
becomes appreciable at small angles and causes excess scattering. The
points at small angles, however, cannot be taken as decisive evidence of
the latter because at those angles the scattering from the walls of the
chamber was larger than at greater angles and the accuracy of the gas
readings consequently lower.

In figure 4 it is seen that the oxygen curve is a function of the wave-
length. Reduced to the same scale as the hydrogen curve at 700 it shows
that excess scattering for 0 less than about 600 is very prominent. A few
observations with carbon dioxide gave a curve hardly distinguishable
from that for oxygen; excess scattering appeared at approximately the
same angle. Work on other gases is in progress.
One may cenclude on the basis of these experiments that interference

is present in X-rays scattered from a single molecule of carbon dioxide
or oxygen, and absent in rays scattered from a hydrogen molecule-at
least in the range 300 to 900. This may be interpreted as evidence of
considerably unmodified radiation in the former case and of completely
or nearly completely modified radiation in the latter, confirming Woo's
measurements and in accord with Jauncey's theory of the intensities of
the different kinds of radiation in the Compton effect.

It is a pleasure to acknowledge the many helpful suggestions of Prof.
A. H. Compton, Prof. P. A. Ross and Dr. J. A. Bearden.

1 Compton's X-Rays and Electrons, p. 74, gives complete references and a sunmmary
of the work in this field.

2 Debye, P., Phys. Zeit., 28, 135, 1927.
8 Mark and Schocken, Naturwiss., 15, 139, 1927 (Feb. 11).

THE DISTRIBUTION OF ENERGY IN MOLECULES
By LouIs S. KASSEiL*

GATEs CHEMICALiLABORATORY, CALIFORNIA INSTITUTh OP TUCHNOLOGY
Communicated December 7, 1927

The author has recently attempted to account for the rates of unimo-
lecular reactions by a theory' which assumes activation by collision and
treats the reacting molecules as mechanical systems with many internal
degrees of freedom. A somewhat similar theory had been advanced
earlier by Rice and Ramsperger.2
For the complete development of the author's theory it is necessary to

solve the problem: Given a number of oscillators, classical or quantum,
harmonic or otherwise, and a value for the total energy of these oscillators,
calculate the chance that a specified one of the oscillators shall have energy
in excess of some given value. The solution of this problem for the case
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of classical harmonic oscillators was given in the author's first paper. The
methods used there, however, were somewhat elementary and not suitable
for more complex cases.
The problem may be solved, in general, by a consideration of the total

phase-space volumes associated with various conditions of the molecule.
Some of the special cases have been worked out, and will be considered
here.

Case I-Classical Oscillators.-Suppose that there are s classical oscil-
lators, and that the energy of the ith oscillator is given by

e = pi + q?.

The coordinates may always be transformed so that this form is obtained,
rather than

ei = lbip 2 + 12

Then, from the well-known formula3 for the volume of an n-dimensional
sphere, the phase-space volume corresponding to molecules with energy
between e and e + de is

e+de

J...Jdp1. .dpdq1.. .dqs = P(s + ) + de)S - eS]
ZP.2+ q)= s.~~ ~ ~ ~~~~C e2p;2~~~~ -+q(2=&S

.

The volume corresponding to states in which the total energy lies within
the limits.e and e + de and in which a specified oscillator has energy at
least eo is4

e f~~-pl2-qi2+de

]]~dildqlf.. .fdp2... .dp dq2. .. dqs
pt2+ ql2 eo

j(p,2 + qi') = _p2 - q1'

-If 1(s- 1) ( _-pi _ q,)S2 dedp1dq1.
Ps'+qs2 =

s

This may be conveniently integrated by the substitutions

P1 = 0Scos 0,
q, = s sin 0,

where, by Jacobi's theorem, we must substitute

dpldq1 = JdzdO.
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The result is
/'T/2 s-I

fz Jo rk__ -(e-o) *2~dEdOdEJo r(s-1
=__ (e - eo)s~ de.

r(s)
The ratio of this volume to the total volume associated with energy e to
e + de, namely

(e o)
J

is the chance that when t.he s oscillators have energy between e and e + de
a specified one will have energy greater than eo.

Case II-Quantum Oscillators of a Single Frequency.-Suppose that there
are s quantum oscillators all of the frequency P. Let the group have n
quanta; calculate the chance that some one of the oscillators has at least
m quanta.
We shall assume that the ,u weight for each microscopic state of the

system is hJS, and that there is no difficulty due to a greater ,u weight for
the lowest state. Then the total ju weight associated with the system
when it contains n quanta is

S (n + s - _ (n+s-1)
n!(s-1)! n

since the number of distinct arrangements of n objects into s groups is

n+ Is --1\
n J

The IA weight of those states in which a chosen oscillator has at least m
quanta iS5

hhS-(n-m+s-2).
m-m n -m

Upon writing n - m = p, this becomes

hsE( p + s-2)
P=O P .,

and it is well known that the value of this sum is6

Q(p+ s1)

Hence, the ,u weight of those states in which the chosen oscillator has at
least m quanta is
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m + s-1
n-m

and the ratio of this to the total ,u weight gives the chance that when the
s oscillators have n quanta, a chosen one will have at least m quanta.
This is

n!(n - m + s- 1)!
(n -m)!(n + s-1)!

It is very easy to show that when both n and n -m are very large this
reduces to the classical form,

(e -EO

as of course it must.

Case Il-Classical Oscillators and Quantum OsciUators of a Single
Frequency.-(A.) Accumulation of energy in a quantum oscillator. Sup-
pose that there are s classical oscillators, and r quantum oscillators, all
of frequency P.. lThen the total , weight corresponding to energy between.
e and e + de iS7

. -qlv+d.

Eyk" (q + r-1) ]]j. . . j dql. .dqs dp1... dps
S(P,2 +/ 2)f

-h"deLVc hps1
r(s) q=o \ q

Here n is the greatest number' of quanta which an oscillator can have;
it is defined by the inequality

n < n+ 1.

Now the p weight of the states in which the total energy is between
e and e + de and in which a chosen quantum oscillator has at least m
quanta is8

E 'r(s) h - k'E q p ) (e- qhi)s1.

Note that
n n n q

E E2f(q,p) -E Ef(q,p).
p=m g-p g=m p=M
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This may be seen by writing out the sum in a square array. Using this
result, we get

~~~7rhrdeEc- q m+r)(qhv)'s2Lhd . hre (e -w)S s-1

r(ssq= q-p/-

The ratio of this to the total ,u weight gives the chance that the quantum
oscillator will have at least m quanta. This is

E (q-m+r-m 1) (e-qhv)s1

E (q + r- 1)(em-q1w)S1
(B.) Accumulation of energy in a classical oscillator. Let there be s
classical oscillators, and r quantum oscillators of frequency v, just as
before. The total ,u weight of the states in which the energy of the system
is between e and e + de is the same as before. The A weight of those
states in which a chosen classical oscillator has energy at least Eo is9

7s n-mn +'hr de,j~U'-E (e - h)

r(s) P=O ( P /

where n and m are defined by the inequalities

n <-< n + 1,

hv::e - eo<n-m+1

The ratio gives the chance we want, namely

E(p +'p 1) (e - phv -0)

(p +' - 1) (e-pkv)SS

This may be put in the alternative form

f + r(1)(e6-qhv+mhv)-Seo)

, ( + r-)( hs
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which is very similar to that for accumulation of energy in a quantum
oscillator since, in general, mhv is about equal to eo. For the classical
case it is not possible to define m by a single equation, but the notation
preserves the formal identity between the two cases as much as possible.
Indeed, when eo is an integral number of quanta, then mhv = eo, and the
two chances become identical. This gives us the very important result:

In a group of oscillators, some of which are classical and some quantum,
all the quantum oscillators having the same frequency, the chance that a
given classical oscillator shall have energy equal to or greater. than that
of m quanta, is exactly the same as the chance that a given quantum oscilla-
tor shall have m or more quanta. It is, of course, necessary that the entire
group be in statistical equilibrium.

Thus, when the quantum frequencies are not too high, or the temperature
of tbe system too low, the distribution of energy among the oscillators is
not markedly different for the quantum oscillators from that for the clas-
sical. It will, however, usually be very much different from that which
would exist if all the oscillators were classical or all quantum. This
difference will be most marked when we consider the chance that an
oscillator shall have a large share of the total energy.

This is illustrated by the following short table, constructed for five
classical oscillators and five quantum oscillators, with a total energy
equivalent to 20 quanta. The second column gives the chance that an
oscillator of this group shall have energy equivalent to at least the number
of quanta given in the first column. The third column gives the corre-
sponding chance if all the oscillators were classical, and the fourth if they
were all quantum.

1jABLE 1
PURE PURE

MIXED CLASSICAL QUANTUM
m CHANCB CHANCE CHANCE

0 1.000 - 1.000 1.000
5 0.102 0.751 X 10- 0.131
10 0.471 X 10-2 0.195 X 10-2 0.922 X 10-2
15 0.395 X 10-4 0.381 X 10-6 0.200 X 10-O
19 0.105 X 10-7 0.195 X 10-"1 0.998 X 10-6
20 0 0 0.998 X 10-7

Thus it appears that the tendency for energy to accumulate in a single
oscillator, other conditions being equal, is much greater for quantum
oscillators than for classical, when all the oscillators are of one kind; when
they are of both kinds, the chance becomes much more nearly the same
for the two kinds, and lies between the two pure chances.

Case IV-Classical Oscillators and Quantum Oscillators of Two Fre-
quencies.-It is not hard to extend the preceding results to the case of
quantum oscillators of two frequencies and classical oscillators, although
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the formulas become more complex. The result for accumulation of
energy in a classical oscillator will be given here. The others are very
simllar.

Suppose that there are s classical oscillators, r quantum oscillators of
frequency v, and t quantum oscillators of frequency ,u. Let the entire
system have energy between e and e + de. Then the chance that a single
selected classical oscillator will have energy at least eo is found to be

k () (p+ -1)(q +t- 1) (e - phv - qh/L-eo)s1

n 1'P) p + r- +

where

n < +
hv

hv

1I(p) _ E - o- phv< I(p) + 1,
hJU

l'(p) _ - phv <l(p) + 1.
h,u

It is fairly evident how to extend this formula to still more complex
cases, merely by analogy, though the specification of the upper range of
summation becomes increasingly complicated.
The application of these results to the theory of unimolecular reactions

will be considered in another place, but it may be said here that, while
it would be possible to account for the decomposition of nitrogen pent-
oxide, using 15 classical internal degrees of freedom (this is nearly the
maximum possible for a mechanical system of seven mass-points), when
these degrees of freedom are quantized, with frequencies so selected as
to give reasonable specific heat values, it is no longer possible to account
for the observed rates by the author's theory. Furthermore, it is evident
from the results which have been given that no combination of classical
and quantum oscillators could be much more effective in accounting for
these rates than any other combination of the same number of oscillators
with the same internal energy at the temperatures of interest.
These results are all for harmonic oscillators. It will be shown in a

subsequent article, however, that there is no help to be obtained by the
introduction of a special type of anharmonic oscillator, which has a certain
formal resemblance to a chemical bond.
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1Kassel, L., article to appear soon in J. Phys. Chem.
2 Rice, 0. K., and Ramsperger, H. C., J. Amer. Chem. Soc., 49, 1617 (1927).
3 See, for example, Tolman, Statistical Mechanics with Application to Physics and

Chemistry, Cbemical Cat. Co., New York, 1927, p. 129. *
4 This evidently gives only that part of the preceding volume for which Pi2 + qi2

is at least equal to ec. The same sort of integration will be made repeatedly in this paper.
5 The ,u weight for any state of a single oscillator is h; we extend the summation

from m = m to m = n, since we want all states in which the single oscillator has at
least m quanta.

6 See, for example, Laska, W., Sammiung von Formein der reinen und angewandten
Mathematik, Vieweg und Sohn, Braunschweig, p. 15. But the proof is very easily
given by induction.

7 The integral gives the contribution to the product of the classical oscillators; this
is multiplied by the quantum contribution, and the sum taken over all possible total
energies for the quantum oscillators.

8 The expression following the first h is the total IA weight for s classical oscillators
and r - 1 quantum oscillators, with total energy between e - qhv and e - ghv + de.

9 To get this, we multiply the contribution of r quantum oscillators with p quanta
by that of s classical oscillators with energy between e - phv and e - phi + de and
at least eo in a single oscillator, and su1m over all possible values of p.

THE LIFE OF ATOMIC STATES AND THE INTENSITY OF
SPECTRAL LINES

By I. S.. BOWEN
NoRMAN BRIDGZ LABORATORY OF PHYSICS, CALIFORNIA INsTITuTE or ToCIINOLOGY

Communicated November 21, 1927

It has recently been possible to explain most of the strong nebular lines
as lines arising from electron jumps from metastable states in oxygen and
nitrogen.- In the nebulae the emission of spectral lines can be observed
under conditions of much higher rarefaction than can be found in any
other terrestrial or astronomical source. Since these nebular lines occur
only under these conditions, this very definitely indicates that the electron
jumps causing them take place spontaneously without the interference of
outside fields due to other ions, that can often be used to explain jumps
of this sort when they are observed in terrestrial sources. This constitutes
then the first direct evidence that metastable states are not absolutey metastable
but are states of long mean life, i.e., states from which the probability of a
spontaneous jump in unit time is very smaU.

Further evidence for this viewpoint is found in the observation by
Rayleigh2 that the forbidden mercury line 1S-3P2 at 2270 A is absorbed
about 1/1,000,000 as strongly as the 1S-3P, line at 2536 A. Since there
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