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PREFACE.

My object in the publication of a treatise on Modern
Geometry is to present to the more advanced students
in public schools and to candidates for mathematical
honours in the Universities a .concise statement of
those propositions which I consider, to be of funda-
mental importance, and to supply humerous examples
illustrative of them.

Results immediately suggested by the propositions,
whether as particular cases or generalized statements,
are appended to them as Corollaries.

The Examples are printed in smaller type, and are
classified under the Articles containing the principal
theorems required in their solution.

The more difficult ones are fully worked out, and
in most cases hints are given to the others.

The reader who is familiar with the first six books
of Euclid with casy deductions and the elementary
formule in Plane Trigonometry will thus experience
little difficulty in mastering the following pages.

I have dwelt at length in Chap. II. on the Theory
of Maximum and Minimum.

Chap. IIL is devoted to the more recent develop-
ments of the geometry of the triangle, initiated™ it
1873 by Lemoine’s paper entitled “Sur quelques pro-

priétés d’'un point remarquable du triangle.”
\4



vi PREFACE.

The study of the Brocardian Geometry is appro-
priate at this stage, as I have shown that the
deductions of M. Brocard and of other gcometers,
both in England and on the Continent, are simple
and direct inferences of the well-known property of
Art. 19, which has been called the Point O Theorem.

Chap. IX. gives an account of the researches of
Neuberg and Tarry on Three Similar Figures.

A feature of the volume is the application of
Reciprocation to many of the best known theorems
by which the corresponding properties of the Conic
are ascertained. This method and that of Inversion
are pursued as far as is admissible within the scope
and limits of an elementary treatise on Geometry.

In the preparation of the book, I consulted chiefly
the writings of Mulcahy, Cremona, Catalan, Salmon,
and Townsend, and hereby acknowledge my indebted-
ness for the valuable stores of information thus placed
at my disposal.

Many of the Examples are from the Dublin Univer-
sity Examination Papers, and more especially from
those set by Mr. M‘Cay.

I have as far as possible indicated my additional
sources of informmation, and given the reader references
to the original memoirs from which extracts have been
taken.

WILLIAM J. M‘CLELLAND.

SaxTrY Scnoor,
1s¢ November, 1891,
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CHAPTER 1.

INTRODUCTION.

Definitions.—Right lines passing through a point are
called a Concurrent System.

The point is the Vertex of the system, and the lines
are a Pencil of Rays.

Collimear points are those which lie on a right line.

Symmetry. Convention of Positive and Negative.—

1. The letters 4, B, C, ..., are generally used to denote
points and positions of lines, and a, b, ¢, lengths, e.g., the
vertices of a triangle are 4, B, C, and the opposite sides
2, b, c.

By AB is meant the distance from A to B measured
from A towards B, and by BA the same distance measured
in the opposite direction.

Thus AB= —BA or AB+BA =0.

Similarly for three collinear points 4, B, C:

AB+BC=A4C= —-CA, therefore BC+CA+ AB=0.

2. If four points 4, B, C, D, be taken in alphabetical
order on a circle, we have by Ptolemy’s Theorem

BC.AD+AB.CD=BD.AC= —-CA . BD,
¢ A



2 INTRODUCTION.

the six linear segments being measured from left to
right, or we shall say positively, in figure;

hence, by transposing,
BC.AD+CA .BD+AB.CD=0.

Again, since each chord is proportional to the sine
of the angle it subtends at any fifth point O on the circle,
this equation reduces to
sinBOC sinA 0D +sinC0OA sinBOD +sinAOB sinCOD =0,
a result which is therefore true for any pencil of four
lines, and is deduced directly from Ptolemy’s Theorem
by deseribing a circle of any radius through its vertex.

In this equation it is implied that AOC denotes the
magnitude of the angle measured from 4 towards C, and
that therefore sin 40C= —sin COA.

3. Let 0. ABCD denote a system of lines concurrent
at 0; A, B, C, D, the points in which a line L meets it;
and p the distance of the vertex O from L.

Then 2BOC=BC.p=0B. 0Csin BOC,
and 240D=AD.p=04.0Dsin AOD;
by multiplication

BC.AD.p*=04 .0B.0C.0D.sin BOC.A0D;...(1)
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similarly

CA.BD.p'=0A4.0B.0C.0D.sin COA .sin BOD; (2)
dividing (1) by (2) we have
BC.AD:CA.BD=sin BOC.sin 40D :sinCOA .sin BOD.(3)

The student will observe that three pairs of angles are
formed by taking any pair of rays with the remaining or
Conjugate pair.

Thus BOC and 40D may be conveniently denoted by a
and o/, COA and BOD by B and 3, and 40B and COD
by y and /.

With this notation (3) is written

BC.AD:CA.BD=singsing :sin Bsin F,
and generally we infer from symmetry that
BC.AD:CA.BD:AB.CD =singsina’:sinBsin3":sinysiny’.(4)

Cor. 1. If we draw four parallels to the rays of the
pencil, we in general obtain a triangle and a transversal
to its sides. Moreover, if we denote the angles of the
triangle by a, B, v, those made by the transversal with
its sides are the opposites o', 8, 9"; hence for any triangle
and transversal we have always

sin a 8in o'+ sin Bsin B’ +sin y siny’'=0.

Cor. 2. Let the line ABCD be divided harmonically
or such that AB/BC=AD/CD, then BC.AD=AB.CD;
hence by (3) the pencil is divided harmonically, 7.c., the
angle COA s divided internally in B and externally im
D in the sume ratia of sines.

Defs. The three ratios and their reciprocals on the
left side of (8) are termed the Anharmonic Ratios of
the four points on the line; and those on the right the
Anharmonic Ratios of the pencil 0. ABCD.
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Their equivalence is expressed thus:—A variable line
drawn across a pencil is cut in a constant anharmonic
ratio ; or any pencil and transversal to it are Equianhar-
monic.

The foot of the perpendicular from a point on a line
is the Projection of the point on the line, and the per-
pendicular is called its Projector.

If A’ and B’ be the projections of A and B on a line
L, A’B is called the Projection of AB, and is equal to
AB cos 6, where 0 is the angle between AB and L.

ExaMPLES.

1. The sum of the projections of the sides of a polygon on any
right line=0 ; and generally if lines be drawn equally inclined and
proportional to the sides of a polygon, the sum of their projections
is zero. ( )

2 4 2(n-1)r

2. Cos a+cos(a+;) +cos(a.+r7—i )+ cos(a+~7——)=0,
and the sum of the sines of the series of angles is also equal to 0.

[For they are proportional to the projections of the sides of a
regular polygon on two lines at right angles.]

3. In any quadrilateral whose sides are a, b, ¢, d, to prove that

d?=a? 4 b2 + ¢ — 2be cos be — 2ca cos 0@ ~ 2ab cos &?),
where be denotes the angle between the sides b and c.

[For completing the parallelogram whose sides are b and ¢ and
drawing z we have d*=b"+2" + 2bo’,
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where &' is the projection of x on the parallel 5 ; but by Ex. 1.
x’=acos&)>+ccosgz, ~
substituting for &’ its value and for 2% a?+ ¢®— 2ac cos ac, the above
result is obtained.]
4. Euler’s Theorem.*—For three collinear points 4, B, ¢ and
any fourth £ to prove the relation
BC. AP+ CA.BP2+ AB.CP?= - BC.CA.AB.

[By Euc. IL. 12, 13, AP*=AB*+BP*-24B.BPcos B............(1)
and Cl*=BC*+BP?+9BC.BPcos B.......... (2)
multiplying (1) by BC and (2) by 4B and adding to eliminate
cos B, the above follows on reduction.]

4a. Having given the base ¢ of a triangle and la?+ mb?=const.,
find the locus of the vertex, { and m being given quantities.

5. If APC is a right angle the relation in Ex. 4 is equivalent to

BC? . APP+AB*. CP*=AC*. BP

[This follows from Ex. 4 or is obtained directly thus; let fall

perpendiculars B.X and BY on CP and 42, then

X Y?=BP?=BX?+ BY?= BC%in’C'+ A B%in’4 ;
multiplying the equation BP?= B(C%in*C+ 4B%in’4 by AC*;
therefore, etc.].

6. If the transversal to a harmonic pencil is parallel to one ray
D, the intercept AC is bisected by B the conjugate of D.

* ¢ Catalan’s Théorémes et Problémes de Géométrie Elémentaire,”
1879, p. 141.
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7. If a line L turn around a fixed point P and meet two fixed
lines 04 and OB in 4’ and B'; the locus of the harmonic conjugate
@ of P with respect to A'B' is a line passing through 0; and

1 1 2 e ¢
A +—1’—B’=7’Q .................... (By Ex. 6.)
Note. By Euc. VI. 2 if the variable P@ is bisected at ¢ the
locus of €' is a parallel to 0@ and
111
PATPBTPY
Hence for any three lines 4, B, € we find in the same manner that
1 1 1 1
ratentPe=ry
where @’ describes a right line.
8. For any system of lines 4, B, C, D ... the locus of ¢ such that
1 1 1 1
Patont pot =Py (
is a right line. [See Exs. 6 and 7.]

< 1

or “‘PA'=T'1Q’)

9. For a regular cyclic polygon, if  coincides with the centre
s 1 _
A—PA,—O-

[Through 2> draw the line parallel to one of the sides, ete.]

10. If parallels be drawn through any point O to the four lines
in Ex. 4, the relation may be written
sin B'sin ¥ sin ¥ sin (L’+sin @'sin 8 _ L
sinfBsiny sinysina sinasinf
11. From the formula BC. AD+CA.BD+ AB.CD=0, prove that
if 4, B, C be three collinear points and 2> any fourth point
B('cot A+ CA cot B+ ABcot C=0, the angles being all measured in
the same aspect; and hence find the locus of the vertex, having
given the base ¢ and ! cot 4 +m cot B=const.

4. Limiting Cases. 0 and «.
Def. The Angle of intersection of two circles is that
between the tangents drawn to them at either point of
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intersection; it is thercfore equal to the angle between
the radii drawn to either common point.* (Euec. ITI. 19.)
If the circles touch Internally this angle is 0°, if
Ewternally 180°. They are said to intersect Orthogonally
when the angie is 90°.
The Angle made by a line and circle is that between
the line and the tangent to the circle at its intersection.

ExaMPLES.

1. To find the angles between the circum- and ex-circles of a
triangle 4BC. .

[Since 8.2= R2+2Rr,, etc., we easily obtain 2cos§01=J% H
with similar expressions for 6, and 6]

2. To find the angle of intersection of the in- and circum-circles.

[82= R? - 2/tr, therefore 2sin §0= % where /—1=1]

3. If two concentric circles cut orthogonally one is real and the
other imaginary, and their radii are of the forms p, Zp.

* If 0y, ry; O, 7y be the circles, & the distance 0,0,, 6 the angle of
intersection, and ¢ the dircct common tangent, we have
02 =12+ 192 - 2ryry cos 6
= (ry = 7o)+ 47, 8in?46 5

hence = (ry - 1) 2 =4ryry 8In%40, ... e (1)
or 4::;; =gin? 6.
Similarly 8% - (ry+79)*= ~dryrycost} 6,
hence if ¢’ be the transverse common tangent,

U= —dr 708?40, ..ot e 2)
Multiplying (1) and (2) and reducing we have

W=2i. 78N 0.. .ooooviiiiiiiiii (3)

where A/—1=1; also if y denote the length of the common chord, of
the circles (real or imaginary) since 2r7,sin6=+3, t. t'=¢.vy.d.

It is obvious that either the transverse common tangent to the circles
or their angle of intersection is imaginary.
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Let AX be a variable chord passing through a fixed
point 4 at which a tangent is drawn. According as the

chord AX and angle 74X diminish in magnitude X
approaches the tangent. When X is indefinitely near to
A, AX is said to have reached its limiting position and
may then be considered to coincide with the tangent.

Hence a tangent to a circle s in the direction of the
infinitesimal chord at its point of contact, or is the chord
Joiming two indefinitely near points.

Again, let the tangent 7' and its point of contact be fixed
and the chord AX given in length. As the radius of the
circle increases the curvature diminishes, and the point X
obviously approaches the tangent. Hence X may be
made to move as near as we please to the tangent by
continually increasing the value of the radius of the
circle.

In the limit, when the latter is indefinitely great, the
distance of X from 7' is so very small that we may
consider the point to lie on the line. Hence a finite
portion of a circle of indefinitely great radius opens
out into a right line, the remainder being, of course,
at a distance infinitely great, i.e., at infinity.
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5. Envelopes.—Let a variable line turn around a ﬁxed
point O and meet any fixed line.

According as its angle of inclination to the perpen-
dicular OM increases, the segments OA, OB, OC continue
to increase and the angles 4, B, C'to diminish., In the

limit it reaches a position at right angles to OM. Here
the angle between it and the fixed line vanishes, and
their point of section is at infinity. In this case the lines
are parallel (Euec. I. 28) ; hence

Parallel lines may be regarded as having angles of
inclination = 0° or lines intersecting at infinity. Thus
a system of parallels is a pencil of rays whose vertex is
at infinity.

6. Let 4 and X be any two points on a curve of which
4 is fixed and X variable, and 74 and 7X tangents. It
appears as before that as X approaches 4 the chord 4X
and the base angles 4 and X of the triangle 74X gradu-
al]ly diminish and ultimately vanish.

But as the base angles diminish the vertex T approaches
the base and a fortior: the element of curve AX. Hence
in the limiting position, 7.e., when the tangents are con-
secutive, their point of intersection is on the curve.

A curve touched by a variable line is- called the
Envelope of the line. Thus the envelope of a line which
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varies according to any law is the locus of the intersec-
tion of its consecutive positions.

EXAMPLES.

1. The envelope of equal chords in a circle is a concentric circle
(Euc. III. 14).

2. Bobillier’s Theorem.—If two sides of a given triangle touch
fixed circles the third side also touches, or envelopes, a circle.

[Let A BC be the given triangle. Through 0, and 0,, the centres
of the given circles, draw parallels to the sides meeting the base in
4’ and B and each other in C'. Describe a circle (,0,C", and draw
("0, parallel to 4 B.

Since 0,00, is a given angle (=4), 0, is a fixed point. But
A'B'C’ is given in all respects save position ; hence the distance p
of O, from A’'B' is a known quantity. The envelope of the base 4
is therefore a circle whose centre is 0; and radius = p.]

3. To find the radius (p) of a circle which touches the sides AC
and BC of a triangle and the circum-circle ABC.

[Let I denote the in- and O the circum-centre of the triangle ; M
the centre of the circle whose radius is required is on the line CL
Then OM=R-p, OI*=R*—-2Rr, 1C=r[sinC, M C=p[sin}C, and
MI=(p-r)/sin3C.

Also, since C, I, M are three points in a line and O any fourth
point, by Luler’s Theorem we obtain on reducing

r=pcosFC.cccccvniiiinns e e (1)
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Again, if the circle #, p has external contact with the circum-circle,
it can be similarly proved that

7a=pCOS?ECa.iiiiiiiiiiniinniiiiiiii 2
Note.—The relation (1) is otherwise expressed :—
Since r/p=cos’}C, (p —r)/p=sin?}C.
But (p—7)p=MI|MC and p*/MC*=sin®}C,
hence MI.MC=p% e 3)

or the chord of contact PQ of the circle M, p with the sides of the
triangle passes through the centre of the inscribed circle.)

4. Mannheim’s Theorem.—Having given the vertical angle and
radius of the in- or corresponding ex-circle, the envelope of the
circum-circle is a circle.

[By Ex. 3.]
7. We shall conclude the present chapter with the
following useful property, of the common tangents to four
circles which touch a fifth, due to the late Dr. Casey.

Denote the circle whose centre is O and radius » by
0, ; and let the four circles O,r,, Oy, Oy7g O,r,, touch
a fifth O, R at the points 4, B, C, D. Let the distance
0,0, be 8, and the direct common tangent to the cor-
responding circles be 23.

Then 28%=§,,2— (1, —1y)2
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In the triangle 00,0, we have
0,0:2=00,+ 00,2—200, . 00, cos BOC
=(00,— 00,2+ 400,. 00, sin*, BOC ;

or 6232 — (712 — 1) = 4002 . 0()3 sin?2}BOC;
or 232=400,. 00, 5in*3B0C=00,. 00,. BC?/ K.
Similarly

142=00,.00,. AD* R?;
hence by multiplication and reduction
23.14=(00, . 00,.00,.00,)}BC . AD/R?,
and by Ptolemy’s Theorem

23.14+31.24412.34=0......cccerrrrnnnnnnn. (1).
The contacts in the figure are similar, or all of the same

kind, but it will be observed that if the fifth circle
touches any two with contacts of opposite species, their
transverse common tangents must be substituted in (1).

We let 12’ denote the transverse tangent to O,, r, and
0,, 7,; then

122=6,2— (1 + 7))

For example, if the circle O,, r, is external and the

remaining circles internal to U, R the relation is written
23 14/+31" 24+12 34=0,

with analogous expressions for all other cases.

Note.—The student must carefully observe that of the
three terms of the equation two are positive and one
negative ; the latter corresponding to the pairs of circles
whose contacts are alternate. Thus in the figure, O,,
and O,, r; have alternate contacts with the given circle,
therefore the term 31.24 is negative, and taking the
absolute values only the equation is

23.14+12.34=31. 24.

This is of great importance, and should be borne in mind
in the following Examples.
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ExAMPLES.

1. What does the general property reduce to when the circles
become points ? Ptolemy’s Theorem.

2. Express a condition that the circum-circle of a given triangle
may touch another circle.

[If @, b, ¢ be the sides and ¢, £, ¢; the tangents from the vertices
to the other circle we have at,+ bty +ct;=0.]

3. Feuerbach’s Theorem.—The nine points circle of a triangle
touches the in- and ex-circles.

[The middle points of the sides and the in-circle are four circles
satisfying the equation of Ex. 2. For 23=3a and 14=3(b-¢);
therefore 223. 14=}Za(b—¢)=0%*]

4. If a, b, ¢ be the sides of a triangle inscribed in a circle, and
A, &, v the distances of its vertices from any tangent, show that the
equation in Ex. 2 reduces to

WX+t e/v=0.1

5. More generally if A\, x, » denote the distances from any line,
give the geometrical interpretation of the equation

oV A—z+bWp—x+eNv—2=0,
and hence find a relation connecting the sides of a triangle with
the distances of its vertices from a given line.

[The roots of the quadratic in x are the distances from the line of
the tangents to the circle parallel to it, etc.]

6. Hart's Extension of Feuerbach’s Theorem.—If the sides of
a triangle be replaced by three circles, and four circles correspoud-
ing to the in-and ex-circles of the triangle described to touch them ;
the group of four is touched by a circle.

[Let the triangle formed by the circles be ABC, and let a<b<ec.
Then s~a>s8—-b>s—c¢. If the in- and ex-circles are numbered

* This proof is an application of the converse of Dr. Casey’s relation.

+ This result may be otherwise shown as follows :—Let P be the point
of contact of the tangent. Then BC.AP+CA. BP+4B.CP=0.
But AP?=2r\, BP?=2ru, and CP?=2r», substituting these values;
therefore, etc.
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1, 2, 3, 4 respectively, the side a is touched by the four circles and
the transverse tangents are drawn to 2; also the order of the con-
tacts is 3, 1, 2, 4 ; hence the equation is
—23.14431.24+12.34=0urreerreeeecnneennn (1)
For the side b the transverse tangents are drawn to 3, and the
order of the contacts is 2, 1, 3, 4; hence
—23 . 14431, 244+12. 34 =0.0c00eernrrriennn (2)
For the side ¢ the transverse tangents are drawn to 4, and the order
of the contacts is 3, 4, 1, 2; hence
93.14'-31.24'+12.34=0.000vvvnercrrnnnnn. (3)
Adding (1) and (3) and subtracting (2) we get
23,14’ -31'. 24+12'. 34=0,
showing that 2, 3, 4 have similar and 1 opposite contacts with a
circle which touches all four.]



CHAPTER II

MAXIMUM AND MINIMUM—INTRODUCTION.

8. When the base and vertical angle of a triangle are
given the locus of the vertex is a segment of a circle
described on the base, containing an angle equal to the
vertical angle. (Euc. III. 21.) Let a number of tri-
angles be constructed satisfying the given conditions,
and it will be observed that as the vertex recedes from
either extremity of the base the altitude and area both
increase up to a certain point, after which they begin
to diminish.

This point is obviously the middle point of the seg-
ment—the vertex of the isosceles triangle with the given
parts—or the point at which the tangent to the arc is
parallel to the base.

Here the area and altitude are said to have attained
their maximum values.

Again since the rectangle under the sides AC and BC
is equal to the rectangle under the diameter of the
circum-circle aund altitude (ab=dp); b and p are
maxima simultaneously.

Also since a?+b2=2(3c)%+ 2032
where 8 is the median to the side ¢; when 8 is a maxi-

mum or minimum, a2+ b2 is maximum or minimum.
15
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And if N be the middle point of the arc of the circle
below the base, then, since AN=BN (=« say) by
Ptolemy’s Theorem, we have

az+bx=c.CN,
or z(a+b)=c.CN,
from which it appears that a+b and CN are maxima
together ; that is when the vertex C is at the middle
point M of the arc 4B.

On the other hand it is manifest that the difference
of base angles (A — B) and difference of sides (¢ —¥b) both
diminish as the vertex C approaches M and vanish at
that point; and after C' passes through this point each
difference begins to increase. At C they are said to have
their minimum values, though this need not necessarily
be nothing.

Thus generally :—a variable quantity which, under
certain conditions, increases up to a definite limit and
‘then begins to diminish, is said to have attained its
maximum value at the limit ; and if, after diminishing,
it again begins to increase, it attains a minimum value
at the stage where it has ceased to diminish.
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The foregoing remarks may be thus summed up :(—Of
all triangles having a given base and vertical angle the
isosceles has the following maxima—area, altitude, rect-
angle under sides, sum of sides, bisector of base, and sum
of squares of sides.*

EXAMPLES.

1. The triangle of greatest area and perimeter inscribed in a circle
is equilateral.

[For each vertex must lie mid-way between the other two, or the
area and perimeter would both be increased by removing any
vertex to the middle point.]

2. A regular ﬁolygon of » sides inscribed in a circle has a greater
arca and perimeter than any other inscribed polygon of the same
order. [By Ex. 1.]

9. Theorem.—If two sides AC and AB of u triangle
are given in length the area of the triangle ABC is «
maximuwm when they contain a right angle.

Let ABC denote the right-angled triangle, and ABC”
any other triangle formed with the given sides. Draw
C’X perpendicular to 4C.

Since AC=AC" and AC"> AX; therefore AC>AX,
hence (Euec. I. 41) the triangle A BC > A B(, and similarly
for any other position ; therefore, ete.

* The vertical angle is supposed to be acute.
B
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ExAMPLES.

1. If the ends of a string of given length are joined, the area of
the figure enclosed is a maximum when it takes the form of a scmi-
circle.

[Take any point 4 on the string 4BC and join AB and AC.
Consider the segments into which the string is divided at 4 to be
rigidly attached to the lines AB and AC. If the angle at 4 is not
right, by rotating AC around 4 until it is perpendicular to 4 B, the
area of the triangle 4 BC, and therefore also of the whole figure, is
increased.

Similarly for any other point 4’; hence the area enclosed is a
maximum when the joining line BC subtends a right angle at every
point on the string.]

2. A closed curve of given perimeter is of greatest area when its
form is a circle.

{Let 4 be any point on the curve, and take B such that A¥ B
and ANB are equal in length. Then the areas AMB and ANDB a.re
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each a maximum when 4 B is the diameter of semicircles on opposite
sides ; therefore, etc.]

3. Having given the four sides @, b, ¢, d of a quadrilateral, its
area is a maximum when it is eyclic.

[Let ABCD be the cyclic quadrilateral with the given sides, and
consider the segments on the sides to be rigidly attached to them.*
If then the figure be distorted in any way into a new position

*The construction of the cyclic quadrilateral whose four sides are
given is as follows:—

Draw CF making ctDCE=:BAC. Sinceby Euc.iii., 22,.CDE=.ABC,
the triangles ABC and CDE are similar; therefore DE:c=b:a
(Euc. vi. 4); hence DE is known and % is a fixed point.

Again, AC:CE=a :c; therefore in the triangle ACE we have the
base AE and ratio of sides; the locus of C is therefore a circle (Euc.
vi. 8); this locus intersects the circle described with D as centre and
c as radius at the point C ; therefore, etc,
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A'B'C D) the area of the circle A BCD > A'B'C'D' (Ex. 2), but the
segments .| B=A'B, BC=DB'C, etc.: take away these equal parts
and there remains the quadrilateral 4 BCD greater than 4'B'C'D.]*

4. If three sides a, b, ¢, of a quadrilateral are given in magnitude,
the area is a maximum when the fourth side d is the diameter of
the circle through the vertices ; and generally,

When all the sides but one of a polygon of any order are given
in magnitude, the area is a maximum when the circle on the
closing side as diameter passes through the remaining vertices.t

[Proof as above.]

5. Having given of a quadrilateral the diagonals § and & and a
pair of opposite sides B( and 4D, its area is a maximum when B('
is parallel to 4D.

[Take any position of the quadrilateral and through € draw
CE parallel and equal to 8. Join BE and AE.

The triangles BDE and BCD are equal (Euc. 1. 37) ; to each add
ABD, therefore ABCD=ABED.

* The student should learn the proof of the Trigonometrical expression
for the area of any quadrilateral in terms of the four sides and the sum
of either pair of opposite angles.

(Area)?= (s —a)(s - b)(s — ¢)(s — d) — abcd cos?3(4 + C).
(Casey’s Plane T'rig., art. 152, cors. 3, 4.)

1+ To construct the quadrilateral. Let 6 be the angle between a and
b, and AC=x.

Then A?=ct+2’=a?+b2+¢c2-2abcos B ;...c.eeeeniinnnnnnn, (1)
but cosf=—-c/d;
substituting in (1) and simplifying we have the following expression
for d :— d3 - d(a®+ b%+c?) - 2abc = 0,

an equation which has only one positive root. (Burnside and Panton’s
Theory of Equations, Art. 13.)
In the particular case when a = b =¢, the equation for d reduces to

(d-2a)(d+a)=0;
hence d=2a,
thus showing that the quadrilateral is half the regular inscribed hexagon.
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Now, A BDE is a maximum when 4D and DE are in the same

straight line; hence 4BCD is a maximum when BC is parallel
to AD.]

6. The diagonals of a quadrilateral are 9 and 10 feet and two
opposite sides 5 and 3 feet ; find when its area is a maximum.

10. Theorem.—ITaving given the base A B of a triangle
and the locus of the vertex a line L meeting the buase pro-
duced, the sum of the sides AC+ BC is a minimum when
L 13 the external bisector of the vertical angle.

Let fall a perpendicular BL and make B’L=BL. Join
AB and let C be its intersection with L. Take any
other point P on the line and join 4 P and B'P.
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The triangles BCL and B'CL are equal in every respect
(Euec. I. 4); hence BC=B'C. Similarly BP=1'P. Hence
since (Eue. 1. 20) AP+BP > AB it follows that
AP+ BP > AC+ BC.

Cor. 1. If the line L cuts the base internally the
difference of the sides (A4C— BC) is a maximum when it
bisects internally the angle C.

EXAMPLEs.

1. The triangle of minimum perimeter inscribed in a given one is
formed by joining the feet .X, ¥, Z of the perpendiculars* let fall
from the vertices on the opposite sides.

[For the joining lines are equally inclined to sides on which they
intersect (Euc. IIL 21).]

2. The polygon of least perimeter that can be inscribed in a given
one is that whose angles are bisected externally by its sides. (By
Ex. 1)

3. The base and area of a triangle being given, the perimeter is
least when the triangle is isosceles.

[For the line Z is parallel to the base.]

4. If from O, the point of intersection of the diagonals of a cyclic
quadrilateral, perpendiculars are drawn to the sides and their feet
P, Q, R, S joined, the quadrilateral PQRS is of minimum perimeter.

4a. If points P, @, I, §' be taken on the sides of the given
quadrilateral, such that P'Q/, @'/, 'S’ are parallel to @, QR, RS,
then 273" is parallel to PS and the perimeters of the quadrilaterals
are equal. [Euc. VL. 2 and I. 5.]

5. The value of the minimum perimeter of the indeterminate
inscribed quadrilateral in Ex. 4 is 268'/D, where D is the diameter
of the circum-circle.

6. Given a triangle 4BC, find a point O such that

04+ 0B+0C is a minimum.
[Where BOC=C04=A40B=120")

* These are generally known as the Perpendiculars of the Triangle, and
X YZ as the Pedal Triangle of ABC.
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11. Problem.—Given an angle C of a triangle and o
point P on the bage, construct the triangle of minimum
area.

Through P draw APB such that AP=BP. The
triangle ABC is less than any other A’B'C.

For draw AX parallel to BB. Then the triangles
APX and BPB' are equal in all respects (Eue. I 4);
hence AA’P > BB'P. To each add APBC, therefore
A'B'C>ABC; hence the triangle of least area is that
whose base i8 bisected at this point.

12. Theorem.—Given an angle and any curve concave
to its vertex C. The tangent AB which forms with the
sides of the angle « triangle ABC of minimum areq is
bisected at its point of contact (P).

For this tangent cuts off a less area than any other
line A’B’ through P, because it is bisected at . Now
draw any other tangent XY, and let PA’B’ be parallel to
it. Since the curve is concave to C, A’'B'C < XYC;
a fortiori ABC < XYC.

Cor. 1. In the particular case when the curve is a
circle whose centre is at C' the triangle is isosceles. This
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property may be stated otherwise. When the wertical
angle and altitude of a triangle are given, the base and
area are both minima when the triangle is isosceles.

On account of its importance an independent proof of this pro-
perty of the isosceles triangle is given.

Let ABC be an isosccles triangle and 4'B'C any other, having
the same vertical angle and altitude CM.

Now BC' > B'C (Euc. I1I. 8), but BC=4C < 4'C, hence A'C> B'C.
Let CD=DB'C, join 4D. The triangles ACD and BB'C' are equal
in every respect (Euc. I. 4), hence 44'C> BB'C; therefore
A'B'C > ABC ; thercfore, etc.

Cor. 2. When the curve is a circle touching the sides
of the angle the tangent AB and area ABC are each
minima when the triangle is isosceles.
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Cor. 3. If we consider the portion of the circle in
Cor. 2, which is convex to C, the intercept of a variable
tangent made by the sides of the angle subtends a con-
stant angle a at the centre of the circle (2a=7—C).

Hence the variable triangle 4,B,0 has a constant vertical
angle (a) and altitude (y), and therefore its base and area
are minima when 4,0=B,0. In this case the point of
contact P, is the middle point of A,B,. Therefore, having
given a circle and two fixed tangents, the portion of a
variable tangent intercepted by the fixed tangents
becomes a minimum in two positions, viz, when its
point of contact bisects the arc X} internally or exter-
nally.

In the latter case the area cut off (4 BC) is a minimum
but in the former a maximum ;

For A,B,C=C0X0Y-24,BO;
therefore, since CXOY is constant, when 4,B,0 is a mini-
mum, 4,B,C is a maximum.
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ExaMpLEs.

1. The triangle of least area and perimeter escribed to a circle is
equilateral.

[For the point of contact of each side bisects the arc between the
other; cf. Art. 8, Ex. 1.]

2. The polygon of least area and perimeter escribed to a circle is
regular. (By Ex. 1.)

3. Having given the vertical angle C of a triangle in position and
magnitude, and the in- or corresponding ex-circle, to prove that the
line ZM joining the middle points of the sides forms with the
centre of the circle a triangle of constant area.

[For the ex-circle : if p be the perpendicular of 4BC drawn from
C to the base, and r; the radius, we have 20LM =3}c(3p+r3)
=3A4BC+ A0B=4$0CX Y =const., etc.]

13. Problem.—Qiven an angle O of a triangle and a
point P on the base, construct it such that AP.BP s a
manimum.

Through P draw AB so that the triangle 4BO is
isosceles. Describe a circle touching the sides of the
angle at 4 and B, and draw any other line 4A’PB".

It is evident that AP.PB< A’P.BP,and is therefore
o minimum.
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ExAMPLE.
1. Through the point of intersection I’ of two circles draw a line
APD such that PA . PB is a minimum.
[This reduces to describe a circle touching the two given ones at
A and B such that 4, B and P are in a line,
It will be afterwards seen that this line passes through a point

@, on the line of centres 0,0, of the circles where Q0,/Q0,=the
ratio of the radii.]

14. Theorem.—If a vight line be divided into any
two parts a and b, their rvectangle is a maximum when
the line 1s bisected.

— 2 2

For Eue. (11. 5) ab+(a o b) = (“_;'1’) = const.,
hence ab is a maximum when ¢ ~b =0 or when a =b.

Cor. The continued product of the segments of a line
is & maximum when the parts are equal.

ExAMPLES.

1. Through any point 2’ on the base of a triangle parallels X" and
PY are drawn to the opposite sides ; the arca of the parallelogram
LPXCY is a maximum when the base 4B is bisected at /.

[For the triangles 42X and BPY are constant in specics,
hence ’PX./YoxAP.BP. But the area of the parallelogram
=PX.PY sin CxcPX. LY ; therefore, etc.]*

2. The maximum rectangle inscribed in a given segment of a
circle is such that if tangents BC and AC be drawn at its vertices
A and Y, then BX=CX and CY=4Y.

[For N X is the maximum rectangle that can Le inscribed in the
triangle BON, and therefore greater than any other A"V. Hence
from the symmetry of the figure the rectangle on the side XY is
greater than that on X'Y’, and a fortiori greater than that on
XH YII.

* Hence, the maximum parallelogram inscribed in a triangle is half
the area of the triangle.
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The construction of the maximum rectangle is as follows :—Let
BL be drawn perpendicular to OL, the diameter of the circle
parallel to 4B. Join OX and let it meet BL in P. Since the
triangles OCX and BPX are equal in every respect (Euc. I. 26)

PX=0X=r. Also OXBL is a cyclic quadrilateral, therefore
Euc. (I11. 36),

PB.PL=P0. PX=2r,
but PL - PB is given ; hence the segment PB is known, and since it
is equal to OC, C is determined.

In the general case the line 4B does not meet the circle, the seg-
ment is therefore imaginary, and the proposition may be thus
stated :—given a line 4B and a circle; construct the maximum
rectangle, having two of its vertices .Y and } on the circle and the
remaining two on the line.]

3. Draw a chord X ¥ of a circle in a given direction such that the
area of the quadrilateral 4 BX Y, where 423 is a given diameter, is a
maximum.

[Draw a diameter VX', and A YBX'is a rectangle, hence AX' is
equal and parallel to BY. Join BX and XA, and draw BC parallel
to XX

Then since

triangle A XX + triangle BX Y =triangle ABX’,
reject the common part AM X' and let BMX be added to each,
BXX'=ABXY.
The quadrilateral is a maximum therefore when BXX’ is a
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maximum. It is easy to see that the latter is half the rectangle
inscribed in a given segment BC.

For since BC is parallel to XX, AC is perpendicular to XX’ and
therefore parallel to P.X, hence BAC=a.

The problem is thus reducible to Ex. 2.]

4. If a given finite line be divided into any number of parts
a, b c..; tofind when a®b8¢7 ... is a maximum, where q, £, y
are given quantities,

[This expression is a maximum when

(g)a(%)ﬁ(§>7m is a maximum................. a)

but @/a is one of the a equal parts into which the segment ¢ may
be divided ; hence (a/a)® is the product of the equal subdivisions.
Similarly (b/8)B is the product of the 8 equal subdivisions of b, and
so on. Therefore (1) attains its greatest value when the subdi-
visions of a, b, ¢ ... are all equal ; 7.e., when
e b e
=B~y
5. Find a point O with respect to a triangle such that the product
of the areas (BOCKCOAXAOUB) is a maximum.
[Since BOC+COA + A OB is constant, when BOC'=C04 = A0B, by
Ex. 4, or when O is the centroid of the triangle.]

6. The maximum triangle of given perimeter is equilateral.

[From the formula A?=s(s~a)(s—b)(s—c); since the sum of the
factors on the right hand side is constant, A is a maximum when
s—a=g8-b=s-c; therefore, etc.]
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7. The maximum parallelogram of given perimeter and angles
is equilateral.

8. If py, p,, p3 denote the perpendiculars from any point O on the
sides of a triangle, the maximun value of p,p,p, is 8A3/27abe, and
0O is then the centroid of the triangle. (By Ex. 5.)

[Otherwise thus:—Since 4abp, p,=(ap, + bp,)? — (ap, — bp,)? for any
point O on the base ¢, p,p, is maximum when ap, — bp, vanishes,
since ap, +bp, equals 2A. Then O is the middle point of the base.
Now if p; be supposed constant, 0 is on the median through C.
Similarly by regarding p, as constant, O would be found on the
median through 4 ; and so on. Therefore if the three perpendi-
culars vary, their product is a maximum for the point of intersection
of the medians.]

15. Theorem.—If a right line be divided into any two
parts a and b the sum of their squares is a minimum
when the line is bisected.

For (Eue. II. 9, 10) ; ;

a+ a—
=25 0) v (")
Hence a2+ b2 is minimum when ¢ — b is minimum, because
a+b is constant ; that is when a=0.

Cor. The sum of the squares of the segments of a line is
a minimum when the segments are equal.

16. Problem.—If 'right line be divided into any
number of parts a, b, ¢ ..., to find when

a2 b2 02
tpt
where q, 3, -y are known quantities.

Let the segment a be divided into a equal parts; each
part is therefore a/a and the sum of squares of the parts

((l)2 a2
=ql|— =—
a a

Similarly if the segment b be divided into 8 equal parts
the sum of squares of the subdivisions = 4*/3; and so on.

+ . 18 minimum
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Hence the above expression denotes the sum of the
squares of the subdivisions of the parts ¢, b, ¢ ..., and is
therefore a minimum when these are equal ; 4.e., when

a b c_
a BTy
LEXAMPLES.

1. Divide a line into two parts a and b such that
3a?+40? is a minimum.
T e
[When 'Z + l;; is minimum, z.e., when g:g, hence 3a=4).]
2. To find a point P such that the sum of the squares of its
distances, z, ¥, z, from the sides of a triangle is a minimum.
[Let A, A, A; denote twice the areas of the triangles subtended

by the sides of the given one at the point. Now since A,=aur,
A,=by, and Ag=cz,

A A,?
2+ y24ot= 1 +—° e T 1
22+ +2 T (1)

and is consequently a minimum when

4,_4,_A,

a'“’ b—_ 7 I IT PP PP PP (2)
since A; + A, +Ag=const.
From (2) it is obvious that 2:‘2:2 .................................... (3)

This result may also be seen from the identity
(a®+ 02+ c2)(2?* 4+ y2 + 22) — (ar + by +c2)?
= (bz—cy)?+ (cx - az)*+ (ay — bx)?,
with which the student should be familiar.]
Nore.—This point is termed the Symmedian Point of the triangle,
as it is obvious from (3) that the lines joining it to the vertices of

the given triangle make the same angles with the sides as the
corresponding medians ; also since

x_y_z_ax+bytez_ 24

a0 wbe  Ere
2aA 204 2¢A

TaErrre YT arnre T ar it
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3. Find a point P such that the sum of squares of its distances
from the vertices of a triangle may be a minimum.

[If CP be supposed constant while AP and BP vary, the point
P describes a circle around C as centre, and if M be the middle
point of the base A P2+ B?*=24 M*4-2MP*. Hence A P*+BP*+C1?
is minimum when 2P M2+ CP? is minimum, since 4.4 is constant.
Therefore P is a point on the median CMf such that CP/PM =2, e,
the centroid.

Similarly by supposing 4P or BP to remain constant we find
the same point. Hence the centroid is the required point when
AP, BP and CP all vary.]

SEctioN II.

METHOD OF INFINITESIMALS.

17. Tt has probably been observed in the preceding
section that the positions of maximum and minimum of
a quantity, varying according to a given law, are sym-
metrical with respect to the fixed parts of the figure.
Thus when the base and vertical angle of a triangle are
given, the altitude, rectanglc under sides, ares, etc., etc,
are maxima when the triange is 4sosceles.
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In Art. 9 the triangle of maximum area is found by
placing the two given sides at right angles:

Again, a figure of given perimeter and of maximum
area is circular. As the variable line AB in Art. 11
rotates in a positive direction around P, according as PB
recedes from the perpendicular from P on BC, the
seginents AP and BP approach an equality, and the
triangle 4 BC is a minimum when AP =BP.

18. The several parts, of a geometrical figure which
varies according to a definite law, can always be expressed
in terms of the fixed parts of the figure and those
quantities which are sufficient to define its position.

Take for example the figure of Art. 8. In any posi-
tion of the vertex C, by assuming the triangle to be of
given altitude; the variable parts, a, b, area, and other
functions of the sides or angles can be found in terms of
the base ¢, vertical angle C, and altitude.

Thus the variables may be regarded as functions of the
given parts and the co-ordinates of their position.

It follows, then, that if the latter vary continuously
those functions must do likewise.* Hence a very small
change in position will cause a very slight change or
increment in the magnitude of the function. Suppose in
Art. 8 the circle to be divided into an indefinitely great
number of equal parts, and let the vertex C' occupy each
point of section from A towards B. As the altitude
thus receives indefinitely small increments so does the
area.

Let ABbe the base of a triangle and any curve CC\C,
the locus of its vertex.

* See Burnside and Panton’s Theory of Equations, Art. 7.
c
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In the figure as the vertex approaches C' on the curve
from left to right the intercept AX made by the per-
pendicular may be taken as the co-ordinate of its
position, since if AX is known the position of C is
also known,

Thus while AX continues to receive positive incre-
ments, the area, altitude, and other functions of it are
sometimes decreasing, as from C to (), and sometimes
increasing, as from (] to C,.

At the points C, C,, C, the increments in the altitude
alter in sign and therefore consecutive values are equal.
Here also the tangents to the curve are parallel to the
base 4B, and at any other point C, the increment of
the variable divided by the corresponding increment in
the function=cota, where a is the angle made by the
tangent at C, with AB. We have seen that if AX
denote the value of a variable in any position, and CX
any function of AX, when the function passes through
a maximum or minimum its two consecutive values are
in each case equal to one another.

Suppose, for example, that a variable chord XY of a
circle moves parallel to a certain direction; it gradually
increases in length as it approaches the centre and if X Y
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be a diameter and X’Y’ a consecutive chord ; since XX’
and Y'Y’ are tangents to the circle, and therefore parallel,
XYX'Y’ is a parallelogram and XY =X'Y’ (Euc. I. 34).
Hence the diameter is the maximum chord in a circle
(cf. Eue. TII. 15).

ExAMPLES.

1. Having given the base and locus of vertex of a triangle ; find
when the area is a maximum or minimum.

[Let the locus be a curve of any order and it is readily seen
(Euc. I. 39) that the tangents at the required points are parallel to
the base.]

2. In Ex. 1 when is the sum of the sides a minimum or
maximum ?

[Let ¢'and ¢’ be two points indefinitely near to each other on the
locus #N. Draw CX and ('Y perpendiculars to AC' and BC
respectively.

Then since in the triangle ACX, X is a right angle and 4 inde-
finitely small, 4C.X is approximately a right angle and AC is
nearly equal to AX. Hence in the limit

CX=4C"-AX=4C"-AC.
Similarly C7Y is the increment (negative) of BC.

Therefore ¢"Y=CY and the right-angled triangles CC".X and
CC'Y are equal in every respect, and L4C'C=.BCC". But
AC'C=ACM when A is indefinitely small; hence the required
points €' on the locus are such that A and BC are equally inclined
to the curve, 7., to the tangent at their point of intersection.
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It similarly follows that if 4 and B were upon opposite sides of
the curve this relation holds when AC-B( is maximum or
minimum.¥]

3. Given the vertex 4 of a triangle fixed, the angle 4 in magni-
tude and the base angles moving on fixed lines intersecting in O;
to construct the triangle 4 BC of minimum area.

[By taking two consecutive positions as in figure, we have

AB.AC=ADB'.AC" and LBAB'=,CAC".
Hence AB:AB=AC": AC,
and the triangles BAB' and C4 (" are similar (Eue. VL. 6).1

‘Therefore L4BO=,A4C'0=ACO0 in the limit

In the required position the sides 4.8 and AC are equally inclined
to the given lines. Here again we have an illustration of the
symmetry of the figure when the triangle is minimum. If the
angle 4 is 180° the property (Art. 13) follows at once.]

4. Given two sides of a triangle fixed in position and a point P
on the base ; when is 4B a minimum ?

[Taking two consecutive positions of 4B and drawing perpen-
diculars 4X and BY; as before A’X is the increment of AP and
B'Y of BP; hence A'X=DB'Y.

Again A'X=A4X cotA'=AP sin P .cot4d'.

Similarly B'Y=BY cot B=BP sin P cotB.
Therefore in the limit
AP cotA=BP cotB.

* It follows if the curve is of such a nature that AC+ BC is constant
then for every point on it AC and BC are equally inclined.
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But if @ denote the foot of the perpendicular on the base we have

BQ cot A=A4Q cot B,

hence AP=DBQ,
or the minimum chord is such that the given point P and the foot of
the perpendicular are equidistant from the extremities of the base.

This is known as Philo’s Line.

5. Through a given point O in the diameter produced of a semi-
circle to draw a secant OBC such that the quadrilateral 4 300 may
be a maximum,

[Take two consecutive positions of the secant 0BC and OB'C’ such
that A BCD=AB'C'D, and join 4B, 4B, DC, D(C', and B'C.
Now since ABCD=AB'C'D it follows that
BB CC'=ABB +DCC'
or BBC+CBC'=BBA+CCD.
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Transposing we have
BBC-BBA=0C'D-CBC(',

or since twice the area of a triangle is the product of two sides x
the sine of the included angle ; in the limit this relation becomes

BB(BC*—-4B%)_ CC'(CD?*— BC(C?) ,

diameter ~ diameter

but from similar triangles BB/CC'=0B|0C. Hence if 4B=aq,
BC=b,CD=c, AD=d, and the angles subtended at the centre of the
circle by the sides a, b, ¢ be denoted by 2a, 20, 2y, this relation may
b -a2_0C
c-¢ 0B

be written

which is easily reducible to

cos 2a.+cos 2y=1,
or the projection X Y of the intercept is equal to the radius of the circle.
The construction of the chord BC will be afterwards given.]

6. Having given two opposite sides 4 B and CD of a quadrilateral
and the diagonals C'4 and BD, to construct it so that the area may
be a maximum.

[Let AB be fixed and draw C' and D' consecutive positions of
C and D. Let O be the intersection of AC and BD. Then since
CC’ is small compared with OC and OCC’ a right angle ; 0CC’ may
be considered an isosceles triangle, and 0C=0(C". Similarly
OD=0D'; and since CD=C'D' the triangles COD and C'0OD' are
equal in every respect. From the equal areas 4 BCD and ABC'D
take the equals COD and C'0OD' and the common part 4 0B, and
there remains BOC+ A40D=B0OC'+ A0D,
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or BOC'-B0OC=A4A0D- 40D,
hence BO.C0=40. DO,
from which it is manifest that CD and AB are parallel. Cf. Art. 9,
Ex. 5.

A similar proof may be applied to show that when the four sides
of a quadrilateral are given the area is a maximum when

C0.40=80. DO,

t.e., when the figure is cyclic. See Milne’s Companion to the Weekly
Problem Papers, 1888, p. 27.]

7. To draw a parallel to a given line meeting a semicircle in C and
D such that 4 BCD is a quadrilateral of maximum area.

[As before, when ABCD is a maximum it is equal to the
consecutive area 4BC'D'.

Hence CC'DD'=4CC'+BDD,
therefore : CC'D-CC'A=DD'B-DDC,
which in the limit reduces to
DP—a?=c2—b2or 202 =u?+C%..coevrerrirnrinniinns (1)

Again if X and Y are the projections of C and D on the diameter

d of AB we have
AX=a¥d, BV =ctdand X F=b cos a.

Making these substitutions in (1) we have on reducing
2624+ d cos 0. O —d=0...c0iiruiririniiniiiiininnens 2)
Nore.—If a=0 the quadrilateral is found to be one half of the

inscribed hexagon.
If a=90 the maximum quadrilateral is the inscribed square.
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SEectIoN III.

THE PoIiNT O THEOREM.

19. Theorem.—If points P, Q, and R be taken on the
sides of a triangle the circles AQR, BRP, and CPQ pass
through a common point O.

For let the circles AQR and BRP meet in 0. Then
since (Eue. III. 22) QOR=7—A4 and ROP=7—B, we
have QOP=27—(r—A)—(wr—B)=A + B=7-C; there-
fore the quadrilateral POQC is cyclic.

The angles BOC, COA, AOB, subtended by the sides of
the given triangle at O, are respectively A+ P, B+Q,
C+ R, when O s within the triangle ABC.

For, applying Euc. I. 32 to the triangles BOCand COA,
it follows that . AOB=C+CA0+ CBO.
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But CA0=QRO since AQRO is cyclic,
also CBO=PRO since BPRO is cyclic;
therefore AOB=C+HR.......ccevivirieiinnininnn (a)

where R denotes an angle of the triangle PQR. Similarly
for the angles BOC and COA.

If O falls outside the triangle 4 BC these angular rela-
tions become somewhat modified. Take for example O
within the angle C.

Then from the cyclic quadrilaterals Q RA0 and RPBO
we have (Euc. III. 20)

LORP=0BP and [ ORQ=0A4Q;
adding these equations
R=04Q+0BP=C+A0B,
or AOB=R-C.
Again, since Euc. I. 32,
A+ ACO=B0OC+ ABO,

by transposing

A—=BOC=ABO—-ACO .............ccnenn.. 1)
But ABO=RPO since PRBO is cyclic,
and ACO=QPO since PQCO is cyclic.

Substituting these values in (1) we have
A—-BOC=RPO-QPO=P;
therefore BOC=4A-P.
Similaly COA=B—Q.. ....ccoceoviiiiiiiiiiinn, B)
It may be shown in the same mauner that if the points
P, @, R are such that two of the angles P, @ of the
triangle formed by them are greater than A and B

respectively BOC=P—-A4,
COA=Q—B,......cevvvrnrinnnn. (y)
and AOB=(C-R.

Hence if a triangle PQR of given species be inscribed
in a given one ABC, the circles AQR, BRP, and CPQ
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pass through either of two fixed points, one of which
subtends at the sides of ABC, angles 4 + P, B+Q, C+ R,
and the other A— P, B—Q, R—C,or P— A, Q—-DB, C—R,
according as two of the angles of the given triangle are
greater or less than the corresponding angles of the
inscribed triangle.

20. Let PQR be a triangle of given species inscribed in
ABC. We have seen that the point O is fixed, and
therefore the lines 40, BO divide the angles of ABC into
known segments. But the segments of A are equal to
the base angles of the triangle QOR ; similarly of B to
the base angles of ROP, and of C to the base angles of
POQ.

Hence each of the triangles POQ, QOR, ROP are given
in species. Therefore as the inscribed triangle PQR varies
in position OQR, ORP, OPQ remain constant in species,
and O : 0Q : OR are constant ratios.

Again, since the triangle OPQ is fixed in species and
one vertex () a fixed point; if P describes a line BC it
follows that the locus of @ is also a line (CA). And
generally, when one vertex of « figure of yiven species s
Jiwved and any other vertex P or point invariubly com-
nected with it describe a locus, the remaining points Q ...
describe loci, which may be derived from P by revolving
it through a known angle POQ and increasing or
diminishing OP in the ratio of 0Q: OP.

The loci thus described are similar, the ratio OP: 0Q is
termed their Ratio of Similitude and the point O the
Centre of Similitude.

Thus since O is a point invariably connected with a
variable inscribed triangle PQR of given species, the
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ortho-centre, circum-centre, ex-centres, median point, etc.,
and all other points invariably connected with the
triangle, describe right lines which can at once be con-
structed by the above method.

Moreover, we know that if O is fixed and P describes a
circle, and the variable line or Radius Vector OP be
divided in @, in a given ratio, the locus of @ is a circle.
Now if @ be turned around O through any given angle
the locus is the same circle displaced through the same
angle. Therefore if one vertex of a triangle of given
species is fixed, and another vertex describe a circle, the
remaining vertex and all other points imvariably con-
nected with it likewise describe circles.

ExamMPLES.

1. Having given the diagonals and angles of a quadrilateral
ABCD, construct it.

[On one diagonal A C describe segments of circles containing angles
respectively equal to B and D.  Let ABCD be the required quadri-
lateral. Produce CD to ¥ and BC to X. Join BY and 4Y.

Then since the chord BY of a given circle subtendsa given angle C
it is of known length. The triangle ADY is also given in species ;
hence the following construction :—On BY describe a segment of a
circle containing an angle C. The triangle ADY, of given species,
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has one vertex Y fixed, another 4 describing the circle 4YC,
therefore the remaining vertex D describes a circle. Take Bascentre
and BD as radius, and cut this locus in the point D ; therefore, etc.*]

2. Required to place a parallelogram of given sides with its
vertices on four concurrent lines (M‘Vicker).

[Let ABCD be the parallelogram situated on the pencil 0. ABCD.
Through ¢'and D draw parallels CP and DI to BO and 4O respec-
tively. Join OP. By Ex. 1 the diagonals and angles of the
quadrilateral CDPO are given ; therefore, etc.]

21. When the triangle PQR is given in every respect,
the triangles 0PQ, OQR, ORP are completely determined ;
for in addition to their species we are given the sides PQ),
QR, and RP, hence the sides OP, 0Q, OR are easily
determined. We have therefore four solutions, real or
imaginary, to the problem :—

Having given two triangles ABC and PQR to place
either with its vertices on the corresponding sides of the
other ; for having determined the point O, the position of
which depends altogether on the species of the triangles,
we get the position of the vertex P by taking O as centre
and OP as radius and describing a circle cutting BC.

22. When the line OF is perpendicular to B(, OQ and
OR are therefore perpendiculars to CA and AB respec-
tively, and the circle with O as centre and OP as radius
touches BC. In this case the two solutions coincide, and
PQR is the minimum triangle of given species that can
be imscribed in ABC.

28. It is manifest that « given triangle ABC may be
escribed to amother PQR. For having determined the
point O, the triangles BOC, COA, and AOB are given in

species, and are therefore completely determined, since

* For other solutions see *“ Mathematics from the Educational Times,”
Vol. XLIV., p. 29, by D. Biddle and Rev. T. C. Simmons.



MAXIMUM AND MINIMUM. 45

BC, C4, and AB are given lines. Hence any vertex (C)
is found by describing a segment of a circle upon PQ
containing an angle equal to C, and with O as centre and
OC as radius describing circle. Where these circles meet
is the required position of C.

Again in the triangle BOC when BC is a maximum
0C is a maximum, and is therefore a diameter of the
circle OPQC. Then OPC is a right angle. Hence the
mazimum triangle of given species escribed to a given
one is that whose sides are perpendicular to OP, 0Q, OR.

Cor. If the sides of the given escribed triangle be
A, u, and v, and q, B, v the distances of O from P, @, R,

Aa+uB+vy=a minimum.
Hence required to find a point, given multiples of whose
distances from three fived points is a minimum when any
two of the multiples are together greater than the third.

ExamMpLEs.

1. If d denote the distance of the point O from the circumcentre
H of the triangle 4 BC'; prove that twice the area of the minimum
triangle PQR is (R?~d?) sin 4 sin B sin C.

[For join A0 and produce it to meet the circum-circle againin ¢';
join BC".
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Now since LR=A0B-C=A40B - C'=0BC’ (Euc. I.32),
we have 2PQR=RP.RQsin R=RP . R@sin 0BC".......(1)
but RP=0Bsin Band RQ=04 sin 4.

Substituting these values in (1) and putting

OB sin OBC'=0C" sin (',
2PQR=A0. B0 sin A sin B sin 08¢’

=40 .00"sin A sin B sin ¢

=(R*~d? sin 4 sin B sin (]

Nore.—If the point O is on the circum-circle R=d and the area
of the triangle vanishes, hence if from any point on the circum-circle
of a triangle perpendiculars be let fall wpon the sides their fect lievn a
line. This is termed a Stmson Line of the triangle, and the col-
linearity of the points admits of an easy direct proof.

2. If the pedal triangle P@R of a point O is constant in area the
locus of the point is a circle.

[Concentric with the circum-circle by the equation of Ex. 1.]

2a. The theorem holds generally for a polygon.

3. Having given of a triangle the base ¢, and ab sin (C'—a) where
« is a given angle, find the locus of the vertex.

[In Ex. 1 we have

2PQR=A0. BO sin 4 sin B sin (40B-C)
@ AO. BO sin (40B - 0),
and the locus of O is in that case a circle. Hence in the triangle
AOB we have the data in question; therefore the locus of the
vertex is a circle concentric with #.]

4. To inscribe a quadrilateral of given species P@RS in a given

quadrilateral 4 BCD.

Find the point O, of the triangle PQR of given species inscribed in
a given one, viz, that formed by three of the sides, AB, BC, CD of
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the quadrilateral., Similarly find O, of the triangle P@S inscribed
in a given one. Now by Art. 19, since the species of each of the
triangles 0,’Q and 0,P@ is given, we have .0, PO,= 0,PQ ~ 0,PQ=
a known quantity ; therefore the point P is determined.

5. To escribe a quadrilateral ABCD of given species to a given
one PQRS.

[Take -any quadrilateral abcd of the same species as ABCD.
Inscribe in it by Ex. 4 a quadrilateral pgrs of the species PQRS. It
ig obvious that L8P A =spa, since the figures are similar, hence the
problem reduces to drawing lines in known directions through
P,Q LS.

Otherwise thus :—

Upon a pair of opposite sides /@ and RS describe segments of
circles containing angles equal to B and D respectively. Find a point
M such that the arcs PH and QM subtend angles equal to 4 BD and
CBD respectively. Similarly find &N such that CDN and 4 DN may
be equal to the known segments of the angle C. Join #N ; where it
meets the circles in B and D are two of the required vertices of the
quadrilateral ABCD.]

6. To escribe a square 4BCD to a quadrilateral PQRS.

[By Ex. 5 or simply thus :—Join £’£ and let fall a perpendicular
from @ uponit. Make @S’'=PR. 88’ isa side of the required square,
This construction depends upon the property that any two rectangu-

lar Uines terminated by the opposite sides of @ square are equal to one
another (Mathesis).
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7. From any point P on the base of a triangle perpendiculars
PX and PY are drawn to the sides, find the locus of the middle
point N of X 7.

[Bisect CPin M, join MX, MYand MN. Itis easy toseethat ¥.XY
is an isosceles triangle of given species, each of its base angles being
the complement of C'; and since its vertices X, #, ¥ move on fixed
lines, any point &V invariably connected with it describes a line. By
taking 2 to coincide alternately with 4 and B the locus is seen to be
the line joining the middle points of the perpendiculars from the
extremities of the base of the triangle 4BC.]

8. The sides of the pedal triangle PQR are in the ratios
a.40:b.80 :c. CO.
[For QR=A40 sin Ax a. A0, ete.]

9. Extension of Ptolemy’s Theorem.—If the three pairs of
opposite connectors of four points be denoted by a,¢; b, d; §, &
to prove the relation

8282 =a2¢? + b2d? — 2abed cos (0+ @),
where 0+ & is the sum of a pair of opposite angles of the
quadrilateral.

[Let 4, B, €, O be the four points. From any one of them O
let fall perpendiculars OF, 0¢, OR on the sides of the triangle
ABC formed by the remaining three ; then since

PQ:=QR*+ RP2-2QR . D cos R,
substituting for PQ, @R, RP the values in Ex. 8, and reducing, the
above equation follows at once (M‘Cay).]

9a. What does this theorem reduce to for the quadrilateral 4 BCP
in the figure of Ex. 7?7 Deduce the relation of Art. 3, Ex. 5, as a
further particular case.
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~ 10. A variable circle passes through the vertex of an angle and a
second fixed point ; find the locus of the intersection of tangents at
the extremities of its chord of intersection.

11. If o, B, y denote the distances of any point O from the sides
of a triangle ; to prove that

where § and S’ are the rectangles under the segments of a variable
chord through O of the circum-circles of 4BC and of the pedal
triangle of the point O (M‘Vicker).
[In Ex. 1 let A be the point where RO meets the circum-circle of
PQR ; then y=S8'/0K=S"sinP/Bsin0QK.
But sin0@QA =sin(d + P)=sinBOC; .. By=2S"sinP[sinBOC. Also
a=0B. 0CsinBOC/a, therefore aBy=:8".0B. OCsinP/a.
Again OB= RP[sinB, etc. ... therefore by substitution
uIB‘}/:S’ -RP.PQsinP_S§'.PQR_SS"
asinBsin(’ A/ 2R 2R
12. In the particular cases when O coincides with the in- or ex-
centres of the triangle ABC, the formula in Ex. 11 reduces to
82=R?—2Rr or 8*=R*+21tr, etc.

24. Theorem.— When three points P, Q, R are taken
collimearly on the sides of a triangle, the circles circum-
seribing the four triangles QRA, RPB, PQC, ABC meet
in « point.

This theorem may be easily proved directly, but it is
obviously a particular case of Art. 19, for the circles
QRA, RPB, PQC meet in a point O (Art. 19) such that
COA = @Q— B, which in this case is 180 — B; therefore, etc.
Eue. II1. 22.

The transversal PQR to the sides of 4 B( is the limiting
case of a triangle inscribed in A BC, the angles at P and

* The constant rectangle under the segments of a variable chord of a
circle passing through a fixed point has been termed by Steiner the

Power of the Point with respect to the circle.
D
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R being each 0° and @=180°. The species of the
limiting triangle is determined by the ratios QR :RP:
PQ, or their equivalents . A0:b. B0 :¢c.CO. (Art. 23,
Ex. 8)

Hence if a transversal is drawn to a triangle such that
the ratios of its segments made by the sides is constant ;
the ratios 40 :B0:CO are known and with them the
point O. As in the general case, the triangles QOR, ROP,
POQ are constant in species.

It follows then that if P, @, R be the feet of the perpen-
diculars from O on the sides cf ABC, and the lines OP,
0Q, OR rotated through any angle in the same direction,
P, Q R will always remain collinear and the ratios
PQ : QR : RP are constant.*

Cor. Ptolemy’s Theorem.—Since QR: RP:PQ=«.A0:
b.BO:c.(CO,and PQ+QR=PR;

therefore « . AO+¢c.C0O=0. BO.

ExampLEs,
1. Place a given line PQ divided in any point R such that the
points P, @, /t may lie in an assigned order on the sides of a given
triangle.

* Chasles’ Géométrie supérieure, p. 281.
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2. Draw a line across a quadrilateral, meeting the sides in PQRS
such that the ratios P@: @R : S may be given.

3. The line joining O to the orthocentre of ABC is bisected by
the Simson line 7@, and intersects it on the nine points circle.

4. The angle subtended by any two points O) and O, on the circle
is equal to the angle between their Simson lines.

5. The Simson lines of two points diametrically opposite
intersect at right angles on the nine points circle. (By Ex. 4.)

25. Theorem. — For three positions, PQR, P,Q,R,,
P,Q,R,, of the triangle of given species inscribed in a
gtven one ABC'; to prove that

PP, :PP,=QQ,: QQ,=RR, : RR,.

Since the triangles OPQ, OP,Q,, OP,Q, are similar, we
have OP:O0P,=0Q:0Q, also .POP =Q0Q, since
LPOQ=P,0Q,; therefore the triangles POP, and Q0Q,
are similar. Hence

PP, :QQ,=0P:0Q.
Similarly QQ,: RR,=0Q:0R;
therefore PP, :QQ,: RR,=0P:0Q:0R.
Similarly  PP,:QQ,: RR,=0P:0Q:0OR;
therefore, ete.

Now if P,Q,R, and P,Q,R, denote two fixed positions
of the variable inscribed triangle PQR of constant species,
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and PQR any arbitrary position, it follows that « variable
line PQ, dividing similarly two linear segments P,Q,
and P,Q, subtends a constant angle POQ at a fixed
point O.

The point O is determined by the intersection of the
loci of the vertices of the triangles P,Q,0 and P,Q,0,
whose bases P,Q, and P,Q, are given and ratio of sides
(=P,P,:QQ,), or the intersection of the circles CP,Q,
and CP,Q,.

Since PP, and Q,Q, form similar triangles with O, this
point is termed the Centre of Similitude of the segments.
Thus the centre of similitude of two segments 4B and
CD is the intersection of the circles passing through the
two pairs of non-corresponding extremities and the inter-
section O of the given lines. Or it may be regarded as
the common vertex of two similar triangles described on
the sides.

If the points B and D coincide, O coincides with them,
and the circle ADO meeting CD in coincident points D
and O therefore touches CD. In the same case the circle
BCO touches AB.

Cor. The centres of similitude of the sides of a triangle
taken in pairs are therefore found by deseribing circles
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on BC and AC touching the sides AC and BC respectively.
The second point of intersection of these circles is a
centre of similitude of AC and BC'; similarly for each of
the remaining pairs of sides.

ExAMPLES.

1. Draw a line L dividing three linear segments 4,4,, 5,B, and
C\C; in the same ratio. (Dublin Univ. Exam. Papers.)

[Let the required line intersect the segments in P, @ and R
respectively, 0, and O, the centres of similitude of the pairs of lines
A,d44, B\Byand B,B,, C,C,. Thenin the triangle 0,90, we know the
base 0,0,and vertical angle, since it is equal to 180 — 0),Q P - 0,QL ;
therefore, etc.]

2. The centres of similitude of the sides of a triangle taken in
pairs are the middle points of the symmedian chords of the circum-
circle.

[Let X, ¥, Z denote the middle points of the sides of the triangle
ABC; CD and CK the median and symmedian chords of the circle
respectively ; A/ the middle point of CE. Join ZE, AYM and BI.

Then since cACD=BCE and LCAZ=CEB, the triangles 4(Z
and ECB are similar, and ¥ and ¥ being the middle points of a
pair of corresponding sides, C¥Z and CMB are therefore similar.
Hence LCBM =CZY=BCZ=ACM. Similarly LCd M= BCH ; there-
fore the triangles BCM and CAM are similar.)
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3. Prove the following results from Ex. 2 :(—
1°. CEZ=difference of base angles (B — 4).
2°. The triangles 4DZ and BEZ equal in every respect.
3°. CZ. CE=ab.
4°. CM =ab| Na*+ b7+ 2ab cos C.
5°. BMC=CMA=n-C.
6°. The circum-circle of 4BM passes through the centre of
the circle 4 BC.
4. Having given the base (¢) bisector of base (CZ) and difference

of base angles (B - 4); construct the triangle.
[The triangle CEZ is readily constructed ; therefore, etc.]

5. Having given the bisector of base (CZ) rectangle under sides
(ab) and difference of base angles (B—A4); construct the triangle.
[As in Ex. 4.}

6. Having given the base, median, and symmedian of a triangle;
construct it.

SkcTioN IV,
MISCELLANEOUS PROPOSITIONS.

26. Prop. IL—Through « point P to draw a line across

an angle such that the intercepted segment MN may
subtend at « fixred point Q a triangle of maximum areq.



MAXIMUM AND MINIMUM. 55

The transversal PMN such that the parallels OM and
ON to the sides of the angle intersect on PQ is the
required line.

For draw any other line PM’N". Join M’N. Then the
triangles MON and M'ON are equal (Euc. 1. 37), but
M’ON > M'ON’; therefore MON > M'ON".

MON _ MQN MON

But WON " WON because QN
tudes = PO/P(Q. Similarly %,-8%; PO/PQ); therefore
MQN > M'QN.

To find the point O. Evidently by similar triangles

PA/PO=PM/PN=PO/PB;
therefore PA . PB=P0~

= ratio of the alti-

Prop. IL—On the sides BC and CA of « triangle, to
JSind points M and N such that if the lines AM and BN
meet in O the triangle MON may be « maximum.

Regarding A as a point on the base produced of BCN
and AOM a transversal to the sides, MON is maximum
when ON’ and MN’ parallels to these sides respectively
mect on AC. Similarly since B is on the base produced
of ACM and BON a transversal to the sides, OM and
NM parallels to the sides mget gp the base.
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Then we have ANM'O and CN'OM’ equal parallelo-
grams (Euc. I. 36), therefore AN =CN’, also BM=CM".
But by Prop. I. AN . AC = AN", therefore AN . AC = CN?;
similarly BM . BC = CM? or the sides of the triangle ABC
are divided in extreme and mean ratio, the greater
segments being measured from the vertex.

Prop. III. Through one extremity A of the diameter
APB of a semicircle draw a chord AMN to meet o
perpendicular through P to the diameter AB in M and
the circle in N, such that the triangle MBN may be a
magimum.

Suppose a tangent is drawn at the required point N.
Let it meet PM in 8. Join 4S. From the centre C let
fall CX perpendicular on AS. Join CN.

By Prop. I the parallels MQ to the tangent and NQ to
PS meet on AB, for then with respect to the angle PSN
the triangle MBN is maximum ; therefore a fortior: it is

the maximum triangle whose vertex IV lies on the circle
ANB. i
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LtANS=ABN=ANQ. Hence since MN, the diagonal
of a parallelogram MSNQ, bisects the angle N, the figure
is a rhombus, and NQ=NS. Then the triangles ANS and
ANQ are equal in every respect (Euc. I. 4), therefore ASN
is a right angle; hence CNSX is a rectangle, and SX is
equal to the radius of the circle.

Also OPSX is a cyclic quadrilateral, therefore

AS . AX=AC. AP

which is known. Therefore we have the rectangle and
difference of AS and AX, from which data these lines are
at once determined. Then we can construct the right-
angled triangle ACX, which fixes the point X ; there-
fore, ete.

Cor. In the particular case when PMS is a vertical
radius, if SN meet the tangent A7 in 7 and AB in 1", we
have AS.AX =12, therefore by parallels AT". AC=CT"
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Similarly TT'.TS=1"S?, but T7T'.TS=AT?*=TN?;
therefore TN=1"S, and TS=T'N.

But when a line 7’7" is divided in extreme and mean
ratio in S and from the greater segment a part TN is
taken equal to the less 7T'S, T”S is divided into extreme
and mean ratio.

Ex. Draw the transversal AMN such that the quadrilateral
MNBP may be a maximum.

Prop. IV.* Through a given point O in the tangent at
C to a circle draw a secant AB such that the triangle
ABC may be of maximum area.

Draw tangents at A and B to meet in 7% The required
triangle is such that the parallels through 4 and B to the
tangents at these points meet on OC in P.

For since O and 7, O and C, are pairs of conjugate
points with respect to the circle, C7' is the polar of O.

* This Proposition may be omitted on the first reading.
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Let OC', the second tangent from O, meet P1' in (',
Since PBTA is a rhombus, 4B is at right angles to PT;
also since TC"MP is a harmonic row, we have

TC'|CM=TP/PM=2;
therefore TM or PM=3MC.
Then a given angle COC’ is divided by the required line
AB, such that the ratio of the tangents of its segments is
known ; therefore, etc.

Ex. If a, b, ¢ denote the sides of the maximum triangle 4BC,

prove that
0d _c?—a?

W op~ e

a4 bt
2) o"‘—m—b2.



CHAPTER III.

RECENT DEVELOPMENTS OF POINT O THEOREM.

SecTION 1.
THE BROCARD POINTS AND CIRCLE OF A TRIANGLE.

27. Brocard Points 2, Q.—In Art. 20 if the inseribed
sriangle PQR is similar to ABC and P=A4, Q=B, R=C,
shen BOC'= A+ P = 24 ,similarly CO4 = 2B and AOB = 20}
sherefore O is the centre of the circum-circle.

Secondly, let P=B, Q=Cand R=4. Then

BOC=A+P=A+B=n-C,;
similarly COA=DB+Q=B+C=7—A4,
wnd AOB=7—(.

Thirdly, let P=C, Q=4 and R=DB. It follows as
n the last case that BOC=7—B, (0A=x-C and
10B=7—A.

Thus we see that a triangle PQR similar to a given
ne may be inscribed in the latter in three different ways;
und that the point O in each case may be found as in the
reneral method by describing segments of circles on two
f the sides containing given angles.

In the second and third positions the points of inter-
ection of the circles are usually denoted by the letters

2and . They are termed the Brocard Points of the
60



RECENT GEOMETRY. 61

triangle ABC, and are distinguished as Positive ((2) and
Negative ()

28. Brocard Angle (w).—Since BQC is the supplement
of C, QBC+QCB=C or QBC=QCA. For a similar
reason QCA = QAB,
hence QBC=QCA =QAB = (say).

The angle o is called the Brocard Angle of the triangle
ABC.

We may remark that the angle subtended at Q by the
base ¢ is the supplement of B, the angle at the right
extremity of AB, and at ' equal to the supplement of
A, the angle at the other extremity of AB.

The same relations hold for the sides & and b: hence
the names Positive and Negative Brocard points.

The value of w as a function of the sides or angles is
thus found.

Let «, y, z denote the lengths of AQ, BQ and CQ
respectively. Then in the triangle BQC
_cosw_at+yi—r?_al4yt—z?

sinw 20y sin @ 4BQC
Similarly in the triangles Q4 and AQB

cot w
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@ty -2t W4ei—at_cltal-yt
4BQCT 4004 44AQB
az b2 c?
TR s (1)
It is proved in like manner for Q' that
QCB=QAC=Q'BA,
and that the value of these angles is also given by (1).
. _P4ct—a?_ b2+ cP—a® gl
Again cot A = Sbesind = 4A with similar values

for cot B and cot C. Hence
4c2—a? a4+ c?

cot A +cot B+cot('= E———K——-—~ A

or cotw=cot A +cot B4cotC......... (2)

cot w=

ExXAMPLES.

1. Prove that
(1) cosec’w = cosec?d + cosec? B+ cosec?(.

. A2
oo 0T

(@) sinfe b2 + cta? + a*b?
(3) COSZ(U = (a‘z+b‘1+cz)2

4 0% + Pad + a?b?y
9. The distances of 2 from the sides of AB(' are 21 sin?w;',
2R sinﬁw%, 2R sin%g; and of &, 2R sinﬂmg, 2R sin%’, 2R siu‘-’wz.
a

[For let the distances of £ be denoted a, 8, y. Then
a=y sinw= csin’w,
sin B’
The ratios of the distances* are evidently as follows :—
a:f:y=cla:a’: bk,
and o i iy =ab?: b :ca?
and also aa'= ' =yy =4R*sin‘w.]

therefore, ete.

* Or Trilinear Co-ordinates of the points with respect to the triangle,
which is also called the 7'riangle of Reference.
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3. AD is the bisector of the angle A of a triangle ABC, and w,, w,
the Brocard angles of the triangles ABD and ACD respectively ;
prove that  cot w, + cot wy=2 cosec A+ cot 4 + cot w,
with similar expressions for the triangles formed by the bisectors
of the angles B and C.

4. If w, and w, denote the Brocard angles of the triangles CAD
and BAD, where AD is the median to the side BC,

b2~ c?
cot v, — cot w,=
1 2 oA ’

with similar expressions for the medians B and CF.

5. Hence prove that cot w; + cot wy+ cot w;=cot w,+ cot w,+ cot wy,
24 b2 ot
and = cot w, =2—@——'{:Fi).
6. If ABC is divided as in the previous exercises by the
symmedians, prove that S(0%+ ¢?) (cot w, — cot w,)=0.

7. 2 and ' are Brocard points of their pedal triangles P’QZ and
"¢ LR, (Eue IIL 21.)

8. The triangles PQR and '@ R’ are equal in area.
[For Q7°¢ and QB(' are similar ; hence (Euc. VTI. 19)
QPQ : QBC=QP?: QB=sinlo ;
similarly QR QCA=QRD : Q4B =sin’0 ;
therefore PQR=LP"QR =AB(. sin’w.]

9. The Brocard points are equidistant from the circum-centre.
[By Ex. 8 and Art 23, Ex. 1.]

10. If A, B, " be the points of intersection of the pairs of lines
¥y, 2 1z, &' 1 @, ¥, prove that the six points 4, B, (", 0, (1, Q'lie on a
circle.

[For the triangles BCA’, CAB and ABC" are isosceles and similar,
their base angles each being equal to w, hence 0.1’y OB, OC" are the
bisectors of their vertical angles. In the quadrilateral 0QQ'4’ we
have 02 =08 and 04’ the bisector of the angle 24}’ ; therefore
0 is a point on the circum-circle of QA4'Q, and the quadrilateral is
therefore cyclic. Similarly B’ and €’ are on the circum-circle of the
triangle 0QQ'.]

Drr. This is called the Brocard Circle, and A'B'C" the First
Brocard Triangle of ABC.
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11. To find the distance of the Brocard points from the circum-
centre (0Q=0Q'=3J).

[By Art. 23, Ex. 1, 2PQR=(R%- 8%sind sinBsinC,
but (Ex. 8) PQR=ABC(sin%»=2R%in4 sinBsinC sin’,
hence R? - §*=4R%in% or

8=RV1—-4sin%.]
12. The angle subtended at the circum-centre by Q'Q=_2w.
(By Ex. 10 and Euc. III. 22.)

13. To find the distance QQ' between the Brocard points.
[Since OQQ' is an isosceles triangle,

Q' =20Q sin w=2 L sin N1~ 4sin’w, by Ex. 11.]

14. The diameter of the Brocard circle is equal to

R secw N1 -4 sinfw.

[For it equals §/sin 2w ; therefore, etc.]

156. The altitudes of the similar isosceles triangles BCA', CAB),
ABC(" are equal to the distances of the symmedian point (K) from
the sides.

" 2CA .
[For ("Z=%c tan o I et
therefore, etc., by Art. 28, (1).]

16. The circle on O as diameter is the Brocard circle.

[For KA’ is parallel and 04’ perpendicular to BC, hence O
subtends a right angle at A'; similarly for the points B and (”;
therefore, etc.]

17. Brocard’s first triangle is Inversely Similar to ABC; 4.,
by rotation in the plane of the paper their sides cannot be brought
into a position of parallelism with each other.

(For B'C" subtends equal angles at A’ and K, but AB and A ("
are respectively parallel to (4 and 4B, and therefore contain an
angle 4 ; similarly the angles B and (" are equal to B and C.]

18. Having given the base ¢ and Brocard angle o of a triangle
ABC, find the locus of the vertex (Neuberg).

[Let p be the median CZ and 6 the angle between it and PZ
Since cot w=(a?+b%+c?)/2c. CR and a?+ b?=4c?+ 2p? we have
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2p2+§c?=2¢c cot w. CR=2c cot w . p cos 6,
or pt—ccotw.p cos B+ Fc2*¥=0.

Nore.—Comparing this result with the standard form of the
equation in the footnote we have by equating coefficients
¢ cot w=2d and d2—72=§c?,

or d=3%c cot 0 and r*=}c%cot’w - }cA

It is evident that the locus is a curve symmetrical with respect to
the perpendicular bisector of the base, as to each position of the
vertex C there is a corresponding one, C" of the inversely similar
triangle ABC" described on the base.

The distance of C’, a vertex of Brocard’s first triangle, from
c=4%c tanw; therefore ZC'.Z0=(4c)? where O is the centre of the
required locus.

This example is a particular case of :—Hawving given the base ¢ and
(la?+mb%+nc)/A to find the locus of the vertex, a solution of
which is similarly obtained.

18a. Six similar triangles are constructed on a given base and on
the same side of it. Prove that their vertices €}, Cy, ... C; are con-
cyclic. (Mathesis, t. 2, p. 94.) -

* This is known by Analytical Geometry to be the Polar Equation of a
Circle. If we take any point Z and draw a variable line (Radius Vector)
to a given circle (O, r) and let d = ZO, the equation connecting p and @

is for all points on the circle p? - 2pd cos 8 +d?-7*=0; and p and 6 are
called the Polar Co-ordinates of the point P.
E
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19. Having given the base ¢, and Brocard Angle w, find the
locus of the centroid of ABC.
[A circle whose equation is formed from that in Ex. 18 by changing

p into 3p; hence
12p?—4c cot w . p cos B+ *=0.

It has many important properties, which will be found in the
Transactions of the Royal Irish Academy, vol. Xxviil, xx, where
M‘Cay names it the “ C” circle of the triangle 4BC.]

20. The lengths of the tangents drawn from 4, B, C to the‘
Brocard Circle are inversely proportional to a, b, ¢, and the sum of
their squares = 24 cosec 2.

SectioN II

THE SYMMEDIANS OF A TRIANGLE.

29. Let K be the symmedian point of ABC, ' and &
the distances of Z' from BC and CA4 respectively. Then
/B =a/b=DBZ sinB/AZ sinA, hence

AZ _b*

W, = a—2 .................. . ............ \
or the symmedians divide each side in the duplicate
ratio of the remaining two.
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Again from (1) AZ /e =b¥/(a2+b2) or AZ = be/(a?+b?) ;

similarly BZ = a2c/(a®4b%)...couveeiiriniiannn, 2)
Also CZ[|CK =d'[a=(a*+b*+c?)/(a®+1?), hence
CK a*+0?
I?—Z’ = '—02— .......................... (3)

CoRr. If C'=90° then CK = KZ’' (Euc. I. 47) and K is the
middle point of the perpendicular on the hypotenuse.

30. The length of the symmedian CZ’ is found as
follows :—

In the formula b?BZ' +a%AZ =cAZ . BZ' +4cCZ? sub-
stitute the values in (2) and reduce. We easily obtain
, ~a2+4b24 2ab cosC

¢z~ a/b+bja

with similar expressions for the lines through 4 and B.

ExAMPLES.

1. The symmedian is divided harmonically at A, and @ its point
of intersection with the perpendicular to the base of the triangle at
its middle point Z.

[7Z’ P +lb1 ; a2+b2ZR hence
CP_ZR _a+¥_CK
7z zz’ ¢ KZ'
therefore ('Q/QZ' =CK|K 7' =(a®+ b‘*"),/c?.]

2. Since Z. CKZ'Q) is an harmonic pencil any line through A is
cut harmonically by its rays, hence if KC' is parallel to one ray, it
is bisected at O by the conjugate ray CZ. Also the parallel through
K to PL is bisected at K.

3. The vertices of Brocard’s first triangle and the symmedian
point are equidistant from the extremities of the parallels through
K to the sides of ABC.

[Let O be the middle point of #¥. Since OM=0N and (Ex 2)
OK =0C(', subtracting these results ; therefore, etc.]

(Art. 29 (3));
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4. The lines joining the middle points of the sides of ABC to the
middle points of the perpendiculars on them meet in a point.

[By Ex. 2 the point of concurrence is the symmedian point. The.
ratios of the segments into which the joining lines are divided at &
are easily seen to be bccos 4/a? ete., etc.]

5. Prove that cot £BC +cot KCA +cot KAB=3 cot w.

6. The sides of the pedal triangle of A are at right angles to the
medians of ABC.

ANTIPARALLELS.

Def. A straight line meeting the sides @ and b of a
triangle at angles A and B is parallel to the base. Ifa
line meet these sides at angles A and B respectively it is
said to be Antiparallel to c.

31. The following are the fundamental and obvious
properties of antiparallels to the sides of any triangle :—

(1) Antiparallels to the sides @ and b meet ¢ at equal
angles (C).

(2) They are parallels to the sides of the pedal triangle.

(8) Or to the tangents at 4, B, €' to the circum-circle.
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(4) The locus of the middle point of a variable anti-
parallel to a side, ¢, is the corresponding symmedian
chord CK.

(5) Antiparallels through K to each side are bisected at
the point, and are equal to one another. The latter part
follows from (1).

(6) The median and symmedian to ¢ of the triangle
ABC are respectively the symmedian and median of the
triangle 4’B’'C cut off by any antiparallel A’B".

(7) The extremities of a parallel and antiparallel to
any side of a triangle are concyclic.

THE PEDAL TRIANGLES OF THE BROCARD POINTS.

32. From Q let fall perpendiculars on the sides and
denote their feet as in figure by A’B’C".

It follows conversely since AQB is the supplement of
B (Art. 28), and is equal to C+.4’ (Art, 19) that 4'=4 ;
similarly B’=B and ("=C. Also A", B", C" are respec-
tively equal to 4, B and C.
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33. Theorems 1. Q is the common positive Brocard
point of ABC and A'B'C.

Since AC°A’Q is a cyclic quadrilateral Q4B =QCA’ = w
(Euc. IIL 21); similarly QB'C" and QA4’B’ are each equal
to w.

It follows also that Q' is the common negative Brocard

point of ABC and A"B"C".

I1. The sides of A’B'C’ and A"B"C” are equally inclined
to the corresponding sides of ABC.

For by (1) CB(C'=ACA’=BA'B'=90—o,
and BC"B"=AB"A"=CA"C" =90 —o.

II1. The six points A’, B, C', A", B”, C" are concyclic.

For the angles AC'A’=AB"A", therefore A’A"B"C’ is
cyclic (Eue. III. 22).

Similarly B’'B"C"A’ and C’C”A”B’ are cyclic. But
generally if three pairs of points on the sides of a triangle
are such that every two pairs are cyelic, the six points lie
on a circle.* For if they do not the tangents to the three
circles from 4, B and C are easily seen to be equal, which
is impossible.

IV. The lines B"C’, C"A’, A"B’ are parallel to the sides
a, b, ¢ respectively.

We kuow that each pair of sides of 4BC with Q and
Y form similar triangles, i.e., BQC and AQ'C, CQ4 and
BXY'A, AQB and CQ'B are similar; hence the perpen-
diculars (or other corresponding lines) through Q and &’
divide the opposite sides similarly. In the triangles CQA

* For example, if A’B'C’ be the middle points of the sides and 4"B"C”
the feet of the perpendiculars, it follows immediately that 4'B'C'4"B"C"
is a cyclic hexagon since each pair of points 44’ and BB’ form a cyclic
quadrilateral. (‘‘ Nine Points” Circle.)
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and BQ'A we have therefore AC'/AC=AB"|AB, or B'C’
is parallel to a.

V. Hence also A’A", B'B", C'C" are antiparallels to
the sides a, b, ¢. (Euc. III 22.)

SectioNn IIL

TuckeR’S CIRCLES.

34. By Art. 24 if the inscribed triangle A’B'C” is given
in species only it may be conceived to vary its position
by rotating around the point Q@ which is fixed. Let it
revolve in a positive direction through any angle 6 and
also let A”B”C" revolve in the opposite direction through
an equal angle.

Then each of the equal angles of inclination of the sides
of A’B'C" and A"B"C" are diminished by 6, therefore for
all values of 0 the sides are equally inclined and the
vertices of the two triangles are always concyclic.

The circles thus described are called the Tucker Circles
of the triangle.

Thus the lines B"C" and A'A", ete., are always parallel
and antiparallel respectively to the opposite side a, and
therefore remain constant in direction.

Now since the point Q is fixed and the triangle 4'B’C”
of constant species; since the vertices move on given
lines all points fixed relatively to the figure describe lines.
The locus of the centre of the system of Tucker’s circles
is therefore a line. (Art. 20.)

By taking particular positions of the triangle we find
points on the line of centres. In the case where =0 the
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vertices of ABC and A’B'C’ coincide, and the circum-
circle is thus seen to be one of Tucker’s circles. The line
of centres thus passes through the circum-centre of A BC.

Similarly the loci of the other Brocard points of the
triangle A’B'C’" and A"B"C" are lines,

35. Let the vertices of the triangle formed by the
parallels B'C’, C"A’, A"B’ to the sides of ABC be denoted
by X, Y, Z

Then AA’A"X is a parallelogram, as are also BB'B"Y,
CC’'C"Z; and since the diagonals bisect each other 4AX
bisects the antiparallel A’A". AX, BY, CZ are the
symmedians of 4 BC.

Hence the following construction for Tucker’s circles:

Let K be the symmedian point of ABC. Join 4K,
BK, CK. Take any point X on AK and draw parallels
through it to the sides b and ¢. Let them meet BK and
CK in Y and Z respectively. YZ is parallel to «, and the
hexad of points in which the sides of A BC are cut by these
parallels lie on one of the required circles. ’
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36. The antiparallels A’A", B'B", C'C" are equal.
For since A"B’ is parallel to ¢, and A’A” and B'B" are
equally inclined to ¢ (at an angle C), A’A"=BB’;
therefore, etc.; or they are the chords of a Tucker circle
intercepted by parallel lines.

37. Theorem. The line OK s the locus of the centre of
Tucker's system of circles.

For let L be the middle point of the chord 4’4" of one
of the system. Draw LO, at right angles to it meeting
OK in O0,. Join 4O0.

Since the tangent at A to the circum-circle is anti-
parallel to @, AO and LO, are parallel lines.

But AK/AX =BK|/BY =CK/CZ (Euc. VI. 2); there-
fore AK/AdL=BK/BM=CK/CN=0K/00,, or O, is the
centre of the Tucker circle.

38. Since 2 is the positive Brocard point of the
triangles ABC and A’B'C’, and QA B and QA4’B’ a pair of
similar triangles; if 0 be the inclination of the sides
of A'B’'C’ to those of ABC, we have

Q4" sine 1)
QA = (@)

This ratio is the Ratio of Stmailitude of the triangles,
and is the constant relation between all corresponding
lines of A’B’C" and ABC.

For example, if p be the radius of Tucker’s circle for

any value of 6, %= gm_s(ien_-%; ........................ 2
In (2) we have the following particular cases:—

when 6=0° p=R............... (circum-circle) ;

» 0= p=3Rsecw.......... (T. R. circle);

» 0=90° p=Rtane..........(cosine circle).

Also area A'B'C' : A BC =sin%vw : sin¥(0+w) (Euc. VI. 19).
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SEctION IV.

TuckER’S CIRCLES, PARTICULAR CASES.

39. I. Cosine Circle. As a particular case of the
general theorem (Art. 33 v.) we shall consider the anti-
parallels A’A”, B'B’, C'C" to pass through K. The points
L, M, N will therefore coincide with K, which is also the
centre of the corresponding Tucker’s circle.

It is otherwise evident that the six segments KA4’, K4,
etc, of antiparallels through K to the sides are equal,
(Art. 31 (3)).

Also BCB'C",CA'C’A", A’'B'A"B" are rectangles since
their diagonals are equal.

Again because A’B'B” is a right-angled triangle
A’B"=B'B"cosA’B"B’ = B'B" cosC,
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or A’B" =2p cosC, with similar expressions for B'C" and
C'A". Hence

The segments intercepted by the circle on the sides of ABC
are proportional to the cosines of the opposite angles.*

It is from this property the circle derives its name.

40. The middle point M of A”B’ is on the median
through C to the opposite side ¢; hence the perpendicular
through K to this side passes through M, or as has been
shown otherwise (Art. 30, Ex. 4). If a perpendicular be
drawn through K to the base meeting it in IV and the
median in M, MK = NK, from which it follows that the
lines joining the middle points of the sides to the middle
points of the corresponding perpendiculars meet at the
symmedian point (Hain).

41. The sides of the triangles A’B'C’ and A"B"C" are
perpendicular to the corresponding sides of ABC. The
cosine circle may therefore be obtained by rotating the
two inscribed triangles in opposite directions until § = 90",
(Art. 39.)

The ratio of similitude of 4’B'C" and ABC = tanw.

42. I1. Triplicate Ratio Circle—Let the parallel in
figure of Art. 35 pass through K.

Then L, M, N are the middle points of AK, BK, and
CK, since AA’A"K, etc., etc., are parallelograms; and the
centre O of the corresponding Tucker circle bisects OK.

The sides of A’B’'C’ are inclined to those of ABC at an
angle = @. For consider the angles in the equal segments
A’A”, BB’, ¢'C", and it is obvious (Euc. III. 21) that
A’'BA"=A'C'A"=B'(C'B"=B'A'B'=C'A'C"=CB(".

* See Mathesis, t. i., p. 185 :—
““Sur le centre des Médianes Antiparalléles,” Neuberg (1881).
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Hence K is the negative Brocard point of A’BC'.

Similarly it s the positive Brocard point of A"B"C".

It follows generally that the locus of the negative
Brocard point of A’B'C” is a line passing through K.

43. The ratio of similitude of A’B’C’ and ABC is
sin w/sin 2w since 6 =w ; hence

44. The intercepts B'C”", (A", A’B" made by the
circle on the sides are thus determined :—The triangles
A'KB" and ABC are similar, therefore 4’B"/c=ratio of

. 2cA 2A
t: .
altitudes =T h b2+ 7 / = AT

hence A'B'=— 5. coiiiiiiiiiiii (€))

with similar expressions for B'C” and C’A”. The general
property of the circle may be thus stated :—Parallels
through the symmedian point meet the non-correspond-
ing sides in six points which lie on « circle; and the
intercepts made on each side are in the ratios a3:b®: ¢
From the latter property the circle takes its name. For
the sake of brevity it is often written “T.R.” Circle.*

45. III. Taylor’s Circle.—Let the antiparallels 4’4",
B'B’, C’'C”", which, it will be remembered, are always
parallel to the sides of the pedal triangle (PQR) of ABC,
pass through the middle points a, B, ¥ of the sides of
PQR.

Consider the segments into which 4’A” is divided by
B and y. We have By=4QR, yA"=4PQ (Euc. L. 5), and

* An account of the circle will be found in Mathesis in the article by
Neuberg already referred to (Art. 39). See also Nouwvelles Annales,
1873, p. 264.
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for the same reason BA4'=4RP; therefore 4’A” is equal
to the semiperimeter of PQR

=4(a cos A +bcos B4ccos C)=2Rsin A sin Bsin C,

Hence generally

A’A"=BB"'=(0'C"=2R sin4 sin BsinC...... (1)
Again, since B"aC’ is an isosceles triangle, the perpen-
dicular to the chord B"C"’ of Tucker’s circle at the middle
point bisects the vertical angle a and passes through the
in-centre of aBy. Similarly for the chords C”A’ and
A"B. Hence

The centre of the circle coincides with the im-centre of
the median triangle (aBy) of PQR.

Many properties of this circle are proved in Neuberg’s
article in Mathesis, t. 1, p. 185, but it was described
independently in England by Mr. H. M. Taylor, and now
bears his name. (Proc. Lond. Math. Society, vol. xv.
p. 122))

46. Since aQ=aR=aB’=al, the circle on QR as
diameter passes through B’ and (" and RB"Q= R(C'Q =90°;
or B' and ("’ are the projections of Q and R on the sides
AB and AC; hence
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The six projections of the vertices of the pedal triangle
on the sides of ABC lie on Taylor’s circle.

47. The triangle B'aC” is isosceles, therefore O,a the
bisector of its vertical angle a is at right angles to BC;
hence generally

The lines Osa, 0,8, O,y are perpendiculars to the sides
of ABC.

Let Hg denote the orthocentre of CPQ; then QH, and
O,a are parallel ; similarly PH, and O,3 are parallel;
hence the triangles PQH,; and aB0, are similar, their
ratio of similitude being =3, or H R s bisected at O,.

Similarly PH, and QH, are each bisected at O,; and
therefore the triangles H,H,H; and PQR are equal in all
respects.

48. Theorem.— T'aylor’s circle of the triangle ABC is
the common orthogonal circle of the ex-circles of PQR.
In the triangle 4 4°’A” we have by rule of sines
AA" = A'A"sinCfsind = 2R sinBsin?C (Art. 45 (1)),
also AC = ARcosd =bcos?4 ;
multiplying these results arnd reducing
AA". AC = 4R?sin’Bsin?C cos?4,
but 4Q = ccosd; substituting we obtain
AA" . AC = AQ%sin?B*
or the square of the perpendicular from 4 on QR. Hence
the tangent from A an ex-centre of PQR to Taylor’s circle

* Otherwise from the right-angled triangle 4 4”P and ACP we have
AA"=bsin*C ; and from the triangles ACR and AC'R,
AC' =bcos?A4 ; therefore 44" . AC' = b?s8in2C cos?A.
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is equal to the radius of the ex-circle; similarly for the
ex-centres B and C'; therefore, ete.*

ExAMPLES.

1. To find the value of the radius p of a circle cutting the ex-
circles of a triangle PQR orthogonally.

[In figure of Art. 45 p?=0,4'%. But if a perpendicular be drawn
from O, to By it is equal to the radius of the in-circle of the triangle
afy or half the radius (§7) of PQR; and the distance of its foot from
4’ is equal to the semiperimeter of a3y—.e., s of PQR.

Hence (Euc. I. 47) pi=4(r*+s%).

Similarly for the radii py, p,, p; of the circles cutting two escribed
and the inscribed of PQR orthogonally we obtain

p=dr2+ =),
pot=H(rs +5 =09,
pi=ty 457 ),

and by adding these results we have, on reducing,

P +pP+pf+p =4l
or,
the sum of the squares of the radii of the four circles cutting orthogon-
ally the inscribed and escribed circles of any triangle taken in threes is
equal to the square of the diameter of the circum-circle.

* In the triangle PQR since perpendiculars P4’ and QB” are let fall
from the extremities of the base I’Q on the external bisector 4B of the
vertical angle R, by a well-known property y4’'=vyB"=} sum of sides.
But the distance of the middle point of any side from the points of con-
tact of the ex-circles which touch it externally =} sum of sides. Hence
if a circle be described with v as centre and yA'=yB’ as radius, it cuts
the ex-circles of PQR whose centres are at 4 and B orthogonally. It
follows that the locus of the centre of a circle cutting these two ortho-
gonally is the line 40,, since it is perpendicular to the line of centres ;
similarly a0, and B0, are the loci for the centres of circles orthogonal to
the remaining pairs of ex-circles, whose centres are at B and C, C and 4
respectively.

Therefore O, is the centre and 0,4'=0,B"=eto,, the radius of the
common orthogonal circle, i.e., Taylor’s circle,
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2. To find the radius p of Taylor’s circle of a triangle ABC.

[Taylor’s circle for the triangle A BC is the circle in Ex. 1 for PQR;
hence we have to express » and s of the latter triangle * in terms of
the parts of ABC. We easily obtain

p?=4R%(8in’4 sin’Bsin’C'+ cos®4 cos?B cos?C)

also pi?=4R(sin’4 cos® B cos?C'+ cos?4 sin?Bsin?C)
with similar values for p,? and ps%

From these expressions we have the result given in Ex. 1:
Zp?=4R%]

3. The lines B"C’, C"4', A" B, parallels to the sides of ABC, are the
chords of contact of the ex-circles of PQR with its sides.t

[Let A”B meet PR in the point @. Then B'B"R¢' is a parallelo-
gram, therefore RQ'=semiperimeter of PQR, etc.]

4. Employing the notation of Art. 35, prove that the lines joining
the corresponding vertices of the two triangles PQR and X ¥YZ are
concurrent at the circum-centre of the latter.

[Let p and ¢ be the perpendiculars from R on the sides ¥Z and
ZX of the triangle XYZ, Then p/q=RB’sin B/[RA’sin4. But
RB'|RA'=QR/RP=acos A/bcos B. Substituting and reducing we
have p/g=cos 4/cos B.

But if Z be joined to the circum-centre of X ¥Z, the joining line
is the locus of a point such that perpendiculars from it on the sides
are in this ratio; hence ZR passes through the circum.centre of
XYZ3t And similarly for the lines PX and Q7Y.]

* The sides of the pedal triangle are equal to acos 4, bcos B, ccosC,
or Rsin24, R sin2B, Rsin2C ; hence its perimeter=4Rsin 4 sin Bsin C;
its s-a=2Rsind cos Bcos C, its s~b=2Rcos 4 sin Bcos C, etc.; its
r=2Rcos 4 cos Bcos C; its ,=2R cos 4 sin Bsin C, etc.

1 The polars of the vertices of a triangle with respect to the ex-circles
meet the sides in six points which lie on the same circle, —Mathesis, t. 1,
p- 190.

1 PX, QY, and RZ are perpendiculars to antiparallels to the sides of
XYZ and therefore meet the sides of PQR at right angles.

Hence the circum-centre of XY Z is the orthocentre of the triangle
PQR.
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5. The Simson lines of the median triangle LMN of a given one
ABC with respect to the vertices P, @, R of the pedal triangle pass
through the centre of Taylor’s circle.*

[The circum-centre O of ABC is the orthocentre of ZM N. Hence
RO is bisected by the Simson line XYZ of R. Also (Z=RZ;
therefore the line X¥Zis parallel to OC. But the centre of Taylor’s
circle O, is (Art. 47) the middle point of RH,; therefore, etc.]

6. The Simson lines of ’QR, whose poles are L, M, N, pass through
0,

* The point on the circum-circle from which perpendiculars or other
isoclinals are let fall on the sides of an inscribed triangle is called the Pole
of the Simson line.—V. Mathesis, t. 2, p. 106, *“Sur la Droite de
Simson,” par M. Barbarin.

F
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[For the perpendicular NZ from & on PQ bisects it (Euc. III. 3);
and the perpendiculars X" and NY are equally inclined to 4B
(Euc. 1. 26), hence the line X' YZ is a perpendicular to 4B through
the middle point of P@; therefore, etc. (Art. 47.)]

7. Prove that the common inclination (6) of the sides of the
triangles A’B'C" and 4"B'C” to those of AB( is given by the equation
tan 0= — tan 4 tan Btan C. (Taylor)

8. The intercepts made by Taylor’s circle on the sides are

acos A cos (B— ('), bcos Bcos (C'—A), ccos ('cos (4~ B).
[A'B'=A'R+RB"=(acos 4 +bcos B) cos ('=ete.]
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9. The circum-centre of a triangle, its symmedian point, and the
orthocentre of its pedal triangle are collinear. (Tucker.)

[The orthocentre of the pedal triangle has been shown to be
(Ex. 4) the circum-centre of X'YZ, and A is the centre of similitude
of ABC and XYZ ; therefore, etc.]

10. The circum-centre and the orthocentre of its pedal triangle are
equidistant from, and collinear with, the centre of Taylor's circle.
(Neuberg.)

[For CH; and ZR are parallel, since both are at right angles to
PQ; also RHj is bisected at O; (Art. 47), therefore, etc., by Art. 37.]



CHAPTER 1IV.

GENERAL THEORY OF THE MEAN CENTRE OF A
SYSTEM OF POINTS.

49. We now proceed to the discussion of the general
linear relation connecting the distances of a system of
points from a given line.

Let 4, B, C, D ... be the system of points, AL, BL
CL ... their distances from any line L, and 3(a . A L) the
algebraic sum

a.AL+b.BL+c¢c.CL+ ...

where a, b, ¢ ... are given quantities.

By Z(a.AL) is therefore meant the sum of given
multiples of the distances of the system of points from the
line ; perpendiculars from points on opposite sides of L
being taken with opposite signs.

50. Theorem.—For any two lines M and N and
systems of points A, B, C'.. and multiples a, b, c ...
having given

Z(a.AM)=0and Z(a.AN)=0
to prove that
Sa.AL=0,
where L 18 any line passing through O the intersection of

M and N.
84
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Join AO and let this line be denoted by R. Then

since LM NR is a concurrent system of lines we have
sinMN .sinLR+sinNL . sinMR+sinLM . sinNR =0,
but, by Art. 2,
sinLR :sinMR:sinNR=AL:AM: AN ;

therefore

sinMN . AL+sinNL. AM+sinLM . AN =0.
Similarly for the points B, C' ... we have

sinMN . BL+sinNL. BM+sinLM . BN =0

sinMN . CL+sinNL . CM+sinLM . CN =0.
Multiplying these equations respectively by a,b,¢ .. and
adding
sin MNZ(«. AL)+sin NLZ(a. AM)+sin LMZ(a. AN) =0,
hence if Z(a. AM)=0 and Z(« . AN) =0, it follows that

Za.AL=0.

Def. The point O which satisfies the relation
2(w.AL)=0 for every line L passing through it is
termed the Meun Centre of the system of points 4, B, C'...
for the system of multiples «, b, ¢ ....

51. Theorem.—The position of the mean centre for a
given system of multiples is either unique or indeter-
minate.

For let O, and O, be two of its positions, and O any
point whatever. Join 0,0 and 0,0, and denote these
lines by M and .

Since Z(a . AM)=0and 3(«.AN) =0, it follows by Art.
50 that any line L through O, i.e. any line whatever,

satisfies the equation -
Za.AL=0.

It is obvious, in the general case, that when all the
points of the system, and all save one of the multiples are



86 MEAN CENTRE.

given; by assigning a definite value to the last multiple,
the position of the mean centre is determinate ; and con-
versely any point whatever is the mean centre of a given
system for multiples, all of which save two may be
arbitrarily chosen.

ExAMPLES.

1. The middle point of a right line is the mean centre of its
extremities (Euc. I. 26).

2. The mean centre O of two points .{ and B for the multiples

a and b divides the line .{B inversely as the multiples, t.e.,

A0 : BO=b:a.
The mean centre of the same points for the multiples a, — b, divides
the line externally such that

40:B0=b:a.

3. The mean centre O of a linear system of points .{, B, C ... for
multiples each =1 satisfies the equation Z40=0.

4. The bisectors L, M, .V of the sides of a triangle ABC are con-
current.

[For SAL=0, 34N =0and SAN=0,
hence each line passes through the mean centre (centroid or centre
of gravity) of the vertices.]

5. The lines joining the middle points of the three pairs of
opposite connectors BC' and AD, ('A and BD, AB and CD of four
points 4, B, C, D are concurrent, and each is bisected at the point
of concurrence.*

* In the particular case when the fourth point D coincides with the
orthocentre O of the triangle ABC we infer at once the well-known
property :—

The lines joining the middle points of the sides of a triangle with those
of the segments towards the angles of the corresponding perpendiculars
meet in a point and bisect each other. From this it follows immediately
(Euc. 1. 4) that the six segments are equal, and that the circle passing
through the middle points of the sides passes through the feet of the
perpendiculars and bisects the segmentsof thé latter towards the angles.
This is the fundamental property of the Nine- Points-Circle.
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6. The geometrical centre O of a regular polygon is the mean
centre of the vertices 4, B, C ...

[Join 40 and BO. 1If the polygon he of an even order these lines
(L and M) will pass through the opposite vertices, and the perpen-
diculars from the remaining vertices are equal in pairs and opposite
in sign ; and if the polygon be of an odd order L and Jf bisect the
opposite sides at right angles ; therefore, cte.]

7. ABCD ... is a regular cyclic polygon and Z any line passing
through its centre O ; prove that

JL+BL+CL+ ... =0.

52. Theorem.— Any point O s the mean centre of the
vertices of « triangle ABC for multiples proportional to
the areas BOC, COA, AOB.

For letting L coincide with 40X and applying the
relation Z«Ad L =0 we have

b.BL+c¢.CL=0,
or disregarding signs BL/CL =c¢/b.

Also since the triangles COA and A OB are upon the
same base A0, BL/CL = AOB/CUA4 ; equating these values,

b CO0A

therefore A0

imilarl c_4A0L

Similarly o= BOU
Hence a:b:c=B0C:C0A :AOB.

If the point O is outside the triangle, and within the
angle 4, the multiples are proportional to
—BO0C, COA and AOB,
with similar results when O is within the angles B or C.

Exawmpres.
1. The in-centre of a triangle is the mean centre of the vertices
for multiples proportional to the sides.

2. The ex-centres are the mean centres for systems of multiples
-ayb,e; a,-b, ¢; a, b, —c; or quantities proportional to them.
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3. If 0, 0,, 0,, O; denote the in- and ex-centres of a triangle, each
is the mean centre of the remaining three for multiples,

s—a,s—b,s—c; 8~b, 8s—¢, —s, ete.

[For the areas in the first case are 0,0,0, 0;0,0, 0,0,0, and these
are obviously proportional to s—a, s—b, s—c. Similarly for each
of the ex-centres. Thus generally since -s:s-—a:s—b:s—c=
=1/r:1/ry 1 1/ry: 1/rg ; for the points 0, 0, Oy, O; each is the mean
centre of the remaining three for the corresponding multiples of
the system —1/r, 1/r,, 1/ry, 1/15.]

4. Prove the following points are the mean centres of the vertices
for the system of multiples written opposite to them.

Circum-centre { acosd, bcosB, ccosC),
sin24, sin2B, sin2C.
Orthocentre tan 4, tan B, tan C.
Symmedian Point a?, b2 ¢t
. 1111
Brocard Points B 0%2, bl‘

“ Nine-Points” Centre a cos(B— ('), bcos(C~ 4), ¢ cos(4 — B).*

5. The lines drawn from the vertices of a triangle to the points of
contact of the in-circle are concurrent ai the mean centre of the
vertices for multiples 71y Tay Py

6. The lines drawn to the internal points of contact of the three
ex-circles meet at the mean centre of the vertices for multiples

1/ry 1rs, 1rs.

7. If a point O be the mean centre of the vertices for multiples
1, m, n, its Isotomic Conjugatet is the mean centre for multiples the

reciprocals of /, m, n.
7a. The Isogonal Conjugate t of O is the mean centre for multiples

a®fl, b*/m, ¢/n.

* From this it is evident that the sides of the triangle 4 BC meet the
Nine-Points-Circle at angles B~ C, (-4, A-B.

+ Two points X and X' equidistant from the extremities of a line BC
are called Jsotomic Conjugates with respect to the line. It is easy to
see, and it will be afterwards proved, that if the sides of a triangle 4 BC
be divided isotomically in the pairs of points X, X'; ¥, Y'; Z, Z';
such that AX, BY and OZ are concurrent at a point O ; then 4X’,
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8. Any point O on the segment 4B of the circum-circle of an
equilateral triangle ABC is the mean centre of the vertices for
multiples 1/04, 1/0B, —1/0C.

9. The mean centre of 0, 0,, Oy, 0y is in Ex. 3 the circum-centre
of the triangle.

10. The centre of Taylor’s circle is the mean centre of the vertices
of the pedal triangle of ABC for multiples

a cos(B —C), bcos(C— A4), ccos(4 - B).

11. The mean centre O of the vertices of ABC for multiples
I, m, n is the mean centre of the vertices of the pedal triangle PQR
of O for multiples a?/{, b%/m, ¢*/n.

[From the figure of Art. 23, Ex. 1, we have

QOR : ROP : POQ=0Q .0ORsind : OR. OPsinB ;: OP. 0@sinC

=afOP :5/0Q : c/OR..........vevvurirrinnnnns (1)
But 0P:0Q:0R=B0C/u:COA[b: A0DB/c

=lja :m[b: nfe.
Substituting these values in (1) ; therefore, etc.]

12. The symmedian point O of any triangle is the centroid of the
pedal triangle of O.

[For BOC: €04 : AOB=a?: b : ¢* by Art. 16, Ex. 2 (2).]

13. The lines joining 4, B, C to the corresponding vertices of
Brocard’s first triangle are concurrent, and the point of concurrence
is the mean centre of the vertices of ABC for multiples the recipro-
cals of a? b7 %

[For it has been shown that it is the isotomic con]uwate of the
symmedian point, Art. 30, Ex. 3.]

14. If perpendiculars be let fall from any point 2 on the sides of
a regular polygon; the mean centre of their feet lies on the line
joining P to the circum-centre.

BY', CZ are also concurrent at O'. The points O and O’ are termed
Isotomic Conjugates with respect to the triangle 4 BC.

If the pairs of lines 4X, 4X', etc., are equally inclined to the sides
b and ¢, etc., they are Isogonal Conjugates with respect to the angles ;
and if AX, BY, CZ are concurrent, 4X', BY’, CZ’ are also concurrent.
The points of concurrence are Isogonal Conjugates with respect to the
triangle.
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[Through O draw 044’ parallel and P.{’ perpendicular to p,. The
projection of p, on OP=projection of A.l'; but 4, B, C, ...and

4, B', (', ... are the vertices of regular polygons, whose mean centres
are both on OP. Therefore the sum of the projections of p; ... on
0P=0.]

53. Theorem.—For any line L to prove that
Za.AL=Z(a)OL.
Draw M through O parallel to L.

Then . . AL=AM+0L,
- -BL=BM+ 0L,
CL=CM+ 0L, etc.
Multiplying these equations respectively by a, b, ¢, ... and
adding, we have B
Sa.ALy=3(a. AM)+Z(a)OL;
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but Z(a.AM) =0 since M passes through the mean centre;
therefore, etc.

This property enables us to find the mean centre. For
by taking a line Z in an arbitrary position and calculating
Z(a. AL)/Z(«) we have for the locus of O a line parallel
to L at this distance from it. Again, take a line in
another position and construct the locus of O as before.
The intersection of these loci is the point required.

Cor. 1. If Za . AL is a constant, the line L touches, or
envelopes, a circle concentric with O.

Cor. 2. If the multiples are all equal ZAL==. 0L,
where 7 denotes the number of points in the system.

Cor. 3. For systems of points and multiples and their
mean centres
A,B,C; ..., abie, ..., O,
A,B,C, ..., abye, ..., O,

A,B,C, ..., 4000 ..., U,
the mean centre O of all the points and their correspond-
ing multiples is the mean centre of 0,, 0,, ... 0, for the
multiples Z(«,), Z(a,), ... Z(a,).

[For since Za 4,L=2(«u,)0L, Ta,d,L=2(u,)0,L, etc,
on adding these equations

oA\ L+Za,d, L+ ... +Za,4,L=2(u)0, L+ ...
= 2(Su)OL]

Hence the mean centre of a system of points can be
found as follows :—Find the mean centre O, of two of the
points 4.and B; next find the mean centre of O, and ¢
for multiples a+b, c. Denote this by O; and find the
mean centre of O, and D for multiples a+b4-¢,d, and'50
on. When the entire system has thus been exhausted the
last mean centre found is that of the system.
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ExaMpLES.

1. The sum of the distances of the vertices of a triangle from any
line is equal to three times the distance of its centroid from the line.

2. Draw a tangent to a circle such that Tw.AL may be a
maximum, minimum, or have any given value.

[The extremities of the diameter passing through the mean
centre are obviously the points of contact in the extreme cases.
The general case reduces to draw a common tangent to two circles.]

3. If L touches the in-circle Za . 4L =2A when the multiples are
equal to the sides of the triangle.

3a. For the ex-circle to the side ¢ the equation becomes

adL+bBL—cOL=2A.

4. The projection of the mean centre on any line is the mean
centre of the projections of the system of points on the line.

[Let the projections be denoted by 0, 4', B, (" ... and L the
line 00. Then A'O'=dAL, BO'=BL, etc. Hence
Za. 40 =2a.AL=0/; therefore, etc.]
b. If 0, O,, O, O; denote the in- and ex-centres of a triangle,
(s=a)0,L+(s=b)0,L+ (s—¢)03L=s. OL*

* This relation may be otherwise written :—
OL 0L 0:L_OL

r 7y 73 r
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[For O is the mean centre of the remaining points for multiples
s—a, s—b, s—c (Art. 52, Ex. 3), and since
(s —a)=s; therefore, etc.]
6. Let three similar triangles BCA', CAB’ and ABC’ be described
on the sides of ABC in the same aspect ; to prove that the mean
centres of the triangles ABC and 4'B'C’ coincide (Brocard).

[Let X be the middle point of BC' and Z’ of A'B'. Complete the
parallelogram BA'CP. Join AX, C'Z',Z'X and PB'. The triangles
BPC and B'CA are similar, therefore CP/CB=BC/AC (Euc. VI. 4),
or by alternation B'C/CP=AC|BC ; also the angles B'CP and ACB
are equal, therefore the triangles B'P( and AB( are similar (Euc.
V1I.6); hence OB/B'P=CA/AB; alternately CB'|CA=PB|AB; but
CB|CA=C"4/AB (hyp.); therefore PR'/AB=C'A/AB from which

PB'=AC".

Again LPBC=,BAC, to these add the equals ACB’ and BAC'
respectively ; therefore PB’ and A(" are parallel. But Z'X is
parallel and equal to half of PB'; therefore it is parallel and equal
to half of AC”. Hence the medians AX and C'Z" trisect each other.*
Otherwise thus :t+—Let another triangle 4 BC"” be described below
the base AB symmetrically equal to ABC". It is easy to see that

* For another proof see Milne's Companion to the Weekly Problem
Papers, Art. 123.
+ Educational Ttmes. Reprint. Vol liv., p. 102,
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the triangles 4BA’ and CBC” are equal in area ; similarly ABB’
and CAC" areequal. By addition we have ABA'+ ABB =
ABC+ ABC" or ABA'+ABB ~ ABC'=ABC, ie. the algebraic
sum of the perpendiculars on AB from 4’, B, ("=the perpen-
dicular from € on 4 J. Similar results are obtained for the sides
BC and (4 ; therefore, etc. Syamadas Mukhopadhyay.]

7. If two points A and B be displaced to new positions 4’and B,
their mean centre A/ for any multiples is displaced to A/’ found by
the following construction :—

Through Af draw lines MP and MQ equal and parallel to 44’
and BB’ respectively. Join £ and divide it in M’ such that
PX|QM =AM/BM.

[For since A A'PM and BB QM are parallelograms, 4'P=AM and
B'Q=DBAM ; therefore by similar triangles PA'M’ and QB'M’,

A'P _AM_PM

Fo~ B~ oI : therefore, etc.]

8. If three points 4, B and C be displaced to new positions
A’y B’ and (', their mean centre # is displaced to M/’ found by the
following construction :—

Through M draw lines MP, MQ and MR equal and parallel to the
displacements A4, BB’ and CC" respectively ; M’ is the mean
centre of P, @, R

[For let .Y denote the mean centre of A4 and B, X’ which is found
by Ex. 7 of A" and 2. Draw M0 equal and paml]el to XYX". Join
OX’', RC' and X'C'.

It is evident hy parallels that O is the mean centre of P and Q;
also MX=0X" and MC=RC'; therefore in the similar triangles

OM'X" and RM'C, %‘g, A 1)
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hence M’ is the mean centre of .Y” and (', that is of 4’, B’ and (',
for the same multiples that A is of 4, B and C.

But each of the ratios in (1) is equal to M'O/M'R ; therefore M’
is the mean centre of O and 2, that is of 7, Q and R for the same
set of multiples,

Nore.—The construction for the displaced mean centre may in
the same manner be extended to the quadrilateral and generally to
a polygon of any number of sides.

Hence for two systems of points 4, B, C,... and A’y B, C',... and
their mean centres M and A" for the same set of multiples a, b, c...
if we draw through M parallels MP, MQ, MR, ... equal to 4.4', BB,
CC', ... respectively, the mean centre of the third system 7, Q, &, ...
for the same multiples coincides with /",

9. If through any point M are drawn MP, MQ and MR parallel
and proportional to the sides of a triangle 4AB(', the mean centre of
P, @ and R for multiples each equal to unity coincides with M.

[By Ex. 8, or thus:—Complete the parallelograms PMQR' and

draw M1V,
Since 1])% =5j;=-g and the angles at P and C equal, the tri-
angles MR’ and AB( are similar, hence MR=MR'=2M0, and O
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is the mean centre of P and @, and therefore M is the mean centre
of P, @, R.]

10. Prove the similar property for the quadrilateral; and
generally :—

If through any point M lines are drawn parallel and proportional
to the sides of a polygon; the mean centre of their extremities for
multiples each=1 coincides with /.

11. If a system of points 4, B, (... be displaced to 4', B, C', ...
such that A4’, BB, C(, ... are parallel and proportional to the sides
of a polygon, the mean centre of the system remains a fixed point.

[By aid of Exs. 8 and 10.]

12. Weill's Theorem.—A variable polygon is inscribed to one
circle and escribed to another; to prove that the mean centre of
the points of contact of its sides with the latter circle is a fixed
point.

[Let ABC ..denote the polygon, A'B'C"...a consecutive position,
T and 7" the points of contact of AB and A4'B with the circle of
radius »; 6 the small angle between AB and A'DB, and X their
intersection.

The triangles A4'.X and BB'.Y are similar,hence BB'/dA'=BX/A'X

BB BX BY . . . . BX
d ——— T e e = v
an AX+ BB~ BXTAX™ X Ax " thelimit="7% ...(1
- BB BY
Similarly Pl B e,
Hmitarly BB+CC'~ BC @



WEILL'S THEOREMN. 97

Also, since 4B and A'B’ are indefinitely near to one another, X is
indefinitely near to the point of contact 7, and BX and BY are
therefore equal because they are tangents from the same point to a
circle.

Dividing (2) by (1)

AB_AA'+ BB @)
BOT BB 4 (e
. AL BB 0 :

Again Y= BY=smd (Rule of Sines),
0 AL+BB

hence A= A

but AB=(diameter of ABC) xsind’

and TT=2r6;

therefore TT o AA'+ BB = AB (by 3).

Thus as the polygon ABC... varies, its points of contact are
displaced for each consecutive position in the direction of its sides,
and proportional to them ; therefore the mean centre is a fixed
point.

Note.—If the side BC is a variable tangent to a third circle of
radius 7, the result of dividing (2) by (1) is

AB _ AA'+ BB BY |

BC™ BB+ (U " BY’
therefore if the three circles are so related that B.Y/BY is a constant
ratio £,

AB_, A4'+BE

B¢ BB +CC
and 77 |T,T) =rlkr’ . AB|BC.]

13. The mean centres of the vertices of any polygon and of
similar triangles similarly described on its sides coincide (M‘Cay).

[Let the vertices of the triangles on the sides AB, BC, CD ... be
A, B, C' ... respectively.

Since AA' : BB : CC" ... =AB:BC: CD ... and are inclined to the
sides of the polygon at the same angle ; we may regard the vertices
of the given polygon displaced to A4'B'C" ... distances proportional
and paralle! to its sides turned through that angle (cf. Ex. 6).]*

*The proofs of Examples 11-13 were communicated to the Author

by Mr. Charles M‘Vicker.
G
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14. Through the centre O of a regular polygon any line is drawn
meeting the sides in 4', B, (', ... to prove that EU{T=O.
[Let A be the middle point of one side, then MA'0 is a right-

angled triangle, and if a perpendicular MM’ be let fall on the
hypotenuse we have

04’ OM'=r*or > 011,__20111' 0. Art.50. See Art. 3, Ex. 9]

54. Theorem.—For any system of points A, B, C, ...
their mean centre O, and any line L ; to prove that
Za.AL*=3a. AL+ Z(a)0L3,
where I is the line through O parallel to L.
For AL=A1l'4+0OL; ... AL>=AL?4+0L*42AL" .0L;
BL=BL' +0OL; ... BI*=BL*+0L*+2BL'.OL;
Multiplying these equations by a, b, c¢,... respectively
and adding results,
Za. AL2 Za.AL?+3(a)OL*+20LZ(a. AL),
but Za. AL =0 (Art. 50); therefore, ete.
Cor. 1. When the multiples are equal
SALR=ZAL?+2012
also since YAL=n.0L; OL is the arithmetical mean of
the several lines AL, BL, CL..., and AL, BL ... the
several differences between each and their mean.

Hence, the swin of the squares of n quantities=mn times
the square of their mean value+the sum of squares of
the n differences ; or if the quantities are the segments of
a line this property may be stated : the sum of the squares
of the unequal parts=the sum of the squares of the equal
parts—+the sum of the squares of the n differences. This
property is obviously an extension of Eue. IL 9, 10.

Cogr. 2. For any two parallel lines L and M,

Za. AL*~Za. AM?=Z(a)(OL2—O0M?).
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55. Theorem.—For any point P to prove that
Za.AP2=3a.A0%+3(a)OP2
Project the system of points on the line OP and denote
their projections by 4, B, (', ....
Then (Eue. III. 12-13),

AP?=A04+0P*+20P.04".

Similarly = BP2=B0?+0P?+20P. 0B ete.
Multiplying these equations by «, b, ¢ ... and adding the
results,
Za.AP*=3%a.A0*+Z(a)OP?+20PZa. 04/,

but O is the mean centre of the system 4', B, (...
(Art, 58, Ex. 4); therefore Za.04’=0.

Cor. 1. If the n multiples are equal

ZAP:=3A0*+n.0P%

Cor. 2. For a regular cyclic polygon the sum of the
squares of the distances of any point on the circle from
the n vertices is constant and =2nR2%

Cor. 3. If Za.AP? is constant, the locus of P is a
circle concentric with O the square of whose radius is
Za.AP*—%a.A0?

(a) '

Cor. 4. Za.A P?is a minimum when P coincides with O.

See Art. 16, Ex. 3.

equal to
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ExAMPLES.

1. ABCD ... is a regular cyclic polygon, O the centre, 2 the
radius, and P any point on the circle to prove that the sum of the
squares of the perpendiculars from 2 on the radii 04, 0B, 0C ...
=§nR%

[Dénote the feet of the perpendiculars by .t', B, ¢" ... The circle
on OP as diameter passes through these points (Euc. ITI. 31); also
since A'B', I'(", ... subtend equal angles (27/2) at 0, a point on the
circle, A'B'("... is a regular cyclic polygon. Hence (Cor. 2)

SPA*=2(30P)y=4nlt?
Similarly 204" =4nR"]
2. For any line L passing through 0, SAL*=4nR2
[Let L coincide with O/ By similar triangles
AL=PrA'y BL=DD, etec.
therefore SPA?=2AL=1nlt? by Ex. 1.]
3. The sum of the squares of the perpendiculars p,, py p;3... Pa
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from any point P upon the sides of the polygon is equal to
n(r2+46%), where 7 is the radius of the in-circle and §=0P.

[Through O draw parallels 04'; OB, OC’ ... to the sides of the
polygon meeting the corresponding perpendiculars from P in
A, B, ('",... As before A'B'C"...is a regular cyclic polygon in-
scribed in the circle on OP as diameter.

Since the sum of the perpendiculars is constant and=nr

Ep =t ZPA? oo (Art. 54) (1)

but SPA?=4n8? (Ex. 1),
substituting this value in (1); therefore, ete.]

4. In Ex. 3 if P is on the in-circle Zp,2=3nr%

5. If m,, my, my ... denote the distances of the vertices from any
line L and §=0L, S li=n(8?+§12°).

{Through O draw I’ parallel to L and let 4’, B, ¢’ be its inter-
sections with AL, BL, CL ... respectively.

Since SAL=n0L (Art. 53),
SAL*=n.0L*+2ZA44? (Art. 54),
but SAA={nRR? (Ex. 2);
therefore by substitution ZAL*=n(0L*+4R%),
or Sr2=n(8+3 1)
5a. If L is a tangent to the circum-circle .
Sr?=gnl% v
6. If P be a point on the circum-circle of a regular polygon
4BC..., ZPA4=6nR4

[Draw OP and produce it to meet the circle again in @, and let
A', B, C' be the projections of the vertices on this line. Since P4
is a right-angled triangle,

PQ.PA'=PA%
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Squaring, we have  4R?. PA"=PAY,

therefore 4RZPA?=3PA* :
But . SPA?=nR*+204% (Art. 54, Cor. 1.)
and Z04%=3inR2 (Ex. 2.)
Substituting SPA=4R (nR*+inR%)=6nR4.]

7. If a, b, ¢ denote the sides of a triangle ABC and I’ any point
on the in-circle, Za.AP?=3a. A0*+2rA.

8. If ABC be an equila,teral triangle, and L a tangent to the
o . 1 1
in-circle, AL+BL+CL =0

[For AL+ BL+CL=3r, therefore on squaring SAL*+2SBL.CL
=972 Also ZAL*=3"+3R? or since K=2r, ZAL*=9%"; hence

ZBL. CL=0, therefore, etc.]

9. Perpendiculars are let fall from P on the sides of any polygon
ABC ... and their feet joined; prove that if the area of the in-

scribed figure A'B'C" ... is constant, the locus of P is a circle
concentric with the mean centre of A, B, C, ... for the multiples
in 24, sin 2B, sin 20, ....
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[Let O be the middle point of 4P. Then
i 24'0B' =24'BP-AA'BP;
hence 224'08 =22 PA'B —ZPAA'B,
or }.PA%in24=24'BC"...— ADBC....

Therefore Zsin24 . 4P is constant ....

For a triangle the mean centre of 4, B, C' for multiples sin 24,
sin 2B, sin 2C is the circum-centre, showing Art. 23, Ex. 2, to be a
particular case of this theorem. M‘Vicker.]}

56. Theorem.—If SAB denote the sum of the mutual
distances of a system of points 4, B, C ... from each other,
to prove that Z(ab. AB)*=Z(a).Z(a.A0?).

In Art. 55 if we suppose P to coincide with each point
of the system successively we have the following
relations :—

a.AA*+b. AB*+c. AC?+...=2a. 402+ 2(a)04?,

a.BA*+b. BB24¢.BC?*+...=2a. A0?+ 2(a)0B?,

a.CA2 +b. 0B +¢.C0C? +...=Za. A0*+ Z(a)0C?
Multiplying these results by @, b, ¢ ... respectively and
adding 2Zab. AB=3(a).Za. AO*+2(a). Za. AO?,
therefore Zab. AB*=3(a).Za. AO%

Cor. 1. If the multiples are each equal to unity,

ZAB*=n.ZA0%

Cor. 2. The sum of the squares of all the lines joining
the vertices of a regular polygon=n?R?; wherc R is the
radius of the circum-circle.

Cor. 3. For three points A4, B, C, the sum of the squares
of the sides of a triangle==three times the sum of the
squares of the lines joining the vertices to the centroid ;
or three times the swm of the squares of the sides=four
times the sum of the squares of the medians.
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Cogr. 4. If O be the in-centre and a, b, ¢ the sides of a
triangle ABC Z(ab.ABY)=3(a).Za.AV?
reduces to (Art. 52, Ex. 1)
abc(a+b+c)=(a+b+c)Za.A0?
Za.A0%=qabe,
with analogous results for 0,, 0,, and O,
Cogr. 5. The sum of the squares of the six lines joining
the centres of the in- and ex-circles =48 R2
Since the centre O of the circum-circle is (Art. 52,
Ex. 9.) the mean centre of O,, 0, O, O,,
20,0,=4200,*=4{R?*~2Rr+ Z(R*+2Rr,)}
=16R2+8R(r +7y+1,—7),
but 7, +7,+7;—r=4R; therefore, etc.*

ExXAMPLES.
1. If S denote the symmedian point of a triangle,
2 2 0] 2 2 2 3@26202
2. For the Brocard points 2, ',
2 2 2
o’ éb(}— +ABS‘Z— +q—%— =1.
o AQ* | BQ*®  0Q%_
B 7 +_&T + “62_—1' (Art. 52, Ex. 4.)

3. The distance OP of any point I’ from the in-centre of a
triangle is given by the equation
Za. AP*=abc+Z(a). OP
{Eliminating Za. A0* between the equations,
Za. AP*=Za. A0°+2(a). OF7,
and 2(ab.AB)=Z(a). Za. AD?,
the above result follows.]

* Otherwise thus :—Since O, is the orthocentre of 0,0;0,, if per-
pendiculars OX, OY, OZ be drawn to the sides from the circum-centre
0 of 0,0,04, 0,0,=20X, 0,0,=20Y, ...; also 00,=2R; hence

0,02+ 0,02 =4(2R)*=16R?,
therefore 20,0,2=48R2,
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4. If P coincides with the circum-centre, prove the following
where D, D,, D,, D; are the distances of the circum-centre from
the in- and ex-centres :—

D*=R*-2Rr ; D*=R*+2Rr,, etc., ete.

5. Prove that the distance 8 of the symmedian point S from the

circum-centre O of a triangle ABC is given by the equation
P R
(a*+ b+ %

[For any point P (Art. 52, Ex. 4) Za’dP?=ZTa’48*+ Z(a?)&,

letting 2 coincide with O ; therefore

(a2+b2+cz)R2=_£Ci2{).2£2_ + (a2 + B2+ )8 ;

M+N+&N2
3ab%
hence ¥ 82=R2—m3

therefore, ete.)
6. The distances of  and ' from the circum-centre are given
by the equations OQ 08 = RNT—4sin’w.
1 24 1 2
[For + b“+ =17 15""' cosec’d = Atosee .]

7. For the in-centre O, and the ex-centres 0, O, O, prove the

relations
° 0,02 +01032 + 0,02

a’. =8R.
1 Ty 73
B 0,0 404 0402 0,05 _ SR.

T9rs 73ry 7 r

8. For any point />
(8—a)PO 2+ (s—b) PO+ (s — c)POs* — sPO*=2abc.
9. Find the following expression for the square of the distance &
between the circum- and ortho-centre of a triangle ABC.
=R*1-8cos AcosBcos ()
=2Za¥(a® - b*)(a® - ¢*)[164%
[By the previous method, or more simply by finding the area of
the pedal triangle of ABC, (2area = R%in 24 sin 2Bsin 2C), and
using Art. 23, Ex. 1, and reducing.]

* This expression is equivalent to
5= R?sec?w(1 - 4 sinlw),
where w is the Brocard angle.
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RECIPROCAL THEOREMS.

57. Theorem.— For any two points M and N, and
systems of lines A, B, C, ... and multiples a, b, ¢, ...
having given Za. MA =0 and Za . NA =0 to prove that

Sa.LA =0,
where L is any point on the line O connecting M and N.
For MN.LA+NL.MA+LM.NA=0.

Similarly for the lines B and C,
MN.LB+NL.MB+LM.NB=0,
MN.LC+NL.MC+LM.NC=0.

Multiplying these equations respectively by a, b, ¢, ...

and adding, we get

MNZa.LA+NLZa.MA+LMZa.NA=0...... ¢))
hence if Sa. MA and Za.NA each=0, Za.LA4 =0, for
any other point L on the line MN.

More generally: If Za.MA and Za.NA are equal

Za. LA has the same value.
For, let Za. MA=3a.NA =F; substituting in (1)

MNZa.LA+(NL+LM)k=0;
dividing by MN (=LN+ ML) and transposing
Za.LA=Fk.
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Hence, the locus of a point L such that the sum of given
multiples of the perpendiculars from it wpon « system of
lines A, B, C, ... s constant (Ea. LA =Fk) is a right line.

Def. When the constant vanishes Za.LA =0, the
locus O is termed the Central Axis of the system of lines
for the given system of multiples.

It is evident that the central axis is one of a system
of parallel lines obtained by taking different values,
by ko I, ... of k.

For if L in (1) lies on O then
NLZa . MA4+ILMZa. NA=0.........covvnn. (2)
a.MA ML M
gTNZ - N‘g‘ (Eue. VI 4
hence the values of the summation corresponding to any
point is proportional to the distance of that point from
the central line or axis.

Otherwise thus :—If M and N, are the loci of 4 and N such

that Ya. MA=*Fk, and Za. Nd =k, and £ if possible their point of

intersection ; then since I” is on both lines Ta.ld=4% and
2a.PA=Fk, which is absurd ; therefore, etc.

58. Problem.—7 find the Central Axis O of a given
system of lines A, B, C, ... for a given system of multiples
abe,...

Take any three points P, @, R, and calculate Zu. P4,
Za.QA4,and Za.RA.

On QR find a point L such that

Za.QA QL

Sa.RA™ RL
L is by (2) on the required line; similarly obtaining
points M and N on the other sides of the triangle P, @, R,
their line of connection is that required.

or
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59. Let the multiples @, b, ¢... denote segments of the
given lines 4, B, C'... respectively; a.LA,b.LB,c.LC ...
are each twice the area of the triangle subtended by the
corresponding segment at the point L; hence, the locus
of a point such that the sum of the areas subtended at it
by any number of finite lines is constant, (k) is a right
line; and if different values be assumed for %k the locus
varies in position by moving parallel to itself.

60. Theorem.—The locus of the mean centre O of the
points of intersection A,, B, C,, D, of a variable line L,
moving parallel to itself, with the sides of a given poly-
gon 18 a right line.

Let a, b, ¢, etc, be the given multiples and «, B, v ...
the angles at 4,, B, C,... made by the variable line
with the sides 4, B, C... of the given polygon.

By hyp. Za.4,0=0,
but 4,0=0A4/sin a; B,0=0B/sin B; C,0=00C/sin y, ete,
substituting these values,

a/sina.04 +b/sin B. 0B+ C/siny.0C+ete.=0),
hence O describes a line, viz., the central axis of the
gystem for the multiples a cosec a, b cosec 3, ccosec y ....

Def. This locus of the mean centre for the system of
parallels, is termed a Diameter of the Polygon when the
multiples a=b=c=...=1; a name suggested by the
property to which the theorem is reducible when the
polygon becomes a circle.

61. Problem.— To find a point P such that for any
systems of lines A, B, C ... and multiples «, b, ¢ ...
Za.PA? s @ minimum.
Let any line L through P meet the sides of the poly-
gonin A’, B, (" ... at angles @, 3, y.... Then Za.PA4?
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is a minimum when Zasin%q. PA”? is a minimum, that
is when P is the mean centre of A’, B, (... for the
multiples @sin%a, bsin’3.... As L varies parallel to
itself the locus of P is a diameter. Let it meet the
sides of the polygon in A4,, B, C,...; the mean centre
of these points for the multiples @sin%q, bsin?B ... is
obviously the point required.

ExaMprLES,

1. If a line is drawn through O the centre of an escribed circle
to meet the sides in X and ¥ such that CX=CY; prove that
AY . BX=3XY); and conversely, if 4Y. BXY=(G3XY ), 4B is a
tangent to the circle.

[The angles of the triangles BOY and 40Y are as follows :—
BY0=90-4%C, OBX =90-4DB, therefore BOX=90-34 ;
AY0=90-4C, 04Y=90 -} 4, therefore AOY=90-4}B.

Hence they are similar ; therefore, etc.]
2. The diameters of an equilateral triangle envelope the in-circle.
[Suppose the multiples to be equal to unity, through B and ¢
draw any two parallel lines terminated by the opposite sides of the
triangle and trisect them in X and ¥ towards the vertices. Since
X and Y are the mean centres of their intersections with the sides,
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the line XY is a diameter. Draw parallels XX”, Y¥” to the sides
AB and AC respectively.
Then the triangles XX'X” and YY'¥?” are similar, therefore

XX Yry'=XX".Yr.

Again, the triangles CXX” and BYY” are similar, since the
sides are parallel, therefore
XX". YY'=CX".BY"'=3}X"Y")?
therefore XX'.YVY'=3X"Y")?;
therefore, etc., by Ex. 1. M‘Vicker.]

Otherwise thus :—Draw any system of parallels 44', BB, CC'
terminated by the opposite sides and let 4', B, C denote the mean
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centres of their points of intersection with the sides of ABC. Let
the diameter .4'B'C' meet the sides in X, ¥, Z; the parallels through
X and ¥ are bisected at these points, hence 4.X and BY each bisect
CC’" and thercfore meet at its middle point. Then from the com-
plete quadrilateral A BCXYZ the row A C”BZ is harmonic, therefore
A4’y 0'C" and BB are in harmonic progression, or
1,1 2 1
A5t BETTC T
but “217,:0 is the criterion for the tangent to the in-circle. See

Art. 55, Ex. 8 ; therefore, etc.]

3. If a system of n points 4, B, (..., N be situated at equal
distances on an arc of a circle O, r ; required to find the position of
their mean centre.

[Through O draw a parallel L to the chord of the arc 4N ; let
the angle AOL=0a and AON=nf. Then, if d be the distance of
the mean centre from O, we have (Art. 53)

nd=R{sin a+sina+B+sina+28+...+sina4+n-13}
_sin(a+3n—1B)sin}nf
T T singg
but a+4nB=4mr, therefore the above expression becomes, on re-
duction, 7 cotd 8 sinnf3.]

Note.—If the number of points on the arc is infinitely great,
it follows, since B is indefinitely small, that

_chord x radius
" Tength of arc’




CHAPTER V.

COLLINEAR POINTS AND CONCURRENT LINES.

62. Theorem.—If a straight line be drawn cutting the
sides of a triangle ABC im points X, Y, Z, to prove the

relation
BX CY AZ _

CX AY BZ
and conversely, having given this relation to prove the
points are collinear. (Menelaus.)

1,

For denoting the perpendiculars from the vertices on the
transversal by [, m, n; we have by similar pairs of tri-
angles,
BX m, CY = AZ 1
CX n’ AY" 1’ BZ™m
112
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Multiplying these equations* and reducing, the above
result follows at once.
Conversely, if the line joining X and ¥ meet the base
in Z’ by the first part of the Proposition,
BY CY AZ_,
CX'AY BZ
BX CY AZ_
but by hyp. ox A7 —EZ—L
AZ AZ
hence B72=E7
therefore Z and Z" coincide.

63. Theorem.—If three lines AO, BO, CO be drawn
from the vertices of a triangle ABC through any point
O to meet the opposite sides in X, Y, Z; to prove the
BY CV AZ__,
CX'AY BZ ’
and conversely, if this relation be given the lines AX,
BY, CZ are concurrent. (Ceva.)

For the triangles BOC and COA on a common base

are proportional to their altitudes, which are in the ratio
BZ|AZ.

relation

*The proof here given applies equally to the general proposition :—
Any right line meeting the sides of a polygon ABCDEF... in points
X, Y, Z U, V, W... gives the relation

AX BY CZ DU EV FW _
BX CY ' DZ EU FV GW =~

+ A line drawn across the sides of a triangle meets them either all
externally, or two internally and one externally, ¢.e. the number of sides
cut externally is always odd, and therefore the product of the ratios
BX CY AZ
CX’ 4Y BZ
the sides connect concurrently with the opposite vertices, an odd
number is internal and the product of the ratios is therefore negative.

is positive. On the other hand, if three points on
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Hence the following equations :—
BX AOB CY BOC AZ COA,

Conversely, let AX and BY meet in 0. Join CO and
let it meet 4B in Z'. Then by what has been proved
BX CY AZ _

ox AV Bz= """
BX CY AZ
but by hyp- TXZ~Y.FZ= —1,

therefore the points Z and Z’ coincide.

64. The relations of the previous Articles are equivalent
to the two following :—
sin BAX sin CBY sin ACZ _
sin CAX sin ABY 'sin BOZ
BX c¢sinBAX
CX bsinCAX
with similar values for the remaining ratios, compounding
and reducing, the above results are obtained. ‘

+1.

For by the rule of sines

* More generally, if the vertices of a polygon ABCD... of any odd
number of sides be joined to any point O and the lines produced to
meet the opposite sides in X, ¥, zZ, U, V, W, it follows by similar
A4X BY ©Z DU _ _,

reasoning that BX OV Dz EU T
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These formulae may be regarded as criteria of points
on the sides of a triangle lying on a line and connecting
concurrently with the opposite vertices.

We shall now apply them to the following remarkable
particular cases:—

I. Let the points X, Y, Z be at infinity on the sides,
thus BX =0CX,CY =AY, and AZ= BZ; hence the criterion
of Art. 62 is satisfied and it follows that every three and
therefore all points at infinity in the sume plane may be
regurded as lying on a line.*

II. Let AX, BY and CZ be any three parallel lines.
BX OY AZ_ _,

CX AY BZ ’
every three, and therefore all, parallel lines are com-
current.

Since

Of these properties Townsend says: *Paradoxical as these
conclusions appear when first stated, all doubt of their legitimacy
has been long set at rest by the number and variety of the con-
siderations tending to verify and confirm them.”—AModern G'eometry,
Vol. I, Art. 136.

III. When AC=BC, and O is a point on the circle
touching the equal sides at 4 and B.
By Eue. II1. 32, :BAO=:CBO; tABO=.CAO.
Substituting in the above equation, and
sin ACO _sin?AB0_A0*?
sin BCO ™~ sinBA0~ BO*

* This conception of elements situated at an infinite distance is due to
Desargues. About the year 1640 he showed that parallel straight lines
meet at an infinitely distant point; and that parallel planes may be
regarded as intersecting in the line at infinity. More recently the
celebrated Poncelet proved that all pomts at infinity may be considered
to lie in a plane.
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Similarly, if CO meet the circle again in O,

sin ACO _A07?
sin BCO™ BO*

Hence:—A variable chord 00" of a circle passing
through a fixzed point C divides harmonically the arc
AB, intercepted by the tangents CA and CB.

Also, since AB is divided harmonically at O and O/,
00’ is divided harmonically by AB; hence the variable
pairs of tangents at O and O intersect on the fixed

line AB.

IV. Describe a circle about AOB, and let it meet the
lines AC, BC, CO again in A’B'0".
Then, for the point O,
sin BAO sin CBO _sin BCO
sin ABO ~sinCA0 sin ACO’
but CBO=C0'B and CAO=C0'4’. (Euc. III. 22.)
Substituting these values and reducing by rule of sines,
0B OB _sin BCO 1)
OA " OA = ACO s
Similarly, for O
0B OB _sin BOO .
U4 OA s dC0
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Equating these values,
40 40’ _AO 40"
BO“BO "BUO "BO’

reeverrerienneo(3)

Hence :—If two arcs of a circle AB and A'B’ are
divided in O and O’ so as to fulfil the relation (3), A4’
BB’ and 00" are concurrent.

EXAMPLES.

1. The internal bisectors of the angles of a triangle are con-
current.

2. Any two external and the internal bisector of the remaining
angle are concurrent.

3. The lines joining the vertices (a°) to the points of contact of the
in-circle (3°) to the internal points of contact of the ex-circles, are
concurrent.

[The centres of perspective are named respectivelyt point de
Gergonne and point de Nagel of the triangle.]

*The function ‘;g—‘;% is termed the Anharmonic Ratio of the

points 4, B, O, 0'; and (3) may be expressed thus :—¢ If the arcs 4B
and A'B' are divided equi-anharmonically in O and 0’, the lines 44’,
BB’ and 00’ are concurrent ; and conversely.”

+ Educational Times, July, 1890.
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4. The perpendiculars of a triangle are concurrent.

5. The tangents to the circum-circle at 4, B, ¢ meet the opposite
sides collinearly.

6. If a circle meet the sides of a triangle in X, X', ¥, ¥, Z, Z'
such that either triad X, ¥, Z is collinear or connects concurrently
with the opposite vertices; a similar relation exists amongst the
remaining points X, Y7, Z'.

7. If three points arc collinear, their dsotomic conjugates with
respect to the sides are collinear.

7a. If they connect concurrently with the vertices, their isogonal
conjugates with respect to the angles also connect concurrently.

8. For any triangle ABC and transversal XY YZ; if any point O
is joined to the six points
sin BOX sin COY sind0Z_,
sin COX "sin AOY 'sim BOZ
{For lg,j‘; =%§_€%§, with similar values for g_l): and %ZZ ;
therefore, etc. ...]

9. If the sides of a triangle and any three concurrent lines

* Examples 8 and 9 will be afterwards enunciated as follows :

8°. The lines joining any point to the six vertices of a quadrilateral
form a pencil of rays in Involution.

9°. Any line drawn across the sides and diagonals of a quadrilateral
is cut in Involution.
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through its vertices are cut by a transversal in six points X and
X', ¥Vand ¥, Zand Z'; (BCin X, 40 in X' ...)

YX . 2r X7 _,«

zZX' Xy vz 7

and conversely.

[For :i?l gjg 123;,, with similar values for :iﬁ jgg and
sin 400 |

B0’ therefore, etc.]
10. If AX, BY, CZ are concurrent, the intersections of ¥Z and
BC (X'), ZX and CA (Y'), XY and AB (Z') are collinear.
BX' CY AZ
(Fer 5 - 47 52~
equations involving ¥’ and Z’ and reducing, we have
BY' CY' AZ'_, ]
X' AV BZ
11. Given two points 4 and B on a circle MNP, on the same side
of the diameter M ; find a point I” on the other side such that the
intersections X and ¥ of A7’ and BP respectively with MV may be
equidistant from the centre.
[Let AB and MN meet in Z; then it is easily proved that
PX?|PY?=DBZ|AZ; hence the species of the trlangle PXY is
known ; therefore, etc.]

12. Draw two circles in contact each touching a given line at a
given point and having their radii in a given ratio.

1. Compounding this with two similar

*Will be afterwards seen to be an Equation of Involution of the
pencil,
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13. If lines be drawn from the vertices of 4BC to a point Q such
that QBC=Q04=04B=0, prove that 0 is given by the equation
cot @=cot 4 + cot B+ cot C.

[For sin30=sin(4 — 6) sin(B — ) sin(C'— 6) ; ete. Cf. Art. 28.]

14. In the general case if the lines in Ex. 13 making equal angles
(a) with the sides are not concurrent, they form a triangle 4'5'C’
similar to 4B8C and the ratio of similitude is equal to

cos a —sin a(cot 4 +cot B+cot 0) : 1.

Defs. 'The Centres of Perspective of two lines AB and
A'B are the points of intersection of the pairs of lines
ADB, A'B and AA’, BB joining their extremities.

Two triangles are said to be in perspective when the
lines joining corresponding vertices meet in a point. This
point is called the Centre of Perspective of the triangles.

65. Criterion of Perspective of Triangles. Theorem.
If the perpendiculars from the vertices of a triangle
A’B'C’ on the sides of another ABC be denoted by p,, Py Pss
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Qy Qo 935 Ty T 73 (16 from A" on BCp,, A" on CAp,, and

8o on), the two are in perspective if

h T2 Ps—1; and conversely.
TP G
For let AA” meet BC in X’. Then

sin BAX'[sin CAX’ =p,/p,,
with similar values for r,/r,, and q,/q,; multiplying these
equations together, therefore, ete,, by Art. 64, which also
proves the converse* proposition.

66. Theorem.—If the vertices of two triangles connect
concurrently, their pairs of corresponding sides intersect
collinearly (BC and B'(" in X, etc....).

For, by similar triangles,

% BY r,_COY naPs_4Z
X p, A ay? e BZ
Multiplying, we have
BX CY A'Z
% TV F7 z: Z—é ?Ii 1, therefore, etc.

Def. The line of collinearity is termed the Axzis of

Perspective or Homologyt of the triangles.

ExAMPLES.

1. Any triangle escribed to a circle is in perspective with that
formed by joining the points of contact of its sides.

[The centre of perspective is the symmedian point of the in-
scribed triangle.]

%Or thus :—Let O be the centre of perspective of the triangles and
a, B, vy the perpendiculars from it on the sides of A BC'; since By =pa/ps
y/a =qs/q;, and a/B = r,/r,; multiply and reduce ; therefore, etc.

t The term Homology is due to Poncelet who first studied the pro-
perties of homological figures in space, v. Traité des propriétés projectives
des figures (1822).



122 COLLINEAR POINTS.

2. If three triangles 4BC, 4,B,C,, 4,B,0; have a common axis of
perspective X ¥Z, their centres of perspective when taken two and
two are collinear.

[For the triangles (fig. of Ex. 3) BB, B, and CC,(, are in perspec-
tive, their centre being at X ; similarly ¥ is the centre of perspec-
tive of CC,C, A4,4, and Z of A4,4, and BB B, Hence the
corresponding sides of these pairs of triangles intersect in collinear
points. But these points (e.g. A4,, BB,) are the centres of per-
spective of the given triangles in pairs ; therefore, etc.]

3. If three triangles ABC, 4,B,0,, 4,B,C, have a common centre
of perspective, their axes are concurrent.

[Consider the three triangles whose sides are respectively the
directions BC, B,C,, B,C,; CA, C\4,, Cybds; AB, 4,8, 4,B,.

It is manifest they are in pairs in perspective, the axis of the first
pair being CC;; and XY is a line joining corresponding vertices.

Thus the axis of perspective XY of any two and therefore of
every two of the given triangles passes through the centre of per-
spective of the conjugate triad ]

Nore.-—It will be noticed that the common centre O of the three
given triangles is the point of concurrence of the axes 44,, BB,
CC, of the conjugate triad, and the common centre of the conjugate
triad taken in pairs is the point of concurrence of the axes of the
given triangles.

4. Brocard’s first triangle is in perspective in three ways with
ABC.
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[The Brocard points are evidently two centres of perspective
(Art. 28); also the lines 44’, BB, C(C’ are concurrent, for p,/p; found
by aid of the property of Art 28, Ex. 2, to be ¢*/b%; therefore, etc.

The three centres of perspective are the mean centres of the
vertices ABC for multiples proportional to (Art. 52)

1,11 111 111 ]
PR BRI T

5. If Q, &, Q" denote the three centres of perspective of 48C and
its first Brocard triangle 4'B'(’, to prove that the corresponding
vertices of their three median triangles lie on three right lines.
(Stoll.)

[For 4'B'C" and ABC have a common centroid G (Art. 53, Ex. 6).
But QQ'Q" has the same centroid ; for its vertices are the mean
11,1, 11,1,
Fea d @ m

therefore (Art. 53, Cor. 3) the mean centre of Q, ', Q" is

centres of 4, B, C for multiples proportional to

1,11
a“ l)"’ ok
that for 4, B, C' for multiples each=1/a’+1/b*+1/c%. Now let
L, L', L” be the middle points of the corresponding sides of the
three triangles such that GA=2GL, GA'=2G L/, and GQ"=2GL":
since 4, A’, £ are collinear; L, L', L” are also collinear, and
the two lines of collinearity parallel]

67. Theorem.—7Two triangles ABC and A'B'C’ are in
perspective when
BX .BX' CY.CY' AZ.AZ

oX . 0x' " AV.AY BZ. B~V
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where X and X’ are the points of intersection of BC
with C"A” and A'B), ete.; and conversely.

Using the previous notation, we have by similar

- DX g BX g,

triangles X =y OX= ete.
BX . BX’ q2q3

Hence CX . 0X vy,

therefore the left side of the above equation becomes

%95 T p1p2
Ty PePy iy
which is equal to, on reduction,

"1 . P2 O3, therefore, etc. (Art. 65.)
R

Cor. 1. Pascal's Theorem.—If XX'YY'ZZ' be any
cyclic hexagon, then (Eue. III. 36)

AY.AY'=AZ. . AZ; BZ. BZ’=BX . BX’, etc.

Hence :—The two triangles formed by the two triads of
alternate sides of any cyclic hexagon are vn perspective ;
or, the opposite sides of a cyclic hexagon meet in three
collinear points.

The centre and axis of perspective of any two triangles
in perspective are called the Pascal ¥ Point and Line of
the hexagon XX'YY'ZZ', which is termed a Pascal
Hexagon.

Cor. 2. If X, X"; Y, Y’; Z, Z' coincide in pairs on the
circle, the sides of the hexagon become the tangents to
the circle at X, Y, Z, and the chords of contact YZ, ZX
and XY; the Pascal point is therefore the symmedian
point of the triangle XYZ. (Art. 66, Ex. 1.)

* When only sixteen years old, Pascal discovered this property of the
mystic hexagram. Essai sur les Coniques, Pascal, 1640.
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Cor. 3.
sinBA’X sinCA’X sinCB'YsinAB'Y sinACZsinBC'Z
sinBA’X'sinCA’X’ " sinCB'Y'sinAB'Y’ sinACZ'sinBC'Z
=1.
[F sinB4A'X g, sinCA'X
or = =
sin BA’X 93 sin CA’X
hence the above expression is equxvalent to
" TsPs PG Te =1]
QGrs TPy Pgs Ty Dy ‘13
Cor. 4. Brianchon’s Theorem.—Let AC'BA’CB’ be
an escribed hexagon and z, y, z the intercepts made by
the circle on the sides of the triangle 4 B’C’; since
sin BA'X sin CA'X y *
sin BA’X’sin CA’X’ ™

with two other similar equations, Cor. 3 in this particular

2 ete. ;

*The property on which this depends is as follows:—If from the
point of intersection C of two tangents CA, CB to a circle a secant of
length x is drawn dividing the angle ACB into segments a and B; then
sinasin 3o 22

For if O be the centre of the circle and OX a perpendicular to the
secant, we have
sin a sin 8 = sin?}(a + B) ~ sin?j(a - B) = 72/0C? - 0X?OC? = x*/40C?;

therefore, ete,
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case reduces to:—The lines connecting the opposite ver-
tices of an escribed hexagom are concurrent; or, the
two triangles formed by joining the alternate vertices of
an escribed hexagon are in perspective.

The centre and axis of perspective of the triangles are
termed the Brianchon * Point and Line of the hexagon
AC'BA’CB, which for the same reason is called a
Brianchon Hexagon.

Cor. 5. If two of the sides AF and EF of an escribed
hexagon coincide, the vertex F is the point of contact of
the tangent AE (Art. 6); hence for an escribed pentagon
ABCDE, if the lines AD and BE meet in O, the points
C, O, F are collinear (cf. Art. 63, foot-note).

Cor. 6. If two pairs of sides BC, CD and AF, EF
coincide, the hexagon reduces to a quadrilateral ABDE;
hence the diagonals AD and BE meet on CF; similarly
they meet on C"F'; therefore the internal diagonald of
an escribed quadrilateral and of the corresponding in-
scribed mect in a point.

* Published by Brianchon in the year 1806, and derived by him from
Pascal’s Theorem by the process of reciprocation with respect to the
circle. (See Art. 80, 2°.)
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Cor. 7. Consider the eyclic hexagon FFC'CCF.
Its Pascal line is the line of collinearity of the three
points (1) FF,CC; (2) FC, CF'; (3) FF, CC": but the line

joining (2) and (8) is the third diagonal of the inscribed
quadrilateral CFC'F’ and (1) is the intersection of the
tangents at C'and F, and therefore one extremity of the
third diagonal of the escribed quadrilateral ; hence :—the
third diagonals of any inscribed and corresponding
escribed quadrilaterals coimeide.

Cor. 8. Let PQRS be any cyclic quadrilateral ; and
let XX'YY'ZZ', the corresponding eseribed quadrilateral,



128 COLLINEAR POINTS.

be regarded as a Brianchon hexagon ZPX'Z'RX whose
two pairs of coincident sides are the tangents from Y.
Then the lines ZZ’, PR, XX’ are concurrent at the
Brianchon point B; similarly, if the pairs of coincident
sides are the tangents from Y’, we have ZZ’, @S, XX~
concurrent, i.e. the pairs of opposite connectors PR and
@S of the inseribed quadrilateral and ZZ’ and XX’ of
the corresponding escribed cointersect. We see there-
fore from Cors. 7 and 8 that any pair of opposite con-
nectors of an inscribed quadrilateral and the correspond-
ing pair for the quadrilateral escribed at its vertices are
concurrent. The three points of concurrence on the
figure are 4, B, C.

The points U, V, W, U’, V', W’ lie in triads on four
lines.

ExaMrLes.

1. Three pairs of tangents are drawn from the vertices of a
triangle to any circle to meet the opposite sides in points XX,
YY', ZZ'; show that if X, ¥, Z are collinear, X', ¥’, Z are also
collinear.

[Apply Cor. 4.]

2. ABC is a triangle inscribed in and in perspective with 4'B'(";
the tangents from ABC to the in-circle of 4'B'C' meet the opposite
sides in three collinear points X, ¥, Z (BC in X, etc.).

[Let the axis of perspective of the two triangles be X'¥Z,

therefore by Cor. 4 we have M)(,..)(...)=l; therefore,

cX.cx’
ete., by Ex. 1.]

3. If points XX', YY", ZZ' be taken on the sides of a triangle

BX BX' CY CY AZ AZ

such that X oY AV A7 BZ' BZ
they are the vertices of a Pascal hexagon.

4. The lines joining each pair of points to the opposite vertex

(AX and 4X', ete.) of the triangle determine a Brianchon hexagon.

=1,
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5. («°) Any two transversals XYZ, X'Y'Z’ determine on the
sides the vertices of a Pascal hexagon.

(B8°) Two triads of points on the sides which connect concurrently
with the opposite vertices determine a Pascal hexagon.

(y°) A transversal X'YZ and three points X', ¥’, Z’ which con-
nect concurrently with the opposite vertices determine a Brianchon
hexagon.

6. A hexagon is inscribed in a circle; prove that the continued
products of the perpendiculars from any point on the Pascal line on
the alternate sides are equal (zyz=2"y'?).

[Let AB'CA'BC" be the hexagon whose pairs of opposite sides
BC', BC; C4', ("A; AB, 4'B meet in points X, ¥, Z respectively
and the Pascal line L (X¥Z) at angles a, o/, 8, 8, 7, y'; then

BL.C L_BX.(C'Xsin% _sin’a
DL OL™BX OXwita sinar  (ue HI.30)
C'L.AL _sin?ﬂ and AL. B’L=§§l_1:':y-
CL.A'L sin*f A'L.BL sin%y’
Multiplying these equations and reducing,
sin’a sin’@ sin?y =sin’a’sin?@'sin’y’ ; therefore, etc.]

Similarly,

7. From the middle points Z, M, N of the sides of a triangle
tangents are drawn to the in-circle ; show that these tangents form
a triangle (A'B'C’) in perspective with that (PQR) obtained by
joining the points of contact of the in- or ex-circles with the sides,
and the centre of perspective is the median point of 4BC.

[For since the sides of ABC with any two of the tangents form
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an escribed pentagon, e.g., BCMNA', by Cor. 5, the lines BN, CN,
A'P are concurrent; that is, 4’P passes through the centroid
(BM, CN). Sinilarly for B'Q, C'R ; therefore, etc.]

Nore.—If LMN is any inscribed triangle in perspective with
ABC, the above reasoning applies to prove that 4’B'C" and PQR
have the same centre of perspective.

8. If two triangles ABC and A’B'C’ are in perspective, 4'BC,
ABC'; AB'C, A'BC"; ABC', A'B'C are also in perspective.

9. If 44’y BB, CC’ denote the lengths of three lines whose
directions are concurrent, their six centres of perspective (of BB
and (¢, X and X', etc.) taken in pairs lie in triads on four lines.

[For they are the axes of perspective of the triangles in Ex. 8.]

10. If X, ¥, Z are on the sides of a triangle and fulfil the relation
2(BX%-C0X%)=0,
the perpendiculars through them to the sides are concurrent ; and
conversely.
11. If two triangles are such that the perpendiculars from the
vertices of either upon the sides of the other are concurrent, then
conversely the perpendiculars from the vertices of the latter upon

the sides of the former are concurrent.
[By Ex. 10.]
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12. State the particular cases of the Theorem of Ex. 11 for a
given triangle taken with the (a°) pedal, (3°) median, (y°) triangles
formed by joining the points of contact with the sides of the in-
or ex-circles,

13. If XYZ be a transversal to a triangle ABC, X', Y', Z' the
harmonic conjugates of X, ¥, Z, with respect to the sides; prove
that

1°. The triads of points Y'Z'X, Z’X'Y, X'Y'Z are collinear.

2°. X'Y'Z', X'YZ, Y'ZX, Z’XY connect concurrently with the
opposite vertices.

14. The mijddle points of the segments XX', YY', ZZ' are
collinear.

[For they are the middle points of the diagonals of a complete
quadrilateral by Ex. 3. For another proof ». Art. 91.]

15. The perpendiculars from the vertices of a triangle 4BC on
the sides of A'B'(", its first Brocard triangle, are concurrent on the
circum-circle. (Tarry’s Point.)

[By the theorem of Ex. 11.]

16. The perpendiculars from the middle points of the sides of
A'B'C" on the sides of ABC are concurrent. (Cf. Ex. 15.)

17. The Simson line of Tarry’s point is perpendicular to OA,
the line joining the circum-centre to the symmedian point.

18. In the figure of Art. 28 show that
04' : OB : 0C"=cos(4 + w) : cos(B+ w) : cos(C+ w) ;
and deduce the formula for the Brocard angle,
sin A4 cos(4 + w) +sin B cos(B + )+ sin C'cos(C+ w)=0.

Note on Tarry’s Point.—1t will appear obvious that the diameter
of the circum-circle containing Tarry’s point is related to the
triangle ABC in the same manner as OK is to A’B'C’; and that
the circum- and Brocard circles are divided similarly by these
corresponding diameters. Also, if a, 3, ¥ denote the perpendiculars
from Tarry’s point on the sides of ABC,

a:f3:y=sec(d +w) :sec(B+w):sec(C+w).

A point of interest may be here noticed. From Art. 28, Ex. 18
(note) it is evident that the centres 0,, 0, O; of Neuberg's circles
with respect to the sides of ABC are the vertices of similar isosceles
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triangles described on a, b, ¢ respectively, whose equal base angles
are $w—w. Therefore, if 7’ denote Tarry’s point, it easily follows
that A7, AO,; BT, BO,; CT, CO, divide the angles of ABC
isogonally. But the vsogonal conjugate of a point on the circum-
circle is at tnfinity ; hence the lines AOy, BO;, CO; are parallel.

HARMONIC PROPERTIES OF THE QUADRILATERAL.
68. Theorem.—In any complete quadrilateral each of
the diagonals XX', YY', ZZ' is dwvided harmonically by
the other two.

Consider the triangle ZZ'Y”’ and transversal BXX’,
ZX YX_ZB a
VX ZX C ZR e
And since YY", YZ, YZ’ are three concurrent lines through
its vertices, we have

X YX__74 o
7Y 7% 7 IR €
Equating these results, we have ZA/Z'A= —ZB|Z'B.

Hence the row of points ZZ’A B is harmonic.

Similarly, BCXX’ and CAYY" are harmonic.

Cor. 1. The angles of the triangle ABC, formed by the
diagonals (the diagonal triangle) are divided harmoni-
cally by the pairs of lines AX, AX"; BY, BY'; UZ, CZ".

Cor. 2. If two lines be given in magnitude and posi-
tion (ZZ’ and X X') their two centres of perspective (¥’
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and ¥”) joined to their point of intersection (B) form a
harmonic pencil. They also divide the line joining their
centres of perspective (in 4 and C) harmonically.

Problem.—70 determine the number of polygons which can be
Jormed from n points.

Each point joined to the remaining n—1 points gives #—1 lines.
Taking any one of these lines as the first side of the polygon we
have similarly n—2 selections for the second side, n—3 for the
third side, and so on. Therefore we have (n—1)(n—2) selections
for the first two sides, (n — 1)(n — 2)(n — 3) for the first three
sides, etc.; hence we have finally |n—1 equal to twice the
number of polygons, since any sequence of sides when reversed
gives the same polygon.

Thus four points may be joined in three ways as in figure.

Fig. 1 is called a Conver, Fig. 2 an Intersecting, and Fig. 3 a
Re-entrant Polygon.

By application of the general formula to the hexagon we find
that six points in general determine a system of sixty hexagons.
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ExAMPLES.

1. The conditions that the quadrilaterals in the figures are
escribed are :—
1°. BC+4D=AB+CD.
2°. BC~AD=AB~CD.
3. B~ AD=AB~CD.
[Since tangents from any point to a circle are equal.]
2. To prove that the quadrilateral whose angles and perimeter
are given is of maximum area when it is escribed to a circle.
(Hermite.)

[Let two of the sides A5 and AD be fixed in position and the
remaining two vary. It is easy to see that the locus of C ¥s a line.
Suppose C; and O, to be the positions of €' on the fixed lines and
CyD,, C,D, parallels to the fixed directions CD and CB.

The perimeters of the triangles AC,D, and 4C,D, are each equal
to the perimeter of the quadrilateral A BCD ; the ex-circle of 4C, D,
is the ex-circle of 4D,C; and D,C,— D,C,= D,C,~ D,C,.

Now, for any point £ and parallels PP, and PP, by similar
triangles LCy/0,Cy= (PP, ~ P,(Y)/(D,C,— D,CY)
and PCyC\Cy=(PPy~ P,Cy)[(D,Cy - D, () ;
adding these equations, we get

PP+ PP, - P,C; — P,C,=D,C,— D,C ;
to each side add 4C;+4C;, and
AP+ P\P+ PP, + P,A=AD,+ D,C,+C,4 =given perimeter.
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Regarding P and C as consecutive points on the locus, the area
of the quadrilateral is a maximum when BCPP,=CDPP,, i.e. BD
is parallel to C,C,. Hence the parallels BO and DO to CD and BC
respectively form with 4B and 4D a re-entrant escribed quadri-
lateral, and therefore AB+BO=A4D+ DO or (Euc. L. 34) AB+CD
=AD+ B(C ; therefore, etc.]

It may at once be inferred that the mazimum polygon of any
order, of given angles and perimeter, i3 escribed to a circle.

3. If three common tangents D, E, F to three circles 4, B, C
taken two and two are concurrent; prove that the conjugate
triad IV, E', F’ are also concurrent.*

4. Let the lines joining the middle points of the three pairs of
opposite connectors, BC and 4D, etc., of four points 4, B, C, D
be A, p, v ; prove by means of the followmg evident formulae,

4)\2 &+ 824208'cos &' =a?+ ¢+ 2ac cos ac, ............ (1)
=b2+d? - 2bdcos@ =a’+ ¢t - 2ac cos ac, een(2)
4 V3= 824 82 — 288'cos 88 = b? + dl* + 2bd cos b’d, ............ (3)

the relations,
1°. 2(p? +vi)=c’+a’; 212+ A =b"+d?; 2(A2 + p?)=8"+8":
4N+ p2 + v"") A+ b+ + AT+ 8+ 87
4)\2 P4di--a?+ 8+ 87
Wlth slmllar expressxons for pand v:
4 p2- =accosat; 12 - A\2= —bdcosba ; )&2—,u2=—88’0038h8’;
2(’1, —v2) =84 82— B - b, ete. ; Zaccos ac=0.

* Catalan’s Théorémes et Problémes de Géométrie Eiémentaire, pp.
53, 54 (1879).
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5. 4(area of quadrilateral)=(d2+d*— ¢*—a®)tan 8.
5a. Hence, or otherwise construct a quadrilateral, having given
its four sides and area.

6. To find the cosine of the angle between any pair of opposite

connectors.
[Equate the values of A2, u2, v2in 3° with those of (1), (2), (3).

7. If any point D be joined to the vertices of a triangle ABC';
the area of the triangle formed by joining the orthocentres of
BCD, CDA, DAB is equal to 4BC.

[Let 0,, O,, O, denote the orthocentres. DO, DO, DO; are
equal to acot 4, bcot B, ccot C respectively, and are mutually in-
clined at angles 4, B, C'; therefore, etc.]

8. If the vertices of a quadrilateral ABCD be joined to the
orthocentres O, 0,, 0,, O, of the four triangles formed by their
vertices taken in triads ; to prove that

0.4BCD=0,. ABCD=0,. ABCD=03. ABCD.
[Let the angle A0D=0. Taking any of the anharmonic ratios
of the pencil 0. ABCD and reducing, we obtain
sinf@sinB b sin@ _bdsinOAD_bdcosbd v:— A2
sin(B+0pin A asin(B+0) acsin OCD ;oo e viop?
(Ex. 4, 4°). It follows generally that the six anharmonic ratios of
. A p? 2?2 2o A2
the pencil 0. ABCD are )\“‘f:{' 97 ;L o U
ciprocals. Similarly for the remaining pencils 0,. ABCD, etc.
Russell.]

and their re-

NoteE oN PascAL AND BRIANCHON’S HEXAGONS.

When two triangles ABC and A'B'C’ are in perspective, the
lines A4, BB, CC’ are concurrent ; therefore 4 and 4’, Band B, C
and ¢’ may be regarded as the opposite vertices of a Brianchon
hexagon, and the centre of perspective of the two triangles is the
Brianchon point of the hexagon.

But in this case we have three other pairs of triangles in
perspective, viz, BCA'and B'C’'A, CAB' and C'A’B, ABC' and
A'B'C. Hence with the vertices of two triangles in perspective
we can form four Brianchon hexagons having the same Brianchon
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point, the opposite vertices of the hexagons being in each case
corresponding vertices of the two triangles.

Again, if the non-corresponding sides of the triangles intersect
as in figure in points X and X', ¥ and Y’, Z and Z’, and the
corresponding sides in UV W, UV W is the axis of perspective.

But in this case we have three other pairs of triangles in
perspective to the same axis, viz., those obtained by interchanging
a pair of corresponding sides, e.g., if L, M, N and L', ', N’ denote
the sides of the given triangles, it is obvious that the triangles
LMN' and L'M'N, MNL' and M’'N'L, NLM' and N'L'M have the
same axis of perspective ; hence with the sides of two triangles in
perspective we may form four Pascal hexagons having a common
Pascal line, 7.e., the axis of perspective of the triangles, the corre-
sponding sides of the triangles being in each case opposite sides of
the hexagons.

In the accompanying figure the legs of the angles whose vertices
are at U, V and W intersect again in twelve points, viz,
X, x,yvr,z,z,4,4, B, B, C, (,
and these we have seen may be grouped in four different ways into
two groups of six (XX'YY'ZZ’), and 44'BB'C(C’ determining Pascal
and Brianchon hexagons respectively ; also that the alternate sides
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XX’ and YY) of the Pascal hexagon intersect (in C) in six points,
which form a Brianchon hexagon.

Again, since sixty Pascal hexagons may be formed from the
points XX'Y¥Y'ZZ', and YY' and ZZ' meet in 4, and YX' and
Z'X in A’y by taking these lines as pairs of opposite sides of one
of the hexagons (YY'XZ'ZX'), A4’ is its Pascal line; similarly
BB’ and CC' are Pascal lines of the hexagons XX'¥YZ'ZY' and
XX'ZY'YZ' respectively ; but A4’, BB and CC' are concurrent,
hence the sixty Pascal lines pass in threes through twenty points.

Similarly it may be shewn that of the sixty Brianckon hexagons
formed by the conjugate hexad of points AA’BB'CC", their Brian-
chon points lie in triads on twenty lines. And either property
involves the other as will be seen by reciprocation with respect to
a circle.



CHAPTER VL
INVERSE POINTS WITH RESPECT TO A CIRCLE.

Def. Two points P and @ are inverse with respect to
a circle when the line PQ passes through the centre O
and OP . 0Q =the square of the radius of the circle.

For the circle of unit radius OP.0Q=1 or OP is the
inverse, or reciprocal, of 0Q.

69. It appears from the definition (1°) That inverse
points are in the same direction from the centre when the
circle is real and in opposite directions when the radius
is imaginary, that is when it is of the form Ra/—1.
(2°) They coincide on the circle; and when the radius is
not real the inverse @ of a point P at a distance OP from
the centre is given by the equation OP.0Q=—R%
(3°) When either coincides with the centre the other is at
infinity.

70. Theorem.—If a line AB be divided internally and
externally in P and Q in the same ratio, P and Q are
inverse points with respect to the circle on AB as
diameter; also A and B are inverse points with respect
to the circle on PQ.

For if M be the middle point of 4B, by hyp.,

AP _AQ AM+MP _AM+MQ

BP BQ BM—MP QM-MB
139

hence
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by taking the sum to difference on each side we have
AM+BM _ 2MQ . MA2
SHP AT B0 therefore MP MQ=MA2
A similar proof applies to show that
NA NB=NP*=NA?,
where N is the middle point of PQ

71. Since @~ MP.MQ=MN?*-PN?, (Euc. I1. 6)
therefore (Art. 70) AM?%*=MN2—PN?,
or transposing, MN?*=AM*+ PN?2

Hence for any two segments AB and PQ placed to
divide each other harmonically, the square of the distunce
(MN) between their middle points=the sum of the squares
of half the segments.

ExaMpLES.

1. The distances of the points of contact of the in- and ex-circles
of a triangle with the sides measured from any vertex on either of
the sides passing through it are s, s—a, s—0, s—c.

2. If M denote the middle point of the base (c¢) of a triangle, @
the intersection with the base of the fourth common tangent to the
ex-circles O; and 0, P the foot of the perpendicular from the

vertex on the base, MP. MQ= (“— ;'—b )2.

[For 0,0, is divided harmonically in C and @, project 0,, O,, and
C on base and apply Art. 70].

3. Show also that the rectangle under the distances of the middle
point of the base from the feet of the perpendicular and internal
bisector of vertical angle=square on half the difference of sides.

72. Theorem.—The distances of any point X on a
circle from a pair of inverse points have a constant ratio.

Since 0Q : 0X =0X : OP; the two triangles 0QX and
OXP are similar (Euc. VL. 6),
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and (Euc. VL 4) £X°_PO*_0X*

QX2 00X 0@’
PX: 0P
therefore o= 0y’

or the squares of the distances of a variable point (X) on
a circle from a pair of inverse points (P, ) are as the
distances of these points from the centre.

Cor. 1. Let X coincide with each extremity of the

diameter A B containing the points, then
PX?*_ PA*_PB>_OP
QX® Q4r QB 0Q -

Cor. 2. Given a triangle (PQX), the base (P@), and
ratio of sides, the locus of the vertex is a circle (4BX)
with respect to which the extremities of the base are
inverse points.

Cog. 3. If the ratio of sides in Cor. 2=1, the locus is a
line bisecting the base at right angles, therefore the
reflexion of a point is its inverse with respect to the line.

Cor. 4. From Cor. 1. AX and BX are the bisectors
of the angle PX(Q.

Cor. 5. If PX be produced to meet the circle again in
X', A and B are the centres of the in- and ex-circles of
the triangle QXX'". (By Cor. 4.
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Cor. 6. The line PQ containing a pair of inverse points
bisects the angle (XQX") which any chord through either
(P) subtends at the other.

Cor. 7. The quadrilateral 0QX X" is cyclic.

[For 0XX'=PQX, but OXX'=0X'X ; therefore, ete.
Eue. I1I. 21.]

Cor. 8. For any other pair of inverse points P, ¢ on
the diameter AB; the angles PXP and QX@Q are equal
or supplemental according as the pairs of points are taken
in the same or opposite directions from the centre.

[The angles PXQ and P’XQ have in either case the
same bisectors 4X and BX.]
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ExAMPLES.

1. Any circle passing through a pair of inverse points P and @
with respect to a given one cuts the latter orthogonally.
[From the definition of inverse points and Euc. III. 37.]

2. To find two points P and @ which shall be inverse with
respect to two given circles.

[The circle passing through any point and its inverses with
respect to each of the given circles meets their line of centres in
the points required.]

3. The line L bisecting P@Q at right angles is such that the
tangents from any 'point O on it to either of the circles in Ex. 2
are equal to OP or 0Q.

[For the circle with O as centre and 0P=0§ as radius meets the
given circles orthogonally ; * therefore, etc.]

4. Any two pairs of inverse points are concyclic.

5. Any chord XY of a circle passing through P is divided har-
monically by P and the perpendicular to P@ through @.

[For the angle X@Y is bisected internally and externally by the
lines at right angles.]

6. The radical axes L, M, N of three circles taken in pairs are
concurrent.

[For the point (L, M) of intersection of any two is the centre of
the circle cutting the three given ones orthogonally.]

Def. This point of concurrence O is the Radical Centre of the
circles, and is such that for any three secants X.X’, YY", ZZ’ drawn
through it to the circles respectively

0X.0X'=0Y.0Y'=0Z.0Z'.
The common value of these rectangles is called the Radical Product
of the circles, and is equal to the square of the tangents to them
when O is outside the circles. (See Art. 23, Ex. 11, footnote.)

*Hence the locus of a point from which tangents to two circles are
equal is a right line, viz., the axis of reflexion of their common pair of
inverse points, It is termed the Radical Axis of the circles, and is
their chord of intersection, real or tmaginary.
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7. The radical axis of two intersecting circles is their chord of
intersection ; hence show that the common chords of three circles
taken in pairs are concurrent.

8. Describe a circle meeting three given circles at right angles.

9. For any triangle ABC find a point O such that

04 : 0B : 0C=given ratios.

10. For any four collinear points A, B, €, D find the loci of
points (1°) such that the angles 40B and COD are equal, (2°) BOC
is supplemeut of AOD.

11. For any six collinear points taken in the order ABCC'B'A’
find O such that the angles BOC, CO4, AOB are respectively equal
to B'OC’, C'04', A'OB'.

(By Ex. 10.]

12. The four sides of an escribed quadrilateral ABCD being
given in magnitude and 4B in position; find the locus of the
centre O of the in-circle.

[Make AD'=AD and BC'=BC. Since 04, OB, 0C, OD are the
bisectors of the angles of the quadrilateral, it is easy to see that
AOB+ COD=m. Again the triangles 40/ and AOLD' are egual
in every respect (Euc. I. 4); hence £4D0=AD'0; similarly
LBCO=BC'0 ; therefore by addition it follows that .C"0D'=C0D
or AOB+C'0OD' =, and the required locus is a circle having 4, B
and C’, I pairs of inverse points. Dilworth.]

13. The centres of perspective Pand @ of any two parallel chords
AA’ and BB of a circle are inverse points with respect to the circle,
and the circle touching the chords at their middle points.
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[For we have PA=PA', PB=PB, QA=QA' and @B=@QB ;
hence PA(QA = PB/QB=etc. ; therefore, etc.

The second part follows, since M is divided harmonically by
P and Q. Art. 70.]

13a. To what does the theorem reduce when 44' and BB
coincide ?

14. For any two pairs of inverse points P, @ and P, @ prove that
PP .PQ _OP (_PA*_ PB?
QP QY 0§ \ Q&* B¢/

[PPQQ is a cyclic quadrilateral (Ex. 4); hence the triangles
OPP and 0QQ' are similar ; so also are OPQ and OP'Q ; therefore,
etc. (Euc. VI. 4). Otherwise if p and ¢ denote the perpendiculars
from P and @ on OP'¢, we have
PP .PY=p.D,and QP .Q¥=q.D;
PP.PQ_p_ OP]

QP QY ¢ 09

156, If P, @, R be any three collinear points on the diagonal
triangle of a quadrilateral; their harmonic conjugates /@R’
with respect to the diagonals XX', YY", ZZ' are also collinear.

[For XX’ is divided harmonically in B and C (Art. 68) and
Pand P ; hence, by Ex. 14,

BP.BP _BX*_BL

TP OP-0Y " CL (where LX=LX').

Similarly %‘7%%‘%* Gl (where MY =HF): ete.

hence
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Multiplying, we have
BP (Q AR BP' CQ AR_, BL CM AN,
(P AQ BR' CP AQ  BR CL aM’ BN’
but P, @, 2 are in a line ; T therefore, etec.]
16. To what does Ex. 15 reduce when the line Q2 is at infinity ?

17. The angles subtended by the diagonals of a complete quadri-
lateral at any point O have a common angle of harmonic section,
real or imaginary.

[0 is the point of intersection of the lines 2’Q& and 7”Q'R’ in
Ex. 16 ; therefore, ete.]

18. The circles on the diagonals of a complete quadrilateral pass
through two points, real or imaginary.

[In Ex. 17, if two of the angles XOX’, YOY" are right; Z0Z
must also be right,I since it is divided harmonically by PQR and
PR

19. Any transversal to the pencil in Ex. 17 is cut in six points
which, taken in pairs, have a common segment of harmonic section.

20. To what does Ex. 17 reduce when O is at infinity ?

21. If the sides of a triangle ABC are divided harmonically in
XX, YY, 2Z'; if X, Y, Z are collinear, the middle points L, M, N
of these segments are collinear.

22. If perpendiculars be let fall on the sides of a triangle from a
pair of inverse points O and O’ and their feet joined ; the triangles
PQR and PQ' R thus formed are similar and their aveas are as the
distances of 0 and O from the circum-centre.

[For QR=A0sin A, and ¢ R =A0sin ,
therefore QRIQ R =40/40 ;
similarly RP|RP =DBO/BO, ete. Art. 72.]

* Hence also the middle points L, M, N oy the diagonals of a complete
quadrilateral are collinear.

+ PQR and P'Q'R’ are termed Conjugate Lines of the quadrilateral.

t Generally, For a number of angles at a common vertex having a
common angle of harmonic section if any two are right, all the others
are also right,
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23. Through a point P in the diameter of a semi-circle draw a
chord AB such that the area of the quadrilateral 4BA4'B’, where
A'B' is the projection of 48 on the diameter, may be a maximum.

[Let @ be the inverse of P with respect to the circle ; draw Q@'
at right angles to A’B. Project M the middle point of 48 on 4’5’
and let X be the intersection of MM’ with the semi-circle on @O.
Then area § of quadrilateral ABA'B'=A"'B". MM, hence

SP=4MM"?. A M"*=40M'. PM' . M'P . M'Q’, by Art 70,
=4PM"*. OM' . M'Q=4PM"?. M'X?;
or § is equal to the area of the maximum rectangle that can be

inscribed in a given circle, one of whose sides is parallel to a given
line. Art. 14, Ex. 2.]

24. Six perpendiculars are drawn from the inverse of the inter-
section of the diagonals of a cyclic quadrilateral to the sides and
diagonals. Show

1°. The feet of those to the sides are collinear.

2°, The line of collinearity bisects at right angles the line joining

the feet of perpendiculars on the diagonals.
[By method of Ex. 22.]

25. If XX'; YY’; ZZ’ denote the feet of the bisectors of the
angles of a triangle ABC, show that the pedal triangles of two
points O and O’ inverse to any of the circles on these segments as
diameters, with respect to ABC, are tnversely similar. (Neuberg.)

[Let O and O’ be inverse with respect to ZZ'C;* PQR and @' P IV
their pedal triangles respectively. M the middle point of ZZ"
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PQ MO
Then W—mv

RP _AOsin4_BOsin B _RP,
and RO~ BOsm B A0sma Y B 1) =qg

also the angles R and K’ are equal ; therefore etc.

Note.—If O is on the circle ZZ'C the pedal triangle is isosceles,
similarly if it is the point of intersection of the circles ZZ'C' and
YY'B it is isosceles in a double aspect, Z.c. equilateral.

Hence we may infer that the circles AXX', BY'Y', and CZZ" pass
through two points O and O whick are inverse (Ex. 22) with respect
to the circum-circle of ABC and whose pedal triangles with respect to
ABC are equilateral.]

* Le cercle d’ Apollonius du triangle A BC par rapport 4 AB. V. Educ.
Times, Dec., 1890,
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POLES AND POLARS WITH RESPECT TO A CIRCLE,

SEcTION L
CoNJUGATE PoINTS, PoLAR CIRCLE.

73. Def. The perpendicular to the line joining a pair of
inverse points passing through either is the Polar of the
other with respect to the circle. In the figure of Art.
74 C and Z are inverse points; and C and the line
AB are termed Pole and Polar with respect to the circle.

Any point 4 or B on the polar is the Conjugate of C,
hence the polar of a point is the locus of its conjugates.

Again, since the circle on BC as diameter passes through
Z and therefore cuts the given one orthogonally : —
1°. The circle described on the line joining two conjugate
points cuts the given circle orthogonally. 2°. The distance
between two conjugate points is equal to twice the length
of the tangent to the circle from the middle point of the
lime connecting them.

74. Theorem.—For any two conjugate points B and C,
to prove that each lies on the polar of the other with
respect to the circle.

Suppose the polar of C to be AB, we require to prove
that the polar B passes t}ﬁough C. Join AO, draw a

9
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perpendicular to it CX. Then evidently (Eue. III. 36)
04.0X=00.0Z=1*; hence OX is the polar of A.
Thus as the point B moves along the line AB its polar

twrns around, or envelopes, C. At Z therefore the polar is
the chord of contact of tangents through that point to the
circle.

ExamrLEs.

1. The extremities of any diameter of a circle which cuts a given
one orthogonally are conjugate points with respect to the latter.

2. If a variable chord A of a circle pass through a fixed point
P ; the locus of the intersection of tangents to the circle at 4 and
B is a line.

[The polar of P with respect to the circle.]

3. The diameter 4B of a circle is the polar of a point at infinity

in a direction perpendicular to 4B.

4. The locus of a point which has a common conjugate with
respect to three circles is their common orthogonal circle.
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75. Theorem.—If A and B be any two points and L
und M their polars with respect to « circle, the point LM
is the pole of the line AB.

For LA is conjugate to both A and B, hence the line
joining A and B is its polar (Art. 73), or “the line of
connexton of any two points is the polur of the point of
intersection of the polars of the points.” Townsend.

76. More generally for three points 4, B, C' and their
polars L, M, N, denoting the points MN, NL, LM by A’,
B, (" respectively ; we see as above that A’, B, (" are the
poles of BC, CA, AB; hence, for any two triangles if the
vertices of either are the poles of the corresponding sides
of the other; then, reciprocally, the vertices of the latter
are the poles of the corresponding sides of the former.

Def. Such triangles are said to be Reciprocul Polars
with respect to the circle.

77. In the particular case when ABC and A'B'CY coin-
cide, the triangle is Self-Reciprocul with respect to the
circle. It is manifest, since each vertex is the pole of the
opposite side, every two of its vertices are conjugate
points; and the triangle is therefore termed Self-Conju-
gate with respect to the circle.

Its centre O coincides with the orthocentre O of 4BC
and the square of its radius (p) is given by

p’=04.0X=0B.0Y=0C.0Z,
where X, Y, Z are the feet of the perpendiculars of the
triangle.

This circle is called the Polar Circle of the triangle.

Nore.—In order that the polar circle may be real, the pairs of

points 4 and X, Band Y, C'and Z, which are inverse with respect to
it, must lie in the same direction from its centre 0. It is therefore
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real when the triangle is obtuse angled, and imaginary for acute
angled triangles.

78. Expressions for the Radius (p) of the Polar Circle.

®

Let O be the ortho-centre of A BC, then it appears that
A, B, C are the ortho-centres of BOC, COA, and AOB
respectively. For this reason the four points 4, B, C, O
are said to form an Orthocentric System.

Also the circum-circles of the four triangles BOC, COA4,
AOB, and ABC( are equal.

Hence since « and 40, chords of equal circles, subtend
complementary angles at the circumferences,

a*+ A0 =02+ B0 =c*+CO*=d’,............ 1)
also (fig. 8) @?*=B0%*4C0%+2C0.0Z, (Euc. Il 13)
therefore by substitution from (1)
a?=2d2—b?—¢c*+200. 0Z,

or —C0.0Z=d-Ha?+ 0>+ cA)=p%.ccu.nn.. )]

This formula is equivalent to p?=d?os 4 cos Bcos C,
by reduction or independently, as follows:—

—-p?=0C.0Z=0C. %dgg:dzcosfi cos Beos C,...(8)

since a chord is equal to the diameter of the circle into
the sine of the angle it subtends.
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ExAMPLES.

1. The four polar circles of the triangles BOC, COA, AOB and
ABC are mutually orthogonal.*
[Let their radii be pi, ps po p. Since their centres are at
A, B, C, 0, by Eue. II. 2,
AD*=AB . AZ+ AB . BZ=p}2+p,?;
therefore, etc.]

2. Band ¢, ('and .1, 4 and B are pairs of conjugate points with
respect to the polar circles of BOC, COA and A0B respectively.

3. The square of the distance BC between any two conjugate
points is equal to the sum of the squares of the tangents drawn
from them to the circle.

[By Ex. 1 the tangents from B and € to the circle p, are the
radii of p, and p,, but BC*=p2+p2; therefore, etc.]

4. Prove that AZ. BZ=1¢, where ¢ is the tangent to the polar
circle from Z, the Polar Centret of AB ; and conversely.
[By similar triangles 4CZ and OBZ, AC : CZ=0Z : BZ, etc.]

5. Conjugate points .l and B with respect to any chord MV are
conjugate with respect to the circle.

[For the polar centre Z of AB is the middle point of MV ; but
(hyp.) ZA . ZB=ZM?*= —ZM . ZN or the square of the imaginary
tangent from Z to the circle ; therefore, etc., by Ex. 4.]

6. If a number of circles have a common orthogonal circle, the
extremities of any diameter of the latter are conjugates with
respect to the entire system.

7. On a given line find two points which shall be conjugates to
each of two given circles.

[The middle point of the required segment is such that the
tangents from it to the circles are equal ; therefore, etc., by Art. 72,
Ex. 3.]

* Hence :—If four circles are mutually orthogonal, their centres form
an orthocentric system and one of the circles is imaginary.

+ Z the foot of the perpendicular from the centre on 4B is also called
the Middie Point of the line. (Cf. Euc. IIIL 3.)
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8. On a given circle O find two points .4 and B which shall be
conjugates to each of the circles C, r;; D, r..

[The middle point M of the required chord is on the radical
axis L of the given circles (Art. 72, Ex. 3). Let 2¢ be the length of
AB; then  (M=8+r2=r’+AM2=r2+r2- 0%,
hence C'M*+0M? is known, and the triangle COM is completely
determined ; therefore, etc.}

9. Place a chord of given length in a circle so that its extremities
may be conjugates with respect to another.
[See Ex. 8.]

10. If a right line AB meet either (C, r) of two circles in con-
jugate points (4, B) with respect to the other ; then reciprocally it
meets the latter (€', ') in conjugate points (4’ and B’) with respect
to the former.

[For by Ex. 5 .1B divides 4’8’ harmonically, hence 4'B’ divides
AB harmonically ; therefore, etc.]

11. Find the locus of the middle points # and ¥ of the chords
ABand 4'B’ in Ex. 10.

(OM+C'M2=CN2+ C'N2=CM2+ C' N2+ M N?
=CM*+C'N*+MB*+ 4'N? (Art. 71.)
=7’ 4r*=const. ; :

hence the required locus is a circle whose centre O is at the middle
point of CC" and the square of whose radius is equal to ¥(r*+1r'*) — &,
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where 26=C(". It evidently passes through the intersections of
the given circles.]

12. Show that CM . C' N =const.

[Draw (.Y at right angles to '/, Join 0.X. Since 0C'X is an
isosceles triangle and V a point in the base produced,

CM.C'N==C'N.NX=0N*-0X*=0N*-0C"
=47+ 1% - 48%)=1rr'cos 0,

where 6 is the angle between the given circles ; therefore, etc.]

13. Any circle described around the polar centre of a triangle
ABC meets the corresponding sides of the median triangle in
A’y B, (" such that AA'=BB'=CC".

14. A tangent is drawn from the polar centre to the circum-
circle, and from the point of contact a tangent is drawn to the
polar circle, show that the angle between these lines is 45°,

15. Draw through £ a line cutting each of two given circles in
conjugate points with respect to the other.

[By Exs. 10 and 11.]

16. Draw a line cutting each of two circles X and ¥ in conjugate
points with respect to a third (%).

[Tet the required line meet Z in the points .4 and B. The
middle point M of AB is the intersection of two known circles
passing through the intersections of Z and XX and Zand ¥ (Ex. 11),
aud is thus determined ; therefore, ete.]

SEctioN Il

79. Salmon’s Theorem.—The distances of any two
poimts A and B from the centre O of a circle are pro-
portional to the distances AM and BL of each from the
polar of the other.

Draw AB and BA’ perpendiculars to OB and 04
respectively. ’
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Then OA.OL=0B.0M=17% and since AA’BB’ is a
cyclic quadrilateral, 04 .0A’=0B. 0B’ ; therefore
04 _OB _OM_OM- OB’_BM AM

OB~ U4~ OL OL—04~4L_BL’
therefore, ete. By alternation OA/AM = OB/BL.

Cor. 1. If M is a fixed line and OA/AM a constant
ratio, B is a fixed point and the envelope of L is a circle;
or, the pole of a variable tangent to a circle with respect
to amother given circle is such that its distance from the
centre of the latter bears a fixed ratio to the distance
from a fixed line.

Cor. 2. If A and B are both on the circle (0, 7);
OA = 0B, and therefore AM=BL; o, the points of con-
tact of tangents to a circle are equidistant from the
tangents as is otherwise evident (Eue. 1. 26).

Cor. 3. Let B and its polar M vary and the different
positions be denoted by B, B,, B, ..., M, M,, M,, ...;
then since

0OA OB 0OA OB, OA OB,

AM~BL AN ~BL AM,~B.L °
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by multiplication of ratios, we have
0An _0B.0B,.0B,....

AM . AM,. AM,...” BL. B.L.B,L...
6r, the product of the distances of a point (4) from any
number of lines (M) is to the product of the distances of
their poles (B) from the polar (L) of the point as the nt®
power of the distance of the point from the centre is to
the product of the distances of the poles from the centre.

Cor. 4. If M, M,, M, in Cor. 3 form an inscribed
polygon, B, B, B,, ... are the vertices of the correspond-
ing escribed one ; hence the product of the distances of
any point from the sides of an in-polygon is to the
product of the distances of the vertices of the correspond-
ing ex-polygon from the polar of the point as the n'®
power of the distance of the latter from the centre is to
the product of the distances of the vertices of the ex-
polygon from the centre.

Cor. 5. The rectangle under the distances of the
extremities of any chord from a tangent is equal to the
square of the distance of its point of contact from the
chord.

EXAMPLES.

1. The opposite vertices of an escribed quadrilateral are 44,
BB, CC' ; to prove that
04.04':0B.0B :0C.00'=4AX . A’X:BX.BX:0X.(C'X,
where X is a tangent to the circle at any point P.
[Let the corresponding pairs of sides of the in-quadrilateral
be L, L'; M, M'; N, N'; then since
04_OP 4 04'_OP
4X PL AX PL’
04.04' _ 0P? |
AX AX PL.PL’
but PL.PL'=PM.PM'=PN.PN'; therefore, etc.]

multiplying these equations,
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2. If a, B, y denote the perpendiculars from any point on the
circum-circle on the sides of an in-triangle,
Bysin 4 +ya. sin B+af3sin (=0
or ’ by €.
“+ gty
3. If A, p, v be the perpendiculars from the vertices of any
triangle upon a variable tangent to the in-circle,
(E)t!‘ug cot} B cp_tiC_O
A I )
[Let 4', B', ", P be the points of contact with the sides and any

tangent, then 04

A

r . .
=—, where a'is the perpendicular from P on B'(".
a

.z

Hence 304. B 'AB'CI “B,CI =0;%* (Ex. 2)
ﬂ.
but 04 . B'C'=2r%cot $4 ; substituting, we have
- Zcotyd/A=0.
A particular case of this has been noticed in Art. 55, Ex. 8.]

4. If the perpendiculars from the vertices on any tangent to the
circum-circle of a triangle be A, u, v ; to prove that
ay A+ by/p+ e v =0.
[If P be the point of contact of the tangent to the circle, by

Ptolemy’s Theorem,
a.AP+b. BP4c.CP=0,

but 4 P2=2rA, etc., hence Say/A=0.]

5. For any point P on the in-circle whose distances from the sides
are a, 3, v ; to prove that
cos 4\/a+cos B/ B+cos 3C0y/y=0.
[Let A, &, v’ be the distances of the points of contact 4’, B, C'
of the sides of ABC from the tangent at P; o', 3, y' the distances
of P from the sides of A'B'C".

By Ex. 4, Sa'\JN =0 or EJ_——O
but V= =VBy; (Art. 79, Cor. 5.)

* The angles of A’B’'C’" are respectively 90-34, 90-3B, 90-1C;
therefore a' : b :¢'=cosgd : cos}B : cos}C.
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hence, on substituting, since a’=2rcos 34,
Sa'\JN =0=cos }4/a, therefore, etc.]

Nore.—The equations in Exs. 2 and 5 are known in Analytical
Geometry to be those of the circum- and in-circles respectively, the
given triangle AB( being taken as the triangle of reference. The
expressions in Exs. 3 and 4 are the Tangential Equations of the In-
and Circum-Circles.

6. If two triangles A BC, A'B'C" are reciprocal polars, they are in
perspective.

[Let the perpendiculars from A'B'C" on the sides of ABC be
D1, P P35 Qu Q2 Qs 71, 7 73 respectively ; then, by Salmon’s
Theorem,

OB’__q;) . oc _nr, 04‘1’_p2 .
00 =} 04 p OB g
multiplying these equations we have
P2 93 T1_1; therefore, etc. (Art. 65.)]
bs @1 72

7. A triangle inscribed in a circle is in perspective with the
corresponding escribed one.

[By Ex. 6.]

8. Any two triangles may be so placed that the vertices of either
are the poles of the sides of the other with respect to a circle.

[At the centre O of the required circle the sides of each triangle
subtend angles stmilar to those of the other triangle. Find points
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satisfying these conditions with respect to each triangle and place
the latter with the points coincident and 40 at right angles to B'C";
then OB and OC will be at right angles to ("4’ and A'B’. Again,
since the perpendiculars from ABC on the sides of A'B'C" are con-
current, those from A’B'C’ on the sides of 4 BC are also concurrént ;
it follows obviously that 04, OB', OC' are perpendicular to the
sides of ABC ; and
04.0X=0B.0Y=...=04". 0X'=...=p%

9. To find the radius p of the circle in Ex. 8.
[area BoC'_0B.0¢"_ " _ P4
area ABC ~ be be. 0Y". 07" 4C04. 408

’ ’ 4
Similarly, cod_pt 1 ———, etc.

Adding these results, we have
ABC _pt s 1 _r ABC
ABC 4 TBOC.C04 4 BOC.C04.A40B
, _4BOC.C0A.AOB. A’B’C”]
P= (ABCY
10. The area of the reciprocal polar A°B'C" of a given triangle
with respect to a circle is given by the equation of Ex 9.

or

11. The minimum value of 4'B’'(’ is obtained when the centre O

. . . . _ 27p*
coincides with the centroid of ABC; and =Ii5C
[In this case BOG=COA=A0B. Art. 14, Ex. 5.]
12. The reciprocal polar of the median triangle with respect to
the in-circle or ex-circleg of the given one is equal to ABC.

13. The reciprocal polar triangle may be of any species.
[Species depends on the position of the centre 0.]

14. In Ex. 8 O is one or other of two fixed points.

[One of them is obvjously within both triangles and the sides of
each subtend at it angles equal to the supplements of the angles of
the other.

The other is the common intersection of the circles described
externally on the sides of 4BC containing angles equal to =— 4/,
-8B, 7-C. On making the figure it will be observed that these
circles, intersecting in pairs at the vertices of the triangle, can only
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meet again in one point ; hence, if a point O be reflected with respect
to the three sides of a triangle, the circles BCOy, CAO, ABO; meet in
a point.*

15. If the triangles 4 BC and A'B'C’ are similar the second centre
is any point on the circum-circle of ABC ; also if P be joined to
A4, B,and O and X, Y, Z be the middle points of these lines and Z’
the middle point of AB; XYZZ' is a cyclic quadrilateral for

LXZY=A0B and XZ'Y=APB=w—-AOB;

hence XZY+XZ' Y=m;

therefore Z the middle point of OP is on the nine-points-circle of
ABP. Similarly it is on the nine-points-circles of the triangles
with BC and A(C as bases and P as vertex. Hence for any four
points A4, B, C, P, the nine-points-circles of three of the triangles
formed by them are concurrent. It is therefore obvious that all
four nine-points-circles of the four triangles BCP, CAP, ABP, ABC
are concurrent.t

16. A triangle reciprocates into a similar one from either of the
Brocard points as origin. (Art. 27.)

* The points O and P are reciprocally related to the triangle 4 BC.
For it will be seen that, if P be reflected with respect to the sides, the
circles BCP,, CAP,, ABP; will meet in O. It follows thence that the
nine points circles of the triangles BC’O CAO and ABO also pass
through this point of concurrence.

+ Van de Berg, Mathesis, t. 2, p. 141,

L
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Section IIL

RECIPROCATION.

80. If ABC ... be any polygon and A’B’C"... another
derived from it by taking the poles A’, B, (", ... of the
sides BC, CA, AB, etc., with respect to any circle, then
we have seen (Art. 76) that the vertices 4, B, C, etc., of
the former are the poles of the sides of the latter, and
the two polygons are said to be Reciprocal Polars with
respect to the circle. The process of deriving A’B'C"...
is termed Reciprocation, and the circle, radius, and
centre are the Circle, Radius, and Centre, or Origin of
Reciprocation.

More generally, if ABC... be any curve to which
tangents T, T, T}, ... are drawn at the points 4, B, C, ...,
the locus of their poles is the Reciprocal Polar Curve of
ABC ... with respect to the circle. If the tangents at
4 and B are indefinitely near, their poles 4’, B' are also
indefinitely near on the reciprocal curve ; but the point
T,T, is (Art. 76) the pole of the line A’B’; hence in the
limit the point 4 is the pole of the tangent at A”. The
point 4 and tangent at 4” are said to correspond. Thus,
of two polar reciprocal curves any tangent to either
corresponds to a point on the other, and each point of
contact and the corresponding tangent are pole and polar
with respect to the circle.

The following fundamental properties of two Recipro-
cal figures will appear obvious :—

1°. The line joining any two points of either is the
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polar of the intersection of the corresponding lines of the
other.

2°. Concurrent lines reciprocate into collinear points.

8°. The angle subtended by any two points of one at
the origin is equal to the angle between the correspond-
ing lines of the other.

4°. For any two figures X and Y and their reciprocals
X’ and Y, the points of intersection of X and ¥
correspond to the common tangents to X’ and Y'; in
other words, a common tangent to two curves corresponds
to a point of intersection of their reciprocals.

5°. If X and Y touch, their reciprocals X’ and Y’ also
touch, and each point of contact is the pole of the
common tangent at the other.

6°. Since two circles have four common tangents, real
or imaginary, they reciprocate into curves which inter-
sect in four points. (By 4°.)

7°. Any point connected with X and the tangents
through it to the curve corre-
spond to a line and its points
of intersection with the recip-
rocal curve X',

8°. The reciprocal of a circle
is a curve of the second degree,
i.e. one which meets every line
in two points, real or imagin-
ary. (By 7°)

9°. The pencils determined
by any four collinear points 4,
B, €, D at the origin S and the corresponding lines 4’
B, C', D are similar.
[For the corresponding rays of pencils are at right angles.]
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10°. Harmonic rows of points reciprocate into har-
monic pencils of rays; and in the particular case when
one point D of the row A, B, C, D coincides with the
origin §; S4’, 8B, SC" are in arithmetical progression.

11°. Parallel lines reciprocate into points collinear with
the origin.

12°. A point and its polar reciprocate into a line and
its pole with respect to the reciprocal curve. (Cf. 7°)

RECIPROCATION OF THE CIRCLE.

81. Let the origin S be outside the circle (O, 7);
0O8=4¢; L the polar of O with respect to the Circle of
Reciprocation, and P the pole of any tangent to the

circle at Z.
For the two points O and P we have, by Salmon’s

Theorem, PL=02= 7" const.=e (say).

The locus of P given by the equation SP/PL=e is a
Conic Section, of which S is termed a Focus, L a
Directriz, and e the Eccentricity. (See Art. 79, Cor. 1.)

When ¢>1, the conic is called a Hyperbola,

, e=1, » ’ Parabola,

, e<l1, » ” Ellipse.
Thus the reciprocal polar of a circle is a hyperbola,
parabola, or ellipse, according as the origin is outside,
upon, or within the circle.

In the particular case when the origin coincides with
the centre of the given circle, the reciprocal curve is a
concentric circle.

Since the tangents to a circle are real and distinct
from any points outside it, and reciprocate from S as
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origin to two points at infinity ; their points of contact
X and Y reciprocate into two real tangents to the conie,
neeting in C' the correspondent of XY, whose points of
'ontact are at infinity.
These lines are termed the Asymptotes of the hyper-
la. They are vmaginary for the ellipse, though they
wsect in a real point, and coincident with the line at
ity for the parabola.
e tangents 4" and B’ at the extremities of the
ter OS correspond to points A and B called the
'8 of the conic; also since the distances of S from
S B, are in H.P,, SA, SC, 8B their reciprocals are
hence C is the middle point of the segment 4B,
is obviously the point at which the asymptotes
intersect. *

* When the origin is outside the circle its polar divides the circum-
ference into two parts which are respectively concave and convex to it.
These portions reciprocate into two distinet curves convex and con-
cave to the origin as shown in the figure, and both branches reach to
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Also since S4’, SO and SB’ are in A.P., their reciprocals
SA, SL, SB respectively are in H.P.

The tangents from any point X, on XY, to the circle
with X Yand K form an harmonic pencil (Art. 78, Ex. 5)
hence by reciprocation any line through C meets tl
conic in an harmonic row of points, one of which, cor
sponding to the ray KS, is at infinity. Thus every ct-
of the conic through C is bisected. On account of
property C'is termed the Centre of the curve.

Again, the tangents to the circle from any po
the perpendicular through S to RS and the lines
that point to R and S form an harmonic pencil
by reciprocation any line parallel to OS meets t’
in an harmonic row of points, one of which, cor:
ing to the ray through &S, is at infinity ; another, vnat
corresponding to the ray through R, is on M the per-
pendicular through C to 0S. It is therefore manifest
that the conic is symmetrically situated with respect to
this line. It is moreover symmetrical with respect to
ON. These rectangular lines OM, ON through the centre
C are termed the Axes of the curve.

infinity. If, however, we assume in general that consecutive tangents
to the circle reciprocate into consecutive points on the conic, by taking
two tangents indefinitely near, one on the convex and the other on the
concave part of the circle, we are led to the conclusions that the points
at infinity on the opposite branches of the curves are indefinitely near,
that the asymptotes are tangents at the points of coincidence, and that
the hyperbola is & continuous curve.
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ExaMpLEs.

1. A circle, any point and its A conic, a line and its pole
polar with respect to the circle, | with respect to the conic.
e.g.

Circle, centre and line at in- Conie, directrix and focus.
finity.

Circle, origin and polar of Conic, line at infinity and
origin. centre of conic.

Circle and inscribed polygon. Conic and escribed polygon.

Circle (or conic) and self con- Conic and self conjugate tri-
jugate triangle.* angle.

2. The opposite sides of a The opposite vertices of an
cyclic hexagon meet in three escribed polygonconnectby three
collinear points. (Pascal.) ' concurrent lines. (Brianchon.)

This result follows when the circle described about the hexagon
is taken as the civcle of reciprocation.

In general, from any origin, the theorem of Pascal with respect
to a circle reciprocates into Brianchon’s property for a conic.

3. Four points on a circle sub- Four fixed tangents to a circle
tend at a variable point on it | meet a variable tangent to it in
equianharmonic pencils, equianharmonic rows ;

hence, generally from any origin, the property of Euc. III. 21
becomes :—A variable tangent to a conic meets four fixed tangents
in rows of points which are equianharmonic ; and reciprocally four
fixed points on a conic subtend equianharmonic rows at a variable
fifth point on it.

And again it follows conversely that, if two points connect equi-
anharmonically with four others, all six lie on a conic; hence :-—
Any two of the hexad of points connect equianharmonically with
the remaining four. This system is sometimes called an Equi-
ankarmonic Hexagon. (Townsend, Mod. Geom. vol. II. p. 168.)

4. Concentric Circles. Conics having same focus
' (origin) and directrix.

* If the origin is taken at one of the vertices of the triangle the cor-
responding side of the reciprocal triangle is therefore at infinity, and
its other two sides are diameters (conjugate) of the conic. See Exs. .8, 9.
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5. Circles having a common
pair of inverse points (from
either point as origin).

From the symmetry of the conic we infer that such a system has
a second common focus ; hence :—Coaxal Circles reciprocate from
either of their common pair of tnverse points into « system of Confocal
Conics.

6. Euc. III. 35, 36.

Conics having a common focus
and centre.

The rectangle under the dis-
tances of either focus from a
pair of parallel tangents is
constant ;
hence from symmetry we infer that the rectangle under the
distances of the foci from any tangent is constant ; and conversely,
the envelope of a variable line, the product of whose distances from
two fixed points is constant, is a conic having the fixed points for

foci.,

7. A chord of a circle which
subtends a right angle at the
origin envelopes a conic.

8. A variable chord of a circle
passing through a fixed origin
is divided harmonically by the

The locus of the intersection
of rectangular tangents to a
conic is a circle,

(Director Circle.)

The variable chord of contact
of two parallel tangents passes
through and is bisected at the

point and its polar.

Def. The diameter of a conic
Conjugate to that which passes th

9. Conjugate points with re-
spect to a circle (from the pole
of line joining them as origin).

10. If a variable point P
moves on a line through the
origin, S its polar passes through
@ the pole of the line with re-
spect to the circle; and the
tangents from P and the lines
PQ and PS form an harmonic

centre of the conic.
parallel to a tangent is said to be
rough its point of contact.

Conjugate diameters of a

conic.

If a variable chord of a conic
moves parallel to a fixed direc-
tion, the harmonic conjugates of
the points on it at infinity (z..
the middle points) are collinear;

pencil.
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hence the locus of the middle points of any system of parallel chords

s a line.

11. Conjugate points coincide
on the circle.

12. The rectangle under their
distances from the middle of the
line joining them is constant.

13. Euec. III 21, 22.

14. The locus of intersection
of tangents containing a given
angle is a concentric circle.

Their chord of contact en-
velopes a concentric circle.

15. If the vertex of an angle
of given magnitude is on a circle,
its variable chord of intersection
envelopes a concentric circle.

16. If the angle is right, the
chord envelopes the centre (from
vertex as origin).

17. The perpendiculars of a
triangle are concurrent.

Each asymptote is its own
conjugate.

The product of the tangents
of the angles made by a pair of
conjugate diameters with either
axis of the conic is constant.

The angles subtended at a
focus by either pair of opposite
sides of an escribed quadrilateral
are equal or supplemental.

The envelope of a chord which
subtends a constant angle at the
focus is a conic having the same
focus and directrix.

The locus of the point of inter-
section of the tangents at the
extremities is another conic
having same focus and direc-
trix.

If two points are taken on a
fixed tangent so as to subtend a
constant angle at the focus, the
locus of the intersection of the
tangents through them is a
conic having same focus and
directrix.

The locus of intersection of
rectangular tangents to a para-
bola is the directrix.

The diagonals of a complete
quadrilateral each subtend a
right angle at a certain point ;

or the circles on the diagonals are concurrent.
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It follows, because their centres lie on a line, that they pass

through a second point, the reflexion of the first with respect to

the line, i.e., they are coaxal.

18. Having given the base
and ratio of sides of a triangle,
the locus of the vertex is a
circle to which the extremities
of the base are inverse points
(origin at either).

! The line joining the centre of
a conic to the foot of the per-
pendicular from focus on any
tangent is constant.

The locus of the foot of the perpendicular is called the duxilivry

Circle of the conic.
extremities of the major axis.

The circle and conic evidently touch at the

Since the centre of a parabola is at infinity, its auxiliary circle
degenerates into the tangent at the vertex.

19. Common tangents to two
circles subtend right angles at
either common inverse point.

20. The feet of the perpen-
diculars from any point on a
circle on the sides of an inscribed
triangle are collinear.

Confocal conics cut at right
angles.

The perpendiculars through
the vertices of a triangle,
escribed to a parabola, to the
lines joining them to the focus
are concurrent ;

in other words, the circum-circle of a triangle described about a
parabola passes through the focus (cf. Ex. 18). We infer that the
circum-circles of the four triangles formed by four tangents (that is
any four lines whatever) meet in a point.
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It follows also, since any point (origin) on the circum-circle and
the orthocentre are equidistant from the Simson line of the point,
that the locus of the orthocentre of a variable triangle escribed to a

parabola is the directriz
21. Having given Dbase and
vertical angle, the locus of the

vertex of the triangle is a circle.
(Euc. III. 21.)

If the extremities of a variable
line, which subtends a constant
angle at a fixed point, move on
two fixed lines, it envelopes a
conic to which these lines are
tangents.

It therefore cuts them equianharmonically.

22. Since inverse segments
subtend similar angles at any
point on the circle, the segments
of a line drawn across two
circles subtend similar angles at
either common inverse point.

23. All circles meet in two
imaginary points on the line at
infinity.

24. The polars of a point with
respect to a system of coaxal
circles are concurrent.

25. The two points in Ex. 24
are in perpendicular directions
from either common inverse
point.

26. The sum of the squares of
the segments of two rectangular
chords of a circle is constant.

The pairs of tangents to con-
focal conics from any point are
equally inclined.

Confocal conics have pairs of
imaginary common tangents

! passing through the foci.

The poles of a line with re-
spect to a system of confocal
conics are collinear.

The locus of the poles is a line
perpendicular to the given one.

The sum of the squares of the
reciprocals of the distances of
the foci from two rectangular
tangents is constant ;

hence if p,, p, m, 7, denote the distances of the foci from the

tangents =1/p,®=constant.

27. In Ex. 26, if the square of
the radius of reciprocation is the
power of the point with respect
to the circle.

P+ plt 4w =constant ;
or the locus of the intersection
of rectangular tangents is a con-
centric circle (Director Circle).
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28. From the properties of A variable chord of a conic
the conic, rectangular tangents, | which subtends a right angle at
director circle, centre and line | any point envelopes a conic ; and
at infinity. the focus and directrix of the

envelope are pole and polar with
respect to the given conic.

If the point is on the given conic the envelope reduces to a point *
on the perpendicular to the tangent passing through its point of
contact. (7The Normal.)

29. The base BC of a triangle 4 BC inscribed in a circle is fixed
and the origin taken at its pole. Applying the formula of Art. 79,
Ex. 10, we have the area of the reciprocal triangle constant, hence :—
the area cut of by any tangent with the asymptotes is constant.
And conversely, given the vertical angle in position and area of a
triangle, the envelope of the base is a conic; and the sides are divided
equianharmonically by the extremities of the base.

30. Show by reciprocating from a vertex of a self conjugate
triangle with respect to a circle that

a’. The sum of the squares of any two conjugate diameters of an
ellipse is constant.

3°. The difference of the squares of any two conjugate diameters
of a hyperbola is constant.

3l. Find by the methods of Art. 79, Exs. 3 and 4, the tan-
gential equations of a conic circumscribed or inscribed to the
triangle of reference.

*This is proved independently as follows: If two right lines are
drawn at right angles through a fixed point and intercept a variable
segment AB on a fixed tangent to a circle ; the locus of the intersection
of tangents through 4 and B is a line.

For it is a locus that can only meet the given tangent in one point ;
therefore, etc., by reciprocation.
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SEcTION I
CoAxAL CIRCLES.

82. Definitions.—The Radical Awis L of two circles
A, v, and B, v, is the line perpendicular to AB and
dividing it so that AL~ BL2=7r2~ r,2 Cf. Art.72, Ex. 3.

It follows from the definition that L is the common
chord of the circles when they intersect, and we may
generalize this statement by regarding the radical axis
as their chord of intersection real or imaginary.

Thus all circles having a common radical axis pass
through two real or two imaginary points.

Such a group is termed a Coaxal System.

83. It has been seen, Art. 72, Ex. 3, that a variable
circle cutting two given ones orthogonally passes through
two fixed points, viz., their common pair of inverse
points; this orthogonal system is therefore coaxal; and
from their mutual relations the two groups are said
to be Conjugate Coaxal Systems. It is obvious that if
either set possesses real points of intersection, the other
does not; also the common points of one set are the
common pair of inverse points with respect to the other
Art. 72, Ex. 1.

Since the line of centres 4B bisects the common chord
173
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MN it is the axis of reflexion of each common point with
respect to the other.

Nore.—If two circles are concentric their radical axis is the line
at infinity ; therefore a system of concentric circles passes through
two imaginary points at infinity.

These are called the Circular Points.

If the circles touch, their radical axis is the common tangent at
the point of contact.

If the circles reduce to points, the radical axis of two points is
their axis of reflexion.

84. Let 4, »,; B, r,; C, 7, ... denote the circles of a
coaxal system. Then, since
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AL?—BL =r2—v? AL*— CL:=7r2—-1p2 etc,
we have by transposing
AL —r =BL2—rlt=CL—ri=..=t}2....... 1
The common value of these quantities (+%2%) is the
Modulus of the system. It is positive for a non-inter-
secting system and megative for the intersecting or
common point species.

85. It follows from Art. 84 (1) that the position of the
centre C of any circle of given radius of a coaxal system
is determined, and conversely. In the former case

CL:*=AL*—r?2+r2=a known quantity.

Two values of CL equal in magnitude but of opposite
signs are thus found. Hence the reflexion of every circle
of the system with respect to the radical axis is also a circle
of the system. The radical axis is therefore the line
around which the entire group is symmetrically disposed.

. 86. The radical axes of three circles taken in pairs are
concurrent (Art. 72, Ex. 6). In the particular case when
their centres are collinear the axes are parallel, and the
point of concurrence (Radical Centre) is at infinity. If
the circles are coaxal the radical axes coincide and the
tangents from any point on this line to the three circles
are therefore equal.

Conversely, if three circles whose centres are collinear
have a radical centre not at infinity they form a coaxal
system,

87. Limiting Values of the Radius given by the equa-
tion A L%— 2= const.

Since AL?—72 is constant, AL and », increase and
diminish in value together; or according as the centre



176 COAXAL CIRCLES.

approaches to or recedes from the radical axis, the radius
diminishes or increases.

It follows in the limit when C is at infinity that the
circle loses its curvature, and a portion of it coincides with
the radical axis. The remainder being at infinity is
the line at infinity; hence we regurd the line at infinity,
and the radical axis, together as forming the circle oy
the system whose radius is infinitely great*

Again, since AL?—7?2=CL2—r?2if r,;=0,

CL2=AL2—r2........ccooiini. (1)

The two values of CL in this equation determine there-
fore the positions of the centres of the circles of infinitely
small radii. These are the Points or evanescent Circles
of the group, and are termed the Limiting Points.

By (1) »2=AL?-CL*=(AL—-CL)(AL+CL)

=A4C.AC,
where (" is the reflexion of C' with respect to the radical
axis ; therefore the limiting points are the common pair of
inverse points of the coaxal system. (Cf. Art. 72, Ex. 1.)
Hence the radical axis of a circle and point is the axis of
reflexion of the point and its inverse with respect to the
circle.

88. Theorems.—I. The radical axis of a coaxal system
i8 the locus of a point the tangents from which to the
circles are equal.

Let the tangents from P be ¢, and ¢,

*Since two circles meet on their radical axis, we infer that any
two circles pass through two imaginary points on the line at infinity.
Also, because every two circles intersect on this line, therefore all
circles pass through the same two imaginary points, w.e. the Circular
Points at Infinity.
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Then t2=PA%—rp? t:=PB*—r)?,

hence, by subtraction,
t2—t2=PA2— PB?—(r2—n,%)=0; (Art. 82)
therefore, etc.

II. More generally, The difference of the squares of the
tangents (1,2 ~t,2) from any point P to two circles=twice
the rectangle wnder the distance between their centres
and the distance of P from their radical axis; or

t2—t2=24B. PL.
For, draw PP’ perpendicular to AB and take M the
middle point of AB.
Then t2=AP*—r? and t:=BP*—2;
hence ¢2—t,2=AP2—BP?—(r2—7.2)
=AP?—BP?—(AL*-BL?) (Euc. L 47)
=24B.P'M+24AB. ML; (Euc.IL 5 or 6)
therefore t:—t2=24B.PL.

Cor. 1. If P be any point on one of the circles (B, 1),
t,=0,and ¢t,2=24B. PL, or t;* « PL;
or, if the square of the tangent from a variable point to

a given cirvcle varies as its distance from a fixed line,
M
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the locus of the point is a circle coazxal with the given
circle and line.

Cor. 2. More generally, if C' be the centre of a circle
coaxal with A and B passing through P, ¢, and ¢, the
tangents from P, we have, by Cor. 1,

t2=24C.PL (1) and t2=2BC.PL (2);
dividing (1) by (2), we have
t: AC
;—;: PO S e 3)
hence the locus of point such that the ratio of the
tangents drawn from it to two circles i8 constant is «
coaxal circle whose centre is determined by (8).

Cor. 3. The common tangents to two circles each sub-
tend right angles at the limiting points.

For, if M be a limiting point, XY one of the common
tangents, and L its intersection with the radical axis,
LX =LY =LM; therefore, etec.

Cor. 4. If a variable chord XY of a circle be divided
at P such that PX.PY « PM? where M is a fixed
point ; the locus of P is a circle coaxal with the given
circle and point.

The line PM is the tangent from P to the limiting
point M ; therefore, etc.

ExAMPLES.

1. If a variable chord (4B) of a circle (0, r) subtend a right
angle at a fixed point (#), the loci—
a’. of its middle point &;
B°. of V' the foot of the perpendicular on it from ¥ ;
¥°. of the pole P of AB
are circles each coaxal with the given point and cnrcle
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[To prove «° and B°; we have
NI? N'M

NA.NB NANB

hence & and M’ lie on the same circle coaxal with 2/ and O, r,
whose centre bisects internally the interval OM, by Cors. 2 and 4.

-1;

To prove y°. Since N describes a circle, its inverse 2 describesa
circle coaxal with 0, » and the locus of #. For the locus of Pis a
circle ; and it is coaxal with the other two, because the three circles
have a common pair of points real or imaginary.]

2. The orthocentre of a triangle is the radical centre of the circles
described on the sides as diameters; and the common value (Art.
77) of the rectangles under the segments of the perpendiculars is
the radical product of the point with respect to the circles.

3. The middle poinuts of the four common tangents to two circles
the collinear.
[Each point of bisection is on the radical axis.]
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4. Find the radical centre and product of the ex-circles of a
given triangle.

[The middle point of the base is the middle point of the common
tangent to the two circles which touch the base externally ; there-
fore the line through it parallel to the internal bisector of the
vertical angle, 7.e. at right angles to their line of centres, is their
radical axis. Similarly for each of the remaining pairs. Hence
the radical centre is the in-centre of the median triangle; and,
generally, the ex-centres of the median triangle are the radical
centres of the three triads of circles formed by taking the in-circle
and two ex-circles of the original triangle.

For the values of the radical products, see Art. 48, Ex. 1.]

5. The circum-centre of a triangle is the radical centre of any
three coaxal systems which have B and () ('and A, 4 and B for
limiting points.

6. The extremities of any two secants to two given circles which
intersect on their radical axis are concyclic,

7. Any circle P, R cutting two circles A, » ; B, », at angles «
and 3 meets the radical axis at an angle 8 given by the equation
TICos & = rycos 3

AB ’

[Denote the secants by P.V.X" and YY", Applying the formula
t2—t2=2.1B. L, we have
24B. PL=R(R+XX")-R(R+ YY)

=R(XX' - VT")=2R(rmcos a - r.co8 B) ;
PL_rcosa-reosf3
R AB )
But PL/R=the cosine of the angle in the segment of P, R made
by the intercept on the radical axis ; therefore, etc.]

cos =

hence

8. The axis of perspective of ABC' and its pedal triangle is the
radical axis of the circum- and nine-points-circles.
[By Art. 88, I. and Euc. III. 36.]

8a. The line joining the orthocentre and circum-centre is at right

angles to the axis of perspective of AB('and the pedal triangle.
[Tt is the line of centres of the circum- and nine-noints-circles.
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9. Two circles touch at A and a chord AB of either touches the
other at £’ ; prove that P is a bisector of the angle AMB.

[By Art. 88, Cor. 2, AP/dM=DBP|BM)

10. For any cyclic quadrilateral whose diagonals intersect in I/ ;
prove that, if the bisectors of the angles between the diagonals
meet the four sides in X, ¥, X', ¥,

AL .BL.CL.DL=XL.YL.X'L.Y'L,
where L is the radical axis of the circle and point.

11. If L, M, N denote the radical axes of three pairs of circles
X and 4, X and B, X and C, and L', M’y ¥’ the radical axes of 1
and 4, Yand B, Y and C; to prove that the two triangles ZM.V
and L'M’N’ are in perspective ; and that the centre of perspective
is the radical centre of 4, B and ('; and their axis of perspective
the radical axis of X and Y.

[For ML is a point on the radical axis of B and C' (Art. 72, Ex.
6); similarly M'N' a vertex of the triangle Z'M’N' is on the same
line ; therefore, etc.]

12. If three lines 4., BY, CZ be drawn from the vertices of a
triangle to the opposite sides ; the radical centre of the circles on
these lines as diameters is the orthocentre and their common
orthogonal circle the polar circle of the triangle.

[The perpendiculars of the triangle are respectively chords of
these circles ; therefore, etc. Art. 77.]

13. For any three circles 4, B, C'and three others taken with them
such that B, C, X'; C, 4, Y'; 4, B, Z form three coaxal systems;
to prove that, 1° the system of six circles have the same radical



182 COAXAL CIRCLES.

centre and product ; and, 2°, if the centres of .Y, ¥, Z are collinear,
these circles are coaxal.

[In 1° the radical centre and product is obviously that of the
circles A, B, C'; 2° follows at once since, if the circles be not
coaxal, their radical centre is at infinity. Art. 86.]

14. Two coaxal systems have a common circle ; find the locus of
the points of contact of the circles which touch.

[Let L and L', the radical axes of the systems, meet at /’, and 7"be
one point of contact. The common tangent at 7' passes through 7,
and P7T is the radius of the common orthogonal circle of the two
systems, which is therefore the required locus.]

15. The radical axis of any two circles bisects the distance be-
tween the polars of the centre of each circle with respect to the
other.

*16. Three circles are described each touching two sides of a
triangle and the circum-circle internally in points L, A, and & ; to
prove that the triangles 4 8C and LM.V are in perspective.

[Let one of the circles touch the sides @ and b in the points [
and @ and the circum-circle in V. Then X being a limiting point
of the two circles AQ* AN?=DBP?/BN*=(R - p)/R, where p is the
radius of the inner circle; but AQ=>b-CQ@=>b - ab/s, Art. 6, Ex.
3; similarly, BP=«-ub/s; substituting these values and reducing
we get %zii—q 'g—i-b. Also, AN/BN =the ratio of the perpen-
diculars from & on the sides b and « respectively. (Euc. IIIL 22.)

Similarly, the ratios of the perpendiculars from Z and M on the
corresponding pairs of sides of 4 BC are f_;_b 8-Cang 82¢/5- 2,

¢ c/ a
therefore, etc., by Art. 65.]

*17. If circles are described as in Ex. 16 touching the circum-
circle externally in points L', M', N’, the triangles ABC and L'M'N’
are in perspective.

*18. The centres of perspective in Exs. 16 and 17 are respectively
the isogonal conjugates of the centres of perspective of ABC and

* Professor de Longchamps, Kduc. T'imes, July, 1890.
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the triangle formed by joining the internal points of contact of the
escribed circles with the sides (point de Nagel) ; and of AB( and
the triangle formed by joining the points of contact of the in-
circle with the sides (point de Gorgonne).

[Make use of the property given in Art. 64, Ex. 3.]

19. The nine-points-circle of a triangle touches the in- and three
ex-circles,

[Let ABC be the triangle, O and I the cent.es of the circum- and
in-circles, /P’ the common diameter, X'}1'Z and \"1"Z’ the Simson
lines of P and I, R their point of intersection, L, M, /¥ the middle
points of the sides, L', M’, N’ the points of contact of the in-circle.

Since OP=0P'y NZ=NZ'. But the Simson lines of two points
diametrically opposite meet at R at right angles on the nine points
circle ; therefore NZ = NZ'= NR. Again, OP/0I = NZ|NN'
=NR/NN'; therefore NR/NN'= MR/MM'=LR|LL ; hence it
follows that R is a limiting point of the in-circle and the circum-
circle of the triangle LMN. See Art. 83 Note. This elegant proof
of the well-known property is due to M‘Cay.]

20. A variable circle O, p touches two circles 4, 7, ; B, ,; prove
that the polar M of its centre with respect to either (4, ) envelopes
a fixed circle.

[Since it touches the two circles, it cuts their radical axis L at a
constant angle (Art. 88, Ex. 7), or p/OL=const. Draw a parallel
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L’ to L such that p/OL=r/LL, then each of these ratios=A0/0L".
Let P be the pole of L' with respect to 4,7 ; by Salmon’s
Theorem, we have A0/OL' = A P|PJM, therefore PM is constant, and
the envelope of A is the circle described with P as centre and PN/
as radius.]

Nore.—If four positions 0,, Oy Os, O, of the centre and their
corresponding polars M, M,, M, M, are taken ; since the anharmonic
ratios made by the four tangents on any variable one A/ is constant,
therefore (Art. 80, 9°), the envelope circle reciprocates into a curve
of such a nature that the anharmonic ratios of the pencils joining
four fixed points on it to a variable fifth are equal. This we have
seen Art. 81, Ex. 3, to be a conic section ; and the ratio 40/OL' is
the eccentricity, 4 the focus, and L’ the directrix of the conic.

89. Theorem.—A4 straight line is drawn to meet two
circles A, v, ; B, r, in points X, X’ and Y, Y respectively,
to prove that the tangents at these points intersect in four
points P, Q, R, S whick lie on a circle coaxal with the
given ones.

Let a and 8 be the angles of intersection of the line
with the circles. Then

sin a/sin 3=PY'|PX=QY/QX'=RY/RX=SY'|SX’;
therefore, since the ratios of the tangents (¢,:¢,) from
each of the points P, @, R, S to the given circles are
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equal, they lie on a coaxal circle, whose centre C is given
AC _sin?B_t2

BC' sinfa t,?

by the relation (Art. 88, Cor. 2)

Cor. 1. Since sina=XX’/2r and sin B=VYY'[2r, we

have by division

t/t,=sinBfsina=YY' /XX +r)/r ;.. .(1)
therefore, if the intercepts made by two fized circles on a
variable line are in a constant ratio (XX'[|YY’), the
tangents at the points of imtersection meet on a fized
cirele coaxal with the given ones.

Cogr. 2. If the intercepts in Cor. 1 have the ratio of the
radii ¢, =%, a=f, C is at infinity, and the locus of the
intersection of the tangents is the radical axis.

Cog. 3. If the intercepts are in the sub-duplicate ratio
of the radii XX"?/YY%2=1,/r,, then

2 tE=nr[r,=AC/BOX*

* The two points C, and C, satisfying this relation are easily seen to
be the points of intersection of the direct and transverse common
tangents to the two circles and arc called their Centres of Similitude.
The corresponding coaxal circles are the External and Internal Circles
of Anti-similitude of the two given ones.



186 COAXAL CIRCLES.

hence the circle coaxal with two given ones whose centre
divides the distance between their centres in the ratio of
the radii is the locus of a point, the tangents from which
to the given circles are in the sub-duplicate ratio of the
radii.

Cor. 4. If the intercepts are equal, XX'=YY’, the
tangents are in the ratio of the radii and the locus of
their intersection is called the Circle of Similitude of the
given ones; its centre C is given by the equation

AC/BC=72/rliiiiiinninnns (Cor. 1.) (1)

CoRr. 5. Since AB is divided internally and externally

in C, and O, such that gg ﬁg -7—‘ and again in C,
, AC 0'2
by Cor. 4, such that BC= 2, it follows (Art. 70) that

C is the middle point of the segment C|C, and that the
circle of similitude is the circle on it as diameter.

Cor. 6. If the line XX 'YV passes through the inter-
sections (@S, PR and PS, QR) of opposite connectors of
the quadrilateral; when PQ and RS are parallel; the
circles A and B reduce to points and are therefore the
limiting points of the system ; 7.e. the common pair of
imverse points of the circum-cirvcle of the trapezium
PQRS and that touching the parallel sides at Z and Z'.
(Art. 72, Ex. 13.)

ExXAMPLES.

1. Any line meeting a pair of opposite sides of a cyclic quadri-
lateral at equal angles makes equal angles with each of the
remaining pairs (Euc. III 21, 22) ; intersects them in points X'X”,
YY', ZZ' such that the circles touching the pairs of opposite con-
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nectors at these points are coaxal with the given one; and one of
them lies on the side of the radical axis opposite to the other two.

2. A variable quadrilateral inscribed in a circle moves so that a
pair of opposites envelope a circle, then each of the remaining pairs
of opposites always touch circles coaxal with the given ones.

3. A variable triangle ABC is inscribed in a circle of a coaxal
system, and two of its sides each envelope a circle of the system ;
to prove that the third side AC envelopes another.

[Let 4’B'C’ be any other position of the given triangle. Then
ABA'B is a cyclic quadrilateral, and one pair of opposites 48 and
A'B' touch a given circle, therefore A4’ and BB’ touch one circle
of the system.

Similarly BB and CC’ touch one circle of the system. But BB’
can touch only one circle of the group on either side of the radical
axis, Art. 92, Ex. 6; hence 44', BB, CC' touch the same circle.
Now consider the quadrilateral 44'CC’; it is obvious by Ex. 2
that AC and A'C’ touch one circle ; therefore the envelope of AC
is a coaxal circle.¥]

4. Poncelet’s Theorem.—-If a variable polygon inscribed in a
circle of a coaxal system moves so that all the sides but one touch
fixed circles of the system, the last side also touches in every
position a fixed circle of the system.

[By Ex. 3.]

* Dr. Hart, Quarterly Journal, Vol. IL. p. 143,
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5. The problem “to describe a polygon having all its vertices on
a given circle and all its sides touching another ” is either impossible
or indeterminate.

[Let all the circles in Ex. 4 touching all the sides but one of the
polygon coincide ; it follows therefore that if the last side touches
this circle in one position it touches it in every position.]

6. To find the relation connecting the radii »; and 7, of two circles
and the distance 8 between their centres so that a quadrilateral
may be inscribed to one and circumscribed to the other. (Art. 88,
Ex. 1.)

(By Ex. 5, when this is possible the position of the quadrilateral
is indeterminate. Assuming it to have the position of symmetry,
e, with a pair of opposite vertices at the extremities of the
common diameter, and € the angle between any side and this dia-
meter. By right-angled triangles we have the relations

" —sinfand "L =cosh
-8 rg+6
squaring and adding these results
1 1 1
ey ey

7. If A,r, B,r, C,r; be three coaxal circles such that a variable
quadrilateral whose pairs of opposite sides envelope 4 and L is
inscribed in C, prove that

g +,_fﬁ_..=
(3= 81 (rs+08.)?
where 8, and 8, denote the distances AC and BC.
[By the method of Ex. 6.]

8. If a variable line L meet two circles Ary, Br, so that the chords
intercepted, 2c and 2¢’ are in a constant ratio « ; to show that two
points 4’y B’ may be found on the line AB to satisfy the relation

A'L . B'L=coust.

[For c2=r2-AL% ?*=r2-BlL%
hence 12— AL*=«k¥r2— BL?),
or (AL+«xBL)AL - «xBL)=const.,

but AL+kBL=(1+K)4'L,
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and AL-«kBL=(1-«)BL,
where 4’ and B’ divide the line 4B internally and externally in the
ratio  : 1.]

Note.—The variable line in the present article is thus seen to
envelope a conic of which the points 4’ and B’ are the foci.

90. We have seen, Art. 86, that in general three circles
have but one common orthogonal circle, and in the
particular case when more than one can be drawn the
three form a coaxal system.

This property is sometimes of use in determining
whether circles are coaxal, and may be regarded as a
criterion of coaxality. The following illustrations are
due to Walker.

91. Let ABC be a triangle and XYZ any transversal
to its sides. Join AX, BY, CZ. These lines are drawn
from the vertices of each of the four triangles 4YZ,
BZX, CXY, ABC, and terminated by the opposite sides;
therefore, Art. 88, Ex. 12, the orthocentres of the four
triangles are each the radical centre of the circles de-
scribed on A X, BY, CZ as diameters.

Hence we have the following theorems:—
1°. The orthocentres of the four triangles formed by
any four lines are collinear.
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2°. The middle points of the diagonals AX, BY, CZ of
a complete quadrilateral are collinear.

3°. The line of collinearity of the orthocentres is at
right angles to the line in 2° called the Diagonal Line of
the Quadrilateral.

4°. The circles on the three diagonals as diameters are
coaxal.

5°. The polar circles of the four triangles belong to the
conjugate coaxal system.

ExAMPLES.

1. 4, B, C; D are the vertices.of a convex quadrilateral taken in
order; Ao, B., C., D, and A4, B, Ci D; the external and internal
bisectors of the angles ; prove that

a’. The sixteen centres of the circles touching the sides of the
four triangles formed by taking the sides of the quadrilateral
in triads, lie in fours on these bisectors.

3°. The following groups of quadrilaterals are cyclic : —

Ae B{ C; De 111 B,' Oe Del R
4, B, C. 1),.}(“) 4. B.C, D,
4:B, €, D,) 4B, Ce De) (g
Ae B; Cg D‘ 4’1; B; Ci Di

¥°. Groups (a) and (c) are coaxal, and groups (b) and (d) con-
jugately coaxal.

[These properties are proved by employing Euc. 1I1. 32 to show
that any circle of either group is cut orthogonally by any circle of
the other group. Russell.]

2%, A, B, C, D are four points on a circle. Omitting each point
in turn we have four triangles ; prove that the sixteen centres
of the circles touching the sides of these triangles lie in fours on
four parallel lines, and also in fours on four lines each perpendicular

* Educational Times, Reprint Vol. LI. p. 65.
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to the former set; and that the two sets of lines are parallel to
the bisectors of the angle between AC and BD. (M‘Cay.)

3. ABC is a triangle, A4’ a diameter of the circum-circle and
H the orthocentre ; show that 4’ and /H are equidistant from the
base BC'; and hence deduce the theorem *the Simson line of
any point is equidistant from the point and orthocentre of the
triangle.”

SectIioN II.

ADDITIONAL CRITERIA OF COAXAL CIRCLES.

92. 1. Relation connecting the distances between the
centres and the radii of three circles of a coaxal system.

Let the circles be denoted by 4, r,; B, r,; C, 7,

Then for any point P on the radical axis, we have
BC.AP*+CA.BP*+ AB.CP*=—~BC.CA.AB;
hence if ¢ be the length of the tangent from P to the
circles, since AP?=7241¢% etc, by substituting in this

equation and reducing,

BC.r2+CA .»2+AB.r*=—BC.CA.AB,....(1)
a result from which the radius 7, of any circle of the
system may be found when the position of its centre is
known ; and conversely.

Cor. 1. If »,=0, C is a limiting point (Art. 87), by
letting AC=2 in (1) we obtain a quadratic in «, the last
term of which is 72 Hence the product of the distances
of the limiting points from the centre of any circle of the
system = the square of its radius. Cf. Art. 87.

Cor. 2. If »,=7,=0, the criterion reduces to

AB.AC=1r2
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ExXAMPLES.

1. If ¢, t, ¢; denote the tangents from any point P to three

circles of a coaxal system ; to prove that
BC.4,24+04 . t2+ AB. t#=0.

[For BC.AP*4CA.BP?+AB.CP*=—BC.CA.ADB,.......... (1)
and BC.r?*+CA.r?+AB.r?=—-BC.CA.AB............ (2)
Subtracting (2) from (1) ; therefore, etc.]

2. Deduce as a particular case of Ex. 1 the theorem :—The locus
of a point, the tangents from which to two given circles are in a
constant ratio, is a coaxal circle.

[Let ¢=0.]
3. Explain the formula of Ex. 1 when #,=¢;=0.

4. Find the locus of a point P if the product of the tangents
from it to two circles bears a constant ratio to the square of the
tangent to any circle coaxal with them (k#it,=1;2).

[In Ex. 1, substituting the given condition, the equation reduces
to the form (¢ —mt)(ty—ntz)=0; hence P describes two coaxal
circles, since the ratio of the tangents ¢, and t,=m, or ».]

5. If the common tangent ZZ’ to two circles meet a coaxal circle
in the points 4 and B; to prove that //Z and MZ’ are the bisectors
of the angles subtended by the chord AB at either limiting point.

[For 4Z, AM and BZ, BM being pairs of tangents drawn from
two points 4 and B on the same circle to two circles of the systen,
it follows that AZ/AM=DBZ|BM, by alternation AM|BM=AZ|BZ,
and for a similar reason = AZ'/BZ’ ; therefore, etc.]
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6. To describe two circles of a coaxal system touching a given
line.

[In Ex. 5 divide the line 4B internally and externally in Z and
Z' in the given ratio AM/BM ; therefore Z and Z' are the required
points of contact. It will be noticed that the circles lie one on
each side of the radical axis.]

7. A triangle ABC is inscribed in a circle of a coaxal system ;
prove that the points of contact X, X', ¥, ¥, Z, Z' of the three
pairs of circles of the system which touch the sides BC, C4, and
AB respectively,

a’. Lie three and three on four lines,

B8°. Connect with the opposite vertices by six lines, passing three
and three through four points.

[Apply the relations in Ex. 5 to the three sides; therefore, etc.
Arts. 62 and 63.]

8. Apply the criterion of the Article to show that the nine-points-,
circum- and polar circles are coaxal.

9. If points B and D are taken on any two circles whose centres
are O and O’ and joined to the limiting point M such that BMD is
a right angle, the locus of the intersection of tangents at B and D
to the circles is a coaxal circle.

[Let the line BD meet the circles again in 4 and C'; then

MB__.Z =.1l_/9 =_‘.Mq2 = JIB'MC 5
AB.BD 00 AC.CD (4B.AC.BD.CDR’
MA® _MO'_ MD* _ MA.MD

also,

ABAC 00 BD.CD (4B.4C.BD.CD}



194 COAXAL CIRCLES.

MB. MC_ MO

Whence, WA D T (1)
But since BMD=90°, AMC=90° (Art. 72, Cor. 8),
and therefore BMC+AMD=180°;

BC_MB. MC_NO
AD MA.MD MO’
by (1), a constant quantity ; therefore, ete. (cf. Art. 89, Ex. 8).]

hence

10. A quadrilateral PQRS is inscribed to one circle and escribed
to another at the points 4, B, ¢, D; prove that its positicn is
indeterminate, and the diagonals PR and @S, BC and 4D of the
two cyclic quadrilaterals intersect (the latter at right angles) at the
limiting point .

[By Art. 89, Ex. 6. See also Art. 88, Ex. 1, and Art. 67, Cor. 6.]

11. Construct a quadrilateral in a given circle symmetrical with
respect to a given diameter and circumscribed to a circle having its
centre at a fixed point on the diameter.

[Find the radius of the second circle by Art, 89, Ex. 6.]

93. I1. A wvariable circle cuts three others of a coazal

system at angles a, B, vy, to prove the relation
BC.r,cos a+CA . 1,08 B+ AB . rycos y=0.

Let P, p be the variable circle meeting the given ones
at the points R, S, T respectively; join PR, PS, PT, and
produce the lines to meet the circles again in R, S, T".

By Art. 92, Ex. 1, BC.t2? + CA . t,2 + AB.t,2=0, but
t,2=PR. PR =p(p+ RR’)=p(p+2r,cos a), with similar
values for t, and ¢, Substituting these values in the
equation and reducing, we obtain the required result.

Cor. 1. If two of the circles are cut orthogonally,
every circle of the system is eut orthogonally. For if
a=B=90° two terms of the equation vanish, therefore
AB. rgeosy=0 or y=90°

Cogr. 2. If the variable circle touch two of the given
ones, it cuts the circle C, r, coaxal with them at an angle
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determined by the equation A B.r,cosy= + BC.r +CA.7,;
like signs being taken when the contacts are similar and
unlike signs when the contacts are dissimilar. The four
possible values arising from the selections of sign on the
right side of the equation give the values of y correspond-
ing to each assigned species of contact.

Cor. 3. In Cor. 2, if cos y=0, the centres C of the par-
ticular circles of the system which are cut at right angles
are given by the relation

BC.7r,£0C4 .7,=0,
or AC/|BC= %v[r,

Hence, the variable circle having similar contacts with
two given circles cuts at right angles the coaxal circle
whose centre is their external centre of similitude ; and,
if the contacts are dissimilar, the coaxal circle whose
centre is the internal centre of similitude.

Cor. 4. If a= £ and y=90, the equation reduces to
AC/BC= £ /r,, as in Cor. 3. Hence, the variable circle
cutting two others at equal or supplementul angles cuts
at right angles their external or internal cirvcle of anti-
similitude respectively.

Cor. 5. Let the radius of the variable circle be infinite ;
hence (Cor. 3) all lines cutting two circles at equal or
supplemental angles are diameters of their external or
internal circles of antisimilitude.

ExAamMPLES.

1. To describe a circle cutting any three circles 4, 1 ; B, r.;
C, my at given angles a, 3, y.

[The required circle cutting B, ry; C, ryat given angles, therefore
touches a known circle coaxal with them by Cor. 2 ; similarly for
each of the remaining pairs of the given circles ; hence the problem
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reduces to “describe a circle touching three given circles with assigned
contacts.” There are in consequence eight solutions. These are
given in a subsequent chapter.]

2. Show that Ex. 1 cannot be reduced to describing a circle
cutting three given circles orthogonally.

[For let X be the circle coaxal with B and C which is cut ortho-
gonally by the required circle, and constructed by putting y=90 in
the relation of the present Article ; similarly let } coaxal with C
and 4, and Z coaxal with 4 and B, be circles cut orthogonally by
it. Their centres, being found by the relations

BX _reosy CY_mcosa AZ_rcosf

CX reosfB AY rcosy BZ ricosa’
are collinear, Art. 62, and their common orthogonal circle therefore
indeterminate.]

3. A variable circle P, p touches two others 4, »,; B, r;; show
that the square of the common tangent ¢, to it and any third circle
C, r3 coaxal with them, varies as its radius (¢ « p).

[By Cor. 2 it cuts C, r3 at a constant angle y. But (Art. 4 (1))
4 sin?yy=4%/p . ry; therefore, etc. In the particular case when C, r,
is a limiting point we have the theorem :—*“if a variable circle touch
two fived circles, its radius is in a constant ratio to the square of the
tangent to it from either of the limiting points.” Also, “the ratio of
the tangents from the limiting points is constant.”]

4. A variable circle cuts two fixed circles at angles a and (3, tan-
gents are drawn from its centre to the circles, and tangents ¢ and
t; from the points of contact to the variable circle ; prove that

tE[t2=ricos africos 3,
and deduce the properties of Fx. 3 as particular cases (Preston).
See Spherical Trigonometry, Art. 159, Ex. 15,

5. Find the locus of the centre of a circle cutting any three circles
at equal or supplemental angles.
[By Cor. 4.]

6. The vertex and base of a triangle are fixed in position and the
vertical angle given in magnitude ; find the envelope of the circum-
circle.
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Section III.

CIRCLE OF SIMILITUDE.

94. Let 4, r,; B, r, be any two circles, Z and Z’ the
points of section of AB such that

then the segments A B and ZZ’ divide each other harmoni-
cally, and the circle C, r, on ZZ' as diameter is termed
their Circle of Similitude. The points Z and Z’ are
the Internal and External Centres of Similitude.

95. The circle of similitude has the following funda-
mental properties :—

1°. Tts centre C' and radius 7, are connected by the
relation C4 .CB=n,' (Art. 70), or the centres of the given
circles are inverse points with.respect to their circle of
similitude.
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2°. The points Z and Z’ are the intersections of the
transverse and direct common tangents.

3° It is coaxal with the given circles.

[For Z and Z are on the same circle coaxal with 4 and
B, since the ratios of the tangents from them are ecach
equal to the ratio of the radii, and only one circle coaxal
with 4, 7, and B, r, can contain these points, viz. that on
the line ZZ' as diameter.]

4°. From Cor. 3 it is the locus of a point such that the
tangents drawn from it to the circle have the constant

ratio of the radii.
[Cf. Art. 88, Cor. 2.]

This follows independently, since PZ and PZ’ are the
bisectors of the angle 4 PB, hence
PA/PB=AZ|BZ=AR/BS;
therefore, ete., by Eue. VI. 7.

5°. The circles subtend equal angles at any point on it.
(By %)

6°. In the particular case when the circle B, », becomes
a right line the centre B is at infinity, its inverse 4 (Cor.
1) coincides with C, therefore the centres of similitude of
a line and circle are the extremities of the diameter of
the circle perpendicular to the line.

ExAMPLES.

1. The circles of similitude of any three circles taken in pairs are

coaxal.
[Their centres are collinear, Art. 72, Ex. 21 ; therefore, etc., Art.

88, Ex. 13, 2°.]
2. A circle cuts two at angles o and (3 ; find the angle it makes
with their circle of similitude.
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3. The tangents from any point /” on the circle of similitude to
the circles 4,7 and B, 7, meet them at Rand S5 prove («°) the chords
which the circles intercept on the line 28 are equal to one another ;
(B°) The tangents from £ and § to the circles B and 4 are equal.

[Compare Art. 89, Cor. 4.]

4. The circle on the third diagonal of a complete cyclic qu:;dri-
lateral is the circle of similitude of those described on the remaining
two.

[Let ABCD be the quadrilateral, LMV its diagonal line, PP’ the
third diagonal, BD=2r, CA=2r,, PP' =2r;. Join PM, PN,

The triangles PAC and PBD are similar, Euc. III. 21; hence,
since PVand PM are homologous lines, PBM and PCH are similar ;
therefore PM/PN=r/r, Similarly, P’M/P'N=nr/r.; therefore P
and /” lie on a circle to which A and A are inverse points. Also
the circles on the three diagonals are coaxal; therefore, etc. It
follows also by 1° that LM . LN =]

5. Having given the three diagonals of a cyclic quadrilateral ; to
construct it.

[Let O be the centre of the circle and 7, 7, 73 the diagonals. By
Ex. 4 LM. LN =7 and is therefore known. Also LZM/LN=r?r?;
hence the lines LM and LN are determined. LM =rry/roy LN =115[13,
and MN = Z’L(M ) But OM and ON are known (Euc. L. 47),

riry nrg
consequently the triangle OMWV is completely determined.]
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6. Six circles pass through two points P and @ on the circum-
circle of a triangle ABC and touch the sides ; prove that the points
of contact X, X'; ¥, ¥'; Z, Z' lie in threes on four lines.

[Let the line joining the points P and @ cut the sides of the tri-
angle in L, M, and &V respectively, and we have obviously LX=LX"'
and LB.LC=LX?=LX", with similar relations on the remaining
sides of the triangle ; therefore, etc.]

7. From any point on a given line tangents are drawn to a
circle ; a circle is described touching the fixed circle and variable
pair of tangents to it ; prove that the envelope of the polar of its
centre is a circle.

8. The circle of similitude of the circum- and nine-points-circle of
a triangle is that described on the interval between the centroid
and orthocentre as diameter.

[Let O be the circum-centre, / orthocentre, & the nine-points
centre, and £ the centroid. By a well-known property of these four
collinear points OE/NE=O0H|NH=2=ratio of radii of circum- and
nine-points-circles ; therefore, etc.

[Tt is called the Orthocentroidal Circle of the triangle.]

MISCELLANEOUS EXAMPLES.

/
N\ . . .
1. Prove that the equation of the two circles touching three

given ones with contacts of similar species are

2345, 4 318, + 128, =0,
where S, S;, S; denote the powers of any point on either of the
tangential circles with respect to the given ones.

2. If a variable chord 4B of a circle is such that the sum of the
tangents from 4 and B to another given circle is proportional to
the length of AB, it envelopes a circle coaxal with the two.

3. If a variable circle touches two fixed circles and cuts a circle
concentric with either in the points 4 and B : required to find the
envelope of AB. (Dublin Univ. Exam. Papers, 1891.)

[Applying Casey’s relation between the common tangents to four
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circles to the points 4 and B and the two given circles, it follows
by Ex. 2 that the envelope of 4B is a coaxal circle.]

4. Prove that the circles cutting three given ones orthogonally
passing through their circles, and bisecting the circumferences are
coaxal,

5. Reciprocate the following theorem from a limiting point :—
The square of the distance of any point on a circle from a limiting
point varies as its distance from the radical axis.

[The rectangle under the distances of the foci from any tangent
to a conic is constant.]

6. Prove that the limiting points of any two circles lie on a pair
of opposite connections of their common escribed quadrilateral.

7. If & denote the distance between the limiting points and y the
length of their imaginary common chord, prove that §=1y.

8. Tf two circles whose radii are 7, and 7, are so related that a
hexagon can be inscribed to one and circumscribed to the other,

then
1 1 1

(=84 ard T IO TInnis S §) (= )

9. If an octagon can be inscribed to one and circumscribed to the

other,
2
{(rl 7,~78} {(r; 82)‘ 47 sz}

{27'22(11‘-!-8‘ = (m%- 8)}

10. The mean centre of the vertices of a cyclic quadrilateral les
on the circumference of the mnine-points-circle of the harmonic
triangle of the quadrilateral. (Russell.)

11. If a variable polygon is inscribed to one circle and escribed
to another, the locus of the mean centre of any number (») of
consecutive points of contact is a circle. (Weill). Cf. Art. 53,
Ex. 12.

12. Prove the following extension of Weill’s theorems :—If a
variable polygon of any order be inscribed in a circle of a coaxal
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system having all its sides touching respectively fixed circles of the
system ; there exists a set of multiples for which the mean centre
of the points of contact of the sides with the circles is a fixed point.
[Let any circle of the system be denoted by (O, », 8) where 8 is

the distance of its centre from the circumcentre of the polygon, and
let @, 3, v, and ¢ be the displacements of the points of contact of
the sides AB, BC, CD, etc. for consecutive positions. Then, by
Art. 53, Ex. 12, we have

N8 NS NG

77’11 * 72 B ——_3 Y
= o ="Tp =¢te
hence the mean centre of the points of contact remains fixed for
the system of multiples N8 /11, NEyfra, N8sfrs, ete.]

12a. The locus of the mean centre of » consecutive points of
contact for their respective multiples is a circle.

[For, join the extremities of the r sides thus forming a polygon
of 7+1 sides, and let the last side touch a fixed circle (0,,1, 7,41,
8,41) of the system. (Art. 89, Ex. 4.) By Ex. 12, the mean centre
of the r+1 points of contact for the corresponding multiples is a
fixed point (X). Let ¥ be the mean centre for the » points and Z the
point of contact of the last side. Then ¥ divides the line X'Z in a
constant ratio, and since Z describes a circle, therefore, etc.] *

* The following is an independent proof of the generalization of
Weill’s theorem.

Let ABCD .. and A'B'C'D’... be any two positions of the variable
polygon ; Tl, Ty Ts T4, T3, Ty’ ... points of contact of the sides
AB, BC, ...; A'B’, B'C", ... with the corresponding circles O,, 7y, §;;
0y, 74, 8, . of the system R the point of intersection of 4B and
A'B’ and 0 the angle between them ; S the intersection of 44’ and
BB, and ¢ the angle between them. Then A44’, BB', ('C" ... touch’
a circle (@, p, \) coaxal with the given system. Let L, M, N ... be its
points of contact with 44’, BB’, CC’, etc. ... and we have

701y _rysindé_r, BM _r, N

LM~ psinkp B/’“p';s;’

therefore % Ry LM;.“_?? T, Ty | MN=etc.
1 2
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13. If the diagonals of a cyclic quadrilateral are conjugate lines
and a homothetic quadrilateral be described with their intersection
as homothetic centre ; prove that the consecutive pairs of sides of
the one quadrilateral intersect the corresponding pairs of the other
in eight points which lie on a circle coaxal with the circum-circles
of the quadrilaterals. See Art. 96.

[Use the theorem of Art. 92, Ex. 2.]

i.e., multiples N3, |7, A8,/ NG, [r; of the displacements 7,7,
T,7,* ... are proportional to the sides of the polygon ; therefore, etc.
Bowesman. ]



CHAPTER IX.

SectioN L

Two SIMILAR FIGURES.

96. Two figures similar and similarly placed are said
to be Homothetic, and their homologous parts are called
Corresponding Points, Lines, ete. It is plain, if a line of
either figure is displaced through an angle 6, that every
line of it is displaced through the same angle. For let
AB be displaced to A’B. It follows (Euec. III. 21, 22),
since B= B, that the angle between BC and B'C’ is equal
to 0.

Also, since corresponding lines mect at equal angles, a
variable pair of corresponding lines passing through a
pair of corresponding points 4 and A’ intersect on the
circumference of a circle described on 4 A4’ containing an

angle 0; and conversely. o0t
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Corresponding lines are made up of corresponding
points ; and the point of intersection of any two lines of
either figure is the correspondent of the points of inter-
section of the corresponding lines of the other.

97. We have seen how to find a point S which, with
the extremities of two linear segments AB and A’B),
forms similar triangles (Art. 25), and that it possesses the
properties.

a’. A variable line XX’ dividing the segments similarly
AX :BX=A'X": BX subtends a constant angle at it;
and

3°. Its distances from the lines are proportional to their
lengths (Eue. VI. 19).

~ Now, if similar polygons be similarly described on 4B
and A’B, it follows, as in Eue. VI. 20, that—

1°. The distances of S from each pair of corresponding
lines are proportinnal to these lines.

2°. All pairs of corresponding points P and P’ of the
polygons subtend the same angle at it, and with it form
a triangle of constant species.

3°. The polygons can be made homothetic by the
revolution of either around it (2°).

For this reason it is called the Homothetic Centre of
the Polygons, or their Centre of Similitude.

The ratio of SP to SP’is the Ratio of Similitude of
the figures.

98. Since to each point P of one figure corresponds a
point P’ of the other such that PSP’ is a triangle of con-
stant species, if P coincides with S, P’ also coincides with
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it; and therefore S taken as a point of either figure is its
own correspondent in the other.
Hence it is a Double Point of the polygons.

99. From these considerations we make the following
inferences :—

I. If upon the lines joining a fixed point S to the ver-
tices of any polygon F, similar and similarly situated
triangles are constructed, their vertices form a polygon F,
similar to the given one, and S is their double point.

II. If the lines joining corresponding points of two
directly similar figures are divided in the same ratio, the
points of section form & polygon similar to the given ones
(H. Van Aubel).

ITI. If the vertices of a polygon, constant in species,
move on curves of any nature, to each position of it there
is a corresponding centre of similitude.

This is called the Instantaneous Centre for the position,
and is such that the lines drawn from it to all points 4,
B, C... X of the figure make equal angles with the tan-
gents at these points to their respective loci.

[This is seen by taking two indefinitely near positions
of the polygon.]

IV. Reciprocally :—If the lines L, M, N of the figure,
moving as in the previous case. envelope curves, the lines
joining the contacts of any position to S make equal
angles with L, M, N.

[For the points of contact are the intersections of two
consecutive positions of the moveable figure and are
therefore corresponding points.]



THREE SIMILAR FIGURES. 207

SectioN II

THREE SIMILAR FIGURES.

100. Let F, F,, F, be any three directly similar figures;
S, the double point of ¥, and F;; S, and S, the double
points of the remaining pairs F, F, and F, F,; a, a, a,
the lengths of corresponding lines d,, d,, d,; a,, a,, a, the
angles of the triangle D, D D, whose sides are d,, d,, d,.

Then, by Art. 96,

1°. The variable triangle D D,D, formed by any three

278
corresponding lines, is constant in species.

2°. The distances of S, from d, and d, are proportional
to @, and a, and similarly for S, and S; (Art. 97 (8°));
therefore, the lines joining S, S, S, to the corresponding
vertices of D, D, D, divide the angles D, D,, D, each into
constant parts, and are concurrent (Art. 65).

Hence the triangle S,8,S,, whose vertices are the centres
of similitude of F, F, F, taken in pairs (Iriangle of
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Similitude), is in perspective with all homologous tru
D.D,D, etc.; and the centre of perspective K is a y
such that its distances from any triad of homologous I
are in the ratios a,: a,: a,

3°. Since the base angles of each of the triangles
D,D,K, DD K, DD,K are constant (Art. 100, 2°) as D,
D, D, vary, the angles subtended by the sides of S,S,S,
at K are each constant, and the locus of K is therefore
the circum-circle ; hence,

Any triangle formed by three homologous lines is in
perspective with S,S,S, at a point on the circum-circle of
the latter; or the locus of the centre of perspective of
88,8, and any triangle formed by three homologous
lines is the circum-circle of the former. This is called
the Circle of Similitude of F, F,, F,

4°. The chords KP, KP, KP, drawn parallel to d, d,
d, are homologous lines, for they intersect at angles
a, B, v, and their distances from d,, d, d, are in the
ratios a,: a,: a,.* Moreover, they meet the circle in fixed
points, since the angle S,KP, is constant and S, a fixed
point ; therefore P, is fixed, and similarly P, and P, are
fixed points.

They are termed the Invariable Points, and P PP,
the Invariable Triangle, of F,, F,, F,

4°. May be enunciated as follows :—

All concurrent triads of homologous lines pass through
the invariable poimts and imtersect on the circle of simili-
tude, and reciprocally :—the lines joining P,, P, P, to any
three homologous points B,, B,, B, meet in a point on the

* These lines are therefore the sides of an evanescent triangle D, D, D,
of constant species.
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circle of similitude ; and all triangles whose vertices are
three homologous points are in perspective with P PP,
and the locus of their centre of perspective is the circle
of similitude.

101. Theorem.—7The triangle of similitude and the
wmvariable triangle ave in perspective ; and the distances
of the centre of perspective £ from the sides of the latter
are inversely, as the ratios «, : ¢, : a,

Since S, is its own correspondent with respect to F, and
F, PSS, and P,S, are homologous lines and lengths of
these figures, therefore

SP,:SP=,: 0y ccovvvrenennnnn. 1)
but (Euc. ITI. 22) S, P,: S, P, as the distances of S, from
PP, and P P,=a,:a, by (1), with similar relations for
the points S, and S ; therefore, etc., Art. 65.

102. Theorem.—T#%e invariable triangle is inversely
stmelar to D D,D,

Follows by Euc. III. 22.

103. Adjoint Points.*—Let S,” be the point of ¥, which
corresponds to S, of the figures F, and F,

Then S,S,8, is a particular case of a triangle formed by
three homologous points, and is therefore (Art. 100, 4°)
in perspective with P, P,P, at a point on the circle of
similitude ; hence the lines P S/, P,S,, P,S, are concurrent.
Their common point is therefore S, ; that is to say, P,S/
passes through E and S, (Art. 101); hence,

The lines 8,8/, 8,5,, 8,8, meet each other in E and the
circle of similitude at the invariable points.

* The theorems contained in Arts. 100-103 are due to Tarry.

Mathests, 1882, p. 72.
o
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Defs. The point & is called the Director Point, and
8/, 8,, S, the Adjoint Points of F,, F,, F,

104. Theorems.*—In any three similar figures there
exists an infinite number of triads of homologous points
C, C, C,which are collinear. 2°. The loci of these points
are circles passing through E. 3°. The variable line
C.C,C, turns around L. Neuberg.

17273
The triangles S,C,C, S,C,C,, S,C,C, are constant in
species (Art. 97, 2°); hence the angles S,C\S,, S,C,S,, §,C,S,

are given, and therefore the loci of the points are circles
passing through each pair of double points.

Again, since S,C\C, is a constant angle, the variable
line C,C, meets the locus of C, in a fixed point, and
similarly it meets the loci of C, and C, in fixed points.
Therefore the fixed points are coincident ; that is to say,
the circular loci have a point in common.

In the particular case of the collinear triads S,’S.S,,
S,S,’S, S,S,8, it has been proved (Art. 103) that their
lines of collinearity pass through E; therefore, etc. The
points S/, S;, S, are on the corresponding circles.

105. Particular Cases.—Let the three similar figures
F,F, F, be described on the sides of a triangle ABC. It
has been shown that the middle points of the symmedian
chords of the circum-circle + are the common vertices of
directly similar triangles described on the sides, taken
in pairs (Art. 25, Ex. 2), and they are therefore the three
double points. Hence,

1°. Brocard’s second triamgle is the triangle of simili-

* Mathesis, 1882, pp. 76-8.
+The middle points of the symmedian chards of the circum-circle are

the vertices of the triangle known as Brocard's Second Triangle.
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tude, and the Brocard civcle the circle of similitude,
of three dirvectly similar figures described on the sides of
a triangle.

2°. Brocard’s first triangle is their invariable triangle,
Art. 29, Ex. 3.

3°. Brocard’s second triangle and the given one are in
perspective at a point on the circum-circle of the former
whose distances from the sides of 4BC are in the ratios
of their lengths (Art. 100, 2°). See also Art. 16, Ex. 2.

4°. The centre of perspective is the symmedian point
of ABC.

5°. The locus of the intersection of concurrent triads of
homologous lines is the Brocard Circle, Art. 100, 4°.

6°. Brocard’s first and second triangles are in perspec-
tive (Art. 101), and their centre of perspective Z, or
director points, is the centroid of ABC. (Art. 53, Ex. 6.)

7°. All collinear triads of homologous points lie on a
variable line passing through %, and each point describes
a circle passing through two vertices of Brocard’s second
triangle and the centroid of 4 BC.

M‘CAY’S CIRCLES.

106. The loci in 7° of the previous Article are fully
described by M‘Cay in his memoir “On Three Circles
related to a Triangle.”* Amongst many other properties
they possess those given in this and the following Article.

The notation employed is as follows:— ABC is the
given triangle; 4 B,C, 4,B,C, Brocard’s first and second
triangles; £ centroid; A’, B, (" three homologous col-

linear points; M middle point of AB; H circum-centre;

* Transactions of the Royal Irish Academy, vol. xxviii.—Science.
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4, B, C, the homologues of 4, B, C, respectively as
double points of F, F, F, P, the ¢ correspondent of
P regarded as an o point, and L, and L, the ¢ and b

ccorrespondents of any line L regarded as an « line; the
circular loci the “4,” “B,” and “C” circles of the triangle.

1°. The mean centre of any three collinear homologous
points is at £ (Art. 53, Ex. 6).

2°. If one of them C’ coincides with &, A’B’is a tangent
to the “C” circle and EA’=FEB or EE,=EE,; simi-
larly we have EE,=EE, and EE,,=FEE,,

3°. If one of them coincides with a double point 4,
the line of collinearity is A4,F4 A4, (Art. 103) and
EA,=2FEA,

Similarly the lines B,B,B, and C,C,C, each pass through
E, which is the common point of trisection of the segments
4,4, BB, C,C,

4°. The circles cut each other at angles 4, B, and C.

5°, Their centres are on the perpendicular bisectors of
the sides.
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This is proved for the “ C'” circle as follows :—
On the sides of 4BC construct three directly similar
triangles BCA', CAB, ABC, each inversely similar to

ABC. Their centres of gravity are therefore correspond-
ing points. But they lie on a parallel through £ to AB;
hence %/, the centroid of ABC', is on the “(C” circle and
E and £ are reflexions with respect to the perpendicular
bisector of AB.

107. Problem.—70 find the Centres and Radii of
MCay’s Circles. i

This is done by finding where the circles again cut the
corresponding medians. We take, for example, the “C”
circle and require to find ¢. Let L denote the median
OM, and take it an « line. Since it makes an angle
BCM with the side a, we draw the corresponding b
and ¢ lines by making angles CAB’ and ABC’ equal
to BCM.

From similar triangles MBC" and MCB we have
MC.MC'=MB*=MC.MI; hence MC'=MI. This also
follows, since the triangles A BI and BAC(' are similar.

Again, the triangle CBC, is inversely similar to ABC/,
but it is (hyp.) directly similar to BAC, Hence BAC,
and AB(C’ are inversely similar; therefore C’ is the
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reflexion of C, with respect to the perpendicular bisector
of the base.

The connection between three collinear points 4°, B, ¢
on the median to the side ¢ of the given triangle and
C, C, C; has thus been established.

The triangles BCA’, CAB, ABC’ are similar to one
another, and to CBC, ACC, and BAC;; and therefore
A, 0,; B, C,; (", C, are reflexions of one another with
respect to the corresponding perpendicular bisectors of
the sides of ABC.

It follows that if the median and symmedian cut the
circum-circle in 7 and J, and these points be joined to M,
the lines M1 and MJ produced through M pass through ¢’
and C, respectively ; MJ=MC, and MI=MC, or ¢' and
C, are the veflexions of I and J with respect to the
base AB.

Let d be the distance of the centre of the “C'” circle
from A B, m the median,and 6 the angle it makes with the
base, ¢ the tangent from M to the circle. Then

p=ME. MC=ME. MI={-;- ............. (1)



MCAY'S CIRCLES. 215

Again, 2dsin 6= ME+ MC'="F +‘3’2 ﬁggﬁ.m(z)
by (1); whence d=3}ccotw, and the radius of the “C”
circle is given by the equation

p=n/di=t:=}ca/cot’w—3 (cf. Art. 28, Ex. 19).

Also, since the highest and lowest points of the circle
are distant from the base p+4d and p— 4, these quantities
are the roots of the quadratic equation

12h2—4ccotw. b+ c*=0;uinininininnn 3)
or, putting h=}c tan ¢,
3tan’p—2cotw.tan p+1=0,............... (4)
an equation which reduces by an easy transformation to
sin (w+2¢)=2sin w......... (5)

The forms (4) and (5) are remarkable inasmuch as they
express ¢ as a symmetric function of the angles; hence,

Three similar isosceles triungles may be constructed on
the sides of ABC, whose vertices are « triad of collinear
homologous points.

Let P, @, R be the vertices of these triangles. Since
HR=HM—MR=R cos A —ja tan p= 204 + ) Cocs(ff ¢+ %),
with similar values for HP and HQ; also, from the
collinearity of P, Q, R we have Zsm4 0.

By substitution, we obtain
sin 4 n sin B " sin
cos(4d +¢) ' cos(B+¢) ' cos(C'+ ¢)
an equation which is therefore identical with the forms
(4) and (5).
Let h, and %, be the roots of (3), then
— _deote 2 2
hy "k, ¢ “jctanw MC’
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where (" is the vertex of Brocard’s first triangle; there-
fore

The vertices of Brocard's first triangle and the cor-
responding sides of ABC are pole und polar with
respect to the “A,” “B,” and “ C” circles.

Many other beautiful properties of these circles are
given in the memoir from which the preceding are
extracts.

108. If A", B, " be the feet of the perpendiculars of
ABC, the triangles AB'C', A’BC, and A’B'C are similar,
and may therefore be taken as portions of three directly
similar figures ¥, F,, F; whose double points are 4°, B/, (,
homologous lines in the ratios cos 4 :cos B:cosC, the
middle points of the segments of the perpendiculars
towards the angles A”, B”, (", the invariable points
A", B”, ("", points of concurrence of homologous lines
middle points of sides, and the nine-points-circle the
circle of similitude (Neuberg).

EXAMPLES.

1. If similar figures Fy, Fs, Fs be described on the perpendiculars
Ad', BB, CC' of a triangle, their circle of similitude is the ortho-
centroidal circle.

[For the orthocentre being the point of concurrence of three
corresponding lines is on the circle of similitude (Art. 100, 4°).
Also the parallels through the centroid £ to the sides of the
triangle trisect the perpendiculars at right angles, and are therefore
also corresponding lines ; therefore, etc.

‘We note that the parallels meet the corresponding perpendiculars
in P, @, R, the invariable points of Fy, Fo, Fy]

2. The lines joining the in- and circum-centres of the copedal
triangles B'C"A, ("A'B, A'B'C' meet at the point of contact of the
nine-points and in-circle of 4BC.
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[By Art. 108, the three triangles being parts of similar figures
have the nine-points-circle of 4BC for circle of similitude, and the
middle points of the segments of the perpendiculars for invariable
points ; hence (Art. 100, 4°), if I, I», I; and Oy, 0,, O denote the in-
and circum-centres of the triangles, the lines 7,0, I1,0,, 130,
correspond, and are concurrent on the circle of similitude.

Dr. Casey * proves the remainder of the property, which includes
Feuerback’s Theorem, as follows :—

Let ¥V be the nine-points-centre; then NO;=3R. Draw IP
parallel to NO;. Now, if P7 is proved to be equal to the radius of
the in-circle, the line 7;30; is the join of parallel radii, and therefore
passes through a centre of similitude of the circles ; similarly for
1101 and 1202.

Since €O/ and C0,l; are corresponding parts of similar figures,
they are similar ; therefore the angle DI/0=1/,1’, and 0DI=0CI
=C/P, since NO; is parallel to OC. Hence the triangles 0D and
PII; are similar, and

w_II; 1I3.1C_ 21'2( 7

R ID 2Rr 2R\ RV
gince C7/CI;=1/cos C, the ratio of similitude of ABC and A'B'C
(Art. 108).]
3. If 4 and A’, corresponding points of two similar figures, are
conjugate points with respect to a fixed circle, required to find
their loci.

* Casey’s Sequel to Buclid, fifth edition, p. 202.
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[Take S the double point, M the middle point of 44’. Then
SA44’' is a triangle of constant species; therefore SM/MA is a
constant ratio. But MA=¢, the tangent from M to the given
circle (Art. 73, 2°). Hence SM/t is constant and M describes a circle
(Art. 72, Ex. 3); therefore also 4 and A’ describe circles.]

4. If X;X,X; be a triangle formed by joining a triad of corre-
sponding points of three similar figures such that X;X.:.X;X;
=const., the locus of each vertex is a circle.

[The triangle 83X, X3 is constant in species, Art. 97 ; similarly for
8. X1X3; hence S3X3/X,.Y, and S.X,/4X1X; are constant ratios.
Dividing one by the other, we have the base S.S; and ratio of
sides of the triangle S»S3.Y; ; therefore, ete.

It is to be noted that as the ratio S,.X;/8sX; varies in magnitude
the vertex X describes a coaxal system of which 5, and S are the
limiting points.]

5, If the area of X;X,X is given, each vertex describes a circle.

[For X,X.. XiX;3sin X, varies as 8., SeX) sin(X; - 6) ; there-
fore, etc. (Art. 23, Ex. 3). X, and Xj similarly describe circles.]

6. If a side or an angle of X,X,X; is given, its vertices describe
circles.

7. If the area of a variable triangle formed by three correspond-
ing lines Le given, its sides envelope circles whose centres are the
invariable points of £4, F., Fa

These and many other excellent illustrations of the theory of
three directly similar figures are to be found in Casey’s Sequel
to Euclid, to which the student is referred. See fifth edition,
Miscellaneous Examples, pp. 2:31-248,



CHAPTER X.

SEectioN 1.

CENTRES OF SIMILITUDE.

109. If A, »;; B, r, be any two non-intersecting circles,
P and @ the points of intersection of the direct and
transverse common tangents, it is easily proved that
A4, B, P, Q) are collinear, and that AP/BP=AQ/BQ=1,/[r,;
hence the centres of similitude of two circles are the
points of imtersection of the direct and transverse
common tangents.*

In the case of intersecting circles, if C' be a point of
intersection, we infer from these equations that the
bisectors of the angle between the circles meet the line
of centres in P and @ (Euc. VI. 3).

Tor the in- and ex-circles of a triangle taken in pairs
the twelve centres of similitude are the vertices and the
points where the bisectors of the angles meet the opposite
sides.

The centres of similitude of & line L and circle 4 are
the extremities of the diameter perpendicular to L.

For the common tangents to the circle and line are

* Therefore the common tangents, real or imaginary, to any two
circles always intersect in real points.

219
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parallel to the latter, and the line of centres is the
diameter at right angles to L ; therefore, ete.

110. It has been seen as a particular case of a general
property of coaxal circles (Art. 93) that any line A A,B,B,
through C, a°, cuts the circles at equal angles and, 8°, that
the intercepted chords A,4,and BB, are in the ratio of
the radii. These are obvious by the following method :—

Join AA, and BB,. Since CA/CB=r/r,=AA BB, the
triangles CA 4, and CBB, are similar (Euc. VI. 7) ; there-
fore AA, is parallel to BB, and similarly A4, to BB,
Hence the isosceles triangles 44,4, and BBB, are
similar, whence, «°, the angles 4,44, and B,BB, are
equal, and, 8°, A,4,/B B,=r,/r,

Definitions. A4, and B, are termed Homologous Points;
and since the radii 44, and BB, through them are parallel,
the tamgents at homologous points on the circles are
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parallel. Thus the tangents at 4, and B, are parallel.
More generally any two points 4, and B, which connect
through C such that CA4,/CB,=r/r, are homologous.
A, and B, are termed Antihomologous Points, and since
the radii A4, and BB, through them make equal angles
with their line of connexion, the tangents at antihomo-
logous points meet on the radical axis.

Let a second transversal through C' meet the circles in
A A,B,B,, The chords 4,4, and BB, joining pairs of
homologous points are termed Homologous Lines, and
those joining pairs of antihomologous points Antihomo-
logous Limes. Thus 4,4, BB, and 4,4, B,B, are
pairs of antihomologous lines.

111. Theorem.—Homologous chords (4,4, B B,) of
any two circles are parallel.

For it has been shown that A4, and BB,, 44, and
BB, are pairs of parallel lines; hence the two isosceles
triangles 44,4, and BB, B, have equal vertical angles,
and are therefore similar (Euc. VI. 6).

NoTe.—Since any line through C' meets homologous
lines 4,4, and B B, in homologous points A, and B,,
therefore 4,, B, are in geuneral the corresponding inter-
sections of pairs of homologous lines. The two points
A4, A,A, and BB, B,B, are homologous.

112. Theorem.—Antihomologous chords (4,4, BB,)
of any two circles meet on their radical awxis.

By Art. 111, we have C4,/CA;=CB,/CB,, but (Euc.
ITI. 36) CA,/CA,=CA,/CA,; hence CB,/CB,=CA,/CA,
or CA,.CB,=CA,. CB,; thus:—any two points are
concyclic with the corresponding pair of antikomologous
points; therefore, etc. (Art. 88, Ex. 6).
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PRODUCTS OF ANTISIMILITUDE,

113. By the previous Article, we have from the cyclic

quadrilateral 4,4,B B,

CA,.CB,=CA,. CB,
We may therefore infer that the rectangle under the
distances of either centre of similitude from a pair of
antihomologous points is constant.

If the circles 4, »,; B, r, be regarded as portions of
two geometrical figures, any point A, of one is antihomo-
logous to B, of the other when the line 4,B, passes
through a centre of similitude C, and C4,, . CB, is equal
to the above constant, which is termed the Product of
Antisimilitude (External or Internal).

To find the values of the products, we take the
extreme positions of the variable line CA,B, which for
real intersections are the common tangents.

We have therefore

CAy. OBy =CT,.CTy...ccccovvevniiniinnnnnnn (1)
Again, since T, T, subtends a right angle at each of the
limiting points M and IV (Art. 88, Cor. 3),

CT,.CTy=CM .CN wcurrrnvirniiiiininninnnns (2)

These constant values which may be expressed in terms
of the distance () between the centres of the given circles
and their radii (v, and 7,) are of importance in the theory
of coaxal circles, and will frequently be made use of in
the next chapter.

Join AT, and BT,. Let ACT,=0.

T.T,\*
Then CT,.CT,=rr,cot?0=rnr, . =1-2.
1 2 172 € 172 <’I‘ __,rl)
/7

= (—q‘,—:,r-)‘g[(? = (1 =7 e, 3
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Similarly the internal product of antisimilitude is found
to be equal to

(T1+—7'—)2'[(’r +7'2) '—82] ........................... (4:)

Note.—It should be noticed when the two circles lie wholly out-
side each other 8> 7+, if they intersect § <+ and > ~m
(Euc. I. 20), and when one lies completely within the other
8<r ~ 7y (Eue. II1. 12) ; hence it follows from (3) that the external
product of antisimilitnde is negative only when one circle lies wholly
within the other. Also from (4) the internal product is negative
when the circles are external to one another and positive in every
other case. In the case where both products are positive § > ~7e
and <ry+7,; therefore §, m, 7 form a triangle (Euc. I. 20), or the
circles intersect in a pair of real points.

ExAMPLES.

1. If a variable circle touch two circles with contacts of similar
species, its points of contact are antihomologous points.

[By Art. 112, if 44, and BB, be produced to meet in X,
XB,=AX4, In the case of internal contact the points of contact
arve d;, B.]

2. Describe a circle passing through a given point (P) and
touching two fixed circles (4, ) (B, 7v)

[By Art. 110, the required circle passes through an antihomo-
logous point 7', and the problem thus reduces to * describe a circle
passing through two fized points and touching a given circle.”]

3. The polars of the external centre of similitude with respect to
two circles are equidistant from the radical axis, and therefore also
from the limiting points.

4. The line at infinity is an axis of perspective of two circles.

[Regard the circles as similar polygons of an infinite number of
sides, and join their corresponding vertices (7.e. the homologous
points). Thus the ex-centre of similitude is a Centre of Perspective
of the circles. Again, the corresponding sides (i.e. homologous lines)
intersect on the axis of perspective. In this case they are parallel.
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Hence the line at infinity ¥s the axis of perspective of every two circles.
(Cf. Art. 87).]

5. The radical axis is also an axis of perspective of two circles.

[For since antihomologous points B;, A, connect through a
centre of similitude C, the circles may be regarded as polygons of
an infinite number of sides whose corresponding vertices are
antihomologous points and whose corresponding sides are therefore
antihomologous lines ; but these latter intersect on the radical axis
(Art. 112), which is therefore the axis of perspective.*

6. The poles 4,, B, of the chords 4,4, and BB, are homologous
points.

[For they are the intersections of pairs of homologous lines, viz.
the tangents at 4,, 4, and B, B, respectively.]

7. In Ex. 6 the lines 4,8, and 4,8, are conjugate with respect
to both circles.

8. If C, (" denote the centres of similitude of two circles which cut
orthogonally at .X'; the inverse (C”) of the point " with respect to
the circle 4 is the inverse of €' with respect to the circle B.

[Since €’ and C” are inverse points, 4C”X=A4XC'=45°; hence
AC"X =BXC, therefore CB/BX=DB.YX/BC", therefore etc.

9. A variable circle touches two equal circles with contacts of
opposite species: show that the product of the intercepts on their
transverse common tangents made by the perpendiculars from the
centre and measured from their point of intersection is constant.

10. The centres of similitude, the centre of the circle of similitude,
and the centre of either circle B are pairs of inverse points with
respect to a circle concentric with 4.

* Two circles are thus shown to be doubly in perspective to each
centre of similitude ; the two axes of perspective forming the coaxal
circle whose radius is infinitely great, viz., the radical axis and the
line at infinity. It follows that ‘‘ for every two circles in the same
plane, however circumstanced as to magnitude and position, the
radical axis and the line at infinity, being both axes of perspective, are
both chords of intersection ; the corresponding points of intersection,
real or imaginary, according to circumstances in the case of the former,
being of course from the nature of the figures always imaginary in the
case of the latter.” (Townsend.)
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11. The poles 4;, 2, of the radical axis of two circles (A, r; B,7y)
are inverse points with respect to their circle of similitude.

[For since A4A4,.AL=r? angle APL=AA,P;

also since BB, .BL=r? angle B’ L=DB\P.

By addition APB=PA\By+ PBiA=m— A, P’B,.

Thus A;, B, and 4, B, since they subtend similar angles at P, are
pairs of inverse points with respect to the circle of similitude (Art.
72, Cor 8).]

12. If a variable circle 1" cut two circles 4 and B at constant
angles, show that the centre of similitude of any two positions ¥,
and V;is on L the radical axis of . and B.

[For 17 and V, meet the line L at equal angles (Art. 88, Ex. 7) ;
therefore it passes through their ex-centre of similitude.]

12a. Hence show that if the circles A and B each cut three fixed
circles Vy, Vs, Vs at the same angles a, 8, v, an axis of similitude of
the three is the radical axis of the two.

13. Construct a quadrilateral, having given the four sides, and
that two adjacent angles are equal. (Mathesis, 1881.)

14. Feuerbach’s Theorem. To prove by an elementary
method that the nine-points-circle touches the in-circle.

Draw C'X the fourth common tangent to the in- and ex-circles to
the side ¢ of the triangle ABC. We shall prove that the line
joining M, the middle point of the base, to the point of contact X
passes through the point of contact }” of the in- and nine-points-
circles.

Let 7' be the point of contact of the in-circle, P the foot of the

perpendicular, and C’ the foot of the internal bisector of C.
P
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By Art. 11, Ex. 3, MP. M('=}(a~ b= MT?*= MX. MY. Hence
XYPC' is a cyclic quadrilateral and angle MC'X=MYP; but

MC'X=MCC~-XC'C=A~DB; hence MYP=A ~ B, and therefore
Y 4y on the mine-points-circle, since the latter cuts the base 4B
at this angle. Therefore the circles cut or touch at ¥. But the
tangents at M and .\ to the circles are parallel, since they both
niect the base at the same angle 4 ~ B. A/ and X are thus homo-
logous points.

15. The straight lines joining the points of contact of the fourth
common tangents to the in- and three ex-circles to the middle
points of the corresponding sides are concurrent. (Dublin Univ.
Exam. Papers.)

[By Ex. 14, the point of concurrence is where the nine-points-
touches the in-circle.]

16. A right line A/CD is drawn across two circles cutting
them at angles a and 8 respectively ; show that if a variable circle
cuts the given ones at the same angles in the points 4’, ', ¢", 1)/, 4 4',
BB, CC', DD are concurrent ; and find the locus of their point of
concurrence.

[The given circles meet the line ABCD and circle A'B'C'D’ at
equal angles; hence A4’ etc. are antihomologous points with respect
to the external centre of similitude of the latter. Therefore .14’
etc. meet on the circle A'3'("D’ at a point (P) the tangent at which
is parallel to ABCD. The locus of 2’ is the radical axis of the fixed
circles by Ex. 12.]
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Seerion 11,

CIRCLES OF ANTISIMILITUDE.

Definitions. The circle described with either centre
of similitude of two given circles as centre, the square of
whose radius is equal to the corresponding product (Art.
118) of antisimilitude, is known as a Circle of Antisimili-
tude.

Thus there are two circles of antisimilitude, Externaul
and Internal, according as the centre coincides with the
external or internal centre of similitude of the given cireles.

From the definition it is evident that all pairs of
antihomologous points are inverse points with respect to
the circle of antisimilitude, or, more gencrally, that
each of the two given circles is the inverse of the other
with respect to either civcle of antistmilitude.

In the next chapter this latter circle, from this funda-
mental property, will be otherwise known as the Circle
of Inversion of the two given ones.

114. The following theorems are of importance in the
geometry of these circles.

1°. Any two circles 4 and B and their circles of anti-
similitude are coaxal.

For the constant product C4,.CB, (Art. 113) has
been proved equal to CM . CN; hence M and N are a
common pair of inverse points to the four circles.

2°. The squares of the tangents ¢, and ¢, from any
point of either circle of antisimilitude to A and B are in
the ratio of the radii; or ¢2:¢,2=nr : 7,
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Since the circles are coaxal,
t2:t2=CA:CB=r;:7, (Art. 88, Cor. 2.)

3°. The external circle of antisimilitude cuts ortho-
gonally all circles cutting 4 and B at equal angles.

Since A4, and BB, are equally inclined to the line
A,B,, if they are produced to meet in X, then XB, 4, is
an isosceles triangle, and X is therefore the centre of a
circle cutting 4 and B at equal angles.

Thus any circle cutting 4 and B at equal angles passes
through a pair of inverse points 4, and B, with respect
to the ex-circle of antisimilitude ; therefore, ete.

See also the method of Art. 93, Cors. 3, 4.

4°. Any circle intersecting A and B at supplemental
angles is orthogonal to the internal circle of antisimili-
tude.

[Proof similar to 3°.]

5°. Any circle intersecting 4 and B orthogonally is
orthogonal to both their circles of antisimilitude.

For in this particular case A and B are cut at angles
which are at once both equal and supplemental ; there
fore, etc. by 3° and 4° combined.
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ExAMPLES.

1. A variable circle passing through a fixed point and cutting
two given ones at equal angles passes through a second fixed point.

[In every position it passes through the inverse of the fixed
point with respect to the ex-circle of antisimilitude.]

2. A variable circle passing through a fixed point and cutting
two fixed circles at supplemental angles passes through a second
fixed point.

[The inverse of the given one with respect to the in-circle of
antisimilitude. ]

3. Two circles .Y, I” intersecting two others 4 and B at equal
angles have for radical axis a line passing through the centre C of
the ex-circle of antisimilitude of 4 and B.

[For if .Y and ¥ intersect in a point 2, each must pass through
the inverse of /2 with respect to C.]

3. 1f the angles are supplemental, the radical axis of X and ¥
passes through the in-centre of antisimilitude.

4. If three circles .\, 1, Z mcet two others .l and £ at equal
or supplemental angles, the radical centre of the three coincides
with the external or internal centre of similitude ¢ or (” of the
two.

[For by Iix. 3 the radical axes of V, Z; Z, X; X, ¥ each pass
through ¢ or (7 according as the angles of section are equal or
supplemental ; therefore, etc.]

Note.—In this example it may be noticed that in the first case
the circles . and B each cut Y, ¥, and Z at equal angles ; therefore
they cut the ex-circles of antisimilitude of 1, Z; Z, .\'; .\, at
right angles (Art. 114). But the ex-circles of antisimilitude are
coaxal ; hence a wvariuble circle A cutting three others X, Y, Z at
equal ungles describes a coaral system, the conjugate of that formed by
the circles of antisimilitude of X, V, Z taken two and two. More
generally, a variable circle cutting three others X, ¥, Z at similar
angles describes four coaxal systems whose radical axes are the
four axes of similitude of X, ¥, Z, Also, since the common ortho-
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gonal circle of the three cuts them at once at equal and supple-
mental angles, it belongs to each of the four coaxal systems.

5. If two circles 4 and B touch with similar contacts three
others .Y, Y, Z, the radical axis of .I and B is the line joining the
ex-centres of similitude of X, ¥, Z taken in pairs.

[A particular case of the foregoing.|

6. The eight circles that can be described to touch three given
ones arrange themselves in pairs coaxal with the four axes of
similitude of the given ones.

7. In Ex. 5 the chords of the three circles joining the points of
contact with the two meet at the in-centre of similitude of .{ and B,
and therefore at the radical centre of .Y, ¥, Z

8. The chords of contact pass through the poles of the radical
axis of 4 and B with respect to each of the circles X, ¥, Z.

[For the tangents at the extremities of the chord of contact of
X being equal intersect on the radical axis of .1 and B.]

Nore.—Gergonne deduces hy means of the foregoing properties
a simple geometrical construction for the eight circles of contact of
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three given ones .Y, ¥, Z. The circles having similar contacts are
found as follows :—Find the ex-centres of similitude of X, ¥, Z
taken in pairs; the line £ joining them is the radical axis of the
required circles .l and B, Next find €’ the centre of the common
orthogonal circle of the given ones. (is the in-centre of simili-
tude of A and . Now obtain the inverses X', ', Z' of L with
respect to X, V, Z respectively. Join ¢".X", C'Y’, and C'Z";
these lines meet the given circles at the required points of
contact ; therefore, etc. The remaining circles may be similarly
found.

Otherwise, thus :—By Casey’s relation in Art. 7, if we number
the given circles 1, 2, 3 and let 4 be the required point of contact
with 1, we have the ratio of the tangents from 4 to 2 and 3, a'given
quantity & Similarly for the second circle which has the similar
contacts with the three given ones, the ratio of the taugents from
its point of contact (5) to 2 and 3=the same ratio £ ; therefore,
etc. (Art. 88, Cor. 1).

9. Let d;d., B8, be the extremities of the common diameter of
two cireles ; M, IV their limiting points; prove that the circles on
A\By, A:B., MY as diameters are coaxal.

[For their centres are collinear, and they each cut the internal
circle of antisimilitude orthogonally (Art. 114, 4°); therefore,
ete.]

10. A variable circle cutting three given ones at equal angles
passes through two fixed points, real or imaginary.

[For it cuts the external circles of antisimilitude of the given
ones taken two and two orthogonally, and these (Art. 88, Ex. 13. 2°)
are coaxal ; therefore the variable civcle passes throunh their limit-
ing points, real or imaginary.]

11. Two variable circles A" and ¥ touch externally two fixed
circles 4, 1 and B, r, at four points By, d; and d,, £ in a right
line ; prove that

a°. The line joining their centres passes through a fixed
point.
[3°. The sum of their radii is constant.

. The foot of their radical axis describes a circle.
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[o°. Since the diagonals of a parallelogram bisect each other, X¥
bisects and is bisected at the middle point Z of 4 B.

B°. Let L be the radical axis of 4,7,and B,r,; then XL/p=YL;p,

=const, (Art. 88, Ex. 7), and therefore XL+ YL
P+p

numerator is constant by «° (=2ZL) ; therefore, etc.

=const., but the

¥°. The circle on ('Z is evidently the locus.]

12. Circles are described touching two fixed circles (as in Fig. of
Ex. 8) ; find the locus of the limiting points of these circles taken in
pairs.

[The internal circle of antisimilitude of the two given circles
(Art. 114, 3°).]

12a. Circles are described touching one another, and each touch-
ing two given circles ; find the locus of their points of contact.

[The points of contact are the coincident limiting points of the
touching circles ; hence the required locus is the internal circle of
antisimilitude of the two given ones.]

13. If » points be taken on a circle, prove that (1) the mean
centres of the n systems of »—1 points formed by omitting each
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point in succession, lie on a circle S, ; (2) if another point be taken
on the original circle, the centres of the n+1 circles (S,) obtained by
omitting each point in succession lie on an equal circle ; and so on
ad infinitum.  (St. Clair.)*

[Let ¢/ be the mean centre of the system of » points.  Produce
A6 to a, making 4G : Ga=n—1:1; then «is the mean centre of
the n~1 points formed by excluding 4. In the same manner we
get BG: Gb=n—1:1, ete.; hence the points «, b, ... lie on a
circle ; and G is a centre of similitude of the locus circle and the
given one.

* Educational Times, February, 1891,



CHAPTER XI.
INVERSION.
SECTION 1.

INTRODUCTORY.

115. It has been seen (Art. 74) that the inverse of
every point on a line with respect to a circle lies on a
circle described on the line joining the centre of the given
circle with the pole of the line.

This circle is said to be the inverse of the line with
respect to the given circle; and it may be generally
inferred that the inverse of « line is a civcle passing
through the centre of the given circle,; and conversely.
This latter is named the Circle of Inversion, and its
centre the Origin or Centre of Inversion.

We shall now proceed to discuss the inversion of a
system of points which are not collinear. Take the
simplest case—the vertices of a triangle ABC. Let their
inverses with respect to a circle of inversion O, be
respectively 4’, B, C’,

It is obvious that the three quadrilaterals BCB'C’,
CAC’A’, ABA’B are cyclic; hence we have the angular
relations :—

A’'C’0=04C, BC'0=0BC, etc. (Euc. III. 22),
234
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and thence by addition,
AOB=C+C" . ccviiiiiiiiiiiiiiinane, 1)

Similarly, BOC=A+A" ..o, (2)
and COA=B+DB ...cc.occovvvivinninninnns (3)

If the base AB and origin O are fixed, and C given in
magnitude, €’ is also given in magnitude by (1); hence:
—If a variable point (C') describes a circle (circum-civcle
of ABC), the locus of its inverse (C") is « circle (A’B'C").*

Two circles or, more generally, any two curves so
related that every point of one has a Corresponding
Point on the other inverse to it with respect to a given
circle, are Inverse Figures with respect to the circle of
inversion.

Tt has thus been proved that in general a line or circle

— * This statement is equivalent to the following :—

T If a variable line OPP' is drawn from a fixed point O to a given circle
and divided at X such that OP . OX =const. ; the locus of X is a circle,
which may be thus proved independently. Since OP. OF’ and
OP. OX are both constant, OX : OP'=const. Through X draw XC’
parallel to CP’.  From similar triangles OX : OP' = 0C’: OC
=C'X : CP'=const. Hence (' is a fixed point, and C'X is of constant
length. The locus of X is therefore a known circle ; and the circle of
inversion is obviously a circle of antisimilitude of the given one and its

mverse.
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inverts into a circle; and in the particular case when
the origin is on the circle, its inverse is a line.

116. Species of A’S'C". Let the points 4, B, C be
tixed. Since A0B=C+ (", (" may have any value de-
pending on the position of the point 0. The following
particular cases are worthy of notice, and may be readily
inferred :—

1°. If O is the circum-centre of 4 BC,

A=A, B=F8,C=C"
2°. If O is the right (or positive) Brocard point of

ABC, AOB=C+C = 7—B;
hence C'=A.
Similarly 4'=Band B'=(.

3° If O is the left (or negative) Brocard point, ABC
and A’'C’ are again similar.

4°. If O is one of the vertices ((%,) of Brocard’s second
triangle, 4OB=2(=(+(", therefore ('=C"; and also
B=A4"and A=05.

Hence the triangles ave similar when the centre of
inversion coincides with any of the six points O, , 7/,
4,, B,, C,, or their inverses. (Art. 72, Ex. 22))

5°. If O is on the circumn-circle, ¢ =0° and the points
A’, B, (" are collinear.

6°. Let BOC, COA and AOB be equal respectively to
60°+ 4, 60°+ B, 60°+C. Then A"=B = ("= (0°; there-
fore the vertices of any triangle muy be inverted into
those of an equilateral ; or one of auny yiven species.

117. In the preceding figure the point O has been
taken inside the triangle. It is easy to verify the
analogous angular relations when the centre of inversion

is outside A BC.
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It will be observed from the relations of Art. 116 that,
if a variable triangle of the species of A’ B’C” be inseribed
in the given one, the fixed point in connexion with the
ficure determined by the method of Art. 19 coincides
with the centre of inversion.

118. Relations between the sides of ABC and A'B'C".
From similar triangles AOB and A’0B,
AB/A'B?=04.0B/0A’.0B;
but 04’ =+?/04 and OB’ =9*/0OB,
therefore by substitution
AB/A'B =04 . 0B/,
or e/c’=0A . OB/~

By dividing the similar relations a/a’=O0B. 0C/r? and

hily=0C.0A[+% we have
« /o’ OB
5/ V04" const.

Hence :—If the base and ratio of sides of « triangle
are given, the base and ratio of sides after inversion are
also known. In each case the locus of the vertex is a
circle having the extremities of the base for a pair of in-
verse points (Art. 70); and since the loci are inverse
figures, we have the following important theorem :—

Every circle and a pair of inverse points invert into a
circle and a pair of inverse points; and more generally,
A circle and a pair of figures each the inverse of the
other with respect to it, retain this relation after inversion
from any origin.

119. Theorem.—Any circle X, its inverse X’ and the
circle of inversion O are coaxal, ie. have a pair of
common points, real or imaginary.
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Let P and @ be the common pair of inverse points of
the circles O and X. It is manifest that they are inverse
points to X’. For X, P, Q invert respectively into
X', Q, P, which by the last Article are a circle and pair
of inverse points ; therefore, ete,

The theorem requires no proof when the intersections
of the circles are real, as the coaxal system is of the
common point species.

Cor. 1. The circle of antisimilitude is the circle of
inversion of either of two given ones with respect to the
other; hence, Two circles and their circles of antisimili-
tude are coaxal.

Cor. 2. The inverses of the vertices of any triangle
with respect to the pol'ar circle, real or imaginary, are the
vertices of the pedal triangle; hence, The circum- and
nine-points-circles are inverse figures with respect to the
polar circle of the triangle; and the thiee circles are
coaxal.

120. Inversion of a System of Four Points. Let
A, B, C, D and A’, B, (', I’ be any four points and their

inverses with respect to a given circle of inversion 0, 7.

The quadrilaterals BCB'C", CDC'D)’,... are cyclic. Hence
the angular relations :—

0A’D'=0DA, 0C'D’ = 0DC,
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from which we obtain

AOCH+D4+D =27 ccoevvvrvinniiniinncnnnnn. 1)
Also AOC= B+ B’ ; therefore by substituting in (1),
BB 4+D4+D =27 ceiiiinininiinannnn. (2)

similarly, A4+ A'4+C4+C" =27,

or the sums of corresponding pairs of opposite angles of
the two quadrilaterals are together equal to four right
angles,

The following particular cases are noticed :—

1° If B4+D=m, then also B'+D'=x; ie, a cyclic
system of points inverts into a cyclic system. Cf. Art.115.

2° If B'=D" and A’= (" simultaneously, 4’B'C'D’ is a
parallelogram, and its angles are given by the equations

B4+D=2(x—-B)=2(r-D)
and A+C=2(r—A)=2(=-0").

NoTe.—The centres of inversion in this case are easily
found; for AOC=B+B =B+7r—}B+D), and BOD
similarly equals A+ 7 —%(B+D); hence there are two
centres of inversion from wlich the vertices of any
quadrilateral invert into the vertices of a parallelogram
in an assigned order, viz, the intersections of the known
circles CO4 and BOD. Four other points might be
similarly found from the intersections of pairs of circles
BOC, AOD, and AOB, COD.

3° A cyclic system of four points may be inverted
into the vertices of a rectangle.

121. Relations between the sides of ABCD and
A'BC'D'.—By Art. 118, BC/B'C’=0B.0C/i* and
AD/A'D’=04 . OD/»®2.  Multiplying these relations

we have
BC'. AD _0A4. OB oc. OD

BU/ ‘_A/D - ’).4 ............. (1)
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C4 .BD _04.0B.0C. ()D )
A BD p
ete. ete.; hence

BC.AD:CA.BD:AB.CD
=BC".AD :C'A".BD : A’B.CD......... 3

Cor. 1. If 4, B, C, D be a harmonic system of points
on a circle; 4’, B, ', D' are also a harmonic cyclic
system.

For if the ratios on the left side of (3) are equal, those
on the right are also equal.

Cor. 2. Combining 3° of the last Article with the
previous corollary, it follows that a harmonic system of
cyclic points may be inverted into the wertices of a
square.

similarly,

EXAMPLES.

1. Any two triangles may be placed such that the vertices of the
one may be inverses of those of the other taken in any assigned
order.

2. Any four points may be inverted into an orthocentric system.

[For the latter quadrilateral has the following angles :—
A, 90—-A4', 18044, 90—A’; hence since BOD=A+ A4, CO0A
=B+90°-A4', and A+C+ A" +7+4'=180°; the centres of inver-
sion are the intersections of two known circles BOD and COA.]

3. Each side of a triangle divided by the perpendicular on it
from any origin remains unchanged by inversion.

3a. If the origin is the symmedian point of the one triangle, it is
also the symmedian point of the other.

4. If o, B, y denote the perpendiculars from any point on a
circle, on the sides of an inscribed triangle, then
By sin 4 +yasin B+afsin C=0.
[For let A’B'C’ be any three points on a line Z, and O the origin ;
. BC+C'A+A'B
since ,;"_m_i_ =0,
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after inversion O is on the inverse circle Z' and

LCLCA AL o o 24D g,
Y a

therefore, etc.] By
5. Prove generally for any cyclic polygon that
S(aja)=0. (Casey.)

6. The inverse of a figure with respect to a line is its reflexion
with respect to the line, and is equal in every respect to the given
one.

7. The inverses A, B, C'... of the points of intersection 4, B,
C, D of any two figures are the corresponding points of inter-
section of the inverse figures; and the lines 44', BB/, CC'... are
concurrent at the centre of inversion.

7a. If two curves touch at A, their inverses touch at 4’ the
inverse of 4.

8. A circle coincides with its inverse when the circle of inversion
is orthogonal to it.

9. A variable chord 4B of a circle, the inverse C’' of a fixed
point € on it and the centre O are concyelic.

[Since the points A, B, €, © are collinear ; their inverses with
respect to the given circle are concyclic; 7.e., ABC'O is a cyeclic
quadrilateral.]

10. From any point P on the circum-circle a line is drawn
through the symmedian point A, cutting the sides of the triangle
ABCin A', ¥, (", prove the rclation 21/P.4'=3/PA.

[Employ the properties of Ex. 4 and Art. 15, Ex. 1 (3).]

122. Theorem. The inverse of the circum-circle of a
triangle ABC with respect to the im-circle is the mine-
points-cirele of the triangle PQR formed by joining the
points of contact.

Let X, Y, Z be the middle points of the sides of PQR.
From similar triangles we get

0OA.0X=0B.0Y=0C.0Z=r%;

therefore, ete.
Q
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Mr. Piers C. Ward has applied this property in the
following elegant proof of Mannheim’s Theorem :—

Inverting with respect to the in-circle, the circum-
circle inverts into X YZ, that is, a circle passing through

a fixed point Z and of constant radius (=4r). It there-
fore envelopes a circle concentric with Z whose radius is
equal to the diameter of XYZ; therefore, etc., by Art.
121, Ex. Ta.

EXAMPLES.

1. A variable triangle ABC is inscribed to one and escribed to
another circle ; prove that the mean centre of the points of contact
P, Q, R is a fixed point.

[This particular case of Weill’s Theorem (Art. 53, Ex, 12) is easily
seen. For the mean centre of P, @, R is the point of trisection of
the line joining its circum- and nine-points-centres, both of which
are fixed ; therefore, etc.]

2. If a quadrilateral A BCD be inscribed to one circle and circam-
scribed to another ; prove that the mean centre of its points of
contact I, @, R, S with the inner circle is a fixed point.

[Let W, X, ¥, Z be the middle points of the sides of the cyclic
quadrilateral P, @, R, S. Then W, .\, ¥, Z is a cyclic parallelo-
gram, and is therefore a rectangle. The mean centre of I, Q, R, S
is evidently that of the system W, X, ¥, Z or the centre of the
circle inverse to ABCD with respect to the other given circle.]
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3. The four nine-points-circles of the four triangles formed by
taking the vertices of a cyclic quadrilateral in threes pass through
a point.

[For the nine-points-circles invert into the circum-circles of the
triangles formed by drawing tangents to the circle at the vertices
of the quadrilateral; therefore, etc. The more general property
for any quadrilateral has been independently demonstrated.
Art. 79, Ex. 15.]

Section I

ANGLES OF INTERSECTION OF FIGURES AND OF THEIR
INVERSES.

123. The general velations existing between the centres
and radii of a circle, its inverse, and the circle of inver-
sion are as follows:—

Let C, €, O be the centres of the three circles; 4B,
A’'B, MN the extremities of their common diameter;
S8 and T'7" the direct common tangents intersecting in

0. Join ST and S'T".
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Since AB and A'B’ are inverse segments with respect
to the circle of inversion, the three circles are coaxal.
(Art. 114, Ex. 9.)

Let I and I’ denote the points of intersection of ST
and S’T” with the line of centres; by comparing equal
triangles OIS and OI7, etc, it follows that S7"and 8’71
are both perpendicular to AB. The quadrilateral CSS' I
is therefore cyclic; hence the inverse of C is I’; and
similarly the inverse of C”is I with respect to the circle
of inversion, and therefore :—

The centre C of any circle inverts into the inverse I' of
the centre of inversion O with respect to the inverse circle
C’; and

The inverse I of the centre of inversion O with respect
to any circle C inverts into the centre C' of the circle
inverse to the circle C*

In the particular case when the inverse circle is a line,
the inverse of the centre of a given circle is the reflexion
of the origin with respect to the line.

The inverse of S7 is the circle on OC” as diameter.

Again, by similar triangles OC'0OC"=0S8/08"=C0S/C'S".
or, say Al =t/t'=r'y..... ... (H

To find ’, ¥, and 7, we have

d[d=tt'/=R*({* ~ 7,
where R is the radius of inversion.

Hence 7= el e as (2)

T A2~
a relation which gives the position of the centre (" of the
inverse circle.

* Townsend, Modern Geometry of the Point, Line, and Circle, 1863,
p. 373.
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From (1) we have therefore generally
d_r_ R?
U T T s 3)
from which the position of the centre and magnitude of
the radius of the inverse circle may be determined.

Cor. If the centre of inversion is on the circle; d=»
and »'=o0, thus verifying that the inverse of a circle
from any origin on its circumference is a right line.

124. Problem.—Z0 invert two circles such that the
ratio of the radii of their imverses may be a given
quantity .

Let =, », be the radii of the given circles; d,, d, the
distances of their centres from the origin O; R the
radius of inversion; ¢, ¢, the tangents, real or imaginary,
from O to the given circles. Then if p,, p, denote the
radii of the inverse circles, we have, by Art. 123,

py="FRry/t,? and p,= Rr,[t,%

Dividing these equations,

P b
Py Ty by’

The centre of inversion is therefore on a locus such
that tangents drawn from any point on it to the given
circles have a constant ratio; <.e a circle coaxal with
them.

CoR. Any two circles may be inverted into equal
circles ; and the locus of the centre of inversion is either
circle of antisimilitude.

For when p,=p,; t,%/t,2=r/r,; therefore, etc. (Art.
114, 2°)

Otherwise thus:—Since a circle and two inverse figures
invert into a circle and two inverse figures; if the origin
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be taken on either circle of antisimilitude this circle
inverts into a line. Therefore any two figures the inverse
of each vther with respect to a circle invert into reflexions
of each other with respect to a line. (Art. 121, Ex. 6.)

ExaMpLES.

1. Show how to invert any three circles into equal cireles.

[The centres of inversion are the points of section of the civcles
of antisimilitude of the given ones taken in pairs.]

2. How many centres of inversion are there in the solution
of Ex. 17

[The three external circles of antisimilitude are coaxal (Art. 88,
Ex. 13), and therefore meet in two real or imaginary points.
Also since every two iuternal and one external circles of anti-
similitude are coaxal, there are in all right centres of inversion real
or imaginary. }

3. Any three circles are unaltered by inversion with respect to
their common orthogonal circle. For this reason the latter has
been named the Circle of Self-Inversion of the given ones.

4. To invert the sides of a triangle into

«°. Three equal circles.
[3°. Three circles whose radii have any given ratios p: q:r.

[«°. The centres of the in- and ex-circles are the four origins.
[°. The distances of the origin from the sides are in the inverse
ratios p:gq:7.]

125. Theorem.—The tangents at corresponding points
A and A’ of two inverse figures make equal angles with
their line of connexion AA’.

For take the corresponding points B and B’ on the
curves which are consecutive to 4 and 4’ Join A4’
and BB’; they each pass through O.

The lines AB and A’B’ joining consecutive points may
be regarded as tangents to the respective curves; also
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since A4 15 1s a cyclic quadrilateral and the angle at O

indefinitely small, we have (Euec. III. 22)
BAO=0B'A'=AA'F;

therefore T4 A’ is an isosceles triangle.

126. Theorem.— The ungle of intersection of two curves
is similar* to that of their imverses at the corresponding
point.

For the angle between any two curves is the angle
between the tangents at their points of intersection.

But the tangents determine two isosceles triangles
(Art. 125) on the line AA’; therefore, ete.

If the centre of inversion is external or internal to both
circles the angle remains unaltered; if on the other hand it
is external to either and internal to the other, the angles of
intersection before and after inversion are supplemental.

*¢“The angle of intersection of two circles undergoes as a figure no
change of form under the process of inversion, but often does as a
magnitude, change into its supplement, under that process.

¢“In the application of the theory of inversion to the geometry of the
circle, this circumstance must always be attended to. ~

“The two cases of contact, external and internal, come of course
under it as particular cases; and in but one case alone, that of
orthogonal intersection, which presents no ambiguity, can the pre-
caution ever be entirely dispensed with.” Townsend’s Modern Geometry
of the Point, Line, and Circle, Art. 407,
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127. Amongst the various results which follow from

the preceding Articles, we note

1°. Any two circles meeting at an angle a invert from
either point of intersection into two lines inclined
at the same angle, e.g. two orthogonal circles into
two lines at right angles.

2°. Three mutually orthogonal circles, e.g. the three
real polar circles of the triangles formed from
an orthocentric system of points, invert from any
of their points of intersection into a circle and
two perpendicular diameters.

3°. Any three circles invert from any centre on their
common orthogonal circle into three others whose
centres are collinear ; the line of collinearity being
the inverse of the common orthogonal circle.

4°. A system of circles having more than one ortho-
gonal circle inverts into a system having more
than one orthogonal line.

5° In 4° the intersections of the common orthogonal
circles are evidently the limiting points of the
given system which is coaxal. (Art. 86.)

Hence for any centre of inversion :—

a’. A couxal system inverts into a coaxal system ; or

b°. A circle and a pair of imverse points invert into a
circle and a pair of inverse poimts;

and for a centre of inversion at either of the limiting
points :—

c’. A coaxal system inverts into a concentric system,
the common centre being the inverse of the second
limiting point with respect to the circle of inver-
sion.
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6°. A system of concurrent lines inverts into a coaxal
system of the common point specics, the common
points being the centre of inversion and the in-
verse of the point of concurrence.

7°. An angle and its bisectors invert into two circles
and their circles of antisimilitude. (Art. 109.)

8°. If two circles, concentric with the extremities of
the third diagonal of a cyclic quadrilateral, are
described cutting the given one orthogonally; they
are mutually orthogonal, and their points of inter-
section O; and O, are therefore inverse points with
respect to the given circle. Hence if we take O,
and O, as centres of inversion we arrive at the
following results :—The three circles invert into a
circle and two rectangular diameters; the vertices
of the quadrilateral, which are inverse points with
respect to the circles, invert into inverse points in
the same order with respect to the lines, i.e. form
the vertices of a rectangle. Thus the vertices of
any cyclic quadrilateral may be inverted imto
those of a rectangle, and the centres of imversion
are inverse poimts with respect to the circle.

9°. A circle may invert into a circle having its centre
at a given point 4.
For let A’ the inverse of A be the centre, and
AA’ the radius of inversion. Then the given
circle and pair of points 4 and 4’ inverse to it,
invert into a circle and a pair of inverse points;
but the inverse of the centre of inversion 4’ is at
infinity ; therefore A4 is the centre of the inverse
circle.
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10°. Two parallel lines invert into two circles touching
externally if the origin is between the lines; and
internally if the lines are on the same side of the
origin.

11°. If a quadrilateral A BCD inverts into a parallelo-
gram from an origin O; the pairs of circles BOC,

AOD and COA, BOD touch at 0.*

SectioN IIl.

ANHARMONIC RATIOS UNALTERED BY INVERSION.

128. Theorem.—If A, B, C, D be any four concyclic
points and A’, B', €', D' their imverses with respect to any
circle of inversion, then
BC.AD:CA.BD:AB.CD=BC""A'D:.CA"BD:A'B.C'D.

This property has been shown to hold for any four
points and their inverses, and is therefore true in the
particular case when they lie on a circle; hence the an-
harmonic ratios of four concyclic points are equal to the
anharmonic ratios of their inverses with respect to any
circle of inversion. Particular cases have been noticed in
Art. 121, Cors. 1, 2.

129. Problem.—Z7o invert a regular cyclic polygon
ABC... from any origin P.

The circumcircle ABC... inverts into a circle aBy...;
the diameters 4 4', BB, CC'... into circles passing through
the origin P and cutting aB7y... orthogonally in «d’, B3,

Yy

* Hence a construction for the required centres of inversion.
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They therefore pass through ¢ the inverse of P with
respect to the inverse circle and thus form a coaxal
system of the common point species. (Art. 127, 6°)
Also the chords ad’, B3, yy'... meet in a point K on
PQ (Art. 72, Ex. 6).

On the primitive figure any side BC of the polygon
and any diameter A4 meet the circle in a harmonic row
of points ; therefore (Art. 128) on the inverse tigure Byaa’
is an harmonic row; hence Ba/ya=Bd'/yd’, or, by Euc.
IIL 22, the diagonal aa’ of the quadrilateral is the locus
of a point such that its distances from either pairs of
sides which meet at its extremities are proportional to the
lengths of the sides; similarly for the quadrilaterals
ydBB, ete. Therefore the distances of the point K from
the sides of the polygon aBy... are proportional to the
gides.

For an Harmonic Quadrilateral, K is evidently at the
intersection of the diagonals; and the inverse of the
regular polygon possessing, as has been shown, a corre-
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sponding and more general property has been termed by
Casey an Harmonic Polygon.

Definitions.—The point K is called the Symmediun
Point of the Polygon ; and if the ratio of any perpen-
dicular from K to half the side on which it falls is tan w,
then o is the Brocurd Angle of the Polygon.

For the properties of harmonic polygons the reader is
referred to Casey’s Sequel fo FKuclid, Supplementary
Chapter, Section VI

130. Cosymmedian Triangles.—Let ABC be a tri-
angle K, its symmedian point, and let the lines AKX, BK,
CK meet the circum-circle again in 4, B, ¢". If the
circle of inversion be K, p where

KA KA'=KB . KB'=KC.KC'=—p?

the vertices of ABC invert into 4’, B, (".

Also since BCA A’ is a harmonic quadrilateral, therefore
B(C’A’A is harmonic, or 4’4 is a symmedian of the
triangle A’B’C’; similarly the other symmedians are B'B
and C'C.

It appears thus that the two triangles have the same
symmedian lines, symmedian point, Brocard Circle,
Brocard Angle, Brocard Points, etc. On account of these
relations they have been termed Cosymmedian Tri-
angles.*

* Their properties were first stated by Casey before the Royal Irish
Academy in December, 1885. A further account of them will be found
in Milne'’s Companion.
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EXAMPLE.

1. If ABC be a triangle and @ its centroid ; 44', BB, CC' chords
of the circum-circle passing through & ; the symmedian point of
A'B'C" is on the diameter which contains Tarry’s point. (Vigarié.)

[Let the circle be self-inverted from G as origin and the points 4,
B, Cinvert into A', B, (" respectively. Let AA”, BB", CC’ be the
symmedian chords meeting in A.

If a circle 0GC" meet GK in the point Z then

KG.KL=KC.KC";
and similar relations hold for the circles 4@.4” and BGB" ; there-
fore these three circles meet in a second common point L, which is
the inverse of K’, the symmedian point of 4'B'C".

Let J be the inverse of A with respect to the circum-circle
ABC, and it follows that KO. KJ=KG . KL =the power of K with
respect to the circum-circle. Hence OGJL is a cyclic figure, and
the angle GOK=L.

It has been shown (Art. 67, Ex. 18) that Tarry’s point on the
circum-circle corresponds to O the circum-centre on the Brocard
Circle with respect to ABC and Brocard’s first triangle, and
that G is their common centroid ; hence angle GNO=GOK and
GRO=GKO=GF'0O. Therefore OGKF' is a cyclic quadrilateral,
and (Euc. III. 21) the points F, K, F' are collinear. There-
fore KO.KJ=KG.KL=KF.KF' or F, J, L are collinear, the
line being the inverse of the circle OGAF" with respect to A as
origin.
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Now the circum-circles of ABC and GFL cut each other
orthogonally since the angle OFG =L ; hence the inverse of the
latter from @ is the diameter N R, and therefore Z inverts into a
point A’ on it ; therefore, etc.

This solution is due to M‘Cay.*]

MiscELLANEOUS EXAMPLES.

1. The six circles that can be described to touch three given
ones A, B, C, two externally and one internally and two internally
and one externally, are in pairs the inverses of one another with
respect to the common orthogonal circle of A4, B, (.

[Invert with respect to the common orthogonal circle of 4, B, C,
and since ., B, C remain unaltered after inversion, three of the
circles of contact invert into the remaining three ; therefore, etc.]

2. The eight circles of contact with A4, B, (' have a common circle
of antisimilitude.

[As in Ex. 1 they are in pairs the inverses of each other with
respect to the common orthogonal circle of 4, B, and C.]

3. Three circles are described touching the ex-circles of a triangle,
two externally and one internally ; prove that they cach pass
through the centre of Taylor’s Circle.

[Invert with respect to Taylor's Circle and the circles in question
invert into the remaining circles of contact, which in this case are
the sides of the triangle ; and since the circles invert into lines they
cach pass through the centre of inversion.]

4. If ABC be a triangle ; (', p a circle of inversion, A" and B’
the inverses of 4 and B ; to prove that

2s=p?sin C/r”
where 7’ is the radius of the in-circle of A'B'C.

[We have AC=p?*/4'C, BC=p¥B'C and AB/A'B =p*A'C.BC,

hence by addition
Za=pt - A'C+BC+ 4B

a2 W
T po - =Psin )]

* « Mathematical Questions with their Solutions,” from the Educational
Times, vol. lii., p. 73.
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5. Mannheim’s Theorem.* Having given the vertical angle ¢
and radius +' of the in-circle of a triangle 4’B'C : the envelope of
the circum-circle is a fixed circle.

[From Ex. 4 by inverting from the vertex with respect to a circle
of inversion C, p, the inverse of the circum-circle is the base 4B of
a triangle of known perimeter ; and since the inverse envelopes
a circle, viz., the ex-circle of the triangle ABC ; therefore, etc.]

6. A variable circle touches the base of an isosceles triangle at its
middle point ; prove that the chords of intersection with the sides
that meet within the circle envelope a fixed circle. (M‘Vicker.)

[See the property of Art. 61, Ex. 1.]

6a. By inverting from the vertex derive Mannheim’s Theorem.

7. Two circles meet at an angle o, and are such that
2 cos w=n/7/R ; prove that a triangle may be inscribed to one and
circumscribed to the other. Hence find the locus of a point from
which two circles may be inverted into two others, so that a triangle
may be inscribed to one and circumscribed to the other.

8. A variable chord XX’ of a circle O, » passes through a fixed
point @ ; to proVe that the circum-circles of the triangles Q0.X and
@O0.X' envelope coaxal systems.

[Let P be the inverse of @ with respect to the given circle. The
circles in question invert into the right lines 24" and P.1", which
by Art. 72. Cor. 5, touch each of two concentric systems, viz., the
in- and ex-circles of the triangle PX.X".]

9. Prove that the vertices of a triangle and the reflexions
0,, 0y, 0, of any point O with respect to the sides may be inverted
into the vertices of a triangle and three collinear points on the
sides. (Russell.)

[The circle BCO,, C'40,, ABO; meet in a point P (Art. 79, Ex. 15),
which is seen from Euc. TII. 22 to be on the circum-circle of
0,0,0,. Inverting from P ; therefore, etc.]

*This well-known property is thus seen to be the inverse of :~-Having
given the vertical angle C and either of the quantities 8 or 8 - ¢ ; the envelope
of the base i3 a circle.



256 INVERSION.

10. Any triangle ABC and a Simson line X'YZ may be inverted
from the pole of the line into a triangle X’'Y’Z" and Simson line
4'BC.

11. If four circles be mutually orthogonal, and if any figure be
inverted with respect to each in succession ; the fourth inversion
will coincide with the original figure.

[The following proof has been given by M‘Cay :—Invert the four
orthogonal circles from a point of intersection of any two of them.
The latter invert into rectangular lines ; a third circle becomes one
p, cutting these lines at right angles ; and the fourth after inver-
sion (p’), since it cuts the third at right angles and is concentric
with it, satisfies the relation p?+p"?=0 or p*= - p".

Let P, P», P; denote the successive inversions of the point P on
the inverse figure ; since OP,. 0P;=p?and OP,= — 0P, therefore
OP.0P;= —p? or the inverse of P with respect to the imaginary
circle of radius 7p, whose centre is at O, coincides with P ; there-
fore, etc.]

12. “The centres of the four circles circumscribed about the four
triangles formed by four right lines are concyclic.” Prove this
theorem by inversion from the point P common to the four circum-
circles, and show that the circle passes through 7.

[Tt is evident that, 1°, the four lines invert into four circles
passing through P ; 2° the four circles into lines joining the
remaining pairs of intersections of the circles in 1°; 3° the centres
of the four circles into the reflexions of P with respect to the four
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lines on the inverse figure by Art. 123 ; but these are collinear ;
therefore, etc.)

13. Let 7 be a common tangent to two circles, ¢ and ¢ the
tangents to them from any point O ; if the circles are inverted
from O as origin prove that T'%/¢¢ is unaltered.

14. The vertex C of a given angle ACB is fixed ; required to find
the envelope of the circle ACB where 4 and B are points on a
given line.

15. A chord 4B of a circle passes through a fixed point P ; find
the locus of the point of intersection of the circles passing through
P and touching the given one at 4 and B.

16. If two circles be inverted into any two others ; for each pair
the square of the common tangent divided by the product of the
diameters are equal.

[Compare Art. 126 and Art. 4, footnote.]

17. Prove Casey’s relation among the common tangents to four
circles all of which are touched by a fifth (Art. 7) by the inversion
of a system of four circles touching a line.

18. Draw two parallel lines and describe a number of circles
touching the lines and each other in succession. Invert this
system from a point on a diameter of any circle perpendicular to
the lines and deduce the following theorem :—

A, B, C are three collinear points, and circles X, ¥, Z are
described on the segments BC, CA, AB respectively. A system of
circles {s drawn as in figure to touch each other and the given ones,
if Cp, p denote the nth circle to prove that the distance of its
centre from AB=2np. (Pappus.)

R
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19. If three circles 4, Br,, Cr; touch one another in pairs ;
prove by inversion that the radii of the circles which touch them
with contacts of similar species are

T3
2rrs 20
where 2A is the area of the triangle ABC.

[Invert from the point of contact of Br,, Cr; with a radius equal
to the tangent to Ar, ; etc.]

20, The rectangle under the distances of the ex-centre of simili-
tude of two circles from their radical axis and in-centre of simili-
tude is equal to the constant product of antisimilitude.

[The circle of similitude inverts from either centre of similitude
into the radical axis of the given circles.

20a. Prove that the poles of the radical axis of two circles with
respect to the circles are harmonic conjugates with respect to the
centres of similitude.

[This is the inverse of the theorem :—7%e polars of either centre of
similitude with respect to two circles are equidistant from their radical
axis; the circle of antisimilitude being taken as circle of inversion.]

21. A variable circle ABCD touching two fixed circles externally
meets their radical axis in L and O and the pair of transverse
common tangents in ., € and B, D respectively ; prove the follow-
ing properties of the figure :—

1°. The limiting points M and N of the circles are the middle
points of the parallel sides of the quadrilateral PQRS.

2°. The lines .1 B and ¢'D move parallel to the direct common
tangents PQ and RS respectively.

3°. The vertices of ABCD lie on the lines joining O and L to the
limiting points.

4°. BC and AD envelope circles concentric with 3/ and N respec-
tively.

To prove 1°. Since the four common tangents to the two given
circles form a common escribed quadrilateral, the diagonals of
which are concurrent with the diagonals of the corresponding
inscribed quadrilaterals ; therefore, etc. See Art. 67, Cor. 6.
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2°. Let the points 4 and B and the given circles be numbered
1,2,3,4 Apply Casey’s relation connecting the common tangents
to four circles all touched by a fifth and reduce, it follows that
AZ+BZ « AB. Hence AB is constant in direction and PQ is a
particular position of it, therefore AB and PQ are parallel;
similarly C'D and RS are parallel.

3°. To prove that the points D, L, N are collinear. Invert the
figure from D as origin. The circles, their radical axis and pair of
inverse points invert into three coaxal circles, one of which passes
through the origin, and their limiting points; also the circle
ABCD inverts into the direct common tangent of the latter system.
It follows easily (Art. 92, Ex. 5) that the inverses of &V and I pass
through D : therefore, etc.

4°. BM bisects externally the base angle B of the triangle ZB(,
since LO Dbisects internally the vertical angle of the isosceles
triangle LMN ; similarly CM bisects externally the other base
angle, therefore M is the ex-centre of BCZ.

Nore.—This property, communicated by Mr. Charles M‘Vicker,
is a manifest extension of Mannheim’s Theorem. For if either of
the circles is reduced to a point Z, we have of the triangle B('Z
the vertical angle Z fixed in magnitude and position and the
ex-circle ; since the variable circum-circle BCZ (ie. ABCD)
envelopes a circle to which the vertex and centre of the ex-circle
are a pair of inverse points ; therefore, etc.
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22. Prove the converse of Casey’s Theorem (Art. 7), showing
the relation which holds between the common tangents to four
circles, all of which are touched by a fifth.

[Invert the circles 1, 2, 3 into equal circles (Art. 124) 4, ; B, »; C, 75
and find the inverse /), »; of 4 with respect to the same circle of
inversion. The relation £23.14=0 holds for the four circles after
inversion (Art. 126) ; also the tangents 23, 31, 12 are equal to the
sides of the triangle ABC formed by joining the centres of the
equal circles. Now describe a circle concentric with D and a
radius equal to r~7, and the tangents from 4, B, C to it are
respectively equal to 14, 24, 34. Hence the general relation has
been reduced to the corresponding one for three points and a circle.
It is easy to see that the circum-circle of 4 BC touches D, r ~r; for
by the converse of Ptolemy’s Theorem the limiting points of the
two circles are on 4 BC'; therefore, ete. Fry.]

Notg.-—The method of inversion so useful in Modern Geometry
was discovered by the Rev. Dr. Stubbs of Trinity College, Dublin, in
the year 1843. His valuable memoir on the subject is to be found
in the Philosophical Magazine, Nov., 1843, p. 338. About the same
time, Dr. Ingram published his researches in the Transactions of the
Dublin Philosophical Society. See vol. i., p. 145.



CHAPTER XIL

GENERAL THEORY OF ANHARMONIC SECTION.

SeEctION I

ANHARMONIC SECTION.

131. Definitions.—Let a line AB be divided by two
variable points C and D such that AC/BC+~AD/BD is a
constant ratio (=«). The value of « is thus

-CA . BD|BC. AD,

and is termed the Anharmonic Ratio in which the seg-
ment AB is divided by the points C'and D. Similarly
the anharmonic ratio of CD divided at 4 and B is

CA/DA+CB/DB or —CA . BD/BC. AD.

The points ' and D are Conjugate or Corresponding
Points in the Row A, B, C, D, and AB and CD are
Conjugate Segments. It is obvious that conjugate seg-
ments divide each other Lquianharmonically, i.e. the
anharmonic ratio of AB divided at C and D is equal to
that of CD divided at 4 and B.

132. Let the four points 4, B, C, D be divided into
three pairs of opposite segments BC, AD; C4, BD;

AB, CD; then the anharmonic ratios of
261
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BC divided in 4 and D=BA/CA +~BD/CD =2, (1)
CA4 divided in B and D=CB/AB+CD/AD=pu, (2)
and 4B divided in C and D= AC/BC+AD/BD=y, (3)

or their reciprocals ; since a segment divided in 4 and D

is divided in the reciprocal anharmonic ratio by D and 4.
These three fractions A, u, v and their reciprocals are

the six anharmonic ratios of the four points 4, B, C, D.

Nore.—Let a line 4B be divided internally in a variable point
X and externally in X’ such that AX/BX=k. AX'/BX'. As X
approaches B, 4.X/B.Y increases ; therefore the conjugate point X’
approaches B simultaneously. For let AX'=a and BX'=0b and
we have

%}g >or < (Ii according as ¢ >or < b.
but @ > b, thus it follows that as X’ moves towards B the ratio
AX'/BY’ continually increases, and becomes infinitely great when
the variable point coincides with B. Here also it coincides with
its conjugate .\, and the point B is thus a Double Point of the
systems described by the variables .\ and X'. Similarly 4 is a
double point.

Again, as X" recedes from B on the line produced, .X approaches
M the middle point of AB. In the limit when .Y iy at infinity and
AX'/BX’ therefore equal to unity, its conjugate X(=/’) divides the
line in the simple ratio .1/°/PB=F. Similarly when .\" moves to
infinity, its conjugate .X''(=¢) gives the relation AQ/BQ=1/k ; and
the two points whose conjugates are at infinity are isotomic conju-
gates with respect to AB.

We may note here, and we shall see presently, that when the
corresponding points of the two systems move in the same direction
the double points are imaginary.

133. Problem.—70 express all the Anharmonic Ratios
of ABCD in terms of any one of them (\).

Since BC.AD+CA.BD+AB.CD=0;
dividing by 4B . CD, we have
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BC.AD  CA.BD
AB.CDT4B.CD
whence on substituting from Art. 132
—u—1/A41=0.
Thus generally it follows, by dividing the above equa-
tion by each of its terms, that
M+1/7\= 1; v+1/u=1; A+1/y=1
The six ratios are therefore
A I, A=D)/A, A/(A=1), 1=X, 1/(1=X).
These may be expressed as trigonometrical functions of an angle.
For let A=sec’d. Then the ratios taken in the above order reduce

+1=0,

to the following :—
sec*d, cos*0, sin®@, cosec*d, — tan’6, - cot?f.

If two of the ratios are equal, e.g. X = (X — 1)/A, then A2~ A+1=0
and M=o or o’ the imaginary cube roots of unity. In this case
the three pairs of ratios have the values w and o?

If A= —1 the points form an harmonic row, and the remaining

ratios are —1,-2,-1/2, 2, 1/2,

In gpeaking of the anharmonic ratio of four points on
a line the order in which the points are taken is to be
understood. Dr. Salmon introduced the convenient nota-
tion [ABCD] to denote the ratio into which A B is divided
by C and D. [ABCD] is equivalent to AC/BC+AD/BD,
and [ABCD).[ABDC]=1.

EXAMPLES.

1. To prove that [ABCD] = [BADC]=[DCBA]=[CDAB);
and hence when any two constituents of four points are inter-
changed, the anharmonic ratio of the system remains unaltered,
provided the remaining pair be likewise interchanged.

, 2 If [ABCD]=[4BDC]=« ; find the value of «.
[It is plain that « is equal to its reciprocal, and is therefore unity.
The four points form in this case an harmonic system.]



264 ANHARMONIC SECTION.

3. To prove for any collinear system of points 4, B, C, D, E ...
that [4 BCE)/[ABCD)=[ABDE].

[Expanding the ratios on the left side and reducing ; therefore,
ete.]

4. For any two collinear systems of poiuts 4, B, C, D, E ...
4, B, ¢, D', E' .. having given [ABCD]=[4A'BC'D] and
[ABCE)=[4’'B("E’), to prove that
[BCDE)=[BC'D'E"), [CADE)=[C"A'DE"), [ABDE]=[4A'BDE").

[By Ex. 3.]

5. If [ABCD]=[ABC' D'}, prove that [ABCC"]=[4 BDD'].

[Expanding the ratios the required result follows by alternation.]

6. If in Ex. 4 [ABCD]=[4'BC'D), [ABCE]=[A'BC'E"),
[ABCF]=[A'B'('F'), etc., etc. ; prove that

[ADEF)=[A'D'E'F'), [BDEF]=[B D' E'F'}, etc. ......... (1)
and [DEFG ... |=[DE'F'&' ...].

7. If a segment MV is divided equianharmonically by pairs of
points 4, 4', B, B, C, C', etc. ; to prove that

1° [MABC ... |=[MA'BC'...1and [NABC ... ]=[NA'BC'].

2°. [ABCD ...1=[4'BC'D ...]

[Since [MNAA')=[MNBB)=[MNCC']= ... etc, by Ex. 5.
[(MNAB)=[MNA'B); [MNAC]=[MNA'C"), etc. Hence by division
we have [MABC]=[MA'B'("), etc. ...

To prove 2°. We have by 1° [MABC]=[MA'BC"] and
[MABD])=[MA'B' D'}, therefore by division [ BCD)=[4'B'C'D'].

8. If a segment MV is divided harmonically by points 4 and A’
Band B, C'and C’; to prove that the anharmonic ratio of four of
the six points taken in any order is equal to that of their four
conjugates, [ABCC']=[4'B'C'C]

[By Ex. 7. [MABC]=[MA'B'("]; but (hyp.) ¢ and ¢’ are inter-
changeable, therefore [MABC']=[MA'B'(C]; dividing these equa-
tions, therefore, etc., as in Ex. 4.]

9. To prove the converse of Ex. 8, 7.e., for any six collinear points
A4, B, C, A, B, (', if the anharmonic ratio of any four is equal to
that of their four conjugates [CABA']=[C"4'B'A] then

1°. The anharmonic ratio of every four is equal to that of their
four conjugates.



EXAMPLES. 265

2°. The segments A4’y BB, CC" have a common segment of har-
monic section.

[To prove 1°. By hyp. since [C4BA]=[C"A'B A]; on rearranging,
by Ex. 1, we get [AA'BC)=[4A'"AB'("]=[44'C'B’]. Therefore by
alternation (Ex. 5) [A4'BC'])=[AA'CB]=[4'AC'B]; similarly for
all other combinations. To prove 2°. Let MV divide the segments
AA' and BB harmonically, it divides CC" also harmonically. For
[MABA=[MA'B'A] (by Ex. 7) and [NABA']|=[NA'B'A4] ; also by
1° [CABA')=[C'4'B'A] and [C"ABA']=[C"A’"B'4), hence (Ex. 6)
[MNCC')=[MNC'C]; therefore, etc. (Ex. 2)].

10. Show generally for two equianharmonic systems if any two
conjugates 4 and A’ are interchangeable, e.g., if [ABCD]=[4'B'C'D]
and (A4'BOD]=[AB'C"D’] that

1°, Every four are equianharmonic with their four opposites ;

2°. The segments AA', BB, CC’, DD’ have a common segment

of harmonic section.
[By the method of Ex. 9.]

SkctioN II.

ANHARMONIC SECTION OF AN ANGLE.

134. It has been explained in Art. 3 that the anhar-
monic ratio of four points 4, B, C, D is equal to that
of the pencil O. ABCD formed by joining them to any
point O. It follows then that all the properties of four
collinear points stated in the previous section involve
correlative properties of a pencil of rays, and that the
latter are immediately derived from the former by aid of
the equation
BC.AD:CA.BD:AB.CD
* =sinBC.sin AD: sin (A . sin BD : sin AB. sin CD.
Also by describing a circle through the vertex O of the
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pencil 0. ABCD, and denoting by 4, B, C, D the points
where it meets the legs of the pencil again; since the
sines of the angles at O are in the ratios of the chords
opposite to them we may further obtain from the anhar-
monic properties of collinear points corresponding relations
amongst points which lie on a circle.

135. The following properties will appear evident :—

1°. All transversals to a pencil of rays are cut equian-
harmonically.

2°. A transversal to a pencil drawn parallel to one of
its rays D is divided by the remaining three in the
simple ratio AC/BC; which is the anharmonic ratio of
the pencil.

3°. In 2° if the pencil is harmonic, any transversal
A’B’(" parallel to D is such that A’B'=BC.

4°. For any two equianharmonic rows of points A4, B,
C,D,..and A, B, (", D, ..., if the lines AA4’, BB, and
CC are concurrent at O; DD’ and all other lines joining
corresponding points of the given systems pass through O.

[This important property is the converse of 1° and
follows easily by an indirect proof.]
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136. Theorem.—If two lines be divided equianhar-
monically such that a pair of corresponding points
coincide at their intersection [0ABC...]=[0A’BC'...]
the systems are im perspective ; and reciprocally if two
equianharmonic pencils are such that a pair of corre-
sponding rays coincide on the lines joining their vertices
they are in perspective.

Let AA” and BB’ meet in P. Join PC, and if possible
let PC cut the other axis in (. Then

[0ABC]=[04’BC"],
since the rows are in perspective. But
[0ABC)=[04’B'C’] (hyp.);
therefore [0A'B'C]=[0A'B'C"), i.e. ¢" and C” coincide.
Reciprocally for any two pencils P.ABC, ... and
P A’BC, ... if the rays A, A”and B, B intersect respec-

tively in X and ¥, it follows that C and (" meet on the
line X'Y.

Otherwise thus:—The rows [YYZW] and [XYZ'W] are equi-
anharmonic ; therefore Z and Z’ coincide.

Cor. 1. If two pencils are equianharmonic, any two
*rows passing through the intersection of a pair of corre-
sponding rays are in perspective.
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Cokr. 2. Through a given point P a line may be drawn
across a triangle ABC, cutting its sides in the points @,
R, 8, such that [PQRS]=a given anharmonic ratio.

[For the pencil (4 .PQRS) formed with the row at
any vertex 4 of the triangle is given, and since three of
its rays are given the fourth is known.]

Def. Lines divided equianharmonically are also said
to be divided Homographically. The term homographic
is applied in general to the equianharmonic division of
figures of the same kind, e.g. lines, circles, etc., ete.

EXAMPLES.

1. Every tangent to a circle is cut harmonically by the sides of
the escribed square.

[In the limiting position when the variable tangent coincides
with a side of the square the row of points determined on it are
harmonic ; therefore, etc., Art. 81, Ex. 3.]

2. To express the anharmonic ratios in which a variable tangent
is divided by four fixed tangents, in terms of the chords of contact
of the tangents.

[Let P, @, R, S denote the points of contact of the sides of the
escribed quadrilateral, which meet the variable tangent at O in
4, B, C, D; O the centre of the circle. Then ABCD=0'.A4BCD
=0.PQRS, since 0’4, OP; OB, 0Q...are four pairs of perpendi-
cular lines ; therefore the required expressions are

QR.PS:RP.QS:PQ.RS.]

3. For any quadrilateral escribed to a circle at the points
P, @, R, S, each pair of diagonals and a corresponding pair of
opposite connectors of the inscribed quadrilateral PQRS are con-
current. (See Art. 67, Cor. 8.)

[To prove that the sets of lines

QR, PS, YY', ZZ'

RP, Q8,27 XX'

PQ, RS, XX, YY'
are each concurrent.



EXAMPLES. 269

Consider each of the four tangents at the points P, @, R, S a
trahsversal to the quadrilateral XX'YY'ZZ'. Since consecutive
tangents meet on the circle, the tangents at 7 and @ are cut i the
same order at the points P, Z, ¥, X' and Z, @, X, ¥’ ; therefore
[PZYX')=[ZQXY']=[QZY'X]. Hence PQ, YY', XX’ are concur-
rent. Similarly RS, YY" and XX’ are concurrent ; therefore, etc.]

Nore.—As the above properties are more generally true for the
Conic, we consider an interesting case which arises in the parabola
when the fourth tangent is at infinity (Art. 81). Let tangents 4C
and BC be drawn to a parabola at the points 4 and B, and a third
tangent X' ¥ meeting BC and 04 in X" and Y respectively. Then
the equianharmonic relations easily reduce to BX/CX=CY/AY ; or
a variable tangent divides two fixed tangents in the same ratio. It
also subtends a constant angle at the focus. Therefore the foci of
the three parabolas described to touch each pair of sides (b, ¢, etc.) of a
triangle ABC at the extremities of the third side (BC) are the vertices
of Brocard’s second triangle.

4. If a circle touch four others the anharmonic ratios of the
points of contact are equal to

23.14:31.24:12.34.
[By Art. 7.]

5. The anharmonic ratios of the points of contact of the nine-
points-circle with the in- and three ex-circles of the triangle 4BC
are

@*=b V-t ?—a?
at—c? b —a¥ - bY
[As in Ex. 4.]

6. If the anharmonic ratios of four poiuts ., B, C, D on a circle
(or conic) be denoted by A, u, v, etc., to prove that the anharmonic
ratios of the pencil P. ABCD are A%, 2, v2, etc., where P is the pole
of the line 4B,

[Let PC, PD meet the conic again in (', D', and 4B in E, G;
then CD', DC', and AB are concurrent at #; and since

C'.ABCD=D.ABCD,[ABCD)=[ABEF)=[ABFG]=\ (say);
AE [AF _AF [AG_
BE/ BF BF/ BG ™~

therefore

A,
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AE /4G Y
whence BE/BE’ or [ABEG]= A2

But [ABEG])=P. ABEG=P. ABCD ; therefore, etc.]

137. Directive Axis.—For any two homographic rows
of points ABC ..., A’B'(" ... on different axes L and L', if
any pair of corresponding points 4 and A’ be each joined
to all the points on the other axis, the two pencils
A.A'BC ..., 4. ABC... are in perspective (Art. 136), i.c.
the intersections of the pairs of lines AB’, A’B(C”); AC,
A’C(B"); AD’,A’D,etec., are collinear. We are thus enabled
to find a point P on the line L corresponding to a given
point P on L.

For having obtained the line B”C”, join A’P and let it
meet B”C” in P”; then AP” meets the axis L' in the
required point.

An important point arises out of the consideration of
the correspondents to the intersections O, P, and P’ of
the axes L, L', L” taken in pairs. By means of the
general method given above we find that P on the axis
L corresponds to O on the axis L', and that P’ on the axis
1. corresponds to O on the axis L. This shows that the
axis L” of perspective of the pencils

A.A'BC..., A ABC...,
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whose vertices A and A" were arbitrarily chosen as any
paif of eorrespondents of the given homographic systems,
18 o fixed line, since it meets each axis in a point cor-
responding to their imtersection O regarded as a point
on the other. Hence: all pairs of corresponding connec-
tors (XY, X'Y) of pairs of mon-corresponding points lie
on a line. This line is called the Directive Axis of the
given homographic systems.

Otherwise thus: Take the two homographic pencils at 4” and Z
and L' as transversals to them respectively, then

[BCPO]=[C'B'P'0];

similarly for the vertex B” it follows that [CAPO]=[4'C’'P0],
therefore Ly division (Art. 133, Ex. 3) [ABPO]=[B'A’P'0), <. the
lines A8, A'B, PP are concurrent.

The same proof applies to the more general case of two systems
of points on a conic.

138, Directive Centre—The following property of
two homographic pencils is derived from Art. 137 by

reciprocation :—For any two homographic pencils of rays

0.ABC...and 0. A’B'C... the lines joining pairs of cor-
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responding imtersections (AB’, A’ B) of non-corresponding
rays (4, B and 4’, B) are concurrent.

The point of concurrence is termed the Directive Centre
of the systems, and its property just stated may be
proved by methods analogous to either of those given in
Art. 137 for the directive axis. These are left as useful
exercises for the student.

139. Problem.—7T0 find a point X on either axis L
whose correspondent on the other is at infinity ().

Since the lines joining A, ©” and A’, X meet on the
directive axis, we have the following econstruction:—
through A4 draw a parallel to L', join 4’ to its point of
intersection with the directive axis; this line meets L in
the required point.

ExAMPLES.

1. Having given two homographic pencils of rays at different
vertices; to find a ray of either corresponding to a given one of the
other.

[By means of their directive centre.]

2. If two homographic rows of points are such that the points c,
o’ at infinity on the axis correspond, the lines are divided similarly.

[For [ABC ©]=[A'B('%'}, hence AB:BC=A'B":B'C’; there-
fore, etc.]

3. Having given the vertical angle in magnitude and position of
a triangle of constant species, the extremities of the base divide the
sides homographically.

4. If the lines A4’, BB', CC" connecting the corresponding ver-
tices of two triangles ABC and A'B'C" are concurrent at a point 0,
the intersections X, ¥, Z of the pairs of sides BC, B'(', etc., are
collinear (cf. Art. 66).

[Join XY and let it meet the lines 44’ BB, CC" in X', Y', Z
respectively. Then

X.0BY'B=X.00ZC'=Y.0CZ'C'=Y.04X'4’;
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therefore [0BY'B]=[04X'4'], and since the point O is common to
both rows the pairs of connectors AB, X'Y", A'B are concurrent.

Therefore also the centre O and axis of perspective L of the two
triangles divide the corresponding segments A 4’, BB, CC’ equian-
harmonically.]

5. A variable triangle moves with its vertices on three concurrent
lines such that two of its sides pass through fixed points X and ¥;
then the third side passes through a fixed point on the line X 7.

[By Ex. 4.]

6. The lines joining pairs of corresponding points of any two
figures in perspective are cut homographically by the centre and
axis of perspective.

7. Any line passing through either centre of perspective of two
circles is cut in a constant anharmonic ratio by their radical axis.

.8 Every four of the six points .Y, ¥, Z, X', ¥’, Z' in Ex. 4 are

equianharmonic with their four opposites.
8
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9. In the figure of Art. 137 prove the relations
1°. [BCPO}=[BC'0OP] =(B'C"P'P],
[CAPO)=[C'A'0P] =[C"A"P'P].
2°. [ABCP]=[4'B'C'0] =[4"B'C"P),
[ABCO)=[4'BC'P1=[4"B"C"P’].

Note.—It will be seen that the triangle AB’C"” is inscribed to
A'BC and escribed to B'C" 4”, and more generally that of this system
of three triangles each s inscribed to one and escribed to the other of
the remaining two.

The vertex A and opposite side B”C"” of the triangle 4'B"C” form
with the extremities B and C of the corresponding side of 4’B( to
which it is inseribed a row of points B, (, 4, P. Similarly the
vertex A’ and opposite side BC of A'B(' form with the correspond-
ing side B'C" of the triangle A"B'(" to which it is inscribed a
row B, (", 4, 0. But these rows are equianharmonic (Ex. 8, 2°);
hence for such a system of triangles the vertex and the opposite side
of each divide homographically the corresponding side of the triangle
to which 1t 7s inscribed,

Again, B'C"PP is the row of points formed by the extremities
of the base B’C” and its intersections with the corresponding sides
BC and B'C" of the remaining triangles. But

B'C"PP=BCPO=BC'OP ;
hence the sides of each are cut homographically by the corresponding
sides of the other two.

Let the point €’ vary along the axis £/. Then the lines 4¢"and
BC' turn around the fixed points 4 and B; 4” and B” move on the
lines 4'C' and B(", and the directive axis passes through the fixed
point €. 1In this case A"B’(" is a variable triangle inscribed to
A’B'C and escribed to ABC”, both of which are fixed. Hence for a
variable triangle A"B'C" inscribed to a given one A'B'C, if two of its
sides pass through the vertices A and B of a triangle escribed to the
latter, its third side passes through the third vertex C".

Let us now consider two positions of the variable triangle 4”B°C".
Since its sides pass through the fixed points 4, B, C" respectively,
AB(C"” is a common inscribed triangle. Hence when two triangles are
each inscribed to a third A'B'C, if the sides A" D', ete., and opposite der-
tices (', ete., divide the corresponding side A’B' of A'B'C in a constant
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anharmonic ratio [A'B'C'I”), the intersections of their corresponding
sides” detetmine a common inscribed triangle ABC” which is escribed
to A'B'C. i

And the vertex ¢ and opposite side 4B cut the corresponding
sides B"(C”, etc., in the above constant anharmonic ratio.

140. Theorem.—For any two homographic rows of
points ABC...X and A'BC'... X', if X and X’ be the
points whose correspondents " and o are at infinity;
to prove the relations

AX . A'X'=BX.BX =CX.CX =ete

Since 4, A’; B, B’; X, »©’; », X" are four pairs of cor-
responding points [ABX»]=[A'B'0’X"]. Expanding and
reducing, this relation becomes AX/BX=1+A4'X'/B'X’;
therefore AX.A'X'=BX.BX, ete, ete.; or:—If vari-
wble points A and A’ be taken on fixed lines L and L’
respectively such that the vectangle under the distances
from two fized points X and X’ on the lines is constant,
they describe Lomographic systems.

Cor. 1. When the vertical angle of a triangle of con-
stant area is given in magnitude and position, the
extremities of the base divide the sides homographically.

In this case the points X and X', whose correspondents
are ©’and oo, are supposed to coincide at the intersection
of the axes.

By Art. 81, Ex. 3, we see that the envelope of the base
is a conic; and by Ex. 29 of the same article the curve is
a hyperbola whose asymptotes are the given axes.

Cor. 2. Any two homographic rows of points may be
so placed that the corresponding segments 4 4’, BB/, etc.,
may have a common segment of harmonic section.

Place the systems so that the axes L and I and the
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points X and X’are coincident. The equations of the
article are then written
XA.XA=XB. XB=XC.XC=%p

Describe a circle with X as centre having 4, 4’; B, B’
ete., pairs of inverse points, and let it cut the axis in M
and N. MN is the common segment of harmonic section
by Art. 70, but it is imaginary when A and A’ lie in
opposite directions from X.

Def. Two homographic systems of points on any axis
which have a common segment of harmonic section are
said to be in Involution, and the corresponding points
A, 4’ B, B'; ete., are Conjugate Points of the Involution.
We have seen in Cor. 2 that there always exists a pair of
points, real or imaginary, each of which regarded as
belonging to either system is coincident with its corre-
spondent of the other. These are the Double Points
(M, N) of the involution, and are connected with the
systems by the equations

[MNBC]=[MNB' ("], [MNCD]=[MNCDY], ete, etc,
[MABC...]=[MA'B'("...] and [NABC...]=[NA’B'("...].
See Art. 133, Ex. 7.

Cor. 3. In any two homographic rows of points on a
common axis the double points M and N are found from
the equations *

XA . X'A’'=XB.X'B...=XM.X’M=XN.X'N,;
they are therefore equidistant from X and X",

* If the distances 04, 04’ from any point O on the axis be z, ',
it follows that (x - O0X)(2' - 0X’)=const., a result of the form ¢

Axx’' + Brx+Cx' + D=0 (cf. Art. 143).
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141. For any two homographic rows of points we have
seen how to find the correspondent P’ of any point P, o,
by means of the directive axis, Art. 137, and 8° by the
formula XP. X'P'=const. It will now be proved that
two given homographic rows can be generated by the
revolution of either of two determinate angles around
fixed vertices, the positions of the latter and the mag-
nitude of the angles depending on the equal values
[ABCD...]and [A’B'C’D’...] and the positions of the axes.

142. Problem.—If ABC... and A’B'C... be any two
homographic rows of points; to find two points such that
the angles subtended at them by the segments AA’, BB,
etc., joining pairs of corresponding points are equal.

Let E and F be the required points; X, X’ the corre-
spondents of o’ and o« (Art. 139). Since AEA  is a
constant angle, if any point P on L coincides with X,
EP is parallel to the axis L. Similarly if @ and X’
coincide, £Q is parallel to L. Hence the lines £X and
BX’ are equally inclined to L and L', or the angles AXE
and A’X'E are equal.
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Again, the angles subtended at E by any two points 4
and X and their correspondents A’ and o’ are equal
(hyp.); therefore in the two triangles AEX and EA’X’
we also have the angles AXX and £A4’X’equal, and the
triangles are similar. Hence (Euc. VI 4)

AX/XE=EX'|X'A
and FX.EX'=AX. A’ X =const. (Art. 140).
Now in the triangle XXX’ we are given the base XX’
fixed, the difference of base angles and rectangle under
the sides; therefore the vertex E is one or other of two

fixed points & or F, which are obviously the opposite
vertices of a parallelogram with X X" as diagonal.

Cor. 1. The angles AL A, AXF, and A’X'F are equal.

For if A”and X’ coincide, K4 is parallel to L; there-
fore AEA’ is equal to the angle between £X and L or
between FX and L, since X’ and FX are parallel.

Cor. 2. The triangles AEA’, AXF, and EX'A’ arc
similar.

[For by similar triangles A£X and KA’X’ we have
AX|AE=EX'|EA’, but EX'=FX, hence

AX|AE=FX/EA’,

or by alternation AX/XF=AE/EA’; therefore, etc.
(Eue. VL. 6).]

Cor. 8. If O denote the point of intersection of the
axes L and L, the points £ and F are isogonal conjugates
with respect to the variable triangle 044",

[By Cor. 2, FAX=FEAA and FA'X'=EA'A ; there-
fore, ete.]



COROLLARIES. 279

Cor. 4.* The product of the perpendiculars p and p’
frolm Z and F on the variable line A4’ is constant
(pp'=k?). [By Cor. 3.]

Cor. 5% The locus of the intersection of every two
rectangular positions of AA” is a circle the square of
whose radius (p) is given by the equation p?®=2k%+ &,
where 26=LEF.

Cor. 6. A variable line cutting two fixed lines homo-
graphically cuts all positions of itself in a system of
points A"B"C"... such that

[ABCD...]=[A'BCD...]=[A"B"C'D"...].

Draw the directive axis XYZ... of the system as in
figure. Then OX and 0OA”, divide the angle LOL’ of the
quadrilateral PX P’O harmonically (Art. 68). Similarly for
OYand OB".... Hence we have [0.XY...]={0.4"B"...]
Art. 133, Ex. 7. But

[0.XY..]=[P.XY..]=[P.A'B...].
Therefore [A’B'C"...]1=[4"B"C"...].

* These properties respectively may be otherwise stated :—A variable
line A4’ cutting two fixed axes homographically envelopes a conic of
*which Z and F are the foci. The locus of intersection of rectangular
tangents is a circle (the Director Circle).



280 ANHARMONIC SECTION.

Cor. 7. If a variable line meet two fixed circles in a
harmonic row of points, it intersects all positions of itself
homographically.

[For the rectangle under its distances from the centres
of the circles is constant, Art. 78, Ex. 12; therefore, etc,,
Cor. 4.]

CoR. 8. A variable line meeting two fixed circles such
that the chords intercepted by them are in a fixed ratio
cuts all positions of itself homographically.

[By Art. 90, Ex. 8.]

143. If the distances of any point O from four points
4, B, C, D on a line L passing through it be denoted by
a, B, v, =, and the distances of any point O’ measured
along another line L' to A’, B, (", D’ be similarly o, 3,
¥, @, the two systems of points are homographic if

(B=y)a=2)_(8=y)a'~2),
(y=a)(B—2) (y'—d)B'~%)
which when multiplied out is of the form
Axx'+Br+Cr'+D=0,......cc0uuveenn. (1)

an equation which enables us to determine the position
of any point of either system corresponding to a given
one in the other. (See Art. 140, Cor. 3.)

We have seen that the lines joining corresponding
points envelopes a conic touching L and L'. In the par-
ticular case when =00 in (1) the simultaneous value of
#’ is also o, and the corresponding conic is therefore
touched by the line at infinity. It follows obviously that
when 4 =0 in the above equation the conic is a parabola,

Thus if a variable line be drawn cutting the sides a




PARTICULAR CASES. 281

and b of a triangle ABC in X and Y such that
) lAY 4+mBX =const.,

it envelopes o parabola to which the two sides of the
triangle are tangents.

If the axes L and L’ are coincident and B=Cin (1),
and ' are interchangeable in the equation and, as will be
more fully explained in the next chapter, the two systems
are in Involution.

The double points of two systems on a common axis
are found from (1) by putting =2’, in which case the
equation reduces to the form Axz?+(B+C)z+D=0.

EXAMPLES.

1. If the distances of two pairs of collinear points 4, B and ', &'
from an origin O on the line be denoted by the roots of the equa-
tions ax?+2bx+c=0 and a'2?+ 20w+ ¢’ =0, they form a harmonic
row if ac’'+a'c—2bb' =0.

2. Having given two of the anharmonic ratios of four collinear
points equal, prove that

(B=y)Xa— 8+ (y ~)(B~ 87 +(a— By - §)*=0.
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INVOLUTION.

144. When of two systems of points 4, B, C, ...; 4’
B, C, ... on any line or circle any three pairs 4, 4°;
B, B’; C,C" which correspond are connected by a relation
of the form [BCAA'|=[B'("A’A], it has been proved in
Art. 133, Ex. 9, 1°. that every four and their four oppo-
sites are equianharmonic; 2° that 44’, BB, C(", ... have
a common segment of harmonic section,

By Art. 140, Def,, we may therefore regard either of
these properties as a criterion of points in Involution,

Now since [BCA'B']=[B'("AB], by expanding and
reducing we get '

BA' OB AC’ "

GA AR B e
a result previously arrived at in Art. 64, where it was
shown by the application of Ceva’s Theorem that a
straight line drawn across a quadrilateral is cut in involu-
tion; the conjugate points 4, 4’,etc. being the intersections
of the line with the pairs of opposite connectors of the
figure.

Again, if a pencil of six rays be taken and a circlg

described through the vertex cutting the rays in points
282
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4, A’; B, B'; C, (', they form a system in involution if
T snBOA n00F snd0C_, o
sin COA’ sin AOB’ sin BOC’
The criteria (1) and (2) are called Equations of Involu-
tion.

145. It has been noticed in Art. 134, Ex. 10, that when
any two conjugates 4 and 4’ of two homographic systems
are interchangeable, every two are interchangeable, and
AA', BB, CC’... have a common segment or angle of
harmonic section.

It follows that “ when any one point on an axis, or ray
through a vertex, has the same correspondent to which-
ever system it be regarded as belonging, then every point
on the axis or ray through the vertex possesses the same
property.” *

In illustration of this theorem, let the correspondents
be joined in pairs to any point (4”) on the directive axis
of the systems (Art. 137).

Then the corresponding rays 4"B, A" B’ are interchange-
able, their productions through A” being A"C’, 4"C;
therefore

The locus of a point at which two homographic rows
subtend a pencil in involution is their directive axis;
and similarly, or by reciprocation, & variable line meeting
two homographic pencils at a system of points in involu-
tton passes through their directive centre.

146. A system of points in involution on a line is com-
pletely determined when two pairs of its conjugates
A, A’; B, B are given; and the conjugate C’ of any point

* Townsend, Modern Qeometry, vol. ii. p. 276.
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C is its inverse with respect to the circle described with
AB and A’B’ as a pair of inverse segments. '

If the radius of the circle is indefinitely great, one of
the double points (V) is at infinity, and therefore (Art. 72,
Cor. 3) MA=MA’, MB=MB), etc., etc.; that is, if one of
the double points of a system im imvolution is at infinity,
the segments AA', BB, CC'... have a common centre, viz.,
the other double point.

Also a variable segment 4 4’ of constant length moving
along a given axis determines two systems of points in
involution the double points of which are imaginary.

147. Theorem.—If two chords AA’, BB’ of « circle
meet in C, any line through C which meets the circle in
0 and O determines a system of points A, A’; B, B,
0, O’ in involution.

Let AB and 00" meet in Z (Art. 64, 1v. fig.). Then
the pencil B. AB’O0’ is equianharmonic with the row of
points ZCOOQ' it determines on the transversal to it
through €. For a similar reason

[ZC00=A4 . BA'00'=[4'BO'0],

from which relation it follows that every four of the six
cyclic points and their four opposites are equianharmonic.

The concurrency of the chords AA4’, BB, 00, being
involved in this relation, furnishes a geometrical explana-
tion of the theorem of Art. 133, Ex. 9 (1).

The following generalized statement is a direct inference
of the preceding :—

If through any point P,.inside or outside a circle (or

conic) a mumber of chords be drawn to cut the curve ine
A, 4", B,B; C,C, ..., the two systems ABC ..., A’'B'C"...
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are in involution, and (Art. 64, IIL) the polar of P
meets the circle in the double points, real or imaginary.*

EXAMPLES.

1. A variable line passing through either centre of similitude of
two circles cuts them in four equianharmonic systems of points.

2. A variable circle cutting two given ones at equal or supple-
mental angles divides them equianharmonically.

3. If two circles V3, V; cut two others at the same angles o and 8

in the points 4, B, 0, D and 4', B!, C', IV, prove that
[ABCD)=[4'B'C' D).+

[44', BB, CC', DD’ are concurrent at the external centre of
similitude of V3, V. Cf. Art. 113, Ex. 12.]

4. More generally for any number of circles 17y, Vs, ... V,, prove
that [AA'A"..}=[BBD"..]=[CC'C"...]=[DD'D"...].

5. In Ex. 3, if the angles a and S are right, the anharmonic
ratio of the four points of intersection of the variable circle is equal
to that of the four points on their common diameter.

6. If two triangles ABC, A'B'C" inscribed in the same circle are
in perspective at 0, and from any point 2 on the circle lines P’
P’B', PC'are drawn meeting the sides of 48C in Y, ¥, Z, the points
X, Y, Z, O are collinear.

[The Pascal hexagons PB'BACC', PC'CBAA', PA'ACBB have
Y0Z, Z0X, X0Y as Pascal lines; therefore, etc.]

7. If P denote the point on the circle corresponding to P in the
perspective, and the lines P'4, P'B, P'(' meet the sides of 4'B'C" in
X, Y, Z,1°. X', ¥, Z' are collinear with X, ¥, Z and the six
points are in involution ; 2°. [XYZ0]=[X'Y'Z'0].

(Townsend, vol. ii. p. 208.)

* When the point is outside its polar cuts the circle in real points M
and N which divide 44’, BB’, CC'... harmonically, and are therefore
the double points of the involution 4BC ..., 4A'B'C’ ....

+ It follows directly that the anharmonic ratio of four points on a

ircle is unaltered by inversion; the circle of inversion in this case
seing either circle of antisimilitude of V; and V,.
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8. A variable circle cutting three fixed circles at equal or similar.
angles determines six homographic systems of points on the circles.

[Take two positions of the variable circles cutting the given ones
at equal angles a and 3 respectively ; then each of the given ones
cuts a coaxal system (Art. 114, Ex. 10) at the same angles a and 3 ;
therefore, etc. It is evident that the three pairs of double points
of the homographic systems on each circle are the points of contact
of the corresponding circles of contact.]

9. Describe a circle touching three given ones with contacts of
assigned species. [By Ex. 7.]

10. Describe a circle passing through a fixed point and cutting
two given arcs on each of two circles equianharmonically.

11. Describe a circle cutting three pairs of arcs on three given
circles equianharmonically.

12. The line joining the centres of perspective of any two chords
of a circle is divided harmonically both by the circle and the
chords.

13. Equal arcs of a circle are divided equianharmonically by the
two circular points at infinity.

DESARGUES’ THEOREM.

148. Any tramsversal to a cyclic quadrilateral A BCD
meets the three pairs of opposite connectors BC und A D,

ete., ete, in X, X', Y, Y'; Z,Z' and the circle in Wande
W’ in eight points im involution.



DESARGUES’ THEOREM. 287

For the pencils B. ADWW’and ¢. ADWW’ are equal,
and therefore [ZYWW N=[YZWW =[ZYW W], or
the two triads Y, Z, W; Y’, Z, W’ are in involution.

Again, because C.BDWW’'= A.BDWW it follows
similarly that Z, X, W and Z’, X’, W’ are in involution;

and since A .CDWW'=B.CDWW’, X, Y, Wand X', Y,
W’ are in involution ; therefore, ete., Art. 144.

Cor. 1. By reciprocation with respect to the given
circle we obtain the correlative theorem :—

For any escribed quadrilateral the lines joining any
point P to the three pairs of opposite intersections X, X';
Y,Y% Z, Z" and the pair of tangents PW, PW’ are in
inwvolution.

Cor. 2. By reciprocation from any origin it follows
that the theorem and Cor. 1 are more generally true for a
quadrilateral inscribed or escribed to conic.

Cor. 3. In the particular case when a pair of opposite
sides of a cyclic quadrilateral, or one inscribed in a conie,
coincide, the remaining pair become tangents, and the

transversal (L) meets their chord of contact in a double
point. :
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Also the line (M) passing through their point of inter-
section, which is therefore a double point, is ‘divided
harmonically ; i.e. A wvariable chord of a conic passing
through a fixed point is divided harmonically by the
point and its polar.

Cor. 4. When the transversal (V) is a tangent to the
conic, the points of contact (WW’) and (YY”) are the
double points.

Cor. 5. As a particular case of Cor. 4, let the transversal
be parallel to the chord of contact. Then one of the
double points (YY) is at infinity, and the other is there-

fore the middle point of XX, hence we have the following
property :—

The chord of contact of two parallel tangents (i.e a
diameter) bisects every parallel chord of the conic, or the
locus of the middle points of parallel chords of a conic is
a right line.

Cor. 6. Since a parabola touches the line at infinity
(Art. 81) and the chord of contact of any tangent and the
line at infinity is a diameter, any chord (W W’) of a para«
bola meets a tangent at a point X, which is the centric,
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and the diameter through its point of contact at a double
point (¥'Y”) of the involution. Hence also
XW.XW=XY?

or by drawing the ordinates WP, W'P’,
OP.0OP =0Y~
Cor. 7. Since the asymptotes of a hyperbola and the

line at infinity are a particular case of a quadrilateral
inscribed in a conic, any transversal WW’ is divided

stmilarly at X and X', because one of the double points
(YY) is at infinity. The other double point is therefore
the middle point of WW’, and the intercepts WX and
WX’ between the curve and the asymptotes are equal.
Also, the portion of any tangent to a hyperbola inter-
cepted by the asymptotes is bisected at the point of contact.
T
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Cor. 8. If the point P in Cor. 1 is such that two pairs
of opposite connectors PX, PX’; PY, PY’ are at right
angles, the tangents from P to the circle are likewise at
right angles. But the circle reciprocates from P as origin
into an equilateral hyperbola ; therefore if an equilateral
Lyperbola be circumseribed to a triangle, it passes
through the orthocentre.

More generally, if an equilateral hyperbola be described
about « quadrilateral, it passes through the ovthocentre of
the four triangles formed by taking the vertices in triads.

The property of Art. 68, Ex. 8, will now appear obvious.

It follows also that the locus of the centres of equilateral
Lyperbolas described about « triangle is its nine-points-
cirele.

Cor. 9. If the sides of the quadrilateral be numbered
1, 2, 3, 4, and the perpendiculars from Wand W’ on them

be denoted by py, Py Py Ps5 s 9o 95 9o SiNCE
[(WWXX=[WWYY=[WWZZ],

WX Wz WZI WX
and therefore WX WISWZ WX ete, ete,,
PePs_P1Ps;
Q9% N9,

hence p,p,/p;p, is of constant value for all points on the
conic, or the locus of a poimt such that the products of the
perpendiculars from it to the three puirs of opposite sides
of a quadrilateral have constant ratios is a conic passing
through its vertices; and by reciprocation we derive the
correlative theorem:—If a quadrilateral is circumscribed

we have
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of opposite vertices from a variable tangent have are to
.
each ofher in constant ratios.*

Cor. 10. If either asymptote of a hyperbola be taken
as a transversal to an inseribed quadrilateral, the double
points of the involution are both at infinity, and the seg-
ments XX', YY’, ZZ have a common middle point;
therefore the lines joining a variable point on a hyper-
bola to a pair of fixzed points on it intercept segments of
constunt length on each of the usymptotes.

This property is thus stated in Townsend’s Modern
Geometry, Art. 340 :—

“For cvery two homographic pencils of rays through
different vertices there exist two lines, real or imaginary,
on cach of which the several pairs of corresponding rays
intercept cqual segments.”

EXAMPLES.

1. A pencil whose rays are parallel to the three pairs of opposite
connectors of a quadrilateral determines a system in involution.

[Since the line at infinity is a transversal cut in involution by the
sides of the quadrilateral ; therefore, ete.]

2. The three pairs of parallels drawn through the vertices and
the extremities of the third diagonal of a quadrilateral cut any
transversal in a system of points in involution.

3. If the fourth vertex D of the quadrilateral ABCD is the ortho-
centre of ABC, prove the following particular case of th® general
theorem of Art. 148 :—For any pencil of rays n involution, if two
pairs of conjugates are at right angles, then all pairs of conjugates are
at right angles.

4. Hence deduce “The circles on the diagonals of a complete

quadrilateral are coaxal.”
[

* Chasles, Sectiones coniques, Art, 26,
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5. Any line or circle intersects a coaxal system at points in
involution. *

6. The parallels through any point to the sides of a triangle and
the lines connecting that point to the vertices form an involution.

7. Every two circles and their two centres of perspective subtend
at any point a pencil in involutidn.

8. For every two self-reciprocal triangles with respect to the
same circle any two vertices connect equianharmonically with the
remaining four.



CHAPTER XIV.

DOUBLE POINTS.

149. The solutions of a large number of problems of
every variety in Geometry are frequently made to depend
on the finding of the double points of two homographic
systems. On account of the great importance of these
points various constructions have been given for them.
Thus in the last corollary they are easily found when we
have obtained the points whose conjugates are at infinity
on the axis by the equations

XA4.XA=XM.XM=XN.X'N.
We give in the following article two additional construc-
tions for homographic rows on an axis and append a
sufficient number of examples, some of which have
apparently no connexion with our present subject, to
enable the student to form an idea of their extensive
applications.

150. For any two systems of points on a circle (Art. 67,
Ex. 6) the -pairs of lines BC', BC; CA', C'A; AB, A’'B
intersect respectively in points X, Y, Z, which are col-
linear; and the line of collinearity meets the circle in
jpoints M and N, real or imaginary, given by the equations

[ABCM]=[A'BCM] aégg [ABCN]=[A'B'C'N].
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But since the anharmonic ratios are unaltered by
inversion, if the origin O be taken on the circle, the cyclic
system inverts into points lying on a line and the double
points of the former invert into the double points of the
latter system.

Hence the following construction for the double points
of two homographic systems 4BC... and A’B'C’"... on a
line.

Take any arbitrary point O and describe the circles
BOC’, BOC meeting again in X ; CO4’, C'OA in Y'; and
AOB, A’OB in Z. Then O, X, Y, Z lie on a circle which
meets the axis in the required points M and N, real or
imaginary. (Chasles.)

Otherwise thus:—Since [BCAM |=[B'C"A’M], we have

BA /BM _BA" [B'M
4 "UT&FUX"/ oM
which gives on reduction the ratios MB. MC'/MB'. MC, a
known quantity.

But the numerator and denominator are respectively
the squares of the tangents from M to the circles described
on the segments BC” and B’C as diameters ; therefore, etc.,
by Art. 88, Cor. 2.

It should be noticed that two homographic systems
whose double points are ¢maginary may be generated by
the revolution of a constant angle about either of two
fixed vertices which are reflexions of one another with
respect to the axis. For if A4’, BF, and CC’ subtend
equal angles at a point P (Art 72, Cor. 8), then

DPD'=APA’=ctc.,
since [ABCD ...]=[4’BC'D’...].
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ExAMPLES.

1. Through a given point 2> draw a line meeting two given lines
L and Z' divided homographically in corresponding points A, 7.

[Join PA, PB, PC,and let these lines meet the axis L' in 4", B”, (",
then ABC...=A"B"C"... since the systems are in perspective at P,
therefore A"B'C"...=A'B'C"..., and if any point of either coincides
with its correspondents of the other, what is required is done;
hence lines joining P to the double points of these systems give the
two solutions of the problém.]

2. Draw a line through a point P cutting four lines L, L., L, L,
in a row of points 4, B, C, D having a given anharmonic ratio £.

[Take points A, sy dj, ... on the axis L, and draw lines cutting
the remaining axes in systems of points such that

AlBlC'll)l “es =AngG_,D2 ces =A3B303D3 e o

The angle L, L, is thus divided homographically by the pairs of rays
through 01, Dl; (jz, DJ, 03, D;; cery (:‘tC., and the systomo (AN AN AR,
D1DyDs ... ave therefore equianharmonic.* Join PCy, PCy PG, ...,
and let the joining lines meet Ly in Dy', Dy, Dy, .... It follows, as
in Ex. 1, that DyD.D5...=D/D:; Dy ..., and the lines joining their
double points to £ are those required.]

3. Draw a line intersecting five lines such that the anharmonic

ratio of any four of the points of intersection is equal to that of any
other four.

4. Given two homographic pencils, find the pairs of corresponding
rays which intersect on a given line L.

[Let the line meet the pencils in points A BC, A'B'C’; the required
rays therefore pass through the double points of the homographic
rows so determined.)

5. In Ex. 4 find the pair of corresponding rays which intersect
at a given angle.

[Join the vertices O and O’ of the pencils, and on OO0 describe a
segment of a circle containing the given angle ; let this circle cut
the pencils in the points ABC..., 4’B'C"..., and find the double
points of these homographic systems ; therefore, ete.]

* This is otherwise evident as all the lines touch the same conic.
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6. Find the direction of the parallel rays; and hence draw a
transversal to two homographic pencils which shall be:divided
similarly by them.

7. Find two points on a given line which shall be isogonal conju-
gates with respect to a given triangle.

8. Construct a triangle with its sides passing through given
points and its vertices on given lines, or on a circle.

9. Let the line L joining the vertices of two homographic pencils
regarded as a ray of each system have for conjugates L, and L ;
prove that any transversal through the point L, L, is cut in involu-
tion (cf. Art. 145).

10. Through a given point P draw a line intersecting five lines in
the points 4, A'; B, B'; P in any assigned order forming with P an
involution.

[Let the lines containing 4, B meet in O ; those containing 4', B'
in 0. Since (hyp) N ABPP'— Q. ABP'P—0. BA'DPP and the
pairs of rays which correspond OB, O'B’; OB, (A’ are fixed ;
therefore the variable rays OP’ and O'P’ divide the fifth line L
homographically and the double points give the required solutions.]

11. Find a point on a given line such that if joined to five given
points any two pairs of connectors shall be in involution with the
line and fifth.

12. Describe a circle touching three circles with contacts of
assigned species.
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