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Fig.9 lies OII14076 statt O II14016.

Gl. (62) unter dem Integral lies Ty statt T, wo Ty die schwarze Temperatur
der Sternstrahlung fiir die Wellenlinge A bedeutet.

Zeile.10 von oben lies at which statt of which.

Zeile 10 von unten lies working statt to work.

Zeile 1 von unten, except ist zu streichen.
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of the table together with the mean absolute bolometric magnitudes computed
by WALLENQUIST for the different colour-groups used. In both cases the mass
of the stars in the second group has been selected as unity.
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Luminosities, Colours, Diameters,
Densities, Masses of the Stars.

By

KNuT LUNDMARK-Lund.
(Continued.)

‘With 12 illustrations.

d) The Diameters of the Stars.

190. The Diameters of the Stars. Earlier Conceptions. Pioneer Work. The
underestimation of the distance and the dimensions of the Sun that was a domi-
nating feature of Greek astronomy, was adopted by the astronomers of the Occi-
dent and believed until the end of the 17th century. Practically nothing was
known about the physical nature of the stars until that time. The distances
of the stars also were underestimated and that fact may explain why many
observers thought that the stars displayed measurable diameters. It is clear
that it was the irradiation and diffraction that deceived the pioneers. In order
to illustrate the kind of rdle these phenomena sometimes play we quote some
measurements of the ‘“‘diameters” of different magnitudes.

ﬁfgﬂﬁi‘ge CARDANUS! g :::g, MacInus? 311?:;2?5;‘ Vﬁ’;‘?;“ Ricciorr® HEWELKE?
1 480”7 . 1207 600" 60" 13”,7—16",7| 5",1—6",6
2 360 t 90 330 40 6” 7 ,9—12 ,3 4,5
3 240 65 240 30 5 7,0 3,8
4 180 45 180 20 4 6,2 3,2
5 120 30 | 120 10 3 5.3 2,5
6 60 20 | 60 5 2 4.4 2,0

KepPLER® who must have had a poor eyesight, although not so poor as
Macinus and CARDANUS, thought at first that the brightest stars displayed dia-
meters of 240"’ (Sirius), but, after the invention of the telescope, he states® that
when a larger magnification is used the diameters become smaller. He was con-

1 Libelli duo, unus de supplemento almanach etc. Norimbergae (1543).
2 Opera omnia 2, p. 429 (1925); Astronomiae instauratae progymnasmata. Pragae
(1602).
3 Novae coelestium orbium theoricae. Moguntiaci (1608).
4 Uranometria. Middelburgi (1631).
5 HorTENSIUS, Landsbergii commentationes in motum terrae. Middelburgi (1630).
6 Almagestum novum I, p. 424, 716 (1651).
7 Mercurius in Sole visus, p.92. Gedani (1662).
8

Opera II, p. 676, 689 (1859). 9 Opera VI, p. 335 (1866).
Handbuch der Astrophysik. V, 2. 36¥%*
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vinced that the stars had no appreciable diameters, but were “puncta mera”.
J. Horrocks! also was of the same opinion. A little later A. KIRCHER? called
attention to the optical phenomena tending to increase the size of small discs
(e. g. diffraction) and concluded that the estimates of stellar diameters are
illusory.

The thought that the stars displayed such appreciable diameters and the
fact that no parallaxes could be derived from his observations convinced Tycuo
Brang?3 that the heliocentric system was not tenable and seem to have made
him start his short-lived compromise-system.

The experiences of the telescope made it gradually clear that the diameters
of the stars must be very small. Hooke* concluded that the dimensions of the
stars were below 1” and later E. HALLEY® reached the same conclusion.

It was clear to J. MicHELL® that even in the case of Sirius the apparent
angular diameter must be less than 0/,01. He pointed out that if the “native
brightness”” was in accordance with colour the white stars would have the largest
dimensions.

The different conceptions regarding the diameter of Sirius since the middle
ages are illustrated from the following summary:

Authority Diameter of Sirius Authority Diameter of Sirius
ALBATEGNIUS . . . . . . 45" HEWELKE . . . . . . . 6,57
KEPLER. . . . . . . . . (240) J.CassiNr . . . . . .. 5
GALILEI. . « . « + . . . 5,3 MICHELL . . . . . . . 0 ,01
VAN DEN Hove . . . . . 10 ‘W. HERSCHEL . . . . . <0 ,01
RiccioLr . . . . . . . . 18 Actual value . . . . . . 0 ,0053

W. HERSCHEL? examined a number of bright stars and used extremely high
magnifying power in order to determine whether the starshave sensible dimensions.
He found that the telescopic discs appeared smaller with increasing telescopic
power and accordingly he considered spurious the discs of light seen in telescopes.
He also used this phenomenon as a ready criterion for determining whether a
small bright body has an appreciable size or only impresses the sense of sight
by virtue of its intrinsic brightness.

In 1835, F. M. ScHWERD® suggested a method for determining the diameters
of the stars which is based on measurements with two different telescopes in
order to eliminate the influence of the diffraction and concluded that the
diameter of Altair is 0"',104.

The method applied by S. STAMPFER?® in 1852 is of much interest. The image
of the Sun observed through a telescope was reduced through a globe of Mercury
until it matched the image of a star seen in the same telescope. STAMPFER concluded
that the diameter of the first magnitude stars is 0’’,00491, which is a little to low,
but of the right order of magnitude (0”,0085).

1 Venus in Sole visa anno 1639, p. 139, edited by HeveLius, see Note 7, p. 575; De
magnitudine fixarum. Opera, p. 61 (1672—78), ed. by WatrLis, London.

2 Ars magna lucis et umbrae, p. 119. Romae (1646).

3 Opera omnia 2, p. 429 (1925); Astronomiae instauratae progymnasmata. Pragae
1602).
( An Attempt to prove the Motion of the Earth, p.26. London (1674).
London Phil Trans p. 853 (1718); p. 3 (1720).
London Phil Trans p. 234 (1767).
Collected Works II, p.297 (1912).
Die Beugungserscheinungen aus der Undulationstheorie analytisch entwickelt.
Mannheim (1835).

9 Wien Denkschr Akad Wiss I1. C1 5, p. 91 (1852).

® g e U
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In 1868 Fizeau?l suggested a method for the direct measurement of the
stellar diameters. When interference is produced by the apparatus of THOMAS
YouNG2, the mirrors of FRESNEL3, or a biprism the apparent diameter of the light
source must be very small, if the fringes are to be pure. If the diameter of the light
source is varied, the sharpness of the fringes decreases as the diameter increases,
and for a certain value of the diameter the fringes disappear. Proportionality
exists between the separation of the fringes and the limiting diameter of the
source. The complete theory of this phenomenon has been given by A. MICHELSON
in 1890—924. He derived the condition that the fringes become invisible when the
angular diameter D of the source is a little greater than the interval / that separates
one fringe from the next. Thus:

D =1,221.

The reason why the fringes disappear if the source has an extension is the
following. Each separate point gives a system of pure fringes. The systems
corresponding to different points will trespass upon each other’s ground and
mutually blend together. The condition for disappearance of the fringes is that
a uniform intensity should be produced, which happens when the law of MiCHEL-
soN is fulfilled.

The method of Fizeau was applied by STEPHAN® at the Observatory of
Marseilles in 1873. The objective of the 80 cm telescope was covered with an
opaque screen that had two apertures placed symmetrically with regard to the
centre. The two pencils converged at the focal plane and the image was examined
under high magnification. The apparatus could not distinguish angular diameters
less than 0”,2. . Since all the stars investigated gave very clear-cut fringes, it
was possible to conclude that none of them had a diameter of 0’/,2, but that
probably even the largest were far beneath this value.

The interferometer method was later independently applied by MICHELSON 6
and Hamy? for the measurement of the satellites of Jupiter.

In a paper of 1880 E.C. PICKERING® gave a masterly treatment of the
problem of determining the diameters of stars. He first derived the expression:

logdy = logdg -+ 0,2 me — 0,2 my — 0,510g7,

d being the diameters expressed in seconds of arc and § the intrinsic brightness
of the star (or in other words the ratio borne by the quantity of light emitted
by the star to that emitted by the Sun from the same superficial area),
my and me the magnitude of the star and the Sun respectively.

Substituting the numerical values then at his disposal the formula read:

logd, = 8,184 — 0,2m4 — 0,5 logyg .

PickerING suggested the following way of determining the approximate
value of . An electric current heats a platinum-iridium wire to incandescence
and the brightness of a short portion of it is compared with an artificial star,
while the current is varied by a known amount. As the current increases the
colour changes. The ratio of the blue light to red light may be determined by

1 CR 66, p.932 (1868). F1zeau also pointed out the possibility of using the pheno-
mena of scintillation for the determination of stellar diameters.

2 London Phil Trans (1802); A Course of Lectures on Natural Philosophy. London (1807).

3 Ann Chim Phys I (1816); XI (1819); Paris Mém de I’Acad V (1826).

4 Phil Mag (5) 30, p.1 (1890); (5) 31, p. 338 (1891); (5) 34, p.280 (1892); Amer J
of Science (3) 39, p. 115 (1890).

5 CR 78, p. 1008 (1874). ¢ PublASP 3, p.274 (1891).

7 BA 16, p. 257 (1899). .

8 Proc Amer Academy of Arts and Sciences 16, p. 1 (1880).
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inserting a double-image prism in the collimator of a spectroscope, and viewing
the wire through it. The relative brightness of the two images is varied by a
Nicol in the eye-piece, which can be turned a known amount.

PICKERING also pointed out that only an approximate value of the compar-
ative light emitted by equal areas of the two bodies can be obtained, The
effect of absorption is not allowed for, and thus-a difference of temperature is
assumed to be the only cause of the observed difference in colour.

As far as the author is aware this scheme was not put into practice before
it was applied in the Potsdam determination of stellar temperatures.

The term equivalent diameter, the diameter of the stars if they all had
the same temperature as the Sun, was introduced by E.C. PICKERING by taking
j = 1. The following table gives this diameter for different magnitudes and
represents very closely the means of the modern determinations where the
temperature has been taken into account.

Apparent | Equivalent | Apparent Equivalent Apparent Equivalent
magnitude diameter magnitude diameter magnitnde diameter
0™ | 07,0153 5= “ 0/,0015 10™ 0”,00015
1 0 ,0096 6 0 ,0010 11 0”/,00010
2 0 ,0061 7 0 ,0006 12 0 ,00006
3 0 ,0038 8 0 ,0004 13 0 ,00004
4 0 ,0024 9 1 0 ,0002 14 0 ,00002

NoOrRDMANN? has claimed that he should have priority for being the first who
derived a formula how to compute the diameter of a star. In 1911 he derived
the formula: )

R 7 1 E
logﬁ*é = log;% — {0,2 (my — me) + ?1og§’;},

where R are the diameters and E the “éclats intrinséques effectives” or the
Ry

Ro were computed for 10 stars from their

surface brightnesses. The quantities
effective temperatures.

This attempt is certainly one of the first, but NORDMANN cannot be given
the priority, because HERTZSPRUNG had already in 1906 advised essentially the
same method?2.

Somewhat earlier than NORDMANN wrote his paper also B. v. HARKANYI3
had investigated the effective temperatures T of the stars and had derived
formulae for computing the diameter of a star from T and .y, or my,.

191. Wisine’s Investigations?. When estimating stellar colours several
observers have remarked that the stars do not exhibit any other colours than
those represented in the radiation from cooling metals. The spectral-photometric
work at Potsdam confirmed this view. It was found that the energy distribution
in stellar spectra corresponded to that of a black-body radiator. If such is the
case the colour or rather the effective temperature will be determined by a
comparison with the energy distribution at the same temperature as the celestial
body. But the temperatures of terrestrial sources cannot be raised above 3000°.
It will then be necessary to transform the stellar radiation into radiation of a
lower temperature. This can be done by using mirrors that selectively reflect
the incident light or by using absorbing media.

1 CR 152, p. 73 (1911).

2 Z f wiss Photogr 4, p. 43 (1906).

3 AN 185, p. 33 (1910); 186, p. 161 (1910).
4 Potsd Publ No. 76 (1920).
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If a mirror is used with a reflection coefficient of ae—%* then the reflected
radiation is: ’”
E = ciaf1-%e=@T+0i=q),

and thus the reflected radiation corresponds to the temperature T which is deter-
mined by the formula ¢,/T; = ¢,/T + 5. The only mirrors suitable for the purpose
are those of gold. It was found by the aid of two parallel mirrors that after five
reflections the effective temperature of the B and A stars could be brought
to equality with that of an electric lamp. It was also confirmed that the spec-
tral distribution did not change appreciably by the repeated reflexions. During
the course of the work it was found that the use of a red-filter yields still better
results than the reflection-method, and thus a red-wedge from ScHOTT in Jena
was taken into use which has the property that its transmission is closely re-
presented by means of the expression — (£, -+ f1/4)dloge, wheré 4 is the thickness
of the wedge. The red filter has been used in connection with a ZOLLNER photometer.

The intensity of radiation of wavelength 1 outside our atmosphere is expressed

1|A-1
by means of ¢; A5 e ( " 7) , where y, and y, are defined by the expression:
1
yologe =log (1 — e~%/*T) — }3—;—5—?, y1 loge = 0,0075 - 10~ 3(T — 3000).
When the radiation has -passed the atmosphere, -its intensity is equal to
¢ A5 o= =g /1( +7"+“‘)

where [ is the relative path through the atmosphere at a certain distance from
the zenith. This expression has further to be multiplied by the factor = o+ 8/0 ",
corresponding to the scale reading 4 = 4’ — §, where ¢ is the scale-reading for
the zero—pomt The values for the photometer—lamp corresponding to T and ¢,
are T’ and ¢{. By integrating the energy between. 4 4500 and 1 6800 it is found
that the equation can be divided into the two expressions:

eT 4 y1 + oyl + pr1d = o/ T,
Gy 1o onl= ot = ¢ sing.
The readmg of the intensity-circle g1ves the value @. The first of the ex-
pressions gives the effective temperature in terms of 77, d’; the constants are

oy = +0,338; f; = —+0,214. The ratio of the energy of two stars within the defined
interval is given by the equation:

log— = —2,5(my — m,) = 2(log sing, — log sing;) — 0,138 (I, — ;)
— 0,1420(dy — dy) + logp(e;) — loggp(ey) -
@ (e) is the definite integral of the modified equation of Pranck, viz.:

26800 16800
Ca »
Y (e
1-5¢ AT . , - —‘4(—24‘}')
E=c¢ | *—2— dl=c|sin2qeni+hd |}-5, I\T ") 43
2
1—e mr
14500 24500
26800
= ¢} sin2q g%l +Fhed [ 15 g=2lk 1 = ¢ sin2q el +Ad g (g),
24500
e 1.6800
[e g 6 A3
or g) = 1 — ( ) (—))
pe) =S (1432 +6(2) +6(2))] 0

€s
where & = T + 1.
37%
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A comparison between colorimetrically measured c,/T" and those derived
from spectral-photometric values at Potsdam showed good agreement. The
mean error for a three-day determination was in the former case in the mean
410,11, whereas the second method gave -40,12.

Next a comparison was made between the colorimetrical magnitudes and
the visual magnitudes in the Potsdam Durchmusterung. A somewhat unexpected
result was found, namely that there was good agreement between the two dif-
ferent magnitudes. This agreement involves not only the possibility of the
radiation in the whole spectral interval under consideration being represented
by means of the radiation law, but it also involves proportionality between
the radiated energy and the relative sensibility of the observer’s eye to light
of the different colours.

The results of H. E. Ives!, H. BENDER2, P. G. NutTING3, and W. W. CoB-
LENTZ* concerning the visibility of radiation or the normal curve of the sensibility
of the eye for different colours were collected and discussed. The physiological
intensity:

16800
@s (€) =fs,1l‘5e"8/’1 dl
24500
was determined by WILSING, and it was found that log[e (£)/ps(e)] was re-
markably constant. The limits for the wave lenghts in the photographic region

are 3600 A and 4850 A. The energy of this spectral region is then: ¢,e~%g,(&,),
where:
44850

_&
@p () =/l‘5e ‘di.
13800
The following small table gives the values of this integral:

& logo(ep) g logg(sp)
0,9 0,06 3,0 788
1,0 9,95 4,0 6,86
2,0 8,91 4,5 6,36
The difference logg, (g, 4+ 1) — log @, (e,) is of sufficient constancy and thus:
44850
&
Ppslep) = | spe *dh = a,e oo,
43600
if s, (4) is the curve of sensibility of the plate.

It is found that the proportionality between the radiation and the physio-
logical intensity is not dependent on a symmetrical form for g, (¢). Nor are the
limits selected for the integration of much importance. In the case of the
natrium cell the deviations from proportionality between the radiation and the
intensity curve of the cell are considerable on account of the wider range in
wave length (41 3650 to 1 5780).

The equations given above permit the establishment of a relation between
the constants of the selective atmospheric extinction o, and the mean coefficient
of transmission p. The result of G. MULLER that the influence of a selective

absorption is negligible in the magnitude determinations of the stars was con-
firmed by WILSING.

1 Phil Mag 24, p. 352 (1912). 2 Dissert. Breslau (1913).
3 Phil Mag 29, p. 301 (1915); Amer Illum Engin Soc Trans 9, p. 633 (1915).
¢ Scientific Pap Bureau Stand No. 303 (1917).



ciph. 191. WILSING’s Investigations. 581

With regard to the question of the physical meaning of the effective tem-
peratures the measurements of the intensity in the solar spectrum are of much
importance. It was found that the measured intensities could be very satisfactorily
represented by means of the law of PLANCK, if the temperature was taken at
6070° abs. By applying the radiation law of WIEN certain systematic deviations
were found. It was concluded that the solar radiation has the same properties
as the black-body radiation if the deviations are neglected that are produced
from the mixture of different temperatures that give rise to the solar spectrum.

The presence of the absorption-bands in the K and M stars is found to
influence the temperature to an amount of some 200°.

It can thus be concluded that the effective and the real temperature of a
star do not differ considerably. The diameters of the stars can then be approximat-
ed from the radiation law. The radiation in the visual and the photographic
part of the stellar spectra can be represented by:

‘ 16800
a\e
— 0,4m, = logg (7) e— You [1—5 e=s/*d) + &,
14500
14850
— Odm, = 1ogg(§)2e— m/i—sewﬂu + ky,
43600
where d and 4 are the diameter and distance of a star and g depends on the con-
stant ¢ in the STEFAN radiation law and the radiation constant c,. Further
1 2 z . 1 ,
T= 6‘6 sin > o)
is introduced, where  is the parallax, o the linear diameter, and g¢ the appa-
rent diameter of the Sun; then the equation is obtained:

2
log (gi) = —0,4mp + 0,4max + Yop (&) 10g€ — 45 (¢eyp) loge
+ log g, (EQp) — log @, (¢p) — logn®
which is simplified to:
log (%)2:u—0,4mp + 70y (&) loge — loggy (¢,) — 2logm — 1,35,

putting mg = —25™,93 and expressing z in seconds of arc.
The diameters corresponding to the visual magnitudes in P D are computed
according to the formula:

log (5%)2 = —0,4m, + 4, (&) loge — logp,(¢,) — 2logm — 1,16.

The first formula: was applied to 104 bright stars that had been measured
for photographic magnitude by E. S. KiNG! using the out of focus method.
The following mean diameters for different-spectral classes were found:

/T S}:ﬁ:gal Diameter ” /T Spc(;::;al Diameter | =
0,5—1.0 B . 86p | 12 |30-35! GK 16,70 | 21
1,0—1,5 B, A 5,9 4 3,5—4,0 G, K 32,1 12
1,5—2,0 AF 2,1 8 | 4,0—4,5 K 50,6 10
2,0—2,5 F,G 5,0 12 | 45-50| KM 61,0 9
2,5—3,0 F,G 8,9 14 '

1 Harv Ann 59, Nr6 (1912).
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WiLsiNG computed a diameter value of « Orionis of 07,0395 which is of
a certain interest as being very close to the value 0",045, actually measured a
year after WILSING’s prediction.

It would certainly be of much interest to apply WiLsiNG’s formula to the
material in PD and Géttinger Aktinometrie, New DRAPER Catalogue, and other
sources, and to derive the diameters from a consideration of existing values of

P parallaxes or substitutes
) of parallaxes. In this

way some 10000 star dia-

9 . <o dripris meters of tolerable ac¢u-

racy could be derived.
waderenls J. Hopmann?® has
120 used the red-wedge co-

: lorimeter according to

:§ the construction of WiL-
‘% 00 . SING for measuring stars
N . of spectral type N and
‘ red variable stars. His

. ‘ observations of twenty

objects, mainly N stars,
give for the temperature
o ol 4 of the Na stars 2440°
. e e | : and for the Nb stars
. 2370°. HoprMANN has
derived the diameter of
R IRRA 19 Piscium as 0”,017.
"G Aarigas - PeTTIT and N1CHOLSON?
20 _ * 1Y L - have computed the value
1 . 0",018. Thus- the star

. " PF might be measurable

el o Sum | SRIC LT . with the aid of the inter-

7 7 20 70 4 o % gorometer
P » .

Fig. 148. The radii of stars as a function of the inverse 192. Russeirs Me-
value of their effective temperature according to WiLsinGg’s thod. H. N. Russgrr?
investigations. Dots denote individual values and crosses discussed in 4920 the
mean values. The minimum value of the radii around determination of the
/T = 20, corresponding to A stars, is no doubt caused di t f the st
by the selection in data because the main bulk of the in- an}e ers of € s aFS‘
vestigated stars are giants. Compare the following figure. If d is the apparent dia-

meter, ~m the visual
magnitude and J the surface brightness of a star, it follows from elementary
considerations that:

Radlivs of Star in units of Sole

-
S

i

d = const - 10-02™ J—%,

By inserting the data for the Sun the constant is found to be 0”,0087, provided
that the Sun’s surface brightness is taken as unity. Further § = —2,5log] is
introduced. The above equation may then be written:

4 = 0,0087 (0,631)™7,
The following method for a determination of j was used. The difference
1 AN 222, p.237; 226,‘ p. 1 (1925); 226, p. 225 (1926).

2 Mt Wilson Contr No. 369 (1928); Ap J 68, p.279.
3 Publ ASP 32, p.307 (1920).
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in surface brightness of two stars expressed in magnitudes is proportional to
the difference in colour indices C. Thus for two stars:

Ja— 11 =k(Cy — Cy).

The constant % depends on the wave lengths used in measuring the surface
brightness and colour index, but is the same for all stars. As long as WIEN’s
formula can be applied, & = Apnot/(Avis — Apnot), and at higher temperatures, when
Pranck’s formula has to be used, the value of % gradually increases, since for
an infinite temperature this formula gives infinite surface brightness, but finite
colour index. .

The Sun permits a direct observational test of thislaw. The work of ScHwARz-
scHILD, ABOTT, and LINDBLAD makes it very probable that different parts of
the Sun’s disc differ in colour and brightness, because at the centre we see down
further and into hotter layers than near the limb where the line of vision
is more oblique. It can therefore be assumed that on passing from the centre
to the limb of the Sun we meet successively with conditions very similar to those
met with in the photospheres of cooler stars. ABBOT’s observations of 1913 have
been used for a determination of 2. In some cases the values closely agree
with those predicted, but in others the discordances are considerable, probably
on account of a departure from black-body conditions.

The different scales of C have to be standardized on account of the fact
that some of the scales are more open than the others. The standardization is
made by deriving the ratios C/Cgstars in one‘and the same system. The colour
index (Cgstars) for K stars is then called the colour equation of the given system.
A system for which Cgstars is exactly 1,00 was suggested by PICKERING as a
standard. Let K be the value of %, referred to such a system. For any other
system of C, with a colour equation E, we have & = K/E. This new constant K
is equal t0 fgstars — fgstars- 10 the case of PARKHURST’s colour indices Ay is
5410 and Ay, = 4280 and thus 2 = 3,8. In order to correct for the systematic
difference between his spectra and those of Harvard RusserL takes E = 1,27
and hence K = 4,8. An independent system of colour indices has been derived
by ROSENBERG from photographic spectra and gives the intensity at 1 4000
relative to that at 4 5000. Arranging his data according to the Harvard spectral
classification Russerr finds Cx—C, = 1,83—0,10 and K = 6,7 for A 5200 A.

Then the stellar temperatures determined by WILSING and SCHEINER were
used. By applying PLANCK’s formula RuUsseLL has found K = 4,0 for 1 5200 A.

Also other astronomical data could be used, e.g. eclipsing binaries, or a
comparison of densities of eclipsing binaries with the relation between density
and surface brightness derived from visual double stars. RUSSELL derived in
his address of 1914 the relation?!:

Spectral class

C i Spectral class C i
B —0,3 —1,2 G +0,7 " 42,0
A 0,0 0,0 M +1,6 >4,5
F +0,3 +0,9

Also the concomitant variations in magnitude and colour index of the
Cepheids can be used, provided that the observed variation is due to changes of
temperature in a radiating surface of constant area. This assumption is very
dubious, as has been pointed out by RuUSSELL.

1 Pop Astr 22, p. 339 (1914).
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Collecting the results we have:

Method K
PARKHURST, colour indices . . . . . . . . . . 4,8
ROSENBERG, colour indices . . . . . . . . . . 6,7
WILSING and SCHEINER, temperatures . . . . . 4,0
U Cephei (direct observations) . . . . . . . . . 3,2
Eclipsing variables (colour indices) . . . . . . . 3,1
Comparison of eclipsing variables and binary stars 3,5
Colour change of Cepheids . . . . . . . . .. 2,3
Mean 3,9 4- 0.4
Adopted 4,0

Then the colour indices of KiNG, SCHWARZSCHILD, PARKHURST, and Harvard are
expressed in units of Cx — C4 so that they all have C = 1,00 for K0 stars. The
values of j are derived. The small table given here will facilitate considerably
the computation of 4. When the parallax is known the linear diameter D is
found by D = 9,22(0,631)¥ 7, the Sun’s absolute magnitude being 4,83.

T | TR o | owg ] e >
Bo +3™,2 8 +0m,1 0,0 07,0087 | 9,20
B2 +3.,0 Go 0,0 0, 5 69 7,3
B3 +2.,7 G35 —0,9 1, 0 55 5,8
BS +2,5 Ko -1 ,9 1, 5 43 | 4,6
A0 +2 1 K2 —2,9 2,0 34 3,7
A2 -+1 .7 K5 —3.,3 2,5 27 2,9
As +1.3 Ma —3.,7 3,0 22 2,3
Fo +1,0 Mb —4 ,0 3,5 17 1,8
Fs +0 ,6 N —6,3 4,0 14| 1,5

4, 5 11 1,2
5 0 0’/,0009 | 0,9

A number of diameter-values were computed by RUSSELL, and among these
were values of B Andromedae, Betelgeuze, and Antares. Betelgeuze was
measured about a year later with the interferometer; it was found then a very
good agreement between the diameters actually measured and those computed
by RusseLL, WILSING, and others.

193. Diameters from ¢,/T. As has been described in the chapter on stellar
colours, E. HERTZSPRUNG! has reduced the principal determinations of colours
or colour equivalents of the brighter stars to a homogeneous system from which
o/ T is derived. These values have been used for a derivation of the angular
diameter 4 of 734 stars according to the formula

S logsin & = —43,44 + 2,3 (co/ T)*% — m.

All the available trigonometric parallaxes of these stars as well as all available
spectrographic data have been collected by me and the values of the linear dia-
meters computed in terms of that of the Sun. Also m,, has been used. It is
evident that in many cases already a knowledge of the colour and proper mo-
tion will give the linear diameter of a star with fair accuracy.

K. F. BoTTLINGER? has derived the following linear diameter formula:

logD[2 = 0,2(mg — my) — logm + (log cy/ Ty — log ¢y/T) + 5,3144

where D is the linear diameter in units of the diameter of the Sun; the magni-
tudes are reduced to the bolometric scale. The diameters were first computed

1 Leiden Ann XIV:1 (1922). % Berlin-Babelsberg Veroff 3. H. 4 (1923).
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for 104 stars for which the colour index had been measured photo-electrically.
In a subsequent paper! the diameters have been computed for some 400 stars.
The diagram connecting diameter and spectral class shows a certain resemblance
with the RusseLL diagram. The dispersion in diameter on the giant branch is
considerable and it does not seem quite impossible that we have, in fact, two
branches, a giant and a supergiant branch. The fact that the diameter values
computed on the basis of data of eclipsing binaries do not deviate systematically
from the values computed from the temperatures is of a certain importance.

X
+4.0 p—
lqyg oo '
. %
. Oyx+
A £y
+20 =iy o Ly G S Tt
e X X // X
& xxsx>§x/ %
24 X 5| °
o ot n
o+ RS o it °
o_/’qg ¥x
+10 5 % =
o
x
v Aottt
~-&] HE
“?:-:3\,‘%\ .
'..-.. T~ N
—
10 - - .
7
~ 3
\%/:P S~
-20 <
™~
Oes b0 Ao V) Gy Ko M Mw
Spectral Class

Fig. 149. Distribution of the logarithms of the diameters of stars within different spectraf
classes according to BoTTLINGER. The triangles denote eclipsing binaries, dots trigono-
metric parallaxes or dynamical parallaxes of high weight, open circles theoretical paral-
laxes (moving clusters, companions). Further denote x spectrographic parallaxes and -
parallaxes of Cepheids. The two squares give the mean values of log p for the c¢ stars.

BoTTLINGER suggests the name liliputian stars for the white dwarfs.
The spectra should according to his_proposal be dencted e.g. I B9.

194. Diameters from Radiometric Measurements. PETTIT and NICHOLSONZ
have derived the following expression:

logT = 2,638 — 0,1 (m, — Am,) — 0,5 logd
where 4 is the apparent diameter of the star in seconds of arc and T is the
temperature, m, the apparent radiometric magnitude of a star, and 4Am, the
correction to no atmosphere including atmospheric absorption and losses in

the telescope. The following table contains the diameters measured directly by
PeasE, and the diameters computed from the above formula with temperatures

1 Seeliger-Festschr p. 338 (1924).
2 Mt Wilson Contr No. 369; Ap J 68, p.279 (1928).
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derived from water-cell absorptions and from heat indices; it further contains

the temperatures computed from measured 4, water-cell absorptions, and heat
indices (comp. ciph. 187).

Diameter [ Absolute temperature

Oioct Mesredy| Compuied | Computed | Feom | prom | Eom
meter My Cm and m, w '

Arcturus . . . . . . . . 077,020 | 07,031 0,028 4300° 3440° 3580°
Aldebaran. . . . . . . . 0 ,020 0 ,033 0 ,031 3890 3080 3170
Betelgeuze . . . . . . . 0 ,047 0 ,071 0, 076 3270 2700 2600
Antares. . . . . . . . . 0 ,040 0 ,062 0 ,065 3270 2680 2620
fPegasi . . . . . ... 0 ,021 0 ,029 0 ,028 3140 2730 2730
« HerculisA . . . . . . 0 ,030 0 ,065 0 ,090 3320 2340 2030
oCeti A (max.) . . . .. 0 ,056 0 ,038 0 ,073 2210 2610 1970

195. Kaimdr's Investigation®. The author starts from the following formula
which is easily derived:
loge = 0,5 log Jo/Jx — 2,6243
where [, is determined from the equation of Pranck:

PR o 1
Je= c!z—s(m — 1) di.

C is equal to 500u?ergsec~1, ¢, = 14600° u degree Celsius. As limits for the

integral 4, = 0,40, Ay = 0,76 u have been taken. The following substitution
is made: c

-2 _

=0 p=Cr. LM

a= b=i7: =7

a

[ea—x(a—b) — ,1]

1
Je=Cla—p)(3) " [Lorle=,
4]

The integral is then evaluated by means of mechanical quadrature. If » and R
are the radius and distance of the star and g the apparent radius:

¥ = Rtgp.
Introducing the parallax @ and measuring R in light-years we have:
log 7y = logz + 0,2m, and R = 3—12—8 .
where log s, is the parallax reduced to apparent magnitude m = 0.

From the derivation of stellar temperatures by BrirL? the following values
have been taken:

Spectral class B A 1 F G K M

6o/ T 1,22 1,51 | 2,06 2,81 3,74 417
For the Sun ¢,/T = 2,35, Jo = 52,75 ergsec™'u-2.

A number of the existing parallaxes had to be excluded on account of

uncertainty. The author has selected 260 parallaxes, from which the following
values of 7y have resulted:

1 AN 233, p. 93 (1928). Also thesis in Budapest (Hungarian).
2 AN 219, p. 21 (1923).
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B n A In F ” G i n K n M in
Giants . . . . . . . .]07%17021|07,138/13]|07,140, 707,132/ 14|0”,128/ 15|0”,122| 7
Dwarfs . . . . . . .. — — |0 ,284|26|0 ,796{4511 ,263|56|4 ,031|54|6 ,158| 2
From the data at hand the following results have been found by KALMAR:
Spectral Absolute Surface Mean app. | Mean red. | Linear
class temperature | brightness J, radius dist. R, radius
M 3500° 2,38 | 07,0198 | 26,5 34,8 9
K 3900 4,53 | 0 ,0144 26,0 24,8
. G 5200 23,46 0 ,0063 24,6 10,3
Giants | g 7100 87,00 | 0,0031 | 23,0 4,7
A 9700 266,73 0 ,0019 20,9 2,7
B 12000 475,23 0 ,0014 18,1 1,8
A 9700 266,73 0 ,0019 10,3 1,3
F 7100 87,00 | 0 ,0031 5,3 1,1
Dwarfs { G 5200 23,46 0 ,0063 2,2 -0,9
K 3900 4,53 0 ,0144 0,8 0,8
M 3500 2,38 | 0 ,0198 0.6 | 07

196. Interferometer Measurements at Mount Wilson. The reason why the
interferometer method was not applied earlier to diameter measurements of
stars must have been because astronomers have thought that atmospheric
disturbances are a too serious source of error. As a matter of fact observa-
tions have proved to be feasible even when visibility is poor. According to
A. A MicgeLsoN and F. G. PEASE! the explanation is that the atmospheric
disturbances, being irregularly distributed over the surfaces, simply blurr the
diffraction pattern. In the case of two isolated pencils, too small to be affected
by such an integrated disturbance, the resulting interference fringes, though in
motion, are quite distinct unless the period of the disturbances is too rapid for
the eye to follow them?2.

As the diameter of the 400 inch reflector was not sufflclently large for the
fringes to vanish, an interferometer with movable outer mirrors was constru-
cted. The maximum separation was 20 feet.

Four mirrors, My, M,, M,, and M,, about 150 mm in diameter, inclined
at 45° to the base, are mounted on slides. M, and M;are adjusted by three screws
at the back, and M, and M, can be adjusted about two horizontal axes by means
of fine screws at the ends of lever arms. The mirrors M, and M, are kept fixed
at a constant separation of 114,2 cm, except that M, has a motlon of several
millimetres along its slide and parallel to the beam.

The fringe pattern has a spacing equal to 0,02 mm and is easily visible with
a magnification of 1600.

The observations are made at the CASSEGRAIN focus, corresponding to an
equivalent focal length of 40,84 m. Two pencils from the star are reflected from
the outer mirrors, M, and M,, to M, and M, and from there along the ordinary
optical way to the large mirror, the convex mirror, the Coudé flat, and finally
to the focus. The coincidence of the pencils at the focus is obtained by adjusting

1 Mt Wilson Contr No. 184, 185 (1920) and No.203 (1921); ApJ 51, p.257, 263;
53, P 249.

2 Recent work by W. A. CALDER at Harvard College Observatory [Harv Bull 885
(1931)] using the Harvard 15inch refractor and a stellar interferometer in front of the
objective, emphasizes the importance of good seeing at interferometer measures. CALDER
concludes: ... that the statements frequently found to the effect that, in contrast to
what might be expected, the interferometer does not require excellent seeing conditions,
are unduly optimistic. Atmospheric conditions appear to be the controlling factor, and
seriously restrict the possibilities. of the interference method.”
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the outer mirrors M; and M, and then tilting a plane parallel glass plate of
15 mm thickness in the path of one of the pencils. The equality of the paths
of the pencils is obtained by setting the outer mirrors as nearly symmetrically
as possible on the beam, and then by adjusting a double wedge of glass in the path
of one of the pencils; the relative motion of the wedges alters the paths slowly
and continuously.

In order to obtain ““zero” fringes for purposes of reference the end of the
telescope tube is entirely covered, except for two apertures in the beam 152 mm
in diameter. The pencils entering these apertures pass through the wedges and
the compensating plate, and produce an image of the star in the field of vision;
when they have been adjusted for coincidence and equality of path, these pencils
interfere and produce the zero fringes which cross the reference images.

The interferometer images are next brought into the field of the eyepiece
and made to coincide at a short distance from the zero star, thus forming a second
star in the field. The parallel plate compensator is used only for differential
deflection of the steel beam. When the wedge is moved in order to equalize the
difference in the path of the interferometer pencils, the zero fringes disappear,
and the number of turns of the rod are determined which are required to bring
the first fringes into view. The mirror M, is then moved a small amount in
order to compensate for this difference. After several trials both sets of fringes
are seen in the field of vision crossing their respective images.

The distribution of light in the disc to be measured is represented by the
formula: I=1,(R?— r3"

where 7 is the distance from the centre, R the radius of the star, and # the expo-
nent expressing the amount of darkening at the limb. The visibility V of the
interference bands is defined by:

1
V=57C+S*
where C= [F(x)coskxdx, S= [F(x)sinkxdx,
' 2a,b
P=[Fxads, k=37,
in which b is the distance between the two pencils entering the interferometer,
Aegs the mean effective wave length of the light-source, 4 its distance, and
F(x) dx is the total intensity of a strip of the source having a width of dx
in a coordinate system where %, y are the coordinates of a luminous point
in the disc of the star. The star disc must be symmetrical and thus:
C
V=-5.
Assuming the illumination to be a function of the distance from the centre in
the way indicated above we have, when sabstituting 72 = x2 4 42:
VR
F(o) = [(R — 22 —y2)ay.
4]
Expanding in series and substituting in ¥ MicHELSON and PEasg! find:
2n+1

R
f(R2 — %) % coskxdx
V="

2n41

R
Of(R — ) ® dx

1 Mt Wilson Contr No.203; ApJ 53, p. 249 (1921).
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The following table computed under the direction of F. R. MOULTON gives
the values of the integral: .
. 2n+4+1
F(k,n)z/“——xz) 2 coskxdx.

0o

| n=0 n=0,5 \ n=1 \ n=2
k F (k, n) 3 F (k,n) R | F (%, n) k F (&, n)
0° +0,785 0° 40,785 0° +0,785 0° 40,785

100 +0,507 30 40,765 40 40,746 40 +0,761
130 +0,378 60 40,702 80 -+ 0,663 80 + 0,694
160 + 0,243 90 —+ 0,607 120 +0,536 120 -+0,590
200 -+ 0,065 120 +0,490 160 +0,383 160 -+0,468
230 —0,024 150 40,363 200 -+0,237 200 -+0,342
240 —0,050 180 +0,238 240 +0,112 240 -+0,221
280 —0,100 210 +0,127 280 40,024 280 40,123
320 —0,095 240 -+0,038 320 —0,029 320 40,054
360 —0,053 257,45 4+ 0,000 360 —0,045 360 -+ 0,003
400 — 0,007 270 —0,024 400 —0,039 400 —0,019
440 40,036 300 —0,057 440 —0,020 © 440 —0,024
520 + 0,042 330 —0,068 480 —0,001 480 —0,018
600 —0,011 360 —0,059 520 -+0,012 520 —0,006

390 —0,040 600 ! -+0,013 600 0,000

420 —0,016 640 -+0,005 640 -+0,005%

450 + 0,005 680 —0,004 680 -+ 0,005

480 +0,019 720 -+ 0,002

510 -+0,028

540 +0,026 l

570 40,019

600 +0,009

630 —0,002 ‘

The authors point out the theoretical possibility of deriving the actual
distribution of light in the source from observations of the visibility curve itself.
Even if the present means are not able to give such a result, it does not seem
impossible that future observations will do so.

If b, and b, are the distances for which the fringes vanish the first and second
times, the following formula gives a fair approximation to the value of n:

by 1\2
sl 1T
Denoting the visibility of the first negative maximum by Vma.x we have:
1 0,7
n = 0’22(Vmax — 7,8) .

The value sought by the measurements is F (%, #) = 0 or the separation
between the outer minors M, and M, for which the fringes vanish. P. MERRILL,
when using the ANDERSON interferometer used for the investigation of the orbit
of Capella, found that the visibility of the fringes of & Orionis decreased, for
the maximum separation of 100 inches, in that apparatus. As the decrease was
independent of the position angle of the interferometer the star was certainly
not a‘ binary.

On December 13, 1920, after the adjustment of the instrument had been
checked by means of settings on other stars, & Orionis was investigated. A se-
paration of 121 inches did not give any fringes for that star, although the zero
fringes were quite visible, The disappearance of the interferometer fringes
evidently could not be caused by any disturbances of an instrumental nature.
The instrument was not provided at that time with means for continuously
altering the distance between the movable mirrors.
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The effective wave length was assumed to be 1 5750 for o Orionis, and the
angular diameter was thus found to be:

d = 0",047.

Somewhat later J. A. ANDERSON made an investigation of the effective
wave length?! and found the value Ao 5520, from which it follows that:

d = 0,045 4- 0”,0045.

The stars for which a value of the diameter has been found by direct mea-
surements are the following:

Parallax . Diameter

Star Diameter Trigo- Spectro- Spectral. + | Concluded | in linear

nometric graphic | proper motion value measure

&« Orionis . . . . , . . | 07,047 0,011 0,010 0,012 0,011 460
o« Bootis . . . .. .., 0 ,022 0 ,085 0,131 0 ,158 0 ,090 26
o« Scorpii . . . . I . . 0 ,040 0 ,026 0 ,013 0 ,010 0 ,026 160
o Ceti . . . . . ... 0 ,056 0 ,011 — 0 ,020 0 ,010 600
« Herculis . . . . . . 0 ,021 0 ,030 0 ,002? 0 ,008 0 ,007 320
o« Tauri . . . . . .. 0 .020 0 ,057 0 ,083 0 ,096 0 ,060 36
B Pegasi . . .. ... 0,021 | 0,019 | 0,023 0,028 | 0,020 110
y Andromedae . . . . . (0 ,014) | 0 ,010 0 ,007 0 ,024 0 ,010 (150)
o Arietis ., .. ... ](0,011)] 0,037 | 0,053 | 0,046 | 0,040 (30)

The values within parentheses depend on extrapolation of the visibility-
curves and on a correction for seeing, and are hence uncertain and subject to
changes when a larger separation can be used, so that the actual disappearance
of the fringes will be estimated.

The value for « Orionis is given above as 07,045 and the mean value of
8 determinations is 0”,042. I have preferred to use the original value from
1920. The value for « Scorpii has been checked at different epochs.

The linear diameter D is found from the formula D =107,5 d’’/=”. On account
of the importance of knowing the linear dimensions the existing values of the
parallaxes have been discussed with great care; as an example, we give in some
detail the discussion for & Orionis.

a Orionis. Six trigonometric values of the parallax are known: -40",031
-+ 07,024 (Yale); 40",018 4 0"/,007 (SCHLESINGER); +0"',022 + 0”/,007 (LEE);
40,013 4= 0,006 (M1TCHELL); 40,011 + 0,006 (VAN MAANEN), and —0"/,005
=4 07,007 (ALDEN). Spectrographic determinations are: 0",012 (Mount Wilson),
0",014 (Norman Lockyer Observatory), 0’',009 (Victoria). The spectral proper
motion method gives 7, = 0",012.

A weighted mean of the trigonometric values gives 0,011 and of the
spectrographlc values 0”,010. The high luminosity of « Orionis makes it probable
that its mass is high. Thus a systematic difference ought to be present between
7t and ;. But if a mass factor is present the luminosity would be too small
in the second case and the parallax too large. It thus seems that either the
parallaxes available do not suggest such an effect or the mass is small.

Anyhow it seems that the best parallax value to be derived from the material
is 0",011.

197. Varying Stellar Diameters. The most sensational discovery concerning
the diameters of the stars is without doubt that of PEASE? that the dimensions of
o Orionis vary between certain limits. Numerous tests have shown that the

1 Mt Wilson Contr No. 222 (1922); Ap J 55, p. 48.
2 PublAS P 34, p. 346 (1922); Mt Wilson Reports 1920—1928.
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variation must be real. Thus it is proved that pulsations occur among the stars.
The data are too few to admit the establishment :of correlations between the
apparent magnitude, the radial velocity, and the diameter. There seems to be
some relation, but the observations are too few. Besides, the estimates of mag-
nitudes are liable to considerable uncertainty on account of the lack of comparison
stars and the rather exceptional colour of the star. The following determinations
have been obtained by PEASE:

Apparent Apparenf

Epoch d?gmeter Epoch diameter

December 1920 ... . . .| 07,047 | December 1924 . . . . . 07,044
September-November 1921 | 0 ,054 | December 1925 . . . . . 0 ,034
October 1922 . . . . . . 0 ,034 | December 1926 . . . . . 0 ,041
December 1923 . . . . . 0 ,041 February 1928 . . . ., 0 ,037

Adopting the parallax above the following values of the linear diameter
are found: 4600, 5400, 3300, 4000, 4300, 3300, 400®, and 3600 respec-
tively. This gives a mean value of 400©® and a dispersion of 471® around
the mean. :

It is possible that the dimension of Mira Ceti also varies, but the observations
available cannot decide this question. -

The new interferometer with a maximum base of 50 feet was taken into
use at the end of 1930; with this magnificent instrument the number of measurable
stars will be increased to forty or more. In the Mt Wilson Report for
1931.it is stated that the adjustment and operation of the 50 feet interfero-
meter have been continued by PEASE, who has observed fringes with mirror-
separations up to 44 feet. Measurements of « Orionis give an angular diameter
of about 07,040 and of 8 Andromedae 0”,016.

198. The Theoretical Investigations of M. Hamv. M. Hamy?! has proved
that the light E of a point in a circular star can be expressed by the convergent
series: :

E=Ay+ 4,01 — o) + Ay (1 — %) + 43 (1 — g%} + -

where o is the ratio between the angular distance of the point considered from
the centre and the angular diameter, and 4,,.4,, 4, . . . are constants depending
on the constitution of the stellar atmosphere.

For the Sun and Zey = 5062 A we have:

o Eobs Ecomp I Eobs Ecomp

I
0,00 ‘ 1,0000 1,0000 0,825 0,7196 0,7195
,20 0,9891 0,9882 0,875 0,6605 0,6607
,40 0,9510 0,9505 0,92 0,5909 0,5911
»55 0,8998 0,9003 0,95 0,5289 0,5285
,65  , 0,8516 0,8521 0,97 0,4719 0,4721
75 |

0,7871 0;7865

The values Ecomp are formed from the following values of the constants derived
by the aid of a least square solution:

Ay = 0257379 4, 0,941025 Ay = —0,255333
A, = 0076874 A5 = —0,019945

The formula for E has an interesting application to the measurements of
the diameters of the stars.

1 CR 174, p. 342 (1922); Journal de Mathématiques pures et appliquées 1917 and
1920; BA Mém et Var 1, p. 198 (1920).
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When two apertures are used the fringes of YounG will disappear as soon
as the well-known relation: leﬁ
£ =1,22—

is fulfilled; ¢ is the angular diameter of the star and / the distance between the
apertures. The relation presumes the star disc to be uniform.

It is also possible to determine the value of ¢ and the variation in the sir-
face brightness of the star in cases where an absorbing atmosphere gives a
non-uniform distribution of light over the disc, if the ratios of the intensities
of the maxima and minima of the fringes have been observed.

If I is the value for which the fringes disappear, K; the ratio of the

intensities when the distance is /;, and «; = /I, and if further m = ncj—s and

m; = Hc; and thus m; = m«;, we obtain, by using the expression above for E,
the followmg equation:

Aqlfo(m) — K;Fo(my)] + A, [fy(mi) — KiFy(m)] + -+ =
The value of the # constants is determined from » equations, that is, from #
determinations of the K;. The functions f and F are known and depend on the
evaluation of an integral of the form:
1

/(1 — a2 +icosqxdx,

0
where p is a whole positive number or zero and ¢ has not a high value.

In a subsequent note! HamMy makes use of the following designations:

'S 2n 1 _ 4
U, = E (— 1)"( i pn R f1—u2)*c052mudu,
= 2 o
. . ma" 1 _ 8 2\
U= DN 1)"(1.2...n)2 (n+1)(n+2)_3af(1 u?)t cos2mudu,
n=0 0

B—A“+ R

C=4,2+ A14m2<s—m’2—m—0052m) 1+ 4,5

2m
9 1 [sin2m 1 sin2m
+A3m[mz< 2m *COSZ’”)“? 2m}

1
+ A4W(2U1 - Uo)-

The coefficients A4, 4,, A5, 43, A, in the expression for C are tabulated
in the table on p. 593:

Hamy shows that the maxima of intensity are proportlonal to B 4 C and
the minima to B — C.

If /, is used as a designation for the value for which the fringes disappear,
the ratio K then equals unity. If «; = [;/l and u = m,;/x; we have the follow-

ing system: 2C=0 For | = Iy, m = u

(B+C;—K, B—-Cy;=0 , =1 = o1
(B+C)2—K2(B—C)2=O =1, = Kglt
(B+C)g— K3 (B—C)g=0 =1 = Xglt
B+Cy— Ky (B—C)yy=0 =1 = G4

1 CR 174, p. 904 (1922).
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These equations de- M A, 4, 4, ] 4 | 4
termine the quantities: ‘

0,0 |+0,5000 | 40,3333 | 40,2500 | 4-0,2000 | 40,1667
A As Ay Ay 0,1 4975 | 3320 | 2402 1 1994 | 1663
TAy’ Ay’ Ay’ A 0,2 ,4901 ,3280 2467 | 1977 ,1650
The di . 0.3 4779 ,3215 2426 | ,1949 ,1630
The diameter ¢ 1s 0,4 L4611 ,3125 2369 | 1910 | 1601
found from: 0,5 14401 ,3012 ,2298 ,1861 ,1565
Le 0,6 ,4153 12877 2213 ,1802 1522
po= 2 0,7 ,3871 2724 2116 735 472
dets 0,8 13562 ,2554 ,2008 11659 417
0,9 ;3231 ,2371 ,1890 577 ,1355
IS I,?hthe cafe tqf th-e 1,0 ,2884 12177 1764 1 ,1489 ,1290
un ihe application 1s 1,1 12527 11975 4632 1 ,1395 11220
simple because the law 1,2 ,2168 A769 | 1496 | ,1208 1147
of distribution of the in- 1,3 /1811 ,1521 308 | 1198 | 1071
o ‘ 1,4 1464 1354 219 1 ,1097 ,0993
pgraon e 3| oGE Mmoo o
. er 18 . 1,6 ,0817 ,0957 ,0044 . ,0895 ,0838
sideration is taken of 1,7 ,0527 ,0771 ,0813 | ,0796 ,0760
the variation in inten- 1,8 N :0262 :0592 :0226 ;’ :0292 :0284
: ; 1,9 0,003 ,043 ,0567 | ,060 ©,0610
Sltg ?nhthe solar il.sc' 2.0 |—00165| 0200 | 0455 \ 0518 | .0538
and & when no variation 2,1 ,0330 ,0160 ,0352 . ,0435 ,0469
in intensity is supposed, 2,2 ,0461 | 40,0047 ,0258 | ,0357 ,0404
the following relation is 2,3 ;0558 | —0,0049 0174 | 0285 ,0343
found: 2,4 ,0622 ,0128 0101 | ,0220 ,0286
, 2,5 ,0655 ,0190 | 40,0037 1 ,0162 ,0233
€=091¢. 2,6 ,0660 ,0236 | —0,0016 ' ,0110 |  ,0186
2,7 ,0640 ,0267 ,0059 ,0065 ,0143
In the case O.f su- 2,8 ,0597 ,0283 ,0094  +0,0027 ,0105
per-giants and ordinary 2,9 ,0537 | ,0287 ,0119 , —0,0005 ,0071
giants the correction is 3,0 ,0461 | ,0280 ,0135 . ,0031 ,0043
certainly much larger on 3,1 :03;6 :025§ ,0144 :Oogé +0,0018
' 3,2 ,0284 ,023 ,0147 ,0066 | —0,0002
account of the extended 33 10190 ,0207 ,0143 ,0075 ,0018
atmosphere and the ra- 3.4 ,0096 ,0172 ,0135 ,0081 ,0030
pid falling off in inten- 3,5 |—0,0007 ,0135 ,0123 ,0082 ,0039
sity towards the limbs. 3,6 +0,007g :0092 ,0109 :0032 :004?5
1 3,7 ,014 ,005 ,0091 ,007 ,004
.I(.iatex(rl O{clh Hamy 3.8 ,0210 | —0,0021 ,0073 ,0069 ,0049
considered the —case 3.9 ,0258 | +0,0012 ,0054 ,0061 ,0048
where the dimension of 4,0 |+0,0294 | 40,0042 | —0,0035 | —0,0052 | —0,0046

the apertures could not
be considered as negligible in comparison with the distance between them. In
his earlier work he had reached an approximative solution2.

If we denote the common width of the apertures by a, the distance between
them by I, by © the angular distance from the centre of a point in the focal
image of the star taken parallel with the line joining the centres of the apertures,
by w another angle in the same direction as @, then the intensity I in the
direction @ is proportional to the integral:

sinZ% (w — @)

52 i‘ leff l
g2 2 — —_—
< w ) - COSs“rt, T (w @) dw.

-0
i T @~ ©)
Putting: . . . mle
wz?u’ =Zr’ T:(x’ mzZleff’
1 CR 175, p. 1123 (1922). 2 BA 16, p. 257 (1899).

Handbuch der Astrophysik. V, 2. 38
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one can write: +1 _
I= 2/(1 — u?)} [ﬁflz—_%t(l_:)t)rcoszm(u —1)dr.
-1
Further we put: 2mt = %,

1
S(m) = %/(4 — w)tcos2mudu,
o]

1
= 3‘;/(1 — u?)icos2mudu.
(4]

T (m)

Then one can easily derive:

1
%f@ﬂ (1 — utcos2mudu = S(m) — 37T (m),
0

1
y;ifu(d — wd)tsin2mudu = 2mT (m).
00

The numerical values of S (m) and T (m) have been computed by Hamy as follows:

m S(m) T (m) m S (m) ! T (m)
0,0 1,0000 0,2500 1,0 0,5767 0,1764
0,1 0,9950 0,2492 1,1 0,5054 0,1632
0,2 0,9801 0,2467 1,2 0,4335 0,1496
0,3 0,9557 0,2426 1,3 0,3622 0,1308
0,4 0,9221 0,2369 1,4 0,2927 0,1219
0,5 0,8801 0,2298 1,5 0,2261 0,1080
0,6 0,8305 0,2213 1,6 0,1633 0,0944
0,7 0,7742 0,2116 1,7 0,1054 0,0813
0,8 0,7124 0,2008 1,8 0,0530 0,0686
0,9 0,6461 0,1890 1,9 0,0067 0,0567
1,0 0,5767 0,1764 2,0 —0,0330 0,0455
2,1 —0,0660 0,0352

Supposing & to be small and including terms of the third order we can derive the
following formula, taking 2mt = x:
2 (x2 m

%I=1+S(m)cosx—%{—+—2+[§(1n~)

> x2 4 2m2S (m) — 6m2T (m)| cosx

2 2
— 4m2T(m)xsinx}.

S (m) is zero for m = m, = 1,916. The intensity has maxima when x = 2K,
and minima when x = (2K + 1) 7,, where K is an integral number. The fringes
disappear when:

wle
. my == 1,916,
or: r
e =1,22"%

T .
This is the formula derived by MICHELSON.
When « is small, but not zero, we get from the above formula:
2 01

— oy = —S(m)sinx — %2 % + [S(m) — 4m? T (m)]x cosx

— {222 22 4 [S(m) — 7 ] 2m2} sins|.
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It is known that if m is smaller than m,, the equation % = 0 has real

roots near x = Km,. Only the root x = 0 remains fixed when & and m vary.
In the neighbourhood of ¥ = 0 we have:

261
n, 0%

2

— —xfStm + ST+ (0 — 2m)S () — 20T o))}

3 2
4 %{5 (m) — % L2 — 3)S (m) + 5m2 T(m)]} 4 #5(...) + higher terms.
When m = 0 the coefficient of x is negative. It remains negative as long as m
is below the smallest positive value p that makes the coefficient disappear.
The root # = 0 then corresponds to a maximum of I.

The coefficient of x cannot disappear more than for a value of m that makes
S(m) of the same order of magnitude as «2.

The equation: o2
S(W) + % [ —2m3 T (m)] =0,

determines u. Developing S (u) in terms following powers of ¢4 — m, and dropping
(u — m,)?, which is of the order «%, one finds the equation:

_ wle 2
= 2w 1,916 + 0,236 &

or.
e="" (1,22 + 0,5 o).

This formula is not strictly applicable when « is not very small. When « is a
considerable fraction of the unit, 4 cannot be derived without alaborious numerical
discussion.

Hamy has derived the values of u for the following cases:

In another paper! Hamy has made further

studies of the problem. The study of variation o
in the intensity of the central maximum does * i - ¢
not permit any conclusion concerning the value 1
of the diameter of the light source. 3 :ggg }iig
The disappearance of the two minima en- ?::1;5 1,045 1238
compassing the central maximum ought, on the t 1,932 1,230
other hand, to be able to give a value of ¢ if the H 1,922 1,224
relation is known between ¢ and / when such a o 1312 :’g%

disappearance occurs.
One can write the expression for the intensity:

+1
2 — cos2m (+1) (u —r)—cos2m (x—1) (4—17)+2cos2 —7)—2c082 _
[:[(1_,“2)% ( ) 7) E;czaz)(?i-zz));!— cos2m (4—17)—2c082m & (4—7) du.
—1

From this can be deduced:

S g=p+1
- =0= — 272—(“+1)2p+4'_(0‘—1)2P+4—20¢2”+4 2 (27)24-2
’ ;( R (2p+3) (2P +4)a e ; req)I'(p+q+2)I(p—g+3)’
I =0 = S (—1)? 2 — (x-4-1)2P 40— (g —1)2P+4—p n2p+4 I 34 (27)22-2
g =0 (2P +3)2p +4) o < I2g-1)I(p-g+2) I'(p—g+3) *

1 CR 176, p. 1849 (1923).
38%
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The problem to be solved is to find the smallest positive value of m and
the smallest value of 7 that simultaneously satisfy the equations. When o is
very small the following solution is found:

m = u; = 1,916 — 1,152,
27 = 2,011.

By taking “‘small” values of «, for instance &« = %, and substituting neigh-
bouring values, the unknowns are found by a process of interpolation.

199. Danjows Interferometer-Methodl. The apparatus used in applying
this method is of the same type as the interferometer of JAMIN, where the inter-
ference is caused by a system of thick glass plates. When observing through
this instrument, the star to be measured is seen moving upon a field of bright
and dark fringes. If the star has no sensible dimension it disappears completely
when its light passes through the centre of the dark fringes. But if the star
has an appreciable disc, not all the points of this disc will disappear. The
extinction will only be complete along a chord coinciding with the centre of
the dark fringe. On each side of this chord there are illuminated parts. When
the star is circular and has its light uniformly distributed over the disc, the
ratio y between the maximum and minimum brightness is defined by:

_1=J
y"",l_l__]:
where: L n 1w
IT=1=Smt3Gap—

and # is equal to 7,0, where g is the ratio between the angular diameter of the
star and the distance between the fringes. The determination of the apparent
radius is thus dependent on actual photometric measurements of the quantity 4.
No results of the experiments at Strassburg have been published as yet.

200. The Companion of Sirius (Sirius B). In his paper on therelation between -
the masses and luminosities of stars EpDINGTON? pointed out the possibility
that Sirius B had a density of 53000 that of the water, on account of the electrons
being in the capture zone of two or more nuclei simultaneously. The question
whether such density really exists could be settled if the EINSTEIN shift

-+0,62 %km/sec, amounting to 20 km/sec, could be measured. The possibility

of testing the general theory of relativity as well as the theory of extremely
dense matter was independently pointed out by BOTTLINGER and by WEBER3.

In 1925 W. S. ApaMs* communicated the results of measuring spectrograms
of Sirius B. Direct measurements are difficult on account of the diffuse character
of the lines, and the large registering photometer was accordingly used. Several
observers have checked the measurements. The difference in velocity between
Sirius A and Sirius B varies between 2 and 37 km for different spectral lines,
but outstanding features of the results are the definite character of the positive
displacement and its change with the amount of the wave length. The greater
relative intensity of the spectrum of scattered light of Sirius A towards violet
and the increasing influence of the superposition of the lines in its spectrum
upon those of Sirius B will tend to reduce the amount of measured displace-
ment. An approximate correction was derived from photometric measurements

1 CR 174, p. 1408 (1922). 2 M N 84, p. 308 (1924).
3 Berlin-Babelsberg Versff 3, No. 4 (1923); A N 220, p. 189 (1924).
4 Wash Nat Acad Proc 11, p. 382 (1925).
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of the relative intensities of the continuous spectrum of Sirius A and Sirius AB.
The correction factor 4 is found from:
— g o Fa
a=1+ %,

where k4 is the density of the spectrum of scattered light of Sirius A, and Zg
that of the companion. By applying the correction factors the mean values were
found:

Hg. . . ... ..., +26 km/sec
Hy. . o o o oo 421,
Additional lines . . . . . +22 '

The relative orbital velocity at the epoch is 1,7 km/sec. The remaining
displacement of 21 km is interpreted as a relativity displacement. The following
elements for Sirius B were derived by using SEAREs’s values for surface brightness,
on the alternatives of FO or A5 for the spectral class:

Fo A5
Surface brightness . . . . —0™,88 —12,45
Radius . . . . . . . . . 24000 km 18000 km
Density (Water = 1) . . 30000 64000
Relativity displacement . +0,23A 0,32A

The radial velocity of Sirius B also was determined at the Lick Observatory
in 1928. J. H. Moore?! found the following values on the basis of 4 spectro-
grams:

Rel. displ. of Toes | compamionseatiored 1kt
1928 Febr. 13 422 km/sec 7 3,7
20 (410) 4 1,2
27 +29 6 10,0 (Underexposed)
March 20 421 4,9 2,8 (Mean of two)
Mean 24 :

The result of Apams is thus confirmed.

Although the idea that Sirius B is an enormously dense body seems to be
accepted generally, it seems fair to consider some other explanation. ANDING?
and others suggested that the light of the companion is reflected from a dark
body. The fact that the spectrum is not identically the same as that of the
primary does not make this theory impossible. Because of its general importance
for stellar photometry we give a short review of ANDING’s paper.

A luminous surface element 4f with intensity I emits light at an angle of
emanation ¢ to an element df" at the distance 7, and at an angle of incidence 7.
The light received by df’ is:

4 4
dL = Idfcose ‘ﬁ%’i’.

The element 4f not emitting light itself reflects the light 4L’ at an angle of
emanation & to another element djf":

1 4 . 1 .
dL’ = Idfcose— —df cosi cose’ — df” cosi”,
7% m, 72

where A is the albedo according to the definition of LAMBERT, ¢” the angle
of incidence of this element and # its distance.
Applying this to Sirius we have the integral J (extended over an hemisphere):
J= f Idfcose,
1 Publ AS P 40, p. 229 (1928). 2 AN 229, p. 69 (1926).
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as the expression for the luminosity of the star. If D, is the distance of Sirius A
from the Earth, the density of its light rays as observed by us is:

H, = Dl .
Further we introduce:
df = R:ddo

where do’ is the surface element of a sphere of unit radius and R, the radius
of Sirius B. The angle between the radius vector Sirius-Companion and the
radius vector Earth-Sirius is called 7z, — «. Then we have:

[ cos?’ cose’ do’ = % [(m, — &) cosx + sina].

Further in the formula for dL” above #’ stands for D, (the distance of the com-
panion from the Earth), and the value of the light H, from the companion is:

2

R: . 1
Hy=]44 ﬁ{(% — &) cosx + sm«x}-ﬁg.

The distance of Sirius A is equal to that of Sirius B, or D,= D,. We then get
the expression for the ratio of the light of the two objects:

2
Z—‘ = %3% (e — o) cosox + sina},
For simplifying purposes we assume 4 =1, 7 equal to the mean distance « between
Sirius A and B, and & = %

Then:

H, _ 2 (Ry
H, ~ 3=, ( a
or expressed in magnitudes:
R,
My = My + 1,7 — Slog;.

The value. of 4 is 20 astronomical units and the mass of the companion equals
the mass of the Sun. If R, is supposed to be equal to the Sun the following value
is found:

m, = 18m,5,

Thus Sirius' B should be ten magnitudes fainter than is the actual case. If R,
is computed from the value m, = 8,5 it is found that R, =100 ® and the density
would be 1/955000 of that of the Sun! The observations show the contrary to
be the case, but it might be possible to explain the facts in favour of the reflection
theory if the companion is surrounded by a swarm of dark bodies having the
character of a dust-cloud.

A detailed investigation does not make the existence of such a dust-cloud
very probable, Another hypothesis is that the companion of Sirius is a close
binary system where one of the components is dark and has the same mass as
the Sun. If the distance between the dark companion and Sirius B is equal to
one planetary unit, the magnitude of the dark companion will be 21™,8 on
account of the light reflected from Sirius B; if the same distance is 0,1, the
magnitude of the dark companion will be 16m,8.

In order to test the theory it will be necessary to observe the radial velocity
of Sirius B at different epochs, because in the case of an orbital motion the radial
velocity of Sirius B will show corresponding variations.
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201. Diameters from Scintillation-Observations, G. Ticrov! has used
the colour changes caused by the scintillation of the stars for computing the
apparent diameters, From 77 stars he finds the simple relation:

d =333 _ 0,0607
where d is the diameter in seconds of arc, and S the number of changes in the
colour in a second of time.

The theory of scintillation shows that the blinking is related in a simple
way to the apparent diameter of the stars. DUFOUR? has found that the red stars
do not undergo such rapid changes as the white stars. MONTIGNY3 has published
a series of papers concerning the scintillation and he has given, in a catalogue,
observations of the number of colour changes for 120 stars. I have used
his data and tried to establish a relation analogous to that of Ticmov, but so
far without success. It seems that so many variables enter into the determination
of the number of changes that the diameter is a very complicated function of S.
Anyhow, it is clear that the diameters cannot be determined from the material of
MonTIGNY with such an accuracy as when they are derived from observations
of colour and magnitude. The details of TiCHOV’s investigation have not been
accessible to me and it is possible that his data are more accurate than those of
MonNTIGNY. '

202. The Fallacy in S. Poxrowsky’s Method. This method was based on
the use of elliptically polarised light and was published at first in the year 19124
and later on in 19155, As plans have been made to apply the method in practice,
EppiNngTOoN® took up the ‘“‘ungrateful and ungracious” task of showing the
breakdown of the method. The essential principle is the bringing into super-
position of two widely separated beams that have been previously polarised in
perpendicular planes. If the phase-difference is zero or 34, plane polarized light
is obtained, and circularly polarized light for phase differences of }41 or $4.
For intermediate values elliptically polarised light is obtained, which cannot
be completely extinguished by a Nicol prism as is the case with plane polarised
light., With point-source light the phase difference can be made zero and the
image completely extinguished, but with a finite disc the difference will not be
zero for all points of the disc simultaneously and the image will not wholly dis-
appear. The angular diameter should result from the intensity of the residual
image. The fallacy in the method arises according to EDDINGTON from the fact
that the intensity that is calculated by POKROWSKY is not that of the whole star-
image, but the intensity at a certain point in the focal plane. If the star is slowly
displaced with regard to the instrumental axis, its image does not pop in and
out, but bright and dark interference bands pass across the point considered.

The inadequacy of the treatment in the paper of POKROWSKY arises on
account of the assumption that for a point-source plane waves emerge from the
two apertures and travel in a particular direction. Owing to the diffraction,
the waves travel in various directions inclined at angles that are not small
compared to the angles, such as 07,003, occurring in the investigation,

1 Mitteilungen Leshafts Inst Leningrad (Russian) 2, p. 126 (1921).

2 Receuil inaugural de 1'Université de Lausanne (1892). La scintillation des étoiles.

8 Bull de I’Acad Roy Belg Ser. II, 25, p. 631 (1868); 29, p. 80 (1870); 29, p. 455 (41870);
37, p-165 (1874); 38, p. 300 (1874) (Catalogue'; 42, p.255 (1876); 44, p. 694 (1877);
43, p. 391 (1878); 46, p. 17 (1878); 46, p. 328 (1878); 46, p. 598 (1878); 47, p. 755 (1879);
48, p.22 (1879): Ser. IIL, 1, p.231 (1881); 6, p.426 (1883); 9, p. 85 (1885); 16, p. 160,
553 (1888); Ann del’Obs Bruxelles 1878, p.245. .

4 ApJ 36, p. 156 (1912); AN 192, p.21 (1912); B A 29, p. 305 (1912).

5 ApJ 41, p. 147 (1915). 8 M N 87, p.34 (1926).
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e) The Densities of the Stars.

203. Densities of the Stars. Pioneer Work. The densities of the stars can,
of course, be derived as soon as their masses and dimensions have been computed.
A determination of the density itself is only possible in cases of visual binaries
and eclipsing variables and involves a knowledge of the mass ratio.

E.C. PickeRING! and later on W. H. S. MoNcK? have separately derived an
equation for binary stars with known orbital elements which renders it possible
to determine the relation between brightness and mass of these stars quite
independently of their distance. It is easy to show that the formula does
not distinguish between the extent of the surface and the temperature. The
difference in mass-brightness may be due to variety in mean density (diameter)
or to variety in surface brilliancy or temperature. The effects observed will
be quite the same. PICKERING realized that if the temperatures were considered
as not varying from star to star the mean densities of binary stars could be
easily derived.

In a paper of 1891 E. W. MAUNDER? drew attention to several circumstances
that indicate that the spectral class marks a difference in constitution rather
than a difference in the stage of development. In this paper the author computed
the densities of 51 double stars assuming that the intrinsic brightness per unit
of surface is the same for all the stars, which is far from truth. He found for
the Sirian stars the mean density p = 0,0211 ® and for the solar stars g = 0,30266.
He also determined the ratio of the absolute brightness of the two groups of
stars as 45,6/70,5, corresponding to a difference in absolute magnitude of --0M,45,
whereas it should be —3M,3. The author also points out the possibility of using
the double stars for studying the differences in absolute magnitude of different
spectral groups.

204. Densities of Visual Binary Stars. The densities of visual binary stars
have recently been computed by E. Opik%, who derived a relation giving the
mean densities g, expressed in terms of the elements of the orbit and of the
masses M, and M. (Solar mass is taken as unit.) If R is the radius of the
primary star in linear measure and I, the surface brightness of the primary ex-
pressed in that of the Sun as unit, 74 the apparent brightness, and 7z the parallax,
the relation:

7 .
-4 — R2px2sin21”
1,

is immediately derived. Further we have the well-known equation:
,SJ,RA -+ gRB =ag3n-3P-2,

My = 04R3; My + Mp = 4 K® (4 + g%) .

Further:

And:
a® 3 . My
logoy = log 7 + > (log I, — logi,) — log (4 +g)— 3 log 206265 .
A
Taking the stellar magnitude of the Sun to be —26™,60, we have:
my + 26,60 = "“2,510g’iA,
Expressing the surface brightness in stellar magnitudes and taking the Sun as
unit: -
ja=—2,5logl,

1 Proc Amer Acad of Arts and Sciences 16, p. 1 (1880). 2 Obs 10, p. 96 (1887).
3 JBAA 2, p.35 (1891); Astronomy and Astrophysics 11, p. 145 (1892).
4 Ap J 44, p.293 (1916).
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and after substitution, the following formulae:

a?® . My
logoy = log z; + 0,6(my — 74) + 0,02 — log (1 + —m—),

ad® - WA
logop = log~13,~2 + 0,6(mp — 75 + 0,02 — log(1 - %),

give the densities of the two components.

The surface temperature depends on the absolute temperature and thus,
also, on the spectral type. This dependence can be derived from the colour index,
but Opix preferred to use the effective temperatures of 109 stars, as determined
by WILSING and SCHEINER. If 1, and 1 denote the wave lengths of maximum
spectral energy of the two sources, PLANCK’s formula gives for the spectral
region A:

4,965y
I, e * —1
[_é T T 4,965,

e + —1

4,965

For visual light we have 1 = 0,56 u, T = 8,87 = ¢, and the difference (in

magnitudes) of the visual surface brightnesses of a star and the Sun becomes

. ecl*—‘l
i =25 logecT@j1 .
From WIEN’s formula, 4, T = 2940, 14 can be computed if T is known.

The effective temperatures determined by WIiLsING and SCHEINER are
probably systematically too low. The temperature of the Sun, 5130°, corresponds
to a value, 1,16 cal/cm~2 of the solar constant, which is much smaller than the
value observed, 1,6—1,7 cal/cm~2. The value for Ty, 6250°, as derived by
ABBOT and FOWLE, was therefore assumed as a zero-point, and the Potsdam
temperatures were differentially corrected.

Opik finds from the table giving the means of T for various spectral sub-
divisions and the mean reduced wave length of the spectral energy-maximum that
the temperature varies somewhat irregularly with spectral class. The fact that
the spectral scale is qualitative makes it possible that the abrupt changes in T
between some stellar classes may be real.

The mass-ratio must also be known for a computation of the densities. There
are few cases where such a determination has been possible, and it is necessary
to assume that the relation between Mp — M4 and $p/M,4 is known. Eleven
cases were available, and from them the following table was derived.

The results as to the densities are not

reviewed here because the following in- Mp—Ma ’ Mp/Ma | Ma—Ma | Ma/Ma
vestigation by BERNEWITZ contained a - "
more extensive material than that at 07,0 1,00 35,0 0,76
. . 0.8 1,00 5,0 0,60
disposal in 1916. 1.0 0.95 10 .0 0.30
In 1921 E.BERNEWITZ! published an 2,0 | 088

investigation concerning the densities of
binary stars. The formula giving o, was adopted in the form:

3
logos = log—% + 0,6(my —74) — log<1 + %‘i) -+ 0,089.

1 AN 213, p. 1 (1921).
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The determination of the surface magnitude § is based on the equation of PLANCK:

5 )
AT,
R XIT R

o (&
(77 _ )
The quantity 4 has to be defined in the same way as the apparent magnitude

m and thus account must be taken of the visibility curve g(1) of the human
eye. We can assume:

oo
i

—0,4l0g [ |27\ g(}) dh=m.
e;'T*——i
o]

The function g(4) is taken in accordance with HENNING’s result! as:

55207140 4600 460071000 660071000
1222 1-2= 1—2=
g(A):{—S—S;‘le i] +o,1[ 7 e l] —0,07{@e ’-] .

The values of the integral are computed by means of numerical integration.
The following corrections have to be applied to the visual magnitudes:

S;:;:’Sc;al CorAre:ttion et Spﬁt;tsrsal Co rze;’:ion et
Ao +0™,049 5420 Ko —0™,035 5580
GO 0 ,000 5490 K5 —0 ,041 5630
G5 —0 ,022 5540 Mc —0 ,039 5680

The effective temperatures were used as determined by WiLsING. The follow-
ing values of § were found:

Spectral . Spectral e
class et i class 2 i
(ADAMS) T (ADAMS) T
Bo 1,45 —1m,03 Go 2,64 +0™,45
Bs 1,45 —1,93 G3 2,85 +0 ,86
B8 1,48 —1 ,87 G5 3,00 “+1 ,15
Ao 1,53 —1,76 G8 3,28 “+1 ,70
A2 1,62 —1,58 Ko 3,52 +2 ,16
As 1,72 —1,37 K3 3;92 +2 ,94
A8 1,87 -1 ,07 K5 4,18 +3 ,45
Fo 1,99 —0 ,83 K38 4,48 +4 ,03
F3 2,16 —0 ,49 Ma, 4,62 +4 ,30
F3 2,29 —0 ,24 . Mb 4,76 +4 ,51
F8 2,50 +0 ,18 Mc 4,87 +4 ,78
For the determination of the mass-ratio 10 pairs were used and the following
relation resulted:
Mp Mz Ma
Am E Am m Am . 5373
oM,0 1,00 24 0 0,81 4% o 0,68
1,0 0,90 3,0 0,74 5,0 0,62

For 31 out of 63 pairs, only the mean density of both components could be
computed. An attempt was made to find a relation between absolute magni-
tude and density. The results are given in the following table.

1 Jahrb d Radioakt u Elektronik 1919, H. 1.
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The data under the

: - I ! Limits of

heading II refer to the M — — - spectral class

remaining materialwhen LA 2

5 spectroscopic pairs and 0,8 0,080 g 0,02 0] 1 ﬁg—lF:g )
: ; - 1,5 0,20 0.1 —

0‘1 gegta%n ; were :}}f 2,6 0,26 10 | 0,23 9 | Ao(A2)—Go

cluded. By forming the 3 s 0.24 9 0.24 o | A2—k2

part I of the table 4,6 0,58 12 0,45 11 | F1 (F4)—Gs5

02 Eridani, Sirius B and 5,6 0,43 12 0,40 11 | F5—Ko

¢ Hydrae were excluded. ? g 8’1; ? 8'2‘; 2 ?{22:15{55

We see from the table 10 .8 2.81 > 2,81 > | Mb

that there is a steady
increase in the mean density from 0,08 to about 0,5®. Between 5 and 10M
o is sensibly constant, but. seems to increase for M > 10™,0. There also seems
to be a certain increase in g with spectral class from A2 to Mb, but the evidence
is rather uncertain.

A. R. THomMPsON ! has recently derived the formulae for computing the
density of binary stars, evidently without any knowledge of earlier work. In
several cases the agreement with earlier results is not very good. The principal
cause of such deviations is to be sought in different assumptions concerning the
temperature. The uncertainties arising from uncertain mass-ratios and uncertain
orbital elements are not of nearly such importance as those arising from diffe-
rences in the scale of effective temperatures.

I have derived the absolute magnitudes of most of the objects in THOMPSON’s
list and have found the following dependence between M and p:

M s | = M : | »
Brighest—OM,O) 0330 2 | emo— 79 2,430 ] 16
0™,0—0 ,9 0,14 3 8 ,0—10 ,9 3,50 3
1,0—1 ,9 0,36 16 Krit. 60 A 62 ) 1
2.,0-2,9 0,94 17 | o®Emid.cC 48 1
3,0-3 .9 054 17 | Kra. 60B 0.6 ‘ 1

4 ,0—4 ,9 1,40 15 o2Erid. B 16600 1
5.,0—-5 .9, 099 15 | sSiius B | 46000 | 1

There seems to be a general relation between the absolute magnitude and
the density, but the dispersion is considerable. In spite of all the uncertainty
that is undoubtedly connected with the derivation of g, it is difficult to avoid the
impression obtained from a close scrutiny of the material that the actual relation
between M and g is not a one to one correspondence. This question has undoubt-
edly some bearing on the question of the character of the mass-luminosity law.

205. The Ratio of Densities in Double Stars. From the formula quoted
earlier it follows immediately that:

. . m
log o4 — log o = 0,6 (m4 — mp) — 0,6 (j4 — 75) -+ logﬁi.

If both the spectra are known and the mass-ratio can be approximated,
the ratio of the densities can thus be computed without any knowledge of
the elements of the orbit. The mass-ratio can be computed from the for-
mula: S;% = —0,61 + 0,36 (Mp — M,) derived from a least square solution

A
using existing material.

If both spectra have been observed the above formula will give us the
change in logarithm of density 4loge for different groups. We can also form the

1 JBA A39, p.247, 253 (1929).
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mean values of 4logp/4S, where AS gives the change in spectral index. Putting
Aloge (S)

4S

it will be possible, by applying a process of graphical integration, to find the
curve:
logo = 9(5)

which gives the relation between density and spectral class. An attempt has.
been made to derive this curve but it seems that the present material is rather
scanty and that we should wait for a more extensive material. A practical
difficulty arises on account of the selection in the material which favours small
AS (equal spectra). This part of the material can be used for a derivation of
the dispersion in loge for the different spectral classes. The following small table
gives the results hitherto obtained: '

Spectral Aloge 64loge (Blia—_ia,g, Spect ;l,l(gl)e:nd "
its dispersion

B 0,68 40,50 0,44+0,3 19

A 0,47 40,38 1,4 40,3 11

F 0,23 +0,35 2,5 +0,2 11

G —0,07 40,41 3,3+02 7

K +0.13 -+0,11 4,7 4+ 0,4 5

206. Densities of Eclipsing Binaries. Methodical. The possibility of deriv-
ing the mean density of an eclipsing binary system was first pointed out by
Mzeriavu?! in 1896. We have:
po_ ket _ 3ka®
T MMy 4w (Phos + vhen)
where % is a constant, P the period, a the semi-axis major of the orbit, o4 and g
the densities of the two components, 7, and 7, their radii. Putting 7, = any,,
7p = ang, and 3k/m, = k,, we have:

P2 = L2 __
4 (njos+ njes)’
P nh04 + n}os
niy + ng
when g is the mean density of the two components.

In the case of a circular orbit the duration of the eclipse is 27,#/P where
¢ is the duration of the light variation. Further let ¢ be the inclination of the
orbital plane. Then:

B

14 A
Ny + ng= (1 — cos? iri;—cos2 z)ﬁ

and thus: (4 + 1p)’ .

g = Jhatns)
4 ('nA + nB) P2 (1 —_— C052 %é C052 1)2

The term (n, 4 ng)® is < 4(nd + #%), If 7, = rp, the limiting value of
the first factor of the expression for g is 1, and if 7z = 0 (no eclipse then takes
place), the same factor has the value 1. #y,, np, P, {, and 4 can be derived
from the light-curve and the value of %, is taken from solar data:

~ ky = 5,56 sin3 16" 2",
Thus p can be computed.

1 CR 122, p. 1254 (1896).
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In the case of an elliptical orbit the formulae become very complicated.
A. W. RoBeRrTs discussed in 1899 the densities of four Algol stars! and derived
the following expressions for the densities:

_ (0,0092)® ( m, ) ’

Q4 = 7PPr \M, + M
__(0,0092)3 ( Mz )
05 = q*pP? MWa+ Mp/’

where P is the period (in years), p and ¢ the diameters of the components, ex-
pressed in terms of the semi-axis major of the system.

As the two mass terms must always be less than unity or rather as only
one of them can ever approach unity, a limit is given in one direction by the

expressions: y _(0,0092) _ (0,0092)3

1M Qy == PP’ = TPt
The following results were obtained:

limoy4 ! limog

X Carinae . . . . . . . 025 | 025

SVelorum . . . . .. 0,61 0,03

RR Centauri . . . . . . 0,27 0,27

RS Sagittarii . . . . . . 0,16 0,21

At the same time H. N. RusseLL? made a derivation of a limiting value
for the mean density of 17 variable stars of the Algol type and found:

- W+ M

QAB<Z-4";——_———-—.
T+

Now it =14 + 757,

the sign of equality only holding good when 7, = 73.

At the first and fourth contacts we have the projection of the distance
between the centres of the two stars upon a plane perpendicular to the line
of sight ==74 4 7. The arc described during the time from the beginning to the
middle of the eclipse is 7,¢/ P, where ¢ is the duration of the light variation, and
the projected displacement is asinsn,t/P, where a4 is the radius of the orbit.
Then we have the condition:

. Wt
Y4+ rp=asin4,

The sign of equality only holds good when the transit is central. Besides
there is the relation: a
My + MW=~ b

and thus: _ P
O4B= ‘“3—725 .
n, P? sin® ?j
Taking the Earth density as 5,53 RusSeLL found 3 &/n, = 44,1 (the unit of
the time being 1 and the unit of density that of water), and derived the densities
for 17 stars.
207. SuarLey’s Work. In 1915 H. SHAPLEY published his extensive research
concerning the orbital elements of 90 eclipsing binaries based on nearly 10000
magnitudes obtained with the polarizing photometer of the observatory at

1 Ap J 10, p. 308 (1899). 2 ApJ 10, p- 315 (1899).
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PrinceTon!. The memoir discusses the theory of the orbital determination,
and then all existing observational data were used for deriving the elements.
The total number of observations used is 27094. A general experience in the
discussion of this extensive material is that the light curves of eclipsing binaries
are, in general, symmetrical, smooth, and regular. The irregularities and anomalies
that are often reported in the older literature do not gain any support from
accurate photometric work. The investigations of SHAPLEY also disposed of the
supposition so prominent in earlier days that one component of the ordinary
Algol star is non-luminous. The disparity in brightness of the eclipsing binaries
is even smaller than in the case of visual binaries. In all cases except for five or
six eclipsing binaries there is positive evidence that the fainter star is itself
luminous.

The existence of a darkening toward the limb of the same order of magnitude
as in the Sun seems to be well established. It was also found that there is general
agreement between the actual gravitational elongation of eclipsing binary starsand
the theoretical ellipticity of homogeneous fluid bodies according to G. H. DARWIN’S
investigations.

By assuming that the components of each binary are equal to the Sun in
mass the “equal mass densities” were computed according to the formulas:

0a=(529Pkr)%;  op=(520Prz) "%,

where P is the period in days, 7,4 and 7 the radii, the radius of the relative orbit
being taken as unit, and g, and gp the densities. These were corrected for polar
flattening and for the mass-ratio. The mean density is independent of the total
mass of the system relative to the Sun, but a knowledge of the mass-ratio is
essential for a derivation of the mean densities of the components. At that time
the spectroscopic data for eclipsing binaries were very scanty.

The corrected densities for “darkened” solutions were compared with the
spectral classes and the following distribution, which is still of interest, was found:

Spectral class Spectral class
B|A|F|G|K \ B } A|F|G|K

m logo
+0,5 to 0,0 2 —2,0 to —3,0 |1 ‘ 1

0,0 ,, —0,5 111711 —30 ,, —4,0 |1 ‘2 1
—0,5 ,, —1,08|24|3 |1 —4,0 ,, —5,0 l
—-1,0 ,, —1,5 15|13 —50 ,, —6,0 11
—-1,5 ,, —2,0 3] 6|11 [ |

208. Parallaxes and Absolute Magnitudes of Eclipsing Binaries. The pa-
rallaxes of eclipsing binaries have been derived by H. N, RusseLL and H. Suap-
LEY? on basis of the following considerations: If the radius and the surface
brightness of a certain star are R and [, expressed in units of the solar radius
and surface brightness, respectively, we have:

M = 4,75 — 51logR — 2,51og ].

The elements of the eclipsing systems give us the value of 7, that is the
radius of the brighter component expressed in units of the mean distance a
of the components. The mass is assumed to be 29t times the Sun’s mass.
Taking the radius of the Sun as unit and expressing the period, P, in days
the mean distance will be:

a = 5,20 P¥Rt.

1 Princeton Obs Contr, No. 3 (1915). 2 ApJ 40, p. 417 (1914).
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Hence: R = ar = 5,297 PR3,
Setting for brevity 5,20 7Pt = 4
we find: M = 4,75 — 5logA — $logM — §logJ.

A may be derived from the known elements of the eclipsing system. The par-
allax 7 is then found from the formula:

M=m-+ 5+ 5logm.

For computing M and z two assumptions have thus to be made, viz. the
value of It and of J. When the spectral class is known, both the quantities can
be fairly approximated and thus also a tolerable value of M or = computed. In
this way the parallaxes of some 100 eclipsing binaries have been computed?.
In the cases where the masses are known the individual densities of eclipsing
binaries can be derived with a considerable degree of accuracy.

209. Recent Statistics of the Eclipsing Binaries. These stars give valuable
contributions to our knowledge of several of the physical properties of the stars.
Also in those cases where no orbits have been calculated but the eclipsing nature
of the pair is known, the maximum possible mean density can be derived.

DeaN McLaucuLiN? has discussed the data of eclipsing binaries. Altogether
photometric orbits have been derived for 116 stars. The densities of the brighter
components of each binary are tabulated against spectra as follows:

Relation between spectrum and density.

Spectral class
m O-Bs | Bs—As | A5—Fs | F8—G5 | K-M Sum
<0,001 1 1 2 4
0,001—0,01 2 2 2 6
0,01 —0,05 6 7 1 1 15
0,05 —0,10 4 15 1 20
0,10 —0,30 3 31 4 38
0,30 —0,70 L 16 7 1 24
0,70 —1,0 2 1 3
>1,0 3 1 4
Sum 15 74 15 9 1 114

Mean values of the radii 4, were derived for certain period intervals as is
shown in the next table.

Periods Mean period oﬁﬁliuns kolfl . Radius of brighter star Y
P (a) in partsof @ in km

< 1%0 0%,6 4,2-10% | 0,37 1,6 108 16

190 — 2,2 1,6 | 80 0,30 | 2.4 24
2,2 - 3.2 2,7 1 11,4 023 | 26 21
3,2 — 4,25 3,7 14,0 0,21 3,0 17
4.,25— 5.3 4,7 | 16,4 0,19 3,2 13
5,3 — 7,0 6,0 | 19,3 0,19 3,5 9
7,0 — 10,0 8.5 | 24,3 0,10 2,4 4
10  —100 25 | 50 0,14 71 0

3
The radii of the orbits have been calculated from the formula 8¢ = % . j‘;? i

The average mass of eclipsing binaries is, in fact lower than that value but

1 RusseLL and SHAPLEY, Ap J 40, p. 417 (1914) and subsequent papers by numerous
workers within this field.

2 AJ 38, p. 45 (1927).
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even if we take the value of M, + Mpequal to 4,50 as suggested from spectro-
scopic eclipsing binaries, the computed radii will be diminished by only 16 percent.

The radii of the stars are more nearly constant than the radii of their orbits.

The stars of the period group <<14,0 days are probably smaller than has been
calculated, since they are dwarfs which are less massive than has been assumed.

It seems likely that the discovery-chance has resulted in an unduly large
radius for stars of periods 19,0—10%,0 since the greater radii will mean longer
duration of eclipse. Then it is quite possible that the average radius will be nearly
constant.

f) The Masses of the Stars.

210. Methods of Deriving Stellar Masses. The laws of gravitation furnish
a method of deriving the masses of heavenly bodies. As soon as a gravitational
effect exercised by one body on another can be measured the mass is easily
determined. Inasmuch as the motions of the stars are not known to such an
extent and accuracy that we can determine any curvature of the orbits it is not
possible to derive any masses. The only cases for which it has been possible to
determine individual masses is when the absolute orbit of a visual double star
has been derived with accuracy or when the DopPLER displacements in both
spectra of an eclipsing binary star have been measured. When both spectra in
an ordinary spectroscopic binary are exhibited and their displacements measured
the mass-ratio can be accurately determined. When the relative orbit of one
component of a visual binary is known the sum of the masses of the components
can be determined. In the case of spectroscopic binaries showing one spectrum
a rather complicated function of the mass can be derived, which treated statistic-
ally can yield results of value concerning the mean mass of groups of stars.

For groups of visual binaries for which the orbital motion has been observed,
but the orbital elements are unknown, the mean value of the masses can be derived
if the distances are accurately known.

Finally there seems to be some gravitational effect in the upper layers of
the atmosphere of the stars affecting the intensity of certain lines in spectra.
The problem cannot be said to be solved as yet, but some mass-effect seems
to be present in the spectrographic parallaxes, which fact will probably lead to
methods of determining the stellar mass from certain spectral characteristics.

In the case of clusters or agglomerations of stars of cluster structure it is
possible to determine the mass-ratios of such groups of members as have a dif-
ferent spatial distribution and hence a different distribution when projected on
a photographic plate. The differences in the space densities are effects of the
gravitation {e. g. heavy bodies will be more concentrated towards the centre of
the agglomeration than less massive ones) and when the distribution in space
of the separate groups is known the mass-ratios can be derived. This, of course,
involves accurate determinations of the distance of the agglomeration.

The cases mentioned are the only ones where a direct determination of the
masses or the mean masses of groups can be performed. In order to extend our
knowledge to ordinary stars we have to search for simple relations between the
masses and other characteristics of the stars.

Such a relation is known to exist between mass and spectral class; there is
also a relation between mass and luminosity, which was first found empirically,
but later on derived from the theory of radiative equilibrium. The establishment
of the mass-luminosity relation is of fundamental importance and too many efforts
can scarcely be made with regard to the accurate derivation of this relation from
empirical data and theoretical deductions. It is possible that the mass-luminosity
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relation only represents a first approximation and that the actual relation should
include a second variable, the effective temperature.

The mass can also be related to the reduced proper motion, which is sometimes
of advantage. There probably exists a relation between the density and the
mass, but it cannot at present be established with any accuracy. There seems
to be a relation between the mean mass of a group of stars and the mean squared
space- (or radial) velocities of the same group (equipartition of energy).

The sum of the masses of the two components in a binary system is found
applying the third law of KEPLER (‘“‘the harmonic law”). We have:

ad
My + Wp = Py
if we select as units the year and the solar mass. The major axis « is taken in
seconds of arc as well as the parallax =.

In the case of spectroscopic binaries this equation can be written:

4% (a a
MA"I—S:RB kZ(A'}t_gB)
(% is the Gaussian constant, logk = 8,23558 — 10) or:

3
My + Mp = ¥ 75

where P is the period expressed in days, @ the major axis expressed in km,
and % a numerical constant. We do not know @ or a4 + ap but only its pro-
jection @ sin7 and thence we have to multiply both members with sin®: where ¢
is the inclination of the orbit.

Thus: (M + Mp) sinds = & (ay sind + apsing)P-2.

From the theory of the determination of orbits of spectroscopic binaries we have:
assini + apsing = /(K4 + Kp) PJ1 — ¢
where K, and Kjp are the sem1—amphtudes of the radial velocities of the two
components, expressed in km/sec, and 2”7 is a constant, hence:
(M4 + Mp) sin®d = &y (K4 + Kp)3P(1 — €)%

The numerical value of logk, is 3,01642 — 10.

If both spectra have been measured we have:

Mysinds = b, (Ky + Kg)2KgP (1 — e2)},
Mpsinds = &, (Ky+ Kp)? K P (1 — )t

", _ K,

My K,°
‘When only one spectrum (of component A) is visible another formula has
to be used:

In fact:

M sin®s 3
(ED,&A_FSje—B)—z——leAP(/I _e)
At any rate it is necessary to assume a mean value for sin®s. We have:

7Tel2
[sinti di

wss_o _3_ _

sin®é = = = g% = 0,59.
[sini dé
0

Handbuch der Astrophysik. V, 2. 39
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Because of the preference for high values of ¢, it is better to adopt a somewhat
higher value for sin® than 0,59, for instance 0,66. Sometimes even as high a
value as 0,93 has been adopted?.

We have seen above how the mass-ratio can be determined in case of
spectroscopic binaries. If such a system also is observed as an eclipsing
binary the value of ¢ can be found when deriving the orbit and thus the masses
of the pair can also be computed. In case of visual binaries the mass-ratio can
be determined in the following way.

Let A and B denote the two components of a binary and C be a star that
does not take part in the motion of the system AB, or in other words does not
belong to the system.

Let

o4¢ = the angular distance between 4 and C.
04 = position angle of C with respect to 4.
%4,y4= the rectangular coordinates of A with C as origin, the x-axis being
directed toward the North Pole.
%y, Yo = the rectangular coordinates of the centre of gravity O of the system AB
with C as origin.
&y, my = the coordinates of O with 4 as origin.
o4p = the distance between A and B.
054 = the position angle of B with respect to 4.

k= _Smﬁ__
Mg+ My
The coordinates of the centre of gravity of AB are:

%o = %4+ &,

Yo = Y4 + Mo »
which may be written in the form

%y = +k0apcoslps — Qaccosbpy,
Yo =tkoapsinlps — 040 sinboy.
The motion of the centre of gravity O with respect to C is rectilinear and
thus we can write: M= a -+ bt —1,),

yo=a + bt —1t),
where a, a’, b, and b’ are constants, ¢ a certain epoch of observation, and £, an
initial epoch.
Thus: a+b(t—t0) ——kQABCOSHBA: '—QA()COSOCA,
a -+ v (t —_ tO) — kQAB SinHBA_ = —QACSinegA .

The problem is, in fact, nearly identical with the problem of determining the
trigonometric parallax of a star, only that the period is much longer than a year,
and the same methods can be applied with advantage in practice. It seems that
observers have not always appreciated the great advantage of connecting visual
doubles with a sufficient number of stars being independent of the system. The
student is adviced to consult the two observing lists for the determinations of
mass-ratios as given by AITKEN [Lick Bull 7, p. 3 (1912)] and by van Bigs-
BROECK [A J 29, p. 173 (1916)].

211. Are Derived Mass-Values Representative? It will certainly be asked
whether we have any right to extend our knowledge concerning the masses or
the densities of the double stars to ordinary stars. The following facts may be

1 KrEIKEN, M N 89, p. 580 (1929).
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mentioned which show that the double stars do not form an exceptional-group
among the stars of the stellar system.

The distribution of double stars on the sky is the same as the distribution
of ordinary stars. Our knowledge concerning the special distribution of the
former is scanty, but the evidence so far shows the general agreement in the
distribution in space of the two groups (LEwis!, KREIKEN?).

The motions of the double stars do not differ from the motions of the single
stars in any known respect. The present writer has investigated the proper
motions and radial velocities of some 150 binaries without finding any pecu-
liar behaviour. C.LurLAU-

Janssen? has determined Mean residual velocity o.

starsan Spectroscopi Single st
theapexof doublestarsand g s | S [ | bz |
D =-+426°V=171km/sec. Bo—B9 6,6 km/sec | 43 6,5 km/sec | 225
J. Oort* has found the ad- %O-wa 12,2 30 11,0 1 §7
P : : 0—F9 |12, 20 | 14,1 184
joined mean residual radial Go—Ko |1c0 2% |1 -

velocities of binary stars.
He derives the ratio Viingie stars/Vbinaries = 1,03 &= 0,05 and concludes that the
average mass of the brighter component of a visual binary is about equal to
that of a single star of the same spectrum and absolute brightness.

The double stars exhibit typical stellar spectra (Miss CANNON®, LEONARD?,
and others). No such spectral peculiarities are found among double stars as to
place them among the special groups of stars. The RuUSSELL diagram of the
binary stars as first constructed by F.C. LEONARD? has the same form as that of
single stars. Applying a different method the present writer and W. J. LuyTENS
later on derived a typical RUSSELL diagram on the basis of some 300 double stars.

As far as all the evidence goes it is only the fact that two or more bodies are
moving within the activity-spheres of each other’s gravitation that places the
double or multiple stars in a certain class. With regard to motion, space distribu-
tion, physical properties, absolute magnitudes, temperatures, densities, general
chemical and physical constitution the double stars are typical citizens of the
stellar realm.

Thus it seems justifiable to conclude that the masses or densities of binaries
should not differ systematically from the masses or densities of the ordinary stars.

212. Historical Notes. Observational Evidences. The first star for which
it was possible to obtain accurate knowledge of its dimensions, mass, and den-
sity was our Sun. When the first trigonometric parallaxes of stars had been
secured, and orbital elements of double stars had been computed, the third
law of KEPLER (‘“‘the harmonic law’’) was applied and it was evident that the
masses of neighbouring stars did not differ systematically from that of the Sun.
Already in Madras® about 1850 JacoB found the mass of the &« Centauri system
to be 3 ® and interpreted this result as showing that the mass of the system is
of the same order of magnitude as the mass of the Sun. On account of the slow
progress of the determinations of stellar parallax our knowledge of the masses
of the stars also advanced slowly. A table in AGNES M. CLERKE’s well-known
work ‘“The System of the Stars (1905) is, I think, representative of the
knowledge possessed of the stellar masses at that time. The sums of the masses

1 Mem R AS 56 (1906). 2 MN 89, p. 647 (1929).

3 AN 203, p. 9 (1916); Kobenhavn K Acad Forhandl Oversigt 1916, No. 1.
4 AJ 35 p- 141 (1924). 5 Lick Bull 6, p. 125 (1911).

6 Harv Ann 56, No. 7 (1912). 7 Lick Bull 10, p. 169 (1923).

8 AJ 35 p. 93 (1923). ® MN 10, p. 170-(1850).

39%
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in twelve binary systems are given in that table. The values range between 0,67 ©®
and 12,66 ®. It is of a certain interest that Capella is included with a minimum
value of 2,14© derived on the strength of the observations at Greenwich in 1905,
when the separation was estimated as 0”',05. These observations could not be
confirmed at Lick and the Greenwich results were not generally accepted. A com-
parison by J. Haas! of the positions derived on basis of the orbital elements
from the Mount Wilson interferometer measurements with the Greenwich esti-
mates in 1905 has made it very probable that Capella actually was seen as ob-
long by the Greenwich observers—a very remarkable observation!

The astronomers of the 19" century certainly took a keen interest in the
development of methods to determine physical characteristics of the stars. In
1844 BEssEL noticed that the proper motions of Sirius and of Procyon were vari-
able. This led him to investigate in a masterly written paper the possible causes
of changes in proper motions of the stars®. He found it most probable that the
changes in Sirius and in Procyon were caused by the gravitation of a possible
dark companion to the brilliant star. It is well known how after many dis-
appointments on account of presumed, but not confirmed, discoveries this theo-
retical investigation finally led to ALvan CLARK’s discovery of the companion
of Sirius in 1862. It is also well known how the investigations of BESSEL and
the later work of AUWERs?® led to the discovery by J. M. SCHAEBERLE of the com-
panion of Procyon in 1896. The point that concerns us here is that these in-
vestigations have developed the methods of determining the mass-ratio in double
stars in such a definite way that at present we have no reason to change or modify
the classical formulae.

This method depends on accurate determinations of periodic-changes of
small amplitude in the proper motions. It is very difficult to obtain reliable
results. When T. LEwist published in 1906 his large catalogue of the X' double
stars, he collected the results then existing concerning the value® of IM,/M;.
On the basis of the material he arrived at the wrong conclusion that the fainter
component in a binary system is generally the more massive one. The evidence
accumulated later shows that this conclusion is not tenable. The mass-ratios
known hitherto are still affected by considerable uncertainty in the case of
visual binaries but their general accuracy has much increased since 1905. We
also have nowadays the possibility of deriving accurate mass-ratios from spectro-
scopic binaries giving impressions of both spectra on photographic plates.

Of the different computations of the mean masses of the binary stars we
mention here only a few. In 1910 R. G. AITKEN® used the material in the par-
allax catalogue of KaPTEYN and WEERsMA? and found the masses to vary
between 0,002® and 371 ®, most of the variation being attributable to the uncer-.
tainty of the parallax measurements. It could be assumed that the real variation
in the size of stellar masses is very small.

In the following table the results of some computations of the total mass of
stellar systems, generally not specially mentioned or reviewed in the text, are
collected. No completeness is aimed at. The sole purpose is to illustrate the
general development during the last decades of our knowledge of stellar masses.

1 Obs 47, p.376 (1924).

2 AN 22, p. 145 (1844); Abhandlungen von FRriEDRICH WILHELM BESSEL, herausg.
von R. EngeLMany II, p. 306 (1875).

8 AN 58, p.33 (1862). 4 Mem RAS 56 (1906).

5 Lewis did not care to derive M4 + My from his material, but pointed out the possi-
bility of doing so [Mem R AS 56, p. XXI (1906)].

8 Pop Astr 18, p. 433 (1910). ? Groningen Publ, No. 24 (1910).
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Authority Mean value Range n Epoch Source
AUWERS . . . . . . . 1,6 |1,04 — 2,200 2 1892 AN 129, p.232.
YOUNG . . . . . . . 1,6 0,33 — 3.1 4 1899 General Astronomy.
GORE . . . . . . . . 5 1,9 —15 5 1907 AstronomicalEssays
DOBERCK . . . . . . 114 — few cases| 1908 AN 178, p. 381.
NEWCOMB-ENGELMANN 1,4 0,1 — 3,5. 7 1911 Populire Astrono-

mie, IV. Auifl.

1,4 0,3 — 3,2 9 1921 Populire Astrono-

mie, V1. Aufl.
DOBERCK . . . . . . 2,46 0,43 —372 11 1912 AN 191, p. 425.
AITKEN . . . . . . . 2,5—3,0 | 0,002—371 24 1910 Pop Astr 18, p. 483.
CAMPBELL . . . . . . 1,9 1,0 — 5,0 6 1913 Stellar Motions.
Foucmt . . . . . . . 2,0 03 — 7.8 13 1916 BSATF 30, p. 90.
AITKEN . . . . . . . 1,76 0,45 — 3,3 14 1918 The Binary Stars.
VAN MAANEN. . . . . 4,2 10,18 — 45,7 39 1919 PublASP 31,p.231.
MITCHELL . . . . . . 10 0,38 — 71,3 19 1920 McCormick Publ

II1.
MiLLER and PITMAN . 5,44 0,11 —134,5 68 1922 AJ 34, p.127.
LUNDMARK. . . . . . 1,7 0,2 —150 250 1929 Card Catalogue.

In 1916 R. T. A. INnNEs! discussed the size of the stellar masses. For 50 stars
fairly reliable orbits had been computed. Because of the lack of data concerning
the parallaxes of these stars the author assumed that the absolute magnitudes
were constant and equal to the absolute magnitude of the Sun. INNES prefers the
term ‘‘gravitative power” instead of mass, as the last term suggests a body of
matter and it is an assumption to consider mass as equivalent to gravitative
power. Among the many interesting conclusions in INNES’s paper we quote the
one that few of the double stars have a gravitative power equal to that of the
Sun. In general the mass must be considerably smaller than the solar mass.
It seems probable that the spectrum varies with the mass. On account of his
assumption the masses of the B stars in INNES’s list came out too low and the
masses of red dwarfs too high. Some of the conclusions are naturally influenced
by this fact. Only a few years later the situation with regard to our knowledge
of stellar parallaxes had changed in such a favourable way that the order of
magnitude of the mean masses of different spectral classes could be determined
with fair accuracy.

In 1919 A. vAN MAANEN? derived the masses of 55 binaries, of which the
parallaxes of 39 could be accepted as fairly well determined. The dispersion
in the values is very small; indeed, it only amounts to 2,1 ®. Two stars which had
a mass larger than 10 ©® were excluded and the lowest of the values was 0,18 ®.
When the masses were plotted against the absolute magnitudes a quite definite
relation was found, which was in good agreement with later theoretical derivations
of the mass-luminosity relation. Also a relation between mass and velocity was
sought for, but no definite result was found.

In 1922 B. MEYERMANN 3 computed the masses of the components of 59 pairs.
The mean values are MM, =1,40 and Mp=1,20, and the dispersion is very
small indeed. In a subsequent paper? the relation between mass and proper
motion (reduced to km/sec by means of the known parallaxes) was investigated
and gave as a main result:

Mass 14 n
3,70 19,8 km/sec 19
1,20 25,4, 39

1 South African Journal of Science. 1916 June. 2 Publ ASP 31, p. 231 (1919).
3 AN 216, p. 301 (1922). 4 AN 216, p. 385 (1922).
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Mass-ratios.

Visual Binaries.

o

System « 1900 41900 (vil:ﬁl) Mp/Ma Authority glgé?tlj %;e:aig)
23062. . 0" 17,0 +57°53" | 1,0 | 1,0 ‘;Boss 1,0 |106
13 Ceti. 0 30,1 — 4 9 0,8 | 1,32 | PaRASKEVOPOU- | 1,0 6,88

LOS
n Cassiopeiae 0 43,0 457 17 3,6 | 0,92 !Poco
0,27 ‘STRUVE
0,5 |Lewis
0,76 |Boss
0,34 | MITCHELL
0,27 'VAN BIESBROECK| 0,38 |346
02 Eridani BC 4 10,7 — 7 49 2,0 | 1,08 |LEwis
1,0 ' MiTCHELL
0,47 | VAN DEN Bos
0,42 | ALDEN

) 0,64 | ABETTI 0,45 1248
80 Tauri . 4 24,4 +15 25 3,3 | 0,39 | VAN DEN Bos 0,39 [150,2
o« Aurigae . 5 9,3 45 54 0,5 | 0,79 | MERRILL 0,79 0,28
Sirius . 6 40,7 —16 35 | 10,0 | 0,47 'AUWERS

0,5 SEE
0,39 | Boss 0,44 | 50,2
Castor . 7 28,2 +32 6 0,86 |20 FURNER
- 1,0 MITCHELL
0,81 | RABE
0,60 |RABE 0,80 {306
Procyon . 7 344 + 5 29 |13,0 | 0,2 |{SEE
0,33 | Boss
0,31 | Boss
. 0,315 | JONES 0,31 | 40,3
9 Argus 7 47.1 —13 38 0,6 | 0.37 MiTCHELL
0,4 O. STRUVE 0,30 | 23,3
¢ Cancri 8 6,5 +17 57 0,24 | 1,0 | SEELIGER 1,0 57,89
¢ Hydrae . 8 41,5 + 6 47 1,5 | 6 Lewis
0,9 SEELIGER
1,0 MiITCHELL 0,95 15,3
& Urs. Majoris . 11 12,9 +32 6 0,5 | 1,5 BowYER
1,0 Boss
0,72 | ABETTI
1,0 HERTZSPRUNG 0,9 59,8
y Virginis . 12 36,6 — 0 54 0,0 | 1,0 |LEwIs
1,0 Boss 1,0 |178
25 Can. Venati-
corum. 13 33,0 +36 48 1,9 | 2,0 |FURNER 2,0 {220
« Centauri. 14 32,8 —60 25 1,37 1,0 |ELxIN
1,05 | GiLL
0,96 | ROBERTS
0,85 | Boss 0,97 | 80,09
& Bootis 14 46,8 +19 31 2,0 | 1,2 |BoOwYER i
0,87 | Boss 0,87 |151.4
& Scorpii 15 58,9 —11 6 0,3 | 1,3 |S HORR 1,0 | 44,7
o Cor. Borealis.| 16 10,9 +34 7 0,9 | 4 Lewis
1,1 HADLEY
0,47 | Boss
2,6 ABETTI 1,5 |500
Ophiuchi 16 25,9 + 2 12 2,1 | 43 |Lewis 4,3 |110
Herculis . 16 37,5 +31 47 3,5 | 1,0 |Lewis
0,43 | Boss
0,88 |CuHANG 0,7 34,46
70 Ophiuchi 18 0,4 4+ 2 31 1,70 | 4,0 PrREY
0,79 | CoMSTOCK
0,5 Lavu
0,82 | Boss
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Mass-ratios. Visual Binaries. (Continued.)

AM . SJJIB[SJRA. Period
System « 1900 341900 (visual) Mp/Ma Authority (adopt.) | (vears)

70 Ophiuchi . .| 18® o0=4 + 2°31 0,56 | PAVEL
0,79 | MITCHELL
0,89 | vaN BIESBROECK| 0,8 | 87,7

B Delphini. . .| 20 32,9 +14 15 1,0 1,13 | CrANG 1,1 26,8
(0,15) HaDLEY
z Cygni. . . .| 21 10,8 +37 37 4,2 0,89 | HADLEY
0,89 | vAN BIESBROECK
0,77 | ABETTI 0,9 49,2
% Pegasi . . .| 21 40,1 +25 11 0,5 0,40 | HENROTEAU 0,40 | 11,6
Krueger 60. . .| 22 24,5 +57 12 1,5 1,14 | RUSSELL

0,83 | MiTCHELL
0,45 | RUSSELL
0,91 | ALDEN
0,83 | PAVEL and
BERNEWITZ 0,8 44,27

85Pegasi . . .| 23 56,9 +26 33 515! 4 FURNER
| 3 Lewis
1,0 |Boss
1,7 | ComsTOCK
1,78 | vAN BIESBROECK| 1,7 25,42

Computing the total space motions on the basis of data for 15 objects
MEeYERMANN found:

Mass 14 1 #

4,00 23,5 km/sec ‘ 8

1,40 33,7 . L7

The masses that are derived on the basis of double star data are dependent

on the amount of the gravitation between the components. Thus the total mass

of the binary system is obtained, i. e. not only the mass of the two suns, but also

of planets and other dark bodies that may be present. There are 10 typical

Sun stars for which the mass has been determined with a fair degree of accu-

racy. The mean value of the masses is 1,05 ® &+ 0,11 © and the mean value of

the absolute magnitudes M = 4,76. It seems that these systems cannot be of a
structure radically different from that of our solar system.

A remarkable event was the discovery of J.S.PLASKETT! in 1922 that the

O star BD + 6° 1309 was a very massive system. The two components had the

mass values: o, — 78 6 63.3

4= sin®7

The system has later been carefully watched for changes in the magnitudes, but
so far without positive results. PLASKETT’s star does not seem to be an eclipsing
binary system and therefore it is justifiable to conclude that the sum of the masses
is at least 160 ©.

In EppINGTON's first theory of stellar evolution 40 ® was determined as the
upper limit for the mass of a star. H. voN ZEIPEL has pointed out several times
in his lectures that this was not a necessary consequence; if there is an upper
limit it has a very high value. In the final theory of EDDINGTON there seems to
be no low limit for the possible size of stellar masses; on the other hand it seems
that a limit exists, and it must be a quite exceptional case if a stellar mass is much
above 1000.

The tables on p. 614 to 616 summarize the results hitherto found for the mass-
ratios in visual binaries and eclipsing variables. There exist also some 100 well

1 MN 82, p. 447 (1922).

sin®7 O Mp = ©.
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determined mass-ratios of spectroscopic binaries where both spectra have been
observed. These have been excluded because of the lack of data for the magni-
tude of the components. The student interested in these stars should consult
the catalogues by J. H. Moore [Lick Bull 11, p. 141 (1924)] and A. BEER [Berlin-
Babelsberg Veroff 5, H. 6 (1927)].

Eclipsing Binaries.

. | Radius 1 Density {
Object 1900 AM  (Mp/Ma|——————— Parallax M Sp.
‘ of brighter comp.
HD1337 . . . . ob 12m,5 ‘ 1,2 | 0,93 | 23,80/ 0,0027¢ 07,002 | —6,0 | 08,5n
| —4,8 | 08,5n
TV Cassiopeiae . 0o 13 ,9 | 1,82 | 0,59 2,54 | 0,112 0 ,0047| +0,8 | AOn
+2,6 | Ao
A Tauri. . . . 3 55,1 | 1,49 | 0,33 | 535 | 0,024 |0 ,0095| —1,1 | B3
40,4
£ Aurigae. . . 5 52,2 | 0,00 | 0,98 2,83 | 0,11 0 ,030 -+0,6 | Aon
40,6 | AOn
‘WW Aurigae . . 6 25,9 - 0,86 1,9 0,32 0 ,010 +2,2 | Ay
Castor C. .. 7 28,2 | 02109 | 0,76 | 1,4 0,074 | +9,6 | M1e
' +9,8
V Puppis . . . 7 55,4 | 0,45 | 0,77 7.5 0,050 |0 ,004 | —2,0 | Bin
| —1,5 | B3n
S Antliae. . . 9 27 ,9 | 0,74 1 0,56 | 1,34 | 0,31 0,007 | +2,9 | A8n
i +3,6 | A8n:
W Ursae Majoris 9 36,7 | 004|072 | 072 1,92 0,013 | +5,4 | Fén
+54 | F8n
RS Can. Venati- ‘
corum . . .| 13 6 ,0 } 0,92 | 1,00 | 71 | 0,004 10,0022 —0,0 | F3n
; j 40,9 | Ko
i Bootis . . .| 15 0,5 | 0,0 1,00 | 0,6 | 2,2 0 ,152(?) +6,3 | G2
| +6,3
U Cor. Borealis 15 14 ,1 | 2,96 | 0,38 2,94 | 0,19 0 ,0037| +0,4 | B3n
X +3,4 | B3n
U Ophiuchi . .| 17 11 ,5 ; 0,48 | 0,88 | 3,23 | 0,48 0 ,0059| 0,2 | B3n
40,4 | Bsn
u Herculis . .| 17 13 ,6 | 0,88 | 0,40 | 4,64 | 0,094 |0 ,0071| —0,8 | B3n
40,1 | B3n
TXHerculis . .| 17 15 ,4 | 0,68 | 0,87 | 1,57 | 0,53 0 ,0053| +2,3 | A2s
, +3,0 | A2s
Z Herculis . .| 17 53 ,6 | 0,35 | 0,87 | 1,77 | 0,28 0,013 | +3,3 | F2s
+3,6 | F2
RXHerculis . .| 18 26 ,0 | 0,42 | 0,95 1,95 | 0,280 |0 ,0064| +1,8 | Bon
+1,9 | Bon
f Lyrae . . .| 18 46 ,4 — | 0,41 | 13,6 0,0012 |0 ,005 | —3,1 | B2ep
—2,6 | cB§
RS Vulpeculae . 19 13 ,4 | 2,35 | 0,31 4,22 | 0,06 0 ,0045| —0,4  B8n
+2,0 | B9
Z Vulpeculae .| 19 17 ,5 1,45 | 0,45 4,54 | 0,052 0 ,0018| —0,7 | B3n
+0,7 | B3
6 Aquilae . . 19 34 ,3 0,36 | 0,82 3,48 | 0,15 0 ,0060| —0,2 | B8n
40,2 | B8n
Y Cygni .. .| 20 48 ,4 | 0,38 | 0,92 | 4,60 | 0,17 0 ,0022| —0,8 | B2n
—0,4 | B2n

I think that the first table will show how imperfect our knowledge of the
mass-ratios of visual binaries still is. The length of the periods makes it diffi-
cult in most cases to cover even one period by observations. The values in the
second table are by far more accurate than those in the first table.

The mass-ratios when plotted against differences in magnitudes show certain
deviations from the curve computed in accordance with the mass-luminosity
relation. There seems to be some systematic difference between the mass-ratios
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of visual and eclipsing binaries. The considerable dispersion in the mass-ratios
does not seem to be dependent on the errors in the individual determinations
alone.

213. Equipartition of Stellar Energy. J. HarM?! was one of the first to apply
the law of equipartition of the energy to the derivation of the average mass of
the stars. According to the Maxwellian law the number of molecules of mass it
with velocities between , v, w and » + du, v + dv, w + dw is:

A= BT+ +0%) gy dy duw

where A and % are constants.
The kinetic energy of a single molecule of mass I is:

M (92 + 02 + w?).

Hence the total energy of all the molecules:

+o00
E = %Aﬁn/[fe‘kﬂm(“““”’w’) (2 + v + wddudvdw,

or.

1 A 7,
E= 3 %) mx
+oo +o0 +o0
[]/e"k’m("“fw”)dvdw —|-/fe“k“m(“’+”")dudw + /fe—k’m(“”“’)dudv},

or, the three integrals in the brackets being identical,

400
_ 347/ = —BM (s 4?)
E=3 kz'/kszfe dv dw.

The total number of molecules is:

+oco 400
— — kM (w24 v+ w?) — 1 e — RPN (4 w?)
N Aff[e “dudvdw =14 5 f[e dvdw.

Hence:

E=%=m
i. e. the average kinetic energy is independent of the mass. If £ denotes the
average speed we thus find:

M 22 = const.,

1. e. the average speed is inversely proportional to the square root of the mass.

Harum says that it is certainly not illogical to associate the rate of development
from earlier to later types with the mass of a star. If stars of different masses
started their development at the same time, it would be expected a priori that
the lighter stars would cool down more quickly, and hence arrive at the more
advanced spectral stages sooner than the heavy stars. The average mass of the
“earlier”” spectral classes will be larger than that of the more “advanced” spectral
classes. In this way the lesser average speed of the earlier stars could be explained.

1MN 71, p. 610 (1911).
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HaLum quotes the results of KAPTEYN:

Spectral Mean radial Spectral Mean radial

class velocity " class velocity "

B—B9 6,0 km/sec 64 G—G5 12,6 km/sec 26
A—As5 11,2, 18 K—-K51 154 55
F—F$§ 14,5 ., 17 Ma 193 . 6

HALM points out that the ratio Mp/IM, is probably independent of spectral
class and quotes the following results:
Group Mp/Ma
Spectroscopic binaries . . {0,77 “Orion type”

0,83 Other classes
Visual binaries . . . . . 0,81

Thus it is admissible to assume that the ratios of the average values of
the mass-function M3, sin®
(M4 + Mp)®
for different types are practically identical with the ratio of their combined masses.
From spectroscopic binaries showing both the spectra HaLM derived:
Orion type (M, + Mp) sin®i = 16,4 4 3,40
Classes A—G 1,9+ 030
Ratio of average mass Orion stars/other classes = 8,6.
Using the binaries where only one component was seen, i. e. where only
the mass-function is-determined, it was found:
The square roots of the two values

Period Orion Sllﬁsssltfﬁfe“r’ classes n of the mean ratio of Orion stars/other

classes are 2,9 and 2,5. Thus it is justi-

s i3(5)d 2’29 ZZ fiable to assume that the Orion stars

~30 6.2 50 are on the average more massive than
N NATC) the stars of more advanced type.

From the above table of KAPTEYN
the ratio of average speed of Orion stars/average speed of other classes is 0,42,
whereas the inverse square root of the mass-ratio of the two groups is 0,34 or
0,40. Thus the agreement is good, a fact that seems to support the equiparti-
tion of energy.

Haim has used the Group gsgﬁ;t?dte I3 M
average parallaxes accord-
ing to KAPTEYN’s formula  Orion stars. . . . . . 5,0 07,0066 | —o0™,9
and found (see close by): %jtl?sste{rs """ 2'8 8 '82248, +? 'g
H. N. RusseLt! had =~ & 77 ° 7 " ' ’ '
found (SCG. C.IOSG bY) . Spectral Apparent = i
Combining his results with the class magnitude i
ing conclusion con in
preceding conclusion concerning the Fs 70 0044 | 5o
heavier mass of the earlier stars, HaLm G—G2 7.8 0.020 | 5 4
makes the remarkable statement that: G5 8,6 0 ,064 7 .6
“we may also say that intrinsic % g,4 0,119 7.8
i in di 5 ,2 0,254 | 10 ,2
m ’ )
brightness and mass arein direct M 83 0231 | 10 0

relationship.”
This is the first time, as far as the present writer knows, that a mass-
luminosity relation has been thought to exist among the stars.

1 AJ 26, p. 147 (1910).
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Harm’s investigation does not tell us anything concerning the size of the
dispersion in stellar mass. It is not possible to determine this element without
making complicated investigations. The method is of much value in any case,
because of its possibilities for determining the average mass of the stars that
do not belong to such selected groups as double stars or stellar clusters.

The relation between the mean speed and It is perhaps not applicable to
all classes of stars. The O stars and the planetary nebulae are undoubtedly
heavy bodies, but do not move as slowly as the B stars. When reviewing
SEARES’s results we will see who the law of equipartition in general fits modern
data concerning the space motion of the stars.

214. Scuresincer’s and Baker’s Study on Spectroscopic Binaries. An early
contribution to this subject was made by SCHLESINGER and BAKER?, who analysed
data derived from spectroscopic binaries. Considering first the systems in which
spectra of both components have been observed they found without exception
that the brighter component of a spectroscopic binary is always the more massive
of the two. The close correspondence between mass and relative brightness
{one could also say absolute brightness) is shown from the following summary
where I stands for the (absolute) intensity:

Mp/Ma | Ipla | » Mp/Pa | Islla | n
0,99 1,00 2 0,74 0,53 3
0,91 0,73 3 0,66 0,40 4

The authors assumed that the discovery-chance of spectroscopic binaries is

oo sing. Thus sin?¢ will be equal to 0,68, a value which is considered somewhat too
low nowadays. They concluded that in fifteen pairs showing both spectra the
average mass was between 4 ® and 5 ®. They also concluded that this statement
could not be extended to other spectroscopic binaries. The difficulties arising
from the use of the mass-function were pointed out. From 44 pairs showing only
one of the spectra it was concluded.that the masses of spectroscopic binaries are
of very different orders, some being much greater than that of our sun, while
others are doubtless insignificant in comparison. WS sin®§

The peculiar law of distribution of the values m for Cepheid

variables was also commented upon. Reasons were also given for the considerable

uncertainty affecting several of the data for Mp/M, collected or derived by

Lewrs, which were not in agreement with the conclusions of the authors.
215. Lupenporrr’s Researches on the Masses of Spectroscopic Binaries.

As a rule only the ‘“mass-function”, f, is determinable for a spectroscopic
binary, viz.:

— Dgsindi _“,S}EZL
f= T, + M) +0,03993 .
LUDENDORFF? puts: Mp/My = «.
. 3
Hence: f= e _ 9,4 sin®q.

There is a wide disparity in the values of f. The numbers do not give much
guidance for forming conclusions concerning the size of stellar mass. The situation
turns out more favourably when the dependence between 4 sin¢ and P is used.
If the spectroscopic binaries are divided into groups according to the size of the
period, and means are formed, a regular increase with P is found in a sini,
(a sin7)?
(@2

1 Publ Allegheny Obs 1, No. 21 (1910). 2 AN 189, p. 145 (1911).

in such a way that f or 0,03993 is rather constant.
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The stars were divided into two groups containing the stars of the spectral
classesOe5—B8and A—K. The mean numbers are given below, being still of interest.
When P is plotted against asins the points of the two groups define a smooth
curve. The smoothed values are given under the heading AsinJ. The constant

B stars, C is defined from the equation:
P asing n Asin |asini—AsinJ D2 \1
Asin]_—.( ep )3,
07,22 0,040 | 2 0,74 —0,70 0,03993
2,58 3,30 5 3,84 —0,54 .
4 16 5,37 4 5,28 10,09 and has the following values:
6 ,23 5,17 4 6,92 —1,75
9,75 6,82 3 9,32 —2,50 C = 0,34 ® for the B stars
26, 2 18,90 ,
o A L sy | X ¢ = 0410 for the A—K stars.
137 .64 | 5146 A Ig Shad 298 For 8 stars of such a period
. —K stars. that they could not be included
19,35 1,04 2 1,71 0,67 .
2 60 142 4 2,65 —1.23 in the graphs the agreement
4,39 3,87 4 3,76 +0,11 with the A—K curve was still
11,38 6,11 4 7,09 —0,98 good.
18 ,89 8,51 4 9,94 —1,43 i i
39 34 | 16.43 3 16.21 o2 Nez‘(t LUDE%\ID(.)I'{FF inquires
71 .80 | 25.42 b 2422 | 40,90 concerning the significance of the
102 ,56 | 31,51 3 30,72 | 40,79 relations:
o3 s
. o 3,
B stars: e Mysin®s = 0,340,
o c
_ o * 35 —
A—K stars: 1 o My sin3¢ = 0,11 0.

The difference in C can be explained in different ways. The inclination for
B stars might be systematically higher than for other stars on account of a
preference of the former to move in orbits parallel with the galactic plane.
This explanation does not seem very likely, because no dependence can be
found between asin¢ and the galactic latitude, but the material available was
meagre.

Another explanation is that the mass-ratio should be systematically larger
for the helium stars than for other systems. As soon as &« deviates from unity
small changes in « give rise to considerable changes in /. A means of testing the
possibility of the hypothesis is found in the cases where both spectra have been
observed. LUDENDORFF finds:

(M4+Mp)sin® i ' w ; »n Group
8,50 0,70 9 B stars
2,6 ® 0,80 7 A—X stars

The scanty material rather suggests that the differences in mass-ratio work
in the opposite direction, as regards the values of C, to that found above. LUDEN-
DORFF therefore thinks that the difference in C is best explained by an actual
difference in mass, as is also indicated from the numbers given above for
(S.RA -+ Sﬁjg) sin31.

LUDENDORFF pointed out that the results concerning the higher mass of the
B stars in comparison with the other stars are preliminary, and that the dif-
ference may be explained partly by other causes. On account of the higher
accuracy attainable when measuring spectra of later types, smaller changes will
be more easily discovered than in the case of B stars. Thus small amplitude B stars
will not, as a rule, be discovered, which makes the mean value of the masses for
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the later types apparently too low. A closer study of the material available showed
that no such dangerous effect had crept in among the numbers used.

The stars with the ¢ and ac character in their spectra were not used, because
of their peculiar position as regards the value of . This constant which is on an
average 0,0034, suggests that « is of the order 0,1 for these stars.

In general no conclusions can be made from the value of f concerning the
size of the sum of the masses. If we have an infinite number of stars, sin37 is
0,59. Because of the preference of high values of %, the value will be higher.
LUDENDORFF assumes the value to be 0,75. Thus the mean masses are:

(1 (1 2
M,y =0, 45 + o) © (B stars), My =0, '15 T ) ® (A—XK stars).
For dlfferent values of « the following table gives the values of M, and Mp.

B stars A—XK stars

Mass- 2 i

ratio | TE gy Mp | MatMp | Ma Mp | MatMa

o

o1 |1210 | 5140 | 4@ | 580 | 1810 | 180 | 1990

02 | 180 81 16 97 27 L5 32

0,3 63 28 8 36 9 3 12

0,4 31 14 6 20 4,6 1,8 6,4

0,5 18 8 4 12 2,7 1,4 4,1

0,6 11,8 5,3 3,2 8,5 1,8 1,1 2,9

0,7 3,4 3.8 2,7 | 6,5 1,3 0,9 2,2

0,8 6.3 2,8 2,2 5,0 0,9 0,7 1,6

0,9 5,0 2,3 2,1 4,4 0,8 0,7 1,5

1,0 4,0 1,8 1,8 3,6 0,6 0,6 1,2

LupENDORFF! returned to the subject in a later paper. A considerably
increased material was at his disposal owing to the energy of the American
astronomers who went in for the determination of orbits of spectroscopic binaries.

The following groups were excluded as before: the ¢ and ac stars, some stars
whose orbits were dependent on the displacements of the H and K lines, some stars
where the orbital motion is not very well established (e. g. & Orionis), v Sagittarii,
stars with variable amplitude such as 12 Lacertae and 8 Cephei, Boss 1275, where
the period used is probably much too large, and, lastly, five stars with periods
>1000%. The followmg mean values were found, the f being computed from

a Sll’l'L
7 = 0,03993
P ’ asing 1 n ‘ A P ‘ asing ’ n ! i
Oe—O0e5 A
15466 | 21,60 | 3 | 1,6 14,49 1,57 4 ‘ 0,07
2,57 1,60 5 I 0,02
Bo—Bs 3,62 | 243 | 4 0,04
1,48 1 1,55 . 4 | 0,11 4,02 4,09 4 0,17
2,54 ¢ 3,12 | 5 0,19 6,82 4,72 4 0,09 { 0,10
3,81 4,94 5 0,33 10 ,21 5,92 5 0,08
5,12 6,02 4 0,33 ¢ 0,25 17 ,37 9,67 5 0,12
7,60 | 6,92 | 5 0,23 47 .47 23,50 4 0,23
20 24 - 11,18 | 4 0,14 114,79 | 31,71 3 0,10
123 ,54 | 53,36 , 5 | 0,40 P
B8 and B9 1,38 0,51 5 0,003
1,82 | 2,68 4 | o023 4,52 2,97 | 5 0,05
4,41 3,75 4 ‘ 011} 0,15 10 ,87 6,88 5 011 [ 006
47 ,54 ‘ 17,13 | 3 0,09 49 ,89 16,94 3 0,08

T AN 214, p. 105 (1920).
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If &« and7areon an average the same for the different spectral classes, then
Me/Mes = 1,7, Ma/Ma = 2,5, Me/Mr = 4, where Mg, Mes, Ma, Mr are the
mean masses of stars of the spectral classes BO—B5, B8&—B9, A, and F re-
spectively. The stars of the Oe class seem to have a very large mass.

There are only few binaries with known orbits in the G and K class, and there

is a lack of short periods among the former stars. Four K stars give f =002,
which suggests even a lower mass for these stars than for the F stars.
LupeENDORFF then made investigations as to whether the stars of the same

class give a constant value for /. He remarks that this quantity seems to increase
with increasing period. At first it might, therefore. seem natural to think that
systems of long period also have large masses, but a closer inquiry will show
that this is not the case.

216. Frequency of Stellar Masses for Different Spectral Classes. The
important problem concerning the frequency of stars of different mass has been
investigated by E. von DER PaHLEN!. For that purpose he makes use of the
number of stars of different spectral classes and the relation between stellar mass
and spectrum. Besides this the relation between spectral class and mean velocity
is also used as an indicator of the mean mass for different classes, or in other
words the equipartition of energy is supposed to hold also within the stellar
system. .

It is not enough to use these two series of data. It is also necessary to possess
knowledge of the cosmogonic time scale or the time for each stage of development
from the stage when a star starts more or less as a giant until it becomes
more and more dwarfish. Before the theory of EDDINGTON was worked out
there was no possibility whatever of overcoming the difficulty. By the aid of
a hypothetical assumption explained later on, v.D.PAHLEN computed the
frequency. Other assumptions involved in his investigation are that the visible
stellar system is in a stationary stage, in such a way that the number of visible
stars in each spectral subdivision is constant with respect to the time. Putting
the assumption in another form it means that for each interval of time just as
many stars of each mass enter as giants as there are stars of the same mass
developing into dwarfs through cooling, and thus becoming invisible.

The following notation is used:

Ng, Ny, ..., Ny, Number of stars within each spectral:class.

Ve, Va,..., Vu, Mean radial velocities for each spectral class.

Mp, My, ..., My, Masses of the stars which at the top of their evolution reach
the spectral classes given as subscripts.

g, Na,..., %y, Frequency of stars of masses My, My, etc.

Vg, U4,..., Uy, Mean radial velocities of stars of masses Mg, Py, etc.

7B, 7@, .., T The lengths of time or periods during which stars of mas-
ses Mz, My, etc. are visible.

tB B, tP, The periods for a star of mass Mp to pass the spectral
classes B, A, ..., M.

t gt The same quantities for a star of mass M.

t8, ..., ¢, The same quantities for a star of mass Mp.

t$P, The same quantity for a star of mass My.

1 AN 216, p. 309 (1922).
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Instead of the absolute periods ¢ and T of time the following ratios are

used:
&) o2l 1B
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Of these 21 quantities the last one is known and has a value = 1 because
a star, having the mass My, belongs during all the time it is visible to spectral

class M.
Then we have the equations:
N B = Np T(B)
(B) A,
Ny =ngtd + ngtd

e« 2 e o o e o s . . .

NM :M’BTM + M/A’K(A) -+ nF'Z

B4 5gt® 4 ng v8 + ng v

and:
VB=7)B
vB%Btf)-{—v 'nAt(A)

Vai= B 4)

NpTy + 147y

G

174 UB’”B’M +UA"A1 +'UFWFTM + Vgt ()+UK"K755)+UMWMI(J{'{)
M=

B 4 7 ¢
np Ty +%AISW)+%FT§I)+%6’IEW)+%K‘[

+ ny 1(41) *

The unknown #’s can be eliminated by using the equipartition of energy in the

following form:

Mpvy = Mav% = Mpv} = MevG = Mevk = My vy, = Const.

The second equation then becomes:

%B’[A (VA — VB) + %AT(A){VA — <m3>2 VB}

My

Further notation introduced is as follows:

np1y = pg; a7y = pa;

(K) . . 3 .
g Tk —751{’ Hopr Ty _"IbM:

and in general:

F) .
MFT(F - ﬁF}

Vi—Vp=Cl;

@ — 4 .
NgTg = Pg;

Ve (@) va -

l
)
n

A; v

ct=Vs— (27,

(ps is the number of stars of spectral class S).
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The equations then take the form:
Np =g
&
Na=1pp_5+ ba
B
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A
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(B)

T
®m§+%m=o

(B) (4)

T T
Chpp—5+ Cipa—s+ Chipr=0.
B Ta

The system of equations is indeterminate on account of the appearance of
the quantities 7, of which we do not know much, if anything at all. If we
represent the development of a star passing through the spectral classes by
means of a curve that is some function of the time, then the mass is the parameter
that will determine the form of this curve. It seems plausible that a continuous
change in mass corresponds to a continuous change in this curve, and that when
the masses do not vary within too wide limits, the different curves show some
general resemblance. This will be the same as if the ratios of. the periods ex-
pressing the times it takes for a star to pass through the spectral classes, will
oscillate around some values valid for a star of mean mass. Approximately the
ratios of periods for corresponding spectral stages (counting from the highest
stage attainable for a star of given mass) will be equal for all stars.

In this way we reach the necessary number of conditions to enable us to
solve the above system. v.D. PAHLEN is aware that the assumption is rather
bold. According to the theory of EDDINGTON the difference between two stars
of which one can reach the B stage and the other the A stage is some 3 ®. On
the other hand the same difference for two stars of classes K and M is only some
47 ®. If the idea of v. D. PAHLEN were to be worked out strictly it would be
necessary to make a new spectral division fulfilling the condition that the masses
increase in arithmetical proportion from class to class.

According to the assumption made above we have:
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Hence:
Np = pp
Ny=ppos+ P4
Np=ppop+ pacs+ pr
Ng=ppog+ pacr+ proa+ Pa
Ng=ppog + paog+ Pror+ pa0s + P&

q Ny= ppoy + ps0x + prog + paor + P oa + Pu
and:

Cippoa+ Cipa=0

Cippop+ Chpaos+Cipr=0

CEppog+ Cépaor+ Copros+ Cépeg=0

Cippox + Chpaoce+ Chppop+ Chpgos + Cipr =0

Chppou + Cipaog + Chprog + Cipeop + Clproa~+ Ciipu=0.

From these all ’s and ¢’s can be determined.
The following data were used:

Spectral

class N 14 Temperature m
B 3196 6,8 km/sec 17000° 4,27 ©
A 8852 11,5 » 10000 1,23
F 7950 14,5 »» 6750 0,59
G 7400 15,4 »» 4750 0,32
K 9090 16,4 ”» 3700 0,20
M 684 17,2, 3100 0,15

The numbers in the second vertical row give the numbers of stars brighter
than 8m,0 per 10000 square degrees according to Tab.11 in Groningen Publ
No. 30.

In the computations it was necessary to include the M stars in the K group.
The results are:

In percent
ng = 1582 4,3 P = 0,337
ng = 2802 7,5 “P = 0,177
np= 6033 16,3 7P = 0,080
ny = 17266 46,5 7 = 0,217
np = 9486 25,5 72 = 0,189

According to the author these numbers are to be taken only as a first rough
approximation.

It is also of importance to know the frequency function of masses for stars
in a certain volume of space. This problem can be solved by reducing the number
of stars #g, %4 ... in the above equations to equal volumes. Because of the lack of
parallaxes EDDINGTON’s theory is used in such a way that the absolute (bolometric)
magnitudes, M, are used which are computed from the supposition of constant
space-density.

The space unit is a sphere with such a radius that the stars of mass My
in stage B which are situated on its surface are of apparent magnitude +8m,0.
Thus:

Mg+ Cp=8m,0,

where My is the bolometric magnitude of a star of mass Iz and Cp the re-
duction to be applied to Mp to give it the absolute visual magnitude of spectral

Handbuch der Astrophysik. V, 2. 40
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class B. The ratio of the distances », and 7, of two stars of equal apparent
magnitude having the absolute magnitudes M, and M, is:

;’1/1/2 = '10"0’2(M1‘M2)
and the ratio of the two volumes v, and v, with radii », and 7, is:
U, [Vy = 1006 —My)

A star of mass Mp in spectral stage A has a visual magnitude Mz + C,
and thus#p in the equations related to stage A has to be multiplied by the factor

10—96(C4—Cp)
In the equations corresponding to stages F, G, etc. #p appears multiplied
by the factors 10~06(Cr—Cs) 10—0:6(Ce—~Cs) etc,
In the same way we find for #, in the equation for the A stage the factor
10—06(M4+04—Mp—058) — {Q~0.6(Ma—Mp) ., 10—96(C4—0Cp)
We introduce:
Tig = 4 10~06(Ma=Mz)
g = np10—06Mr—Mz)

Ng = ngl0—06(Mr—Msz)

The following values were used in the calculation:

My = —2m3 Cp = +1™,8

My =40 ,2 Cy= 40,3

Mp=+2 ,2 Cr= 10,0

Mg=+4 ,0 Cg=+0 ,2

Mz= +5 ,0 Crg= +0 ,8

from which it was found that:
In percent

mg = 850  mg=20389000 88,92 1}’ = 0,589
g = 376  mg = 2268000 9,80 P = 0,039
np= 464  mp= 232000 1,01 72 = 0,035
%y, = 1123 #, = 35500 0,15] ¥ = 0,070
g = 5424  mz = 5500 0,02 ¥ = 0,267

Another computation was undertaken of the frequency function of the masses of
stars brighter than 8m,0, in which attention was paid to the change in the visual
magnitude with the colour. The following results were found:

Spcel(::xtsrsal Mp M4 Mr Me M Sum E‘ Mean masses
B 3196 0 0 0 0 3196 | Wy =4270
A 1679 7176 0 0 0 8855 | M, = 1,81
F 2008 1248 4698 0 0 7954 My = 1,62
G 3210 748 410 3028 0 7396 Me = 2,14
K 5525 680 141 152 3267 9773 | Mg = 2,56
Sum | 15618 9860 5249 3180 | 3267 37174 |

217. Sproul Determinations of Masses. In 1922 J. A. MitLER and J. H.
PrtMaN? made use of the material available for computing the masses of the visual
binary stars. The original parallax programme of the Sproul Observatory was
outlined with a view to determine the masses of these stars. All the visual binaries

1 AJ 34, p. 127 (1922).
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with well-determined orbits have been included, together with objects for which
tolerable elements will be known in the near future. Most of these objects have
also been included in the other parallax observatories, so in most cases deter-
minations of several modern parallax values are available.

Most of the pairs in question are so close together that the combined images
on the plates at Sproul are sensibly round. The question then arises whether
the orbital motion will not change the shape of the photographic image and vitiate
the determination of the parallaxes. PrrmaN and Miss PoweLL have made an
investigation with regard to this question using the equation:

c+m+fn+-g-sin0=d,

in which d is the total displacement, and the fourth term on the left side takes

into account the apparent orbital motion, ¢ and 6 being the radius vector and

the position angle of the star in its orbit. For the stars with 4m smaller than

2m it was found that there were the following changes in the parallaxes:
According to the opinion of the present writer the

errors in the trigonometric parallaxes, other things being Az "
equal, are slightly larger in the case of double than in 0" 000—0".001 | 11
the case of single stars. As the orbital motion contri- 0 002 1
butes so little to the error, the discrepancy is certainly 0 ,004 1
caused by other factors, which are mainly dependent on 0 ,009 1

the nearness of the images.
The average sums of the masses within the different spectral classes are as
follows according to MILLER and PITMAN:

Spectral class B | A | F [ G | K | M
My + Mz | (14,910) 1 3,490 [ 3,920 \ 1,770 | 1,570 | 0,650
n 3 8 | 11 6 3| 2

The mass of the B stars was taken from other sources.

218. Pirvan’s Investigation. An extensive presentation of the existing
material for deriving the masses of the binary stars was given by J. H. PitMAN in
19291, The orbits of the binaries are generally those given by vAN DEN Bos?
together with a few orbits, new or revised, published since the latter’s paper
appeared. The parallaxes are taken from the manuscript catalogue of the Sproul
Observatory. In general only modern determinations are used. These are cor-
rected for systematic errors and weighted according to the method given in
Pop Astr 31, p. 244. The corrections reduced the determinations of trigonometric
parallaxes to the same system as ADAMS’s spectroscopic results; in this sense the
parallaxes tabulated are absolute.

The objects are divided into three groups, which are given in separate
tables. Table I contains 33 stars for which the probable error of the parallax
does not exceed fifteen per cent of the parallax itself. Table II contains 20 stars
for which the probable error lies between fifteen and thirty per cent of the par-
allax, while Table III contains 51 cases in which the probable error exceeds thirty
per cent and those for which only one trigonometric determination has been
made. In each case the trigonometric parallax has been made the basis of clas-
sification. ‘

The results are summarized in the following table, where the absolute
magnitudes are visual values. The second lines in the table give the average
masses and absolute magnitudes for the single components. The numbers #

1 AJ 39, p.57 (1929). 2 BAN 3, p. 149 (1926).
40*
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75 such systems and compared the minimum values of M with the mass-lumino-
sity law. The comparisons of PitMan show that there is a correlation between
M and logI. The value of the coefficient of correlation can be estimated as
having a value of about 0,7. Another question is whether such a correlation
has a physical meaning such as that expressed in the mass-luminosity law. For
the present it hardly seems possible to answer this question even if the material
available seems to suggest a revision of the constants in EDDINGTON’s formula.

219. Statistics of accurately Determined Stellar Masses. E.B. WIiLsoN
and W. J.LuvTEN! made an investigation with a view to discuss the material
concerning stellar masses as a set of precise astronomical measurements.

To begin with they quote the 8 cases of stellar mass determinations given
by EppincTon in his well-known book, ‘Stellar Movements”. The figures
expressed in terms of the mass of our Sun are in order of size 0,7, 1,0, 1,0, 1,3,

1,8, 1,9, 2,5, 3,4, from which % = 1,7 -+ 0,2. As no masses may be negative and
there is no restriction, except through disintegration by internal light-pressure
or dynamical fission upon the upper side, it is natural to discuss the distribu-
tion, not of the mass itself, but of its logarithm. The 8 results are: —0,155,

0,000, 0,000, 0,114, 0,255, 0,279, 0,398, 0,532, from which log M = 0,178 -+ 0,05.
The dispersion ¢ is 0,21 4 0,035 and the probable error ¢ = o = 0,14. The
geometric mean mass is 1,5 and coincides with the median. If the distribution
is normal a departure of 9 ¢ = 1,26 in the logarithm from its mean 0,18 could not
occur; because there is only one chance in a billion and a half that log It should
exceed 1,44 and an equal chance that it should be less than 8,92—10, and there
are probably less than one billion stars nearer than 2000 parsecs, which makes it
certain that no such numbers could possibly be registered on the best photo-
graphic plate. There are at least three known binaries the mass of which exceeds
104 = 27,5 ®. It is clear, therefore, that a normal distribution as determined
from these data has no correspondence in the stellar world.

Then the authors use the following 15 systems? as having reasonably well-
determined masses:

& Aurigae 7,500 = 4,18 ® + 3,32@® 7 Cassiopeiae 1,13 O = 0,890 + 0,240Q
B Aurigae 4,72 = 2,38 + 2,34 £ Bootis 1,09 = 0,58 4 0,51

« Can Maj. 3,41 =245 -+ 0,96 Sun 1,00

80 Tauri 2,57 =1,85 -+ 0,72 85 Pegasi 0,93 = 0,60 -+ 0,33
« Centauri 2,11 = 1,14 -+ 0,97 uHerculisBC 0,88 = 0,44 + 0,44
70 Ophiuchi 1,82 = 0,96 -+ 0,86 Krueger 60 0,43 = 0,30 - 0,13
¢ Herculis 1,60 = 1,12 -+ 0,48 0% Eridani BC 0,41 = 0,21 -+ 0,20
« Can. Min. 1,50 = 1,13 - 0,37

The mean I = 1,97 4 0,28, the median is still 1,50, log M is 0,18 -4~ 0,06,
and oigm = 0,34 4 0,04. The mean deviation ¥ is 0,27 and the test o =1,25 7
for normality is perfect. A study of the distribution of the log M’s with regard
to the size of the probable error, ¢ = 0,23, also gives evidence of the satisfactory
normality of the frequency function. The 9t is 1,5 ®. The larger material in this
second case has increased the size of the error by a fifth. The authors say that
even considering the small size of samples 8 and 15 it is difficult to. reconcile
the relative magnitudes of the standard deviation and their probable errors;
the difficulty would have been even greater if the additional 7 had been treated
as a second sample. The fact is that the two sets probably do not belong to the
same statistical universe—one at least of the samples is not fair.

1 Wash Nat Ac Proc 10, p. 394 (1924).
2 From HERTZSPRUNG’s paper in BAN2, p. 15 (1923).
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If charmed with the excellence of the normal distribution of the 15 cases
one would derive the probability of a binary with log I as great as 0,48 4+ 9p
= 2,21 it is found that the chance will be one in a billion and a half for a star
of mass 162 ®. The authors points out that we have PLASKETT’s star with such
a mass, and that 27 Canis Majoris probably has a still larger mass.

Of course, considerable uncertainty is involved on account of imperfect
parallax data. The figures may be inaccurate by 30 percent, which means a
variation of some 0,12 in the individual logarithms. If there is nothing systematic
in such errors the error in the mean will be about 0,03. As far as the accidental
errors go, the mean will be reasonably well-established although the error is
liable to increase when a more extensive material is at hand.

A similar discussion is given for the 29 stars of HERTZSPRUNG's list when

each component of a binary is counted separately. The IR is then 1,07 4 0,12

and the median mass 0,86 and the distribution is skew. The log I is 9,984 — 10
-- 0,044, the median 9,934 — 10, and M = 0,965. The dispersion is 0,357 4- 0,030,
and checks perfectly with o. Its value is not greater for 29 stars than for 15 systems.
The mean is better determined statistically in the first sample than could be
expected before when one remembers that the scanty material has only been
doubled.

220. Real and Apparent Masses. If the mass of a star undergoes a steady
decrease from spectral class B to M, as is indicated by the work of SEARES!,
various suggestions present themselves as an explanation of this phenomenon.
B. A. KostITZIN? has applied the results of MAJorRANA® with regard to a possible
absorption of the gravitation. The real mass of a star is designated by I, and
the apparent mass by It,. Let further # be the radius, ¢ the mean density, and
« the coefficient of absorption = 7,59 - 10~ 12 for the Sun. Then the attractive
force will be diminished in accordance with the “law of progressive absorption”
and in the case of a homogeneous liquid mass, where g is equal to the true den-
sity, the following equations hold good:

Te

y2 e
24 1+

—2x07 8—20491* 1 ]
i

aor 2025212 24222

M, = m, = %ncéﬁ.

Introducing a new variable 2x g7 = v and putting

@ =[(14+v)e?+0502—1]303
KostIrrziNn finds the relation:
Mo = M, (v) .

Accordingly ¢ (v) is the ratio between the apparent density and the true density.
If the above value of & and I, = 5,3 times the apparent mass of the Sun are
accepted for the Sun, it is found that for a star with the same real mass as the
Sun and 7 =97 the apparent mass N, is nearly equal to its real mass, viz.
5,3 times the apparent mass of the Sun. If » =3 75 the apparent mass is four
times the apparent mass of the Sun. The diameters thus derived for different
spectral classes are of the same order of magnitude as the computed ones.
H. N. RusserLrL® has pointed out that if the absorption of gravitation is
accepted there are a number of important astronomical consequences. The true
masses of the planets have been computed according to this theory and it is found
that the inertial masses cannot be equal to the true masses. If they are assumed

1 Mt Wilson Contr 226 (1922).
2 Publ Obs Astrophys Centr Russ Moscou 2, p. 289, 303 (1923).
3 Phil Mag 39, p. 488 (1920). . 4 ApJ 54, p. 334 (1921); Mt Wilson Contr 216.
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to be equal to the apparent gravitational masses we are led to such discrepancies
in the case of the tides that the conclusion is unavoidable that the coefficient
of absorption cannot exceed /5o, Of the value assigned to it by MAJORANA.
221. Seares’s Researches. In an extensive paper of 1921 F. H.SEARES!
has made an interesting study of the masses and densities of the stars partly
along new lines. The salient point in his method is a comparison between the
absolute magnitude M, as derived from the dynamical parallax m; and the
spectrographic magnitude M as derived from s. The well-known relation:

M= M4+ Mp=

3P2
gives: logM =k — 0,6 M,
where M—=m-+5+ 5logm
and

k = 3loga — 2log P + 0,6 m - 3.
The assumption used in the computation of 7, is M = 2.
Thus if the orbital elements are known:
0,30 == k -_— 0,6 Md,
and:
logM = 0,30 — 0,6 (M — M,;) = 0,30 — 0,64 M
and for a group of stars:

logit = logM = 0,30 — 0,6 (]\7 — m) = 0,30 — 0,6 4M .

The next last equation only holds good for individual stars in the case of
binaries where the elements are known, because the mean inclination of the
orbital planes is involved in the dynamical parallaxes. The last equation holds
good for any group of stars.

At that time, in the case of the binaries investigated, only M, was known,
and thus an indirect process was necessary. SEARES used M, from single stars
of known parallax, whose selection with respect to the stars as a-whole presented
the same characteristics as those of the binaries themselves.

If M, represents the mean absolute magnitude of a certain spectral type of

single stars of known parallax, and M, the corresponding value for binaries of
the same type, we have:

M,=M,+ M
Thus 6 M expresses the influence of difference in selection. We may write:
My— My=AM =M, — My + M = AM, + 0 M .
SEARES has derived 6 M from the some hundred binaries of measured parallax

and calculated 4 M, for each spectral type by comparing the 550 stars in the
lists of JAcksoN and FURNER with the homogeneously selected single stars of
known parallax. Then AM was formed and M computed. The underlying as-
sumption is that the mass-luminosity relation is the same for both binaries and
ordinary stars.

The binaries and single stars of known parallax were grouped according
to apparent magnitude and spectral class. The comparison between 505 binaries
and 1152 parallax stars from Apams’s catalogue in Mt Wilson Contr 199 and from

1 Mt Wilson Contr, No. 226 (1922); Ap] 55 P. 165 (1922).
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KAPTEYN'S 1nvest1gat10n of the parallaxes of the helium stars? gave the following
table:

Median - B A F G5—KS3 G K
Jpparent | B | j&F |K&a| B |J&F |Kea| B [jaF| K&a| B [JaF| Kaa | K&
gnt S | P P|S | |™m |3 | Pi s | TE Pi Pi

35 | o1 0.1 04 1| |
4,5 02 )7 |34 02 |3 17 03 |3 12 3 3 3 |04
5,5 0,2 |2 13 0,6 |2 4 0,3 |2 6 0,8 |2 4 15
6,5 1,0 11,0 11,0 [ 1,0 (4,0 [ 4,0 | 4,0 1,0 | 1,0 | 1,0 |1,0 [ 1,0 | 1,0
7,5 oo | 0,52 10,00] 1,6 | 0,29 0,18] 1,5 { 0,38} 0,25 2,2 | 0,80} 0,33 | 0,46
8,5 oo | 0,08 0,00| 1,5 | 0,04 0,03] 1,8 |0,40| 0,05 | 3,5 | 0,54| 0,08 | 0,34
9,5 - 0,00 | 0,00| 0,2 | 0,00 0,02} 0,7 | 0,01 | 0,01 | 0,5 ] 0,02} 0,02 | 0,12
B _ Dbinaries = J&F  JACKSON & FURNER K & A KAPTEYN & ADAMS
S 7 singlestars °  Pi PICKERING = PICKERING

If the selection for the two lists were the same, the ratios of the correspond-
ing numbers would not vary with magnitude, and if the selection were homo-
geneous the ratios for the different classes would show the same change.

The number of A stars in the spectrographic list then available was small,
and in order to obtain a test SEARES used the star counts of W. H. PICKERING2.

The degree of homogeneity is satisfactory and the only deviations of a serious
nature are those of the faint G5—XKS5 stars and the faint B stars. The absence
of pronounced irregularities in the curve M; = f (Sp. Class) shows that the error

in the corresponding 4 M, must be small. The limitation in this value for earlier
B stars, on account of the fact that KAPTEYN’s investigations do not include
stars fainter than 6m,0, will not be of much consequence.

" The increment M determines the zero-point, which can easily be proved.
SEARES has used the spectrographic parallaxes alone, since they are based on
a homogeneous system.

A diagram given in fig. 150 was constructed giving M, and M, as functions
of the spectral class. The table shows the value of the zero-point for different
spectral classes, the two lists of JAcCksoN and FURNER being treated separately:

Seectral | 3| 434 oM n Seectral | Mp—31a | 430, st "
A7z —0oM7 | —0M,5 | —0M,2 3 A9 —0M,8 | —0M,4 | —0M4 | 11
F2 -0 ,6| —0 ,2|—0 ,4 14 Fs 0,0 0,0 0,0 7
Fs5 —0 1 0,0 —0 ,1 13 GO +0 ,3| +0 4| —0 1 9
Go 0,040 .,4| —0 ,4 18 K3 +0,3| 4+0 ,8| —0 ,5 9
G4 +0 4| +0 ,6 —0 ,2 10
K2 +0 ,4|+0,7| —0,3 7
K8 +0,51+0 .8/ —0 .3 4

Mean \ | —0 ,29] 69 ‘ —0 ,27] 36

From 69 and 36 stars respectively mean values of 6M = —0™,29and — 0,27

were found, thus as a mean:
AM = AM, — 0M,3

was adopted. The fact that there is no marked progression in the values.of 6
with spectral class confirms the conclusion concerning the homogenelty of the
selection.

In the determination of the zero-point a certain systematic difference was
found between the results of JacksoN and FURNER with regard to n; as determined

1 Mt Wilson Contr, No. 82, 147; Ap J 40, p. 43 (1914); 47, p. 146, 255 (1918).
2 Publ A SP 33, p. 140 (1921).
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from known elements or from arcs of relative motion. In the former case the
agreement between 7, and 7; was excellent. In the second case the following

systematic difference was found:
7, = 713 — 07,010.

The stars occurring in both lists

give: _ ”

7, = ;g — 07,007 .

The value 4 M, determines the
rate 4M/4 S, where A4S is the change
in spectral index S, while the con-
stant 6 M determines the zero-point.
For the determination of d M only
spectrographic parallaxes have been
used. In computing M, — M, it has
to be borne in mind that the M,
correspond to the most probable
values of the parallaxes and thus
are not the most probable values of
the magnitudes themselves. Thus a
small correction of +0M,08 to the
tabular values was adopted.

The following geometrical mean
masses were derived:

Visual ingle
Spcelgfial o, Ma binaries Ss‘f;;s
Bo [—1,60| (—0,25) | 18 @ {10 ®
Bs |—o0,20 -+1,00 | 14 8,3
A0 |+0,70 1,65 | 10,5 | 6,0
A5 1,50 2,15 6,9 4,0
Fo | 240 2,70 4,4 | 2,5
F5 | 3,32 3,27 2,7 | 1.5
GO 4,35 3,95 1,7 1,0
G3 5,20 4,60 1,3 0,76
Ko 5,90 5,20 1,2 0,68
K5 7,10 6,30 1,1 0,62
Ma |+9,80 8,95 1,0 0,59

In order to test the influence of
selection on the values of It on ac-
count of the lack of more distant stars
the following comparison was made:

v 7
N4
%
2 S\)‘&f/
&
Q}: /S
U\ \\ / N
Q \ ¥ I
& NS
B jj‘%\’{. / o
7% % N
o
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4
» e\
\\
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178
» i \ )
4 / 17
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Fig. 150. SEARES’s determination of the masses
of the stars from the different slants of the stars
in the RusseLL diagram. The curve M, is the
line of maximum frequency of M for the B
stars of KapTEYN and the dwarfs from the list
of spectroscopic parallaxes. M, is the similar
curve for the absolute magnitudes as based upon
the dynamical parallaxes derived by JAckson
and FurNeER. The differences in the ordinates,
corrected for zero point, are shown by the curve
below (AM). The straight line “Cepheids and
Pseudo-Ceph.” is the absolute magnitude spec-
tral relation according to EbppinGTON. The dott-
ed curve to the right is the line of maximum
frequency for giants and the full drawn curve the
mass line M = 2.

7 Sp AlogM n P \ Sp AlogM n
07,018 F2 —0,08 10 0,061 G3 —0,04 10
0 ,026 F6 —0,12 10 0,102 G1 +0,04 10
0 ,032 G1 —0,08 10 0,270 G8 +0,12 9
0 ,046 F7 +0,03 10

The slight systematization of the numbers shows that the mean masses of
more distant stars have been computed too large. This suggests that the variation
of M with spectral class has been influenced by selection, and in order to make
the data fully representative a constant correction to the log it of —0,08 has to
be applied. The values given above contain this correction.
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In deriving the geometrical mean masses J of single stars a constant value
of Mp/M, = 0,75 was assumed.
The probable dispersion in the mass for dwarfs of F0 to M was determined as:

alogm = j: 0,22 .

This is not the true dispersion, but includes the errors in M and M, as well.
The dispersion in M is not well known and thus only the following dependence
can be indicated: ‘

" Limits for l Limits for
a 7 logM probable error oM “logM | probable error

4+0M,35 | 40,07 | (0,85—1,18) M} +0M,20 | 0,18 ‘ (0,66—1,51) M
0,30 0,13 | (0,74—1,35) M 0 ,15 0,20 | (0,63—1,58) W
0 ,25 0,16 | (0,69—1,45) M

If the kinetic theory of gases can be applied to the stars, this implies the
equipartition of energy of translation so that:

-5 _ M, V2 = const.
Y/ 3 ‘f\ Th .
4 \ e theory for a collection of
—¢ N\ N . :
/( A\ N\ stars is much simpler than for a gas,
» M RN X d collisi
5 =\ because encounters and collisions
2 )( VAN \ A occur so seldom that they may be
” . ){ e \ //45\ neglected. The effective agency for
7 3:\\_7 )( N\—X #| the transfer of energy is only that
NS LS ¥ AN N which arises from the attraction of
70"—’ X{/ \ \)\ /)(‘5 the bulk of stars upon individual
Y7 5 Y ~ X members of the system. The effect
X 4 ‘}\ / L > N of this simplification is an enormous
y \\’ . \ N //\' i’ increase in the time of relaxation

and for that reason several theorists
have rejected the analogy between
the stellar system and a collection
of gases. On the other hand, JEANS

+
A

/M.M/Wff//l
S
AR
/NN
/
/
S

iy concurs with the application of the
theory of gases to the stellar uni-

7 TN verse.

" N Several objections are consider-

, \ ed by SEAREs, who finds that equi-

partition has not been obtained

“Wg y: ya - v within the stellar system, but that
Sectal s “ there may be an approach to that
. . i state
Fig. 151. Nomogram showing distribution of . .. .
mass (full curves) and mean density (broken The distribution of the logar-

curves) of stars derived by Seares from the ithms of the space velocities can be

principle of equipartition. The full-drawn curve represented by means of a normal

running downward to the right is the line of : f by : :

the maximum frequency of the dwarfs or the (GauSSIan) distribution. By applying
main series. the mean value theory to the fre-

quency function it is found that
log V2 = 21og V + 0,148 = 2log V +0,296.

Further, as has been shown by CAMPBELL, the mean space velocity is equal to
twice the mean radial velocity. On determining log (IfV?) for different spectral
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classes remarkable constancy was found. The total range of the values is only
from 3,21 to 3,66 and most values are very close to the mean, 3,57. It thus seems
justifiable to evaluate the masses. For spectral classes F5, G5, K3, and Ma a
mass-luminosity relation was found as follows:

The surface brightness

. . “~_ Spectral
was derived by the aid of \pegf;:s e
StEFAN’s law. The following M Fs | G5 | X3 Ma
expression was derived for the —3 550 9,50
surface brightness: —2 6,00 4,2 4,4
. -1 5.5 3,2 530 2,6
§ = Mvis — Mpo — 101ogT, 0 4,8 2,4 2,8 1,7
-+ const. +; gi 12 1? 1,2

This formula was tested by 3 2,0 1,1 1,2
comparison with the one de- ‘;’ (1)’(6) 8’2 (1)’8
rived by HERTZSPRUNG in 1906 6 ’ 0.6 0.8
which was based on PLANCK’S 7 0,7
law and the measurements of 8 0,6
visual sensibility by LANGLEY, 10 0.5

ABNEY, and others. The formulae involve quadratures. The excellent agree-
ment is illustrated here:

T ‘BIVis—MBol. jSEArEs | THERTZSPRUNG T Myvis—MgBol | ISEARES JHERTZSPRUNG
2540° | +2M,59 | +6,32 +6™,32 7500° | 4-0™,02 1 —0™,95 —0™,93
3000 | 1,71 | 44,72 +4 ,68 9000 40 ,12 } —1 ,64 | —1 ,62
3600 -+0 ,95 | +3 ,17 +3 ,16 10500 40 ,31 | —2 ,12 —2 ,09
4500 40 ,35 ‘ +1 ,60 | +1 ,58 12000 40 ,53 | —2 .48 —2 ,45
6000 | 0,00 0 ,00 0 ,00 ] i

The connection of these results with the spectral classes was obtained by
the aid of the spectral-photometric measurements of WILSING! giving c¢,/T of
199 stars, mainly giants. In order to include dwarfs use was made of the un-
published colour in-

dices determined by Spectral Giants, I =0 Dwarfs
SeaREes which should class T | g wT | i | M
ded ro-

b‘e.reg?zr b tas ﬁ‘oh Bo 1,36 | —2m28

visiona ut whic Bs 1.43 —2 14

take account of the A0 1,55 —1 ,89

important difference As 1,76 —1 .45

in colour between Fo 2,04 1 —0 ,88

- 4 dwarf F5 2,35 —0 ,26 2,35 | —0™26 | +3%.3
glants an waris. Go 2,70 | 40 44} 248 0,00 | +4 ,4
This difference must G35 3,10 | +1 ,24 2,60 40 25| +5 ,2
be considered in any Ko 370 | +2 .4 293 | 40,9 | +5 .9
discussion of the sur- K5 4,37 +3 .71 3,47 +1,96 | +7 .1
f bricht f Ma 4,65 +4 ,25 4,30 +3 ,58 49 .8
ace T18. n’e’ss o Mb 4,82 +4 ,58 ,

stars of “late” spec- Mc 4,94 +4 .81 I

tral classes.

The change A 7/ AM could Object & Orionis l o Bootis o Scorpii
not be determined with accu-  spectral class Ma ’ Ko Map
racy and some extrapolation M ... ... .. —2Y6 | oY1 | —4¥2
was necessary. A partial con- 7 observed . . . . | 44 6 | +2 .2 | +4 .5
[E— i calculated . . . . +4 4 +2 .4 +4 .5

1 Potsd Publ No. 74 (1919). Diam. observed . . 2520 | 250 506 ®

2 Mt Wilson Comm 59; Wash  Diam. calculated . 235 0@ 1 27 ® 513 O
Nat Ac Proc 5, p. 232 (1919). ™ (@ppr.) . . . . -8 | 30 150
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trol of § was afforded by measurements of the diameter of three stars as per-

formed by PEASE.

The following formulae given by SEARES connect the angular diameter 4,
the linear diameter D, the mass 9, the density o, the surface brightness g, and

the apparent and absolute magnitudes:

logd = 0,2 (j — m) —2,061
logD = 0,2 (j — m) —logz — 0,030
logD = 0,2 (f — M) + 0,970

D = 1074 d[n

j = 5logd 4+ m <+ 10,30

log o = logM — 3log R + 0,14
log o = logM + 0,6 (M — §) — 2,77

The values of the masses and densities were also revised by means of Cepheids.
If the pulsation theory is correct the mean density will vary inversely as the

/
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Spectral Class
Fig.152. Nomogramaccording to SEAREsshowing
distribution of mass and mean density revised
with the aid of Cepheids. The dotted curve at
the top indicates the reduction to bolometric
absolute magnitude for stars of spectral class
F8—Ma of M = 100.

square of the period:
logo = —2log P + const.

Further the period-luminosity
relation taken as: M = a + blogP,
where a and b are constants, deter-
mines the absolute magnitude. Thus
thenextlast equation can be written:

log M=—210gP—0,6(M —4)+const.

Only small corrections to the
data gained from other evidence
were obtained from the 28 Cepheids
for which the mass could be com-
puted.

. The decrease in mass may be
partly or perhaps wholly accounted
for by selection, but the possibility
that mass may decrease with loss
of energy by radiation is also sug-
gested, a possibility which agrees
with the theory of relativity and is
not necessarily in conflict with NEw-
TON’s mechanical principles.

Immediately after the work of
SEARES was published H. N. Rus-
SELL! pointed out that the spectro-
graphic parallaxes ought to be de-
pendent on the mass, and that thus
by their very nature they are not
very suitable for a determination of
the dispersion in stellar mass. The

spectrographic magnitude M, is a function of the temperature 7 and the density p.
The equation giving the density is easily transformed into:

log M, = loge + 0,67 — 0,6 /(j, 0) + const.

The masses M, are identical for stars with the same density and the same
surface brightness, but the real masses may differ. Thus the masses computed
by SEARES should not be adopted in order to obtain the real dispersion in )t and
RusseLL suggests the use of trigonometric parallaxes for such a determination.

1 Ap J 55, p. 238 (1922); Mt Wilson Contr 226.
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The present writer found in 1924 the following results, which remain to-day
(1929) substantially unchanged:

Dispersion
Trigonometric parallaxes . . . . . . . . . +3,40
Spectrographic parallaxes . . . . . . . . . 43,00
Spectral proper-motion parallaxes . . . . . 44,00

222. Stellar Masses from Spectrographic Parallaxes. In an extensive paper
dealing with the ionization in stellar atmospheres A. PANNEKOEK! took up the
question of a possible dependence between the intensities of the absolute magnitude
lines and the masses. The Mount Wilson spectrographic determinations of
parallaxes are founded on the relative intensity of some enhanced lines and some
arc lines of the stars. The relative intensities of arc lines and enhanced lines of
a certain element are wholly determined as far as their dependency on the degree
of ionization is concerned by the relative position in the pressure-temperature-
diagram of the ionization curve and the atmospheric curve, defined by:

].ng = ""10”_1 + 2)51 - 6’49 y
T—17 = f(logp — log %)

where p is the pressure of the ionized gas, 7 the logarithm of the absolute tem-
perature, and » a parameter depending on the ionization potential of the element.

The position of the atmospheric curve depends on the effective temperature T
and the factor g/k. Stars of the same effective temperature, i. e. of the same
spectral class, will show differences depending on the factor g/k. On account
of the lack of data the coefficient of mass-absorption % has to be assumed to be
constant. Further g = f M/R?2and L = 47,0 R? where o is the surface brightness
of a star. Then: geo oYL .

The reduction curves used at Mount Wilson have been adjusted by means
of directly measured parallaxes for each separate spectral class. The real quantity
measured at Mount Wilson is not L but LIy/M, if M, is the mean mass for the
spectral interval considered.

In order to test the theory use was made of dynamical parallaxes. We then
have the relations: 7,\3 a2
gﬁdyn =2 <—) 5 E):Rsp = (_H_’) 93?0 .

Tlr TTir

As is evident from the following summary there seems to be a correlation

between the two sets of masses:

log 5tg—log 7y, Iog@m% l log M. logM n
T e 0 l dyn Sp
+0,53 10,53 +1,59 1 41,06 5
+0,14 +0,16 +0,42 40,32 6
+0,06 +0,13 +0,18 | 40,26 9
—0,04 40,06 —0,12 +0,12 8
—0,09 —0,05 —0,27 —0,10 7
—0,17 —0,12 —0,51 —0,24 7
—0,23 —0,25 —0,69 —0,50 4
—0,44 —0,47 —1,29 | —0,94 4

From the double stars the following table was obtained:

m m
Mas—Mpg 10gm—; \ n Ma—Mp IOgﬁ‘i \ n
—oY,3 0,09 10 —1¥3 0,26 10
—0 ,8 0,18 9 —2,9 0,36 9

1 BAN 1, p. 107 (1922); Obs 46, p. 304 (1923).
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Predictions of the masses were made for a number of stars. The result,
namely that the Cepheids should have small masses, and that the companions
of the three pairs, &« Herculis (3@,5; 5™,4; Mb, F9), Bu 8114 (6,5, 8,6; K2, Fo),
and y Delphini (4m,5, 5m,5; K1, F6), have a greater mass (13, 3 and 5 times
greater) than the absolutely much brighter principal star of redder colour is of
general interest.

Later on P. Doig! compared the theory of PANNEKOEK with the evidence
from binary stars. The following fourfold table in which srpectrai denotes the
parallax derived on basis of the mean value M of the absolute magnitude of dif-
ferent spectral classes is of interest:

Ttypectral Tspectral

> iy < gy
TTspectrographic > Ttr 18 0
TTspectrographic << Ttr 2 14

This indicates the existence of a pronounced positive correlation between spectrogr.
and Tepecira. When this happens the stars in question are more luminous than
the normal star of their class and thus -also more massive.

The masses of 19 stars derived directly when compared with those computed
according to PANNEKOEK’s formula did show rather good agreement. On the
other hand, the present writer? found at the same time that there were no such
systematic differences between the masses computed on the basis of trigonometric,
spectrographic and spectral proper-motion parallaxes as were demanded by
the theory of PANNEKOEK but it has to be added that we have to wait for more
extensive data before any safe statements can be presented.

Further investigations, which cannot be reviewed in detail here, have con-
vinced me that there are no such deviations between masses derived from trigono-
metric and spectrographic and proper-motion parallaxes as make it possible
to determine even mean mass values from an analysis of different parallaxes.
This does not exclude, of course, the possibility that there is a mass effect in the
spectrographic parallaxes. It is only to be regretted that this effect is evidently
so small that it will require much work on the refinement of the trigonometric
and spectrographic methods of determining the absolute magnitude before we
can derive masses for single stars. . '

Another way of showing the smallness of the mass-factor in spectrographic
parallaxes is to use the relation:

AM = Am.

This relation does only hold good when no errors in s and M are present.
In case of each quantity having mean errors of ¢y and ¢, respectively, we can

write: AM ey = Am - ¢, .
Even reasonable treatment of the data concerning spectroscopic binaries in

the Mount Wilson material will lead to errors in M of the same size as those
derived from single stars. If we had a mass-factor the equation would be:

AM + & £ ey + f (OM + cM?) = Am + &,
if logIN is supposed to be = a 4 bM -+ cM2. Although the material is small
it seems that no appreciable mass-factor can be derived.
223. Masses of F—K Stars. GERASIMOVIC? has determined the masses of
the stars of spectral classes F—K, starting from the following assumptions: 1. the
reversing layer of a star is in radiative and hydrostatic equilibrium. The absorp-

L TBAA 34, p. 144 (1924). 2 VIS 59, p.203 (1924).
3 AN 227, p. 145 (1926); Charkov Obs Publ, No. 1, p. 12 (1927).
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tion lines that determine M are not of a chromospheric character, i. e. they arise
in the level where the selective radiation pressure is small in comparison to the gas
pressure; 2. each line arises at the same optical depths in the reversing layers
of all stars of the same spectral type. If these hypotheses are correct the intensity
of a given spectral line is a function of the effective temperature and the gravity
at the surface only. The chief cause of a variation in an intensity-ratio must
be a change in the gravity. The following equation can be established:

M - 215 logm] = (p(Ms: Te = Ms + f(MS) Te)

where J is the surface brightness and T, the effective temperature and the
subscript s stands for spectrographic data. It follows from the above equation

that: 0L, Ty = —2,5log M ] -

On account of the lack of data the direct method cannot be applied and we
must proceed by successive approximations. At first it is supposed that:

log = 0,4[M — M,] — log ] + logtJ.

From an analysis of the Victoria list of spectrographic parallaxes the follow-
ing abbreviated results were found when the differences between the spectro-
graphic and trigonometric magnitudes were grouped according to the magnitude:

These values are

only approximate on Absolute F stars G star§ K stars
account of my con- magnitude 7oy 0 | n M—My | o | Mi—Mq n
densationof thedata. _o0_g9| 414 | 6 | 410 | 30 | 407 26
The systematic 1,0—-2,9] +0- ,2 | 26 —0 ,6 | 29 0,0 18
course of M, — M, is 2,0—3,9 +0-,1 42 :_0 ] 12 -1 1 13
e _ ,0—4,9] —0 ,3 | 2 0.1 2 —1 1 10
very striking and ac co—so| —1 1 ‘ 13 To 6 } 20 | Zo 3 "

cording to GERASI-
MOVIC cannot be explained as a consequence of some systematic error in the
trigonometric parallaxes. The same phenomenon as is illustrated above has
been noted by vaN RuIjN?, who made a comparison between the Mount Wilson
M, and M, based on the Groningen determinations of 7 as a function of proper
motion and apparent magnitude. vAN RHIJN explains the phenomenon by the
lack of sensitiveness of the spectrographic criteria for luminous stars. From the
fact that the systematization in question also exists among the dwarfs GERASIMO-
vi¢ concludes that we cannot neglect the influence of stellar masses on the spectro-
graphic parallaxes.

The largest uncertainty involved in the method is the determination of T,.
The author made use of the values of the surface intensity given by SEARES? which
are based on the data of Potsdam and Mount Wilson observers. In this way the
following results were found:

G stars K stars

T
. log M M n log M M n
0”,010—0",020 | 40,558 | +0M,3 20 40,424 | +0M,4 26
0 ,021—0 ,030 | 40,034 | +1 ,6 24 —0,023 | 41 ,3 14
0 ,031—0 ,060 | —0,101 | +3 ,0 43 —0,421 | +1 ,9 17
0 ,061—0 ,100 | —0,230 | +4 ,3 24 —0,476 | +4 ,9 10
>0 ,100 | —0,383 | +5 .3 18 —0,377 | +6 .5 14

log M clearly depends on the value of & and the same dependence also exists
in the F stars. The dependence is partly caused by the well-known selection of

1 Gron Publ, No. 34, p. 60 (1923). 2 ApJ 55, p.-198 (1922). -
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stars in all parallax-programms and partly by a general dependence between
M and IR. A special investigation of the F stars proved that there is no depen-
dence between 7 and It inside this spectral class.

Using 15 stars with known masses among the Victoria objects GERASIMOVIC
found the following relation:

§):Rcalc = 0,80 mobs-

The author points out that the conclusion of PANNEKOEK that the Cepheids
probably have a very small mass cannot be maintained because the method it
depends upon only gives the effective gravity, i. e. the gravity diminished by
radiation pressure. .

Further on an examination is made with regard to whether the principle

of the equipartition of the energy holds good. V2 was computed as follows. At
first the space velocity V; of a star relatively to the Sun was computed. If V,
is the velocity of the Sun relatively to the centroid of the stars and K expresses
the systematic correction in the radial velocities to be applied to stars of a given
spectral class, then N

MV2=MV2 —M(V2 + K).

For V, the value of W. W.CAMPELL (20 km/sec) was adopted. From his earlier
work GERAsIMOVIC adopted K = 43,4 km/sec and 3,0 km/sec for F dwarfs
and G giants respectively. For other groups K = 0 was assumed. The follow-
ing results are found:

log MV

n
Fstars. . . . .. 3,474 4 0,596 88
Gstars. . . . . . 3,446 4 0,756 73
Kstars. . . . . . 3,595 4 0,705 43

The weighted mean is 3,50, which may be compared with SEARES’s value
3,57. The good agreement is a fact that speaks strongly in favour of the correctness
of the method. The considerable dispersion in log 9t V2 prevents that quantity
being treated as constant for each star.

A detailed investigation of the probable errors of the calculated masses was

next undertaken. The following orders of magnitude of the probable error were
found:

T Prob. error

07,010 42,5 M

0,050 -+0,52 M

0,100 +0,29 M

0,200 40,19M
Thus the mass of a giant star cannot claim individual accuracy, but when
the parallax exceeds 0,070 the mass will possess some degree of individual
accuracy. The masses computed by the aid of the Victoria parallaxes were also
compared with the values that resulted from the Mount Wilson and Norman
Lockyer parallaxes. The agreement of the data for small and moderate
masses appears to be very satisfactory. It is not so good for the larger
masses, and values of masses larger than 20 ® are probably illusory. The mean

masses were computed according to the following summary:

Next the mass-luminosity re-

M<3Mo | n |Mz=3mo| a lationwasinvestigated.Thecurves
T stars . . . 3,30 | 33 1,50 | 82 for the different spectral classes
G stars . . . 3,6 55 0,9 70 are somewhat different from the
Kstars. . . 4,3 54 1,0 26 theoretical curve of EDDINGTON?.

1 M N 84, p. 308 (1924).
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This difference cannot be explained by the variation of log M J, but it can be
explained by the assumption of a slight variation of the molecular weight during
the evolution of the star.

Also the luminosity-density curve was derived on the basis of BOTTLINGER’s
photoelectric determinations of the colour indices. A linear relation between
log density and absolute magnitude Mp was found for each spectral class:

F stars G stars
GERrASIMOVIC . . . loge = 0,63 Mz — 2,17 logo = 0,54 My — 2,52
SEARES . . . . . . logo = 0,57 Mz — 1,33 loge = 0,57 Mz — 2,55

A catalogue of the masses of 71 stars, for which z > 0,070, is appended to
the paper. The mass of Arcturus comes out as 1,6 ® and that of 61 Cygni as
2,20 and 3,5 ® respectively.

224. Colour-Mass-Density Relation. G. ABETTI! investigated in 1922 the
masses and densities as derived from the data of double stars. The parallax-data
were mainly based on Mount Wilson parallaxes or proper motion parallaxes
according to KAPTEYN’s and vAN RHIJN’s formula. The table summarizes the
most important of the results:

Spectral cl i i
ookl o0 | g, | Diftene in au Mis | Densty | n
A B
Giants K2 | Fo |—0"5/+0™80+ 010 +2¥2 4+ 0M2 | 150 [<010| 9
. G3 F7 | —0 ,4|4+0 ,224+0 ,13| +1 ,74+0 ,4 | 14 <0,1 7

I A2 | A4 140 ,9—0 ,064+0 ,04/ +0 8£0 2| 9 02 |14
Intermediate;| F3 | F8 [+2 ,5'—0 ,44-0 ,07| +1 ,1+0 4| 44 | 03 |10
l F7 | G4 |+3 ,9—0 ,244£0,09 +1 ,34+0 4| 22 | 04 |12

G3 | G5 |+4 ,8—0 ,074£0 ,04| +0 440 2| 1,5 | 05 7

Dwarfs. . . { G7 | Kt [4+5 .70 ,484+0,05| 41,040 .3 | 12 | 06 7
K4 | K6 |+7 ,7,—0 ,0640 ,03| +0 8+0 ,3| 1,1 | 08 9

Later on ABETTI? has determined the colour indices of the components of
35 double star systems.

ABETTI® has also applied the theory of PANNEKOEK for the derivation of
stellar masses.

225. Von Zereer’s Method. Up to 1921 the stars in the clusters were con-
sidered to have equal masses. This year H. voN ZEIPEL published his interesting
method which is derived from considerations concerning the distribution of
molecules of a gaseous mass enclosed in a spherical space. The method can be
applied to star clusters where a concentration of massive members has taken
place around the centre and to star clouds in the Milky Way and it can certainly
also be applied to clusters of anagalactic nebulae (galaxies). The problem of
deriving the spatial distribution of stars within stellar clusters was at first
attacked by E. C. PICKERING4, who studied the globulars 47 Tucanae, w Centauri
and M 13. He proved that the law of apparent distribution of stars, derived
from the projected images of the clusters upon photographic plates, was the
same for the three objects investigated. He tried to express the law analyti-
cally by the formula (1 — 7)”, where 7 is the distance from centre and # a con-
stant. Some years later the problem of finding the spatial distribution from
the projected distribution was solved by H. von ZEIpPELS and next year® a suc-
cessful attempt was made by him to apply the results obtained from the dyna-
mical theory of gases to the law of distribution of stars in globular cluster systems.

1 Acc dei Lincei Rend 31, 1° Sem, p. 359; 2° Sem, p. 93 (1922). ’

2 Arcetri Pubbl Fasc No. 40 (1923). 3 Acc dei Lincei Rend 33, p. 554 (1924).

4 Harv Ann 26, p. 213 (1897). 5 Ann Obs Paris, Mém 25, F (1906).
8 CR 144, p. 361 (1907).
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The idea of treating the distribution of astronomical masses as the distri-
bution of the molecules of a mass of gas can be traced back to Lord KELVIN’s
and G. H. DarwiN’s! part in the discussion concerning the meteoric hypothesis
by Sir N. LockYer. Later on? Lord KELVIN also discussed from the point of
view of dynamical theory of gas the distribution of stars in our stellar system
in relation to its age. POINCARE? suggested in 1906 investigations based on the
analogies between stellar systems and masses of gases and emphasized the great
possibilities for extending our knowledge as to the construction of the Milky -
Way system. He also pointed out the difference between stellar systems and
masses of gas. In the second case the mean free path is small when compared
with the dimensions of the molecules but in the first case the mean free path
is large in comparison with the dimensions of the stars. In the stellar system
a very long time must elapse before a stage of equilibrium is reached and PoIx-
CARE assumed the Milky Way system to have not reached this stage as yet.
In the globular clusters the influence of one star on the other is more pro-
nounced and PoINCARE suggested that the distribution of stars in clusters obeys
the same law as that expressing the distribution of molecules in a mass of gas
only subject to its own gravitational force.

The first step in the development of the theory is to compute a spherical
distribution from knowledge of a circular one!. The photographs give us the
number of stars 4 (r) per unit of area at the distance 7 from the centre. Thése
apparent densities must be transformed into space densities D (7). If 7 is the pro-

jected distance, o the radius vector, and I =} % — 72, vON ZEIPELS derives the
equation:

where R is the limiting distance from the centre of the cluster.
In order to eliminate @/ this relation can also be written:
R
A@) =2 -——];Qf_f’@d? :
Integrating by parts we have:
A() =2D (R VRz—r?-——zfv ~D'(o) do.
This equation is differentiated:

40) =—2D®)

Further we multiply with ———, where 7; << R, and then the integration

yrt
between 7; and R is performed Then we obtain:
R R
7)d1' 27 dr rar D’ (0)do
= + 2 = .
Vy — 7 V — P2 =) Vot = 72 Vo? — 72
1

1 London Phil Trans 180 A, p. 1 (1889). 2 Phil Mag 6th Ser. 2, p. 161 (1901).
8 BSATF 25, p. 153 (1906). 4 Ann Obs Paris, Mém 25, F (1906).

5 K Svenska Vet Akad Handl 61, No. 15, p. 109 (1921).
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The order of integration is changed in the second integral:

Dl v d?’
/ @ 9/ f@ = — )
Further it is found that:

2vdy ar
V (0% — 4’2)(72 —7i)

= 7,.

Hence: R
A (v) dr

=
1

=—mDm+nJU@WQ=—mDMW

Instead of 7, 7 is used and instead of 7, o. Then:

<

/ VRBT’: 72 1 2
P === / e = [
0
Next, voN ZEIPEL makes the substitution:
o) =—3%

which gives:
VR—r

) =i [p (V).

The star counts give 4 (#) + 4,, where 4, can be presumed to be a constant
value due to the foreground and background stars. As can easily be shown,
this effect will be eliminated.

The value of () could be computed by the formulae for numerical dif-
ferentiation, but as according to the above definition of p(7) it is not valid for
small values of #, the following expansion into series will be used:

pr) = 1{288 (287 — 111y + 7ng) — 1920(10n1 5n2+n3)},

where # is the number of stars in the region in question. Finally:

D) = 2{2p(fP0t +7) — L p 0},

where w is an interval of / taken sufficiently small and 2 =0,1,2... in
succession. [The problem of deriving a spherical distribution from a (projected)
circular distribution on a plate has been solved more recently from a somewhat
different point of view by S.D. WICKSELL!.]

The dynamical stage of a certain stellar agglomeration at the moment ¢
is expressed by the correlation surface of the 7th order:

px,y,2,%,9,2, M, )dxdydzdxdydzd I,

where %, ¥, z are the coordinates and %, vy, z the velocities. By applying a
method of GIBBS it can be shown that the most probable state is expressed by :

@ = F(IN) e M B+ +2-2V )
1 Lund Medd Ser. I, No. 104 (1924). .
41%*
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where V (r) is the potential of the group and 7 the distance from the centre.
Further f(r, M) dxdy dzd M is the frequency of stars of mass M and of co-

ordinates %, v, 2. Then:
flr, M) =[f/gvdmdyd,'z

and according to the last equation but one which expresses the Maxwellian

distribution:
Fr, M) = B (M) PV =y (M) [ (7, )™
The function y (M) is independent of #» and the equation can be written:

—logfi(r) = Ci + M;[—logf (7], 1=1,2,3

where the subscript ¢ refers to a certain subgroup, C; is a constant indepen-
dent of 7, and M; is the mass of a certain group or the mass-ratio of the
group if one of these is selected as unit. The method thus gives the relative
masses and not the absolute ones. The theorem of von ZEIPEL thus says that
for two sub-groups of stars in a stellar agglomeration there is proportionality
between the mass-ratios and the logarithms of the spatial densities. The method
cannot, of course, be employed when the objects are too few to permit a
decent determination of the spatial densities.

voN ZEeIPEL and LINDGREN! applied the method to the determination of
the mass-ratios in Messier 37.

As photographic magnitudes were used in voN ZEIPEL’s and LINDGREN’s
work a reduction to bolometric magnitudes proved necessary. Such a reduction
was made by A. WALLENQUIST?, who obtained the following results:

WALLENQUIST von ZEIPEL & LINDGREN
ol M/ Me | = Moo | WM | n
1M0 1,60 -+ 0,09 231 1M g 1,76 57
2,2 1,00 312 2,6 1,00 795
3,2 1,23 4- 0,05 556 4 ,2 0,673 682
4 .1 (0,85 £ 0,06) 757 4 4 (0,360) 1203

The values of the last group are uncertain, as the colour indices have not
been observed directly.

A. WarLi1ENQUIST® has measured the magnitudes of the open clusters M36
by applying the same method as vON ZEIPEL and has also computed the mass-
ratios:

Mol ’ Ms/Me n
—0M,8 1,57 4+ 0,09 46
+1 ,8 1,00 130
+3 .4 0,67 297

These results cannot be considered as accurate as those in the case of Mes-
sier 37, on account of the paucity of the stars that build up Messier 36, which
makes the derivation of the spatial densities uncertain.

A. WaLLENQUIST? has recently applied the method of vVOoN ZEIPEL to the
determination of the mass-ratios of special star-groups in Messier 3. The material

1 K Svenska Vet Akad Handl 61, No. 15 (1921).

2 Ark Mat Astr Fys 20 A, No. 26 (1928); Upsala Medd 36.

3 K Svenska Vet Akad Handl (3) 4, No. 8 (1928); Upsala Medd 32.
4 BAN 5, p. 67 (1929).
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consisted of 848 stars in SmAPLEY’s and Miss Davis’s Cataloguel. The stars
were divided into four groups, for which the following results were found:

o s, w |engommsEmpncrovs| g
Red “hypergiants” . . . | 14™,69 | 1,207 + 0,031 | 268 | 3880 | 3,900 | —0M,31
‘White ‘“hypergiants” . .| 15 ,65 | 1,000 267 2,990 2,980 | +0 ,65
Ordinary red giants . .| 16 ,66 | 0,898 4- 0,117 197 2,690 2,100 | +1 ,66
White stars . . . . . . 17 ,09 | 0,620 & 0,123 | 122 | 1,860 | 1,86@ | +2 ,09

My, the mass of the white “hypergiants”, has been selected as unit.

In order to reduce the determined mass-ratios into absolute masses the
parallax of the cluster must be known. As the most probable value of the par-
allax 7 = 0”,00010 is accepted. This leads to the numbers in the last columns.
If SHAPLEY’s value for the M of the cluster type variables had been used the
four values of M would have been 5,48 ®, 4,22, 3,79 ®, and 2,62 ©® respec-
tively.

226. The Method of Freunpricu and Heskanen. Independently of von
ZerpEL, E. FrReEunNDLICH and W. HEISKANEN2 have developed an analogous
method. According to SHAPLEY there seems to exist a “‘galactic’” plane in the
globular clusters in the sense that only the brightest stars have a spherical
distribution, whereas the fainter stars show an elliptical distribution. Let 3¢,/
be the ratio of the total mass of the elliptically distributed stars to the total
mass of the spherically distributed stars, and let @ and b be the axes of the ellip-
soidally distributed stars and ¢’ a measure of the ellipticity of the equipoten-
tial surfaces, then:

3 bzlz)

212 2 __ h2
s 3 M b where 1 =2 b

:H)SJES a? ’ b2

g'[1+%‘:(1+

If the equipotential surfaces cut the equator at the distance 4 and the polar
axis at the distance 7, then & = % —1.

According to H. C. PLumMER3 and von ZEeIPEL? the density in the cluster

increases o #%. Applying the slightly modified formula to SHAPLEY’s material
in M13 gives I,/M, = 0,5. This means that the mass of the spherically distributed
stars, which amount to only 0,01 of the total number, should be at least two
thirds of the total mass of the cluster. This will make the mean mass of the
spherically distributed K and M giants 500 ®, which seems incredible. The
authors then repeated SHAPLEY's star counts on the basis of his star catalogue?
and that of LupENDORFFS. It was found that there were such individual devia-
tions in the distribution of the different classes of stars that the authors think it
is doubtful whether the above formula can be applied. They therefore turned
their attention to investigating the relative concentration towards the centre of
the different classes and to applying the theory of gases. If g; is the number
of molecules in unit space of a gas of atomic weight u;, V the gravitational
potential, and % and g, certain parameters depending on the temperature and
density at the centre, we have the equation:

— — 2wV
0; = Q¢ € e

1 Mt Wilson Contr No. 176 (1920). 2 Z £ Phys 14, p. 226 (1923).

3 M N 71, p. 460 (1911); 76, p. 107 (1915).

4 K Svenska Vet Akad Handl 51, No. 5 (1913).

5 Mt Wilson Contr No. 116 (1915). ¢ Potsdam Publ 15, No. 50 (1905).
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The theory has been applied to the clusters M3 and M13. The colour indices
corresponding to the A and F stars have been taken together to form one group,
those corresponding to G, K, and M stars to form another. Consider two special
elements at distances 7, and 7, from the centre and attribute the subscripts 4
and K to the two spectral groups. Then:

M, _ logel — logek
Mx  logey — logek’
where 9 = 1. e—2hMuVy 0% = 2. e 2hMaVs

— o1, o— 2 _ (K2, ,—2h9
ol = of MUMLVy | 2 = o2, =20 M Vs

From the observed number of stars on the plates the numbers in space were
derived according to voN ZEIPEL’s formula. The following results were derived:

Distance M13 M3 Distance M13 M3
from centre Me/ M4 Me/Ma from centre Mr/M4 Mr/Ma
2’ 1,420 1,761 5’ 1,215 & 1,326
3 1,135 1,865 6 1,490 —
4’ 1,240 1,518

227. Martens’s Method!. In order to obtain a handy expression of the
exhaustion of the potential energy of a stellar cluster MARTENs assumes that
the effects of collisions and passages are negligible when compared with the
effect of the gravitation from the cluster. Further it is assumed that the mean
values of kinetic energy per degree of freedom are constant for all degrees of
freedom and independent of the coordinates of position. These two assumptions
mean in other words the assumption of dynamical equilibrium and equiparti-
tion of energy.

MARTENS then performs a closer examination on basis of JEANS's work:
‘“The Dynamical Theory of Gases”, in order to find out if the two assumptions
are concordant.

The stellar system under consideration consists of # stars having 3# coordi-
nates: g; ... ¢s,. Instead of the velocities dg¢;/d¢, the variables p; are introduced.

The life history of the stellar system is represented by a certain curve in
the 6#-dimensional space determined by the rectangular coordinates of positions
and velocities.

Next a great number of stellar systems is considered, so selected that the
initial values of the 6% quantities ¢; and p; are so near each other that the re-
presentative points can be treated as forming a continuous medium. The number
of points per unit of 6#-dimensional volume or the density of this medium is 7.
If ¢ is the time, the equation of continuity takes the form:

e S U el o

Combining this equation with the equations of motion and taking Dz/D¢
as representing the increase in 7 as we follow the group of points in its motion,
JEANS? has shown that:

3n
Dz i2F
Dt = ' 8g.0p°

i=1

1 A Research on the Spherical Dynamical Equilibrium-Distribution of Stars of
Unequal Masses. Goteborg 1928.

2 The Dynamical Theory of Gases. Fourth Edition. Cambridge 1925.
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where ‘—Zd—f = —2F, E being the total kinetic energy of the® system and 2F

being a quadratic function of the velocities and giving the rate of dissipation
of energy. JEANS has shown that the right member of this equation is always
=0, and only =0 if F =0. It then follows as a consequence of collisions between
stars that mechanical energy is transformed into heat and that the points re-
presenting different initial configurations of the stellar systems are crowded
together and that, independently of the initial states, the final states of the
stellar systems are the same.

It can be shown on basis of J. OHLsSON’s! investigations that the effect of
collisions and passages can be fully neglected. Onrsson thus estimates the time
of relaxation measuring the rate at which the Galaxy as an effect of collisions
approaches to equilibrium to be of the order of 102! years. The corresponding
time as an effect of passages is found to be of the order of 105 years. These
quantities are certainly much smaller in globular and open clusters but still the
passages and then a fortiori the collisions have been neglected in MARTENS’s
work.

Then: F =0 and D1/D¢{ =0 (L1oUVILLE's theorem).

A part of the stellar system consisting of N stars is then considered. The
stars have not equal masses but can be ordered into » groups. The stars N;in
each group have the same mass J);. Hence:

SN, =N.
=1

The stars are assumed to be material points. Every star then possesses three
degrees of freedom and its state is determined by 6 quantities:

P1> Po> P3- Pus> Ps> Pe-
The space containing the N points is divided into # equal elements of volume.
The state of the stars is then statistically determined by certain quantities a;,,

giving the number of stars of mass §)t; contained in the sth element of volume
We have then:

n .
Sy =N;. (=1.2,.. .9
?
Similarly to this distribution, called 4 by JEANs, there exists another distribution
B, determined by the numbers b;;, and so on. The task is to determine the a;;
in such a way that distribution 4 becomes the most probably one.
By variation of the last equations above the following » conditions are

found: n, .
%éaij=0. G=1,..., (a)
=

! . .
—'—aL—a ~ ways without changing
1 27+ nj

the distribution 4. The most probable distribution is the one that makes the

volume containing the points of distribution 4 a maximum. This leads to the
equations of condition:

Z’Z [log "t + 1 + ;2] 6ayy = 0. (b)

The N; stars can be permutated in

=1 i=1
Finally using the equation E = constant and taking:
9E _
] a:; - E’Lj H

1 Lund Medd Ser. II, No. 48 (1927).
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and disregarding terms of higher order of da;; it is found by variation from the
energy equation:

aaw = 0. (C)

—

Ve
‘[vg

i
=

=
The set of variation-equations (a) is multiplied by the arbitrary factors /; and

the last one (c) by a factor #. The expressions are then added to the equation (b).
It is then found that the a4;; have to satisfy the equations:

log a”—l—1—l— —l—l—l—msw—-o

K3

The a;; are supposed to be so great that —— can be neglected. Further it is as-

sumed that &;; is independent of a;,, although dependent of the other 4;;. The
equation is then solved into:
a;y = 21 e—(1+l)—mei .
”n

Introduce a function 7; so that 7;de; dg;sde;sde;sde;sde;s gives the
number of stars within the limits d¢;;, where £ =1...6, and whose masses
are IM;.

Then 7, is proportional to 4;; and we can write:

T, = C,e"me,

where C; is a constant and &, a smooth function of the values &;.
& is assumed to have the form:

- & =13%pPn q’%l + 3§ Bre ‘P%z + 3 B1s ‘P?s + 11(@11, P15, Pre) -
en:

T1 A1 AP P13 APy APy5 APy = Cy (e imPushidgy) . .. (e dgy doy; de,g) .
This shows that the distributions of the coordinates are independent of one

another.
The mean value of the contribution of ¢;; to the energy is:

1 1 1 1 1
- Pu Ph = >m andalso — B, @l = 5 B o2 = o
It can also be shown that:

1

hm(dqjﬂ 2m (k=1,2,3;7=1,...,7)

2m

which expresses the law of equipartition of energy.

The assumption that the g;; are independent of a;; is then made subject to
a special examination on basis of CHARLIER’S?, JEANS’s? and OHLSSON’s® work
and it is found that the assumption is justified when dealing with stellar systems
and that equipartition of energy exists in a state of dynamical equilibrium. The
author emphasizes the extreme difficulties presenting themselves when a search
is made for the mechanism resulting in the equipartition of energy when collisions
and passages are neglected. He quotes a postulate formulated by CHARLIER?:
“Each population of individuals approaches asymptotically that state which
can be proved to possess the greatest probability.”

1 Lund Medd Ser. II, No. 16 (1917).

2 MN 76, p. 70, 555 (1915—16); Problems of Cosmogony and Stellar Dynamics. Cam-
bridge 1919.

3 Lund Medd Ser. II, No. 48 (1927). Also Dissertation Lund.

¢ Publ ASP 37, p. 125 (1925).
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MartENS finds that if the equations which determine the most probable
distribution of the positional coordinates are solved, the a;; will be found to be
independent of ¢, which means that the stars would be uniformely distributed
over the whole space. But the task is not to seek for the most probable distribution
among all possible ones but for the most probable distribution among those
having a certain value of their potential energy. This is proved by applying the
theorem of the viriall.

If g5 are the rectilinear coordinates of N stars and @, the components of
the acting forces in the same direction the equations of motion will be:

2
M TL = Q. (k=1,...,N)
We designate by S the summation over all three directions of coordinates; then

b4
S> Mg is the moment of inertia of the system, and, as we are seeking stationary
F=1
distributions, we write

7 N

az az .,

@SLE Megi =S E Wi 75 9: = 0,
=1 =1

the bar over an expression denoting an average over a long time.
The virial V of Crausius is then found to be:

The following deductions are made on the assumption that the system is
spherically distributed. The radius of the sphere is called R. It follows from
the assumption of a limiting radius that the total gravitational force of all stars
outside this sphere is zero. Thus only the forces due to the stars inside the sphere
shall be taken into account. On another hand a number of stars will escape from
the sphere at a certain moment, but these losses are counterbalanced by outside
stars passing into the sphere and as it is assumed that the distribution is statio-
nary, both outside and inside the limiting sphere, the counterbalancing effect
appears to be more or less the same as if the outgoing stars met an elastic wall
and were reflected by it. Of course, the identity is not kept after the imaginary
reflection; it is another star that pursues the broken orbit. The expression of
potential energy is not changed except in the immediate neighbourhood of the
limiting sphere and this applies also to the law of distribution which is a function
of the potential energy. These circumstances overcome the principal difficulties
presented by the escaping and invading stars.

If N stars move under the sole influence of their gravitational interactions
it follows that a simple relation exists between the virial ¥ and the exhaustion £
of potential energy of the forces, which has the form:

N N
o=21 PP 3 r S E—
2,; ; IS @ — g

The apostrophe by the second ' sign means that during the summation
k =1 must be excluded. x is a numerical constant depending on the units used.

1 The virial is the sum of the attractions between all the pairs of particles of a
system, each multiplied by the distance between the pair.
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Comparing the expressions for ¥ and it is found in accordance with EDDING-

TON1:
1
P S Sou= 3w oo
Applying the virial-theorem earlier quoted it follows that:
—30Q2=0.
The equations of motion possess the wellknown integral:
—$h=T— 9,
where % is an arbitrary constant. Thus:
Q=h. (@

Next £ will be expressed as a function of the quantities a;;. The expression
for the exhaustion of potential energy can be written:

N k-1
Q= 2 My Iy ———
,; ,Z S (@ - g

if the indices % are chosen in such a manner that S¢f << S¢2,,. The neglection
of irregular forces permits to substitute for the attraction of a number of discrete
stars the attraction of a homogeneous sphere having the same mass as the
sum of the masses of the discrete stars. The terms expressing the exhaustion

of potential energy of attraction on the mass I, MSZRS Zml [S(g — qs)Z]‘z are
thus substituted by the expression x M, [Sq2]~ %Z .

In the distribution 4 determined by the numbers a;; the stars having the
same index ¢ are situated within a spherical shell. The harmonic mean distance
of these stars from the centre is #,. The stars in the element s contribute to
the exhaustion of potential energy by a quantity

v
2 2y My =1 2
Jj=1 -

p @iy Wy
) =S W=
and observing (d) we obtain:
Z: s mj
0= SEE S i g
i=1 j=

The variations da,; are to be connected by the condition:

n a;; M;
ZE”S:{WJZZ%WNL%SZ }=o.

t=1 j= t=g-+1

225a&7{10g v —l— II + 2“5/}

j=1 s=

Further is:

and: n
Z As; = 0.
s=1

1 MN 76, p. 525 (1916).
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The a,; are then found by using the method of indetermined multipliers.
Neglecting the term 1/24,; the following set of equations is found:

n—l 2.: usjzi
1og”“”+4+z+mm< Z‘Za”erZ' >=o, ()

i=s+1
where [; and m are arbitrary factors. To these s-{ equations are joined the

1 equations Zaij = N, and equation (¢) above. We have thus s-j+ 7 +1

equations to determme the s-§ 44+ 1 unknown quantities a,;, l; and m.
The radius of the sphere enclosing the stars in the system considered is R.
If W is the volume then the volume of each cell is W/n and na,;/W gives the
density of stars of mass 9% at the distance 7, from the centre. Further is intro-
duced:
f} (r) =

If 7,,4, is the radius of the spherical surface separating the cell s from the cell
s + 1 we have:

naﬂ

Ts+} TS+‘}
W .
- =f47tc r2dr and a5 = f; (7]-)/47%72 ar.
rs—i- rs—%

On considering the quantities f; (7,) as being continuous functions of » and assuming
the cells to be thin we may put:

Ts+3

Ay :/4316 2 f;(r)dr
Ts-%
Then the equations (f) are transformed following the same assumption. Applying

the Laplacian operator v2 to the expressions (f) and dropping the index s it is
finally found:

w .
AV [—m—:gﬁ- log (4— et (v )} = ——473029:)}] f; () G=1,...,7)
This gives the equation
azl 2 dl .
PLEh() | 2 dogh) _ 4, WmZE}JZJ EO) . G=1,...,9) ®

Each one of these equations contams in its left member one of the unknown
functions but in its right member all the unknown functions. By considering
the equations for the potentials of gravitation it is found that:

1
mxém (log el fy(r )) = W, <log4 ety f (1,)) ()
or: , N
(Z\VI]] i i(7)>1/:m = (T\]ui el-l—lj ]l] (7))1/ 4 ,
which are the relations used by voN ZEIPEL and LINDGREN.
Introducing: . |
C.. = N; (W M, —(1+li)+%(1+zj)
-
we have:

filr) = Ci;llf; (r) Pl
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and the differential equation then becomes

o v

d*logf,(7) + 2 dlogf;(r) _ 4m%m§mj2§micij [ () i,
i=1

ar? v dr

where both the membra only contain one of the unknown
functions. In order to find all functions of distribution
we need only to solve one of the » equations. The other
v — 1 functions are then found by aid of the relations (h).

For the application of this theory to a cluster there
are required observations on functions of distribution of
different groups of stars, classified according to attributes
correlated to the masses of the stars. Assuch observations
of globular clusters were not accessible MARTENS com-
pared the results of his theory with the distributions in
the open cluster M37 (NGC 2099) observed by VON ZEIPEL
and LINDGREN. These authors divided the stars of M 37
according to their magnitudes and colour indices into four
groups, p, g, , w. The p-stars were interpreted as g-giants,
the g-stars as - and a-stars, the u-stars as f-dwarfs and
the w-stars as g-dwarfs. From their observations VvON ZEI-
PEL and LINDGREN have calculated the distributions
fiobs - - - faops I space of the four types of stars given in
the adjoining table. MARTENS compared these observed
distributions with those calculated (f1eac - - - f3calc) OD the
supposition that the cluster is in its most probable state.

It is obvious from the distribution of the differences
A=obs—calc that the value of m determined for different
groups would be about the same. This is an indication
of equipartition of energy on the different masses. Further
the differences show that the stars are more concentrated
to the centre of the cluster than is required by the cal-
culated distribution. This phenomenon, well-known for
distributions in globular clusters, disregarding unequalities
of masses of the stars, is usually interpreted as displaying
that the clusters are built up in adiabatic equilibrium in-
stead of in isothermic. According to the theory here deve-
loped there is, however, another possible explanation.
Doubtless there are within the cluster stars that are not
luminous enough to be observed. These stars do not in-
fluence the observed distributions, but as they contribute
to the potential of the cluster they are able to affect the
calculated distributions, as has been shown on the preced-
ing pages, in a direction to diminish and perhaps abolish
the differences of the table.

Among other results found by MARTENS the fact may
be mentioned that if equipartition has taken place in a
stellar cluster then the most probable state of distribution
is expressed by the Maxwellian law. Such a system has no
limitation in space or, in other words, its radius is infinite.
If the mass-ratios exceed 3/2 within such a system, the
number of the smaller masses must be infinite, whereas
the number of the greater masses is finite. It seems that
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the adiabatic distribution in globular clusters can be explained by the
assumption that within these objects the mass-distribution is the most prob-
able one.

228. Recent Work Concerning Masses of Spectroscopic Binaries. It is only
four and a half decades since the first discovery of a spectroscopic binary was
anounced. At present orbital elements are known for some 250 systems. When
both spectra have been observed and also the system is an eclipsing binary,
we obtain complete and, in most cases, very accurate knowledge of the com-
ponents. When the system is not an eclipsing binary, but both spectra are
known, we get the minimum values of the masses, because the orbital deter-
mination gives the quantities M4sin3s and Mpsin®s. Reasonable assumptions
concerning the value of sin® can also be made and thus our knowledge of the
mean value of 9 for certain groups of binaries can be considerably ad-
vanced.

The third case, i. e. when only the spectrum of one of the components is
registered, presents several difficulties as far as the determination of the mass
is concerned. This case is certainly the most common one. As soon as the com-
ponents in a double star system differ two magnitudes or more, the chances are
very small that both spectra will appear on the plates. The observations of a
spectroscopic binary give in the case of one spectrum the so-called mass-func-
tion, f = M5 sinds (M4 + Mp)~2, which can be written:

(I + W) i = [3,00642 — 101 K4 (1 + 4 P (1 — e,

where K, is the semi-amplitude of the velocity variation for f)t, and P the
period in days.

R. G. AITREN has expressed doubts in his book “The Binary Stars*, with
regard to whether the mass-function can give any information concerning the
masses of the stars. Generally the value K4 or a corresponding expression has
been used and then, of course, the range is considerable. It is fair to use K4 in
order to get a quantity that is proportional to the cube root of the mass, because
in direct determinations of stellar masses we cannot get more than a fair knowledge
of (M4 + M)t from our best determinations of stellar parallaxes. The use of
K, has also been recommended by OTro STRUVE! and others.

STRUVE has assumed: 1
K A4 = C P _3,

which is justifiable for certain groups of stars. The curve combining P and K cor-
responds very nearly to the equation K= cP~¥for P=9 years to P= 2,45 days,
(logC = 2,0695). LUDENDORFF has reached a number of important conclusions
which are given already in ciph. 215 of this chapter.

Extensive use of STRUVE’s formula has been made by BEER in his paper,
“Zur Charakterisierung der spektroskopischen Doppelsterne”2. This extensive and
valuable monograph cannot be reviewed here excepting from the point of view
of determination of stellar masses.

From 434 objects BEER finds the value K P} = 125,1. He makes use of the
above relation for a discussion of the probability of a certain group of stars
exhibiting variable radial velocities being binaries (e. g. the Cepheids) and clas-
sifies the real binaries according to the characteristics of the P, K-curves.

1 ApJ 60, p. 167 (1924).
2 Berlin-Babelsberg Veroff V, H. 6 (1927).
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BEER has collected 88 pairs showing both spectra, and finds the following
frequencies of the values (M, + Mp)sin3s:

Ma+Mp)sinds | n | Ma+Mp) sin®s [ n | (Ma+Mp) sin®s| n
>1000| 2 —90 } — | 30-350 | 3
50—100 1 2 2,5—3,0 13
40— 50 - 6 7 - 2,0—2,5 | 11
30— 40 3 5 —6 | 5 1,5—2,0 | 11
20— 30 5 4,5— 5,0 — 1,0—1,5 | 8
10— 20 4 4,0— 4,5 4 0,5—1,0 ‘ 6
9— 10 6 3,5— 4,0 3 <0,5 1

This table seems to lend some support to the theory of HELLERICH! assuming
the existence of preferential mass values (cf. ciph. 229).

The relation between mass and spectral class is illustrated in the following
summary:

Spectral s g e Range for
class Mg sin®s Mpsin® (M4-FMp) sind< "

06—B4 13,18 | 10,500 139 —2, 60@ 21

B5—A4 2,71 1,73 26,4 —0,21 30
A5—F4 1,80 1,24 13,4 —0,52 18
F5—-G4 1,01 0,89 3,37—0,87 15
G5—K4 0,87 0,68 2,10—1,05 3

In 33 cases the individual masses were known. By assuming sin3: = 0,667
the following mean values were found:

Seectral | W | on | (MaFWgl | | Adopted
06—B4 17,170 9 20,28®| 10 18,8
B5—B9 10,15 4 10,64 5 10,4
A0o—A4 4,47 7 3,53 14 3,8
As5—F4 2,70 4 3,00 12 2,9
F5—G4 1,42 7 3,54 8 2,6
G5—K4 1,94 | 2 2,25 1 2,0

The values 9, + My are the mean values derived directly from known
inclinations (eclipsing binaries), whereas [, + Mp] are the means derived from
the above assumption as to the mean value of sin3z.

The group of stars later than FO consists of 12 giants and 17 dwarfs. No
systematic difference with regard to the mean masses can be found which is
contrary to what is the case when the masses of visual binaries are derived:

Spectral Giants Dwarfs

class (M4+Mp)sin®z ‘ SJJBA-!-SiJBB ‘ % Ma+Mp) sinﬂil‘ Ma+Mp n
FO—TF4 1,900 2,850] 7 2,340 | 3510 4
F5—G4 2,38 3,57 5 1,69 253 ‘ 10
G5—K4 1,55 | 2,32 3

The mass-ratios Mp/M, have a mean value of 0,75. The distribution with
regard to spectral class is as follows:

1 AN 220, p. 249 (1924).
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Spectral Mass-ratios Mean

class — o T mass-ratio
0,11—0,30 | 0,31—0,50 | 0,51—0,70 | 0,71—0,90 | 0,91—1,00

06—B4 — 3 4 7 4 0,74

B5—A4 4 4 6 9 7 0,68

A5—F5 1 1 2 7 8 0,31

F5—G4 — 2 — 5 6 0,83

G5—K4 — 1 ‘ 2 —_ 0,76
Sum 5 | 10 | 13 | 30 25

A tendency of Mp/M, to increase in the course of evolution seems to be
present, but is not very pronounced.

There seems to be some relation between Mp/M, and (M, + Mp)sinds
as follows:

Mefa  |aFTWpsin’i| n | Wpa | QatMpsnti| »
0,32 745 | 10 | 086 | 509 10
0,52 4,37 10 0,89 6,53 10
0,69 7,54 10 0,95 4,38 10
079 | 368 1o | 0,99 5,01 10

The dispersion within the individual groups is considerable and the general
relation cannot be established at present.

BEER uses the quantity f# = Mp(Mp + M,)~*sins and divides the material
into binaries showing one spectrum (# = 151) and two spectra (# = 93). Periods
of 1000¢ or more have to be excluded, as has been pointed out by LUDENDORFF,
as they are not comparable with short periodic systems on account of the very
nature of the function /. The following correlation surface is found for the
remaining 233 systems:

17 |>1,00t01,00t00,00t00,80 to 0,70 to 0,60 to 0,50 to 0,40 t0 0,30 00,20 to 0,10 to<0,10
Sum

Specﬁx >1,00to0 1,00 t00.73 100,51 to 0,34 to 0,22 to 0,12 to 0,064 to 0,027 to 0,008 to 0,001 t0< 0,001

class

one 4 1 3 3 2 1 3 3 4 3 5 32
06—B4 (4o 8 4 — 2 2 3 — - — I = 19
one 2 - — 2 2 3 4 10 8 7 — 38
B5—A4 oo 2 — 3 3 4 12 4 1 5 — — 34
one — — 1 —_— — 4 3 4 2 5 2 21
AS—TF4 1o 1 — — 2 9 5 ~— 2 - Z = 19
one _— — 1 —_ 3 2 4 4 9 3 1 27
Fs—Gdigol — — — 2 & 5 2 — 2 — — 15
one — — 1 3 6 4 6 1 — 1 22
Gi—Kd ool — — — — 2 2 — 1 — — 3
one _— — = - — 1 1 — 1 —_ — 3
Ks—Mm7 08 — — - — — ‘* t — 't - = 3
Sum one 6 1 6 5 10 17 19 27 25 18 9 143
two 1 4 3 9 19 21 6 4 1 — Z 90

BEER has investigated the mean errors in the mean values of f and confirms
the conclusion of LUDENDORFF that within each spectral class the mean value
of f is practically constant and thus very suitable for a derivation of the mean
value of the mass.

The ratio of the masses of B stars and A stars (including A stars and the
following classes) is found to be 3,42 and 5,80 for stars showing one and two
spectra respectively. A direct computation from the direct data which avoids
using f gives 5,48 for the second group.
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The material concerning the spectroscopic binaries is given in J. H. MOORE's
“Third Catalogue of Spectroscopic Binary Stars” (which includes the material
to July 1st, 1924) in Lick Bull No. 355 (1924) and in BEER’s paper (which
includes the material to March 1927). On pages 122—124 BEER gives corrections
and additions to the Third Catalogue. The student of spectroscopic binaries is
recommended to consult these two sources, which give a complete collection
of the material up to 1927, whenever investigations of a general nature con-
cerning these objects are to be undertaken.

The correlation between the frequencies of one and two spectra is com-
paratively low. An analysis of the two frequencies has not yet been undertaken,
but would undoubtedly reveal several points of interest.

BEeER forms the equation:

(ga_) R T D)
Ma/t 4 — 3y + Mp) e

where the subscripts I and II refer to the groups with one and two spectra
respectively. He finds from his material:

Seeotral oy | w | @otsmor "
as fix
A 0,683 30 0,415 36 32
F 0,806 19 0,466 21 18
G 0,826 13 0,508 27 15

229. Preferential Values of Stellar Masses. In order to determine the
masses and the mass-ratios of spectroscopic binaries J. HELLERICH has in-
vestigated 173 pairs, of which 61 exhibited the spectra of both components.
The Cepheids, stars of the same type as § Canis Majoris, and stars with periods
larger than 10009 were excluded. HeLLERICH! found that stars of the classes A
to G did not have very different mean masses:

Within the classes Oe—B9 the range in the
mass value is from 1 ® to 139 ®. On account

A 2,720 | 22 of this dispersion no mean values were formed

g 2,080 13 for these spectral classes. Besides, the material

2,070 3
suggested that the masses were grouped around
certain maxima of frequency, viz: 320, 226, 16, 100, and 2,5—3,00.
Although the material is small, it nevertheless seems difficult to explain the
preferential values as due to

Spectral class | (M4-+Mp)sin®7 1 "

chance. The frequency of large Mp/Ma | 0e—BY | A—G | Mp/My | Oe—B9 | A—G
masses decreases very rapidly o, ¢, 1 bos—o7 3 5
with the increase in the value of 0,2—0,3 1 o7-08 3 5
the mass. 03—04| 3 0,8—0,9| 4 10
The adjoining distribution of 8";:8'2 1 ; 0.9=1.01 7 13
the values Mp/M, was found: S
The mean values are:
Spectral class Mp/Ma n Spectral class Mp/Ma n
Bo—Bg 0,64 13 F 0,88 13
B8—B9 0,76 4 G 0,86 3
A 0,79 22

No relation was found between the mass-ratio and (M, + Myp)sin®.

1 AN 220, p. 249 (1924).
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HELLERICH recommends the use of the quantity f% and investigates the
frequency of this quantity in his material. A decided difference with regard to the
distribution of the f# values is found between the systems for which one spec-
trum has been observed and those for which both spectra have been observed.
In the first case these values are considerably lower than in the second case.

This remarkable diffe-

rence may arise from a num- Spectral class 7*

ber of causes. It does not One spectrum ) Two spectra n
e )

seem likely that a system- =" 0,367 27 0,543 22

atically different orienta- F ({ars . o 0,280 20 0.587 13

tion in space of the orbits
of the two groups can be present. Nor can any systematic difference be assumed
in the mass values themselves or in the mean eccentricities. An inspection of
the material shows that the mean periods of the two groups are not very different.
The only possible explanation seems to be to assume that the mass-ratios of
thebinaries with double spectra really are systematically larger than the mass-ratios
of the binaries with a single spectrum, which means that the dlspersmn in the
single masses in the former case should be smaller than the dispersion in the latter.

Comparing the values of /3 with the corresponding values of imB/imA and
excluding stars for which Mz/M, is smaller than 0,80 HELLERICH finds for
group I the following values for the mean mass-ratio:

oy T " .In those cases Where the companion. has a
considerably lower brightness than the principal
star the mass of the companion will also be
very small in comparison with that of the more
massive star. The theory implies that the dispersion in stellar mass is larger
than has generally been assumed but it scarcely gains support from an in-
vestigation of visual binaries. Mass-ratios as low as 0,3 seem to be rather ex-
ceptional among the 50 pairs so far investigated. The enormous difference in
luminosity of 150000 between Procyon and its companion corresponds to a diffe-
rence in the masses of only 0,90.

In a subsequent paper HELLERICH! returns to the question, if preferential
values of stellar mass exist. He points out that the results at the Cape Obser-
vatory by HALM? concerning the preferentlal values of colour indices also pointed
in the direction that there are six maxima in the frequencies of masses computed
from the absolute magnitude and temperature. HALM’s maxima are:

11,60, 5,80, 2,80, 1,320, 0,660, 0,320.

From the material at hand of spectroscopic binaries HELLERICH found five
maxima, viz.: 330, 220, 16®, 10® and 2,5—3,50.

The values 2,8 ® and 10 © are common to both series, the value 1,3 @ is weakly
indicated in the spectroscopic material. The small values 0,66 ® and 0,32
are wanting in the spectroscopic material as they correspond to very small
amplitudes in the curves of radial velocity. On the other hand, the large mass
values 16 ®, 22 ®, 33 © are not extant in HALM's series, for the stars used by
him are of classes F to K and, therefore, cannot have large masses, as is known
from other investigations.

HaiuM’s series of the frequency-maxima of stellar masses nearly forms a
geometrical progression with the proportion 1/,. Extrapolating this series to
large masses, one obtains 23 ®, 46®, 920, 184 ®. The comparison with the

1 AN 221, p. 49 (1924).

2 Report of H. M. Astronomer at the Cape of Good Hope 1922, p. 4.

Handbuch der Astrophysik. V,2 42

A stars. . . 0,37 27
F stars. . . 0,29 20
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second series shows that the value 23 ® is extant. Further, we know two
spectroscopic binaries with masses not too far from 92 ® and 184 © respectively.
Testing HALM's series with the material offered by visual binaries, HELLERICH
finds indications of a frequency maximum between 0,9® and 1,5 ®.
230. Dwarf Nature of Spectroscopic Binaries. E. A. KREIKEN? has advanced
the idea that spectroscopic binaries are generally dwarf stars. From the cata-
logues of J. Moore and A.BEER 97 systems with two spectra were collected.

The value of sinz was found to be much larger than has been assumed earlier.
When the log’s of the values M sin®s and Mpsinds were plotted against spectral
class a rather definite curve was found. As there is no reason why the mean
value of Msin®s should systematically depend on spectral class, the actual
relation between I and spectrum will be found when the plotted curve is

shifted over an interval corresponding to the logarithm of sin®s. The masses of
the giants were computed according to EDDINGTON’s theory and the masses of the
dwarfs according to BRILL’s investigation2. The following table shows the result:

— — Although in the
Spectral login fogTiame; | (osMlogMisin®d case of the dwarf hy-
class Giants Dwarfs Giants Dwarfs pothesis theresiduals,
05 _ 2,00 1,90 _ 10,10 exhibit a _systematic
BO 0,87 1,00 1,10 —0,23 | —o0,0  run there is no doubt
Bs 0,65 0,65 0,44 40,21 +0,21 that they should not
A0 0,56 0,44 0,22 '} +0,34 | 40,22 be preferred. Uncer-
As 0,54 0,30 0,11 +0,43 40,19 taintv is involved i
Fo 0,52 0,18 0,05 +0,47 | 40,13 Ity 1s involved 1n
Fg 0,45 0,08 9,99 +0,46 40,09 the computation of
GO 0,44 0,00 9,95 40,49 40,05 the mean masses be-
G5 0,43 —0,08 9,90 +0,53 | +0,02 cause the frequencies
Ko — —0,16 9,86 —0,02

in the RusskLL dia-
gram used havenot beenreduced to equal space. Anyhow it is evident that the dwarf
hypothesis might be worth a serious consideration. KREIKEN found for dwarf stars
the value log sin®s = 9,005 —10 and thus sins=0,927 and for giant stars log sin3;
=9,525—10and sin¢ = 0,695 which is very near the value 0,667 generally adopted.

In order to test the result the hypothetical distances were derived from the
masses computed by multiplying Msin®s by the two values 0,927-3 and 0,695-2
corresponding to the dwarf and giant hypotheses. The masses were converted
into distances by means of EDDINGTON’s mass-luminosity formula. A compar-
ison between the distances thus obtained and the distances derived from trigono-
metric parallaxes or spectrographic determinations of the absolute magnitude
decides in favour of the value sin? = 0,927.

231. Discovery of Mass-Luminosity Relation. The relation between stellar
mass and luminosity was at first indicated in EDDINGTON’s work3 concerning the
radiative equilibrium of the stars. It was concluded that the luminosities of

giants vary approximately as %2 and of the dwarf stars as 9. The first time a

mass-luminosity relation was established in an empirical way was, as far as I

am aware, in a paper by HERTZSPRUNG*in 1919 in which he derived the formula:
log M = —0,06 M = —0,06 (m + 5 -+ 5 loga) .

Somewhat later C. LUPLAU-JANSSEN® went over HERTZSPRUNG’s material
again, but preferred to leave the coefficient AM/AM unchanged. At the same

1 M N 89, p. 589 (1929). 2 Berlin-Babelsberg Veroff VII, Heft 1 (1927).
3 MN 77, p. 596 (1917). 4 AN 208, p. 96 (1919).
5 Underseggelser over Doppelstjerner III (1919).
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time independently of HERTZSPRUNG A. VAN MAANEN! derived a mass-luminosity
relation of practically the same form. From vaN MAANEN’s paper the following
table has been prepared giving the mean values of M, It and log9t together with
the corresponding dispersions

around the means. Mton -+osm ] Tog M-+ log 1 "
The curvature of the line 0,42 =+ 0,33 15,84 -+ 17,4 0,94 = 0,46 4
connecting the mean values of 1,63 & 0,44 | 7.99 + 8.2 0.75 I 0.33 p
M and 9% and the small dis- 3,00 +0,35| 3,424 2,04| 0,46 - 0,25 e
persion in the values below 4030271 1,72+ 1,47| 0134033| 12
M = tabl It 5,77 4 0,40| 1,24 4+ 0,29 0,08 = 0,11 8
= 4,5 are notable results 457" 08| 0,58 % 022| —0,21 40,14 3

in this investigation. The
mean values of the mass compare favourably with later investigations when
more extensive material has been available.

Of the subsequent treatments of the mass-luminosity relation we shall only
mention those of F. H. SEARES? and W. J. LuvteN3. The latter derived the
expression : log M = —0,09 (M — 4,8).

In 1923 HERTzZSPRUNG* returned to the question. From a list of 15 first-
class determinations, which included our Sun, he determined the diagram reproduc-
ed in fig. 153. The general decrease of mass with luminosity is clearly shown.
The faint companion of Sirius +7
is extraordinarily massive in # |

comparison with its small in- i \1\
trinsic brightness. q

HERTZSPRUNG assumed the g
following linear relation:
logIt = —0,084 (m + 5logm)
but remarked that the quadratic
expression
m+5logm=—11log M+2(logM)?
would represent stars of great
mass somewhat better.

He introduces the concep- _ S

tion of angular mass being -
s ,

(Mg + M) -7 = Z5. -
Knowing M, /Mp and a3/P? we T
find the absolute magnitudes -7y————tt 1 Tor=tml 11 L1 I 1 ||
of each component reduced to Logarithm of Mass (W)™~ =~~____

the mass of the Sun to be: Fig. 153. Mass-luminosity diagram according to
1 51 HeRrRTzSPRUNG. The full-drawn lines join the com-
my + 5logm + §log My, ponents of double stars. The single circle near the

mp + 5 logn + _-g]og Mp. origo indicates the position of our Sun.

From the relation between mass and absolute magnitude it is possible to
compute the parallax of a double star from my, mp, and 43/P%. The formula

will be:  0,86logm = logmg — § log [1 4 107054 (s=m] 4 0,028 m .
The dynamical parallax 7y =

T

T T 7

T

!
: N

Avsolute Magnrivde
N

+7

T%— is computed in this case by assuming the
mass-sum to be equal to the mass of the Sun.

If the above quadratic formula holds good the computation of & will be
more complicated. HERTZSPRUNG has given a table in his paper from which

1 Publ ASP 31, P. 231 (1919). 2 Mt Wilson Contr 226; Ap 55, p. 165 (1922).
p
3 Harv Ann 85, No. 5 (1923). 4 BAN 2, p. 15 (1923).

42%
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the value of logM, is found by double interpolation, using mp — m, and
5 + my + 5logm; as arguments. In accordance with the above quadratic
formula, M, is found and from the difference Myi; — Mayn the ratio myfm,
from which I, + M5 is found.

HEerTzsPRUNG's Table of values of m, 4+ 5logam; 4 5 (for M, + MWz = 1).

MB—m4
log M4
om {m om 3m ‘ 4m sm 10m ‘ oo my + 5+ 5logmg
—1,0 | 16,84 | 16,78 16,73 16,69‘ 16,65| 16,62 16,49| 16,33 18,00
0,9 | 15,52 | 15,46| 15,42| 15,37 | 15,34| 15,30| 15,17 15,02 16,52
0,8 14,25| 14,19| 14,14| 14,10! 14,06| 14,02| 13,89 13,75 15,08
0,7 | 13,02 | 12,96| 12,91| 12,86| 12,82| 12,78 12,66 | 12,51 13,68
0,6 | 11,82 11,77| 11,71| 11,66| 11,62| 11,59| 11,46 | 11,32 12,32
0,5 10,67 | 10,61| 10,55| 10,51| 10,47| 10,43 | 10,30| 10,17 11,00
0,4 9,56 9,49| 9,44| 9,39, 9,35| 9,31| 9,18 9,05 9,72
0,3 8,48 | 8,42| 8,36| 8,31| 8,27| 8,23| 8,10 7,98 8,48
0,2 7,45 7,38\ 7,33| 7,28| 7,23| 7,19| 7,06| 6,95 7,28
—0,1 6,46 6,38| 6,33 6,28| 6,23 6,19| 6,07| 5,95 6,12
0,0 5,50 | 5.43| 5,37| 5,32| 5.27| 5,23| 511| 5,00 5,00
40,1 | 4,59| 4,52| 4,55| 4,40| 4,35| 4,31| 4,19| 4,09 3,92
0,2 3,72 3,64 3,57| 3,52| 3,47| 3.,43| 3.31| 3,21 2,88
0,31 2,88, 2,80| 2,74| 2,68 2,63| 2,59| 2,47| 2,38 1,88
0,4 2,09| 2,01 1,94, 1,88 1,83 1,79| 1,67 1,59 0,92
0,5 1,34 | 1,25 1,18| 1,12| 1,07] 1,03| 0,92| 0,83 0,00
0,6 062| 0,54 0,46| 0,40| 0,35| 0,31| 0,20 0,12 —0,88
0,7 |—0,05 |—0,14|—0,22|—0,28—0,33|—0,37 |—0,48|—0,55 —1,72
08| 068| 0,78 0,86 0,92 0,97| 1,01 1,12 1,19 2,52
0,9 1,28 | 1,38 1,46| 1,52| 1,57| 1,61| 1,72| 1,78 3,28
1,0 1,83 | 1,94| 2,02| 2,09| 2,43] 2,47| 2,28| 2,33 4,00
1,1 2,34 2,451 2,54 2,600 2,66 2,70| 2,79| 2,85 4,68
1,2 2,82 2,93| 3,02 3,09 3,14| 3,18} 3,27| 3,32 5,32
1,3 3,25 3,37, 3.46| 3,53| 3,58| 3,62 3,71 3,75 5,92
1,4 3,64 3,77 3.87| 3,94| 3,99| 4,02| 4,11| 4,15 6,48
+1,5 | —4,00 | —4,14 |—4,23 |—4,30|—4,35|—4,39 |—4,47 |—4,50 —7,00

In joint work with W.S. Apams and A.H. Joy, H.N. RussgLL! has
compared dynamical and spectrographic parallaxes in order to derive the masses
of the stars. The number of stars for which such a comparison could be made
was 327, including giants and dwarfs of spectral classes from O8 to M6. The
stars were grouped in the following way:

Spectral class Mg Ma—Ms ‘ BN ‘ Residual m 1 n
08—B2 —1,2 41,31 0,54 —0,02 6,20 10
B3—BS8 +0,5 41,24 0,56 —0,07 5,6 8
Bo—A1 +1,2 +0,61 0,75 +0,09 2,4 35

gG9—gM6 +1,2 4-0,67 0,73 +-0,07 2,5 28

gF6—gG8 41,6 0,96 0,64 —0,04 3,8 31
A2—A4 +2,0 +0,55 0,78 40,07 2,1 29
A5—A9 +2,5 40,50 0,80 40,06 2,0 35
Fo—F3 +3,2 40,69 0,73 —0,02 2,6 17
F4—F5 +3,3 +0,40 0,83 +0,07 1,7 24

dF6—dF8 44,4 40,68 0,73 —0,08 2,5 28

dF9—dGo +4,3 +0,39 0,84 +4-0,03 1,7 25

dG1—-dGs +5,2 40,63 0,75 —0,09 2,4 24

dG6—dK1 45,6 40,56 0,77 —0,09 2,2 25

dK2—dK6 46,5 40,25 0,89 —0,01 1,4 21

dK7—dMe6 49,2 +0,01 1,00 —0,02 1,0 7
dA—dF +10,8 —0,32 1,16 +0,07 0,6 2
08—B1 —1,4 +1,64 0,47 —0,08 9,7 9
B2—B9 --0,6 +1,39 0,53 —0,07 6,8 22

1 Publ ASP 35, p. 189 (1923).
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The values in the two last rows are derived from KAPTEYN’s cluster
parallaxes. M, is the absolute magnitude corresponding to the combined
light of the pair and is based on the assumption that the sum of the masses
of the components is =@®. M, is the absolute magnitude based on the
spectrographic parallax. The mass i corresponds to the geometrical mean
mass, from the ratio szgfm; which in its turn is the value corresponding to
My — W,

The authors remark that the mean mass is by no means a simple function
of the spectral class. But if the masses are plotted against the absolute magnitudes
all the stars fall into a straight line. The white dwarfs are no longer outstanding
exceptions; their mass is small in the proportion to be expected from their low
luminosity. '

As a first approximation the relationship can be taken as linear and the

straight line: 7y = 0,62 + 0,045 M,

as the relation curve. The residuals are given in the above table.

The values for the masses of B and A stars found by these authors did not
amount to much more than 50 per cent of those found by Seares. The discrepancy
arises from the following cause: SEARES’s material consisted of the stars known
to be in relative motion, and for more distant pairs this involves a selection in
the sense that distant
pairs of slow apparent
motion are not in-
cluded. The result of
this is too high an esti- .
mate of the mean rate
of motion, and of the ¢
mean mass. A correc-

77,
Wr—e

fos
n

tion was applied by 4,'\.\ .

SEARES for the effect A .

in question, but the A

later results show that s} ,..\'. % .

the value has evidently . ,,:"}",\- .« o ° .

been too small. In the 3 'F‘?. B St e N, o
investigation now un-  , 2 # Z # #

s s 7
der review all well ob- Absolute Magnitudel!

served pairs were in-
cluded, even if the
apparent motion was
very small. Also, on
account of the more

Fig. 154. Relation between absolute magnitude M and massIN

according to LUNDMARK. For this diagram the masses of

double stars were derived using all available determinations

of orbits and trigonometric parallaxes up till 1924. The

dotted line represents the course of the mean values of various
groups with regard to M.

extensive material, the
values in the above table are certainly entitled to more weight as far as the
early spectral classes are concerned.

In this paper the necessity of improving the dynamical parallaxes
by means of correction factors depending on the size of the mass was also
pointed out.

The dynamical parallaxes ordinarily given, mg, should be multiplied by
the factor (M, + Mp)} in order to be comparable with the parallaxes used in
the above formula.

The dependence between mass and luminosity is really to be expected
as follows from easy calculations. Combining the equation giving the



662 Chap. 4. K.LunpMARK: Luminosities, Colours, Diameters, etc. of the Stars. ciph.232.

mass-sum in visual binaries with the equation of definition for M we
obtain: My -+ Mp = 10300ga+1)—2l0gP , 1(06(m—D1)

The empirical data show that there is some slight dependence between mass
and the expression 103@0ga+1=218P Tyt 3 more obvious dependence between this
expression and the absolute magnitude. We can write:

Wea + My = 1070 30 . 4008

There is, using the actually determined masses, no dependence shown between
mand M and there are noreasons that such a dependence should exist. The prin-
cipal point of the mass-luminosity relation thus can be derived without any
theoretical deductions provided that logt can be expressed as a power series
of M. The higher terms in the expression:

logit = > a;M*
=1

are derived on the basis of theoretical work, be it along the lines in EDDINGTON’s
or in JEANS’s theory of radiative equilibrium.

Although the former in connection with his original theory of the interior
of the stars showed that there is a general relation between mass and absolute
magnitude it is not within the scope of this paper to present a lengthy ac-
count of earlier theoretical work. The student interested in this problem is
adviced to consult Vol IIT/1 of this Handbook.

232. Eppincron’s Mass-Luminosity Law?! and Cosmogonic Time-Scale.
A theory concerning the stellar absorption coefficient ought to lead to formulae
determining the absolute magnitude of the giant stars for which the mass and
effective temperature are known. In order to avoid a determination of the ab-
solute values of the constants the observational data of Capella are selected.
From these the absolute magnitudes of ordinary stars are computed on the
basis of the theory, regardless of whether they are giants or dwarfs. According
to the giant and dwarf theory the absolute magnitude is a double-valued function
of mass and effective temperature. A star of mass 1 and temperature 5860° has
two possible magnitudes, viz. that of the Sun at present and that of the Sun
when it passed through the same temperature on the up grade with a much
larger surface area than now. °

The suggestion underlying the theory is that the dense stars like the Sun
are in the condition of a perfect gas and will rise in temperature if they contract.
All ordinary stars are ‘‘giants”. Theoretical reasons are given in the paper of
EpDINGTON which assert that the stellar matter should be able to contract to
an enormously high density before deviation from the laws of a perfect gas
becomes appreciable.

The results of HERTZSPRUNG and of RusseLL, ApawMS, and Jov, which have
been reviewed earlier, indicated that M plotted against I resulted in a continuous
line, a conclusion which is difficult to reconcile with the giant and dwarf theory.

According to the theory of radiation we have:

1 — B = 0,00309 M2 pup*
where p is the average molecular weight and 1 — f is the ratio of radiation
pressure to the whole pressure. The total radiation L of a star is proportional

to M — P)/k, where & is the coefficient of absorption. In EDDINGTON’s ear-
lier work % was believed to be approximately independent of temperature 7 and

1 MN 84, p. 308 (1924).
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density ¢. The theory of nuclear capture and KRAMERS’s theory, as well as
other evidence suggest the form &~ g/‘uT% . By the aid of this proportionality
the following expression for the total radiation is found:

L = const. ME(1 — B2 s T3 .

The value of  islikely to be about 2,2 for Capella and EDDINGTON adopted u=2,11.
The following values computed from his formula show the general course
of the mass-luminosity relation:

1—p Mass | Mya Mois ' P, Spectral class
0,80 90,63 ® — 6,71 — 26200° (0]
0,75 56,15 — 5,88 — — _
0,70 37,67 — 5,16 — 22500 Oe
0,65 26,66 — 4,52 (—2,2) — —
0,60 19,62 — 3,92 (—1,1) — —
0,55 14,84 — 3,35 — — —
0,50 11,46 — 2,81 (—1,1) 17460 B2
0,45 8,98 — 2,26 — — —
0,40 7,42 — 1,72 —_ — —
0,35 5,67 — 1,16 — — —_
0,30 4,53 — 0,56 0,00 13260 B7
0,20 2,83 + 0,81 0,87 10520 Ao
0,10 1,58 + 2,82 2,88 8250 A8
0,05 1,00 + 4,64 4,55 6290 F8
0,030 0,75 + 5,93

0,025 0.67 g 6,17 5160 G4
0,015 0,51 + 7,63

0,010 0,41 1 861 8,03 4540 Ko
0,004 0,26 +10,82 11,9 3210 K9
0,0025 0,20 +11,95 — — —
0,0015 0,16 +13,17 — — —
0,0010 0,13 414,14 17,0 2550 Md

In this table have also been inserted the absolute visual magnitude and
the corresponding effective temperature and mean spectral class.

In this table as in the corresponding fig. 1 in EDDINGTON’s paper, the same
effective temperature as that of Capella, 5200°, is assumed. For other tempera-
tures the correction —2log(7,/5200) has to be added to My,. The whole range
from 3000° to 12000° only introduces a correction of 1m,2.

The following table gives the correction to the magnitudes arising from the
temperature term as well as the correction for reducing visual magnitude to
bolometric magnitude as derived by EpDINGTON in his earlier work?.

T, '-21ogn/5zoo} Myis—Mpor | Te \—2log Te/5200‘Mvis—Mb01 T, \—mog T/5200| Myjo—Mpo;
i

2000°| -4-0%,82 ] — 6000°| —o0M,14 ‘ 0,00 [18000°| —1M, 10 —_
2500 | 40,62 | 42,65 7000 | —0 ,28 | 40,02 |20000 | —1 ,19 —
3000 | +0 ,46 | —+1,71 8000 | —0,39 | 40,05 |25000 | —1 ,38 —
3500 -+0 ,32 1 +1,04 9000 —0 ,49 ‘ -+0,12 30000 —1 ,54 —
4000 | +0 ,20 \ 40,80 |10000 | —o0 ,59 | 40,23 |35000 | —1 .68 —
4500 | 40,10 | +0,35 ]12000 | —0 ,74 } 40,53 |40000 | —1 ,79 —
5000 | -0 ,02 | 40,14 [14000 | —0 ,88 —

5500 | —O0 ,07 ‘ -+0,05 |16000 | —1 ,00 | —

The theoretical curve was compared by EDDINGTON with the following
observational data: 8 first-class determinations of masses of binary stars
together with the mass of the Sun; 21 second class determinations of masses of
binary stars. To these are added 6 double stars in the Hyades, 5 Cepheids, and
13 eclipsing binaries. The agreement between the 54 used mass-values derived

L MN 77, p. 605 (1917).
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from the best observational data and the curve computed according to the theory
is good, indeed. The average of the residuals is 4-0™,56, most of which might
fairly be attributed to errors in the observational data, and the maximum dis-
cordance is 1M,7. Certain refinements of the nature of a second approximation are
suggested by EDDINGTON, who derives the following relation between a change
in the molecular weight and a change in the absolute magnitude!:

98+38 du
AM = yp— ﬂl "

At the time this investigation was carried out the first approximation
certainly sufficed. The accumulation of further data since then may invite us
to make a second approximation.

The masses of the Cepheids were computed on the basis of the pulsation
theory. The method is that of successive approximations. A value of I is
assumed. From T, (spectral class) the radius is deduced and then the mean
density. The central density g, is 54,25 times the mean density. The period P
is then obtained from the expression:

Pot =029 (yo)~%

where (ycx)% is taken from M N 79, p. 15, table V with 1 — § as argument. The
process is repeated until P stands. The highest value is 26,2 ® for Y Ophiuchi
and the lowest 4,44 ® for RR Lyrae.

EppINGTON inquires if, assuming that the gas-laws hold good for ordinary
stars, we then should expect that each star will have the precise luminosity
deducible from its mass and effective temperature or, in other words, whether
the theory is accurate individually or only statistically. The sources of residual
differences are principally abnormal composition and abnormal rotation. With
regard to the first source an unduly large proportion of hydrogen would make
the star fainter. With regard to rotation it has been shown by E. A. MiLNE
that a rapid rotation makes the star slightly fainter, but that the effect is very
small until the speed is sufficient to deform the star considerably. What is to
be feared, concludes EDDINGTON, is that the observed spectrum misleads us
concerning the true value of 7,. An unsuspected binary ought to betray itself
by having a magnitude fainter than that predicted from a knowledge of its
combined mass.

The very interesting theoretical considerations as to whether it is physically
likely that a dense star such as our Sun can obey the laws of a perfect gas cannot
be given here. The student is referred to § 9 in EDDINGTON’s paper.

The high density of the white dwarfs is not absurd. At a very low effective
temperature smaller than that of a dwarf of spectral class M the star Sirius B is
probably able to produce in some way ‘“an imitation of leading features of the
F spectrum sufficiently close to satisfy the expert observer”. The deviation of
this star from the mass-luminosity curve is not surprising: if the density is
53000 ©® new considerations enter into the calculation of %, since the electrons
are in the capture zone of two or more nuclei simultaneously. Also the deviation
from the gas-laws may be considerable. On the other hand the star 02 Eridani
B agrees quite well with the mass-luminosity relation.

In KraMERS’s theory the absorption coefficient % contains? an additional
factor « (1 + hv;/RT). The effect of this factor was calculated and found to
vary between 40,2 and —1,6. There are general reasons for accepting a correction
factor of this form, which represents the ratio of the energy given up on capture

1 MN 84, p. 323 (1924). 2 MN 84, p.325 (1924).
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at the mean ionization level to the mean free energy before capture. If the
mass is supposed to be constant during the course of stellar evolution, then the
mass-luminosity law is in disagreement with the views on stellar evolution
accepted on the basis of HERTZSPRUNG’s and RUSSELL's work. EDDINGTON
points out that the giant and dwarf theory definitely held the view that the
influence of mass on luminosity was small and unimportant. It was thought that
the stars along the main series had in the mean a lesser mass than the stars
along the giant branch. The most generally advocated view was that the stars
with smaller mass traversed their course more quickly than the heavier stars,
although the theoretical arguments tend to show that the latter would reach
the end-stage first. The results of EDDINGTON show that the systematic difference
in mass is not a minor detail, and that the correction to be applied before the
RusserL diagram can give the evolutionary course of individual stars is con-
siderable.

Another possibility is that a star gradually diminishes its mass during its
evolution. This would happen if the star is “burning itself away”’, i. e. if it obtains
its energy of radiation by annihilating electrons and protons. A star
burning itself up may increase continuouslyindensityand internal temperature,
although the effective temperature first rises, but then falls.

If the theory of annihilation of matter holds good the relative number of
stars of different spectral classes can be computed, because the frequency of
a certain evolutionary stage will be proportional to the duration.

The abundance of any stage should be proportional to the duration §¢ of
the stage. If §It is the amount of mass carried off as radiant energy during
the stage then:

mdi)ﬁ
6t oo T .
M- oM
Approximately L is proportional to (1 — f)?/f if the factor T—%inkis
neglected. Then: e g am . 4—3p

g O Sa—pph
Integrating we find: 5 6{% +3(1 — ﬂ)}
(1 — By
The following table! gives the cosmogonical time-scale according to EDDING-
TON. Under the duration of stage is given the time it takes to develop

between succesive values of mass or My, given as arguments.
However large the ini-

tial mass, there cannot be Mass 9 \ Mo Duration of stage
mc:ire fthal?'uz' ® left at j[tfhe oto 350 - _qu 0,038 - 1012 years
enda ot a pi l‘On years. a 35 ,, 10 __51\[ to __21\1[’5 0,065
cluster contains stars > 20, 10 ., 3.7 -2 ,5, 0O 0,214
theage of the agglomeration 3.7 . 1,73 0 . 2,5 093
cannot exceed 10!2 years. 1,73, 0,92 2.5, 5 5,21
Now since most of the clus- 0,92, 0,53 5w 75 363
. : 0,53, 0,31 7 .5, 10 281
ters contain absolutely faint 0,31, 0,18 10 ,, 12 ,5 2190

and bright stars mixed

together the faint stars cannot have evolved apprec1ably But, asks EDDINGTON,
if we have to deny the evolution of dwarf stars in clusters is there any point in
assuming the evolution of dwarf stars in general?

1 Nature 117, Suppl. p. 25 (1926).
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The numbers under the heading “duration of stage” should be proportional
to the frequency of the absolute magnitudes or ¢(3). The theoretical
luminosity-curve also agrees fairly well with the one found from
observational evidence. This fact seems to the present writer to be the
strongest support we have, at present, in favour of the theory of evolution by
the loss of mass.

The frequencies of stellar masses among different absolute magnitudes have
been derived by LUYTEN! on the basis of the mass-luminosity relation found by
him, I = L%225, and the luminosity law of KAPTEYN. Similar calculations have
been made by J. OnLssoN?, who has derived the distribution of stellar masses
within ten parsecs on the basis of the material of the present writer and the
mass-luminosity law of EDDINGTON and of JEans:

EDDINGTON has also given a dis-

My ® M) n ¥®W_ cussion of the fundamental quartic
1M to oM 5 3,16—4,00 ® 2 equation of the theory of radiative
1, 2 13 | 1,99—2,50 5 equilibrium, in which the gradual
g vt :)'?g::'gg ;; increase in y from the centre to the
> g 62 | 050—063 57 boundary of the star is taken into
9 ,, 10 30 | 0,32—0,40 45 account.

1, 12 12 | 0,20—0,25 19 For several practical purposes
13, 11;, 2 0,13-—8,:(6) f it has been thought to be conven-

ient to express the mass-luminosity
law in a quadratic form of logI. A least square solution of EDDINGTON’s

material has given:
m —_ 10+0,6144—0,1576M+0,00412M’.

This curve represents the material available with a sufficient degree of
accuracy.

233. Discrepancies between Seares’s and Eppmeron’s Results. G. SHajN3
has compared the masses as computed according to the theory of SEARES? and
according to that of EDDINGTON. The agreement is unsatisfactory for the giant
stars, and the divergence is of a systematic character. EDDINGTON’S masses
of very high luminosity for late spectral classes are greater than the corresponding
values of SEARES, and the difference increases with increasing luminosity. For
giants of early classes SEARES’s values are greater than EDDINGTON’s, while
for late spectral classes the reverse is the case.

Observational data of double stars, part of which have been obtained by
SHAJN at Pulkowa, lead to the following paradoxical result:

Spectral class Am Mol Mp/Ma
n
Primary ‘; Secondary (bolom.) Primary Secondary | EDDINGTON l SEARES
K1 A8 2™,19 +0M,3 | 4245 0,43 1,37 28
G2 Aj 1,26 +0 ,6 +1 .9 0,60 1,42 36
F2 AS 0 ,90 +1 ,0 +1 ,9 0,74 1,13 75

The result derived on the basis of SEARES’s theory is in conflict with other
evidence concerning the mass-ratios in binaries and it does not seem very probable
that so many systems like those of 85 Pegasi and § Lyrae should exist. It seems
that a revision of the data used by SeaRrEs would be of much interest.

1 Harv Ann 85, No. 5 (1923). 2 Lund Medd Ser. II, No. 48 (1927).
3 AN 225, p. 305 (1925). 4 ApJ 55, p. 179; Mt Wilson Contr 226 (1922).
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234. Jeans’s Theory. Sir JaAMES JEANS has brought rather severe criticism
against EDDINGTON’s researches on the mass-luminosity relation!. It is not
possible to give a full account here of the contents of JEANS’s papers or to declare
which method is to be preferred. It seems that the results reached by both the
eminent authors by means of analysis do not differ very much as regards a good
representation of the observational material.

Jeans claims that, when the problem is treated in a sufficiently general
way, the supposed mass-luminosity law disappears entirely as a theoretical
law, so that a star of given mass can always adjust itself so as to radiate energy
at whatever rate may happen to be required by the generation of energy in its
interior. A general relation is found to exist between the mass, luminosity and
surface-temperature so that the said adjustment can be made in only one way.
The whole interior constitution of a star is uniquely determined by its mass
and its rate of generation of energy.

The main point of difference between JEANS’s work and that of EpDINGTON
is that the former considers the ratio 1, gas-pressure over radiation-pressure,
or /(1 — f) to vary within one and the same star, whereas EDDINGTON assumes
this quantity to be constant throughout a star. JEANS is of opinion that in those
cases most favourable for constancy 1 varies oo Tt and that a variation of
1000 between different regions in the same star can hardly be dismissed as
impossible.

The gas-pressure, p, and radiation-pressure, ¢, are defined as follows:

R 1
p=,.eTs g=alt

where m is the mass of the hydrogen atom, a the radiation constant, u the mean
molecular weight, % the universal gas-constant, and g the density.
The dynamical equation of equilibrium is then:

d 7
70+ =12 [4morar, (1
0

where y = 6,66 108 (gravitation constant).
If H is the outward flux of radiant energy per unit area, then the equation
of transfer of radiation is:
166712 0T
== o @
where ¢ is STEFAN’s constant of radiation = }aC and ¢ the opacity of the star
at the point considered. The energy is generated at a rate of 4me per unit
volume and the average value of ¢ inside a sphere of radius # is denoted by .
The flux of energy accross a sphere of radius » surrounding the centre of the
star must be equal to the total generation of energy inside this sphere so that:

,
4m,72H = 477(,/4%66@1’2 ar.
0

The second of the above equations then takes the form:

4
4aCT?® dT )
ey i —ﬁf4ncgrzdr.
0

1 MN 85, p. 196 (1925).
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All theories agree that the main part of ¢ is co o/uT3. EDDINGTON assumes
an additional factor 7-% and JEANS puts ¢ = M—%:% T-", where » is a constant.

The integral, that is common to the equilibrium-equation and the radiation-
transfer-equation can be eliminated and then the following is obtained:

d __3CRy I~ q dg

Tt o= T v
Further it is assumed that & = ¢,7°(! being a small and positive constant
and &, another constant). This expresses the tendency of &, the average gene-
ration of energy, to decrease from the centre as we pass out to the cooler
external regions.

Tr-1
We can now put == tq (3)
where, since ¢ = }aT* we have 4s=n —I. Putting p = lg and denoting
K= 363%}’: the equation (3) becomes:

01 K
13, = L4,
or taking Kg* = x2:°
L exa %t 21+ 1)
2 0x ’

The most general solution of this equation is obtained by assuming for A2 an
expression of the form:

BPB=x2(A+Bx 14+ Cx2+Dx34...)+
Fx¥s (o + Prtfpx2F fx 3 . fx8 (L )

The method of equating coefficients of equal powers leads to:

= S+2 2is+4<s—i2—2>%x+si4i( j(jg_i)4)z <S_*2_2)—%x"1+
+ o poain P F 2R

The first part of this equation is the standard solution for A2 In the interior
of a star, in regions where « is large in comparison with its value at the boundary,
the actual solution may be supposed to coincide with the standard solution.
The series in which the standard solution is expressed is convergent in the special
caseof s = Qaslongas 4x2> 1 or A > 0,207 or 1 — f << 0,828, which corresponds
to a mass less than 124 ®. When s is == 0 the limits of convergence will be
different but as the value of s will be small the series can be assumed to con-
verge for all reasonable mass-values.

Further it is shown that p + ¢ can be taken equal to So® where #n=*Fkg

and g o po®.
The mass of a star is found from the equilibrium-equation to be:
_*Sn ,_,de
- y—@ we+a — g,

The equilibrium-equation is transferred to the standard form discussed by

EMDEN?, viz:
1

1
a do) —
—_— 2 T —1 et
R dR(R dR) +o” 0,

1 Gaskugeln p. 61 (1907).
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where 7% = ﬁm R? and p"~!= ¢. The only solutions of astrophysical

interest are those for which do/dR vanishes when R =0. The most general
solution will be:

n—2
c=1fo;; R=fmn2R,,

where f is a constant and R; and ¢, refer to the particular solution tabulated
by EMDEN. When 1 is 1arge the expression for M becomes:

logM = loge, —}— — log f -+ const.,

4(2S+3)

where the constant term contains only absolute constants of nature.
For very small values of A

logt = logey + 2 — 3 log]¢ -+ const. (4)

4s+3

The consideration is restricted to the 51mp1e case ! = 0, which corresponds to
uniform generation of energy. Then the emission E is equal to 47, g, or:

loge, = logE — logdt + const.
The two equation (3) and (4) then take the form:

(25 + 3,75)logt = 3 1ogE + (25 + 3) (32 =) togy,

(4s + 9) logM = 6logE + (45 + 3) (ﬁ:_z) logf .
At the surface of the star the following equations are valid:

E (n—1)

. 4 n1
“T 87.Cr? 2C%SR2f

Hence:

4logT = logE — logS — (Z — 1>logf + const.

and from the dynamical equation of equilibrium combined with the equation
by EMDEN 3
log = logS + ( >log]‘ -+ const.
If S is eliminated from these last two equatlons we have

4logT + —logSITt logE + logf -+ const.

3(n—1)
By eliminating f from this equation and (4) and introducing absolute magnitude
and temperature the resulting equation becomes:

¢, logT + c,logt -+ ¢; M = const.,
¢, =36(p —1) +18(¢ — 24) s,
cg=—(2s+375) +6(@—1)+ (Bp —4s
cg=10,3[—1+12(p — 1) + (6 — 8) s].

If the values of T, M and I were known for at least three stars with very
high accuracy, it would be possible to use the data to evaluate the ratio of ¢;:¢,:¢5
and so to determine the values of ¢ and s. Instead an average solution of six stars

(Sun, Capella A and B, « Centauri A and B, and Sirius A) was carried out. The
best fit is obtained from the approximate expression:

510gT + 8,75 logM + M = 11,17

where:
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The computation of the values of s and ¢ led to impossible results and then the
equation was adjusted to:

M 4 21log T + 11,92 log M = const. (4 large) .
For stars of small 1’s the following equation was derived:
M + 4log T + 3,25 log M = const.

JeANs points out that these results are in some respects in very good agree-
ment with those obtained by EDDINGTON. For small masses (1 large) the equation
of Jeans shows that for 7= const. the total rate of energy-emission & is co M&7,
whereas in EDDINGTON’s theory it is co M4%. For stars of very great mass
Jeaxs finds & co M3, while EpDINGTON has & co P4,

EppiNGTON’s theory, which was based on the assumption s = 0, predicted
a hard-and-fast relation between the rate of emission of radiation and the mass It.
This relation will be represented by a single curve in a diagram in which & and It
are taken as coordinates. According to JEANS's theory there is an infinite number
of such curves in the ¢ and It plane as soon as s differs even infinitesimally from
zero. The only part of the plane that is ruled out is that in which the star would
not be in a gaseous state.

The two equations for M, T, and M give the limiting forms of the curves in
regions where I is small and large respectively, and from these the assembly
of curves can be constructed as in Jeans’s fig. 2. EDDINGTON’s curve would
be approximately represented by any one of the curves for which T = const.
According to JEANS there seems to be no reason why a star should keep its surface
temperature constant during its evolution, so that evolution along a mass-
luminosity curve would seem to be entirely improbable.

One of the curves in the diagram will correspond to the temperature T,
which divides dark stars from visible ones. The observed values will, of course,
all fall above that curve. A surface temperature T, may also be imagined such
that when the surface of a star has temperature in excess of T, it radiates energy
with such extreme rapidity that its surface temperature falls almost immediately
below T,. The observed stars will fall below that upper-limit curve. This seems
to agree approximately with the observed facts as for instance shown in Ep-
DINGTON’s diagram.

In a subsequent paper! JEANS assumes a solution in ascending powers of s
of the differential equation treated above as follows:

A=Ay +sdy + 2 Ay + -
and finds:

s i%_i} {_ 2 } _[x4+x2 2t — g2 ] a1
l-—[(x + 4> 2] T 4x% 41 4o (4x2+1)2+2(4x2+1)2 oS,
where A, = (# + })¥ — 3.

The solution is rapidly convergent for small values of s. It is found from
the data that the closest fit is for s around 1/18. For such values the terms
s %2
452417

containing s can be omitted. A table in the paper gives 4, v, = {1~°, 1—
A,1— f and M with x as argument. #

By using the new expression of the mass-luminosity law the following is
derived, viz:

(25 4 2,5)logMt + 4slogT — (s + 0,5)log E + (2s + 4)log .+ (4s + 7)logy = const.
! MN 85, p. 394 (1925).
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In this formula v = i/x and logE = —0,4M + const. Introducing M
we obtain:

(2s + 2,5)log M + 4slogT + 0,2(2s + 1) M + (4s + 7) logy = const.
From the six stars used before the value s = 1/18 is derived and hence:
m —+ logT, + 11,75 logM + 32,5 logy, = 8,332.

A comparison has been made between this formula and EDDINGTON’S
material by J. OHLssonN1. The agreement is just as good as between EDDINGTON’s
formula and his material.

In a reply to JEANS'’s criticism EDDINGTON? states that the principal point
at issue is the dependence of M on T,. He writes the fundamental equation of
the theory in the form:

1 47,cGM 1
]

d(p + %aT‘l) = —godr,

where p is the gas-pressure, taT* the radiation-pressure, % the mass, L the
energy radiated per second, » the absorption coefficient, ¢ the velocity of light,
G the constant of gravitation; & is unity at the boundary and varies inwards
in a way determined by the distribution of the source of the star’s energy.
As long as the mass is unaltered the solutions of these equations are homologous.
If, keeping the mass of every element fixed, we multiply its linear dimensions
by R, the following factors must be introduced: T is multiplied by R-1, ¢ by
R-3, pand taT*by R4, g by R-2 » by R*", L by R~", ¢ is unaltered. The
equation then continues to be satisfied. Hence:

LcoR- ™,
Further:
L =4n,R?LacT:.

By eliminating R and converting into absolute magnitude:

10n
2+ n

For EDDINGTON’s law of absorption # =%, and the same correction is obtained
as was given in his paper of 1924. To make # differ greatly from § would, as
EDDINGTON states, ‘“be to reject altogether the law of absorption on which
I have based my conclusions; but, of course, I do not suppose the law to be exact,
and I have nothing against values of % reasonably near to 1, say, between 0 and 1”.

EDDINGTON points out that if a given rate of generation of energy is greater
than the rate of radiation L, fixed by the formula, then the energy of the stars is
increasing, and the star is expanding indefinitely. By the above formula L
varies as R~" and therefore diminishes.

An analysis of JEANS’s paper has convinced EDDINGTON that there is nothing
singular about his value # = 4 and that the exponent 1 does not affect the
magnitude-mass-temperature relation in the two cases considered. Furthermore
the mass-luminosity relation is not reached by treating 4 as a variable quantity.
JEANS’s generalisation of the problem consists in limiting 4 between the two
values 0 and oo.

—0M =

0 (logT,) .

1 Lund Medd Ser.II, No. 48. Also thesis Lund (1927).
2 MN 85, p. 403 (1925).
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235. The Cosmogonic Time-Scale by Jeans and Smarr. The results reached
by voN DER PAHLEN (cf. ciph. 216) could certainly be improved if the cos-
mogonic time-scale established by Jeans or EDDINGTON (see ciph.232) were
used. The procedure according to JEANS was taken into account that possibly
positive and negative electric charges fall together and annihilate one another,
their energy being transformed into radiation. The discovery of the mass-
luminosity relation increased the probability of this conjecture enormously.

JEANS has derived the relation!:

am
ar = W,
where & = 5,2.10"8 is found by taking the values for the solar system

M=2-10%, — %t— = 4,2-10". Solving the equation he finds the time required

for a star to pass from mass $t, to mass Mz to be given by

= — o)
T2x\0E T W)
JEANS has also given in this connection the following interesting theorem

concerning the relation between mass and size of orbit of a star.
From the motion of a particle under a central force M/#? the equation:

a1 (ﬂ)z +72(ﬁ)2 _%] - 1 aM
at [z dt at v~ v dt
is readily deduced!, which becomes:
a 9?5) — 1an
dt(za Ty oat
when « is the major axis of the orbit.
Averaging over a complete revolution, Jeans finds:
(@) _ 1 am
dt\2a) ~ a di’

from which follows: Ma = const.

If our Sun ever was a B star or if its mass ever was 4 ©® the time elapsed
since this epoch must be about 7,1 1012 years.

SMaRT?, who has connected the above differential equation with the theory
of EDppINGTON; finds a scale in substantial agreement with that of Jeans. By
three different procedures he has derived the following values of ¢ necessary for
a star to pass from different values of I, to MWp = 106.

My = 8,984 (® 4,137 O 1,582

Method 1 7,6 + 1012 years 7,2+ 1012 years 4,6 - 1012 years
2 5,1+ 102 ,, 4,9-1012 3,7+1012
3 9,1 1012 ,, 9,0 1012 5,9-10%

The scale must be still longer, because no account is taken of the increase
in mass necessary on account of the meteor frequency. The investigations of
the frequency of meteors show that they are not restricted to our solar system
but are universal phenomena. Taking into account the frequency of meteors we
find that the mass of the Sun will be doubled during a period of 102 years.
Thus the increase of the stellar mass due to encountering meteors will partly
counterbalance the secular decrease of the mass.

1 MN 85, p.2 (1924). 2 M N 85, p. 423 (1925).
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236. Brir’s Theory and Parallax-Method for Binariesl. According to

the theory of radiative equilibrium %e&?* should be constant within a certain star
(B is the mean absorption coefficient of the total radiation) but should vary
from star to star with the size of the mass. If we assume the relation:

1—f=7,83-10""M2ptf
to hold good, it follows from statistical considerations of data concerning mag-
nitudes, parallaxes, and masses that the relation:
ke* = const.

holds good for nearly all stars. In order to see the reason for this we must trans-
form the expression. If aisthe constant in STEFAN’s law and R is the gas constant,
we have the equations:

__ uap
= 3RGu—p L
E=328-100. % P73

3IR1—-6

Further the central temperature T, = 1,7 T is introduced and the radius R.
Then:

T — 6:9011% (3(1 —ﬁ))%
¢ uBR a.aG | °

According to the definition-equation:
ke

1—f= 4m,cG
and thus:
_ 124,0GR (1 — B (T.\
€=2328-10% 8 (1,7)
and:

ke YT L.

The central temperature is rather constant, varying as it does between
35.10% and 40-108 degrees. The constancy of ket is mainly determined by the
quantity ﬂ%. If I varies between 10 © and 0,16 ©, the corresponding variation
in gt is from 0,73 to 1,00.

Independently of the theory of the stellar absorption coefficient the quantity

ke? can be expressed in quantities furnished by observational work. If the stars
are in radiative equilibrium, the radiated energy is equal to the energy produced
in the interior of the star:

macR2TY = eM,
where T, is the radiation temperature.

If the value of ke® from the above definition-equation is substituted in
the present expression, & becomes equal to 4G(1 — B)M (@ R2T%) -1 and thus:

EVe=4G (o a (1 — IR T2

Introducing the numerical values of the constants and selecting solar units
we obtain as the final equation:

logk Ve = 3,450 + 2log 22 — logk% +log (1 — f) + —glog-m%-

1 Berlin-Babelsberg Verdff 7, H. 1 (1927).
Handbuch der Astrophysik. V,2. 43
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In order to determine the numerical value of 2} ¢ the material of RABE!
(38 pairs 7 << 0",040) and that of BOTTLINGER? (17 eclipsing variables) together
with data for the Sun and Capella were used. The value 2,85 for log% ]/ e resulted
from 68 stars.

BriiL discusses at length the derivation of 7,, the radiation temperature
corresponding to the radiation temperature of the bolometric magnitude of the
central part of the star disc. The colour temperature of a star refers to the course
of the energy curve in a certain part of the star spectrum and corresponds to the
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Fig. 155. The RusseLL diagram as derived by BRILL on basis of parallaxes of binaries using
the theoretical relation: ket = const. Full circles refer to primaries and open circles to
secondaries of binary stars.

temperature of a black body radiator whose énergy curve in the same part has
the same form as that of the star. The radiation temperature refers to the
intensity of the emitted radiation and corresponds to a black body radiator
that emits radiation in equal intensity to-that of the star. If the conception of
effective temperature is to be preserved it ought to be defined as the temperature
of a star for which the total emission of a black body radiator equals that of the
star.

In order to obtain accurate values of the colour temperature it is necessary
to supplement the visual and photographic measurements with bolometric,

1 AN 225, p. 217 (1925). 2 Atti della Pontificia Accad (1924).
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radiometric, and thermoelectric measurements in the ultra-red. The radiation
temperature cannot be determined without a knowledge of the stellar diameter.
Only a few stars have been measured as yet with interferometric methods; thus
our knowledge of the radiation temperature is very restricted. For the Sun the
following values of the radiation temperature are derived:

Radiation temp. of the Sun from Bolom. data Visual data Photogr. data
Mean solar radiation . . 5775° 6075° 5835°
Central solar radiation . 6075° 6435° 6190°

The following are the results from the stars:

, Spectral . A t Rad. temp. of Col
Object g?:ssra Radius m%a)g:irt?l!:ie thz vi:mrgag(!)l. tempe?lal:ure
Sun . . . .. .. .. Go 9617/,2 —26™,90 | co/T=2,36 | ¢y/T=2,05
Arcturus . . . . . . Ko 0 ,0100 + 0 ,24 3,44 3,50
Aldebaran . . . . . . K8 0 ,0100 4+ 17,06 3,82 4,39
Betelgeuze . . . . . . M1 0 ,0235 + 0,92 4,69 4,65
Antares . . . . . . . M2 0 ,0200 + 1 ,22 4,66 4,77
BPegasi . . . . . .. M3 0 ,0105 + 2 ,61 4,66 4,61
At present we can do no better than assume equality between the
radiation and the colour temperature.
The following tempera- ¢ \
ture scale was assumed: +07) °\
A\
Spectral i
Cass T &l T \
fﬂ-f \
Os5 28000° 0,51 Y Nge
Bo 20800 0,69 .
B3 16900 0,85 * 5
Ao 13000 1,10 ", . -
As 10200 | 1,40 . 00 PR oo
Fo 8300 172 EIge P N
gFs 7200 2,00 s . .
dFs 7200 2,00 S N °lo
gGo 6050 | 2,37 Nz st
aGo 6240 | 230 I, ° ™ R
gGs | 4880 2,96 ° \,-\o
dGs 5560 2,58 ~a3 S
gKo 4310 | 3,33 AN
dKo 4910 2,92 o N
gK5 3380 4,24 -05 .
dKs5s 3910 3,67 )}
gMo 3200 4,49 ] \
dMo 20 4,20 -7
34 & 77 T 77 7
For 123 visual pairs Jpeckal oss

with known orbital ele- Fig. 156. Relation bgtween logarithm of ste;llar mass and

ts BRILL has computed spectral class according to BrirrL. Full circles refer to
ments " . pute primaries in binary stars and open circles to secondaries.
the radiation-energy

parallaxes zre, which enter into the expression log R/R® owing to the relation:
logR/Re = 0,2(M — m — Am) — logme -+ 4,946
where M is the surface-intensity magnitude, m the apparent visual magnitude
and Am the correction to bolometric magnitude. The computation of sz, has to
be performed by means of successive approximations. For this purpose an ex-
tensive table is given in BRILL’s paper with 1 — § as argument, log(1 — f),
log M/Me, andAlog (1 — f): Alog M/Me as functions. Further the expressions
$log M/Me + log(1 — ) and Alog M/M : 4[4 log M/Me + log(1 — )] are

given in order to facilitate the necessary interpolations.

43*
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The agreement between .. and s, or =z, is very good indeed. The
masses, mass-ratios, dimensions, densities, and central temperatures are
also determined and entered in the catalogue.

: The agreement of the derived Rus-
9. X -
RN SELL dlagram.w1th the observed one shows
Iy that the relation between the mass and the
\Q\ product ke as derived by EDDINGTON is
370 N in agreement with the observations. Further--
\ more it also proves the probable reality
Y \N within a wide range of the formula of BriLL
§° \ (ke* = const), which is partly based on the
§JM theory of radiative equilibrium and partly
AN \ on an empirical foundation.
L9 Y The agreement between the mass-lumi-
§ \ nosity relation according to EDDINGTON and
N according to BRILL is very good. There are
\ practically no deviations for the luminosity
2.0 \ range log L = 30,0—36,5 (M8 to BO stars
\ roughly) or for the entire main series.
70 237. Mass-Reduction by Annihilation
of Protons and Electrons. C. LOoNNQUIST!
Nl 5 05 0 45w

n has examined various hypotheses concern-
Lyme ing the evolution on the basis of EDDING-
Fig. 157. Relation between logarithm of TON’s theory by wusing the empirical
ztellar lumino_sit};landl T‘ass.d The juél_ RusseLL diagram as guidance and test.
fravn e s fhe relation dorved by i investigations of EpDINGION In
const. and the dotted curve is the rela- 1924 showed that it is the difference in
tion according to EDDINGTON. mass and not in intensity that causes the
considerable difference in the luminosity
of the giants and dwarfs. Although it is still possible that the stars develop
from the giant stage to the dwarf stage in the traditional way there is no
longer any explanation why they should develop in just that way. But if
such an evolution takes place, then the mass reduction must be investigated.
Such a reduction is not only dependent on a possible throwing off of matter into
space. The stars also radiate away enormous quantities of energy, and as energy
is equivalent to mass the stellar masses must be diminished in the course of time,
if no compensating factors exist.

It has been shown by EDDINGTON that the energy lost by radiation cannot
be fully compensated by the energy liberated by contraction since the time-scale
thus obtained is altogether too short. If the mass 11,5 ® is taken, such a contrac-
tion-development from the giant M to the giant F stage would take only 30000
years, and for the Sun itself 1,5 - 107 years. From geological evidence it is found
that the age of the Earth must be 10° years at least and the minimum age of
the Sun ought to be at least 102 years.

The investigations of F. W. AsToN in 1920 gave rise to the hypothesis of
EppingToN® that the helium in the stars is built up of hydrogen. This process
involves a change of 0,008 of the mass into energy. It seems also that something

1 Ark Mat Astr Fys 20 A, No. 21. Also thesis Upsala (1927).

2 Brit. Assoc. Report 1920, p. 45. This theory seems also to have been presented
independently by J. PERRIN: Annales de Physique 2, p. 89 (1919), and Revue du Mois 21
p- 113 (1920).
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similar can be postulated concerning the composition of other light atoms, but
the effects in these cases might be considerably smaller. It seems hardly possible
to reach an amount exceeding 0,010 of the mass. The time the Sun would require
for such a mass-reduction is 1,5 - 10! years, which is sufficient for geological
demands if the Sunhas fromthe beginning anabundance of hydrogen of 10 per cent.
But if this hypothesis is accepted the evolution will principally follow a mass
line, as has been pointed out by LONNQUIST, and the RUSSELL diagram cannot
mark the evolution-course of the stars, but only the loci of the most stable
equilibrium points of the stars.

EppINGTON points out that helium must have been produced somewhere.
The doubts of some physicist that the interior of the stars may not have a suf-
ficient temperature are met with the advice ““to seek a hotter place”’. EDDINGTON
seems to assume that the processes of building up the atoms already occur
in the nebulae so that they have taken place to a great extent while the stars
are in an early stage of evolution. The stars can hardly contain hydrogen any
longer. EDDINGTON’s arguments against the occurrence of hydrogen in the
stars are based on the following views.

A large percentage of hydrogen would decrease the molecular weight u so
much that the radiation pressure would become insignificant in comparison
with the gas pressure even in case of the most massive stars known. The radia-
tion pressure would lose most of the importance ascribed to it as an ex-
planation of the fact that the stellar masses are situated within comparatively
narrow limits.

On account of the change in the value of u, entering in the luminosity

formula with the expression %, a considerable amount of hydrogen would alter
the mass-luminosity relations. Besides, if the abundance of hydrogen differed
for stars of the same mass, the stars would not lie along a mass-luminosity line,
but would exhibit greater or smaller deviations from it. LONNQuisT finds
from a lengthly discussion that the assumption of the importance of the radiation
pressure for the size of the star-masses is untenable, and that it does not form
any valid argument against the presence of hydrogen in the stars. While a not
inconsiderable proportion of hydrogen appears necessary for Capella in order
to obtain agreement between the theoretical and observed luminosity, varying
proportions of hydrogen in stars of the same mass appear to lead to not in-
considerable deviations from the luminosity as computed from EDDINGTON’s
luminosity law. The testing of that law by means of stars of known masses and
luminosities cannot be made with such accuracy as to allow a decision concerning
the nature of the individual deviations. The theory requires special revision
as regards the abundance of hydrogen.

The radioactive hypothesis cannot explain, in its original form, a considerable
mass reduction. The radioactive processes have, as far as is known, the property
of being independent of temperature and density. In order to have an important
mass reduction one would have to imagine, with JEANS, another kind of radio-
activity. He has suggested an annihilation of matter within the atom nuclei
together with a liberation of energy. To describe this as radioactive would then
be an accentuation of these processes—just like the radioactive—being inde-
pendent of density and temperature.

JEANS’s theory introduces a third hypothesis, the boldest of them all, namely
the annihilation of protons and electrons with transformation of the mass into
energy. This idea is not new and it arose even before the question of the evolution
of the stars had advanced any considerable way. EDDINGTON mentions J. LAR-
MOR as one of the precursors of this theory and as early as in 1904 JEANS expressed
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himself in favour of this line of thought, while EDDINGTON suggested the hypothesis
for the first time in 1917. MACMILLAN also supposes the contrary process to take
place,i.e.a transformation in space of the radiations of the starsinto matter, into pro-
tonsand electrons from which the nebulae arise.-In thiswaya circulation is obtained
between mass and energy, which is certainly of much importance for cosmology.

The annihilation of protons and electrons may be supposed to be a nucleus
process analogous to the radioactive ones or the result of a collision between
a free electron and a nucleus proton. EDDINGTON conceives both possibilities..
In the former case the process evades every calculation regarding dependence
on the outer physical conditions. The process might possibly depend on the
very constitution of the atom nucleus. In the second case the density and
temperature may be thought of as deciding the rate of the process.

LoNNQuIsT’s paper is partly devoted to an examination in detail of the
second of the above-mentioned cases, which the author calls the hydrogen
hypothesis. He finds that the known facts concerning the components of the
double stars seem on the whole to agree with the hydrogen hypothesis. For
the development of the widely separated binaries from close pairs an evolution
with mass reduction seems necessary. The long time-scale associated with such
an evolution is of extreme importance for cosmogonic problems. The evidence
of the clusters has also been investigated. The facts scarcely decide in favour
of one or the other theory of evolution, but they do not seem to confirm RUSSELL’s
evolution scheme. Stars are probably formed with very different masses. Only
the larger ones are checked in the giant stage, while the smaller ones go directly
into the main series.

238. The Theory of Rase. The aim of this investigation! was to establish
the relation between the absolute magnitude, the temperature, and the mass
of dwarf stars. It has to be assumed that there exists a one to one relation between
M = T,, and IR, which is also in agreement with the empirical and theoretical
results. On account of the comparatively high density of the dwarfs it is compar-
atively easy to define the conception of the stellar surface that is necessary for
the theory developed. It is sufficient to start from the surface conditions of our
Sun and to assume that the thickness of the layer from which the visible radiation
has its origin is small in comparison with the radius of the star. But on the
other hand, it has to be assumed that the layer in question has such radial exten-
sion that the surface radiation can be considered to be emitted by a black-body
radiator. Above such a surface a cooler atmosphere may be situated, which,
of course, would absorb part of the radiation. The results of spectral analysis
show that the amount of this absorption is comparatively small for classes earlier
than F, but becomes appreciable in that class, and increases continuously to the
end of the main series. The absorption is certainly selective so that the coefficient
of transmission is a (unknown) function of the wave length. It is then necessary
to use a mean value of the coefficient which is a function of the surface temperature
and the mass, as the gravitative power exerts an influence on the general atmo-
spheric condition of a star. Thestars have to be assumed to be perfect spheres
and the size of the surface is thus determined by means of the mass and the mean
density.  This quantity can be considered, at least at a first approximation,
to be a function of the surface temperature and mass. Although BERNEWITZ?2
could not establish a definite relation between the mean density and the mass,
still the probability that such a relation exists is very great?.

L AN 225, p.217 (1925). .2 AN 213, p. 1 (1921).
3 In fact, such a relation was established by ABETTI in 1922.
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Let 4, be the intensity of radiation of a surface element, p the mean value
of the coefficient of transmission, T the effective surface temperature, and ¢ a
factor of proportionality, then the observable radiation ¢ of a surface element is:

1 =piy=cp(cy/T)"

Let further ¢ be the mean density and C another factor of proportionality.
Then the total radiation of I the star is:

I = CWJo)¥p (/).
If this quantity is transformed into magnitudes we have:
M+ AM = @ + 10logcy/T — 5 logM + §1logp — Slogp . (1)

AM is the correction of the visual absolute magnitude M to bolometric
magnitude and & a constant.

As a result of numerous trials RABE selected the following expression for g
and p: 0= cle T M
p=(T/T) M =1.

T, is the limiting temperature for which at unit mass an appreciable at-
mosphere sets in. The second equation does not seem very plausible from a
theoretical point of view but RABE gives a reason for its use. If we pass over
to solar units the above equation takes the form ¢ = (T@/T) M-

Then the equation (1) takes the form:

M4+ AM = (10 + $% + §v) logey/T — [5(1 — 2) + §u]logM @
+ D — Sxlogey/Te — §vloge,/T,.

The unknowns %, 4, », u, and T, can be determined from the observational
data. If pshould belarger than one, the terms containing » and 4 must be dropped.
The masses were determined from 38 dwarf binaries with a parallax equal to or
larger than 0”,040. The values of AM were derived from the radiation law of
Pranck and the spectrophotometric measurements of WiLsiNGg. Further
Mg = 4,79, the observed value of c,/T for the Sun = 2,40, pg=0,71, and
hence ¢2/Tq = 2,40 - gb* = 2,20, and @ =1m,42 were used.

Next the value of l is determined. For starsearlier than F5 it has very nearly
the value 1 and thus the density-ratio of such stars'can be determined without
any knowledge of p. The author finds 4 = 0,293 + 0,012 %. The value of x is
situated between 2,5 and 3 and the last value is adopted. The coefficient of
log M in the above equation, b = —[§ (1 — 4) 4 4 ], is determined from binaries
of equal spectra and varies with the spectral class:

Spectral class b l n Spectral class b ‘ "
Go —1,98 9 Ko —2,28 7
G4 —2,35 1 K4 —4,23 6

This, if real, suggests a complicated form for the functions e and p. At
present it does not seem p0551b1e to decide whether the variation is real or not.
If & is taken as —2,71, p is found to be 3.

It is unavoidable that the determination of the different constants must
be affected with some uncertainty owing to the paucity and in several cases
the uncertainty of the data. RABE finds the following two formulae:

Stars without atmosphere (p = 1): Myo = 15 logcy/T — 2log M — 0,29
Stars with atmosphere (p << 1): Mpo = 20log ¢,/ T — 221log M —1,63.
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In order to have one formula the following expression is adopted:
c .
Mo = 4 log = — 2 logt + 0,90.

Here ¢,/T” has to be selected in such a way that both the formulae are
represented.

The essential point in the theory of RABE is that I is considered to depend
on the temperature much more than is the case in the theory of EDDINGTON.
The theory is of considerable interest and ought to be compared with the empirical
data as soon as more observations have been collected.

The ¢,/T-value in the above formulae corresponds to the surface tempera-
ture and is related to the effective temperature T, in the following way:

10g (¢/T) = $log 2 — % log — 0,134,

The effective temperatures that result from the material of RABE are in
very good agreement with those computed according to the methods of SEARES
and of BrILL. If the c,/T-values are diminished by ten per cent they are in very
good agreement with the corresponding values derived by M. N. SaHA? on the
basis of his theory of ionization. It is certainly very interesting that the theory
of RABE is able to explain most of the differences between the results of BrRiLL
and SAHA.

Using the temperature-scale thus established RABE has computed the ab-
solute magnitudes and the masses and derived the following mean errors:

RaBE then makes a revision of his

Spectral Mean errors system and finds from a discussiqn of the
class — morm | n values of m@ and ¢y/T a correction that
should be added to the constants in his

A0—F9 | +0%34 | 40,49 | 22 equation. He finds:
Go—G9 +0 ,48 —+0,17 23

Ko—Mdp| 40 ,32 40,11 20 log% — %—IOgQ _ ngog?)ﬁ + 0,342

For the application to binaries the equations giving the mass-luminosity
relation are changed into the following forms:

Stars without atmosphere:

logn = 9log% — %—_log%i_%—; — 2loga+ % logP — %(m + 5 4+ Ampe) —0,288.

Stars with atmosphere:
— —6logl2 t S10g M4 4 5100y 5 3
logz = —6log 2+ z logSJRA+§IJRB+ > loga 3 logP+ 1O(m—}—5—}—41’}'Lbol) + 0,546.
Computing the parallaxes and comparing with those actually determined
RABE has found the mean error of one value to be --0,295x.

The mass-ratio of stars where both the spectra have been observed but
no orbital elements are known can be computed from the formula:

log (g%) = 225 [zo(log;.—l — log ;,-i) — (mp — my) — (Amp — AmA)] .

1 Z {Phys 6, p. 40 (1921); ApJ 50, p. 220 (1919); Phil Mag (6) 40, p. 809 (1920);
41, p-267 (1921); London R S Proc (A) 99, p. 135 (1921).
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The following table summarises the results of RABE:

Sp;(;tszal Temp(}rature m o d n
A 2,3 9400° 2,290 0,430 1,74 © 3
F 3,4 7900 2,78 0,77 1,42 11
F 8,0 6600 1,07 0,98 1,02 8
G 1,0 6400 0,92 0,98 0,96 12
G 6,0 6100 0,88 1,22 0,88 10
K1,7 5600 0,61 1,27 0,78 9
K 5,0 5000 0,69 1,96 0,70 8
M 2,5 3800 0,36 3,58 0,45 4

The diameters d are accurately represented by means of the linear relation:
d = 1,03 + 0,00023 (T — 6500°).

In a subsequent paper RABE! has taken up a remark by BrILL that the
mass and the surface temperature cannot be considered to be independent of
each other. In order to decide between the influence of the temperature and the
mass upon the absolute magnitude it is appropriate to consider stars of unequal
mass but of the same spectral class. RABE used a number of new data, but
could not find that his general conclusions ought to be changed. In order to show
that the correlation between mass and luminosity is not as high as is generally
believed he quotes the following well-determined cases where the absolute
magnitude has been computed from EDDINGTON’s mass-luminosity law:

Object Sl?j:;;:al m My Mrol Meare Mons — Meale
» PegasiA . . . . . . F3 8,600 14,79 1,78 —2¥,42 +4M,20
y Virginis A . . . . . Fo 4,48 2,39 2,37 —0 ,85 +3 .22
% PegasiB. . . . . . (F5) 4,00 2,29 2,29 —0 ,45 +2 .74
7 CygniA . . . .. . F1 2,48 2,14 2,12 0 ,96 +1 ,16
Procyon A . . . . . . Fs 1,13 2,92 2,02 3,92 —1, 00
& ScorpiiA. . . . . . F2 1,02 3,04 3,03 4,29 —1,26
9 Argus A . . . . . . Go 10,96 3 .46 3 .43 -2 ,79 +6 ,22

B. .. .. (G2) 4,38 4 ,06 3 .98 —0 .41 +4 ,39
Sun . . . ... ... Go 1,00 4,90 4 ,89 4 ,56 +0 ,33
& Urs. Majoris A . . . Fo 0,68 5 ,26 5,25 6 ,28 —1 ,03

The difference Mgps — Meae shows such a definite dependence on I that
it seems to indicate that M does not depend on ¥ in such a high degree as was
predicted in the theory of EDDINGTON.

The author gives the following mass-luminosity-temperature relation:

Sp(?]cairs.al H‘:s;oiltx‘llt;e Temp(?lx:ature n &/T
Bo —3¥o0 20400° 15,7 ® 0,70
B3 —0 ,4 12400 7,2 1,15
Ao 41 1 9800 3.8 1,45
As 1,9 ~ 8900 2,2 1,60
Fo 2,5 8200 1,8 1,74
Fs 3.3 7300 1,4 1,95
GO 4,5 6500 1,10 2,20
G5 5,2 6100 0,94 2,33
Ko 6 ,0 5800 0,75 2,47
K5 7 .6 5000 0,63 2,85
Mo 10 ,0 4200 0,43 3,43

1 AN 231, p. 79 (1927).
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239. Convergence of Mass-Ratios with Increasing Age. One of the important
consequences of the theory of EDDINGTON was pointed out by Voagt?!. It follows
from the theory that AM/IN varies in direct proportion to M. In the case of double
stars the mass-ratio M ,/Mp must thus become smaller and more nearly equal
to one the “older” the pair is. VoGT mainly made use of 85 double stars in
LEONARD’s dissertation® The mass-ratios were not known and had to be com-
puted from EDDINGTON’s mass-luminosity relation. In the table giving the results
S4 denotes the spectral class of the principal star.

Sa | Mamp | n S4 Ma/Mp n
gM 18,4 | 2 A 1,6 9
gK 2,7 6 dF 1,3 23
gG 1,9 9 dG 1,25 18
gF 3,0 5 dK 1,23 11
B | 4.6 8 daM 1,19 | 2

In order to investigate the possibility that the mass becomes smaller with
the age of the star, one can also make use of the relation:

My Ly
AMp Ly’

where L is the luminosity. VoGT computes the values [It,/Mpg] for a double
star whose principal component is of spectral class A with a mass of 2,5 ® and
M4/Mp = 1,6 and whose components undergo in the course of evolution a mass-
reduction in proportion to their luminosities. These values compare with the
mass-tatios actually derived in the following way:

According to VoGT the probability

Sa_ | Ma | RaMslows [MaMslewre s thus comparatively great in favour
A 2,5 1,6 1,6 of the opinion that the RussgrL dia-
F 1,5 1,3 1,2 gram gives the general course of stellar
G 1,0 1,25 1,10 evolution
K 0,7 1,23 1,06 : .

M| o4 119 | 1,04 240. Vocr’s Extension of Eppinc-

\ ton’s Theory. The theory of EDDINGTON
is based on the assumption that the product ZQ is constant, where % is the

coefficient of mass-absorption and @ the mean value of the energy produced
per unit mass and time within a sphere with the radius . H. VocT® has
derived the mass-luminosity relation in the case when 2Q is not constant, but
varies in some general way with #. The two fundamental equations give:
_Amacgr?dTt  4m.cG . P a(1—p)
L=—0%—4p= % R ﬂ)[1+1—ﬁ ar |’
where dP=—godr, P=RoT/u+4%aT* or the sum of the gas-pressure and
light-pressure, and g =GM/2. u is the molecular weight, g the gravitational
force, g the density, T temperature, it the universal gas constant = 8,26-107, and
a STEFAN’s constant = 7,63-10"%%. L and I correspond to the values within a
certain radius #, but their total values may be introduced if P, 1 — f, and %
are referred to the layers near the surface. The equation can be transferred by
applying the relations:
Ty = (1 — f)/1 — B) W[R* and  T|T, = BB Mu/R
existing between 1 — f, M, and p in the case of homologous stars. In these
equations the subscript one refers to a homologous star of unit mass, the

1 Z £ Phys 26, p. 139 (1924). 2 Lick Bull 10, p. 169 (1923).
Y
3 AN 226, p. 302 (1926).
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radius and mean molecular weight of which are equal to one. By eliminating T
between the above equations we get:

02D = 2Py = g () g,

where @ (1) is a function of the distance ¢ from the centre of the star expressed
in units of the radius ». It follows from the last equation that:

1 di1—p) B 1 de(y

1—8 dr ~ 4—3f ¢(t) dr
Further:
apP
11 dr
@ P 1 de()
@)  dr
is introduced. The luminosity-mass equation then becomes:

L_“fG 1—mp+a—éd

The coefficient of absorption % corresponds to the homologous niveau-
surfaces, and its dependence upon M and R can be taken o o*7T"” where 1 and
v are arbitrary powers of the density and of the temperature; %k is then

brought into the form:
k = const. (1 — B)*MgRi++2/R31+7,

Further L = 4w, R2}acT! and R can thus be eliminated and the effective
temperature substituted.

In reality £Q is not such a function of P, T and p that the stars are
homologous systems.

Because of that, 4 and ¢ (r) will vary with I just as the dens1ty—dlstr1but10n
varies from star to star with the total mass.

244. Statistical Investigations Concerning the Mass- Rat1o in Binaries.
E. B. Wirsox and W. J. LuvTeEn? have used accurate mass-ratios for 69 spectro-
scopic binaries for a statistical investigation.. By taking % = logip/M, and by

taking the mass-ratios 9;7 and M poth ways in each pair a symmetrical distri-
B

bution was necessarily obtamed of the 138 values of x. The dispersion o, is
-+0,26 + 0,02 and the ratio of the fourth moment about the mean to the
square of the second moment about the mean is 4,3 4- 0,4, whereas a normal
error curve gives 3,0. In a previous note the authors have found for 14 binaries
and the Sun the value of the dispersion of log I to be 0,36 4- 0,03. The value
of ¢ for the logarithm of the mass-ratios of these 14 systems is 0,30 4 0,04.

If # is the coefficient of correlation between the logarithmic masses of the
components in binaries we have:

r=1—0d/202.

By using the above data 7-is found to be 0,74 and thus there appears to be a high
degree of correlation between the masses in the pairs or a great tendency for the
masses to be equal, which is also a very general assumption. It should not be
overlooked, however, that there is probably a strong observational selection
at work. The authors inquire what would be the standard deviation of « for the
statistical distribution of the 406 hypothetical binaries that could be constructed
by pairing in all possible ways the 29 stars used in a previous note (see ciph. 219)

1 Wash Nat Ac Proc 10, p. 433 (1924).
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with ¢ = +0,36. They find o} = 0,50 or nearly double the value of ¢, . In the
material of 69 actual binaries that was investigated there is not one with a
mass-ratio greater than 5, whereas in the 406 hy pothetical binaries there are 79.
Assuming that these high mass-ratios, if they existed, would not be observed
and measured the authors find for the remaining 327 pairs a dispersion of 0,31,
which is not far from the value of 0,26 that is actually found.

The following table is computed on the basis of the material available:

9 Discovery- Luminosity Discovery- Luminosity
Ma/Ma chance ratio Mp/Ma chance ratio
1/20 1/9000 1/100000000 1/2 1/1,6 1/70
1/10 1/220 1/400000 1/1,5 1/1,2 1/11
1/5 1/14 1/25000 1 1 1
1/3 1/3,7 1/600

In view of the very great luminosity ratios it might appear reasonable to
believe that the discovery-chances have been overestimated, and that when the
discovery-chance is considered the observed mass-ratios are more scattered
than would be the case if the two components were selected at random.
It seems that there is considerable probability that the apparent clustering
of the mass-ratios about unity is due to observational selection.

242. Theoretical Derivation of the Mass-Ratio in Double Stars. The
question whether the RussgLL-diagram represents loci of equilibrium during the
evolution course or an actual course of evolution ought, as has been pointed out
by G. SHAJNZ, to benefit from an examination of double stars. Because of the
equation dm = AM we can write, applying EDDINGTON’s theory and denoting
the secondary by the subscript 4 and the primary by B,

—0,44m=1% (log M 4—1logMp) + §[log (1—pF4) —log (1—pBp)1+ 4 (log T 4 —1logTp).

The mass-ratio cannot be determined without a knowledge of the temperature
and of : — g“ as a function of %ﬁ The observational material was augmented
— PB B

by using systems for which the absolute magnitude is known only by indirect
or statistical methods. Thus computations were made for 342 systems, most
of which are certainly physical pairs. The results are summarised as follows:

For systems with com-

Giants Dwarfs ponents of B stars the va-
Spectral index!| M4/Mp n Spectral index‘ Ma/Mp n lues of I A/ S;RB for the first
0,0—0,4 0,88 28 | 0,0—04 0,88 65 three spectral intervals are:

0.5—09 | 072 | 12 | 0,5-09 | 085 | 16 0,68 0,41, and 0,34 respec-
1,0—1,4 0,66 33 1,0—1,4 0,70 15 tively. The fact that the
1,5—1,9 0,62 20 | 1,5—-1,9 0,63 12 spectral index increases
;?:;g 8’;'2 13 2,0—4.5 0,35 4 with Am and the result of
systems the spectrum of
the companion belongs to an earlier class than that of the primary, whereas
in the dwarf systems the spectrum of the secondary is of a later class, lead to
the conclusion that these relations indicate the course of the stellar evolution,
which will be that indicated by RUSSELL.

1 M N 85, p. 245 (1925). 2 Lick Bull 10, p. 169 (1922).
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AITKEN! has shown that the mass-ratios of spectroscopic binaries increase
with advancing spectral class from B to G. The same relation results from
SHAJN’s material:

SHAIN AITKEN
Spectral class| Ma/Mp 1 " Spectral class| M4/Mz n
Bo—Bo | 060 | 50 | Bo—B8 | o070 | 11
A0—A9 0,77 69 | Bo—AS5 0,75 16
Fo—F9 0,78 109 F 0,92 3

SHAJN does not think that these facts can be taken as proving that a gradual
decrease of mass takes place during the lifetime of a star. The existence a priori
of systems of very unequal masses can be expected. Further, the two spectra
are not independent of each other. When the primary is M or K, the companion
may exhibit a spectrum of gM—A, but
very seldom of a late spectral class.
In a dwarf system of, say, class K the
spectrum of the secondary is dK or
dM. Thus it is natural to expect an
average decrease of 4Sp with increas-
ing My/Mp as is actually found.

243. Lunpmark’s and Luvien’s
Differential Method 2. The statistical
relationship between the two forms
of energy in the stars, the radiant
energy, expressed as absolute magni-
tude, and the inert energy, expressed
as mass, was derived from differential
data of spectroscopic binaries. When
both spectra of a spectroscopic binary
have been observed an accurate value
for the mass-ratio or Alog M is found

Mass, « ' I
n \\ |
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\

r——-XLdlding fon
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¥ *8 +f
Absolule Magnitude
Fig. 158. The relation between absolute magni-

from the amplitudes K; and K, by
means of the relation:
—AlogM =1logK, —logK, =a.

In many cases there are esti-
mates of the relative brightness of
the two spectra and thus also the

tude and mass as integrated from mass-ratios
and differences in luminosity in spectroscopic
binaries. For comparison purposes EDDINGTON’s
curve [M N 84, p. 308 (1924)] has been inserted
and the curve derived on basis of double
stars for which the orbital elements and the
parallax are known. (Compare fig. 154.)

difference in absolute magnitude A M can be determined. If the spectroscopic
binary is an Algol variable the value of 49t can be determined comparatively
accurately from the determination of the orbit.

Suppose we have the relation:

M4 = f(logMy,),
Mp = f(logMp) ,

and M, =

W (Mp) .

The problem is then to solve the equation:
f(logMs) = w[f (logMs + )]

1 The Binary Stars, p.207. New York (1918).
2 Ark Mat Astr Fys 20A, No. 18 (1927); Upsala Medd No. 34.
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or to determine the form of f when y and a are given. In practice it will be sufficient

to use a graphical method and to construct the curve M = f(log IR) from values
dlogM  AlogM

of =AM for given values of M. The following mean values for the
differential quotient were obtained:
AlogdM AlogM
Mz - . " Mz M "
Brightest to —2M,0 —0,168 4 +2M0 to +44¥0 —0,060 6
—240, 0,0 —0,221 16 4,0 ,, 6,0 —0,060 9
0, , +4+2,0 —0,102 17 6 ,0 ,, faintest —0,073 3

As constant of integration the value It =16 for M = 5,0 was selected.
The following relation resulted:

M| logM m M | lgM m
—2¥ 0 | 0,780 6,00 | +5%0 0,000 1,0
—1,0 0,595 3,9 6 ,0 —0,060 0,87

0,0 0,410 2,6 7,0 —0,130 0,74
+1,0 0,295 2,0 8,0 —0,200 0,63

2,0 0,195 1,6 9,0 —0,275 0,53

3,0 0,130 1,3 10 ,0 —0,350 0,45

4,0 0,065 1,2

The agreement between this curve and that derived by EDDINGTON is
comparatively good. The values 4 M were not reduced to bolometric magnitudes,
but an inquiry has shown that such a reduction will not materially change the
results. The same applies to the inclusion-of new material available. ‘

244. The Masses and Luminosities of the Eclipsing Binaries. Dran
McLavucHLIN® has discussed the contribution of the eclipsing variables to stellar
luminositiesand masses. Altogether 48 eclipsing stars have been observed for radial
velocities. In 28 cases the two spectra have been measured and in 3 others the rota-
tion effect has been observed. In 21 cases the mass-ratio is known from the ampli-
tude-ratio K,/K,. The mass-ratio has been plotted against L4, the luminosity
of the brighter star, and a smooth curve has been drawn. From this curve the
value of the mass-ratio corresponding to any value of L,.could be read. It was
then possible to calculate the hypothetical mass of each component. Altogether
the masses have been calculated in 41 systems, and in 38 of these linear dimensions
and densities are known. Hence absolute magnitudes and hypothetical parallaxes
may be calculated. By using SEARES’s values for surface brightness f, the
formula:

My = Ja—S5logra + 475,

where 74 is the geometrical mean of the major and minor axes of the star, gives
the absolute magnitude. The apparent magnitude m,4 of the bright component
alone is obtained from:

map — Mg = 2,5log(1 — L),

where m,p is the apparent magnitude of the system at maximum brightness.
Then: _
logm = 0,2 (M4 — mg) — 1
gives the hypothetical parallax. Further:
AM = mp — my = 2,5log[L4/(1 — Ly)].

1 AJ 38, p.21 (1927). 2 ApJ 55, p. 198 (1922).
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The bolometric magnitudes have been calculated from the formula given by
EDDINGTON: My = 4,75 — 5,0log7s — 10 log T,/5860°.

The bolometric' magnitudes have ‘been reduced to EDDINGTON’s standard
curve for T, = 5200° by applying the temperature correction term:

T,

5200°°

The RusseLL diagram shows that the dwarf sequence is well determined
by the eclipsing binaries.- Yellow and red giants are almost totally lacking. The
relation of mass to spectral class is shown in the following synopsis:
Then the mass-luminosity diagram

2log

Spectral class | Stars | Pairs  was formed. The scattering around the
08,5 350 2 4 relation curve was found to be compara-
Bo—B2 16,6 6 4 tively large. The sources of appreciable
B3—B5 5,2 12 8 errors must be-limited to the radii and
fg:gg g; 12 1‘; the effective temperatures. It does not
Fo_F5 07 P 3 seem likely that in any case errors of
F8—Gs5 1,1 10 5 the radii could affect the result by as

M1 0,6 2 1 much as one magnitude, which would

correspond to an error of roughly 30%,
in the radius. The effective temperature should not introduce an error greater
than half a magnitude. Thus a deviation of 1M,5 ought to be relatively in-
frequent, but at least five well-determined stars equal or exceed that limit,
and several others of less certain mass so far exceed it that no reasonable ad-
justment of temperature will bring them within 14,5 of the relation curve. The
author is of the opinion, which is also shared by me, that we are not
justified in saying that the mass and effective temperature of a star
determine a unique value of the luminosity.

McLAUGHLIN has pointed out that if there is a strict one-to-one correspondence
between mass and luminosity within a group of stars with the same effective
temperature but with different masses, the density of each star would be uniquely
determined. The curves of constant dimensions and temperatures have been cal-
culated from EDDINGTON’s mass-luminosity relation. The figure provides a
check on the calculated density, since the point for any given star will fall
in a position corresponding to the assumed radius, regardless of whether the
star satisfies the theory or not.

Few of the stars show such great deviations from the theoretical densities
that the calculated ones would have to be multiplied or divided by 8 or a greater
factor. It is very doubtful whether as great a change of radius as 30 per cent
would be permissible in any of these cases. Considerable deviations are also shown
in other cases. Nor would an adjustment of the scale of effective temperatures
remove the disagreement between observation and theory.

245. The Upper Limit for the Stellar Masses. H. Vot has discussed this
important question®. The observations suggest that an upper limit exists and
the theory concerning the interior of the stars indicates that unstable conditions
must arise as soon as the radiation pressure equals the amount of the gas pressure.:
VogT assumed an arbitrary law of-density distribution within a star (¢ = F(7))
possessing spherical symmetry. The amount of energy L, passing in unit
time through the niveau-surface at a distance 7 from the centre is

4macy® dT*

Ly=— 3ko  dr’

1 AN 230, p. 241 (1927).
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which can be transformed into:
_ 4acG P d{1—p)
=7 9ﬁr(1——ﬁ)[1+i’__—ﬂ aP |’

where I, is the mass within the distance . If a star is compared with a homo-
logous star with M =1, R=1, and the mean molecular weight m = 1,
the following relations exist:

THTi = (1 — B)/(1 — B,) MR,
T|T, = B[, Mm|R .

L,

Putting: @) = (1—B)/pi,
we have: (1 — BBt = @ (x)Meme,
from which we obtain:
1 du—p _ f 1 de)
1—8 dt T 4—38 o dr
combining with the equation for L, we obtain:
47,cG
L="22900— ) [+ w() 47_137/3
where: ) — Ur-detjds _ 1jot)-dyo/dx
= T1/P.dPjax ~ 1/P,-dPjjdt

Denoting by Q = L,/I, the mean energy produced we have:
kQ = 47cG(1 — B)[1 4+ v (v) - B/(4 — 3B)].

The equation says that within homologous stars the quantity 2Q varies compar-
atively little as the mass becomes larger. It is also clear that when we are consider-
ing very heavy stars, a small change in the function £Qwill correspond to a change
in v (r) that is as much larger as is the value of the mass. If the mass approaches
an infinite value, the formation of a star is only possible if £Q is independent
of r and has a constant value equal to 4m,cG.

If £Q is not a constant, but proportional to a function of t, it can be shown
that 1 — f reaches, either in the central parts or in the shells near the sur-
face, the value 1 according as 2Q increases as we proceed to or from the centre.
Then the upper limit for the value of the mass is reached, as every further
contribution of matter to the star will be driven away by the radiation pressure.
— In reality the condition 2Q = const. will not be fulfilled in the interior parts
of a star, because it is very unlikely that the quantity £2Q is such a function of
temperature, density, and pressure that it would have a constant value for such a
distribution as corresponds to the condition £(Q = const. Already for that
reason the masses of the stars must have an upper limit.

In the preceding lines it is assumed that the stars do not rotate. If rotation
is taken into account the conclusions will remain principally unchanged.

The question whether an upper limit exists for the stellar masses has also
been discussed by W. ANDERSON? and later by G. I. Pokrowski2. The former
starts from the energy formula: 3R

sv 7
where % is the constant of gravitation, E the potential energy, and 7 the radius.

The formula is valid if infinitely scattered matter is united into a homogeneous
sphere (star) of radius 7. In the cosmical cloud from which the sphere is formed

1 AN 218, p. 205 (1923); Z f Phys 53, p. 597 (1929). 2 Z £ Phys 49, p. 587 (1928).
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the potential energy E is assumed to have been uniformly distributed. If the
material mass of this cloud is 9, the mass corresponding to E M,, the mass

/7

of other energy present MMy, and the total mass I so that:
M= M + WMy + My = Wy + M,

we have M, = E/c?, where ¢ is the velocity of light. The above equation can then
be transformed into: i ;
E2 —_ (-3‘%* — 2m102)E + 9)’&204 — 0}
which when solved gives:
_ Sret

E="gp — e+

357258 578903

36k2 3k
E has thus real values only when:
_5vct?
9}21 e '12]3 .

Thus the mass of a star has an upper limit. A maximal value of It is derived
from the above inequality and this gives a maximal value for the total mass of
the cosmical cloud: syot 5\ict ) 3

M=5p = (”6") ?(mlaﬁ) ’
where o is the density of the star.

In an analogous way POKROWSKI has derived a maximum value that
only differs from that of ANDERSON in the respect that the numerical factor
(2)i is not present.

The upper limit corresponds to a value of log I = 35 and thus enormous
masses could exist.

246. Relation between Stellar Mass and Proper Motion. When the masses
of visual double stars are being derived the great difficulty is the determination
of the parallax. The data must necessarily be selected. The systems for which
orbits have been determined must either be exceptionally massive or the linear
separation must be relatively small. It seems very reasonable to suppose that
the latter provides the greater part of the explanation.

J. Jacksox?! has tried to use the proper motion instead of the parallaxes
in order to test the masses independently. The proper motions were divided
by the dynamical parallaxes z; and the resulting linear motions analyzed by
AIRY’s method. The following results were found:

Stars with known orbits.

Spectral class | Coordinates of apex L:;eii(;cgeyr ;;Set;r ‘ m n
|

A2 258°,5 + 32°,0 2,18 13,40 21

Fs 267 ,5 +29 ,1 3,07 4,81 52

G2 290 ,6 - 41 ,6 4,79 1,27 30

K2 269 ,3 + 10 ,2 8,17 0,26 12

Stars with short arcs only.
Spectral class Coordinates of apex L\llneilg Ci;zra;z;'r E m n
|

Be 278° 4 32° ! 2,07 12,6 ® 24
A2 267 ,2 4+ 35,8 2,16 11,02 83
Fa 261 ,0 4+ 24 ,2 3,91 ’ 1,87 102
G3 293 ,6 4 41,7 6,63 0,38 74
o K1 269 3 + 25 .6 487 | 096 42

1 MN 83, p. 444 (1923).
Handbuch der Astrophysik. V, 2. 44
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A comparison was made with the mass values of SEARES. The agreement
is good when the fact is taken into account that SEARES’s results refer to geome-
trical mean masses and JACKSON's to [Emﬂs. Owing to the small dispersion
in M the two values do not differ much.

The present writer has derived a mass-proper-motion relation. The derivation
of the masses on the basis of spectral proper-motion parallaxes has convinced
me that it will be possible to find a rather definite relation between Mt and
H =m+ 5+ 5logu. Such a relation will be of use for deriving the frequency
of stellar masses from the frequency of absolute proper-motion magnitudes.

Using 62 cases of well-determined individual masses the following relation
has been found by a least-squares solution:

logM = 0,9750 — 0,1021 H -+ 0,00131 H2.

Using the relation between mass and absolute magnitude as derived in ciph. 232
(p. 666) and making the assumption that M = H — 5,6 the following formula was

found: logM = 1,6262 — 0,2037 H -+ 0,00442 H>.

247. Relation between Stellar Mass and Form of Orbits of Binary Stars.
Already in the early material it seemed suggested that there is a relation between
the total absolute magnitude and excentricity of binaries. As the difference in
mass AM is directly dependent upon the difference in M the existence of the
thought relation would prove a relation between stellar mass and form of the
orbit of double stars. It seems obvious that no definite relation can be established.
Using different determinations of trigonometric and spectrographic parallaxes of
stars the absolute magnitudes of 347 binaries have been approximated by mel.
The coefficent of correlation between excentricity, e, and absolute magnitude M
was found to be:

r = 10,388 4 0,048

and the regression lines:

M =0,360¢e + 1,586,
e = 0,032M + 0,273.

The correlation found is not very high but should probably be taken as
real. This result has been doubted by H. SIEDENTOPF2? who finds when treating
the spectroscopic and the visual binaries separately no correlation between M
and ¢ and thinks that the correlation above is spurious and a result of selection
in the material®.

Earlier C. D. PERRINE? has dicussed the question of a dependence of orbital
excentricity upon the absolute magnitude of the components of binary stars.
He used the difference 4 M and compared with e and found the following relation:

Limits of e ¢ \ AM . "
0,00 to 0,29 0,19 0,60 7
0,30 ,, 0,44 0,37 129 | 16
0,30 ,, 0,44 (0,37)% ' (0,95) ¢+ (15)
0,45 ,, 0,58 0,50 1,32 | 18
0,59 and larger 0,71 2,04 ‘ 16
0,59 . . (0,71)8 (1.47) | (1)

1 Ark Mat Astr Fys 20 A, No. 12 (1927); Upsala Medd No. 20.

2 Gottingen, Univ Sternw Verdif H. 3 (1928).

3 If so the conclusions concerning stellar masses and their relation to luminosity will
also be affected to a certain extent.

4 AJ 33 p. 180 (1921). 5 Excluding 85 Pegasi. 8 Excluding Sirius.
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This seems to be a pretty well established relation but on another hand a
similar grouping made by me on basis of 116 pairs and represented graphically
in Fig. 159 does not seem to reveal any correlation between ¢ and M. It thus
seems that we have here one of the many problems where our present material is
insufficient to give a definite answer upon the inquiry.

700
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Fig. 159. Test for a supposed relationship between excentricity of visual binaries and the
difference in absolute magnitude 4M between the components.

248. The Mass of the Orion Nebula. The method of determining stellar
masses is not restricted to the binary stars. It applies to every cases of a rotating
body where the period of revolution can be determined for a particle at a certain
distance. Thus the mass of the solar system could be approximated when an
outside observer had observed the difference in velocity between the Sun and
Neptune as soon as he had a knowledge of the linear distance between the two
bodies.

It was found by FABRY, BuissoN, and BOURGET when they were applying
the interferometer method, that internal motions existed within the Orion nebula
and that the character of the motion was that of rotation. Later on CAMPBELL
and MooRe?! determined the radial velocities of 96 points near the Trapezium.
The motion is of rotational character, although considerable individual deviations
occur. In order to determine the amount of rotation it has been assumed that
the nebula rotates as a rigid body within a distance of 2’ from the centre. With
the aid of a least square solution the plane was found that gives the closest
representation of the velocities. This corresponds to a rotational component in
the radial velocity amounting to 5 km/sec at a distance of 2.

If M is the central mass and m the (infinitely) small mass of a particle at the
distance #, v the linear velocity, and & the gravitation constant, we have:

M -+ m = v2rk-2,

or
M Lo = 0,001129“71;2,

where ¢” is the distance of the point considered in seconds of arc, v is the linear
circular velocity at this point measured in km/sec. Next the parallax has to be
derived. In a paper of mine still unpublished it has been found that the value:

Torion = 07,0030,
it Lick Publ 13, p. 96 (1918).
44%
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derived from a discussion of absolute magnitudes, proper motions, motions of
binaries etc., and the distribution of stars in front of the dark nebula accompanying
the bright one is the best that can be derived from the existing data.

Thus the minimum mass of the nebula is found to be 48 ®, which is not
astonishing when one remembers that the trapezium-stars alone are certainly
very massivel.

The value thus derived is the minimum mass of the nebula; on account
of that we cannot locate the axis of rotation and the observed rotation is thus
a component of the actual rotation.

The method can also be applied to the anagalactic objects.

249. Planetary Nebulae. The central stars of planetary nebulae are O stars
that evidently do not differ from the ordinary O stars in any other way except
that they are surrounded by nebulosity. W. H. WRIGHT has said that the disparity
among the central stars in planetaries is no larger than the disparity among
non-nebulous O stars.

The extensive survey of the spectra of 125 bright-line nebulae at Lick
Observatory has revealed the important fact that several planetaries show internal
motions that are most likely interpreted in terms of rotational motions. The
internal motions are in several cases of a very complicated nature and there are
certainly other phenomena present that change the spectral lines, such as a
possible extension or outward motion of the gaseous envelope, differential effects
of radiation pressure, ZEEMAN or STARK effects, etc. Still, it seems to be justifiable
to try to find a general rotational component.

In 23 cases it seems possible to derive a rotation component. The uncertainty
is considerable, but still there seems no doubt that the planetaries are very massive
and bodies of a low temperature.

. | otation Ma . mper:
Objeer | Distance | ol | Parallax | MO0 pensity of cenrat | TgTEeTALIC
,in km/sec nebula { star
NGC 1535 4,4 } 4,0 . 07,0017 ! 46 © 4390 ® “ 38-108
J320 — 3, | 66 ' 0,00062 240 22400 ' 34-10°
IC 2165 4,2 28 0 ,00025 ' 149 9320 | 51-10°%
NGC 2392 15 ,0 | 16,0 ‘ 0 ,0015 2900(?) 4470 ‘ 27+ 10%
2452 10 ,0 14,0 ] 0 ,00019 311500(?)1 100000000 (?) : 85-108
3242 {% ’? ! g’; ' 0 ,0018 156 i 40900 | 58-10°
IC 4593 2,05 2,15 [ 0 ,00095 13,3 ! 480 | 22-103
3,5 | 64 113 7270 a3
NGC 6210 {4 s 4o 00014 57 3650} | 3610
6543 3.5 50 | 0,0023 43,5 | 5600 40-10°
6565 3,0 7,0 — - — ‘ —
6572 4,0 2,8 | 0 ,0019 19,4 540 31-108
6567 1,8 7,5 1 0 ,0005 220 | 58000 45-10°
6720 25,0 2,0 0 ,0012 94 415000 72103
6741 4 1 2,4 . 0 ,00025 107 128000 58103
6807 1,0 4,3 0 ,00019 ! 1100 2860000 66 - 103
6818 9,0 2,4 0 ,0011 54 | 2090000 70+ 103
6826 10 4 4,0 | 0 ,0020 94 4820 34103
6886 2,8 5.0 0 ,00032 250 | 156000 | 52-10°
IC 4997 2 .4 5,7 ‘ 0 ,00019 460 26800 ¢ 35-10%
NG gooy | {88 & oo 30 [ IO sonnof
7026 3.7 18,4 l 0 ,00045 . 3100 | 8140000 | 45-10°
7027 5.5 10,0 { 0 ,00044 | 1420 | 18000000 , 86-103
7662 5,6 ‘ 80 | 0,0018 | 230 | 151000 | 52-10%

1 Lund Obs Circ 3, p. 64 (1931).
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To this table should be added the remark that the densities have been
computed on the assumption that all the mass is concentrated into the central
star. This seems reasonable when one considers recent work concerning the
formation of gaseous nebula.

The parallaxes are generally the ones derived by H.ZansTral. In some
cases parallaxes have been derived by me according to the same method. The
same applies to the temperatures of the central stars.

Although the dispersion in the density values is considerable there seems
to be a rather definite relation between the temperature and density. Thus:

T 2
32000° 3800
47000 38000
75000 6000000

This may be due to a systematic error in the temperatures but it might also
be a real phenomenon. It is interesting to see that the densities, although high
in many cases, still are not above the upper limit assigned to the density of matter.
Thus E. C. STONER? has on basis of EDDINGTON’s theory on stellar evolution
computed an upper limit for the central densities of the stars on reasonable
assumptions; he finds this limit to be 5.10% @.

250. Mass of the Stellar System. The total mass of the stars in the Milky
Way System is given by:

Moot = N/l/:/nD (o, 8, VMM, &, 8,7 do dddrd M,

in which M (M, «, §, #) is the mass of an individual star of absolute magni-
tude M at the point «, &, , and N the number of stars per cubic parsec in
the vicinity of the Sun.

At present we cannot suppose anything else than that the mean mass of
a certain number of stars is the same everywhere, thatis, that 3 (M, «, d,7) isin-
dependent of position. LuyTEN® has adopted the density law of KAPTEYN.
The above formula simplifies to:

Miot = M+ Now,

where N is the total number of stars in the universe and is obtained by means
of the relation:

N = 0,0451 f4n,,.(s,102>2 0*4(0)do,
0

o being the polar semi-diameter of the homologous ellipsoids around the Sun
and A(p) the density of stars in space. Further according to KAPTEYN:

log 4 (0) = —5,356 + 4,8901logo — 1,200 log2p .
LuyTeN finds:

Noo = '1,5 . '109
For M he adopts 0,945 ® and thus:
Mot = 1,42 -10° 0.

1 Z f Astrophys 2, p. 329 (1931). 2 MN 92, p. 662 (1932).
3 Harv Ann 85, No. 5 (1923).
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The value of N is perhaps six times too small, as is suggested if we adopt
the results of SEARES!. On the other hand LuyTEN’s value of i seems to be too
large. I have adopted M = 0,6 ®. Thus the total mass should be:

Mot = 5,4-10°0.

251. The Masses and Mass-Ratios of Stellar Systems. In1916 V.M. SLIPHER?
announced that the spiral nebula NGC 4594 rotates in its own plane approx-
mately as a rigid body. This conclusion was confirmed by the subsequent work
of F. G. PEase® at Mount Wilson. Later on the rotational motion of the Andro-
meda nebula was also established by means of the measurements of PEASE and
Apamst. Already in 1914 M. WoLF® had found a rotational component in the
motion in Messier 81, but details were not published until later on. The results
given below for Messier 33 and Messier 51 are poor, as the rotational motion is
based on the difference in motion between the centre and one outside object in
each case, NGC 598 and NGC 5194, respectively.

The method of computing the mass is the same as in the case of double
stars®. Uncertainties are involved principally on account of the uncertainties in
the parallax adopted and the inaccuracy in assuming that the inclination of an
anagalactic object is derived from its ellipticity.

Object Mot | M
Andromeda Nebula 1,8 -10° —17,8
Messier 81 . . . . . . 7,6 - 101t —24,2
NGC 4594 . . . . . . . 3 -10%10 —17,0
Messier 33 . . . . . . . 1,510 —15,1
Messier 51 . . . . . . . 1 100 I 466
Our Milky Way System . 1 10" —16

The mass derived from values for the spectrographic rotation is dependent
on the immediate effect of the gravitation. The gravitational mass thus also
includes the dark matter within the anagalactic objects, such as extinct stars,
dark nebulae, and meteors. On the other hand an approximation of the mass
of an anagalactic object can be derived from the total absolute magnitude. This
involves the assumption that the mass-luminosity relation is the same in different
parts of the universe. On account of the fact that the proportions of different
spectral classes within different galaxies do not vary considerably, and that
hence the luminosity curve seems to be rather equal, it seems justifiable to assume
as a first approximation the universality of the mass-luminosity relation. The
luminous mass so derived does not include the dark matter and thus it will
be possible to obtain an approximation of the ratio, Dark matter/Bright matter,
in the cases where both the mass-values have been estimated.

. Dark - bright matter

Rati
ato Bright matter
Object Ratio Object Ratio
Messier 81 . . . . . . . 100:1 Messier 51 .. . . . . . 10:1
NGC 4594 . . . . . .. 30:1 Messier 33 . . . . . . 6:1
Andromeda Nebula 0:1 Milky Way System 10:1

1 Mt Wilson Contr No. 301 (1925); ApJ 62, p. 320.

2 Lowell Obs Bull No. 62 (1914). 3 Wash Nat Ac Proc 2, p. 517 (1916).

4 Wash Nat Ac Proc 4, p.21 (1918). 5 VIS 49, p. 162 (1914).

8 Upsala Medd No. 40; Ark Mat Astr Fys 21, No. 10 (1928); Populdr Astronomisk
Tidskrift 10, p. 19 (1929).
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In the case of double nebulae the mass-ratio of the components can be
determined from measurements of the spectrographic rotation. Let two
particles, in each of the two components, be at the same angular distance d'* from
the centre, then their linear distances are equal and the mass-ratio will be:

%B/ My = %/ Vi

where V4 and Vj are the circular velocities at the said distance. The application
of the method will involve much observational work, but it does not seem to
be impossible to find cases where one ought to be able to photograph both the
spectra of regions at such distances from the nucleus that decent values of
Mp/M4 can be derived.

Assuming that the mass-luminosity law holds good we can take the ratio
E =1I/M, where I is the luminosity and 9t the mass within unit space. Then:

_ N V02_ ig (V02
M4BT L d, (7) T Epdy ?E)
where ¥V, is the velocity of the Earth, d” the angular distance from the
centre, 7 the apparent intensity. Determinations of V4 and Vg can make a
contribution to the value of E in both systems or test the binary character of
the pair.

252. The Angular Moments of Visual Binaries. SHiNzo SHiNjo and YosHI-
KATSU WATENABE! derived in 1918 the masses and the angular moments of
visual double stars. If H denotes the angular momentum of a system we have:

H=2m,a5P-375(1 — ¢2)2 M, Mp Wy + M) 2

if the terms caused by the rotation of the components are neglected.

The authors conclude that the masses and angular moments of star systems
are, on the whole, of the same order of magnitude. The multiple systems have
somewhat greater angular moments, the masses on the other hand remaining
about the same. For spectroscopic binaries the angular moments are
comparatively less than for visual binaries, the masses, however, being con-
siderably greater. Our solar system has an angular momentum over hundred
times less.

It is really very remarkable that the values of H are of the same order of
magnitude, when one remembers that the fifth power of the parallaxes enters
into the determination of the moments. It is difficult to avoid the conclusion
that this result has a certain cosmogonic bearing. The authors compute the
angular momentum of a primordial swarm of meteorites, which possesses spherical
symmetry and is isolated from other external influences, and also suggest a
theory for the explanation of the celestial rotation, perhaps the most enigmatic
problem in cosmogony.

253. The Origin of Binary Stars. H. N. Russgrr? has pointed out that
the problem whether the binaries are the result of fission or condensation in
a nebula can be advanced by means of studies of the triple and multiple systems.
Systems originating from independent nuclei should not show any definite
relations between masses or relative distances. An analysis of the problem shows
that if a gaseous mass divides by fission without external disturbance into two
parts the distance of the centres at the time of division is greater and the density

1 Mem Coll of Sc Kyoto Imp Univ 3, No. 7, p. 199 (1918).
2 ApJ 31, p. 185 (1910).
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less the more unequal the parts (components) are. The ratio in which the initial
distance can be increased by tidal action increases as the components become
more unequal. The smaller component has the greater density immediately
after the separation. The contraction necessary for a second fission is less for
the more massive component. The ratio of the dimensions of the separate masses
in the case of the second fission to that in the case of the first is always small.
The increase in density between the fissions is very great.

The distribution of masses that is found among binaries makes the fission
theory very probable. As the orbital elements are known only to a small extent,
it is necessary to investigate the distribution of the (projected) distances, S,
and S;. Only pairs with common proper motion were used; of 800 such pairs
74 are triple or multiple. It seems that the fission theory accounts for existing
peculiarities of arrangement and gives a simple and fairly detailed account of
their origin. The stars for which the separation is 1000 astronomical units exhibit
two maxima of frequency, of which one, S,/S; = 0,15, can be accounted for by
fission theory, but the second, S,/S; = 0,40, cannot. The theory that multiple
stars have developed from nebulae that originally had well defined nuclei
corresponding to the members of the system must in any case be called on in
order to account for such wide groups as the Trapezium in Orion. In the case
of the binary stars it seems reasonable to adopt the fission theory.

254. Concluding Remarks. Whereas the magnitude of the stars can be
measured directly and their colour estimated or their colour equivalents derived
in terms of magnitudes, the dimensions and the masses of the stars cannot be
measured by any direct method except in the case of the apparently brightest
stars, the diameters of which can be measured by the aid of interferometer
methods.

The important elements, stellar dimensions and stellar masses, are thus
derived or inferred quantities that are therefore not only affected by the errors
in the observed quantities, but also by the uncertainty concerning the con-
stants in the equations connecting the given quantities and those required for.
The dimensions can be derived for all stars for which we possess tolerable know-
ledge of the quantities M and ¢,/T". It cannot be said that we have a reliable
temperature-scale as yet, in spite of all the varied research work carried out
within this branch. As regards the masses our knowledge must be restricted for
a long, long time to binary stars, and the application of the results to ordinary
stars will certainly be justifiable, but will, no doubt, increase the uncertainty
of the conclusions.

The third element considered here, the density of the stars, can be deter-
mined from observations of binary stars. The parallax does not enter and thus
the density will be determined with fair accuracy as soon as the temperature
is known.

The present situation with regard to the possibilities of deriving stellar
dimensions and stellar masses seems rather satisfactory. The standardization
of the temperatures (colours) inaugurated by HERTZSPRUNG could easily be
extended to embrace several thousand intermediate stars. The parallaxes
available will give linear dimensions of fair accuracy for at least a thousand
stars. The new interferometer at Mount Wilson will furnish a means of measuring
the dimensions of perhaps fifty stars or more, thus making it possible in the
near future to standardize the system of computed diameters.

It might at first seem that the further extension of our knowledge of stellar
masses will advance very slowly. But the discovery of new eclipsing binaries
or the orbital determination of pairs that have been previously insufficiently
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observed will add many good cases within a short time to our previous stock.
The discovery by AITKEN of a number of visual binaries of short period makes
it possible for us to obtain within the next ten or twenty years orbital elements
of a number of binaries. Many of these AITKEN pairs are very imperfectly known as
regards their parallax, proper motion, spectral class, and other attributes, but
they can easily be entered on current programmes. It also seems likely that
the publication of AITKEN’s extension of the BurNHAM General Catalogue of
double stars will considerably increase the number of new binary star orbits. It
does not seem to be too optimistic to expect to have gained a knowledge of 500
individual stellar masses ten years from now. A necessary condition for the proper
increase in data concerning the masses is intimate co-operation between the as-
trophysicist and the representatives of astronomy of position.

The approximations to the spectral-mass relation, mass-luminosity relation,
and mass-temperature-luminosity relation hitherto reached will no doubt be more
accurately established within a short time from now. The results of EDDINGTON,
Jeans, and others concerning the theoretical mass-luminosity relation will
certainly be improved upon by the aid of new observational data in the near
future.

An application of the interferometer methods to the method of determining
the mass-ratios seems to be of interest. If stars that take no part in the motion
of the components of binaries, but that are not too far from them, are measured
interferometrically, the results concerning the mass-ratios should be obtained
in a much shorter time than when the derivations are based on meridian ob-
servations.

The general attitude of astronomers towards the problems we have dealt
with in this paper sometimes seems to involve a certain overestimation of the
bearing of certain theoretical results. It sometimes happens that the reasoning
goes round in a circle, e. g. if the mass of a star does not agree with EDDINGTON’s
curve this does not prove anything concerning the correctness or incorrectness
of the result. This is a commonplace, but still it seems to me that it should be
pointed out. It has often happened that when new results have been presented
it has been asked: “How does that result compare with EDDINGTON’s, JEANS's
or RusserLL’s formula”? Of course, such comparisons should be made, but if
there is only poor agreement it is not necessary for the observers to apologize
and to regret that the observations do not fit the theoretical demands.

I am so far from denying the value of investigations of theoretical problems
within astronomy that I wish to say that many efforts must be made on the
part of the theorists in order to advance a number of questions on the basis of
the now available material. We really should feel under much obligation to the
theoretical astronomers for their splendid contributions: theories give us the best
guidance with regard to the requirements of future work and, what is most
important, theories discover and formulate the general laws of Nature. Without
any theories the astronomical observations would be a quite worthless collection
of dead figures and descriptions.

But the theoretical interpretations of astronomical facts are always changing.
Theories do good service and are dismissed. New theories are advanced and
serve for a longer or shorter time. The solid construction on which astronomical
theories are embroidered consists of the vast accumulation of recorded facts
that has been going on from antique times up to recent days.

(Appendices to Chapter 4 see p. 1077.)



Chapter 5.

Stellar Clusters.
By
H. SHAPLEY-Cambridge, Mass.

With 21 illustrations.

a) Introductory Survey?.

1. The Significance of Clusters. We designate as star clusters those group-
ings of stars in which the members are known to be gravitationally associated
or may be assumed from their apparent positions relative to each other to con-
stitute distinct physical organizations. Such a category includes both the typical
globular systems and the more numerous and less well defined open clusters
which range, for instance, from the Hyades to the fairly compact system of
Messier 11.

There are also, in all parts of the sky, among the faint stars thousands of
less obvious groupings. The studies of star distribution on the astrographic
charts by TURNER?, and by Opik and LUKKS3, indicate that the distribution is
not at random. Working on this problem with Harvard plates4, I have shown
that the clusterings and vacancies are real and are not to be attributed to
occultation by nebulosity. The observed irregularities in the star counts, beyond
those allowed by the law of chance, are to be attributed in general to the very
prevalent stellar associations, which are not commonly recognized by casual
inspection, and cannot be separated from surrounding stars except through
laborious investigations.

The typical star clusters, however, are in themselves numerous and widely
distributed, and their many problems are intimately interwoven with some of
the most significant questions of stellar organization and galactic evolution.
The general study of clusters deals with a wide variety of subjects. It involves,
for instance, the problems of super-giant stars, stellar luminosity curves, irreg-
ularities in stellar distribution, star streaming, island universes, and the genesis
of galactic systems; it considers primarily, however, the composition, structure,
distribution, and cosmic position of the easily recognizable galactic and globular
clusters, and in the following sections these groups will receive almost exclusive
attention.

2. Historical Notes on Clusters. The history of the scientific study of star
clusters is neither extensive nor very significant. Several clusters of naked eye

1 Since the manuscript for this chapter was submitted to the publisher in May 1930,
several important studies of star clusters have appeared. Only a few of these could be
considered in the course of proof reading. November 1932.

2 Obs 48, p. 173 (1925). 3 Publ Obs Astr Univ Tartu (Dorpat) 26, No. 2 (1924).

¢ Harv Circ 281 (1925).
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stars—for example, the Pleiades, Praesepe, Coma Berenices—have of course
always been known, though their definite assignment to the cluster category
came with the work on proper motions in the last fifty years. In a few constella-
tions the majority of the brighter stars are now known to lie near together in
space, and to form physical systems. Among such constellation groups are
Taurus, Orion, Ursa Major, Perseus, Scorpio, Sagittarius, and Vela. But no
close physical connection exists for the bright stars of Cassiopeia, Lyra, Aquila,
Canis Major, and many others.

A score of the brighter galactic clusters and half a dozen of the globular
clusters can be seen with the naked eye under good conditions. These objects
were probably all known, therefore, to the ancients, but only a few appeared in
our permanent records before the second half of the eighteenth century.

The records of HIPPARCHUS contain references to the double cluster in Perseus
and to Praesepe, although neither was recognized as a group of distinct stars
until the invention of the telescope. Both were first resolved by GALILEO, who
described “‘the nebula called Praesepe”, ‘“‘not one star, only, but a mass of more
than forty small stars’i.

Messier 22, the first globular cluster to be recorded as such, was discovered
by IHLE? in 1665; w Centauri was noted as a lucid spot in the sky by HALLEY
in 1677, and had previously been known to BAYER as a hazy star, and to PToLEMY
as a star in the cloud on the HorsE’s back; in 1702 KircH discovered Messier 5,
and the famous Messier 13 (the Hercules cluster), the brightest in the northern
sky, was accidentally found by HALLEY in 1714.

The open cluster Messier 11 had already been recorded by KircH in 1681;
but the majority of bright galactic clusters, except the Pleiades and the Hyades,
were first recorded as such by MEesSsiER® in 1771. The conspicuous groups of
stars around # Carinae and the cluster near x» Crucis were discovered by Sir
JouN HERSCHEL.

For both open and globular clusters, as well as for bright nebulae of all
kinds, the systematic listing by MESSIER in 1784 marked an epoch in the recording
of observations of star groups. The HERSCHELS advanced the work materially.
Especially significant were the General Catalogue published by Sir JouN HERSCHEL
in 18644, and its important sequels by DREYER in the New General Catalogue
and the Index Catalogues.

ScruLTZ and BARNARD were among the pioneers in determining visually the
positions of the individual stars in globular clusters. The powerful photographic
method of charting positions was first used by the HENRYS and GouLD for galac-
tic clusters, and by SCHEINER, LUDENDORFF, and von ZEIPEL for globular systems.

The Pleiades, the Hyades, Praesepe, h and y Persei, and some of the other
bright galactic groups have, for the past fifty years or more, been the subject
of frequent investigations of positions and proper motions. It is not unfair to
say, however, that, except for studies of these nearby objects, the work done
on individual clusters before the present century is now of little value. The deve-
lopment of photographic methods, the modern large telescope with its rapid
spectroscope, and the standardizing of magnitude sequences have all tended to
make the earlier work obsolete. The present views of the nature, dimensions,
and significance of the globular clusters are less than twenty years old5.

1 GALILEO, Sidereus Nuncius, 1610; ALLEN, Star Names and their Meanings, p. 113 (1899);
see SHAPLEY and HowarTH, A Source Book in Astronomy, p. 49 (1929).

2 R. WoLrF, Geschichte der Astronomie, p. 420 (1877).

3 Hist. de I’Acad. R. des Sci., Paris 1771, p. 423. 4 Phil Trans 154, p. 1 (1364).

5 A very full bibliography of the work done on clusters is to be found in Appendix C
of Star Clusters, Harv Obs Monograph No. 2 (1930).
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In striking contrast to the present conception of a hundred globular clusters
and hundreds of thousands of extra-galactic nebulae spread throughout measured
millions of light years, with diameters of hundreds of light years for the clusters,
and thousands of light years for the star clouds and nebulae, is the picture suggested
by HALLEY’s comment on his discovery of the Hercules cluster:

“But a little patch—and similar to the lucid spot around Theta Orionis
(Orion Nebula), Andromeda (Andromeda Nebula), and in the Centaur (w Cen-
tauri)—most of them but a few minutes in diameter; yet since they are among
the fixed stars ... they cannot fail to occupy spaces immensely great, and per-
haps not less than our whole solar system.”

b) Classification, Number, and Distribution.

3. A Comparison of Galactic and Globular Clusters. It isproposed toadopt
in the present treatment only two main divisions—globular clusters and galactic
clusters®. The principal characteristics of globular clusters are strong central
concentration and richness in faint stars (fig.1 and 2). The galactic clusters (fig. 3),
looser and much less populous, are extremely varied; for example, Messier 11 is
relatively rich, Messier 35 is irregular, the Pleiades and Messier 16 are nebulous,
and Messier 103 and N.G.C. 1981 may be but accidental groupings. The so-
called moving clusters are merely the brighter and nearer of the galactic types
in which radial or transverse motions have been measured.

In future studies, especially in the Magellanic Clouds, we may find examples
of clusters in a transitional stage between the richer galactic groups and the
most open globular clusters. At present, however, there seems to be a rather
sharp division which distinguishes the globular clusters as a special group of
sidereal organizations—a group limited to about one hundred objects. The
galactic clusters grade indefinitely into multiple stars in one direction, and in
another into the condensed systems like Messier 11 and N.G.C. 2477 which
closely simulate loose globular clusters.

Clear discrimination between galactic and globular clusters is also possible on
the basis of distribution in the sky. The most conspicuous feature of the distribution
is that galactic clusters are almost exclusively in the Milky Way and distributed
irregularly throughout all galactic longitudes, while the globular clusters are rather
widely scattered in latitude, but quite restricted in longitude. The globular clusters
are, in fact, mostly in one half of the sky, as will be shown in subsequent diagrams.

4. The Number of Clusters. Thousands of new nebulae and millions of stars
have been disclosed by modern telescopes and photographic plates, but the
essentially complete listing of globular clusters antedated photography. Every
recognized globular cluster except one bears a number from the New General
Catalogue of DREYER, and all but a few were catalogued more than ninety years
ago in the earlier Herschelian lists. This early completion of the discovery of
the globular clusters led BAILEY? to suggest that the limit of the region occupied
by these systems had been reached, a suggestion that appears to be supported
by subsequent work?®.

There is, however, a vast difference between cataloguing an object and

1 The term galactic cluster, suggested by TRuUMPLER [Publ ASP 37, p. 307 (1925)]
and others, is a natural name for the non-globular cluster, which is almost without exception
near the galactic plane. It replaces the term ‘“‘open cluster’” which has caused some confusion
because of the open type of globular cluster. 2 Harv Ann 76, No. 4 (1915).

3 A special study now in progress at Harvard, of the environs of the Large Magel-
lanic Cloud adds several new globular clusters to the list; some of them may not be out-

lying members of the Cloud, and two or three are not N.G.C. or I.C. objects. In AN 246,
Pp.171 (1932) LampLaND and ToMBAUGH report that N.G.C. 5694 is a typical globular cluster.
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recognizing its true character. Many of the entries given in the New General
Catalogue (N.G.C.) as globular clusters have proved to be something else, generally
galactic groups or extra-galactic nebulae; and thirty-four of the globular clusters
now recognized were not described as such in the New General Catalogue.

Fig. 1. Globular cluster w Centauri, taken with 13-inch Boyden telescope at the Harvard
Observatory.

The large photographic telescopes have been of service in recent years in
examining many faint and doubtful N.G.C. objects, and an occasional addition
to the list of globular clusters has resulted. A number of remote groups are still
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questioned, however, even after some of them have been tested with large reflectors.
The most doubtful globular clusters, which are marked with daggers in Appen-
dix A, are the following*:

N.G.C. Radec? Galactic ‘ Distance? Notes

1651 | 0438—71 | 249—36 |  — Rejected; see Harv Circ 271 (1925).

5946 1528 —50 | 29504 |32 A small, poor, loose cluster in a rich region.
6352 1718 —48 | 308—07 . 19,7 A comparatively large cluster of very faint stars,

‘ on the edge of the Milky Way.
6535 1759—00 | 354+10 ! 26,7 A small cluster on the edge of a rich region, with
! ! few stars.
6539 l 1759—08 | 348406 | 38,7 A very faint cluster in a large obscured area.

Fig. 2. Four exposures of the globular cluster Messier 13 taken at Mount Wilson.

1 SAwyER and SHAPLEY, Harv Bull 848 (1927).

2 The approximate positions for 1900 in equatorial coordinates are conveniently con-
tracted for tabulation into the form here given; the first four figures give the hours and
minutes of right ascension, and the sign and subsequent figures indicate the declination in
degrees (and may be extended to minutes, if desired).

3 The distance in kiloparsecs is estimated on the assumption that the clusters are globular.
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The numbers of globular clusters have been discussed by BaiLey, HINKS,
BonriN, and Miss CLERKE, but the data on which their estimates are based lack
homogeneity!. MELOTTE’s catalogue?, however, which was made from the
FRANKLIN-ADAMS plates and contains eighty-three globular and one hundred
and sixty-two galactic clusters, constitutes a fairly homogeneous list of all clusters
with diameters greater than one minute of arc and brighter than the sixteenth
or seventeenth photographic magnitude. His list of galactic clusters is revised
and extended in Appendix B, which contains 249 entries. From his list of globular
clusters a few objects have been dropped; others have been added, mainly as
a result of HUBBLE’s work and my own with the 100-inch and 60-inch reflectors
at Mt. Wilson. The total number accepted for the table in Appendix A is 103,

Fig. 3. Galactic cluster N.G.C. 3552 taken with the 13-inch Boyden telescope at the
Harvard Observatory.

including ten globular clusters in the Magellanic Clouds®. An example of a recent
addition is the observation at the Lowell Observatory, verified at Mount Wilson,

! BaLEy, Harv Ann 76, p. 43 (1915); Hinks, M N 71, p. 693 (1911); BoHnLIN, Svenska
Vet Akad Handl 43, No. 10 (1909) ; CLERKE, Problems in Astrophysics (London) p. 428 (1903).
2 Mem RAS 61, p. 75 (1915). 3 See Footnote 3 on page 700.
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that the object N.G.C. 2419, described in the N.G.C. as “pB, pL, 1E 90°, vgbM,
*7.8267° 4" dist”’, and not listed by MELOTTE, is in fact a remote globular
cluster in a part of the sky that is otherwise devoid of these systems.

Some of the faint extra-galactic nebulae, as yet unresolved, may prove to
be essentially globular star clusters, perhaps with greater distances and dimensions
than those now known. A comparative study of the distribution of light through-
out the images can, however, give us some indication of their nature; their
distribution with respect to other extra-galactic objects will probably show -
most of them to be sidereal systems of a higher order than globular clusters..

5. Classification of Galactic Clusters. In the studies of galactic clusters
at Harvard we have for some time followed a two-dimensional classification.
One parameter is related to the apparent number and concentration of the stars
and may be called compactness; the other depends on the distribution of spectral
classes among the cluster members.

The classification based on appearance is intended to cover the whole range
of galactic clusterings, from multiple stars to globular clusters. The subdivisions
are as follows:

a) Field irregularities. That there are many deviations from random
stellar distribution is obvious from star counts, or even from a casual inspection
of photographic plates in nearly any region of the sky. There seems to be no
immediate need of attempting to unravel or catalogue such non-uniformities-in
stellar fields; but the assignment of a classification letter to the field irregularity
is recognition of its significance in stellar distribution.

b) Star associations. In this category fall wide-spread moving clusters,
such as the Ursa Major group, and the peculiar stars of high and parallel velocities.
The class will be recruited largely through studies of proper motion and radial
velocity. It grades imperceptibly into the next class.

c) Very loose and irregular clusters, typified by the Hyades and the
Pleiades. The large cluster of bright stars around o Persei might be placed in
this class, or better, perhaps, placed with the Orion Nebula cluster in class b.
Class ¢ corresponds in general with BAILEY’s D3 and with MeLoTTE’s IV.

d) Loose clusters. Messier 21 and Messier 34 are examples of a class
equivalent to BAILEY’s D2 and MEgrortE’s III.

e, f, g) Compact clusters. These three groups are equivalent to BAILEY’s
D1 and MEeLoTrTE’s II. The division into three types is on the basis of richness
and concentration; examples are Messier 38, Messier 37, N.G.C. 2477. In the
classification of clusters the globular systems follow immediately after class g.
In fact, several of the most compact class g galactic clusters appear more nearly
like globular clusters than do the loosest globular clusters classified as such by
criteria other than appearance.

In practice the galactic clusters are generally taken to comprise only classes ¢

to g. The distribution among these classes of the 249 clusters listed in Appendix B
is as follows:

Class Number
c 22
d 85
e 67
f 46
g 29

I have found it convenient to divide galactic clusters also into two principal
groups on the basis of the spectra or colors of the component stars: (1) The
Pleiades type, and (2) the Hyades type. Each includes members of classes ¢ to g.
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In the Pleiades type the stars, almost without exception, lie along the ‘“‘main
branch” of a RusseLL diagram, with the earliest classes B or A; in the Hyades
type, yellow spectral classes occur with the same apparent brightness as the
predominant A stars.

More than ninety-five per cent of the galactic clusters for which spectral
classes or colors have been determined fall into one or the other of these two
groups, which are about equally numerous. There are a few aberrant clusters.
Messier 67, for instance, appears to be a variant of the Hyades type in that blue
giant stars are absent. Prominent examples of the Pleiades type are the double
cluster in Perseus, Messier 36, and Messier 34; the Hyades type includes Messier 11,
Messier 37, Praesepe, and the scattered cluster in Coma Berenices.

TRUMPLER has also proposed and used a classification of galactic clusters
based on spectral composition!. For clusters that he has so far observed he
uses Types 1a, 1b, 2a, and 2f, with provision for other types if found. Type 1
is equivalent, in general, to my Pleiades type, and type 2 corresponds to the
Hyades type.

8. Classification of Globular Clusters. Notwithstanding the general similarity
of globular clusters in size, form, content, and absolute brightness, there are
many deviations from the average. Clusters such as Messier 19 and w Centauri
are conspicuously elongated ; Messier 62 is strikingly non-symmetrical;; N.G.C. 4147
is deficient in giant stars; and nearly one third of the globular systems are so
loosely organized that their inclusion in the list depends on such further criteria
as high galactic latitude, the presence of cluster-type variables, and the appearance
of thousands of faint stars on long exposure photographs.

Until recently no systematic attempt has been made to classify the globular
clusters beyond noting that some were variable-rich, some variable-poor; some
open, some compact. A detailed examination by Miss SAWYER and the writer
of the globular clusters on good Bruce photographs, which are available in the
Harvard collection for practically all the 103 systems now listed as globular,
shows that many intermediate forms exist between the loosest and most concen-
trated clusters. Instead of classing the clusters, therefore, in the two or three
broad and obvious categories, such as compact, medium, loose, we arrange them
in finer subdivisions, in a series of grades on the basis of central concentration.
For the classification of individual clusters reference may be made to Appendix A.
Class I represents the highest concentration towards the center, and Class XII
the least. The distribution among the various classes and the mean photographic
magnitude for each class are as follows:

Class Magnitude Number Class l Magnitude \ Number
I 8,85 4 VII 7,90 8
II 7,80 7 VIII 7,85 -10
I1I 6,76 7 IX 8,84 10
v 9,01 12 X 8,88 9
v ! 7,88 12 X1 9,54 9
VI | 891 11 XIT 9,58 4

The present classification of globular clusters is essentially a description of
apparent central concentration. It is interesting therefore to note that there is
no correlation of class with integrated photographic magnitude as determined

1 Publ ASP 37, p. 307 (1925). A more recent study of galactic clusters is presented
by TRumpLER in Lick Bull 14, p. 154 (1930), where he gives a more complex, three-dimen-
sional classification. The investigation also includes statistical material on distances, magni-
tudes, dimensions, and spectra.

Handbuch der Astrophysik. V, 2. 45
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from Harvard plates of small scale. The distribution of magnitude among the
various classes is shown in the scatter diagram in Figure 4, where also the mean
magnitude for a given class is plotted as a cross, and the average class for each
interval of one magnitude is plotted as a circle.

To maintain homogeneity, the classifications of globular clusters were all
made on plates with the scale of 1 mm = 1’. Superposed stars have occasionally
interfered somewhat with the assignment of the class, especially for N.G.C. 4147,
6284, 6453, 6553, 6569, 6624. A few peculiarities were noted that are not com-
pletely taken care of by our classification based on central condensation alone. For
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Fig. 4. The scatter diagram of classes of globular clusters (ordinates) and integrated photo-
graphic magnitudes. Circles and crosses indicate means.

instance, the bright cluster w Centauri is peculiar in what appears to be a remark-
able uniformity in the magnitudes of the brighter stars. Clusters somewhat
similar to w Centauri in this respect are N.G.C. 5272 (Messier 3), 5927, 6273,
6656 (Messier 22). These clusters also resemble each other in their moderate
concentration (Classes VI to VIII), and two of them, w Centauri and Messier 3,
are the richest of all in variable stars. It should be noted, however, that the
clusters with many variable stars are scattered throughout all classes.

In conclusion we observe that the classes of globular clusters are probably
indicators of developmental age. They should prove increasingly useful in
studies of linear diameters, motions, luminosity curves, and the deeper problems
of the origin and life history of stellar clusters.

Table 1. Typical Globular Clusters of the Twelve Classes.

Class | N.G.C. | R.A. {1900} l Dec. (1900) !Pg. Mag.| Class | N.G.C. | R.A. (1900) i Dec. (1900) ’Pg.Mag.
I | 2808 | 910™,0 —64° 27’ 5.7 VII | 6656 | 18" 30™,3 —23° 59’ 3,6
II 7089 |21 28 ,3 — 1 16 5,0 VIII | 6402 {17 32 ,4 - 3 1 7,4
II1 104 0 19 ,6 —72 38 3,0 IX | 6218 |16 42 ,0 — 1 46 6,0
IV | 1866 | 5 13 ,3| —65 35 8,0 X | 28| 047 8] —27 8 7,2
V ] 7099 |21 34 ,7| —23 38 | 64 XI| 6809 |19 33 ,7| —31 10 | 4.4
VI | 6752 {19 2 ,0 —60 8 4,6 XII | 7492 |23 3 ,1 —16 10 |10,8

7. Clusters in or near Obstructing Nebulosity. The large groups of bright
B stars in Orion, Scorpio, and elsewhere are associated with important bright
and dark nebulosity. The Pleiades nebulosity is well known. A number of
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nebulous galactic clusters, such as Messier 8, are on record, and clusters of this
sort also appear in the Magellanic Clouds. It is doubtful, however, if much
would be known of the nebulosity in these galactic clusters if their distances

5 were ten times as great.
By implication, there-
fore, nebulosity in galac-
tic clusters may be more
common than appears.
from general inspection.
There are a few in-
dividual globular clu-
sters,N.G.C.4372,N.G.C.
6144, and N.G.C. 6569,
that are in or near re-
cognized dark or lumi-
nous nebulae. Of these,
1 the first appears to be
Q dimmed by one of the
\ long dark streamers
s from the Coal Sack; the
\ second is at the edge of
the heavy g Ophiuchi
X9l ~ nebulosity. N.G.C. 6569
LAL Y is in a rich star field in
Sagittarius but may also
be involved in wisps of
-5° —9° ~20° 0° +20° +#° +s° obscuring nebulosity.
Fig. 6. Numbers of galactic clusters (circles) and globular To what extent the
clusters (dots) for two degree intervals in galactic latitude. magnitudes and colors
in galactic and globular
clusters are directly affected by associated nebulosity is not as yet determined.
For individual nebulous stars SEAREs and HUBBLE have found a color effect
and presumably a corresponding deficiency in apparent brightness.
2 8. The Apparent Distri-
bution of Globular Clusters.
,\ In Figure 5 is shown the dis-
/' \ tribution of globular clusters;
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Fig. 7. The frequency distribution of globular clusters sion of their distribution in
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sters; abscissae, degrees of longitude. space appears in later sections.

The remoteness of these clus-

ters suggests that obstruction by dark nebulosity in the Milky Way can easily

account for their observed scarcity near the galactic equator without seriously
affecting at the same time the distribution of the nearer galactic clusters.

In Figure 7 is shown the distribution of globular clusters in galactic longitude.

From this diagram and the preceding figure we find that the center of the system
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of globular clusters lies in the direction of galactic longitude 327°, galactic
latitude 0°. The probable error of this determination is about one degree. The
corresponding equatorial coordinates are right ascension 17228, declination —29°.

9. The Apparent Distribution of Galactic Clusters. The distribution of
galactic clusters in galactic coordinates is shown in Figure 8. The high con-
centration in low latitudes is evident. The galactic clusters with latitudes greater
than -+15° are given in Table 2. The high latitudes for Coma, Praesepe, the
Pleiades, and the Hyades, are not remarkable, because the parallaxes are relatively
large and the linear distances from the galactic plane are relatively small. The
fainter galactic clusters in high latitude merit further detailed study.

Table 2. Galactic Clusters with Latitude Greater than 4 15°.

Galactic

N.G.C. Longitude |  Latitude Remarks
188 90° +23°
752 105 —23
Melotte 22 134 —22 Pleiades
Melotte 25 147 —23 Hyades
2243 206 —16
2281 142 +18
2420 166 +21
2548 196 +17
2632 174 +34 Praesepe
2682 184 +33 Messier 67
Melotte 111 200 +85 Coma Berenices
I 4665 358 +16

An interesting and significant result of the special surveys that have been
made of objects once doubtfully classed is the evidence that nearly every faint
little-condensed cluster in galactic latitude higher than 15° or 20° is really
globular, although for many of them short exposures and visual observations
had originally recorded few stars. Long exposures, however, bring out the
globular nature of such clusters. Nearly all the similar faint objects along the
galactic equator remain open groups, with no condensed background of faint
stars appearing on long exposures.

10. Peculiarities in the Distribution of Galactic Clusters. The clusters
listed in the catalogue in Appendix B do not extend deep into the galactic
structure; they tell us nothing of the center or of the boundaries. There is
significance, however, in certain peculiarities of their distribution. Already we
have noted that in contrast with globular clusters they are rather uniformly
dispersed in galactic longitude, and also that they are largely confined to the
low galactic regions where globular clusters are scarce. There are two additional
features of their distribution that are worth consideration: (1) the infrequency
of galactic clusters in the first quadrant of galactic longitude; there are very few
of these systems in the Aquila-Cygnus region of the Milky Way; (2) the narrow
restriction of the clusters to low galactic latitudes in the direction of the galactic
center and their wide dispersion in galactic latitude in the opposite part of the sky.

This second phenomenon might be explained as a consequence of the motions
of galactic clusters in long orbits around the nucleus in Sagittarius. If their orbital
inclinations differ from zero, when seen from the earth’s eccentric position in
the Galaxy those in the direction of the center would on the average appear
to be in lower latitudes than those away from the center. It is probable that
none of the galactic clusters that are now beyond the center of the Galaxy enters
our catalogue.
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The alternative and, I think, preferable interpretation is that galactic star
clusters are associated largely with particular galactic star clouds. Irregularities
of distribution and concentration in low galactic latitude are therefore merely
consequences of the distribution of the nearer star clouds.. If the galactic clusters
are closely affiliated with various star clouds, we may find them differing
systematically in spectral and structural characteristics from one part of the sky
to another. We already have an indication of such diversity in the orientation
of the axes of elongation, discussed in ciph. 24 below. The brighter clusters
of Auriga are rich and not strongly condensed (Messier 36, Messier 37, Messier 38);
many of the small condensed clusters of Sagittarius are nebulous, and the groups
in Carina are systematically bright.

c) On the Spectral Composition of Clusters.

11. Integrated Spectra of Globular Clusters. Integrated spectra were
determined for several clusters many years ago at the Lick, Mount Wilson, and
Lowell Observatories, mainly by Fate! and SripHER2, who found spectra of
composite character, principally classes F and G. The HENRY DRAPER Catalogue
records without close classification the integrated spectra of numerous clusters.

Miss CaANNON has recently examined closely all available Harvard photographs
showing spectra of ‘globular clusters®. The results are briefly summarized in
Table 3, which gives the N.G.C. designation, the cluster class, and the spectrum.
For some clusters, such as N.G.C. 4147 and 6624, the observed spectrum may be
largely due to one or two stars, and they of course may be foreground objects.

Table 3. Spectra of Globular Clusters.

xoc | S ol | wee | G | sy
104 111 il G5 6293 v G5
362 111 G5 6304 VI K:
1261 II G 6316 III G5
1851 11 GO 6333 VIII K:
1866 v F8 6341 Iv G5:
1904 v F8 6356 II Ko
2808 I Ko 6388 IIT K
4147 IX A7: 6397 IX G:
4590 X Note 6441 III Ko
5024 A Note 6541 III G
5272 VI G 6624 VI Mo
5286 v GO 6626 v G5
5824 I F8 6637 . v K2
5904 v G: 6652 VI Ks
5986 VII F8 6715 III F8§
6093 II Ko 6723 VII G5:
6121 IX F 6752 VI GO
6205 | v Go 6864 I Go
6229 VII Note 6934 VIII GO
6254 VII Note 7078 IV F
6266 Iv Ko 7089 II Fs
6273 VIII G5: 7099 A% F8
6284 IX F: :

N.G.C. 4590. Dark lines are seen in the violet.
5024. Dark lines HJ, H, and K faintly seen.
6229. Several dark lines are seen, apparently including H and K.
6254. Dark lines in the violet appear to be H, K, and H{.

1 Lick Bull 5, p. 74 (1908); Mt Wilson Contr 49 (1911).
2 Pop Astr 25, p. 36 (1917); 26, p. 8 (1918). 8 Harv Bull 868 (1929).
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A frequency diagram of the classes is given in Figure 9; classes F, G, and K of
Table 3 are taken as F0, GO, and K0. The class of spectrum does not appear
to be closely related to cluster class, apparent magnitude, or any other significant
property of the clusters. We have here only an indication of the probable diversity
in predominant type of the stars that are
effective in producing the integrated spec-
trum.
12. Stellar Types in Globular Clusters.
/ \\ From integrated spectra and colors we pass
¢ to the types of individual stars in globular
/ clusters, noting some similarities to the di-
5 / \ stribution of types in the Galaxy, but also

4

70

some important differences.

a) Common Spectral Classes. The
color indices in various globular clusters
show a normal range! from about —0,3 to

L_ +1,6. This indicates, no doubt, the pre-
/' sence of all spectral classes from B to M; and
v normal spectra have in fact been directly
A5 o 5 fs Go G5 Ko k2 K5 M0 observed from A to G. The average color

Fig. 9. Frequency curve of integrated index?in Messier 13 is 0,55, corresponding

spectra of globular clusters. Coordina- to the spectrum gF4

tes are numbers of clusters and spec- P gL .
tral classes. Seventeen per cent of the stars in

Messier 13 brighter than the working limit
(photovisual magnitude 15,5) have negative color indices. In Messier 3, on
the other hand, there is a smaller proportion of negative color indices (4,7 per
cent down to photovisual magnitude 17,00), but an excess of Class A stars of
about the magnitude and color of the cluster type variables. It should be noted,
however, that an error in the zero point of either photovisual or photographic
magnitudes would shift the spectral frequency curve bodily. Such error may
exist, and may not be inappreciable.

b) The Color-Magnitude Arrays. The distribution of color indices and
photovisual magnitudes are shown for Messier 22 in Table 4. The tabulated
quantities are numbers of stars3. The last tabulated line or two are near the prac-
tical fainter limit for magnitude work and may be deficient in numbers and

A A

inaccurate. The color classes, b, a, f, ..., corresponding to the color index
intervals* —0,4 to 0,0, 0,0 to 40,4, +0,4 to +0,8, ..., are nearly analogous
to the spectral classes B, A, F, ... This analogy is close because the cluster stars

under study are all giants; the agreement would not be so satisfactory for dwarfs.

In the array for Messier 22 the dispersion of magnitude within any one color
class is conspicuously small. All stars are included which are brighter than the
magnitude limit of the photovisual plates and within 5’ of the center of the

1 SEAPLEY, Mt Wilson Comm 44 (1917).

2 SuaPLEY, Mt Wilson Contr 116 (1917); see also Prase, Mt Wilson Ann Rep 9,
P- 219 (1913); 10, p. 268 (1914); SaNForD, Mt Wilson Ann Rep 14, p. 212 (1918); Pop Astr
27, P- 99 (1919).

3 Harv Obs Mon 2 (1930) ; Harv Bull 874 (1930). TEN BRUGGENCATE has plotted the coor-
dinates (my magnitudes and colors) for the individual stars used in making the color-magni-
tude summaries for Messier 13 and Messier 3. (Die Sternhaufen, Berlin, 1927). I think there
is little gain and some danger in detailed subdividing of the observational material. Ex-
perience with the photometric measures in globular clusters leads to a belief that the group
values presented in my color-magnitude arrays go as far as is justifiable in subdivision.

4 Seares, Mt Wilson Comm 16 (1915).
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Table 4. Color-Magnitude Array for Messier 22.

Color Class
Limits of Li

Photovisual bo b5 | ao as fo f5 go g5 ko k5 m o0 All

Magnitude < bo| to to to to to to to to to to to >mS5 Colors

b5 a0 as fo f5 go g5 ko ks mo mS§

10,20—,39 — - - — — - — — — — — — 1 1
,40—,59 - — - - — — - — - — — — —_
,60—,79 — - — - — - - — — — — 1 1
,80—,99 — — - - — 1 - - - - - - 3 4

11,00—,19 - - = - — — - — 1 — — 3 3 7
,20—,39 — - - - - - - — - — 3 6 — 9
,40—,59 - — - — — — - — — 2 2 1 — 5
,60—,79 - == === == 1 2 1 1 — 5
,80—,99 - — — — — — 1 — 2 5 1 — — 9

12,00—,19 — — — — — — — — 3 — 1 1 —_ 5
,20—,39 - — — - — — 2 2 8 2 - — — 14
,40—,59 - — - - — - 11 3 5 2 2 — — 13
,60—,79 - — - — 1 — 1 6 15 2 — — — 25
,80—,99 - - — — - 1 3 4 3 — - — — 11

13,00—,19 - - — — — 1 1 4 3 1 — — 10
20—39 | — | — | — | — | — 1 6 9 3 1| = | — - 20
,40—,59 - — 1 8 6 6 1 — — — — 23
,60—,79 - — — — 1 12 28 16 — — — — — 57
,80—,99 — — 1 1 4 34 59 7 - - - — - 106

14,00—,19 — — 2 1 17 39 12 — — — — — — 71
,20—,39 1 1 11 40 61 39 3 —_ — — — — — 156
,40—,59 — 1 19 26 20 2 - — — — — — — 68
,60—,79 — — 3 — — — — — — — — — — 3

Totals . . | 1 | 3 | 36 | 68 | 105|138 | 123 | 57 | 45 | 17 | 10 | 12 | 8 |[623

cluster. It is of interest that more than six per cent of the stars have negative
color indices, the cluster resembling? in this respect Messier 13 rather than
Messier 3.

No correction has been made in the color-magnitude array for superposed
stars. The cluster lies in a rich star cloud in Sagittarius, and probably ten per cent
of the stars included in this discussion are not cluster members. The color-
magnitude array is therefore applicable both to the cluster and to the star cloud,
and the small dispersion in brightness of both together suggests that the two
are associated. The color-magnitude arrays establish the fact that in the condensed
clusters, as well as in some loose galactic groups, the average color is redder the
higher the visual brightness. The result naturally bears on current considera-
tions of the evolution of stars.

The general similarity of globular clusters, especially in the color-magnitude
relation for giant and supergiant stars, is shown by a comparison of the brightest
stars in Messier 3 and Messier 13 with the brightest stars in the faintest and most
remote globular cluster known. N.G.C. 7006 is five times as distant as Messier 3
and Messier 13; yet the most luminous stars in all three clusters have about
the same average color and the same progression of color with magnitude. The
mean results are as follows:

Mean Photographic Number of Mean Color
Magnitude Stars Index
N.G.C.7006 . . . . . 16,46 38 +1,09
Messier 3 . . . . . . 13,17 35 +1,15
Messier 13 . . . . . . 12,72 36 +1,02

1 See Harv Bull 873 (1930). 2 Mt Wilson Contr 155, p. 8 (1918).
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A similar result is found in all globular clusters tested, though some, such as
N.G.C. 4147 and N.G.C. 5053, are less populous in giant stars.

18. On the Masses of Giant Stars. The color-magnitude array can be trans-
formed into a relation between spectral class and mass by means of the observed
mass-luminosity relation for galactic stars. It is necessary to assume that we
can safely replace color class by spectral class for giant stars; the uncertainties
involved both in this assumption and in the temperature scale, used for reduction
from photovisual to bolometric magnitude, are not negligible, but still they are
not serious enough to falsify the results except for stars of extreme color. It is
possible that the chief source of error lies in the mass-luminosity curve itself,
which depends mainly on nearby double stars and possibly is inappropriately
applied to single stars, especially in a globular cluster.

The computation of the stellar masses in terms of the sun’s mass for succes-
sive intervals of magnitude and color has been carried through for Messier 22;
the results are shown in Table 5. The distance modulus, #p, — Mp, = 14,16,

Table 5. The Mass-Spectrum Relation for Messier 22.

P Mg Spectrum Po Mag, Bor: Mag. Mass
11,2 M2,5 —2,96 — 4,62 29:
4 Ko9,0 —2,76 —4,10 22,4:
,6 Ks5,8 —2,56 —3,72 17,8
,8 K3,0 —2,36 —3,13 14,1
12,0 K1,0 —2,16 —2,74 11,7
)2 G9,0 —1,96 —2,41 10,0
4 G7,0 —1,76 —2,10 8,3
,6 G5,5 —1,56 —1,84 7,4
,8 G4,0 —1,36 —1,58 6,5
13,0 G2,5 —1,16 —1,30 5,9
,2 G1,2 —0,96 —1,16 5,4
4 F9,8 —0,76 —0,80 4,8
,6 F7,8 —0,56 —0,58 4,5
,8 F5,8 —0,36 —0,36 4,1
14,0 F3,0 —0,16 —0,16 3,9
2 A9,5 -+0,04 +0,04 3,7
)3 A6,8 +0,14 40,07 3,6
4 B7,5 40,24 —0,49 5,7

is taken from Appendix A; the reduction to bolometric magnitudes and the
computation of the masses are made with the aid of tables given by EDDINGTON
The masses of the reddest stars would have been from ten to twenty per cent
less with BRILL’s scale of temperatures and corrections to bolometric magnitude?.
The values of photovisual magnitude and spectrum in Table § are read directly
from the curve drawn through a plot of the colors and magnitudes of the individual
stars that appear in the color-magnitude array.

Masses for the average giant stars of various spectral classes in Messier 22
are as follows:

Ao. . . .. <48 | Fs5. . . . .. 40| Ko. . . . . 10,8
As . . . .. <35|Go. .. . .. 4,9 | Ks. . . .. 16,5
Fo. .. .. <36 | G5. . . . .. 7,0 | Mo . . . . . 24,0

It is possible to give only upper limits of average mass for classes A0, A5, and Fo
because of the incompleteness of the observational material for the corresponding
intervals of color index.

1 Internal Constitution of the Stars, Chapter VII (1926).
2 Babelsberg Verdff 5, p. 16 (1924).
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For the rich galactic cluster Messier 37, voN ZEIPEL and LINDGREN find
the mass of the giant g5 stars 2,15 times as large as the average mass of the b
and a stars?, in good agreement with the present results. They have used space
distribution of the stars as a criterion and a measure of the masses of different
types. «

It is interesting to note the small dispersion in color for stars of a given
photovisual magnitude. Accepting the mass-luminosity relation, we can only
conclude that in a globular cluster such as -Messier 22 the giant stars of a given
mass have a very small spread in surface temperature.

14. Spectra in Individual Galactic Clusters. Numerous investigations have
been made of the colors and magnitudes of galactic clusters, notably by TEN BrRUG-
GENCATE, D0IG, GRAFF, HERTZSPRUNG, PICKERING and FLEMING, RAAB, SEARES,
SHAPLEY, TRUMPLER, and voN ZEIPEL and LINDGREN2. The HENRY DRAPER
Catalogue contains spectral data for only the brightest clusters. The Harvard
material is discussed first, followed by brief accounts of a few individual clusters
and the spectral classification of clusters by TRUMPLER.

a) Harvard Studies. Mrs. FLEMING® tabulated the spectra for seven
galactic clusters: the Pleiades, Praesepe, Coma Berenices, I.C. 2602, N.G.C. 3532,
Messier 6, and Messier 7. The stars for which spectra are classified are distributed
over a larger area than that actually covered by the clusters, and foreground
stars of course cannot generally be differentiated and excluded. Some very
faint stars, barely distinguishable on the plates, are included. The results are
summarized for Class A in Table 6.

Table 6. Percentage of Class A Stars in Seven Galactic Clusters.

Cluster Stars Classified Stars in H.D.C. Percent Class A
Pleiades . . . . . . . . . . . .. 91 * 65
Praesepe . . . . . . . . . . .. 90 * 31
IC.2602. . . . . . . . ... .. 64 58 77
N.GC. 3532 . . . . . . .. ... 204 135 93
Coma . . . . .« .« . v .. 117 * 15
Messier 6 . . . . . . . . . . .. 91 75 75
Messier 7 . . . . . . . . . . .. 346 177 78

* Limits indefinite.

Although the classification was crude, and for some stars quite uncertain, the
existence is clearly shown of a different spectral distribution in Praesepe and
Coma from that in the other five clusters. It is the same distinction that is
now recognized in the Pleiades and Hyades types, or in TRUMPLER’s types 1
and 2%

The frequency of A stars in galactic clusters has led to attempts to determine
spectral parallaxes on the basis of the material of the HENRY DRAPER Catalogue®;
but because of the wide dispersion in magnitude the attempts are not always
happy. ’

b) Spectra in the Brighter Galactic Clusters. The Pleiades®, the
Hyades, and Coma fall under the head of “very loose and irregular clusters”,

Svenska Vet Akad Handl 61, No. 15, p. 126 (1921).

See bibliography in Harv Mon No. 2 (1930).

E. C. PIcKERING, Harv Ann 26 (1897); see also Table 6.

Publ A SP 37, p. 307 (1925). See note 1, p. 705, on his later work.

Doic, J BA A 35 p.201 (1925); RaaB, Lund Medd, Série II, No. 28 (1922).
HerTzsPrUNG, M N 89, p. 660 (1929). See also Harv Bull 764 (1922).

= I I T
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division ¢ in the classification of galactic clusters in ciph. 5. Figure 10 shows
for the Pleiades the spectrum-magnitude relation as compiled by HERTZSPRUNG.
The spectral data on h and y Persei, Messier 11, and two southern clusters may
be summarized as follows.

1. The Double Cluster in Perseus. Sixty-six bright stars in the double
cluster in Perseus, classified mainly by TRUMPLER?2, range in spectrum from AQ
to B9, and in magnitude from 5,5 to 10,9. Two matters of exceptional interest
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Fig. 10. Relation of color to luminosity in the Pleiades. Ordinates, color indices; abscissae,
photographic magnitudes. (From HERTZSPRUNG.)

in this cluster are the fact that a large number of the brighter stars show the
c-character, and that the numerous bright line stars are by no means the brightest
members of the cluster.

2. Messier 11. In supplementing my earlier work on the colors in Messier 11,
I found? from plates made with the 100-inch reflector at Mount Wilson that the
brighter spectra are chiefly of class A. This observation was later verified by
LiNnDBLAD on other Mount Wilson spectrograms. The spectral classes of fifty-
nine stars in and around the cluster have since been given by TRUMPLER%

3. N.G.C. 3532 and N.G.C. 3766. The distribution of spectra in two southern
galactic clusters has heen derived by BECKER from his own photographs made
at La Paz® He finds percentages as follows:

Bo—B7 | B$—A4 i A5—AS Ko ‘ K4 } oaber
N.G.C.3532. . . . 3,8 86,3 1,5 8,4 \ ~ 131
N.G.C.3766 . . . . 44,2 39,5 4,7 — 11,6 43
1 MN 89, p.660 (1929). 2 PublAS P 38, p. 350 (1926).

3 The magnitudes determined for this cluster are apparently in error, probably by a
constant amount, notwithstanding the consistency of the Mount Wilson photometric plates
[Mt Wilson Contr 126 (1917)]. The color indices are systematically too great, as shown
by my own spectrum plates (unpublished), and subsequently by the similar work of LINDBLAD
and TRUMPLER. A correction of — 0,4 to the photographic magnitudes is indicated by an
unpublished Harvard plate, but even then the colors and spectra are inconsistent. There is
a probability of differential light absorption within the cluster.

4 Lick Bull 12, p. 10 (1924). 5 AN 236, p. 327 (1929).
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For N.G.C. 3532 Mrs. FLEMING recorded ninety-three per cent of the 204 stars
as Class Al

c) TrRumPLER’s Investigations.. The kinds of spectral distribution among
the stars of a galactic cluster, first recognized in the early Harvard work, and
amplified by all subsequent studies, are defined in some detail in TRUMPLER’s
scheme of classification (ciph. 5 above), and a number of galactic clusters have
now been assigned by him to the classes and their subdivisions. For fifty-two
clusters the relative numbers in the various classes are as follows:

Type Number Type Number
1b 24 21 1
1a 6 Others 1
2a 20

It will be seen that the Pleiades type preponderates among the systems bright
enough to classify. This may, however, be an effect of selection, as Type 1b
contains far brighter stars than any of the others. The bearing of this selection
on estimates of distance is considered on page 748, footnote 1.

d) Variable Stars in Star Clusters.

15. The Frequency and General Properties of Variable Stars in Clusters.
Periods have been determined for 466 variable stars discovered in forty-five
globular clusters?; all but nineteen are found to be cluster type Cepheids. There
is a slight correlation between frequency and galactic latitude, the rich clusters
having a greater mean distance from the galactic plane than have the poor.
The latter are distributed equally throughout all classes, while the rich clusters
are confined to the intermediate classes. It seems unlikely that observational
selection is responsible for this result; the effect, however, may be due in part
to the decreased discovery chance in a very condensed cluster.

The general properties of variable stars are discussed elsewhere3. There is
no evidence that the Cepheid variables in clusters, whether of short or long
period, are different in their various characteristics from those in the Galaxy at
large. The color changes and light curves are of the usual sort. The long period
variables in 47 Tucanae are also normal in period, range, and form of light curve.

Certain features of cluster variables, however, are to be noted. The great
majority are, on the average, 1,5 to 2,0 magnitudes fainter than the brightest
stars in the cluster (see ciph. 31 below). There is observed, particularly in w Cen-
tauri, Messier 3, Messier 5, and Messier 13, a definite fainter limit to the magnitudes
of Cepheids, similar to that found in Miss LEAVITT’s survey* of the Magellanic
Clouds. The negative results of the searches for faint variables, and the form
of the period-luminosity curve, which flattens conspicuously for periods less than
a day, suggest that dwarf Cepheids do not occur. There is likewise no convincing
evidence of eclipsing binaries in any globular cluster®; but the faintness of
such stars would preclude their discovery on most of the existing plates.

The peculiarities of variables in clusters lie in the relative numbers of
different types and subtypes as compared with those in the galactic system,
galactic star clouds, or the Clouds of Magellan; but it is to be noted that very
serious factors of incompleteness and selection affect the comparison of clusters

1 See Table 6 above. 2 Previous to 1930.
3 LUDENDORFF, volume VI, chapter 2. % Harv Circ 173 (1912).
5 But see GuTeNICK and PRAGER, Sitzber Preuss Akad Wiss 1925, p. 508.
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with the Galaxy, and also that there appear to be just as great differences in
variable star content between clusters as there is, say between w Centauri or
47 Tucanae and the solar neighborhood.

16. A Summary of Known Variables. Despite a careful search, few vari-
able stars are definitely known to belong to galactic clusters; some that have been
tentatively assigned to such systems are of unrecognized type, and probably
lie in the surrounding star fields. Many have been found, however, in globular
clusters, as remarked above. The history of their discovery is short. Examining
some of his earlier photographs, Dr. CommoN? first noted the probable variability
of some stars in Messier 5. Professor E. C. PICKERING? in 1889 and MR. DAVID
PACKER?® in 1890 also made some early observations of the variables in globular
clusters, which were independently confirmed by BARNARD a few years later4.
But the whole development of this special branch of variable star astronomy is
essentially due to Professor BAILEY, whose extensive research on globular clusters,
begun about thirty years ago, is the basis of much of our knowledge concerning
cluster variable stars. Employing mainly the photographs made at Arequipa
with various telescopes, BAILEY has found the majority of cluster variables now
known, and has made by far the most important investigations of light curves
and periods. Aside from BAILEY’s work, the discovery and study of the variables
has been almost exclusively the work of Miss Woops at Harvard, BAADE and
LArINK at Bergedorf, and the writer and his collaborators at Mt. Wilson and
Harvard [see references in Harv Mon No.2 (1930)]. LARINK has made
an extensive check of BAILEY’s periods for cluster-type variable stars in
Messier 3, finding that, after a twenty-year interval, 82 periods were unchanged
and 29 probably had varied. My similar check on 54 of BAILEY’s variables in
Messier 5 results in periods accurate to within a tenth of a second; in this
cluster nearly all the periods are constant throughout an interval of thirty
years.

The data at present available concerning the variable stars in globular
clusters are summarized in Table 7. Clusters examined with care but without
discovery of variable stars are also included in the table. Some stars suspected
of variability are omitted in the absence of numerous or decisive observations.
Three of these, for instance, are in the Hercules cluster®, where my measures
on a few plates can not be considered to furnish sufficient evidence of variability.
In crowded regions and for close doubles the photographic development (EBER-
HARD) effect® may produce spurious variability, for it varies from plate to plate
under ordinary working conditions. Aside from this and similar uncertainties,
which lead to the inclusion and exclusion of suspected variables, there is another
element of incompleteness in these tabulated results because of the difficulty
of thoroughly examining the centers of clusters, and also because of the
small number of plates sometimes involved in the surveys. In general
it may be said that scarcely a cluster has been examined with the accu-
racy and thoroughness necessary to detect ordinary eclipsing stars of short
range or narrow minimum, and to exhaust the possibility of Cepheids of
small range.

1 MN 50, p- 517 (1890); 51 p. 226 (1891).

2 AN 123, p. 207 (1889); Harv Circ 2 (1895).

3 Sid Mess 6, p. 381 (1890); 10, 170 (1890); Engl Mech 51, p. 378 (1890).

4 AN 147, p. 243 (1898).

5 SmarLEY, Mt Wilson Contr 116, p. 79 (1915).

6 EBerRHARD, Z f Phys 13, p. 288 (1912); Publ Astrophys Obs Potsdam No. 84,
(1926).
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Table 7. Summary of Variables in Clusters.

Neco.| 4 | p | oms | Pup) Yako Teed e References
104 | 272° | —44° 1II 8 7 — 3 — 1, 2
288 | 214 —88 X 9 2 — — —_ 3
362 | 268 —46 II1 8 14 — — — 1
1851 | 211 | —34 I, 9 3 - — — |45
1904 | 195 | —28 \ 9 5 — — — 11
2419 | 148 +23 | VII 9 26 — — — 140
3201 | 244 | 410 X 9 61 — - — 16,7
4147 | 227 | +78 | IX | — 4 — - 8 8, 42
4590 | 268 | +37 X| 9 | 28 | 27 1 — |9, 10
4833 | 271 | — 8 | VIII | 8 5 — — — |5
5024 | 307 | +79 v 9 42 — — — 11, 12, 41
5053 | 310 | +77 | XI| 8 9 8 | — | — |13
5139 | 277 +16 | VIII 8 132 95 5 - 1, 14
5272 8 | +77 VI 8 | 166 | 110 1 79 |1, 15, 16, 17, 18, 19
5286 | 280 | +10 Vi 95 - - — — 120
5466 8 +70 | XII 9 14 12 — — 12
5904 | 333 +45 v 9 84 69 3 8 |1, 21
5986 | 305 +13 | VII — 1 — — — 1
6093 | 320 +18 II 10 4 — — — 1, 39
6121 | 319 | 415 IX 9 33 3 — 5 122
6205 26 “+40 v 9,5 7 1: 2 3 1, 17, 23, 24
6229 | 41 +39 | VII:| — 1 _ _ — I3
6266 | 320 + 7 v 8 26 — — — |1
6293 | 325 + 8 v 9 3 — — — 125
6333 | 333 +10 | VIII 9 1 — — — |3
6341 35 +34 v 8 14 — — — 17, 26
6362 | 293 | —17 X 8 17 . — — — |27, 28
6397 | 304 —12 IX 9 2 — — — 1
6426 | 356 | +15 | IX: 9 2 | — | — | — |a0
6539 | 348 + 6! X 9 1 - - - 129
6541 | 317 —12 | III 9 1 — — _ 30
6553 | 333 — 4 XI 9 — — - 2 |25
6584 | 310 —18 | VIII 9 —_ — — — 20
6626 | 336 - 7 v 9 9 — — — 1
6656 | 338 — 9| VII 8 21 9 2 4 |1, 31, 32, 33
6712 | 353 | — 6 IX: — 1 — — — 18
6723 | 327 —18 | VII 9,5 17 16 — — 1, 34
6752 | 303 | —26 VI| — 1 — — — |1 .
6779 | 30 + 7 X 8 1 — — 2 |25, 35
6809 | 335 —24 XI 9 2 — — — 1
6864 | 348 | —28 I 9 11 — — 5 |25 36
6981 , 3 —34 IX| — 29 29 — 5 |8, 25 36
7006 32 —20 I — 11 11 — — 25, 37
7078 33 —29 v 8 | 74 60 1 1, 21
7089 22 —37 11 9 | 11 | — 1 —_ 1, 38
7099 | 356 —48 v 9 3 — — — 1
7492 | 23 | —65 | XII 9 9 | — — 5 13
1 BaiLEy, Harv Ann 38, p. 2 (1902). 2 Bamey, Harv Bull 783 (1923). 3 Mt Wilson
Observatory, unpublished. 4 BaiLEy, Harv Bull 802 (1924). 5 Miss SWOPE, unpub-
lished. 6 Miss Woops, Harv Circ 216 (1919). 7 BaiLev, Harv Circ p. 234 (1922).
8 Miss Davis, Publ A S P 29, p. 260 (1917). 9 SHAPLEY, Mt Wilson Contr 175 (1920).

10 SHAPLEY, Publ AS P 31, p. 226 (1919). 11 BaaDpg, Hamburg Mitt 5, No. 16 (1922).
12 Baape, Hamburg Mitt 6, No. 27 (1928). 13 Baapg, Hamburg Mitt 6, No. 29 (1928).
14 INNEs, Union Circ 59, 201 (1923). 15 SuAPLEY, Mt Wilson Contr 91 (1914). 16 SHaPp-
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e) The Distribution of Stars in Globular Clusters.

17. Are Cluster Stars Arranged Spirally? In order to determine whether
the frequently described spiral structure in or near the center of globular clusters
could be seen on large scale photographs, I made a series of exposures on bright
northern globular clusters some years ago with the Mount Wilson reflectors.
The exposures varied in length. When only a few hundred stars were shown
in a cluster, the spiral structure could almost invariably be traced; if the ex-
posures were longer, the spiral arms became inconspicuous, or another set of
arms, sometimes with different center and pitch, was found or imagined. The
conclusion was reached that the phenomenon is wholly illusory. The significance
to be attached to chance groupings and chance vacancies decreases remarkably
with increasing exposure time. Nebulous obscurations that are reported to
conceal the brighter stars are found, upon deeper penetration, to be ineffective
for the more numerous faint stars, and therefore they cannot be real.

Spiral structure is the easiest form to visualize in centrally concentrated
random groupings—especially when the number, pitch, thickness, origin, length,
symmetry, and definiteness of the spiral arms are all arbitrary. Structural
features other than flattening and central concentration may be present, but
it is certainly inadvisable to conclude definitely, from knowledge of only a small
percentage of the total number of the stars, that such structure occurs. Probably
in only one globular cluster (Messier 22) have stars as faint as the sun been
photographed, and in only a few of those studied for stellar distribution have
stars other than giants or supergiants been thoroughly examined.

The a priori argument against the existence of spiral form in the images
of globular clusters is, of course, simply that the clusters are three-dimensional.
Cleanly traceable spira