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or non-reacting gas mixtures, thus enabling values of (- for such mixtures
T

to be used to guide the equation of state theory for mixtures. This is
of interest, for a complete knowledge of the van der Waals forces in mixtures
is of profound importance in the application of thermodynamics to chem-
ical equilibria at finite pressures.

I J. W. Gibbs, Scientific Papers, Vol. I, p. 87.
2 J. A. Beattie, Proc. Amer. Acad., 63, 229 (1928); J. Math. and Phys. M.I.T.,

9, 11 (1930).
3K. F. Herzfeld Muller Pouillet, Lehrbuch der Physik, 3, 161: also F. G. Keyes,

Chem. Rev., 6, 175 (1929).
4 J. G. Kirkwood and F. G. Keyes, Phys. Rev., 38, 516 (1931).
6 J. G. Kirkwood, Phys. Zeit., 33, 39 (1932).
6An innovation in the technique of measuring the Joule-Thomson effect to be re-

ported later has been developed which is adapted to low temperatures and low pressures.

From the two effects (T and )T the value of cp is immediately deducible.

(Eq. 3.)
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In this paper the author applies the circle of ideas due to B. 0. Koop-
man' and J. v. Neumann2 to the proof of Gibbs' fundamental hypothesis
concerning the tendency of an ensemble df independent systems toward
statistical equilibrium.3 The motions of the systems are described by a
Hamiltonian differential system,

qi = Pi

The ensemble is represented by a certain distribution in phase f(P)dm,
where P = (pi, qi), and where dm = 7rdqidpi is the invariant volume
element in the phase space. The distribution is carried by the phase
flow associated with (H) and will, in general, alter in time. Under what
conditions has (H) the property that any initial distribution tend toward
a permanent one (not affected by the motions, i.e., being invariant under
the flow)? Simple examples show that this tendency does not always
exist.3 After giving an appropriate mathematical formulation of the
tendency toward permanent distributions the author derives various
necessary and sufficient conditions that a given flow show that tendency.
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Let P denote the points of a general space Q (not necessarily associated
with (H)), and let T,(P),

TsT1=Ts= t

be a linear one parameter group of one to one transformations of Q into
itself (steady flow on Q) preserving a certain measure m on Q in the sense
of Lebesgue. We set

(f, g) = Jf f(P)g(P)dm, lIfil = V(f'f)f
for any two q. s. f. (quadratically summable functions) f(P), g(P). Only
functions with real values are considered in this paper. All integrals are
to be understood in the sense of Lebesgue. According to B. 0. Koopman1
the symbol U1, where Ulf signifies the function f(Tt(P)), defines a linear
one parameter group of unitary operators in the Hilbert space of all
q. s. f. f(P),

USUt = US+t, (Ulf, Utg) = , g).

A function f is called invariant under the group T1 if, for any given t,
Utf = f holds almost everywhere on R. We shall use the following theorem
proved by v. Neumann:2

Time-Average -Theorem.-Every q. s. f. f(P) possesses a time-average
f*(P) such that

lim| Utfdt -f* 0=O4

independently of a = a(T). f*(P) is q. s. and invariant under the group.
The equation

(f, h) = (f*, h) (1)

is fulfilled by any q. s. and invariant h(P).s
Letf(P)dm be any initial (t = 0) distribution on U. If T1 is interpreted

as a steady flow of a colorless and incompressible liquid, f(P) may be
regarded as an initial distribution of coloring matter in the liquid. At the
time t its distribution will be given by U-1fdm, since dm is invariant. The
amount of coloring matter contained in a volume A at the time t will be
(Ulf, XA), where XA(P) = 1 if P C Q, XA(P) = 0 if P C Q- A. If that
content tends toward a limit, we infer from the time-average theorem

1 ro
lim (U_If, XA) = lim f (Ulf, XA)dt = (f*, XA) = ff*(P)dm.
t=CO T=CO JT.J

Thus, if convergence takes place for any finite volume A, the density of
the limiting distribution of the coloring matter is given by f*(P) being
invariant under the flow, i.e., the distribution becomes stationary in the
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long run. The necessary bnd sufficient condition for that tendency to-
ward stationarity is that the equation

lim (Ujf, g) = (f*, g) (2)

holds for any two q. s. f.f(P), g(P).
The equation

1 +T
limrn [(Utf, g) -(f*, g)]dt = 0 (3)
T= 2T J-T

is a weaker interpretation of the tendency toward stationarity. How-
ever, there seem to be some indications that (3) is a more appropriate inter-
pretation. Moreover, the integral average on the left side of (3) is the
square of the dispersion of the function (Utf, g) about the value

(f* g) = (f*, g*)
so that (3) still represents "observable" convergence.

In his paper on "Complete Transitivity and the Ergodic Principle,"6 the
author has treated the case of uniform distribution in the long run. The
content of this paper admits of immediate generalization and leads to the
THEOREM 1. A necessary and sufficient condition that (3) be true

for any two q. s. f. is that the invariance under a transformation Ta, a O 0,
of a measurable point set, imply its invariance under the whole group T,.

In connection with the spectral representation of the unitary group,
the obvious condition is that X = 0 be the only characteristic value of
the spectrum. If there is no tendency of any initial distribution toward
a stationary one, (Utf, g) fluctuates about (f*, g) in an asymptotically
almost-periodic manner (loc. cit.6).
The problem may, however, be treated from another and, in the author's

belief, more natural point of view. We consider the product space Q X Q
of the pairs

X = (P, Q) = (Q, P)

of two points of Q, disregarding their order. Any point set on Q X Q is
then a symmetric set in the space of the ordered pairs, and any function
F(7r) is a symmetric function of the ordered pair, F(P, Q) = F(Q, P). The
flow Tj(P) on Q implies a "product flow"

Tt(7r) = (Tt(P), Tt(Q)) = (Tt(Q), Tt(P))
on Q X U. Furthermore, the invariant volume element dm on Q implies
an invariant volume element

d = dy,. = dmpdmQ
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on Q X Q, thus yielding an invariant measure ,u over Q X Q in the sense
of Lebesgue. We set

<F, G> = AnXQ F(7r)G(7r)du, A(F) = vTi7i,,
for any two q. s. f. F(7r), G(r) over Q X Q, and

UF= F(T1(7r)).

Strong convergence of functions on Q X Q means as usually convergence
in the sense of the distance A.

THEOREM 2. (3) holds for any two q. s. f. f(P), g(P), if and only if any
q. s. f. F(7r) being invariant under the product flow is the limit in the sense of
strong convergence of finite sums 2(p(P)P(Q), where (p, + are q. s. over Q and
invariant under the given flow.

The condition may easily be expressed in terms of invariant point sets
instead in terms of invariant functions. Let 91 be a certain totality of
measurable point sets on Q X U. We say that a measurable point set
B is generated by the point sets A of 91, if B can be approximated by finite
sums 2A such that ,u(B + 2A -BA) can be made arbitrarily smgl.
Theorem 2 may then be expressed as follows:

THEOREM 3. (3) holds for any pair of q. s. f. f(P), g(P), if and only if
every point set on Q X Q having a finite measure Iu and being invariant under
the product flow, can be generated by the invariant product sets A X A' where
A and A' are any two invariant sets on Q with a finite measure m.

The most interesting particular case is the case of an ergodic flow on
Q, i.e., the case where the time-average of any q. s. f. f(P) is constant almost
everywhere on Q,

f*(P) -Jfdm
m(&Z)

According to v. Neumann2 the necessary and sufficient condition for ergo-
dicity is that the flow be metrically transitive, i.e., that any invariant and
measurable set has either the measure zero or the measure m(Q). From
Theorem 3 we infer therefore the

THEOREM 4. The equation

1 (+TF J7jdmJagdm 2

lim j [(Uf, g) - m(&)2 J dt = 0

holds for any two q. s. f. f, g, if and only if the product flow is metrically
transitive (condition for the tendency toward uniform distribution).
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The proof of Theorem 3 is simplified by the use of the

THEOREM 5. A necessary and sufficient condition that (3) be true for
any two q. s. f. f, g, is that

(f(P)f(Q))* = f*(P)f*(Q)
holds for any f(P) being q. s. over U.

Proof of Theorem 5.-According to

[(Utf, g) - (f*, g)]2 = (Utf, g)2 + (f*, g) 2- 2(f*, g)(Utf, g)
and to

+T
lim + (Ulf, g)dt = (f*, g)
T=. 2'J-T

the equation (3) is equivalent to the equation

+T
lim - + (Uf, g)2dt = (f*, g)2. (4)
T=a 2T -T

In setting
- F(7) = f(P)f(Q), G(ir) = g(P)g(Q) (5)

and
F(7r) = f*(P)f*(Q). (6)

we infer
<U1F, G> = (Ulf, g)2; <F, G> = (f* g)2.

Thus (4) may be written in the form

1 (I+T
lim - <U1F, G>dt = <F, G>.
T=aW 2T J_T

As this equation remains true if F is replaced by the time-average F* of
F, we conclude that the equation

<F*, G> = <F, G> (7)

together with (5) and (6) is equivalent to (3). The condition indicated in
Theorem 5 is therefore sufficient.

In order to prove that the condition is necessary we use the following
elementary
Lemma.-Every function k(7r) being q. s. over Q X Q is the limit in the

sense of strong convergence of finite sums 2 w (p(P)p(Q), where the func-
tions. xp(P) are q. s. over Q.

This lemma is readily proved for sums 2p(P)I(Q). 4, however, is
necessarily symmetric in P, Q, thus being the strong limit of sums
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[s(P((PQ) + k(P)p(Q)]
=2('P(P) + 41(P))(.P(Q) + #(Q)) - ((P)o(Q) - 4(P)4(Q)

The lemma shows immediately that (7) must be true for any q. s. f. G(7r),
i.e., that F = F*.
Proof of Theorem 3. We suppose the equation

(f(P)f(Q))* = f*(P)f*(Q)
to hold for any q. s. f(P). We set

d((7r) = F(7r) -2 -f(P)f(Q)-

If F is invariant, i.e., if F = F*, we infer

d*(7r) = F(7r) -z f*(P)f*(Q)
The fundamental equation <d*, H> = <d, H>, H being invariant,
yields, for H = d*,

A(d*)2 = <d, d*> < A(d)A(d*), A(d*) _ A(d).

Since, according to the lemma, A(d) can be made arbitrarily small, we
infer the same for A(d*), i.e., F is the strong limit of sums of the required
kind.

Conversely, let us suppose every invariant and q. s. f. F(7r) to be the
strong limit of sums of functions

H'=- Ih(P)h(Q),
h(P) being invariant and q. s. over U. We set

F(w) = f(P)f(Q), F(7r) = f*(P)f*(Q).

From the equations <F*, H'> = <F, H'> and (f*, h) = (f, h) we infer

<F*, H'> = (f, h)2 = (f*, h)2 = <F, H'>

for every H'. <F*, H'> = <F, H'> is therefore true for any invariant
H, particularly forH = F* -F, i.e., we have F = P.

v. Neumann2 has proved that the totality of the measurable and in-
variant point sets on Q possesses a basis,

Qx, ° S5 x ::! 1; go = O, Q, = Q; U., C QU." x <x,

such that every measurable and invariant set can be generated by the
sets Ox, - Q. Any measurable and invariant function reduces (apart
from a set of measure zero on Q) to a function of x, where, for given P,
x is determined by the inequalities

P in Q.,, x'> x; P not in Qx,, x'<x.

338 PROC. N. A. S.



MATHEMA TICS: E. HOPF

The proof of the following theorem offers no difficulty.
THEOREM 6. A necessary and sufficient condition that (3) hold for any

two q. s. f. f, g is that every measurable function F(7r) being invariant under
the product flow reduces to a function of (x, y) = (y, x).
With regard to the particular kind of flow defined by a Hamiltonian

differential system, let us apply our results to the following case. Q is
an analytic manifold and Tt(P) depends analytically upon P and t. Let

SX, a < x _ b,
be an analytic one parameter family of analytic submanifolds being in-
variant under the flow (the manifolds of constant energy) and exhausting
Q altogether. The equation

dm = dxdax
determines then an invariant volume element du., on Sx. ax(S,) is supposed
to be bounded, a < x . b. The invariant volume element on the in-
variant product set Sx X S, is furnished by do-dcr_.
THEOREM 7. A necessary and sufficient condition that (3) hold for any

two q. s. f. f, g and thatf* depend but on x is that the product flow be metrically
transitive on S,>X S. for almost all (x, y) = (y, x) (in the sense of the plane
measure).

This theorem indicates thus the precise condition under which any
initial distribution in the phase-space tends toward a distribution whose
density depends but on the energy (fundamental hypothesis of Gibbs-
Lorentz).
The proof that ergodicity on Sx X S, for almost all (x, y) = (y, x) is

equivalent to the fact that any measurable and invariant function F(7r)
reduces to a function of x, y, offers no essential difficulties.
Let us illustrate Theorem 7 in the following well-known case (H. Poincare,

J. Kro6).3 x, o are polar coordinates in the plane, and Q is the circular
region x < 1. We consider the circular flow

P: x, (p; TX(P): x, P + v(x)t,

where v(x) is continuously differentiable in 0 < x < 1. S, is here the
circle with the radius x, do-x = d(p being the invariant element on Sx. The
product flow on S., X S. is given by

s+ v(x)t, ,6 + v(y)t.
This flow is ergodic if and only if v(x)/v(y) is an irrational number. The
condition of Theorem 7 will therefore be fulfilled provided that v'(x) has
but a finite number of zeros.
The condition indicated in Theorem 7 cannot, however, be regarded as

final. Tendency toward a stationary distribution depending but on x
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(Gibb's canonical distribution) depends obviously upon properties in the
small, i.e., upon the behavior of the flow in the shells between S, and
Sx+ , a _ x < b, 5 being arbitrarily small. The true condition for that
tendency must therefore be an infinitesimal one. It is evidently of great
interest to find such a condition.
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holds, whereas (2) is not fulfilled in general.
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The purpose of this note is three-fold: (a) A new definition of the
function ju is given.' (b) A condition for the regularity of a family of
curves is stated. (c) If a closed set of "invariant points" be added to a
regular family of curves, an "extended family of curves" is formed;
theorems are stated on the covering of the curves by a set of "tubes,"
and on the introduction of a function continuous throughout the extended
family.

1. The New Function ,.-Let R be any metric separable space, and let
a,, a2, ..., be a sequence of points dense in R. For any x in R, define
fn(x) as follows:

fn(x) = 1 + p(x, a.) (1)

Let S be any subset of R; we put

(2)An(S) = maxfn(x) - min f.(x),
xCS xCS

340 PROC. N. A. S.


