahm ich wieder eine Anzahl Bilder durch den Graukeil auf, um eine Schwärzungskurve dieser Matterplatte zu erhalten. Die Belichtungszeit betrug 20 Sekunden. (Entwickler Rodinal 1:18). Am Mikrophotometer photometrierte ich einerseits den künstlichen Jupiter. wobei wieder durch "Treppen" Durchlässigkeiten im Intensitätsmaß bestimmt wurden. Andererseits photometrierte ich auch eine Anzahl von Photographien des künstlichen Jupiters und berechnete mit Hilfe einer aus den "Keilbildern" erhaltenen Schwärzungskurve ihre Helligkeiten im Intensitätsmaß. Es wurden durch den künstlichen Jupiter und seine Photographien immer jeweils drei Schnitte parallel zu den gerade noch angedeuteten Streifen gelegt, und zwar 0,3 mm unterhalb, 0,1 mm oberhalb und 0,3 mm oberhalb der Mitte der etwa 2,45 mm großen Bilder. Die hellsten Stellen jedes Schnittes wurden gleich 100 gesetzt und entsprechende Schnitte vom künstlichen Jupiter und seiner Photographie miteinander verglichen. Es zeigte sich nun, daß bei nahezu symmetrischer Helligkeitsverteilung des künstlichen Jupiters die Photographien alle eine Verlagerung des Helligkeitsmaximums nach ein und demselben Rande aufwiesen. Das wird auf nicht genau zentrische Lage des Lämpchens zurückzuführen sein. Ich mittelte deshalb die Punkte, die gleiche Abstände von der Mitte hatten. Der Vergleich des Intensitätsverlaufes für den künstlichen Jupiter und seine Photographie ergab folgende Zahlen:

Abstand von der Mitte		Intensitäten							
		0,3 mm 1	interhalb	0,1 mm	oberhalb	0,3 nim oberhalb			
mm	a/R	künstl. 24	Photogr.	künstl. A	Photogr.	künstl. 4	Photogr.		
0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0	$\begin{array}{c} 0,00\\ 0,08\\ 0,16\\ 0,24\\ 0,33\\ 0,41\\ 0,49\\ 0,57\\ 0,65\\ 0,73\\ 0,89\end{array}$	100 99 98 97 97 97 95 94 91 86	100 99 98 99 98 98 98 98 96 94 92 84	97 97 98 100 100 99 99 98 96 94 92	99 99 100 100 99 100 100 99 98 98 96 99	98 99 99 100 100 100 100 99 98 96 91	99 99 99 99 100 99 99 98 97 95 89		
1,0 1,1 1,2	0,90 0,98	48 11	61 28	76 29	77 44	68 21	61 29		

Tabelle 3. Randeffekte.

Es zeigt sich, daß bis zu einem Abstande von etwa 0,85 Einheiten des Radius die photographische Abbildung durch den Reflektor keine Fehler im Helligkeitsverlauf hervorbringt, d. h. daß die Beugungs- und anderen Einflüsse bis zu dieser Grenze verschwindend klein sind. Bei weiterer Annäherung an den Rand bringen diese Einflüsse, wie man es bei der Beugung erwarten muß, einen langsameren Helligkeitsabfall zum Rande hervor. Auf die außerhalb des genannten Bereiches liegenden Randpartien verzichte ich deshalb bei der Photometrierung.

Die Farbfilter. Um die Spektralbereiche bzw. die effektiven Wellenlängen der photometrierten Jupiterbilder zu erhalten, untersuchte ich an einem mir vom Physikalischen Institut der Universität Breslau freundlicherweise zur Verfügung gestellten und von Prof. STEUBING konstruierten Sensitometer eine Reihe von Plattensorten, z. T. kombiniert mit SCHOTTschen Farbfiltern. Die spektrale Intensitätsverteilung der benutzten Sensitometerlampe von Osram wurde bei der Bestimmung der Spektralintensitäten der Platten bzw. Kombinationen Filter-Platte in Ansatz gebracht. Nach Rückfrage bei Osram kann die Glühbirne als schwarzer Strahler von der Farbtemperatur von 2675° K angenommen werden. Es wurde nach dem Planckschen Gesetz für $T = 2675^{\circ}$ eine Plancksche Kurve konstruiert. Die Spektralintensität für eine bestimmte Wellenlänge λ ist dann der Quotient aus der am Sensitometer gemessenen Intensität und dem entsprechenden J_1 der PLANCKschen Kurve. Die drei Kombinationen Platte-Filter: Matter-violett, Matter-blau und Superpan-gelb waren direkt am Sensitometer untersucht worden, während die Spektralintensitäten der beiden Kombinationen Superpan-rot I und Superpan-rot II aus der untersuchten Spektralintensitätskurve für die Superpanplatte und derjenigen der Filter rechnerisch erhalten wurden. Die Filter rot I und rot II waren dabei die Wratten-Filter 71 A und 70. Die endgültige Spektralintensität für eine bestimmte Wellenlänge ist hier das Produkt aus der am Sensitometer gemessenen Intensität der Superpanplatte und der aus dem Katalog der Wratten Light Filters¹) genommenen Filterintensitäten, dividiert durch die entsprechende PLANCK sche Farbenintensität der Sensitometerlampe. Es wurden nur relative Spektralintensitäten gemessen und die größte Intensität für jede Kombination immer gleich 100 gesetzt. Für die fünf Kombinationen Platte-Filter gebe ich nun die Spektralbereiche, die Intensitätsmaxima und die effektiven Wellenlängen, d. h. die durch Integration ermittelten mittleren Wellenlängen (Tabelle 4).

Tal	bell	le 4
-----	------	------

Kombination Platte-Filter	Spektralbereich	Intensitätsmaxima	Effektive Wellenlängen	
PLAETSCHKE, 1933: Matter + violett Matter + blau Superpan + gelb Superpan + rot I Superpan + rot II .	$\begin{array}{r} 322 & - & 493 \mathrm{m}\mu \\ 332 & - & 503 \\ 428 & - & 704 \\ 607 & - & 687 \\ 644 & - & 690 \end{array}$	335 mµ 354 462, 500 630 670	361 mµ 384 528 642 670	

Bei der Berechnung des Tr. k. der Jupiteratmosphäre für verschiedene-Wellenlängen habe ich außer meinen eigenen Messungen auch noch solche von E. Schoenberg und von N. BARABASCHEFF und B. SEMEJKIN herangezogen. Ich möchte deshalb gleich anschließend auch die Wellenlängen dieser Messungen angeben.

Die photographischen Messungen von N. BARABASCHEFF und B. SE-MEJKIN wurden aus der schon oben erwähnten, in der Zeitschrift für Astro-

¹) "Wratten Light Filters", seventh Edition, Eastman Kodak Company, Rochester, New York, 1925.

physik, Bd. VIII erschienenen Arbeit entnommen, die visuellen Messungen von E. SCHOENBERG, die bisher unveröffentlicht sind, stellte mir Herr Prof. SCHOENBERG freundlicherweise zur Verfügung. Diese wurden in den Jahren 1927 bis 1930 am SCHMIDTschen Spiegelteleskop und am 9zölligen Refraktor der Breslauer Zweigsternwarte Sternblick bei Winzig erhalten. Sie werden weiter unten veröffentlicht. Die von SCHOENBERG verwendeten Filter sind dieselben SCHOTTschen Filter, die auch P. SKOBERLA 1932 bei der Beobachtung von Bedeckungsveränderlichen verwandte und deren Farbdurchlässigkeit, multipliziert mit der Augenempfindlichkeit, dieser in seiner Arbeit¹) gegeben hat. Ich entnehme sie von dort. Aus den bei BARABASCHEFF gegebenen Durchlässigkeiten der Kombinationen Platte-Filter berechnete ich aus den Spektralbereichen und deren Maximalintensitäten effektive Wellenlängen, so genau es bei seinen Angaben möglich ist. Die entsprechenden Zahlen sind dann:

Kombination Auge-Filter bzw. Platte-Filter	Spektralbereich Intensitätsmaxima		Effektive Wellenlängen	
SCHOENBERG, 1927-1930: Auge + blau Auge + grün Auge + gelb	$\begin{array}{r} 420 - 640 \text{ m}\mu \\ 450 - 661 \\ 430 - 700 \\ 482 - 695 \end{array}$	519, (558) mμ 540, (647) 555 620	526 mµ 545 564 610	
BARABASCHEFF, 1933: Platte + blau Platte + gelb Platte + rot	$415 - 493 m\mu$ 509 - 680 580 - 740	$461 m \mu$ 563 649	$458 m \mu$ 578 652	

Tabelle 5.

Die Berechnung von α , *i* und ε . Bevor ich die endgültigen Helligkeiten meiner Jupiterphotometrierung gebe, möchte ich die Berechnung der Phasenwinkel α und der Einfalls- und Reflexionswinkel *i* und ε einschalten. Die Berechnung der Winkel für die Gelb- und Rotaufnahmen auf der Superpanplatte 29 und der Violett- und Blauaufnahmen auf der Matterplatte 39 wurde für jede Platte gesondert vorgenommen. Innerhalb einer Platte genügte wegen der verhältnismäßig geringen Zwischenzeiten die Berechnung der Winkel für einen mittleren Zeitmoment. Dieser war im ersten Falle 1933 März 21,88, im zweiten 1933 März 25,98 Weltzeit.

¹) PAUL SKOBERLA, "Photometrisch-kolorimetrische Beobachtungen an Bedeckungsveränderlichen zur Untersuchung des NORDMANN-TIKHOFF schen Phänomens", ZS. f. Astrophys. 11, 1, 1935.

Die Phasenwinkel α wurden nach der schon oben erwähnten Formel (1) berechnet. Aus American Ephemeris 1933 wurden für $\log r$, $\log \Delta$ und $\log R$ folgende Werte entnommen:

0 ^h Weltzeit	log r	log R	log ⊿	
1933 März 18 21 22 25	0,734 642 8 0,734 693 2	0,648 716 8 0,649 071 4 0,650 307 9	9,998 403 4^{-10} 9,998 529 0^{-10} 9,998 529 0^{-10} 9,998 905 3^{-10}	

Tabelle 6.

Für die genannten Zeiten ergaben sich als Phasenwinkel die Werte 2° 34' und 3° 23'.

Die Berechnung der Einfalls- und Reflexionswinkel *i* und ε erfolgte nach den Formeln (2). Für die Halbachsen *a* und *c* des Planeten wurden die Werte nach RUSSEL-DUGAN-STEWART 44320 und 41440 miles genommen, woraus sich $\sqrt{1-e^2} = \frac{c}{a} = 0.9350$ ergibt.

Für die geozentrische Breite und Länge B und L und die heliozentrische Breite und Länge B' und L' des Planetenzentrums, bezogen auf die Ebene des Jupiteräquators, bekam ich nach den American Ephemeris 1983:

Weltzeit	B	L	B'	L'
1933 März 21,88	+ 1986	30978	+ 1968 + 1,70	33,32
März 25,98	+ 1,84	30,27		33,64

Tabelle 7.

Entsprechend einem Meßpunktabstand von 0,05 mm oder 0','94 auf dem Jupiterbild sind die vom Scheibenmittelpunkte aus gezählten planetozentrischen linearen Koordinaten u/a und v/k der Meßpunkte für März 21,88, 0,0429 und 0,0459 und für März 25,98 0,0430 und 0,0460 und deren Vielfache, wobei nach Osten und Norden positiv und nach Westen und Süden negativ gezählt wird.

Für die Berechnung der Winkel der Äquatorpunkte wurden die Formeln dadurch etwas vereinfacht, daß angenommen wurde, die nur 1⁰85 betragende Neigung der Äquatorebene gegen die Gesichtslinie sei Null, die *u*-Achse des Koordinatensystems falle also mit dem Äquator zusammen. Außer

Zeitschrift für Astrophysik. Bd. 19.

B = 0 sei auch B' = 0. Weiter ist k = c, v = 0, v = 0 und $\varphi = 0$. Es ergibt sich dann das Formelsystem (2a) für Äquatorpunkte:

$$\operatorname{tg}(\mu - L) = -\frac{\frac{u}{a}}{\sqrt{1 - \left(\frac{u}{a}\right)^{2}}},$$

$$\operatorname{cos} \varepsilon = -\operatorname{cos}(\mu - L),$$

$$\operatorname{cos} i = -\operatorname{cos}((\mu - L) + (L - L')).$$
(2a)

Der durch diese Vernachlässigung entstehende Fehler erreicht im Höchstfalle 0,2 % für cos *i*, cos *e*, sec *i* und sec *e*, ist also zu vernachlässigen.

Die Berechnung der Winkel für die Seitenstreifen erfolgte nach den strengen Formeln, wobei $\frac{v}{k} = +0.23$ gesetzt wurde. (Dieser Wert wurde aus Ausmessungen der Jupiterbilder an einem Plattenmeßapparat erhalten.) Für die Punkte des Zentralmeridians ist u = 0 und $\mu - L = 180^{\circ}$,

wodurch sich die Formeln etwas vereinfachen.

Die Berechnung der Winkel wurde nicht für alle Meßpunkte vorgenommen, sondern nur für einige ausgewählte Punkte, die aber den Helligkeitsverlauf genügend genau darstellen, so daß ich mich bei allen späteren Rechnungen auf diese beschränken konnte.

Die berechneten Einfalls- und Reflexionswinkel lauten dann:

Meßpunkt	1	1933 März 21,	88	1933 Marz 25,98			
Nr.	u/a	8	i	u/a	8	i	
Ost 20 19 18 15 12 9 6 2	0,858 815 772 644 515 386 257 086 000	$59^{0} 6' 54 36 50 33 40 3 30 59 22 43 14 55 4 55 0 0 0$	61°38′ 57 8 53 5 42 35 33 31 25 15 17 27 7 27 2 32	0,860 817 774 645 516 387 258 086	$59^{9}19'$ 54 47 50 43 40 10 31 4 22 46 14 57 4 56 0 0	62°41′ 58 9 54 5 43 32 34 26 26 8 18 19 8 18 3 92	
$\begin{array}{cccc} & - & 2 \\ & - & 6 \\ & - & 9 \\ & - & 12 \\ & - & 15 \\ & - & 18 \\ & - & 19 \\ West & - & 20 \end{array}$	$\begin{array}{c} - 086 \\ - 257 \\ - 386 \\ - 515 \\ - 644 \\ - 772 \\ - 815 \\ - 858 \end{array}$	$\begin{array}{c} 4 & 55 \\ 14 & 55 \\ 22 & 43 \\ 30 & 59 \\ 40 & 3 \\ 50 & 33 \\ 54 & 36 \\ 59 & 6 \end{array}$	2 23 12 23 20 11 28 27 37 31 48 1 52 4 56 34	$\begin{array}{c} - & 086 \\ - & 258 \\ - & 387 \\ - & 516 \\ - & 645 \\ - & 645 \\ - & 774 \\ - & 817 \\ - & 860 \end{array}$	4 56 14 57 22 46 31 4 40 10 50 43 54 47 59 19	1 34 11 35 19 24 27 42 36 48 47 21 51 25 55 57	

Tabelle 8. Mittelstreifen.

Tabelle 9. Seitenstreifen.

Tabelle 10. Zentralmeridian.

Meßpunkt	1	933 März 21,	88	1933 Marz 25,98			
Nr	v/k	e	i	v/k	ε	i	
Nord 18 15 12 9 6 2 0 - 2	$\begin{array}{r} 0,826\\ 688\\ 551\\ 413\\ 275\\ 092\\ 000\\ -\ 092\\ -\ 092\\ \end{array}$	57°23' 45 17 35 2 25 39 16 48 5 19 0 0 5 51	$57^{\circ}14'$ $45 9$ $34 56$ $25 35$ $16 49$ $5 44$ $2 34$ $6 32$ $15 20$	$\begin{array}{c} - \\ 0,828 \\ 690 \\ 552 \\ 414 \\ 276 \\ 092 \\ 000 \\ - 092 \\ 000 \\ - 092 \\ 000 \end{array}$	$57^{\circ}35'$ 45 25 35 8 25 43 16 51 5 26 0 0 5 54 19	57°31' 45 23 35 9 25 47 17 2 6 20 3 26 6 55	
$egin{array}{ccc} - & 6 \ - & 9 \ - & 12 \ - & 15 \end{array}$	-275 -413 -551 -688	17 18 26 5 35 23 45 33	17 39 26 22 35 38 45 47	$ \begin{array}{r} - 276 \\ - 414 \\ - 552 \\ - 690 \end{array} $	$ \begin{array}{r} 17 \\ 26 \\ 9 \\ 35 \\ 28 \\ 45 \\ 40 \\ \end{array} $	17 45 26 29 35 44 45 54	
Süd — 18	- 826	57 33	57 46	- 828	57 43	57 54	

Die endgültigen Helligkeiten der Streifen. Ich gebe nun meine Messungen längs des hellen und des dunklen Äquatorstreifens auf Jupiter. Die endgültigen Intensitäten für den hellen Mittelstreifen und die fünf Farbfilter sind folgende (s. Tabelle 11).

In der ersten Spalte stehen die Nummern der Meßpunkte, die gleiche Abstände von 0"94 voneinander haben. Die zweite Spalte gibt die Entfernung der Meßpunkte vom Streifenmittelpunkte in Einheiten des halben Äquatordurchmessers. Die dritte Spalte enthält die nach dem

Meßpunkt		Platte 3	9 Matter, 1	1933 Mär:	z 25,98	Platte	29 Suj	erpan,	1933 März	21,88
Nr.	Nr.		Lambert	violett	blau	gelb	rot I	rot II	Lambert	u/a
Oat	20	0.860	459	511	420	403	395	491	475	0.858
050	19	817	527	563	506	477	464	476	542	815
	18	774	586	604	576	537	524	528	600	772
	17	731	638	638	633	591	580	578	651	729
	16	688	684	671	677	639	633	623	696	686
	15	645	725	702	712	683	681	666	736	644
	14	602	762	730	742	722	726	705	772	601
	13	559	795	760	770	758	767	742	804	558
	12	516	825	786	794	789	802	776	833	515
	11	473	852	812	818	818	832	807	860	472
	10	430	876	838	841	842	857	836	883	429
	9	387	898	864	863	863	880	864	904	386
	8	344	917	886	885	881	902	889	923	343
	7	301	934	906	906	898	921	912	939	300
	6	258	949	926	927	915	936	933	954	257
	5	215	962	942	948	932	950	951	966	214
	4	172	973	956	966	947	963	966	976	172
	3	129	982	967	981	961	974	977	985	129
	2	086	989	976	990	973	982	986	991	086
	1	043	995	984	996	984	988	992	996	043
	0	000	998	990	999	992	993	998	999	000
	- 1	- 043	1000	993	1000	998	997	1000	1000	- 043
	2	- 086	1000	998	1000	1000	999	1000	999	- 086
	. 3	- 129	998	1000	1000	994	1000	998	996	- 129
	- 4	-172	994	994	999	980	994	993	992	- 172
	- 5	-215	988	985	996	965	985	986	985	-214
	• 6	- 258	980	974	988	950	970	977	977	- 257
	- 7	- 301	970	962	975	932	953	966	966	— 300
	- 8	- 344	958	946	958	914	935	951	954	— 343
	. 9	- 387	943	926	938	896	914	932	939	- 386
	· 10	- 430	927	906	916	876	888	907	922	- 429
	· 11	- 473	907	883	894	854	860	880	902	- 472
-	12	- 516	886	859	871	831	832	850	880	- 515
	13	- 559	861	832	847	803	802	815	854	- 558
	14	-602	833	805	822	773	767	775	826	- 601
-	15	- 645	801	777	794	737	731	732	794	- 644
	16	- 688	765	749	761	697	693	686	757	- 686
	17	- 731	724	718	722	650	649	636	716	- 729
	18	- 774	678	684	672	597	594	580	669	-772
	19	- 817	624	644	610	538	533	516	615	- 815
West	· 20	— 860	560	597	529	467	462	' 443	551	858

Tabelle 11. Mittelstreifen.

LAMBERT schen Gesetz zu erwartenden Intensitäten, stellt also die cos *i*-Werte dar.

Hier wie bei den folgenden gemessenen Intensitäten ist jeweils die größte Intensität gleich 1000 gesetzt. Die Werte u/a und $\cos i$ sind für beide Platten etwas verschieden.

Für den dunklen Streifen ergab sich (siehe Tabelle 12):

N = 0	_]_	Platte	39 Matte	r, 1933	März	25,98	Pla	tte 29	Superg	pan, 19	33 März	21,88
Menpu Nr.	nĸt	u/a	u/b	Lam- bert	vio- lett	blau	gelb	rot I	rot II	Lam- bert	u/b	u/a
Ost	19	0,817	0,840	479	414	357	388	423	358	494	0,838	0,815
	18	774	795	543	448	414	449	484	415	557	794	772
	17	731			474	442	500	542	469		750	729
	16	688	707	COO	492	463	542	598	521	700	705	686
	10	640	603	600	596	481	000	640	611	100	601	601
	12	550	574		549	490	610	795	646		579	550
	19	516	530	799	554	597	661	755	673	801	599	515
	11	473	486	152	566	541	679	789	698	001	485	479
	10	430	442		578	553	697	806	722		441	429
	1 9	387	398	867	587	564	714	828	745	874	397	386
	8	344	354	1	596	575	727	850	765		353	343
	7	301	309		602	583	739	870	784		309	300
	6	258	265	920	608	591	750	890	798	925	265	257
	5	215	221		612	597	758	906	810		220	214
	4	172	177		616	602	765	919	818		176	172
	3	129	133		618	606	770	928	825		132	129
	2	086	088	961	619	609	775	932	830	963	088	086
	1	043	044		620	611	780	935	833		044	043
	0	000	000	969	621	613	784	937	836	970	000	000
	- 1	-043	044	971	621	615	788	939	838	971	-044	-043
	- 2	-086	-088	971	621	616	789	940	841	970	-088	-086
-	- 3	-129	-133		620	617	786	938	838		-132	-129
	- 4	-172	-177		618	616	781	933	834		-176	-172
	- 5	-215	-221	0.00	616	613	774	926	829		-220	-214
	- 6	-258	-265	950	614	609	764	916	820	947	-265	-257
-	- 7	-301			611	605	702	904	810		-309	-300
	- 0		-304	010	608	500	740	009	790	000	-303	-343
	- 10	- 301	390	912	000	505	715	009	700	900	-397	-300
_	- 10	-430	-442		500	570	710	041	740		441	-429
~	10	-4/0	-400	959	501	566	686	796	740	846	-400	515
-	12	010	-050	002	591	556	660	759	600	040	-029	-010
_	14	- 609	-014		578	545	640	798	656		617	601
_	15	645	-662	764	568	532	625	696	611	756	661	-644
_	16	688	-707	104	557	519	592	662	564	1.00	_705	_686
_	17	-731	-751		544	503	555	624	515		_750	-729
_	- 18	-774	-795	633	528	485	511	572	463	625	-794	-779
West -	- 19	-817	-840	575	506	460	455	508	404	566	-838	-815

Tabelle 12. Seitenstreifen (auf Jupitermitte bezogen.)

In derselben wurden die Intensitäten des dunklen Seitenstreifens in denselben Einheiten ausgedrückt wie beim Mittelstreifen — die hellste Stelle des Mittelstreifens war gleich 1000 gesetzt worden —, in Tabelle 18 in Einheiten der hellsten Stelle des Seitenstreifens selbst. Im ersten Falle sind die Intensitäten der beiden Streifen miteiannder vergleichbar, im

Мевр	unkt	Plat	te 39 Matt	er		Platte 29	Superpan	
N	r	Lambert	violett	blau	gelb	rot I	rot II	Lambert
Ost	19	.193	667	579	492	450	426	509
OBL	18	550	793	671	569	515	494	574
	17	555	763	716	634	577	558	014
	16		794	750	687	636	619	
	15	708	894	780	735	689	675	721
	14	100	849	807	777	733	727	
	13		873	831	809	771	768	
	12	816	893	854	837	803	800	825
	11	010	913	877	861	831	830	
	10		931	896	883	857	859	
	9	893	946	914	905	881	886	900
	8		960	932	921	904	910	
	7		970	945	937	926	932	
	6	947	980	958	951	947	949	952
	5		987	968	961	964	963	
	4		992	976	970	978	973	
	3		995	982	976	987	981	
	2	990	997	987	982	991	987	992
	1		998	990	988	995	991	
	0	998	1000	993	994	997	994	999
	- 1	1000	1000	997	999	999	997	1000
-	- 2	1000	1000	998	1000	1000	1000	999
-	- 3		998	1000	996	998	997	
-	- 4		995	998	990	993	992	
-	- 5		992	993	981	985	986	
-	- 6	978	989	987	968	975	975	975
-	- 7		985	981	953	962	963	
-	- 8		980	971	938	946	947	
-	- 9	939	975	960	923	923	926	
-	- 10		969	948	906	895	904	
-	- 11		961	934	889	866	880	
-	- 12	877	952	918	869	836	852	871
-	- 13		942	901	848	806	821	
-	- 14		931	883	823	774	780	
-	- 15	787	915	862	792	740	727	778
-	- 16		898	841	752	705	671	
-	- 17	070	876	815	703	664	612	
	- 18	652	852	786	648	608	600	644
West -	- 19	II 592	1 815	1 746	1 577	1 040	1 480	1 583

Tabelle 13. Seitenstreifen (auf Streifenmitte bezogen).

zweiten Falle sind die Helligkeitsverteilungen des Seitenstreifens in den verschiedenen Farben miteinander in Beziehung zu setzen. Die Zahlen der Tabelle 12 und 13 haben entsprechende Bedeutungen wie die der Tabelle 11. Die Meßpunktabstände sind wieder dieselben wie beim Mittelstreifen, nämlich 0,"94. Die Abstände u/a vom Streifenmittelpunkt sind in Einheiten des halben Äquatordurchmessers, die Abstände u/b in Einheiten der halben Seitenstreifenlänge ausgedrückt. Das Verhältnis vom Äquator

durchmesser zum Parallelkreisdurchmesser des Seitenstreifens bzw. das Verhältnis der Länge des Mittelstreifens zur Länge des Seitenstreifens ist 1000:973. Die mit Lambert überschriebene Spalte gibt wieder die cos *i*-Werte, die Intensitäten nach dem LAMBERTschen Gesetz. Im zweiten Teile der Tabelle wurden sinngemäß die cos *i*-Werte in Einheiten des größten cos *i*-Wertes des Seitenstreifens ausgedrückt.

Meßpunkt	Nr.	u/a	Lambert	violett	blau	gelb	rot I	rot II	Lambert
Ost	20 19 18 15 12 9 6 2	0,86 82 77 64 52 39 26 09	0 ^m 85 70 58 35 21 12 06 01	0 ^m 73 62 55 38 26 16 08 03	0 ^m 94 74 60 37 25 16 08 01	0 ^m 99 80 68 41 26 16 10 03	1,01 0,83 70 42 24 14 07 02	0 ^m 94 81 69 44 28 16 08 02	0 ^m 81 66 55 33 20 11 05 01
	0 2 6 9 12 15 18 19 20	00 09 26 39 52 64 77 82 86	00 00 06 13 24 42 51 63	01 00 03 08 16 27 41 48 56	00 00 01 07 15 25 43 54 69	01 00 06 12 20 33 56 67 83	01 00 03 10 20 34 57 68 84	00 03 08 18 34 59 72 88	00 03 07 14 25 44 53 65

Helligkeiten in Größenklassen. Tabelle 14. Mittelstreifen.

Tabelle 15. Seitenstreifen.

Meßpankt		Bez	ogen auf	hellsten	Punkt (des Mitte	elstreifen	8
Nr.	u/a	Lambert	violett	blan	gelb	rot I	rot II	Lambert
Ost - 19 18 15 12 9 6 2 0	0,84 79 66 53 40 26 09	0 ^m 80 66 41 25 16 09 04	0 ^m 96 87 73 64 58 54 52	1 ^m 12 0,96 79 70 62 57 54	1 ^m 03 0,87 59 45 37 31 28	0 ^m 93 79 47 31 20 13 08	1 ^m 12 0,96 61 43 32 24 20	0777 64 39 24 15 08 04
- 2 - 6 - 9 - 12 - 15 - 18 West - 19	09 26 40 53 66 79 84	03 06 10 17 29 50 60	52 53 55 57 61 69 74	53 54 57 62 69 79 84	26 29 34 41 51 73 86	07 10 15 26 39 61 74	19 19 22 27 36 53 84 98	03 06 10 18 30 51 62

Meß	punkt		Bezog	en auf d	en hellst	en Punk	t des Se	itenstrei	lens
N	lr.	<i>u</i> /0	Lambert	violett	blau	gelb	rot I	rot II	Lambert
Ost	19 18 15 12 9 6	0,84 79 66 53 40 26	0 ^m 77 63 37 22 12 06	0 ^m 44 35 21 12 06 02	0 ⁷⁷ 59 43 27 17 10 05	0 ^m 77 61 33 19 11 06	0 ^m 87 72 40 24 14 06	0 ^m 93 77 43 24 13 06	0 ^m 73 60 36 21 11 05
	2	09	01	00	01	02	01	01	01
	- 2	00			01		00	01	00
	- 6 - 9 - 12 - 15 - 18	- 26 - 40 - 53 - 66 - 79	02 07 14 26 46	01 03 05 10	01 04 09 16 26	04 09 15 25 47	03 09 19 33 54	03 08 17 35 65	03 07 15 27 48
West	-19	- 84	57	22	32	60	67	80	59

Tabelle 16.

Übersichtlicher und besser vergleichbar miteinander werden diese Werte, wenn ich sie in Größenklassen anstatt im Intensitätsmaß angebe und mich auf eine geringere Zahl von Meßpunkten beschränke.

Es ergaben sich dann folgende Abweichungen der gemessenen Helligkeiten von den Lambert-Werten, wobei $\Delta m = m_{\lambda} - m_{Lambert}$.

Man sieht, daß beim Mittelstreifen die gemessenen Helligkeiten für die Farben violett und blau nur wenig von der Lambert-Verteilung abweichen, während sie für gelb, rot I und rot II deutlich geringer als bei LAMBERT sind. Der Helligkeitsabfall nach dem Rande verläuft hier steiler als bei LAMBERT. Beim Seitenstreifen dagegen entsprechen die gemessenen Helligkeiten für gelb nahezu der Lambert-Verteilung, während sie für violett und blau über, für rot I und noch mehr für rot II unter den Lambert-Helligkeiten liegen. Der Helligkeitsabfall nach dem Rande ist hier für violett und blau flacher, für rot I und rot II steiler als bei LAMBERT.

Die Steilheit des Helligkeitsabfalles nimmt sowohl im Mittelstreifen wie im Seitenstreifen im allgemeinen mit zunehmender Wellenlänge zu.

Lediglich für das Filter rot II scheint am Ostrande des Mittelstreifens eine Abweichung von diesem Satze zu bestehen, die aber auch auf lokale Ungleichmäßigkeiten der Oberfläche zurückzuführen sein könnte.

Die am Anfang der Arbeit erwähnten, in den Charkow-Publ. 3 und 4 von BARABASCHEFF bearbeiteten Jupiteraufnahmen ohne Filter aus dem Jahre 1927 zeigen einen so stark abweichenden Helligkeitsverlauf gegenüber meinen eigenen Helligkeitsmessungen, wie gegenüber den BARABASCHEFFschen Filteraufnahmen aus dem Jahre 1938, daß sie BARABASCHEFF selbst in seinen weiteren Arbeiten nicht weiter verwertete und ich sie auch zum Vergleich nicht herangezogen habe. Für die Randpunkte u/a = 0.86beträgt hier der Helligkeitsabfall, der etwa dem mit violettem oder blauem Filter vergleichbar sein müßte, im hellen Äquatorstreifen nur 0^m₂₀ bzw. 0^m₁₉ gegen die Mitte, die Abweichung gegen LAMBERT - 0^m51 bzw. - 0^m60.

Ein Vergleich der von mir erhaltenen Werte mit den Filteraufnahmen von BARABASCHEFF aus dem Jahre 1933, dessen Aufnahmen zufälligerweise zu fast derselben Zeit stattfanden, zeigt auch einige, auch erheblich geringere Widersprüche. Zum Zwecke des Vergleichs wurden meine der Ostund Westseite gemittelt und die Barabascheff-Werte auf meine Meßabstände interpoliert. Für die Abweichungen gegen LAM-

wenn

Werte

Tabelle 17. Abweichungen gegen LAMBERT

BERT ergibt sich dann folgendes (s. Tabelle 18 und 19). Während beim Mittel-

streifen sich die BARABAscheffschen Werte für

		Ħ		, 19	16	02	03	02	8	8	8	8	8	01	02	07	17	21	
		rot		0 +	+	+	+	+						+	+	+	+	+	
		I I) ^m 13	12	05	80	02	01	8	8	8	8	01	04	05	8	08	
		2		+	+	+	+	+	+					+	+	+	+	+	
	fen	alb) ^m 04	01	02	02	01	8	0	8	8	01	0	8	02	10	01	
	enstrei	60		+	+	1				+			+	+		1	١	+	•
	Seite	lau		0m17	20	10	05	02	0	8	8	8	01	02	05	10	20	25	
				Ī	١		١	١					1	I	I		1	1	
		olett		0 m 33	28	16	10	90	04	01	8	8	01	04	60	16	29	35	
		vio		Ī	١	١	I	١	١	I			I	١			1	Ι	_
		q n		0,84	79	99	53	40	26	60	8	- 09	- 26	- 40	- 53	- 66	- 79	- 84	
=	-	-	13	14	14	11	08	05	02	8	8	8	00	01	04 -	- 60	16 -	19	24
		rot	5 +	+	+	+	+	+	+					+	• +	• +	•+	- +-	+
			120	17	15	08	04	03	02	10	01	8	01	03	06	60	13	16	19
		rot	50 +	. +	Ŧ	+	+	+	+	+	╋		+	• +	•+	•+	•+	-+-	+
	8	ء	18	14	12	08	90	05	04	02	01	8	03	05	90	08	12	15	18
	streife	gel	- 0 +	. +-	╋	+	+	+	+	+	+		+	•+	•+	• +	•+	-+	+
	Mittel	п	010	04	05	02	04	04	03	8	8	8	01	01	02	01	01	05	8
		bla	0+	+	+	+	+	+	+	•			I	+	+	-+	- +	- +	•+
		ett	n12	02	03	04	05	04	03	01	01	8	010	02	03	80	5	8	07
		viol	0 	1	I	+	+	•+	•+	+	+		+	-+	- +	- +	-	1	١
		u/a	0.86	82	27	64	52	39	26	60	8	60	26	39	52	64	77	82	86
					~		~	_		07	_			 					
	ankt		2(Ē	31	37	1				0		ي . ا		1	;≓ 	1 	17 	3
	MeBn	N	Oat																West

		J	Barab	asche	ff						Plae	tschke				
u/b	bl 458	au mµ	ge 5	elb 78	г 6	ot 52	vio 30	lett 51	b	lau 384	g	elb 528	ro 6	t I 42	ro 6	t II 70
0,00 09 26 39 52 64	0 ++	,00 01 01 01 01 05	0 + + + +	弾00 00 01 02 05 06	0 + + + +	m,00 00 02 02 02 02 03	+0 + + + +	^m 01 01 02 03 04 03	0 ++ ++ +	m00 00 01 02 03 02	+0 ++ ++ ++	^m 01 01 04 05 06 08	+0 + + + +	,00 00 02 03 05 08	0 + + + +	,00 00 01 03 06 10
77 86	+ +	07 09	+	14 37	+	$\begin{array}{c} 12\\ 25\end{array}$	-	02 09	++	02 08	++	12 18	+	$\begin{array}{c} 14\\20 \end{array}$	+ +	15 18

Abweichungen gegen LAMBERT. (Vergleich mit BARABASCHEFF.) Tabelle 18. Mittelstreifen.

Tabelle 19. Seitenstreifen.

		I	Barab	asche	ff						Plae	tschke				
u/a	bl 4	au 58	g 5	elb 78	I E	rot 552	vio 3	lett 61	۱	olau 384	g	elb 528	ro 6	t I 42	ro 6	t II 70
0,00 09 26 40 53	0 	,00 01 00 02 04	0 	,00 01 02 01 03	-) ^m 00 01 03 02 05	0 	^m 00 00 02 05 10	() ^m 00 00 01 02 05	0	,,,00 00 00 00 01	0 + +	,00 00 00 02 04 05	0 ³	, 00 00 00 02 02 02
66 79 84		08 06	 + +	04 07 27		04 02 07		28 34		10 20 21	+	02 00 02		05 09 10	+ + +	16 20

die verschiedenen Farben zwischen meine eigenen Werte noch einigermaßen zwanglos einordnen lassen, ist das beim Seitenstreifen schwerer möglich. Die größten Abweichungen gegen meine Werte zeigen die Randpunkte der Gelbaufnahmen von BABABASCHEFF. Die effektiven Wellenlängen und die Spektralbereiche der Aufnahmen fallen aber niemals zusammen. Es ist daher möglich, daß die Unterschiede zwischen BABABASCHEFF und mir den reellen Verhältnissen entsprechen und auf den verschiedenen Einfluß der bekannten Absorptionsbanden des Jupiterspektrums zurückzuführen sind.

Der Kontrast der Streifen. Interessant ist ein Vergleich des hellen mit dem dunklen Streifen in den verschiedenen Farben. Man sieht, wie verschieden der Kontrast zwischen den Streifen in den fünf Farben ist. Verglichen wurden (in Tabelle 20) Punkte des hellen Mittel- und des dunklen Seitenstreifens, die gleichen Abstand vom Zentralmeridian, also gleiche Meßpunktnummern haben. Die gemessenen Helligkeitsunterschiede solcher nebeneinanderliegender Punkte des Mittel- und Seitenstreifens sind dann in Größenklassen, wobei

 $\Delta m = m_{Seilenstreifen} - m_{Mittelstreifen}$

Meßpunkt Nr.	u/a	violett	blau	gelb	rot I	rot II
Ost 19 18 15 12 9 6 2 0	0,82 77 64 52 39 26 09 00	0 ^m 33 32 34 38 42 46 50 51	0 ^m 38 36 43 45 46 49 53 53	0 ^m 22 19 18 19 21 22 25 26	0 ^m 10 09 05 07 07 05 06 06	0 ^m 31 26 17 15 16 17 19 19
2 6 9 12 15 18 West 19	09 26 39 52 64 77 82	52 50 46 41 34 28 26	53 52 50 47 44 35 31	26 24 23 21 18 17 18	07 06 06 05 04 05	19 19 19 18 20 24 27

Tabelle 20. Kontrast zwischen den Streifen.

Ein Teil des hier dargestellten Kontrastes zwischen Mittel- und Seitenstreifen ist auf die allgemeine Randverdunkelung zurückzuführen, denn die Punkte des Seitenstreifens liegen ja dem Rande immer näher als die entsprechenden des Mittelstreifens. Korrigiert man die Zahlen der letzten Tabelle wegen der Unterschiede der Winkel *i* nach dem LAMBERTschem Gesetz, so bleiben als reduzierte Kontraste folgende Zahlen (Tabelle 21):

Meßpunkt Nr,	u/a	violett	blau	gelb	rot I	rot II
Ost 19 18 15 12 9 6 2 0 - 2 - 6 - 9 - 12 - 15 - 18 West - 19	0,82 77 64 52 39 26 09 00 - 09 - 26 - 39 - 39 - 52 - 64 - 77 - 82	0 ^m 23 24 29 34 38 42 47 48 49 47 43 36 29 21 17	0 ^{m23} 28 37 40 42 45 50 50 49 49 46 43 38 28 22	0,712 11 12 15 17 18 22 22 20 19 17 13 10 09	0 ^m 00 01 02 03 03 03 03 03 03 03 02 02 02 02 00 - 03 - 04	07921 18 12 11 13 14 16 16 16 16 16 16 14 14 17 18

 Tabelle 21.
 Kontrast zwischen beiden Streifen (nach LAMBERT reduziert).

Beide Tabellen lehren aus folgendes: In den Mittelpartien zeigt sich deutlich die bekannte Abnahme des Kontrastes mit wachsender Wellen-

JOHANNES PLAETSCHKE,

länge. Der Kontrast zwischen hellem und dunklem Äquatorstreifen ist im Violetten und Blauen am größten, im Gelben geringer und nimmt bei rot I auf einen sehr geringen Betrag ab, um bei rot II wieder etwas anzusteigen. Besonders bemerkenswert ist die Veränderung des Kontrastes nach dem Jupiterrande hin. Während im Violetten der Kontrast nach dem Rande zu beträchtlich abnimmt, ist die Abnahme im Blauen etwas geringer, im Gelben erheblich geringer und kehrt sich im Roten sogar in eine geringe Zunahme um. Diese Tatsachen stehen zum Teil im Widerspruch zu den Ergebnissen von BARABASCHEFF, der für alle seine drei Farben keine systematischen Änderungen des Kontrastes beim Übergange von den zentralen Teilen der Jupiterscheibe zum Rande feststellt und daraus auf nahezu gleiche Niveauhöhe der beiden Streifen schließt. In Tabelle 22 gebe ich einen Vergleich zwischen den BABABASCHEFFschen Werten und den meinen. Entsprechend der Tabelle 21 sind die Kontrastwerte nach LAMBERT reduziert. Bei meinen Werten mußte wieder entsprechend BARABASCHEFF Ost- und Westhälfte gemittelt werden. Die Barabascheff-Werte wurden auf meine Meßpunkte interpoliert.

Tabelle 22. Kontrast zwischen beiden Streifen (nach LAMBERT reduziert). Vergleich BARABASCHEFF-PLAETSCHKE.

	F	Barabasche	ff			Plaetschke)	
u/a	blau 458 mµ	gelb 578	rot 652	violett 361	blau 384	gelb 528	rot I 642	rot II 670
0,000 086 258 387 516 645 774 817 862	0,731 33 34 37 39 42 43 40 37	0,723 23 22 23 19 16 24 27 34	0 ^m 20 20 18 19 19 18 18 18 18 19 19	0 ^m 48 48 44 40 35 29 22 20	0,50 50 47 44 42 88 23 24	0,m22 22 19 18 16 12 10 10	$\begin{array}{c} 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, $	0,m16 16 15 14 12 13 18 20
904	30	23	11					

Ein Vergleich der absoluten Größe des Kontrastes ist nicht ohne weiteres zulässig, da dieser von der Breite des Photometrierspaltes abhängig ist. Wohl aber kann man aus dem Verlauf des Kontrastes nach dem Rande zu gewisse Schlüsse ziehen. Die wahre Größe des Kontrastes zwischen den Streifen in der Mitte der Jupiterscheibe läßt, sich besser aus den Photometrierungen längs des Zentralmeridians feststellen. Ich gebe in der

Tabelle 23 die Helligkeiten längs des Zentralmeridians in Größenklassen für die Farben violett, blau, gelb und rot II. Rot I mußte, wie schon

Meßr	unkt				[.
Nr.	v/k	VIOIett	Diau	gelb	rot II	Lambert
18	ord 0,83	0, 95	0 , 91	0 , 98	0 .,66	0 ,67
16 15 14	76 74 69 64	64 72 62 57	79 66 56 48	85 71 61 52	48 40 36	38
13 12 11	60 55 51	52 48 43	43 40 37	45 40 36	31 25 23	22
10 9 8	46 41 37	41 46 53	30 34 45	33 32 32	22 20 17	11
7 6	32 30 28	60 63 65	53 55 53	35 37 35	14 14 13	05
5 4 3 2 1	23 18 14 09 05	56 42 27 12 02	45 31 16 08 03	31 25 18 10 03	08 04 03 02 00	01
0	03 00	00 02	00 04	00 01	00 00	00
- 1 - 2 - 3 - 4 - 5	- 05 - 09 - 14 - 18 - 23	11 23 30 38 45	10 16 22 28 33	04 06 08 11 14	01 02 04 06 08	01
- 6 - 7	28 30 32	50 51 50	38 40 41	16 17 19	14 16 17	05
- 8 - 9 - 10 - 11	- 37 - 41 - 46 - 51	48 49 44 39	39 37 34 32	23 26 30 33	20 24 29 33	12
-12 -13 -14	- 55 - 60 - 64	44 51 60	40 49 59	37 40 47	40 47 55	22
-15 -16	- 69 - 74	69 80	69 80	54 63	66 79	39
- 17 - 18 Si	$ - 78 \\ - 83 \\ id$	90 1,05	92 1,07	87	1,13	68

Tabelle 23. Helligkeitsverlauf längs des Zentralmeridians.

JOHANNES PLAETSCHKE,

erwähnt, wegen der sehr ungenauen Bestimmung der Mitte weggelassen werden. v/k bedeutet den Abstand von der Jupitermitte in Einheiten der halben Meridianlänge. Der helle äquatoriale Mittelstreifen sowie der nördliche und der südliche dunkle Seitenstreifen wurden in der Tabelle durch die horizontalen Striche hervorgehoben. Besser noch sind die Verhältnisse in der nach Tabelle 23 gezeichneten Abb. 1 zu sehen, in der der Verlauf

Abb. 1. Helligkeitsverlauf längs des Zentralmeridians.

der Helligkeit in vier Farben längs des Meridians veranschaulicht ist, wobei alle Helligkeiten auf die Mitte des hellen Streifens bezogen sind.

Es zeigt sich wieder die Abnahme des Kontrastes zwischen den Streifen, wenn man von kürzeren zu längeren Wellenlängen übergeht. Der südliche dunkle Streifen ist nur im Violetten und Blauen deutlich erkennbar. Der nördliche (photometrierte) dunkle Streifen ist im Violetten und Blauen sehr deutlich ausgeprägt, im Gelben weniger; im Roten ist er kaum noch zu erkennen. Im Violetten, Blauen und besonders im Roten ist die Nordpolzone heller als die Südpolzone, im Gelben ist umgekehrt die Südpolzone heller. Da die Helligkeiten jedes Meridianschnittes immer auf die jeweilige Maximalhelligkeit des Schnittes bezogen sind, können absolute Helligkeiten in den verschiedenen Farben nicht miteinander verglichen werden. In der letzten Spalte der Tabelle 23 gebe ich noch einige Helligkeiten, wie sie sich bei Annahme des LAMBERTschen Gesetzes ergeben müßten.

Die visuellen Beobachtungen von E. Schoenberg. Im folgenden bringe ich die schon erwähnten visuellen Beobachtungen von E. SCHOENBERG. Nr. 1 bis 35 wurden im Jahre 1927 am SCHMIDTschen Spiegelteleskop, Nr. 40 bis 86 in den Jahren 1928 bis 1930 am 9zölligen Refraktor der Breslauer Zweigsternwarte Sternblick bei Winzig mit dem von E. SCHOENBERG konstruierten Photometer, mit welchem auch die Venusbeobachtungen gemacht worden sind, erhalten. Photometriert wurden ebenfalls der helle Äquatorstreifen und der nördliche dunkle äquatoriale Streifen, und zwar auf jedem Streifen fünf Punkte. Punkt 1 war der Meridianpunkt des Streifens, Punkt 2 und 3 lagen in halber Entfernung zum Rande, Punkt 4 und 5 lagen um 1/4 der halben Streifenlänge vom Rande entfernt, und zwar jeweils 3 und 5 auf der Sonnenseite des Planeten und 2 und 4 auf der anderen Seite, wo die Phase sich bemerkbar macht. Vor der Opposition bedeutete also 3 und 5 Ostseite, 2 und 4 Westseite des Planeten, nach der Opposition war es umgekehrt. Die Reduktion der Beobachtungen nebst Berechnung der Winkel α , *i* und ε ist von Herrn Gymnasialprofessor PFAFF vorgenommen worden Die Beobachtungen wurden nach den Phasenwinkeln, Streifen und Filtern in Gruppen zusammengefaßt, und es wurde später mit Gruppenmitteln gerechnet. Ich gebe die Einzelbeobachtungen, aber schon nach den Gruppen geordnet. Die Zeiten sind Weltzeit. Die Filter rot, gelb, grün und blau wurden schon oben behandelt. Das auch bei den Venusbeobachtungen¹) benutzte violette Filter mit einer maximalen Durchlässigkeit bei 400 m μ (effektive Wellenlänge für Auge + Filter etwa 500 m μ) wurde nicht besonders untersucht, da nur sehr wenige Beobachtungen mit ihm gemacht worden sind und die aus ihnen berechneten Werte nur geringes Gewicht haben. Beobachtungen, die aus irgendwelchen Gründen schon bei der Gruppenbildung ausscheiden mußten, sind hier schon weggelassen worden. Die Helligkeiten sind in Größenklassen angegeben, wobei jedoch hier, umgekehrt wie sonst üblich, größere Zahlen größere Helligkeiten bedeuten. Daß die Helligkeiten der verschiedenen Beobachtungen sehr verschiedene Größen haben, stört weiter nicht, da ja nur relative Helligkeiten, Größenklassendifferenzen gegen die Mittelhelligkeit benutzt werden. Die Größen g stellen die Gewichte der Beobachtungen dar, die aus Bildgüte und Beobachtungsgüte abgeleitet worden sind.

 ¹) Untersuchungen über die Atmosphäre des Planeten Venus. Sitzungsber.
 d. preuß. Akad. d. Wiss., Phys.-math. Klasse, 1931, XXI.

·																
L N		Welt	tzeit		8		Beobacl	atete Helli	gkeiten		0			a)		
						1	2	8	+	2		1	2	8	4	2
								1. V	iolettes I	'ilter.						
21	1927	Dez.	5	16h58	11,22	2 m 351 .	2 ^m 242	2 ^m 024	1 m 332	1 m 571	1,73	$ 11,98 \\ 3,85$	41%42 30,22	$19,18 \\ 30,22$	59°94 48,72	37°56 48,72
22	1927	Dez.	2	17h18	11,22	2,794	2,457	2,620	1,970	2,384	1,73	$11,98 \\ 3,85$	41,42 30,22	$19,18 \\ 30,22$	59,94 48,72	37,56 48,72
								2. B	laues Filt	er.			•			
68	1929	Nov.	æ	1h02	5,52	5 m 026	4 . ,594	4 . ,872	4 ^m 164	4 ^m 324	1,58	10,83 6,17	39938 30,55	21,73 30,55	57980 48,90	39,95 48,90
2	1927	Okt.	27	22h08	7,23	3,133	2,506	2,904	1,741	2,514	1,22	8,41 4,28	37,46 30,28	$23,13 \\ 30,28$	$55,96 \\ 48,75$	41,55 48,75
73	1930	Jan.	11	19h18	7,70	3,949	3,674	3,890	3,153	3,355	1,73	9,43 5,48	38,07 30,46	22,88 30,46	56,50 48,64	41,18 48,64
9	1927	Okt.	30	20h26	7,72	3,199	2,787	3,054	2,277	2,602	1,73	8,84 4,27	$37,94 \\ 30,28$	22,65 30,28	56,45 48,75	41,06 48,75
86	1930	Jan.	12	23h42	7,88	2,690	2,326	2,557	1,778	2,220	1,73	9,50 5,48	38,23 30,46	22,70 $30,46$	56,68 48,64	41,00 48,64
10	1927	Nov.	. 13	18h27	9,60	4,632	4,195	4,409	3,867	4,247	2,00	10,45 4,06	39,80 30,24	20,78 30,24	58,32 48,73	39,18 48,73
16	1927	Nov.	. 14	20h13	9,71	4,730	4,444	4,681	3,932	4,435	1,87	10,56 4,01	39,90 30,24	20,67 30,24	58,43 48,72	39,07 48,72
20	1927	Dez.	ŝ	19h37	11,16	4,696	4,344	4,494	3 , 755	4,243	1,87	$11,93 \\ 3,85$	41,36 30,22	19,23 $30,22$	$59,90 \\ 48,72$	37,61 48,72
30	1927	Dez.	9	17h30	11,33	2,799	2,495	2,611	2,012	2 , 352	1,58	$12,10 \\ 3,82$	$41,52 \\ 30,22$	19,09 30,22	60,05 48,72	37,47 48,72

Visuelle Beobachtungen SCHOENBERG. Tabelle 24. Heller Streifen.

100

JOHENNES PLAETSCHKE,

Z Nr.	8	7eltzeii		8		Beobac	htete Helli	gkeiten		5			·~		
eits					1	2	3	4	5	,	-	7	3	4	Ð
 chrii															
ft für							3. G	irünes Fi	lter.						
33 Astrop	1928 Mi	ärz 6	18h00	4,56	3 504	3 m 108	3 ^m 118	2 m663	2 m 527	1,58	6,15 4,05	34%70 30,24	25°92 30,24	53°22 48,75	44°35 48,75
S hysik.	1928 Mi	àrz b	18h04	4,69	3,185	2,526	3,017	2,169	2,260	1,73	6,27 4,04	34,90 30,24	25,74 30,24	53,38 48,75	44,15 48,75
12 Bd. 19	1930 Ja	n . 11	18h32	7,70	4,012	3,857	3,910	3,311	3,645	2,00	9,43 5,48	38,07 30,46	22,88 30,46	56,50 48,64	41,18 48,64
. 79	1930 Ja	n. 12	21h21	7,87	3,953	3,511	3,764	2,894	3,303	2,00	9,50 5,48	38,23 30,46	22,70 30,46	56,68 48,64	41,00 48,64
63	1929 Se	pt. 21	Э 22ћ04	10,76	4,667	4,218	4,572	3,767	4,272	1,58	12,20 5,79	40,13 30,50	20,03 30,50	59,33 48,88	38,18 48,88
54	1929 Se	pt. 2	7 22h53	10,89	4,974	4,730	4,930	4,154	4,497	2,12	$12,32 \\ 5,79$	$\begin{array}{c} 40,27\\ 30,50 \end{array}$	19,85 30,50	53.72 48,88	38, ^C 48,88
							4. G	elbes Fil	ter.						
41	1928 Mi	àrz 2	17h13	5015	1 2 m 997	2m778	2 m 659	2 .418	2 ^m 150	1,87	6,62 4,03	35928 30,24	25,32 30,24	53,78 48,75	43°75 48,75
2 8	1929 No	ov. 8	1h33	5,52	4,505	4,195	4,390	3,641	4,048	1,73	10,83 6,17	39,38 30,55	21,73 30,55	57,80 48,90	39,95 48,90
74	1930 Ja	m. 11	19h38	7,70	4,063	3,614	3,845	2,973	3,381	2,00	9,43 5,48	38,07 30,46	22,88 30 ,4 6	56,50 48,64	41,18 48,64
4	1927 OI	ct. 30	19h54	12,7	4,983	4,676	4,835	3,875	4,421	2,00	8,84 4,27	37 ,94 30,28	22,65 30,28	56,45 48,75	41,06 48,75

Photographische Photometrie der Jupiterscheibe.

Ĭr.		Weltz	seit		σ		Beobaci	htete Helli	gkeiten		б			·e> u		
						1	2	8	4	5			2	3	4	5
78	1930 ,	Jan.	11	22h58	7,73	2 m 874	2 m 639	2 m 689	1 m 992	2 m 503	1,73	9°42 5,48	38%07 30,46	22°87 30,46	56°,53 48,64	41°15 48,64
84	1930,	Jan.	12	23h12	7,88	2,795	2,232	2,486	1,706	2 , 056	2,12	9,50 5,48	38,23 30,46	22,70 30,46	56,68 48,64	41,00 48,64
14	1927]	Nov.	13	19h38	9,60	4,800	4 , 529	4,670	3,955	4,362	1,87	10,50 4,06	$39,81 \\ 30,24$	20,76 30,24	58,33 48,73	39,18 48,73
18	1927]	Nov.	14	20h42	9,71	4,619	4,184	4,556	3,700	4,196	2,00	10,56 $4,01$	$39,90 \\ 30,24$	20,67 30,24	58,43 48,72	$39,07 \\ 48,72$
64	1929 {	Sept.	29	22h22	10,76	4,770	4,254	4,626	3,656	4,181	1,58	12,20 5,79	$\frac{40,13}{30,50}$	20,03 30,50	59,33 48,88	$39,18 \\ 48,88$
59	1929	Sept.	28	22h50	10,82	4,890	4,590	4,702	3,938	4 , 246	1,87	$\left \begin{array}{c} 12,25\\ 5,79 \end{array} \right $	40,20 30,50	$19,93 \\ 30,50$	59,42 48,88	$38,12 \\ 48,88$
								5. H	otes Filt	er.						
52	1928]	März	9	17h46	4,56	3 m 766	3m390	3 m 385	2 . 874	2 m 868	1,73	6,15 4,05	34°70 30,24	25,92 30,24	53°22 48,75	44°35 48,75
1 8	1928]	März	5	17h30	4,70	2,710	2,383	2,449	1,772	1 , 926	2,00	6,27 4,04	$34,90\\30,24$	25,74 30,24	53,38 $48,75$	44,15 48,75
#	1928	März	3	17h05	4,97	3,510	3,092	3,236	2,687	2,753	1,73	$6,62 \\ 4,03$	35,28 30,24	25,32 30,24	53,78 48,75	43,75 48,75
13	1928]	März	61	17h44	5,15	2,056	1,772	1,819	1,105	1,433	1,73	6,62 4,03	35,28 30,24	25,32 30,24	53,78 48,75	43,75 48,75
69	1929]	Nov.	œ	1h22	5,52	4,267	4,009	4,105	3 , 466	3 , 700	1,87	10,83 6,17	39,38 30,55	21,73 30,55	57,80 48,90	39,95 48,90

JOHANNES PLAETSCHKE,

Nr.		Welt	zeit		v		Beobac	btete Helli	gkeiten		6			i E		
						1	2	8	4	5	,	1	2	3	4	5
72	1930	Jan.	Ħ	18h58	02.02	3m065	2 m608	2 m 874	2m078	2 ^m 538	2,00	9°,43 5,48	38,07 30,46	22°88 30,46	56°50 48,64	41°18 48,64
22	1930	Jan.	11	22h40	7,72	3,019	2,640	2,815	2,161	2,452	1,58	9,42 5.48	38,07 30.46	22,87 30.46	56,53 48.64	41,15 48.64
83	1930	Jan.	12	22h24	7,88	4,577	4,325	4,425	3,736	4,103	1,73	9,50 5,48	38,23 30,46	22,70 30,46	56,68 48,64	41,00 48,64
12	1927	Nov.	13	19h11	9,60	4,239	3,852	4,071	3,407	3,816	2,00	10,45 4,06	39,80 30,24	20,78 30,24	58,32 48,73	39,18 48.73
62	1929	Sept.	. 29	21h45	10,76	4,443	3,999	4,416	3,433	4,092	1,58	12,20 5,79	40,13 30,50	20,03 30,50	59,33 48,88	38,18 48,88
57	1929	Sept.	28	22h19	10,82	4,640	4,309	4,494	3,776	4,085	1,73	$12,25 \\ 5,79$	40,20 30,50	19,93 30,50	59,42 48,88	38,12 48,88
56	1929	Sept.	. 27	23h29	10,88	4 , 794	4,481	4,764	3,990	4,318	2,00	12,32 5,79	40,2730,50	19,85 30,50	59,72 48,88	38,03 48,88
34	1927	Dez.	29	1718	11,23	4,311	3,781	4,052	3,191	3 , 536	1,58	12,00 3,82	41,43 30,22	$19,18 \\ 30,22$	$57,96 \\ 48,72$	$37,56 \\ 48,72$
							Tak	elle 25.	Dunke	r Streif	en.					
Nr.		Welt	zeit		8		Beobac	btete Helli	gkeiten		9					
1						-	2	×	4	5		-	2	3	4	ا م
								1. V	iolettes H	Filter.						
*8	1927	Dez.	5	17h45	11,22	3 ^m 041	2 m 725	3 ^m 001	2 m 361	2 ^m 671	1,41	20,28 16,66	44"28 34,06	25°05 34,06	61,74 51,19	41°21 51,19
24	1927	Dez.	õ	1 7h56	11,22	3,162	2,669	2,892	2,594	2,657	1,22	20,28 16,66	44,28 34,06	25,05 34,06	61,74 51,19	4 1,21 51,19

Photographische Photometrie der Jupiterscheibe.

Nr.		Weltz	seit		z		Beobacl	htete Helli	gkeiten		b			.њ Ш		
						-	3	ø	4	2	, ,		2	8	4	ъ
								2. B	laues Fil	ter.						
2	1927	Okt.	30	21h18	20,72	2 ^m 505	2 m 293	2 m 594	1 m 908	2m278	1,73 (18%66 17,00	41,10 34,23	27%60 34,23	58°46 51,31	$44^{0}_{0}33$ 51,31
8	1927	Okt.	30	21h53	7,72	2,371	2,099	2,536	1,761	2,166	1,73	18,66 17,00	$\frac{41,10}{34,23}$	27,60 34,23	58,46 51,31	44,33 51,31
п	1927	Nov.	13	18h43	9,60	4,199	3,937	4,105	3 , 583	3 , 832	2,00	19,46 16,83	42,72 34,15	26,30 34,15	60,21 51,25	42,58 51,25
17	1927	Nov.	14	20h26	9,71	4,443	4,164	4,370	3,682	4,187	1,87	$19,51 \\ 16,81$	42,89 34,14	26,12 34,14	60,14 51,24	42,55 51,24
31	1927	Dez. (9	18h06	11,33	2,508	2,362	2,348	1 , 765	2,041	1,41	$20,34 \\ 16,60$	44,38 34,03	25,00 34,03	61,84 51,17	41,14 51,17
					•	_		3. Gı	riines Fil	ter.	•					
49	1928	März	5	17h49	4°69	3 ^m 241	2 ^m 890	3 m 027	2 ^{m352}	2 	1,73	18,08 17,15	38°35 34,28	30°52 34,28	55,75 51,33	47,28 51,33
80	1930	Jan.	12	21h38	7,87	3,236	2,394	3,057	1,793	2,412	2,00	$19,70 \\ 18,20$	$\frac{41,68}{34,98}$	28,53 34,98	58,95 51,73	44,62 51,73
81	1930	Jan.	12	21h38	7,87	2,570	2,344	2,507	1,797	2 ,073	2,00	19,70 18,20	$\begin{array}{c} 41,68\\ 34,98\end{array}$	28,63 34,98	58,95 51,73	44,62 51,73
82	1930	Jan.	12	22h07	7,87	4,713	4,555	4,587	3,927	4,303	1,87	19,70 18,20	$\frac{41,68}{34,98}$	28,53 34,98	58,95 51,73	44,62 51,73
99	1929	Sept.	29	23h00	10,75	4,430	4,044	4,300	3,444	4,024	1,73	21,47 18,58	44,50 35,03	26,43 35,03	61,77 51,87	42,27 51,87
55	1929	Sept.	27	23h10	10,88	4 , 707	4,461	4,585	3,975	4,374	2,24	21,47 18,58	44,63 35,03	26,37 35,03	61,92 51,87	42,15 51,87

JOHANNES PLAETSCHKE,

Nr.	We	ltzeit		8		Beobac	htete Helli	lgkeiten		g			به م <u>ر</u> .		
					-	2	3	4	5		-	2	3	Ŧ	5
							4. Ge	slbes Filt	er.						
5	1927 Okt.	. 30	20h08	12,71	4 ^m 679	4 ^m 313	4 ^m 460	3 m 511	3 m 962	1,73	12,00 17,00	41^{0}_{-10}	27%60 34 23	58°46 51.31	44033 51.31
75	1930 Jan.	. 11	19h57	7,71	3,794	3,240	3,526	2,751	2,834	2,12	19,63	41,54 34,98	28,67 34,98	58,78 51,73	44,77 51.73
76	1930 Jan.	. 11	22h16	7,72	3,846	3,692	3,730	3,101	3,502	1,73	19,67 18,20	41,58 34,98	28,63 34,98	58,80 51.73	44,75 51.73
85	1930 Jan.	. 12	23h26	7,88	2,391	1,872	2,245	1,177	1,674	2,00	19,70 18,20	41,68 34,98	28,53 34,98	58,95 51,73	44,62 51,73
15	1927 Nov	. 13	19h50	9,61	4,464	4,171	4,322	3,729	4,135	2,00	19,46 16,83	42,80 34,15	26,29 34,15	60 ,22 51,25	42,64 51,25
19	1927 Nov	14	20h55	9,71	4,277	4,102	4,291	3,626	4,057	1,58	19,51 16,81	42,89 34,14	26,12 34,14	60,14 51,24	42,55 51,24
67	1929 Sept	t. 29	23h22	10,75	4,567	4,042	4,385	3,462	4,070	1,73	21,47 18,58	44,50 35,03	26,43 35,03	61,77 51,87	42,27 51,87
09	1929 Sept	t. 28	23h01	10,82	4,657	4,224	4,469	3,643	4 , 138	2,00	21,50 18,58	44,57 35,03	26,40 35,03	61,83 51,87	42,22 51,87
							5. F	totes Filt	er.						
51	1928 Män	z 6	17h05	40,56	6 m 063	4 ^m 915	4 ^m 984	4 ^m 565	4 ,420	1,41	11,71	38°33 34,28	30%67 34,28	55'62 51,33	47°,45 51,33
47	1928 Mär	z 5	17h12	4,70	2,794	2,563	2,626	1,843	1,825	1,87	18,08 17,15	38,35 34,28	30,52 34,28	55,75 51,33	47,28 51,33
45	1928 Mär.	z 3	17h23	4,97	2,603	2 , 523	2,465	1,913	2,206	1,87	18,22 17,14	38,85 34,28	30,23 34,28	56,09 51,33	46,92 51,33
42	1928 Mär	2 Z	17h30	5,15	2,063	1,695	1,689	1,231	1,141	1,73	18,22 17,14	38,85 34,28	30,23 34,28	56,09 51,33	46,92 51,33

Photographische Photometrie der Jupiterscheibe.

Nr.	Welt	tzeit		ø		Beobac	htete Helli	gkeiten		g			·~ 8		
					1	2	3	4	5		1	2	3	4	5
13	1927 Nov.	13	19h24	0946	3m979	3 m 682	3 m8 51	3 m 143	3 ,426	1,73	19°46 16,83	42%2 34,15	26,30 34,15	60°21 51,25	42,56 51,25
65	1929 Sept	. 29	22h38	10,76	4,249	3,801	4,210	3 , 086	3,812	1,73	21,47 18,58	44,50 35,03	26,43 35,03	61,77 51,87	42,27 51,87
61	1929 Sept.	. 28	23h14	10,82	4,561	4,204	4,416	3,633	4,010	2,00	$21,50 \\ 18,58$	44,57 35,03	26,40 35,03	61,83 51,87	42,22 51,87
35	1929 Dez.	29	17h50	11,23	3,876	3,573	3,787	3,209	3,366	1,58	20,32 16,60	44,30 34,03	25,07 34,03	61,76 51,17	41,22 51,17

Bemerkungen zu diesen Beobachtungen.

Zu Nr. 42 (dunkler Streifen, rotes Filter): Dunkler Streifen im roten Filter schlecht sichtbar.

der, sich noch ganz auf die Jupiterscheibe projizierend, deutlich heller war als der Rand des Planeten. 23³¹ nach meiner 1929 September 27 2326 bemerkte ich am rechten (westlichen) Jupiterrande auf der südlichen Halbkugel einen Trabanten (III). Zu Nr. 45 (dunkler Streifen, rotes Filter): Streifen im roten Filter fast unsichtbar.

Taschenuhr trat die Loslösung vom Rande ein. Im blauen und im roten Filter erscheint der Helligkeitsunterschied Rand gegen Trabanten am geringsten, im grünen am stärksten. Vollständige Loslösung mit Sicherheit 23ª festgestellt. (dunkler Streifen, grünes Filter). Alle Streifen werden am Rande heller und undeutlicher, verschwinden zum Teil ganz. Zu Nr. 55

Zu Nr. 61 (dunkler Streifen, rotes Filter) auch im roten Filter verschwinden die dunklen Streifen am Rande.

Zu Nr. 80/81 (dunkler Streifen, grünes Filter): R1 (Punkt 3) im dunklen breiten Fleck, R2 (Punkt 5) dunkler Streifen im Grünen tast bis an den Rand sichtbar.

der südlichen Halbkugel, zwei schmale Streifen auf der nördlichen Halbkugel. Im gelben Filter verschwindet der breite 10 19¹⁰--19²⁰ (südlicher dunkler Streifen, gelbes Filter): Sichtbar ein breiter dunkler Streifen und ein schmaler auf gemessene Streifen im Punkte $L_{\mathbf{s}}$ und $R_{\mathbf{z}}$ (Punkt 4 und 5). 1930 März

20%-2016 (heller Streifen, rotes Filter): In Roten sind die Streifen weniger sichtbar als in Grün und Gelb, erstrecken sich aber scheinbar weiter bis an den Rand.

1930 April 3 20¹⁹-20⁸¹ (südlicher dunkler Streifen, grünes Filter): Im grünen Filter erscheinen die dunklen Streifen ziegelrot.

Die Transmissionskoeffizienten. Der Verlauf der Helligkeitsabnahme für die einzelnen Wellenlängen ist so verschieden und abweichend von demjenigen, den man bei reiner Streuung oder reiner Absorption zu erwarten hätte, daß seine Deutung eine eingehende Untersuchung beider Ursachen in allen Wellenlängen mit Rücksicht auf die Lage der bekannten Absorptionsbanden des Jupiterspektrums erfordert. Zunächst wollen wir die Streuung außer acht lassen und die Tr. k. aus der elementaren Formel (11) ableiten, um aus ihrem Verlauf zu ersehen, wie weit sich die genannten Absorptionsbanden auf die Durchlässigkeit der Jupiteratmosphäre auswirken. Als Reflexionsgesetz der Oberfläche wurden die Gesetze $f(i, \varepsilon) = \cos i \cos \varepsilon$ (LAMBERT), $f(i, \varepsilon) = \cos \varepsilon$ und $f(i, \varepsilon) = \frac{\cos i \cos \varepsilon}{\cos i + \cos \varepsilon}$ (SEELIGER) angenommen und die Tr. k. für Mittel- und Seitenstreifen, alle fünf Farben

		Mi	ttelstrei	len			Sei	tenstreif	'en	
/ (1, 8)	violett	blau	grün	gelb	rot	violett	blau	grün	gelb	rot
$\cos i \cdot \cos \epsilon$ (LAMBERT)	0,798	0,668 807 889 836	0,609 820 869	0,810 708 719 850 734	0,678 794 784 834 776	0,917	1,05 0,968	0,743 929 911	0,659 844 766	0,812 821 825 867
cos e	0,531 I	444 534 590 557	402 543 580	536 468 475 565 490	447 526 519 555 519	621	700 656	500 630 619	446 570 521	547 553 560 589
$\frac{\cos i \cdot \cos \varepsilon}{\cos i + \cos \varepsilon} \begin{cases} \\ (\text{SEELIGER}) \end{cases}$	0,540	447 539 597 566	403 547 586	539 472 479 571 496	449 530 523 561 524	632	715 665	503 634 625	450 577 530	549 554 567 598

Tabelle 26. Transmissionskoeffizienten SCHOENBERG.

und diese drei Reflexionsgesetze ausgerechnet. Ich beschränkte mich dabei auf jeweils 15 Punkte längs eines Streifens, die den Helligkeitsverlauf jeweils genügend genau darstellen. Es ergab sich so für jedes Filter, jeden Streifen und jedes Gesetz ein Wert für den Tr. k. Diese sind in Tabelle 27 zusammengefaßt. Auch aus den BARABASCHEFF schen Helligkeiten ¹) wurden in derselben Weise die Tr. k. berechnet. Es standen für beide Streifen und drei Filter jeweils 16 Helligkeiten zur Verfügung, die immer das Mittel zweier im gleichen Abstande von der Mitte gemessenen Helligkeiten waren.

¹) ZS. f. Astrophys. 8, 180/181, 1934.

JOHANNES PLAETSCHKE,

Die Mittelung rechts und links beeinflußte das Resultat nur unwesentlich, wie ich durch einen praktischen Versuch an meinen Aufnahmen feststellte. Diese Werte des Tr. k. finden sich ebenfalls in der Tabelle 27. Schließlich berechnete ich auch aus den SCHOENBERGschen visuellen Helligkeiten die Tr. k., und zwar für jede der oben angeführten Gruppen besonders (Tabelle 26). In jeder Gruppe wurden zunächst mittlere Helligkeiten für jeden der fünf gemessenen Punkte gebildet und ebenso die entsprechenden Winkel gemittelt, und zwar nach den in Tabelle 24 und 25 angegebenen Gewichten. Bei beiden Streifen umfaßt jedes der fünf Filter eine bis fünf Gruppen, deren Tr. k. später nach ihren Gewichten gemittelt wurde. Da die Schwankungen der Werte der Tr. k. von Gruppe zu Gruppe nicht unbeträchtlich sind, gebe ich zuerst die Einzelwerte jeder Gruppe für sich. Die Beobachtungen Nr. 80 und 76 (dunkler Streifen grün bzw. gelb) mußten noch ausgeschlossen werden, da ihre Helligkeiten sehr stark von den anderen abwichen.

Die Mittelwerte für jedes Filter und jeden Streifen gebe ich mit den nach meinen Messungen und den Messungen von BARABASCHEFF berechneten Tr. k. in Tabelle 27. Die Werte für Violett und Blau — Seitenstreifen wurden eingeklammert, da sie, nur aus einer bzw. zwei Gruppen gewonnen, sehr unsicher sind.

Bachachter	Filton	Effekt.	M	littelstreife	n	S	eitenstreife	9n
Beobachter	Filter	länge	Lambert	608 a	Seeliger	Lamhert	COS &	Seeliger
PLAETSCHKE (photogr.) BABABA- SCHEFF (photogr.)	violett blau gelb rot I rot II blau gelb rot	361mµ 384 528 642 670 458 578 652	1,014 0,963 900 902 893 955 861	0,686 652 608 610 604 650 586 608	0,687 654 609 611 605 650 586	1,217 140 005 0,941 941 931 923	0,829 777 685 641 620 632 632	0,829 777 686 642 620 632 627
(vis.)	violett blau grün gelb rot	(500) 526 545 564 610	(798) 809 773 764 767	(531) 537 513 507 509	(540) 543 517 511 513	(917) (1,000) 0,888 740 832	(621) (673) 602 501 563	(632) (685) 607 507 567

Tabelle 27. Transmissionskoeffizienten p_i .

Nach Formel (8) wurden aus diesen Tr. k. Schwächungskoeffizienten C berechnet und in Tabelle 28 zusammengestellt.

		Effekt.	Ľ	littelstreife	n	s	eitenstreif	en
Beobachter	Filter	länge	Lambert	C08 a	Seeliger	Lambert	C08 8	Seeliger
PLAETSCHKE (photogr.)	violett blau gelb rot I rot II	361mµ 384 528 642 670	$\begin{array}{r} - 0,013 \\ + 038 \\ 106 \\ 103 \\ 113 \end{array}$	+ 0,378 428 497 494 505	+ 0,376 425 495 492 503	-0,196 -131 -005 +061 093	+ 0,188 252 378 445 478	+ 0,188 252 377 444 477
BABABASCHEFF (photogr.)	blau gelb rot	458 578 652	046 149 113	431 534 497	431 534 497	072 081 026	460 466 413	460 466 413
Schoenberg (vis.)	violett blau grün gelb rot	(500) 526 545 564 610	(226) 212 257 269 265	(633) 622 668 679 675	(616) 611 660 671 668	(087) (000) 119 301 184	(476) (396) 507 691 574	(459) (378) 499 679 567

Tabelle 28. Schwächungskoeffizienten C_1 .

Die starke Streuung der SCHOENBERGschen Tr.k. in Tabelle 26 wird nicht nur auf die Unsicherheit der Einzelbeobachtungen (Einstellfehler auf der Jupiterscheibe und Nichtkonstanz der photometrischen Verhältnisse) zurückzuführen sein, sondern z. T. auch auf tatsächliche Veränderungen der Durchlässigkeit der Jupiteratmosphäre in dem langen Zeitraum (über 2 Jahre), über den sich die Beobachtungen erstrecken.

Die auf S. 11 erwähnte Extrapolation der Schwärzungskurve, welche die Zentralhelligkeiten von violett-Mittelstreifen um 0, 08. unsicher macht, stellt gleichzeitig ein Maß für die Genauigkeit meiner Einzelhelligkeiten überhaupt dar. Der daraus resultierende Fehler macht bei meinen Tr. k. in Tabelle 27 2,4 % aus.

In den Abb. 2 und 3 werden die Schwächungskoeffizienten C_{λ} , die aus den Tr. k. für die einzelnen Beobachter und Filter berechnet wurden, graphisch dargestellt. Dabei wurden sowohl das LAMBERTsche als das SEELIGERSche Gesetz zugrunde gelegt.

In Abb. 2 wurden außer den Werten der Schw. k. noch die Durchlässigkeitsbereiche der Kombinationen Platte-Filter bzw. Auge-Filter dargestellt, wobei abnehmende Durchlässigkeit durch Pünktchen angedeutet wurde. Die innerhalb der Bereiche stehenden Zahlen bedeuten die jeweiligen effektiven Wellenlängen. Auch die bekannten Linien und Banden des Jupiterspektrums wurden eingezeichnet ¹). Es erwies sich, daß die Übersicht

¹) V. M. SLIPHEE, The spectra of the major planets, Lowell Obs. Bull. Nr. 42 (1909) und R. WILDT u. E. I. MEYER, Das Spektrum des Planeten Jupiter, Veröff. Göttingen Nr. 19 (1931) und ZS. f. Astrophys. 3, 354 (1931).

besser wurde, wenn die visuellen Schoenbergschen Werte von den photographischen BARABASCHEFFschen und eigenen Werten getrennt wurden,

Abb. 3. Schwächungskoeffizienten (Seeliger).

zumal auch die Schoenbeegschen Beobachtungen mehrere Jahre vor denen von BARABASCHEFF und mir gemacht worden sind und möglicherweise einen anderen Zustand der Jupiteratmosphäre kennzeichnen. Aus der Darstellung ist zu ersehen, daß bis auf je eine Ausnahme bei BARABASCHEFF und SCHOENBERG die Schw. k. für den hellen Mittelstreifen stets größer sind als für den dunklen Seitenstreifen. Der Verlauf mit der Wellenlänge ist für beide Streifen durchaus ähnlich, nur verläuft der Anstieg der Schw. k. mit zunehmender Wellenlänge im Seitenstreifen steiler als im Mittelstreifen. Die SCHOENBERG schen Werte liegen fast durchweg höher, zeigen aber denselben Gang wie die von BARABASCHEFF und mir. Ein Maximum der Schw. k. scheint im Mittelstreifen bei etwa 560 m μ angedeutet, im Seitenstreifen bei 660 m μ möglich. Der Verlauf der Schw. k. ist sowohl bei Annahme des LAMBERTschen wie des SEELIGERschen Reflexionsgesetzes der gleiche, wenn die Schw. k. auch im zweiten Falle erheblich größer sind.

Die Deutung der Ergebnisse. Bei der Deutung der Ergebnisse will ich mich auf den Abfall der Helligkeit nach dem Jupiterrande und auf die Schw. k. beschränken. Die Tatsache, daß der Helligkeitsabfall in beiden Streifen und für verschiedene Wellenlängen verschieden ist (Tabelle 11 bis 17), beweist, daß hier die Wirkung einer Atmosphäre vorliegt. Eine solche macht sich ja bekanntlich dadurch bemerkbar, daß sie bei überwiegender Streuung die Randhelligkeiten erhöht, bei überwiegender Absorption die Helligkeit der Randpunkte erniedrigt. Im ersten Falle wird der Helligkeitsabfall flacher, im zweiten steiler sein als ohne Atmosphäre. Aus meinen Messungen (s. besonders Tabelle 14, 16 und 17) ergibt sich eindeutig, daß der Abfall mit zunehmender Wellenlänge steiler, die Wirkung der Absorption also stärker wird. Hier kommt es aber auch auf das Ver-

hältnis Streuung zur Absorption (in der Formel (7) auf das Verhältnis $\frac{c_{\lambda}}{C_{\lambda}} = \frac{c_{\lambda}}{c_{\lambda} + \gamma_{\lambda}}$) und auf den Wert der Albedo A_{λ} der Oberfläche für das betreffende Filter an, wenn eine genaue Analyse des Helligkeitsabfalles durchgeführt werden soll, was in dieser Arbeit nicht berücksichtigt ist. Qualitativ drängen sich hier die folgenden Betrachtungen auf:

Absorptionsbanden sind im Spektrum erst von 543 m μ an vorhanden. Die Filter violett und blau bei mir und blau bei BARABASCHEFF enthalten also keine Banden, während alle übrigen Filter solche mehr oder weniger in sich schließen (s. Abb. 2).

Geht man vom LAMBERT schen Gesetz als Reflexionsgesetz der Oberfläche aus, das selbst schon eine beträchtliche Randverdunkelung zeigt, so sieht man, daß für den Mittelstreifen im Violetten für die Randpunkte die relative Streuwirkung am größten, im Blauen geringer ist, wenn auch die

JOHANNES PLAETSCHKE,

tatsächlichen Abweichungen gegen LAMBERT ziemlich gering sind. Da nun die Absorption infolge Fehlens von Absorptionsbanden gering sein wird, kann auch die Streuung in beiden Farben ebenfalls nur gering sein. Im Gelben und Roten überwiegt die Absorption deutlich die Streuuwirkng, wie es ja auch durch die Anwesenheit von Absorptionsbanden zu vermuten ist.

Im Seitenstreifen ist im Violetten und auch noch im Blauen die Wirkung der Streuung stark überwiegend gegenüber der sicher kleinen Absorption. Im Gelben sind Streuwirkung und Absorptionswirkung etwa gleich, während im Roten die Absorptionswirkung stärker wird.

Nimmt man als Reflexionsgesetz der Jupiteroberfläche das SEELIGER sche Gesetz an, das bei Mittel- und Seitenstreifen für die Randpunkte (Punkt 20 bzw. 19) relative Helligkeiten gegenüber der Mitte (0, 00), im Osten von + 0, 0, 5, im Westen von - 0, 0, 5 ergeben würde (im Westen wäre dieser Randpunkt also etwas heller als die Mitte), so würde sich durchweg für alle Filter und beide Streifen eine sehr große Absorptionswirkung neben kaum merklicher Streuung ergeben; die Absorptionswirkung würde wie bei LAMBERT mit der Wellenlänge zunehmen.

Die Einbeziehung der BARABASCHEFFschen Werte des Helligkeitsverlaufs (Tabelle 18 und 19) ist etwas schwierig, da sie sich in die Systematik meiner Beobachtungen schlecht einordnen lassen.

In Übereinstimmung mit meinen Messungen ist der Abfall im Seitenstreifen flacher als im Mittelstreifen, die relative Streuwirkung im Seitenstreifen also größer als im Mittelstreifen. Hinsichtlich der verschiedenen Farben zeigt sich hier das gelbe Filter für die Randpunkte die stärkste Absorptionswirkung, was aber auch auf die besonders starke Absorption der in diesem Bereiche befindlichen drei starken Absorptionsbanden bei 543, 619 und 646 mµ zurückzuführen sein kann.

Beim Betrachten der Schw. k. fällt auf, daß bei Annahme des LAMBERTschen Gesetzes einige Schw. k. negativ sind. Das ist aber dadurch zu erklären, daß ja bei Ausrechnung der Schw. k. die Streuung vernachlässigt wurde, während gerade bei den betreffenden Werten (Mittelstreifen-violett, Seitenstreifen-violett und -blau) die Streuung die Absorption überwiegt, so daß die tatsächlichen Schw. k. größer sein werden.

Die von SLIPHER¹) beobachtete auffällige Abschwächung der zusammengesetzten Bande bei 646 mµ im Spektrum des dunklen Streifens

¹) V. M. SLIPHER, Spectrographic studies of the planets, Monthly Notices 93, 663, 1933.

gegenüber dem des hellen Äquatorstreifens macht sich in meinem Filter rot I und im BARABASCHEFFschen Rotfilter, die beide ihre effektive Wellenlänge nahe bei 646 m μ haben, bemerkbar, vielleicht auch bei den Gelbfilteraufnahmen von BARABASCHEFF und mir und dem SCHOENBERGschen Rotfilter. Während nämlich bei meinem Filter rot II die Werte des Schw. k. von Mittel- und Seitenstreifen sehr nahe beieinander liegen, sind für die dicht dabei liegenden Filter rot I und Barabascheff-rot die Schw. k. für den Seitenstreifen merklich geringer als für den Mittelstreifen. Bei den anderen genannten Filtern fehlen Vergleichswerte des Schw. k. mit wenig unterschiedlichen effektiven Wellenlängen.

Die Schw. k. nach dem SEELIGERschen Gesetz entsprechen zwar in ihrem Verlauf den Werten nach LAMBERT, doch sind die Absolutwerte der Schw. k. nach SEELIGER erheblich größer und liegen z. T. bei 0,5 (bei SCHOENBERG gar bei 0,65).

Die SEELIGERsche Helligkeitsverteilung für die Oberfläche müssen wir aus dem Grunde verwerfen, weil sie mit der hohen Gesamtalbedo des Planeten nicht vereinbar ist, worauf auch schon BARABASCHEFF hingewiesen hat. Dies können wir aus folgender Betrachtung ersehen.

Um die Unklarheiten, die in der Definition der Albedo liegen, die immer von dem unbekannten Reflexionsgesetz abhängig ist, zu vermeiden, berechnen wir den von Schoenberg für solche Untersuchungen eingeführten Reflexionskoeffizienten in der Bestrahlungsrichtung. Diese Größe ist zwar nicht durch direkte Messungen der Zentralhelligkeit des Planeten Jupiter im Anschluß an die Sonne bekannt, kann aber, wie im Handbuch der Astrophysik, S. 82-85, aus der Totalhelligkeit des Planeten in Opposition (BONDsche Größe p) und der gemessenen Helligkeitsverteilung berechnet werden. Schoenberg legt dabei für die Helligkeit die Formel für $\alpha = 0$ $dq = kL (1 + \mu' \cos i)^2 ds$ zugrunde, wo $\mu' = 1.8$ und die Helligkeit des zentralen Teiles des Planeten $h_0^z = kL (1 + \mu')^2$. Die Integration ergibt für die gesamte von der Scheibe reflektierte Lichtmenge $kL\pi \rho^2 f(\mu')$ und ist von SCHOENBERG numerisch ausgerechnet worden. Die BOND sche Größe p ist $p = \frac{q_0}{L \pi o^2} = k f(\mu')$. Andererseits hängt die Helligkeit des Zentrums des Planeten h_0^z mit dem Reflexionskoeffizienten R in der Bestrahlungsrichtung durch die Gleichung zusammen $h_0^s = kL (1 + \mu')^2 = RL$. Hieraus ergibt sich $R = \frac{p}{f(\mu')} (1 + \mu')^2$. So fand SCHOENBERG mit dem RUSSELLschen Wert p = 0,875 (der nur von der Beobachtung der Totalhelligkeit in Opposition abhängt und deshalb zuverlässig bekannt ist) R = 0,585. Dieser wäre nun entsprechend den Voraussetzungen mit der Absorption auf dem Hin- und Rückwege der Strahlen im Verhältnis $e^{-2 K_1}$ (sec $i = \sec \varepsilon = 1$) behaftet. Ohne Atmosphäre ergäbe sich somit für die Wolkenoberfläche des Jupiters als Reflexionskoeffizient in der Bestrahlungsrichtung $0,585 \cdot e^{2C_2}$. Entnimmt man aus meiner Kurve (Abb. 3) C_1 für das SEELIGERsche Gesetz und die visuell wirksamen Strahlen zu $C_1 = 0,50$, so folgt für die Wolken der Jupiteroberfläche R = 1,63. Der Wert für den Reflexionskoeffizienten undurchsichtiger irdischer Wasserdampfwolken ist zu 0,78 (als Höchstwert) bestimmt worden ¹). Hieraus folgt unzweideutig die Unmöglichkeit dieser Hypothese.

Ist das Reflexionsgesetz der Jupiteroberfläche selbst aber das LAMBERTsche oder ein ihm ähnliches, so können nur kleine Schw. k. C_{λ} mit einem überwiegenden, nach rot wachsenden Bestandteil reiner Absorption γ_{λ} den Beobachtungen genügen.

Daß die relative Streuung bei dem dunklen Jupiterstreifen größer ist als beim hellen Äquatorstreifen, stimmt gut mit der Annahme überein, daß die dunklen Streifen in einem höheren Niveau der Jupiteratmosphäre liegen, die man auch aus den durchweg kleineren Werten von C_{λ} für den dunklen Streifen ziehen muß. Über dem höheren Niveau der dunklen Streifen könnte man ja auch einen größeren Anteil reiner Rayleigh-Streuung durch Gase erwarten. Als Bestätigung dieser Tatsache kann auch die oben angeführte Beobachtung von SLIPHER angeführt werden, nach der die Bande bei 646 m μ im Spektrum des dunklen Streifens schwächer ist als im Spektrum des hellen Streifens.

Für die Anregung zu diesen Untersuchungen, für zahlreiche Ratschläge und das stets wohlwollende und fördernde Interesse an der vorliegenden Arbeit fühle ich mich Herrn Prof. Dr. Schoenberg zu großem Dank verpflichtet.

Literaturverzeichnis.

1. E. SCHOENBERG, Theoretische Photometrie, Handb. d. Astrophys. II, 1, 1929 und Enzykl. d. mathem. Wissensch. VI (B), 831, 1932. — 2. E. SCHOEN-BERG, Photometrische Untersuchungen über Jupiter und das Saturnsystem, Annales Academiae scientiarum Fennicae, Serie A, Tom XVI, Nr. 5 (Hel-

¹) Handb. d. Astrophys. II, 1, 61/62.

sinki 1921). — 3. E. SCHOENBERG, Untersuchungen über die Atmosphäre des Planeten Venus, Sitzungsber. d. preuß. Akad. d. Wissensch., Phys.-math. Klasse 1931, XXI. — 4. N. BARABASCHEFF, Photographische Photometrie der Jupiterscheibe, Publ. of the Khardiv Astronomical Observatory, Vol. 3 und 4, 1933. — 5. N. BARABASCHEFF u. B. SEMEJKIN, Photographische Photometrie des Planeten Jupiter und Untersuchungen der Jupiter- und Saturnatmosphären, ZS. f. Astrophys. 8, 179, 1934. — 6. Wratten Light Filters, seventh Edition, Eastman Kodak Company, Rochester, New York 1925. — 7. P. SKOBERLA, Photometrisch-kolorimetrische Beobachtungen an Bedeckungsveränderlichen zur Untersuchung des NORDMANN-TIKHOFF schen Phänomens, Kl. Veröff. Breslau 5, 1935 u. ZS. f. Astrophys. 11, 1, 1935. — 8. V. M. SLIPHER, The spectra of the major planets, Lowell Obs. Bull. 42, 1909. — 9. V. M. SLIPHER, Spectrographic studies of the planets, Monthly Notices 93, 657, 1933. — 10. R. WILDT u. E. I. MEYER, Das Spektrum des Planeten Jupiter, Veröff. Göttingen 19, 1931 u. ZS. f. Astrophys. 3, 354, 1931.

Lebenslauf

Am 23. Februar 1909 wurde ich, Johannes Werner Plaetschke, als Sohn des Bankrendanten Erich Plaetschke und seiner Ehefrau Lydia, geb. Treu, in Breslau geboren. Von Ostern 1915 ab besuchte ich die Vorschule des Elisabethgymnasiums in Breslau, später das Magdalenengymnasium, an dessen realgymnasialer Abteilung ich im März 1928 die Reifeprüfung bestand. Vom Sommersemester 1928 bis Sommersemester 1932 studierte ich in Breslau und Greifswald Astronomie, Mathematik, Physik und Physikalische Chemie. Meine akademischen Lehrer waren in Astronomie: ten Bruggencate, Schoenberg und Stumpff; in Mathematik: Kneser-Breslau, Kneser-Greifswald, Rademacher, Radon, Reinhard und Süß; in Physik: Backhaus, Krüger, Mierdel, Reinkober, Schaefer, Seeliger und Steubing; in Physikalischer Chemie: Meyer und Suhrmann.

An der Breslauer Universitätssternwarte führte ich auf Anregung meines hochverehrten Lehrers, Herrn Professor Dr. Schoenberg, meine Doktorarbeit "Photographische Photometrie der Jupiterscheibe" durch, die ich im Juni 1939 beendete.

Am 19. Juli 1939 bestand ich das Examen rigorosum mit dem Gesamtprädikat "Gut".