Index der Krystallformen der Mineralien

Dr. Victor Goldschmidt.

Index

der

Krystallformen der Mineralien.

Von

Dr. Victor Goldschmidt.

In drei Bänden.

Erster Band.

Springer-Verlag Berlin Heidelberg GmbH 1886

ISBN 978-3-662-27109-4 ISBN 978-3-662-28591-6 (eBook) DOI 10.1007/978-3-662-28591-6 Additional material to this book can be downloaded from http://extras.springer.com

Seinem

verehrten ersten Lehrer der Mineralogie

Herrn Bergrath und Professor

Dr. Albin Weisbach

in Dankbarkeit und Freundschaft

gewidmet

vom

Verfasser.

Vorwort.

Indem ich den ersten Band des "Index der Krystallformen" nunmehr vollendet der Oeffentlichkeit übergebe, möchte ich einen Punkt besonders hervorheben, in dem ich theilweise dem Widerspruch der Fachgenossen begegnet bin, was ich auch wohl erwartete. Er betrifft die häufig von dem Ueblichen abweichende Aufstellung der Krystalle. Bei der Beurtheilung wolle man auf die S. 37-39 dargelegten Principien Rücksicht nehmen und erst sie, dann ihre Consequenzen auf ihre Haltbarkeit prüfen. Der Unterschied besteht meist in der Vertauschung zweier Axen, in der Regel der A- und C- resp. P- und Q-Axe. Es möge noch betont werden, dass durch diese Abänderung eine Herabziehung der Verwendbarkeit des Index nicht stattfindet, da sich die Umwandlung der Elemente und Symbole für diesen Fall sehr einfach ausführt. Es vertauschen nur a und c, p und r, α und γ , λ und ν ihre Stelle. Alle Identificationen und Transformationen bleiben und es erübrigt nur für den, der die andere Aufstellung vorzieht, die Elemente zu verändern und in eine zuzufügende letzte Columne die von ihm gewählten Symbole einzutragen.

In Bezug auf die Literatur sei bemerkt, dass ich erst vom Jahr 1850 an die verschiedenen Specialarbeiten möglichst vollzählig in Bezug auf beobachtete Formen auszuziehen gesucht habe. Das Aeltere glaubte ich durch die zusammenfassenden Werke von Hauy, Mohs, Hartmann, Lévy, Zippe, Hausmann, Miller, Des Cloizeaux, Dana, Schrauf genügend gesichert. Durch diese Beschränkung ist eine wesentliche Entlastung für die an sich gewaltige Arbeit eingetreten. In der Hauptsache hat sich obige Annahme bestätigt und dürfte sachlich nur weniges dadurch der Aufnahme entgangen sein. Es schien aber besser, das sich etwa als fehlend Herausstellende durch Nachträge einzubringen, als die Fertigstellung des Gesammtwerkes zu verzögern.

VI Vorwort.

Die Ausstattung des Werkes darf wohl eine besonders schöne genannt werden. Dass eine solche erreicht wurde, verdanke ich meinem vortrefflichen Verleger, aber zugleich auch dem Zusammenwirken mit der bewährten W. Gronau'schen Officin in Berlin. Durch sie und besonders durch ihren tüchtigen Factor, Herrn R. Voigt, war es möglich, die bedeutenden typographischen Schwierigkeiten zu überwinden, welche sich sowohl in der Beschaffung der sehr wechselnden Typen, die theilweise neu geschnitten und gegossen werden mussten, als auch im Aufbau des Satzes, namentlich der complicirten Tabellen geltend machten.

Zu besonderem Dank bin ich meinem Freund Herrn Dr. A. Brezina verpflichtet, aus dessen Vorlesung über Krystallberechnung ich mancherlei Anregung geschöpft und mit dem ich viele dies Werk betreffende Fragen eingehend besprochen habe. Seine Bemerkungen sind demselben in hohem Maasse zu Statten gekommen. Ebenso verdankt das Werk in formeller, wie in sachlicher Hinsicht Vieles der liebenswürdigen Unterstützung meines Freundes Herrn Baron von Foullon bei Gelegenheit der Revision.

Zum Schlusse möchte ich nicht versäumen, dies Werk der freundlichen Aufnahme der Fachgenossen zu empfehlen.

Wien, August 1886.

Dr. Victor Goldschmidt.

Inhalt des ersten Bandes.

	Seite.
Vorwort	. v
Inhalts-Verzeichniss	. VII
Einleitung	1—156
Zweck der Arbeit	
Kräfte, Symbole, Projection.	
Grundform und Primärform	_
Polarform	
Combinationen, Symmetrie, Holoedrie, Centraldistanz	
Polare Flächensymbole	
Polar-Projection	. 11
Rationalität der Krafttheilung	
Polar-Elemente	. 14
Linear-Projection	
Wahl der Projections-Ebene für die Linear-Projection	
Lineare Flächensymbole	
Linear-Elemente	
Benennung der Zonen	. 20
Symbolisirung der Kanten (Zonen)	
Ableitung des linearen und polaren Kantensymbols (Zonensymbol)	
Zonensymbole. Specialfälle	
Symbole der Gesammtformen, der Theilformen, der Einzelflächen	•
Reguläres System	. 25 . 27
Rhombisches System	. 27
Monoklines System	. 28
Triklines System	. 28
Hexagonales System	. 29
Allgemeines Symbol	. 30
Meroedrien	-
Einzelflächen	
Symbole G_1 und G_2 . Umwandlung derselben Berechnung von p_o a_o und a_o' aus dem Axenverhältniss $a:$	
between a_0 und a_0 and a_0 are demonstrations a_0 :	c 33

Seite
Aufstellung, Umwandlung, Transformation.
Aufstellung der Krystalle
Symbole anderer Autoren
Elemente anderer Autoren. Synonymik der Axen 41
Umrechnung der Elemente
Umwandlung der Symbole
Miller-Symbole
Naumann-Symbole
Dana-Symbole
Weiss-Symbole
Bravais-Symbole (Hexagonales System) 49
Lévy-Des Cloizeaux-Symbole 50-53
Mohs-Symbole
Princip der Ableitung in Mohs' Symbolen 56
Haidinger-Symbole
Hausmann-Symbole
Schrauf-Symbole (Hexagonales System)
Umrechnung der Elemente 69
Miller
Mohs-Haidinger-Hausmann 67
Des Cloizeaux
Bemerkungen zur Umrechnung der Elemente 69
Lévy
Tabellen zur Umrechnung der Elemente:
Tab. I. Hexagonales System. Bestimmung des verticalen Parameters
cpo = c für Pyramiden (Rhomboeder) der Hauptreihe po
aus deren Neigung δ zur Basis
Tab. II. Hexagonales System. Bestimmung der Elemente c ₁₀ und p _o aus dem äusseren Rhomboeder-Winkel 21
aus dem ausseren knomboeder winner zu ver ver
Berechnung der polaren aus den linearen Elementen.
Allgemeiner Fall (Triklines System).
Ableitung der Formeln
Schema
Beispiel
Specialfälle: Andere Krystallsysteme
Berechnung der linearen aus den polaren Elementen.
·
Allgemeiner Fall (Triklines System).
Formeln
Beispiel

Transformation.	Seite.
Transformations-Symbol	87
Transformations-Gleichungen	88
Reciprokes Transformations-Symbol (Gegensymbol)	88
Ableitung des Transformations-Symbols. Veränderung der Elemente	89
 1. Aus gegebener Aenderung der Aufstellung: a. Vertauschung der Axen 	89
b. Vergrösserung der Axen-Einheiten	90
c. Verlegung der Basis	90
2. Aus der Identification von Symbolen beider Aufstellungen (A) und (B)	91
Ableitungs-Formeln für das Transformations-Symbol	93
Specialfall. Monoklines System. Verlegung der Basis	96
Veränderung der Elemente auf Grund des Transformations-Symbols	96
Vorzeichen von n	97
Vertauschung der Axenzone mit der Haupt-Radialzone	99
Einiges aus der Krystallberechnung	101
Berechnung der Elemente aus Messungen.	
Triklines System	102
Monoklines System	104
Rhombisches System	106
Tetragonales System	109
Hexagonales System	110
Zonenformel.	
Allgemeiner Fall	113
Auswerthung der Zonenformel. Gedächtnissregel	114
Zonenformel. Hexagonales System	115
" Prismenzone	116
" Specialfall	117
Umkehrung der Zonenformel	118
Controle durch Rückwärts-Rechnung	119
Einige wichtigere Formeln.	
Allgemeiner Fall. Triklines System	120
Dreiecks-Auflösungen.	
Schiefwinkliges Dreieck	122
Rechtwinkliges Dreieck	125
Rechtseitiges Dreieck	125
Hilfs-Tabellen.	·
Tab. III. Wirkliche Sinus, Cosinus, Tangenten, Cotangenten	126
, , , =	120
Tab. IV. Sehnen $\left(s = 2 \sin \frac{\alpha}{2}\right) \dots \dots$	129
Buchstabenbezeichnung	131
Buchstaben im regulären System	138
Reguläres System. Vorkommen der Symbole	139
Wahl neuer Buchstaben	140
Hexagonales System. Rhomboedrische Hemiedrie. Buchstaben	141
Buchstabenbezeichnung der Einzelflächen	142
bei Viellingen	144

							Seite.
Anordnung der Formen in den Tabellen							145
Freie und influenzirte Formen							146
Typische und vicinale Formen							147
Echte Flächen und Scheinflächen							149
Literatur.							
Systematisch excerpirte Werke							150
Theilweise benutzte Werke							151
Literatur betreffend Umwandlung und Transformation	der	9	Sy	mł	ool	e	152
Zahlen in den Literatur-Citaten							152
Bemerkungen zur Literatur			•				153
Abschluss des Werkes			•				153
Namen und Reihenfolge der Mineralien							153
Vertheilung des Inhalts auf den Blättern							154
Abkürzung der Autoren-Namen							155
Correcturen			•			•	156
Index.							
Abichit bis Euxenit			•	•	1	59	-592
Correcturen und Nachträge			_	_	-	:03	601

Zweck der Arbeit.

Haupt-Aufgabe der Krystallographie ist die Ergründung des molekularen Aufbaues der festen Körper und die Ermittelung der Intensität und Wirkungsweise der molekularen Kräfte. Eines der Mittel, um der Lösung dieser Aufgabe näher zu kommen, ist die Untersuchung der Krystallgestalten und zwar auf zweierlei Weise:

- Durch Aufsuchung der Beziehungen aller (beobachteten) Formen desselben Körpers unter sich. Die Ableitung gewisser Einheiten und Gesetzmässigkeiten,
- 2. Durch Vergleichung mehrerer und schliesslich aller krystallisirten Körper unter einander in Bezug auf die gewonnenen Einheiten und Gesetzmässigkeiten.

Für die ersteren Untersuchungen ist es erforderlich, die beobachteten Formen durch geeignete Symbole auszudrücken, die durch Zahlenverhältnisse die Lage jeder Form charakterisiren und diese Symbole zum Zweck der Uebersicht in Tabellen zu ordnen, andererseits durch Abbildung (Projection) das gleichzeitige Anschauen des Bekannten zu ermöglichen.

Am vollständigsten wird der Zweck erreicht, wenn man die Vortheile beider Arten der Erkenntniss verbindet, d. h. mit Tabellen und Projection gleichzeitig vorgeht. Symbole und Projection müssen dann in engster Beziehung zu einander stehen, so dass man aus beiden, gewissermassen nur in verschiedener Schrift, dasselbe herausliest, mit anderen Worten, so, dass die Projection der unmittelbare graphische Ausdruck des Symbols, das Symbol der Zahlen-Ausdruck des Projectionsbildes ist.

In den jetzigen Methoden ist dies nur unvollständig erreicht und mussten, um den Einklang herzustellen, gewisse Abänderungen an Symbolen und Projectionsarten vorgenommen werden. Es wurden die verschiedenen Projectionsmethoden betrachtet und dabei gefunden, dass vier derselben zu Goldschmidt, Index.

krystallographischen Untersuchungen verwendbar sind. Zwei von diesen Arten bilden die Flächen als Punkte ab (Polar-Projectionen), zwei als Linien (Linear-Projectionen); die Polar- wie die Linear-Projectionen können wiederum mit geraden Linien oder mit Kreisbögen arbeiten. Bei der Discussion der Verwendbarkeit der verschiedenen Arten ergab sich, dass jede für gewisse Fälle Vofzüge vor den andern hat, dass sich also die gleichzeitige oder abwechselnde Benutzung aller vier Arten als das Beste erweist. Um aber gleichzeitig mit mehreren Projectionsarten operiren zu können, war es nöthig, die graphische Ueberführung der einen in die andere zu ermöglichen. Zu diesem Zweck wurden die Beziehungen der vier Arten unter sich aufgesucht und ergaben sich in der That als höchst einfache und elegante.

Die Symbolisirung der Flächen und Kanten (Zonen) wurde den beiden geradlinigen Projectionsarten angeschlossen und zwar nach folgendem Princip. Die aufgestellten neuen Symbole bestehen jedesmal aus zwei ganzen oder gebrochenen Zahlen p q resp. a b, die, im zugehörigen Einheitsmass als Coordinaten aufgetragen, zu dem Projectionspunkt der Fläche resp. Kante führen, andererseits als Parameter die zwei Schnittpunkte der geraden Zonen- resp. Flächenlinie mit den Axen der Projection angeben. So erhalten wir vier Arten von Symbolen, je nach der Art der Projection, mit der wir arbeiten, nämlich polare Flächen- und Zonen- (Kanten-) Symbole, sowie lineare Flächen- und Kanten- (Zonen-) Symbole. Die erste Art ist von hervorragender Wichtigkeit und, wenn im Folgenden kurzweg von Symbolen gesprochen wird, sind die polaren Flächensymbole p q gemeint.

Es zeigte sich ferner, dass bei richtiger Wahl der Projections-Ebene die neuen Symbole in engster Beziehung stehen zu den üblichen, besonders den Whewell-Grassmann-Miller'schen, dass sie in Bezug auf Einfachheit und Uebersichtlichkeit hinter keiner Art derselben zurückstehen, ja sie darin übertreffen, und dass sie eben durch ihre Beziehung zur Projection eine Reihe von Vortheilen vor allen andern gewähren, die ihre Einführung empfehlenswerth machen.

Aus der Untersuchung der Projectionen (besonders der gnomonischen) mit Anschluss an die Symbolisirung ergab sich eine Reihe von graphischen Lösungen krystallographischer Aufgaben, die zu einem Entwurf einer graphischen Krystallberechnung zusammengefasst wurden.

Auch die Elemente, die der Krystallberechnung zu Grunde gelegt zu werden pflegen, mussten eine Veränderung erfahren. Sie sollen, um sich dem aufgestellten System anzuschliessen, zugleich die Einheiten der Symbole sowie der Projection sein. So erhalten wir, wie später ausführlich entwickelt wird, die Elemente p_0 q_0 $(r_0 = 1)$ λ u ν für die polaren Symbole und die zugehörige gnomonische Projection. Zum Zweck der Lösung graphischer

Aufgaben treten dazu noch drei Hilfswerthe: x_0 y_0 h, die die Lage des Ausgangspunktes (O) der Projection zu dem Krystallmittelpunkt festlegen. Alle zusammen sind als Polar-Elemente oder Elemente der Polar-Projection bezeichnet worden. Sie bilden zugleich die Unterlage für die stereographische Projection.

Der Linear-Projection und zwar der geradlinigen, sowie derjenigen mit Kreislinien als Repräsentanten der Flächen, die ich als cyklographische bezeichnen will, liegen andere Elemente zu Grunde, die sich von den üblichen krystallographischen Elementen nur dadurch unterscheiden, dass nicht b resp. a sondern c=1 gesetzt ist. Es wurden für sie die Buchstaben gewählt a_0 b_0 $(c_0=1)$ α β γ und treten als Ergänzung zum Zweck graphischer Lösungen dazu die Hilfswerthe x_0' y_0' k. Ich habe diese als Linear-Elemente oder Elemente der Linear-Projection bezeichnet.

Mit Hilfe der neuen Symbole und Einheiten gelingt es leicht, exakte Projectionsbilder herzustellen und wurde nun die Anfertigung des idealen Projectionsbildes aller beobachteten Formen für die formenreichsten Mineralien der verschiedenen Systeme unternommen, und zwar zunächst für Pyrit, Bleiglanz, Wulfenit, Calcit, Quarz, Eisenglanz, Rothgiltigerz, Zinnober, Bournonit, Epidot, sowie für die drei Mineralien der Humit-Gruppe unter Eintragung der wichtigsten Zonenlinien.

Aus den Projectionsbildern und den zugehörigen Zahlenreihen der Tabellen leuchteten Gesetzmässigkeiten hervor und zwar neben solchen, die ihren Ausdruck finden in den Symmetrieverhältnissen, noch weitere, die gemeinsam und unabhängig von dem System allen Krystallen anzugehören scheinen. Letztere sind von besonderem Interesse, denn sie können zum Schlüssel werden für die Erforschung der genetischen Verhältnisse und für die deduktive Entwickelung der Formenreihen.

Es treten hinzu spezielle Eigenthümlichkeiten in der Vertheilung der Formen für die einzelnen Mineralien, die diesen ihren formellen Charakter verleihen und es ist die Möglichkeit gegeben, das aus der Gesammtheit der Formen hervortretende Charakteristische in Abstraktionen (Begriffe) zusammenzufassen, bei den verschiedenen Krystallen zu vergleichen und neben die physikalischen Charaktere zu halten. Daraus ergeben sich Analogien, die zu Gesetzen führen.

Die reichste Quelle für die Erforschung der Beziehungen der Formen floss aus dem hexagonalen System, einmal wegen des ausserordentlichen Formenreichthums einiger hierher gehöriger Mineralien und dann wegen des eigenartigen Eingreifens der Symmetriewirkungen. Es musste daher das hexagonale System Gegenstand einer besonderen Diskussion sein.

Durch die neue Symbolisirung wurde eine einheitliche Behandlung der hexagonalen Formenreihen von holoedrischem und rhomboedrischem Typus

ermöglicht und eine Discussion der Zahlen zeigte die volle Uebereinstimmung dieses Systems mit den übrigen und seine Eigenart nur bedingt durch die Eigenart der Symmetrie. Eben diese Discussion der Zahlen führte zur Annahme excentrischer Pole und gab damit die Anlehnung zunächst an das monokline System.

Unter Zugrundelegung einer Hypothese war es möglich, Einblicke zu thun in die genetische Entwickelung der Formenreihen. Das Meiste zeigten wiederum die Formen des hexagonalen Systems und soll das Gefundene an Beispielen aus demselben dargelegt werden unter Zuziehung der Bestätigung aus den anderen Systemen. Recht viel Interessantes gewährte die Untersuchung der Formen der Humitgruppe (Humit, Klinohumit, Chondrodit) und sollen deshalb auch diese eine spezielle Betrachtung finden.

Nachdem bei der Abbildung und Discussion der Formenreihen einzelner Mineralien sich manches für diese als gemeinsam giltig herausgestellt hatte, entstand die Frage, ob die Ausdehnung der Schlüsse auf alle Mineralien gestattet sei, oder ob nicht die Vergleichung mit den Beobachtungen an anderen als den betrachteten Mineralien eine Widerlegung brächte. Um hierin sicher zu gehen oder wenigstens die Kontrole vornehmen zu können, entschloss ich mich dazu, alle bekannt gewordenen Formen sämmtlicher Mineralien aus der bestehenden Literatur zusammenzutragen und zu einem Index zu vereinigen, ein Unternehmen, das nun nach dreijähriger Arbeit zum Abschluss gelangt ist.

Dieser Index soll von den im Vorhergehenden angedeuteten Untersuchungen als Erstes zur Publikation gelangen, während die anderen, die mit ihm im engsten Zusammenhang stehen und ebenfalls dem Abschluss nahe sind, baldigst folgen werden.

Kräfte, Symbole, Projection.

Grundform und Primärform. In dem Wort Grundform sind bis jetzt zwei Begriffe enthalten, die sich nur theilweise decken. Der erste Begriff ist ein rein formeller; er umschliesst die Form, welche die Unterlage der Formbeschreibung und Symbolisirung bildet. Wir wollen für diesen Begriff den Namen Grundform festhalten. Zur Zeit ist es üblich, im Anschluss an C. S. Weiss und F. Mohs als Grundform die Pyramide (111) = P zu wählen. Lévy nahm das Prisma m (110) = ∞ P. In dem vorliegenden Werke wurde als Grundform der Pinakoidalkörper gesetzt, d. h. die Form, welche sich zusammensetzt aus den drei Pinakoiden (∞ 1) (∞ 1), und darauf Symbole und Projection basirt.

Bei der Discussion der Formenreihen zeigt es sich, dass die Entwickelung derselben von ganz bestimmten Flächen ihren Ausgang nimmt. Häufig sind es die Pinakoide, häufig auch ist es eine andere Form. Diese Ausgangsform der genetischen Ableitung bildet den zweiten Begriff, der in dem Wort Grundform enthalten ist. Wir wollen für diesen Begriff ein neues Wort wählen und die Form, auf die er sich bezieht, Primärform nennen. So ist für den Calcit, wie für das hexagonale System überhaupt, Grundform ein Prisma mit der Basis, Primärform dagegen das Spaltungs-Rhomboeder.

Da die Primärform bei verschiedenen Substanzen gleicher Symmetrie sich ändert, ja möglicherweise für dieselbe Substanz als veränderlich gedacht werden kann (Wechsel im Habitus), so empfiehlt es sich nicht, die Symbolik an sie anzuschliessen, sondern an die Grundform. Das schliesst nicht aus, dass eine (gewissermassen locale) Symbolisirung nach den speciellen Entwickelungsverhältnissen eines Minerals nebenher laufen könne. Eine solche soll an einigen Beispielen versucht werden und gehört dahin schon z. B. die bei hexagonalen Mineralien im Index beigefügte Reihe $E = \frac{p-1}{3} \frac{q-1}{3}$.

Um die allgemeinen Beziehungen zwischen Kräften, Symbol und Projection abzuleiten, wurde in der Einleitung angenommen, dass, was ja auch der häufigste Fall sein dürfte, beide Begriffe, Grundform und Primärform, sich decken, d. h. dass die Reihenentwickelung von den Pinaköiden ihren Ausgang nehme. Das vereinfacht alle Darlegungen und es kann nachträglich die Trennung beider Begriffe leicht vollzogen werden. Es wäre also hier gleich-

giltig, ob wir von Grundform oder Primärform redeten. Wir haben letzteres Wort verwendet, da wo genetische Beziehungen dargelegt wurden, mit denen die Grundform als rein formell nichts zu thun hat. Die Gestalt allerdings, die hier ständig herbeigezogen ist, auf der Symbolik und Projection beruhen, ist die Grundform, nicht die Primärform. Wo rein formelle Beziehungen erörtert werden, tritt auch wohl das Wort Grundform auf. Hauy's forme primitive ist Primärform, diejenige von Lévy Grundform.

Wir wollen, um Beziehungen zu gewinnen zwischen Krystallform und krystallbauender Kraft, ausgehen von folgendem hypothetischen Satz:

Jede Fläche ist krystallonomisch möglich, die senkrecht steht auf einer Molekular-Attraktions-Richtung,

ohne an dieser Stelle eine genetische Begründung desselben zu versuchen.¹) Dem krystallbauenden Molekül legen wir im Allgemeinen drei primäre Attraktionskräfte mit ihren in entgegengesetzter Richtung wirkenden Gegenkräften bei, die sich unter beliebigem Winkel schneiden und wollen definiren als Primärform diejenige Gestalt, welche entsteht, wenn jede der Primärkräfte für sich flächenbildend wirkt.

Die Primärform ist demnach ein von drei unabhängigen Flächen und deren parallelen Gegenflächen eingeschlossener Körper.²) Solche Flächen-

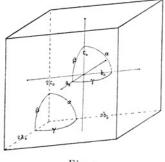


Fig. 1.

paare nennt man Pinakoide und kann daher die Primärform als Pinakoidal-Körper bezeichnen. In Miller'schen Zeichen hat sie das Symbol (001) (010) (100). Unter Axen pflegt man zu verstehen die in den Mittelpunkt des Krystalls transferirten Kanten des Pinakoidalkörpers. Wir wollen sie wegen ihrer Bedeutung in der Linear-Projection Linear-Axen nennen. Sie schliessen die Winkel α β γ ein. Die Länge der Kanten hängt ab von der Centraldistanz der Flächen, einer in der Natur

Bernhardi Gehlen Journ. 1809. 8. 378.

Neumann, Beitr. z. Krystallonomie. 1823.

Grassmann, Zur physischen Krystallonomie. 1829. Resumé Seite 169.

Uhde, Versuch einer Entwickelung der mechanischen Krystallisations-Gesetze. Bremen 1833. Seite 210.

Hirschwald, Ueber die genetischen Axen der orthometrischen Krystallsysteme. Inaug. Diss. Berlin 1868.

— —. Grundzüge einer mechanischen Theorie der Krystallisations-Gesetze. Min. Mitth. 1873. 3. 171.

¹⁾ Zur Geschichte dieser Hypothese vergleiche:

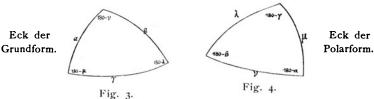
²) Im hexagonalen System treten Modifikationen auf durch Einführung einer vierten Kraftrichtung, doch wollen wir bei der allgemeinen Untersuchung nur den Fall der drei Axen im Auge haben, um den Zusammenhang nicht zu stören. Die nöthigen Abänderungen sollen dann bei besonderer Betrachtung dieses Systems zusammengefasst werden.

Polarform. 7

sehr wechselnden Grösse, die zwar gewiss nicht vollständig zufällig ist, deren Gesetze wir aber nicht kennen. Wir dürfen somit, bis uns solche bekannt sind, die Längen der Axen (Kanten) willkürlich wählen und wollen daher zu Axenlängen die Parameter-Verhältnisse der zuerst abgeleiteten Formen, nämlich der primären Domen (101) (011) resp. der primären Pyramide (111) $a_0:b_0:c_0$ nehmen. Nun ist die Primärform vollständig bestimmt durch die Werthe a_0 b_0 h_0 α β γ , deren Gesammtheit wir als Linear-Elemente bezeichnen wollen.

Polarform. Fällen wir aus dem Mittelpunkt des Krystalls auf die Flächen des Pinakoidalkörpers Senkrechte, so geben diese Normalen P Q R, die unter sich die Winkel λ μ ν einschliessen, die Richtungen der krystallbauenden Primärkräfte. Auf diese Richtungen tragen wir die relativen Grössen der Primärkräfte p_0 q_0 r_0 als Längen auf. Die Gesammtheit der Werthe p_0 q_0 r_0 λ μ ν wollen wir Polar-Elemente nennen. Bei den weiter unten anzugebenden Beziehungen zwischen Linear- und Polar-Elementen ist durch jede der beiden Arten von Elementen der Krystall vollständig definirt, da aus den Elementen nach empirisch bekannten Ableitungsgesetzen die Gesammtheit der möglichen Flächen hervorgeht. Ist die oben aufgestellte Hypothese richtig, so sind gerade die Polar-Elemente das eigentlich Fundamentale, dem Molekül Eigenthümliche und für die Formen Ursächliche.

Es bilden die Normalen PQR ein körperliches Eck, das wir zum Parallelepiped ergänzen können mit den ebenen Winkeln \(\lambda\mu\) und den Kantenlängen \(2p_0\) \(2q_0\) \(2r_0\): Dieses wollen wir das Parallelepiped der Primärkräfte oder kurz die Polarform nennen im Gegensatz zur Primärform (Grundform).


Die Winkel sind gemessen im Quadranten oben — vorn — rechts und es liegt p_0 gegenüber λ , q_0 gegenüber μ , r_0 gegenüber ν .

Zwischen Grundform und Polarform besteht das Ver-

Fig. 2.

hältniss der Reciprocität oder Polarität. Dieses involvirt folgende Beziehungen:

- 1. Jede Kante (Axe) des einen Parallelepipeds steht senkrecht auf einer Fläche des anderen.
- 2. Die sphärischen Dreiecke der körperlichen Ecken des einen und des anderen sind reciprok, d. h. die Winkel des einen ergänzen die Seiten des anderen zu 1800.

Daraus leitet sich ab der Satz:

$$\sin \alpha : \sin \beta : \sin \gamma = \sin \lambda : \sin \mu : \sin \nu$$

3. Es besteht die Beziehung:

$$a_o:b_o:c_o=\frac{\sin\alpha}{p_o}:\frac{\sin\beta}{q_o}:\frac{\sin\gamma}{r_o}=\frac{\sin\lambda}{p_o}:\frac{\sin\mu}{q_o}:\frac{\sin\nu}{r_o}$$

ein Spezialfall der allgemeinen Relation:

$$aa_o:bb_o:cc_o\!=\!\frac{\sin\alpha}{pp_o}:\frac{\sin\beta}{qq_o}:\frac{\sin\gamma}{rr_o}=\frac{\sin\lambda}{pp_o}:\frac{\sin\mu}{qq_o}:\frac{\sin\nu}{rr_o}$$

worin die abc und pqr weiter unten zu definirende Grössen sind. Letztere Gleichung umschliesst die wichtigste Verknüpfung der Symbole und Elemente sowie der Projectionen, weshalb wir sie als Fundamentalgleichung bezeichnen wollen.

Die Relation 1 bedarf keines Beweises, wohl aber 2 und 3.

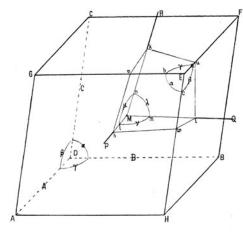
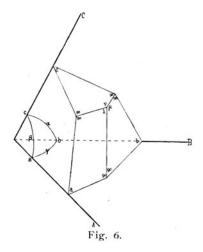


Fig. 5.

Ad 2. Beweis. Es sei (Fig. 5) M der Krystall-Mittelpunkt,

ABCD das Eck der Grundform, das sphäriche Dreieck abc bildend, PQRM das Eck der Polarform, das sphärische Dreieck 1mn bildend.


Nach der Definition eines sphärischen Winkels ist Winkel bac identisch mit dem Winkel kui der beiden Lothe ku und iu auf Kante EF und somit gleich dem Supplement von \(\lambda\); analog an den anderen Kanten.

Somit ist:
$$cab = iuk = 180 - \lambda$$

 $abc = kvh = 180 - \mu$
 $bca = hwi = 180 - \nu$
 $denn: Mhv = Mhw = 90^{\circ}$
 $Miw = Miu = 90^{\circ}$
 $Mku = Mkv = 90^{\circ}$

Ebenso ist: $Evh = Ewh = 90^{\circ}$ $Ewi = Eui = 90^{\circ}$ $Euk = Evk = 90^{\circ}$ $mln = vhw = 180 - \alpha$ $nml = wiu = 180 - \beta$ $lnm = ukv = 180 - \gamma$

Auch aus beistehender Fig. 6, in der aus einem Punkt $\lambda \mu \nu$ im Raum innerhalb des Eckes $\alpha \beta \gamma$ der Grundform Lothe auf die das Eck einschliessenden Flächen gefällt sind, ist klar ersichtlich, dass:

$$\lambda = 180 - a$$
 $\mu = 180 - b$
 $\lambda = 180 - c$

Ad 3. Eine Fläche kann definirt werden durch ihre Parameter, das sind in Fig. 7 die Abschnitte $M\mathfrak{A} = A$, $M\mathfrak{B} = B$, $M\mathfrak{C} = C$ auf den Axen ABC. Ebenso kann sie definirt werden durch die drei Parallel-Coordinaten $M\mathfrak{A} = P$, $M\mathfrak{A} = Q$, $M\mathfrak{A} = R$, des Fusspunktes F der Flächennormale MF aus dem Coordinaten-Anfang, bezogen auf die zu ABC polaren Axen PQR. Die Fundamentalgleichung vermittelt die Umwandlung der der einen Definition entsprechenden Werthe in die der anderen.

Fällen wir aus F (Fig. 7) auf die Ebene RM2 eine Senkrechte = FD, so läuft diese parallel mit &M. Es liegen ausserdem FDM3 in einer Ebene. Wir verbinden D mit M und zeichnen uns die Figur DFBM in ihrer eigenen Ebene heraus (Fig. 7a) Es ist dann:

da DF
$$\parallel$$
 M35; FDM = MF35 = 90°.

Wenn wir nun setzen:

$$FD = h_2$$
 $FM = f$ $M\% = B$

so besteht das Verhältniss:

$$h_2: f = f: B$$

oder

$$h_2 = \frac{f^2}{B}$$

Analog ist, wenn wir die gleiche Construction nach den zwei andere Axen A und C hin ausführen:

$$h_1 = \frac{f^2}{A}$$

$$h_3 = \frac{f^2}{C}$$

oder es ist:

$$A:B:C = \frac{1}{h_1}:\frac{1}{h_2}:\frac{1}{h_3}\ldots\ldots$$

Bezeichnen wir den Inhalt der Fläche MOGR mit ω,

so lässt sich das Volum V des Parallelepipeds der Figur auf drei Weisen ausdrücken. Es ist: $V=\omega_1\ h_1=\omega_2\ h_2=\omega_3\ h_3$

danach besteht das Verhältniss:

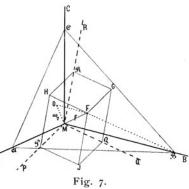
$$\omega_1:\omega_2:\omega_3=\frac{1}{h_1}:\frac{1}{h_2}:\frac{1}{h_3}=A:B:C\ldots\ldots 2$$

nach Formel 1.

Es ist aber in dem Parallelogramm MRH2: MR = R, MR = P, $\angle RMR = \mu$

Danach berechnet sich der Inhalt:

$$ω_2 = PR \sin μ$$
 $ω_1 = RQ \sin λ$
 $ω_3 = QP \sin ν$


Ebenso ist:

und es besteht die Beziehung:

$$\omega_1 : \omega_2 : \omega_3 = RQ \sin \lambda : PR \sin \mu : QP \sin \nu$$

oder, wenn wir durch PQR dividiren:

$$\omega_1:\omega_2:\omega_3=\frac{\sin\lambda}{P_2}:\frac{\sin\mu}{O}:\frac{\sin\nu}{R}$$

Dies zusammen mit Formel 2 giebt:

$$A:B:C = \frac{\sin \lambda}{P}: \frac{\sin \mu}{Q}: \frac{\sin \nu}{R}$$

Die weitere Aenderung in der Schreibweise dieser Fundamentalgleichung bis zur obigen Gestalt erfordert noch einige Darlegungen und folgt Seite 14.

Die Polarform ist aus zwei Gründen interessant:

- 1. weil wir in ihr die Theilung und Vereinigung der Kräfte verfolgen können, die zur Entstehung der Flächen führen (genetisch),
- 2. weil sie als Grundlage angesehen werden kann für die polare Projection (formell), sowie für die Flächensymbole.

Alles dies ist so eng verknüpft, dass jedes für sich kaum behandelt werden kann; wir werden das Eine durch das Andere entwickeln.

Combinationen. Holoedrie. Centraldistanz. Die Polarform Symmetrie. ist das Parallelepiped der Primärkräfte. Ihre Axen, d. h. die Parallelen mit den Kanten durch den Mittelpunkt, haben die Richtungen der Primärkräfte im Molekül und es ist deren gegenseitige Neigung gleich λμν; die Länge der Axen stellt die Intensität dieser Kräfte, der Krafteinheiten dar. haben sie mit p₀ q₀ r₀ bezeichnet. Jedes Molekül verfügt nur einmal über die Kräfte p₀ q₀ r₀. Denken wir uns aber die Primärkräfte nach jeder Axe hin in eine gleiche Anzahl gleicher Theile getheilt, so verhalten sich deren Intensitäten ebenfalls wie $p_0: q_0: r_0$. Da es uns jedoch hier nur auf die relative Grösse der wirkenden Krafttheile ankommt, da nur sie, nicht die absolute Grösse die Richtung der Resultante, der Flächennormale, bestimmt, so können wir auch diese kleineren Theile als Einheiten betrachten und eine Fläche bezeichnen nach der Zahl der Krafteinheiten, die in der Richtung jeder der Primärkräfte zur Erzeugung der flächenbildenden Kraft mitwirkt.

Zur Bildung einer Flächennormale wird im Allgemeinen nur ein Theil der durch die besprochene Theilung erzeugten Einzelkräfte verwendet, ein Theil bleibt in jeder Primärrichtung übrig. Diese Reste können theilweise oder im Ganzen zu weiteren Resultanten sich vereinigen, die mit den ersten gleichzeitig Flächen erzeugen. So entstehen die Combinationen. Durch die verschiedene Art der Theilung und Vereinigung ist die grösste Manichfaltigkeit in der Bildung von Combinationen möglich.

Beschränkt wird die Freiheit der Vereinigung durch das Gesetz der Symmetrie (Holoedrie), das erfordert, dass überall da, wo an demselben Krystallelement (Molekül) gleiche Verhältnisse in Bezug auf Richtung und Grösse der Kräfte vorliegen, dieselbe Wirkung (Theilung und Vereinigung) gleichzeitig stattfinde, d. h. dass jede Fläche (Einzelfläche) alle gemäss den Elementen ihres Krystalls zu ihr symmetrischen gleichzeitig hervorruft (Gesammtform).

Beispiel. Wir nehmen einen Krystall rhombischer Symmetrie, bei dem sich also Alles, was in einem Octanten vorgeht, symmetrisch in den sieben anderen wiederholt. Wir

können uns dann darauf beschränken, den Vorgang in einem Octanten zu betrachten, wenn wir berücksichtigen, dass eben durch die Symmetrie jede Primärkraft nach vier Seiten hin zugleich und gleichmässig in Anspruch genommen wird, also dem einen Octanten nur ein Viertel derselben zufällt. Dieses Viertel möge in unserem Beispiel nach jeder Axenrichtung in vier Theile zerfallen, die wir jetzt p_o q_o r_o nennen wollen. Jeder dieser Theile ist also $\frac{1}{16}$ der gesammten Primärkraft des Moleküls in seiner Richtung. Wir haben danach zur Verwendung $4p_o$ $4q_o$ $4r_o$. Nun möge die Vereinigung in folgender Weise stattfinden: Es treten zunächst zusammen $1p_o$ $1q_o$ $1r_o$ zu den Resultanten p_o q_o r_o = (111) = 1; von dem Rest vereinigen sich $3p_o$ mit $2q_o$ zur Resultanten $(320) = \frac{3}{2} \infty$ und die übrig bleibenden $1q_o$ und $3r_o$ mögen jede für sich flächenbildend wirken, so dass erstere Kraft die Form $(010) = 0\infty$, die letztere (003) = (001) = 0 erzeugt. So erhalten wir die Combination:

(111) (320) (010) (001) = P,
$$\infty \bar{P}^{\frac{3}{2}}$$
, $\infty \check{P} \infty$, $oP = 1 \frac{3}{2} \infty$ $o\infty$ o

Durch die Richtung der Normalen ist, wie schon aus dem Beispiele zu ersehen, die Intensität der Kraftwirkung in deren Richtung noch nicht fixirt. Diese Intensität aber ist wohl (neben der Wachsthumsgeschichte) das wesentlichste Moment für die Centraldistanz und dadurch die Ausdehnung der Fläche. So dürfte in dem gegebenen Beispiel (wenn die q_0 und r_0 annähernd gleiche Grösse haben) die Basis, der mehr Kraftantheile zufallen, sich stärker ausbreiten, als das Brachypinakoid.

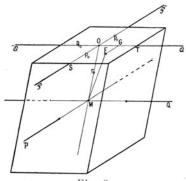
Polare Flächensymbole. Zum Zweck der Symbolisirung können die Flächen durch ihre Normalen aus dem Krystallmittelpunkt vertreten werden, wenn es uns nicht darauf ankommt, die Centraldistanz der Flächen im Symbol auszudrücken. Eine solche Normale hat die Richtung der die Fläche verursachenden Kraft, die wir, wie oben ausgeführt, ausdrücken können durch die Anzahl p q r der primären Einzelkräfte p_0 q_0 r_0 , die zur Bildung einer Resultanten in der Richtung dieser Flächennormalen zusammentreten.

Sollte es einmal wünschenswerth erscheinen, auch die Centraldistanz der Flächen im Symbol zum Ausdruck zu bringen, so könnte dies dadurch geschehen, dass man die Werthe pqr mit einem gemeinsamen Faktor multiplicirte, welcher der Intensität der Kraft in der Richtung der Flächennormale entspräche. Centraldistanz und Kraftintensität müssten durch ein Gesetz verknüpft sein. Um dies Gesetz zu finden, könnte man ein solches zunächst hypothetisch einführen und nach ihm Symbole schreiben, in denen sich die Beobachtungen über Centraldistanz übersichtlich niederlegen liessen. Die so gewonnenen Zeichen könnten dann in ihrer Gesammtheit discutirt werden und das vorläufig eingeführte Gesetz bestätigen, oder durch ein anderes ersetzen. Als nächstliegendes Gesetz bietet sich das folgende:

"Die Centraldistanz einer Fläche ist bei allseitig gleichen Wachsthumsverhältnissen umgekehrt proportional der die Fläche erzeugenden Kraft."

In Buchstaben:
$$D_1 : D_2 = \frac{1}{k_1} : \frac{1}{k_2}$$

So käme der in unserem obigen Beispiel auftretenden Basis (003) ein Drittel der Centraldistanz zu, wie einer unter sonst gleichen Umständen auftretenden Basis (001).


Dies Gesetz hat deshalb viel Wahrscheinlichkeit für sich, weil, wenn es richtig wäre, die Primärkräfte p_o q_o r_o allein wirkend eine Grundform mit den Kantenlängen a_o b_o c_o erzeugen würden, wie sie die Fundamentalgleichung als Abschnitte der Form p_o q_o r_o = (111) = 1 auf den Linear-Axen giebt, und wie wir sie aus praktischen Gründen zum Zweck der Formbeschreibung und Projection der Grundform bereits willkürlich beigelegt haben. Wäre das aufgestellte Gesetz richtig, so würde die genannte Wahl aufhören, willkürlich zu sein.

Bestimmen wir also eine Fläche durch die drei Zahlen p q r, die angeben, wie viele von den Krafteinheiten p_0 der P Richtung q_0 der Q Richtung, r_0 der R Richtung zur Bildung einer Resultante in der Richtung der Flächennormale zusammentreten, so erhalten wir zunächst ein dreizahliges polares Flächensymbol. Da es aber bei den Symbolzahlen, wie bei den Krafteinheiten, nur auf relative Grössen ankommt, so können wir stets r=1, $r_0=1$ setzen und brauchen diese 1 nicht anzuschreiben. Dadurch vereinfacht sich das dreizahlige polare Flächensymbol zu einem zweizahligen:

$$pq(i) = pq.$$

(Von diesen zwei Zahlen schreiben wir zu weiterer Vereinfachung in der Regel nur eine, wenn beide einander gleich sind, also p anstatt pp.) Die Symbole pq sind, wie wir sogleich sehen werden, die Coordinaten der Flächenpunkte in polarer Projection und gewähren somit das, was wir auf der ersten Seite als erstrebenswerth bezeichnet haben, dass das Symbol der Zahlenausdruck des Projectionsbildes, die Projection der unmittelbare graphische Ausdruck des Symbols sei. Wir erhalten aus ihm wieder das dreizahlige Symbol, das die Kraftantheile darstellt und für manche Operationen nützlich ist, indem wir als dritten Werth 1 hinzufügen. Wenn im Folgenden die Rede ist von dreizahligem Symbol im Gegensatz zum zweizahligen, so ist dies gemeint. Da pq oft Brüche sind, so können wir durch Multiplication mit dem gemeinsamen Nenner bewirken, dass das dreizahlige Symbol aus lauter ganzen Zahlen besteht. Die so gebildeten Symbole treffen dann im Allgemeinen überein mit den Whewell-Grassmann-Miller'schen Symbolen und weichen von ihnen wesentlich nur im hexagonalen System ab.

Polar-Projection. Für jeden Krystall müssen gegeben sein die Richtungen der Primärkräfte (durch die Winkel $\lambda \, \mu \, \nu$) und ihre Intensitäten durch das Längenverhältniss $p_0: q_0: r_0$. Aus diesen Grössen construiren wir die Polarform.

Das Zeichen einer Fläche pq sagt aus, dass zu der die Fläche bildenden Resultante, der Flächen-Normale, sich vereinigen die Componenten:

pp, qq, und 1.r,

in der Richtung der Axen der Polarform.

p₀ q₀ r₀ sind die Masseinheiten in den Richtungen der Axen PQ R (Fig. 8):

$$OS = p_o$$
 $OT = q_o$ $MO = r_o$

Wir werden diese Einheiten nun nicht mehr besonders erwähnen, sondern uns bewusst bleiben,

dass in jeder der Axenrichtungen mit anderem Mass gemessen wird; dass also p sagt, es seien in der P Richtung p von den Einheiten aufzutragen,

die dieser Richtung eigenthümlich sind u. s. w. Die verschiedenen Krystalle unterscheiden sich dadurch, dass die Kraftrichtungen verschieden sind, ebenso die Einheiten, mit denen gemessen wird.

Sollen Kräfte im Raum vereinigt werden, so trägt man sie nach dem Mass ihrer Intensität mit den ihnen eigenthümlichen Richtungen aneinander. Die Resultante ist die Verbindungslinie des Endpunktes dieses Systems mit dem Ausgangspunkt.

Das Zeichen p q sagt also, dass im Raum

- p Einheiten der P Richtung,
- q Einheiten der Q Richtung,
- 1 Einheit der R Richtung

zu einer Resultanten zusammengelegt werden sollen. Es ist also in unseren Zeichen die Componente der R Richtung = 1 genommen. Diese 1 führt uns aus dem Mittelpunkt der Polarform auf deren obere Fläche in den Punkt O. (Fig. 8.) Nun sind OS und OT die Einheiten der P und O Richtung. In diesen Richtungen also und mit diesen Einheiten sind die Werthe p und q in der oberen Fläche der Polarform aufzutragen. Der Endpunkt dieses Systems von drei Kraftcomponenten muss stets in dieser oberen Fläche liegen. Die Verbindungslinie des Punktes F mit dem Mittelpunkt M der Polarform ist die Resultante, die Flächennormale. Der Ort des Punktes F in der Ebene ist typisch für die Normale und somit für die Fläche, zu der diese gehört. Alle die Punkte, F, die eine Abbildung (Projection) der Flächen sind und die wir daher Flächenpunkte nennen wollen, liegen in einer Ebene, der oberen (horizontalen) Fläche der Polarform. Somit ist für unsere Symbole, in denen der dritte Index der Einheit gleich gesetzt ist, die diesem Einheitsindex zugeordnete (obere) Fläche der Polarform unsere naturgemässe Projections-Ebene.

Zur Projections-Ebene könnten wir ebenso gut eine andere Fläche der Polarform wählen, dann müssten wir nicht r, sondern p oder q=1 setzen. Wir erhielten dann Symbole von der Form pr resp. qr und, da wir zum Zweck der Zeichnung die Projections-Ebene am besten horizontal legen, müssten wir das ganze System drehen. Das führt auf das Erste zurück und bedeutet nichts weiter, als eine veränderte Außtellung des Krystalls.

Zum Aufbau einer Fläche resp. zur Zusammensetzung von deren Normale können Antheile von 1, 2 oder 3 der Primärkräfte mitwirken. Dadurch zerfallen die Flächen in drei natürliche Gruppen, die bereits Grassmann in seiner vortrefflichen Schrift (Zur physischen Krystallonomie und geometrischen Combinationslehre. Stettin 1829, vgl. Seite 11 und 129) scheidet und im Anschluss an seine phoronomische Combinationslehre als elementare, binäre, ternäre Flächen bezeichnet. Wir wollen diese Namen unverändert annehmen, nur an Stelle von elementar primär setzen. Es entsprechen die Primärformen den Pinakoiden, die Binärformen den Prismen und Domen, die Ternärformen den Pyramiden.

Also:

Jede dieser Gruppen hat ihren besonderen Charakter und spielt ihre besondere Rolle in der Entwickelung der Formenreihen der Krystalle. Im tetragonalen und hexagonalen System haben wir sogenannte Pyramiden und Rhomboeder von binärem (domatischem) Charakter po und solche von ternärem (pyramidalem) Charakter p.

Rationalität der Krafttheilung. Aus dem Zeichen pq ergeben sich, wie oben Seite 9 u. 10 nachgewiesen, die Axen-Abschnitte ABC der Fläche nach dem Satz:

$$P:Q:R = \frac{\sin\alpha}{A}: \frac{\sin\beta}{B}: \frac{\sin\gamma}{C} = \frac{\sin\lambda}{A}: \frac{\sin\mu}{B}: \frac{\sin\nu}{C}$$

Davon bedeuten PQR die Intensitäten der Kraftantheile. Drücken wir sie in den Einheiten p_0 q_0 r_0 aus, so ist:

$$P:Q:R \implies pp_o:qq_o:rr_o$$

Die Axen-Abschnitte ABC beziehen wir auf die Axen der Grundform a_0 b_0 c_0 , betrachten diese als Einheiten (lineare Elemente) und setzen

$$A:B:C \Longrightarrow aa_o:bb_o:cc_o$$

wobei nach dem Satz von der Rationalität der Indices abc rationale Zahlen sind. Setzen wir diese Werthe in obige Gleichung, so nimmt sie die Form an, in der wir sie bereits oben (Seite 8) angeschrieben haben:

$$pp_{o}:qq_{o}:rr_{o}=\frac{\sin\alpha}{aa_{o}}:\frac{\sin\beta}{bb_{o}}:\frac{\sin\gamma}{cc_{o}}=\frac{\sin\lambda}{aa_{o}}:\frac{\sin\mu}{bb_{o}}:\frac{\sin\nu}{cc_{o}} \text{ (Fundamentalgleichung).}$$

Nun gilt noch für die Constanten jedes Krystalls die Gleichung:

$$p_o:q_o:r_o=\frac{\sin\alpha}{a_o}:\frac{\sin\beta}{b_o}:\frac{\sin\gamma}{c_o}=\frac{\sin\lambda}{a_o}:\frac{\sin\mu}{b_o}:\frac{\sin\nu}{c_o}$$

daher:

$$p:q:r \text{ (resp. } p:q:1) = \frac{1}{a}:\frac{1}{b}:\frac{1}{c} = \frac{1}{m}:\frac{1}{n}:\frac{1}{o} \text{ (Weiss)} = h:k:l \text{ (Miller)}.$$

Eine Consequenz lässt sich aus letzterer Formel ziehen. Erfahrungsgemäss sind abc hkl rationale Grössen (Gesetz von der Rationalität der Indices), also auch pqr, d. h. die Kraftantheile in jeder Richtung treten in rationaler Anzahl auf oder, was dasselbe ist: die Primärkräfte zerfallen stets in eine ganze Anzahl gleicher Theile. Dies ist der genetische Ausdruck des Satzes von der Rationalität der Indices, wir können es bezeichnen als Gesetz von der Rationalität der Krafttheilung. Das Analogon finden wir beispielsweise in der Akustik beim Zerfallen schwingender Saiten oder Luftsäulen in eine ganze Anzahl gleicher schwingender Einzeltheile. Ebenso entsprechen den Combinationen die Töne mit ihren Ober-

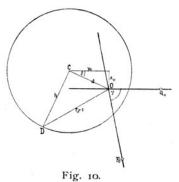
tönen und sind die in beiden Fällen auftretenden Zahlenverhältnisse durchaus analog, wie wir bei der Discussion der Zahlen sehen werden.¹)

In der letzten Formel liegt ferner das Prinzip der Umwandlung in die Weiss'schen und Miller'schen Symbole. Es sind die neuen Symbole im Wesen nicht sehr von den Miller'schen verschieden, nur ist der dritte Index stets = 1 gesetzt und weggelassen, ein Unterschied, der jedoch bei den mit ihnen auszuführenden Operationen wesentlich einschneidend ist. Nur im hexagonalen System weichen die Symbole von den Miller'schen ab und schliessen sich näher denen von Bravais an. Sie bedürfen einer besonderen Besprechung, die später (Seite 29) folgt.

Polar-Elemente. Nach dem Gesagten bestimmt sich die Lage des Projectionspunktes einer Fläche pq einfach dadurch, dass man, ausgehend von dem Projections-Mittelpunkt O, die Grössen pq in den ihnen zukommenden Einheiten p_0 q_0 in den Richtungen OP, OQ als Coordinaten aufträgt, also p mal die Einheit p_0 in der Richtung OP, daran

q mal die Einheit q_0 in der Richtung OQ. (Fig. 9.)

Wir legen im Bild die Richtung OQ von links nach rechts parallel dem Papierrand, OP schliesst sich daran unter dem Winkel v. (v ist der Winkel, den die Axen P und Q in der Projections-Ebene einschliessen.)



Für viele Untersuchungen reicht die Charakterisirung der Projection durch p_0 q_0 aus. Für Untersuchungen über den Zonenverband können sogar alle diese Elemente willkürlich in das Bild getragen werden. Zur graphischen Berechnung von Winkeln im Raum, zum Aufsuchen der Beziehungen zu den anderen Arten der Projection und anderen Aufgaben reichen jedoch diese Daten nicht aus. Dazu fehlt noch und genügt 1. die Angabe der Lage des Scheitelpunktes C (senkrecht über dem Krystallmittelpunkt) gegen den Coordinaten-Anfang O, 2. der verticale Abstand h des Scheitelpunktes C vom Krystallmittelpunkt M.

Die Lage von O gegenüber C können wir auf zwei Arten fixiren, entweder durch die rechtwinkligen Coordinaten y_0 x_0 oder durch die Polarcoordinaten d δ . (Fig. 10.)

 \mathbf{x}_0 \mathbf{y}_0 sind zur Construction bequem, d δ zu manchen Rechnungen willkommen. Es wurden daher im Index alle vier Werthe \mathbf{x}_0 \mathbf{y}_0 d δ unter den Elementen aufgeführt. Die Masseinheit ist wie überall $\mathbf{r}_0 = \mathbf{1}$.

Der verticale Abstand der Projections-Ebene

¹⁾ Auf eine solche Analogie weist bereits Grassmann hin (Zur physischen Krystallonomie 1829 Seite 49 und 179).

vom Krystallmittelpunkt (CM) ist in dies Projectionsbild eingetragen als Radius eines um C beschriebenen Kreises, den wir als Grundkreis bezeichnen wollen. Er spielt eine grosse Rolle bei den Constructionen zur graphischen Krystallberechnung und ist unter Anderem auch der Grundkreis der stereographischen Projection.

Ziehen wir CD \perp CO, so ist OD = $r_0 = 1$. (Fig. 10.)

Die Gesammtheit der Elemente der Polarprojection, der polaren Elemente, besteht danach aus folgenden Werthen:

$$p_o q_o (r_o = 1) \lambda \mu \nu x_o y_o h d \delta$$

von denen je fünf unter sich unabhängige zur Ableitung der anderen ausreichen. Im Index finden sich alle diese Werthe für jedes einzelne Mineral ausgerechnet.

Linear-Projection. Unter Linear-Projection verstehen wir eine solche Art der Abbildung, in der sich die Flächen eines Krystalls als gerade oder krumme Linien in einer Ebene darstellen. Von diesen haben (wie wir an anderer Stelle ausführen werden) nur zwei für die Krystallographie Bedeutung, eine, welche die Flächen als Gerade darstellt, die wir kurz Linearprojection nennen wollen und eine zweite, in der die Flächen als Kreise abgebildet erscheinen. Quenstedt erwähnt letztere (Grundriss der Krystallographie, 1873, 141) unter dem Namen Kugelprojection. Sie verhält sich zu der geradlinigen Linearprojection wie die stereographische zur gnomonischen. Da der Name Kugelprojection leicht zu Verwechselungen mit der stereographischen führen kann, wollen wir sie als cyklographische Projection bezeichnen.

Die erstere der beiden genannten Projectionsarten (die Linearprojection) stimmt im Allgemeinen mit der Quenstedt'schen Projection überein; um aber consequent die Beziehungen der Projectionen unter sich durchführen zu können, ist ein Abweichen von der Quenstedt'schen Behandlung nöthig. Quenstedt verschob jede Fläche so, dass sie durch einen Punkt in der Entfernung 1 über dem Mittelpunkt der Projections-Ebene durchging und suchte die Trace der Fläche mit der Projections-Ebene. Wir legen dagegen alle Flächen durch den Mittelpunkt des Krystalls und nehmen die Trace mit einer in der verticalen Entfernung k über dem Krystallmittelpunkt liegenden Ebene (über k vgl. S. 18—20). Zum Zweck der cyklographischen Projection rücken wir ebenso alle Flächen des Krystalls in den Mittelpunkt, um den eine Kugel vom Radius k gezogen ist. Die Tracen der Flächen auf der Obersläche der Kugel sind grösste Kreise, die nach Analogie der stereographischen Projection auf eine Ebene durch den Krystallmittelpunkt projicirt werden.

Wahl der Projections-Ebene für die Linear-Projection. Als Projections-Ebene ist am besten eine Fläche der Primärform zu wählen, also eines der Pinakoide und zwar zum Zweck einfacher Beziehung zu der Polarprojection und den polaren Flächensymbolen das obere Pinakoid, die Basis. Die Projections-Ebene der Linear- und die der Polar-Projection fallen im Allgemeinen nicht zusammen, vielmehr nur dann, wenn die lineare Projections-Ebene senkrecht steht auf den Flächen der Prismenzone. Dies ist der Fall im

regulären, tetragonalen, hexagonalen, rhombischen System. Im monoklinen System nicht, ausser, wenn wir, was sich für manche Untersuchungen wohl empfiehlt, die Projection auf die Symmetrie-Ebene ausführen.

Lineare Flächensymbole. Wie wir die polaren Flächensymbole der gnomonischen Projection entnommen haben, so können wir aus der (geradlinigen) Linear-Projection ebenfalls Symbole für die Flächen und ebenso für die Kanten (Zonen-Axen) gewinnen.

Die (geradlinige) Linear-Projection der Fläche ist eine gerade Linie. Sie kann definirt werden durch die Gleichung zweier auf ihr liegender Zonenpunkte [a b] [a₁ b₁] und lautet dann:

$$\frac{x-a}{y-b} = \frac{a-a}{b-b}$$

oder sie kann definirt werden durch ihre Abschnitte auf den zwei Coordinaten-Axen AB. Letztere Definition wollen wir zu einer Symbolisirung der Flächen verwenden.

Eine Fläche schneide auf den drei Axen die Längen aa₀, bb₀, cc₀ ab, so lautet die Fundamentalgleichung:

$$aa_o:bb_o:cc_o = \frac{\sin\alpha}{pp_o}:\frac{\sin\beta}{qq_o}:\frac{\sin\gamma}{rr_o}$$

Dabei sind $a_0 b_0 (c_0) \alpha \beta \gamma$ die linearen Elemente, wovon wir $c_0 = 1$ setzen.

 a_o b_o c_o sind die Abschnitte der Form i=(111) auf den drei Linear-Axen (die parallel den Kanten des Pinakoidalkörpers $[o, \infty o, o\infty]$ verlaufen), welch letztere sich unter den Winkeln α β γ schneiden.

Mit a b c wollen wir die Coefficienten von a_0 b_0 c_0 bezeichnen. Sie sind rationale Zahlen und es entspricht aa_0 : bb_0 : cc_0 dem, was man das Parameter-Verhältniss der Fläche nennt und das die Grundlage der Weiss'schen und Naumann'schen Symbolisirung bildet.

Wir setzen c=1; a_0 b_0 (c_0) α β γ sind constant für denselben Krystall und es genügt daher zur Bestimmung der Einzelform des durch seine Elemente definirten Krystalls die Angabe von a und b.

Aus der Fundamentalgleichung geht hervor, da

$$cc_o = \imath \, ; \; rr_o = \imath \, ; \; a_o; \; b_o; \; \frac{\sin\alpha}{p_o} \, ; \; \frac{\sin\beta}{q_o} \, ; \; \frac{\sin\gamma}{r_o}$$

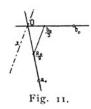
für denselben Krystall constante Grössen sind, dass, abgesehen von den Einheiten, in denen auf jeder einzelnen Axe gemessen werden muss, ab die reciproken Werthe von p q sind.

Beispiel: Wenn
$$p q = 2 3$$
, so ist $a b = \left(\frac{1}{2}, \frac{1}{3}\right)$

Zur Unterscheidung von den polaren Flächen- und den linearen Zonen-Symbolen, die wir in [] einschliessen, wollen wir die linearen Flächen-Symbole in runde Klammern () setzen. Um auch die Zonenlinien aus ihren Parametern in polarer Projection zu symbolisiren, können wir die analog gebildeten zweizahligen Symbole in geschweifte Klammern {} einschliessen.

Goldschmidt, Index.

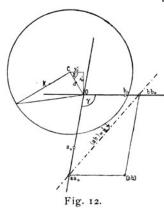
Wir haben dann im Ganzen vier Arten von Symbolen, die sich in ihrem äusseren Ansehen folgendermassen unterscheiden:


pq = polare Flächensymbole,
 {pq} = polare Zonensymbole,
 (ab) = lineare Flächensymbole,

4. [ab] = lineare Zonensymbole.

I und 2 beziehen sich auf Polarelemente und Polarprojection, 3 und 4 auf Linear-Elemente und Linearprojection; die Zahlen von I und 4 bedeuten Parameter, die von 2 und 3 Coordinaten. (Ueber Zonensymbole vgl. die Tabelle S. 24.)

Eine Schwierigkeit in der linearen Symbolisirung entsteht für die Prismen-Flächen. Für sie sind a und b=o und nur ihr Verhältniss bezeichnet die Richtung der durch den Coordinaten-Anfang gehenden Projectionslinie. Wir wollen zur Bezeichnung das Symbol nehmen, so wie es sich aus dem polaren Symbol direkt ableitet:


Also aus
$$\frac{p}{q} \infty = p \infty \ q \infty \text{ ergiebt sich ab} = \left(\frac{o}{p} \frac{o}{q}\right)$$

z. B. $pq = \frac{3}{2} \infty = 3 \infty \ 2 \infty$, , $ab = \left(\frac{o}{3} \frac{o}{2}\right)$
 $pq = 2 \infty = 2 \infty \infty$, , $ab = \left(\frac{o}{2} \frac{o}{1}\right) = \left(\frac{o}{2} o\right)$

Die Projection findet sich für $\left(\frac{o}{p}, \frac{o}{q}\right)$, indem man mit der Trace $\left(\frac{1}{p}, \frac{1}{q}\right)$ eine Parallele durch den Coordinaten-Anfang zieht.

Beispiel:
$$x = \infty \frac{3}{2}$$
 (polar) = $\left(\frac{0}{2}, \frac{0}{3}\right)$ (linear) (Fig. 11).

Linear-Elemente. Die Elemente der Linear-Projection sind genau analog denen der Polar-Projection. Sie leiten sich aus der Grundform her, wie die Polar-Elemente aus der Polarform. Wir haben die drei Axen, die sich unter den Winkeln α β γ schneiden mit den Parameter-Einheiten a_0 b_0 und $c_0 = \tau$. Von diesen treten im Projectionsbild auf a_0 b_0 γ .

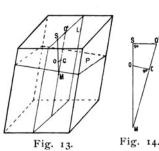
Mit ihrer Hilfe können wir die Kantenpunkte (Zonenpunkte) [a b] aus ihren Coordinaten a b mit den respectiven Einheiten a_0 b_0 auftragen, ebenso die Flächenlinien von $(a b) = \frac{1}{a} \frac{1}{b}$ durch Verbinden der Punkte aa_0 und bb_0 . (Fig. 12.)

Analog der Polar-Projection ist noch einzutragen der Scheitelpunkt C aus seinen rechtwinkligen Parallelcoordinaten x'₀ y'₀ oder seinen Polar-Coordinaten d' \delta' und es ist mit der Verticalh\u00f6he k der Projections-Ebene \u00fcber dem Krystallmittel-

punkt als Radius um C ein Kreis zu beschreiben, der der Grundkreis der cyklographischen Projection ist.

Danach haben wir im Ganzen für die Linear-Projection folgende Elemente, die sich im Index berechnet finden:

$$a_o b_o (c_o = 1) \alpha \beta \gamma x'_o y'_o k d' \delta'$$


von denen je fünf unabhängige zur Festlegung der Grundform resp. der Projection ausreichen.

Von den zwischen den Linear- und Polar-Elementen bestehenden Beziehungen mögen hier nur zwei besonders hervorgehoben werden:

1. Die Radien der Grundkreise gleich den vertikalen Entfernungen der Projections-Ebenen vom Krystall-Mittelpunkt, bezogen auf die relativen Einheiten $(r_0 \ c_0)$, sind in polarer und linearer Projection gleich.

Beweis: Sei der polare Radius = hr_0 , der lineare = kc_0 , so behauptet der Satz, es sei h = k.

Ist das Parallelepiped (Fig. 13) die Grundform (o. 0∞. ∞0), so ist die Basis L die Ebene der Linear-Projection. Wir legen hinein die Ebene der Polar-Projection P senkrecht zu den aufrechten Kanten der Grundform, ziehen MCO' parallel diesen Kanten, ausserdem MOS ⊥ L. Es liegen O'S in der Ebene L, OC in der Ebene P.

Nun ist:

S der Scheitelpunkt der linearen Projection,

O der Coordinaten-Anfang " " "

C der Scheitelpunkt der polaren Projection

O der Coordinaten-Anfang ", ",

denn es ist MC \(\preceq\) P, MS \(\preceq\) L, und daher:

C der Austrittspunkt der Normale aus M auf der polaren Projections-Ebene P S " " " " " " " " " " " L.

Da ausserdem MO' den prismatischen Kanten der Grundform parallel läuft und L die Ebene der Linear-Projection ist, so ist der Punkt O' die lineare Projection der prismatischen Zonen-Axe [o]. Da ferner MO senkrecht steht auf der Fläche L, der Basis der Grundform = (001), während die Fläche P die polare Projections-Ebene ist, so ist O der gnomonische Projectionspunkt der Fläche L.

MCO'SO liegen in einer Ebene auf den Seiten des Dreiecks MO'S. Zeichnen wir dieses Dreieck (Fig. 14) heraus, so ist:

$$\triangle$$
 MCO ∞ MSO', da \angle MCO = MSO' = 90°
MC : MO = MS : MO'

daher:

Es ist aber:

also:

$$\begin{array}{cccc} MO = r_o & MO' = c_o \\ MC = hr_o & MS = kc_o \\ hr_o : r_o = kc_o : c_o \\ \hline & h = k \end{array}$$

2. Die Abstände von Scheitelpunkt und Coordinaten-Anfang gemessen, in ihren relativen Einheiten, sind gleich und entgegengesetzt gerichtet in linearer und polarer Projection.

Beweis: Setzen wir diesen Abstand in polarer Projection = d, in linearer = d', so ist zu beweisen, dass d = -d'.

Es ist in obigen Figuren 13 und 14:

Nur die Richtung der d ist verschieden. Also:

Benennung der Zonen. (Fig. 15.) In der Projections-Ebene der gnomonischen Projection liegen zwei Axen P und Q (nur im hexagonalen System drei gleichwerthige Axen). Auf jeder der Axen treten Flächenpunkte aus, die einer Zone angehören; diese Zonen wollen wir Axen-Zonen nennen. Die Flächen der einen Axen-Zone haben das Symbol og, die der anderen das Symbol po.

Zonen, deren Projectionslinien parallel den Axen laufen, sollen Parallel-Zonen heissen. Für sie ist entweder p oder q constant. schreiben

$$\parallel$$
 Z 2q für eine Parallelzone mit constantem p = 2 \parallel Z p3 , , , , q = 3

Eine hervorragende Wichtigkeit hat die erste Parallelzone, d. h. die, für welche p resp. q = 1 ist.

Radialzonen mögen solche Zonen heissen, deren Linien durch den Coordinaten-Anfang O gehen. Für jede derselben ist p:q constant.

Danach bezeichnen wir als

Radialzone $\frac{p}{q}=RZ\frac{p}{q}$ die Zone, für welche $\frac{p}{q}$ einen bestimmten constanten Werth hat.

z. B.: RZ 2 = Radialzone, bei der
$$\frac{p}{q}=$$
 2
$$RZ\frac{2}{3}=$$
 , , $\frac{p}{q}=\frac{2}{3}$

Unter den Radialzonen sind von besonderer Wichtigkeit diejenigen, bei welchen p: q = 1 ist. Sie mögen wegen ihrer hervorragenden Bedeutung Haupt-Radial-Zonen (auch Diagonalzonen wäre für sie ein geeigneter Name) genannt und abgekürzt mit HRZ bezeichnet werden. Für sie ist p=q und würde für eine Form derselben das Symbol pp (z. B. 22) lauten, wofür der Einfachheit wegen p (z. B. 2) gesetzt wurde. Die HRZ sind demnach in dem Formenverzeichniss daran kenntlich, dass die Symbole ihrer Formen aus nur einer Zahl bestehen. Nur da, wo die Zahlen des Symbols zweiziffrig sind, wurden beide Zahlen geschrieben, z. B. 12. 12, da 12 = Zwölf von 12 = Eins, Zwei nicht zu unterscheiden wäre. Der Fall ist nicht häufig. Ebenso müssen die zwei Zahlen ausgeschrieben werden, wenn sie, wie z. B. im triklinen System oder wenn eine Einzelfläche bezeichnet wird, im Uebrigen gleich sind, aber verschiedenes Vorzeichen haben.

Excentrische Radialzonen wurden solche Zonen genannt, deren Linien durch einen gemeinsamen excentrischen Flächenpunkt gehen.

Prismen-Zone ist die Zone derjenigen Flächen, die senkrecht stehen auf der Projections-Ebene, deren Projectionspunkte daher in gnomonischer Projection alle im Unendlichen liegen. Für diese Flächen ist demnach p und q unendlich gross, doch besteht ein Verhältniss p: q, das anzeigt, welcher Radialzone das Prisma angehört. Dies wird im Symbol ausgedrückt. So sei $3\infty \infty$ das Symbol des Prismas. für das p:q=3:1 ist; man könnte dafür auch setzen $\infty \frac{1}{3}\infty$. Ebenso sei $\infty \frac{3}{2}\infty$ das Symbol desjenigen Prismas für welches $p:q=1:\frac{3}{2}$ ist, man könnte dafür setzen $\frac{2}{3}\infty \infty$. Nun wurde durchgehends der auftretende Zahlenwerth >1 genommen und der kürzeren Schreibweise wegen das zweite Zeichen ∞ weggelassen, so dass bedeutet:

$$3 \infty = 3 \infty \cdot \infty$$
 das Prisma der RZ3, für das also $p:q = 3:1$ $\infty \frac{3}{2} = \infty \cdot \frac{3}{2} \infty$, , , $RZ \frac{2}{3}$, , , $p:q = \frac{2}{3}:1 = 1:\frac{3}{2} = 2:3$.

Symbolisirung der Kanten (Schnittlinien, Zonenaxen, Zonen). Der Punkt ist in der Linear-Projection das Bild einer Kante (Zonenaxe). Seine Lage wird bestimmt durch die Coordinaten vom Nullpunkt (Austrittspunkt der Kante ∞ 0:0 ∞). Die Einheiten sind die Parameter-Einheiten der Krystallographie (Linear-Einheiten) a_0 b_0 , wobei $c_0 = 1$ gesetzt ist. Die Coordinaten haben die Grösse aa_0 und bb_0 , wovon a_0 und b_0 , die Einheiten nach den beiden Richtungen, nicht eigens angeschrieben werden müssen. So ergiebt sich das Symbol der Kanten (Zonen) analog dem der Flächen aus zwei Zahlen bestehend a und b, die angeben, dass der Projectionspunkt der Kante gefunden wird, indem man vom O Punkt ausgehend die Einheit a_0 in der OA Richtung a mal, daran die Einheit b_0 in der OB Richtung b mal aufträgt. Das allgemeine Zeichen ist

das zum Unterschied vom Flächensymbol in [] gesetzt werden möge.

Ableitung des linearen und polaren Kantensymbols (Zonensymbol). Eine Zone (Kante) kann gegeben sein

direkt und zwar:

- polar durch die Parameter der Zonenlinie. Polares Zonensymbol {pq},
- 2. linear durch die Coordinaten des Zonenpunktes. Lineares Zonensymbol [ab],

oder indirect und zwar:

- 3. polar durch die Gleichung der Zonenlinie,
- 4. polar durch die Symbole zweier Flächenpunkte der Zone $p_1 \ q_1$ und $p_2 \ q_2$,
- 5. linear durch die Parameter zweier Flächenlinien der Zone (a₁ b₁) und (a₂ b₂).

Zwischen 1 und 2, d. h. {pq} und [a b] besteht dieselbe Beziehung, wie zwischen den polaren und linearen Flächensymbolen pq und (ab), nämlich:

$$a = \frac{1}{p}$$
; $b = \frac{1}{q}$

Diese Beziehung leitet sich direkt aus der Fundamentalgleichung ab, indem nur diesmal ppo qqo Parameter aao bbo Coordinaten sind; eine Umkehrung der gewöhnlichen Anwendung, die bei der Gegenseitigkeit der beiden polaren Gestalten direkt giltig ist. Die Fundamentalgleichung lautet:

$$aa_o:bb_o:cc_o=\frac{\sin\alpha}{pp_o}:\frac{\sin\beta}{qq_o}:\frac{\sin\gamma}{rr_o}$$

Darin ist für denselben Krystall, auf den sich sowohl die Symbole [a b] als auch $\{pq\}$ beziehen, a_o , b_o , p_o , q_o , sin α und sin β constant und wir setzen ausserdem $cc_o = 1$, $rr_o = 1$. Dadurch geht die Fundamentalgleichung über in:

$$a:b:r=\frac{r}{p}:\frac{r}{q}:r$$

und es ist:

$$a = \frac{1}{q}$$
 $b = \frac{1}{p}$

Ad 3. Hat die Gleichung der zu betrachtenden Zone die allgemeine Form der Gleichung ersten Grades

$$lx + my + n = 0$$

so finden wir die Parameter pq, d. s. die Zahlen des polaren Zonensymbols $\{pq\}$ als Werthe für x und y, indem wir y resp. x = 0 setzen. Dann ist:

Die reciproken Werthe $\frac{1}{p} = a$; $\frac{1}{q} = b$ sind die Zahlen des linearen Zonensymbols [a b], also:

$$a = -\frac{1}{n}$$

$$b = -\frac{m}{n}$$
und das der Gleichung entsprechende lineare Zonensymbol =
$$\left[\frac{1}{n} \frac{\overline{m}}{n} \right]$$

Beispiel: Es sei die Zonengleichung:

$$x + y - 1 = 0. \text{ Also: } l = 1; m = 1; n = -1,$$
 so ist das polare Zonensymbol:
$$\left\{\frac{-1}{1} - \frac{-1}{1}\right\} = \left\{11\right\} = \left\{1\right\}$$
 das lineare Zonensymbol:
$$\left[\frac{-1}{1} - \frac{-1}{1}\right] = \left[11\right] = \left[1\right].$$

Ad 4. Ist die Zone gegeben durch zwei Flächen p_1 q_1 und p_2 q_2 derselben, so kann man zuerst die Zonengleichung aufstellen:

$$\frac{x-p_1}{y-q_1}=\frac{p_1-p_2}{q_1-q_2}$$

und dann, nachdem man der Gleichung obige Gestalt lx + my + n = o gegeben, in derselben Weise verfahren wie bei 3, und das ist wohl für das Gedächtniss das Beste.

Auch direkt lässt sich das Symbol [a b] aus den Symbolen p_1 q_1 und p_2 q_2 erhalten nach den Gleichungen, die sich aus der Zonengleichung leicht ableiten lassen:

$$a = \frac{q_1 - q_2}{q_1 p_2 - q_2 p_1}$$

$$b = \frac{p_1 - p_2}{p_1 q_2 - p_2 q_1} = -\frac{p_1 - p_2}{q_1 p_2 - q_2 p_1}$$
itung der Coordinaten des lineare

Ad 5. Die Ableitung der Coordinaten des linearen Zonenpunktes aus den Parametern zweier Flächen der Zone ergiebt sich im Projectionsbild unmittelbar, da der Zonenpunkt der Schnittpunkt der beiden Flächenlinien ist. Die Ableitung auf dem Weg der Rechnung kann auf 4 zurückgeführt werden, indem man statt der linearen Symbole der zwei Flächen $(a_1 \ b_1)$ $(a_2 \ b_2)$ die polaren $p_1 \ q_1 = \frac{1}{a_1} \frac{1}{b_1}$ und $p_2 \ q_2 = \frac{1}{a_2} \frac{1}{b_2}$ einführt. Direkt ergeben sich die Coordinaten $[a \ b]$ des Zonenpunktes nach den folgenden Formeln, die sich leicht ableiten lassen:

$$a = \frac{a_1 \ a_2 \ (b_2 - b_1)}{a_1 \ b_2 - a_2 \ b_1} = \frac{\frac{b_2 - b_1}{b_2} - \frac{b_1}{a_1}}{\frac{a_2}{a_2} - \frac{b_1}{a_1}}$$

$$b = \frac{b_1 \ b_2 \ (a_1 - a_2)}{a_1 \ b_2 - a_2 \ b_1} = \frac{\frac{a_2 - a_1}{a_2} - \frac{a_1}{b_2}}{\frac{a_2}{b_2} - \frac{a_1}{b_2}}$$

$$\frac{x - p_1}{y - q_1} = \frac{p_1 - p_2}{q_1 - q_2}$$

Für x = o ergiebt sich der Parameter:

$$q = y = \frac{p_1q_2 - p_2q_1}{p_1 - p_2}$$
 analog für y = 0: p = x =
$$\frac{q_1p_2 - q_2p_1}{q_1 - q_2}$$

und die reciproken Werthe:

$$b = \frac{1}{q} = \frac{p_1 - p_2}{p_1 q_2 - p_2 q_1}$$

$$a = \frac{1}{p} = \frac{q_1 - q_2}{q_1 p_2 - q_2 p_1}$$

¹⁾ Ausrechnung:

Zonensymbole. Specialfälle. Die häufigsten Zonen sind die folgenden und es ist bequem, für sie die Symbole zusammenzustellen:

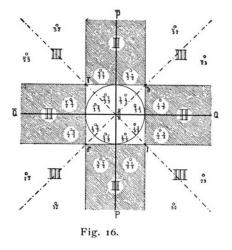
Name der Zone.	Special- werthe f. d. Werthelmn d.allgemein. Zonen- gleichung.	Zonengleichung.	Allgemeine Form eines Flächen- symbols aus der Zone.	Polares Zonensymbol $\left\{ pq\right\}$ (Parameter).	Lineares Zonensymbol (Kanten-Symbol) [ab] (Coordinat.)
p Axen-Zone = pAZ	m = 0 n = 0	x = 0	ро	{o∞}	[∞0]
q Axen-Zone = qAZ	$ \begin{array}{c} l = 0 \\ n = 0 \end{array} $	y=0	oq	{∞o}	[0∞]
p Parallel-Zone = p∥Z p	$ \begin{bmatrix} m = 0 \\ -\frac{n}{1} = q \end{bmatrix} $	x = p	ру	{p∞}	$\left[\frac{1}{p}o\right]$
q Parallel-Zone = q Z q	$ \begin{vmatrix} 1 = 0 \\ -\frac{n}{m} = q \end{vmatrix} $	y = q	xq	{∞q}	$\left[o\frac{1}{q}\right]$
Radial-Zone $m = RZm$.	n = 0	lx+my = o	z q ⋅ q	$\left\{ \frac{\mathbf{o}}{1} \frac{\mathbf{o}}{\overline{\mathbf{m}}} \right\}$	$[1\infty \cdot m \infty] = \left[\frac{1}{m}\infty\right]$
Haupt-Radial-Zone=HRZ	$n=0$ $1=\pm m$	x+y=0	p p	$\left\{\begin{array}{cc} \underline{I} & \underline{O} \end{array}\right\} = \left\{O\overline{O}\right\}$	$[\infty\overline{\infty}]^{r}$
(Diagonal-Zone = DZ) .		x-y=0	p	$\left\{\frac{1}{O}, \frac{1}{O}\right\} = \left\{O\right\} = \left\{O\right\}$	$[\infty\infty] = [\infty]$
Prismen-Zone = PrZ	$n = \pm \infty$	$1x+my = \pm \infty$	$\{\alpha \times \infty \}$ = $\{\alpha \times \emptyset \}$	$\{\infty\infty\} = \{\infty\}$	$[\infty] = [0]$
Mittel-Parallel-Zone = M Z	$ \begin{bmatrix} 1 = I \\ m = I \end{bmatrix} $	x+y+n=0	$p \cdot \overline{p+n}$	$\{\overline{n}\ \overline{n}\} = \{\overline{n}\}$	$\left[\frac{\mathbf{I}}{n} \ \frac{\mathbf{I}}{n} \right] = \left[\frac{\mathbf{I}}{n} \right]$
Allgemeine Zone $= Z$.	_	1x+my+n=0	pq	$\left\{\frac{\overline{n}}{1}, \frac{\overline{n}}{m}\right\}$	$\left[\frac{\bar{1}}{n} \ \frac{\overline{m}}{n} \right]$

Wir gebrauchen hier wie in allen unseren zweizahligen Symbolen die Abkürzung, dass wir, wenn die zwei Zahlen pq resp. ab einander gleich sind, die Zahl nur einmal setzen, also $[p] = [pp]; \{2\} = \{22\}; \bar{1} = \bar{1}\bar{1}$. Ausserdem schreiben wir gekürzt:

$$\alpha \infty \text{ für } \alpha \infty \cdot \infty = \infty \cdot \frac{1}{\alpha} \infty; \ \infty \beta \text{ für } \infty \cdot \beta \infty = \frac{1}{\beta} \infty \cdot \infty.$$

Durch Auftragen der Kantenpunkte aus ihren Symbolen als Coordinaten erhalten wir das lineare Projectionsbild. Jede Gerade zwischen zwei Punkten stellt eine Fläche dar. Ebenso können wir das Projectionsbild aufbauen durch Eintragen der Flächenlinien aus ihren Symbolen (a b) als Parametern, indem wir die Einheit a₀ nach OA amal, die Einheit b₀ nach OB bmal auftragen, die gefundenen Punkte auf OA und OB verbinden (s. Fig. 12 S. 78). Der Schnittpunkt zweier Flächenlinien ist der Projections-

¹) Für diejenigen M \parallel Z, bei denen l=-1 oder m=-1, ändert sich entsprechend das Vorzeichen im Symbol. Die Werthe l m n können überall + oder - sein.


punkt ihrer gemeinsamen Kante, das ist zugleich der Projectionspunkt der Axe der durch die beiden Flächen fixirten Zone.

Symbole der Gesammtformen, der Theilformen, der Einzelflächen. Wir verstehen unter Gesammtform den Inbegriff aller Flächen, die bei einem Krystall durch die Symmetrie gleichzeitig bedingt werden, wenn eine derselben vorhanden ist. So werden z. B. mit einer Fläche pq im holoedrisch regulären System 47 andere gleichzeitig hervorgerufen. Diese Gesammtformen zerfallen durch die Meroedrie in Gruppen, die geschlossen auftreten. Ferner bewahren Fläche und parallele Gegenfläche eine gewisse Zusammengehörigkeit und endlich ist die Einzelfläche soweit selbstständig, dass sie ebenfalls einer besonderen Bezeichnung bedarf. Die Symbole sollen nun so eingerichtet sein, dass es durch sie möglich ist, jede Gesammtform als Ganzes, jede Theilform, das parallele Flächenpaar und die Einzelfläche auszudrücken. Wie dies zu erreichen ist, möge nun zugleich mit den Eigenheiten des Projectionsbildes für die einzelnen Systeme betrachtet werden. Jedoch werden wir hier (besonders in Bezug auf meroedrische Flächencomplexe) nur das Princip darlegen, die Detailbesprechungen an anderer Stelle geben.

Reguläres System. Das allgemeine Zeichen der Gesammtform sei pq. Um die Einzelformen zu finden, gehen wir zurück auf das dreizahlige Symbol pqr, für welches wir pqr setzen können, in dem wir durch Multiplication mit dem grössten gemeinsamen Nenner ganze Zahlen einführen, z. B. für die Gesammtform:

$$\frac{1}{3} \frac{2}{3} = \frac{1}{3} \frac{2}{3} = 123$$

Dies pqr fällt zusammen mit Miller's hkl. Durch Permutation von $\pm p$, $\pm q$, $\pm r$ erhalten wir alle Einzelflächen. Setzen wir dann jedesmal den letzten

Werth = +1, so finden wir die Symbole für die 24 Einzelflächen der oberen Projections-Ebene.

Soll die Gegenfläche gemeint sein, so bezeichnen wir dies hier wie in allen anderen Systemen durch ein Minuszeichen unter dem Symbol, also:

$$\underline{pq}$$
 = Gegenfläche von pq
 $\underline{23}$ = , , 23

Sodann brauchen wir nur noch die 24 Flächen der oberen Projections-Ebene unter sich zu unterscheiden. Diese zerfallen in drei Gruppen I. II. III., je nachdem der grösste, mittlere oder kleinste der drei Werthe p q r an die letzte Stelle tritt. Die Flächenpunkte der drei Gruppen ordnen sich im Projectionsbild in verschiedene Felder, die in Fig. 16 durch Schraffirung geschieden und mit den Nummern der Gruppe bezeichnet sind.

In Gruppe I. ist p und q < 1 z. B. für das dreiziffrige Symbol 123:
$$\frac{2}{3} \cdot \frac{1}{3}$$
; $\frac{1}{3} \cdot \frac{2}{3} \cdot \frac{1}{3}$
II. "p oder q < 1 " " " " " " " $\frac{3}{2} \cdot \frac{1}{2}$; $\frac{1}{2} \cdot \frac{3}{2} \cdot \frac{1}{2}$
III. "p und q > 1 " " " " " " " " " 3 2; 2 3

Das innere Feld zwischen den wichtigen Eckpunkten $1 \cdot 1\overline{1} \cdot \overline{1} \cdot \overline{1}1$ wollen wir hier, sowie in den anderen Systemen innere Projections-Ebene nennen. Für alle Formen der inneren Projections-Ebene ist (absolut) p und q < 1.

Durch die Vertauschung von p und q erhalten wir obige sechs Formen. Weiter theilt sich das Feld in vier Quadranten (1.2.3.4) Fig. 17 und es unterscheiden sich die Indices der in den einzelnen Quadranten liegenden Flächenpunkte durch die Vorzeichen.

Die Diagonalen trennen die Felder, in welchen p>q (vorn — hinten), von denen, in welchen p< q ist (links — rechts).

Durch diese Eintheilung sind wir im Stande, jede Einzelfläche zu bezeichnen, wie im Beispiel der Fig. 16 zu ersehen. Eine zweite Art zur Benennung der Einzelfläche findet sich an späterer Stelle bei der Besprechung der Buchstaben-Bezeichnung angegeben.

Zur Bezeichnung der Gesammtform wählen wir dasjenige Symbol der Gruppe I. im Quadranten 1, für welches p > q ist, also in unserem Beispiel $\frac{2}{3}$ $\frac{1}{3}$ und zwar geben wir deshalb den Symbolen der Gruppe I. den Vorzug, weil die Projectionspunkte der Einzelflächen, die diesen Symbolen direkt entsprechen, dicht beisammen liegen in der Mitte des Projectionsbildes und dadurch leicht überblickt werden können. Wenn es in einem speciellen Falle wünschenswerth erscheint, kann auch eine andere Einzelfläche, z. B. 23 als Vertreter der Gesammtform verwendet werden. Im Index wurde je ein positiver Vertreter der drei Gruppen für die Gesammtform eingesetzt, also z. B.:

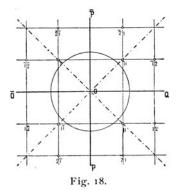
$$\frac{2}{3} \frac{1}{3}$$
; $\frac{1}{2} \frac{3}{2}$; 32

und erhielten die Symbole der ersten Gruppe die Ueberschrift G_1 , die der zweiten G_2 , der dritten G_3 .

Die hemiedrischen Theilformen werden nur durch \pm resp. 1r vor dem Symbol kenntlich gemacht, die tetartoedrischen durch ± 1 r. Dass die Form theilflächig ist, sieht man eben an dem vorgesetzten ± 1 r. Welche Art der

Hemiedrie vorliegt, braucht nicht bei jeder einzelnen Form auf's Neue im Symbol ausgedrückt zu werden, wenn es nur einmal von dem Krystall ausgesagt ist. Im Index findet sich eine diesbezügliche Angabe im Kopf der Tabellen zugleich mit Nennung des Krystallsystems. Dadurch wird das Symbol entlastet und können die Angaben $\frac{pq}{2} \frac{pq}{4}$ resp. π x entbehrt werden. Das Gesagte gilt auch für die anderen Systeme.

In Projectionsbildern empfiehlt es sich, die Gebiete der drei Gruppen resp. bei Meroedrien die zusammengehörigen Theilgebiete des Projectionsfeldes durch eingelegte Farbentöne hervorzuheben, wie dies in Fig. 16 durch die Schraffirung angedeutet ist.

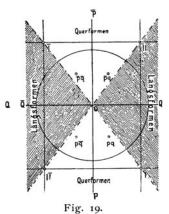

Der Kreis in Figg. 16–21 ist der Grundkreis der Projection vom Radius h. Im regulären System ist $h=r_o=p_o=q_o=1$.

Tetragonales System. Die Gesammtform pq (p>q) umschliesst die Einzelflächen $\pm p$. $\pm q$ sowie $\pm q$. $\pm p$ nebst den Gegenflächen auf der unteren Projectionsfläche, die wieder durch das Minuszeichen unter dem Symbol kenntlich gemacht werden. Also z. B. (Fig. 18):

Gesammtform: 21

Einzelflächen: 21 12 21 12 21 12 21 12 11 12 mit den Gegenflächen: 21 12 21 12 21 12 21 12

Als Repräsentanten der Gesammtform wählen wir dasjenige Symbol der Fläche pq des ersten


Quadranten vorn rechts, bei dem p>q ist. Die Meroedrien werden wieder durch +1r vor dem Symbol angezeigt.

In diesem System ist $p_0=q_0$ jedoch verschieden von $r_0=h=r$, daher ist im Index unter den Elementen nur p_0 angegeben.

Rhombisches System. Zu einer Gesammtform gehören hier im All-

gemeinen vier Einzelflächen nebst ihren Gegenflächen, nämlich:

Als Repräsentant der Gesammtform ist p $q = +p \cdot +q$ gewählt. Durch die Diagonalen durch O und die vier Punkte der Form 1 wird das Feld in zweierlei Gebiete getheilt, die in der Fig. 19 durch Schraffirung unterschieden sind. In dem einen Theil (vorn — hinten) liegen die Formen, für welche p > q (Querformen), in den seitlichen Theilen die, für welche p < q ist (Längsformen).

Die Bezeichnung Längsform soll ausdrücken, dass eine Form zwischen den Formen der Haupt-Radialzone (Pyramiden der Hauptreihe) und der Längsfläche oo = (010) liege, Querform, dass sie zwischen diesen und der Querfläche oo = (100) liege. Fürerstere ist p < q, für letztere p > q. Vgl. Figg. 19-21.

In diesem System sind p_0 und q_0 verschieden unter sich und ebenso von $r_0=h=\tau$.

Monoklines System.

Fig. 40

In diesem System fallen der Projections-Mittelpunkt O und der Scheitelpunkt C nicht mehr zusammen, doch liegen beide auf der Symmetrielinie P des Bildes. Die Excentricität ist $e = CO = \cos \mu$, der Radius des Grundkreises, der um C als Mittelpunkt beschrieben ist $= h = \sin \mu$.

Hier gehören nur mehr zwei Flächen mit ihren Gegenflächen zu einer Gesammtform, nämlich:

 $\begin{array}{c|c} & pq & p\overline{q} \\ \text{mit den Gegenflächen} & \underline{pq} & \underline{pq} \end{array} \right\} \text{ positive Formen,} \\ \text{oder andererseits:}$

mit den Gegenflächen
$$\frac{\overline{pq}}{\overline{pq}}$$
 $\frac{\overline{pq}}{\overline{pq}}$ negative Formen.

Die positiven Formen, nämlich diejenigen, bei denen p=+, scheiden sich von den negativen, bei denen p=- ist, im Projectionsbild durch die Quer-Axe Q, wodurch dieses in eine vordere + und eine hintere - Hälfte zerfällt. Beide Gebiete sind in Zeichnungen vortheilhaft durch einen eingelegten Farbenton zu scheiden, in der Fig. 20 ist dies durch Schraffirung angedeutet. Wie im rhombischen System zerfällt das Bild durch die Diagonalen in das Gebiet der Längsformen (p < q) und der Querformen (p > q).

Als Zeichen für die Gesammtform wählen wir:

Für die positiven Formen
$$+$$
 pq, das umfasst pq pq nebst den Gegenflächen pq pq pq , , negativen , $-$ pq , , pq pq pq , , , , pq pq pq

Triklines System.

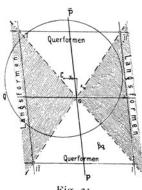


Fig. 21.

Die Verhältnisse des Triklinen Systems sind (als allgemeiner Fall) bereits auseinander gesetzt. Hier gehören nur Fläche und Gegenfläche zu einer Gesammtform, und ist daher eine besondere Bestimmung für die Bezeichnung dieser nicht nöthig. Zur besseren Uebersicht können wir wieder wie in Fig. 21 die Längsformen (p < q) von den Querformen (p > q) abscheiden. Die Grenzen der Gebiete beider im Projectionsfeld bilden die Diagonalen.

Hexagonales System. Das hexagonale System bedarf einiger besonderer

Betrachtungen. Nehmen wir als Primärform ein hexagonales Prisma mit der Basis, so haben wir die Auswahl zwischen zwei scheinbar gleichwerthigen Prismen, die unter 30° (oder 90°) gegen einander verdreht sind. Welches von beiden als das primäre anzusehen sei, lässt sich a priori nicht entscheiden, doch giebt die Betrachtung der Symbole und die Discussion der Zahlen, wie wir sehen werden, ein Anhalten dafür. Wir nehmen zunächst beliebig eins von beiden und erhalten nun die Richtung

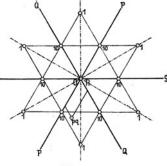


Fig. 22.

der primären Axen, Kraftrichtungen, als Normale auf dessen Flächen. Von diesen liegen drei (PQS) in einer Ebene, die vierte (R) steht senkrecht darauf. Die Projections-Ebene ist senkrecht auf R zu wählen und fällt daher mit der Basis o = (0001) zusammen. In ihr treten auf, (vgl. Fig. 22) von O, dem Projectionspunkt der Basis und Austrittspunkt von R, ausstrahlend, die drei Richtungen der Primärkräfte PQS mit ihren Gegenrichtungen als Coordinaten-Axen. Diese drei Axen sind unter sich gleichwerthig und haben deshalb die gleiche Einheit $p_0 = q_0$, deren Grösse wir sogleich ableiten werden. Zuvor wollen wir untersuchen, wie wir in voller Analogie mit den anderen Systemen zu einem Symbol gelangen.

Das Symbol soll ausdrücken (genetisch) die die Fläche bauenden Kraftantheile und zugleich (formell) die Coordinaten des Flächenpunktes im Projectionsfeld. Genetisch können wir annehmen, dass stets nur von drei Kräften in den Richtungen PQR oder QSR oder PSR Antheile zusammentreten zur Bildung einer Fläche, deren Projectionspunkt dann innerhalb des durch P und Q resp. Q und S oder P und S eingeschlossenen Sextanten liegt. Demgemäss brauchen wir in dem Symbol, das die Antheile der componirenden Kräfte giebt, nur die Angabe von drei Werthen, von denen der eine, = 1 gesetzt, nicht geschrieben werden muss, wodurch wir ein zweizahliges Symbol erhalten. Ebenso können wir formell zur Bestimmung der Lage eines Flächenpunktes in der Projection durch Coordinaten wieder nur zwei Werthe gebrauchen. Auch so kommen wir auf ein zweizahliges Symbol pq.

Es fragt sich nun, welche Axen als Coordinaten zu nehmen sind. In dieser Beziehung giebt es zwei Wege: entweder wir nehmen zwei von den drei Axen PQS, z. B. PQ mit ihren Gegenrichtungen fest für alle Punkte als Coordinaten-Axen an (dies ist erforderlich für manche Aufgaben, z. B. für Untersuchungen in Zonenlinien, die durch mehrere Sextanten hindurchgehen), oder wir betrachten jeden Sextanten für sich selbstständig. In letzterem Fall ist nur eine nähere Angabe nöthig, in welchem Sextanten

resp. Duodecanten der zu bezeichnende Flächenpunkt liegt. Für das allgemeine Symbol ist eine solche Angabe überflüssig, da jeder Punkt gleichmässig in allen Duodecanten auftritt. Nur für die Meroedrien und die Einzelflächen muss eine solche Angabe gemacht werden und wir sind darauf angewiesen, für diese den anderen Systemen analoge, jedoch der dreiseitigen Symmetrie sich anschliessende Auskunftsmittel herbeizuziehen.

Allgemeines Symbol.

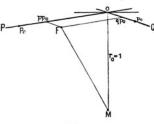


Fig. 23.

Als zusammenwirkend müssen wir ausser r₀ zwei benachbarte Horizontalkräfte annehmen, d. h. solche, die einen Winkel von 600 (nicht von 1200) einschliessen. So setzt sich die Resultante, die Flächennormale MF im perspectivischen Bild der Projection (Fig. 23), zusammen aus $r_0 = 1$ in der verticalen und den Antheilen pp₀ und qq₀ in der P und Q Richtung. Durch Auftragen von $r_0 = 1$ gelangen wir nach O in die Oberfläche der Polar-

form, die hier zusammenfällt mit der Basis o = (0001) und bewegen uns nun, von O als Nullpunkt oder Projections-Mittelpunkt ausgehend, auf dieser oberen Fläche, die dadurch zur Projections-Ebene wird, in den Richtungen der Coordinaten OP und OQ. Es sind die Längen der in diesen Richtungen aufzutragenden Coordinaten pp_0 und qq_0 oder pp_0 und qp_0 , da $p_0 = q_0$ ist. In dem Projectionsbild (Fig. 23 und 24) werden wir dem-

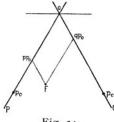


Fig. 24.

nach zu dem Punkt F geführt, indem wir von O ausgehend in der Richtung OP pmal, daran in der Richtung parallel OQ qmal die Einheit p₀ auftragen. So erhalten wir genetisch ebenso wie formell das dreizahlige Symbol pqr = pq 1 oder das zweizahlige pq in voller Analogie mit den anderen Systemen.

Meroedrien. Durch die Meroedrien theilt sich die obere Projections-

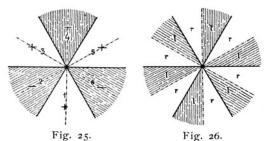


Fig. 26.

Ebene in sechs Felder (rhomboedrische Hemiedrie) Fig. 25 oder in zwölf (pyramidale, trapezoedrische Hemiedrie, Tetartoedrie) Fig. 26.1)

Die sechs Felder (Sextanten) numeriren wir von 1-6, gezählt nach der Gangrichtung des Uhrzeigers, ebenso wie in den anderen

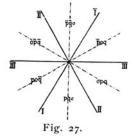
Systemen die Quadranten. In rhomboedrischer Hemiedrie, der wichtigsten

¹⁾ Wir betrachten hier nur das Projectionsfeld, soweit wir es zur Symbolisirung brauchen und werden die speciellere Discussion von Hemiedrie und Projection an einem anderen Orte geben, da sie hier zu weit führen würde.

von allen, tritt eine Fläche stets in allen geraden (2.4.6) oder allen ungeraden (1.3.5) Sextanten zugleich auf. Wir wollen die ersteren positive (+) nennen, die letzteren negative (-) (Fig. 25). Im Symbol drücken wir dies aus durch \pm vor den Zahlen, also + pq, - pq.

Zerfällt das Feld in 12 Theile (Duodecanten), so trennen wir diese zunächst nach Sextanten im Anschluss an das Obige und unterscheiden in diesen eine linke (1) und rechte (r) Hälfte mit dem Blick nach der Vertical-Axe resp. dem Projections-Mittelpunkt gerichtet (Fig. 26).

Die Gegenfläche bezeichnen wir wieder durch — unter dem Symbol, z. B. pq, Gegenfläche von pq.


Einzelflächen. Aus Obigem können wir zwei Arten der Bezeichnung der Einzelflächen ableiten. Zunächst eine Art der Bezeichnung, wie sie ebenfalls für Buchstaben vorgeschlagen werden soll. Wir zählen die Sextanten 1—6 und hängen deren Nummer oben an das Symbol an, rechts für die Fläche rechts, links für die Fläche links, also:

21³ ist die Fläche 21 im dritten Sextanten rechts (sprich 21.3 rechts), ³21 ,, ,, , , , , links (sprich 21.3 links). Dies ist die anschaulichste Art. 'Nach Bedarf können wir vor das Zeichen zur Orientirung + oder — setzen, z. B. + 21³.

Fig. 28 giebt ein Bild dieser Bezeichnungsweise. In ihr haben die ungeradzahligen (—) Sextanten eine Schraffirung senkrecht zu den Zwischen-Axen, die geradzahligen (+) nicht, die linken Sextanthälften eine Schraffirung parallel den Zwischenaxen, die rechten nicht. Hierdurch kommt zugleich die für die Meroedrien wichtige Trennung in die Gebiete $\pm 1\,\mathrm{r}$ zur Darstellung.

Genauer anlehnend an die genetischen Verhältnisse, doch weniger übersichtlich ist folgende Schreibweise: Wir numeriren die Axen im Projections-

feld I. II. III. mit den Stücken der Gegenrichtung I. II. III. (Fig. 27.) Von diesen drei Axen sind stets nur Antheile von zweien am Symbol wirklich betheiligt. Wir bilden nun dreizahlige Symbole aus p, q und o, wobei die o an die Stelle der unbetheiligten Axe tritt. Die erste Ziffer bezieht sich auf die I., die zweite auf die II., die dritte auf die III. Axe. Eine Uebersicht giebt die Fig. 27. Durch diese Bezeichnung sind die einzelnen

Sextanten gegeben. In jedem derselben treten aus der Vertauschung von p und q für das allgemeine Symbol pq zwei Werthe auf, also z. B. pqo und qpo. Sonach haben wir wieder Symbole für alle zwölf oberen Einzelflächen. Für die Gegenflächen möge — unter dem Symbol eintreten.

In allen anderen Systemen ist es vortheilhaft, die Werthe +pq direct

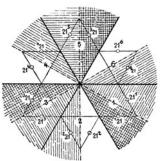


Fig. 28.

in die Rechnung einzuführen, im hexagonalen System nicht, da durch die von der Symmetrie herbeigeführte dreifache Manichfaltigkeit leicht Irrthümer entstehen können. Es ist hier in allen Fällen vortheilhaft, der Rechnung eine Handskizze der Projection zu Grunde zu legen. In ihr aber lässt sich am schnellsten und mit der geringsten Gefahr des Irrthums die Stelle einer Einzelfläche nach der ersten Schreibweise finden. Sie dürfte deshalb entschieden den Vor-

Ausserdem hat sie noch einen Vortheil; sie ermöglicht die zug verdienen. Uebersicht der Zusammengehörigkeit der Einzelflächen nach Gruppen der Meroedrie nach der Vertheilung der Indices. Diese stellt sich folgendermassen (vgl. Fig. 26):

Rhomboedrische Hemiedrie:

```
Alle - Formen haben ungeradzahligen Index:
                                                                         1211 3213 5215
                           geradzahligen
           Pyramidale Hemiedrie:
                                                                                                ebenso die
Alle Formen rechts haben den Index rechts:
                                                                                               Gegenflächen
                                                                                            21<sup>1</sup> 21<sup>3</sup> u. s. w.
                                                                         <sup>1</sup>21 . . . <sup>6</sup>21
           Rhomboedrische Tetartoedrie:
Alle — Formen rechts haben ungeradzahligen Index rechts:
                                                                          211 213 215
                  links
                                                            links:
                                                                         1<sub>21</sub> 3<sub>21</sub> 5<sub>21</sub>
                                              u. s. w.
```

Trapezoedrische Tetartoedrie:

In der unteren Projections-Ebene erhalten die Sextanten gleiche Nummern mit denjenigen der oberen, die deren Gegenflächen enthalten.

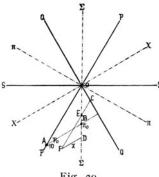


Fig. 29.

Symbole G₁ und G₂. Umwandlung derselben. Statt des einen Prismas können wir als Primärform auch dasjenige betrachten, das gegen dieses um 300 (90°) verdreht ist. Auf beide können wir in gleicher Weise eine Symbolisirung gründen. Wir wollen Symbole der ersten Aufstellung mit G1, solche der zweiten mit G₂ bezeichnen.

Es mögen sich in Fig. 29 die Axen PQS auf G_1 , $\Pi X \Sigma$ auf G_2 beziehen und es sei: $OA = p_0$ die Einheit der PQS $OB = \pi_0$ die Einheit der $\Pi X \Sigma$

so erhält der Punkt A in G1 das Zeichen 10, in G2 das Zeichen 1,

,, ,, B in
$$G_2$$
 ,, ,, 10.

Es sei für einen Punkt F das Symbol pq $(G_1) = \pi \chi(G_2)$, so ziehen wir nach beiden Arten von Axen die Coordinaten: FC, CO resp. FD, DO.

Es ist dann:
$$FC = pp_o$$
 $CO = qp_o = CE$. $OD = \pi\pi_o$ $DF = \chi\pi_o = DE$.

Nun ist in
$$\triangle$$
 OCE:

OE = OC
$$\sqrt{3}$$
 d. h.: $\pi \pi_o - \chi \pi_o = q p_o \sqrt{3}$
ED = $\frac{EF}{\sqrt{3}}$ d. h.: $\chi \pi_o = \frac{p p_o - q p_o}{\sqrt{3}} = \frac{p_o}{\sqrt{3}} (p - q)$
demnach ist: $\pi \pi_o = q p_o \sqrt{3} + \frac{p p_o - q p_o}{\sqrt{3}} = \frac{p_o}{\sqrt{3}} (p + 2q)$
da nun aber $\frac{p_o}{\sqrt{3}} = \pi_o$, so ist: $\chi = p - q$
 $\pi = p + 2q$

da nun aber
$$\frac{p_o}{\sqrt[]{3}} = \pi_o$$
, so ist: $\chi = p - q$
 $\pi = p + 2q$

Diese zwei Gleichungen geben das Umwandlungs-Symbol, das wir schreiben wollen: $pq (G_1) = (p + 2q) (p - q) (G_2).$

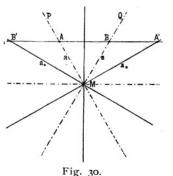
Wir finden aus einem Symbol pq der ersten Aufstellung das der zweiten, indem wir für das neue p den Werth p + 2q, für das neue q den Werth p — q bilden, z. B.: $21 (G_1) = 41 (G_2)$ $10 (G_1) = 11 = 1 (G_2)$.

Die umgekehrte Verwandlung G2 in G1 ergiebt sich leicht, indem man aus den Gleichungen $\chi = p - q$; $\pi = p + 2q$ p und q berechnet. Es ist:

$$p = \frac{\pi + 2\chi}{3}$$

$$q = \frac{\pi - \chi}{3}$$

oder als Umwandlungs-Symbol geschrieben:


$$pq (G_2) = \frac{p+2q}{3} \frac{p-q}{3} (G_1)$$

z. B.: 21 (G₂) =
$$\frac{4}{3} \frac{1}{3}$$
 (G₁).

Berechnung von po, ao und a'o aus dem Axen-Verhältniss a: c.1) Die linearen Axen stehen allgemein senkrecht auf den polaren. Gehen wir also für das Symbol pq von Polaraxen aus, die 600 einschliessen, so schliessen die entsprechenden Linearaxen 1200 ein, d. h.

ist
$$v = 60^{\circ}$$

so ist $\gamma = 120^{\circ}$.

Dass für $v = 60^{\circ} \gamma = 120^{\circ}$ und nicht = 60° sein müsse, geht aus der Betrachtung hervor, dass für die polaren und

1) Im Allgemeinen werden derartige Berechnungen erst an späterer Stelle gegeben. Diese wurde hier vorausgenommen, weil sie zugleich einige Bezeichnungsweisen erklärt, die dem hexagonalen System speciell zukommen, von dessen Besonderheiten hier die Rede ist. Goldschmidt, Index.

die linearen Axen gleiche Symmetrieverhältnisse bestehen müssen, dass also die Zwischenaxe (Fig. 30), welche den Winkel zwischen den Polaraxen P und Q halbirt, also zwischen P und Q Symmetrielinie ist, auch den Winkel zwischen den zugeordneten Linearaxen halbiren muss. Soll nun ausserdem die eine der letzteren auf P, die andere auf Q senkrecht stehen, so können die P und Q zugeordneten Linearaxen nur diejenigen sein, welche den Winkel von 120° einschliessen und in Fig. 30 mit A' und B' bezeichnet sind.

Für die Elemente eines jeden Krystalls aus irgend einem System gilt die Gleichung:

$$p_o:q_o:r_o=\frac{\sin\alpha}{a_o}:\frac{\sin\beta}{b_o}:\frac{\sin\gamma}{c_o}$$

Nun ist speciell für das hexagonale System

$$p_o = q_o; r_o = 1; a_o = b_o$$

 $\alpha = \beta = 90^\circ; \gamma = 120^\circ.$

und es geht bei Einsetzung dieser Werthe obige Gleichung über in:

$$p_o: p_o: I = \frac{1}{a_o}: \frac{1}{a_o}: \frac{\sin 120^o}{c_o}$$

und da sin 120° = $\frac{1}{2}V\overline{3}$, so ist:

$$p_o = \frac{c_o}{a_o \cdot \frac{1}{2} V \frac{7}{3}} = \frac{2}{V \frac{7}{3}} \frac{c_o}{a_o}$$

Die Angabe des Axen-Verhältnisses i:c in der üblichen Schreibweise sagt aus, dass eine Fläche der Pyramide P (100) resp. des Rhomboeders R (100) auf der Vertical-Axe das Stück c abschneidet, wenn der Abschnitt auf den Horizontalaxen = 1 ist. Die dabei gemeinten Horizontalaxen bilden aber den Winkel 60° (nicht wie die linearen 120°). Nun kann das P resp. R, von dem die Angabe des Axen-Verhältnisses 1:c gemacht ist, identisch sein mit 1 oder auch mit 10 unserer neuen Symbole. Welche von diesen beiden Annahmen gemacht ist, und zugleich, welcher von beiden Aufstellungen G_1 oder G_2 das Symbol 1 resp. 10 angehört, wollen wir dadurch anzeigen, dass wir unter a:c setzen (1) resp. (10) und hinter die Angabe der Verhältnisszahlen (G_1) resp. (G_2) (vgl. Index), zum Beispiel:

$$a: c = 1:0.95 (G_2)$$

bedeutet, a: c sei das Axen-Verhältniss für diejenige Pyramide (Rhomboeder), welche in der Aufstellung G₂ des Index das Zeichen 1 führt.

$$a:c = 1:0.95 (G_1)$$
(10)

bedeutet, a : c sei das Axen-Verhältniss für diejenige Pyramide (Rhomboeder), welche in der Aufstellung G_1 des Index das Zeichen 10 führt.

Wir wollen den ersten Fall von den beiden soeben betrachteten ins Auge fassen und das c für diesen Fall mit c_1 , für den zweiten Fall mit c_{10} bezeichnen. Es sei Fig. 30 Seite 33 ein Horizontalschnitt durch den Mittelpunkt des Krystalls, MP und MQ die Polaraxen, deren Einheiten mit r_0 zur Bildung von 1 zusammentreten, es sei ferner B'ABA' die Trace dieser

Pyramidenfläche in besagter Ebene. Sie schneide P und Q, die einen Winkel von 60° einschliessen, in A und B. Nach der üblichen Bezeichnungsweise ist nun MA = MB = a, während der Abschnitt auf der Vertical-Axe = c_1 ist. Nun ist aber für die Linearaxen, wie oben nachgewiesen, $\gamma = 120^\circ$, also die Abschnitte A'M resp. $B'M = a_0 = a\sqrt{3}$, während $c_0 = c_1$ der gewöhnlichen Angabe bleibt. Demnach ist für den oben ausgeführten hier zutreffenden Fall, also für p = q = 1:

$$p_o = \frac{z}{\sqrt{3}} \frac{c_o}{a_o} = \frac{z}{\sqrt{3}} \frac{c_i}{a \sqrt{3}} = \frac{z}{3} \frac{c_i}{a}$$

Wenn nun, wie derzeit üblich, a = 1 gesetzt wird, so ist für a:c:

$$p_o = \frac{2}{3}c_i$$

Für den zweiten Fall ist bei der gleichen Aufstellung

$$\mathbf{c_1} = \sqrt{\frac{1}{3}} \mathbf{c_{10}}$$

dies eingesetzt in $p_o = \frac{2}{3} c_1$ giebt: $p_o = \frac{2}{3} c_{10} \sqrt{\frac{4}{3}} = c_{10} \sqrt{\frac{4}{3}}$

Im Index finden sich die Werthe c a_o p_o mit ihren Logarithmen angeführt und zwar für diejenige Aufstellung, deren Axenverhältniss a:c zu oberst angeschrieben ist. Ausserdem findet sich darin noch ein Werth a'_o mit seinem Logarithmus. a'_o ist die Länge der Abschnitte der primären Pyramide (Rhomboeder) auf den sich unter 60° schneidenden Axen der Grundform für $c_o = 1$. Es berechnet sich:

$$a'_{\circ} = \frac{1}{c_1} = \frac{a_{\circ}}{V\overline{3}}$$

Die Angabe dieses Werthes ist für manche Rechnungen erwünscht.

Der Werth a₀ leitet sich folgendermassen ab:

Es ist:
$$p_o = \frac{2}{3}c_1$$
Andererseits ist: $p_o = \frac{2}{\sqrt{3}}\frac{c_o}{a_o}$ und für $c_o = 1$; $p_o = \frac{2}{\sqrt{3}}\frac{1}{a_o}$ daher: $a_o = \frac{\sqrt{3}}{c_1}$ und da $c_1 = \sqrt{3}c_{10}$, so ist auch $a_o = \frac{1}{c_{10}}$

Es erschien im hexagonalen System eine besonders genaue Präcisirung der Angaben nöthig, da bei der Wiederholung der gleichen oder sich ergänzenden Winkel von 30° 60° 90° 120° leicht Inconsequenzen durch Verwechselung auftreten, die bei Anwendung allgemeiner, d. h. für alle Systeme geltender Formeln zu falschen Resultaten führen und es unmöglich machen, zutreffende Analogien zu ziehen. Wir werden bei der Discussion des hexagonalen Systems sehen, wie eine solche Vertauschung der Axen mit den um 30° (oder 90°) abstehenden Zwischenaxen die Beziehungen zwischen den Formen von holoedrischem oder hemiedrischem Typus verschleierte, so dass ver-

schiedenartig gebaute Symbole für beide Typen nothwendig erschienen und sogar verschiedene Krystallsysteme für beide postulirt wurden.¹)

Wie oben ausgeführt, lassen sich für die Formen des hexagonalen Systems zwei selbstständige Reihen von Symbolen aufstellen, die sich auf zwei um 30^0 (90^0) gegeneinander gedrehte Aufstellungen beziehen (G_1 und G_2). Als G_1 sind diejenigen Symbole bezeichnet, die aus den Zeichen anderer Autoren bei Anwendung der in dieser Einleitung gegebenen Umwandlungs-Symbole unmittelbar hervorgehen, während G_2 sich aus G_1 ergiebt nach dem Transformations-Symbol:

$$pq (G_1) \doteq (p + 2q) (p - q) (G_2).$$

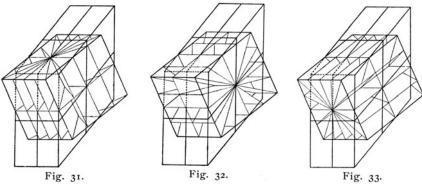
Im Index wurden beide Reihen neben einander aufgeführt. Mit welcher zu operiren sei, muss von Fall zu Fall entschieden werden. Die Ansicht des Verfassers findet sich in den angenommenen Elementen ausgedrückt. Bei rhomboedrischer Ausbildung ist in der Regel die Aufstellung G_2 , bei holoedrischer G_1 zu wählen. Die Entscheidung lässt sich aus der Discussion der Zahlen gewinnen, doch zeigt schon der Anblick der ganzen Reihe, dass beispielsweise für Calcit G_2 , für Quarz G_1 den Vorzug verdiene. Im Uebrigen ist die Grenze nicht scharf und es kann sogar unter Umständen vortheilhaft sein, zum Zweck der Rechnung oder Construction bei demselben Mineral beide Symbole neben einander zu gebrauchen.

Vgl.: Des Cloizeaux. Manuel de min. 1862. 1. XV—XIX.
 Mallard. Traité de cryst. 1879. 1. 97 und 113.
 Brezina. Methodik d. Kryst. Bestimm. 1884. 311.

Aufstellung. Umwandlung. Transformation.

Aufstellung der Krystalle.¹) Der Zweck des Index ist, das vorhandene Formenmaterial in der Weise zu vereinigen, dass es die Unterlage zu allgemeinen Schlüssen bilden könne und diese vorbereite. Dazu ist erforderlich, dass die Gesammtheit der Formen jedes Minerals möglichst leicht und vollständig, besonders in ihren Zonenreihen überblickt werden könne, und dass andererseits die Analogien der Mineralien unter sich klar hervortreten.

Andere Gründe erfordern, dass die Symbolzahlen möglichst einfache seien und sich den aus der Allgemeinheit der Fälle abgeleiteten und noch zu entwickelnden Zahlengesetzen einordnen. Auf all dies und noch vieles andere ist die Wahl der Aufstellung von Einfluss. Die Manichfaltigkeit der Rücksichten ist so gross, dass ihr nicht nach allen Seiten stets genügt werden kann. Sie soll hier nicht entwickelt, sondern nur einige wichtige Principien gegeben werden, die der Verfasser consequent durch die ganze Reihe durchzuführen gesucht hat und die motiviren sollen, warum vielfach von der zur Zeit üblichen Aufstellung abgegangen wurde.


- Im hexagonalen und tetragonalen System sind Projection und Wahl der Axen von der Natur vorgezeichnet. Nur ist eine Vertauschung der horizontalen Axen mit den Zwischenaxen möglich. Im hexagonalen System wurden im Index die Symbole für beide sich hierdurch ergebende Aufstellungen (G₁ und G₂) neben einander gestellt. Im tetragonalen System ist die Vertauschung der Axen öfters vorgenommen worden zum Zweck der Gewinnung der einfachsten Zahlenausdrücke.
- 2. Im monoklinen System erhält die Symmetrie-Ebene (in Uebereinstimmung mit dem Usus) stets das Zeichen o∞.
- 3. Im rhombischen und triklinen System ist in der Regel der stumpfe Prismen-Winkel nach vorn gelegt.
- 4. Die Symbole sollen die einfachsten sein, zunächst ohne Rücksicht auf Analogien. Diese ergeben sich erst aus der Discussion. Der Analogie darf die Einfachheit keinesfalls geopfert werden.

¹⁾ Wir verstehen unter Aufstellung nicht nur die Wahl der Axenrichtungen, sondern zugleich die der Einheiten, also aller Elemente.

- 5. Bei formenreichen Krystallen sind in der Regel zwei Axenzonen (Prismen- resp. Domenreihen) vorwiegend entwickelt. Nun ist es zur Zeit Gebrauch, die reichst entwickelte derselben als Prismenzone aufrecht zu stellen. Da wir aber hauptsächlich bestrebt sind, aus dem Projectionsbild und den ihm entsprechenden Zahlen Uebersicht zu gewinnen, so ist es vortheilhaft, die Linien der zwei stärkst entwickelten Axenzonen als P und Q in die Projections-Ebene zu legen. Gegen die Peripherie ist das Projectionsbild in der gnomonischen Projection stark auseinander gezogen. Es stehen in ihr die Prismenflächen isolirt da, während für die Flächen der P und Q Axen der Verband unter sich und mit anderen Flächen besser übersehen werden kann. Die übliche Aufstellungsweise gibt der wichtigsten prismatischen (domatischen) Zone eine bevorzugte, aber auch isolirte Stellung, reisst sie aus dem Verband heraus, aus Gründen räumlicher Anschauung des Körpers, da im Raum, besonders bei sehr ungleicher Flächenentwickelung, nur eine Zone auf einmal bequem übersehen werden kann. Sind wir nun auch nicht im Stande, die Entwickelung nach allen drei Dimensionen in der Anschauung zugleich zu erfassen, so ermöglicht uns die Projection, doch wenigstens zwei derselben zugleich zu verfolgen. Hierin liegt ein entschiedener Fortschritt, den wir am fruchtbarsten ausnützen können, wenn wir die zwei stärkst entwickelten Richtungen in Projectionsbild und Symbol in das Gebiet der deutlichsten Anschauung bringen. Wöllen wir den Krystall nach allen Seiten kennen lernen, so müssen wir noch die Projection auf o∞ und ∞o vornehmen und mit den dem entsprechenden Symbolen operiren. Aber die erste am meisten aussagende (mit der Projection auf o) bleibt die Hauptaufstellung, nach der im Allgemeinen zu symbolisiren ist.
- 6. Von hervorragender Bedeutung für den Aufbau des Krystalls sind die Parallel- und Radialzonen und unter diesen wieder besonders die erste Parallelzone (|| Z1) und die Hauptradialzone (HRZ). Parallel- und Radialzonen sind durchaus gleichwerthig und gehen durch Vertauschung der Axen in einander über. Was sich auf zwei Projections-Ebenen (Oberflächen der Polarform) als Parallelzone darstellt, ist auf der dritten Radialzone, wie aus den Figg. 31—33 ersichtlich ist.

Die Parallelzonen haben das Symbol py resp. xq, wobei p und q constant, xy variabel gedacht sind. Für die Radialzonen ist p:q constant. Beim Ueberblicken der Zahlenreihen der Tabellen treten aber die Parallelzonen deutlicher hervor, als die Radialzonen, da die constante Zahl unmittelbar zu sehen, das constante Verhältniss erst zu

bestimmen ist. Deshalb ist diejenige Aufstellung vorgezogen, bei welcher die Parallelzonen und besonders die || Z1 am reichsten ent-

wickelt erscheint. In der Regel ist dies Princip mit 5 nicht in Widerspruch.

Bei consequenter Anwendung dieser Principien stellen sich ungesucht die Analogien ein; so fand sich z.B. die analoge Aufstellung der wasserfreien Sulfate Glaserit, Mascagnin, Thenardit, Anhydrit, Baryt, Cölestin, Barytocölestin, Anglesit, Hydrocyanit (vgl. Anglesit Bemerkungen).

Symbole anderer Autoren. Von Formen- und Flächensymbolen haben die folgenden in die Literatur Eingang gefunden: die von Hauy, Weiss, Mohs, Naumann, Whewell-Grassmann-Miller, Lévy-Des Cloizeaux, Bravais, Haidinger, Hausmann, Dana, Schrauf.

Um sie lesen zu können, bedarf es eines Schlüssels, der für jede Form angiebt, welche Rechnungsoperationen mit ihr ausgeführt werden sollen, um die Zeichen in einer als Mittel des allgemeinen Verständnisses gewählten Solche Rechnungsvorschriften wurden als Bezeichnungsweise zu finden. Umwandlungs-Symbole bezeichnet, im Gegensatz zu Transformations-Symbolen, die die Rechnungsvorschrift geben sollen für die Veränderung, welche die Symbole durch Aenderung in der Aufstellung des Krystalls und in der Wahl der Elemente erleiden. Diese Umwandlungs-Symbole wurden zur Ueberführung aller anderen in unsere neuen Zeichen gegeben. Sie haben die Gestalt von Gleichungen, sind jedoch keine solche, sondern Rechnungsvorschriften. Setzt man in dem Umwandlungs-Symbol für die auf beiden Seiten auftretenden Variablen die auf der linken Seite für den speciellen Fall vorliegenden Werthe ein, so erhält man auf der rechten Seite das gesuchte mit links identische Symbol.

Zum Beispiel:
Rhombisches System:
$$m\bar{P}n \text{ (Naumann)} = m\frac{m}{n} \text{ (Gdt)}$$

$$3\bar{P}\frac{3}{2} \quad , \qquad = 32 \quad ,$$

$$BB'n \text{ (Hausmann)} = \infty n \text{ (Gdt)}$$

$$BB'3 \quad n = \infty 3 \quad ,$$

Für alle die obigen Bezeichnungsweisen wurden die Umwandlungs-Symbole wiedergegeben, nur nicht für die von Hauy. Für sie ist die Sache weitaus weniger einfach, als bei allen anderen dadurch, dass Hauy seine Symbole von einer sehr grossen Zahl von Grundformen ableitet, z. B. im regulären System vom Oktaeder, Würfel, Rhombendodekaeder, Tetraeder und ausserdem noch von einer Reihe abgeleiteter Grundformen. Bei jeder anderen Grundform erlangen die Symbole andere Bedeutung. Die Umwandlungs-Tabellen würden, um erschöpfend zu sein, so weitläufig werden, dass ich von der Ausarbeitung und Wiedergabe derselben absah und mich darauf beschränkte, die sicher identificirten Hauy'schen Symbole neben ihren Aequivalenten im Index aufzuführen.

Zur Zeit sind von diesen Symbolen die von Miller, Weiss und Naumann in Gebrauch, im hexagonalen System die vierstelligen nach Bravais; ausserdem in Frankreich die Zeichen Lévy-Des Cloizeaux und in Amerika die von Dana. Augenblicklich sind die Miller-Bravais'schen Zeichen im Begriff, alle anderen zu verdrängen.

In Betreff der sog. Miller'schen Symbole erschien es fraglich, ob der Name dieses Autors für sie festzuhalten sei. Der Hergang ihrer Einführung ist folgender: Zuerst wurden die genannten Symbole von W. Whewell in Vorschlag gebracht in einer Abhandlung: A general method of calculating the angles made by any planes of Crystals and the laws according to which they are formed. Gelesen vor der Royal Society London 25. Nov. 1824 und publicirt: London. Roy. Soc. Transactions. 1825. part. 1. S. 87. Bald darauf und unabhängig von Whewell hat M. L. Frankenheim (Oken Isis 1826. 1. 497) die gleichen Symbole in Vorschlag gebracht (vgl. besonders Seite 502. 10). Während Whewell an Hauy's Anschauungen anschliesst, geht Frankenheim in seiner Entwickelung von den Flächennormalen aus, auf die für derlei Betrachtungen zuerst Bernhardi (Gehlen Journal 1809. 8. 378) hingewiesen und deren Behandlung Neumann (Beiträge zur Krystallonomie 1823) durchgebildet hat. J. G. Grassmann kam ebenfalls selbstständig zu den gleichen Symbolen (Zur physischen Krystallonomie, Stettin 1829) und giebt sie im Einzelnen für das reguläre System (Seite 95). Er geht dabei wie Frankenheim von der Flächennormale aus, in die er in Uebereinstimmung mit Bernhardi die flächenbildende Kraft legt. In seiner Lehre von der Cohäsion, Breslau 1835, wendet Frankenheim die Grassmann'schen Symbole an. S. 298.

W. H. Miller hat den Symbolen die jetzt übliche äussere Gestalt gegeben, die Rechnungsmethoden, mit Benutzung der stereographischen Projection, unter Zugrundelegung dieser Symbole ausgebildet und in einem Compendium alle bekannten Krystallformen der Mineralien in ihnen ausgedrückt. Seine diesbezüglichen Schriften sind: A treatise on crystallography. London 1839. Uebers. v. J. Grailich. Wien 1856. An elementary introduction to Mineralogy by the late W. Phillips. New Ed. by Brooke & Miller. London 1852. On the crystallographic Method of Grassmann. Cambridge 1868.

Will man danach auf die ersten Quellen zurückgehen, so muss man die Zeichen die Whewell'schen nennen, oder bei der Selbstständigkeit der beiden anderen: Whewell-Frankenheim-Grassmann'sche, doch darf man sie wohl ohne Schmälerung der Verdienste der genannten Autoren Miller'sche Zeichen nennen nach dem Autor, Miller, der ihnen die jetzige Gestalt und die weitreichende Anwendung gegeben hat.

Für die neuen Symbole wurden die Umwandlungen gegeben zurück in die Zeichen von Weiss, Miller, Bravais, Lévy-Des Cloizeaux und Naumann.

Ausser den eingeführten Symbolen wurden noch solche aufgestellt von: Bernhardi (Gehlen Journ. 1807. 4. 230. 1807. 5. 155). vgl. Quenstedt, Grundr. d. Kryst. 1873. 27.

Kupffer (Handb. d. rechn. Krystallonomie. St. Petersburg 1831. 190). G. Werner (Jahrb. Min. 1882. 2. 55—88) für das hexagonale System. Bei diesen ist es über den Versuch der Einführung kaum hinausgekommen und konnte deshalb von der Angabe der Umwandlungs-Symbole für sie abgesehen werden.

Die Zeichen, deren sich G. Rose und Rammelsberg bedienen, können nicht als eigentliche Flächensymbole angesehen werden. Sie sind Abkürzungen für die weitläufige Weiss'sche Schreibweise und stellen sich dar als ein Zwischending zwischen Symbolen und Buchstabenzeichen. Sie finden sich fast stets begleitet von den identischen Weiss'schen Zeichen. Zu dieser Unselbstständigkeit kommen, besonders bei Rammelsberg, mehrfache Modificationen, weshalb für sie von einer Angabe der Umwandlungs-Symbole abgesehen wurde.

Die im Index aufgenommenen Symbole sind nicht gleich behandelt. Sie sind nach der Schreibweise von Miller, Bravais, Naumann und in der neuen für alle Formen angeschrieben und zwar bezogen auf die im Index angenommene Aufstellung. In den Symbolen von Hauy, Mohs, Lévy-Des Cloizeaux und Hausmann nur da, wo diese in der Literatur sich vorfanden und zwar mit der dort verwendeten Aufstellung. Deckt sich diese mit der Aufstellung des Index nicht, so wurde die Ueberschrift der Columne in [] gesetzt, z. B. [Hausmann]. Es muss dann das angeschriebene Symbol zuerst nach Art unserer Zeichen gelesen und darauf das bei dem Mineral für den betreffenden Autor vermerkte Transformations-Symbol angewendet werden, um auf das Zeichen des Index zu gelangen.

```
z. B.: Datolith . d^{\frac{1}{4}} [Des Cloizeaux]. d^{\frac{1}{4}} ist allgemein im monoklinen System = +2 (s. S. 50). Darauf ist anzuwenden das Transformations-Symbol: pq (Descl.) = \frac{p}{2}q (G), also: d^{\frac{1}{4}} = +2 (Descl.) = +12 (Gdt = Index).
```

Diese Umwandlung ist jedoch für die angeschriebenen Formen nur nöthig zum Zweck der Controle, da ja die Identification, die diese Rechnung umschliesst, durch die Nebeneinanderstellung direkt gegeben ist.

Elemente anderer Autoren. Synonymik der Axen. Wir beziehen in Uebereinstimmung mit dem herrschenden Gebrauch in dem Axen-Verhältniss a:b:c a auf die Längsaxe (l = vorn — hinten), b auf die Queraxe (q = links — rechts) und c auf die aufrechte Axe (\bot = oben — unten), daneben geht die ältere Bezeichnung her, die im rhombischen, monoklinen, triklinen System zwischen einer Brachy- (-), Makro- (-) und Vertical-Axe (\bot) unterscheidet, im monoklinen System ausserdem zwischen einer gegen die aufrechte Axe schiefwinklig geneigten (Klino-) Axe, einer zur aufrechten rechtwinkligen (Ortho-) und einer aufrechten (Vertical-) Axe. Die Buch-

staben a b c für diese drei Axen sind bei den verschiedenen Autoren verschieden gedacht. Um die gegebenen Axenverhältnisse zu verstehen, muss man die Bedeutung von a b c kennen. Im Folgenden gebe ich eine Tabelle für eine Reihe von Autoren. Sie ist nicht vollständig, trotzdem wollte ich sie hier aufnehmen, da sie für die meisten Fälle ausreicht.

Tetragonales System. $a:\overset{\perp}{c}$ entspricht bei:	Rhombisches System. $\overset{1}{a}:\overset{q}{b}:\overset{\perp}{c}$ entspricht bei:	Monoklines System. $\overset{\downarrow}{\mathbf{a}}:\overset{\downarrow}{\mathbf{b}}:\overset{\downarrow}{\mathbf{c}}\;\;\angle\;\beta$ entspricht bei:
Naumann	C. S. Weiss . Dauber $a:b:c$ G. Rose $a:b:c$ Miller Lang $b:a:c$ Schrauf Zepharovich . Miers $b:c:a:c$ Dana $b:c:a:c$ Quenstedt $a:b:c$	C. S. Weiss. G. Rose Naumann Kokscharow. Dana Scacchi Dauber a:b:c ∠β Kenngott c:b:a ∠c.
Hexagonales System. $a: c$ (10) entspricht bei: C. S. Weiss A. Weiss Dana Schrauf z. Th Kenngott	Senfft } $\overrightarrow{b} : \overrightarrow{a} : \overrightarrow{c}$ Mohs Haidinger Kokscharow . Scheerer Kenngott	Triklines System. $ \begin{array}{ccccccccccccccccccccccccccccccccccc$

Haben die Buchstaben abc in dem angegebenen Axenverhältniss eine andere als die im Index meist angenommene Bedeutung, so muss zum Zweck des Vergleichs mit anderen Angaben die Umstellung vorgenommen werden, die sich aus obiger Uebersicht ergiebt.

Umrechnung der Elemente. Manche Autoren geben ein aus abc αβγ bestehendes Axenverhältniss überhaupt nicht an, statt dessen finden sich andere Verhältnisszahlen z. B. bei Mohs und dessen Nachfolgern, so besonders Haidinger, Zippe, Schabus, bei anderen Autoren gewisse Elementarwinkel, so bei Miller, oder endlich ein Zahlenverhältniss in Verbindung mit Winkelangaben, z. B. bei Lévy und Des Cloizeaux. Die Umrechnungen sind einfach, jedoch bedarf es, besonders bei mangelnder Uebung, einer grossen Aufmerksamkeit und öfters zeitraubender Orientirung, um die

Umrechnungen richtig auszuführen, denn es sind gar manche Eigenarten zu berücksichtigen und Fehler durch Uebersehen derselben leicht möglich. Es wurden deshalb die einfachen Umrechnungs-Gleichungen unter dem Titel Umrechnung der Elemente für die Angaben von Mohs (Haidinger, Zippe), Miller, Lévy und Des Cloizeaux zusammengestellt. Die Winkelangaben Hausmann's fallen zum Theil mit denen von Mohs zusammen, zum Theil führen sie zu den üblichen Elementen auf den an späterer Stelle für einzelne Specialfälle zur Berechnung der Elemente aus Messungen angegebenen Wegen.

Für das trikline System sind die angegebenen Winkel wechselnd und ist es hier am besten, von speciellen Formeln abzusehen und auf dem allgemeinen Wege der Berechnung der Elemente aus Messungen unter Zugrundelegung einer Handskizze der Projection die Ausrechnung zu machen.

Umwandlung der Symbole.

Allgemeine Bemerkungen zu den folgenden Tabellen:

- Die unter der Ueberschrift Gdt auftretenden zwei Werthe entsprechen unseren neuen Symbolen pq und es ist, wenn in den Bemerkungen von p die Rede ist, der erste, wenn von q, der zweite dieser beiden Werthe gemeint.
- 2. pq resp. pq soll bedeuten, dass p absolut, d. h. ohne Rücksicht auf das Vorzeichen, grösser resp. kleiner als q sei.
- 3. Im hexagonalen System haben wir die Aufstellung, welcher unsere Symbole entsprechen, so wie sie sich unmittelbar aus der Anwendung der Umwandlungssymbole ergeben, als G₁ bezeichnet. Neben der Aufstellung G₁ her geht eine andere, um 30⁰ gegen diese gedrehte, G₂, (vgl. S. 32) für welche man die Symbole, aus denen der Aufstellung G₁ gewinnt durch die Rechnungsvorschrift:

$$p q (G_1) = (p + 2q) (p - q) (G_2)$$

Umgekehrt gelangt man zu dem Symbol der Aufstellung G_1 aus dem der Aufstellung G_2 nach der Rechnungsvorschrift:

pq
$$(G_2) \stackrel{\cdot}{=} \frac{p+2q}{3} \frac{p-q}{3} (G_1)$$

Bei diesen beiden Umwandlungen ist stets ohne Rücksicht auf das Vorzeichen p > q zu nehmen. Nimmt man p < q, so entsteht bei der Umwandlung ein Symbol mit negativem q. Solche Symbole $p\overline{q}$ (vgl. Index G_1' G_2') haben auch ihre Bedeutung im Projectionsbild; während man zu dem Projectionspunkt pq gelangt, indem man an p unter stumpfem Winkel q aufträgt, so ist \overline{q} von derselben Stelle rückwärts q0. H. unter spitzem Winkel aufzutragen. Will man Symbole mit negativem q1 beseitigen, so gilt die Umwandlung:

$$\pm p\bar{q} = \mp (p-q) q$$

z. B: $-2\frac{\bar{2}}{5} = +\frac{8}{5}\frac{2}{5}$

Miller-Symbole.

System.	Miller.	Gdt.	Bemerkungen.
Regulär . Tetragonal Rhombisch Monoklin . Triklin .	h k l	h k 1 1	In Miller's Schriften sowie bei manchen anderen Autoren sind im rhombischen System h und k vor der Umwandlung zu vertauschen. (Vgl. Synonymik der Axen S. 42.)
Hexagonal.	h k l	$\frac{h-k}{h+k+1} \cdot \frac{k-1}{h+k+1}$	hkl bedeutet, dass vor der Umwandlung die Zahlen des Miller'schen Symbols so zu ordnen sind, dass, mit Berücksichti- gung des Vorzeichens, h>k>l ist.

Hexagonales System. Anmerkung. Fällt nach der Umwandlung p < q aus, so sind für rhomboedrische Formen p und q zu vertauschen und das Symbol erhält das Vorzeichen -, z. B. (110) (Miller) = $-o^{\frac{1}{2}} = \frac{1}{2}o$ (G₁).

System.	Gdt.	Miller.	Bemerkungen.
Regulär . Tetragonal Rhombisch Monoklin . Triklin	p q	pqı	Hexagonales System. Statt — pq, wobei p>q, ist vor der Umwandlung qp zu setzen.
Hexagonal	pq	(1+2p+q)(1-p+q)(1-p-2q)	

Hexagonales System. Anmerkung. Das dreitheilige Umwandlungssymbol ist nicht so leicht im Gedächtniss zu behalten; wenigstens sind durch Verwechselung von + und -, 1 und 2, wenn man nach dem Gedächtniss arbeitet, leicht Fehler möglich; deshalb ist das folgende scheinbar complicirtere, in der Ausführung einfachere Verfahren vorzuziehen.

Man macht, wenn dies nicht schon der Fall ist, p und q zu Brüchen mit gleichem Nenner. Ganze Zahlen haben natürlich den Nenner 1. So erhält man:

$$pq = \frac{a}{c} \frac{b}{c}$$

Nun schreibt man aob in Gestalt eines Miller'schen Zeichens an. Dies Zeichen kann schon das richtige sein, wenn nämlich a $+\overline{b}=c$ ist. Ist dies nicht der Fall, so vertheilt man die Differenz c — $(a + \overline{b})$ gleichmässig auf a o \overline{b} , d. h. man fügt jeder dieser Zahlen ein Drittel

hkl =
$$a+\delta$$
 δ $b+\delta$
 $h+k+l=a+\delta+\delta+\overline{b}+\delta=a+\overline{b}+3\delta=c$

ist, was zur Controle dient. In der Ausführung ist dieses Verfahren höchst einfach.

1. Beispiel:
$$pq = \frac{2}{3} \frac{1}{3}$$

Gesetzt: $\frac{201}{3}$; $\delta = \frac{3 - (2 + 1)}{3} = \frac{2}{3}$
 $hkl = 2 + \frac{2}{3}$; $0 + \frac{2}{3}$; $1 + \frac{2}{3}$; $0 + \frac{8}{3}$; $0 + \frac{2}{3}$; $0 + \frac{2}{$

Bei negativen Formen — pq = $-\frac{a}{c}\frac{b}{c}$ (p > q) verfährt man ebenso, nur hat man entweder pq zu vertauschen, also statt - pq, wobei p>q zu setzen qp, oder den Werth c negativ zu nehmen. Das Resultat ist in beiden Fällen dasselbe.

Beispiel: pq =
$$-\frac{13}{5}$$
 I = $-\frac{13}{5}\frac{5}{5}$
Gesetzt: $\frac{5 \cdot 0 \cdot 13}{5}$; $\delta = \frac{5 - (5 + 13)}{3} = +\frac{13}{3}$; $hkl = 5 + \frac{13}{3}$; $0 + \frac{13}{3}$; $1\bar{3} + \frac{13}{3} = 28 \cdot 13 \cdot 2\bar{6}$, oder: $\frac{13 \cdot 0 \cdot \bar{5}}{5}$; $\delta = \frac{\bar{5} - (13 + \bar{5})}{3} = -\frac{13}{3}$; $hkl = 13 + \frac{13}{3}$; $0 + \frac{13}{3}$; $\bar{5} + \frac{13}{3} = 26 \cdot 1\bar{3} \cdot 2\bar{8}$.

Als Probe richtiger Umwandlung bildet man rückwärts pq aus hkl.

Naumann-Symbole.

System.	Naumann.	Gdt.	Bemerkungen.
Regulār	mOn	$\frac{I}{n} \frac{I}{m}$	Tetragonales System. Für das allgemeine Zeichen machen wir p>q.
Tetragonal	mPn	m m/n	Rhombisches System. Dies gilt für den normalen Fall, dass im
Rhombisch	mPn	$m \frac{m}{n}(p>q)$	Axen-Verhältniss (a : b : c) a $<$ b ist. Ist a $>$ b, so sind p und q zu vertauschen. Dann ist also
	mĚn	$\frac{m}{n} m(p < q)$	$m\bar{P}n = \frac{m}{n}m; m\bar{P}n = m\frac{m}{n}.$ Triklines System.
Monoklin	± mPn	$\frac{1}{n} m \frac{m}{n} (p > q)$	In Bezug auf die Vorzeichen ist: mP'n = p q $m'Pn = p qmP_i n = \overline{p} \overline{q} m_iPn = \overline{p} q$
	± mPn	$\pm \frac{m}{n} m(p < q)$	Es gilt hier ebenfalls die obige Bemerkung zum rhombischen System.
Triklin	mĒn	$m \frac{m}{n}(p > q)$	Hexagonales System. Man könnte direkt Symbole der zweiten
	mĚn	$\frac{m}{n}$ m(p < q)	Aufstellung (G ₂) erhalten nach der Identität: $ \pm mPn = \pm \frac{m}{n}(2n-1) \cdot \frac{m}{n} (2-n) (G_2) $
Hexagonal	± mPn	$+\frac{m}{n}\frac{m(n-1)}{n}$	
	± mRn	$\pm \frac{m(n+1)}{2} \frac{m(n-1)}{2}$	Doch erscheint es nicht nöthig, sich letztere Symbole zu merken, vielmehr ist es vorzuziehen, G_1 und aus diesem G_2 zu bilden.

Dana - Symbole.

Die Symbole Dana's sind die Naumann'schen, nur von diesen unterschieden durch einige Aeusserlichkeiten. Es gilt also für ihre Umwandlung Alles bei "Naumann" Gesagte. Dabei ist Folgendes zu beachten:

Dana lässt aus dem Naumann'schen Symbol die Buchstaben OPR weg und setzt an deren Stelle, wenn zwei Zahlen auftreten, zwischen diese einen Strich oder lässt auch diesen weg.

¹⁾ Vgl. Amer. Journ. 1852 (2). 13. 399-404.

Naumann - Symbole.

System.	Gdt.	Naumann.	Bemerkungen.
Regulär	> pq	$\frac{1}{q}O\frac{1}{p}$	Reguläres System. q < p < 1.
Tetragonal	> pq	$pP\frac{p}{q}$	Rhombisches System. Für den Fall, dass in dem Axenverhältniss (a:b:c) a>b ist, ändert sich die Umwandlung in:
Rhombisch	> pq	$p \bar{P} \frac{p}{q}$	$ \stackrel{\triangleright}{pq} = p \not \stackrel{p}{\underline{q}}; \stackrel{\checkmark}{pq} = q \bar{p} \frac{q}{p} $
	pq	q ř q p	Triklines System. In Bezug auf Vorzeichen ist:
Monoklin	± pq	$\overline{+} p \frac{p}{q}$	Es gilt hier ebenfalls die Bemerkung zum rhombischen System.
	± pq	$\pm q P \frac{q}{p}$	Hexagonales System. Wollen wir direct aus dem Symbol G ₂ das Naumann'sche Zeichen ableiten, so dient dazu
Triklin	> pq	$p \bar{P} \frac{p}{q}$	das Umwandlungs-Symbol: $p \ q \ (G_2) = q \ R \frac{2 \ p + q}{3 \ q}$
	√ pq	q ř q p	$= \frac{2 p+q}{3} P \frac{2 p+q}{p+2 q}$ Statt letztere Formeln anzuwenden, erscheint
Hexagonal	<u>→</u> ± pq.	$\pm (p+q) P \frac{p+q}{p}$ $\pm (p-q) R \frac{p+q}{p-q}$	es einfacher, von dem Symbol G ₂ auf G ₁ zurückzugehen und nur die Umwandlung aus dieser Aufstellung in Naumann'sche Zeichen zu verwenden. Dadurch dürften Irrungen am leichtesten vermieden werden.

Dana - Symbole.

Im triklinen System geht Dana von Naumann ab. Er setzt die Formen oben vorn +, unten vorn —, dabei links ohne Index (Strich), rechts mit dem Index! Am besten ist dies aus Figur 34 zu

ersten Zahl an, später der zweiten. An Stelle von m resp. n steht auch wohl m resp. n. z. B.

$$m-\ddot{n}=m-\ddot{n}$$
.

übersehen. Diesen Index 'hängte er ursprünglich der

Doch kommen auch andere Modificationen in Anbringung der Indices vor und es ist in Bezug darauf Vorsicht nöthig. So hat Egleston die Naumann'schen Indices wieder genommen und hängt sie der ersten der zwei Zahlen an. 1)

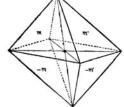


Fig. 34

z. B.:
$${}^{1}m \ddot{n}$$
 (Egleston) = $m-\ddot{n}$ oder $m-\ddot{n}$ (Dana) = $m!\ddot{P}n$ (Naumann) $m\ddot{n}$ (Egleston) = $-m-\ddot{n}$ oder $-m-\ddot{n}$ (Dana) = $m!\ddot{P}n$ (Naumann).

Liest man so die Dana'schen Zeichen nach Naumann'scher Art, so bedürfen sie keiner selbstständigen Umwandlungs-Formeln.

¹⁾ Comparison of notations. New York 1871.

	W	eiss	-S	/mb	ole.
--	---	------	----	-----	------

System.	Weiss.	Gdt.	Bemerkungen.
Regulär Tetragonal Rhombisch Monoklin . Triklin	11	<u>m</u> n s	Hat a, b oder c den Index (') z. B. b', so ist das entsprechende m, n oder s negativ zu setzen. z. B. $\frac{1}{m}a:\frac{1}{n}b':\frac{1}{s}c \text{ (Weiss)} \stackrel{\text{def}}{=} \frac{m}{s}\frac{\overline{n}}{s} \text{ (Gdt.)}$ Ueber die wechselnde Bedeutung der Axen s. S. 42.
Hexagonal	$\frac{\mathbf{I}}{\mathbf{m}} \mathbf{a} : \frac{\mathbf{I}}{\mathbf{t}} \mathbf{a} : \frac{\mathbf{I}}{\mathbf{n}} \mathbf{a} : \frac{\mathbf{I}}{\mathbf{s}} \mathbf{c}$ $\frac{\mathbf{I}}{\mathbf{m}} \mathbf{a}^{\mathbf{I}} : \frac{\mathbf{I}}{\mathbf{t}} \mathbf{a}^{\mathbf{I}} : \frac{\mathbf{I}}{\mathbf{n}} \mathbf{a}^{\mathbf{I}} : \frac{\mathbf{I}}{\mathbf{s}} \mathbf{c}$	$+\frac{m}{s}\frac{n}{s}$ $-\frac{m}{s}\frac{n}{s}$	t=m+n

System.	Gdt.	Weiss.	Bemerkungen.
Regulär Tetragonal Rhombisch Monoklin . Triklin	pq	$\frac{1}{p}\mathbf{a}:\frac{1}{q}\mathbf{b}:\mathbf{c}$	Für p resp. q ist zu setzen a' statt a, b' statt b.
Hexagonal.		$\frac{1}{p} a : \frac{1}{p+q} a : \frac{1}{q} a : c$ $\frac{1}{p} a' : \frac{1}{p+q} a' : \frac{1}{q} a' : c$	

Die Weiss'schen Zeichen finden sich oft in ein Viereck eingeschlossen, und dabei im hexagonalen System der c Werth in diesen Rand eingefügt. Es bringt dies keine Aenderung in der Bedeutung mit sich, doch wird vielleicht die specielle Angabe der Umwandlung für dies etwas andersartige Aussehen beim hexagonalen System willkommen sein.

Der dritte Abschnitt: $\frac{1}{n-1}$ a leitet sich aus den zwei anderen a und $\frac{1}{n}$ a folgendermassen ab. Wenn I. II. III. (Fig. 35) die drei horizontalen Axen, ABC die Schnitte der Fläche mit diesen Axen sind, ausserdem BD \parallel AO, so ist Dreieck BDC ∞ AOC. Wenn wir setzen

Fig. 35.

$$OA = a$$
; $OD = OB = DB = \frac{a}{n}$; $OC = x$,

so ist:
$$\frac{x - \frac{a}{n}}{a} = \frac{x}{a}$$
 und daraus $x = \frac{a}{n-1}$

Bravais - Symbole.

Hexagonales System. Das allgemeine Zeichen sei g h k l, wobei g+h+k=0 ist, so erhalten wir unser dreizahliges Zeichen durch Weglassen derjenigen Zahl k, von den drei ersten Zahlen des Symbols, welche gleich der negativen Summe der beiden andern ist; das zweizahlige durch Division der zwei ersten Zahlen des so erhaltenen dreizahligen Symbols durch die letzte. Also

ghki (Bravais) =
$$\frac{g}{l} \frac{h}{l}$$
 (G₁),

wenn
$$k = \overline{g + h}$$
 ist.

$$+$$
 pq $(G_1) = \underline{p} \cdot \underline{q} \cdot \overline{p+q} \cdot 1$ (Bravais)
 $-$ pq $(G_1) = \overline{p} \cdot \overline{q} \cdot p + q \cdot 1$ (Bravais).

Die Schreibweise der vierzahligen Symbole ist bei verschiedenen Autoren wechselnd in Bezug auf die Mittel zur Unterscheidung der meroedrischen Gestalten. Diese Mittel sind die verschiedene Reihenfolge der drei ersten Zahlen und die Anbringung der Zeichen \pm über den Zahlen. Was gemeint sei, ist in jedem speciellen Fall leicht zu erkennen.

Lévy-Des Cloizeaux-Symbole.

Lévy-Des Cloizeaux.	Gdt.	Lévy-Des Cloizeaux.	Gdt.	Lévy-Des Cloizeaux.	Gdt.
Regul	Reguläres System.		lines System.	Triklines System.	
p	O	P	0	P	0
Ъª	I 0	m	N	t.	~
	n o	gi	000	m	∞ ∾
a ¹¹≒-1	i n	hı	200	g¹	0 &
$a^{n-<1}$	n n r			h¹	ೲ೦
		g"	∞ <u>u—1</u>	cult	n- -1
$\mathbf{b}_{\mathbf{I}}^{\mathbf{H}} \mathbf{b}_{\mathbf{I}}^{\mathbf{V}} \mathbf{b}_{\mathbf{W}}^{\mathbf{W}}$	v u w	hn	$\frac{1!+1}{n-1}\infty$	g ⁿ	$\infty \frac{n+1}{n-1}$
		· · · · · · · · · · · · · · · · · · ·	п— 1	"g	$\infty \frac{n+1}{n-1}$
	nales System.	$\mathbf{d}^{\mathbf{n}}$	$+\frac{1}{2n}$	°	n—1
P	0	u u	2n	-h ⁿ -	n+1 n−1
m	~	b ⁿ		1	
h¹	∞O		2n	"h	$\frac{n+1}{n-1}$
hn	$\frac{n+1}{n-1}\infty$	en	$o(\frac{1}{n})$		
	n-1			" <u>i</u> n	$o\frac{t}{n}$
a ⁿ	$\frac{1}{n}$ o	$O_{\rm B}$	$+\frac{1}{n}$ o		0 -
		a.P	ı ı	e _u	o —
\mathbf{p}_{u}	1 2n	a ⁿ	— <u>1</u> 0	O _{ii}	n O
	n+1 n1	a ⁿ	p +1 n-1		
$\mathbf{a}_{\mathbf{n}}$	2 2	,,,	2 2	an	$\frac{\mathbf{r}}{\mathbf{n}}$ o
x 7 7	v+u vц	Ο ^π	$+\frac{n+1}{2}\frac{n-1}{2}$		
$P_{\frac{1}{4}}$ $P_{\frac{1}{4}}$ $P_{\frac{1}{4}}$	2W 2W			f ⁿ	1 2n
Rhombis	sches System.	$\mathbf{d}^{\frac{1}{u}} \mathbf{b}^{\frac{1}{v}} \mathbf{g}^{\frac{1}{u}}$	$+\frac{v-u}{2w}\frac{v+u}{2w}$	ď"	t f
Р	0			ч	2n 2n
m	no.	$b^{\frac{1}{u}} d^{\frac{1}{v}} g^{\frac{1}{u}}$	$-\frac{v-u}{2w}\frac{v+u}{2w}$	C _n	$\frac{1}{2n} \frac{1}{2n}$
gl		$d^{\frac{T}{u}} d^{\frac{1}{v}} h^{\frac{T}{u}}$	$+\frac{v+u}{2w}\frac{v-u}{2w}$		
h ¹	000	a a n "		bn	1 2n
11	000	$b_{\frac{1}{4}} b_{\frac{1}{4}} b_{\frac{1}{4}}$	$-\frac{v+u}{2w}\frac{v-u}{2w}$	$f^{\frac{1}{u}} d^{\frac{1}{v}} g^{\frac{1}{w}}$	
g^n	$\infty \frac{n+1}{n-1}$				v—u v+u 3w 2w
hn			Lévy 'sche Symbol	1 1 1	
11	$\frac{n+1}{n-1}\infty$		nen, dass im regul. v,im tetrag.,rhomb.,	$\mathbf{d}^{\frac{\mathbf{J}}{\mathbf{u}}} \mathbf{f}^{\frac{\mathbf{J}}{\mathbf{v}}} \mathbf{g}^{\frac{\mathbf{J}}{\mathbf{w}}}$	$\frac{v-u}{2w} \frac{v+u}{2w}$
e^n	$o\frac{1}{n}$	monoki. u. tri	ikl. Syst. u < v wird.	1,1 1	
		Gedächtni von den Vor	ssregel. Abgesehen	$c^{\frac{1}{u}} b^{\frac{1}{v}} g^{\frac{1}{w}}$	$\frac{v-u}{zw} \frac{v+u}{zw}$
a^{n}	$\frac{1}{n}$ O			$b^{\frac{1}{u}} c^{\frac{1}{v}} g^{\frac{1}{w}}$	v-u v+u
b"	τ	x " y v h	$\frac{1}{u} = \frac{v + u}{2w} \frac{v - u}{2w}$	υ" c′ g"	2W 2W
U	2 n	x ¹ y ¹ g	$r_{w}^{\perp} = \frac{v - u}{2w} \frac{v + u}{2w}$.1 .1 .1	v+u v-u
\mathfrak{C}_n	<u>n-1</u> <u>n+1</u>	Ist das Symb	ol so geordnet, dass	$f^{\frac{1}{u}} d^{\frac{1}{v}} h^{\frac{1}{w}}$	2W 2W
	2 2 n → 1 n — 1	V>u, so ist	zur Bestimmung der	1,1,1	v+u v-u
\mathbf{a}_{n}	n+1 n-1 2 2		on pq der erste Buch- cheidend, also für :	$\mathbf{d}^{\frac{1}{4}} \mathbf{f}^{\frac{1}{7}} \mathbf{h}^{\frac{1}{6}}$	2W 2W
LLLL	vu v-1-u	x = f; pq = +	+ $x=c$; $pq=-+$	$\mathbf{c}^{\frac{1}{n}} \mathbf{b}^{\frac{1}{v}} \mathbf{h}^{\frac{1}{w}}$	<u>v+u</u> v-u
$\mathbf{b}^{\frac{1}{n}} \mathbf{b}^{\frac{1}{v}} \mathbf{g}^{\frac{1}{n}}$	2 W 2W	Für dje Do	omen ist:	C. D. II.	2W 2W
$\mathbf{b}_{\mathbf{I}}^{\mathbf{I}} \mathbf{b}_{\mathbf{I}}^{\mathbf{V}} \mathbf{h}_{\mathbf{V}}^{\mathbf{V}}$	<u>v+1 v-u</u>	a, o = pc	$\mathbf{a}_1 \mathbf{c} = -$	$\mathbf{b}^{\frac{\mathbf{I}}{\mathbf{u}}} \mathbf{c}^{\frac{\mathbf{I}}{\mathbf{v}}} \mathbf{h}^{\frac{\mathbf{I}}{\mathbf{w}}}$	v+u vu
	2 W 2 W	e, i = 00	i, o = +	- · ··	2W 2W

Lévy-Des Cloizeaux-Symbole.

System.	Lėvy-Des Cloizeaux	G	idt.	Bemerkungen.
Hexagonal		I. Aufstellung (G_1) .	II. Aufstellung (G2).	Es wurden hier ausnahms
Holoedrisch	Р	0	0	weise auch die directen Ver
	m	೧ ೦	∾	wandlungssymbole in G ₂ ge
	h!	∾	∾0	geben wegen ihrer beson deren Einfachheit und Wich
	h	1100	$\frac{n+2}{n-1}$	tigkeit für Lévy-Des Cloi zeaux's rhomboedr. System
	b ⁿ	$\frac{1}{n}$ o	<u>1</u>	Für das holoedrisch hexa gonale System sind die Um
	an	<u>1</u>	$\frac{3}{n}$ 0	wandlungs-Symbole direkt i G ₂ von geringer Bedeutung Die in G ₁ finden hier fas
	$p_{\underline{r}}^{\alpha}p_{\underline{r}}^{\lambda}p_{\underline{r}}^{\alpha}$	$\frac{u}{w} \frac{v}{w}$	<u>u+2v</u> <u>u-v</u> w	allein Anwendung.
Hexagonal	al	0	0	Fällt p < q aus, so is
Rhomboedr.	P	10	τ	zu setzen. + qp statt ± pq
Hemiedrisch	e^2	~ 0	av .	z. Beisp. —21 , + 12
	d¹	00	∾0	Für den Fall, dass q no gativ ausfällt, ist
	e _n	$\frac{n+1}{n-2}$ O	$\frac{n+1}{n-2}$	$\pm p\overline{q} = \mp (p-q) q$ (vgl. Allg Bemerkung 3, S. 44
	an	$\frac{n-1}{n+2}$ o	n-1 n+2	In der gemeinsamen Un wandlungs - Formel für da
	d ⁿ	n 1 n—1 n —1	$+i\frac{n+2}{n-1}$	allgemeine rhomboedrisch Zeichen $b^{\frac{1}{u}}b^{\frac{1}{v}}b^{\frac{1}{u}}$ u. s. w. is für die Indices bei b und
	Ьu	$\frac{n-1}{n-1}$ $\frac{n+1}{n-1}$	+ 1 n-2 n+1	entgegengesetztes Vorzeiche zu nehmen, was durch ±
	e _I	—2n (1—n)	— 2 (5n—1)	resp. \(\pi\) w angedeutet ist; e ist nämlich im Fall bbb zu setzen u v
	$p_{\frac{1}{4}}p_{\frac{1}{4}}p_{\frac{m}{4}}^{m}$	uv v∓ w	$\frac{u+v+2w}{u+v\pm w}\frac{u-2v\pm w}{u+v\pm w}$ $(u>v>w)$	" " hbd " " uv
	$\mathbf{p}_{\mathbf{I}}^{a}\mathbf{p}_{\mathbf{I}}\mathbf{q}_{\mathbf{I}}^{w}$	$\sqrt{u+v\pm w}$ $u+v\pm w$	$u+v\pm w$ $u+v\pm w$	und dann eventuell die Zeiche
	$q_{\frac{n}{4}}q_{\frac{n}{4}}p_{\frac{n}{4}}$	(n>1.>11.)	(u>v>w)	so umzustellen, dass mit Be rücksichtigung des Vol zeichens u > v > w wird.

Diese Zeichen unw resp. unw sind unmittelbar die $b^{\frac{1}{w}}b^{\frac{1}{w}}b^{\frac{1}{w}}$ u. s. w. entsprechenden Miller'schen Zeichen. Es ist nun statt der Anwendung obiger directer Umwandlungs-Symbole am einfachsten, aus $b^{\frac{1}{w}}b^{\frac{1}{w}}b^{\frac{1}{w}}$ u. s. w. zum Zweck der Verwandlung in unsere Zeichen zuerst das Miller'sche Zeichen anzuschreiben, die Ordnung der Indices mit Berücksichtigung des Vorzeichens nach der Grösse vorzunehmen, eventuell alle Vorzeichen in die entgegengesetzten zu verwandeln, damit u+v+w>0 ausfällt. Daraus ist das Symbol G_1 abzuleiten (vgl. Miller Symbole), indem:

er Symbole), indem:

$$u \vee w = h k l \text{ (Miller)} = \frac{h-k}{h+k+l} \frac{k-l}{h+k+l} \text{ (G_1)}.$$

Die Form ist $+ \text{ für } p > q$, $- \text{ für } p < q$.

Lévy-Des Cloizeaux-Symbole.

Gdt.	Lévy- Des Cloizeaux.	Gdt.	Lévy- Des Cloizeaux.	Gdt.	Lévy- Des Cloizeaux	
Reguläres System.		Monok	lines System.	Trikli	Triklines System.	
o po	P b₁	0	p orl	0 0~	p g¹	
pı p	a ^p	000 800	g¹ h¹	∾O	h ^t	
pq	$b_P^{\underline{I}} b_{\overline{I}}^{\underline{I}} b^{\underline{I}}$	~	m	~	t	
Tetrago	nales System.		p+1	N N	m	
0 ~0	p h¹	n pw	$\mathbf{g}_{q-1}^{rac{\mathbf{p}+1}{\mathbf{q}-1}}$	p∞ 	$h_{p-1}^{\frac{p+1}{p-1}}$	
00	m h p-1	od	e ^I q	∞q	$g^{\frac{q+1}{q-1}}$	
p∞		+ po	OP	∾ q	$\frac{d-1}{d+1} a$	
po	$\mathfrak{A}_{\mathfrak{p}}^{1}$	po	a 1 p	oq	iīq	
р	b _I p			oq	$e^{\frac{1}{q}}$	
p · p—1	a 2p—1	+ p	$\mathbf{d} \cdot \frac{1}{2p}$	ро	O I	
pq	$b_{P=q} b_{P+q} h_1$	— p	$\mathbf{b} \frac{1}{2p}$	po	a P	
Rhombis	ches System.			p	$f = \frac{1}{2 \mu}$	
0	Р			. p p	$\mathbf{d}_{\mathbb{T}_{\mathbf{p}}}$	
0.00	g¹ h¹	p - p-1	a 2p—1	p p	$c_{\tilde{\Lambda}_{\underline{I}}}$	
60 0		+ p · p-1	O 2p-1	P	<u> </u>	
p e e	m hp—i			[pq	$f_{\overline{p-q}}^{\frac{1}{p-q}} d_{\overline{p+q}}^{\frac{1}{p-q}} l$	
∾9	$g^{\frac{q-1}{q-1}}$			$p>q$ $p \overline{q}$		
oq	G ₁		$d_{p-q} d_{p+q} h^{\dagger}$	pq —		
ро	a [‡]	- p q	bp-q bp+q hi	p q	$b^{\frac{1}{p-q}} c^{\frac{r}{p+q}} b$	
p · p—1	b _{2n} a _{2p-1}	- Pd	~r 3 ~r 13 11	pq	$f^{\frac{1}{q-p}} d^{\frac{1}{q+p}} g$	
p · p+1	e 2 p+1		τ τ	$p \overline{q}$	$d\overline{q-p}$ $f\overline{q+p}$ §	
> pq	$b^{\frac{1}{p-q}}b^{\frac{1}{p+q}}h^1$	+ pq	$d_{\overline{q-p}} b_{\overline{q+p}} g^{1}$ $b_{\overline{q-p}} d_{\overline{q+p}} g^{1}$	pq	$f = \frac{1}{q-p} dq+p $ $d = \frac{1}{q-p} f = \frac{1}{q+p} $ $c = \frac{1}{q-p} dq+p $ $d = \frac{1}{q-p} dq+p $ $d = \frac{1}{q-p} dq+p $ $d = \frac{1}{q-p} dq+p $	
pq	$b \stackrel{1}{q-p} b \stackrel{i}{q+p} g^i$	- j ·q	$b \stackrel{\leftarrow}{q-p} d \stackrel{\leftarrow}{q+p} \mathbf{g}^1$	$\left\{ \overline{\mathbf{p}}\overline{\mathbf{q}}\right\}$	$\mathbf{b}_{\mathbf{q-p}}^{\frac{1}{\mathbf{p}}} \mathbf{c}_{\mathbf{q+p}}^{\frac{1}{\mathbf{p}}} \mathbf{g}$	

Lévy-Des Cloizeaux-Symbole.

System.	Gdt.	Lévy- Des Cloizeaux.	Bemerkungen.		
Hexagonal Holoedrisch	I. Aufstellung (G ₁).		Für die holoedrischen Symbol Lévy-Des Cloizeaux wurde di		
	0	P	Umwandlung aus den Symbolen G		
1	∾೦	m	gegeben, für die rhomboedrische die aus G ₂ , aus dem Grunde, we		
	00	h ¹	sie so am einfachsten ist. In der Regi verwenden wir Symbole holoedrische		
	p∞	hp	Krystalle in der Stellung G ₁ , diejenige rhomboedrischer Krystalle in G ₂ . I		
	ро	$\mathbf{p}_{\mathbf{b}}^{\mathbf{r}}$	es einmal anders der Fall, so müsse die Symbole vor der Umwandlung au		
	P	a ^I p	der Aufstellung I in die Aufstellung übergeführt werden nach dem Symb		
	pq	$p_{\underline{t}}^{h} \; p_{\underline{t}}^{d} \; p_{\mathfrak{t}}$	$pq (G_1) = (p+2q) (p-q) (G_2)$		
Hexagonal Rhomboedr.	II Aufstel	lung (G2).	respective umgekehrt: $pq (G_2) = \frac{p+2q}{3} \frac{p-q}{3} (G_1).$		
Hemiedrisch	٥	a¹	3 3		
	∾ 0	e ³			
	ov .	ď			
	$-\frac{1}{2}$	\mathbf{p}_{r}			
	+ 1	p			
	+ p (p<1)	$\mathbf{a}^{\frac{1+2\mathbf{p}}{1-\mathbf{p}}}$			
	+p (b>1)	$e^{\frac{2p+1}{p-1}}$			
	$-p\left(p<\frac{1}{2}\right)$	$a^{\frac{1-2p}{1+p}}$			
	$-p \left(p > \frac{1}{2}\right)$	$e^{\frac{2p-r}{p+r}}$			
	+ 1q (q>+1)	$\mathbf{q}_{\overline{d+3}}^{\mathbf{d-1}}$	Die Umwandlung		
	$+ id \left(\stackrel{d}{\leftarrow} \stackrel{+}{\rightarrow} \stackrel{1}{\rightarrow} \right)$	$b^{\frac{1}{z+d}}$	$\pm pq = b \frac{1}{5} b^{\frac{1}{4}} b^{\frac{1}{4}}$ resp. $b^{\frac{1}{6}} b^{\frac{1}{4}} d^{\frac{1}{4}}$ bedeutet: Es soll aus dem Zeich $\pm pq$ zunächst das Miller'sche Zeich		
	— 2 q	C 3 q+1	hkl nach der hierfür gegebenen Vo schrift abgeleitet werden, dann ist:		
	± pq	$\begin{array}{c} b_{i}^{I} b_{k}^{I} b_{i}^{I} \\ \text{resp. } b_{i}^{I} b_{k}^{I} d_{i}^{I} \end{array} $	$bkl = b^{\frac{1}{h}} b^{\frac{1}{k}} b^{\frac{1}{l}} (h>k>l)$ $bk^{\frac{1}{l}} = b^{\frac{1}{h}} b^{\frac{1}{k}} d^{\frac{1}{l}} (h>k).$		

Mohs-Symbole.

Reguläres System.

Mohs.	Gdt.	Mohs.	Gdt.	Mohs.	Gdt.	Mohs.	Gdt.	Mohs.	Gdt.
Н	0	A ₁	$\frac{2}{3}$ o	B ₁	1 2	C ₁	1 2	T ₁	$\frac{2}{3}$ $\frac{1}{3}$
О	1	A_2	$\frac{1}{2}$ O	B_2	$\frac{1}{3}$ 1	C_2	3	T_2	$\frac{3}{5}$ $\frac{1}{5}$
D	10	A ₃	$\frac{1}{3}$ o					T_3	$\frac{1}{2} \frac{1}{4}$

Tetragonales System.

Mohs.	Gdt.	Mohs.	Gdt.	
P	I	P+∞	∞	
$P^{\mathbf{m}}$	mı	[P+∞]	∞0	
Р—1	10	(P+∞) ^m	m∞	
P—∞	o	$[(P+\infty)^m]$	$\frac{m+1}{m-1} \infty$	
	n Geradzahlig.	n Ungeradzahlig.		
P±n	$2^{\frac{+}{2}}$	P±n	$2^{\frac{\pm n+1}{2}}$; o	
$(P\underline{+}n)^m$	$m 2^{\frac{+}{2}}; 2^{\frac{+}{2}}$	(P±n) ^m	$(m+1)$ $2^{\frac{\pm n-1}{2}}$; $(m-1)$ $2^{\frac{\pm n-1}{2}}$	
z / 2 P±n	2 z 2 ^{+ n} / ₂ ; o	z V - P±n	$z^{\frac{\pm n+1}{2}}; z^{\frac{\pm n+1}{2}}$	
$z(P\pm n)^m$	$zm \ 2^{\frac{+ n}{2}}; \ z \ 2^{\frac{+ n}{2}}$	(z P±n) ^m	$z (m+1) 2^{\frac{\pm n-1}{2}}; z (m-1) 2^{\frac{\pm n-1}{2}}$	
$(z \sqrt[n]{2} P \pm n)^m$	$z(m+1) 2^{\frac{+n}{2}}; z(m-1) 2^{\frac{+n}{2}}$	(z / 2 P+ n) ^m	$z \text{ m } 2^{\frac{+n+1}{2}}; z 2^{\frac{+n+1}{2}}$	

- Anm. 1) Die Zufügung von $\sqrt{2}$ zum Symbol bedeutet eine Drehung um 45° und entspricht dem Umwandlungs-Symbol: pq (I) \rightleftharpoons (p+q) (p-q) (II).
 - 2) Die Prismen sind in der Literatur nicht selten vertauscht, sodass $(P+\infty)^m$ statt $[(P+\infty)^m]$ steht. Es dürfte dies nicht auf einen Irrthum in den Symbolen, sondern auf den Umstand zurückzuführen sein, dass, wo Pyramiden fehlen $(P+\infty)=\infty$ und $[P+\infty]=\infty$ 0 nicht unterschieden werden können.

Mohs-Symbole.

Rhombisches, Monoklines und Triklines System.

Mohs.	Gdt.	Mohs.	Gdt.	Mohs.	Gdt.
P	I	zĔr	OZ	P—∞	0
P+n	2 ⁿ	zPr	, zo	P+∞	00
zP+n	z2n; z2n	ĕr+n	o 2 ⁿ		
(Ĕ) ^m		Ēr+n	2 ⁿ o	(P+∞) ^m	∞m
(F)	1 m	zĔr+n	o; z 2 ⁿ	$(\bar{P}+\infty)^m$	m∞
$(\bar{P})^m$	mı	zĒr+n	z 2 ⁿ ; o	Ĭr+∞	0.00
$(\breve{P}+n)^m$	2 ⁿ ; m2 ⁿ	(Ĕr) ^m	$\frac{m-1}{2} \frac{m+1}{2}$	Pr+∞	∞0
$(\bar{P}+n)^m$	m2 ⁿ ; 2 ⁿ	(P̄r) ^m	$\frac{m+1}{2}$ $\frac{m-1}{2}$	(Ĕr+∞) ^m	$\infty \frac{m+1}{m-1}$
$(z\breve{P}+n)^m$	z2 ⁿ ; zm2 ⁿ	(zĔr) ^m	$z \frac{m-1}{2}; z \frac{m+1}{2}$	(Ēr+∞) ^m	<u>m+1</u>
$(z\bar{P} +\!\!\!\!\!+ n)^m$	zm2"; z2"	$(z\bar{P}r)^m$	$z \frac{m+1}{2}; z \frac{m-1}{2}$		m—1
Ϋr	OI	(Ĕr+n) ^m	$\frac{m-1}{2}2^n; \frac{m+1}{2}2^n$	1	$z \frac{m-1}{2} 2^n; z \frac{m+1}{2} 2^n$
Ēr	10	(Pr+n)m	$\frac{m+1}{2}2^n; \frac{m-1}{2}2^n$	(zĒr+n) ^m	$z \frac{m+1}{2} 2^n; z \frac{m-1}{2} 2^n$

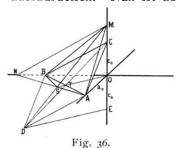
Hexagonales System.

Mohs.	Gdt.	Mohs.	Gdt.	Mohs.	Gdt.
R	I	P	10	zP±n	$z(-2)^{\frac{1}{n}}$; o
$R\underline{\pm}n$	(-2) [±] n	(P) ^m	$\frac{3m-1}{2}$; 1	(zP±n) ^m	$z(-2)^{\frac{1}{2}n}$; o $z(-2)^{\frac{1}{2}n}\frac{3m-1}{2}$; $z(-2)^{\frac{1}{2}n}$
$zR\underline{+}n$	$z(-2)^{\pm_n}$	(zP) ^m	$z \frac{3m-1}{2}$; z	P+∞	∞0
R−∞	o	P±n	(-2)±n; o	(P⊥∞) ^m	$\begin{cases} \frac{5m-1}{2} \infty \text{ bei rhomb. Kryst} \\ \frac{m+1}{m-1} \infty \text{ bei holoedr. Kryst} \end{cases}$
R+∞	∞	(P±n) ^m	$(-2)^{\pm n} \frac{5m-1}{2}; (-2)^{\pm n}$	(1 00)	$\frac{m+1}{m-1}$ ∞ bei holoedr. Kryst

- Anm. 1) n kann + oder Werthe annehmen. Im zweiten Fall treten negative Potenzen auf, z. B.: $P-3=2^{-3}=\frac{1}{8}$.
 - 2) Die Formeln gelten im rhombischen, monoklinen und triklinen System für den Fall, dass in dem Axenverhältniss Mohs a b ist. Wird a b, so sind p und q zu vertauschen, da sich dann (') auf die Quer-, (-) auf die Längs-Axe bezieht.
 - 3) In Bezug auf das Vorzeichen ist im triklinen System:

$$+r = pq$$

$$-r = \overline{pq}$$


$$+1 = \overline{pq}$$

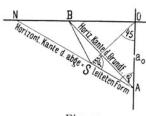
$$-1 = \overline{pq}$$

Princip der Ableitung in Mohs-Symbolen. 1)

Tetragonales System. Ableitung des Symbols (P)m.

Diese Ableitung macht alle anderen verständlich; sie geschieht folgendermassen: Es sei ABC (Fig. 36) eine Fläche der primären Pyramide P, so dass $OA = OB = a_0$, $OC = c_0$, so ergänzt Mohs das Dreieck ABC zu einem Parallelogramm ACBD, verlängert OC um das m fache, so dass $OM = mc_0$ wird und verbindet M mit D; dann entstehen 2 Flächen AMD und BMD, denen Mohs das Zeichen (P)^m gibt. Die Fläche MAD oder MAS schneidet in ihrer Erweiterung die B Axe in N. Setzen wir $ON = na_0$, so hat $(P)^m$ die Axen-Abschnitte a_0 . na_0 . mc_0 und es ist nun n durch m auszudrücken. Nun ist aber

Da diese Ableitungen sich alle auf dieselbe Grundform beziehen, wobei also a constant ist, so ist s nur abhängig von m.


Specieller Fall: Für $m = 1 + \sqrt{2}$

ist
$$s = a_0 \sqrt{2} \frac{1 + \sqrt{2}}{2 + \sqrt{2}} = a_0$$
.

In diesem Fall ist SOA ein gleichschenkliges Dreieck, der Querschnitt der ditetragonalen Pyramide ein reguläres Achteck. Dieser Fall kommt in der Natur nicht vor, da die Ableitungszahl $m = 1 + \sqrt{2}$ irrational ist. Ist $m > (1 + \sqrt{2})$, so tritt bei S, ist $m < (1 + \sqrt{2})$, so tritt bei A und B der spitzere Winkel auf. Mohs und nach ihm Haidinger nehmen stets $m > (1 + \sqrt{2})$.

Zeichnen wir das Dreieck NOQ in seiner eignen Ebene heraus (Fig. 37) so ist, wenn wir den Winkel OAS mit φ bezeichnen:

$$\angle OAS = \varphi \angle OSA = 135 - \varphi OS = s OA = a_0$$

Dann ist in Dreieck SAO

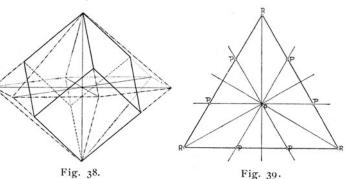
$$\frac{\sin \varphi}{\sin (135 - \varphi)} = \frac{s}{a_o}$$

$$\sin \varphi = \frac{s}{a_o} \sin 135 \cos \varphi - \frac{s}{a_o} \cos 135 \sin \varphi$$

$$\sin 135 = \frac{1}{2} \sqrt{2}$$

$$\cos 135 = -\frac{1}{2} \sqrt{2}$$

$$\sin \varphi = \frac{s}{a_o \sqrt{2}} \cos \varphi + \frac{s}{a_o \sqrt{2}} \sin \varphi$$


¹⁾ Vgl. Mohs: Leichtfassl. Anfangsgr. d. Naturg. d. Min.-R. Wien 1832 p. 131 Fig. 108.
" Min. 1836 l. 127 Fig. 123.
Haidinger: Handb. d. best. Min. 1845. 166.

Setzen wir zur Abkürzung:
$$\frac{s}{a_o \sqrt{2}} = r, \text{ so ist:}$$

$$\sin \varphi \ (1-r) = r \cos \varphi$$

$$tg \ \varphi = \frac{r}{1-r}$$

$$\text{Es ist aber auch} \quad tg \ \varphi = \frac{n a_o}{a_o} = n$$

$$n = \frac{r}{1-r}$$

$$\frac{1}{n} = \frac{1-r}{r} = \frac{1}{r} - 1 = \frac{a_o \sqrt{2}}{s} - 1$$
 Nun war:
$$s = a_o \sqrt{2} \frac{m}{m+1} \text{ also: } \frac{1}{n} = \frac{a_o \sqrt{2}}{a_o \sqrt{2} \frac{m}{m+1}} - 1 = \frac{1}{m}$$

Somit ist das Axen-Verhältniss der abgeleiteten Form = ma:a:mc und es ist $(P)^m$ (Mohs) = mPm (Naumann) = (m r r) (Miller) = m r (Gdt.).

Hexagonales System. Ableitung der Pyramide aus dem Rhomboeder.

In die Pol-Kanten eines Rhomboeders sind jezwei Flächen so gelegt, dass sie, während die Kante bestehen bleibt, eine hexagonale Pyramide bilden. Dies ist nur auf die eine Art mög-

lich, die Fig. 38 darstellt. Aus ihr ist unmittelbar ersichtlich, dass die zwei Pyramiden- und die zwei Rhomboederflächen, die an derselben Kante liegen, eine Zone bilden. Daraus ergiebt sich die Lage der Pyramidenflächen in der Projection (Fig. 39). Ziehen wir zwischen zwei Rhomboederpunkten R die Zonenlinie, so liegen die Projectionspunkte der Pyramidenflächen auf dem Schnitt P dieser Zonenlinie mit den beiden zwischen den Punkten R liegenden von OR um 30° abstehenden Axen.

Setzen wir R = 10, so ist P =
$$\frac{1}{3}$$

... R = 1. so ist P = 10

,, ,, $R=\tau$, so ist $P=\tau$ o wie aus dem Projectionsbild unmittelbar zu ersehen ist. Allgemein:

ist das ursprüngl. (rhomboedr.) Symbol = pq, so ist das abgeleit. (pyramidale) = $\frac{p+2q}{3}$ $\frac{p-q}{3}$ ist das abgeleitete (pyramidale) Symbol = pq, so ist das ursprüngl. (rhomboedr.) = (p+2q) (p-q).

Es ist somit in Mohs' P- und R-Symbolen versteckt dasselbe enthalten, was sich in den unsrigen als G_1 und G_2 darstellt. Mohs' P-Symbol entspricht unserm G_1 , Mohs' R-Symbol unserm G_2 . In der That geben Mineralien von pyramidalem Habitus (holoedrische) einfache Symbolreihen in der Aufstellung G_1 , solche von rhomboedrischem Habitus in der Aufstellung G_2 . R entspricht der ternären Form (Pyramide) 1, P der binären Form (Doma) 10.

Haidinger - Symbole.

ystem.	Haidinge	er.	Gdt.	Bystem.	Haiding	jer.	Gdt.
	Oktaeder	0	1,		Base	o	0
	Dodekaeder Hexaeder	D H	10		Längsfläche	Ğ» Й»	000
	Fluoride	nF	no	1	Querfläche Prismen	∞ An	noo
Regulär	Galenoide	'nG	2-2n 2+n	Ë		∾Än	con n
-	Leucitoide	nĽ	n n	Monoklin	Längs-Domen Quer-Hemi-	mĎ m H	om
	Adamantoide	mAn	$m : \frac{i-n}{1+n}m$		domen	± <u>m</u> H 2	<u>+</u> mo
-	Base	0	0		Augitoide	$\pm \frac{m\overline{A}n}{2}$	<u>+ m</u> m
	Prismen	∾P	.00	1		$\pm \frac{m \ddot{A}n}{2}$	$\pm \frac{m}{n} m$
		: ∞ P'	೧ ೦೦		Base	0	0
		∾Zn	neo		I.ängsfläche	ωĎ	000
Tetra		$\infty Z^i n$	$\frac{n+1}{n-1}\infty$		Quersläche	ωĬ	∾0
	Pyramiden	nP	n		Hemiprismen	r ~ An	on n
	Zirkonoide	nP ^t mZn	mn · m			$\frac{\infty \overline{A}n}{2}$	∾n
		mZ'n	m(n+1) m(n-1)			r ~ An	n∞
		Zn Z'n	nt n+1 n-1			$1\frac{\overset{\circ}{\sim}\overset{\circ}{A}n}{2}$	n w
-	Base	0	2 2	i ii	Längs - Hemi- domen	r mH	Orti
	Längsfläche	⊸ŏ	000	Triklin	e o men	$\frac{m\tilde{H}}{2}$	om
	Querlläche	∞D	000 000		Quer - Hemi-	4	-
	Prismen	∾Ōn	noo		domen	+ <u>mH</u>	m o
biach		∞Ŏn	∞n			mH z	mo
EC (Längs-Doma	тĎ	Om		Anorthoide	± lr mÄn	m m
	Quer-Doma	$m\bar{\rm D}$	mo			1	
	Orthotype	mŌn	m m			± lr mAn	m m/n
		mŎn	$\frac{m}{n}$ m			forzetelen:	+r=pq -r=p +l=pq -l=p

Wo die Zeichen \neg übereinanderstehen, bezieht sich das untere Zeichen auf den normalen Fall, dass in dem Axenverhältniss a:b:c a < b, das obere auf den Ausnahmefall, dass a > b ist.

Haidinger - Symbole.

			Gd	lt.	
System.	Haidinge	r.	bei rhomboedrischen Krystallen	bei holoedrischen Krystallen	Naumann
Hexagonal	Base	oR	0	0	oR
	Prismen	∞Sn	$\frac{n+1}{n-1}\infty$	$\frac{5n-1}{2}\infty$	∞Rn
		∞R	∞0	∞	∞R
		∞Q	∞	∞0	∞P2
	Rhomboeder	mR	+mo		+mR
		mR ¹	—mo	j m	mR
	Skalenoeder	mSn	$+\frac{m(n+1)}{2}\cdot\frac{m(n-1)}{2}$	m(3n-1)	+mRn
		mS'n	$-\frac{m(n+1)}{2}\cdot\frac{m(n-1)}{2}$	2 · m	mRn
	Quarzoide	Q	$\frac{1}{3}$	10	$\frac{2}{3}$ P2
		mQ	<u>m</u> 3	mo	$\frac{2m}{3}P_2$

Hausmann-Symbole.

			Hausman	n.	Gdt.
Reguläres System.	O W RD		Octaeder Würfel Rhombendodekaeder	8P 2A · 4B 8D · 4E	I 0 I0
	Tr		Trapezoeder	8AE - 16BD	P
PPP		Trı		8AE2 · 16BD2	1 2
B P'		Tr2		8AE ₃ · 16BD ₃	$\frac{1}{3}$
	PO		Pyramidenoctaeder	8EA · 16DB	ıq
		POı		$8EA_{2}^{I} \cdot 16DB_{2}^{I}$	1 1 2
Fig. 40.		PO ₂		$8EA_{\overline{3}}^{\underline{1}} \cdot 16DB_{\overline{3}}^{\underline{1}}$	$1\frac{1}{3}$
	PW		Pyramidenwürfel	8AB · 8BA · 8BB	po
		PWı		$8AB_{\frac{3}{2}} \cdot 8BA_{\frac{3}{2}} \cdot 8BB_{\frac{3}{2}}$	$\frac{2}{3}$ 0 $\frac{1}{2}$ 0
		PW2		8AB2 · 8BA2 · 8BB2	$\frac{1}{2}$ 0
		PW3		8AB3 · 8BA3 · 8BB3	$\frac{1}{3}$ o

Hausmann-Symbole.

Regulāres System (Fortsetzung).			Hausmann.	Gdt.
тр	TP1	Trigonalpolyeder	16(AE\(\frac{3}{2} \DB\(\frac{1}{6} \)) \(\cdot 16(EA\(\frac{3}{2} \DB\(\frac{1}{6} \)) \) \(\cdot 16(BB\(\frac{3}{2} \cdot EA\(\frac{1}{6} \)) \) \(16(BB\(\frac{3}{2} \cdot EA\(\frac{1}{6} \)) \) \(16(BB\(\frac{3}{2} \cdot EA\(\frac{1}{6} \)) \) \(16(BB\(\frac{3}{2} \cdot EA\(\frac{1}{6} \)) \)	$\begin{array}{c c} \hline & \frac{3}{3} & \frac{1}{3} \\ & \frac{3}{5} & \frac{1}{5} \end{array}$
	тРз		16(AE ₂ DB ₄) + 16(EA ₂ DB ₄) + 16(BB ₂ EA ₄)	$\begin{array}{c c} 5 & 5 \\ \frac{1}{2} & \frac{1}{4} \end{array}$
Т		Tetraeder		± x
PT	PTı	Pyramidentetraeder-	4AE2 8BD2	$\pm \frac{1}{2}$
	PT2		4AE3 · 8BD3	$\pm \frac{1}{3}$
(I'r	TD1	Tetragonaldodekaeder	4EA2 · 8DB2	±1-1/2
PD	PDı	Pentagonaldodekaeder	$4AB_{\frac{3}{2}}^{3}+4BA_{\frac{3}{2}}^{3}+4BB_{\frac{3}{2}}^{3}$	$\pm \frac{2}{3} \circ \pm \frac{1}{2} \circ$
	PD2		4AB2 · 4BA2 · 4BB2	± 1/2 o
	PD3		4AB3 4BA3 4BB3	± 1/3 o
	PD4		$_4AB_4 \cdot _4BA_4 \cdot _4BB_4$	± 1/4 o
IT		Ikositetraeder		
TIT	TITI	Trigonal-Ikositetraeder	$8(AE_{\frac{3}{2}}DB_{6}^{1}) + 8(EA_{6}^{2}DB_{6}^{1}) + 8(BB_{\frac{3}{2}}^{3}EA_{6}^{1})$	$\pm \frac{2}{3} \frac{1}{3}$
	TIT2		$8\big(\mathrm{AE}_3^5\mathrm{DB}_{15}^{5}\big) \cdot 8\big(\mathrm{EA}_5^{\frac{3}{5}}\mathrm{DB}_{15}^{1}\big) \cdot 8\big(\mathrm{BB}_3^5\mathrm{EA}_{15}^{1}\big)$	$\pm \frac{3}{5} \pm \frac{1}{5}$
	TlT3		8(AE2 DB ₄) +8(EA ₂ DB ₄) +8(BB ₂ EA ₄)	+ 1 4
τIΤ	t[Tı	Tetragonal- Ikositetraeder	$8(AE_2^3DB_6^1) + 8(EA_3^2DB_6^1) + 8(BB_2^3EA_6^1)$	$\pm \frac{2}{3} \frac{1}{3}$
	t[T2		$8(AE_{\frac{5}{3}}DB_{\frac{1}{15}}) \cdot 8(EA_{\frac{5}{3}}DB_{\frac{1}{15}}) \cdot 8(BB_{\frac{5}{3}}EA_{\frac{1}{15}})$	$\pm \frac{3}{5} \frac{1}{5}$
_	tIT3		$8(AE_2 DB_4^1) = 8(EA_2^1 DB_4^1) + 8(BB_2 EA_4^1)$	$\pm \frac{1}{2} \frac{1}{4}$
PIT	PITı	Pentagonal- Ikositetraeder	$8(AE_2^3DB_6^1) + 8(EA_2^2DB_6^1) + 8(BB_2^2EA_6^1)$	$\pm \frac{2}{3} \frac{1}{3}$
	PIT2		$8(A\mathrm{E}_{3}^{5}D\mathrm{B}_{13}^{-1})\cdot 8(\mathrm{E}A_{3}^{3},D\mathrm{B}_{13}^{-1})\cdot 8(\mathrm{B}B_{3}^{5}\mathrm{E}A_{13}^{-1})$	$\pm \frac{3}{5} \frac{1}{5}$
	РІТ3		$8(AE_2 DB_4^1) + 8(EA_2^1 DB_4^1) + 8(BB_2 EA_4^1)$	$\pm \frac{1}{2} \frac{1}{4}$
TPD		Tetraedrische Pentagonal-Dodckaeder	$4(AR_{\frac{3}{2}}DB_{6}^{1}) + 4(EA_{\frac{3}{2}}DB_{6}^{1}) + 4(BB_{\frac{3}{2}}EA_{6}^{1})$	$\pm \frac{2}{3} \frac{1}{3}$
	TPD2		$4 \big(A E_3^{\frac{5}{3}} D B_{15}^{-\frac{1}{15}} \big) \cdot 4 \big(E A_3^{\frac{3}{5}} D B_{15}^{-\frac{1}{15}} \big) \cdot 4 \big(B B_3^{\frac{5}{3}} E A_{15}^{-\frac{7}{15}} \big)$	$\pm \frac{3}{5} \pm \frac{1}{5}$
	1 PD3		$4(AE_2 DB_4^{\dagger}) + 4(EA_2^{\dagger} DB_4^{\dagger}) + 4(BB_2 EA_4^{\dagger})$	$\pm \frac{1}{2} \frac{1}{4}$

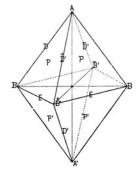
Hausmann-Symbole.

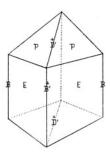
	Rhombisches S (Tetragonales, Mon- Triklines System,	
	Hausmann.	Gdt.
Rhombisches System. (Trimetrisch.)	P	1
(11a	Λ	0
	В	000
P	В	NO
PPP	D	Oı
· **	D	10
	G	- 1 2 0
Fig. 41,	E	∞
	В'Вл	n∞
Hexagonales System.	BB'n	∞n
(Monotrimetrisch.)	$\left\{ egin{array}{c} \mathbf{ABn} \\ \mathbf{BAn} \end{array} \right\}$	0 <u>1</u>
	AB'n B'An	$\frac{1}{n}$ o
	AEn EAn	n
	$\left. egin{array}{c} \mathbf{B}\mathbf{D}^{\mathrm{i}_{\mathbf{n}}} \\ \mathbf{D}^{\mathrm{i}}\mathbf{B}\mathbf{n} \end{array} \right\}$	រត្
	$\left. \begin{array}{c} \mathbf{D}\mathbf{B}^{\dagger}\mathbf{n} \end{array} \right\}$	'nı
Fig. 42.	(BB'm · EAn) } (BB'm · AEn) }	mn n
	(B'Bm · EAn)	$\frac{m}{n} \frac{x}{n}$
	(EAm · D'Bn)	m m
	(BD'm · AEn)	$\frac{1}{n} \frac{m}{n}$
	(EAm · DB'n) (AEm · DB'n)	m m

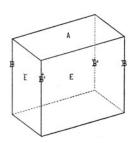
Hexagonales System.				
Hausmann.	G,			
P	10			
Λ.	0			
В	∾			
E	ω 0			
G	$-\frac{1}{2}$ o			
D	1 2			
BBn	$\frac{n+1}{n-1}$ ∞			
AHn HAn	$+\frac{1}{n}$ o			
FAn }	_ <u>f</u> 0			
ABn BAn	1 2n			
$\left\{egin{array}{l} { m AEn} \\ { m EAn} \end{array} ight\}$	$\frac{\tau}{n}$ o			
BDn	$\frac{n-1}{2}$ 1			
KGn	$+\frac{1+n}{2n}\frac{1-n}{2n}$			
G · KGn	$-\frac{1+n}{4n}\frac{1-n}{4n}$			
AHm · KGn	$+\frac{1+n}{2mn}\frac{1-n}{2mn}$			
FAm · GKn	$=\frac{1+n}{4mn}\frac{1-n}{4mn}$			
Allgemein ist, wenn nach der Umrechnung sich p < q ergiebt, p und q zu vertauschen und das Vorzeichen zu andern.				

Hausmann-Symbole.

Tetragonales System. (Monodimetrisch.)

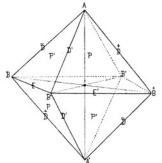

Es gelten hier dieselben Transformations-Symbole wie im rhombischen System, nur fallen die Zeichen mit und ohne Index zusammen.


Monoklines System. (Klinorhombisch, Orthorhomboidisch.)


Dasselbe zerfällt bei Hausmann in 2 Systeme: das klinorhombische und das orthorhomboidische System. Ersteres wieder in zwei Abtheilungen:

- A. Klinorhombisches System. Symmetrieebene aufrecht gestellt.
 - a. Mit makrodiagonaler Abweichung. Symmetrieebene rechts links. (Beisp. Orthoklas.)
 - b. Mit mikrodiagonaler Abweichung. Symmetrieebene vorn hinten. (Beisp. Gyps.)
- B. Orthorhomboidisches System. Symmetrieebene horizontal gelegt. (Beisp. Epidot.)

Der Unterschied in den Symbolen für die drei Aufstellungen tritt am deutlichsten in den beistehenden von Hausmann entlehnten Figuren hervor.



Klinorhombisches System mit mikrodiagonaler Abweichung. (Symmetrieebene vorn — hinten.)

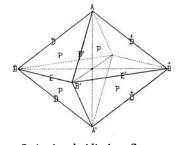

Fig. 43. Klinorhombisches Octaeder.

Fig. 44.
Prisma und Hemipyramiden.

Fig. 45.
Hendyoeder oder Dyhenoeder.

Klinorhombisches System mit makrodiagonaler Abweichung. (Symmetrieebene links — rechts.) Fig. 46. Klinorhombisches Oktaeder.

Orthorhomboidisches System. (Symmetrieebene horizontal.) Fig. 47. Rhomboidal Octaeder.

Nur für Hausmanns klinorhombisches System mit mikrodiagonaler Abweichung stimmt die Aufstellung mit der jetzt üblichen überein. Für die beiden andern Fälle ist eine Umstellung durch Vertauschen zweier Axen nothwendig. Am einfachsten gelingt die Umwandlung in unsere Zeichen, wenn man zunächst auf diese Umstellung keine Rücksicht nimmt, sondern für alle drei Arten die rhombischen Umwandlungs-Symbole anwendet, der nöthigen Drehung aber nachträglich im Transformations-Symbol Ausdruck giebt. So ist dies im Index auch durchgeführt worden und sind in solchen Fällen die Transformations-Symbole in diesem Sinne zu verstehen. Die Axenverhältnisse des Index sind jedoch überall so angegeben, dass sich a auf die geneigte Axe bezieht. Hätte diese Inconsequenz vermieden werden sollen, so hätte man den Neigungswinkel nicht mit β, sondern mit α resp. γ bezeichnen müssen, wodurch noch leichter Gelegenheit zu Missverständnissen geboten gewesen und die Analogie mit den Elementangaben der andern Autoren gestört gewesen wäre. Bei etwaiger Umrechnung des Axenverhältnisses auf Grund des Transformations-Symbols ist auf diesen Umstand Rücksicht zu nehmen.

Noch ist zu bemerken, dass Hausmanns ± auch in unserm Zeichen ± giebt, doch bedeutet

in der normalen Aufstellung, sowie bei horizontaler Symmetrieebene — pq = \overline{pq} in der Querstellung — pq = \overline{pq}

Triklines System (klinorhomboidisch).

Auch hier sind die rhombischen Transformations-Symbole anzuwenden mit Berücksichtigung der Vorzeichen. Diese lassen sich leicht feststellen durch Vergleichen mit beistehenden Figuren.

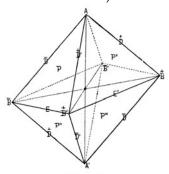
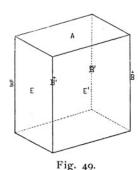



Fig. 48.
Klinorhomboidisches Oktaeder.

Henoeder.

Schrauf-Symbole.

Hexagonales System. Bezeichnen wir die drei Zahlen des Schraufschen Symbols mit hkl, so ist zur Bildung des Symbols der rhomboedrischen Gesammtform G_1 , bei welchem \pm Formen unterschieden werden.

$$hkl(Schrauf) = \frac{+}{l} \cdot \frac{h-k}{2l}(G_1)$$

Dabei ist Folgendes zu berücksichtigen:

- 1. Es erhalten von vorn herein die direkt aus der Anwendung des Umwandlungs-Symbols abgeleiteten Werthe pq das Vorzeichen +, wenn für p und q gleiches, wenn für p und q ungleiches Vorzeichen sich ergiebt. Also: $+\frac{p}{p}\frac{q}{q}$ $-\frac{p}{p}\frac{q}{q}$
- 2. Fällt p absolut < q aus, so sind p und q zu vertauschen und zugleich das Vorzeichen zu ändern. Also:

$$\pm \overrightarrow{pq} = \mp \overrightarrow{pq}$$

3. Fällt p negativ aus, so ist das Zeichen über p und q, und zugleich das Vorzeichen des Symbols zu ändern. Also:

$$+\overline{p}q = -p\overline{q}$$
 $-\overline{p}\overline{q} = +pq$

4. Fällt q negativ aus, so ist für \pm p \overline{q} zu setzen \mp (p-q) q. Nöthigen Falls sind alle diese Modificationen am Symbol der Reihe nach

vorzunehmen. Beispiele:

Schrauf- Symbole.	pq direkt abgeleitet. (1)	p > q gemacht.	p positiv gemacht.	Für pq gesetzt + (p-q) q (4)	p > q gemacht. (2)
421	+21	+21	+ 21	+ 21	+21
131	- 3T	— 3Ī	— 3 1	+21	+21
Ī31	— 3 2	- 32	— 3ž	+ 12	— 2 I
421	— 2 3	+ 32	— 3 ž	+ 12	— 2I
<u>5</u> 11	— I 3	+31	— 3 T	+ 21	+21
<u>5</u> 11	+ 72	— žī	+ 21	+ 21	+ 21

Am besten operirt man mit Schraufschen Symbolen, indem man sie in das Projectionsbild einträgt und aus diesem nach Bedarf unsere Symbole abliest. Projections-Ebene ist die Basis, in welcher zwei auf einander senkrechte Axen II und X liegen. Die II Axe läuft vom O Punkt aus nach vorn, die X Axe quer. Der Projectionspunkt der Fläche hkl (Schrauf) findet sich, indem man π Einheiten π_0 in der Π Richtung, daran χ Einheiten χ_0 in der X Richtung aufträgt. π und χ berechnen sich aus dem Symbol hkl zu:

$$\pi = \frac{k}{l}; \quad \chi = \frac{h}{l}$$

Umrechnung der Elemente.

Die folgenden Tabellen geben für die Schriften von Miller, Mohs, Haidinger, Hausmann, Des Cloizeaux und Lévy die Formeln an, nach denen sich für das hexagonale, tetragonale, rhombische und monokline System die Elemente aus den Angaben dieser Autoren berechnen lassen. Das trikline System wurde weggelassen, weil einerseits in Bezug auf dies System die Angaben bei demselben Autor nicht immer gleichmässig sind und weil andererseits durch specielle Formeln kaum ein Vortheil erreicht würde, gegenüber dem später zur Berechnung der Elemente aus Messungen anzugebenden Weg. Haben die Angaben noch nicht die dort geforderte Gestalt, so müssen die jeweilig nothwendigen Operationen vorausgehen, die entweder in einer vorläufigen Aenderung der Aufstellung, oder in der Berechnung fehlender Theile nach den allgemeinen Methoden der Krystallberechnung bestehen.

Unter der Ueberschrift "Angabe" sind in den folgenden Tabellen die zur Berechnung nöthigen Grundwerthe eingetragen, wie sie sich in den Schriften des betreffenden Autors finden; die folgenden Columnen geben die Formeln für die zu berechnenden Werthe $p_o\,q_o$ ac und $\mu=180-\beta$. Dass die Formeln zur Berechnung von a und c, nicht von a_o und b_o gegeben wurden, hat darin seinen Grund, dass die vorliegende Rechnung meist zum Zweck einer Identification ausgeführt wird, dafür aber zum Vergleich in der Regel die Angabe von a und c vorliegt. Will man a_o und b_o haben, so ist allgemein

$$a_o = \frac{a}{c}$$
 $b_o = \frac{b}{c}$

In den meisten Fällen ist die Berechnung äusserst einfach. Für die wenigen Fälle, wo sie etwas complicirter ist, wurde zur bequemeren Auswerthung ein Schema und Beispiel beigefügt.

Solche Rechnungen nach festem Schema im geschlossenen Rahmen verwendet Brezina in seiner Methodik der Krystallberechnung. Sie bieten wesentliche Vortheile, die sich besonders bei den compliciteren Operationen der Krystallberechnung geltend machen, jedoch schon hier, wo solche Schemas in diesem Werk zum ersten Mal auftreten, erörtert werden mögen.

- I. Zeitersparniss. Es entfällt die Disposition über die Anlage der Rechnung; keine Zahl muss öfter angeschrieben werden als unbedingt nöthig ist. Alle Angaben über die Bedeutung der Zahlen fallen weg, da diese gemäss dem Schema aus der Stelle hervorgeht, die die Zahl einnimmt; ebenso entfallen alle Zeichen ±, = u. s. w.
- 2. Sicherheit. Fehler in der Disposition sind ausgeschlossen. Um auch Fehler in der Ausrechnung unmöglich zu machen, soll ein gutes Schema stets die Controle der Rechnung in sich schliessen. Eine solche Controle wurde allgemein dem Schema eingefügt, nur bei ganz einfachen Umrechnungen hie und da weggelassen.

Goldschmidt, Index.

- 3. Uebersichtlichkeit. Diese ist besonders wichtig zum Zweck der Auffindung eventueller Rechenfehler. Ausserdem stellen sich die Resultate sogleich geordnet an einer bestimmten Stelle ein, so dass man sie bei späterer Benutzung sogleich findet. Beim Vergleich der Resultate einer ganzen Reihe gleichartiger Ausrechnungen findet sich das Entsprechende an genau entsprechender Stelle.
- 4. Raumersparniss. Durch die feste Umgrenzung der Rechnung und die Weglassung jedes überflüssigen Zeichens nimmt dieselbe einen sehr geringen Raum ein. Dadurch ist man im Stand, bei grossen zusammengehörigen Reihen von Einzelrechnungen, diese alle auf engem Raum zu vereinigen und das Ganze bequem zu übersehen.

Rechnung nach dem Schema. Zum Zweck der Rechnung umgrenzt man sich den Raum für dieselbe am besten auf quadrirtem Papier genau so, wie er für das Schema begrenzt ist. Die an jede Stelle zu setzenden Eintragungen gehen aus dem Schema unmittelbar hervor. In der Art der diesbezüglichen Angaben bin ich von Brezina abgegangen. Während er jedem Schema eine Legende beifügt, die den Gang der Rechnung anzeigt, steht hier die Vorschrift für die auszuführende Operation bereits an der Stelle, wo das Resultat der Operation einzutragen ist. Das Schema zerfällt in eine Anzahl Columnen, die numerirt sind und in stets nur wenige Zeilen, deren Nummer, von oben nach unten gezählt, man ohne besondere Eintragung übersieht. Jede Stelle im Schema ist durch zwei Zahlen bezeichnet, von denen die erste sich auf die Columne, die zweite auf die Zeile bezieht. Also: 32 = Columne 3 Zeile 2. Die Operationen bestehen ausser dem Aufsuchen der Logarithmen von Zahlenwerthen und trigonometrischen Functionen und dem Rückwärtsaufschlagen des Numerus nur aus Additionen und Subtractionen, hie und da einer Verdoppelung oder Halbirung. Die Lesung ist nun, wie kaum hervorgehoben zu werden braucht, beispielsweise folgende:

 $\frac{32}{2}$ bedeutet, es soll an der Stelle wo dies steht, die Hälfte der Zahl in 32, 22+23 , , , , , , , , Summe der Zahlen in 22 und 23 eingetragen werden.

Die Reihenfolge der Operationen geht im Allgemeinen von links nach rechts und von oben nach unten, doch nach Bedarf auch umgekehrt. Sie ergiebt sich im speciellen Fall stets aus der Möglichkeit eine Operation nach der anderen auszuführen.

Die Controle besteht entweder darin, dass derselbe Werth auf zwei verschiedenen Wegen gewonnen wird, wobei alle zu controlirenden Werthe zur Gewinnung des Resultates Verwendung finden müssen, oder es werden die Ausgangswerthe aus den resultirenden Werthen rückwärts wieder abgeleitet. Beide Wege sind gleich sicher, der letztere ist in der Regel umständlicher, dagegen immer möglich. Besonders bei grösseren Rechnungen stellen sich partielle Controlen während des Laufes der Rechnung ein; solche sind stets mitzunehmen. Sie führen häufig zur Auffindung und Beseitigung eines Fehlers, der sich sonst bis zum Ende der Rechnung fortschleppen würde.

Die angewandten Logarithmen sind fünfstellige und wurde, im Fall die bei der Rechnung auftretende sechste Mantisse sich der 5 mehr nähert als der 0 resp. 10, für diese der Werth 0·5 in der Rechnung geführt und durch einen Punkt markirt. Auch in diesem nicht unwichtigen Detail bin ich dem Vorgang Brezina's gefolgt. Dagegen wurde der Punkt, den man zur Trennung der Charakteristik von den Mantissen zu setzen pflegt, als selbstverständlich weggelassen.

Also:
$$999876 \cdot = 9.998765$$

Ein Minuszeichen über der Charakteristik deutet an, dass der Logarithmus einer negativen Zahl angehört. Dies kommt bei den trigonometrischen Functionen der Winkel über 90° in Betracht.

Miller (Min. 1852).

System.	Angabe.	p _o	q.	2	С	μ =180 —β
Tetragonal.	101:001 == 10:0 == m	tg m	tg m	I	tg m	90°
Hexagonal.	100:111=10:0 = m	tg m	tg m	1	$c_{10} = \sqrt{\frac{3}{4}} \operatorname{tg} m$	90°
				1	$c_1 = \frac{3}{2} \operatorname{tg} m$	
Rhombisch.	011:010=10:00=m	ctg m	tg n	ctg o	tg n	90°
	IOI:00I=0I:0 = n					
	110:100 = ∞:0∞ = 0					
Monoklin.	101:100=10:00=m	sin o	$\cot n \frac{\sin (m+o)}{\sin m}$	ctg n	ctg n	m + o
	111:010 = 1 :0∞ = n	311111	Jin III	3111 0	311111	
	101:001=10:0 =0					

Mohs - Haidinger - Hausmann.

System.	Angabe.	p _o	q.	a	c	$\mu = 180 - \beta$
Tetragonal.	a Aeusserer Winkel der Horizontalkanten (der zweite für P gegebene Winkel) == C°.	$= \frac{\frac{a}{\sqrt{2}}}{\sqrt{\frac{1}{2}}} \operatorname{tg} \frac{C}{2}$	= p.	1	$\frac{\frac{a}{\sqrt{2}}}{=\frac{I}{\sqrt{2}}tg\frac{C}{2}}$	90°
Hexagonal.	Aeusserer Winkel der Horizontalkanten (der zweite für P gegebene Winkel) == C°. Polkantenwinkel des Rhomboeders R == 2r.	$= \operatorname{tg} {2}$ Vgl.	= p.		$c_{10} = \frac{a}{\sqrt{3}}$ $= \sqrt{\frac{3}{4}} \operatorname{tg} \frac{C}{2}$ $c_{1} = a$ $= \frac{3}{2} \operatorname{tg} \frac{C}{2}$	90°
Rhombisch.	a:b:c	<u>a</u> c	a b	$\frac{c}{b}$	<u>.a</u> b	90°
Monoklin.	a:b:c:d; d = 1	b cos μ	<u>a</u> c	$\frac{\mathbf{b}}{\mathbf{c}}$	c cos µ	$tg \mu = a$

Des Cloizeaux. (Man. 1862, 1874.)

System.	Angabe.	P°	ď	æ	ပ	$\mu = 180 - \beta$
Tetragonal.	p : h	h V 2 b	h V2	1	$\frac{h\sqrt{z}}{b}$	90°
Hexagonal. Holoedrisch.	ъ. b	$\frac{h}{b}\sqrt{\frac{4}{3}}$	$\frac{h}{\sqrt{3}}$	H	$c_{10} = \frac{h}{b}$ $c_1 = \frac{h V_{\overline{3}}}{b}$	ô
Hexagonal. Rhomboedr. Hemiedrisch.	Rhomboèdre de 21° (Polkantenwinkel).	2 tg δ sin δ = ctg r tg 30°		pd .	200	
		cos r	g H	-	$c_{10} = V \sin(r + 30) \sin(r - 30)$ $c_{1} = 3 \text{ tg } \delta$ $\sin \delta = \text{ctg r tg } 30$	8
		(Controle)			$c_1 = \frac{3}{2} \frac{\cos r}{\sqrt{\sin(r+30)\sin(r-30)}}$	
Rhombisch.	d : D : h	d b	h D	$\frac{d}{D}$	h D	ွတ်
Monoklin.	u	*द∤	h D sin μ	ب	4	$\cos \mu = \frac{\cos n}{\cos m}$
	base = 2m Angle plan des faces latérales = n Prisme rhomboi- dal oblique de = 2p°	-ਹ	$= rac{\mathrm{h}}{\mathrm{D}}$ tg m ctg p	Ω	D	sin μ = tg m ctg ρ (Controle)

Bemerkungen zur Umrechnung der Elemente.

Zu Miller's Angaben:

Monoklines System.

- 1. Fällt $m + o > 90^{\circ}$ aus, so ist die Aufstellung nicht die normale, es ist vielmehr eine Drehung um 180° um die Verticalaxe vorzunehmen, zugleich mit den Symbolen die Transformation: pq (Miller) = pq (Aut.).
- 2. Zur raschen Auffindung des Werthes $c_{10} = V^{\frac{3}{4}}$ tg m kann die Tabelle I Seite 72 bis 74 verwendet werden.

Zu Des Cloizeaux Angaben:

Hexagonales System.

Zur Auffindung von c_{10} und p_o aus dem Rhomboeder-Winkel dient Tabelle II Seite 74—77. Zur Berechnung derselben Werthe ist das folgende Schema anzuwenden, das die Controle einschliesst:

Ca	L	_	m	_

I	2	3	4		
776144	lg tg δ	21-11 = lg c	lg sin (r+30)		
lg ctg r	lg cos r	$\frac{41+42}{2}$	lg sin (r—30)		
$11 + 12$ = $\lg \sin \delta$	030103+21 = lg p ₀	22-32 = lg p _o	P _o		
	117 '. O .				

Beispiel: Dioptas: $r = 47^{\circ}57^{\circ}5$.

1	2	3	4
976144	978516	002371 lg c	999033.
995507	982586	973967	948900
971651	008619 lg p ₀	008619 lg p ₀	1 · 2194 Po

Weitere Controle 31-32=993752.

Monoklines System.

Zur Auswerthung der Formeln für u diene das folgende in sich controlirte Schema:

Schema.

Beispiel. Amphibol (Des Cloizeaux, Manuel 77).

Fig. 50.

I	2	3	4
n	lg cos n	21-22 =lg cos μ	μ
m	lg cos m	lg tg m	
Р	lg ctg ρ	$32+23 = \lg \sin \mu$	μ

I	2	3	4
97°07 · 9	909395	941207	75° O2 μ
61° 16·1·	968187.	026106	
62° 05 · 5	972399	998505	75° 03 μ

Zwischen den Werthen μ entstehen manchmal Differenzen dadurch, dass die gegebenen Werthe mnp nicht unter sich genau abgeglichen sind.

Zu den Angaben von Mohs-Haidinger-Hausmann.

1. Die Winkel-Angaben bei Mohs und Hausmann sind folgendermassen zu verstehen:

Bei einer achtslächigen Pyramide sind drei Winkel gegeben; davon bezieht sich der erste auf die vordere, der zweite auf die seitliche Polkante, der dritte auf die Mittelkante.

Bei vierslächigen Formen ist der gegebene Winkel der zwischen zwei zusammengehörigen Flächen.

Bei zweiflächigen Formen ist der Winkel gegeben zwischen einer der betreffenden Flächen und der Basis (o) oder der Querfläche (∞ 0).

2. Triklines System. Es bedeutet:

$$\vec{c}:\vec{b}:\vec{a}$$
 (Mohs-Haidinger) = $\vec{a}:\vec{b}:\vec{c}$ (Aut.)
Abweichung der Axe in der Ebene der grösseren Diagonale = $90-\gamma$
" " " " " kleineren " = $90-\alpha$
Schiefe der Diagonale = β

3. Hexagonales System.

Die Berechnung der Elemente aus dem Rhomboeder-Winkel (2 r) erfolgt durch Aufsuchen in der Tabelle II Seite 74-77 oder durch Rechnung wie für Des Cloizeaux angegeben.

4. Rhombisches, monoklines System.

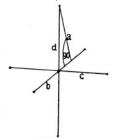


Fig. 51.

Die Berechnung aus den Winkeln der Grundpyramide (Hausmann) ist auf die für Berechnung der Elemente aus Messungen weiter unten anzugebende Weise vorzunehmen. Auch für die Angaben Mohs-Zippe-Haidinger empfiehlt es sich neben der Berechnung aus den Zahlenverhältnissen noch die Rechnung aus den Winkeln zur Controle auszuführen, da in den Angaben manchmal Fehler vorkommen, die sich so auffinden lassen.

5. Monoklines System.

Die Bedeutung der Verhältnisszahlen a:b:c:d geht aus beistehender Fig. 51 hervor. Die Ausrechnung der Zahlenwerthe für a c ao bo po qo paus den Mohs'schen Angaben wollen wir nach dem folgenden Schema

vornehmen. Es ist darin statt der Mohs'schen Buchstaben ab c (d), worunter d = 1, um Verwechselung zu vermeiden ABC gesetzt.

I	2	3	4	5	6	7	8
A	lg A = lg tg μ	lg cos μ	μ	lg sin μ	51+53 = 32	53-52 = 33	
В	lg B	21-23 = lg q _o	$31+22$ $= \lg a_0$	0-42 = lg p _o	q.	a _o	p _o
С	lg C	$= \lg a$	31+23 = lg b _o	o-43 = lg c	a	b _o	С

Beispiel: Rittingerit. (Zippe, Wien. Sitzb. 1852. 9. 346).

I	2	3	4	5	6	7	8
36.576	156319	843665	88°26·0 μ	999984 lg sin μ	970651 = 32	970448 = 33	
36.405	156116	970651 lg q _o	999781 lg a _o	000219 lg p _o	o·5087 q₀	0·9950 a _o	1.0050 P₀
71.891	185668	970448 lg a	029333 lg b _o	970667 lg c	0.5064 a	1.9649 b _o	o⋅5089 c

Lévy.

Tetragonales System. Gegeben für das primäre Prisma m das Verhältniss:

Seite zur Höhe = 1: h, so berechnet sich
$$c = p_o = q_o = \frac{h \sqrt{2}}{1}$$

Rhombisches System. Gegeben für das primäre Prisma m der äussere Prismenwinkel = 2 m und das Verhältniss der Prismenseite 1 zur Höhe h.

Formeln.

a = ctg m	$p_o = \frac{h}{1 \cos m}$	$c = q_o = \frac{h}{1 \sin m}$
-----------	----------------------------	--------------------------------

Schema.

Beispiel: Antimonglanz. Lévy, Descr. 1838. 3. 311.

1gc—1g q ₀	1	2	3	4	5
	m	lg sin m	lg cos m	lg ctg m == lg a	a
h lg h 21+22 23-33 p	1	lg l	21+22	$23-32$ $\lg c = \lg q_o$	c=q。
lg p _o	h	lg h	31+22	23-33 lg p _o	p _o

1	2	3	4	5
45°22·5	985231	984662.	999431.	0·9870 a
20	130103	115334	030906	2·037 c = q _o
29	146240	114765	031474	2·064 P ₀

Controle: 41 + 43 = 42.

Monoklines System. Gegeben für das primäre Prisma m der Prismenwinkel = 2ρ , der Winkel der Basis zu einer vorderen Prismenfläche = $0 : \infty = \sigma$. Das Längen-Verhältniss der Basis-Kante $0 : \infty$ zur Prismenkante $\infty : \infty = 1 : h$.

Formeln.

L COS II -	$\frac{\cos\sigma}{\sin\rho}$	a == ctg m	$p_o = \frac{h}{1 \sin m}$	$\frac{p_o}{a} = tg \rho(Controle)$
cos m =	$\frac{\cos \rho}{\sin \sigma}$	$c = \frac{h}{1 \sin m}$	$q_o = c \sin \mu$	q. — ig p(cominois)

Schema.

1	2	3	4	5	6
σ	lg sin σ	lg cos σ	$31-22 = \lg \mu$	lg sin μ	μ
ρ	lg sin ρ	lg cos ρ	$lg tg \rho$ = 53-52	$ 51+54 = lg q_o $	q.
h	lg h	32-21 =lg cos m	24+33	$23-43$ $= \lg p_0$	p _o
1	lg l	lg sin m	24+34	23-44 = lg c	С
		lg ctg m = lg a	Control	e in 42	a

Hexagonales System. Holoedrisch. Gegeben für das primäre Prisma m das Verhältniss der Seite zur Höhe = 1:h, so berechnet sich:

$$c_{10} = \frac{h}{l} \qquad p_o = \frac{h}{l} \sqrt{\frac{4}{3}}$$

Hexagonales System. Rhomboedrisch hemiedrisch. Gegeben der Rhomboeder-Winkel. Hier gilt das Seite 69 über die gleiche Berechnung aus Des Cloizeaux's Angaben Gesagte.

Tabelle I.

Hexagonales System.

Bestimmung des verticalen Parameters $c_{po}\!=\!c$ für Pyramiden (Rhomboeder) der Hauptreihe po aus deren Neigung δ zur Basis.

 $c = \sqrt{\frac{3}{4}} tg \delta$.

		c	õ	c	6	c	δ	С	δ	С	6	c
0°		O	25° 0'	0.4038	30° 0'	0.5000	35° 6'	0.6064	40° 0'	0.7267	45° 0'	o·866o
1		0.0151	10	0·4069	10	O·5033	10	0.6102	10	0·7310	10	0.8711
2	ł	0.0302	20	0·4100	20	o·5067	20	0.6139	20	0.7353	20	0·8762
3		Ĭ 5 2 O·O4 5 4	80	31 O-4131	30	34 O·51OI	30	38 0.6177	30	43 0·7396	30	0·8813
4		0.0606	40	0·4162	40	34 O·5135	40	38 0.6215	40	0.7440	40	o.8864
5		0.0758 152	50	0.4193	50	35 0·5170 34	50	0.6254 38	50	0·7484	50	9·8916 52
6		0.0910	26 0	0.4224	31 0	0.5204	36 . 0	0.6292	41 0	0.7528	46 0	0.8968
7	l	0·1063	10	3 i 0·4255	10	0.5238	10	o.6330	10	0.7572	10	0·9020
8		154 O·1217 154	20	0·4286	20	35 O·5273 34	20	o.6369	20	0·7617 45	20	0·9073 53
9		O·1371	30	0.4318	30	0.5307	30	0.6408 39	30	0·7662	30	0·9126
10	1	O·1527	40	0.4349	40	0.5342	40	0.6447	40	0.7707	40	0.9179
11	 	0.1683	50	0.4381	50	0.5377	50	0.6486	50	0·7752	50	0.9233
12	Ì	0·1840	27 0	0.4413	32 0	O·5412	37 0	0.6526	42 0	0.7798	47 0	0.9287
13	Ì	O·1999	10	0.4445	10	0.5447	10	0.6565	10	0.7843	10	0.9341
14		O·2159	20	0.4477	20	0.5482	20	0.6605	20	o.7889 46	20	0.9396
15		0.2320	30	0.4508	30	0.5517	30	0.6645	30	0.7935	30	0.9451
16	ļ	0·2483	40	0.4540	40	0·5553	40	0.6685	40	0.7982	40	0.9506
17		0·2648 166	50	0·4572 33	50	O·5588	50	0.6725	50	0.8029 47	50	0.9562 56
18		0.2814	28 0	0.4605	33 0	0·5624 36	38 0	0.6766	43 0	0.8076	48 0	0·9618
19	i	0·2982	10	0.4637	10	0·5660	10	0.6807	10	0.8123	10	0.9674
20		0·3152 172	20	0·4669 33	20	o·5696	20	0.6848	20	0.8170 48	20	0.9731
21		O·3324	30	0.4702	30	0.5732	30	o.6889	30	0.8218	30	0.9788
22		0.3499	40	0.4735	40	0.5768	40	0.6930	40	0.8266	40	0.9846
23		0·3676 180	50	0.4768	50	0·5804 37	50	0·6971	50	0.8314	50	0·9904 58
24	0	0.3856	29 0	0.4800	34 0	0.5841	39 0	0.7013	44 0	0.8363	49 0	0·9962
	10	o.3886 30	10	0.4833	10	0.5878	10	0.7055	10	0.8412	10	1.0021 59
	20	0.3916	20	0.4867	20	0.5915	20	0·7097	20	0·8461 49	20	1.0080
	30	O·3947	80	0·4900 33	30	0.5952	30	0.7139	80	0.8510	80	I.OI4O 60
	40	0.3977	40	0.4933	40	0.5989	40	0.7181	40	0.8560 50	40	I-O2OO 60
	50	0·4008 30	50	0·4966 34	50	O.6O26 38	50	O·7224 43	50	0·8610 50	50	I.O260 6 I

Tabelle I. (Fortsetzung.)

6		c	δ	c	ô	c	δ	c	δ	o	δ	С
50°	0'	1.0321	56° 0'	1.2839	62° 0'	1.6288	68° 0'	2·I434 I82	74° 0'	3.0201	80° 0'	4.9114
-	10	1.0382	10	81 1·2920	10	115 1·6403	10	i 8 2 2 · 1 6 1 6	10	335 3.0536	10	850 4·9964
	20	62 1·0444	20	8 2 1 · 3002	20	i 16 1·6519	20	183 2·1799	20	342 3·0878	20	878 5:0842
	30	62	30	8 2 1 · 3084	30	ĭ 1 7 1 · 6636	30	186 2·1985	30	350 3·1228	30	909
	40	1.0506	40	83	40	118	40	189	40	356	40	5.1751
	50	1.0568 63	50	1.3167		1.6755	50	192	50	3.1584	50	5·2692
	30	1.0631 63	50	1.3251	50	1.6875	30	2·2366 194	30	3·1948 372	30	5·3668
51	0	1.0694 64	57 0	1.3335	63 0	1·6997 123	69 0	2·2560 198	75 0	3·2320 381	81 0	5·468-
	10	1·0758	10	1·3421 86	10	1·7120 124	10	2·2758	10	3·2701 388	10	5.573-
	20	1·0822	20	1.3507	20	1.7244	20	2·2959 204	20	3·3089	20	5.682-
	30	1.0887	30	1.3594	30	1.7370	30	2.3163	30	3.3486	30	5.795-
	40	1.0952	40	1·3681	40	1.7497	40	207	40	3.3893	40	5·912-
	50	1·1018	50	1·37 7 0	50	1.7626	50	210 2·3580	50	3·43O9	50	6-035- 127-
۲O	0	66 1·1084	50 0	89	04 0	130	70 0	213	# 0 0	425		
52	ļ	67	58 0	1.3859	64 0	1.7756	• •	2·3793	76 0	3.4734	82 0	6·162-
	10 20	1·1151 68	10	1·3950 90	10	1.7888	10	2·4011 221	10	3.5170	10	6·295-
		1·1219 67	20	1·4040 91	20	I·8022 I35	20	2·4232 223	20	3·5616 456	20	6.433- 146-
	30	1·1286 68	80	1.4132	80	1.8157	30	2·4455 228	80	3·6072 468	30	6·578-
	40	1·1354	40	1.4225	40	1.8293	40	2·4683	40	3·6540 480	40	6·729-
	50	1.1423	50	1.4319	50	1.8432	50	2·4915 236	50	3·7020 492	50	6.887-
53	0	1.1493	59 O	1.4413	65 0	1.8572	71 0	2.5151	77 0	3.7512	83 0	7.053-
	10	1.1563	10	1.4508	10	1.8714	10	240 2·5391	10	3·8015	10	7.227-
	20	70 1·1633	20	97 1·4605	20	1.8858	20	244 2·5635	20	3.8533	20	182- 7·409-
	30	7Ĭ 1·1 7 04	80	97 1·4 7 02	30	145 1·9003	30	248 2·5883	30	3·9064	30	192- 7·601-
	40	1.1775	40	1.4801	40	147 1·9150	40	250 2·6135	40	3 9604 3 9609	40	7.803
	50	1.1847	50	99 1·4900	50	150	50	257	50	559 4.0168	50	212-
		73		100		1.9300		2·6392 261		576	"	8·O15-
54	0	1·1920 73	60 º	1.5000	66 º	1.9451	72 0	2·6653	78 0	4·0744 590	84 0	8·240- 237-
	10	1.1993	10	1.5101	10	1.9604 1.56	10	2·6920 270	10	4.1334	10	8·477-
	20	1.2067	20	1.5204	20	1.9760 158	20	2·7190 276	20	4·1941 626	20	8·728- 266-
	30	1.2141	30	1.5307	30	1.9918	80	2.7466	80	4.2567	30	8.994-
	40	75 1·2216	40	1.5411	40	2·0077	40	28 I 2·7747	40	643 4·3210	40	283 9·277-
	50	76 1·2292	50	1.5517	50	2·0239	50	2.8034	50	4.3871	50	301- 9·578-
55	0	76 1·2368	61 0	1.5624	67 0	163	73 0	292 2·8326	79 0	682	85 0	32
JJ	10	77	10	107	10	2.0402 167	10	2·8320 298 2·8624	10	4.4553	10	9·90 — 34 —
	20	1.2445	20	1.5731	20	2·0569 168	20	2·8024 303 2·8927	20	4·5255	20	37
		1·2522 79		1.5840		2·0737		310		4·5980 746		10·61— 39—
	80	1·2601 79	30	1.5950	30	2·0908 173	30	2·9237	30	4·6726	80	11.00-
	40	1·2680 79	40	1.6061	40	2·1081	40	2.9552	40	4.7497	40	11.43-
	50	1.2759	50	1.6174	50	2·1256	50	2·9874 327	50	4.8292	50	11.89-

Tabelle I. (Fortsetzung.)

ò	С	ò	С	ò	С	δ	С
86° 0' 10 20 30 40 50	12·38— 12·92— 59— 13·51— 65— 14·16— 71— 14·87— 78— 15·65— 87—	87° 0' 10 20 30 40 50	16.52— 98— 17.50— 1 09— 18.59— 1 23— 1 43— 21.25— 1 64— 22.89— 1 91—	88° 0' 10 20 30 40 50	24.80 2 26 27.06 2 70 29.76 3 31 33.1 4 1 37.2 5 3 7 1	89° 0' 10 20 30 40 50	49·6—— 9 9 —— 59·5—— 14 9 —— 74·4—— 24 8 —— 99·2—— 50 —— 149·—— 149 —— 298·——

Tabelle II.

	Best	immung de	r Elemen	te c ₁₀ und	onales Syponales Syponales $= \sqrt{\frac{4}{3}} c_1$	n äusseren	Rhomboede	er-Winkel	2 r.
2	r	c ₁₀	p _o	2 r	c ₁₀	p _o	2 r	c ₁₀	p _o
60°	0,	∞ .	∞	62° 0	6.009-	6.939-	67° 0'	3·090- 60-	3.568-
	5	30.0	34.6—	5	5·883-	145- 6·794-	15	3.030−	3.499-
	10	8 9 2 I · I	10 2— 24·3—	10	5·766-	6.658-	30	2.973-	3·433-
	15	3 9	19.89-	15	5·655-	129- 6·529-	45	2·919—	3.370-
	15	2 32-	2 67 —	.	107-	123-		52-	59-
	20	14.91-	17.22-	20	5.548-	6·406- 114-	68 0	2.867-	3.311-
	25	13.33-	15.39-	25	5.449-	6.292-	15	2·818- 47-	3.254-
	30	12.16-	1 35— 14·04—	1)30	5·353 - 259-	6.181-	30	2.771-	3.199-
	35	92— I I·24—	i oó— 12·97—	45	259- 5·094-	299- 5·8 82 -	45	46- 2·725-	3·149-
		72-	82-		225-	259-		43-	52-
	40	10.52-	70-	63 0	4·869-	5·623- 232-	69 0	2·682-	3·097-
	45	9.91—	11.44	15	4.669-	5·391 -	15	2.640-	3.049-
	50	9:39—	10.84—	30	179- 4·490-	206- 5·185-	30	40- 2·600-	3·002-
	55	8.95—	5 i — 10·33—	45	161-	186- 4·999-	45	39- 2·561-	45 2·957-
		39-	44	1	4·329-	168-		37-	43-
61	0	8.56—	9·88— 39—	64 0	4·184-	4·831- 153-	70 0	2·524- 36-	2·914- 41-
	5	8.22-	9.49-	15	4.050-	4.678-	15	2.488-	2.873-
	10	7.92-	35— 9·14—	30	121- 3·929-	4.537-	30	2·454-	2.833-
	15	28-	8·82-	45	3.816-	130- 4·407-	45	34- 2·420-	38- 2·795-
		7.64-	28-	· [103-	i 20-		33-	38-
	20	7.40-	8.54	65 0	3.713-	4·287-	71 0	2·387-	2·757- 37
	25	7.17-	8.28-	15	3.617-	4.175-	15	2.356-	2·720- 35-
	30	205- 6·965-	23— 8·042-	30	3.527-	4.072-	30	2.325-	2.685–
	35	192- 6·773-	221- 7.821-	1	3.442	3.975-	45	29- 2·296-	34- 2·651-
		175-	202-	1	79-	92-		29-	33-
	40	6.598-	7·619-	66 0	3.363-	3·883- 87-	į I	2·267- 28-	2·618- 32-
	45	6.435-	7.431-	15	3.288-	3·796-	15	2·239-	2·586− 3 1−
	50	6.283-	7·255-		3.218-	3.716-	30	2.212-	2.555_
	55	14Ĭ- 6·142-	163- 7:092-	سہ ا	3·152-	76- 3·640-	45	26- 2·186-	30- 2·525-
	00	133-	153-		62-	72-		25-	30-

¹⁾ Von hier an schreiten die Winkel von 15' zu 15' fort.

Tabelle II. (Fortsetzung.)

2	r	c ₁₀	p _o	2 r	c ₁₀	p _o	2 r	c ₁₀	p _o
73°	0'	2.161-	2·495- 29-	82° 0'	1.5388	1.7768	91° 0'	1.1934	1.3780
	15	25- 2·136-	2·466-	15	1.5268	1.7629	15	1.1857	1·3692
	30	24- 2·II2-	27- 2·438-	30	119	137	30	1.1781	8.8 1∙3604
	45	2·088- 23-	27- 2·4 I I- 27-	45	1 i 6 1·5033	135 1.7357 133	45	74 I·1707	1·3518
74	0	20.65-	2.384-	83 o	1·4917 113	1.7224	92 0	1.1633	1.3433
	15	2.043-	2·358-	15	1.4804	1.7093	15	1·1560 73	1.3348
	30	2·O2 I · - 22-	2·333-	30	1.4692	1.6964	30	1.1487	1·3264 83
	45	1.999-	2·309- 24-	45	1.4582	1.6837	45	1.1415	1·3181 82
15	0	1.978-	2·285- 24-	84 0	1.4473	1.6712 124	93 0	1.1344	1.3099
	15	1.958-	2·261- 23-	15	1.4366	1.6588 1.22	15	1.1274	1·3018
	30	1.938-	2·238- 22-	80	1.4260	1.6466 120	30	I·I 204 69	1.2937
	45	1.919-	2·2·16- 22-	45	1.4156	1.6346 119	45	1.1135	1.2857
76	0	1.900-	2.194- 22-	85 0	1.4053	1.6227	94 0	1.1066	1·2778
	15	1.881-	2.172-	15	1.3951	1.6110	15	1.0998	1.2700
	30	1.863-	21-	80	1.3851	116 1·5994 114	30	1.0931	78 1·2622
	45	1·845- 1·7-	21- 2·130- 20-	45	1.3752	1·5880 112	45	1.0864 66	77 1·2545 76
7	0	1.828-	2·110- 20-	86 0	1.3655	1.5768	95 0	1·0798	1·2469
	15	1.811-	2·090- 19-	15	1.3559	1.5657	15	1.0733	1.2393
	30	1.794-	2.071-	30	1.3464	1.5547	30	1.0668	1.2318
	45	1·777- 16-	2·O52- 18-	45	1.3370	1.5439 107	45	1·0604 64	74 1·2244 73
' 8	0	1.761-	2·034-	87 0	1.3278	1.5332	96 o	1.0540	1.2171
	15	1.745-	2.015-	15	1.3187	1.5227	15	I ·O477	73 1·2098
	30	1.730-	18- 1·997-	80	1.3096	1.5122	30	1.0414	72 1·2026
	45	15- 1·715- 15-	1·980- 1·8-	45	1·3007 89	103 1·5019 102	45	1·0352	72 1·1954 71
9	0	I·700-	1·962- 16-	88 0	1.2918	1.4917	97 0	1.0291	1·1883
	15	1.685-	1·946-	15	1.2831	1.4816	15	1.0230	1.1813
	30	1.671-	1.929-	30	1.2744	1.4716	30	1.0169	69 1·1744
	45	1.656-	16- 1·913- 17-	45	1·2659 84	1·4618 97	45	1·O1O9 59	70 1·1674 69
80	0	1.642-	1·896-	89 0	1.2575	1·4521 96	98 0	1.0050	1·1605
	15	1.628-	1.881 1.6-	15	1.2492	I·4425 96	15	0.9991	1.1537
	30	1.615-	1.865-	30	1.2409	1·4329 94	30	0.9932	1·1470
	45	1.602-	1·850- 15-	45	1.2328	1.4235	45	0.9874	1·1403
1	0	1.589-	1.835-	90 0	1.2247	1·4142 92		0.9817	1·1336
	15	1.575-	1.020-	10	1.2167	1.4050	15	0·9760 57	I·1270 65
	30	1.563-	1.805-	80	1·2088	1.3959	80	0.9703	1·1205
	45	1.551-	1.791-	45	1.2011	1·3869	45	0.9647	1·1140

Tabelle II. (Fortsetzung.)

2	r	c ₁₀	p _o	2r	c ₁₀	p _o	2r	c ₁₀	p _o
100°	0'	0.9592	1.1075	109° 0'	0.7827	0.9038	118° 0'	0.6406	0.7397
	15	0.9536	63 1·1012	15	0.7784	0.8988	15	o.6370	0.7356
	30	0.9481	63 1-0949	30	43 0·7741 :	0.8939	80	0.6335	0.7315
	45	0·9427	1.0886 63	45	0·7698	o.8889 49	45	0·6299 35	0·7274 41
101	0	0.9373	1·0823	110 0	0.7656	0.8840	119 0	0.6264	0.7233
	15	0.9319	1.0761 62	15	0·7613	o.8791	15	0·6229	0·7192
	30	0.9266	1.0699	80	0.7571	0.8743	30	0·6194	0·7152 41
	45	0.9213	1.0638 60	45	0.7529	o.8695 49	45	0.6159 35	O·7111 40
102	0	0.9161	1·0578 60	111 0	0.7487	o.8646 48	120 0	0.6124	0·7071 40
	15	O·91O9	1·0518	15	0.7446	0.8598	15	0·6089	0.7031
	30	0.9057	1.0458	30	0.7405	0.8551	30	0.6055	0·6991 40
	45	0·9006 5 I	1·0399 59	45	0.7364	0.8503	45	0·6020 3 4	0·6951 39
103	0	0.8955	I.O34O 59	112 0	0.7323	0.8456	121 0	0.5986	0.6912
	15	0.8904	1.0281 58	15	0.7282	0.8409	15	0·5952	0·6873
	30	0.8854	I·O223	30	0.7242	0.8363	30	0.5918	o.6834
	45	0.8804	1.0165 57	45	0·720I 39	0·8316 46	45	0·5884 33	0.6795 39
104	0	0.8754	1·0108	113 0	0.7162	0.8270	122 0	0.5851	0.6756
	15	0.8705	1.0051 56	15	0.7122	0.8224	15	0.5817	0.6717
	80	0.8656	0.9995	30	0.7083	0.8179	30	0.5784	o.6679
	45	0·8607 48	0·9939 56	45	0.7044	0.8134	45	0.5751	0.6640 38
105	0	0.8559	0.9883	114 0	0.7005	0.8089	123 0	0.5718	0.6602
	15	0.8511	Q-9828	15	o.6966	0.8044	15	0.5685	38 0·6564
	30	0.8463	0·9773	30	0.6928	0.8000	80	0.5652	0.6526
	45	0·8416	0·9718	45	0.6889 38	0·7955 44	45	0·5619 32	0·6488
106	0	0.8369	0·9664 54	115 0	0.6851	i	124 0	0.5587	0.6451
	15	0.8322	0.9610	15	0.6813	0.7867	15	O·5554	0.6413
	30	0.8276	0.9556	80	0.6775	0.7823	30	0.5522	0.6376
	45	0.8230	0.9503	45	0·6737	0·7779 43	45	0·5490 32	0.6339 37
107	0	O-8184	0·9450 53	116 0	0.6700	0.7736	125 0	0.5458	0·6302
	15	0.8138	0·9397 52	15	0.6663	0.7693	15	0.5426	0.6265
	30	0.8092	0.9345	30	0.6626	0.7650	30	0·5394 32	36 0.6229 37
	45	0.8046	0·9293 5 I	45	0.6589	0.7607	45	0.5362	0·6192 36
108	0	0.8002	O·9242 52	1	0.6552	0.7565	1	0.5331	0·6156 36
	15	0.7958	0·9190 51	15	0.6515	0.7523	15	0.5299	0·6120
	30	0.7914	0.9139	80	0.6479	0.7481	80	O·5268	0.6084 36
	45	0.7870	o.9o88 50	45	0.6442	0.7439	45	0.5237	0·6048

Tabelle II. (Fortsetzung.)

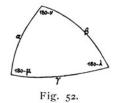
21	r	c ₁₀	p.	2r	c ₁₀	p _o	2 r	c ₁₀	p _o
127°	0,	0·5206 3 I	0.6012	136° 0'	0.4155	0·4798 32 0·4766 32	145° 0'	0-3207	0.3703
	15	0.5175	0·5976 36	15	28 0·4127	0·4766	15	0·3181	0·3674
	30	0.5144	0·5940 36	30	0·4127 27 0·4100 28	0·4734 32	80	0·3156	0·3645
	45	0·5113 30	36 0·5904 35	45	28 0·4072 27	0·4702 3 I	45	0·3131 25	0.3010
100		1		107 0		31 0·4671 32	146	0.3106	0·3587
128	0	0·5083	o⋅5869		0·4045	0·4071	147	o·3007	0.3472
	15	O·5052	0·5834 35	15	0·4018 27	0·4639 0·4608	148	0.2908	0.3357
	30	0·5022 30	0·5799 35	30	0·3991 27	31	144	0·2810	0.3244
	45	0·4992 30	0·5764 35	45	0.3964	O·4577	150	98 O·2712	0.3132
129	0	0.4962	0.5729	138 0	0.3937	0·4546 3 I	151	0·2615	0.3020
	15	0.4932	0.5694	15	0.3910	0.4515	152	96 0·2519	0·2909
	30	0·4902 30	0·5660 35	80	0.3883	0.4484	153	95 O·2424	0·2799
	45	0.4872	35 0·5625 34	45	0·3856	0.4453	154	0·2329	0.2689
190	0	0.4842	34	139 0		0.4422		0.2235	108 0.2581
130	15	0.4842	0·5591 35	159 0	0·3829 27 0·3802	O·4422 3 I	156	93 O·2142	108 0.2473
	30	0·4812	0·5556	80	0·3776	0·4391 31 0·4360	157	93 0·2049	0.2366
	45	0.4783	0·5522 0·5488 34	45	27	31	158	0.1956	0·2259
	40	0.4753	34	20	0·3749 26	0·4329 30	159	92 0·1864	106 0.2153
131	0	0.4724	O·5454	140 0	0.3723	0·4299 3 I	100	9 i	106 O·2O47
	15	0-4694 0-4665 0-4665	0·5420 33	15	o∙3696 26	0.4268		0.1773 91 0.1682	0.1942
	30	0.4665	0.5387	80	0.3670	0·4238	161	91	0.1942
	45	0.4636	0·5353 33	45	0·3644	0·4207		0·1591	0.1037 105 0.1732
132	0	0.4607		141 0	0.3618	0.4177		0·1500 90 0·1410	0.1628
10%	15	0.4578	0·5320 34 0·5286	15	0·3592	30		90	103 O·1525
	30	0.4549 0.4549	33		0.3566	0·4147 30 0·4117		O·1320 89	103
	45	0.4520	0·5253 33 0·5220	45	0·3540	0·4087		O·1231	O·1422
	20	28	33	10	26	30	100	O·1142 89	0.1319
133	0	0.4492	0·5187 33	142 0	0.3514	0·4057	168	0.1053	O·1216
	15	0.4463	0.5154	15	O·3488	O·4O27	109	0·0964	O·1114
	80	0.4435	O·5121	80	0.3462	0.3997	170	0.0876 88	O·1012
	45	0.4406	0·5088 32	45	0.3436	0.3967		o.o788 88	0.0910 102
134	0	0.4378	0.5056	143 0		0.3938	172	0·0700 88	0.0808 102
-	15	0.4350	33 0·5023	1 1	0·3410 26 0·3384	0.3909		O·O612 88	0.0706 101
	30	0.4322	3 2 0·499 I	30	0.3359	0.2870	11.2	O·O524 88	0.060
	45	28 0·4294	0·4958	45	0.3333	0.3849	1.0	0·0436 87	0.0504
105		28	32		_ 1	29		0·0349 87	0.0403 101
135	15	0·4266	0.4926	1 1	0.3308	0·3820 30		0·0261 87	0.0302 101
	15	0.4238	0·4894	15	0.3282	0.3790		O·O174	O-O2OI
	80	O·4210	0.4862	80	0.3257	0.3761		0·0087	0.0100
	45	O·4182	0·4830 32	45	O·3232	0.3732	180	О	Ċ

Berechnung

der polaren aus den linearen Elementen.

Allgemeiner Fall. (Triklines System.) Die Bedeutung der Buchstaben abc $a_0 b_0 c_0 \alpha \beta \gamma x'_0 y'_0 k d' \delta'$ sowie $p_0 q_0 r_0 \lambda \mu \nu x_0 y_0 h d \delta$ wurde bereits oben S. 15 und S. 18 auseinander gesetzt und es lautet die Aufgabe:

Gegeben a (b=1) c, $\alpha \beta \gamma$.


Gesucht $p_0 q_0$ $\lambda \mu \nu$. Daneben: $d \delta h x_0 y_0$.

abc, αβγ sind die üblichen Elementar-Angaben.

Im Laufe der Rechnung ergiebt sich zur Ergänzung dieser noch an bos Zum Zweck der Projection und der Analogie in der Berechnung bei polarer und linearer Projection müssen wir, wie oben dargelegt wurde, nicht b, sondern c = 1 setzen, dann erhalten wir a_o b_o ($c_o = 1$). Die Buchstaben a b c sind für uns in dem derzeit üblichen Sinne der Elementangabe um so weniger festzuhalten, als diese Buchstaben analog pg für die rationalen Indices in den Symbolen der Flächen (ab) und der Kanten (Zonen-Axen) [ab] Verwendung gefunden haben. Trotzdem wurden sie hier, wo keine Verwechselung möglich ist, zum Zweck der Rechnung beibehalten, aus dem praktischen Grunde, weil zur Zeit stets diese Elemente angegeben werden und in der Regel die Aufgabe erwächst, aus ihnen das Uebrige abzuleiten, wir also hierdurch den directen Anschluss an das jetzt Uebliche gewinnen; a b b aber treten unter den berechneten Werthen auf. Dadurch möge die, so zu sagen lokale, Inconsequenz gerechtfertigt erscheinen, dass wir nicht ao und bo, sondern a und b und zwar in dem für Elementangaben derzeit üblichen Sinn als für die Berechnung gegeben eingeführt haben. Der Unterschied, ob wir von a (b) c oder ao bo (co) ausgehen, d. h. ob wir bo oder co = 1 setzen, ist gering. Er trifft weniger die Formeln als die Schemas. Wenn letztere Art der Angabe im Verein mit po qo die bisherige verdrängen sollte, so kann später die erforderliche Modification vorgenommen werden. Sie besteht darin, dass wir setzen:

$$a_o = \frac{a}{c}$$
; $b_o = \frac{b}{c}$.

Ableitung der Formeln. Aus dem allgemeinen Satz

folgt:

$$p_o: q_o: r_o = \frac{\sin \alpha}{a_o} : \frac{\sin \beta}{b_o} : \frac{\sin \gamma}{c_o}$$

$$für: r_o = r$$

$$p_o = \frac{\sin \alpha}{a_o} \cdot \frac{c_o}{\sin \gamma}$$

$$q_o = \frac{\sin \beta}{b_o} \cdot \frac{c_o}{\sin \gamma}$$

In dem körperlichen Eck der Grundform Fig. 52 ist ferner, wenn wir setzen

$$\frac{\sin \frac{\nu}{2} = \sqrt{\frac{\sin \sigma \sin (\sigma - \gamma)}{\sin \alpha \sin \beta}}}{\cos \frac{\nu}{2} = \sqrt{\frac{\sin (\sigma - \alpha) \sin (\sigma - \beta)}{\sin \alpha \sin \beta}}} \text{(Controle)}$$

Anm. Die Endresultate, die direct zur Berechnung verwendet wurden, sind hier und im Folgenden mit einem Viereck umzogen worden.

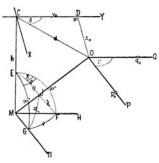


Fig. 53.

Ferner ist nach dem Sinus-Satz:

$$\frac{\sin \alpha}{\sin \lambda} = \frac{\sin \beta}{\sin \mu} = \frac{\sin \gamma}{\sin \gamma}$$

$$\sin \lambda = \sin \alpha \frac{\sin \gamma}{\sin \gamma}$$

$$\sin \mu = \sin \beta \frac{\sin \gamma}{\sin \gamma}$$

woraus folgt:

Fig. 53 und 54 geben die in der Polar-Projection auftretenden Elemente, erstere Figur in perspectivischer Ansicht, letztere in der Projectionsebene. In der per-

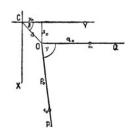


Fig. 54.

spectivischen Darstellung (Fig. 53) ist M der Mittelpunkt des Krystalls, C der Scheitelpunkt, O der Projectionspunkt der Basis o = (oo1); $MO = r_0 = 1$, MC = h = der Scheitelhöhe = dem Radius des Grundkreises. In der Projections-Ebene liegen CDOXYPQ. Wir legen mit dieser parallel eine Ebene durch M und ziehen darin MIIIOP; MHIIOQ und legen ferner in das von CM, HM und IIM gebildete körperliche Eck das sphärische Dreieck EFG, das in I von dem Strahl MO durchstochen wird.

Es sei nun in Fig. 53
$$EJ=e$$
 | Ausserdem ist: $EF=90^{\circ}$ $FJ=\lambda$
 $JEF=\delta$ | $EG=90^{\circ}$ $JG=\mu$
 $GF=\nu=GEF$

In den sphärischen Dreiecken JEF und JEG ist:

$$\frac{\sin e = \frac{\cos \lambda}{\cos \delta}}{\sin e = \frac{\cos \mu}{\cos (\nu - \delta)}} \left\{ \frac{\cos \mu}{\cos \lambda} = \frac{\cos (\nu - \delta)}{\cos \delta} = \frac{\cos \nu \cos \delta + \sin \nu \sin \delta}{\cos \delta} = \cos \nu + \sin \nu \tan \delta \right\}$$

Daraus folgt:

$$tg \ \delta = \frac{\cos \mu}{\cos \lambda \sin \nu} - ctg \ \nu$$

Ferner ist:

$$d = r_o \sin e = r_o \frac{\cos \lambda}{\cos \delta}$$

$$h = \sqrt{r_o^2 - d^2}$$

$$F \ddot{u} r_o = r_o = r_o \frac{\cos \lambda}{\cos \delta} = \sin e$$

$$h = \sqrt{r_o^2 - d^2} = \cos e$$

Endlich ist:

$$d = r_{o} \sin e = r_{o} \frac{\cos \lambda}{\cos \delta}$$

$$y_{o} = d \cos \delta = r_{o} \frac{\cos \lambda}{\cos \delta} \cdot \cos \delta$$

$$x_{o} = y_{o} tg \delta$$

$$F\ddot{u}r r_{o} = 1:$$

$$d = \frac{\cos \lambda}{\cos \delta} = \sin e$$

$$h = \sqrt{1 - d^{2}} = \cos e$$

$$f\ddot{u}r r_{o} = 1:$$

$$y_{o} = \cos \lambda$$

$$F\ddot{u}r r_{o} = 1:$$

$$x_{o} = \cos \lambda tg \delta$$

Zur gleichzeitigen Berechnung aller Werthe p₀ q₀ λμν zugleich mit a₀ b₀ wurde das folgende in sich controlirte Schema aufgestellt und ein zweites für die Werthe x₀ y₀h dδ, die als Hilfselemente der Polar-Projection bezeichnet wurden.1)

¹⁾ Da diese Umrechnungen für den Index für die ganze Reihe der Mineralien geführt werden mussten, wurden die Formulare dazu, die Schema und zugehöriges Rastrum für die Ausrechnung enthielten, für jedes Krystallsystem in einer grösseren Zahl von Exemplaren autographisch hergestellt.

	<u>.</u>
	듗
	ະ
	=
	•
	≂
	<u></u>
:	Ξ.
l	u
	Ξ.
	စ္
	≂
	ö
	Ě
:	=
	=
	gen
•	0
	ans
	₹.
	CO
	_
	≅
	ĭ
	æ
۰	olaren
	ă
	_
	_
	9
•	0
	ᅙ
	≘
	⊒ _
	፷
•	≒
	ສ
	Z
	Φ
1	Ď
	_

					Berech	unung der	3	den linear	en Elemente	ċ				
	Schema.	.				Trikline	Triklines System. Po	Polar - Elemente.	9.			Controle.		
	н	7	3	4	5	9	7	8	6	·I	5.	3.	4.	5.
<u> </u>	Ια	ત	lg sin α	lg a	31 — 33	lg a _o == 41 43	ı9—15 —° d 8∣	a _o =num 61	ı∠mnu≕°d	lg sin λ	lg p。	1.1.—2.1.		а
	2 13	р — 1	lg sin β	lg b == o	32 — 33	lg b _o == 42 43	lg q₀=52—62	—62 b _o =num62 q _o =num72	d•==num 72	lg sin μ	lg qo	1.2.—2.2.		
	7	ပ	lg sin 7	lg c						lg sin v	lg r _o =0 1·3·-2·3·		lg c = 3·3· - 3·2·	၁
	ρ	lg sin o												
	2 0 2	lg sin(σ—α)	24 + 25	32 + 33	35 — 45	$\lg \sin \frac{\lambda}{2} = \frac{55}{2}$	X							
	6 9 - 3	lg sin (σ—β)	24 + 26	31 + 33	36 — 46	$\lg \sin \frac{\mu}{2} = \frac{56}{2}$	<u> ಕ</u> .							
1	7 0 -7	lg sin (σ−γ)	24 + 27	31 + 32	37 — 47	$\lg \sin \frac{\lambda}{2} = \frac{57}{2}$,							
J	8	$= \frac{\alpha + \beta + \gamma}{2};$	91 + 51 ;	6 + 17 = 14	: 14.									
	Beispi	Beispiel: Axinit.										Controle.	-	
	ı	8	3	4	S	9	7	8	6	·i	2.	3.	.4	5.
	1 91°49	9664.0	826666	482066	000401	989278	011123	0.7812 a _o	1.2919 Po	0	011123	228886	990287	9664.0
1	2 102°38	н	998936	o	999359	166866	000368	0.9770 b _o	1-0085 9.	998958	000368	998590		
	3 82°01	1-0235	22666	00100						999599	0	0001000	999599	1.0235
	4 138°14	982354												
	5 46°25	982996	968350	998513	969837	984918	89°55·2			¥				
	6 35°36	976501	958855	999555	959300	979650	77°30 µ	,						
	7 56°13	896166	974322	998914	975408	987704	97°46·5							

Berechnung der polaren aus den linearen Elementen. Triklines System. Hilfs-Elemente der Polar-Projection.

Schema.					i riklines System. Hilfs-Elemente der Polar-Projection. Controle.	n. Hilfs-Elem	Controle.	Polar-Pr 0 le.	jection.					
ı	7	3	4	5	9	7	ı	8	8	4	5	9	7	∞
lg sin v	lg ctg v	ctg		lg cos ð	lg d==5251 == lg sin e	p p == 19 mnu == 1	lg tg ð	tg d	lg cos λ			P+1	1g (1+d)	$\frac{71+72}{2}$ $= \frac{2}{ \varphi }$
lg cos À	13—23	num 22	10	lg cos λ == 12	y _o == num 52	lg cos e	lg ctg ›	ctg v	lg sin v	3 .		p-1	lg (1—d)	- L
lg cos µ 11+12 tg b=32	11+12	tg δ=32-31	lg tg δ == lg 33	52+43 = lg x _o	x _o == num 53	h == num 72		21+22	lg 23	$31+32+33$ = $\log \cos \mu$	P	d+y _o	$\frac{d+y_0}{d+y_0} \frac{1g(d+y_0)}{1g(d+y_0)} \frac{73+74}{2}$	$\frac{73+74}{2}$ $= 1g x.$
Bei	i 31 +	31 + 32 ist wohl a	auf das Vc	orzeichen	auf das Vorzeichen ± zu achten.						y°	d—y。	d—y _o lg (d—y _o)	°×
Beispiel: Axinit.	l: Axin	it.					Controle.	le.		_				
Г	2	3	4	5	9	7	ı	8	ю	4	32	9	7	∞
665666	913525	-0.1365		782352	933918	0.2184 d	2.17647 150.13	150.13	716270			12184	928800	998939
716270 217665	217665	150-19	89°37·1	716270	0.0015 y ₀	998939	913526	-0.1365	999599	77°31		07816	989298	0.9759
933534 715869	715869	150.33	2.17704	933974	0.2186 X _o	0.9759 h		150.0.	2.17609	. 933478	0.2184 02199	02199	934223	933915
	ļ										09160	09160	909000	2,218,
Auszug.		p _o == 1·2919	λ = 89°	89°55.2	x _o = 0.2186	d = 0.2184	4							+
	<u></u>	q _o = 1-0085	n = 77°30·0		y _o = 0.0015	δ = 89°37·1	ı							
	-	r, = 1	v = 97°46·5		h = 0.9759									

Goldschmidt, Index.

Specialfälle: Andere Krystallsysteme.

Die Specialfälle ergeben sich direkt aus den allgemeinen Formeln des triklinen Systems durch Einsetzung der für die übrigen Systeme geltenden Werthe von abc $\alpha\beta\gamma$. Im hexagonalen System sind die Bemerkungen zu berücksichtigen, die für Ableitung der Elemente dieses bei Besprechung der Projection (S. 33–35) gemacht wurden. Folgende kleine Tabelle stellt die einfachen Resultate zusammen und es bedeutet dabei im hexagonalen System c_{10} resp. c_1 den Werth c_1 0 bezogen auf das Symbol 10 resp. 1 derselben Aufstellung, auf die sich c_1 0 bezieht. Stets ist c_1 0 und c_2 1.

System.	p _o	q.	a _o	b _o	λ	μ	γ	$\mathbf{e} = \mathbf{x}_0 = -\mathbf{x}_0$	y₀ — y'。	h == k	_ d = – d'	õ
Monoklin	$\frac{c}{a}$	c sin β	a c	<u>r</u>	90	180β	90	cos β	0	sin β	cos β	90
Havaganal	$\frac{2}{3}$ c ₁	$\frac{2}{3}$ c ₁	$\frac{\sqrt[4]{3}}{c_1}$	$\frac{\sqrt{3}}{c_1}$	90	90	60	0	0	1	О	_
Hexagonal .	$\sqrt{\frac{4}{3}} c_{10}$	$\sqrt{\frac{4}{3}} c_{10}$	$\frac{1}{c_{10}}$	1 C ₁₀	90	90	60	0	0	1	o	1
Rhombisch .	$\frac{c}{a}$	С	a c	<u>1</u> <u>C</u>	90	90	90	0	o	I	o	
Tetragonal .	С	с	T C	T C	90	90	90	0	0	1	o	
Regulär	1	I	1	I	90	90	90	0	0	I	o	_

Die Schemas für diese Ausrechnungen sind aus den folgenden Beispielen direkt ersichtlich:

Monoklines System. Beispiel: Amphibol.

a = 0.5318	lg a = 972575			$a_0 = 1.8113$	p _o =0.5521
c=0.2936	lg c = 946776	$ \begin{array}{c} \lg b_o = 053224 \\ o - \lg c \end{array} $	lg q _o =945277 lg c+lg h	b _o = 3·406	$q_0 = 0.2836$
$\frac{\mu = \frac{1}{180 - \beta}}{75^{\circ}02}$	$\begin{cases} \lg h = \\ \lg \sin \mu \end{cases} 998501$	$\begin{cases} \lg e = \\ \lg \cos \mu \end{cases} 941205$	$\lg \frac{p_o}{q_o} = 028924$	h = 09661	e=0.2583

Hexagonales System. Beispiel: Arsen.

$c_1 = 1.4025$	$\lg c_1 = 014690$	$\lg a_0 = 009166$	$\lg p_o = 997081$	$a_0 = 1.2349$	p _o =0.9350
		$023856 - \lg c_1$	$982391 + \lg c_1$		

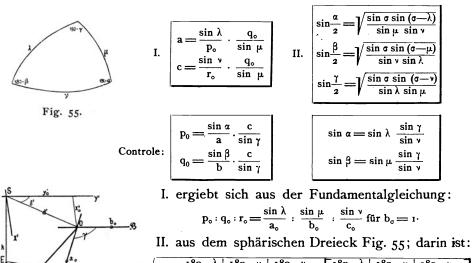
Rhombisches System. Beispiel: Adamin.

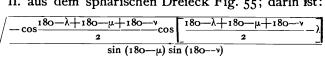
a = 0.6848	$\lg a = 983556$	$ \lg a_o = 983734 \lg a - \lg c $	lg p _o = 016266 o lg a _o	$a_o = 0.6876$	$p_{\circ} = 1.4543$
c=0.9959	lg c = 999822		$lg q_0 = 999822$ o $lg b_0$	b _o = 1.0041	q _o =0.9959

Tetragonales System. Beispiel: Anatas.

c p _o	= 1.7771	lg c = 024971	$lg q_o = 975028$	a _o = 0.5627
, ,	,	[o — ig c	

Berechnung der linearen aus den polaren Elementen.

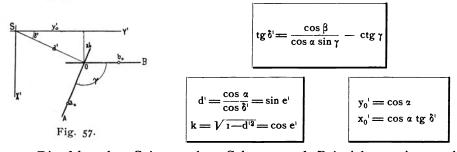

Allgemeiner Fall. Triklines System.


Zwischen den Linear- und Polar-Elementen besteht vollkommene Analogie; es lassen sich als Unterlage der Rechnung mit veränderten Buchstaben dieselben Figuren (hier Figg. 55-57), zur Berechnung die analogen Formeln verwenden. Die Aufgabe lautet hier:

Gegeben: $p_0 q_0 (r_0 = 1) \lambda \mu \nu$.

Gesucht: $a_0 b_0 (c_0 = 1)$, $\alpha \beta \gamma$, a(b = 1) c, $x_0' y_0' k$, $d' \delta'$.

Die Ableitung ist dieselbe, wie oben (Seite 70-71) und wir können direct die fertigen Formeln anschreiben:



 $\frac{\sin \sigma \sin (\sigma - \lambda)}{\sin \mu \sin \nu}$

Fig. 56.

Ferner ist für die Hilfs-Elemente der Linear-Projection:

Die folgenden Seiten geben Schema und Beispiel zur Auswerthung Die Angaben für die Specialfälle (die anderen Krystalldieser Formeln. systeme) sind in der kleinen Tabelle Seite 82 mitenthalten. 6*

5.

0809/6

0.5279

Berechnung der linearen aus den polaren Elementen.

						Ē	Triklines System. Linear-Elemente.	Linear-Elen	nente.					
-	Schema.	ema.					[Contr.]			Controle.	ole.			
	1	2	3	4	5	9	7	8	6	Ι.	· 5	3.	.4	5.
-	~	P _o	lg sin λ	lg po	31 — 41			a,	В	lg sin α	lg a	1.1.—2.1.	3.13.3 = $\lg p_s$	Ъ°
И	ತ_	ď	lg sin µ	lg q	lg q. 32 — 42			°q	b = 1	lg sinβ	$\lg \sin \beta \lg b = 0 1 \cdot 2 \cdot -2 \cdot 2 \cdot 3$	1.2.—2.2.	32—33 == lg q _o	ď°
ю	>	r _o == 1	lg sin v	lg r₀=o	r,=0 33 - 43	الا ده=0	lg c=63-62 =53-52	° = 1	υ	lg sin γ	lg c	1.3.—2.3.		
4	ь	lg a								Contr	ole: 31 –	- 1·1 = 32	Controle: $31 - 1.1 = 32 - 12 = 33 - 1.3$	- 1.3
Ŋ	ر م — ۲	$\frac{\lg{(\mathfrak{a}-\lambda)}}{24+25}$	24 + 25	32 + 33	32 + 33 35 - 45	$\lg \sin \frac{\alpha}{2} = \frac{55}{2}$	8							
9	<u>1</u>		$\lg (\mathfrak{a} - \mu) 24 + 26 31$	31 + 33	+33 36 - 46	$6 \lg \sin \frac{\beta}{2} = \frac{56}{2}$	m.							
7	و — د	$\frac{\lg (\sigma - v)}{24 + 27} \frac{31}{31}$	24 + 27		+32 37 - 47	$\lg \sin \frac{\gamma}{2} = \frac{57}{2}$	7.							
	ь	$\sigma = \frac{\lambda + \mu + \gamma}{2}$	+ 51;	- 16 + 1;	6 + 17 = 14									

1 2 3 4 5 0 7 8 9 1. 1 75°42. 0.8882 998633 094851 003782 003783 076081 1.0910 0.5765 996633 2 87°26.1 0.5279. 999956 97225 027701 027702 0 1.8924 1 999957 3 89°37.9 1 999999 0 9999999 0 9972298 1 0.5284 0 4 126°23.0 99058 97948 99955 979483 989741. 104°18.0 5 50°41.0 988855 970421. 998539 971789 985894. 92°33.0 6 38°56.9 977696 968589 969690 984845 89°43.8		Person	Deispiel. Sassoill.									Ì
027702 0 1-8924 1 0 972298 1 0-5284 0 972298 1 0-5284 989741· 104°18·0 985894· 92°33·0	1	-	2	3	4	S	9	7	8	6	·I	
027702 0 1.8924 1 0 972298 1 0.5284 989741 104°18·0 985894 92°33·0 984845 89°43·8	-	75°42		998633	994851	003782		1809/6	0160-1	0.5765	9866	Έ.
989741· 104°18·0 985894· 92°33·0 984845 89°43·8	19		0.5279.	936666	972255	027701	027702	0	1.8924	ı	5666	1 53
989741· 985894· 984845	m		ı	666666	0	666666	o	972298	I	0.5284	°	
989741· 985894· 984845	14	126°23.0	990583									
985894	1 20	50°41.0	988855	979438	999955	979483		104°18·0				
984845	9	38°56.9	979838	970421.	998632	684146		92°33.0				
	1	36°45·1	969226	622896	998589	069696		89°43·8				

Berechnung der linearen aus den polaren Elementen. Triklines System. Hilfs-Elemente der Linear-Projection.

Schema.							Controle.	le.	ojeouon.					
ı	7	3	4	5	9	7	I	7	3	4	5	9	7	∞
lg sin 7	lg sin.; lg ctg y	ctg 7		lg cos å	lg d'=52-51 = lg sin e'	d'=num 61	lg tg ồ'	tg 3.	lg cos a			_p+1	1+d lg (1+d')	$71+72$ $= 2$ $= \lg k$
lg cos 2	13—23	num 22	ī0	lg cos 2 = 12	y'.=num 52	lg cos e'	lg ctg 7	ctg 7	lg sin 7	СС.		ı — п	1 — d' lg (1—d')	꾹
lg cos β	11+12	lg cosβ 11 + 12 tg δ'=32 - 31	lg tg δ' = lg 33	lg x' _o ==52+43	x' _o == num 53	k == num 72		21 + 22	lg 23	$\log \cos \beta = 31 + 32 + 33$	-р	d'+y'	$d'+y'_{o}lg(d'+y'_{o})$ $\frac{73+74}{2}$ = $lg x'_{o}$	$\frac{73+74}{2}$ = $\lg x'_{\circ}$
Ā	Веі 31+	32 ist wohl	uuf das Vo	rzeichen	auf das Vorzeichen + zu achten.						y'o	d'—y'.	d'y', lg (d'y',	-×
Beispi	Beispiel: Sassolin.	olin.					Controle.	نو						
H	2	3	4	S	9	7	I	7	3	4	25	9	7	∞
0	766785	0-0046		999342	939928		924417	0.1754	939270			1.2508	61/600	998590
939270	925557	0.1801	1.25°9	939270	-0.2470	998590	766785	0.0046	0	— 87°27		0.7492	987460	0.9960
864827	939270	0.1754	924415	863685	0-0433	0.9680		0.1801	925551	864821	0.2508	0.2508 0.4978	50/696	863842
	_								_		0.2470	0.2470 0.0038	757978	0.0435
Auszug.		a = 0.5765	a _o = 1-0910		a = 104°18	x' _o = - 0.0434	434 d' ==	0.2508	ao					
		р = 1	b _o = 1.8924		$\beta = 92^{\circ}33$	y'. = -0.2470	470 8' ==	9°57·1						
		c = 0.5184	ິ "		γ = 89°44	k = 0.90	0.9680		l					

Dadurch, dass k=h und d=-d' ist, vereinfacht sich die Berechnung von x_0^I y_0^I δ^I , nachdem d und α gegeben, ebenso die von x y δ , nachdem d und λ gegeben ist.

Es ist:
$$\cos \delta = \frac{\cos \alpha}{d} \; ; \quad x'_{\circ} = \cos \alpha \; tg \; \delta' \; ; \quad y'_{\circ} = \cos \alpha$$
$$\cos \delta = \frac{\cos \lambda}{d} \; ; \quad x_{\circ} = \cos \lambda \; tg \; \delta \; ; \quad y_{\circ} = \cos \lambda$$

Daraus ergiebt sich das Schema für die Linear-Projection:

Schema.		
1	2	3
lg d'		y'. num 21
lg cos δ'	lg tg δ'	8,
	21+22 lg x' ₀	num 23 x' ₀

Control	e		
4	5	6	7
d'	d'+y'。	lg 51	$\frac{61+62}{2}$
y' _o	d'—y'。	lg 52	x' ₀ == num 71

Beispi	Beispiel: Axinit.			
1	2	3		
533918	850108	— o∙o317		
5 16190	083344	81°39·1		
	933452	- 0·2160		

4	5	6	7
- O·2184	- O·2501	5 39811	9 33462
-0.0317	— o·1867	927114	— O·2161

Für die Polar-Projection lautet das Schema ganz analog:

Schema		
I	2	3
lg d		num 21 y _o
21-11 lg cos ô	lg tg ♂	δ
	21+22 = lg x	num 23 X _o

Control	Controle.				
4	5	6	7		
d	d+y°	lg 51	$\frac{61+62}{2}$		
y _o	d—y _o	lg 52	num 71 == x ₀		

Trotz der grösseren Einfachheit ist diese Art der Berechnung nicht vorzuziehen, vielmehr die direkte Berechnung von \mathbf{x}_0^1 \mathbf{y}_0^1 δ^1 d k aus den linearen Elementen, sowie von \mathbf{x}_0 \mathbf{y}_0 δ d h aus den polaren Elementen (nach Schema S. 81 resp. 85) vorzunehmen. Der Grund ist der, dass bei der direkten Berechnung schon durch die Art der Abrundung Ungenauigkeiten hereingetragen werden, die besonders stark sind, wenn sich die Winkel in der Nähe von o und 90° bewegen, dass ferner die entstandene Ungenauigkeit sich aus der ersten in die zweite Rechnung überträgt und dort unter Umständen störend auftritt. Umgekehrt geben die auf beiden Wegen berechneten gleichen Werthe h = k sowie $d = -d^l$ eine willkommene Controle. Gegenüber diesen Vortheilen kommt die etwas complicirtere Rechnung nicht in Betracht.

Transformation.

Unter Transformation verstehen wir diejenigen Umänderungen, welche durch veränderte Aufstellung des Krystalls an den Symbolen nöthig werden.

Bei der Transformation stehen sich jedesmal zwei Symbole gegenüber, die der gleichen Form zukommen, aber bei verschiedener Aufstellung (A) und (B) des Krystalls und es erwächst die Aufgabe, das eine in das andere überzuführen. Dies kann auf zweierlei Weise geschehen:

- 1. Durch eine direkte Rechnungsvorschrift, die angiebt, welche Operation auszuführen sei, um aus dem Symbol (A) das Symbol (B) zu ererhalten. Eine solche nennen wir Transformations-Symbol.
- 2. Durch Gleichungen, die angeben, welche Gleichheitsbeziehungen zwischen den Grössen pq der Aufstellungen (A) und (B) bestehen. Solche nennen wir Transformations-Gleichungen.

Transformations-Gleichungen sind gegenseitig für die durch sie verknüpften Theile, Transformations-Symbole nur einseitig, d. h. man kann mit demselben Transformations-Symbol nur (A) in (B) umwandeln, nicht zugleich umgekehrt (B) in (A). Um letzteres zu können, brauchen wir ein weiteres Symbol, das mit dem ersteren in der Beziehung der Gegenseitigkeit steht. Wir wollen es das reciproke Transformations-Symbol oder kurz Gegensymbol nennen. Im Anschluss an die Aenderung der Aufstellung und an die Transformation der Symbole ist eine entsprechende Veränderung der Elemente durchzuführen, um alle Angaben wieder in Einklang zu bringen.

Das Transformations-Symbol giebt also an, welche Rechnungen mit den Werthen pq einer Aufstellung vorgenommen werden sollen, um die entsprechenden Werthe einer anderen irgendwie definirten Aufstellung zu finden. Die Aufstellung, auf die sich das Symbol bezieht, charakterisiren wir dadurch, dass wir neben pq in Klammern eine nähere Bestimmung setzen, z. B.: pq (Rath) ist pq in der von vom Rath gewählten Aufstellung, oder allgemein pq (A) im Gegensatz zu pq (B), wobei A und B im speciellen Fall im Text ihre Erläuterung finden.

Wir schreiben das Transformations-Symbol in Gestalt einer Gleichung, obwohl es keine solche ist, sondern eine Rechnungsvorschrift. Um Ver-

wechselung mit wirklichen Gleichungen zu vermeiden, kann man = statt = setzen. Also allgemein:

$$pq(A) = f(pq) \cdot F(pq)(B)$$
.

Ist z. B. beim Chondrodit:

$$pq (Des Cloizeaux) = \frac{2p}{5} \frac{4q}{5} (Rath)$$

so heisst das: um für ein beliebiges Symbol der Des Cloizeaux'schen Aufstellung das entsprechende in der Aufstellung von Rath zu finden, müssen wir bilden $\frac{2p}{5}$ und $\frac{4q}{5}$. Beide nebeneinandergestellt geben das neue Symbol. Also im speciellen Fall:

$$\frac{5}{6} \frac{5}{12}$$
 (Des Cloizeaux) $\frac{7}{12} \frac{7}{3} \frac{1}{3}$ (Rath).

Statt = könnte man auch unbedenklich = schreiben, da eine Verwechselung mit den sogleich zu betrachtenden Transformations-Gleichungen nach dem ganzen Aussehen des Symbols nicht vorkommen kann, denn es erscheint als eines und in ihm treten p und q geschlossen auf; Gleichungen müssen dagegen stets zwei zusammengehörige für p und für q dasein.

Transformations-Gleichungen, wie solche z. B. von Schrauf (Wien. Sitzb. 1870 62 (2) 716) angegeben werden, sind wirkliche Gleichungen. Wir erhalten sie aus den Transformations-Symbolen, indem wir diese in ihre zwei Theile p und q zerlegen und die Bezeichnung der Aufstellung vertauschen. Es sei z. B. gegeben das Transformations-Symbol:

$$pq$$
 (Des Cloizeaux) $\stackrel{\cdot}{=} \frac{2p}{5} \frac{4q}{5}$ (Rath)

so sagt dieses dasselbe aus, wie:

$$p' = \frac{2p}{5}$$
; $q' = \frac{4q}{5}$

wobei p'q' sich auf die Aufstellung Rath's, pq auf die Des Cloizeaux's beziehen.

In der That besteht, nachdem die Identität von $\frac{5}{6}$ $\frac{5}{12}$ (Des Cloizeaux) mit $\frac{1}{3}$ $\frac{1}{3}$ (Rath) nachgewiesen ist, die Beziehung: $\frac{1}{3} = \frac{2}{5} \times \frac{5}{6}$; $\frac{1}{3} = \frac{4}{5} \times \frac{5}{12}$.

Die Gleichungen sind in der Form wie in der Anwendung zur Transformation der Symbole weitaus schwerfälliger, doch braucht man sie öfters, um die im Transformations-Symbol niedergelegten Beziehungen mathematisch zu verwerthen.

Reciprokes Transformations Symbol = Gegensymbol. Das Transformations-Symbol giebt den Weg an, um aus dem Zeichen der Aufstellung (A) das der Aufstellung (B) zu finden. Will ich daraus umgekehrt, nachdem das Transformations-Symbol von (A) in (B) bekannt ist, das Symbol finden, um aus p q(B) p q(A) abzuleiten, so geschieht dies folgendermassen: Ich setze in (B) d. h. auf der rechten Seite des gegebenen Transformations-Symbols

x y statt p q, trenne das Symbol in seine zwei Theile und löse diese, als Gleichungen betrachtet, nach x und y auf, stelle pq (B) auf die linke, die für x und y berechneten, als Funktionen von p und q erscheinenden Werthe als pq(A) neben einander auf die rechte Seite.

Nehmen wir wieder obiges Beispiel:

pq (Des Cloizeaux)
$$\Rightarrow \frac{2p}{5} \frac{4q}{5}$$
 (Rath), so ist dies aufzulösen in:

$$p = \frac{2x}{5} \qquad ; \qquad q = \frac{4y}{5}$$
Daraus berechnet sich:

$$p = \frac{2 X}{5} \qquad ; \quad q = \frac{4 Y}{5}$$

$$x = \frac{5 P}{2}$$
; $y = \frac{5 q}{4}$ und das gesuchte reciproke Symbol lautet:
 $p q (Rath) \stackrel{.}{=} \frac{5}{2} p \frac{.5}{4} q (Des Cloizeaux)$

Ableitung des Transformations-Symbols. Veränderung der Elemente.

Diese Ableitung kann aus zwei Quellen geschöpft werden:

- 1. aus bekannten Aenderungen in der Aufstellung, oder
- 2. aus zwei Reihen ganz oder theilweise unter sich identificirter Symbole.

Gehen wir von den Aenderungen in der Aufstellung aus, so lässt sich jede Transformation zurückführen auf folgende drei Operationen:

- a. Vertauschung der Axen unter sich
- b. Vergrösserung der Axeneinheiten p₀ q₀ resp. a₀ b₀ oder a(b)c.
- c. Verlegung der Basis.

Eine weitere, scheinbar selbstständige, Operation ist eine Drehung der Horizontal-Axen in ihrer gemeinsamen Ebene. Diese führt sich jedoch zurück auf eine Verlegung der Basis nach Vertauschung der Axen. Trotzdem werden wir einen Specialfall dieser Veränderung besonders betrachten, nämlich den Fall der Vertauschung der Horizontalaxen PQ mit den Zwischen-Axen, oder, was dasselbe ist, der Axenzonen mit den Haupt-Radialzonen.

Ad I. Ableitung des Transformations-Symbols und der Veränderung der Elemente aus gegebener Aenderung der Aufstellung.

a. Vertauschung der Axen. Schreiben wir das Symbol dreizahlig, also pq 1 statt pq, so ändern mit Vertauschung zweier Axen, seien diese lineare oder polare, die entsprechenden zwei Zahlen ihre Stelle. Ist z. B. zu vertauschen Axe A mit C, also die erste mit der dritten, so wird das Symbol pq = pqr zu $rqp = \frac{r}{p} \frac{q}{p}$. Oder ist zu vertauschen die P-Axe mit der Q-Axe, also die erste mit der zweiten, so wird das Symbol pq = pq I zuIm triklinen System, sowie bei Transformation der Symbole von Einzelflächen, muss dabei Rücksicht auf das Vorzeichen genommen werden. Bei der Ableitung aus identificirten Symbolen findet dies von selbst Berücksichtigung, im Fall der Ableitung aus einer vorgesetzten Vertauschung

der Axen bedarf die Einführung richtiger Vorzeichen einer besonderen Ueberlegung. In gleicher Weise wie p q 1 verändern die Elemente $p_0 \; q_0$ 1 ihre Stellungen, ebenso a b c $a_0 b_0 c_0 \alpha \beta \gamma \lambda \mu \nu$.

b. Vergrösserung der Axen-Einheiten. Wir wollen darunter speciell die Vergrösserung von po qo verstehen und ferner ξη die Vergrösserungs-Coefficienten nennen in dem Sinne, dass, wenn wir die Einheiten der neuen Aufstellung mit p'0 q'0 bezeichnen,

$$\begin{split} p_{\text{o}}{}^{\text{!`}} &= \xi \, p_{\text{o}} \quad ; \quad p_{\text{o}} = \frac{\tau}{\xi} \, p_{\text{o}}{}^{\text{!`}} \\ q^{\text{!`}}{}_{\text{o}} &= \eta \, q_{\text{o}} \quad ; \quad q_{\text{o}} = \frac{\tau}{\eta} \, q^{\text{!`}}{}_{\text{o}} \end{split}$$

 ξ und η können > 1 oder < 1 sein, d. h. wir verwenden das Wort "Vergrösserung" zugleich für Verkleinerung statt des schwerfälligen Wortes Grössenveränderung, das vielleicht correcter wäre. Bei einer Vergrösserung der Einheiten verändert sich nichts als der relative Massstab in den Axenrichtungen.

Schreiben wir das Symbol mit Berücksichtigung der Einheiten, so ist:

$$pp_{o}\cdot q\;q_{o} = \frac{1}{\xi}\;p\;p_{o}{}^{I}\cdot \frac{1}{\eta}\;q\;q_{o}{}^{I}$$

Bezeichnen wir die erste Aufstellung mit (A) die zweite mit (B), so bringt danach die Einführung der vergrösserten Einheiten plo qlo an Stelle von po qo die folgende Transformation mit sich:

$$p q (A) \stackrel{:}{\rightleftharpoons} \frac{1}{\xi} p \cdot \frac{1}{\eta} q (B)$$

Die linearen Elemente a₀ b₀ c₀ dagegen wachsen proportional mit p q r, umgekehrt proportional mit p₀ q₀ r₀ und a b c. Wird demnach p verdoppelt, so verdoppelt sich auch a_0 und halbirt sich a und p_0 .

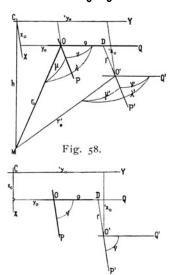


Fig. 59.

c. Verlegung der Basis. Eine Verlegung der Basis (o) ist nur möglich im triklinen und monoklinen System. trachten den allgemeinen Fall des triklinen Systems, nennen wieder die erste Aufstellung (A), die zweite (B) und bezeichnen Alles, was sich auf die zweite Aufstellung bezieht mit dem Index (1), diesen setzen wir ausnahmsweise bei 'x₀ 'y₀ 'ò auf die linke Seite zum Unterschied von x'₀ y'₀ der Linear-Projection. Da diese ersteren nur lokale Rechnungswerthe sind und eine Verwechselung nicht möglich ist, möge dies gestattet sein.

> Wir nehmen den Fall an, dass im Projectionsbild alles Andere unverändert geblieben, nur der Mittelpunkt O nach O' verlegt sei. Es sei das alte Zeichen für O'= fg, also dessen Coordinaten f p_0 und g q₀. Seine neuen rechtwinkligen Coordinaten vom Scheitelpunkt C aus gezählt seien $= \mathbf{x}_0 \mathbf{y}_0$.

Als neue Einheit tritt jetzt auf $MO' = r'_0 = r$ statt $MO = r_0$ (Fig. 58) und es ist:

$$r_0 = V_1 \overline{x_0^2 + y_0^2 + h^2}$$

Indem nun p_0 q_0 in neuem Maass gemessen werden, werden sie zu p_0^l q_0^l , mit den Vergrösserungen:

$$\xi = \eta = \frac{1}{r'_{o}} = \frac{1}{\sqrt{|x_{o}|^{2} + |y_{o}|^{2} + h^{2}}}$$

und es berechnet sich:

$$p_{^{^{\prime}}o} \! = \! \frac{p_{o}}{r_{^{^{\prime}}o}} = \frac{p_{o}}{\sqrt{{^{^{\prime}}x_{o}}^{2} \! + \! {^{\prime}}y_{o}}^{2} \! + \! h^{2}}} \; ; \; q_{^{^{\prime}}o} \! = \! \frac{q_{o}}{r_{^{^{\prime}}o}} = \frac{q_{o}}{\sqrt{{^{^{\prime}}x_{o}}^{2} \! + \! {^{\prime}}y_{o}}^{2} \! + \! h^{2}}}$$

Es ist dann ferner:

$${}^{1}x_{o} = (x_{o} + f \sin v) \frac{1}{r'_{o}}$$

 ${}^{1}y_{o} = (y_{o} + g + f \cos v) \frac{1}{r'_{o}}$

Ausserdem ist, wie bei der Berechnung der polaren Hilfselemente (S. 71) abgeleitet wurde:

$$\cos \lambda' = y_o$$

 $\cos \mu' = y_o \cos \nu + x_o \sin \nu$

cos µ' leitet sich folgendermassen ab:

$$\begin{split} \cos \mu^i &= \frac{\cos \lambda^i \cos \left(\nu - \frac{i\delta}{\delta}\right)}{\cos \frac{i\delta}{\delta}} = \frac{\cos \lambda^i \left(\cos \nu \cos \frac{i\delta}{\delta} + \sin \nu \sin \frac{i\delta}{\delta}\right)}{\cos \frac{i\delta}{\delta}} \\ &= \cos \lambda^i \left(\cos \nu + \sin \nu t g^i \delta\right) = \frac{i}{y_o} \left(\cos \nu + \sin \nu \frac{i}{y_o}\right) \\ &= \frac{i}{y_o} \cos \nu + \frac{i}{x_o} \sin \nu. \end{split}$$

Das Transformations-Symbol lautet in diesem Fall der Verlegung der Basis:

$$p q (A) = (p-f) (q-g) (B)$$

Hierzu kann noch treten eine Vergrösserung $\xi' \eta'$ in dem Ausmaass der Einheiten $p_0 q_0$, so dass:

$$p_{o}{}^{_{1}}\!=\!\frac{\xi{}^{_{1}}p_{o}}{\sqrt{{}^{_{1}}\!x_{o}{}^{2}\!+{}^{_{1}}\!y_{o}{}^{2}\!+\!h^{2}}} \qquad q{}^{_{1}}\!0\!=\!\frac{\eta{}^{_{1}}\!q_{0}}{\sqrt{{}^{_{1}}\!x_{o}{}^{2}\!+{}^{_{1}}\!y_{o}{}^{2}\!+\!h^{2}}}$$

wird. Die Gesammtvergrösserungen von p_0 und q_0 , die nun = $\xi \eta$ gesetzt werden mögen, berechnen sich dann zu:

$$\xi = \frac{P_o'}{P_o} = \frac{\xi'}{\sqrt{|x_o|^2 + |y|^2 + h^2}} \quad ; \quad \eta = \frac{q_o'}{q_o} = \frac{\eta'}{\sqrt{|x_o|^2 + |y_o|^2 + h^2}}$$

Ad 2. Ableitung des Transformations-Symbols aus der Identification von Symbolen beider Aufstellungen (A) und (B).

Nachdem man eine Anzahl Symbole identificirt und nebeneinander gestellt hat, ergiebt sich in der Regel die Transformation schon beim vergleichenden Anblick beider Reihen einfach als Vertauschung der Axen oder Vergrösserung. Eine Verlegung der Basis ist im triklinen und monoklinen System allerdings ebenfalls häufig. Sieht man die Transformation

nicht unmittelbar, so empfiehlt es sich, folgendermassen zu verfahren. Man transformirt die eine Reihe (A) in eine andere (C) in der Weise, dass in den beiden Aufstellungen (B) und (C) dieselben Flächen als o ∞ und ∞ o erscheinen. Dies gelingt in der Regel sehr einfach, manchmal ist jedoch dazu ein etwas complicirteres Verfahren nöthig, das an einem Beispiel ausgeführt werden soll, das zeigen möge, in welcher Weise man vorgeht und zugleich darthue, dass die verlangte Aenderung stets ausführbar ist; d. h., dass man stets zwei beliebige Symbole in o ∞ und ∞ o verwandeln kann.

Es sei beispielsweise die Aufgabe, eine Reihe so zu transformiren, dass 12 zu 0 ∞, 34 zu ∞ 0 werde. Man kann dies erreichen, indem man der Reihe nach mit den Symbolen 12 und 34 die in der obersten Zeile der folgenden kleinen Tabelle angegebenen Operationen ausführt; in dieser obersten Zeile entwickelt sich so allmählich das endliche Transformations-Symbol:

Die genannten Operationen sind mit beiden Symbolen, 12 und 34, zugleich vorzunehmen und bestehen aus Vertauschungen (unter Heranziehung des dritten nicht angeschriebenen Theils des Symbols, r = 1), ferner in Multiplicationen mit rationalen Zahlen, entsprechend der Vergrösserung der Einheiten und endlich aus Additionen, entsprechend der Verlegung der Basis. Die beiden letzteren Operationen sind im triklinen System unbeschränkt, im monoklinen beschränkt auf die p, im hexagonalen und tetragonalen System nur in dem speciellen Fall der Vertauschung der Axen mit den Zwischenaxen anwendbar. Die Veränderungen sind der Reihe nach so zu wählen, dass die beiden Symbole sich zugleich ihrem Ziele nähern, was bei einiger Uebung leicht gelingt. Das folgende Beispiel möge und kann nur dem triklinen System angehören.

р q (A)	(p-1) (q-2)	$ \frac{p-1}{q-2} \frac{1}{q-2}^{1} $ = x y gesetzt.	$(x-1)(y-\frac{1}{2})$	$\frac{1}{x-1} \frac{y-\frac{1}{2}}{x-1}^{2}$ (C)
I 2	o	0 %	0 %	0 %
34	2	I ½	0	ω 0

Das Transformations-Symbol ergiebt sich durch Beseitigung der Abkürzung x y, indem deren Werthe in die letzte Rechnungsvorschrift eingesetzt werden.

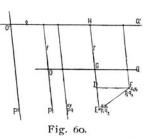
$$p \ q \ (A) = \frac{1}{x-1} \frac{y-\frac{1}{2}}{x-1} = \frac{1}{\frac{p-1}{q-2}-1} \cdot \frac{\frac{1}{q-2} - \frac{1}{2}}{\frac{p-1}{q-2}-1} = \frac{q-2}{p-q+1} \cdot \frac{-q}{2(p-q+1)} \ (C)$$

Nachdem dies gefunden, wendet man das Transformations-Symbol auf noch andere Flächen von (A) an und bringt sie zur Aufstellung (C). In (C) und (B) sind nun o ∞ und ∞ o zur Deckung gebracht. Man übersieht jetzt in der Regel die noch nöthige Transformation. Eine Drehung ist nicht mehr möglich; es kann nur noch Verlegung der Basis und Vergrösserung anzu-

¹⁾ Anm: Vertauschung der 2. und 3. Axe.

^{2) ,} Vertauschung der 1. und 3. Axe.

wenden sein. Ist die Transformation noch nicht zu übersehen, so kann man nun allgemein nach den sogleich aufzustellenden Ableitungs-Formeln vorgehen.


Ableitungs-Formeln für das Transformations-Symbol.

Nehmen wir an, dass die beiden aufrechten Pinakoide o ∞ und ∞ o sich decken und seien ausserdem zwei Flächen identificirt, nämlich:

$$p_1 q_1 (A) = x_1 y_1 (B)$$

 $p_2 q_2 (A) = x_2 y_2 (B)$

so ist unsere Aufgabe, den allgemeinen Werth x y (B) für eine beliebige Fläche p q (A) zu finden. Es beziehen sich in der Projection (Fig. 60) p q auf die Axen P Q, x y auf P Q!. Die Einheiten sind p_0 q_0 für (A), p q_0 für (B).

Zunächst können wir die Vergrösserungen $\xi \eta$ ableiten, denen, wie oben S. 90 ausgeführt, die Definition zu Grunde liegt:

oder:

$$p'_{\circ} = \xi p_{\circ}$$
 $q'_{\circ} = \eta q_{\circ}$

$$\xi = \frac{p'_{\circ}}{p_{\circ}} \qquad \qquad \eta = \frac{q'_{\circ}}{q_{\circ}}$$

Nun ist in Fig. 60:

DE =
$$(p_1-p_2) p_o = (x_1-x_2) p'_o$$
 DF = $(q_2-q_1) q_o = (y_2-y_1) q'_o$
Daraus folgt: $\xi = \frac{p'_o}{p_o} = \frac{p_1-p_2}{x_1-x_2}$ $\eta = \frac{q'_o}{q_o} = \frac{q_1-q_2}{y_1-y_2}$
 $p_o = \frac{x_1-x_2}{p_1-p_2} p'_o$ $q_o = \frac{y_1-y_2}{q_1-q_2} q'_o$

Nun ist x auszudrücken durch p p₁ p₂ x₁ x₂, entsprechend y durch q q₁ q₂ y₁ y₂. Es ist, wenn wir die Verschiebung des Coordinaten-Anfangs in der P-Richtung mit f, die in der Q-Richtung mit g bezeichnen (Fig. 60):

$$\begin{array}{c} xp_o' = pp_o + f \\ \\ \text{Hierin ist:} \end{array} \\ pp_o = p \cdot p_o' \frac{x_1 - x_2}{p_1 - p_2}$$

Es ist aber auch:

$$GH = f = EH - EG = x_1 p_0' - p_1 p_0 = p_0' \left[x_1 - p_1 \frac{x_1 - x_2}{p_1 - p_2} \right] = p_0' \frac{p_1 x_2 - p_2 x_1}{p_1 - p_2}$$

Also

Analog ist:

$$xp_{o}^{i} = pp_{o} + f = \left[p \frac{x_{1} - x_{2}}{p_{1} - p_{2}^{i}} + \frac{p_{1}x_{2} - p_{2}x_{1}}{p_{1} - p_{2}}\right]p_{o}^{i}$$

oder

$$x = \frac{p(x_1 - x_2) + p_1 x_2 - p_2 x_1}{p_1 - p_2}$$

$$y = \frac{q(y_1 - y_2) + q_1 y_2 - q_2 y_1}{q_1 - q_2}$$

Setzen wir in diese Gleichungen im speciellen Fall die Werthe für p_1 p_2 x_1 x_2 q_1 q_2 y_1 y_2 ein, so bekommen wir x und y ausgedrückt durch

p und q, und setzen wir links pq (A), rechts nebeneinander die berechneten Werthe von xy, so haben wir das Transformations-Symbol.

Schema und Beispiel. Die Auswerthung der Formeln für x und y erfolgt bequem nach dem folgenden Schema. In diesem setzen wir zur Abkürzung:

$$egin{array}{lll} p_1 - p_2 &= a & q_1 - q_2 &= \alpha \\ x_1 - x_2 &= b & y_1 - y_2 &= \beta \\ p_1 \, x_2 - p_2 \, x_1 &= c & q_1 \, y_2 - q_2 \, y_1 &= \gamma \end{array}$$

Da hier leicht Verwechselungen vorkommen, stellt man sich wohl am besten die Werthe p₁ q₁ p₂ q₂ x₁ x₂ y₁ y₂ in folgender Weise zusammen: (Die Rechnung gilt, wie wir wiederholen, unter der Voraussetzung, dass oo und oo in beiden Aufstellungen sich decken).

(A)		(B)	
Buchst.	Buchst. p ₁ q ₁		x ₁ y ₁
n	$p_2 q_2$	n	x ₂ y ₂

Beispiel:

T

3 5

Des C	Des Cloizeaux		Dana	
δ	т з	q	Ĭ 5	
х	3 <u>5</u> 4	0	$\frac{\overline{1}}{2}$ $\frac{3}{2}$	

Dann berechnen sich $x \xi y \eta$ folgendermassen:

Beispiel: Axinit.

P ₁		x ₁	$x = \frac{p \ b + c}{a}$		
$ \begin{array}{c} p_2 \\ p_1 - p_2 \\ = a \end{array} $	$\begin{vmatrix} \mathbf{p}_1 \mathbf{x}_2 - \mathbf{p}_2 \mathbf{x}_1 \\ = \mathbf{c} \end{vmatrix}$	$ \begin{array}{c} x_2 \\ x_1 - x_2 \\ = b \end{array} $	$\xi = \frac{a}{b}$		
q ₁		y ₁	$y = \frac{q \beta + \gamma}{\alpha}$		
q_2	0 V - 0 V	y ₂	α		
$q_1-q_2 = \alpha$	$\begin{array}{c c} q_1 y_2 - q_2 y_1 \\ = \gamma \end{array}$	$y_1 - y_2 = \beta$	$\eta = \frac{\alpha}{\beta}$		
	Das Transformations-Symbol:				

pq(A) = xy(B).

==	$\frac{p b + c}{a}$	
_	a b	
=	$\frac{q\beta + \gamma}{\alpha}$ $\frac{\alpha}{\beta}$	
nbo	ol:	

Daraus das Transformations-Symbol: pq (Des Cloizeaux) = (2p + 1)(2q - 1) (Dana).

7

Beispiel. Wir wollen ein Beispiel durchführen für den Fall, dass sich o∞ und ∞o von vorn herein in beiden Aufstellungen nicht decken. Rammelsberg giebt (d. Geol. Ges. 1869. 21. 812) für den Euklas zwei Aufstellungen, eine nach Kokscharow und eine eigene. Wir suchen das Symbol zur Transformation der Zeichen Rammelsberg's in die von Kokscharow. Zu dem Ende wollen wir zunächst beide Symbolreihen, sowie sie identificirt sind, nebeneinander stellen. on fällt, wie dies im monoklinen System nicht anders möglich ist, bereits in beiden Aufstellungen zusammen.

Wir haben nun zunächst die Aufstellung Rammelsberg's so zu transformiren in eine Aufstellung (B), dass M ebenfalls das Symbol ∞o erhält, T aber o ∞ bleibt. Das gelingt leicht. Wir bilden zunächst durch Verlegung der Basis (p-1) q, dadurch wird M=0 und vertauschen die P-

Fuklas

	Euklas.			
Buch- staben.	Kok.	Ram.	(p-1) q	(B) 1 q p-1 p-1
0	— 12	N		
f	13	$\infty \frac{3}{2}$		
d	— 1	2 00		
u	+ 12	01		
i	+ 14	02		
r	+ 1	$0\frac{1}{2}$		
v	+ 13	0 I		
M	∾ ဂ	+ 10	0	∞ 0
t	0	10		
g	$-\frac{1}{2}$ o	— 30		
P	— 10	∞ 0		
N	∞.	+ 1		
β	$\infty \frac{3}{2}$	$+1\frac{3}{2}$		
s	∞ 2	+ 12		
L	∞ 3	+ 13		
δ	$\frac{3}{2}$ ∞	+ 13		
e	— 23	+ 3	23	1 3 2 2
n	0 1	— ı		
0	02	- 12		
q	03	13		
R	04	- 14		
H	06	— 16		
a	$-\frac{1}{2}$	31	4 1	¥ ‡
b	$-\frac{1}{2}2$	— 34		
C	$-\frac{1}{2}\frac{5}{2}$	35		
x	$-\frac{1}{2}4$	— 38		
Т	0 00	0 %	0 00	0 %

und R-Axe, wodurch wir die Transformation erhalten:

1)
$$p \neq (Rammelsberg) \stackrel{\cdot}{=} \frac{1}{p-1} \frac{q}{p-1}$$
 (B)

Nun wählen wir zwei Formen aus, z. B. e und a, es müssen ternäre Formen (Pyramiden) sein, und verwandeln deren Symbole in (B). Diese als $p_1 q_1 p_2 q_2$ und die entsprechenden von Kokscharow als $x_1 y_1 x_2 y_2$ ordnen wir, wie oben angegeben, nämlich:

	(B)	Kok	scharow
e	<u>I</u> 3/2.	e	ž 3
a	¥ 4	a	Ţ <u>Ţ</u>

und gehen mit ihnen in das aufgestellte Schema ein:

1/2		2	$x = \frac{p\frac{3}{2} + \frac{3}{4}}{\frac{3}{4}}$
¥	₹ — ½	<u> Ţ</u>	= - (2 p + 1)
3 4	$=\frac{3}{4}$	3/2	— (2 P 1)
3 2		3	$y = \frac{q\frac{5}{2} + o}{\frac{5}{4}}$
1/4	$\frac{3}{4} - \frac{3}{4}$	1/2	= 2 q
<u>5</u>	= 0	<u>5</u>	

Danach gilt die Transformation:

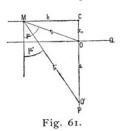
2)
$$p q (B) = -(2 p + 1) 2 q (Kokscharow)$$

Die Verwandlung der Symbole (Rammelsberg) in (B) ist uns bekannt. Es ist:

1)
$$p \neq (Rammelsberg) \stackrel{!}{=} \frac{1}{p-1} \frac{q}{p-1}$$
 (B)

Die Werthe $\frac{1}{p-1}$ und $\frac{q}{p-1}$ müssen wir nun statt pq einsetzen in die rechte Seite des zweiten Symbols aus der Ueberlegung, dass dies ein Specialfall für Formel 2 ist, indem für das allgemeine pq nun $\frac{1}{p-1}$ $\frac{q}{p-1}$ eintritt.

Somit ist:


pq (Rammelsberg)
$$\stackrel{\cdot}{=} \frac{1}{p-1} \frac{q}{p-1}$$
 (B) $\stackrel{\cdot}{=} - (2 \frac{1}{p-1} + 1) \cdot 2 \frac{q}{p-1}$ (Kokscharow) oder:

$$pq$$
 (Rammelsberg) $\stackrel{.}{=} -\frac{p+1}{p-1} \frac{2q}{p-1}$ (Kokscharow)

Zur Controle verwandeln wir nun am besten alle Symbole Rammelsbergs in die Kokscharows und prüfen so zugleich das Transformations-Symbol und die Identification.

Specialfall. Monoklines System. Verlegung der Basis.

Die Verlegung der Basis spielt eine hervorragende Rolle bei den Transformationen des monoklinen Systems. Sie tritt z. B. jedesmal da auf, wo der Versuch gemacht wurde, nahezu rechtwinklige Axen statt anderer zu Grunde zu legen. Wegen dieser Wichtigkeit und der grossen Vereinfachung gegen den allgemeinen Fall des triklinen Systems möge hier die Durchführung der Rechnung im Einzelnen gegeben werden.

Im monoklinen System kann die Basis nur in der Axen-Zone OP (o: ∞o) liegen, also auch nur in ihr verschoben werden. Sie sei von O nach dem Punkt O' verlegt worden (Fig. 61), dessen altes Zeichen no war, so ist:

$$OO' = a = n p_o$$
ansformations-Sym

und es gilt das Transformations-Symbol

$$pq_o(A) \doteq (p-n) q(B)$$

Tritt, was als Complication allein möglich ist, hierzu eine weitere Vergrösserung und haben wir z. B. das Transformations-Symbol:

$$pq(A) = (mp - n) sq(B)$$

so führen wir diesen Fall auf den vorhergehenden zurück, indem wir zuerst die der Vergrösserung entsprechende Umrechnung der Elemente ausführen, nämlich so, dass

$$pq(A) \stackrel{.}{=} mp \cdot sq(C)$$

wird, wobei die neuen Elemente lauten:

$$p_{\circ}\left(C\right)=\frac{p_{\circ}\left(A\right)}{m}$$
 ; $q_{\circ}\left(C\right)=\frac{q_{\circ}\left(A\right)}{s}$

Aus (C) findet man dann (B) nach der Transformation:

$$pq(C) = (p - \frac{n}{m}) q(B) = (p-n') q(B)$$

wobei also nur noch die Basis zu verlegen ist. Das Transformations-Symbol (C) in (B) hat die oben geforderte Gestalt.

Veränderung der Elemente auf Grund des Transformations-Symbols.

Aufgabe 1.

Gegeben: $p_0 q_0 \mu$ und das Transformations-Symbol: p q (A) = (p-n) q (B).

Denken wir uns in Fig. 61, die im Uebrigen das Projectionsbild giebt, die sonst nach abwärts durch CO und den Krystallmittelpunkt M gehende Ebene CMO' heraufgeklappt in die Projections-Ebene, so ergiebt sich unmittelbar:

ctg
$$\mu^i = \frac{a + x_o}{h}$$
 $a = n p_o$ $x_o = \cos \mu$ $h = \sin \mu$

Nun verändert sich r_o in r'_o . Wir legen aber das r'_o als neue Masseinheit zu Grunde, d. h. wir setzen $r'_o = i$. Somit wird, da:

$$p_{\circ} = p'_{\circ} r'_{\circ}; \ q_{\circ} = q'_{\circ} r'_{\circ}$$

$$r'_{\circ} = \frac{h}{\sin \mu'} = \frac{\sin \mu}{\sin \mu'}$$

$$q'_{\circ} = q_{\circ} \frac{\sin \mu'}{\sin \mu}$$

$$ctg \quad \mu' = \frac{n p_{\circ} + \cos \mu}{\sin \mu}$$

$$p'_{\circ} = p_{\circ} \frac{\sin \mu'}{\sin \mu}$$

$$q'_{\circ} = q_{\circ} \frac{\sin \mu'}{\sin \mu}$$
(Hierzu Schema 1 S. 98.)

Aufgabe 2.

Gegeben: à (b=1) c; $\beta=180-\mu$ und das Transformations-Symbol: $p \neq (A)=(p-n) \neq (B)$. Gesucht: a' (b'=1) c'; $\beta'=180-\mu'$.

Es ist (vgl. S. 82):
$$p_o = \frac{c}{a}$$
 Ebenso: $p'_o = \frac{c'}{a'}$ $q_o = c \sin \beta = c \sin \mu$ $q'_o = c' \sin \mu'$

(Wir rechnen bequemer mit dem spitzen Winkel μ , als mit dem stumpfen β). Diese Werthe eingesetzt in die obigen Gleichungen für ctg μ' p'_{\circ} q'_{\circ} giebt:

$$\frac{c'}{a'} = \frac{c}{a} \frac{\sin \mu'}{\sin \mu}$$

$$c' \sin \mu' = c \sin \mu \frac{\sin \mu'}{\sin \mu}$$

$$c' = c \sin \mu \frac{\sin \mu'}{\sin \mu}$$

$$c' = c$$

$$ctg \mu' = \frac{n \frac{c}{a} + \cos \mu}{\sin \mu}$$

$$a' = a \frac{\sin \mu}{\sin \mu'}$$

$$c' = c$$
(Hierzu Schema 2 S. 99.)

Die Controlrechnung besteht in der Berechnung der Elemente für die umgekehrte Transformation:

$$pq(B) = (p+n)q(A)$$

Dafür gilt das gleiche Schema.

Vorzeichen von n. Die Formel

$$ctg \ \mu' = \frac{n p_o + \cos \mu}{\sin \mu} = \frac{n p_o}{\sin \mu} + ctg \ \mu$$

gilt für den Fall $pq(A) \doteqdot (p-n) \ q(B)$. In Formel und Schema tritt daher n mit dem Vorzeichen + auf, wenn es im Transformations-Symbol - hat. Seinen Grund hat dies darin, dass das Transformations-Symbol eben keine Gleichung ist, sondern eine Rechnungsvorschrift. Dass es in der That so sein muss, zeigt die folgende Betrachtung. Für $pq(A) \doteqdot (p-n) \ q(B)$ ist + no (A) = o(B). Soll aber + no (A) zur neuen Basis werden, so rückt der Projections-Mittelpunkt nach vorn. Somit wird $\mu^I < \mu$. Nun ist in obiger Formel sin μ stets +, da $\mu < 180^0$, p_0 ist eine absolute Grösse ohne Vorzeichen. Damit $\mu^I < \mu$ also ctg $\mu^I >$ ctg μ werde, muss daher n > o oder = + sein.

Der Fall

$$pq(A) \doteq (p+q) q(B)$$

reducirt sich auf den vorhergehenden, den wir als den allgemeinen betrachten wollen, indem $p+n=p-\overline{n}$ gesetzt wird. Es tritt also in Formeln, Schema und Beispiel \overline{n} statt n auf. In diesem Fall ist bei der Ausrechnung wohl auf das Vorzeichen zu achten. Es ist dann $\frac{n\,c}{a}$ negativ (24 in Schema 2) und es kann Goldschmidt, Index.

vorkommen, dass $\frac{nc}{a}$ + cos μ (22 in Schema 2) und somit ctg μ negativ ausfällt. Dann wird $\mu > 90^{\circ}$; die neue Basis O fällt nach rückwärts ab. Da dies unserer allgemeinen Aufstellungsweise entgegen ist, so drehen wir die Aufstellung um 1800 um die Verticalaxe, wodurch für das berechnete μl dessen Supplement eintritt. Dabei ändert pq sein Zeichen in — pq. Wir haben also nicht die ursprünglich ins Auge gefasste Transformation:

$$pq(A) = (p+n)q(B)$$

vorgenommen, da sie in Widerspruch ist mit dem Gebrauch, im monoklinen System die Basis stets nach vorn abfallen zu lassen, sondern die Transformation: pq(A) = -(p+n)q(B)

Bei der Controlrechnung hat diese Drehung den Einfluss, dass das n, welches sonst + wäre, nun wieder als - auftritt.

Schema und Beispiel:

Schema 1. Gegeben: po qo μ.

 $\begin{array}{cccc} & p \neq (A) \stackrel{\frown}{=} (p-n) \neq (B) \\ \hline \text{Gesucht:} & p'_{\circ} q'_{\circ} \mu' \end{array}$

I	2	3	4	5	6
n p _o	23—22 == lg ctg μ'	μ'	lg p _o	41+42 = lg p'.	P'°
cos μ	lg sin μ	lg sin μ ⁱ	32—22	53-32 =43-22 = lg c'	5^2-5^1 = lg a'
11+12	lg 13		lg q _o	42+43 = lg q'.	q'o

Controle in 52.

Beispiel: Gegeben: $p_0 = 0.5614$ $q_0 = 0.5942$ $\mu = 89^{\circ} 38'$ (Groth Tab.) (Diopsid) pq (Groth) = $(p - \frac{1}{2})$ q (Miller, Dana); $n = \frac{1}{2}$.

Gesucht: die Elemente nach Miller und Dana.

1	2	3	4	5	6
0.2807	945802	73059 μ¹	974929	973211	o∙5396∙ p'₀
0.0064	999999	998281	998282	977395 977394 == lg c'	001184 == lg a'
0.2871	945803		977393	975675	0·5711· q'0

Controle: $p'_{\circ} = 0.5397$ $q'_{\circ} = 0.5711$ $\mu' = 73^{\circ} 59'$ (Miller, Dana). pq (Miller, Dana) \Rightarrow (p $+\frac{1}{2}$) q (Groth); n $=-\frac{1}{2}$.

I	2	3	4	5	6
-0·2698	780252	89° 38 μ	973215	97 4 929	0·56·15 p ₀
0.2759	998281	999999	001718	977394 977394 == lg c	002465 == lg a
0.0061	778533		975675	977393	0·5941 Q ₀

Schema 2. Gegeben: a (b=1) c; $\mu = 180-\beta$. pq $(A) \doteqdot (p-n)$ q (B).

Gesucht: $a' (b'=1; c'=c) \mu' = 180-\beta'$.

1	2	3	4
nc			a
lg nc	23 + 24	lg 22	$ \begin{array}{c} 13 + 33 - 43 \\ = \lg a' \end{array} $
lg a	cos μ	lg sin μ	lg sin μ'
12 — 13	num 14	$= \frac{3^2 - 33}{\text{lg ctg } \mu'}$	μ'

1. Beispiel:

Controle:

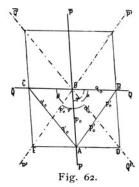
Diopsid a: b: c = 1.0585: 1:0.5942; $\mu = 89^{\circ}38^{\circ}$ a': b': c' = 1.1012: 1:0.5942; $\mu' = 73^{\circ}59^{\circ}$ pq (Groth) \doteqdot (p $-\frac{1}{2}$) q (Gdt); n = $\frac{1}{2}$ pq (Gdt) \doteqdot (p $+\frac{1}{2}$) q (Groth); n = $-\frac{1}{2}$

I	2	3	4
0.2971			1·1012 a'
947290	0.2871	945803	004187
002469	ე.0064	999999	998281
944821	0.2807	945804	73° 59 μ¹

1	2	3	4
-0·2971			1·0585 a
5 47290	0.0061	778888	002469
004187	0.2759	998281	999999
543103	—o·2698	780607	89° 38 μ

2. Beispiel:

Controle


Linarit a: b: c = 1.7186: 1: 0.8272; $\mu = 77^{\circ}$ 27' a': b': c' = 1.7378: 1: 0.8278; $\mu' = 74^{\circ}$ 52' pq (Dana) \doteqdot - (p + 1) q (Gdt); n = -1 pq (Gdt) \doteqdot - (p + 1) q (Dana); n = -1

I	2	3	4
-0·8272			1·7378 a'
5 91761	-0·2640	5 42160	024001
023518	0.2173	998950	998467
5 68243	—o·4813	543210	180-71°52 μ'

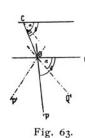
1	2	3	4
-0·8272	-		1·7186 a
591761	-0·2149·	933224	023518
024001	0.2610	998467	998950
5 67760	—o·476o	934757	180-77°27 μ

Vertauschung der Axen-Zone mit der Haupt-Radialzone. Dieser Fall kann nur im triklinen, tetragonalen und hexagonalen System vorkommen. Es könnte diese Transformation auch nach dem allgemeinen Verfahren, Vertauschung der Axen und Verlegung der Basis, behandelt werden; doch wäre das umständlich und ausserdem ist der Specialfall in den genannten Systemen so häufig, dass er eine besondere Behandlung verdient.

Triklines System. PQ (Fig. 62) seien die alten Axen. An deren Stelle sollen PlQl zu Axen werden. $p_0 q_0$ seien die alten Einheiten, $p_0^l q_0^l$ die neuen. Es sei ferner:

Altes Zeichen des Flächenpunktes D = 1, neues Zeichen = 01

", ", ",
$$A = 10$$
, ", $= \frac{1}{2}$


Transformations-Symbol:
$$pq$$
 (alt) = $\frac{p-q}{2} \cdot \frac{p+q}{2}$ (neu)

Bei dieser Transformation bleibt O in seiner Lage und es bleiben unverändert die Werthe h, d und r₀. Alles Andere ändert sich. Bezeichnen wir Alles in der neuen Aufstellung mit dem Index (¹), so ist (Fig. 62):

In
$$\triangle ABO$$
: $p_o^2 = p_o^2 + q_o^2 - 2p_oq_o\cos\gamma$ Controle: $p_o^2 = (p_o + q_o)\cos\phi$ wobei $\sin\phi = \frac{2\cos\frac{y_v}{2}\sqrt{p_oq_o}}{p_o + q_o}$
In $\triangle ACO$: $q_o^2 = p_o^2 + q_o^2 + 2p_oq_o\cos\gamma$

$$q_o^2 = (p_o + q_o)\cos\psi \text{ wobei } \sin\psi = \frac{2\sin\frac{y_v}{2}\sqrt{p_oq_o}}{p_o + q_o}$$

Ausserdem ist in Fig. 63, dem Projectionsbild mit eingetragenem Scheitelpunkt und mit dem alten und neuen è (è), nach der Definition S. 15:

$$\delta' = \delta - \alpha \quad ; \quad \frac{2 \, q}{\sin \nu'} = \frac{p'_o}{\sin \alpha} = \frac{q'_o}{\sin \beta} \quad (\Delta EOD \text{ Fig. 62})$$

$$= \frac{p_o}{\sin \nu} (\Delta DOA) \qquad (\sin \beta - \frac{p_o}{\sin \nu}) (\Delta EOD \text{ Fig. 62})$$

$$\sin \alpha = \frac{p_o}{q_o^i} \sin \nu \text{ (ΔDOA)}$$

$$\sin \nu^i = \frac{2q_o}{p_o^i} \sin \alpha = \frac{2p_o q_o}{p_o^i q_o^i} \sin \nu$$

$$Controle: \begin{cases} \sin \beta = \frac{p_o}{p_o^i} \sin \nu \text{ (ΔEOA)} \\ \nu^i = 180 - \alpha - \beta \end{cases}$$

Ausserdem ist:

$$\begin{array}{ll} h' = h & \cos \lambda' = d \cos \delta' \\ d' = d & \delta' = \delta - \alpha \\ \cos \mu' = d \cos (\nu' - \delta') = d \cos (\nu' - \delta + \alpha). \end{array}$$

Anm. Tritt statt des obigen Transformations-Symbols auf: pq (alt) = (p-q) (p+q) (neu), so liegt der Unterschied nur in einer Vergrösserung.

Tetragonales System (Special-Fall). In diesem System ist:

Hexagonales System. Hierfür sind die triklinen Formeln nicht direkt anwendbar, da wenn Q^I den Winkel PQ = 60° halbirt, P^I nicht dessen Supplement (120°) halbirt, sondern den anliegenden Winkel von 60°.

Hier ist:

oder auch:

Transf.-Symb.: pq (alt) = (p + 2q) (p-q) (neu)

$$p'_{o} = q'_{o} = \frac{p_{o}}{V3}$$

$$p'_{o} = q'_{o} = p_{o}V3$$
Transf.-Symb.: pq (alt) = $\frac{p+2q}{3} \cdot \frac{p-q}{3}$ (neu)
$$p'_{o} = q'_{o} = p_{o}V3$$

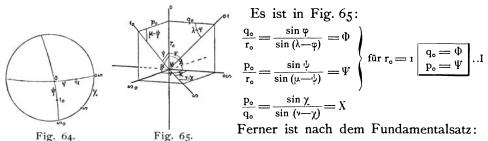
Alles Andere bleibt dasselbe.

Gedächtnissregel: Im tetragonalen und hexagonalen System tritt bei Vertauschung der Axen mit den Zwischenaxen für c Multiplication oder Division mit $\sqrt{2}$ resp. $\sqrt{3}$ ein. Werden dabei die Symbole grösser, so wird c kleiner (Division) und umgekehrt.

Einiges aus der Krystallberechnung.

Es wurden hier nur die allereinfachsten, gewöhnlichsten Fälle zusammengestellt, aus denen man den directen Uebergang findet von berechneten oder beobachteten Dreieckswinkeln zu den Elementen. Dazu wurde eine neue Zonenformel gefügt, einige wichtige Aufgaben aus den verschiedenen Systemen und endlich die Formeln und Schemata zur Ausrechnung schiefwinkliger Dreiecke. Diese Angaben haben einmal den Zweck, direct zur Verwendung zu kommen, indem sie die Berechnungsart für die häufigsten Fälle, auf die sich viele andere reduciren lassen, geben; andererseits sollen sie zeigen, wie durch die neuen Elemente und Symbole die Formeln und Ausrechnungen wesentlich vereinfacht werden. Diese Vereinfachung beruht zunächst in der Ersetzung der Elementarwinkel α β γ durch λ μ ν bei der Rechnung mit polaren Symbolen und polarer Projection. Es werden zur Zeit auch vielfach die Werthe λμν angegeben unter den Zeichen ABC, Sie können aber die αβγ vollständig ersetzen und, jedoch nur nebenbei. wenn nur eine Angabe gemacht werden soll, verdrängen, so dass man die Winkelelemente αβγ in Verbindung mit den Längenelementen abc resp. a₀ b₀ nur dann braucht, wenn man mit linearer Projection und ebenen Winkeln operirt. Die zweite Quelle der Vereinfachung ist die Einführung von zwei Indices p q resp. von zwei Längen-Elementen p₀ q₀ statt der drei h k l mit zugehörigen, zu diesen reciprok gestellten Elementen a (b) c. Der Einwand, dass die Symbole und daraus die Formeln nicht nach drei Richtungen symmetrisch sind, mag begründet sein für allgemeine theoretische Untersuchungen, bei denen die Einseitigkeit und Willkürlichkeit einer bevorzugten Aufstellung entfallen muss. Hier handelt es sich um Fragen der Auffassung und practischen Berechnung, wobei gerade die durch Symbol und Projection fixirte Einseitigkeit der Aufstellung die Anschauung des Ganzen ermöglicht, da wir nicht im Stande sind für eine Reihe von Formen den drei Raumrichtungen zugleich unsere Aufmerksamkeit zu widmen. Wir haben in der Projection eine Abstraction, die unsere Leistungsfähigkeit erhöht. Soll die Projection Grundlage der Rechnung sein, was zweifellos sich allgemein einführen wird, so müssen auch die Elemente der Rechnung die Elemente der Projection sein, und zwar für Linear-Projection lineare Elemente, für Polar-Projection polare Elemente. Der Einwand aus der Symmetrie schwächt sich ausserdem dadurch ab, dass, wenn wir Aufgaben aus dem Raum haben, nicht aus der Projection, wir statt der zweiziffrigen Symbole pq. und der Elemente p₀ q₀ sofort die dreiziffrigen p q 1 und p₀ q₀ 1 nehmen können und wieder nach Bedarf auf die zweiziffrigen zurückgehen, indem wir den dritten Werth r resp. $r_0 = 1$ setzen. So sind wir im Stande die Vortheile beider zugleich auszunützen.

Berechnung der Elemente aus Messungen. Triklines System.


Statt die Aufgabe in dieser Weise zu stellen, könnte man ihr scheinbar eine grössere Allgemeinheit geben, indem man als gegeben setzte o:on statt o:o: o:o: ko:w. Dies ist aber nicht wirklich eine wesentliche Verallgemeinerung. Vielmehr ist diese Aufgabe in obiger enthalten. Wir haben nur das vorliegende on, mo, ko:worläufig als oi, io, o:w zu betrachten, dadurch erhalten wir Elemente $p_0 q_0$ (r_0), die mnk mal grösser sind, als wir sie wünschen. Wir haben also nachträglich die Transformation auszuführen:

$$p_{o} \; q_{0} \left(r_{o}\right)\!\left(l\right) \!=\! \frac{p_{o}}{m} \; \frac{q_{o}}{n} \; \frac{r_{o}}{k} \left(ll\right) \!=\! \frac{k}{m} \; p_{o} \!\cdot\! \frac{k}{n} \; q_{o} \left(r_{o} \!=\! 1\right) \left(ll\right)$$

und obige Aufgabe behält ihre einfache Gestalt.

Fig. 65 ist ein perspectivisches Bild der Normalen auf die Flächen o on no oi 10 o, die nach oben abgegrenzt sind durch die polare Projections-Ebene, nach unten durch eine Horizontal-Ebene durch den Krystallmittelpunkt M. Eine solche Figur stellt gewissermassen das innere Gerüst der Projection dar und es ist in sehr vielen Fällen von Vortheil für die Rechnung, mit einem solchen Gebilde zu operiren; wir werden dies auch öfters thun. Zum Zweck kurzer Verständigung wollen wir diese Art der Darstellung als räumliche Projection bezeichnen, da sie die Vorgänge im Raum darstellt, die der Projection zu Grunde liegen. Das Bild derselben wollen wir räumliches oder perspectivisches Projectionsbild nennen.

Unsere Rechnungen lehnen in der Regel an die geradlinige Projection und ihr räumliches Bild an. Zur Uebersicht jedoch, besonders dann, wenn Prismenflächen auftreten, leistet das stereographische (resp. cyklographische) Bild die besten Dienste und es empfiehlt sich, ein solches als Handskizze neben der Rechnung zu führen, wie dies auch hier geschieht. Indem wir so mit beiden Bildern operiren, nutzen wir die Vortheile beider für Anschauung und Rechnung zugleich aus.

$$p_{\text{o}} : q_{\text{o}} : r_{\text{o}} = \frac{\sin\alpha}{a_{\text{o}}} : \frac{\sin\beta}{b_{\text{o}}} : \frac{\sin\gamma}{c_{\text{o}}} = \frac{\sin\lambda}{a_{\text{o}}} : \frac{\sin\mu}{b_{\text{o}}} : \frac{\sin\nu}{c_{\text{o}}}$$

Aus diesen Formeln folgt:

$$\begin{array}{c|c} \frac{p_o}{q_o} = \frac{\sin\alpha}{a_o} : \frac{\sin\beta}{b_o} = X \\ \hline p_o = \frac{\sin\alpha}{a_o} : \frac{\sin\gamma}{c_o} = \Psi \\ \hline q_o = \frac{\sin\beta}{b_o} : \frac{\sin\gamma}{c_o} = \Phi \end{array} \right\} \begin{array}{c|c} f \ddot{u} r \ b_o = 1: \\ \hline a = \frac{1}{X} \frac{\sin\alpha}{\sin\beta} = \frac{1}{X} \frac{\sin\lambda}{\sin\mu} \\ \hline c = \Phi \frac{\sin\gamma}{\sin\beta} = \Phi \frac{\sin\nu}{\sin\mu} \end{array} \\ ... II. \begin{array}{c|c} f \ddot{u} r \ c_o = 1: \\ \hline a_o = \frac{1}{\Psi} \frac{\sin\alpha}{\sin\gamma} = \frac{1}{\Psi} \frac{\sin\lambda}{\sin\nu} \\ \hline b_o = \frac{1}{\Psi} \frac{\sin\beta}{\sin\gamma} = \frac{1}{\Psi} \frac{\sin\mu}{\sin\nu} \end{array} \\ ... III. \end{array}$$

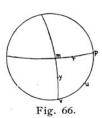
Aus I II III ergiebt sich folgendes Schema zur Berechnung der Längen-Einheiten, dem eine Controle beigefügt ist, beruhend auf der Proportion:

$$a: i: c = a_o: b_o: i = \frac{\sin \lambda}{p_o}: \frac{\sin \mu}{q_o}: \frac{\sin \nu}{r_o}$$
$$oder = \frac{\sin \alpha}{p_o}: \frac{\sin \mu}{q_o}: \frac{\sin \nu}{r_o}$$

Schema:

1	2	3	4	5	6	7	8	9	10	11	12	13	14
λ	φ	λ—φ	lg sin 1	lgsin 21	lg sin 31	$51-61 = \log \Phi_{\pm} \log \Phi_{\odot}$	41—42	81—73 — lg a	41—43	10·1—72 ==lg a _o	num 71 == q.	num 91 == a	num 11-1 == a,
'n	4 .			I-	lg sin 32	$52 - 62 = 1$ g Ψ_{\equiv} lg P_{\circ}			42-43	10·2—71 = lg b _o	num 8 i	1.	num 11·2 == b _o
٧	χ	χ—ν	lg sin 1	algsin 23		$53 - 63 = $ $\lg X = \lg \frac{p_o}{q_o}$		83+71 = lg c		-	I	num 93 == c	I

Controle: 73 = 72 - 71

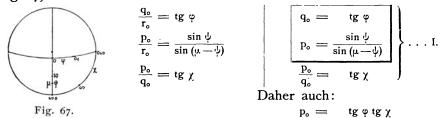

	Controle:				
1	2	3	4	5	6
lg a	lg a _o	lg sin λ	lg p _o	31-41	$ 11-12=21-22 \\ =51-52 $
0	lg b _o	lg sin μ	lg q.	32-42	$ \begin{array}{c} 11 - 13 = 21 - 23 \\ = 51 - 53 \end{array} $
lg c	0	lg sin v	0	33-43	$ \begin{array}{c} 12 - 13 = 22 - 23 \\ = 52 - 53 \end{array} $

Beispiel: Axinit: (Fig. 66) Miller Min. 1852. 348

I	2	3	4	5	6	7	8	9	10	11	12	13	14
89° 55	44° 43	45° 12	0	984733	985100	999633	000400	989283	001042	990287	0.9916	0.7813	0·7996 a _o
97° 46	56° 55	40° 5 1	999600	992318	981563	010755			000642	001009		I	1.0235
77° 30	44° 35	32° 55	998958	984630	973513	011117	999358	998991				0.9770	I I
												С	

Controle:

I	2	3	4	5	6
989282	970287	o	010755	989245	989282 989278 989278
0	001009	999600	999633	999969	990293 990287 990287
998989	0	998958	0	998958	001011


Die Differenzen in der Controle beruhen auf der Abrundung auf ganze Minuten der im Uebrigen unter sich ausgeglichenen Werthe. $\lambda\,\mu\,\nu$, $\phi\,\psi\,\chi$, in deren gemeinsamer Verwendung eine Ueberbestimmung liegt.

Monoklines System.

1. Aufgabe: Gegeben:
$$\phi=o:oi$$
 Gesucht: $p_o\,q_o\,(r_o=i)$ $\psi=o:io$ $a_o\,b_o\,(c_o=i)$ $\chi=o:oo$ $a c \ (b=i)$

Die Elemente im monoklinen System lassen sich nach demselben Schema berechnen, wie im triklinen. Doch kann die durch den rechten Winkel eintretende Vereinfachung benutzt werden, was sich umsomehr empfehlen dürfte, da das monokline System so viel häufiger vorkommt, als das trikline.

Nehmen wir dieselben Bezeichnungen wie im triklinen System, so ist (Fig. 67):

Die Grundgleichung giebt für $\lambda = 90^{\circ}$; $\nu = 90^{\circ}$:

Daraus folgt das Schema:

Schema.

1	. 2	3	4	5	6	7	8	9
φ	μ	lg sin μ				num 41 90	num 51 == a	num 61 == a _o
	ψ	lg sin ψ	$32 - 33$ $= \lg p_0$	О	$31 - 41 = 0 - 53 = \lg b_0$	num 42 Po	I	num 62 == b _o
χ	μ — ψ	lg sin (μ—ψ)		41 — 31	Ο.	I	num 53 == c	Ι.

Control	е.			
I	2	3	4	5
lg q	lg a	lg a _o	O — 12	21 — 22 31 — 32 41 — 42
lg p _o	0	lg b _o	13 — 11	21 — 23 31 — 33 41 — 43
lg sin μ	lg c	0	0	22 23 32 33 42 43

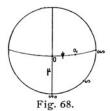
I	2	3	4	5	6	7	8	9
[27°49·4]	117°34	994767	97 224 3 lg q _o	981435 lg a	003960 lg a ₀	O·5277 q.	0·6522 a	1.0955 a₀
	54°29	991060	996040 lg p _o	o	022524 lg b _o	0·91 2 9 P ₀	О	1.6797 b₀
59°58 —	63°05	995020	023798	977476 lg c	0	I	o·5953 c	I

Beispiel. Botryogen: Nach Messungen von Haidinger. (Pogg. Ann. 128. 12. 491.)

Controle:

I	2	3	4	5
972243	981438	003961	003958	981438 981438 981434
996042	0	022523	022524	003964 003961 003958
994767	977474	0	0	O22526 O22523 O22524

Die Differenzen in der Controle kommen von der Abrundung der im übrigen unter sich auf ganze Minuten abgeglichenen Winkel $\mu \phi \chi \psi$.


2. Aufgabe. Gegeben: $o: oi = \psi$ Gesucht: $p_o q_o (r_o = i)$

 $\infty o: \infty = \chi$ $a_o b_o (c_o = 1)$ $o: \infty o = \mu$ a c (b = 1)

Es ist: $q_o = tg \psi$

 $a = \frac{\operatorname{tg} \chi}{\sin \mu}$ $c = \frac{\operatorname{tg} \psi}{\sin \mu}$

 $a_o = \frac{a}{c} = \frac{tg \chi}{tg \psi}$ $b_o = \frac{1}{c} = \frac{\sin \mu}{tg \psi}$

Davon leitet sich das folgende Schema ab:

Schema.

	Schema.					
ı	2	3	4	5	6	
÷	lg tg ψ == lg q₀	21 — 22 lg p _o		num 21 Go	num 31 Po	
χ	lg tg χ	21 — 23 lg c	22 — 21 lg a _o	num 32 C	num 42 a _o	
μ	lg sin μ	22 — 23 lg a	23 — 21 lg b _o	num 33 a	num 43 b _o	

Beispiel: Borax. Winkel nach Miller Min. 1852. 604.

Belopiel. Bolan.			***********			,-· -
	I	2	3	4	5	6
	47°11	003313	001038		1.0793 q₀	1·0242 Po
	46°30	002275	005158	998962	1·1261 C	0·9764 a _o
	73°25	998155	004120	994842	1·0995 a	o.888o b _o

3. Aufgabe. Gegeben: o : To = V Gesucht: die Längen-Elemente wie oben.

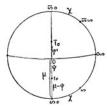


Fig. 69.

Es berechnen sich leicht die für diesen Fall nöthigen Formeln (Fig. 69):

$$p_o = \cos \mu + \sin \mu \operatorname{tg} (\mu + \psi' - 90)$$

$$q_o = p_o \operatorname{tg} \chi$$

$$a_{o} = \frac{\operatorname{tg} \chi}{\sin \mu}$$

$$a_{o} = \frac{1}{p_{o}}$$

$$b_{o} = \frac{1}{c}$$

Schema

Schema.					
I	2	3	. 4	5	6
χ	lg tg χ	$32 + 33$ $= p_{\circ}$	lg 31 = lg p _o	num 41 == 31 == p _o	$ \begin{array}{c} o - 41 \\ = \lg a_o \end{array} $
μ	lg cos μ	num 22	$41 + 21$ $= \lg q_o$	num 42 == q _o	num 61 == a ₀
ψ'	lg sin μ	num 34	$= \lg a$	num 43 == a	num 64 == b _o
μ+ψ'-90	lg tg 14	23+24	$\begin{array}{c} 41 + 43 \\ = \lg c \end{array}$	num 44 == c	o — 44 == lg b _o

Beispiel. Bieberit nach Brooke.

Beispiel. Biebeilt haen Brooke.					
I	2	3	4	5	6
48°50·	005829	1.2652	010216	1·2652 Po	989784
75°05·5	941039	0.2573	016045	1·4469 q _o	0·7904 a₀
61°07·	998509	1.0079	007319	1·1836 a	o.6678 b₀
46°12·5	001832-	000342	017535	1·4974 C	982464.

Rhombisches System.

1. Aufgabe. Gegeben: Die Kantenwinkel ABC (Fig. 71) einer Pyramide pq. Gesucht: Die Coordinaten resp. Parameter ppo qqo; aao; bbo; cco.

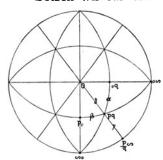
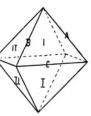


Fig. 70.

Nun ergiebt sich leicht der Satz:

$$\begin{array}{l} \text{I.} & \left\{ \begin{array}{l} pp_o: qq_o: rr_o = \sin \, \alpha : \sin \, \beta : \sin \, \gamma \\ pp_o: qq_o: \, \text{I} = \sin \, \alpha : \sin \, \beta : \sin \, \gamma \end{array} \right. \end{array}$$


und ebenso:

2.
$$aa_o:bb_o:cc_o=\frac{1}{\sin\alpha}:\frac{1}{\sin\beta}:\frac{1}{\sin\gamma}$$

Dabei ist:

$$3. \begin{cases} pp_o = \frac{\sin \alpha}{\sin \gamma} \\ qq_o = \frac{\sin \beta}{\sin \gamma} \end{cases}$$

Wir können hier die Buchstaben $\alpha \beta \gamma$ in anderem Sinne verwenden, als für die Neigung der linearen Axen, da diese = 90° in den Rechnungen des rhombischen Systems nicht auftreten. Sollte eine Verwechselung eintreten können, so empfiehlt es sich, die Winkel $\alpha \beta \gamma$ mit dem Index der Fläche zu bezeichnen, zu der sie gehören, also:

$$\alpha_{pq}$$
 β_{pq} γ_{pq}

Setzen wir in dem perspectivischen Projectionsbild (Fig. 73) MP = f, so ist:

4.
$$\frac{\frac{pp_o}{\sin \alpha} = \frac{qq_o}{\sin \beta} = \frac{rr_o}{\sin \gamma} = \frac{1}{f}}{f = \sqrt{p^2 p_o^2 + q^2 q_o^2 + r^2 r_o^2} = \sqrt{(pp_o)^2 + (qq_o^2) + 1}}$$

Sind nun die Elemente po qo bekannt, so ist:

$$p = \frac{pp_o}{p_o}; \ q = \frac{qq_o}{q_o}$$

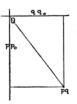


Fig. 72. Fig. 73.

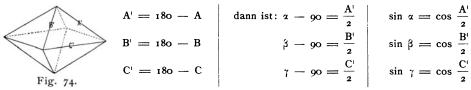
Hieraus ergiebt sich als Schema für die Berechnung das folgende:

Schema.	I	2	3	4
Schema.	α	lg sin α	22—21	qq _o pp _o num 31
•	β	lg sin β	21-23	PP _o num 32
	γ	lg sin γ	22—23	qq _o num 33

Controle

$$31 + 32 = 33$$

Wird die Pyramide als die primäre angesehen, so ist p=1; q=1 und es giebt Columne 4 die Elemente. Also:


Schema.

I	2	3	4
α	lg sin α	22—31	a == num 31
β	lg sin β	21—23	P ₀ = num 32
γ	lg sin γ	22—23	c=q _o =num 33

Beispiel: Cordierit v. Rath. Pogg. 1874. 152. 40. $A = 79^{\circ} 26^{\circ} B = 44^{\circ} 4^{\circ} C = 84^{\circ} 24^{\circ}$

ī	2	3	4
39° 43'	980550	976870	0·5871 a
22° O21	957420	997831	0·9513 P ₀
42° 12'	982719	974701	0.5585 $c = q_o$

Diese Rechnung ist z. B. auszuführen bei der Umrechnung der Elementar-Winkelangaben von Mohs, Haidinger, Hausmann in unsere Elemente. Will man bei Aufgabe I statt mit inneren mit äusseren Winkeln rechnen, was oft bequem ist, da die älteren Autoren stets äussere Winkel angeben, so wollen wir die äusseren Winkel mit einem Index versehen und setzen:

In diesem Fall ändert sich das Schema in:

I	2	3	4		4	
A' 2	lg cos 11	22—21	$\frac{qq_o}{pp_o}$ = num 31	wobei 31+32=33	a == num 31	Für die primäre
B' 2	lg cos 12	21—23	PP₀ = num 32	resp.:	P ₀ = num 32	Pyramide
C' 2	lg cos 13	22—23	qq _o = num 33		c = q _o = num 33	

2. Aufgabe. Gegeben: Für eine Pyramide die Elemente po qo und das (Umkehrung d. Aufg. 1.)

Symbol pq.

Gesucht: Die Kanten-Winkel A= 2α ; B= 2β ; B= 2γ .

Es ist:
$$\sin \alpha = \frac{p_o}{f}$$

 $\sin \beta = \frac{q_o}{f}$
 $\sin \gamma = \frac{r_o}{f} = \frac{1}{f}$
wobei wie oben
 $f = V \overline{(pp_o)^2 + (qq_o)^2 + 1}$

Daraus ergiebt sich das Schema:

I	2	3	4	5	6
lg pp _o	2lg ppo	num 21		11—42 lg sin α	a
lg qq.	2 lg qq.	num 22	$\lg f = \frac{43}{2}$	12—42 lg sin β	β
		1+31+32	lg 33	O-42 lg sin γ	7

Specielle Fassung der Aufgabe:

Gegeben: Das Axen-Verhältniss = a:1:c. Gesucht:
$$A=2\alpha$$
, $B=2\beta$; $C=2\gamma$.
$$\sin\alpha = \frac{c}{af} \; ; \; \sin\beta = \frac{c}{f} \; ; \; \sin\gamma = \frac{1}{f}$$

$$f = \sqrt[3]{\frac{c^2}{a^2} + c^2 + 1}$$

Schema.				
1	2	3	4	5
$lg \frac{c}{a}$	11 × 2	num 21	11 + 43 = lg sin α	α
lg c	12 × 2	num 22	$= \frac{12 + 43}{= \lg \sin \beta}$	β
lg a	31+32+1	1/2 lg 23	$0 - 33$ $= \lg \sin \gamma$	γ

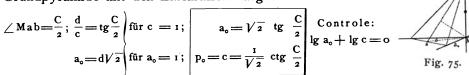
$$\frac{\sin \beta}{\sin \alpha} = a$$

$$\frac{\sin \beta}{\sin \gamma} = c$$

$$\frac{\sin \beta}{\sin \gamma} = c$$

$$\frac{\sin \alpha}{\sin \gamma} = \frac{c}{a}$$

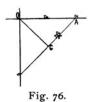
$$\frac{4^{2}-43}{= 12}$$


$$\frac{\sin \alpha}{\sin \gamma} = \frac{1}{2}$$

Tetragonales System.

I. Aufgabe, Gegeben: Der innere Mittelkanten-Winkel C der Grundpyramide (1).

Gesucht:
$$c = p_o$$
; $a_o = \frac{1}{c}$


Es ist in beistehender Figur 75 die eine Fläche der Grundpyramide mit den Linearaxen dargestellt und es ist:

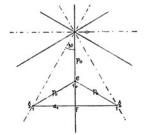
2. Aufgabe. Gegeben: Der Polkanten-Winkel 10:01 = λ. Gesucht: po = c. Nennen wir, wie gewöhnlich, den Krystall-Mittelpunkt M und setzen AM = f, so ist:

$$\frac{\frac{p_{o}}{\sqrt{2}} : f = \sin \frac{\lambda}{2}}{f = \sqrt{1 + p_{o}^{2}}} \begin{cases}
\frac{p_{o}}{\sqrt{2 + 2 p_{o}^{2}}} = \sin \frac{\lambda}{2} \\
p_{o}^{2} = 2 \sin^{2} \frac{\lambda}{2} + 2 p_{o}^{2} \sin^{2} \frac{\lambda}{2} ; p_{o} = \sqrt{\frac{2 \sin^{2} \frac{\lambda}{2}}{1 - 2 \sin^{2} \frac{\lambda}{2}}}
\end{cases}$$

$$c = p_o = \sqrt{\frac{2 \sin^2 \frac{\lambda}{2}}{\cos \lambda}}$$

3. Aufgabe. Gegeben: / po : op = a; po. Gesucht: p.

Auflösung: Es sei
$$\angle$$
 po : o = ψ ; so ist pp_o = tg ψ ; $\sin \psi = V^{-\frac{\alpha}{2}} \sin \frac{\alpha}{2}$; p = $\frac{\text{tg } \psi}{\text{po}}$


Beispiel: Wulfenit (Miller Min. 1852. 479). Daraus ergiebt sich das Schema: $y: y' = 61^{\circ} 34 \cdot \lg p_{\circ} = \lg \lg 57^{\circ} 33.5 = 019679.$

1	2	3	4
$\frac{\alpha}{2}$	12 + 22 == lg sin ψ	lg tg ∳	$31-32$ $= \lg p$
$\lg \sin \frac{\alpha}{2}$	$015051 = \lg \sqrt{2}$	lg p _o	P

I	2	3	4
30°47.0	985960	002073	982394
970909	015051	019679	o.6667 == ² / ₃

Hexagonales System.

1. Aufgabe. Gegeben: Der Polkanten-Winkel (221) der Pyramide (1). Gesucht: po ao c1.

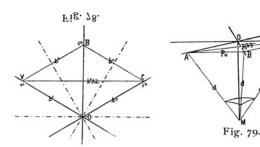
Es sei in dem sphärischen Dreieck ofg (Fig. 77)
1
) \angle of $= \varphi$; \angle fg $= \alpha$, so ist:

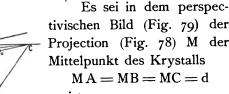
$$\begin{array}{c}
\text{tg } \varphi = \frac{3}{2} \, p_o \\
c_1 = \frac{3}{2} \, p_o
\end{array}$$

$$\begin{array}{c}
c_1 = \text{tg } \varphi \\
\sin \varphi = \text{ctg 30 tg } \alpha = \sqrt{3} \, \text{tg } \alpha_1
\end{array}$$

$$\begin{array}{c}
p_o = \frac{2}{3} \, \text{tg } \varphi \\
q_o = \sqrt{3} \, \text{ctg } \varphi
\end{array}$$

Fig. 77.


Aehnlich stellt sich die Rechnung für:


2. Aufgabe. Gegeben: Der Polkanten-Winkel (2 α_{10}) der Pyramide 10. Gesucht: $p_o \ q_o \ c_{10}$.

Es ist:

$$\begin{array}{c} c_{10} = tg \; \phi' \\ \sin \phi' = ctg \; 30 \; tg \; \alpha_{10} = \sqrt{3} \; tg \; \alpha_{10} \end{array} \right\} \\ p_o = \sqrt{\frac{4}{3}} \; tg \; \phi' \\ a_o = ctg \; \phi' \end{array}$$

3. Aufgabe. Gegeben: Der Polkanten-Winkel $(2\alpha_{\pi})$ der Pyramide (P=10). Gesucht: Der Polkanten-Winkel $(2\alpha_{\rho})$ des Rhomboeders (R=10).

so ist:

$$\angle AMB = 2\alpha_{\pi}$$

 $\angle AMC = 2\alpha_{\theta}$

Es ist ferner:

$$\begin{array}{c} p_{\rm o} = \, 2\, {\rm d} \, \sin \, \alpha_{\pi} \\ \sqrt{\, 3} \, p_{\rm o} = \, 2\, {\rm d} \, \sin \, \alpha_{\rho} \end{array} \right\} \, \, {\rm daraus \, \, folgt:}$$

$$\frac{\sin \alpha_{\rho}}{\sin \alpha_{\pi}} = \sqrt{3}$$

Dasselbe Verhältniss der Sinus besteht für jede Pyramide und das Rhomboeder von gleichem Symbol.

4. Aufgabe. Gegeben: Der Polkanten-Winkel des Rhomboeders.

Gesucht: Die Elemente. Die Lösung dieser Aufgabe s. Seite 68 u. 69 sowie Tab. II. Seite 74-77.

5. Aufgabe. Gegeben: Der Winkel der Pyramide zur Basis.

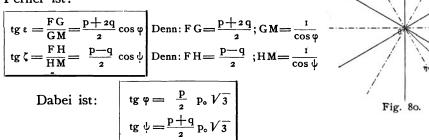
Gesucht: Die Elemente.

Die Lösung dieser Aufgabe s. Seite 67 sowie Tab. I. Seite 72-74.

¹⁾ Fig. 77 ist ein gnomonisches Projectionsbild; in ihm erscheinen alle Dreiecke von geraden Linien eingeschlossen, trotzdem können sie ebenso gut, wie bei den Projectionen mit Kreislinien direct als sphärische Dreiecke angesehen und so mit ihnen gerechnet werden. Der Umstand, dass wir in den geradlinigen Projectionen die Dreiecke der Figur gleichzeitig als ebene und als sphärische behandeln können, ist ein wesentlicher Vorzug derselben vor den Projectionen mit Kreislinien.

6. Aufgabe. Gegeben: Für eine Fläche das Symbol pq und das Element p₀. Gesucht: Der Winkel zur Basis δ = pq : o.

$$tg~\delta = p_o~ V \overline{~p^2 + pq + q^2}$$


7. Aufgabe. Gegeben: Für ein Skalenoeder das Symbol pq und das Element p_o .

Gesucht: Die Polkanten-Winkel: 2ε, 2ζ und der Winkel zur Basis δ.

Ziehen wir den Krystallmittelpunkt, der unter O (Fig. 80) liegt, mit in Betracht, so sei: $\delta = FMO$ $\epsilon = FMG$ $\zeta = FMH$ Es ist dann (Aufg. 6):

$$tg \delta = p_o \sqrt{p^2 + pq + q^2}$$

Ferner ist:

Als Controle kann die Formel dienen, die sich aus den rechtwinkeligen sphärischen Dreiecken OGF und OHF direkt abliest:

$$\cos \dot{\delta} = \cos \epsilon \cos \varphi = \cos \zeta \cos \psi$$

Aus diesen Gleichungen baut sich folgendes Schema zur Berechnung auf:

Sche	m a.				
1	2	3	4	5	6
lg p/2	$ \begin{array}{c} 11 + 12 \\ = \lg \lg \varphi \end{array} $	lg cos φ	$ \lg \frac{p + 2q}{2} $	$31+41+42$ $= \lg \lg \lg \epsilon$	ε
lg p₀ $\sqrt{3}$	$\lg (p^2 + pq + q^2)$	22 2	lg p _o	$ 32+42 = \lg \lg \delta $	δ
$lg \frac{p+q}{2}$	11+13 = lg tg ψ	lg cosψ	lg <u>p-q</u>	33+43+42 lg tg ζ	ζ

00	
7	8
lg cos €	31+71 = 72
lg cos δ	
lg cos ζ	33+73 = 72

Beispiel. Calcit: (Miller. Min. 1852. 576).

1	2	3	4	5	6
О	999408	985242	022185	982979	34° 03 ε
999408	076176	038088	975552	013640	53°51·2
012494	011902	978192	982391	936135	12° 56·5

Controle.

7	8
991832	977074
977075	
998882-	977074

8. Aufgabe. Gegeben: Für ein Skalenoeder die Polkanten-Winkel 28, 25 und das Element po.

Gesucht: Das Symbol pq.

Wir entnehmen der vorigen Aufgabe die Gleichungen:

$$tg \ \epsilon = \frac{p+2q}{2} \cos \varphi \qquad \cos \delta = \cos \epsilon \cos \varphi = \cos \zeta \cos \psi$$

$$tg \ \zeta = \frac{p-q}{2} \cos \psi \qquad \frac{\cos \varphi}{\cos \psi} = \frac{\cos \zeta}{\cos \epsilon}$$
Daraus folgt:
$$\frac{p+2q}{p-q} = \frac{tg \ \epsilon}{tg \ \zeta} \cdot \frac{\cos \epsilon}{\cos \zeta} = \frac{\sin \epsilon}{\sin \zeta} \cdot \dots \cdot 1$$
Ferner ist:
$$\frac{p-q}{p+2q} + \frac{1}{2} = \frac{\frac{3}{2}p}{p+2q} = \frac{\sin \zeta}{\sin \epsilon} + \frac{1}{2} = \frac{2\sin \zeta + \sin \epsilon}{2\sin \epsilon}$$

$$\sin \epsilon$$

Daraus folgt:
$$\frac{p+2q}{p-q} = \frac{\operatorname{tg} \varepsilon}{\operatorname{tg} \zeta} \cdot \frac{\cos \varepsilon}{\cos \zeta} = \frac{\sin \varepsilon}{\sin \zeta} \cdot \dots \quad 1$$

Ferner ist:
$$\frac{p-q}{p+2q} + \frac{1}{2} = \frac{\frac{3}{2}p}{p+2q} = \frac{\sin \zeta}{\sin \varepsilon} + \frac{1}{2} = \frac{2\sin \zeta + \sin \varepsilon}{2\sin \varepsilon}$$
$$p+2q = \frac{\sin \varepsilon}{2\sin \zeta + \sin \varepsilon} \cdot 3p$$

$$p + 2q = \frac{\sin \epsilon}{2 \sin \zeta + \sin \epsilon} \cdot 3p$$

$$tg \ \epsilon = \frac{FG}{GM} = p_o \frac{p + 2q}{2} \cdot \frac{1}{\sqrt{1 + \frac{3}{4}} p^2 p_o^2} = \frac{(p + 2q) p_o}{\sqrt{4 + 3} p^2 p_o^2}$$

Hierin eingesetzt den soeben entwickelten Werth für p+2q, giebt:

$$tg \ \epsilon = \frac{3 pp_o}{V + 3 p^2 p_o^2} \cdot \frac{\sin \epsilon}{2 \sin \zeta + \sin \epsilon}$$
$$\frac{3 pp_o}{V + 3 p^2 p_o^2} = \frac{2 \sin \zeta + \sin \epsilon}{\cos \epsilon} = \frac{1}{A} \text{ gesetzt.}$$

Dann berechnet sich:

$$p = \frac{2}{3 p_o} \sqrt{\frac{1}{A^2 - \frac{1}{3}}} \quad \text{wobei:} \quad A = \frac{\cos \varepsilon}{2 \sin \zeta + \sin \varepsilon} \dots 2)$$

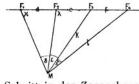
$$q = p \frac{\sin \varepsilon - \sin \zeta}{\sin \varepsilon + 2 \sin \zeta} \dots 3$$

aus 1) folgt:

$$q = p \frac{\sin \varepsilon - \sin \zeta}{\sin \varepsilon + 2 \sin \zeta} - \dots 3$$

Als Controle diene die Gleichung 1. Es ergiebt sich aus diesen Formeln zur Berechnung folgendes Schema:

Sch	nema:	ε==	ζ=		lg p₀=			
1	2	3	4	5	6	7	8	9
lg sin ε	lg cos ε	21—32	2 · 31	52	982391 lg p _o	22—13	p+2q	lg 81
lg sin ζ	num 11	lg 33	num 41 == A2	o-53	51+61 = lg p	lg 71	p — q	lg 82
num 12	2 · 13	22+23	42— I	lg 43	p	$ \begin{array}{c c} 62 + 72 - 32 \\ = \lg q \end{array} $	P	91-92 = 11-12
								Controle.


Beispiel. Calcit. (Miller Min. 1852. 576) Für das Skalenoeder Ω.

 $\epsilon = 34^{\circ} \text{ o3}; \zeta = 12^{\circ}56.5; \text{ lg p}_{\circ} = 975552$ 8 6 2 3 7 9 052288 974812 991832 991495 982990 023261 006839 0.3359. 3.3333. 012493 0.6759. 046521 030100 952627. 935016 000337 0.5599 1.3333. 0.6666 029795 2 1.0078 0.3426 982390 0.2239 0.4479 953479 = p $=\frac{2}{3}=q$ 029795 Zonenformel. I 13

Zonenformel. Allgemeiner Fall.

Aufgabe. Gegeben: Für vier Flächen, F_1 F_2 F_3 F_4 einer Zone die Symbole p_1 q_1 , p_2 q_2 , p_3 q_3 , p_4 q_4 , sowie die Winkel F_1 $F_2 = \delta$, F_3 $F_3 = \varepsilon$.

Gesucht: Winkel F_3 $F_4 = \zeta$

Schnitt in der Zonenebene. Fig. 81.

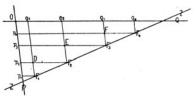


Fig. 82.

Es sei Fig. 82 das Bild der Projection, OP und OQ die Axenzonen, ZZ die Zone mit den Flächenpunkten F_1 F_2 F_3 F_4 . Es sei ferner Fig. 81 ein Schnitt in der Zonenebene, d. h. durch die Zone und den Mittelpunkt M des Krystalls, so ist:

Nun setzen wir in Fig. 82.

$$\begin{aligned} \frac{F_1 F_2}{F_2 D} &= \frac{F_2 F_3}{F_3 E} = \frac{F_3 F_4}{F_4 F} = n \\ \frac{F_1 F_2}{F_1 D} &= \frac{F_2 F_3}{F_2 E} = \frac{F_3 F_4}{F_3 F} = m \end{aligned}$$

so ist:

$$\begin{array}{lll} d = q_o \; n \; (q_2 - q_1) & \qquad & d = p_o \; m \; (p_2 - p_1) \\ e = q_o \; n \; (q_3 - q_2) & \qquad & e = p_o \; m \; (p_3 - p_2) \\ f = q_o \; n \; (q_4 - q_3) & \qquad & f = p_o \; m \; (p_4 - p_3) \end{array}$$

Diese ersteren Werthe eingesetzt in Formel 1 ergeben:

$$\frac{\frac{n^2 \, q_o^2 \, (q_2 - q_1 + q_3 - q_2) \, (q_3 - q_2 + q_4 - q_3)}{n^2 \, q_o^2 \, (q_3 - q_2) \, (q_2 - q_1 + q_3 - q_2 + q_4 - q_3)} = \frac{(q_3 - q_1) \, (q_4 - q_2)}{(q_3 - q_2) \, (q_4 - q_1)} = \frac{(\sin \delta \cos \varepsilon + \cos \delta \sin \varepsilon) \sin (\varepsilon + \zeta)}{\sin \varepsilon \, [\sin \delta \cos (\varepsilon + \zeta) + \cos \delta \sin (\varepsilon + \zeta)]} = \frac{\sin \delta \cot \varepsilon + \cos \delta}{\sin \delta \cot \varepsilon \, (\varepsilon + \zeta) + \cos \delta}$$

Somit:

$$\frac{(q_4 - q_2) (q_3 - q_1)}{(q_4 - q_1) (q_3 - q_2)} = \frac{(p_4 - p_2) (p_3 - p_1)}{(p_4 - p_1) (p_3 - p_2)} = \frac{\operatorname{ctg} \varepsilon + \operatorname{ctg} \delta}{\operatorname{ctg} (\varepsilon + \zeta) + \operatorname{ctg} \delta} \cdot \cdot \cdot \cdot \cdot 2$$

Setzen wir zur Abkürzung:

$$\frac{(q_4 - q_2) (q_3 - q_1)}{(q_4 - q_1) (q_3 - q_2)} = \frac{(p_4 - p_2) (p_3 - p_1)}{(p_4 - p_1) (p_3 - p_2)} = \frac{\text{ctg } \epsilon + \text{ctg } \delta}{\text{ctg } (\epsilon + \zeta) + \text{ctg } \delta} = \frac{1}{Q}$$

so ist:

$$ctg \ (\epsilon + \zeta) = Q \ (ctg \ \epsilon + ctg \ \delta) \ - \ ctg \ \delta = Q \ ctg \ \epsilon + (Q - 1) \ ctg \ \delta$$
 Goldschmidt, Index.

Nun ist:

$$\begin{array}{c} Q_{-1} = \frac{q_4 \, q_3 - q_4 \, q_2 - q_3 \, q_1 + q_2 \, q_1 - q_4 \, q_3 + q_4 \, q_1 + q_3 \, q_2 - q_2 \, q_1}{(q_3 - q_1) \, (q_4 - q_2)} = \frac{(q_2 - q_1) \, (q_3 - q_4)}{(q_3 - q_1) \, (q_4 - q_2)} = \\ = -\frac{(q_2 - q_1) \, (q_4 - q_3)}{(q_3 - q_1) \, (q_4 - q_2)} \end{array}$$

Also:

$$\cot (\epsilon + \zeta) = \frac{(q_4 - q_1) (q_3 - q_2)}{(q_4 - q_2) (q_3 - q_1)} \cot \epsilon - \frac{(q_4 - q_3) (q_2 - q_1)}{(q_4 - q_2) (q_3 - q_1)} \cot \delta$$

$$- \cot (\epsilon + \zeta) = \frac{(p_4 - p_1) (p_3 - p_2)}{(p_4 - p_2) (p_3 - p_1)} \cot \epsilon - \frac{(p_4 - p_3) (p_2 - p_1)}{(p_4 - p_2) (p_3 - p_1)} \cot \delta$$

$$\cdot \cdot \cdot 3$$

Auswerthung der Zonenformel. Gedächtnissregel. Man schreibt die Werthe p₄ p₃ p₂ p₁ sowie q₄ q₃ q₂ q₁ als Ecken eines Quadrats in folgender Ordnung an:

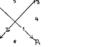
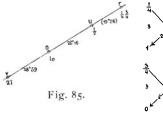


Fig. 83.

bildet die Differenzen:


wie in Figg. 83 und 84 angedeutet, stets von oben nach unten und (ausser 2) von links nach rechts. Hieraus bildet man die Producte $\frac{1\cdot 2}{3\cdot 4}$ und $\frac{5\cdot 6}{3\cdot 4}$, so müssen beide Producte $\frac{1\cdot 2}{3\cdot 4}$ und ebenso beide $\frac{5\cdot 6}{3\cdot 4}$, nämlich die aus den p, wie die aus den q, das gleiche Resultat geben und es ist:

$$ctg (\varepsilon + \zeta) = \frac{1 \cdot 2}{3 \cdot 4} ctg \varepsilon - \frac{5 \cdot 6}{3 \cdot 4} ctg \delta$$

Beispiel. Bournonit (Miers Min. Mag. 1884. 6. 69).

Gegeben: $\delta = vo = 2\tilde{i} : 10 = 28^{\circ} 59$; $\epsilon = ou = 10 : \frac{1}{2} = 28^{\circ} 16$ (Fig. 85)

Gesucht: $\varepsilon + \zeta = \text{or} = \text{io} : \frac{1}{4} \frac{3}{4}$.

Wir bilden aus den p-Werthen:
$$\frac{\frac{1}{4}}{\frac{1}{4}} = \frac{\frac{1}{4}}{\frac{1}{4}} = \frac{\frac{1}{4}}{\frac{1}} = \frac{\frac{1}{4}}{\frac{1}{4}} = \frac{\frac{1}{4}}{\frac{1}{4}} = \frac{\frac{1}{4}}{\frac{1}$$

Danach ist:

tg or =
$$\frac{7}{9}$$
 ctg 28° 16' - $\frac{2}{9}$ ctg 28° 59'
or = 43° 44'

Anmerkung: Diese neue Formel übertrifft an Einfachheit die von Miller vorgeschlagene, von Grailich, Lang, Schrauf, Brezina weiter verbreitete Zonenformel, sowie die von Websky (Berl. Monatsb. 1876. 4. Zeitschr. Kryst. 1881. 4. 101.) und Schrauf (Zeitschr. Kryst. 1884. 8. 238) entwickelten Formeln. Sie gilt für alle Systeme gleichmässig, nur das hexagonale System bedarf einer kurzen Betrachtung.

Zonenformel. Hexagonales System. Die Symbole des hexagonalen Systems sind für die Zonenformel nur dann direct zu brauchen, wenn alle vier Flächen in demselben Sextanten liegen. Ist dies nicht der Fall, und das ist ja die Regel, so verfährt man folgendermassen:

Man trägt in das Projectionsbild (Fig. 86) die Punkte der vier Einzelflächen ein, um die es sich handelt und zieht die Zonenlinie. Es seien in dem Beispiel, das wir wählen (Miller. Min. 1852. 576) für den Calcit die vier Flächen $x \circlearrowleft \Omega$ β bestimmt durch ihr allgemeines Symbol:

$$x = -25$$
 $\uparrow = -2\frac{2}{7}$ $\Omega = -2\frac{2}{3}$ $\beta = -28$

und zwar seien in Betracht zu ziehen die Einzelflächen:

$$^2\mathbf{x}$$
 $\overset{+}{\bigcirc}^2$ $^6\Omega$ β^6

in dem Sinne der vorgeschlagenen Bezeichnungs-

weise der Einzelflächen (vgl. S. 32). Nun wählen wir zu Coordinatenaxen zwei beliebige von den drei Axen der Projection aus und beziehen auf sie allein die Symbole, indem wir die eine P, die andere Q nennen und ihre Gegenrichtungen \overline{P} \overline{Q} . Welche zwei Axen wir wählen, welche wir als P und als Q bezeichnen, ist für das Resultat gleichgiltig. Wir wählen hier die Axen P und Q des Bildes (Fig. 86) und zwar deshalb, damit die Zonenlinie nur die eine Axe (P) schneide; das hat die Bequemlichkeit, dass alle p positiv ausfallen, ist jedoch ganz unwesentlich. Die Symbole, auf PQ \overline{P} \overline{Q} bezogen, ergeben sich leicht aus dem Bild durch Ziehen der Coordinaten parallel P und Q und Ausmessen mit der Einheit $o \cdot 10 = p_0$. Es sind dann in unserem Beispiel die Coordinaten für:

$${}^{2}x={\scriptstyle 25}=p_{1}q_{1};\ \dot{\cap}^{2}={\scriptstyle 2\frac{2}{7}}=p_{2}q_{2};\ {}^{6}\Omega={\scriptstyle 2\cdot}-({\scriptstyle 2}+{\scriptstyle \frac{2}{3}})={\scriptstyle 2\frac{7}{3}}=p_{3}q_{3};\ \beta^{6}={\scriptstyle 2\cdot}-({\scriptstyle 2}+8)={\scriptstyle 2\cdot}1\bar{o}=p_{4}q_{4}$$

Wir entnehmen die gegebenen Winkel mit Hilfe einer kleinen Umrechnung aus Miller's Mineralogie. (1852. 576) und zwar:

Gegeben:
$$\delta = {}^{2}x + {}^{2} = 40^{\circ}07$$
 $\epsilon = + {}^{2} {}^{6}\Omega = 61^{\circ}35$ Gesucht: $\epsilon + \zeta = + {}^{2} {}^{6}$

Wir setzen gemäss der allgemeinen Vorschrift für Auswerthung der Zonenformel für die q:

$$\frac{1 \cdot 2}{3 \cdot 4}; \frac{5 \cdot 6}{3 \cdot 4} = \frac{(1\bar{0} - 5) (\frac{8}{3} - \frac{2}{7})}{(1\bar{0} - \frac{2}{7}) (\frac{8}{3} - 5)}; \frac{(1\bar{0} - \frac{8}{3}) (\frac{2}{7} - 5)}{(1\bar{0} - \frac{2}{7}) (\frac{8}{3} - 5)} = \frac{1\bar{5} \cdot 62}{72 \cdot 2\bar{3}}; \frac{2\bar{2} \cdot 3\bar{3}}{72 \cdot 2\bar{3}} = \frac{155}{276}; \frac{121}{276}$$

$$\text{Daher:}$$

$$\text{ctg } \dot{\beta}^2 \beta^6 = \frac{155}{276} \text{ctg } 61^\circ 35^! - \frac{121}{276} \text{ctg } 40^\circ 07^!$$

$$\text{ctg } \dot{\beta}^2 \beta^6 = -0 \cdot 2166$$

$$\dot{\beta}^2 \beta^6 = 180^\circ - 77^\circ 47^! = 102^\circ 13^!$$

Dass es gleichgiltig ist, welche Coordinaten-Axen wir wählen, davon können wir uns am einfachsten durch ein Beispiel überzeugen. Wir wollen für obigen Fall P und S (Fig. 86) als Coordinaten-Axen wählen und erhalten, auf sie bezogen, die Symbole:

$$^{2}x = 7\overline{5}$$
 $\overset{+}{\bigcirc}^{2} = \frac{16}{7}\overline{^{2}}$ $^{6}\Omega = \frac{7}{3}\frac{8}{3}$ $\beta^{6} = 8 \cdot 10$

Für diese Werthe finden wir wieder, sowohl aus den p als aus den q, in obiger Weise die Coefficienten der Cotangenten $\frac{155}{276}$; $\frac{121}{276}$.

Es empfiehlt sich bei Anwendung der Zonenformel, wie in allen Fällen der Rechnung, wo es sich um Einzelflächen handelt, nicht unmittelbar von den Zahlen, sondern von der Handskizze des Projectionsbildes auszugehen.

Zonenformel. Prismenzone. Die Symbole der Prismenzone nehmen eine Sonderstellung ein insofern, als die Zahlen p und q unter sich nur relative Werthe sind, wir also für dieselbe Form ebenso gut setzen können $\frac{3}{2} \infty$ wie $\infty \frac{2}{3}$. Hierdurch entsteht eine Unsicherheit, welcher Werth in die Zonenformel, in der Differenzen gebildet werden, einzusetzen sei.

Wir bringen zunächst alle Coefficienten auf die p- oder q-Seite, schreiben also:

$$3\infty \quad \infty \quad \frac{2}{3} \quad \infty \quad \text{statt} \quad 3\infty \quad \infty \quad \infty \quad \frac{3}{2}$$

und rechnen mit derjenigen Symbolhälfte, welche die Coefficienten führt oder vielmehr nur mit diesen. Es treten nämlich in der Zonenformel alle p resp. q in Zähler und Nenner gleich oft auf und es wird das Resultat nicht geändert, wenn wir p_1 p_2 p_3 p_4 mit dem gleichen Werth dividiren, also auch mit ∞ .

Vor dem Ansetzen der Formel ordnen wir die Formen durch eventuelles Heranziehen von Gegenflächen so, dass ihre Punkte nicht mehr als einen Halbkreis einnehmen, und dass der gesuchte Winkel ζ am Ende der Reihe liegt. Nun bringen wir die Coefficienten auf eine Seite, auf welche, hängt ab von der Vertheilung der Prismen und entscheiden zugleich über die Vorzeichen. Liegen alle zwischen zwei benachbarten Pinakoiden, so ist es gleichgiltig, ob wir mit den p oder den q rechnen. In der Regel befinden sie sich zu beiden Seiten eines Pinakoids, o oder oo. Liegt ozwischen ihnen, so rechnen wir mit den q, liegt oo dazwischen, mit den p, und zwar sind die Coefficienten auf der einen Seite dieses Pinakoids +, auf der anderen — zu setzen.

Beispiel. Anorthit. (Fig. 87.)

Gegeben:
$$m = 0\infty$$
 $f = \infty 3$ $l = \infty \infty$ $z = \infty 3$
 $mf = \delta = 29^{\circ}27$ $fl = \epsilon = 88^{\circ}01$

Gesucht: $fz=\varepsilon+\zeta=?$

Die Formen gruppiren sich um ∞o; wir haben daher mit den q zu rechnen und setzen in unsere Zonenformel ein:

$$q_1 = \infty$$
 $q_2 = 3$ $q_3 = T$ $q_4 = 3$

In dem Symbol o∞ ist für ∞ nicht 1, sondern wieder ∞ zu setzen, da es dem $o = o \cdot \infty$ gegenüber $= \infty^2$ ist. Setzen wir obige Werthe ein, so berechnet sich:

ctg
$$(\varepsilon + \zeta) = \frac{(3-\infty)(1-3)}{(3-3)(1-\infty)}$$
 ctg $\varepsilon - \frac{(3-1)(3-\infty)}{(3-3)(1-\infty)}$ ctg δ
ctg $fz = \frac{2}{3}$ ctg 88° or $-\frac{1}{3}$ ctg 29° 27 = -0.5673
 $fz = 119^{\circ}$ 34; $fz = fz - ff = 31^{\circ}$ 33.

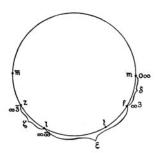


Fig. 87.

Zonenformel. Specialfall. Einer der häufigsten und wichtigsten Fälle ist der folgende, der noch besonders deshalb hervorgehoben zu werden verdient, weil seine einfache Formel sich leicht

dem Gedächtniss einprägt. (Fig. 87 b.)

Gegeben:
$$p\bar{q}: po = \delta$$
; $po: pq = \epsilon$.

Gesucht: $po:o\infty = \varepsilon + \zeta$.

Es ist:

Unter diesen Fall ordnen sich unter anderen die Aufgaben aus den Parallelzonen:

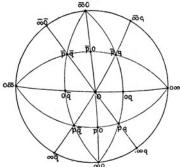


Fig. 87b.

Gegeben:
$$o\overline{q}: o=\delta$$
; $o: oq=\epsilon$ Gesucht: $\lambda=o:o\infty=\epsilon+\zeta$
" $\overline{p}o: o=\delta$; $o: po=\epsilon$ " $\mu=o:\infty=\epsilon+\zeta$
" $\omega\overline{q}:\infty=\delta$; $\infty:\infty=\epsilon+\zeta$

Ausserdem:

Gegeben:
$$\overline{p} \overline{q} : o = \delta$$
; $o : pq = \epsilon$ Gesucht: $o : \infty q = \epsilon + \zeta$
 $pq : o = \delta$; $o : p\overline{q} = \epsilon$ $q : \infty q = \epsilon + \zeta$

Für alle diese gilt die Formel:

$$\operatorname{ctg}\,(\varepsilon+\zeta)=\tfrac{1}{2}\,\operatorname{ctg}\,\varepsilon-\tfrac{1}{2}\,\operatorname{ctg}\,\delta$$

Ebenso gilt die angeführte Formel für die Mittel-Parallelzonen, wobei die Aufgabe lautet:

Gegeben:
$$\infty \overline{\infty}$$
: po = δ ; po: $\frac{p}{2}$ = ϵ . Gesucht: po: op = $\epsilon + \zeta$.

Umkehrung der Zonenformel.

Mit Hilfe der Zonenformel lässt sich ebenso eines der Symbole p_4 q_4 berechnen, wenn die übrigen drei Symbole p_1q_1 p_2q_2 p_3q_3 , sowie die Winkel $\delta\epsilon\zeta$ gegeben sind.

Aus der Formel:

$$ctg~(\epsilon+\zeta) = \frac{(p_4-p_1)~(p_3-p_2)}{(p_4-p_2)~(p_3-p_1)}~ctg~\epsilon - \frac{(p_4-p_3)~(p_2-p_1)}{(p_4-p_2)~(p_3-p_1)}~ctg~\delta$$

folgt:

 $(p_4-p_2)\ (p_3-p_1)\ ctg\ (\epsilon+\zeta)=(p_4-p_1)\ (p_3-p_2)\ ctg\ \epsilon-(p_4-p_3)\ (p_2-p_1)\ ctg\ \delta$ und daraus:

$$p_4 = \frac{p_1A + p_2B + p_3C}{A + B + C}, \text{ worin } \begin{cases} A = (p_2 - p_3) \text{ ctg } \epsilon \\ B = (p_3 - p_1) \text{ ctg } (\epsilon + \zeta) \\ C = (p_2 - p_1) \text{ ctg } \delta \end{cases}$$

statt der p kann man ebenso gut mit den q operiren und lautet dann die Formel:

$$q_4 = \frac{q_1A + q_2B + q_3C}{A + B + C}, \text{ worin } \begin{cases} A = (q_2 - q_3) \text{ ctg } \epsilon \\ B = (q_3 - q_1) \text{ ctg } (\epsilon + \zeta) \\ C = (q_2 - q_1) \text{ ctg } \delta \end{cases}$$

q₄ ergiebt sich, nachdem p₄ bekannt ist, in der Regel am einfachsten aus dem Zonensymbol oder der Zonengleichung (vgl. S. 22), oder auch durch Eintragen in das Projectionsbild. Aber auch aus der Zonenformel lässt es sich berechnen und zwar auf folgende Weise:

Es ist, da die Coefficienten der Cotangenten in der Zonenformel aus den p, wie aus den q den gleichen Werth haben:

$$\frac{(p_4 - p_1) (p_3 - p_2)}{(p_4 - p_2) (p_3 - p_1)} = X = \frac{(q_4 - q_1) (q_3 - q_2)}{(q_4 - q_2) (q_3 - q_1)}$$

$$q_4 - q_1 = (q_4 - q_2) \frac{q_3 - q_2}{q_3 - q_1} X$$

Daher:

$$q_4 = \frac{q_1 - q_2 DX}{1 - DX}$$
, worin: $X = \frac{1 \cdot 2}{3 \cdot 4}$ für die p; $D = \frac{q_3 - q_1}{q_3 - q_2}$

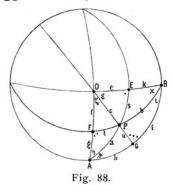
Beispiel. Bournonit (vgl. S. 114 Fig. 85).

$$v = p_1 q_1 = 2T$$
; $o = p_2 q_2 = 10$; $u = p_3 q_3 = \frac{1}{2}$; $r = p_4 q_4 = ?$ $\delta = v o = 28^{\circ}59$; $\epsilon = o u = 28^{\circ}16$; $\epsilon + \zeta = o r = 43^{\circ}44$

Es ist:
$$A = (1 - \frac{1}{2}) \operatorname{ctg} \epsilon$$
 $B = (\frac{1}{2} - 2) \operatorname{ctg} (\epsilon + \zeta)$ $C = (1 - 2) \operatorname{ctg} \delta$

$$p_4 = \frac{2 \cdot \frac{1}{2} \operatorname{ctg} 28^{\circ}16 + 1 \cdot \frac{3}{2} \operatorname{ctg} 43^{\circ}44 + \frac{1}{2} \cdot 1 \operatorname{ctg} 28^{\circ}59}{\frac{1}{2} \operatorname{ctg} 28^{\circ}16 + \frac{3}{2} \operatorname{ctg} 43^{\circ}44 + 1 \operatorname{ctg} 28^{\circ}59} = \frac{-0.6106}{-2.4432} = \frac{1}{4}$$

Dann ist zur Berechnung von q4:


$$\begin{bmatrix} \frac{1}{4} & \frac{1}{2} \\ \times \\ 1 & 2 \end{bmatrix} X = \frac{(\frac{1}{4} - 2) (\frac{1}{2} - 1)}{(\frac{1}{4} - 1) (\frac{1}{2} - 2)} = \frac{7}{9} \\ \times D = \frac{\frac{1}{2} - 1}{\frac{1}{2} - 0} = 3; DX = \frac{7}{3} \end{bmatrix} q_4 = \frac{1 - 0}{1 - \frac{7}{3}} = \frac{3}{4}$$

Controle durch Rückwärts-Rechnung. Hat man aus den übrigen Stücken den dritten Winkel, oder andererseits das vierte Symbol abgeleitet, so ist stets zur Controle die Rechnung umzukehren und aus den gefundenen Stücken eines der gegebenen abzuleiten. In der Regel stellt sich die Rechnung so, dass das vierte Symbol unbekannt und der letzte Winkel (ζ) durch Messung gegeben ist. In diesem Fall ist zunächst das Symbol p_4q_4 abzuleiten, auf rationale Werthe abzugleichen und dann aus dem rationalen Symbol der Winkel ζ rückwärts zu berechnen.

Danach ist das gesuchte Symbol für r = - 20.

Einige wichtigere Formeln.

Allgemeiner Fall. Triklines System. Die folgenden Formeln mögen, als für die Krystallberechnung besonders wichtig, hier eine Stelle finden. Die Erklärung der in ihnen auftretenden Buchstaben ergiebt sich aus den Figg. 88 und 89.

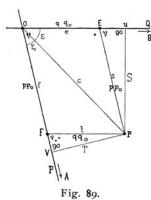


Fig. 88 ist das stereographische, Fig. 89 das gnomonische Projectionsbild. P sei der Projectionspunkt einer Fläche pq, E von oq, F von po. Die Dreiecke des gnomonischen Bildes sind theils als ebene (in der Projections-Ebene) theils als sphärische (auf der Kugel) verwendet; die sich auf erstere beziehenden Buchstaben sind in der Fig. 89 stark, die auf letztere bezüglichen fein eingetragen. Ziehen wir noch den unter dem gnomonischen Bild liegenden Krystall-Mittelpunkt M in Betracht, so ist, wenn PU \(\Delta\) OQ, PV \(\Delta\) OP:

Im sphär.
$$\triangle$$
 POU ist: $\frac{\sin S}{\sin \epsilon} = \sin c$

, , , \triangle POV , , $\frac{\sin T}{\sin \zeta} = \sin c$

, ebenen \triangle PMU , $\frac{PU}{PM} = \sin S$

, , , \triangle PMV , $\frac{PV}{PM} = \sin T$

, , , \triangle PEU , $\frac{PU}{PP_o} = \sin V$

, , , \triangle PFV , $\frac{PV}{qq_o} = \sin V$
 $\frac{PU}{PV} = \frac{PP_o}{qq_o}$

Daher ist: $\begin{vmatrix} \frac{\sin \varepsilon}{\sin \zeta} = \frac{p p_o}{q q_o} \\ \frac{\sin \eta}{\sin \vartheta} = \frac{q q_o}{r r_o} \\ \frac{\sin \varepsilon}{\sin \varkappa} = \frac{r r_o}{p p_o} \end{vmatrix}$

Hieraus folgt durch Multiplication der Gleichungen:

$$\frac{\sin\epsilon\,\sin\eta\,\sin\iota}{\sin\zeta\,\sin\delta\,\sin\varkappa} = 1\,\,\text{oder}\,\,\left[\sin\epsilon\,\sin\eta\,\sin\iota = \sin\zeta\,\sin\vartheta\,\sin\varkappa\right]\,.\,.\,2.$$

Aus Fig. 88 lassen sich direkt die Formeln ablesen:

$\frac{\sin b}{\sin c} = \frac{\sin \epsilon}{\sin x}$ $\frac{\sin c}{\sin a} = \frac{\sin \eta}{\sin \zeta}$ $\frac{\sin a}{\sin b} = \frac{\sin \iota}{\sin \vartheta}$ woraus sich unter Benutzung von 1 ergiebt:	$\frac{pp_o \sin a}{qq_o \sin b} = \frac{\sin \alpha}{\sin \eta} = \frac{\sin \alpha \sin \alpha}{\sin \zeta \sin \theta}$ $\frac{qq_o \sin b}{rr_o \sin c} = \frac{\sin \zeta}{\sin \alpha} = \frac{\sin \eta \sin \alpha}{\sin \alpha \sin \alpha}$ $\frac{rr_o \sin c}{pp_o \sin a} = \frac{\sin \theta}{\sin \alpha} = \frac{\sin \alpha \sin \gamma}{\sin \alpha \sin \zeta}$	• • • 4•
--	--	----------

Es ist ferner in Fig. 89:

Im sphärischen
$$\triangle$$
 POU: $\frac{\sin S}{\sin \epsilon} = \sin c$

" " \triangle POV: $\frac{\sin T}{\sin \zeta} = \sin c$

" " \triangle PEU: $\frac{\sin S}{\sin s} = \sin c$

" " \triangle PFV: $\frac{\sin S}{\sin t} = \sin c$

" " \triangle PFV: $\frac{\sin T}{\sin t} = \sin c$

" " \triangle PFV: $\frac{\sin T}{\sin t} = \sin c$

Nach einer bekannten Formel ist:

$$\sin e : \sin g : \sin i = \sin f : \sin h : \sin k$$
 . . . 6.

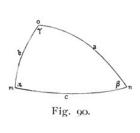
Specialfall. Im regulären, tetragonalen, rhombischen und monoklinen System sind die Winkel :: = 90°; daher ist für alle diese Systeme:

$$pp_o: qq_o: rr_o = sin s: sin t: sin u$$
 ... 7.

Ausserdem gilt für diese Systeme die Formel:

$$\cos e \cos g \cos i = \cos f \cos h \cos k$$
 . . . 8.

Dreiecks-Auflösungen.1)


Die Formeln zur Auflösung der sphärischen Dreiecke sind aus Brezina's "Methodik der Krystallbestimmung" entnommen, die Schema's mit der Modification, dass die Legende direkt in das Schema eingesetzt wurde. (Vgl. S. 66.)

Schiefwinkliges Dreieck.

l. Aufgabe. Gegeben: abc. Gesucht: αβγ.

Formeln:
$$s = \frac{a+b+c}{2}$$
; $tg r = \sqrt{\frac{\sin{(s-a)\sin{(s-b)\sin{(s-c)}}}}{\sin{s}}}$; $tg \frac{\alpha}{2} = \frac{tg r}{\sin{(s-a)}}$; $tg \frac{\beta}{2} = \frac{tg r}{\sin{(s-b)}}$; $tg \frac{\gamma}{2} = \frac{tg r}{\sin{(s-c)}}$ $\begin{cases} \frac{\sin{\alpha}}{\sin{\alpha}} = \frac{\sin{\beta}}{\sin{b}} = \frac{\sin{\gamma}}{\sin{c}} \\ \frac{\sin{\alpha}}{\sin{\alpha}} = \frac{\sin{\beta}}{\sin{\beta}} = \frac{\sin{\gamma}}{\sin{\beta}} \end{cases}$

Schema.

				ontrole.				
Buchst.	1	2	3	4	5	6	7	8
a	a	s—a	lg sin 21	$54 - 31$ = $\lg \lg \frac{\alpha}{2}$	2	lg sin α	lg sin a	61 — 71
b	ь	s — b	lg sin 22	$= \lg \lg \frac{\beta}{2}$	β	lg sin β	lg sin b	62-72 =81
c	С	sc	lg sin 23	$54 - 33$ $= \lg \lg \frac{\gamma}{2}$	γ	lg sin γ	lg sin c	63 - 73 $= 81$
	s	lg sin s	31+32+33	34-24	44			

Beispiel:

Buchst.	ı	2	3	4	5	6	7	8
пo	76° 20	31°52 · 5	972269	991356	78°40·2 n m o	999145	998753	000392
o m	57° 48	50°24 · 5	988683	974942	58°38·2 onm	993139.	992747	000392
m n	82° 17	25°55 · 5	964067	999558	89°25·0 m o n	999998	999605	000393
	108°12 · 5	997769	925019	927250	963625			

¹) Die hier gegebenen Formeln und Schemas zur Dreiecks-Auflösung bringen nichts wesentlich Neues; auch stehen sie nicht in nothwendigem Verband mit dem entwickelten System. Trotzdem wurden sie hierher gesetzt, weil sie bei der Krystallberechnung beständig gebraucht werden und es deshalb wünschenswerth erscheint, sie an dieser Stelle zu finden. Ausserdem ist bei einem so vielfach benutzten Instrument jede kleine Verbesserung (wie hier das Entfallen einer selbstständigen Legende) von Wichtigkeit. Es schien umsomehr angezeigt, diese Schemas zu geben, als sie nur wenige Seiten einnehmen. Die überall zugefügten Zahlenbeispiele dürsten willkommen sein, da sie etwaige Zweisel in Bezug auf die Schemas beseitigen.

2. Aufgabe. Gegeben: αβγ. Gesucht: abc.

Formeln:
$$\sigma = \frac{\alpha + \beta + \gamma}{2}$$
; $\operatorname{ctg} \rho = \sqrt{-\frac{\cos(\sigma - \alpha)\cos(\sigma - \beta)\cos(\sigma - \gamma)}{\cos\sigma}}$ $\operatorname{ctg} \frac{a}{2} = \frac{\operatorname{ctg} \rho}{\cos(\sigma - \alpha)}$; $\operatorname{ctg} \frac{b}{2} = \frac{\operatorname{ctg} \rho}{\cos(\sigma - \beta)}$; $\operatorname{ctg} \frac{c}{2} = \frac{\operatorname{ctg} \rho}{\cos(\sigma - \gamma)}$ $\operatorname{cos} \frac{\sin a}{\sin \alpha} = \frac{\sin b}{\sin \beta} = \frac{\sin c}{\sin \gamma}$

Buchst.	1	2	3	4	5	6	7	8
α	a	σ—α	lg cos 21	$54 - 31$ $= \lg \operatorname{ctg} \frac{a}{2}$	а	lg sin a	lg sin α	61 — 71
β	β	σ—β	lg cos 22	$= \lg \operatorname{ctg} \frac{b}{2}$	ь	lg sin b	lg sin β	62-72 =81
γ	γ	σ—γ	lg cos 23	$54 - 33$ $= \lg \operatorname{ctg} \frac{c}{2}$	С	lg sin c	lg sin γ	63-73 ==81
	σ	lg cos σ	31 + 32 + 33	34-24	44 2			

Buchst.	ı	2	3	4	5	6	7	8
o m n	78°40·2	34°41·5	991499	010459	76°20∙0	998753	999145	999607
mno	58°38·2	54°43·5	976155	025804	57°48∙o	992747	993139	999607
nom	89°25·0	23°56·7	996091	005867	82°17·0	999605	999998	999607
	113°21·7	959828	963746	003917	001959			

3. Aufgabe. Gegeben: αβc. Gesucht: abγ.

Formeln. (Brezina 89)
$$\operatorname{tg} \frac{a-b}{2} = \operatorname{tg} d = \frac{\sin \delta \sin \frac{c}{2}}{\sin \sigma \cos \frac{c}{2}}; \operatorname{tg} \frac{a+b}{2} = \operatorname{tg} s = \frac{\cos \delta \sin \frac{c}{2}}{\cos \sigma \cos \frac{c}{2}}$$

$$\sin \frac{\gamma}{2} = \frac{\cos \delta \sin \frac{c}{2}}{\sin s}; \cos \frac{\gamma}{2} = \frac{\sin \sigma \cos \frac{c}{2}}{\sin d}; a = s + d; b = s - d$$

Buchst.	I	2	3	4	5	6	7	8	9	Buchst.
α	α	$\delta = \frac{11-13}{2}$	lg sin 21	lg sin 23	31+32	41+42	$51 - 61$ $= \lg \lg d$	d	82+81 a	a
С	С	12	lg sin 22	lg cos 22	32+33	42+43	52-62 = lg tg s	S	82 — 81 b	ь
β	β	$\sigma = \frac{11+13}{2}$	lg cos 21	lg cos 23	lg sin 82	lg cos 81	$52 - 53$ $= \lg \sin \frac{7}{2}$	$61 - 63$ $= \lg \cos \frac{\gamma}{2}$	γ aus 73 · 83	Υ

Buchst.	I	2	3	4	5	6	7	8	9	Buchst.
o m n	78°40∙2	10,01∙0	924039	996913	905856	984597	921259	9°16∙0	76°20.0	пo
m n	82°17·0	41°08·5	981817.	987684.	981150	943796	037354	67°04∙0	58°48·o	o m
m n o	58°38·2	68°39·2	999333	956111.	996424	999429	984726.	985168	89°25·0	nom

4. Aufgabe. Gegeben: $a\,b\,\gamma$. Gesucht: $\alpha\,\beta\,c$.

Formeln: (Brezina 91)
$$\operatorname{tg} \frac{a-\beta}{2} = \operatorname{tg} \delta = \frac{\sin d \cos \frac{1}{2} \gamma}{\sin s \sin \frac{1}{2} \gamma}$$
; $\operatorname{tg} \frac{\alpha+\beta}{2} = \operatorname{tg} \sigma = \frac{\cos d \cos \frac{1}{2} \gamma}{\cos s \sin \frac{1}{2} \gamma}$ $\operatorname{cos} \frac{c}{2} = \frac{\cos d \cos \frac{1}{2} \gamma}{\sin \sigma}$; $\sin \frac{c}{2} = \frac{\sin s \sin \frac{1}{2} \gamma}{\cos \delta}$; $\alpha = \sigma + \delta$; $\beta = \sigma - \delta$

Buchst.	I	2	3	4	5	6	7	8	9	Bachst.
a	a	$d = \frac{11 - 13}{2}$	lg sin 21	lg sin 23	31+32	41+42	$51 - 61$ $= \lg \lg \delta$	ô	82+81 = 2	α
7	۲	γ <u>2</u>	lg cos 22	lg sin 22	32+33	42+43	52-62 = lg tg o	σ	$ 82 - 81 \\ = \beta $	β
ь	b	$s = \frac{11 + 13}{2}$	lg cos 21	lg cos 23	lg sin 82	lg cos81	$5^2 - 53$ $= \lg \cos \frac{c}{2}$	$61 - 63$ $= \lg \sin \frac{c}{2}$	c aus 73 · 83	С
Buchst.	I	2	3	4	5	6	7	8	9	Buchst.
nо	76°20∙0	9°16∙0	920691	996424	905859	981150	924709	10°01.0	68°40·2	o m n
nom	89°25·0	44°42·5	985168	984726	984597	943795	040802	68°39·2	58°38·2	mno
o m	57°48·0	67°04·0	999429	959069	996913	999333	987684.	981817.	87°17∙0	m n

5. Aufgabe. Gegeben: abα. Gesucht: cβγ.

Formeln: (Brezina 93)
$$\sin \alpha : \sin \beta : \sin \gamma = \sin \alpha : \sin b : \sin c$$
 $d = \frac{a-b}{2}$; $s = \frac{a+b}{2}$ $d = \frac{a-b}{2}$; $s = \frac{a+b}{2}$ $d = \frac{a-b}{2}$; $d = \frac{a-b}{2}$;

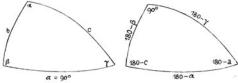
Buchst.	I	2	3	4	5	6	7	8
а	a	lg sin a	$\frac{11+12}{2} = s$	lg sin 34	lg cos 34	lg sin 31	lg cos 31	С
b	ь	lg sin b	$\frac{11-12}{2} = d$	lg sin 33	lg cos 33	lg sin 32	lg cos 32	Buchst.
α	a	lg sin a	$\frac{13+14}{2}=\sigma$	lg tg 32	lg tg 31	lg ctg 34	lg ctg 33	7
β	β	$23 + 22 - 21$ $= \lg \sin \beta$	$\frac{13-14}{2}=\delta$	43+42-41	$53+52-51$ $= \lg \lg \frac{c}{2}$	$63+62-61$ $= \lg \lg \frac{\gamma}{2}$	$73+72-71$ $= \lg \lg \frac{7}{2}$	Buchst.

Buchst.	I	2	3	4	5	6	7	8
пo	76°20·0	998753	67°04·0	924039	999333	996424	959069	82°17·0
o m	57°48∙0	992747	9°16·0	996913	956111	920691	999429	m n
om n	78°40·2	999145.	68°39·2	921261	037355	075294	959197	89°25·0
mno	58°38·2	993139.	10,01.0	994135	994133.	999561	999557:	mon

6. Aufgabe. Gegeben: αβ a. Gesucht: b c γ.

Formeln: Dieselben wie bei 5. Auch das Schema ist in gleicher Weise zu benutzen, nur ist 14 gegeben, 12 berechnet sich durch lg sin b=22=21+24-23. Alles Andere bleibt dasselbe.

Rechtwinkliges Dreieck. Zur Auflösung des rechtwinkligen Dreiecks genügt die Napier'sche Regel, die lautet:


> Der Cosinus eines Stücks ist gleich dem Product der Cotangenten der beiden benachbarten und gleich dem Product der Sinus der beiden entfernten Stücke. Dabei ist der rechte Winkel bei der Zählung nicht mitzurechnen, und wenn ein Stück Kathete ist, so tritt statt der in der Regel verlangten Function die Cofunction ein.

Die folgende bequeme Zusammenstellung der Einzelfälle giebt Brezina: Methodik: 1884. 346 (147).

	Gegeben.		Gesucht.	
	a b	$\cos c = \cos a : \cos b$	$\cos \gamma = \operatorname{tg} b \operatorname{ctg} a$	$\sin \beta = \sin b : \sin a$
# 0.0°	b c	$\cos a = \cos b \cos c$	$ctg \beta = ctg b sin c$	ctg γ = sin b ctg c
α=90°	аβ	$ctg \gamma = cos a tg \beta$	$\sin b = \sin a \sin \beta$	$tg c = tg a \cos \beta$
	ъβ	$\sin a = \sin b : \sin \beta$	$\sin c = tg b ctg \beta$	$\sin \gamma = \cos \beta : \cos b$
	Ьγ	$ctg a = ctg b \cos \gamma$	$tg c = sin b tg \gamma$	$\cos \beta = \cos \dot{b} \sin \gamma$
	βγ	$\cos a = \operatorname{ctg} \beta \operatorname{ctg} \gamma$	$\cos b = \cos \beta : \sin \gamma$	$\cos c = \cos \gamma : \sin \beta$

Rechtseitiges Dreieck. Auch hier können wir mit der Napier'schen Regel auskommen, wenn wir statt des zu behandelnden Dreiecks sein polares rechtwinkliges zur Untersuchung nehmen:

In den beiden polaren (reciproken) Dreiecken ergänzen die Seiten des einen die Winkel des andern zu 1800. Wir können das polare Dreieck aufzeichnen und in ihm nach der Napier'schen Regel rechnen; erhal- Rechtseitiges Dreieck. Polares (rechtwinkliges) ten als Resultat nicht b c αβγ, sondern

Dreieck. Fig. 92. Fig. 91.

$$180 - b$$
, $180 - c$, $180 - \alpha$, $180 - \beta$, $180 - \gamma$.

Brezina giebt auch hierfür (Methodik 1884. 348 [176]) eine Zusammenstellung der Einzelfälle, die hier folgen möge.

	Gegeben.		Gesucht.	
	αβ	$\cos \gamma = \cos \alpha : \cos \beta$	$\cos c = tg \beta ctg \alpha$	$\sin b = \sin \beta : \sin \alpha$
a=90°	βγ	$\cos \alpha = \cos \beta \cos \gamma$	$\operatorname{ctg} b = \operatorname{ctg} \beta \sin \gamma$	$ctg c = sin \beta ctg \gamma$
a==90	a b	$ctg c = cos \alpha tg b$	$\sin\beta = \sin\alpha \sin b$	$tg \gamma = tg a \cos b$
	βъ	$\sin\alpha = \sin\beta : \sin b$	$\sin \gamma = \operatorname{tg} \beta \operatorname{ctg} b$	$\sin c = \cos b : \cos \beta$
	βс	$\operatorname{ctg} \alpha = \operatorname{ctg} \beta \cos c$	$tg \gamma = \sin \beta tg c$	$\cos b = \cos \beta \sin c$
	bс	$\cos \alpha = \operatorname{ctg} b \operatorname{ctg} c$	$\cos \beta = \cos b : \sin c$	$\cos \gamma = \cos c : \sin b$

Hilfs - Tabellen.

Es wurde hier eine Tabelle der vierstelligen wirklichen Sinus, Cosinus, Tangenten und Cotangenten, sowie eine Tabelle der Sehnen $\left(2\sin\frac{\alpha}{2}\right)$ gegeben. Sie sind unter Weglassung der Differenzen und der Partes proportionales aus Gauss Logarithmen (Halle 1882) entnommen.

Tab. III leistet gute Dienste bei manchen Rechnungen. Tab. IV dient in der graphischen Krystallberechnung, wie dort gezeigt werden soll, zum Auftragen der Winkel aus ihren Sehnen.

Tabelle III.

Winkel	Sin.	Tang.	Cotg.	Diff.	Cos.	Winkel	Winkel	Sin.	Tang.	Cotg.	Diff.	Cos.	Winke
0° 0'	0.0029	0.0029	infinit. 343:7737		1.0000		4° 40' 50	0.0843	0.0846	12·2505 11·8262	4243 3961	0.9964	10
20 30 40 50	0.0087 0.0116	0.0087	171.8854 114.5887 85.9398 68.7501		0.9999 0.9999	30 20	5 0 10 20 30	0.0901	0.0904	11.4301 11.0594 10.7119 10.3854	2265	0·9959	50 40
1 0 10 20	0.0204	0·0175 0·0204 0·0233	49.1039	81861 61398 47756	o-9998 o-9998 o-9997	50 40	40 50	0·0987 0·1016	0.0992	10·0780 9·7882	3074	0.9951	20 10
30 40 50	0·0291 0·0320	0.0262 0.0291 0.0320	38·1885 34·3678 31·2416	38207 31262 26053	o-9997 o-9996 o-9995	20 10	10 20 30	0·1074 0·1103	0·1051 0·1080 0·1110	9·2553 9·0098	2329	0·9942 0·9939 0·9936	50 40
2 0 10 20 30	o-0378 o-0407	0.0349 0.0378 0.0407 0.0437	26·4316 24·5418	22047 18898 16380	0.9994 0.9993 0.9992 0.9990	50 40	40 50 7 0	0.1190	0·1169 0·1198	8·5555 8·3450	2105	0.9932	10
40 50 3 0	o·0465 o·0494	0.0466 0.0495	21·4704 20·2056	14334 12648 11245	o-9989 o-9988 o-9986	20 10	10 20 30	0·1276 0·1305	O·1257 O·1287 O·1317	7·9530 7·7704 7·5958	1746	0.9922 0.9918 0.9914	40 20
10 20 30	0·0552 0·0581	0.0553 0.0582 0.0612	18·0750 17·1693	9057 8194	0.9985 0.9983 0.9981	40	40 50 8 0	0.1363	0·1346 0·1376 0·1405	7.2687	1600 1533	0.9907	10
40 50 4 0	o-0640 o-0669	0.0641 0.0670 0.0699	15.6048 14.9244	745I 6804 6237	0.9980	20	10 20 30	9·1421 0·1449	0·1435 0·1465 0·1495	6.9682 6.8269	1472 1413 1357	0.9899 0.9894	50 40 30
10 20 30	0·0727 0·0756	0·0729 0·0758 0·0787	13.7267	5740 5298 4907	0.9974	50 40	40 50 9 0	0·1507 0·1536	0·1524 0·1554 0·1584	6·5606 6·4348	1258	0.9886	10
Winkel	Cos.	Cotg.	Tang.	4557 Diff.			Winkel	Cos.	Cotg.	Tang.	-	-	Wink

Tabelle III. (Fortsetzung.)

Winl	cel	Sin.	Tang.	Cotg.	Diff.	Cos.	Winl	cel	Winke	Sin.	Tang.	Cotg.	Diff.	Cos.	Winkel
9°	0'	0.1564	0.1584	6.3138		0.9877	0' 8	81°	18° 0	0.3090	0.3249	3.0777		0.9511	0' 72°
_	10		0.1614		1168	0.9872]	10		0.3281	3.0475	302	0.9502	50
	20		0.1644		1126	0.9868		ı	20		0.3314	3.0178	297	0.9492	
	30		0.1673		1086	0.9863			30		0.3346		29 I	0.9483	
	40		0.1703		1050	0.9858	1 '	ļ	40		0.3378		287	0.9474	
	50		0.1733		1014	0.9853		ı	50		0.3411		281	0.9465	
	0				98 I	0.9848	L .	80			0.3443		277	0.9455	
			0.1763		949		1	ا۵۰		1 3 3			272		
	10		0.1793		919	0.9843			10		0.3476		268	0.9446	
	00	0.1794			890	0.9838			20		0.3508		263	0.9436	
	80		0.1853		862	0.9833			30 40	, 000	0.3541	2.	0.50	0.9426	
	40	0.1851			836	0.9827			50	, 55 5	0.3574		255	0.9417	
	50		0.1914		811	0.9822	K			1	0.3607	2.7725	250	0 9407	
11	0	0.1908	0.1944	5.1446	788	0.9816	li .	79	20	3-	0.3640	2.7475	247	0.9397	1
	10	0.1937	0.1974	5.0658	764	0.9811	50		10	1 311	o.3673		i	0.9387	
:	20	0.1965	0.2004	4.9894	742	0.9805	40		20	3173	0.3706	2.6985	243	0.9377	
;	30	0.1994	0.2035	4.9152		0.9799			30	0.3502	0.3739	2.6746	239	0.9367	
•	40	0.2022	0.2065	4.8430	722 701	0.9793			40		0.3772	2.6511	235	0.9356	
	50	0.2051	0.2095	4.7729	683	0.9787	10		50	0.3557	0.3805	2.6279	232	0.9346	
12	0	0.2079	0.2126	4.7046		0.9781	0	78	21	0.3584	0.3839	2.6051	228	0.9336	0 69
	10		0.2156		664	0.9775	I		10		0.3872		225	0.9325	
	20			4.5736	646	0.9769			20	- 3	0.3906	• .	22 I	0.9315	
	30		0.2217		629	0.9763			30		0.3939		219	0.9304	30
	40	, .	0.2247		613	0.9757			40		0.3973		214	0.9293	20
	50		0.2278		597	0.9750			50		0.4006		212	0.9283	
13					582	0.9744		77	22 0		0.4040		209	0.9272	
			0.2309		568			•••		1 3/4			206		
	10		0.2339		554	0.9737			10 20	1 0,,0	0.4074		203	0.9261	
		0.2306	1		540	0.9730			30	- 3	0.4108 0.4142		200	0.9230	
		0.2334			527	0.9724			40		0.4142		197	0.9239	
	40 50			4.1126	515	0·9717 0·9710	1		50		0.4210		195	0.9216	
	1		0.2462		503		l _	-		.			191		
14	0		0.2493		49 I	0.9703		76	23	1-32-7	0.4245		190	0.9205	۰
	10		0.2524		48 I	0.9696			10	1 - 3237	0.4279		186	0.9194	
	20	0.2476	0.2555	3.9136	469	o-9689			20	1 - 3/	0.4314		705	0.9182	
	30		0.2586		459	0.9681			30	- 37	0.4348	1 2	181	0.9171	
	40		0.2617		448	0.9674			40		0.4383		180	0.9159	10
	50	0.2560	0.2648	3.7760	439	0.9667	2		50		0.4417		177	0.9147	
15	0	0.2588	0.2679	3.7321	430	o-9659	0	75	24 (0.4067	0.4452	2.2460	174	0.9135	ó 88
	10	0.2616	0.2711	3.6891		0.9652	50		10	0.4094	0.4487	2.2286		0.9124	50
:	20	0.2644	0.2742	3.6470	421	0.9644	40		20	0.4120	0.4522	2.2113	173	0.9112	40
;	30			3.6059	411	0.9636	30	1	30	0.4147	0.4557	2.1943	170	0.9100	30
•	40	0.2700	0.2805	3.5656	403 395	0.9628			4(1 , , ,			168	0.9088	
1	50	0.2728	0.2836	3.5261	387	0.9621	10		50	0.4200	0.4628	2.1609	166	0.9075	
16	0		0.2867			0.9613	0	74	25	0.4226	0.4663	2.1445	164	0.9063	0 65
	10		0.2899		379	0.9605			10		0.4699		162	0.9051	
	20		0.2931		37 I	0.9596			20		0.4734		160	0.9038	
	30			3.3759	365	0.9588	30		30		0.4770		158	0.9026	
		0.2868			357	0.9580			40	0.4331	0.4806	2.0809	156	0.9013	
		0.2896			350	0.9572				0.4358	0.4841	2.0655	154	0.9001	
17	- 1			3.2709	343	0.9563		73		0.4384			152	0.8988	0 64
	- 1				338			٠ ١	10		0.4913		150	0.8975	
		0.2952			330	0·9555 0·9546	40		20		0.4913			0.8975	
	9 N	0.2979	0.3121	3.1716	325	0.9540	30		80		0.4986		147	0.8949	B
	40	0.3007	0.3185	3.1710	319	0·9537 0·9528	20		40		0.5022		145	0.8936	
				3.1397	313	0.9520	10		50		0.5059		144	0.8923	
	1				307			70	27	1	0.5095		142	0.8910	
18	0	0.3090	0.3249	3.0777		0.9511		12	21	0.4540	0.5095	1.9020		3.0910	2 03
Win	kel	Cos.	Cotg.	Tang.	Diff.	Sin.	Win	kel	Winke	Cos.	Cotg.	Tang.	Diff.	Sin.	Winkel

Tabelle III. (Fortsetzung.)

								Ť							
10	Winkel	Sin.	Tang.	Cotg.	Diff.	Cos.	Winke	Win	kel	Sin.	Tang.	Cotg.	Diff.	Cos.	Winkel
10	27° 0	0.5450	0.5095	1.9626	7.40	0.8910	0' 63	36°	0'	0.5878	0.7265	1.3764		0.8090	0' 54°
20	10				140										
30 0 4617 0 5200 1910					139				- 1				83		
40 0 4643 0 5243 1 9074 134 0 8857; 120 0 50 5095 0 7445 1 3432 1 1 0 8002 1 1 0 7076 1 1 0 4770 0 5354 1 8676 1 3 1 0 8829 0 62 37 0 0 6608 0 7673 1 3333 0 7995 0 0 40 0 4772 0 5433 1 8804 1 3 8882 40 0 8878 30 0 4072 0 5435 1 8805 1 3 8802 40 0 8878 30 0 6608 0 7673 1 3333 0 7790 0 4867 0 5581 1 7917 1 21 0 64874 0 5581 1 7917 1 21 0 64874 0 5581 1 7917 1 21 0 64874 0 5581 1 7917 1 21 0 64874 0 5581 1 7917 1 21 0 64874 0 5581 1 7917 1 21 0 64874 0 5581 1 7917 1 21 0 64879 0 5590 1 6797 1 31 0 64874 0 5581 1 7917 1 21 0 64879 0 5590 1 6797 1 31 0 6590 0 6					137								83		
So 0	1				136				1		,		82		
28 0 04695 05317 18807 131 08821 10 06641 07531 13100 07531														, ,	
10	_				133		1 .		- 1				8 1		
20 0-4746 0-5392 1-8464 1-848 1-84					131		٠.	1					80		
20 0-4740 0-5392 1-6540 1-8340 40 0-47972 0-5430 1-8341 1-28 0-8764 20 0-4960 0-49772 0-5430 1-8341 1-25 0-8774 20 0-4884 0-5543 1-8040 1-23 0-4898 0-550 1-9765 0-4976 0-550 1-9765 0-4975 0-550 1-9765 0-4975 0-550 1-9765 0-4975 0-550 0-4975 0-					130								79		
30 0-4772 0-5430 1-8418 127 0-8768 30 0-0088 0-7073 1-3032 7-8 0-7914 20 0-4838 0-5543 1-8040 1-2954 7-8 0-7914 20 0-8769 0-10 0	- 1							E .							
10 0.4874 0.5543 1.8040 123 0.8764 10 0.6111 0.7730 1.2954 78 0.7868 10 0.8744 0.5543 1.8040 123 0.8732 50 0.4944 0.5658 1.7675 11 0.8704 30 0.4940 0.5658 1.7675 11 0.8704 30 0.4940 0.5658 1.7675 11 0.8704 30 0.4940 0.5658 0.7741 7.321 11 0.8665 0.4975 0.5735 1.7437 11 0.8665 0.905 0.5853 0.5831 1.7090 11 0.95705 0.5805 0.5831 1.7090 11 0.8666 0.5125 0.5959 0.6583 0.6948 1.6531 0.8651 0.8857 10 0.5255 0.6008 1.6543 10 0.5255 0.6008 1.6420 0.6852 0.6008 0.6252 0.6242 0.6605 0.6852 0.6008 0.6252 0.6242 0.6605 0.8552 0.85															
29 0 0-4874 0-5581 1-7907 123 0-8768 0 613 80 0 0-6137 0-7813 1-2799 76 7680 0 578 0-7814 1-229 0 0-8899 0-5619 1-7906 121 0-8708 0 0-9924 0-5658 1-7675 115 0-8708 0 0-9924 0-5658 1-7675 115 0-8708 0 0-9924 0-5658 1-7695 115 0-8708 0 0-9924 0-5658 1-7695 115 0-8708 0 0-9924 0-5658 1-7695 115 0-8708 0 0-9924 0-5658 1-7695 115 0-8708 0 0-9924 0-5658 1-7695 115 0-8708 0 0-9924 0-5658 1-7695 115 0-8708 0 0-9924 0-5658 1-7695 115 0-8708 0 0-9924 0-9928 1-12675 0-9928 0 0-9928 1-7695 115 0-8708 0 0-9928 0 0-9928 1-7925 115 0-8666 0 0 0 0 0 0-9928 0 0-9928 1-2925 0-9928 0 0-9928 1-7925 115 0-8666 0 0 0 0 0 0 0-9928 0 0-9928 1-2925 0-9928 1-9928 0 0-992									:			1			
29 0 0 0 0 0 0 0 0 0	50	0.4823	1 0.5505	1.8165		0.8760			50	0.6134	0.7766	1.2876			
10 0.4874 0.5881 1.7917 121 0.8718 40 20 0.6202 0.7907 1.2647 75 75 40 0.4955 0.5965 1.7556 119 0.8685 20 0.8075 0.6221 0.8055 0.5225 0.7954 1.2572 75 0.8065 0.807	29 0	0.4848	0.5543	1.8040		0.8746	0 6	38	0	0.6157	0.7813	1.2799		o.7880	0 52
20	10	0.4874	0.5581	1.7017		0.8732	50	i	10	0.6180	0.7860	1.2723		0.7862	50
30 0.4924 0.5658 1.7675 110 0.8686 20 0.6485 0.0648 0.8602 1.2497 7.4 7.4 110 0.8689 20 0.6481 0.8695 10 0.6291 0.8695 1.2497 7.4 7.4 111 0.8665 0.8665 0.80 0.6291 0.8695 1.2249 7.4 0.7790 10 0.5050 0.5581 1.7090 113 0.8661 40 0.5050 0.5581 1.7090 113 0.8601 20 0.6338 0.8195 1.2203 7.7753 40 0.5125 0.5960 1.6653 111 0.8601 20 0.6338 0.8292 1.2399 7.7753 40 0.5125 0.5608 1.6647 110 0.8572 0.5950 0.6643 100 0.5220 0.6608 1.6426 107 0.8511 20 0.8511 20 0.8511 20 0.8511 20 0.5225 0.6128 1.6310 0.8526 30 0.5225 0.6128 1.6310 0.8526 30 0.5225 0.6128 1.6310 0.8526 30 0.5348 0.6333 0.5239 0.6249 1.6003 10 0.5324 0.6289 1.5690 0.8485 0.8465 10 0.5324 0.6289 1.5997 10 0.8485 40 0.55338 0.6412 1.5597 10 0.8485 40 0.55338 0.6412 1.5597 10 0.8485 40 0.5542 0.6649 1.5390 0.8485 40 0.5542 0.6649 1.5390 0.8485 40 0.5544 0.6661 1.5013 0.8495 0.5554 0.6661 1.5013 0.6581 0.6640 0.8890 1.2473 0.8495 0.05519 0.6619 1.5088 0.8403 0.5564 0.6687 1.4460 0.55519 0.6619 1.5013 0.8393 0.5733 0.7695 1.4350 0.8333 0.5564 0.6687 1.4460 0.55519 0.6619 1.5108 0.8323 0.400 0.5544 0.6661 1.5416 0.5571 0.6588 0.6907 1.4281 0.05670 0.7573 0.7333 0.8393 0.5773 0.7000 1.4281 0.05670 0.7573 0.7000 1.4281 0.05670 0.7573 0.7000 1.4281 0.05670 0.7573 0.7373 0.8890 0.4418 0.05697 0.9745 1.4368 0.8307 0.05834 0.0597 0.7733 0.8890 0.6812 0.05873 0.05834 0.0597 0.7733 0.8890 0.5890 0.5858 0.7201 0.8890 0.5588 0.7201 0.7234 0.06970 0.9942 0.05834 0.05970 0.7733 0.08900 0.5590 0.6698 0.6958 0.6958 0.4000 0.58854 0.0000 0.5590 0.6698 0.6958 0.6959 0.4000 0.88900 0.5590 0.6698 0.69954								1	20						
40								1	30						
50							1	ł	40						
30 0 0 0 0 0 0 0 0 0			1 -					1	50	1 - 1	_ 1				
10 0 5025 0 5881 1 77005 115 0 8644 50 0 5050 0 5851 1 7000 115 0 8631 40 0 5100 0 5590 1 66643 111 0 8658 10 0 5575 0 5800 1 6673 111 0 8587 10 0 5275 0 6608 1 6643 111 0 0 8582 10 0 0 8582 0 6688 1 6426 10 0 5275 0 6608 1 6426 10 0 8525 0 6128 1 6319 10 0 5275 0 6628 1 6107 10 0 5275 0 6628 1 6107 10 0 5275 0 6628 1 6107 10 0 5275 0 6628 1 6107 10 0 8526 0 0 6280 1 6107 10 0 5275 0 6628 1 6107 10 0 8526 0 0 0 8542 10 0 0 8526 0 0 0 8542 10 0 0 8526 0 0 0 0 8542 10 0 0 8526 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0					116			130	n				74		
20					116			′ ′′′					73		
30 0-5075 0-5890 1-6976 113 0-8661 30 0-5100 0-5930 1-6867 113 0-8661 20 0-5100 0-5930 1-6867 110 0-8857 0 0-5100 0-6000 1-6643 100 0-5275 0-6048 1-6324 100 0-5275 0-6048 1-6324 100 0-5250 0-6168 1-6312 107 0-8551 20 0-5175 0-6208 1-6101 107 0-8450 0-5175 0-6208 1-6102 107 0-8551 20 0-5175 0-6208 1-6102 107 0-8450 0-5175 0-6208 1-6102 107 0-8450 0-5175 0-6208 1-6102 107 0-8450 0-5175 0-6208 1-6102 107 0-8450 0-5175 0-6208 1-6102 107 0-8450 0-5175 0-6208 1-6102 107 0-8450 0-5175 0-6208 1-6102 107 0-8450 0-5175 0-6208 1-6102 107 0-8450 0-5175 0-6208 1-6102 107 0-8450 0-5373 0-6371 1-5697 100 0-6383 0-5373 0-6371 1-5697 100 0-6383 0-8450 0-5308 0-6412 1-5597 100 0-6330 0-6206 0-8847 1-1306 0-6604 0-8683 0-5373 0-6371 1-5697 100 0-6383 0-6266 0-8873 1-5038 0-6412 1-5597 100 0-6330 0-6266 0-8873 1-5038 0-6412 1-5597 100 0-6330 0-6266 0-8873 1-5038 0-6412 1-5593 0-6610 0-6004 0	1				115			1					73		
30										0.6338	0.8195	1.2203	72		
10													72		
31 0 0 5125 0 50609 1 -6643 10 0 -5275 0 6608 1 -6263 10 0 -5275 0 6608 1 -6263 10 0 -5275 0 6608 1 -6225 0 6128 1 -6319 10 0 -5250 0 -6688 1 -6212 10 0 -8526 30 30 0 -5250 0 -6688 1 -6212 10 0 -8526 30 30 0 -5290 0 -6249 1 -6003 10 0 -5324 0 -6289 1 -5900 10 0 -5324 0 -6289 1 -5900 20 0 -5348 0 -6330 1 -5508 10 0 -8445 1 0 0 -5338 0 -6312 1 -5597 40 0 -5338 0 -6412 1 -5597 10 0 -8451 0 0 -8452 10 0 -845			0 - 0		III								7 I		
10 0.5275 0.6048 1.6426 107 0.8551 108 0.8557 50 0.8541 111847 70 0.6445 0.6445 0.8541 1.178 69 0.7624 40 0.5250 0.6108 1.6212 105 0.8525 0.6128 1.6319 107 0.8551 105 0.8525 0.6128 1.6107 104 0.5250 0.6108 1.6212 105 0.8496 10 0.5250 0.6128 1.6319 107 0.8511 20 0.8496 10 0.5250 0.6128 1.6309 102 0.5299 0.6249 1.5590 102 0.5348 0.6330 1.5798 101 0.5338 0.6331 1.55697 100 0.5338 0.6412 1.5597 100 0.8434 30 0.5338 0.6412 1.5597 100 0.8434 30 0.5342 0.6453 1.54919 98 0.8431 20 0.5542 0.6453 1.54919 98 0.8387 0.5542 0.6453 1.54919 98 0.5544 0.6661 1.5013 96 0.55519 0.6661 1.5013 94 0.55519 0.6619 1.5108 96 0.8339 30 0.5564 0.6683 1.4641 30 0.5554 0.6661 1.5013 94 0.5554 0.6661 1.5013 94 0.5554 0.6661 1.5013 94 0.5568 0.6916 0.6787 1.4733 20 0.5568 0.6916 1.4460 0.5568 0.6916 1.4460 0.5568 0.6916 1.4460 0.5568 0.6916 1.4460 0.5578 0.702 1.4281 30 0.5568 0.6916 1.4460 0.5578 0.702 1.4281 30 0.5568 0.6916 1.4460 0.5578 0.702 1.4281 30 0.5568 0.6916 1.4460 0.5578 0.702 1.4281 30 0.5568 0.6916 1.4460 0.5578 0.702 1.4281 30 0.5568 0.6916 1.4460 0.5578 0.702 1.4281 30 0.5568 0.6916 1.4460 0.5588 0.6916 1.4460 0.5588 0.6916 1.4460 0.5588 0.6916 1.4460 0.5588 0.6916 1.4460 0.5588 0.6916 1.4460 0.5568 0.6916 1.4460 0.5578 0.702 1.4281 30 0.5564 0.6695 1.4373 20 0.5568 0.6916 1.4460 0.5578 0.702 1.4281 30 0.5564 0.6587 0.7031 1.4016 30 0.5568 0.6916 1.4460 0.5588 0.6916 1.4460 0.5588 0.6916 1.4460 0.5588 0.6916 1.4460 0.5578 0.702 1.4281 30 0.5564 0.6958 0.702 1.4281 30 0.5564 0.6958 0.702 1.4281 30 0.5564 0.6958 0.702 1.4281 30 0.5564 0.6958 0.702 1.4281 30 0.5568 0.6916 1.4460 0.5588 0.6916 1								1				1.1988	70		
10 0 5275 0 6048 1 6534 108	31 0	0.5150	0.6009	1.6643	100	0.8572	0 5	40	0	0.6428	0.8391	1.1918	7 1	0.7660	0 50
20 0.5200 0.6088 1.6426 100 0.8542 40 0.8541 1.1778 670 0.7623 40 0.5250 0.6168 1.6212 105 0.8496 10 0.5250 0.6268 1.6107 104 0.5254 0.6289 1.5990 20 0.5334 0.6330 1.5998 100 0.5338 0.6371 1.5597 100 0.5422 0.6453 1.5497 30 0.8434 30 0.6649 0.6583 0.8462 11.1371 65 0.6690 0.5422 0.6453 1.5497 30 0.8496 10 0.5544 0.6661 1.5108 40 0.5554 0.6661 1.5108 40 0.5554 0.6661 1.5108 40 0.5554 0.6661 1.5108 30 0.5564 0.6678 1.4451 30 0.5564 0.6678 1.4451 30 0.5564 0.6678 1.4450 30 0.5564 0.6678 1.4451 30 0.5564 0.6679 1.4450 30 0.5579 0.7021 1.4370 30 0.5564 0.6679 0.7021 1.4370 30 0.5564 0.6679 0.7021 1.4370 30 0.5564 0.6679 0.7021 1.4370 30 0.5564 0.6679 0.7021 1.4370 30 0.5564 0.6679 0.7021 1.4370 30 0.5564 0.6679 0.7021 1.4370 30 0.5564 0.6679 0.7021 1.4370 30 0.5564 0.6879 0.7021 1.4370 30 0.5570 0.7013 1.4019 40 0.5583 0.7089 1.4370 30 0.8225 20 0.8225 20 0.5783 0.7089 1.4370 30 0.8225 20 0.8225 20 0.5783 0.7089 1.4370 30 0.8225 20 0.5783 0.7089 1.4370 30 0.8225 20 0.5884 0.7221 1.3848 36 0.5864 0.7221 1.3848 36 0.5864 0.7221 1.3848 36 0.5864 0.7221 1.3848 36 0.5864 0.7221 1.3848 36 0.5878 0.7221 1.3848 36 0.5878 0.7221 1.3848 36 0.7265 1.3764 36 0.8274 30 0.7030 0.9984 1.0117 5.599 0.7030 0.9984 1.0117 5.599 0.7030 0.9984 1.0117 5.599 0.7030 0.9984 1.0117 5.599 0.7030 0.9984 1.0117 5.599 0.7030 0.9984 1.0117 5.599 0.7030 0.9984 1.0117 5.599 0.7030 0.9984 1.0017 5.599 0.7030 0.9984 1.0117 5.599 0.7030 0.9984 1.0017 5.599 0.7030 0.9984 1.0017 5.599 0.7030 0.9984 1.0017 5.599 0.7030 0.9984 1.0017 5.599 0.7030 0.9984 1.0017 5.599 0.7030 0.9984 1.00	10	0.5275	0.6048	1.6534		0.8557	50	1	10	0.6450	0.8441	1.1847		0.7642	50
30	20	0.5200	0.6088	1.6426				1	20	0.6472	0.8491	1.1778		0.7623	40
\$\frac{40}{50} \begin{array}{cccccccccccccccccccccccccccccccccccc	30	0.5225	0.6128	1.6319		0.8526	¦ 30	1	30	0.6494	0.8541	1.1708		0.7604	30
30 0 0.5175 0.6268 1.6107 104 0.5299 0.6249 1.6003 10 0.5398 0.6330 1.5908 10 0.5373 0.6371 1.5697 10 0.5398 0.6412 1.5597 10 0.5472 0.6453 1.5497 98 0 0.5446 0.6494 1.5399 98 0.6843 10 0.5544 0.6661 1.5013 98 0.8387 0 0.5545 0.6577 1.5204 96 0.8339 30 0.5519 0.6619 1.5108 40 0.5544 0.6661 1.5013 90 0.8333 30 0.5568 0.6703 1.4919 93 0.8307 10 0.5568 0.6703 1.4919 93 0.8307 10 0.5568 0.6787 1.4460 93 0 0.5568 0.6787 1.4460 93 0 0.5688 0.6916 1.4460 93 0 0.5688 0.6916 1.4460 90 0.5688 0.6916 1.4460 90 0.5712 0.6959 1.4370 90 0.8208 10 0.5712 0.6959 1.4370 90 0.5824 10 0.5712 0.6959 1.4370 90 0.8208 10 0.5712 0.6959 1.4370 90 0.8208 10 0.5712 0.6959 1.4370 90 0.8208 10 0.5831 0.7717 1.3934 86 30 0.5831 0.7717 1.3934 86 0.5831 0.7588 0.7265 1.3764 90 0.5831 0.7721 1.3848 84 0.58899 0.5889 0.5889 0.5889 0.5889 0.5889 0.5889 0.5889 0.5889 0.5889 0.5889 0.5889 0.5889 0.58	40	0.5250	0.6168	1.6212		0.8511	20		40	0.6517	0.8591	1.1640			
32	50	0.5175	0.6208	1.6107		ი.8496	10	1	50	0.6539	0.8642	1.1571		0.7566	10
10 0-5324 0-6289 1-5900 102 0-8465 50 0-8465 30 0-5348 0-6330 1-5798 100 0-5398 0-6412 1-5597 100 0-8418 20 0-5398 0-6412 1-5597 100 0-8418 20 0-5422 0-6453 1-5497 98 0-8493 10 0-5471 0-6536 1-5301 96 0-5541 0-6536 1-5301 97 0-8355 40 0-5514 0-6616 1-5013 94 0-5554 0-6661 1-5013 94 0-5554 0-6661 1-5013 94 0-5554 0-6661 1-5013 94 0-5566 0-6787 1-4373 92 0-5664 0-6873 1-4370 80 0-5568 0-6966 0-6787 1-4373 92 0-5664 0-6873 1-4370 80 0-55712 0-6959 1-4370 80 0-8258 10 0-5688 0-6916 1-4460 90 0-5688 0-6916 1-4460 90 0-5731 0-6959 1-4370 80 0-5837 0-7031 1-4319 80 0-5838 0-5837 0-7031 1-4319 80 0-5838 0-5838 0-7089 1-1438 88 88 0-5838 0-5838 0-7089 1-1384 88 88 0-5838 0-5838 0-7089 1-1384 88 88 0-5838 0-7089 1-1384 88 88 0-5838 0-5838 0-7089 1-1384 88 88 0-5838 0-5838 0-7089 1-1384 88 88 0-5838 0-5838 0-7089 1-1384 88 88 0-5838 0-5838 0-7089 1-1384 88 88 0-5838 0-5838 0-7089 1-1384 88 88 0-5838 0-5838 0-7089 1-1384 88 88 0-5838 0-5838 0-7089 1-1384 88 88 0-5838 0-5838 0-7089 1-1384 88 88 0-5838 0-5838 0-7089 1-1360 0-8218 80 0-5838 0-7089 1-1384 88 88 0-5838 0-5838 0-7089 1-1384 88 88 0-5838 0-5838 0-7089 1-1384 88 88 0-5838 0-5838 0-7089 1-1384 88 88 0-5838 0-5838 0-7089 1-1384 88 88 0-5838 0-5838 0-7089 1-1384 88 88 0-5838 0-5838 0-7089 1-1384 88 88 0-5838 0-5838 0-7089 1-1384 88 88 0-5838 0-5838 0-7089 1-1384 88 88 0-5838 0-5838 0-7089 1-1384 88 88 0-5838 0-5838 0-7089 1-1384 88 88 0-5838 0-5838 0-7089 1-1384 88 88 0-5838 0-5838 0-7089 1-1384 88 88 84 0-7089 0-7089 0-7082 1-1086	32 0	0.5299	0.6249	1.6003		0.8480	0 58	41	0	0.6561	0.8693	1.1504		0.7547	0 49
20 0.5348 0.6330 1.5798 101 0.8450 40					103			1	10				68		
30 0.5373 0.6371 1.5697 100 0.8434 30 0.6626 0.8847 1.1303 66 0.7490 30 0.6412 1.5597 100 0.8418 20 0.6626 0.8847 1.1303 66 0.7490 20 0.7490 20 0.6622 0.6453 1.5497 98 0.8387 0.5747 0.6669 0.6697 0.8371 0.6757 0.8371 0.8371 0.8418 20 0.66691 0.9004 1.1106 0.7451 10 0.7451 10 0.6757 0.8375 0.8375 0.8375 0.8375 0.8375 0.8375 0.8375 0.8339 0.6756 0.9576 0.9110 1.0977 64 0.7373 0.7373 0.6756 0.9131 1.0977 64 0.7373 0.7373 0.7373 0.6756 0.9131 1.0977 64 0.7373 0.7373 0.7373 0.7373 0.7373 0.7373 0.7373 0.7373 0.7373 0.7373 0.7373 0.7373 0.7373							ř	1					67		
40 0-5398 0-6412 1.5597 100 0-8448 20 0-8493 11237 66 0-7470 20 0-8493 1.5497 98 0-8387 0 57 42 0-6453 1.5497 98 0-8387 0 57 42 0 0-6691 0-9004 1.1106 65 0-7470 10 0-5495 0-6577 1.5204 96 0-8355 0 0-5519 0-6619 1.5108 95 0-8339 30 0-5544 0-6661 1.5013 94 0-5544 0-6661 1.5013 94 0-5558 0-6793 1.4919 93 0-8293 10 0-5616 0-6787 1.4733 20 0-5660 0-6883 1.4641 91 0-5660 0-5688 0-6916 1.4460 50 0-5712 0-6959 1.4460 50 0-5712 0-6959 1.4370 89 0-8225 20 0-5688 0-6906 1.4460 50 0-5783 0-7089 1.4106 88 88 0-5831 0-7717 1.3934 88 84 0-5831 0-5884 0-7221 1.3848 84 0-5831 0-5884 0-7221 1.3848 84 0-5831 0-5887 0-7255 1.3848 84 0-5839 0-5887 0-7265 1.3848 84 0-5839 0-5887 0-7255 1.3848 84 0-5839 0-5887 0-7255 1.3848 84 0-5839 0-5884 0-7221 1.3848 84 0-5839 0-5887 0-7255 1.3848 84 0-8809 0-5887 0-7255 1.3848 84 0-8809 0-5887 0-7255 1.3848 84 0-7255 1.38													66		
50 0·5422 0·6453 1·5497 98 0·8403 10 0·8403 10 0·6670 0·8952 1·171 66 0·7451 10 0·7451 0·6536 1·5301 98 0·8371 50 0·6691 0·9004 1·1106 65 0·7431 0·4843 0 0·65471 0·6536 1·5301 97 0·8375 40 0·6713 0·9057 1·1041 64 0·7432 40 0·7333 0·6756 0·9103 1·1066 0·7431 0·4833 0·6776 0·9110 1·1066 0·7431 0·7432 40 0·7432 0·9110 1·1066 0·7433 0·7333 0·7333 0·7333 0·7333 0·7333 0·7333 0·7333 0·7333 0·7333 0·7333 0·7333 0·7333 0·7333 0·7333 0·7334 0·73451 0·73451 0·73451 0·73451 0·73451 0·73451 0·7412 0·7373 0·73451 0·7412 0·7412 0·7412 0·7412 0·7412 0·7412 0·7412															
33 0 0.5446 0.6494 1.5399 98 0.8387 0.577 42 0 0.6691 0.9004 1.1106 65 0.7431 0.48 20 0.5471 0.6536 1.5301 97 0.8355 40 20 0.6713 0.9057 1.106 65 0.7431 0.48 30 0.5519 0.6619 1.5108 95 0.8339 30 30 0.6773 0.9057 1.1041 64 0.7333 0.7333 0.7373 30 30 0.5544 0.6619 1.5108 95 0.8323 30 30 0.6776 0.9163 1.0913 63 0.7333 30 34 0.5558 0.6703 1.4826 93 0.8290 0.56 43 0.6820 0.9227 1.0786 64 0.7333 10 30 0.5664 0.6837 1.4450 90 0.8224 30 0.6824 0.9380 1.0561 62 0.7234 61 0.7234	1														
10 0-5471 0-6536 1-5301 97 0-8371 50 0-8371 30 0-5519 0-6619 1-5108 95 0-5558 0-6703 1-4919 93 0-5568 0-6703 1-4919 93 0-8323 10 0-5568 0-6703 1-4919 93 0-8271 0-5604 0-6830 1-4641 91 0-5604 0-6873 1-4550 40 0-55712 0-6959 1-4370 80 0-8281 80 0-5712 0-6959 1-4370 80 0-8281 80 0-5736 0-7002 1-4281 80 0-5736 0-7002 1-4281 80 0-5736 0-7002 1-4281 80 0-5736 0-7002 1-4281 80 0-5736 0-7002 1-4281 80 0-5736 0-7002 1-4281 80 0-5736 0-7002 1-4281 80 0-5838 0-7703 1-4019 85 0-5838 0-7703 1-3934 86 0-5838 0-7137 1-3934 86 0-5838 0-7221 1-3848 86 0-5838 0-7221 1-3848 86 0-5838 0-7221 1-3848 86 0-5838 0-7221 1-3848 86 0-8107 10 0-5878 0-7258 1-3764 80 0-8090 0 54 45 0 0-7071 1-0000 1-0	1				98		1	140	Λ				65		
20 0.5495 0.6577 1.5204 96 0.8355 40 20 0.6734 0.9110 1.0077 64 0.7392 40 0.7392 40 0.7373 30 0.6756 0.9163 1.0913 63 0.7373 30 0.7373 30 0.6777 0.9217 1.0850 64 0.7373 30 0.7373 30 0.6777 0.9217 1.07850 64 0.7373 30 0.7373 30 0.6777 0.9217 1.07850 64 0.7373 30 0.6777 0.9217 1.07850 64 0.7373 30 0.6779 0.9217 1.07850 64 0.7333 10 0.68290 0.68290 0.68290 0.68290 0.9271 1.07850 62 0.7314 0.7333 10 0.7333 10 0.68290 0.9271 1.07850 62 0.7314 0.7333 10 0.7333 10 0.7314 0.7244 63 0.7334 0.7294 0.7294 0.7294 0.7294					98			122		_			65		
30 0-5519 0-6619 1·5108 95 0-8339 30 0-6756 0-9163 1·0913 63 0-7373 30 50 0-5564 0-6703 1·4919 93 0-8323 20 40 0-6777 0-9217 1·0786 64 0-7333 20 34 0 0-5592 0-6787 1·4733 92 0-8224 50 0-8241 30 0-6820 0-9325 1·0724 63 0-7333 10 30 0-5640 0-6830 1·4460 90 0-8241 30 0-6820 0-9325 1·0724 63 0-7234 60 35 0 0-5640 0-6830 1·4460 90 0-8241 30 0-6822 20 0-6824 0-9490 1·0538 61 0-7234 40 35 0 0-5712 0-6959 1·4470 88 0-8192 0-5813 0-6926 0-9601 1·0416 61 0-7234 60					97	0.8371	30	ļ					64		
40 0.5544 0.6661 1.5013 94 0.8323 20 0.5568 0.6703 1.4919 93 0.8323 20 0.5568 0.6703 1.4919 93 0.8290 0.5692 0.5616 0.6787 1.4733 92 0.8258 0.05640 0.66873 1.4550 0.05664 0.66873 1.4550 0.05688 0.6916 1.4460 0.5568 0.6916 1.4460 0.55712 0.6959 1.4370 89 0.8224 20 0.5736 0.7002 1.4281 10 0.5760 0.7002 1.4281 10 0.7002					96								64		
50 0.5568 0.6703 1.4919 94 0.8307 10 0.6799 0.9271 1.0786 62 0.7333 10 43 0.6820 0.9325 1.0724 63 0.7314 0.7314 0.7314 0.7314 0.7314 0.7314 0.7314 0.7274					95								63		
34 0 0 0.5592 0.6745 1.4826 93 0.8290 0 56 43 0 0.6820 0.9325 1.0724 63 0.7314 0 47 20 0.5660 0.6873 1.4450 91 0.8241 90 0.8241 90 0.6884 0.9435 1.0599 61 0.7274 40 30 0.5660 0.6873 1.4450 90 0.8225 20 0.8225 20 0.6884 0.9490 1.0538 61 0.7234 40 35 0 0.5712 0.6959 1.4370 89 0.8225 20 40 0.6905 0.9657 1.0470 61 0.7234 40 35 0 0.5783 0.7089 1.44106 88 0.8175 50 0.8158 40 0.6967 0.9913 1.0295 60 0.7214 10 20 0.5831 0.7177 0.7133 1.4019 85 0.8158 40 0.7099 0.9827 1.0176 0.7133 30 36 0 0.5878 0.7265 1.3764 84 0.809 0.54 45 0.7091 1.0008 0.7091		,	1 .		94		1						64		
10 0.5616 0.6787 1.4733 92 0.8274 50 0.6841 0.9380 1.0661 20 0.7294 40 0.5684 0.6973 1.4450 90 0.8225 20 0.5736 0.7002 1.4281 10 0.5760 0.7046 1.4193 20 0.5783 0.7089 1.4106 88 0.6916 1.4460 873 0.7294 10 0.8225 20 0.8225 20 0.8225 20 0.6926 0.9601 1.0416 61 0.7214 10 0.6967 0.9696 0.9601 1.0416 88 0.8102 0.5783 0.7089 1.4106 87 0.8158 40 0.5858 0.7089 1.4106 87 0.8158 40 0.5831 0.7177 1.3934 86 0.8107 10 0.5854 0.7221 1.3848 84 0.8107 10 0.5854 0.7221 1.3848 84 0.8107 10 0.5890 0 54 45 0 0.7071 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.0000 1.0000 1.0000 1.0					93			1					6 <i>2</i>	0.7333	
10 0-5616 0-6787 1-4733 92 0-8274 50 0-6841 0-9380 1-0661 20 0-7294 50 0-729	34 0				93								63		
20 0.5640 0.6830 1.4641 91 0.8258 40 30 0.6862 0.9435 1.0599 61 0.7274 40 30 0.5664 0.6873 1.4550 90 0.8224 30 0.6884 0.9490 1.0538 61 0.7274 40 50 0.5712 0.6959 1.4370 89 0.8225 20 40 0.6926 0.9611 1.0416 61 0.7234 20 35 0.5776 0.7002 1.4281 88 0.8192 0.55 44 0.6967 0.9657 1.0355 0.7123 0.7124 10 20 0.5783 0.7089 1.4106 87 0.8158 40 20 0.6967 0.9713 1.0295 0.7113 40 30 0.5807 0.7133 1.4019 85 0.8158 40 0.7090 0.9884 1.0117 59 0.7133 30 40 0.5854 0.7221 1.3848 <th< th=""><th>10</th><th>0.5616</th><th>0.6787</th><th>1.4733</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>0.7294</th><th>50</th></th<>	10	0.5616	0.6787	1.4733										0.7294	50
30 0.5684 0.6873 1.4550 90 0.8225 20 40 0.5684 0.9490 1.0538 61 0.7254 20 50 0.5712 0.6959 1.4370 89 0.8225 20 0.6926 0.9601 1.0416 61 0.7234 20 35 0.5760 0.7002 1.4281 88 88 0.8192 0.55 44 0.6967 0.9657 1.0355 60 0.7193 0.7193 0.8178 0.8178 40 0.6967 0.9697 1.0225 0.7173 0.7173 50 30 0.5807 0.7133 1.4019 85 0.8158 40 0.7030 0.9884 1.0176 59 0.7133 30 40 0.5854 0.7221 1.3848 86 0.8107 10 30 0.7050 0.9942 1.0058 59 0.7112 20 36 0.5878 0.7265 1.3764 0.8090 0.54 45 0.7071 1.0000 1.0000 0.7071 0.7071 0.7071 0.7071 0.7071 0.	20								- 1					0.7274	40
40 0.5688 0.6916 1.4460 90 0.8225 20 40 0.6905 0.9545 1.0477 61 0.7234 20 0.5736 0.7002 1.4281 88 0.8192 0 0.5760 0.7046 1.4193 87 0.8155 50 0.5963 0.7089 1.4106 87 0.8158 0.8158 0.05783 0.7089 1.4106 87 0.8158 0.8158 0.05831 0.7177 1.3934 85 0.8141 80 0.5831 0.7177 1.3934 86 0.8192 0.8193 0.5858 0.7265 1.3764 86 0.8090 0 54 45 0 0.7071 1.0000 1.0000 0.7071 0 48	30	0.5664	0.6873	1.4550				1		o·6884	0.9490	1.0538		0.7254	80
50 0-5712 0-6959 1-4370 89 0-8208 10 50 0-6926 0-9657 1-0416 61 0-7214 10 0-7214 10 0-7214 10 0-6967 1-0355 0-07193 0-416 61 0-7214 10 0-7213 0-7213 10 0-7213 10 0-7213 0-7213 10 0-7213 10 0-7213 10 0-7213 10 0-7213 10 0-7213<					90					0.6905	0.9545	1.0477	£ T	0.7234	20
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	50				30	0.8208	10	1	50	0.6926	0.9601	1.0416		0.7214	10
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	35 6	0.5736	0.7002	1.4281		0.8192	0 5	44	0	0.6947	0.9657	1.0355		0.7193	0 46
20 0-5783 0-7089 1-4106 87 0-8158 40 20 0-6988 0-9770 1-0235 89 0-7153 40 0-5831 0-7177 1-3934 86 0-8164 10 0-5854 0-7221 1-3848 84 0-8107 10 0-5854 0-7221 1-3848 84 0-8107 10 0-8090 0 54 45 0 0-7071 1-0000 1-000							K		10						
30 0.5807 0.7133 1.4019 8.5 0.8141 30 0.7009 0.9827 1.0176 59 0.7133 30 0.7009 0.9854 1.0117 50 0.5854 0.7221 1.3848 8.4 0.8007 10 0.8007 10 0.7050 0.9942 1.0058 59 0.7009 10 0.7050 0.9942 1.0058 59 0.7009 10 0.7071 1.0000 1.0000 58 84 0.7071 0 48	-				i					0.6088	0.9770	1.0235		0.7153	40
40 0.5831 0.7177 1.3934 86 0.8124 20 0.7030 0.9884 1.0117 59 0.7050 0.9942 1.0058 39 0.7051 0.8848 86 0.8107 10 50 0.7050 0.9942 1.0058 59 0.7071 0.8990 0 54 45 0 0.7071 1.0000 1.0000 58 88 0.7071 0 48										0.7000	0.9827	1.0176		0.7133	30
50 0.5854 0.7221 1.3848 84 0.8107 10 50 0.7050 0.9942 1.0058 58 0.7092 10 36 0.5878 0.7265 1.3764 0.8090 0 54 45 0 0.7071 1.0000 1.0000 0.7071 0 48						0.8124	20							0.7112	20
36 0 0.5878 0.7265 1.3764 84 0.8090 0 54 45 0 0.7071 1.0000 1.0000 58 0.7071 0 48															
					8 4										
Winkel Cos. Cotg. Tang. Diff. Sin. Winkel Winkel Cos. Cotg. Tang. Diff. Sin. Winke	י סט	1 30/0	3,203	. 3/04		0 0090	<u>.</u> ن	120	<u> </u>	, , , ,				<u> </u>	
	Winkel	Cos.	Cotg.	Tang.	Diff.	Sin.	W'inkel	Win	k el	Cos.	Cotg.	Tang.	Diff.	Sin.	Winkel

Tabelle IV.

0 0 0000 0 00029 0.0058 0 0087 0.0116 0.0145 40 0.6848 0.6868 0.6895 0.6922 0.6950 0.692 0.0349 0.0378 0.0404 0.0233 0.0262 0.0405 0.0404 42 0.7051 0.7059 0.7086 0.7113 0.71 0.0553 0.0582 0.0611 0.0645 0.0404 42 0.7167 0.7195 0.7222 0.7249 0.7276 0.73 0.0524 0.0553 0.0582 0.0611 0.0640 0.0669 43 0.7330 0.7337 0.7384 0.7411 0.7438 0.74 0.0698 0.0727 0.0756 0.0785 0.0814 0.0843 44 0.7492 0.7519 0.7546 0.7573 0.7500 0.76 0.105 0.1103														
• 0' 10' 20' 30' 40' 50' • 0' 10' 20' 30' 40' 50 0 0 00000 0 00000 0 00000 0 00000 0 00000 40' 50' 0' 10' 20' 30' 40' 50 1 0 0175 0 2024 0 233 0 0220 0 233 41' 0 7004 0 20' 0 7150 0 7250 0 786 0 713 0 713 0 7150 0 7250 0 726 0 726 0 7150 0 7150 0 7050 0 785 0 8050 0 7075 0 7050 0 727 0 7050 0 7050 0 7050 0 7050 0 7050 0 7050 0 7050 0 7050 0 7050 0 7050 0 7050 0 7050 0 7050 0 7050 0 7050 0 7050 0 7050 0 7050 0 7050 0 70750 0 7050 0 7050 0 7050 0 7050 0 7050 0 7050 0 7050 0 7050 0 7050 0 7050 0 7050 0 7050 0 7050							Seh	nen.						
0 0 0000 0 00029 0.0058 0 0087 0 0116 0 0145 40 0 06840 0 6868 0 6895 0 6922 0 6950 0 696 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0						(S == 2	$\sin \frac{\alpha}{2}$	-)					
1	. •	O,	10'	20'	30'	40'	50'	•	0'	10'	20 ¹	30'	40'	50'
1 0-0175 0-0204 0-0233 0-0262 0-0291 0-0320 41 0-7004 0-7031 0-7050 0-7086 0-7113 0-712	0	0.0000	0.0029	0.0058	0.0087	0.0116	0.0145	40	0.6840	o.6868	o·6895	0.6922	0.6950	0.6977
8 0.0524 0.0553 0.0582 0.0611 0.0640 0.0669 43 0.7330 0.7330 0.7354 0.7411 0.7438 0.7411 0.7430 0.7519 0.7550 0.7565 0.0814 0.0843 44 0.7492 0.7510 0.7560 0.7560 0.7660 0.0989 0.1013 45 0.7681 0.7681 0.7707 0.7730 0.7761 0.7751 0.7761 0.7861		0.0175	0.0204	0.0233	0.0262	0.0291	0.0320	41						
4 0-0698 0-727 0-0756 0-0785 0-0814 0-0843 44 0-7492 0-7519 0-7534 0-753 0-7660 0-76 6 0.047 0-1076 0-1076 0-1076 0-1076 0-1076 0-1773 0-7734 0-7751 0-7734 0-7922 0-7922 0-7922 0-7922 0-7923 0-802 0-7834 0-802 0-7835 0-8513 0-8613 0-8824 0-8214 0-8214 0-8241 0-8242 0-8255 0-8553 0-8553 <th></th>														
5 0.0872 0.0901 0.0931 0.0960 0.0989 0.1018 45 0.7654 0.7681 0.7777 0.7734 0.7761 0.77 6 0.1047 0.1056 0.1134 0.1163 0.1134 0.1163 0.1134 0.1163 0.1134 0.1163 0.1134 0.1163 0.1134 0.1359 0.1279 0.1308 0.1337 0.1366 47 7.975 0.8022 0.7938 0.8555 0.8685 0.8133 0.8161 0.8188 0.7975 0.8022 0.7934 0.8255 0.8805 0.8805 0.8133 0.8161 0.8294 0.8320 0.8347 0.8373 0.8440 0.8294 0.8320 0.8347 0.8553 0.852 0.8188 0 0.8452 0.8479 0.8531 0.8558 0.852 0.8452 0.8479 0.8531 0.8558 0.852 0.8411 0.9484 0.8279 0.8205 0.8876 0.8531 0.8558 0.852 0.8452 0.8479 0.8531 0.8558 0.852	1													
6 0.1047 0.1076 0.1125 0.1129 0.130 0.1129 46 0.7815 0.7815 0.7841 0.7868 0.7955 0.8020 0.7025 0.8055 0.8052 0.8055 0.8055 0.8052 0.8055 0.8055 0.8052 0.8055 0.8055 0.8052 0.8055 0.8055 0.8052 0.8161 0.8135 0.8161 0.8135 0.8161 0.8135 0.8135 0.8137 0.8373 0.8460 0.8452 0.8479 0.8523 0.8373 0.8453 0.8531 0.8558 0.8541 0.8294 0.8294 0.8294 0.8523 0.8531 0.8558 0.8541 0.8523 0.8531 0.8553 0.8531 0.8553 0.8531 0.8553 0.8531 0.8553 0.8531 0.8531 0.8553 0.8531 0.8533 0.8531 0.8553 0.8531 0.8523 0.8531 0.8523 0.8531 0.8523 0.8531 0.8523 0.8531 0.8523 0.8531 0.8523 0.8523 0.8523 0.8523														
7 0-1221 0-1250 0-1279 0-1308 0-1337 0-1366 47 0-7975 0-8002 0-7028 0-8055 0-8082 0-81 8 0-1395 0-1424, 0-1453 0-1454 0-1511 0-1540 48 0-8135 0-8161 0-8188 0-8214 0-8221 0-825 0-1569 0-1598 0-1627 0-1656 0-1685 0-1714 49 0-8294 0-8320 0-8347 0-8373 0-8340 0-834 0-8373 0-8360 0-8361 0-8161 0-8168 0-8214 0-8221 0-822 0-1019 0-1048 0-1975 0-2004 0-2033 0-2062 51 0-8610 0-8636 0-8663 0-8663 0-8686 0-8871 0-8715 0-871 0-1916 0-1975 0-2004 0-2033 0-2062 51 0-8610 0-8636 0-8663 0-8663 0-8866 0-8871 0-8715 0-871 0-2091 0-2119 0-2148 0-2177 0-2206 0-2235 52 0-8767 0-8794 0-8820 0-8846 0-8872 0-88 13 0-2264 0-2293 0-2322 0-2351 0-2380 0-2409 53 0-8924 0-8925 0-8966 0-9902 0-9028 0-902 14 0-2437 0-2466 0-2495 0-2570 0-2755 55 0-9235 0-9261 0-9287 0-9312 0-9338 0-92 11 0-2956 0-2985 0-3014 0-3042 0-3071 0-3100 57 0-9543 0-3261 0-8626 0-8985 0-3014 0-3042 0-3071 0-3100 57 0-3186 0-3129 0-3157 0-3186 0-3215 0-3284 0-3272 58 0-9848 0-8874 0-9899 0-9924 0-9955 0-9899 0-9924 0-9959 0-9989 0-9924 0-9959 0-9989 0-9924 0-9959 0-9899 0-9924 0-9959 0-9989 0-9924 0-9959 0-9989 0-9924 0-9959 0-9989 0-9924 0-9959 0-9989 0-9924 0-9959 0-9989 0-9924 0-9959 0-9989 0-9924 0-9959 0-9989 0-9924 0-9959 0-9989 0-9924 0-9959 0-9989 0-9924 0-9959 0-9989 0-9924 0-9959 0-9989 0-9924 0-9959 0-9989 0-9924 0-9959 0-9989 0-9924 0-9959 0-9989 0-9924 0-9959 0-9989 0-9989 0-9924 0-9959 0-9989 0-9989 0-9924 0-9959 0-9989 0-9989 0-9924 0-9959 0-9989 0-9989 0-9924 0-9959 0-9989 0-9989 0-99090 0-90924 0-9959 0-9989 0-9989 0-9909 0-90924 0-9959 0-9989 0-9990 0-90924 0-9959 0-9989 0-9989 0-9909 0-90924 0-9959 0-9989 0-9909 0-90924 0-9959 0-9989 0-9989 0-9989 0-9989 0-9989 0-9989 0-99924 0-9959 0-9989 0-9989 0-9989 0-9989 0-9989 0-9989 0-9989 0-99924 0-9959 0-9989 0-9989 0-99924 0-9959 0-9989 0-9989 0-9989 0-9989 0-9989 0-9989 0-9989 0-9989 0-9989 0-9989 0-9989 0-9989 0-9999 0-9099 0-90999 0-90999 0-90999 0-90999 0-90999 0-90999 0-909999 0-90999 0-90999 0-90999 0-90999 0-90999 0-90999 0-90999 0-90999 0-90999 0-90999 0-90999 0-90999 0-9099 0-90999 0-90999 0-9099														
8 0.1395 0.1424 0.1453 0.1540 0.511 0.1540 48 0.8135 0.8181 0.8214 0.8241 0.8241 0.8241 0.8241 0.8241 0.8241 0.8241 0.8241 0.8241 0.8241 0.8241 0.8241 0.8241 0.8241 0.8241 0.8241 0.8241 0.8347 0.8347 0.8347 0.8347 0.8347 0.8347 0.8347 0.8347 0.8347 0.8347 0.8347 0.8347 0.8347 0.8347 0.8347 0.8347 0.8347 0.8450 0.8451	t .													
8														
10	_													
11														
12		0.1743	0.1772	0.1801	0.1830	0.1859	0.1888	50						
18		0.1917	0.1940	0.1975	0.2004	0.2033	0.2002							
14 0.2437 0.2466 0.2495 0.2524 0.2533 0.2582 54 0.9080 0.9106 0.9132 0.9157 0.9183 0.92 15 0.2611 0.2639 0.2668 0.2697 0.2726 0.2755 55 0.9235 0.9287 0.9312 0.9338 0.93 17 0.2956 0.2841 0.2870 0.3041 0.3071 0.3100 57 0.9543 0.9269 0.9260 0.9420 0.95 0.9659 0.9940 0.9620 0.9640 0.9492 0.95 0.9543 0.9569 0.9540 0.9659 0.9540 0.9659 0.9540 0.9659 0.9620 0.9640 0.9492 0.95 0.99														
15 0.2611 0.2639 0.2668 0.2697 0.2726 0.2755 55 0.9235 0.9267 0.9287 0.9312 0.9312 0.9312 0.9312 0.9312 0.9466 0.9492 0.95 17 0.2956 0.2985 0.3014 0.3042 0.3070 0.3100 57 0.9543 0.9620 0.9646 0.9492 0.95 18 0.3129 0.3157 0.3186 0.3215 0.3244 0.3272 58 0.96848 0.9849 0.9994 0.9972 0.9747 0.9772 0.9798 0.98 20 0.3473 0.3502 0.3530 0.3559 0.3587 0.3616 60 1.0000 1.0025 1.0075 1.0101 1.01 21 0.3645 0.3673 0.3792 0.3759 0.3788 61 1.011 1.016 1.0201 1.0226 1.0251 1.022 23 0.3816 0.3873 0.3902 0.3930 0.3959 62 1.0301 1.0226														
16 0·2783 0·2812 0·2841 0·2870 0·2899 0·2927 56 0·3889 0·415 0·9441 0·9466 0·9492 0·95 17 0·2956 0·2985 0·3014 0·3042 0·3071 0·3100 57 0·9543 0·9569 0·9594 0·9620 0·9645 0·96 18 0·3319 0·3358 0·3388 0·3388 0·3388 0·3388 0·3388 0·3388 0·3388 0·3388 0·3388 0·3388 0·3616 60 0·9696 0·9722 0·9747 0·9772 0·9789 0·9924 0·9950 0·99 20 0·3473 0·3502 0·3559 0·3589 0·3588 61 1·0005 1·0025 1·0075 1·0101 1·01 21 0·3645 0·3645 0·3673 0·3759 0·3759 0·3788 61 1·0005 1·0075 1·0101 1·01 22 0·3816 0·3845 0·3873 0·3759 0·3788 61 1·0301														
17 0.2956 0.2985 0.3014 0.3042 0.3071 0.3100 57 0.9543 0.9569 0.9594 0.9620 0.9645 0.96 18 0.3129 0.3157 0.3186 0.3215 0.3244 0.3244 0.3272 0.9747 0.9792 0.9747 0.9792 0.9798 0.98 20 0.3473 0.3520 0.3530 0.3539 0.3539 0.3539 0.3539 0.3788 0.3616 60 1.0002 1.0050 1.0075 1.0101 1.01 21 0.3645 0.3673 0.3730 0.3739 0.3788 0.3959 63788 61 1.051 1.0050 1.0075 1.0101 1.01 23 0.3873 0.4016 0.4044 0.4073 0.4101 0.4130 63 1.0450 1.0351 1.0351 1.0375 1.0400 1.04 24 0.4158 0.4187 0.4215 0.4244 0.4272 0.4300 64 1.0598 1.0623 1.0648 1.0592 1.0594 1.0594 1.0594 1.0594 1.0594 1.0697	1													
18 0·3129 0·3157 0·3186 0·3215 0·3244 0·3272 58 0·9696 0·9722 0·9747 0·9772 0·9798 0·98 19 0·3301 0·3330 0·3358 0·3359 0·3367 0·3645 0·3645 0·3673 0·3702 0·3759 0·3759 0·3788 61 1·0000 1·0025 1·0050 1·0075 1·0101 1·011 1·012 1·022 1·0226 1·025 1·021 1·0226 1·025 1·0201 1·0226 1·025 1·0201 1·0226 1·025 1·0201 1·0226 1·025 1·0201 1·0226 1·025 1·0201 1·0226 1·025 1·0201 1·0226 1·025 1·0201 1·0226 1·025 1·0201 1·0226 1·025 1·0201 1·0226 1·025 1·0201 1·0226 1·025 1·0201 1·0226 1·025 1·0201 1·0226 1·025 1·0201 1·0201 1·0201 1·0201 1·0201 1·0201 1·0201 1·0201														
19	1													
20 0·3473 0·3502 0·3530 0·3559 0·3587 0·3616 60 1·0000 1·0025 1·0075 1·0101 1·02 1·03 1·03<		0.3301	0.3330	0.3358	0.3387	0.3416	0.3444	59						
21 0.3645 0.3673 0.3702 0.3730 0.3759 0.3759 0.3788 61 1.0151 1.0176 1.0201 1.0226 1.0251 1.0251 1.0261 1.0226 1.0251 1.0251 1.0261 1.0221 1.0226 1.0251 1.0261 1.0261 1.0251 1.0261 1.0351 1.0351 1.0351 1.0351 1.0351 1.0351 1.0351 1.0351 1.0351 1.0351 1.0351 1.0351 1.0351 1.0351 1.0400 1.0400 1.0400 1.0400 1.0400 1.0400 1.0400 1.0400 1.0400 1.0400 1.0420	20			استنجاب							_			
22 0.3816 0.3845 0.3873 0.3902 0.3930 0.3959 62 1.0301 1.0326 1.0351 1.0375 1.0400 1.04 24 0.4158 0.4187 0.4215 0.4244 0.4272 0.4300 64 1.0598 1.0623 1.0545 1.0549 1.0544 1.0549 1.0549 1.0648 1.0623 1.0648 1.0679 1.0694 1.0697 1.0771 1.0694														
23														
24 0.4158 0.4158 0.4215 0.4244 0.4272 0.4300 64 1.0598 1.0623 1.0648 1.0672 1.0697 1.07 25 0.4329 0.4357 0.4386 0.4414 0.4442 0.4471 65 1.0746 1.0771 1.0795 1.0819 1.0844 1.08 26 0.4469 0.4527 0.4756 0.4784 0.4612 0.4810 66 1.0746 1.0771 1.0795 1.0819 1.0844 1.08 28 0.4669 0.4697 0.4725 0.4785 0.4979 0.4810 67 1.1039 1.1063 1.1087 1.1111 1.1136 1.11 29 0.5080 0.5036 0.5044 0.5092 0.5148 69 1.1328 1.1325 1.1376 1.1400 1.1424 1.14 30 0.5176 0.5204 0.5233 0.5241 0.5429 0.5457 0.5485 0.5317 70 1.1472 1.1495 1.1519 1.1543	23													
25 0.4329 0.4357 0.4386 0.4414 0.4442 0.4441 0.4442 0.4441 0.4442 0.4442 0.4612 0.4699 0.4527 0.4556 0.4584 0.4612 0.4612 0.4641 66 1.0893 1.0917 1.0942 1.0966 1.0990 1.10 28 0.4689 0.4687 0.4725 0.4725 0.4923 0.4951 0.4810 67 1.1039 1.1063 1.1087 1.1111 1.1136 1.11 28 0.4838 0.4867 0.4895 0.4923 0.4951 0.4979 68 1.1184 1.1208 1.1232 1.1215 1.1111 1.1136 1.11 30 0.5176 0.5204 0.5033 0.5261 0.5289 0.5317 0.5418 69 1.1328 1.1328 1.1320 1.1543 1.1540 1.1424 1.14 31 0.5345 0.5373 0.5429 0.5427 0.5457 0.5457 0.5429 0.5597 0.5625 0.5592 <th< th=""><th>24</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>1.0598</th><th>1.0623</th><th>1.0648</th><th>1.0672</th><th>1.0697</th><th>1.0721</th></th<>	24								1.0598	1.0623	1.0648	1.0672	1.0697	1.0721
26 0.4499 0.4527 0.4556 0.4584 0.4612 0.4641 66 1.0893 1.0917 1.0942 1.0966 1.0990 1.10 27 0.4699 0.4697 0.4725 0.4725 0.4782 0.4810 67 1.1039 1.1063 1.1087 1.1111 1.1136 1.11 28 0.4838 0.4867 0.4895 0.4923 0.4951 0.4919 0.4918 0.4911 0.1128 1.11208 1.1208 1.1232 1.1215 1.1111 1.1136 1.11 30 0.5176 0.5204 0.5092 0.5249 0.5289 0.5317 0.5485 1.1328 1.1328 1.1328 1.1519 1.1543 1.1543 1.1543 1.1540 1.1424 1.14 31 0.5345 0.5373 0.5429 0.5425 0.5485 71 1.1472 1.1495 1.1543 1.1543 1.1554 1.1553 1.1553 1.1543 1.1543 1.1543 1.1543 1.1543 1.1543	25								1.0746	1.0771	1.0795	1.0819	1.0844	1.0868
27 0.4669 0.4697 0.4725 0.4784 0.4782 0.4810 67 1.1039 1.1063 1.1087 1.1111 1.1136 1.112 28 0.4838 0.4867 0.4895 0.4923 0.4951 0.4979 68 1.1184 1.1208 1.1232 1.1256 1.1280 1.138 29 0.5036 0.5036 0.5042 0.5233 0.5240 0.5289 0.5317 70 1.1472 1.1495 1.1543 1.1567 1.1543 1.1567 31 0.5345 0.5373 0.5429 0.5457 0.5485 71 1.1614 1.1638 1.1661 1.1683 1.1543 1.1567 1.157 32 0.5345 0.5373 0.5540 0.5597 0.5425 0.5625 0.5625 0.5625 0.5625 0.5625 0.5625 0.5625 0.5625 0.5820 0.5794 0.5792 0.5820 0.5794 0.5792 0.5825 72 0.5825 72 1.1661 1.1663 1.	1													
29 0.5008 0.5036 0.5036 0.5092 0.5120 0.5148 69 1.1328 1.1352 1.1376 1.1400 1.1424 1.14 30 0.5176 0.5204 0.5233 0.5261 0.5289 0.5317 70 1.1472 1.1495 1.1519 1.1543 1.1567 1.15 32 0.5345 0.5373 0.5569 0.5590 0.5562 0.5625 72 1.1614 1.1638 1.1661 1.1685 1.1709 1.17 33 0.5680 0.5798 0.5764 0.5792 0.5820 0.5820 72 1.1756 1.1920 1.1943 1.1826 1.1826 1.1826 1.1826 1.1826 1.1826 1.1826 1.1826 1.1820	27							67	1.1039	1.1063	1.1087	1.1111	1.1136	1.1160
30 0·5176 0·5204 0·5233 0·5261 0·5289 0·5317 70 1·1472 1·1495 1·1519 1·1543 1·1567 1·15 31 0·5345 0·5373 0·5401 0·5429 0·5457 0·5485 71 1·1614 1·1638 1·1601 1·1653 1·1709 1·17 32 0·5513 0·5541 0·5569 0·5597 0·5625 0·5625 0·5622 72 1·1756 1·1779 1·1803 1·1826 1·1850 1·18 33 0·5680 0·5736 0·5736 0·5764 0·5792 0·5820 73 1·1896 1·1920 1·1943 1·1866 1·1850 1·18 34 0·5847 0·5875 0·5903 0·5931 0·5959 0·5986 74 1·2036 1·2060 1·2083 1·2106 1·1990 1·20 35 0·6014 0.6042 0·6070 0·6097 0·6125 0·6125 0·6123 0·6233 0·6236 0·6236 0·6236 0·6236 0·6245 0·6456 0·6346 0·6346 0·6374 0·6401									1.1184	1.1208	1.1232	1.1256	1.1280	1 · 1 304
31 0.5345 0.5373 0.5401 0.5429 0.5457 0.5485 71 1.1614 1.1638 1.1601 1.1685 1.1709 1.17 32 0.5513 0.5541 0.5569 0.5597 0.5625 0.5625 72 1.1756 1.1779 1.1803 1.1826 1.1850 1.18 33 0.5680 0.5736 0.5736 0.5792 0.5820 73 1.1896 1.1920 1.1943 1.1966 1.1990 1.20 34 0.5847 0.5875 0.5903 0.5931 0.5959 0.5986 74 1.2036 1.2060 1.2083 1.2106 1.2129 1.21 35 0.6018 0.6042 0.6070 0.6097 0.6125 0.6153 75 1.2175 1.2198 1.2221 1.2244 1.2267 1.22 36 0.6180 0.6208 0.6236 0.6263 0.6291 0.6319 76 1.2313 1.2336 1.2359 1.2382 1.2405 1.24 37 0.6346 0.6374 0.6401 0.6429 0.6456 0.6456<	29	0.5008	0.5036	0.5064	0.5092	0.5120	0.5148	69_	1.1328	1.1352	1.1376	1.1400	1.1424	1.1448
32 0.5513 0.5541 0.5560 0.5597 0.5625 0.5625 0.5622 72 1.1756 1.1779 1.1803 1.1826 1.1850 <th< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>1</th><th></th><th></th><th></th><th></th><th></th><th></th></th<>								1						
38 0.5680 0.5788 0.5736 0.5736 0.5792 0.5820 78 1.1896 1.1920 1.1943 1.1943 1.1966 1.1990 1.20 34 0.5847 0.5875 0.5903 0.5931 0.5959 0.5986 74 1.2036 1.2060 1.2083 1.2106 1.2129 1.212 1.212 1.212 1.212 1.217 1.2175 1.2198 1.2221 1.2244 1.2267 1.22 36 0.6180 0.6208 0.6236 0.6263 0.6291 0.6319 76 1.2313 1.2336 1.2359 1.2381 1.2405 1.24 37 0.6346 0.6374 0.6401 0.6429 0.6456 0.6484 77 1.2450 1.2473 1.2495 1.2511 1.25 38 0.6511 0.6539 0.6566 0.6594 0.6621 0.6649 78 1.2586 1.2609 1.2654 1.2677 1.2811 1.28 39 0.6676 0.6704 0.6731 0.6758 0.6786 0.6813 79 1.2722 1.2744 1.2	1													
34 0·5847 0·5875 0·5903 0·5931 0·5959 0·5986 74 1·2036 1·2060 1·2083 1·2106 1·2129 1·212 1·213 35 0·6014 0.6042 0·6070 0·6097 0·6125 0·6153 75 1·2175 1·2198 1·2221 1·2244 1·2267 1·2267 36 0·6180 0·6208 0·6236 0·6263 0·6291 0·6319 76 1·2313 1·2336 1·2359 1·2382 1·2405 1·24 37 0·6346 0·6374 0·6401 0·6429 0·6456 0·6484 77 1·2450 1·2473 1·2496 1·2511 1·2541 1·25 38 0·6511 0·6539 0·6569 0·6758 0·6786 0·6813 79 1·2722 1·2744 1·2766 1·2789 1·2811 1·28	1													
35 0.6014 0.6042 0.6070 0.6097 0.6125 0.6125 0.6153 75 1.2175 1.2198 1.2221 1.2244 1.2267 1.227 36 0.6180 0.6280 0.6236 0.6263 0.6291 0.6319 76 1.2313 1.2336 1.2359 1.2382 1.2405 1.2405 1.2450 1.2473 1.2496 1.2518 1.2541 1.2541 1.2541 1.2541 1.2541 1.2586 1.2632 1.2632 1.2654 1.2677 1.26 39 0.6676 0.6704 0.6731 0.6758 0.6786 0.6813 79 1.2722 1.2744 1.2766 1.2789 1.2811 1.28														
36 0.6180 0.6208 0.6236 0.6263 0.6291 0.6319 76 1.2313 1.2336 1.2359 1.2382 1.2405 1.24 37 0.6346 0.6374 0.6401 0.6429 0.6456 0.6484 77 1.2450 1.2473 1.2495 1.2518 1.2541 1.25 38 0.6511 0.6539 0.6569 0.6621 0.6649 78 1.2586 1.2609 1.2632 1.2654 1.2677 1.26 39 0.6676 0.6704 0.6731 0.6758 0.6786 0.6813 79 1.2722 1.2744 1.2766 1.2789 1.2811 1.28														
87 0.6346 0.6374 0.6401 0.6429 0.6456 0.6484 77 1.2450 1.2473 1.2496 1.2518 1.2541 1.251 88 0.6511 0.6539 0.6566 0.6594 0.6621 0.6649 78 1.2586 1.2609 1.2632 1.2654 1.2677 1.267 1.268 89 0.6676 0.6704 0.6731 0.6758 0.6786 0.6813 79 1.2722 1.2744 1.2766 1.2789 1.2811 1.28														
38 0.6511 0.6539 0.6566 0.6594 0.6621 0.6649 78 1.2586 1.2609 1.2632 1.2654 1.2677 1.26 39 0.6676 0.6704 0.6731 0.6758 0.6786 0.6813 79 1.2722 1.2744 1.2766 1.2789 1.2811 1.28														
39 0.6676 0.6704 0.6731 0.6758 0.6786 0.6813 79 1.2722 1.2744 1.2766 1.2789 1.2811 1.28		,												
	1													
° 0' 10' 20' 30' 40' 50' ° 0' 10' 20' 30' 40' 50		3.0070	5.0704	5.0731	0.0730	5.0750	5.0013		- 2/22	/44	1.2700	12/09	- 2011	- 2033
	•	O'	10'	20 '	30'	40'	50	۰	O,	10'	20'	- 30 '	40'	50'

Tabelle IV. Sehnen. (Fortsetzung.)

٥	0'	10'	20'	30'	40'	50'	۰	0,	10'	20'	30'	40'	50'
80	1.2856	1.2878	1.2900	1.2922	1.2945	1.2967	130	1.8126	1.8138	1.8151	1.8163	1.8175	1.8187
81	1.2989		1.3033			1.3099					1.8235		
82	1.3121	1.3143	1.3165	1.3187	1.3209		132				1.8306		
83			1.3296				133				1.8376		
84			1.3426								1.8444		
85			1.3555								1.8511		
86 87						1.3746					1·8576 1·8640		
88			1·3809 1·3935								1.8703		
89			1.4060								1.8764		
90		:	1.4183				140				1.8824		
91						1.4367					1.8882		
92						1.4487					1.8939		
93						1.4607					1.8994		
94						1.4726		1.9021	1.9030	1.9039	1.9048	1.9057	1.9066
95			1.4785				145	1.9074	1.9083	1.9092	1.9100	1.9109	1.9118
96						1.4960	146				1.9151		
97	1.4979	1.4998	1.5018	1.5037	1.5056	1.5075		1.9176	1.9185	1.9193	1.9201	1.9209	1.6217
98						1.5189					1.9249		1.9265
99	1.5208	1.5227	1.5246	1.5265	1.5283	1.5302	149	1.9273	1.9280	1.9288	1.9296		1.9311
100			1.5358					1.9319	1.9326	1.9333	1.9341	1.9348	1.9356
101						1.5525					1.9385		
102			1.5579								1.9427		1.9441
103 104			1.5688				153 154				1.9468		
			1.5796								1.9507		
105 106			1.5902			1.5955	155 156				1·9545 1·9581		1.9557
107						1.6163					1.9501		
108			1.6214			1.6265					1.9649		
109						1.6366					1.9681		
110						1.6466					1.9711		
111						1.6564					1.9740		
112						1.6662		1.9754	1.9758	1.9763	1.9767	1.9772	1.9776
113						1.6758		1.9780	1.9785	1.9789	1.9793	1.9797	1.9801
114	1.6773	1.6789	1.6805	1.6821	1.6836	1.6852	164				1.9817		
115			1.6899								1.9840		
116	-		1			1.7038			1.9854		1.9861		
117						1.7128					1.9881		
118 119			1.7173								1·9899 1·9916		
120	1.7233		1.7262				170						
121	1.7321		1·7350 1·7436								1·9931 1·9945		
122			1.7521			1.7562					1.9957		1.9961
123			1.7604				173				1.9968		1
124			1.7686				174				1.9977		1.9980
125			1.7767				175	1			1.9985		
126			1.7846								1.9991		1.9992
127						1.7963	177	1.9993	1.9994	1.9995	1.9995	1.9996	1.9996
128	1.7976	1.7989	1.8001	1.8014	1.8027	1.8039	178				1.9998		
129	1.8052	1.8064	1.8077	1.8089	1.8101	1.8114	179	1.9999	1.9999	2.0000	2.0000	2.0000	2.0000
٥	O'	101	20'	30¹	40'	50'	٥	0'	10'	20¹	30 ¹	40¹	50'

Buchstabenbezeichnung.

In der Buchstabenbezeichnung der Flächen sind verschiedene Principien massgebend gewesen und zur Anwendung gekommen. Diese Principien leiten sich her aus dem Zweck der Buchstabenbezeichnung; dieser ist ein doppelter:

- I. Eine kurze Bezeichnung für eine bestimmte Form zu haben, die sich bequem in die Zeichnung eintragen und leichter aussprechen lässt als die Symbole;
- II. eine Bezeichnung zu haben, die, unabhängig von der Interpretation des Flächenzusammenhangs, eine Form feststellen und identificiren lässt.

In Hinsicht auf I sind die Buchstaben ein Surrogat für die Symbole und erreichen ihren Zweck am vollkommensten, wenn sie möglichst nahe soviel ausdrücken als diese. Aus I gehen mehrere Principien hervor:

- A. Die Buchstabenzeichen sollen möglichst einfach sein.
- B. Sie sollen sich leicht aussprechen lassen.
- C. Soweit möglich sollen die Buchstaben Auskunft geben über die Lage der Form.
- D. Formen gleichen Symbols bei verschiedenen Krystallen sollen mit gleichen Buchstaben bezeichnet werden.
- E. Die Buchstaben wechseln mit der Aufstellung des Krystalls.
- F. Wo die Symbole selbst genügende Einfachheit gewähren, entfällt die Buchstabenbezeichnung.

In Hinsicht auf II sind die Buchstaben reine Eigennamen und es folgen aus dieser Eigenschaft wieder mehrere Principien.

- G. Die Buchstaben sollen vollkommen frei sein von jeder Deutung.
- H. Die Wahl des Buchstabens selbst ist ganz ohne Bedeutung.
- J. Der Buchstabe, der einer Form einmal beigelegt worden ist, verbleibt derselben durch allen Wechsel der Aufstellung.
- K. Jede Form muss ausser dem Symbol einen Buchstaben führen.

Ausserdem sind noch, wo Buchstaben bereits in Gebrauch sind, zwei Principien zu berücksichtigen, die nicht unter I und II fallen.

L. Es soll jedesmal der Buchstabe gewählt werden, den der erste Autor der Fläche beigelegt hat (Priorität).

M. Es sollen die Buchstaben gewählt werden, welche zur Zeit für die betreffenden Formen die gebräuchlichsten sind (Usus).

Wie ersichtlich, sind eine Anzahl dieser Principien vollständig oder theilweise mit einander in Widerspruch. Wir wollen einen Ausgleich versuchen und zu dem Zweck die einzelnen Punkte näher betrachten.

Von allen den 12 angeführten Principien sind ABJK stets zu befolgen, die übrigen nur, insoweit sie den andern nicht im Wege stehen.

Ad A und B. Wahl der Buchstabenzeichen nach ihrer Einfachheit. Von Buchstabenzeichen, die diesen Anforderungen gerecht werden, stehen uns folgende zur Verfügung:

die	kleinen	lateinischen	Buch staben	a-z incl. j .								26
"	grossen	,,	"	A—Z " J .								26
die	kleinen	griechischen	Buch staben	αβγδεζηθιχ	λ	μν	ξπρ	σ	τφ	χψ	ω	22
,,	grossen	,,	"	ΓΔΘΛΞΠΣΦ) Ų	Ω						10
die	kleinen	deutschen	Buchstaben	$\mathfrak{a} - \mathfrak{z}$ (excl. \mathfrak{j})								25
"	grossen	,,	***	$\mathfrak{A}-\mathfrak{Z}$ (excl. \mathfrak{Z})								24
												133

Von den kleinen griechischen Buchstaben entfällt $\mathfrak o$ weil = lat. $\mathfrak o$, $\mathfrak o$ weil von lat. $\mathfrak o$ im Druck wohl verschieden, in der Schrift jedoch nicht zu unterscheiden. Dagegen könnten allenfalls $\mathfrak o$ = $\mathfrak o \mathfrak o$ und $\mathfrak o$ (Schlusssigma) hereingenommen werden. Von den grossen griechischen Buchstabenzeichen fallen die übrigen mit den lateinischen zusammen.

Nun giebt es aber Mineralien, die mehr als 133 (135) Formen aufzuweisen haben; für diesen Fall müssen wir zur Buchstaben-Bezeichnung andere Mittel suchen. Als solche bieten sich dar:

- 1. Andere Alphabete, etwa das cyrillische, russische u. s. w. Diese empfehlen sich nicht wegen zu wenig allgemeiner Verbreitung der Kenntniss derselben.
- 2. Astronomische (alchymistische) Zeichen, als: ⊃⊙♂ to oder ∆ □ u. s. w. Wohl zuerst Miller (Min. 1852) hat versucht, solche einzuführen. Diese Zeichen sind jedoch schlecht auszusprechen, auch sind sie bald erschöpft. Endlich kommt es uns seltsam vor, eine arme kleine Fläche mit dem Zeichen des Jupiter oder des Mars zu bezeichnen. Es hat diese Art der Bezeichnung auch kaum Eingang gefunden.
- 3. Zahlen sind bereits von Hauy (vgl. Min. 1822. 1. 303) benutzt worden. Sie gestatten eine beliebige Ausdehnung, dagegen könnten sie leicht zu Verwechselungen mit den Symbolen führen. Um dies hintanzuhalten und zugleich mehrziffrige Zahlen als Ganzes so fest zu umschliessen, dass sich Indices anbringen lassen, könnten wir das Mittel anwenden, dessen sich die Astronomen in einem ähnlichen Fall für die kleinen Planeten bedienen, nämlich dass wir die Zahl mit einem Ring umziehen, z. B. ②. In der Aus-

sprache wäre noch immer eine Verwechselung mit den Symbolen möglich und kann man, im Fall diese Möglichkeit vorliegt, ② = Nummer 2 aussprechen, während 2 = "Zwei" gesprochen, das Symbol 2 bedeutet.

- 4. Eine Combination von Zahlen mit Buchstaben hat G. Rose eingeführt und nach ihm andere, z. B. Rammelsberg, Scacchi, zum Theil modificirt, verwendet z. B. ½ f, ¾ d. Sie sind eigentlich keine Buchstabenzeichen, sondern modificirte Symbole. Vortheilhaft ist eine solche Combination zur Symbolisirung von Reihen zu verwerthen, ebenso wie auch den Buchstaben angehängte Indices. Doch sollen die Strich- und Zahlen-Indices zur Bezeichnung der Einzelflächen der Formen reservirt werden.
- 5. Es bliebe noch die Möglichkeit, Buchstaben-Indices den Buchstaben anzuhängen und dadurch Zonenreihen zu charakterisiren. Dies verträgt sich wohl mit dem Princip G, denn Zone bleibt Zone, unabhängig von Aufstellung und sonstiger Interpretation.

z. B.
$$B_{\alpha} B_{\beta} \ldots B_{\omega}$$
 oder $B_{a} B_{b} \ldots B_{z}$.

Wir finden solche Zeichen z. B. bei C. E. Weiss (Quarz), Websky (Quarz von Striegau). Auch hiermit könnte man die möglichen Formen erschöpfend bezeichnen. Dabei kann der leitende Buchstabe zur ungefähren Bezeichnung einer Form dienen, selbst wenn sie noch nicht ganz sichergestellt ist, man aber weiss, dass sie einer gewissen Reihe angehört. So finden wir bei Websky (Quarz) die Reihe der σ , der ρ und τ und als einzelne Formen der Reihe σ_{α} σ_{β} und können von einer σ -Fläche sprechen als einer nicht näher bestimmten Form der σ -Reihe.

Besonders für vicinale Bündel ist diese Bezeichnung gut. Sie ist in diesem Sinne z. B. von Schuster beim Danburit (Min. Petr. Mitth. 1884. 6. 301) durchgeführt worden. Es dürfte angezeigt sein, sich diesem Verfahren allgemein anzuschliessen und Buchstaben mit Indices für solche Formen anzuwenden, denen man einen vicinalen Charakter zuschreibt. So tritt z. B. aus einer Reihe nahestehender Formen einer Zone eine Form σ als typisch hervor mit einer Reihe vicinaler Begleiter von complicirtem Symbol σ_{α} σ_{β} An einem solchen Symbol lassen sich noch Zahlen- und Strich-Indices, sowie die Zeichen \pm zur Bezeichnung der Einzelflächen anbringen.

6. Buchstaben mit Punkt-Indices. Grosse Formencomplexe zerfallen naturgemäss in eine Anzahl wichtiger Zonen, die, unabhängig von sonstiger Interpretation, als solche bestehen bleiben. Man kann nach ihnen die Formen in Gruppen zertheilen.

Um zu bestimmen, welcher Gruppe eine Form angehört, müssen an den Buchstaben Kennzeichen angebracht werden, die sich für Druck und Schrift sowie zum Eintragen in die Figuren eignen. Nachdem schon manche Mittel für andere Zwecke in Anspruch genommen werden, stehen dazu etwa die folgenden zur Verfügung:

- 1. Verschiedene Typen für die verschiedenen Gruppen. In der Schrift nicht anwendbar und nicht sonderlich deutlich.
- 2. Verschieden-farbige Buchstaben. Für die Schrift wohl geeignet, für den Druck nicht ausführbar.
- 3. Besondere Abzeichen an den Buchstaben z. B. Punkte und Striche über oder neben denselben.

Zeichen neben den Buchstaben sind typographisch geeigneter, als solche über denselben. Sie wurden deshalb vorgezogen und zwar wurden die Zeichen im Allgemeinen auf die rechte Seite gesetzt; in den Figuren dagegen, besonders in den complicirten Projectionsbildern, da, wo es der Raum verlangte, auch wohl auf die linke Seite. Dabei wurde folgendes System angenommen:

$$B \quad B \cdot \quad B : \quad B \mid \quad B \mid \cdot \quad B \mid \cdot \quad B \mid \cdot \quad B \mid \cdot \quad \cdot \quad \cdot \quad \cdot \quad \cdot$$

Dieses System genügt für die weiteste Entwickelung der Beobachtungen. Es wurde im Index für diejenigen Mineralien durchgeführt, bei welchen die einfachen Buchstaben nicht ausreichen, so beim Calcit, Quarz u. s. w.

Die Formenreihen des Calcit wurden beispielsweise in folgende Gruppen get	getheil	Gruppen	folgende	in	eispielsweise	wurden	Calcit	des	Formenreihen	Die
---	---------	---------	----------	----	---------------	--------	--------	-----	--------------	-----

Gruppe.	Inhalt der Gruppe.	Allgemeine Symbole.	Allgemeine BuchstZeichen.	Zahl der Formen.
I	Pinakoide, Prismen, Axenzonen	ο; ο ∞; ∞ ο; p ∞; p ο	В	14 .
II	Haupt-Radialzonen	<u>+</u> p	B.	50
III	Z+1	+ 1 q	В:	47
IV	Die ZZ: $-8; -5; -2; -\frac{1}{2}$ + 10; +7; +4; + $\frac{1}{4}$	$ -8p; -5p; -2p; -\frac{1}{2}p +10p; +7p; +4p; +\frac{1}{4}p $	B;	43
v	Skalenoeder ausserh.d.gen.Zon.		В	12

Wir kommen bis jetzt bei allen Mineralien mit den vier ersten Gruppenzeichen aus, hier, indem die Gruppe V mit I ohne Punkt gelassen wurde, was nach der Zahl der Formen möglich ist. Später wird sich dies ändern und es ist besonders Gruppe V, von der wir noch geringe Kenntniss haben, einer weiten Entfaltung fähig. Sie dürfte zunächst das Zeichen B anzunehmen haben und sich dann noch in weitere Gruppen spalten.

Die Wahl der Buchstaben in den Gruppen wurde in der Weise vorgenommen, dass jeder Gruppe zunächst ihr Buchstabengebiet zufällt, aus dem sie wählt und erst, wenn dies ganz oder nahezu erschöpft ist, in das Gebiet anderer Gruppen eingreift. So wurde erreicht, dass bei Einzeluntersuchungen nur in seltenen Fällen derselbe Buchstabe mehrfach auftritt und dass somit local, da wo eine Verwechselung ausgeschlossen ist, eventuell das Gruppenzeichen weggelassen werden kann.

Ein anderer Modus in der Auswahl der Buchstaben wäre der gewesen, dass man den entsprechenden Formen verschiedener Zonen gleichen Buchstaben gegeben hätte, z. B.

$$02 = B; +2 = B; +12 = B$$
: u. s. w.

doch ist dies nicht wohl durchführbar; auch liegt hierin schon mehr Interpretation, als für eine Buchstabenbezeichnung wünschenswerth erscheint, da mit wechselnder Interpretation ihr Sinn zum Widersinn wird.

Noch bleibt zu erwägen, ob eine solche Gruppentheilung nicht schon da angezeigt sei, wo die Nothwendigkeit noch nicht dazu zwingt, so dass z. B. allgemein die $\parallel Z$ 1 mit B. die $\parallel Z$ 2 mit B: bezeichnet würde. Es würde dadurch besonders in den Figuren die Uebersicht

erleichtert, auch wenn nur jedesmal eine oder zwei solcher Zonen durch die Punkte charakterisirt in der Figur hervorträten. Natürlich könnten auch die Zonenzeichen in der Figur angewendet werden, ohne besondere Gruppentrennung in der Tabelle.

Ad JE. Das Prinzip J lautet: Der Buchstabe, der einer Form einmal beigelegt worden ist, verbleibt derselben durch allen Wechsel der Aufstellung. Dies ist von hervorragender Bedeutung, aber zur Zeit ist es nicht üblich, dasselbe in voller Strenge durchzuführen. Hessenberg tritt für dasselbe ein und es möge erlaubt sein, hier seine klare Darlegung wörtlich wiederzugeben. Er sagt (Senck. Abh. 1872. 8. 440 beim Axinit):

"An der zum grösseren Theil schon von Hauy und Neumann herrührenden Buchstabenbezeichnung vom Rath's habe ich trotz des Wechsels der Grundform nichts geändert. Wie bequem und vortheilhaft der Gebrauch der Buchstaben des Alphabets ohne symbolische Bedeutung zur Bezeichnung für concrete Flächen concreter Mineralien ist, hat wohl Jeder selbst erfahren. Wenn man diese Buchstaben einfach empirisch, conventionell, ohne alle symbolische Nebenbedeutung, dabei aber unabänderlich verwendet, ist dieses Verfahren der neutrale Boden, das gemeinschaftliche Mittel gegenseitigen Verstehens zwischen allen denen, welche ausserdem im Gebrauch verschiedenartiger Symbolik und verschiedener Grundformen auseinander gehen. Man verliert aber diesen Vortheil, sobald man den Buchstaben die Bedeutung von Symbolen unterlegt, indem man einzelne unter ihnen, z. B. a, b, c, m, n, o systematisch auf bestimmte Flächenarten der Krystallsysteme bezieht. Scheint es nun einen besondern Reiz zu haben, für dies und jenes Mineral eine neue Grundform aufzusuchen, und glaubt nun Jeder in diesem Falle sein neues Hauptprisma mit m, seine basische Fläche mit c u. s. w. bezeichnen zu müssen, so geräth die ganze etwa bisher zur Vorstellung und zum Gemeingut gewordene Buchstabensprache in Verwirrung; ein Theil wird vertauscht, ein anderer belassen und dabei die Discussion auf's bedauerlichste erschwert. Es erscheint deshalb räthlich, auch bei jedem Vorschlag einer neuen Grundform oder jeder gewechselten Aufstellung doch immer den Flächenarten die altgewohnten nicht symbolischen, sondern empirisch eingebürgerten Buchstaben zu belassen."

Das Verfahren, gegen welches Hessenberg hier ankämpft, ist so alt, als die Krystallographie. Hauy hat für seine Grundform jedesmal die Buchstaben PMT gewählt, welche mit der Wahl einer neuen Grundform sich auf andere Flächen beziehen mussten, während er den übrigen Formen ausser dem Symbol willkürlich gewählte Buchstaben beilegte, die ihnen im Wechsel der Aufstellung verblieben. Analog ist, ausser anderen, Miller in seiner

Mineralogie (1852) verfahren und ihm folgt derzeit die grösste Zahl der Krystallographen. Es wäre ja recht angenehm, bei abcm u. s. w. stets zugleich an bestimmte Symbole denken zu können, doch ist die Verwirrung, von der Hessenberg spricht, in der That eingetreten, und zwar gerade bei den Flächen der Grundform mit den Buchstaben abc, bei denen ein fester Halt zum Zweck der Orientirung dringend erforderlich wäre. Ein Blick auf die Buchstabenreihen, wie sie im Index zusammengestellt sind, giebt davon die Ueberzeugung (vgl. Datolith u. a.). Einige specielle Beispiele mögen zur Illustration des Gesagten dienen.

Beim Akanthit hat Schrauf (Atlas 1864 Taf. 1), seinem Princip der Buchstabenbezeichnung zulieb, a und b sowie p und k, die er bei Dauber gefunden, unter sich vertauscht, so dass, während alle anderen Buchstaben übereinstimmen, a b p k (Schrauf) = b a k p (Dauber) ist. Wie leicht dies zu Irrthümern führen kann, liegt auf der Hand.

Noch deutlicher, wo möglich, ist das Beispiel des Euklas bei Dana (System 1873. 379). Hier treten die Buchstaben a und b zweimal in derselben Formenreihe auf. Dana ist nämlich bei dieser Formenreihe vollständig Kokscharow, Schabus und Rammelsberg gefolgt, nur die Buchstaben a und b hat er gleichzeitig Miller für die Pinakoide entlehnt. I = N (Kokscharow) = k (Miller) ist gesetzt zur Bezeichnung eines primären Prisma's, entsprechend der jedenfalls früher von Dana adoptirten Aufstellung von Kokscharow-Schabus, während jetzt bei ihm dies $I = i - 2 = 2\infty$ bedeutet. Daneben befindet sich I als Symbol = ∞ , entsprechend dem s der anderen Autoren.

Das Princip **J** wurde im Index consequent festgehalten und von demselben nur da abgegangen, wo eine vollständig neue Buchstabenbezeichnung für das Mineral wünschenswerth erschien. So z. B. beim Calcit, sowie im ganzen regulären System (s. weiter unten). Princip **D** wurde berücksichtigt, soweit thunlich (z. B. im regulären System); **E** in direktem Widerspruch mit **J** entfällt.

- Ad F. Da, wo die Symbole selbst genügende Einfachheit gewähren, entfällt die Buchstabenbezeichnung.
- Ad K. Jede Form muss ausser dem Symbol einen Buchstaben haben.

Beide Principien sind unter sich in direktem Widerspruch. Es wurde K im Index durchgeführt, was seit Miller (1852) für das Ganze nicht wieder geschehen ist. Dem Princip F sind consequent z.B. Lévy und Des Cloizeaux gefolgt, die nur für die Formen von complicirtem Symbol willkürliche Buchstaben des Alphabets wählen.

Ad CGH. Diese Rücksichten sind in der vorhergehenden Besprechung bereits mit discutirt.

Ad L und M. Priorität und Usus sind häufig im Widerspruch mit einander; wo dieser besteht, habe ich mich im Index dem Usus angeschlossen. Dies empfiehlt sich aus folgenden Gründen:

- 1. Die ersten Buchstabenbezeichnungen sind häufig vollständig ausser Gebrauch gekommen und ihr Hervorziehen hätte den Charakter einer störenden und überflüssigen Neuerung.
- 2. Das Princip der Priorität lässt sich strikte kaum durchführen, denn es würde eine bei der allgemeinen Durcharbeitung übersehene erste Bezeichnung eine nachträgliche Abänderung nöthig machen und der erstrebten Stabilität entgegenwirken.
- 3. Die ältesten Formenangaben lassen sich nicht immer mit Sicherheit mit den neuen identificiren.
- 4. Die alten Buchstaben sind oft wenig vortheilhaft gewählt. So spielen besonders die grossen Buchstaben eine hervorragende Rolle, während doch die kleinen, so lange sie ausreichen, vorzuziehen sind.
- 5. Die neuere usuelle Reihe der Buchstabenbezeichnung ist häufig sehr vollständig, die alten Angaben dagegen sind sehr unvollständig. Wollte man die alten Buchstaben zur Geltung bringen, so müsste man die neuere Reihe stören ohne sie abzulegen und erhielte ein wenig empfehlenswerthes Zwitterding aus beiden.
- Ad D. Formen gleichen Symbols (entsprechende Formen) bei verschiedenen Krystallen sollen mit dem gleichen Buchstaben bezeichnet werden.

Hierauf ist Rücksicht zu nehmen, soweit kein Widerspruch mit den allgemein angenommenen Principien eintritt. Die Durchführung des Princips geschah besonders in vier Fällen:

- 1. Im regulären System, wo nur eine Art der Aufstellung und Deutung der Formen besteht.
- 2. Wenn eine einzelne Form bei einer ganzen Gruppe von Mineralien durch physikalische Verhältnisse so sicher definirt ist, dass sie nur eine Deutung erfahren kann. So die Ebene senkrecht zur optischen Axe im tetragonalen und hexagonalen System (Basis), die man durchweg mit c bezeichnen kann.
- 3. Bei den sicher parallelisirten Formen einer isomorphen Gruppe.
- 4. Bei den formenreichen Mineralien des hexagonalen Systems rhomboedrischer Hemiedrie, für welche die Discussion einer bestimmten Aufstellung entschieden und, wie es scheint, bleibend den Vorzug zuspricht.

Von diesen vier Fällen, die im Index berücksichtigt wurden, bedarf der Fall des regulären Systems einer eingehenderen Besprechung.

Buchstaben im regulären System.

Im regulären System könnte man, da ein Wechsel in der Aufstellung nicht vorkommt, zur Bezeichnung der gleichen Form bei allen Mineralien denselben Buchstaben wählen. Ob dies sich empfiehlt und gut durchführen lässt, wollen wir nach Betrachtung der folgenden Zusammenstellung entscheiden.

In dieser Zusammenstellung sind neben jedem überhaupt beobachteten Symbol die Namen der Mineralien in Abkürzung gegeben, bei denen es sich vorgefunden hat. Es wurden dabei die folgenden Kürzungen verwendet:

Ach = Achteragdit	G a = Gahnit	Pa = Palladium
Al = Alaun	Ge = Gersdorffit	Pcy = Percylit
Am = Amalgam	Gl == Glanzkobalt	Pk = Periklas
Amb = Amoibit	Go := Gold	Pe = Perowskit
An = Analcim	Gr = Granat	Ph = Pharmakosiderit
Ar = Arquerit	Gru = Grunauit	Pl = Platin
Ars = Arsenit		Po = Pollucit
At = Atopit	TT- IT	Py = Pyrit
	Ha = Hauerit	Pcl = Pyrochlor
B e = Beegerit	Hy = Hauyn	ĺ
Bi = Binnit	He = Helvin	Ra = Ralstonit
B == Blei	Hs = Hessit	Rh = Rhodizit
Bl == Bleiglanz		Ro = Rothkupfererz
Bo = Boracit	Ird = Iridium	Sf = Safflorit
Br = Bromsilber	Ir = Irit	Sa = Salmiak
Bu = Bunsenit	n = nr ·	Schn = Schneebergit
Bt = Bunt-Kupfererz		Scho = Schorlomit
	Jo = Jodobromit	Sb = Selenblei
Ca = Carollit		Ss = Selensilber
Ch = Chloanthit	W. W. W.	Se = Senarmontit
Cc = Chlorocalcit	Ko = Koppit Kr = Kremersit	Si = Silber
Cl = Chlorsilber		Sgl = Silberglanz
Cr = Chromeisenerz	Ku = Kupfer	Sk = Skutterudit
Co = Corynit		Spk = Speisskobalt
Cu = Cuban	La = Lasurstein	Sp = Spinell
Da = Danalith	Lau = Laurit	St = Spinen St = Steinsalz
Di = Diamant	Li = Linneit	
Dy = Dysanalyt		Sy = Sylvin
' '	36	T e = Tellursilber
Ei = Eisen	Ma = Magneteisenerz	Tr = Tritomit
Em = Embolit	Mf = Magnoferrit	U l = Ullmannit
Eu = Eulytin	Mbl = Manganblende	Ur = Uranpecherz
Fa = Fahlerz	Ms = Manganosit	•
Fau = Fauserit	Mi = Mikrolith	Vo = Voltait
Fl = Flussspath		Z k = Zinkblende
Fr = Franklinit	No = Nosean	Zn = Zinnkies
<u> </u>	-	

Anmerkung. Die folgende Zusammenstellung musste gemacht werden vor beendeter Revision der Formenreihen des Index. Sie wird deshalb auch, abgesehen von Neubeobachtungen, mancher Correcturen bedürfen; doch können diese die hier zu ziehenden Schlüsse nicht ändern.

Reguläres System. Vorkommen der Symbole (ohne Rücksicht auf das Vorzeichen).

en. 8ymb. Name der Mineralien. 8ym	mb. Name der Mineralien.	Symb.	Name der Mineralien.	Symb.
Mineralien. Mineralien.	Al. Am. An. Ar. Ars. At. B. Be. Bi. Bo. Bl. Br. Bu. Bt. Ca. Ch. Cc. Cl. Cr. Co. Da. Di. Ei. Em. Eu. Fa. Fau. Fl. Fr. Ga. Ge. Gl. Go. Gr. Grü. Ha. Hy. He. Hs. Ird. Ir. Kr. Ku. Lau. Li. Ma. Mbl. Ms. Mi. Pcy. Pe. Pk. Ph. Pl. Pcl. Py. Ra. Rh. Ro. Sf. Sa. Schn. Se. Si. Sgl. Sk. Sp. Sy. St. Te. Tr. Ul. Ur. Vo. Zk. Ach. Al. Am. An. Bi. Bl. Bo. Bt. Ch. Cl. Eu. Fa. Fl. Fr. Go. Gr. Hy. He. Hs. Ma. Mi. Pe. Po. Pcl. Py. Ro. Sa. Scho. Sgl. Si. Sk. Spk. Sp. Te. Ul. Vo. Zk. Bl. Cr. Fa. Fl. Go. Gr. Hs. Ku. Lau. Ma. Mi. Pe. Pcl. Py. Sa. Si. Sgl. Sp. Zk. Bi. Bl. Fa. Ho. Py. Ro. Sgl. Sp. Zk. Bi. Bl. Fa. Go. Ku. Py. Sa. Zk. Bi. Bl. Fa. Gr. Ku. Sp. Zk. Bi. Bl. Fa. Ku. Ma. Sp. Zk. Bi. Bl. Fa. Ku. Ma. Sp. Zk. Bl. Gl. Gr. Py. Sgl. Gl. Ma. Py. Sa. Zk. Bl. Fl. Zk. Ma. Pe. Py. Gr. Sgl. Bl. Py. Bl. Zk. Bi. Go. Bl. Co. Bl.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Al. Am. Amb. An. At. Be. Bi. B. Bl. Bo. Br. Bu. Bt. Ch. Cc. Cl. Di. Dy. Ei. Em. Eu. Fa. Fan. Fl. Fr. Ga. Ge. Gl. Go. Gr. Grü. Ha. Hy. Hs. Jo. Ird. Ko. Ku. La. Lau. Li. Ma. Mf. Mbl. Ms. Pa. Pcy. Pe. Pk. Ph. Pl. Po. Pcl. Py. Ra. Ro. Sf. Sa. Sb. Sgl. Si. Ss. Sk. Spk. Sp. Sy. St. Te. Ul. Ur. Vo. Zk. Zn. Al. Am. An. At. Bi. Bl. Bo. Br. Bt. Ch. Cc. Cl. Di. Dy. Da. Em. Eu. Fa. Fl. Fr. Go. Gr. Ha. Hy. He. Hs. Jo. Ird. Ku. La. Ma. Mf. Mbl. Ms. Mi. No. Pcy. Pe. Ph. Py. Pl. Po. Pcl. Rh. Ro. Sa. Scho. Si. Sgl. Sk. Spk. Spk. Sp. St. Te. Ul. Ur. Vo. Zk. Zn. Al. Am. Ch. Cu. Di. Fa. Fl. Go. Gr. Go. Gl. Ha. Hy. Hs. Ku. Lau. Ma. Pe. Pcy. Pl. Po. Py. Ro. Sgl. Si. St. Te. Zk. Am. Bo. Bl. Di. Fa. Fl. Go. Gr. Ha. Hs. Ird Ku. Ma. Pl. Py. Sa. Sgl. Si. Sk. Spk. Sp. Te Di. Gr. Pe. Py. Pl. Sgl. Zk. Gl. Go. Ku. Py. Si. Spk. Zk. Fl. Go. Gr. Ku. Pe. Py. St. Gr. Ku. Ma. Pl. Py. St. Dl. Ird. Pe. Py. St. Gr. Ku. Ma. Pl. Py. St. Dl. Ird. Pe. Py. St. Gr. Ro. Spk. Spk. Sp. Cr. Py. St. Sy. Fl. Ro. Spk. Spk. Sp. Gr. Bl. Spk. Sp. Gr. Ku. Si. \$70 Py. Py. \$70 Py. \$	0 10 10 10 10 10 10 10 10 10 10 10 10 10

Aus dieser Zusammenstellung geht hervor, dass im regulären System (abgesehen von dem Vorzeichen) beobachtet sind:

```
Aus der Axen-Zone . . . . po 37 Formen. (Pyramiden-Würfel)
Aus der Haupt-Radialzone p 27 ,, (Deltoid-Ikositetraeder)
Aus der || Zone 1 . . . . . p 1 14 ,, (Trigon-Ikositetraeder)
Ausserdem . . . . pq 31 ,, (Hexakis-Oktaeder)
In Summa: . . . 129 ,,
```

Von diesen 129 Formen sind 34 bei 3 und mehr Mineralien constatirt und ausserdem 12 Formen bei zwei Mineralien, nämlich:

0 (001)	bei	73	Min.	1 (111)	bei	75	Min.	1 1 (212)	bei	2 I	Min.
10 (101)	"	60	,,	$\frac{1}{2}$ (112)	,,	37	,,	$1\frac{1}{3}$ (313)	,,	9	,,
$\frac{1}{2}$ O (102)	,,	28	,,	1/3 (113)	,,	19	"	12/3 (323)	,,	9	,,
1/3 o (103)	,,	22	,,	$\frac{2}{3}$ (223)	,,	9	,,	11/4 (414)	,,	3	,,
$\frac{2}{3}$ o (203)	,,	7	,,	1 (114)	;,	.8	,,				
1 o (104)	;,	7	,,	1/5 (115)	,,	8	,,	$\frac{2}{3}\frac{1}{3}$ (213)	bei	16	Min.
$\frac{2}{5}$ O (205)	,,	7	11	[(116)	,,	7	,,	$\frac{3}{4}\frac{1}{2}$ (324)	,,	6	,,
3 o (305)	,,	6	"	$\frac{3}{4}(334)$	"	5	,,	$\frac{3}{5}\frac{1}{5}$ (315)	,,	5	,,
$\frac{3}{4}$ o (304)	,,	5	,,	2/5 (225)	,,	5	,,	$\frac{1}{2}\frac{1}{4}$ (214)	,,	5	,,
4 o (405)	,,	5	,,	² / ₇ (227)	,,	4	,,	3 1 (314)	,,	3	,,
½ o (105)	"	3	,,	$\frac{10}{1}$ (1·1·10)	,,	3	,,	$\frac{2}{3}\frac{1}{2}$ (436)	,,	2	,,
(01.0-10)	,,	2	,,	$\frac{1}{12}(1\cdot 1\cdot 12)$,,	3	,,	5 1 (517)	11	2	,,
110 (10·0·11)	,,	2	,,	\$ (449)	,,	3	,,	1 1 (218)	,,	2	,,
2 0 (2·0·9)	,,	2	,,	3 (335)	,,	2	,,	$\frac{2}{5}\frac{3}{10}(4\cdot3\cdot10)$,,	2	,,
47 O (407)	,,	2	,,	1 (119)	,,	2	,,	\$ £ (429)	,,	2	,,
				$\frac{2}{15}\left(2\cdot2\cdot15\right)$,,	2	,,				

Alle anderen sind nur einmal gefunden worden. Für die nur einmal beobachteten Formen ist eine Festsetzung der Buchstabenbezeichnung gewiss überflüssig und unbequem dadurch, dass man dann mit den einfachen Buchstaben nicht ausreichen würde; auch für die nur zweimal constatirten Formen ist sie kaum zu empfehlen.

Es wurden daher im Index nur für die mindestens bei drei Mineralien beobachteten Formen die Buchstaben festgehalten und zwar:

Für die sonst noch auftretenden Formen wurden beliebige Buchstaben jedesmal frei gewählt.

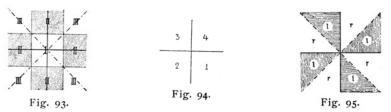
Wahl neuer Buchstaben. Um für neu hinzutretende Flächen leicht einen verwendbaren Buchstaben finden zu können, empfiehlt es sich, für diejenige Gruppe, für welche man gemeinsame Buchstabenbezeichnung anwenden will, eine Tabelle anzulegen, bestehend aus sämmtlichen zur Verwendung bestimmten Buchstaben mit Eintragung der ihnen bereits zugetheilten Symbole. Folgendes ist das Beispiel einer solchen Tabelle für das hexagonale System rhomboedrischer Hemiedrie, soweit bis jetzt (der Index ist noch nicht fertig) eine Zutheilung stattgefunden hat. Ohne eine solche Tabelle entgeht man nicht dem Fehler, dasselbe Zeichen mehrmals zu verwenden.

Hexagonales System. Rhomboedrische Hemiedrie.

1 ជា ទី៦៩៧៧១៩៩៩ m i si i 31 $+\frac{19}{16}$ 17 74 4.10 2-.5.14 A: jij 📛 [1] M ė -5·17 -8¹4 ଞ୍ଚି نغ జా ఈ ఈ ន క్ష ä සිස ភេឌភេឝិជ្ភិជិសិលិភៈ អ៊ីស៊ី සූ පු සූ සූ සූ සූ छंद अ झें झें पे झें पे से में झें झें से के ले संसंधं भं सं सं ශ් さ 席 8 狐 朝 口 特 口 新 ⑤ 宏 H क्ष क्ष පා ය 82 ල පා සා වෙ ŝ N4 HN H4 HU NW H∞ Ц'n 17 i 1 1 1 1 흗 Ħ Ë öe. 9. Ħ ö 픙 ند ند ند ä ës ≟≒ .∺ ∺ ä خت ت ಪ⊶∺ ₿ ن. خد ه Ġ Ħ ÿ. -ÿ-;; ;;; .:: ەت <u>څ</u> × × ä . ئند خ Ë લું છું ÿ-414 ÿ - ÿ- ÿ خند خ ة ق ة Buchstaben 1 - [÷ 10 110 8 % 8 ∠->- 3 8 82 7 3 10400 HP H0 73 + +++ 1 ö ؾ 01.1+ $\begin{array}{c|c}
L: + 1 \frac{3.5}{8} \\
M: + 1.5 \\
N: + 1 \frac{1.1}{2} \\
O: + 16 \\
O: + 16
\end{array}$ $+1\frac{15}{2}$ K:+14 +12 +17 Öä Ë ä ष्प Ö 12 5 V. 13 5 W. 23 7 X. 26 20 Y. F E C C E F დ <mark>წ</mark>® ოო 1 0 Q R -113 13 点 ::: ::: 点 m:+1 2 m: ö <u>;;</u> ä <u>...</u>; 1 I +16.16 t: 0 NA HO HA WN HU AL WW WA HU NU +++++++++++ Ė ò t 20 t. .<u></u>∴ × Pong Tredc

Buchstaben-Bezeichnung der Einzelflächen.

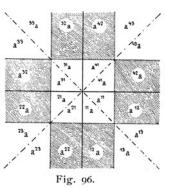
Jeder Buchstabe dient zur Bezeichnung einer Gesammtform d. h. derjenigen Anzahl von Flächen, die vermöge der Symmetrieverhältnisse des Krystalls als zusammengehörig und sich gegenseitig bedingend betrachtet werden. Je nach dem Krystallsystem und der Form sind dies 2—48 Flächen. Allen wird der gleiche Buchstabe beigelegt. Um eine specielle Fläche zu bezeichnen, sind am geeignetsten Zahlenindices, die am besten so zu wählen sind, dass sie direkt die Lage der Fläche im Projectionsbild erkennen lassen.


Von Fläche und Gegenfläche tritt im Projektionsbild bei der gnomonischen und der geradlinigen Linear-Projection nur die eine auf (in der Regel die der oberen Krystallhälfte angehörige, deren Punkt (resp. Linie) den der Gegenfläche deckt. In den cyklischen Projectionen können beide auftreten, doch werden meist auch hier nur die Punkte innerhalb des Grundkreises aufgetragen. Wir wollen die untere Gegenfläche allemal durch einen Strich unter dem Buchstaben bezeichnen, z. B.

ebenso wie bei den Symbolen, wo zugleich dieser Strich alle Vorzeichen des dreiziffrigen Symbols in die entgegengesetzten verwandelt, z. B.

$$\underline{12} = \overline{1}2\overline{1}$$
 die Gegenfläche von $\underline{12} = \underline{1}2\underline{1}$
 $\underline{12} = \overline{1}2\overline{1}$, , , $\underline{12} = \underline{1}2\underline{1}$

Bei Bezeichnung der nicht parallelen Einzelflächen wollen wir von der Eintheilung des Projectionsbildes ausgehen. Wir wollen dasselbe wie bei der Bezeichnung der Einzelflächen durch Zahlensymbole (vgl. S. 25 flgd.) in bestimmte Felder theilen und bei der Zählung festhalten, dass diese vom Quadranten (Sextanten), vorn rechts beginnend, nach links fortschreitet, und dass links und rechts so zu verstehen ist, dass man den Blick nach der Basis (Coordinanten-Anfang) o (001) hinrichtet.


Reguläres System. Wir theilen das Projectionsfeld, wie S. 25 entwickelt wurde, in dreifacher Weise.

- a. In drei Gruppen: I. (p und q < 1); II. (p oder q < 1); III. (p und q > 1). (Fig. 93).
- b. In vier Quadranten: 1. (pq); 2. (pq); 3. (pq); 4. (pq). (Fig. 94).
- c. Jeden Quadranten in einen rechten und einen linken Octanten. (Fig. 95).

Deuten wir noch die Gegenfläche durch einen Strich unter dem Buchstaben an, so können wir alle 48 Einzelflächen ausdrücken, und zwar in einer Weise, dass wir uns aus dem Zeichen unmittelbar die specielle Lage der Fläche im Projectionsbild vorstellen können. Wir machen dies folgendermassen (Fig. 96):

Wir hängen zur Bezeichnung der Lage einer Einzelfläche dem Buchstaben oben rechts resp. links einen zweiziffrigen Index an, in welchem

sich die erste Ziffer auf den Quadranten, die zweite auf die Gruppe bezieht. Dann soll beispielsweise bedeuten:

Hexagonales System. Wir unterscheiden die Sextanten 1-6 und deren Hälften links, rechts (vgl. S. 30) und kommen zur Bezeichnung der Einzelflächen mit einem einziffrigen Index aus. Die Zählung 1-6 möge im Sinne des Zeigers der Uhr geschehen. In Fig. 97 sind als Beispiel die Einzelzeichen für eine Gesammtform a eingetragen.

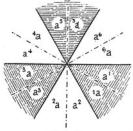


Fig. 97.

Tetragonales System. Hier haben wir nur vier Quadranten und die Theile links und rechts zu unterscheiden, und kommen mit einem einziffrigen Index aus, den wir oben rechts resp. links anhängen (Fig. 98),

Auch bedeutet wieder a² die Gegenfläche von a².

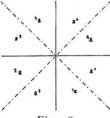


Fig. 98.

Rhombisches und monoklines System. In diesen Systemen kann die Unterscheidung rechts und links entfallen und der Index hat nur noch den Quadranten zu nennen (Fig. 99).

Alle + Formen des monoklinen Systems haben den Index 1 oder 2, alle - Formen den Index 3 oder 4.

Im triklinen System besteht nur Fläche und Gegenfläche, a und a. Es entfallen also alle Indices.

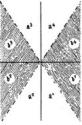


Fig. 99.

Buchstabenbezeichnung bei Viellingen.

Bei Viellingen ist ausser der Unterscheidung der Einzelflächen noch die Bezeichnung nöthig, dem wievielten Individuum die Fläche angehört. Dies könnte etwa durch Striche vor, hinter oder über dem Buchstaben geschehen, die bei noch mehr Individuen in die römischen Zahlen übergehen würden.

z. B.
$$a = a = a = a \dots \times a$$

oder: $a = a = a = a = \dots \times a \times a$
oder endlich: $a = a = a = a = \dots \cdot a$

Letzteres ist das compendiöseste und kann selbst ohne Conflict mit den — Zeichen auf die Zahlen-Symbole angewendet werden, z. B.:

Haben wir nur einen Zwilling, was der häufigste Fall ist, so ist es für die Schrift wohl das einfachste, den Buchstaben des zweiten Individuums zu durchstreichen, dies nimmt keinen grösseren Raum weg und der Unterschied tritt klar hervor.

Da keine dieser Arten der Bezeichnung weitere Verwendung hat, so kann nach Bedarf die eine oder andere Art gewählt werden. Alle diese Indices nebst den Buchstabenindices der Vicinalflächen stören sich gegenseitig nicht und könnten im Fall des Bedarfs sogar alle zugleich demselben Buchstaben angehängt werden.

So würde beispielsweise im rhombischen System bedeuten:

- a₃ eine bestimmte Vicinalfläche von a,
- a_g diese specielle Fläche aus dem vierten Quadranten,
- a3 die Gegenfläche dazu,
- $\underline{\underline{a}}_{\beta}^{4}$ die Fläche $\underline{a}_{\beta}^{4}$ die dem dritten Individuum eines Viellings angehört. Dieselben Indices kann man auch an den Zahlen-Symbolen anbringen,

Anordnung der Formen in den Tabellen.

Die Anordnung der Formen geschah bei allen Mineralien in der gleichen Reihenfolge, so dass jede Form ihren ganz bestimmten Platz hat, dadurch leicht aufgefunden und leicht eingeschoben werden kann. Dass sich dies einfach durchführen lässt, ist ein Vortheil der zweizahligen neuen Symbole. Bei der gewählten Anordnung ist man im Stande, schon durch Anschauen der Tabelle, ohne Projectionsbild, eine ziemlich gute Vorstellung von der Gesammtheit der Formen, selbst bei einem formenreichen Mineral, zu gewinnen.

Die Anordnung geschah nach Zonen, und zwar in nachstehender Reihenfolge:

```
Grundform:
                       0
                                0 &
Axen-Zonen:
                       οq
                                ро
Prismen-Zonen:
                       ∾ q
                                p ∞
Haupt-Radial-Zone: p
Parallel-Zonen:
                       ıq
                                рі
                       2 Q
                                p 2
                                           ₽q
                                                   p_{\frac{1}{2}}
                                                  p \frac{I}{3} u. s. w.
                       3 Q
                               P 3
```

Nennen wir die constante Zahl, p oder q, in den Symbolen einer Parallelzone den Zonenzeiger, so wurde im Allgemeinen die Reihenfolge der Zonen nach der Wichtigkeit (Häufigkeit) der Zahl des Zonenzeigers bestimmt, wie diese sich aus der Discussion der Zahlen ergiebt. Um jedoch die Vorschrift zu vereinfachen und dadurch ihre Anwendung bequemer und sicherer zu machen, wurde folgende Ordnung der Zonenzeiger festgesetzt:

endlich der Rest nach der Niedrigkeit der Zahlen.

Durch die Parallelzonen mit den Zeigern 1 2 3 4 $\frac{3}{2}$ $\frac{4}{3}$ $\frac{5}{2}$ $\frac{5}{3}$ und deren Reciproken ist in der Regel der Formenvorrath nahezu erschöpft. Bei den formenärmeren Mineralien beschränken sich die Zahlen meist auf 1 2 3 und deren Reciproke. Die Formen ausserhalb der wichtigen Zonen sind ohne Projectionsbild nicht so klar zu übersehen, doch bilden sie, soweit sie bisher constatirt sind, selbst bei den formenreichsten Mineralien nur eine kleine Gruppe.

Die Werthe p resp. q innerhalb derselben Zone wurden nach der Grösse ansteigend aufgeführt, also:

$$\dots \qquad \frac{1}{7} \stackrel{1}{6} \stackrel{1}{5} \stackrel{1}{4} \dots \dots \qquad 1 \stackrel{3}{2} \qquad 2 \dots \dots$$

Nur da, wo + und - Werthe eine fortlaufende Reihe bilden, die durch o hindurchgeht, wurde mit dem höchsten + Werthe begonnen, abgestiegen bis o und von da mit den - Werthen wieder angestiegen bis zu dem höchsten - Werth.

Die Zahlen im hexagonalen System (besonders rhomboedrischer Hemiedrie) haben theilweise einen anderen Charakter als die der anderen Systeme; erst die abgeleitete Reihe $E=rac{p-1}{3}rac{q-1}{3}$ zeigt dann den regelmässigen Verlauf. Es wurde deshalb in diesem Fall die Anordnung nach der abgeleiteten Reihe E vorgenommen. Eine Erklärung der Natur der genannten Erscheinung soll an anderer Stelle versucht werden.

Ohne diese Regelmässigkeit in der Anordnung und die dadurch erreichte rasche Auffindung einer Form, sowie den durch sie ermöglichten leichten Vergleich ganzer Reihen zum Zweck der Identification und Transformation, wäre die Ausarbeitung des vorliegenden Index weit schwieriger und langwieriger, ja für den Einzelnen kaum durchführbar gewesen. 10

Goldschmidt, Index.

Freie und influenzirte Formen.

Wir wollen unter freien Formen solche ebene Begrenzungen des Krystalls verstehen, die sich zwar durch den verschiedenen Grad der Complicirtheit in der genetischen Entwickelung (Differenzirung) unterscheiden, jedoch sich alle aus der Wirkung der Molekularkräfte des Krystalls, dem sie angehören, möglicherweise in ihrer Auswahl bestimmt durch äussere (auslösende) Kräfte, im übrigen frei entwickeln. Nun haben aber vielseitige Beobachtungen gezeigt, dass ein Krystall, oder sonst ein fester Körper die Lage der Flächen eines Krystalls, mit dem er verwachsen ist, beeinflussen kann. Dadurch entstehen Flächen von abnormaler Lage, die wir gemeinsam als influenzirte Formen bezeichnen wollen.

Nach der Art der sich gegenseitig beeinflussenden Körper können wir folgende Gruppen unterscheiden:

- 1. Gleichartige Krystalle in regelmässiger Verwachsung. Hierdurch entstehen die durch einfache, sowie durch polysynthetische Zwillingsbildung influenzirten Formen, z. B. beim Flussspath (vgl. Scacchi, Turin. Mem. Ac. 1862 (2) 21. 6) oder beim Quarz (Websky, Jahrb. Min. 1871, 732 und 783). 1)
- 2. Isomorphe Krystalle in Ueberwachsung. So dürfte beispielsweise bei den rhomboedrischen Carbonaten, wo Schichten verschiedener Zusammensetzung übereinander liegen, die Orientirung der oberen Lage durch die untere beeinflusst sein und ein Ausgleich stattfinden, der je nach dem Theil des Krystalls, d. h. den localen Massenwirkungen, verschieden, bei allmähligem Uebergang zu gerundeten, gebogenen Flächen führen kann. Solche krumme Flächen z. B. beim Braunspath wären demnach möglicherweise als influenzirte anzusehen, und es wäre von hohem Interesse, gerade an dieser Reihe die hier vermuthete Ursache im Einzelnen experimentell zu prüfen.
- 3. Fremdartige Krystalle in regelmässiger Verwachsung.
- 4. Gleich- oder fremdartige Körper in unregelmässiger Verwachsung. Hierher gehören Störungen in der Flächenneigung durch Einlagerungen, der Einfluss der Unterlage in der Nähe der Anwachsstelle u. s. w.

In den Formenverzeichnissen finden sich manchmal solche influenzirte Formen neben freien aufgeführt; sie wurden, wo sich eine Beeinflussung nachweisen liess, in den Index nicht aufgenommen.

¹⁾ Websky's Begriff der inducirten Formen ist enger begrenzt, als der unsrige der influenzirten, und es schien nicht erlaubt, die Bedeutung des ersteren Wortes auf den weiteren Begriff auszudehnen.

Typische und vicinale Formen.

Die freien Formen leiten sich nach bestimmten Gesetzen aus der Grundform her. Nach der Complicirtheit der Ableitung (Differenzirung), die theilweise ihren Ausdruck findet in der Höhe der Symbolzahlen, kann man dieselben in Gruppen mit willkürlichen Grenzen abtrennen und so primäre, seçundäre, tertiäre u. s. w. Formen scheiden. Eine naturgemässe, wenn auch nicht scharfe Grenze, bietet sich für die hochdifferenzirte Form da, wo, wie es Schuster ausdrückt, die Abweichung der Winkelwerthe von denen der einfachen Flächen der Fehlergrenze von Beobachtungen minderer Güte sich bereits soweit nähert, dass sie nur bei ausserordentlich günstiger Beschaffenheit der spiegelnden Flächenelemente zum unzweifelhaften Nachweis gelangen kann (Min. Petr. Mitth. 1884. 6. 510). An und unter dieser Grenze bewegen sich ausserdem die Wirkungen äusserer Einflüsse auf die Flächenneigung, die eliminirt werden müssen, wenn wir die Flächen als freie discutiren wollen. Formen oberhalb der genannten Grenze wollen wir typische, solche unterhalb derselben vicinale nennen. Der so definirte Begriff deckt sich so ziemlich mit dem, was Websky, der den Namen Vicinalflächen in die Wissenschaft eingeführt hat (D. Geol. Ges. 1862. 15. 677), darunter versteht.

Vicinale Flächen können freie oder influenzirte sein. Für den Zweck dieser Zusammenstellung haben nur die freien Formen Interesse, während das Studium der influenzirten Vicinalflächen den Schlüssel geben kann zur Erkenntniss der Wirkungsweise äusserer Einflüsse auf die Formen des Krystalls.

Die freien Vicinalformen unterscheiden sich also von den typischen Formen nicht qualitativ, sondern nur quantitativ dadurch, dass der Bildung derselben feinere, d. h. höhere differenzirte genetische Vorgänge zu Grunde liegen. Sie sind, um mich eines Bildes zu bedienen, die feinen vergitternden Zweige, während die Primärform und die typischen abgeleiteten Formen Stamm und Aeste bilden. Vorläufig sind die Gesetze noch nicht klar gelegt, nach denen sich die Aeste aus dem Stamm entwickeln und es besteht eine der Hauptaufgaben dieser Zusammenstellung darin, die Unterlage zu bilden zu Schlüssen über die hier obwaltende Gesetzmässigkeit. Der jetzige Stand der formbeschreibenden Krystallographie ist der, dass man die typischen (gröberen) Formen zu einem Gesammtbild zusammen fassen kann, ohne fürchten zu müssen, dass wesentliche Züge des Bildes fehlen. Augenblicklich fehlt es diesem Bild aus Mangel an übersichtlicher Darstellungsweise und Ordnung an Klarheit; trotzdem macht sich die Forschung mit Lebhaftigkeit an die Untersuchung der Detailerscheinungen, der vicinalen Gebilde. Unter dem Andrang des daraus herbeiströmenden ungenügend gesichteten Details droht alle Uebersicht unmöglich zu werden, und es scheint nöthig, gerade im

jetzigen Moment, da die Detailarbeit (abgesehen von vereinzelten Vorläufern) erst beginnt, die Grundzüge des alten einfachen Bildes in aller Klarheit festzulegen. Hierzu soll der Versuch gemacht werden, einmal durch diesen Index selbst, seine Elemente und neuen Symbole, sowie deren Anordnungsweise, ferner durch Herstellung von Projectionsbildern der formenreichsten Mineralien, endlich dadurch, dass wir die Zahlenreihen und Projectionen als Ganzes discutiren. Um eine Trübung des Bildes zu vermeiden, wird das, was von vicinalen Formen bisher bekannt geworden ist, vorläufig nicht herangezogen.

Die Vicinalflächen bedürfen einer ganz andersartigen Behandlung als die typischen, bevor sie symbolisirt neben diese gestellt werden dürfen. Haben erst kritische Specialstudien freie Vicinalformen sichergestellt, so werden sie sich in ihrer ganzen reichen Mannichfaltigkeit zwischen die scharfen Linien des aus den typischen Formen aufgebauten Bildes als feines Geäder einfügen lassen.

Schuster hat in seiner ausgezeichneten Arbeit über den Danburit die Entwickelung unserer bisherigen Kenntniss von den Vicinalflächen verfolgt und selbst den Versuch gemacht zu einer naturgemässen Discussion dieser Gebilde, ein Studium, das ebenso zeitraubend und schwierig, als für die Erforschung der genetischen Verhältnisse hochwichtig ist. Ebenso wie in allen Zweigen der Naturwissenschaft, kommen wir auch bei der Flächenuntersuchung dahin, dass im Studium des Kleinsten die grössten Erfahrungen zu machen sind, dass, nachdem aus den gröberen Regelmässigkeiten eine erste Annäherung erzielt ist, die genauere Kenntniss von den wirkenden Gesetzen und von der Art ihres Zusammenwirkens durch das Studium der Details und der scheinbaren Ausnahmen erlangt wird.

Es mag noch besonders darauf hingewiesen werden, dass auch die Feststellung des Symbols einer minder einfachen typischen Form, wenn sie irgend einen Werth haben soll, mit der grössten Exaktheit geschehen muss, dass minder sichergestellte Formen durchaus zu entfernen sind. Approximative Bestimmungen derselben sind werthlos. Nur bei der grössten Gewissenhaftigkeit in der Aufstellung des Sicheren und in der Ausscheidung des Unsicheren ist es möglich, Klarheit zu erlangen. Auch dürfte als Grundsatz festzuhalten sein, dass es besser ist, mit dem Schwankenden möglicherweise Richtiges preiszugeben, als irgend Bedenkliches aufzunehmen.

Ganz in diesem Sinne sagt Dauber (Wien. Sitzb. 1860. 42. 54): "Allerdings müssen, je weniger einfach die Verhältnisse der Indices sind, desto grössere Anforderungen an die Beobachtungen gestellt werden und dieses ist auch der Grund, warum ich einige Formen, wie $26' = 15 \cdot 7 \cdot 5$ der guten Uebereinstimmung der beobachteten und berechneten Werthe ungeachtet, in die Kategorie der blos wahrscheinlichen Formen gestellt habe."

Echte Flächen und Scheinflächen.

Unter Scheinflächen sind solche ebene Partien am Krystall zu verstehen, deren Lage überhaupt nicht von den Molecularkräften des Krystalls, sondern durch andere Ursachen bestimmt ist.

Hierhin gehören:

- Diejenigen Fälle, wo die Kämme oscillatorischer Leisten einen gemeinsamen Reflex hervorbringen. Wir wollen solche Scheinflächen Leistenflächen nennen.
- 2. Local mehr oder minder ebene Partien im übrigen gerundeter Flächen, die in einem gedehnten Reslex prononcirt helle Stellen hervorbringen. Wir wollen sie Culminationsflächen (vielleicht besser Culminationsressen) nennen.
- 3. Anwachsflächen, d. h. Abdrücke einer ebenen Unterlage.

Die Orientirung von Scheinflächen ist ganz oder theilweise unabhängig von den Elementen des Krystalls. Leistenflächen und Culminationsflächen haben vielfach Eingang in die Formverzeichnisse gefunden. Sie gehen in echte Flächen über und es muss die Grenze mit vorsichtiger Kritik gezogen werden. Nachweisbare Scheinflächen wurden aus dem Index ausgeschieden.

Literatur.

Die Literatur-Angaben prätendiren nicht ein vollständiges Literatur-Verzeichniss zu sein; sie beziehen sich nur auf Arbeiten über Formenbeschreibung und sollen als Beleg dienen, um den Leser in den Stand zu setzen, die Daten des Index auf ihre Richtigkeit zu untersuchen. Immerhin werden diese Angaben ein werthvolles Hilfsmittel sein zur Auffindung der Literatur auch in anderen, die einzelnen Mineralien betreffenden Fragen.

```
Systematisch excerpirte Werke.
Amer. Journ. = The American journal of science and arts by Silliman etc. 1851-1881.
Ann. Min. = Annales des Mines. Paris 1852-1881.
Ann. Chim. Phys. = Annales de chimie et de physique. Paris 1850-1882.
Berl. Abh. = Abhandlungen der königl. Akademie der Wissenschaften zu Berlin 1804-1836.
Berl. Monatsb. = Monatsberichte der königl. preuss. Akad. d. Wissensch. in Berlin 1838-1881.
Bull. soc. Min. = Bulletin de la société Minéralogique de France. 1877-1884.
Comp. Rend. = Comptes rendus hebd. de l'académie des sciences. Paris 1852-1882.
Dana System = J. D. Dana (aided by Brush.) A System of Mineralogy. 1873. Append. I.
         (Brush) 1873. Append. II. (E. S. Dana) 1875. Append. III. (E. S. Dana) 1882.
D. Geol. Ges. = Zeitschrift der deutschen geologischen Gesellschaft. 1849-1882.
Des Cloizeaux Manuel. = Des Cloizeaux. Manuel de Minéralogie. 1. Bd. 1862. 2 Bd. 1874.
Greg u. Lettsom Man. = Greg and Lettsom. Manuel of the Min. of Gr. Britain and Ireland. 1858.
Groth Strassb. Samml. = Groth. Die Mineralien-Samml. d. Kaiser Wilhelms-Univ. Strassburg 1878.
Groth. Tab. = Groth. Tabellarische Uebersicht der Mineralien u. s. w. 2. Aufl. 1882.
Hauy. Traité Min. = Hauy. Traité de Minéralogie. 2. Aufl. 1822.
Hausmann Handb. = Hausmann. Handbuch der Mineralogie. 2. Th. Bd. 1 und 2. 1847.
Hartmann Handwb. = Hartmann. Handwörterbuch der Mineralogie u. Geologie. Leipzig 1828.
Hessenberg. Min. Not. = Hessenberg. Mineralogische Notizen. 1854-1874.
Jahrb. Min. = Neues Jahrbuch für Mineralogie, Geologie und Paläontologie. 1850-1883.
Kenngott. Uebers. = Kenngott. Uebersicht der Resultate mineralog. Forschungen 1844-1865.
Kokscharow. Mat. Min. Russl. = Kokscharow. Materialien z. Mineralogie Russlands. 1850-1878.
Lévy. Descr. = Lévy A. Description d'une collection de minéraux u. s. w. London 1838.
Miller. Min. = Phillips. An elementary introduction to Mineralogy. New edition by Brooke
         and Miller. London 1852.
Min. Mag. = Mineralogical Magazine. London 1877-1882.
Min. Mitth. Mineralogische Mittheilungen, gesammelt von G. Tschermak 1871-1877.
Min. Petr. Mitth. = Mineralog. petrograph. Mittheilungen, herausg. v. Tschermak. 1878-1882.
Mohs, Grundr. = Mohs. Grundriss der Mineralogie. 1824. Bd. 2.
Mohs-Zippe Min. = Mohs. Leichtfassl. Anfangsgründe einer Naturgeschichte des Mineralreichs.
         2. Theil, Physiographie, bearb. v. Zippe. 1839.
Münch. Sitzb. = Sitzungsberichte der kgl. bayr. Akad. der Wissensch. zu München. 1864-1880.
Phil. Mag. = Philosophical Magazine. 1850-1882.
Pogg. Ann. = Poggendorff. Annalen der Physik und Chemie, 1824-1877.
Schrauf Atlas = Schrauf. Atlas der Krystallformen des Mineralreiches 1864-1876.
Sella quadro = Sella. Quadro delle forme cristalline del argento rosso u. s. w. 1856.
Stockh. geol. förh. = Geologiske föreningens förhandlinger Stockholm. 1879-1882.
Stockh. öfvers. = Ofversigt of Vetenskaps Academiens Förhandlingar. 1870-1874.
Wien. Denkschriften d. kais, Akad. d. Wissensch. math.-nat, Classe. Wien 1850-1882.
Wien. Sitzb. = Sitzungsberichte d. math.-nat. Classe d. kais. Akad. d. Wissensch. Wien 1848-1883.
Würt. Jahrh. Jahreshefte des Vereins für vaterländische Naturkunde in Württemberg 1845-1882.
Zeitschr. Kryst. = Zeitschrift für Krystallographie u. Mineralogie herausg. v. Groth. 1877-1884.
```

Theilweise benutzte Werke.

Ausser den genannten systematisch excerpirten Werken wurden die übrigen mir zugänglichen mineralogischen Werke benutzt, da wo Literaturverweise auf sie führten. Endlich wurde systematisch verwendet der ganze Reichthum von Dissertationen, Separat-Abdrücken und Ausschnitten aus dem Besitze des k. k. Hof-Mineralien-Cabinets, des Dr. Brezina, sowie meiner eigenen Sammlung. Zu besonderem Dank bin ich den Herren Dr. Brezina und Dr. Berwerth vom k. k. Hof-Mineralien-Cabinet verpflichtet für die Liberalität, mit der sie mir die ihnen zu Gebote stehenden Hilfsmittel zugänglich machten.

Von den benutzten Werken sind die wichtigsten mit Angabe ihrer abgekürzten Bezeichnung die folgenden:

Bonn. Sitzb. Nat. Ver. — Sitzungsberichte des naturhistor, Vereins der preuss. Rheinlande und Westfalens. Bonn.

Bonn. Verhandl. Nat. Ver. = Verhandlungen des naturhist. Vereins der preuss. Rheinlande und Westfalens, Bonn.

Des Cloizeaux Nouv. Rech. — Nouvelles rech. sur les propriétés optiques des cristaux. Paris 1867. Dufrénoy Min. — Dufrénoy. Traité de Minéralogie. 1856.

Edinb. Journ. = The Edinbourgh philosophical Journal.

Edinb. Trans. = Transactions of the royal scotch society of Arts. Edinbourgh.

Erdm. Journ. = Erdmann. Journal für practische Chemie. Leipzig.

Gilbert Ann. = Gilbert. Annalen der Physik. Halle und Leipzig.

Gött. Nachr. Nachrichten der Georgs Anhalt. Universität u. s. w. Göttingen.

Haid. Abh. = Naturwissenschaftliche Abhandlungen, herausgegeben von W. Haidinger 1847-1851.

Haid. Ber. = Berichte über die Mittheilungen von Freunden der Naturwissenschaften. Wien. 1847—1851.

Jahrb. Geol. R. A. = Jahrbuch der kk. geol. Reichs-Anstalt. Wien.

Kobell. Gesch. = Kobell. Geschichte der Mineralogie. 1864.

Leonhard. Taschenb. = Taschenbuch für die gesammte Mineralogie von K. C. v. Leonhard. 1807-1824.

Lotos = Lotos. Zeitschrift für Naturwissenschaften. Prag.

Napoli Att. ac. = Atti della Reale academia delle scienze. Napoli.

Napoli Mem. ac. = Memorie della Reale academia delle scienze. Napoli.

Niederrhein. Gesellschaft für Natur- und Heilkunde. Bonn.

Phil. Trans. = Philosophical transactions of the royal society of London.

Prag. Abhandl. = Abhandlungen der böhmischen Gesellschaft der Wissenschaften. Prag.

Quenstedt Min. = Quenstedt. Mineralogie.

Rose Ural-Reise = G. Rose. Mineralogisch geognostische Reise nach dem Ural, Altai u. s. w. Bd. 1, 1838. Bd. 2, 1842.

Roma Att. Reale Linc. = Atti dell' Academia reale dei nuovi Lincei. Rom.

Schweigg, Journ. = Schweigger. Journal für Chemie und Physik. Nürnberg, Berlin.

Senck. Abh. = Abhandlungen, herausg. von d. Senckenbergischen naturforschenden Gesellschaft. Frankfurt a. M.

Verhandl. Geol. R. A. = Verhandlungen der kk. geologischen Reichs-Anstalt. Wien,

Literatur betr. Umwandlung und Transformation der Symbole.

Bernhardi. Gehlens Journal. 1857. S. 155, 185, 492, 625.

Bravais. Etudes crystallographiques. 1866. 115. (Die Arbeiten Bravais' zusammen-

gedruckt. Die hier betrachtete Untersuchung stammt aus dem Jahr 1849.)

Dana J. D. Lettering figures of crystals. Amer. Journ. 1852. (2) 13. 399-404.

Des Cloizeaux. Mém. s. l. cristallisation et la struct. int. de Quartz. 40. Paris 1858. 192-200.

Des Cloizeaux. Manuel. 1862. 1. XIII—XXV.

Egleston. Comparison of natations used to represent the faces of crystals, New-York 1871.

Frankenheim. Oken Isis. 1826. 10. 498 und 542.

Grassmann. Zur physischen Krystallonomie u. geometrischen Combinationslehre. Stettin 1829.

Grassmann. Combinatorische Entwicklung der Krystallgestalten. Pogg. Ann. 1833. 30. 1.

Groth. Physikalische Krystallographie. 1876. 513-517.

Karsten. Lehrbuch der Krystallographie. 1861. 123—127. Kenngott. Synonymik der Krystallographie. 1861. 123.

Kupffer. Handbuch der Krytallonomie. 1831. 102—215.

Lapparent. Lehrbuch der Krystallographie. 1866. 353. Lapparent. Cours de minéralogie. 1884. 518—523.

Lévy. On the modes of notation of Weiss, Mohs and Hauy. Edinb. Philos. Journ.

1825. 12. 70-81. 1826. 14. 131-135 und 256-270.

Mallard. Traité de crystallographie. 1879. 1. 321-363.

Miller. A treatise on crystallography. 1839.

Miller. On the crystallographic method of Grassmann. Cambridge 1868.

Miller-Grailich. Lehrbuch der Krystallographie. 1856. 208-223.

Quenstedt. Grundriss der Krystallographie. 1873. Geschichtliche Einleitung 1. 74. 226. 347.

Rammelsberg. Handb. d. kryst. phys. Chemie. 1881. 1. 1-10.

Schrauf. Atlas der Krystallformen. 1864. 13-19.

Schrauf. Wien. Sitzb. 1863. 48. (2) 250-270.

Schrauf. Physikalische Krystallographie, 1866. 1. 245-251.

Selle. Comparaison et transformation. Paris 1873. (Autograph.)

Webeky. Ueber Ableitung des krystallographischen Transformations - Symbols. Berl.

Monatsb. 1881. 152, Zeitschr. Kryst. 1882, 6. 1.

Weiss C. S. Berl. Abh. 1823. 217. Werner. Jahrb. Min. 1882. 2. 55.

Whewell. Philosophical Transactions, London 1825, 87-130.

Zahlen in den Literatur-Citaten.

Von den in den Literatur-Citaten auftretenden Zahlen bedeutet die erste die Jahreszahl, die zweite den Band, die dritte die Seite. Eine Zahl in Klammer () bedeutet, wenn vor der Bandzahl Serie, wenn nach derselben Abtheilung. Die Bandzahl ist überall durch stärkeren Druck hervorgehoben, z. B.:

Wien. Sitzb. 1862. 46. (2) 189 = Sitzungsberichte der k. k. Akademie der Wissenschaften. Jahrg. 1862. Band 46. Abth. 2. Seite 189.

Amer. Journ. 1883. (3) 26. 214 = American Journal of science and arts by Silliman etc., Jahrg. 1883. Serie 3. Bd. 26. Seite 214.

Bemerkungen zur Literatur.

Bei Schweigger (Journal und Jahrbuch) besteht eine dreifache Art der Numerirung der Bände. Hier wurde die auf dem ersten Titelblatt stehende einheitliche Zählung von 1-69 festgehalten.

Hartmann's Handwörterbuch der Mineralogie und Geologie wurde vollständig benutzt und citirt. Es enthält zwar keine Originalangaben, ist dagegen bequem und werthvoll zur Orientirung in der alten Literatur und Synonymik.

Von Mohs' Mineralogie wurden beide Ausgaben (Grundriss 1824 und Mohs-Zippe 1839) vollständig benutzt und citirt. Erstere Ausgabe wegen der reichen Menge von Originalangaben, letztere wegen des von Zippe dazu gesammelten Materials und wegen der weiten Verbreitung, die das Buch erfahren hat, was die direkte Identification aller darin enthaltenen Symbole und Axenverhältnisse als wünschenswerth erscheinen lässt.

Abschluss des Werkes. Bis zu welcher Zeit die Angaben reichen, geht aus dem Literaturverzeichniss hervor. Da zum Zweck der Drucklegung einmal abgeschlossen werden musste, so war es nicht möglich, die Ergebnisse der Forschung bis auf die allerletzten Tage einzutragen. In diesem Sinne ist das Werk bereits bei seinem Erscheinen veraltet. Doch ist das Fehlende, Neueste, unschwer herbeizuschaffen, und es besteht die Absicht, von Zeit zu Zeit die Ergänzung durch eine Nachtragslieferung zu bringen. Nachträge können eine weitaus einfachere Gestalt erhalten, indem für sie die das Werk so sehr belastenden ungebräuchlich gewordenen alten Symbole in Wegfall kommen. Für letztere ist abgesehen von Richtigstellungen und inneren Ergänzungen ein Abschluss gewonnen und kann in dieser Beziehung das Werk niemals veralten. Es soll nun noch darauf hingearbeitet werden, den bis zur Zeit gewonnenen Stoff durch weitere kritische Richtigstellungen zu klären und, wo möglich, zu einem stereotypen zu gestalten. Gewiss werden die Herren Fachgenossen diesem Bestreben gern ihre Unterstützung zu Theil werden lassen.

Namen und Reihenfolge der Mineralien.

Zur Bezeichnung der Mineralien wurden die in Deutschland derzeit zumeist üblichen Namen gewählt und danach der Index alphabetisch geordnet. Die gebräuchlichsten Synonyme sollen in einem Register beigefügt werden, welches jedoch nicht prätendirt, ein vollständiges Synonymen-Verzeichniss zu sein, sondern nur gewisse Schwierigkeiten in der Benutzung des Index beseitigen soll.

Vertheilung des Inhalts auf den Blättern.

Auf den vorderen (ungeraden) Seiten wurden gegeben: der Name des Minerals; das Krystallsystem; das Axenverhältniss in dem derzeit üblichen Sinn, nach Angabe der verschiedenen Autoren; die Elemente in unserem erweiterten Sinn für die angenommene Aufstellung; die Transformations-Symbole zur Verwandlung der Symbole der verschiedenen Aufstellungen in einander; das Formenverzeichniss.

Auf den (geraden) Rückseiten: die Literatur-Angaben, Bemerkungen und Correcturen.

Jedes Mineral schliesst mit dem vollen Blatt ab. Damit ist der Nachtheil verbunden, dass das ohnehin umfangreiche Werk noch an Ausdehnung zunimmt. Dagegen gewinnen wir aus dieser Einrichtung die folgenden Vortheile:

- 1. Das ganze Werk lässt sich in einzelne Blätter auflösen, von denen man jedes für sich selbstständig benutzen kann.
- 2. Erstreckt sich eine Tabelle über mehrere Blätter, so kann man diese neben einander legen und so zugleich übersehen.
- 3. Nach dem Auflösen kann man sich den Index nach einem beliebigen chemischen oder krystallographischen System ordnen, oder selbst Aenderungen in der alphabetischen Anordnung vornehmen, wenn man andere Synonyme bei Benennung der Mineralien den gewählten vorzieht.
- 4. Es wird dadurch dem Vorwurf einer Inconsequenz seine Schärfe benommen, nämlich derjenigen, dass manchmal eine Anzahl isomorpher Mineralien, z. B. die Feldspäthe, zu einer Gruppe mit gemeinsamer Ueberschrift vereinigt wurden, ein anderes Mal jedes Mineral einer solchen Gruppe für sich selbstständig auftritt. Solche Gruppen wurden da geschlossen gegeben, wo die einzelnen Glieder nicht klar getrennt oder durch Uebergänge verknüpft sind; jedoch ohne die Absicht in dieser Richtung zu systematisiren. Wem daher die hier gemachte Vereinigung und Trennung nicht zusagt, der kann mit Hilfe des Buchbinders seinen diesbezüglichen Wünschen und Anforderungen gerecht werden.
- 5. Man kann zu einer speciellen Untersuchung die Mineralien irgend einer Gruppe vereinigen, z. B. alle rhombischen Mineralien, alle Glieder einer isomorphen Gruppe u. s. w.
- 6. Man hat Platz zu Nachträgen und Bemerkungen, und kann zu diesem Zweck das Buch mit Papier durchschiessen, ohne den Zusammenhang zu stören.

Allen diesen Vorzügen gegenüber schien der Nachtheil grösseren Volums zurücktreten zu müssen.

Abkürzungen der Autoren-Namen.

Es wurden in diesem Werk, da wo es der Raum erforderte, die folgenden Kürzungen der Autorennamen angewendet:

- A. d'Ach. Arzr. Auerb. d'Achiardi Arzruni Auerbach.
- B. Babc. Bārw. Baumh. Bertr. Bodew. Brav. Breith. (= Brh.)

 Babcock Bārwald Baumhauer Bertrand Bodewig Bravais Breithaupt

Brezina Brögger Brooke Bücking.

- C. Cathr. Cord.
 Cathrein Cordier.
- Dana Dauber Des Clojzeaux Dufrénoy.
- F. Flet. Först. Foul. Franzn. Fraz. Fres. Friedld.

 Fletcher Förstner Foullon Franzenau Frazier Fresenius Friedländer.
- G. Gdt. Grail. Gr. Grünh. Grünl.
 Goldschmidt Grailich Groth Grünhut Grünling.
- H. Haid. Hartm. Haush. Hausm. = Hsm. Hy. Helmh. Hessb. (= Hsb.).

 Haidinger Hartmann Haushofer Hausmann Hauy Helmhacker Hessenberg

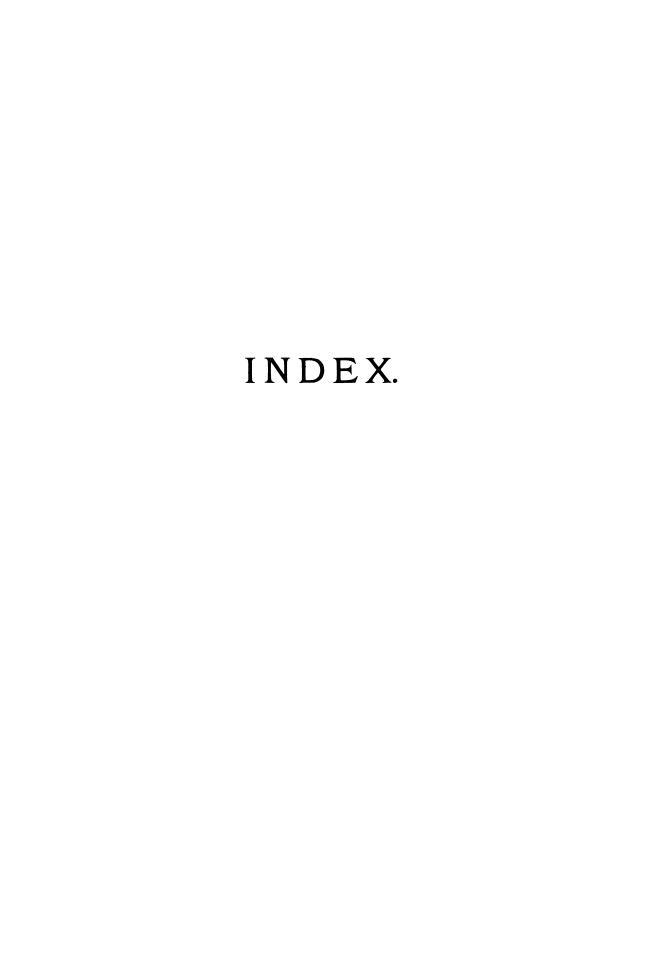
 Hze. Hiörtd. Hug.

Hintze Hiörtdahl Hugard.

- J. Irb. Jerem.
 Irby. Jeremejew
- K. Kalk. Kenng. Kl. Kob. Koksch. (= Kok.) Kren. Kupf.
 Kalkowsky Kenngott Klein Kobell Kokscharow Krenner Kupffer.
- L. Lasx. Lasp. Lehm. Leonh. Ly. Liw. Lor. Lüd.

 Lasaulx Laspeyres Lehmann Leonhard Lévy Liweh Lorenzen Lüdecke.
- M. Mag. Mall. Marign. Mask. Mill. Mhs. Mont. Müg.
 Magel Mallard Marignac Maskelyne Miller Mohs Monteiro Mügge
- N. Naum. Neum. Nordsk.
 Naumann Neumann Nordenskjöld.
- P. Phill. Phillips.
- Q. Quenst. Quenstedt.
- R. Rambg. Rath.
 Rammelsberg vom Rath.
- S. Sadeb. Sandb. Scac. Schab. Scheer. Schimp. Schrf. Schum.
 Sadebeck Sandberger Scacchi Schabus Scheerer Schimper Schrauf Schumacher
 Schust. Seligm. Sjög. Strüv.

Schuster Seligmann Sjögren Strüver.


- T. Tamn. Tesch. Trechm. Tscherm.
 Tamnau Teschemacher Trechmann Tschermak.
- W. Wakk. Webs. Weisb. Ws. Woitsch.
 Wakkernagel Websky Weisbach Weiss Woitschach.
- Z. Zephar. = Zeph. Zip. Zirk.
 Zepharovich Zippe Zirkel.

Correcturen.

Für die bei Benutzung der Literatur aufgefundenen Druck- und sonstigen Fehler wurden die Correcturangaben den einzelnen Mineralien beigefügt. Da, wo die Richtigkeit der Correctur nicht unmittelbar einleuchtet, wurde die Motivirung in den Bemerkungen gegeben. Im Allgemeinen sind nur Correcturen von Symbolen oder Winkelangaben aufgenommen, hie und da ist ein Name, eine Jahres- oder Seitenzahl richtig gestellt. Letztere Correctur ist nicht unwichtig, da eine falsche Zahl im Citat das Auffinden einer Arbeit oft sehr erschweren und Zeitverlust herbeiführen kann. In anderen Fehlerverzeichnissen bereits enthaltene Correcturen wurden nur in ganz seltenen Fällen, da, wo es besonders nöthig schien, aufgenommen. Dabei verkenne ich nicht den grossen Vortheil, den es haben würde, all die zerstreuten und oft übersehenen Correcturangaben für die ganze einschlägige Literatur in einem gemeinsamen Fehlerindex zu vereinigen. Die Zahl der bisher (die kritische Revision der Formenverzeichnisse ist noch nicht beendet), vermerkten Correcturen beträgt ca. 900. Dieselben sollen am Schluss des Index nochmals, nach Werken geordnet, angeführt werden, damit man im Stande sein möge, die Verbesserungen in den Büchern der Reihe nach vorzunehmen.

Auch in dem vorliegenden Werk, in dessen grösstem Theil fast jeder Buchstabe einen wesentlichen Fehler bringen kann, wird es, trotz der äussersten Sorgfalt in der Ausarbeitung und Revision, an solchen nicht mangeln. Diejenigen, welche während der Herausgabe sich finden, sollen ebenfalls am Schluss zusammengestellt werden und wäre der Verfasser sehr dankbar für diesbezügliche Mittheilungen.

Notiz. Aus dem typographischen Grund der verschiedenen Höhe der Ziffern ist bei zweiziffrigen negativen Zahlen das Zeichen — nur über die zweite Ziffer gesetzt worden, also beispielsweise $1\bar{6}$ für — 16.

Abichit.

Monoklin.

Axenverhältniss.

$$\begin{array}{lll} a:b:c=3.851:1:1.907 & \beta=99^{\circ}30^{\circ} \; (Gdt.) \\ [a:b:c=1.907:1:3.851 & \beta=99^{\circ}30^{\circ}] \; (Miller.\; Groth.) \\ & \{a:b:c=2.093:1:2.064 & \beta=100^{\circ}44^{\circ}\} \; (Schrauf.) \end{array}$$

Elemente.

a = 3.851	$lg \ a = o58557$	$\lg a_0 = 030522$	$\lg p_0 = 969478$	$a_o = 2.0194$	$p_0 = 0.4952$
c = 1.907	$\lg c = 028035$	$\lg b_0 = 971965$	$\lg q_o = o_{27435}$	b _o = 0.5244	$q_o = 1.8808$
$\mu = \begin{cases} \mu = 3 \\ 180 - \beta \end{cases} 80^{\circ} 30$	$\begin{cases} lg h = \\ lg \sin \mu \end{cases} 9994\infty$	$ \lg e = \begin{cases} 921761 \\ \lg \cos \mu \end{cases} $	$\lg \frac{p_0}{q_0} = 942043$	h = 0.9863	e = 0·1650

Transformation.

Schrauf.	Miller. Groth.	Gdt.
рq	$\frac{\mathbf{p}}{2} \frac{\mathbf{q}}{2}$	$\frac{2}{p} \frac{q}{p}$
2 p 2 q	рq	$\frac{1}{p} \frac{q}{p}$
$\frac{2}{p} \frac{2q}{p}$	$\frac{1}{p} \frac{q}{p}$	рq

No.	Miller. Schrauf. Gdt.	Miller.	Naumann.	[Lévy.]	Gdt.
1	а	001	οP	_	0
2	С	100	∞₽∞	P	∞o
3	m	011	P∞	m	01
4	r	101	— P∞	o_3	10
5	s	203	+ 3 P∞	a ²	— 3 o

160 Abichit.

Literatur.

```
      Lévy
      Descr.
      1838
      — Taf. 65 (Cuivre ars. en prisme rh. oblique) Fig. 2

      Miller
      Min.
      1852
      — 511 (Klinoklas)

      Schrauf
      Wien. Sitzb.
      1860
      39
      891 (Klinoklas)

      "
      Atlas
      1864
      — Taf. XX

      Groth
      Tab. Uebers.
      1882
      — 66 (Strahlerz).
```

Correcturen.

Schrauf Wien. Sitzb. 1860 39 Seite 891 Zeile 6 vo lies: (110) statt (120).

Adamin.

Rhombisch.

Axenverhältniss.

a:b:c = 0.6848: 1:0.9959 (Gdt.) [a:b:c = 0.9733: 1:0.7158] (Des Cloizeaux. Dana.) [a:b:c = 0.9959: 1:0.6848] (Laspeyres.) $\left\{\text{Monoklin. } a:b:c = 1.388: 1:1.394 \quad \beta = ca. 90^{\circ} \text{ (Groth.)}\right\}$

Elemente.

a = 0.6848	$\lg a = 983556$	$\lg a_0 = 983734$	lg p _o =016266	$a_o = 0.6876$	$p_0 = 1.4543$
c = 0.9959	lg c = 999822	lg b _o =000178	lg q _o =999822	b₀ = 1.0041	$q_0 = 0.9959$

Transformation.

Descloiz. Dana. Laspeyres		Gdt.
pq	$\pm \frac{p}{q} \frac{r}{q}$	$\frac{1}{p}$ $\frac{q}{p}$
$\frac{p}{q}$ $\frac{r}{q}$	pq	$\frac{\mathbf{q}}{\mathbf{p}} = \frac{\mathbf{I}}{\mathbf{p}}$
$\frac{1}{p} \frac{q}{p}$	$\pm \frac{1}{q} \frac{p}{q}$	pq

No.	Gdt.	Laspeyres.	Miller.	Naumann.	[Des Cloizeaux.]	Gdt.
I	a	a	001	oР	h ¹	0
2	b	b	010	∞Ĕ∞	g¹	0 00
3	c	c	100	∞P∞	p	∾o
4	1	1	110	∞P	_	00
5	k	k	014	ĮĎ∞	h §	o I
6	m	m	OI 2	<u>Į</u> Ď∞	h³	0 <u>I</u>
7	n	n	035	₹Ď∞	h ⁴	0 3
8	r	r	011	Ď∞	m	O I
9	s	s	053	§ Ď∞	g4	O §
10	t	t	021	2 P̃∞	g³	02
11	d	đ	101	Ē∞	a ^I	10
12	f		605	§ P̄∞	a §	<u>6</u> 0
13	0	0	111	P	b 1 2	1

162 Adamin.

Literatur.

```
      Des Cloizeaux
      Compt. Rend.
      1866
      62
      695

      "
      Nouv. rech.
      1867
      —
      26

      "
      Bull. soc. min.
      1878
      1
      30

      "
      Zeitschr. Kryst.
      1879
      3
      104

      Laspeyres
      Zeitschr. Kryst.
      1878
      2
      147 (Laurion).
```

Aeschynit.

Rhombisch.

Axenverhältniss.

Elemente.

a = 0.7161	$lg \ a = 985497$	$\lg a_0 = 968266$	$\lg p_0 = 031734$	$a_0 = 0.4816$	$p_0 = 2.0765$
c = 1.4870	$\log c = 017231$	$lg b_0 = 982769$	$\lg q_0 = 017231$	$b_o = 0.6725$	q _o = 1·4870

Transformation.

Brögg. Koksch. Groth. Woitsch. Descl. Rose. Hausm.	Dana.	Gdt.
рq	2 p·q	$\frac{p}{q} \frac{1}{q}$
$\frac{\mathbf{p}}{\mathbf{z}} \mathbf{q}$	рq	$\frac{p}{2 q} \frac{1}{q}$
$\frac{\mathbf{p}}{\mathbf{q}} \frac{\mathbf{I}}{\mathbf{q}}$	$\frac{2p}{q} \frac{1}{q}$	рq

No.	Gdt.	Miller.	Schrauf.	Brög.	Koksch.	Rose, Hausm.	Brooke. Mohs- Zippe.	Miller.	Naum.	[Hausm.]	[Mohs.] [Zippe.]	
1	a	а	a	b	С	ь	h	001	оP	В	ĕr+∞	0
2	С	С	c	С	P	_	P	010	∞Ř∞	A	P -∞	000
3	ь	ь	_		_	_	_	100	$\infty \bar{P} \infty$.	<u> </u>	∞ 0
4	d	_	_	d	d	_	_	110	∞P	-	_	∾.
5	v	v	v	x	x	2 f	c	012	ĮŽŏ∞	$BA\frac{1}{2}$	_	$0\frac{1}{2}$
6	n			n	n	_	_	103	$\frac{1}{3}\bar{P}\infty$			₹ o
7	r	r	1		s	1/2 g	_	102	$\frac{1}{2}\bar{P}\infty$	BB'2		1/2 O
8	t				_	_	_	305	3 P∞			3/5 O
9	m	m	m	m	M	g	M	101	P̄∞	E	P+∞	10
10	0	0	0	р	0	0	e (?)	111	P	P	_	I

Brooke	Phil. Mag.	1831	10	187.
n	Pogg. Ann.	1831	23	361. Ì
Mohs-Zippe	Min.	1839	2	459.
Rose	Ural Reise	1842	2	70.
Des Cloizeaux	Ann. Min.	1842 (4)	2	349.
Hausmann	Handb.	1847	2	(2) 947.
Miller	Min.	1852	_	470.
Kokscharow	Mat. Min. Russl.	1858	3	384.
n	Mat. Min. Russl.	1881	8	115.
Schrauf	Atlas	1864	_	Taf. I.
Dana	System	1873	_	522.
$Br\"{o}gger$	Zeitschr. Kryst.	1879	3	481.
n	Jahrb. Min.	1880	2	Ref. 21.)
Woitschach	Zeitschr. Kryst.	1882	7	86.

Bemerkungen.

Bei Hausmann (Handb. 1847 2 (2) 947 findet sich die Form EA $\frac{2}{3}$ (e Brooke) $= \frac{7}{2}$ oder in der Aufstellung des Index 1 $\frac{2}{3}$. Dieses Symbol geben die übrigen Autoren nicht. Es verdankt seine Entstehung der Winkel-Angabe von Brooke:

$$M : e = 169^{\circ}18^{\circ}$$

Diese Winkel-Angabe dürfte auf einem Irrthum beruhen. Es deutet vielmehr die Figur darauf hin, dass e Brooke identisch mit o Rose und $M:e=146^{\circ}$ ca sein müsste. Mohs-Zippe haben die Pyramide o Brooke zur Grundform gewählt und die Elemente

$$a : b : c = 1 : \sqrt{0.179} : \sqrt{0.0445}$$

berechnet, was nach unserer Schreibweise lautet:

```
a : b : c = 0.4986 : 1 : 2.363
```

In den Winkeln, die Zippe für diese Form rechnet, ist ein Rechenfehler und es ist zu lesen: $P = 128^{\circ}; 57^{\circ}; 158^{\circ}36^{\circ} \text{ statt: } 68^{\circ}0^{\circ}; 128^{\circ}0^{\circ}; 158^{\circ}36.$

 ${\tt Hausmann}$ hat für dieselbe Form für sein Symbol ${\tt EA_7^2}$ die Winkel gerechnet:

Es erscheinen Brooke's Winkel, Mohs-Zippe's Elemente und Hausmanns Symbol als durchaus unwahrscheinlich und dürfte e Brooke nach Correctur des Winkels mit o Rose zu identificiren sein.

Correcturen.

```
Rose G. Ural Reise 1842 2 Seite 71 Zeile 7 u. 9 vo lies b statt h Kokscharow Mat. Min. Russl. 1858 3 , 385 , 1 vu , \inftyP2 , \inftyP2
```

Akanthit.

1.

Rhombisch.

Axenverhältniss.

```
a:b:c = o.6886: i:o.9945 \text{ (Dana. Groth. Gdt.)} [a:b:c = i.4525: i:i.4442] \text{ (Dauber.)} \{a:b:c = o.727i: i:i.4447\} \text{ (Schrauf.)}
```

Elemente.

a == 0.6886	lg a = 983797	$\lg a_0 = 984037$	$\lg p_0 = 015963$	$a_0 = 0.6924$	p _o = 1·4442
c == 0.9945	lg c = 999760	$\lg b_o = 000240$	$\lg q_0 = 999760$	$b_o = 1.0055$	$q_o = 0.9945$

Transformation.

Dauber.	Schrauf.	Dana. Groth. Gdt.
pq	$\frac{\mathbf{p}}{2}\mathbf{q}$	qр
2 p q	pq	q · 2 p
qp	$\frac{\mathbf{q}}{\mathbf{z}}\mathbf{p}$	pq

No.	Gdt.	Schrauf.	Dauber.	Groth.	Miller.	Naumann.	Gdt.
	c	С	с		001	οP	0
2	ь	Ъ	a	_	010	∞⋫∞	000
3	a	a	ь		100	∞P∞	% 0
4	τ		τ		210	∞ P 2	200
5	m	m	m		110	∞P	∞ '
6	α	1	α	_	120	∞ř 2	∞2
7	у -			y	013	ĮĎ∞	0 I 3
8	r	r	r	_	023	₹ Ď∞	O 2 /3
9	d	d	đ	_	011	Ď∞	0 1
10	0	0	0		101	P∞	10
11	γ	_	γ	_	504	₹P∞	\$
12	u		ů		201	2 P̃∞	20
13	e	e	e		301	3 P̄∞	30
14	х		x		113	 ₹ P	1
15	p	k	p		111	P	I
16	z	_	z		554	5 P	5
17	k	p	k	_	121	2 P 2	1 2

Fortsetzung S. 167.

Dauber	Wien. Sitzb.	1860	39	685)
,,	Jahrb. Min.	1861		696 Ĵ
Schrauf	Atlas	1864		Taf. 1
Dana	System	1873		51
Groth	Strassb. Samml.	1878		5 ľ

Bemerkungen.

Ausser den angeführten giebt Dauber noch folgende 7 Formen, die er jedoch als unsicher bezeichnet. Die Symbole entsprechen in unserer Aufstellung:

```
\varphi = \frac{5}{8} \circ (508) \qquad y = \frac{5}{8} \frac{1}{8} (518)
t = \frac{2}{3} \circ (203) \qquad \sigma = \frac{143}{13} \frac{15}{13} (14 \cdot 15 \cdot 13)
i = \frac{5}{6} \circ (506) \qquad g = 8 \cdot 20 (8 \cdot 20 \cdot 1).
\psi = 8 \circ (801)
```

2.

No.	Gdt.	Schrauf.	Dauber.	Groth.	Miller.	Naumann.	Gdt.
18	s	s	s	_	131	зўз	1 3
19	μ		μ	_	122	Ď2	I I
20	n	n	n	_	211	2 P 2	2 I
21	ίυ			ω	411	4 P 4	4 I
22	π	_		π	611	6 P̄ 6	6 I
. 23	õ	_	δ	-	241	4 🏲 2	2 4
24	+	{}	1)	_	163	2 Ĭ 6	1/3 2
25	χ	_	χ	_	214	½ P 2	$\frac{1}{2}\frac{1}{4}$
26	β		β		152	<u>5</u> ₱ 5	1 5 2 2
27	λ	λ	λ		143	½ ř 4 § ř 8	I 4 3
28	ε		ε		183	§ Ď 8	I 8 3 3
29	h	-	h		125	² / ₅ ₽ 2	I 2 5 5
30	1		1	_	534	5 P 5	5 3 4 4

Alaun.

Regulär.

No.	Gdt.	Miller. Schrauf.	Hauy. Mohs. Zippe. Hartm.	M:11 am	Naum.	Hausm.	Mohs. Hartm.	Hauy.	Lévy.	G_{I}	G_2	G ₃
1	С	h	r	001	$\infty O \infty$	\mathbf{w}	Н	Ą	p	0	000	∞0
2	e			102	∞02				_	$\frac{I}{2}O$	02	2 ∞
3	d	d	0	101	ωO	RD	D	В	_	10	OI	∞
4	q	_	С	112	202		C,			<u>I</u>	12	21
5	p	o	P	111	O	O	O	P	a۱	I	1	1
6	W	_		64.65.65	65 64 O		_	_	_	I 64 65	64 65 I	<u>65</u> 64
7	u	_	b	212	2 O	_	В		_	I ½	<u>I</u> I	2

170 Alaun.

Literatur.

Hauy	Traité Min.	1822	2	114
Mohs	Grundr.	1824	2	62
Hartmann	Handwb.	1828		4
Naumann	Kryst.	1830	1	112
$L \acute{e}v y$	Descr.	1838	1	301
Mohs-Zippe	Min.	1839	2	53
Hausmann	Handb.	1847	2	(2) 1166
Miller	Min.	1852	_	540
Weber	Pogg. Ann.	1860	109	379
Wu lff	Zeitschr. Kryst.	1881	5	81.

Bemerkungen.

Die von Naumann angegebene Form $\frac{65}{64}\mathrm{O}$ dürfte wohl als vicinale anzusehen sein.

Allaktit.

Monoklin.

Axenverhältniss.

$$a:b:c=o.3315:1:o.6115$$
 $\beta=95°43.5$ (Gdt.)
 $[a:b:c=o.6115:1:o.3315$ $\beta=95°43.5$] (Sjögren.)

Elemente.

a	=	0.3315	$\lg a = 952048$	$\lg a_0 = 973408$	$\lg p_0 = 026592$	$a_o = 0.5421$	$p_o = \tau .8447$
С	=	0.6115	lg c = 978640	$\lg b_o = 021360$	$\lg q_0 = 978422$	$b_o = 1.6353$	q _o = 0.6084
μ 180	—)—β[84°16·5	$ \begin{array}{c} \lg h = \\ \lg \sin \mu \end{array} $ $ 999782$	$ \begin{cases} \lg e = \\ \lg \cos \mu \end{cases} 899893 $	$\lg \frac{p_o}{q_o} = 048170$	h = 0.9950	e = 0·0998

Transformation.

Sjögren.	Gdt.
рq	$\frac{1}{p} \frac{q}{p}$
$\frac{1}{p} \frac{q}{p}$	рq

No.	Sjögren. Gdt.	Miller.	Naumann.	Gdt.
I	а	001	οP	О
2	b	010	$\infty P \infty$	000
3	g	019	$\frac{1}{9} P \infty$	O 1/9
" 4	k	013	<u>1</u> P∞	0 <u>I</u>
5	1	012	$\frac{1}{2} P \infty$	$O(\frac{1}{2})$
6	f	023	$\frac{2}{3}$ P ∞	$O(\frac{2}{3})$
7	n	011	P∞	O I
8	o	043	4/3 P ∞	$O(\frac{4}{3})$
9	r	051	5 ₽∞	05
10	е	101	—P∞	+ 10
11	p	405	$-\frac{4}{5}P\infty$	$+\frac{4}{5}$ o
12	h	ĭoı	+ P∞	— 1 О
13	d	111	P	+1
14	i	232	$-\frac{3}{2}P\frac{3}{2}$	$+ 1 \frac{3}{2}$
15	m	141	-4P4	+ 1 4

172 Allaktit.

Literatur.

Sjögren Geol. Fören. Förh. 1884 7 220.

Alloklas.

Rhombisch.

Axenverhältniss.

a:b:c = 0.736:1:0.554 (Gdt.) [a:b:c = 0.75:1:1.35] (Tschermak.)

Elemente.

a = 0.736	$\lg a = 986688$	$\lg a_o = 012337$	$\lg p_0 = 987663$	$a_0 = 1.328$	p _o =0.753
c = 0·554	lg c = 974351	$\lg b_0 = 025649$	$\lg q_o = 974351$	b _o = 1.805	q _o =0.554

Transformation.

Tschermak.	Gdt.
рq	$\frac{\mathbf{q}}{\mathbf{p}} \frac{\mathbf{r}}{\mathbf{p}}$
$\frac{1}{q} \frac{p}{q}$	pq

No.	Gdt.	Miller.	Naumann.	Gdt.
I	ь	010	ω P΄ ∞	0.00
2	e	011	Ĕ∾	O I
3	f	101	$\tilde{\mathrm{P}} \infty$	10

174 Alloklas.

Literatur.

Tschermak Wien. Sitzb. 1866 53 (1) 220.

Alstonit.

Rhombisch.

Axenverhältniss.

 $a:b:c = o \cdot 7997:i:i \cdot 3532$ (Gdt.)

 $[a:b:c=o\cdot591:1:o\cdot739]$ (Miller, Hausmann, Dana, Groth.)

Elemente.

a = 0.7997	$\lg a = 990293$	$\lg a_o = 977157$	$\lg p_0 = 022843$	a _o = 0.5910	p _o = 1.6921
c = 1·3532	lg c = 013136	$\lg b_0 = 986864$	$\lg q_0 = 013136$	b _o = 0.7390	$q_{\circ} = 1.3532$

Transformation.

Hausm. Miller. Dana. Groth. Schrauf.	Gdt.
pq	$\frac{p}{q}$ $\frac{1}{q}$
$\frac{p}{q}$ $\frac{q}{q}$	рq

No.	Miller. Gdt.	Schrauf Miller		Naumann.	[Hausmann.]	Gdt.
I	a	a	001	οP	В	0
2	i	d	012	$\frac{1}{2} \breve{P} \infty$	BA $\frac{1}{2}$	$O^{\frac{1}{2}}$
3	k		OII	P∞	D	OI
4	m	m	101	$\bar{\mathrm{P}}\infty$	E	10
5	h		212	$ar{ ext{P}}_{f 2}$	$EA\frac{I}{2}$	$I_{\frac{1}{2}}$
6	p	p	111	P	P	I

176 Alstonit.

Literatur.

```
      Hausmann
      Handb.
      1847
      2
      (2) 1252

      Miller
      Min.
      1852
      — 573

      Schrauf
      Atlas
      1864
      — Taf. VI.

      Dana
      System
      1873
      — 698 (Bromlit.)
```

Bemerkungen.

Die Angabe des Axen-Verhältnisses in Schraufs Atlas:

```
a : b : c = 1.6920 : 1 : 1.2539
```

was bei unserer Deutung der Buchstaben a und b entspricht:

$$a:b:c=1:1.6920:1.2539=0.591:1:0.741$$

differirt um ein Geringes von der Angabe der übrigen Autoren.

Altait.

Regulär.

No.	Gdt.	Miller.	Schrauf.	Miller.	Naumann.	Des Cloizeaux.	G ₁	G_2	G_3
I	c	a	h	001	∞0∞	p	o	0,00	∞0

Goldschmidt, Index. 12

178 Altait.

Literatur.

Miller Min. 1852 137 Schrauf Atlas 1864 Taf. VI.

Alunit.

Hexagonal. Rhomboedrisch. Hemiedrisch.

Axenverhältniss.

$$a:c = 1:1\cdot 2523 (G_2.)$$

 $\begin{array}{l} \left[{a:c = 1:1\cdot 2523} \right] \text{ (Breithaupt. Dana. Groth: Jeremejew.)} \\ \left[{\begin{array}{*{20}{c}} {s:c = 1:1\cdot 257} \end{array}} \right] \text{ (Cordier. Mohs 1824.)} \\ \left\{ {a:c = 1:1\cdot 139} \right. \right\} \text{ (Mohs Zippe. Hausmann. Miller. Phillips.)} \\ \end{array}$

Elemente.

1	c = 1.2523	lg c = 009770	$\lg a_0 = 014085$	$\lg p_0 = 992162$	$a_0 = 1.3831$	$p_{\circ} = 0.8349$
1			$\lg a'_{\circ} = 990229$		a' _o == 0.7985	

Transformation.

Breith. Dana. Groth. Mohs. Cordier. Jerem. G ₁	G_2
pq	(p+2q)(p-q)
$\frac{p+2q}{3} \frac{p-q}{3}$	рq

No.	Gdt.	Schrauf.	Bravais.	Miller.	Naumann.	Hausm.	Mohs.	Hauy.	G_1	G_2
1	С	С	0001	111	οR	A	R-∞	A	0	0
2	d		I I Ž O	ΙΟĪ	∞P 2				∞	00
3	e		1010	211	∞R			_	∞ 0	∞
4	t	t	202 I	511	+ 2 R				+20	+ 2
5	s	s	6065	17·Ī·Ī	+ € R			-	十章o	+ 6/5
6	r	r	1011	100	+ R	HA_{8}^{7}	R	P	+ 1 O	+ 1
7	q	q	6067	21.1.1	+ ⁶ / ₇ R	P(?)	_		十多0	十号
8	v		3034	10.1.1	$+\frac{3}{4}$ R				$+\frac{3}{4}$ o	$+\frac{3}{4}$
9	w		7079	23.2.2	$+\frac{7}{9}R$				$+\frac{7}{9}$ o	+3
10	p	P	1·0·1·64	22.21.21	$+\frac{1}{64}R$	_			$+\frac{1}{64}$ 0	+ I
11	f		2 02 I	511	— 2 R		_	_	— 2 O	<u> </u>

180 Alunit.

Literatur.

Cordier	Ann. Min.	1820	5	303)
"	Schweigg.	1821	33	282
Hauy	Traité Min.	1822	2	128
Mohs	Grundr.	1824	2	81
Hartmann	Handb.	1828		3
Mohs-Zippe	Min.	1839	2	78
Hausmann	Handb.	1847	2	(2) 1163
Zippe	Jahrb. Geol. R. A.	1852	3	25
Miller	Min.	1852	_	539
Breithaupt	Min. Stud. Berg- u. Hütt. Zg.	1865	u.	1866
Schrauf	Atlas	1864	_	Taf. VI.
Jeremeje w	Zeitschr. Kryst.	1883	7	636.

Bemerkungen.

Die Angaben von Phillips, Mohs-Zippe, Hausmann, Miller sind nicht in sicherer Uebereinstimmung mit denen der anderen Autoren. Höchst wahrscheinlich ist:

pq (Phillips. Mohs.) $\doteqdot \frac{7}{8}$ p $\frac{7}{8}$ q (G₁ Breith. Dana) $\doteqdot \frac{7}{8}$ (p+2q) $\frac{7}{8}$ (p-q) G₂ (nahezu) und die Identification so vorzunehmen, wie oben geschehen.

Correcturen.

 $\textit{Jeremejew Zeitschr. Kryst.} \quad 1883 \quad \textbf{7} \quad \text{Seite 636 Zeile 26 vo lies: } 30\overline{3}4 \cdot 03\overline{3}\overline{4} \text{ statt } 30\overline{3}1 \cdot 03\overline{3}1.$

Amalgam.

Regulär.

N_0 .	Gdt.	Hauy. Mohs. Hartm.	Miller. Schrauf.	Miller.	Naumann.	Hausmann.	Mohs- Zippe.	Hauy.	Lévy Descloiz.	G_1	G_2	G_3
1	С	z	a (h)	001	∞O∞	W	Н	1E1	p	0	000	ωo
2	a	t	f	103	∞O 3	PW_3	A_3	$^{5}E_{5}$	Ъ ³	$\frac{1}{3}$ O	30	3∞
3	e	_	_	102	∞O 2		_		b 2	$\frac{1}{2}$ O	20	2∞
4	d	P	d	101	∞ 0	RD	D	P	p 1	10	10	∞
5	q	s	n	112	2 O 2	Tr 1	\mathbf{C}^{1}	Ŗ	a 2	$\frac{\mathbf{I}}{2}$	2 I	2 I
6	p	r	О	111	O	O	О	$\mathbf{A}^{\scriptscriptstyle I}$	a ^I	1	I	1
7	u	_	p	212	20				a I	I ½	I I	2
8	x	1	s	213	$3 \odot \frac{3}{2}$	ТРі	T 1	$ \mathbf{P}_{2} $	s	$\frac{2}{3}\frac{I}{3}$	$\frac{3}{2}\frac{1}{2}$	32

182 Amalgam.

Literatur.

Hauy	Traité Min.	1822	3	307
Mohs	Grundr.	1824	2	504
Hartmann	Handb.	1828		383
L é vy	Descr.	1838	2	376
${\it Mohs-Zippe}$	Min.	1839	2	479
Hausmann	Handb.	1847	2	(1) 31
Miller	Min.	1852		125
Des Cloizeaux	Manuel.	1862	1	6
Schrauf	Atlas.	1864	_	Taf. VI u. VII
Groth	Strassb. Samml.	1878		13.

Amblygonit.

Triklin.

Axenverhältniss.

 $a:b:c=o\cdot 2454: \ i:o\cdot 4605\ \alpha\beta\gamma=68^{\circ}47^{'};98^{\circ}44^{'};85^{\circ}52^{!}$ (Descl. Groth. Gdt.)

Elemente der Linear-Projection.

a = 0.2454	$a_0 = 0.5329$	$\alpha = 68^{\circ}47$	x' _o = 0·1784	d' = -0.4035
b= 1	b _o = 2·1715	$\beta = 98^{\circ}44$	$y'_{\circ} = 0.3619$	$\delta^{\scriptscriptstyle }$ = 26°14
c = 0.4605	c _o == 1	$\gamma = 85^{\circ}52$	k = 0.9149	

Elemente der Polar-Projection.

$p_0 = 1.7539$	λ == 112°13·3	x _o == 0·1406	d=0.4035
$q_0 = 0.4563$	$\mu = 78^{\circ}58$	$y_0 = -0.3782$	$\delta = 20^{\circ}24$
r _o == 1	$y = 97^{\circ}55\cdot3$	h = 0.9149	

No.	Gdt.	Miller.	Naumann.	Descloiz.	Gdt.
I	С	001	οP	p	0
2	m	110	∞P^{ι}	t	∞
3	n	1 <u>1</u> 0	∞'P	m	∞ ∞
4	e	011	, <mark></mark> P′∞	i ⁱ	OI

184 Amblygonit.

Literatur.

$Des\ Cloizeaux$	Compt. rend.	1863 (2) 57	357
Schrauf	Atlas	1864 —	Taf. VII
$oldsymbol{Des}$ $Cloizeaux$	Compt. rend.	1871 73	1247)
"	Ann. Chim. Phys.	1872 27	385 Ĵ
$oldsymbol{Kobell}$	Münch. Sitzb.	1872 2	284 (Hebronit)
$Des\ Cloizeaux$	Compt. rend.	1873 76	319
Groth	$Tab. \ Uebers.$	1882 —	64.

Bemerkungen.

Die Aufstellung ist den Elementen nach nicht eben günstig. Sie dürfte nur eine vorläufige sein und sich mit dem Bekanntwerden besser ausgebildeter und formenreicherer Krystalle ändern.

Ammoniak-Alaun.

Regulär.

 No.	Gdt.	Miller.	Miller.	Naumann.	G_1	G_2	G_3
I	p	0	111	0	I	I	I

Literatur.

Miller Min. 1852 541 Schrauf Atlas 1864 Taf. VII.

Amoibit.

Regulär.

No.	Gdt.	Schrauf.	Miller.	iller. Naumann.		G_2	G_3
I	С	h	100	ω 0ω	o	0.00	∞0

188 Amoibit.

Literatur.

Kobell Erdm. Journ. 1844 33 402 Schrauf Atlas 1864 — Taf. VII.

Amphibol.

1.

Monoklin.

Axenverhältniss.

a : b : c	=	0.5482 :	1:0.29	37	β ==	104°581	(Miller. Descl. Ko	ksch. Nordsk.
							Schrauf. Cathro	ein. Gdt.)
**	=	0.5318 :	1:0.29	36	β =	104°58	(Dana. Groth.)	
"	=	0.5456 :	1:0.29	35	$\beta =$	105°12	(Arzruni.)	
"	=	o·5481 :	1 : 0·29	45	$\beta =$	105°20	(Franzenau.)	
**	=	0.5449 :	1:0.29	20	$\beta =$	104°581	(Mohs. Zippe. Ha	iusmann.)

Elemente.

a = 0.5482	lg a = 973894	$\lg a_0 = 027104$	$\lg p_0 = 972896$	a _o = 1.8666	$p_o = 0.5350$
c = 0·2937	lg c = 946790	$\lg b_o = o53210$	$\lg q_0 = 945291$	$b_0 = 3.4049$	$q_o = 0.2837$
$ \begin{array}{c} \mu = \\ 180 - \beta \end{array} $ $ \begin{array}{c} 75^{\circ}02 \end{array} $	$\begin{cases} \lg h = \\ \lg \sin \mu \end{cases} 998501$	$ \begin{cases} \lg e = \\ \lg \cos \mu \end{cases} 941205 $	$\lg \frac{p_o}{q_o} = 027605$	h = 0.9661	e = 0.2583

Transformation.

Mohs 1824.	Rath. Weiss. Quenstedt.	Mohs-Zippe. Hausm. Lévy. Miller. Dana. Descl. Groth. Koksch. Nordsk. Schrauf. Cathr. Arzruni. Franzn. Gdt.			
pq	$\frac{p-r}{2}$ q	$-\frac{p+r}{2}q$			
(2 p + 1) q	pq	- (p+1) q			
— (2 p + 1) q	-(p+1)q	pq			

No.		Schrauf Koch. Franzn.	Mill. Cathr.	Först.	Kok.		Hauy Hausm. Hartm. MhsZip.		Naum.	Hausm	[Mohs] 1824.	Hauy.	Lévy. Descl.	Gdt.
ı	С	С	С	с	P	P	P	001	οP	A	— Ўr	P	p	0
2	b	ь	b	b	b	b	x	ого	∞₽∞	В	Pr⊹∞	$^{1}G^{1}$	g¹	0∞
3	a	a	a	a	a		s	100	∞P∞	\mathbf{B}_{1}	Ĕr+∞	'H'	h1	ωo
4	n	n	n	n	n	_	γ	310	∞P3	B'B3	(ĕ+∞)	6	h²	3∞
5	q	q						210	∞ P2					2 ∞
6	m	m	m	m	M	T	M	110	∞P	E	(Ĕr+∞)	³ M	m	∞
7	e	e	e	e	e	e	c	130	∞P3	BB ¹ 3	(<u>P</u> r+∞)		g²	∞3
8	d	đ	x	_	x		1	011	₽∞	D	-	Ė	e¹	оі

(Fortsetzung S. 191.)

Literatur.

```
Hauy
                    Traité Min.
                                        1822
                                                    372
Mohs
                    Grundr.
                                                2
                                        1824
                                                    314
Hartmann
                    Handwb.
                                        1828
                                                    32
L \epsilon v y
                   Descr.
                                        1838
                                                2
                                                   1
Mohs-Zippe
                   Min.
                                        1839
                                                2
                                                    311
Hausmann
                   Handb.
                                       1847
                                                    (1) 500 flgde (513)
Miller
                   Min.
                                        1852
                                                    297
Des Cloizeaux
                   Manuel
                                                1
                                        1862
                                                    77
Schrauf
                   Atlas
                                        1864
                                                    Taf. VII u. VIII
Rath
                   Pogg. Ann.
                                        1866
                                              128
                                                   427
Dana
                   System.
                                        1873
                                                    232
Lasaulx
                   Jahrb. Min.
                                                    380 )
                                        1878
                                                          (Breislakit)
                   Zeitschr. Kryst.
                                        1881
                                                    271
Koch
                   Min. Petr. Mitth.
                                        1878
                                                1
                                                    341
                   Zeitschr. Kryst.
                                       1879
                                                3
                                                    306 J
Kokscharow
                   Mat. Min. Russl.
                                        1878
                                                8 159 (Zus. Stellung)
Förstner
                   Zeitschr. Kryst.
                                       1881
                                                \mathbf{5}
                                                    360
Groth
                   Tab. Uebers.
                                       1882
                                                    105
Arzruni
                   Berl. Sitzb.
                                        1882
                                                    März
                   Jahrb. Min.
                                                1 Ref. 181)
                                       1883
    "
                   Zeitschr. Kryst.
                                       1884
                                                    296
Franzenau
                   Zeitschr. Kryst.
                                       1884
                                                    568
Cathrein
                   Zeitschr. Kryst.
                                       1884
                                                   357
```

Arfved sonit.

Lorenzen Min. Mag. 1882 5 50

Glaukophan (Gastaldit).

 Strüver
 Rom. Att. ac. Real. Linc.
 1875 (2)
 2
 333

 Bodewig
 Pogg. Ann.
 1876
 158
 224.

Bemerkungen | s. Seite 192.

2.

No.	O 1.	Schrauf Koch Franzn.	Miller	Först.	Kok.	Rath.	Hauy Hausm. Hartm. MhsZip		Naum.	Hausm.	[Mohs] 1824.	Hauy.	Lévy Desc	
9	z	z	z	z	z	_	z	021	2 P∞	$BA_{\frac{1}{2}}$	— (P̄r) ³	É	$e_{\frac{1}{2}}$	02
10	u		u					031	3 P∞			_		03
11	s	s	s	$e_{4}^{\underline{I}}$	s			041	4 P∞				$e_{4}^{\underline{\mathtt{I}}}$	04
12	f	f	_					201	— 2 P∞	_			_	+20
13	1	1	1	\mathbf{o}_{l}	1			101	— P∞	_			$\mathbf{o_{I}}$	+10
14	h	h			_			203	$-\frac{2}{3}P\infty$		-			$+\frac{2}{3}$ o
15	w	w	w	w	w		_	ĪOI	+ P∞	_		_	a¹	— 10
16	t	t	t	t	t	_	t	Ō1	+ 2 P∞	$\overline{B}^{\dagger}A_{\frac{1}{2}}$	+ <u>3</u> Ĕr+2		a_{2}^{I}	20
17	k	k	k	k	k	_	k	111	— Р	P	— (ĕ)³	$\vec{\mathbf{p}}$	$\mathrm{d}_{\frac{1}{2}}^{\underline{\mathrm{I}}}$	+ 1
18	p	u			_			112	$-\frac{1}{2}P$					$+\frac{1}{2}$
19	r	r	r	r	r	_	r	ĪIJ	+ P	$\mathbf{P}^{_{\mathbf{I}}}$	P	$\mathbf{B}^{\frac{1}{2}}$	$b_{\frac{1}{2}}$	— 1
20	О	О	О	o	o	О	a	221	+ 2 P	${\bf \bar{E}} A_{\bf \bar{2}}^{\bf I}$	(Ĕr) ⁵		$b_{\frac{1}{4}}^{\underline{I}}$	— 2
21	у		у	_				1.10.1	—10P10	_		_		+1.10
22	g	g		_			_	151	— 5 P 5			_		+15
23	v	v	v	v	v		Ъ	131	— 3 P 3	$^{+}_{\mathrm{BD'}_{3}}$	$-\frac{3}{4}P + 2$	_	v	+13
24	i	i	i	i	i	_	i	T31	+3P3	ĒD¹3	(P̄)³	t 1 EDB2	ε	- 13
25		ρ	h	p	h	_			+5P5				ρ	<u>— 15</u>
26	σ					s		2 61	+6P3		-	_	_	<u> — 26 </u>

192 Amphibol.

Bemerkungen.

In der Arbeit von Koch (Min. Petr. Mitth. 1878. 1. 341 sind die Naumann'schen Symbole in der Weise modificirt angewendet, wie es Schrauf in seinem Atlas gethan hat, nämlich so, dass \pm gegen die eigentliche Naumann'sche Schreibweise vertauscht sind. Das giebt Gelegenheit zu Verwechselungen, besonders da, wo durch Fehlen von Winkelangaben, wie es hier der Fall ist, eine Controle nicht möglich ist.

Ausserdem sind die Angaben durch Druckfehler entstellt. Es muss heissen:

wie schon die Angaben auf der folgenden Seite bestätigen. Ferner soll es jedenfalls heissen:

Zeile 17 vu v =
$$_{3}P_{3}$$
 (131) statt $_{3}P_{\infty}$ (031)
" 16 vu i = $-_{3}P_{3}$ (131) " $-_{3}P_{\infty}$ (031)

Dass hier ein Fehler vorliegt, geht daraus hervor, dass man \pm Klinodomen ja nicht unterscheidet und dass gerade diese Correctur Platz zu greifen habe, darauf weist hin die dadurch erreichte Uebereinstimmung in den Buchstaben mit Schrauf und den anderen Autoren (Miller, Kokscharow...). Auch wird diese Correctur bestätigt, indem Franzenau (Zeitschr. Kryst. 1884. 8. 569) v = (131) vom Aranyer Berg anführt.

Es sind auch Irrthümer in das Referat (Zeitschr. Kryst. 1879. 3, 306) eingegangen. Dort wäre zu lesen:

2. Amphibol.... Beobachtete Formen: (110) ∞P , (011) $P \infty$; 001 (0P), (111) -P, (021) $2P \infty$, (100) $\infty P \infty$, (010) $\infty P \infty$. An einem Krystall ausserdem noch: (130) $\infty P 3$, (701) $+P \infty$, (201) $+2P \infty$, (711) +P, (131) -3P 3; (731) +3P 3, (221) $+2P \ldots \ldots$ u. s. w. mit den Flächen: (110) (010) (011) (701) (711) (021).

Die Mineralien Arfvedsonit und Glaukophan wurden nicht besonders aufgeführt. Sie haben die gleichen Elemente mit dem Amphibol. Es wurden bei gleicher Aufstellung und gleicher Bedeutung der Buchstaben beobachtet:

Arfvedsonit: cbmzr Glaukophan: cbamr.

Correcturen.

Amphibol-Gruppe.

Cossyrit.

Triklin.

Axenverhältniss.

 $a\!:\!b\!:\!c = o\!\cdot\!6627\!:\!1\!:\!o\!\cdot\!3505 \ \alpha\beta\gamma = 90^{\circ}6^{\scriptscriptstyle |}; 102^{\circ}13^{\scriptscriptstyle |}; 89^{\circ}54^{\scriptscriptstyle |} (\text{F\"{o}}\text{rstner. Groth. Gdt.})$

Elemente der Linear-Projection.

a=0.6627	a₀ == 1.8907	α== 90°06	$x_{\circ}^{-} = -0.2116$
b= 1	$b_0 = 3.4256$	$\beta = 102^{\circ}13$	y'₀= 0·0017
c = 0·3505	c _o = 1	$\gamma = 89^{\circ}54$	k = 0.9775

Elemente der Polar-Projection.

$p_0 = 0.5289$	λ == 89°55	$x_0 = 0.2116$
$q_0 = 0.3426$	$\mu = 77^{\circ}47$	y ₀ =0.0014
r _o = 1	ν == 90°05	h = 0.977.4

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N_o .	Förstner Gdt.	Miller.	Naumann.	Gdt.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	I	С	001		О
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	ь	010	∞P∞	0 00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3	a	100	∞Ē∞	% 0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4	m	110	∞P¹	∞
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5	e	130	∞P'3	∞3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6	μ	110	∞'P	∞ ∞
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7	8	130		∞ 3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8	ζ	021		02
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9	\mathbf{z}	OŽI	2¹Ř₁∞	OŽ
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	k	111	P ¹	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11	x	<u> 1</u> 1 3	$\frac{1}{3}P_{_{\parallel}}$	$\frac{T}{3}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12	r	ĪĪI		Ī
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	13	σ	151	5 ^P '5	15
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	14	v	131		ΙĨ
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15	i	131	$3_{i} \vec{P} 3$	ī3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	16	d	<u>171</u>		<u> 7</u>
10 f 133 P3	17	Р	<u>ī</u> <u>5</u> 1		<u>ī</u> <u>ī</u>
19 f 133 P3 15 T	18	g	311		31
20 u 133 P ₁ 3 I	19	f	133	Ψ̃3	<u> </u>
	20	u	133	P_{i3}	T ₃ T

Literatur.

```
Förstner Zeitschr. Kryst. 1881 5. 348 (Pantellaria)
Groth Tab. Uebers. 1882 — 106.
```

Bemerkungen.

Der Druckfehler in Angabe der Axen-Verhältnisse bei Förstner ist bereits Zeitschr. Kryst. 1882. 6. 659 richtig gestellt.

Ausser der von Förstner angenommenen Aufstellung (l. c. Seite 360) hat Förstner noch eine zweite Aufstellung für den Cossyrit gegeben (S. 351). Aendert man die Symbole in der Weise, dass man aus den S. 351 gegebenen bildet: q·3p, so werden die Symbole am einfachsten und wir erhalten das Axen-Verhältniss

```
a:b:c = 0.5153:1:0.3419

\alpha\beta\gamma = 107^{\circ}52^{\circ}; 109^{\circ}16^{\circ}; 84^{\circ}30^{\circ}
```

Abgesehen von dem \angle α ist auch dies Verhältniss dem des Amphibol ähnlich.

Es ist zweifelhaft, welche Aufstellung vozuziehen sei, doch wurde im Zweifel von der Förstner'schen Annahme nicht abgegangen.

Amphibol-Gruppe.

Anthophyllit.

Rhombisch.

Axenverhältniss.

 $a:b:c=o\cdot 521:1:$? (Des Cloizeaux. Schrauf.)

No.	Schrauf. Gdt.	Miller.	Naumann.	Des Cloizeaux.	Gdt.
I	a	010	∞Ĕ∞	g¹	000
2	ъ	100	$\infty \bar{P} \infty$	$\mathbf{h}^{\scriptscriptstyleI}$	∾0
3	m	110	∞P	m	00

Literatur.

Des Cloizeaux Manuel 1862 1 75 Schrauf Atlas 1871 — Taf. XVII.

Analcim.

Regulär.

No.	Gdt.	Hauy Hartm.	Schrauf.	Miller.	Naumann.	Hausm.	Mohs- Zippe.	Hauy.	Lévy Descl.	G_1	G_2	G_3
I	С	P	h	001	∞O∞	W	Н	P	p	o	000	∞ 0
2	d		đ	101	œΟ	RD	D			ю	OI	∞.
3	q	o	n	112	202	Trı	С1	${f \mathring{A}}$	a^2	12	12	21
4	p	_	0	111	O					1	1	ĭ
5	w		_	323	$\frac{3}{2}$ O					$1\frac{2}{3}$	$\frac{2}{3}$ I	32

198 Analcim.

Literatur.

Hauy	Traité Min.	1822	3	170
Mohs	Grundr.	1824	2	260
Hartmann	Handwb.	1828		343
$L \epsilon v y$	Descr.	1838	2	258
Mohs-Zippe	Min.	1839	2	250
Hausmann	Handb.	1847	2	(1) 777
Miller	Min.	1852		446
$Des\ Cloizeaux$	Manuel.	1862	1	392
Schrauf	Atlas	1864		Taf. IX
Laspeyres	Zeitschr. Kryst.	1877	1	204.

Anatas.

I.

Tetragonal.

Axenverhältniss.

```
a:c = 1:1.7771 (Kokscharow. Miller. Klein.
Schrauf. Seligmann. Gdt.)

" = 1:1.7785 (Dauber.)

" = 1:1.7788 (Dana.)

" = 1:1.7844 (Schrauf.)

" = 1:1.7663 (Mohs. Zippe. Hausmann.)

{a:c = 1:0.629 } (Brezina. Wiserin.)

[a:c = 1:3.554] (Des Cloizeaux.)
```

Elemente.

${c \choose p_o} = 1.7771$ $\lg c = 024971$	$\lg a_0 = 975029$	$a_0 = 0.5627$
---	--------------------	----------------

Transformation.

Lévy. Des Cloizeaux.	Brezina. (Wiserin.)	Mohs. Zippe, Hausm, Miller. Dauber. Klein. Dana. Schrauf. Seligm. Gdt.
pq	4 (p+q) · 4 (p-q)	2 p · 2 q
$\frac{p+q}{8} \frac{p-q}{8}$	pq	$\frac{p+q}{4} \frac{p-q}{4}$
$\frac{p}{2} \frac{q}{2}$	2 (p+q)·2 (p-q)	pq

No.	Gdt.	Hauy. Hausm. Mohs. Hartm.	Miller. Rath. Schrauf. Klein. Seligm. Vrba.	Koksch.	Miller.	Naum.	Hausm.	Mohs.	Hauy.	[Lévy.] [Descl.]	Gdt.
ı	С	0	С	n	001	οP	Α	P—∞	A	P	0
2	a	u	a	h	100	$\infty P \infty$	В	[P+∞]		h١	∞o
3	m	x	m		110	ωP	E	$P+\infty$		m	~
4	0		0		107	^I ⁄ ₇ P∞	_			a ^{I 4}	<u> </u>
5	u		u		105	$\frac{1}{5} P \infty$	AB_5		-	a10	I ₅ O
6	x		x (8el.)) —	103	$\frac{1}{3}$ P ∞					$\frac{1}{3}O$
7	e	t	e	t	101	P∞	D	Р—1		a ²	10
8	q	q	q	_	201	2 P∞	BA^{I}_{2}	Р+1		$\mathbf{a}^{\mathtt{I}}$	20
9	d		đ		301	3 P∞				$a^{\frac{2}{3}}$	30

Fortsetzung S. 201.

200 Anatas.

Literatur.

```
Hauy
                   Traité Min.
                                    1822
                                                344
Mohs
                   Grundr.
                                    1824
                                            2
                                                440
Hartmann
                  Handb.
                                    1828
                                                529
L \epsilon v y
                  Descr.
                                            3
                                    1838
                                                344
Mohs-Zippe
                  Min.
                                            2
                                    1839
                                                418
Hausmann
                  Handb.
                                    1847
                                            2
                                               (1) 216
Miller
                  Min
                                    1852
                                                229
Ladrey
                  Comp. Rend.
                                           34
                                    1852
                                                 56
Kokscharow
                  Mat. Min. Russl.
                                    1853
                                            1
                                                 44
Dauber
                  Pogg. Ann.
                                    1855
                                           94
                                               407
Schrauf
                  Atlas.
                                    1864
                                               Taf IX u. X
Klein
                  Jahrb. Min.
                                    1872
                                               900
Brezina
                                                  7 (Wiserin)
                  Min. Mitth.
                                            2
                                    1872
Dana
                  System.
                                    1873
                                                161
Des Cloizeaux
                  Manuel
                                            2
                                    1874
                                               200
Klein
                  Jahrb. Min.
                                    1874
                                               961
                                    1875
                                               337 (Zusammenstellung)
                  Berl. Monatsb.
Rath
                                    1875
                                               536
                  Pogg. Ann.
                                    1876 158
                                               402
Groth
                  Strassb. Samml.
                                    1878
                                                108
Vrba
                  Zeitschr. Kryst.
                                    1881
                                            5
                                               417 (Rauris)
Seligmann
                  Jahrb. Min.
                                            2
                                    1881
                                               269
                                    1882
                                            2
                                               281
                  Zeitschr. Kryst.
                                            9
                                    1884
                                                93
Zepharovich
                  Zeitschr. Kryst.
                                            6
                                    1882
                                               240
                  Jahrb. Min.
                                    1883
                                            1
                                               Ref. 179
Wein
                  Zeitschr. Kryst.
                                    1884
                                            8
                                               532
Schrauf
                                    1884
                                            9
                                               465.
```

Bemerkungen S. S. 202.

2.

No.	Gdt.	Hauy. Hausm, Mohs, Hartm,	Miller. Rath. Schrauf. Klein. Seligm. Vrba.	Koksch.	Miller.	Naum.	Hausm.	Mohs.	Hauy.	[Lévy.] [Descl.]	Gdt.
10	γ		γ		902	<u>9</u> P∞	-	-			$\frac{9}{2}$ O
11	g		ģ		701	7 P∞				_	70
12	μ		h.		1.1.14	$\frac{1}{14}P$			_	b 14	14
13	1		1		1.1.10	IP			_	b 10	10
14	α		α		119	I P	_				<u>1</u>
15	π		π	-	118	$\frac{I}{8}$ P					<u>I</u>
16	v		v	у	117	1/7 P	AE7		_	b 7	<u>I</u> 7
17	V				3.3.20	$\frac{3}{20}$ P	-		_		$\frac{3}{20}$ $\frac{1}{6}$
18	i		i		116	₹ P	-		_	b 6	
19	r	r	r	_	115	<u>∓</u> P	AE ₅	<u>4</u> P−−4	A	b 5	<u>I</u> 5
20	f		f	_	114	<u> </u>			- 3 	b 4	<u>I</u>
2 I	F		$\mathbf{f}^{f^{r}}$		5.5.19	$\frac{5}{19}$ P				_	<u>I</u> 5 19
22	n		n	_	227	2 ₽				b 7/2	2 7
23	z	-	z	-	113	$\frac{I}{3}$ P	-			Ъ ³	<u>I</u>
24	ψ		ψ		225	<u>2</u> / ₅ P		_			<u>2</u> 5
25	Ψ		_	_	5.5.12	$\frac{5}{12}$ P					<u>5</u> 12
26	χ	_	x (Dauber)		337	$\frac{3}{7}$ P		_	_	_	3 7 5 11
27	X				5.2.11	5 P		_			
28	k		k	_	112	$\frac{I}{2}P$			_	b 2	$\frac{1}{2}$
29	ε	_	ε	_	335	3 P					3 <u>i</u> 5 2 <u>3</u> 3
30	η		η		223	$\frac{2}{3}$ P					3
31	p	P	\mathbf{p}	О	111	P	P	P	P	Ъ	I
32	P		$\mathbf{w}^{\scriptscriptstyleI}$		15.15.8	15P		_		b <u>8</u>	<u>I 5</u> 8
33	w		w		221	2 P			_		2
34	δ		δ		331	3 P				_	3
35	τ		τ	_	313	Р 3	_				I 1/3
36	β		β (Zeph.)		526	5 P 5					5 <u>I</u> 6 3
37	t		t		21.1.3	7 P2 1	_		_	_	7 ^I 3
38	φ	-	φ	-	319	½ P 3					<u>I</u> I
39	<u>ь</u>		b		18.2.3	6 P 9					6 2/3
40	ω		ω		39.4.6	$\frac{13}{2}P_{\frac{39}{4}}^{\frac{39}{4}}$					$\frac{13}{2}\frac{2}{3}$
41	Ð		ð		532	5 P 5	_	_		_	5 3 2 2
42	В		β (8el.)		17.3.2	$\frac{17}{2}P_{3}^{17}$			_		173 22
43	C				5.3.20	$\frac{1}{4}$ P $\frac{5}{3}$	- (4P—7)⁴	_		$\frac{1}{4} \frac{3}{20}$
44	D				11.1.4	11 P11			_		11 I 4 4
45	s		s		5.1.19	⁵ 19P 5				s (i)	$\frac{5}{19} \frac{1}{19}$

202 Anatas.

Bemerkungen.

Das von einigen Autoren an Stelle von $\frac{5}{19}\frac{1}{19}$ (s) $=\frac{5}{19}$ P5 (5. 1. 19) gesetzte Symbol $\frac{1}{4}\frac{1}{20}$ (s') $=\frac{1}{4}$ P5 (5. 1. 20) = (325) $\frac{3}{5}$ P $\frac{3}{2}$ (Brezina) wurde im Anschluss an Dauber's Meinung (Wien. Sitzb. 1860. 42. 53) in das Verzeichniss nicht aufgenommen, während Klein in seiner Zusammenstellung (Jahrb. Min. 1875. 354) es anführt. Vgl. Hessenberg. Senck. Abh. 1860. 3. 281 (Min. Not. 3. 27).

Von den zwei benachbarten zweifelhaften Formen b und ω ist nach Seligmann (Jahrb. Min. 1882. 2. 281) ω als wahrscheinlich, b als unsicher zu betrachten.

Folgende Corectur ist vorzunehmen:

Seligmann, Zeitschr. Kryst. 1882. 6. S. 318 Zeile 6 vo. lies w statt ω . Dies geht daraus hervor, dass auf S. 317 Seligmann w=2 P (221) setzt und S. 318 ω für (39. 4. 6).

Hartmann (Handb. 1828. 530) führt noch eine Form auf $\frac{5}{4}$ P—8 (v), die sich sonst nirgends angegeben findet. In Millers Min. (1852. 229) findet sich v (117). Sollte es damit identisch sein, so müsste sein Symbol lauten: $\frac{4}{7}$ P—4. Die Originalschrift aus der Hartmann sein Symbol genommen, konnte ich nicht finden, auch giebt er keine Winkel an. Statt $\frac{5}{4}$ P—4 (r), daneben ist zu lesen $\frac{4}{5}$ P—4 (r).

Schrauf hat (Zeitschr. Kryst. 1884. 9. 470 und 471) die Form (112) mit ε bezeichnet, da er sich dabei auf Kleins Zusammenstellung (Jahrb. Min. 1875. 354) beruft, so liegt hier ein Versehen vor. ε bedeutet bei Klein und den anderen Autoren (335). Es ist daher bei Schrauf (l. c.) durchgehends k statt ε zu setzen. In seinem Atlas gebraucht Schrauf selbst k für (112).

Correcturen.

```
Handwb.
                              1828 -
                                       Seite 530 Zeile 15 vo.
Hartmann
Seligmann
              Zeitschr. Kryst.
                              1882
                                             318
                                                       6 "
Schrauf
                              1884
                                             47 I
                                                      ю
                                                                                          ε
                                                                             k٥
                                                                                          ε٥
                                                      ΙI
                                                                    überall
```

Andalusit.

Rhombisch.

Axenverhältniss.

 $a:b:c = o\cdot 7025: \text{$1:o\cdot 9873$ (Gdt.)}$ $[a:b:c = o\cdot 9873: \text{$1:o\cdot 7025$}] \text{ (Miller. Des Cloizeaux.)}$

[" = 0.9850 : 1 : 0.7025] (Miner. Des Choreaux.)
[" = 0.9856 : 1 : 0.7025] (Dana. Kokscharow.)
[" = 0.9856 : 1 : 0.7020] (Groth. Rammelsberg.)
[" = 0.9733 : 1 : 0.7071] (Mohs-Zippe. Leonhard.)
[" = 0.9850 : 1 : 0.7017] (Haidinger. Hausmann.)

 ${a:b:c = 0.5069:1:1.4246}$ (Grünhut.)

Elemente.

a = 0.7025	$\lg a = 984665$	$\lg a_{\circ} = 985220$	$\lg p_o = 014780$	$a_0 = 0.7115$	p _o = 1·4054
c = 0.9873	lg c = 999445	$\lg b_o = 000555$	$\lg q_0 = 999445$	b _o == 1.0129	q _o == 0.9873

Transformation.

Haid. Hausm. Mohs. Lévy, Leonhard. Rammelsbg, Dana. Descloiz, Groth. Koksch, Miller.	Grünhut.	Gdt.
pq	$\frac{\mathbf{q}}{4} \frac{\mathbf{p}}{2}$	$\frac{1}{p} \frac{p}{q}$
2 q · 4 p	pq	$\frac{1}{2q} \frac{2p}{q}$
$\frac{1}{p} \frac{q}{p}$	q 1 4p 2p	pq

No.	Ødt.	Schrauf.	Kenn- gott.	Koksch.	Miller.	Rammels- berg.	Mohs-Zippe. Hartmann. Hausmann.	Miller.	Naumann.	[Hausmann.]	[Hartmann.] [Mohs-Zippe.]	[Lévy.] [Descloiz.]	Gdt.
I	b	b	s	a	ь	_	δ	001	οP	\mathbf{B}^{t}	$\tilde{P}r + \infty$	h ^I	0
2	a	a	T	Ъ	a			010	ωĔω	В	-	$\mathbf{g}^{\mathtt{I}}$	000
3	c	c	O	P	c		P ~	100	$\infty \bar{P} \infty$	A	P — ∞	P	∞o
4	s	s	L	s	s	q	1	110	∞P	D	Йr	e ¹	ου.
5	1	1	V	k	k	p^2		012	½ P̃∞	$B^{l}B_{2}$		h³	$0\frac{I}{2}$
6	m	m	M	M	m	p	M	011	ĕ∞	E	$P + \infty$	m	01
7	q			_		$\frac{3}{2}$ p		032	<u>3</u> ₽∞		*****		$0\frac{3}{2}$
8	n	n	R	g				O2 I	2 P̃∞			g^3	02
9	r	r	Q	r	r	r	λ	101	$\bar{\mathrm{P}}\infty$	\mathbf{D}_{l}	Рr	a ^I	10
10	p	P	P	0	_			111	P				I
11	k	k	N	z				121	2 P 2				12

204 Andalusit.

Literatur.

Mohs	Grundr.	1824	2	336
Hartmann	Handb.	1828		IO
$L \epsilon v y$	Descr.	1838	2	203
Mohs - $Zippe$	Min.	1839	2	334
Haidinger	Pogg. Ann.	1844	61	295
Hausmann	Handb.	1847	2	(1) 440
Miller	Min.	1852		284
Kenngott	Wien. Sitzb.	1854	14	269
$Des\ Cloize aux$	Manuel	1862	1	173
Schrauf	Atlas	1864		Taf. X.
Kokscharow	Mat. Min. Russl.	1866	5	164
Rammelsberg	D. Geol. Ges.	1872		87
Dana	System	1873		37 I
$Gr\ddot{u}nhut$	Zeitschr. Kryst.	1885	9	113.

Bemerkungen.

Ausser den aufgeführten Formen finden sich noch bei Lévy, Des Cloizeaux und Grünhut (l. c.) vier Formen, die jedoch als unsicher vorläufig keine Aufnahme in das Verzeichniss gefunden haben:

Grünhut.	Miller.	Naumann.	[Des Cloiz.]	Gdt.
P	709	$\frac{7}{9}\bar{P}\infty$	_	7 0
π	66 · 91 · 49	13 🏲 👭	x	66 <u>13</u> 49 7
ſξ	8 · 19 · 11	<u> </u>	e <u>15</u>	$\frac{8}{11}\frac{19}{11}$
<i>j</i> —	253	§ P ≥	e_4	$\frac{2}{3}\frac{5}{3}$
ω	21 · 16 · 70	$\frac{3}{10} \ddot{P} \frac{21}{16}$	_	3 8 TO 35

Die von Grünhut vorgeschlagene Neuaufstellung empfiehlt sich nicht, da durch sie die Symbole minder einfach werden. Es fehlen unter ihnen die wichtigen oi · io · i. In der Zusammenstellung findet sich ein Fehler in der Umrechnung:

```
Zeitschr. Kryst. 9. 123 Zeile 9 vu lies (124) statt (123) , , , , (\frac{1}{2} \breve{P} 2) , (\frac{2}{3} \breve{P} 2).
```

Correcturen.

Anglesit.

1.

Rhombisch.

Axenverhältniss.

```
a:b:c = 0.7852:1:1.2894 (Lang. Dana. Groth. Liweh. Gdt.)

" = 0.7855:1:1.2922 (Miller. Krenner. Sella.)

" = 0.7854:1:1.2890 (Jeremejew.)

" = 0.7851:1:1.2888 (Dauber.)

" = 0.785:1:1.284 (Lévy.)

[a:b:c = 0.7755:1:0.6089] (Kokscharow. Schrauf.)

{a:b:c = 0.6069:1:0.7684} (Mohs-Zippe. Hausmann.)
```

Elemente.

a == 0.7852	lg a == 989498	$\lg a_o = 978459$	$\lg p_0 = 021541$	$a_o = 0.6089$	p ₀ = 1.6421
c = 1·2894	lg c=011039	$\lg b_{\circ} = 988961$	lg q _o = 011039	b _o = 0.7755	$q_o = 1.2894$

Transformation.

Kokscharow. Schrauf.	Mohs-Zippe. Hausmann.	Miller. Dana. Schrauf. Liweh. Krenner. Seligmann. Dauber. Jeremejew. Gdt.
рg	$\frac{1}{p} \frac{q}{p}$	$\frac{1}{q} \frac{p}{q}$
$\frac{1}{p} \frac{q}{p}$	pq	$\frac{p}{q} \frac{r}{p}$
$\frac{\mathbf{q}}{\mathbf{p}} \frac{\mathbf{r}}{\mathbf{p}}$	$\frac{p}{q}$	pq

No.	Gdt.	Miller.	Lang. Hessenb. Zephar. Krenner. Schrauf. Liweh.		Mohs. Hartm. Hausm.	at a dt	Fran- zenau.	Miller.	Naumann.	Lévy. Dufrénoy.	[Haus- mann.]	[Mohs.]	[Hauy.]	Gdt.
I	С	С	a (c)	n	n	P	a	001	οP	p	В	_ ĕr+∞	þ	О
2	a	a	b	\mathbf{x}	x	k	b	010	$\infty \breve{P} \infty$	$\mathbf{g}^{\scriptscriptstylef}$	A	$P-\infty$		0 00
3	b	b	c (a)	О	o	s	_	100	$\infty \tilde{P} \infty$	h¹	$\mathbf{B}^{\scriptscriptstyleI}$	Pr+∞	Ą	∞ 0
4	M				_	_	_	410	∞P̄ 4		_			4 ∞
5	N		_					310	∞P̄ ʒ	_				3 ∞
6	О				_	_	_	520	$\infty \tilde{P} \frac{5}{2}$	_				<u>5</u> ∞
7	λ	_	λ		_	n		210	∞P̄ 2				_	2 00
8	P				_	_	_	740	$\infty \tilde{P} \frac{7}{4}$					$\frac{7}{4}$ ∞

Fortsetzung S. 207.

206 Anglesit.

Literatur.

```
Hauy
                 Traité min.
                                      1822
                                                   402
                                                2
Mohs
                 Grundr.
                                      1824
                                                   163
Hartmann
                 Handwb.
                                      1828
                                                   72
L \acute{e} v y
                                                2
                 Descr.
                                      1838
                                                   451
Mohs-Zippe
                                      1839
                                                2
                 Min.
                                                   149
                                                2
Hausmann
                 Handb.
                                      1847
                                                   (2) 1113
Miller
                 Min.
                                      1852
                                                   526
Kokscharow
                 Mat. Min. Russl.
                                                1
                                      1853
                                                   34
                                                2
                                      1857
                                                   167
     ,,
                                               91
                 Pogg. Ann.
                                      1854
                                                   154 J
Lang
                 Wien. Sitzb.
                                      1859
                                               36
                                                   241 (Monogr.)
                 Pogg. Ann.
                                              108
Dauber
                                      1859
                                                   444
Schrauf
                Wien. Sitzb.
                                      1860
                                               39
                                                   913
                 Senck. Abh.
                                               4
                                                  211 (Min. Not. 5.31)
Hessenberg
                                      1863
                                                  (1) 369 (Schwarzenbach. Miss.)
                Wien. Sitzb.
Zepharovich
                                      1864
                                                   Taf. XI - XV
Schrauf
                 Atlas
                                      1871
Dana
                 System
                                      1873
                                                   622
                                                   (Hüttenberger Erzberg)
                 Lotos
Zepharovich
                                      1874
                 Zeitschr. Kryst.
                                                1
Krenner
                                      1877
                                                   321 (Ungarn)
                 Strassb. Samml.
                                                   148
Groth
                                      1878
                                                4
Sella
                 Zeitschr. Kryst.
                                      1880
                                                   400
                                                       (Sardinien)
                                               3
                 Rom Ac. Linc.
                                      1879 (3)
                                                  150
                                                7
                                                   637
Jeremejew
                Zeitschr. Kryst.
                                      1883
Franzenau
                                      1884
                                                   532
                    ,,
Liweh
                                      1884
                                                9
                                                   501
Franzenau
                                      1885
                                               10
                                                  88.
```

Bemerkungen S. S. 208 u. 210.

2.

No.	Gdt.	Miller.	Lang. Hessenb. Zephar. Krenner. Schrauf. Liweh.	Hauy.	Mohs. Hartm. Hausm.	1	Fran- zenau.	Miller.	Naumann.	Lévy. Dufrénoy.	[Haus- mann.]		[Hauy.]	Gdt.
9	· i	_	i			_		320	$\infty \vec{P} \frac{3}{2}$					$\frac{3}{2}$ ∞
10	Q			_	_			430	$\infty \bar{P} \frac{4}{3}$					4/3 ∞
I I	R							10.9.0	∞P <u>10</u>					9 ∞
I 2	m	m	m	P	u	M	m	110	∞P ŏro	m	\mathbf{D}'	Pr	P	∞
13	S T							9·10·0 780	∞Ř I 9 ∞Ř <u></u> 8					$\infty \frac{10}{9}$
14														∞ ⁸ / ₇
15 16	U h	— h	h	_	<u>—</u> Ь	_		790	ω P § ω P §		— AB'4	<u>⊸</u> 3/Pr		$\infty \frac{9}{7}$
17	δ		õ		ъ 	_	_	340 230	$\infty \Gamma \frac{3}{3}$ $\infty P \frac{3}{2}$	_	AD 3	4 F I		$ \begin{array}{c} \infty \frac{4}{3} \\ \infty \frac{3}{2} \end{array} $
									∞ <u>Y</u> 8/5					
18 19	v n	n	n .	_	c	t	_	580 120	∞r _₹ ∞P ₂	_	AB'2	— Ēr—1		$\begin{array}{c} \infty \ \frac{8}{5} \\ \infty \ 2 \end{array}$
20	×		χ	_	_	q	_	130	∞P̃3		_	_		∞ 3
21	W							270	$\infty \breve{P} \frac{3}{2}$					$\infty \frac{7}{2}$
22	A			_		_	_	0.1.16	^I _{I6} P̃∞			_		$o_{\overline{16}}^{\underline{1}}$
23	α	_	α		_			018	Ī 8 P	-				$o^{\frac{1}{8}}$
24	j		j					0.2.11	$\frac{2}{11}\breve{P}\infty$					$o_{\overline{1}\overline{1}}^{2}$
25	В				_			029	ĝΡ̃∞					$0\frac{2}{9}$ $0\frac{1}{3}$
26	υ		υ				_	013	$\frac{1}{3} \breve{P} \infty$					$O^{\frac{I}{3}}$
27 28	φ x		φ x	_		_	_	O12	½ P̃∞ ₹ P̃∞		_		_	$0\frac{1}{2}$ $0\frac{3}{5}$
29	o	o	o	t	t	o	o	011	ĕĕ∞	e^{I}	D	Ўr	³ ⁄ ₂ E ³ F³B²	01
30	8		y			_	δ	021	2 P̃∞					0 2
31	β	_	β				_	031	3 P̃∞					03
32	k		k		_			1.0.24	$\frac{1}{24}\bar{P}\infty$					1 240
33	E						_	I ·O·22						I ₂₂ O
34	\mathbf{F}							1.0.15	$\frac{I}{I5}\bar{P}\infty$					$\frac{1}{15}$ O
35	G	_					_	108	$\frac{1}{8}\bar{P}_{\infty}$			_		$\frac{1}{8}$ O
36	Н					_	_	2.0.15		_	_			² 150
37	Ι		_			_		107	Į P̄∞		_	_	_	1 O
38	K							106	<u>I</u> P̄∞					6 O
39	1	1	1	_		_		104	ĪP∞		BB ₄	$(P+\infty)^4$		<u>I</u> 0
40	e	.1	e 1 (.)					103	$\frac{1}{3}\bar{P}\infty$	2		— Ф I У		$\frac{1}{3}$ O
41	d	d	d (ε)			d	d	102	½P̃∞		BB'2	$(\breve{P}+\infty)^2$	P'	1/2 O
42	θ	ð	Θ	_	d		_	116	1 P		BD'6	_	_	<u> </u>
43	f ~		f					114	IP					1 4 1 3
44	g		g	_				113	1 P		DD:	<u>—</u>		
45	r	r	r		r	в		112	$\frac{1}{2}P$	b_{I}	BD'2	(Ĕ)²	E ² F ¹ B ²	$\frac{1}{2}$
46	z	z	z -	s	s	Z	Z	111	P 2 P	$b_{\underline{I}}^{\underline{I}}$ $b_{\underline{4}}^{\underline{I}}$	P	P	-E-E-1B2	I
47	τ		τ					221						2
48	ξ					_		331	3 P			Fortso		3

Fortsetzung S. 209.

208 Anglesit.

Bemerkungen.

Die wasserfreien Sulfate von der allgemeinen Formel:

```
R SO<sub>4</sub> resp. R<sub>2</sub> SO<sub>4</sub>.
```

zerfallen nach Groth's Zusammenstellung (Tab. Uebers. 1882. 50) in zwei isomorphe Gruppen, deren ersterer sich der Thenardit nicht sehr dicht einfügt. In der That dürften beide Gruppen in eine zu vereinigen sein und die Axen-Einheiten erhalten, wie sie im Index aufgeführt sind, nämlich:

```
Glaserit
                 (K, Na)_2 SO_4
                                       a:b:c = 0.7692:1:1.3454
Mascagnin
                 (NH_4)_2 SO_4
                                               = 0.7720 : 1 : 1.368
Thenardit
                           SO_{\star}
                   Na_2
                                               = 0.8005 : I : I.4202
Anhydrit
                           SO_{4}
                   Ca
                                               = 0.8932 : 1 : 1.0008 (!)
Baryt
                   Ba
                           SO_{4}
                                               = 0.8152 : 1 : 1.3136
Cölestin
                   Sr
                           SO<sub>4</sub>
                                               = 0·7789 : 1 : 1·2800
Barytocölestin (Sr, Ba)
                           SO_{4}
                                               = 0.7666 : 1 : 1.2534
Anglesit
                   Pb
                           SO_{\lambda}
                                               = 0.7852: 1:1.2894
Hydrocyanit
                   Cu
                           SO_4
                                               = 0·7091 : 1 : 1·2550
```

Auffallend stark weicht von den anderen der Anhydrit ab, doch zeigt sich das Gleiche auch für das Calciumcarbonat in der Calcit-Reihe.

Hausmann stellt die Reihe zusammen: (Gött. Nachr. 1870. 235-237)

```
Anhydrit 0.8910:1:0.9798
Baryt 0.8146:1:1.3127
Cölestin 0.7808:1:1.2838
Anglesit 0.7864:1:1.2923
Thenardit 0.4732:1:0.5505
Glaserit 0.5727:1:0.7463
Mascagnin 0.5642:1:0.7310
```

Aus diesen Zahlen ist die Homöomorphie für die Glieder der Reihe nicht zu sehen.

Hausmann wählt dann Einheiten für alle ähnlich den obigen von uns angenommenen, die er jedoch erhält, indem er eine Grundform wählt, die für Anhydrit, Thenardit, Mascagnin, zu sehr complicirten Symbolen führt.

```
(Vgl. noch Hausmann Gött. Nachr. 1851, 65.)
```

Die wichtigste Arbeit über Formen des Anglesit ist die Monographie von Lang (Wien. Sitzb. 1859. 36. 241 fg.). In der dort angenommenen Aufstellung und Bedeutung der Werthe hkl des Miller'schen Symbols wurde von allem Ueblichen abgewichen. Sollen auch hier die Gründe nicht angegeben werden, warum die Principien nach denen dies geschehen, sich zur allgemeinen Annahme nicht empfehlen dürften und sich faktisch nicht zur Geltung gebracht haben, so ist sicher, dass durch die doppelte Complication (andere Aufstellung und andere Bedeutung des Symbols) reichlich Gelegenheit zu Verwechselungen geboten ist. Es genügt nicht, um aus Lang's Symbol nebst Axen-Verhältniss und Aufstellung unsere Angaben abzuleiten, die Angabe des Transformations-Symbols, vielmehr müssen Aufstellung, Symbol und Formen-Verzeichniss besonders betrachtet werden.

Die Aufstellung (Projection und perspective Zeichnung) verwandelt sich in die Miller's und des Index durch Drehung um 90° um die Vertical-Axe, d. h. Vertauschung der zwei Horizontal-Axen.

Indices. hkl (Lang) = klh (Miller Min.), sodass der erste Index an die letzte Stelle gesetzt wird. Nun lesen wir aber die von Miller im rhombischen System angewendeten Zeichen nach der jetzt üblichen Auffassung so, dass sich h auf die von vorn nach hinten laufende (in der Regel kürzere) Axe bezieht. Finden wir ein Zeichen bei Miller und den Autoren, die ihm darin gefolgt sind, so lesen wir statt hkl sofort khl und

3.

								J.						
No.	Gdt.	Miller.	Lang. Hessenb. Zephar. Krenner. Schrauf. Liweh.	Hauy.	Mohs. Hartm. Hausm.	atadt	Fran- zenau.	Miller.	Naumann.	Lévy. Dufrénoy	[Haus- mann.]	[Mohs.]	[Hauy.]	Gdt.
49	у		ν	_	_	x		212	₽̄ 2			_		I I
50	t	t	t	_	z		_	121	2 🎽 2		AE2	P—1		12
51	ε		_					131	3 P 3					13
52	£	_					k	1.12.12						I I
53	q		q	_	_		q	166	Ĭ 6					$\frac{1}{6}$ I
54	π		π	_			π	155	Ĕ5	_	_			1 5 I
55	χ	_	χ	_				144	 Й 4					
56	Ŷ		Ŷ					133	P ₃					1/3 I
57	ý	y	y		a	y		122	Р́2	i	$BD'^{\frac{1}{2}}$	(Ĕ—1)2		$\frac{1}{2}$ I
58	·							233						2/3 I
59	ω		(1)					214	$\frac{1}{2}\bar{P}_2$					I I 2 4
60	s		s					132	$\frac{3}{2} \breve{P} 3$	e_2			_	I 3 2 2
61	ζ	ζ	ζ					142	2 Ĭ 4		AE2·DB'\frac{1}{2}	(<u> </u>		I 2
62	Ĵ						_	1.10.20	· ·					I I
63	μ		μ	_				124	Ϊ́ P 2				_	I I 20 2 I I 4 2
64	L		<u> </u>					236	$\frac{1}{2} \breve{P} \frac{3}{2}$					I I 3 2
65			n	1	v	v			$\frac{3}{4}\bar{P}\frac{3}{2}$	6	RIO.RAS	(Ĕr—1) ⁷	$^{\frac{4}{3}}EB^{3}D$	1 <u>3 1</u> 4 2
66	P p		P P		·	· _		324 342	2 P 4/3		—	(1 1 1) —		4 2 3/2 2
67					f			123	2 i 3 2 j 2					1 2
68	γ a	_	γ8 —			_	_	143	$\frac{3}{4}$ \ddot{P} 4	_			_	1 2 3 3 1 4 3 3
69	ь			_		_		1.11.3					_	3 3 1 11 3 3
	c							126	<u> </u>					1 I 6 3
70 71	ь					_	_	562	3 P &			_		6 3 5 3
71 72	w		w		-			128	3 F 5 1 P 2			_	_	2 3 <u>I I</u> <u>8 4</u>
	e							892	2 ř g					4 ½
73	f			_				782	4 P 8					4 2 7 2 2 4
74 75	g							10.11.2	TIPH	_				$5\frac{11}{2}$
76	<u>s</u>							561	6 P §					56
77	i			_				9.10.2	5 ř y			_		9 2 2 5
77 78	u u		u				_	1.4.6	3 7 9 2€ Ď 4	_		_		1 2 6 3
	<u> </u>							671	7 P 7					67
79 80	m				_		_	11.12.2	6 P 12	_				$\frac{11}{2}6$
81	n	_		_				781	8 P 粤	_				78
82								7.10.1	10P ¹⁰					7.10
83	Þ		_	_	_		_	168	3 P 6		_			7.10 1 3 8 4
84	q					_		8.10.1	10P \frac{5}{4}					8.10
85	t		[p]					435	4 P 4 3					4 3 5 5
86	r	_			_			433 295	5 P 2 5 P 2	_		_		5 5 2 9 5 5
87	í		_					793 792	5 P 2 2 P 3	_		_		5 5 7 9 2 2
٠,	1							12-	2 = 7					22

210 Anglesit.

Bemerkungen. (Fortsetzung von S. 208.)

erst auf das so gelesene Zeichen gründet sich die Umwandlung in unsere Zeichen und die sich daran lehnenden Transformations-Symbole. Lesen wir hier statt des bei Miller gefundenen klh nun lkh, so ist:

Ein Zeichen von Lang ist daher rückwärts zu lesen, um das Zeichen des Index zu haben, z.B.

241 (Lang) = 142 (Index) =
$$\frac{1}{2}$$
 2

Axen-Verhältniss. Da in allen Fällen den Indices hkl die Axen-Einheiten abc entsprechen, so sind auch für Verwandlung des Axen-Verhältnisses Lang in das unsere, die Werthe a:b:c rückwärts zu lesen.

a:b:c (Lang) giebt für unsere Aufstellung und Bedeutung der Buchstaben c:b:a.

Nun findet sich bei Lang a:b:c=1:0.7756:0.6089. Also für unsere Aufstellung a:b:c=0.6089:0.7756:1=0.7852:1:1.2894 (Vgl. Groth Tab. Dana. Kokscharow.)

Lang giebt S. 247 eine Zusammenstellung der Axen-Verhältnisse, die, bezogen auf unsere Aufstellung und Bezeichnung, lautet:

```
a:b:c = 0.6123:0.7809:1 (Hauy)
0.6091:0.7772:1 (Kupffer)
0.6092:0.7684:1 (Mohs)
0.6087:0.7749:1 (Phillips)
0.6092:0.7746:1 (Dana)
0.6086:0.7736:1 (Miller)
```

Der Buchstabe ρ für die neue Form $\frac{4}{5}\frac{3}{5}(435)$ bei Liweh (Zeitschr. Kryst. 1884. 9. 505 und 512) ist nicht gut gewählt, da dieser Buchstabe bereits von Lang (Wien. Sitzb. 1859. 36. 255) und nach ihm Schrauf (Atlas) für $\frac{3}{2}$ 2 (342) verwendet worden.

Die von Hausmann angegebene Form AB8 = 08 unserer Aufstellung wurde nach dem Vorgang Lang's (Wien. Sitzb. 1859 36. 252) nicht unter die sicher nachgewiesenen aufgenommen.

Correcturen.

```
Bd. 36
                                           Seite 269
                                                       Zeile
                                                             7 vu
                                                                            18 32.7
Lang
              Wien. Sitzb.
                           1859
                                                                                      statt 71 27.3
                                                 270
                                                                            34 36.6
                                                                                            35 36.6
                                                              14 "
                                                                           (P + \infty)^2
                                                                                          (P+\infty)^2
                                                 250
                                                              ov or
                                                                           (P + \infty)^4
                                                                                          (P+\infty)^4
                                                              II "
                                                                             B D'6
                                                                                             B'D6
                                                              ı vu
                                                 251
Hessenberg Senck. Abh.
                          1863
                                                             16 "
                                                                               d
                                                                                              y
                                                                                              d
                                                             15 "
                                                                              m
                                                             14
                                                                                              а
                                                                               b
                                                             13
                                                             12
                                                                              w
                                                                                              b
                                                                                              w
                                                             ю
                                                                              r
                                                                                              r
                                                              9 "
                                                                              у
```

Anhydrit.

1.

Rhombisch.

Axenverhältniss.

 $a:b:c=o\cdot8932:\iota:\iota\cdot0008$ (Hessenberg. Groth. Gdt.) [a:b:c = o.8909:1:o.9798] (Miller.) $\left\{a:b:c=0\text{-}995\ : i:0\text{-}8895\right\}$ (Schrauf, Grailich u. Lang.)

Elemente.

a = 0.8932	lg a = 995095	$\lg a_0 = 995061$	$\lg p_o = \infty 4939$	$a_o = 0.8925$	$p_0 = 1.1204$
c == 1.0008	lg c = 000034	lg b _o = 999966	$\lg q_o = 000034$	$b_o = 0.9992$	$q_{\circ} = 1.0008$

Transformation.

Miller.	Schrauf. Grailich, Lang.	Hessenberg. Groth. Gdt.		
pq	$\frac{\mathbf{I}}{\mathbf{p}} \frac{\mathbf{q}}{\mathbf{p}}$	$\frac{p}{q} \frac{I}{q}$		
$\frac{1}{p} \frac{q}{p}$	рq	$\frac{1}{q} \frac{p}{q}$		
$\frac{p}{q} \frac{1}{q}$	$\frac{\mathbf{q}}{\mathbf{p}} \frac{\mathbf{I}}{\mathbf{p}}$	pq		

No.	Gdt.	Miller. 1852.	Hauy. Mohs. Hartmann Hausm. Hessenb.	Nau- mann.	Schrauf.	Miller. 1842.	Miller.	Naumann.	[Hausm.]	[Mohs-Zippe.]	[Hauy.]	[Lévy.]	Gdt.
1	a	a	Т	Т	a	t	001	οP	В	ĭPr+∞	Т	\mathbf{g}^{i}	0
2	b	c	M	\mathbf{M}	ь	m	010	$\infty \breve{P} \infty$	\mathbf{B}_{1}	$\bar{P}r + \infty$	M	h۱	0∞
3	c	b	P	P	c	\mathbf{p}	100	$\infty \bar{P} \infty$	A	P —∞	P	p	∞0
4	d		d	_			012	½ P̃∞			_	_	0 <u>I</u>
5	τ			_	τ		045	<u>4</u> P∞		_			0 4
6	s	s	s	s	M	s	OII	Ĕ∾					оі
7	μ			_	μ		053	<u>5</u> P∞	_	_			0 5
8	σ				σ		031	3 P∞					03
9	w		w		_		105	$\frac{1}{5}\bar{P}\infty$	_	_			1 O
10	t		t				104	<u>I</u> P̄∞		_			1 O
11	v		v				103	$\frac{1}{3}\bar{P}\infty$					$\frac{1}{3}$ O
12	e				e		205	² / ₅ P̄ ∞					$\frac{2}{5}$ O

(Fortsetzung S. 213.)
14*

212 Anhydrit.

Literatur.

```
Traité Min.
                                      1822
                                               1 562
Hauy
Mohs
                   Grundr.
                                      1824
                                               2
                                                  75
                                      1828
Hartmann
                  Handwb.
                                                  245
L \acute{e} v y
                   Descr.
                                      1838
                                               1 172
Mohs-Zippe
                   Min.
                                      1839
                                               2
                                                  72
                   Phil. Mag.
                                                  178
Miller
                                      1841 (3) 19
                   Pogg. Ann.
                                      1842
                                              55
                                                  525 J
Hausmann
                   Handb.
                                      1847
                                               2 (2) 1141
                   Gött. Nachr.
                                      1851
                                                  65
     ,,
                   Pogg. Ann.
                                      1851
                                                  572
     ,,
                                                  450
                   Jahrb. Min.
                                      1851
                   Min.
Miller
                                      1852
                                                  531
                                              16
Kenngott
                   Wien. Sitzb.
                                      1855
                                                  152
                                              27
Grailich u. Lang
                                      1857
                                                  25
                        ,,
                                                  887
                                              39
Schrauf
                                      1860
                        ,,
                                              46 (1) 189
                                      1862
    ,,
                   Atlas
                                      1871
                                                  Taf. XV
    ,,
                                               8 1 (Min. Not. No. 10. 1)
Hessenberg
                   Senck. Abh.
                                      1872
                                                  621
Dana
                   System
                                      1873
                   Strassb. Samml.
                                      1878
                                                  141
Groth
                   Tab. Uebers.
                                      1882
                                              -- 50.
   ,,
```

Bemerkungen Correcturen s. Seite 214.

2.

No.	Gdt.	Miller. 1852.	Hauy. Mohs. Hartmann Hausm. Hessenb.	Nau- mann.	Schrauf.	Miller. 1842.	Miller.	Naumann.	[Hausm.]	[Mohs-Zippe.]	[Hauy.]	[Lévy.]	Gdt.
13	u		u		_		102	½ P∞			_		1 ₂ 0
14	β	_					509	<u>5</u> P̄∞					5 o
15	\mathbf{q}	_	q		_		203	² / ₃ P̄∞			_		<u>2</u> / ₃ o
16	1		1	_		_	405	4/5 P∞			_	_	4 ₅ o
17	r	m	r	r	d	r	101	Ē∞	\mathbf{E}	P+∞	$^{1}G^{1}$		10
18	k		k			_	403	$\frac{4}{3}\bar{P}\infty$			_		4 3 O
19	γ			_			503	5/3 P ∞	_		_	_	5 0
20	i		i	_	_		201	2 P∞			_		20
21	h		h		_		502	$\frac{5}{2}\bar{P}\infty$		_	_	_	<u>5</u> 0
22	0	0	О	o	o	О	111	P	P	P	Ā	$\mathbf{b}^{\frac{\mathbf{I}}{2}}$	I
23	n	n	n	n	n	n	121	2 P 2	$B^{l}D_{2}$	$(\bar{P}r)^3 = (\bar{P})^2$	² A		1 2
24	f	f	f	С	f	f	131	3 P 3		(Ē)3	³ A	i	13

214 Anhydrit.

Bemerkungen.

Das Axen-Verhältniss Hauy's, das von Mohs, Zippe und Hausmann übernommen worden,

$$a : b : c = 0.8367 : 1 : 0.7528$$

weicht von allen Angaben sehr ab. Es wurde daher die Identification mit Hilfe der Figuren vorgenommen. Eine gründliche Discussion der älteren Angaben findet sich bei Hessenberg (l. c.).

Mohs-Zippe geben (Min. 1839. 2. 72) das unvollständige Symbol $(P+\infty)^3$. Statt dessen muss es wahrscheinlich heissen $(\bar{P}+\infty)^3$, das identisch wäre mit Hausmann's B'B3.

Ausser den aufgezählten Formen giebt noch Hessenberg die Formen:

$$\begin{array}{c} \frac{7}{8}\bar{P}\infty = \frac{7}{8}o \\ \frac{7}{6}\bar{P}\infty = \frac{7}{6}o \\ \frac{6}{7}\bar{P}\infty = o\frac{6}{7} \end{array}$$

die er aus Hausmann's Messungen heraus interpretirt, jedoch selbst als unsicher bezeichnet.

Die Angaben bei J. D. Dana (System 1873. 621) setzen sich zusammen aus zwei unvermittelten Reihen. Der letzte Theil derselben mit Fig. 511 ist leicht zu identificiren mit den Angaben der anderen Autoren. Für die übrigen Formen und Winkelangaben ist mir weder das Herausfinden der Quelle noch die sichere Identification gelungen.

Correcturen.

```
Min.
                                    1839 2 Seite 72 Zeile 15 vu lies (\vec{P}+\infty)^3 statt (P+\infty)^3
Mohs-Zippe
                                    1857 27 , 25 , 17 vo ,
                                                                        0.8367
                                                                                       0.8967
Grailich u. Lang
                       Wien. Sitzb.
                                    1871 — Text zu Taf. XV Fig. 4 " Abth. I p. 189 "
Schrauf
                       Atlas
                                                                                       pag. 1
Hessenberg
                       Senck. Abh.
                                    1872 8 Seite 1 Zeile 8 vo "
                                                                         16. 17
                                                                                       17. 18
                                                   3 " 14 vu "
                                                                         0.8367
                                                                                       0.8967
     ,,
                                                                         \frac{7}{6}\bar{P}_{\infty}
                                                   26
                                                            12 " "
     ,,
```

Annerödit.

Rhombisch.

Axenverhältniss.

$$a:b:c = o\cdot 3610:1:o\cdot 4037$$
 (Gdt.)
[$a:b:c = o\cdot 4037:1:o\cdot 3610$] (Brögger.)

Elemente.

a = 0.3610	lg a = 955751	$\lg a_o = 995145$	$\lg p_0 = 004855$	$a_0 = 0.8942$	$p_o = 1.1183$
c = 0.4037	lg c = 960606	$lg b_o = o_{39394}$	$\lg q_o = 960606$	b _o == 2·4771	$q_o = 0.4037$

Transformation.

Brögger.	Gdt.
pq	$\frac{1}{p} \frac{q}{p}$
$\frac{\mathbf{I}}{\mathbf{p}} \frac{\mathbf{q}}{\mathbf{p}}$	рq

No.	Brögger. Gdt.	Miller.	Naumann.	Gdt.
ı	a	001	οP	0
2	b	010	$\infty \breve{\mathrm{P}} \infty$	000
3	c	100	$\infty \bar{P} \infty$	∞0
4	l	210	∞ P 2	2 00
5	k	110	∞P	∞
6	g	011	ď∞	OI
7	m	031	3 P∞	03
8	z	051	5 Pॅ∞	05
9	e	102	$\frac{\mathbb{I}}{2}\bar{P}\infty$	$\frac{1}{2}$ O
10	n	112	1 P	<u>I</u>
11	u	111	P	I
12	β	121	2 P 2	12
13	О	131	3 P 3	13
14	s	122	Р 2	1/2 I

Literatur.

Bemerkungen.

Der Name des Minerals wurde mit der in der Zeitschr. f. Kryst. angewendeten Orthographie gegeben, während sich im Jahrb. Min. Aannerödit findet.

Antimon.

Hexagonal. Rhomboedrisch-hemiedrisch.

Axenverhältniss.

$$\begin{array}{c} a:c = 1:1 \cdot 3236 \ (G_2) \\ (1) \end{array}$$

 [$a:c = 1:1 \cdot 3236$] (Groth. G_1 .)
[" = 1:1 \cdot 3067] (Rose. Miller. Schrauf. A. Weiss.)
{ $a:c = 1:0 \cdot 6515$ } (Mohs. Zippe. Lévy.)

Elemente.

c=1·3236	lg c = 012176	$\lg a_o = 011680$ $\lg a_o = 987824$	lg p _o =994567	$a_{\circ} = 1.3086$ $a'_{\circ} = 0.7555$	$p_0 = 0.8824$
----------	---------------	--	---------------------------	---	----------------

Transformation.

Rose. Miller. Schrauf. Weiss. Groth. G ₁ .	Hausmann.	Mohs. Zippe. Lévy.	G_2
рq	— 2p 2q	-2 (p+2q) 2(p-q)	(p+2q)(p-q)
_ p q 2	рq	(p+2q) (p-q)	$-\frac{p+2q}{2} \frac{p-q}{2}$
$-\frac{p+2q}{6}\frac{p-q}{6}$	$\frac{p+2q}{3} \frac{p-q}{3}$	рq	$-\frac{p}{2}\frac{q}{2}$
$\frac{p+2q}{3} \frac{p-q}{3}$	$-\frac{2(p+2q)}{3}\frac{2(p-q)}{3}$	— 2p 2q	рq

No.	Schrauf	Miller.	Rose.	Bravais.	Miller.	Naum.	[Hausm.]	[Mohs-Zippe] [Hartmann.]	[Lévy]	G ₁	G_2
I	С	0	С	0001	111	οR	A	R—∞	a¹	0	0
2	b	a		1120	101	∞P 2	В	P+∞	_	∞	∾o
3	r	r	R	1011	100	+ R				+ 10	+1
4	z	z	₹ r	1014	211	+ ‡ R		_		+40	+1
5	e	e	$\frac{I}{2} r^{i}$	TO12	110	$-\frac{1}{2}R$	P	R	_	— <u>I</u> o	— <u>I</u>
6	s	s	2 r'	2 02 I	1 1 T	— 2 R	HA 🖁	R+2	e³	- 20	-2

218 Antimon.

Literatur.

```
Mohs
                                    2 496
              Grundr.
                             1824
              Handwb.
                             1828
                                       14
Hartmann
                                    3
              Descr.
                             1838
                                       308
L \epsilon v y
                                    2
Mohs-Zippe
              Min.
                             1839
                                       474
                             1847
                                   2 (1) 11
              Handb.
Hausmann
               Pogg. Ann.
                             1849
                                  77
Rose
                                       144
              Jahrb. Min.
                             1849
                                       566
              Berl. Abh.
                             1849
                                       72
              Min.
                             1852
Miller
                                       115
                             1860 39
               Wien. Sitzb.
                                       859
We iss
Schrauf
               Atlas
                             1871
                                       Taf. XVII
              D. Geol. Ges. 1874 -
Laspeyres
                                       318.
```

Bemerkungen.

Das von Hausmann gegebene Formenverzeichniss ist von Mohs-Zippe entnommen und daher zu lesen in Uebereinstimmung mit den übrigen Autoren B statt E.

Correcturen.

Hausmann Handb. 1847 2 (1) Seite 11 Zeile 17 vu lies B statt E.

Antimonblende.

Monoklin.

Axenverhältniss.

$$a:b:c=1:?:0.675$$
 $\beta=102^{\circ}9$ (Dana. Groth.)

No.	Miller. Gdt.	Miller.	Naumann.	Gdt.
ı	u	001	οP	0
2	p	100	$\infty P \infty$	∞0
3	s	103	$-\frac{1}{3}P\infty$	$+\frac{3}{1}$ o
4	О	101	—P∞	+ 10

Literatur.

Mohs-Zippe	Min.	1839	2	570
Miller	Min.	1852	_	217
Dana	System	1873		186
Groth	Tab. Uebers.	1882		39.

Antimonglanz.

1.

Rhombisch.

Axenverhältniss.

```
a:b:c = 0.9752:1:0.9824 \text{ (Gdt.)} [a:b:c = 0.9866:1:1.0132] (Schrauf. Krenner.)
 [ , = 0.9844:1:1.0110] (Dana. 1873)
 [ , = 0.9870:1:1.0214] (Miller. Kokscharow. Mohs. Zippe. Hausmann.)
 [ , = 0.9926:1:1.0179] (Dana. 1883)
 [ , = 0.9930:1:1.0188] (Krenner.)
 [ , = 0.982:1:1.020] (Hauy.)
 {a:b:c = 0.987:1:2.037} (Lévy.)
```

Elemente.

a = 0.9752	lg a = 998909	$\lg a_0 = 999680$	$\lg p_0 = 000320$	$a_0 = 0.9927$	p _o =1·0074
c = 0.9824	lg c = 999229	$lg\ b_o = 000771$	$\lg q_0 = 999229$	b _o = 1.0179	q _o =0.9824

Transformation.

Mohs. Zippe. Hausm. Miller. Kokscharow. Dana. Schrauf. Krenner.	Lévy.	Gdt.
рq	$\frac{\mathbf{p}}{\mathbf{z}}$ $\frac{\mathbf{q}}{\mathbf{z}}$	$\frac{p}{q}$ $\frac{1}{q}$
2 q · 2 q	pq	$\frac{p}{q}$ $\frac{1}{2q}$
$\frac{\mathbf{p}}{\mathbf{q}} = \frac{\mathbf{r}}{\mathbf{q}}$	$\frac{p}{2q} \frac{r}{2q}$	рq

No.	Gdt.	Miller. Schrauf. Seligmann. Dana.	Krenner.	Mohs. Zippe. Hartmann. Hausmann.	Miller.	Ivaumann.	monn	[Lipbe.]	[Lévy]	Gdt.
I	b	b (a)	a		001	οP	В	ĕr+∞	g¹	0
2	С	c	c	o	010	∞P∞	Α		_	Oω
3	a	a (b)	b		100	∞P∞	\mathbf{B}^{i}		-	∞ 0
4	Φ	Ф			910	∞P̄9	_			9∞
5	z	z	z		110	∞P			a^2	∞
6	Σ	Σ			230	∞ P ¾			_	$\infty \frac{3}{2}$
7	у	у	у		120	∞Ĕ 2	_		a ⁴	∞2
8	L	L	L		130	∞P̃ ʒ				∞3
9	R	R	R		160	∞ <u>Ř</u> 6	_			∞6
10	g	g			029	2 p̃∞	_		_	0 2
11	Y	Y			014	^I ⁄ ₄ P̃∞				$O_{\frac{1}{4}}$
12	j	j	j		013	I P∞	_			$O_{\frac{1}{3}}$

(Fortsetzung S. 223.)

Literatur.

```
Hauy
              Traité Min.
                               1822
                                        4 291
Mohs
              Grundr.
                               1824
                                        2 582
              Handwb.
                               1828
                                            18
Hartmann
                                        3 311
L \epsilon v y
              Descr.
                               1838
                                        2 556
Mohs-Zippe
              Min.
                               1839
                                        2 (1) 155
              Handb.
                               1847
Hausmann
Miller
              Min.
                               1852
                                           174
                                        2 185
Hessenberg
              Senck. Abh.
                               1856
              Wien. Sitzb.
                               1865
                                        51 (1) 436
Krenner
                                        - Taf. XVII u. XVIII
              Atlas
                               1871
Schrauf
Dana
              System
                               1873
                                           29
Seligmann
              Jahrb. Min.
                               1880
                                           135
                                        6 102
              Zeitschr. Kryst.
                               1882
Krenner
              Föld. Közl.
                               1883
                                            13 (Sep.)
Dana, E.S.
              Amer. Journ.
                               1883 (3) 26 214 )
              Zeitschr. Kryst.
                               1884
                                        9 29 1
\overset{"}{Koort}
                               (Freiburg) Berlin 1884.
              Inaug. Diss.
```

Bemerkungen S. Seite 224, 226—228.

2.

No.	Gdt.	Miller. Schrauf, Seligmann. Dana.	Krenner.	Mohs. Zippe. Hartmann. Hausmann.	Miller.	Naumann.	[Haus- mann.]	[Mohs.] [Zippe.] [Hartm.]	[Lévy]	Gdt.
13	П	Π			012	$\frac{1}{2} \breve{\mathbf{P}} \infty$				$0^{\frac{1}{2}}$
14	I	I	I		035	<u>3</u> ⊬∞				$0\frac{3}{5}$
15	Q	Q	Q		034	³ / ₄ P̃∞		_		$0\frac{3}{4}$
16	u	u	u		011	ĕ∾				O I
17	N	N	N		032	3 P ∞	-			$0\frac{3}{2}$
18	x	x	x	a	021	² P̃∞	AB_2	ĕr—ı		02
19	γ	γ	γ		031	3 Й∞				03
20	Θ	Θ			107	J P̄ v	_			₹ O
21	8	ð			106	$\frac{1}{6}\bar{P}_{\infty}$				$\frac{1}{6}$ O
22	t	t	t		105	<u>I</u> P̄∞	BB'5			1 o
23	i	i	i		104	½ P̄∞	_			1 o
24	q	q	q		103	¹ / ₃ P̃∞				$\frac{1}{3}$ O
25	χ	χ	Δ		205	2/5 P̄∞				2/5 O
26	o O	0	o		102	$\frac{1}{2}\ddot{\mathbf{P}}_{\infty}$				$\frac{1}{2}$ O
27	1	1	1		305	$\frac{3}{5}\bar{P}\infty$				$\frac{3}{5}$ O
28	d	d	d		203	$\frac{2}{3}\bar{P}\infty$				2/3 O
29	r	r	r		304	$\frac{3}{4}\bar{P}\infty$	BB14/3			3 O
30	×	χ	-		506	5 P ∞				5 6 0
31	m	m	m	m	101	Ē∞	E	P+∞	m	10
32	k	k	k		403	$\frac{4}{3}\bar{P}\infty$		_		4 o
33	ι	ι			302	3 P̄∞				$\frac{3}{2}$ 0
34	n	n	n		201	₂ P̄∞	B'B2			20
3 1 35	h	h	h		301	3 P̄∞				30
36	w	w	w		113	1 P				$\frac{I}{3}$
	v	v	v		112	1/2 P				
37 38	η	η	η		335	3 P				12 35 34
39	τ	τ	τ	b	334	3 P	(4	ĕ̃Pr-2) _ (ĕ)	4 3	5 <u>3</u>
40	β	β	β	P	667	⁶ ⁄ ₇ P P	P	P	b_1	
41	P ε	p ε	P ε	T	111 887	₽ 87 P	1			I 8 7
42										
43	Z	λ ₃		_	665	6 P 4 P				6 5 4 3
44	$rac{lpha}{\Delta}$	[a]	α		443	4/3 P 3/2 P				3 3 2
45		λ ₂			332					
46	λ	λ_{1}			331	3 P	_		_	3
47	۶ ۲	ξ	ξ		313	₽3 ¾₽3				$1\frac{\frac{1}{3}}{1}$
48		σ ₂			232					
49	π	π	π		121	2 Ĭ 2		4 D -	— Ъ ³	I 2
50	s	s	s	s	131	3 Ϋ 3 ½ ϔ ½	AE3	4/3 P—2	D-	1 3 1 7/2
51	ν	ν			272					
52	f	-	F		5.19.5	2 18 <u>41</u> 8		_		1 19
53	μ	μ	_	_	141	4 P 4				I 4
54	9		G		3.13.3	13P13				1 1 3

Fortsetzung S. 225.

Bemerkungen.

Die von Krenner gegebene Uebersichtstabelle der vor ihm bekannten Formen (S. 450) bedarf einiger Correcturen und Ergänzungen:

- b (010) und s (113) finden sich schon bei Hauy,
- n (120), r (430) und t (510) rühren nicht von Miller, sondern von Hausmann her,
- v (211) ist nicht von Mohs, sondern erst von Miller angeführt;

ausserdem sind in der Tabelle nicht enthalten:

- τ (433) = $(\frac{4}{3} \, \text{Pr} 2)^7$ (Mohs) = $(\text{P}) \, \frac{4}{3}$ (Mohs-Zippe) (121) = i (Lévy)
- $y (012) = a^4 (L\acute{e}vy)$
- z (OII) = a^2 (Lévy)

Danach sind die entsprechenden Aenderungen im Text, Seite 438 vorzunehmen.

Es sind also die Formen (433) (011) (012) nicht von Krenner neu gefunden und demgemäss S. 451 oben zu streichen. i (Lévy) findet sich bei keinem andern Autor, stimmt jedoch mit der Figur so wohl überein, dass es als sichergestellt betrachtet werden dürfte.

An Stelle von Krenner's Uebersichtstabelle kann die folgende treten, in der die Aufstellung des Index angenommen ist:

Hausmann's B'B $\frac{7}{9}$ ist in sich unsicher, weil Hausmann in dem Symbol B'Bn stets n>1 nimmt. Da andere Autoren weder $\frac{7}{9}$ 0 noch $\frac{9}{7}$ 0 gefunden haben, so wurde Hausmann's B'B $\frac{7}{9}$ nicht als sicher angeführt. Für Hauy's $0=\frac{1}{2}AC^5B^2$ sowie $r=^4J$ ist mir die Identification noch nicht gelungen.

Die Dissertation von Koort bedarf einer besonderen Besprechung. Autor bringt darin 39 neue Formen, von denen 26 in einer Zone liegen. Nun kann der Zweck der Feststellung einer grossen Anzahl von Formen in einer Zone ein doppelter sein.

- Die Constatirung, dass diese Zone in reicher Entwickelung vorhanden, also für den Aufbau des Krystalls wichtig ist. Dem kann durch ungefähre Ortsbestimmung der Einzelflächen Genüge geschehen.
- 2. Die Aufsuchung der Vertheilung der Flächen in der Zone zum Zweck
 - a. der Auffindung allgemeiner Gesetze der Flächenvertheilung
 - b. der Verknüpfung der Formen dieser Zone mit denen anderer.

Fortsetzung S. 226.

3.

					3.					
No.	Gdt.	Miller. Schrauf. Seligmann. Dana.	Krenner.	Mohs. Zippe. Hartmann. Hausmann.	Miller.	Naumann.	[Haus- mann.]	[Mohs.] [Zippe.] [Hartm.]	[Lévy]	Gdt.
55	h		Н		3.17.3	$\frac{17}{3}P_{\frac{17}{3}}$		_	_	I 17/3
56	Ġ	G			144	Ϋ́ 4				$\frac{I}{4}$ I
57	t				133	Й3	_		_	$\frac{1}{3}$ I
58	Н	Н			255	 Ĭ 5/2			_	2/5 I
59	K	σ_3	θ		233	Ĭ 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3				$\frac{2}{3}$ I
60	u		-		211	2 P 2		-	i	2 . I
61	σ	σ	σ	_	231	3 P 3/2				2 3
62	f	f	f		241	4 P 2				2 4
63	\mathbf{A}	A	A		316	$\frac{1}{2}\bar{P}_3$		-		$\frac{I}{2}$ $\frac{I}{6}$
64	m	w ₃	В		5.3.10	$\frac{1}{2}\bar{P}\frac{5}{3}$			_	I 3 2 10
65	n	σ_4	T		234	$\frac{3}{4} \stackrel{\vee}{\mathbf{P}} \frac{3}{2}$	_			$\frac{1}{2} \frac{3}{4}$
66	e	e	e	e	132	$\frac{3}{2} \breve{P} 3$	— (4)	$(r-2)^{\frac{3}{2}}(\frac{4}{3})^{\frac{3}{2}}$) ² —	$\frac{1}{2}$ $\frac{3}{2}$
67	ř	σ ₆	U	_	236	$\frac{1}{2} \breve{P} \frac{3}{2}$				I I 2
68	T	Ť	K		512	$\frac{5}{2}\tilde{P}$ 5		****		5 <u>I</u>
69	ъ	$\sigma_{\mathtt{I}}$	-		692	$\frac{9}{2}$ $\stackrel{\vee}{P}$ $\frac{3}{2}$			_	3 2
70	M	M	M		431	$4 \tilde{P} \frac{4}{3}$				4 3
71	v	v			10.9.30	$\frac{1}{3}\tilde{\mathbf{P}}\frac{\mathbf{I}0}{9}$	_			I 3 TO
72	X	X	_		413	$\frac{4}{3}\bar{P}_4$			_	4 <u>I</u> 3
73	Ψ	Ψ			892	2 P 8				4 2
74	e	σ_8			238	$\frac{3}{8}$ $\stackrel{\vee}{\mathbf{P}}$ $\frac{3}{2}$				1 3 4 8
75	φ	φ	φ	_	134	3 ₱ 3				I 3 4 4
76	ψ	Ų	ψ		164	$\frac{3}{2} \breve{P} 6$	-			I 3 4 2
77	i	σ_9			2.3.12	$\frac{1}{4} \stackrel{\vee}{\mathbf{P}} \frac{3}{2}$				I I 6 4
78	p	p	ρ	_	135	3 ₹ 3				1 3 5 5
79	E	E	_		10.3.15	$\frac{2}{3}\bar{P}_{3}^{10}$				2 3 3 2 3 2 3 4 5 2
80	Γ	Γ	_		3.6·4	³ / ₂ ₽ 2				$\frac{3}{4} \frac{3}{2}$
.81	w	$\omega_{\mathtt{I}}$		-	532	<u>5</u> ₱ 5		-		5 3
82	w	W			20.9.30	2 P20	_	_		2 3 3 10
83	\mathbf{D}	D			15.3.20	$\frac{3}{4}\bar{P}$ 5				3 3 4 20
84	δ	δ			4.12.5	<u>12</u> ₽ 3				4 <u>12</u> 5 5
85	a	[z]			9.3.10	9 P 3	_			9 <u>3</u> 10 10
86	ъ	σ_5	S		235	$\frac{3}{5}$ $\stackrel{\vee}{P}$ $\frac{3}{2}$		-		2 3 5 5
87	c	σ ₇			237	3 P 3				
88	F	F			3.26.5	26 P 26	_	market state of		3 <u>26</u> 5 5
89	Ω	ω_3		_	538	5 P 5	_			5 3 8 8
90	Ξ	ω_4			5.3.11	$\frac{5}{11}\ddot{P}\frac{5}{3}$				5 3 II II

Bemerkungen. (Fortsetzung von S. 224.)

Für letzteren Zweck (2. a und b) kommt es auf die exakteste Ortsbestimmung an, und man hat ausserdem Formen von vicinalem Charakter einer speciellen Discussion

Die Aufstellung unsicherer Formen kann nur dem Zweck I genügen. Ihr Eintritt in bereits bekannte Zonen verwischt und verdunkelt das Bild und lässt am Ende die Reihe der Projectionspunkte als eine verwaschene Linie erscheinen, der alles Charakteristische abgeht. Es tritt somit in diesem Fall kein Gewinn, sondern ein Verlust unserer Kenntniss ein.

In den Formenreihen von Koort findet sich die nöthige Klarheit nicht. Daher konnte ich mich nicht entschliessen, sie mit Ausnahme der wohl sichergestellten Form 133 aufzunehmen. Jedoch sollen sie hier in Miller'schen und unsern Zeichen nach der im Index angenommenen Aufstellung angeführt werden.

$\frac{I}{32}$ o $(1.0.32)$	5 o (5·o·16)	20 0 (20·0·19)	²⁵ / ₉ o (25·0·9)	$1\frac{1}{2}$ (212)	$\frac{1}{3} \frac{1}{2} (236)$
I O (1.0.25)	5 T4 O (5·O·14)	6.0 (11.0.6)	²⁵ ⁄ ₆ o (25·0·6)	1 ⁵ / ₁₃ (13·5·13)	$\frac{5}{9}\frac{5}{27}$ (15.5·27)
17 O (1·O·17)	5 O (5·0·11)	5 o (504)	90 (901)	1 5 (11·5·11)	$\frac{5}{3}\frac{10}{3}(5.10.3)$
5/28 O (5·O·28)	7 15 0 (7·0·15)	5/3 o (503)	15.0 (15.0.1)	$1\frac{10}{13}(13\cdot 10\cdot 13)$	\$ \$ (15·5·9)
² / ₉ o (209)	4 o (405)	25 O (25·O·13)	32.0 (32.0.1)	$1\frac{25}{18}(18 \cdot 25 \cdot 18)$	$\frac{1}{3} \frac{1}{9} (319)$
5 O (5·0·19)	⁷ / ₈ o (708)	⁷ / ₃ o (703)		$\frac{1}{3}$ I (133)	
5 O (5·0·18)	50 o (50·0·51)	5 o (502)	0 <u>11</u> (0·1·11)	$\frac{1}{5}\frac{6}{5}$ (165)	

Die Formen:

waren vor Koort bereits durch Dana bekannt geworden.

Speciellere Gründe des Zweifels an Koort's Symbolen sind die folgenden:

1. Es ist auffallend das häufige Auftreten der Zahl 5 unter den neuen Formen. Wir lesen:

unter den Domen:

unter den Pyramiden:

$$I_{\overline{13}}^{\underline{5}}$$
 $I_{\overline{11}}^{\underline{5}}$ $I_{\overline{13}}^{\underline{10}}$ $I_{\overline{8}}^{\underline{25}}$ $I_{\overline{5}}^{\underline{6}}$ $I_{\overline{5}}^{\underline{5}}$ $I_{\overline{27}}^{\underline{5}}$ $I_{\overline{3}}^{\underline{5}}$ $I_{\overline{3}}^{\underline{5}}$

Also von 39 neuen Formen 27 mit der Zahl 5 oder ihrem Vielfachen. Diese Regelmässigkeit könnte eine wirkliche sein. Sie ist jedoch in hohem Grad auffallend, da sie nicht bei einem einzigen Mineral angetroffen wird. Wo sie sich zu finden schien, rührte sie her von einer Abrundung auf Decimalen. (Vgl. Aragonit. Bemerkungen.) In manchen Fällen dürfte auch hier die decimale Abgleichung zu den gewählten Zahlen geführt haben. Sonst ist es z. B. nicht verständlich, warum der Autor das Symbol (50·51·0) gesetzt mit einer Winkeldifferenz von 8¹·5 statt (67.68.0) mit 0¹, ebenso (20.19.0) mit 27¹ Differenz statt (27.26.0) mit 0¹.

- 2. Die Reihe der Zahlen ist sowohl für sich als auch nach Einfügung unter die bekannten Formen nach den bei andern Mineralien beobachteten Zahlengesetzen (vgl. Discussion der Zahlen) durchaus abnormal.
- 3. An einem Krystall (No. 8) treten in derselben Zone 32 verschiedene Prismen auf, darunter 18 neue. Waren sie vollständig entwickelt, so waren das 128 Flächen ausser den Pinakoiden, dabei war der Krystall in der Zone nicht ganz frei von einspringenden Winkeln, wie Autor hervorhebt. Ob die Formen vollslächig entwickelt waren oder nur je 1 Reslex vorhanden war, erfahren wir nicht. Ueberhaupt ist für jede Form nur 1 Winkel als Mittel-

(Fortsetzung S. 227.)

Bemerkungen. (Fortsetzung von S. 226.)

werth gegeben, so dass der Leser nicht im Stande ist, abgesehen von der Nähe der Abgleichung, eine Diskussion vorzunehmen.

4. Die Form $(15\cdot25\cdot5)$ A_1 (nach Aufstellung Koort's) ist unter dessen neuen Formen die meist beobachtete und meist diskutirte, daher scheinbar die am festesten sicher gestellte. Nach S. 28 hat es allerdings den Anschein, als ob eine selbstständige Fläche vorliege mit genanntem Symbol (Kryst. 5). Dies wird bestätigt durch Kryst. 6 (S. 30).

In Krystall 7 ist A, gekrümmt und giebt nicht einheitliche Reflexe.

Bei Krystall 8 wurde aus einer Reihe vicinaler Reflexe der für A_i passende ausgewählt. Bei Krystall 9 zerfielen die Flächen der Pyramide A_i in mehrere Felder, von denen eines als A_i angesehen wurde.

Bei Krystall 1 (S. 21) tritt ein Symbol zu Tage, das 15. 27. 5 nahekommt.

Nach all dem scheint die Möglichkeit nicht ausgeschlossen, dass für A, eines von vielen vicinalen Symbolen ausgewählt wurde, während es nothwendig wäre, zur Ausfindung des typischen Symbols für die Fläche auch die anderen Reflexe zu berücksichtigen und zu diskutiren.

Endlich wird man es nicht unberechtigt finden, wenn ich den 39 neuen Formen einer Arbeit über ein vielfach untersuchtes Mineral von bekanntem Fundort mit Misstrauen begegne. Vielleicht werden die Angaben des Autors gerechtfertigt und halten wenigstens theilweise gesichtet und gesichert ihren Einzug in die Formenreihe des Antimonglanz. Sie machen den Eindruck gewissenhafter Beobachtung und dürften werthvolle Resulate geben, wenn Autor sich der Aufgabe unterziehen wollte, die beobachteten Reflexe kritisch zu diskutiren, so dass sich die vicinalen Formen, auf die er selbst (S. 19 und 36) hinweist und die Scheinflächen von den typischen schieden, wodurch ein wohlgegliedertes klares Bild zu Tage träte. (Vgl. Einleitung S. 146—149.)

In dem Formenverzeichniss von Dana (Zeitschr. Kryst. 1884. 9. 34 und 35) kommt der Buchstabe z zweimal vor, einmal für (101), das zweite Mal für (9·10·3). Für letztere Form wurde der Buchstabe a gesetzt.

Correcturen s. S. 228.

Correcturen.

Hauy	Traité Min.	1822	4	S.	294	Zeile	4	vo	lies	s B	statt	P
Hausmann	Handb.	1847	2 (1)	,,	155	"	5	vu	"	BB' 4/3	"	$BB^{1}\frac{3}{4}$
Krenner	Wien. Sitzb.	1865	51 (1)	,,	44 I	,,	5	vo	**	1856 Bd. 2 8. 185	"	Heft IV, 1855 8. 171
,,	"	,,	"	"	450	"	10	,,	,,	Hauy	"	Lévy
"	n	"	"	"	,,	,, 13	14 1	5 "	"	Hausmann	"	Miller
"	,,	"	"	,,	,,	"	19	,,	"	Hauy	"	Mohs
,,	"	n	,,	"	"	"	2 I	"	,,	Miller	,,	Mohs
,,	"	"	"	"	" n	ach Z.	14	vu	zuz	ufügen: τ 433	3 Moh	ıs
"	"	"	,,	,,	,,	,,	14	"		" — 12	ı Lév	y
,,	"	"	"	,,	,,	"	14	"		" у о2:	ı Lév	y
. "	"	"	"	"	,,	,,	14	,,		" хоп	ı Lév	y
,,	"	"	"	,,	45 I	Zeile	2	vo	zu	löschen: (011)	(012)	
"	"	"	,,	,,	.9	,,	3	,,		" (433)		
Schrauf	Atlas	1871	Text zu	Taf.	XVII	'n	19	vu	lies	6 P 2	statt	6 P 3

Antimonsilber.

Rhombisch.

Axenverhältniss.

a:b:c = o.8596:i:i.4886 (Gdt.)

 $\begin{array}{l} [a:b:c = 0.5775: 1:0.6718] \text{ (Hausmann, Miller, Dana.)} \\ [a:b:c = 0.577: 1:0.693] \text{ (Lévy.)} \end{array}$

Elemente.

		$\lg a_0 = 976153$			
c = 1.4886	$\lg c = 017277$	$\lg b_o = 982723$	$\lg q_0 = 017277$	$b_0 = 0.6718$	q _o == 1·4886

Transformation.

Lévy. Hausmann. Miller. Dana.	Kenngott. Sandberger.	Gdt.
рq	2 p · 2 q	$\frac{\mathbf{p}}{\mathbf{q}} \frac{\mathbf{r}}{\mathbf{q}}$
$\frac{\mathbf{p}}{2} \frac{\mathbf{q}}{2}$	рq	$\frac{p}{q} \frac{2}{q}$
$\frac{p}{q} \frac{1}{q}$	$\frac{2p}{q} \frac{2}{q}$	рq

No.	Miller. Gdt.	Mohs- Zippe.	Miller.	Naumann.	[Hausmann.]	[Mohs- Zippe.]	[Lévy.]	Gdt.
I	a	h	001	oР	В	ĕr+∞	g١	o
2	c	О	010	$\infty \breve{P} \infty$	A	P—∞	p	000
3	b	-	100	$\infty \bar{P} \infty$	\mathbf{B}^{ι}			ωo
4	d		110	ωP	D'		-	∞
5	p	P	012	½ P̃∞	$BA\frac{1}{2}$	řr∔ı		$O_2^{\underline{I}}$
6	e		011	ď∞	D	Йr	\mathbf{e}^{ι}	OI
7	r	_	105	I Ṗ̃∞	B B'5	_		<u>I</u> 0
8	\mathbf{q}		103	$\frac{1}{3}\bar{P}\infty$	B B'3			$\frac{I}{3}O$
9	n	_	102	$\frac{1}{2}\bar{P}\infty$	B B'2		_	$\frac{1}{2}$ O
10	m	M	101	P̄∞	E	P+∞	m	10
11	у	у	III	P	P	P	_	I
I 2	x	_	323	$\bar{\mathbf{P}}_{2}^{3}$				$I\frac{2}{3}$
13	z	z	121	2 Ĭ 2	A E 2	P1	b'	12
14	s		133	Й3	$D B_{1}^{1}$			$\frac{1}{3}$ I

230 Antimonsilber,

Literatur.

Mohs	Grundr.	1824	2	499
Hartmann	Handwb.	1828		12
$L\acute{e}vy$	Descr.	1838	2	332
Mohs-Zippe	Min.	1839	2	476
Hausmann	Handb.	1847	2	(1) 57
Miller	Min.	1852	2	140
Kenngott	Win. Sitzb.	1852	9	568
Sandberger	Jahrb. Min.	1870	_	589
Dana	System	1873	_	35∙

Apatit.

1.

Hexagonal. Pyramidal-hemiedrisch.

Axenverhältniss.

$$\begin{array}{c} a:c = \text{ $\rm I:I\cdot 2680$} \quad (G_1)\\ &\text{ $\rm [a:c = I:0\cdot 7346]$} \quad (G_2)\\ \\ a:c = \text{ $\rm I:0\cdot 7346$} \quad (G_2)\\ \\ a:c = \text{ $\rm I:0\cdot 7327$} \quad (Schrauf.)\\ \\ \text{ $\rm "=I:0\cdot 7340$} \quad (Kokscharow. \; Klein. \; Dana. \; Groth = G_1)\\ \\ \text{ $\rm "=I:0\cdot 7340$} \quad (Schmidt.)\\ \\ \text{ $\rm "=I:0\cdot 7$} \quad (L\'{e}vy.)\\ \\ \left\{ \begin{array}{l} a:c = \text{ $\rm I:1\cdot 2680$}\\ \\ (I) \end{array} \right\} \quad (Mohs-Zippe. \; Hausmann. \; Miller.)\\ \\ \left\{ \begin{array}{l} a:c = \text{ $\rm I:2\cdot 196$}\\ \\ (I) \end{array} \right\} \quad (Mohs-Zippe. \; Hausmann.) \end{array}$$

Elemente.

c = 1.2680	lg c=010312	$\lg a_o = 013544$	$\lg p_o = 992703$	a₀ = 1·3660	$p_o = 0.8453$
		$\lg a_{\circ}^{l} = 989688$		a' _o == 0.7886	

Transformation.

Mohs-Zippe. Hausmann. Miller.	Kokscharow. Klein. Groth. Schrauf. Dana. Schmidt = G ₁	G_2
pq	(p+2q)(p-q)	3p · 3q
$\frac{p+2q}{3} \frac{p-q}{3}$	pq	(p+2q) (p-q)
$\frac{p}{3} \frac{q}{3}$	$\frac{p+2q}{3} \frac{p-q}{3}$	pq

No.		Miller. Klein. Schmidt	Schrauf Weisb.	Kok. Rath	Nau- mann.	Hauy. Hausm. Hartm. Mohs.	Dana	Bravais.	Miller.	Naumann.	[Hausmann.]	[Mohs-Zippe Hartmann.]	Hauy.	Lévy. Descl.	6,	${\tt G_2}$
I	с	C _l O	С	P	P	P	С	0001	111	oР	A	R—∞	P	p	0	0
2	a	a	a	M	M	M	J	1010	2 Ī Ī	∞P	\mathbf{E}	$P+\infty$	M	m	∞ o	∞
3	b	b	b	u	e	e	i	I I ŽO	101	∞P 2	В	R+∞	'G'	$h^{I}(g^{I})$	∞	∞0
4	h	h	h	h	С	f		2130	514	$\infty P \frac{3}{2}$	BB3	$(P+\infty)$	3	$h^2(g^2)$	2 00	4∞
5	k	k	k	_	f	c	k	4150	312	∞P 5/4	$BB_{\frac{5}{3}}$	$(P+\infty)^{\frac{3}{2}}$	<u> </u>	h4(g4)	4∞	2∞
6	τ		τ	_			_	1016	774	$\frac{1}{6}$ P				Ъ ⁶	1 O	<u>1</u>

(Fortsetzung S. 233.)

232 Apatit.

Literatur.

```
487
                   Traité Min.
                                       1822
Hauy
                                                1
Mohs
                   Grundr.
                                       1824
                                                2
                                                   88
                   Handwb.
                                       1828
Hartmann
                                                    191
Naumann
                   Lehrb. Kryst.
                                       1830
                                                1
                                                   499. 504.
                                       1838
                                                1
Levy
                   Descr.
                                                   129
                                                2
Mohs-Zippe
                   Min.
                                       1839
                                                   84
                                                7
Des Cloizeaux
                   Ann. Min.
                                       1842 (4)
                                                   349
Hausmann
                   Handb.
                                       1847
                                                2
                                                   (2) 1053
Miller
                   Min.
                                       1852
                                                   485
                                                2
Kokscharow
                   Mat. Min. Russl.
                                       1857
                                                   39
                                                   353 (Pfitsch)
Rath
                   Pogg. Ann.
                                       1859
                                              108
                   Mat. Min. Russl.
                                                5
                                                   86
Kokscharow
                                       1866
                                                   604
Str\"uver
                   Jahrb. Min.
                                       1868
                                                   (2) 745
                   Wien. Sitzb.
                                       1870
                                               62
Schrauf
                                                   Taf. XVIII-XX
                   Atlas
                                       1871
Strüver
                                                1
                   Torino. Att. ac.
                                       1871
                                                   369 )
                   Jahrb. Min.
                                       1871
                                                   752 J
                                                   485 (Fibia, Gotthard)
Klein
                                       1871
                        ,,
                                                   121 (Sulzbachthal)
                                      1872
Rath
                   Zeitschr. Kryst.
                                      1881
                                                \mathbf{5}
                                                   255 (Zöptau)
                                       1882
                                                2
Weisbach
                   Jahrb. Min.
                                                   249
                                                7
                                                   551 (Floitenthal)
Schmidt
                   Zeitschr. Kryst.
                                       1883
Weisbach
                                       1884
                                                   539
                         ,,
                                       1885
                                                9
                                                   284.
Dana, E. S.
                         ,,
```

2.

No.	Gdt.	Miller. Klein. Schmidt	Schrauf Weisb.			Hauy. Hausm. Hartm. Mohs.	Dana	Bravais.	Miller.	Naumann.	[Hausmann.]	[Mohs-Zippe Hartmann.]	Hauy.	Lévy. Descl.	6,	\mathfrak{G}_2
7	σ		σ				_	1013	441	<u> </u>		_	_	b3	$\frac{I}{3}$ O	$\frac{1}{3}$
8	ζ	_						5.0.5.12	22.7.7	$\frac{5}{12}$ P				$b^{\frac{12}{5}}$	$\frac{5}{12}$ O	<u>5</u> 12
9	r	i	r	r	r	r	r	1012	110	$\frac{1}{2}$ P	AE2	P1	$\overset{2}{\mathrm{B}}$	b ²	$\frac{1}{2}$ O	1/2
10	γ_l	_				_		3035	I I · 2 · 2	<u>3</u> ₽				_	$\frac{3}{5}$ O	<u>3</u> 5
11	ε	_	ε	_	_	_	_	3034	772	$\frac{3}{4}$ P			_	$b^{\frac{4}{3}}$	$\frac{3}{4}$ O	<u>3</u>
12	x	x	x	_	x	x	x	1011	100	P	P	P	$^{\mathrm{I}}_{\mathrm{B}}$	\mathbf{p}_{1}	10	I
13	α		α	α	_		_	3032	554	3 P			_	$b^{\frac{2}{3}}$	$\frac{3}{2}$ O	<u>3</u>
14	y	z	y	y	z	z	y	2021	111	2 P	$EA^{\frac{1}{2}}$	P+1	$\overset{\frac{1}{2}}{\mathbf{B}}$	$\mathbf{b}^{rac{\mathbf{I}}{2}}$	20	2
15	w		_	_	_		w	7073	17.4.4	$\frac{7}{3}$ P		<u> </u>	_		$\frac{7}{3}$ O	73
16	z	_	z	z			z	30 <u>3</u> I	722	3 P			_	$b^{\frac{1}{3}}$	30	3
17	π		π		_			40 4 1	311	4 P				$\mathbf{b^{\frac{I}{4}}}$	40	4
18	φ	_	φ	_	_			1126	321	1 P 2				a ⁶	<u>ę</u>	$\frac{1}{2}$ O
19	v	e	v	v	a	a		I I 22	52 <u>T</u>	P 2	D	R1	_	a2	$\frac{I}{2}$	$\frac{3}{2}$ O
20	s	r	s	s	s	s	s	I I 2 I	412	2 P 2	$BA^{\underline{1}}_{\underline{2}}$	R	$\mathbf{\mathring{A}}$	a ^I	I	30
2 I	đ	s	d		d	d		2241	715	4 P 2	BA ^I / ₄	R+1	_	$a^{\frac{1}{2}}$	2	60
22	i	g	i					1232	21 T	$\frac{3}{2}$ P $\frac{3}{2}$				$a_{\frac{1}{2}}$	$\frac{1}{2}$ I	$2\frac{I}{2}$
23	m	u	m	m	u	u	m	2131	201	$3^{\frac{3}{2}}$	BD_5	$(P)^{\frac{5}{3}}$	$^2A^2$	$\mathbf{a_3}^2$	2 I	4 I
24	ψ							7·3·TO·3	20.1.10	10P10 3					7/3 I	13 4 3 3
25	n	t	n	n	b	b	n	3141	212	4 P 🕏	BD_7	$(P)^{\frac{7}{3}}$		a_4	3 і	5 2
26	ρ	_	p		_		_	4151	$8\bar{4}\bar{7}$	5 P 5/4			_	a ₅	4 I	63
27	О	d	O	О			o	3142	301	2 P 4/3	AE2·BD7	$(P-1)^{\frac{7}{3}}$			$\frac{3}{2}\frac{I}{2}$	5/2 I
28	q	_					q	4371	403	7 P 7/4					4 3	IO·I
29	δ		õ		_		— I		287-278-275	5 I P 4 3			_		$\frac{3}{280}, \frac{1}{280}$	I 140

234 Apatit.

Correcturen.

 Mohs-Zippe
 Min.
 1839
 2
 Seite
 87
 Zeile
 7 vo lies $(P+\infty)^{\frac{5}{3}}$ statt $(P+\infty)^{\frac{5}{8}}$

 Rath
 Pogg. Ann.
 1859
 108
 , 356
 , 16 vo , 2 P
 , 2 P
 , $\frac{1}{2}$ P

Apophyllit.

1.

Tetragonal.

Axenverhältniss.

```
a: c = 1:1·2515 (Schrauf. Dana. Groth. Gdt.)

" = 1:1·250 (Hauy. Mohs-Zippe.

Hausmann. Miller.)

[a: c = 1:1·7698] (Des Cloizeaux.)

[ " = 1:1·73 ] (Lévy.)
```

Elemente.

$\begin{pmatrix} P_{\circ} \\ c \end{pmatrix} = 1.2515 \mid \lg c = 009743 \mid \lg a_{\circ} = 990257 \mid a_{\circ} = 0.7990$		$ \begin{vmatrix} p_o \\ c \end{vmatrix} = 1.2515$	$\lg c = 009743$	$\lg a_0 = 990257$	a₀ == 0·7990
---	--	--	------------------	--------------------	--------------

Transformation.

Lévy. Des Cloizeaux.	Hauy. Mohs-Zippe. Hausmann. Miller. Dana. Schrauf. Groth. Gdt.
pq	(p+q) (p-q)
$\frac{p+q}{2} \frac{p-q}{2}$	pq

No.	Gdt.	Miller, Schrauf, Selig- mann,	Rumpf.	Hauy.	Mohs- Zippe. Haus- mann.	Miller.	Nau- mann.	Haus-		Hauy.	[Lévy.] [Descl.]	Gdt.
1	c	С	P	P	0	001	οP	A	P—∞	P	p	0
2	a	a	m ·	M	m	100	$\infty P \infty$	В	[P+∞]	M	m	∞0
3	m	m				110	∞P	E	P+∞	_	$h^{I}(g^{I})$	∞
4	r	r		1	r	210	∞P 2	BB ₂ [$(P+\infty)^3$	G ² ² G	$h^2(g^2)$	2∞
5	y	y	n			310	∞P 3	_		_		3∞
6	f		x			108	$\frac{I}{8} P \infty$	_				$\frac{1}{8}$ O
7.	e		e	_		106	½ P∞	_			_	$\frac{1}{6}$ O
8	v	v			ь	105	½ P∞	AB_5	4 P—5		b ⁵	₹ o
9	s	s	r		c	102	$\frac{1}{2}$ P ∞	AB2	P-3	_	b^2	$\frac{1}{2}$ O
10	i	i				101	P∞					10

(Fortsetzung S. 237.)

Literatur.

Hauy	Traité Min.	1822 3	191
$L \epsilon v y$	Descr.	1838 2	271
Mohs- $Zippe$	Min.	1839 2	272
Hausmann	Handb.	1847 2	(1) 758
Miller	Min.	1852 —	436
Dauber	Poyg. Ann.	1859 107	280
$Des\ Cloizeaux$	Manuel	1862 1	125
Schrauf	Wien. Sitzb.	1870 62	(2) 699 (Zwill. Grönland)
,,	Atlas	1872 —	Taf. XXI
$L\ddot{u}decke$	Habilit. Schrift.	1878 —	(Radauthal)
Seligmann	Jahrb. Min.	1880	140
,,	Zeitschr. Kryst.	1882 6	103 (Utöe) 🕽
Rumpf	Zeitschr. Kryst.	1884 9	369.

Bemerkungen.

Rumpf (Zeitschr. Kryst. 1885. 9. 369) nimmt für den Apophyllit das monokline System an und zwar mit dem Axenverhältniss

$$a:b:c=1:1:1.7615$$
 $\beta=90^{\circ}$

und giebt dazu die Formen an:

Rumpf.	Miller.	Naumann.	Rumpf.	Index
P	001	οP	0	О
s	103	$-\frac{1}{3}P\infty$	$+\frac{1}{3}$ o	$\frac{I}{3}$
t	9.0.10	$-\frac{9}{10}$ P ∞	+ 9 o	9 10
u	24.0.25	$-\frac{24}{25}P\infty$	$+\frac{24}{25}$ o	24 25
d	101	— P∞	+ 10	I
v	51.0.50	$-\frac{51}{50}$ P ∞	$+\frac{51}{50}$ o	<u>5 I</u> 50
x	1.1.16	$-\frac{1}{16}P$	$+\frac{I}{16}$	$\frac{1}{8}$ O
e	1.1.12	$-\frac{1}{12}P$	$+\frac{I}{I2}$	$\frac{1}{6}$ O
r	1.1.4	$-\frac{1}{4}P$	+ 4	$\frac{1}{2}$ O
g	72.1.40	— § P72	+ ½ I	73 7 <u>I</u> 40 40
m	110	∞P	∞	∞ 0
n	210	∞ P 2	2 00	3 ∞

Da die Elemente, mit denen des tetragonalen Systems übereinstimmen, so wurde für obige Formen eine tetragonale Deutung genommen, die berechtigt erscheinen dürfte, bis die Fragen der Polysymmetrie besser geklärt sein werden. Wir erhalten das tetragonale Symbol nach der im Index angenommenen Aufstellung, wenn wir mit dem Symbol in Rumpf's Aufstellung (die der Des Cloizeaux's gleich ist) unter Vernachlässigung des Vorzeichens die Transformation vornehmen:

$$pq (Rumpf) = (p+q) (p-q) (Index).$$

Die so transformirten Symbole wurden in den Index aufgenommen: mit Ausnahme der Form $g=\frac{73}{40}\,\frac{71}{40}$, deren auffallend complicirtes Symbol doch wohl noch einer Bestätigung bedarf.

(Fortsetzung S. 238.)

2.

No.	Gdt.	Miller. Schrauf. Selig- mann.	Rumpf.	Hauy.	Mohs- Zippe. Haus- mann.	Miller.	Nau- mann.	Haus- mann.	Mohs- Zippe.	Hauy.	[Lévy.] [Descl.]	Gdt.
11	x	х				1.1.10	I _D P					<u>I</u>
12	d	d			d	115	$\frac{1}{5}$ P	AE_5	45 P—4		a ⁵	$\frac{1}{10}$ $\frac{1}{5}$
13	φ	φ		_		227	$\frac{2}{7}$ P				$\mathbf{a}^{\frac{7}{2}}$	<u>2</u> 7
14	z	z	s	_	e	113	1/3 P	AE3	² / ₃ P—2		a ³	<u>I</u>
15	χ	χ				223	$\frac{2}{3}$ P					<u>2</u>
16	t		t	_		9.9.10	$\frac{9}{10}$ P					13 23 9
17	u		u			24.24.25	24P			_	_	24 25
18	p	p	d	s	P	111	P	P	P	Ā	$\mathbf{a}^{\mathtt{I}}$	I
19	w	-	v	_	_	51.51.50	$\frac{51}{50}$ P				-	<u>5 I</u> 50
20	τ	τ				533	5/3 P 5/3		_		a ₅	5 3 I
21	σ	σ				2 I I	2 P 2				$\mathbf{a_2}$	2 I
22	α	α				311	3 P 3	_	_			3 1
23	P	P				621	6 P 3					6 2

238 Apophyllit.

Bemerkungen. (Fortsetzung von S. 236.)

Ausser den angeführten Formen giebt Hauy noch die Combination (Traité Min. 1822. 3. 194):

welche sich mit den übrigen nicht in Uebereinstimmung bringen lässt. Figur und Winkel-Angaben fehlen. (Hauy's Citat [Journal des Mines No. 137 p. 388] ist mir nicht zugänglich.) Hauy giebt an, dass die Combination sehr unvollständig ausgebildet. Es liegt der Verdacht nahe, dass hier zum Theil Scheinflächen beobachtet wurden. Jedenfalls ist die Angabenicht genügend sicher, um die von den übrigen Autoren nicht gefundenen Formen den sicher bestimmten anzureihen.

Lévy giebt S. 274 sowie Taf. 46 Fig. 2 eine Combination mit b^{I} $b^{\frac{3}{2}}$. Diese Figur findet sich copirt bei Des Cloizeaux (Manuel 1862. 1. Fig. 76) und bei Schrauf Atlas 1872 Taf. 21 Fig. 9, doch setzt Des Cloizeaux b^2 b^5 statt b^{I} $b^{\frac{5}{2}}$, ohne dies als eine Correctur zu bezeichnen, doch jedenfalls mit Recht, wie aus Lévy's Figur hervorgeht. So hat auch Schrauf (102) (105).

Lüdecke giebt folgende Zusammenstellung der beobachteten Axen-Verhältnisse:

Dauber.								. Seisser Alp 1: 1.253	3
Miller un	d :	Dе	s	Clo	oiz	еa	u x	· · · · · · · · · · · · · · · · · · ·	7
Dana .								1:1.2510	5
Lüdecke								. Hestöe 1:1.2430	5
,,								. Faröe 1:1.242	2
»								. Andreasberg . 1:1.237	I
Dauber								. " . 1:1.236	5
Streng.								. Limberg. Kopf. 1:1.230	9
Dauber								. Poonah 1:1.216	5
Lüdecke								. Radauthal 1: 1.213	3
29								. Andreasberg . 1:1.205	7

Correcturen.

```
      Lévy
      Descr.
      1838
      2
      Seite 274
      Zeile 10 vo lies
      a = 10^{-5}
      a = 10^{-5}
```

Aragonit.

Aragonit.

1.

Rhombisch.

Axenverhältniss.

Elemente.

a = 0.8642	lg a = 993661	$lg a_0 = 979441$	$\lg p_0 = 020559$	$a_o = 0.6229$	$p_o = 1.6054$
c = 1·3874	lg c = 014220	$lg b_o = 985780$	$\lg q_o = 014220$	b _o == 0.7208	$q_o = 1.3874$

Transformation.

Mohs-Zippe. Kupffer. Hausm. Miller. Zephar. Dana. Koksch. Websky. Descl. Hessenberg.	Schrauf.	Mohs 1824. Hartmann.	Gdt.	
рq	2 p · 2 q	9 p	$\frac{p}{q} \frac{r}{q}$	
$\frac{p}{2} \frac{q}{2}$	рq	$\frac{\mathbf{q}}{4} \frac{\mathbf{p}}{2}$	$\frac{p}{q} \frac{2}{q}$	
q . 2 q	2 q · 4 p	рq	q I 2 p	
$\frac{\mathbf{p}}{\mathbf{q}} \frac{\mathbf{q}}{\mathbf{q}}$	$\frac{2 \mathbf{p}}{\mathbf{q}} \frac{2}{\mathbf{q}}$	1 p q	рq	

No.	Miller. Schrauf. Zephar. Gdt.	Koksch.	Webs.	Mohs-Zippe. Hartmann Hausmann.		Naum.	[Hsm.]	[Mohs 1824]	[Mohs- Zippe 1839]	IT ZI	Gdt.
I	a	h	h	h	001	oР	В	Pr+∞	Ĕr+∞	g¹	О
2	С	c		s	010	$\infty \breve{P} \infty$	Α	P—∞	P-∞	р	0∞
3	b	b			100	$\infty \bar{P} \infty$	\mathbf{B}_{i}	P r+∞	$\bar{P}r+\infty$	h ^I	∞o
4	f			_	210	∞P2					2∞
5	u	u			110	∞P	$\mathbf{D_{I}}$	Р́г	Рr	a^{I}	∞
6	g	_			340	∞P̃ {		_	_		$\infty \frac{4}{3}$

(Fortsetzung S. 241.)

240 Aragonit.

Literatur.

```
Traité Min.
                                     1822
Hauy
                                               432
                                            2
                   Grundr.
                                     1824
                                               94
Mohs
                                     1828
                                               280
Hartmann
                   Handwb.
L \epsilon v y
                   Descr.
                                     1838
                                               101
                                            2
                                               89
                   Min.
                                     1839
Mohs-Zippe
                                            2
                   Handb.
                                               (2) 1230
Hausmann
                                     1847
Miller
                   Min.
                                     1852
                                               567
                   D. Geol. Ges.
                                     1857
                                            9
                                               737
Websky
                                     1858
Grailich
                   Kryst. opt. Unters.
                                               143
                                     1860 39
                                               885
                   Wien. Sitzb.
Schrauf
                   Pogg. Ann.
                                     1865 126
                                               149
Schmidt
                                     1870
                   Mat. Min. Russl.
                                            6
                                               261
Kokscharow
                                     1870 62
                                               (2)734
Schrauf
                   Wien. Sitzb.
                                           65 (1) 250 (Sasbach)
                                     1872
    "
                                               Taf. XXI-XXIII
                                     1872
                   Atlas
                                     1873
                                               694
Dana
                   System
                                           2
                                               86
Des Cloizeaux
                   Manuel
                                     1874
                                     1875
                   Wien. Sitzb.
                                           71
                                               (1) 253
Zepharovich
                                               202 (Oberstein)
                                            1
                   Zeitschr. Kryst.
                                     1877
Laspeyres
                                     1885
                                            9
                                               196.
Langer
```

Bemerkungen | s. Seite 242 u. 244.

2.

No.	Miller. Schrauf. Zephar. Gdt.	Koksch.	Webs.	Mohs-Zippe. Hartmann. Hausmann.	Miller.		[Haus- mann.]	[Mohs 1824]	[Mohs-Zippe 1839]	[Lévy.] [Descl.]	
7	d				120	∞Ĭ2			-		∞2
8	η				0.1.24	^I ₂₄ position ∞		-	_		0 <u>I</u>
9	Р				O·I·2O	<u>I</u> P ∞					$0\frac{I}{20}$
10	μ				0.1.16	$\frac{1}{16} \overset{\sim}{\mathbf{p}} \infty$					$o_{\frac{1}{1}}$
11	4)			_	0.1.14	^I _{I4} P̃ _∞	_				0 <u>I</u>
12	ε				0.1.13	^I JP∞					0 <u>I</u>
13	j			-	O·I·I 2	$\frac{I}{12} \breve{P} \infty$			_	$e^{\frac{I}{12}}$	$0\frac{I}{I^2}$
14	λ				019	J̄P̄∞ J̄P̄∞	— DA I	_		e ^I / ₈	0 <u>1</u>
15	у 				018		BA ½			е в	0 8
16	χ				017	^I ⁄ ₇ P̃∞		_		_	0 I
17	β				0.5.13	$\frac{2}{13} \tilde{P} \infty$				<u>I</u>	0 2 13
1,8	q	q	_		016	₹Ÿ∞	BA I		$\frac{3}{2}$ Pr+2	e ¹	0 I
19	e	e		and the same of th	015	<u>I</u> Ř∞	BA I	$\frac{5}{4}\bar{P}r+1$	$\frac{5}{2}$ Pr $+1$	$e^{\frac{I}{5}}$	0 I
20	h	_			014	^I ⁄ ₄ P̃∞	_		_		$O^{\frac{I}{4}}$
21	v	v			013	¼ P̃∞	$BA\frac{I}{3}$	$\frac{3}{4}\bar{P}r+1$	$\frac{3}{2}$ $Pr+1$	$e^{\frac{I}{3}}$	$O^{\frac{1}{3}}$
22	i	i	i		012	Ţ Ž Ž Ž	BA I		Ĕr+1	$e^{\frac{I}{2}}$	0 <u>I</u>
23	1	1	-	_	023	$\frac{2}{3} \breve{P} \infty$	$BA\frac{2}{3}$	-	<u>³</u> ₽r	$e^{\frac{2}{3}}$	$0\frac{2}{3}$
24	×				034	$\frac{3}{4} \breve{P} \infty$	-	_			$0\frac{3}{4}$
25	k	k	P	k∙P	011	ĕ∾	D	Рr—ı	– Ĕr	e ^I	ОΙ
26	x .	x		-	O2 I	2 P̃∞	AB 2	Pr2	ĕr—1	e^2	O 2
27	α		_		031	зЎ∞	AB 3	<u></u>		e ³	оз
28	m	M	M	M	101	P̄∞	E	(Ĕr+∞)³	P+∞	m	10
29	Δ			_	115	$\frac{1}{5}$ P				Δ	<u>I</u>
30	s	s	s	r	112	1/2 P				s	<u>I</u>
31	P	p	o		III	P	P	(Ĕr—1)3	P	$\mathbf{b}^{\frac{\mathbf{I}}{2}}$	I
32	π				24.1.24		*****	_			$1\frac{I}{24}$
33	δ				14.1.14	P14					I <u>I</u>
34	Θ		_	_	10.1.10				-		$I \frac{I}{10}$
35	σ				919	P 9		_	-		1 <u>1</u>
36	γ				818	P 8	EA 1/8				I 1/8
37	ų				717	P 7		-	_	_	I 1/7
38	ω				13.2.13					т	$1\frac{2}{13}$
39	t				616	P 6				$b^{\frac{1}{12}}$	I 1/6
40	ζ		_		414	Ρ̃4	EA 4			$p_{\overline{8}}$	I 1/4
41	0		q		121		BD 12	P	(Ĕ)2	p_1	I 2
42	n	n			122	Й 2	$DB^{1}\frac{1}{2}$	P 1	(Ĕ—1) ²	n	1/2 I
43	Σ		_		326	$\frac{1}{2}\tilde{P}\frac{3}{2}$		_	Witness **	Σ	I I 2 3 I 3 2 4
44	t		t	_	234	¾ P ¾				Θ	I 3 2 4
45	r		u		132	$\frac{3}{2}$ $\stackrel{\vee}{P}$ 3	-			$u\left(e_{\underline{1}}\right)$	$\frac{1}{2}\frac{3}{2}$
								/[ortsetzu		

(Fortsetzung S. 243.)

Bemerkungen.

 $\label{thm:complex} \mbox{Zepharovich f\"uhrt eine Reihe vicinaler Formen mit complicirten Symbolen an, n\"amlich:}$

Beobachtete	Winkel	zu	a = o	unserer	Aufstellung:
-------------	--------	----	-------	---------	--------------

r	∞P 34/25	in unserer Aufstellu	ng 25 o	49°56;	49°	37;	50	°; 5	o°2	; 4	9°52	; 49	°44	.; .	49°5	50 i11	Durchschn.	49°52
q	$\infty \overset{\vee}{P} \frac{32}{25}$	"	$\frac{25}{32}$ O	51°7;	519	7											,,	51°7
p	∞P 58	"	50 o	53°49;	53°	41											"	53°45
0	$\infty \tilde{P} \frac{57}{50}$	'n	59 o	54°45													"	54°45
n	$\infty \bar{P} \frac{25}{24}$	"	25 24 O	59°23													"	59°23
m	$\infty \bar{P} \frac{25}{21}$,,		62°20;														62°34

Nach diesen Winkeln lassen sich mit ebenso guter Annäherung einfachere Symbole berechnen, wie die folgende Zusammenstellung zeigt:

	Symbol Zepharovich.	Berechn. Winkel zu a.	Symbol Gdt.	Winkel	Beobacht. v. Zepharovich. Durchschnitt.
r	25 34 O	49° 44	3/4 O	50° 17	49° 52
q	25 32 0	51°26	₹ o	51°19	51°7
Þ	50 59 O	53°41	$\begin{cases} \frac{11}{13}O\\ \frac{5}{6}O \end{cases}$	53° 38 53° 13	53°45
0	50 57 O	54° 37	7 / ₈ o	54°33	54°45
n	²⁵ / ₂₄ O	59° 7	20 19	59° 26	59°23
m	25/2 T O	62°23	<u>6</u> 0	62°34	62° 34

Die Entscheidung in der angeregten Frage dürfte am besten durch neuerliche Untersuchungen am Material getroffen werden und wurden bis dahin die genannten Symbole unter die sicher beobachteten noch nicht aufgenommen. Die Reihe der vereinfachten Symbole wäre eine normale, während die Regelmässigkeit in der Wiederkehr der Zahlen 25 und 50 in Zepharovich's Symbolen doch nur durch die Art der Abrundung hineingetragen ist.

Unter den Buchstaben tritt ausser dem lateinischen $v=o\frac{1}{3}$ das griechische $\upsilon=\frac{3}{4}\frac{1}{5}$ auf, die sich in der Schrift nicht unterscheiden lassen. Es wurde statt des letzteren der Buchstaben Y gesetzt.

Lévy führt S. 104 das Symbol $(b^{\frac{1}{3}}b^{\frac{1}{7}}g^{\frac{1}{5}})$ entsprechend $\frac{2}{5}$ 1 des Index an, eine Form, die sonst nicht beobachtet ist. Da Lévy weder Figur noch Winkel giebt, wurde diese Form nicht als sicher angesehen.

Das Axen-Verhältniss Websky ist berechnet aus den von ihm (1. c.) angeführten Messungen:

$$MM = \infty \cdot \infty = 116^{\circ} 13^{\circ}$$

 $PP = 01 \cdot 10 = 108^{\circ} 44^{\circ}$

Die Form 11/8 ist Hausmann's EA1/8.

(Fortsetzung S. 244.)

3.

No.	Miller. Schrauf. Zephar. Gdt.	Koksch.	Webs.	Mohs-Zippe. Hartmann. Hausmann.	Miller.		[Haus- mann.]	[Mohs- 1824]	[Mohs- Zippe 1839]	[Lévy. [Descl.	Gdt.
46	τ				142	2 Ĭ 4	-		_	β	<u>I</u> 2
47	H				152	<u>5</u> ₱ 5	_	_			$\frac{1}{2} \frac{5}{2}$
48	ξ	_	x		162	3 Ĭ 6	_			x	$\frac{1}{2}$ 3
49	φ		v	_	452	5 P 5/4			_	v	2 ⁵ / ₂
50	y		y		251	$5 \breve{P} \frac{5}{2}$				у	2 5
51	E				123	$\frac{2}{3} \breve{P} 2$	_		_		$\frac{1}{3}\frac{2}{3}$
52	Γ	_			185	§ ₹ 8	_				<u>I</u> <u>8</u> 5
53	Y(v)	_		_	9.2.12	$\frac{3}{4}$ $\widetilde{\mathbf{P}}$ $\frac{9}{2}$	B'A2.BD'	7 —	(3 Pr) 7		3 I 4 6
54	Λ	_			12.5.17	$\frac{12}{17}\bar{P}_{5}^{12}$			_		$\frac{12}{17} \frac{5}{17}$
55	z		z	_	25.2.27	$\frac{25}{27}\bar{P}_{\frac{25}{2}}^{25}$				z	$\frac{25}{27} \frac{2}{27}$
56	w	_	w	_	25.24.27	$\frac{25}{27}\bar{P}_{\frac{24}{24}}^{\frac{25}{24}}$			_	w	25 8 27 9

244 Aragonit.

Bemerkungen. (Fortsetzung von S. 242.)

Die von Langer gegebene Form (Zeitschr. Kryst. 1884. 9. 197) $1\frac{1}{20}$ wurde nicht aufgenommen, da die Messungen so stark differiren, dass der Zweifel besteht, ob $1\frac{1}{15}$ oder $1\frac{1}{20}$ das richtige Symbol sei. Wenn nun auch, wie Langer hervorhebt, das Symbol $1\frac{1}{20}$ das wahrscheinlichere ist, so ist es damit doch nicht sicher gestellt und bedarf der Bestätigung.

Bei Mohs-Zippe (Min. 1839. 2. 89—90) ist eine Reihe von Correcturen nöthig (siehe unten). Die Richtigkeit der corrigirten Symbole ergiebt sich theilweise aus der Vergleichung mit den Angaben von Miller (Min. 1852. 567 und Fig. 566) und Hausmann (Handb. 1847. 2. (2) 1231) doch mit Sicherheit aus den von Mohs-Zippe gegebenen Winkeln.

Correcturen.

```
Mohs-Zippe
                  Min.
                                              Seite 89 Zeile 4 vu lies
                                  1839
                                                                                         statt
                                                                                                 139°37
                                                                                                  (\bar{P})^2
                                                                                                  (P)^2
                                                              13 "
                                                     89
                                                                3 " 1
                                                                              (\frac{3}{2} \breve{P}r)^7
                                                                                                 (3 Pr)7
                                                     90
                                                                           116°8;129°37
Hausmann
                  Handb.
                                        2(2)
                                                                                           " 129°37;116°8
                                                  1231
                                                                9 vu
                                 1875 71 (1)
Zepharovich
                  Wien. Sitzb.
                                                              15 vo
```

Ardennit.

Rhombisch.

Axenverhältniss.

$$a:b:c = o \cdot 3135:1:o \cdot 4663$$
 (Gdt.)

$$[a:b:c = o\cdot 4663: \iota:o\cdot 3\iota 35] \text{ (Rath. Lasaulx.)}$$

Elemente.

a = 0.3135	$\lg a = 949624$	$\lg a_0 = 982757$	$\lg p_o = o17243$	$a_{\circ} = 0.6723$	$p_{\circ} = 1.4874$
c = 0.4663	lg c = 966867	$lg b_o = o33133$	$\lg q_o = 966867$	b _o = 2·1445	q _o = 0.4663

Transformation.

Rath. Lasaulx,	Gdt.	
рq	$\frac{1}{p} \frac{q}{p}$	
$\frac{1}{p} \frac{q}{p}$	pq	

No.	Rath. Lasaulx. Gdt.	Miller.	Naumann.	Gdt.
I	a	001	оP	0
2	Ъ	010	ωĔω	ow
3	n	023	2 3 P∞	$0^{\frac{2}{3}}$
4	m	011	ď∞	O I
5	1	O2 I	2 P̃∞	0 2
6	e	101	$\bar{\mathrm{P}} \infty$	1 O
7	0	111	P	I
8	u	323	$\bar{\mathbf{P}} \frac{3}{2}$	I 2/3

246 Ardennit.

Literatur.

```
Lasaulx (und Rath) Min. Mitth. 1873 3 43

" " Jahrb. Min. 1873 — 124

" Pogg. Ann. 1873 149 247.
```

Arksutit.

Tetragonal.

Axenverhältniss.

a:c = 1:1.015 (Krenner. Gdt.)

Elemente.

No.	Gdt.	Miller.	Naumann.	Gdt.	
I	p	111	P	I	

248 Arksutit.

Literatur.

Krenner Math. Nat. Ber. Ung. 1883 1 Sep. 22.

Arquerit.

Regulär.

No.	Gdt.	Miller. Schrauf.	Miller.	Naumann.	G_1	G_2	G_3
I	р	o	111	0	1	I	I

250 Arquerit.

Literatur.

 Domeyko
 Ann. Min.
 1841 (3)
 20
 268

 Miller
 Min.
 1852
 —
 126

 Schrauf
 Atlas
 1872
 —
 Taf. XXIV.

Arsen.

Hexagonal. Rhomboedrisch-hemiedrisch.

Axenverhältniss.

$$\begin{array}{l} a:c = \text{ \rm{i} : \rm{i} : $\rm{4025}$ (\rm{G}_2)}\\ \text{,} = \text{ \rm{i} : \rm{i} : $\rm{388}$ (Mohs-Zippe. Breithaupt.)}\\ \\ \begin{bmatrix} a:c = \text{ \rm{i} : \rm{i} : $\rm{4025}$] (Rose. Weiss. \rm{G}_1.)}\\ \text{[} \text{,} = \text{ \rm{i} : \rm{i} : $\rm{3779}$] (Miller. Schrauf.)}\\ \\ \left\{ a:c = \text{ \rm{i} : \rm{o} : $\rm{694}$ } \right\} \text{ (Hausmann.)} \end{array}$$

Elemente.

$c = 1.4025 \begin{vmatrix} lg c = 014690 \end{vmatrix} \begin{vmatrix} lg a_0 = 009166 \\ lg a'_0 = 985310 \end{vmatrix} lg p_0$	$a_{\circ} = 1.2350$ $a'_{\circ} = 0.7130$ $p_{\circ} = 0.9350$
---	---

Transformation.

Rose, Miller, Weiss, Schrauf, Groth, G ₁ .	Hausmann.	Mohs-Zippe. G_2 .
рq	— 2p 2q	(p+2q) (p-q)
$-\frac{p}{2}\frac{q}{2}$	рq	$\frac{p+2q}{2} \frac{p-q}{2}$
$\frac{p+2q}{3}\frac{p-q}{3}$	$-\frac{2(p+q)}{3}\frac{2(p-q)}{3}$	рq

No.	Schrauf.	Miller.	Rose.	Bravais.	Miller.	Naumann.	Hausmann,	Mohs- Zippe.	G_1	G_2
I	с	0	С	0001	111	o R	A	R—∞	0	0
2	r	r	R	1011	100	+R	$FA\frac{I}{2}$	R	+ 1 o	+ 1
3	z	z	<u>∓</u> r	1014	211	$+\frac{1}{4}R$			$+\frac{1}{4}o$	$+\frac{1}{4}$
4	e	e	1/2 r1	Ī012	110	$-\frac{1}{2}R$	P	R—1	— <u>I</u> o	<u>I</u>
5	h	h	$\frac{3}{2}$ r ¹	3032	554	$-\frac{3}{2}$ R	_		$\frac{3}{2}$ O	$-\frac{3}{2}$

252 Arsen.

Literatur.

Breithaupt	Pogg. Ann.	1826	7	527
"	Vollst. Charakteristik	1832		261
Mohs - $Zippe$	Min.	1839	2	470
Hausmann	Handb.	1847	2	(1) 13
Rose	Pogg. Ann.	1849	77	146)
,,	Berl. Abh.	1849	_	72)
Miller	Min.	1852		117
Weiss, A.	Wien. Sitzb.	1860	39	859
Schrauf	Atlas	1872		Taf. XXIV.

Correcturen.

Die Form ist von G. Rose entlehnt und es ergiebt sich die Nothwendigkeit der Correctur sowohl aus dem Symbol Rose's $\frac{3}{2}$ r' als auch aus dem angeführten Winkel $\frac{3}{2}$ r': c = 112°23.

Arsenit.

Regulär.

No.	Gdt.	Miller. Schrauf.	Miller.	Naumann.	Lévy.	G_1	G_2	G_3
I	P	О	111	0	a'	1	1	I

Arsenit. 254

Literatur.

 Lévy
 Descr.
 1838
 3
 276

 Miller
 Min.
 1852
 — 255

 Schrauf
 Atlas
 1872
 — Taf. XXIV.

Arsenkies.

1.

Rhombisch.

Axenverhältniss.

```
 \begin{array}{l} a:b:c = o.6709: \text{ I}: \text{I}\cdot \text{I888} \\ \text{bis:} \\ \text{,} & = o.6896: \text{I}: \text{I}\cdot \text{I942} \\ \end{array} \right\} \text{ (Arzruni. Bärwald. Gdt.)} \\ a:b:c = o.6760: \text{I}: \text{I}\cdot \text{I942} \\ \\ a:b:c = o.6760: \text{I}: \text{I}\cdot \text{I889} \text{ (Miller. Dana.)} \\ \\ \text{,} & = o.6783: \text{I}: \text{I}\cdot \text{I977} \text{ (Magel.)} \\ \\ \text{,} & = o.6691: \text{I}: \text{I}\cdot \text{I854} \text{ (Rumpf.)} \\ \\ \text{,} & = o.70: \text{I}: \text{I}\cdot \text{20} \text{ (Hausmann.)} \\ \\ \text{,} & = o.685: \text{I}: \text{I}\cdot \text{20} \text{ (Lévy.)} \\ \end{array} \\ \text{[a:b:c = o.6773: I:o.5944] (Mohs-Zippe.)}
```

Elemente.

a = 0.6709	lg a = 982666	$\lg a_o = 975155$	lg p _o == 024845	$a_o = 0.5643$	p _o == 1.7720		
c == 1·1888	lg c = 007511	lg b _o = 992489	lg q _o = 007511	$b_0 = 0.8412$	q _o == 1·1888		
bis:							
a == 0.6896	lg a = 983860	$\lg a_o = 976153$	$\log p_0 = 023847$	$a_{\circ} = o.5775$	$p_o = 1.7317$		
c = 1·1942	lg c = 007707	lg b _o = 992293	$\lg q_0 = 007511$	b _o = 0.8374	q _o = 1·1942		

Transformation.

Mohs-Zippe.	Miller. Dana. Hausmann. Naumann. Magel. Rumpf. Arzruni. Bärwald. Lévy. Gdt.
pq	$\frac{2}{p}$ $\frac{2}{q}$
2 p · 2 q	pq

No.	!	Hauv	Hart-	Nau-	Miller.	Arzruni.	Miller.	Nau- mann.	Haus- mann.	[Mohs.] [Zippe.] [Hartm.]	Hauy.	Lévy	. Gdt.
I	С	P	P	c	c	c	001	oР	A	P—∞	P	p	o
2	a	n			a	_	010	$\infty \breve{\mathrm{P}} \infty$	В	ĕr+∞	${}^{1}\mathbf{G}^{1}$	_	0 00
3	b		_	_	_		100	$\infty \bar{P} \infty$					∞ 0

Fortsetzung S. 257.

256 Arsenkies.

Literatur.

```
Traité Min.
                                        1822
                                                  28
Hauy
                                        1824
                                               2
Mohs
                      Grundr.
                                                  527
                      Handwb.
                                        1828
Hartmann
                                                  27
                      Lehrb. Kryst.
                                        1830
                                                  258
Naumann
                      Descr.
                                        1838
                                               3
                                                  123
L \, \acute{e} v \, y
                                               2 501
Mohs-Zippe
                      Min.
                                        1839
                                               2 (1) 72
                      Handb.
                                        1847
Hausmann
                      Min.
                                        1852
                                                  188
Miller
                      Min. Mitth.
                                        1874
                                               4
                                                  231
Rumpf
                                        1877
Gamper
                      Zeitschr. Kryst.
                                               1
                                                  396
                                                  204 ) (Joachimsthal)
                      Jahrb. Min.
                                        1877
                      Strassb.\ Samml.
                                        1878
Groth
                                                  39
                                        1878
                                              2
Arzruni
                      Zeitschr. Kryst.
                                                  430
                                                  296 (Reichenstein)
                                               4
Hare
                                        1880
                            ,,
                                        1881
                                               5
                                                  270
Zepharovich
                            ,,
                      Lotos
                                                  (Pribram)
                                        1878
                                                  337 (Zus. Setzung u. Ax.-Verh.)
                                               7
Arzruni u. Bärwald Zeitschr. Kryst.
                                        1882
                      Ber. Oberhess. Ges.
                                        1882 22
                                                  297
Magel
```

2.

No.	Gdt.	Hauy. Haus- mann.	Mohs- Zippe. Hart- mann.	Nau- mann. Rumpf.		Arzruni.	Miller.	Nau- mann.	Haus- mann.	[Mohs.] [Zippe.] [Hartm.]	Hauy.	Lévy.	Gdt.
4	m	M	M	M	m	m	110	∞P	E	P+∞	M	m	œ
5	μ				_		340	∞P̃ {	BB' 4				$\infty \frac{4}{3}$
6	y						370	$\infty \breve{\mathrm{P}} \frac{7}{3}$	BB^{17}_{3}	_	_		$\infty \frac{7}{3}$
7	w	_				x	0.1.16	$\frac{1}{16}\breve{P}\infty$				_	0 <u>1</u> 6
8	y					r	018	$\frac{1}{8} \tilde{P} \infty$		_			$\frac{1}{8}$ O.
9	p						015	½ P∞	AB_5			_	$O^{\frac{1}{5}}$
10	r	r	r	r	r	u	014	Į P̃∞	AB ₄	ĕr—ı	É	e ⁴	o I
II	ω						027	2 P∞	AB_{2}^{7}	_			$0^{\frac{2}{7}}$
12	\mathbf{q}			\mathbf{q}		t	013	I P̃∞					$O^{\frac{1}{3}}$
13	s	z	s	n	s	n	012	½ P̃∞	AB ₂	Ўr	É	e ²	0 <u>I</u>
14	u						023	² / ₃ P̃∞		-	_		$0^{\frac{2}{3}}$
15	1	1	r¹	1	1	\mathbf{q}	OII	ĕ∾	\mathbf{D}	ĕr∔ı	Ë	$e^{\mathbf{I}}$	ОΙ
16	k					k	O2 I	2 P̃∞					0 2
17	t				t		031	зЎ∞					ОЗ
18	f						108	$\frac{1}{8}\bar{P}\infty$	_				8 o
19	e		О	g	e	d	101	P∞	\mathbf{D}_{l}	Pr+1	$\stackrel{\frac{1}{2}}{\mathrm{B}}$		10
20	g	g			g		111	P	P	-	$ m \mathring{B}$		1
2 I	h		_				331	3 P				_	3
22	v			v	_	v	212	P 2					I I
23	\mathbf{x}	_			\mathbf{x}		312	$\frac{3}{2}\vec{P}$ 3			_	_	3 <u>I</u>
24	i		_	_			32 I	$3 \bar{P} \frac{3}{2}$					3 2

258 Arsenkies.

Bemerkungen.

Breithaupt's Plinian (Pogg. Ann. 1846, 69, 430) dürfte nach den Untersuchungen von G. Rose (Pogg. Ann. 1849, 76, 84) nur als ein unregelmässig ausgebildeter Arsenkies anzusehen sein.

Arzruni und Bärwald geben für den Werth a des Axen-Verhältnisses die folgende Zusammenstellung, der ich die Angaben von Magel einfüge.

[Arseneisen]			a = 0.658
Reichenstein			" = o·6709
Sangerhausen			= 0.6705
Hohenstein			= 0.6772
Ehrenfriedersdorf			" = o·6781
Auerbach (Mag.)		:	= 0.6783
"Plinian"			" = o.6796
Sala			" = o.68o7
Auerbach (Mag.)			" = o.6818
Joachimsthal			= 0.6821
Freiberg			= 0.6828
Binnenthal			" = o.6896
[Markasit]			= 0.7524.

Mag el führt (Ber. Oberhess. Ges. 1882. 22. 300) noch eine Form $0\frac{3}{2}=\frac{3}{2}\,\breve{P}\infty$ auf, die er jedoch selbst als unsicher bezeichnet.

Astrophyllit.

Triklin.

Axenverhältniss.

```
\begin{array}{lll} a:b:c=o\cdot 2268: 1:o\cdot 2908 & \alpha\;\beta\;\gamma=86°8';\;\; 90°27';\;\; 89°44'\;\; (Br\"{o}gger.\;\; Gdt.)\\ &a_o=o\cdot 7799\;;b_o=3\cdot 4389\\ &p_o=1\cdot 2793\;;q_o=o\cdot 2908 & \lambda\;\mu\;\nu=93°52\;;89°32\;;90°18.\\ &[Monoklin:\; a:b:c=o\cdot 55: 1:o\cdot 30 & \beta=115°]\;\; (Schrauf.)\\ &\{Rhombisch:\; a:b:c=o\cdot 9346: 1:2\cdot 4628\}\;\; (Nordenskj\"{o}ld.) \end{array}
```

No.	Gdt.	Brögger.	Miller.	Naumann.	Gdt.
I	С	С	001	οP	0
2	b	b	010	∞ P̃∞	0 00
3	f	g'	021	$2_{_{1}} \breve{\mathbf{P}}^{_{1}} \mathbf{\infty}$	O 2
4	g	g	OŽ I	2¹P̈₁∞	O Ž
5	h	1,	334	$\frac{3}{4}$ P'	<u>3</u>
6	i	λ_{i}	778	7 /8 P¹	3 4 7 8
7	k	ıλ	778	7 P	7 7 8
8	1	ι i	ΙĪΙ	$^{1}\mathbf{P}$	ΙĪ
9	m	$_{l}\mathbf{x}$	332	$\frac{3}{2}$ P	$\frac{3}{2}$ $\frac{\overline{3}}{2}$
10	n	n	<u>5</u> 58	5/8 P	<u>5</u> .5 8
ΙΙ	p	1'	334	$\frac{3}{4}$ P	3 3 4 4
I 2	q	i'	ΙΙΙ	$_{_{I}}\!\mathbf{P}$	ΪΙ
13	r	'1	334	3 P,	<u>3</u>
14	s	'λ	$\bar{7}\bar{7}8$	$\frac{7}{8}$ P,	3 4 7 8
15	t	'i	ĪĪI	$\mathbf{P}_{_{I}}$	Ī
16	u	'x	332	$\frac{3}{2}P_1$	3/2

Literatur.

Scheerer	Berg- u. Hütten-Ztg.	1854	13	240
Tschermak	Jahrb. Min.	1863		550
Scheerer	$Pogg. \ Ann.$	1864	122	110
$Nordenskj\"{o}ld$	Stockh. Vet. Ak. Förh.	1870		561
Schrauf	Atlas	1872		Taf. XXIV.
$K\ddot{o}nig$	Zeitschr. Kryst.	1877	1	423
$Br\ddot{o}gger$	Zeitschr. Kryst.	1878	2	278
Lorenzen	Zeitschr. Kryst.	1884	9	253

Bemerkungen.

Krystallsysteme und Elemente sind nach Brögger (Zeitschr. Kryst. 1878) wiedergegeben; doch entbehren diese Angaben, wie Brögger selbst sagt, noch der nöthigen Schärfe, wegen unvollkommener und unvollständiger Ausbildung der Krystalle. Es mussten die Messungen von wenig Winkeln an verschiedenen Krystallen zu einem Gesammtbild combinirt werden. Trotz Annahme trikliner Elemente und, im Verhältniss zu ihrer geringen Zahl und einfachen Vertheilung, complicirter Symbole sind die Differenzen zwischen Messung und Rechnung recht bedeutend. Auch finden sich in Bröggers Angaben einige Widersprüche. Seine Indices bei den Buchstaben $\lambda 1$ sind, wie auch Fig. 8 angibt, so zu verstehen, dass die Fläche c = oP=o in die Lage von $\infty \bar{P} \infty = \infty$ 0 gerückt erscheint. Durch diese Drehung (wenn die Gestalt des Buchstabens die des Krystalls widerbildet) verwandeln sich die Indices der Naumann'schen Zeichen in die von Brögger. Nur bei λ_1 und λ_1 bleibt ein Widerspruch bestehen.

Hier dürften wohl die Naumann'schen und Miller'schen Zeichen zu ändern und zu schreiben sein:

$$\lambda_1 = \frac{7}{8} P^1 = \frac{7}{8} (778)$$
 $1_1 = \frac{3}{4} P^1 = \frac{3}{4} (334)$

Derselbe Widerspruch besteht auf der folgenden Seite (286) bei den Winkelangaben.

```
S. 285 steht: Zeile 12 u. 13 vu _{1}\lambda = \frac{7}{8} lP (7\overline{7}8) ... , , , , 8 , \lambda_{1} = \frac{7}{8} lP (7\overline{7}8) ... , , , 8 , \lambda_{1} = \frac{7}{8} lP (7\overline{7}8) ... 286 , , , 17 vo _{1}\lambda: c= (7\overline{7}8): (001) beobachtet 48°33 berechnet 48°17 , , , , , , 15 vu \lambda_{1}: c= (7\overline{7}8): (001) , 48°13 , 49°13
```

Jedenfalls bedürfen die Formen des Astrophyllit einer erneuten Durcharbeitung des Materials, wie es ja Brögger in Aussicht stellt.

Wegen der bestehenden Unsicherheit sind die Elemente nicht so vollständig angegeben, wie bei anderen Mineralien und die Transformation wurde weggelassen.

Atakamit.

1.

Rhombisch.

Axenverhältniss.

Elemente.

a = 0.8764 lg a =	$= 994270 \mid \text{lg a}_{\circ} = 9820$	$\lg \log p_0 = 017962$	$a_0 = 0.6613$	$p_o = 1.5122$
c = 1·3253 lg c =	e 012232 lg b _o = 9877	68 $\lg q_0 = 012232$	$b_o = 0.7545$	$q_o = 1.3253$

Transformation.

Hausm. Miller. Klein. Dana. Mohs-Zippe. Brögger. Groth. Zepharovich.	Schrauf,	Brezina.	Gdt. Lévy.
рq	$\frac{2 p}{q} \frac{2}{q}$	$\frac{p}{q} \frac{1}{2q}$	$\frac{p}{q} \frac{r}{q}$
$\frac{p}{q} \frac{2}{q}$	p q	$\frac{p}{2} \frac{q}{4}$	$\frac{p}{2} \frac{q}{2}$
$\frac{p}{2 q} \frac{1}{2 q}$	2 p · 4 q	рq	p · 2 q
$\frac{d}{d} \frac{d}{1}$	2 p · 2 q	p	рq

No.	Gdt.	Miller. Zepha- rovich.	Brögg.	Schrauf.	Klein.	Haus- mann.	Mohs- Zippe.	Miller.	Nau- mann.	[Haus- mann.]	[Mohs.] [Zippe.]	Lévy.	Gdt.
I	а	a	b	С		P	f	001	oР			p	0
2	С	c	c	a				010	$\infty \breve{P} \infty$	В	Pr+∞		0∞
3	b	b					P	100	∞P∞	$\dot{\mathbf{B}}_{l}$	Pr+∞		∞0

(Fortsetzung S. 263.)

Literatur.

$L \acute{e} v y$	Descr.	1838	3	47
$Mohs extbf{-}Zippe$	Min.	1839	2	177
Hausmann	Handb.	1847	2	(2) 1463
Miller	Min.	1852	-	618
Klein	$Jahrb.\ Min.$	1869		347
n	Jahrb. Min.	1871		495
Zepharovich	Wien. Sitzb.	1871	63	(1) 6
,,	Wien. Sitzb.	1873	68	(1) 120 (Süd-Australien)
Schrauf	Atlas	1872	_	Taf. XXIV
Dana, J. D.	System	1873		121
Dana, E. S.	Min. Mitth.	1874	4	103
Brezina	Zeitschr. Kryst.	1879	3	377
$Br\ddot{o}gger$	Zeitschr. Kryst.	1879	3	488
,,	Jahrb. Min.	188o	2	Ref. 23 (Chile)
Rath	Zeitschr. Kryst.	1881	5	257 (Copiapo).

2.

No.		Miller. Zepha- rovich.	Brögg.	Schrauf.	Klein.	Haus- mann.	Mohs- Zippe.		Nau- mann.	[Haus- mann.]	[Mohs.] [Zippe.]	Lévy.	Gdt.
4	h		d					210	∞P 2				2 00
5	u	u	u	M	-		c	110	∞P	\mathbf{D}_{1}	P̄r		∞
6	g	g	_	_				013	$\frac{1}{3} \breve{P} \infty$				$O^{\frac{1}{3}}$
7	О	o	_					OI 2	½ P̃∞			e²	0 <u>I</u>
8	i	i				_		0.9.10	9 P ∞				$0\frac{9}{10}$
9	e	e	e	e	n	e ^I	m	011	Ď∞	D	Ўr	e ^I	оі
10	d	d		_		_		032	$\frac{3}{2} \breve{P} \infty$	_			$O^{\frac{3}{2}}$
11	\mathbf{x}	x	x	x		a ⁴		104	$\frac{1}{4}\tilde{P}\infty$	BB'4	_	a ⁴	$\frac{I}{4}$ O
12	k	k			-	_		103	$\frac{1}{3}\bar{P}\infty$		_		$\frac{I}{3}$ O
13	s	s	s	s	1	a ²		102	$\frac{1}{2}\tilde{P}\infty$	BB'2		a ²	$\frac{I}{2}$ O
14	1	1						203	$\frac{2}{3}\tilde{P}\infty$			_	$\frac{2}{3}$ o
15	t	t	_					506	$\frac{5}{6}\tilde{P}\infty$			-	$\frac{5}{6}$ O
16	m	m	m	m	M	a ^I	a	101	P̄∞	E	P+∞	a ^I	1 0
17	n	n	n	p	_			112	$\frac{1}{2}$ P	_		_	$\frac{1}{2}$
18	r	r		r	o	$b^{\frac{I}{2}}$	e	111	P	P	P	$\mathbf{b}^{\frac{\mathbf{I}}{2}}$	1
19	w	w			_	_		929	P̄ 2/2				1 2/9
20	z	z						313	Р́з				$I = \frac{I}{3}$
2 I	q	q		q				212	P 2				I 1/2
22	f	f					_	211	2 P 2				2 I
23	y	у	_					312	$\frac{3}{2}\bar{P}$ 3				3 <u>I</u> 2 <u>2</u> 7 <u>I</u> 6 <u>3</u>
24	v	v		v				726	$\frac{7}{6}$ \overline{P} $\frac{7}{2}$				7 I 6 3

264 Atakamit.

Bemerkungen.

Bei Mohs-Zippe sind die Winkel und die Wurzelwerthe für die Grundform nicht in Uebereinstimmung. Die Original-Angaben von Phillips konnte ich nicht auffinden. Wahrscheinlich sind die Wurzelwerthe die richtigen. Sie würden entsprechen (nach der üblichen Schreibweise) dem Axenverhältniss:

Dann wäre Uebereinstimmung erzielt mit zwei von den drei weiteren Winkel-Angaben von Zippe: Pr (m) = 107°10; P+ ∞ (a) = 67°15. Dagegen müsste es heissen:

 $\bar{P}r$ (c) = 95°56 statt 101°23.

Atelestit.

Monoklin.

Axenverhältniss.

a:b:c = 1.822:1:0.869 $\beta = 110^{\circ}30$ (Gdt.) [a:b:c = 0.869:1:1.822 $\beta = 110^{\circ}30$] (Rath. Schrauf.)

Elemente.

a	=	1.822	lg a = 026055	$\lg a_o = o_{32153}$	$\lg p_o = 967847$	a _o = 2.0967	p₀ = 0·4769
c	=	0.869	lg c = 993902	$\lg b_o = oo6098$	$\lg q_0 = 991061$	$b_{\circ} = 1 \cdot 1507$	$q_{\circ} = 0.8140$
μ 180	$=$ β	69°30	$ \begin{array}{c} \lg h = \\ \lg \sin \mu \end{array} $ 997159	$ \begin{cases} \lg e = \\ \lg \cos \mu \end{cases} 954433 $	$\lg \frac{p_0}{q_0} = 976786$	h = 0.9367	e = 0·3502

Transformation.

Schrauf. Rath.	Gdt.
рq	$\frac{\mathbf{I}}{\mathbf{p}} \frac{\mathbf{q}}{\mathbf{p}}$
$\frac{\mathbf{I}}{\mathbf{p}} \frac{\mathbf{q}}{\mathbf{p}}$	рq

No.	Schrauf. Rath. Gdt.			Gdt.
I	a	001	οP	О
2	b	010	$\infty P \infty$	000
3	m	011	$P\infty$	O I
4	P	502	— <u>5</u> P∞	$+\frac{5}{2}$ o
5	О	ĪII	+P	I

266 Atelestit.

Literatur.

 Rath
 Pogg. Ann.
 1869
 136
 422

 Schrauf
 Atlas
 1872
 —
 Taf. XXIV.

Atopit.

Regulär.

No.	Gdt.	Miller.	Naumann.	G_1	G ₂	G ₃
1	c	100	∞0∞	О	000	ωo
2	d	101	∞O	10	O I	∞ .
3	P	111	О	1	1	1

268 Atopit.

Literatur.

Nordenskjöld Zeitschr. Kryst. 1878 2 305 (Langban).

Auripigment.

Rhombisch.

Axenverhältniss.

```
\begin{array}{l} a:b:c = o.675: \text{1}: o.603 \text{ (Gdt.)} \\ [a:b:c = o.603: \text{1}: o.675] \text{ (Mohs-Zippe. Lévy.} \\ & \text{Hartmann. Hausmann. Miller.)} \\ \big\{a:b:c = o.9044: \text{1}: \text{1}.0113\big\} \text{ (Groth.)} \\ (a:b:c = o.8292: \text{1}: \text{1}.1204) \text{ (Dana.)} \end{array}
```

Elemente.

a=0.675	$\lg a = 982930$	$\lg a_0 = 004898$	$\lg p_0 = 995102$	a _o = 1·120	$p_0 = 0.893$
c = 0.603	$\lg c = 978032$	$\lg b_0 = 021968$	$\lg q_0 = 978032$	$b_o = 1.658$	$q_{\circ} = 0.603$

Transformation.

Mohs-Zippe. Hartmann. Lévy. Hausmann. Miller. Krenner.	Groth.	Dana.	Gdt.	
рq	$p \cdot \frac{2}{3} q$	9 p	$\frac{\mathbf{I}}{\mathbf{p}} \frac{\mathbf{q}}{\mathbf{p}}$	
$p \cdot \frac{3}{2} q$	рq	3 q p	$\frac{1}{p} \frac{3 q}{2 p}$	
q 2p	$q \cdot \frac{4}{3} p$	рq	$\frac{1}{q} \frac{2p}{q}$	
$\frac{1}{p} \frac{q}{p}$	1 2 q p 3 p	q 1 2 p p	рq	

No.	Miller. Gdt.	Mohs. Hartmann. Zippe. Hausmann.	Krenner.	Miller.	Naum.	[Hausm.]	[Mohs.] [Hartmann.] [Zippe.]	[Lévy.]	Gdt.
I	b	r	a	100	oР	B ¹	Pr+∞	\mathbf{h}^{t}	o
2	a	s	b	010	ωĔω	В	Ĭr+∞	$\mathbf{g}^{\scriptscriptstyle 1}$	000
3	t		t	017	^I ⁄ ₇ P̃∞		<u>-</u>	_	$0\frac{I}{7}$
4	s		s	023	² / ₃ P∞			_	0 2
5	m	M	m	011	Ĕ∾	E	$P + \infty$	m	0.1
6	u	u	u	O2 I	2₽̃∞	BB'2	$(Pr+\infty)^3 = (P+\infty)^2$	g^3	02
7	О	0	0	101	$\bar{P}\infty$	\mathbf{D}_{l}	Pr	a'	10
8	p	P		111	P	P	P		1
9	v	p		121	2Ĭ2		$(\breve{P}r)^3 = (\breve{P})^2$		I 2

Literatur.

Mohs	Grundr.	1824	2	613
Hartmann	Handwb.	1828	_	477
$L \acute{e} v y$	Descr.	1838	3	281
Mohs-Zippe	Min.	1839	2	581
Hausmann	Handb.	1847	2	(1) 153
Miller	Min.	1852		176
Dana	System	1873	_	27
Groth	Tab. Uebers.	1882		14
Krenner	Zeitschr. Kryst.	1885	10	90.

Bemerkungen.

Aus dieser Aufstellung ist die Isomorphie mit Antimonglanz nicht ersichtlich, doch musste sie gewählt werden, da in ihr die Symbole die einfachsten sind.

Correcturen.

```
S. 613 Z. 11 vu
Mohs
                 Grundr.
                                                              lies 1: \sqrt{2\cdot 2}: \sqrt{0\cdot 8} statt 1: \sqrt{0\cdot 8}: \sqrt{2\cdot 2}
                                        " 478 "9 u. 10 vo
Hartmann
                Handwb.
Mohs-Zippe Min.
                             1839 2
                                        , 581 , 10
                                          478
                                                                          P
Hartmann
                Handwb.
                             1828 —
                                                    13
                                                                     P (P Mohs)
                                                                                           P (p Mohs)
                Handb.
                             1847 2(1),
Hausmann
                                           153 "
                                           176
Miller
                Min.
                                                                        34 2
                                                                                              33 O
                                                                        58 54.5
                                                                                              59 54.5
                                                               " jedesmal: 1—ž
Dana, J. D. System
                             1873
                                            28
                                                                                               2-----<u>--</u>-<u>-</u>-<u>-</u>
                                                    Fig. 65
                                                                          1 ž
                                                                                                22
```

Axinit.

1.

Triklin.

Axenverhältniss.

```
a:b:c=o\cdot7996: \text{$1:1\cdot0235$} \quad \alpha\beta\gamma=91^{\circ}49 \text{ ; } 102^{\circ}38 \text{ ; } 82^{\circ}1 \quad \text{(Aufstellung Gdt. mit Miller's Elementarwerthen.)} a:b:c=o\cdot8001: \text{$1:1\cdot0258$} \quad \alpha\beta\gamma=91^{\circ}51 \text{ ; } 102^{\circ}52 \text{ ; } 81^{\circ}57 \quad \text{(Aufstellung Gdt. mit Rath's Elementarwerthen.)}} [a:b:c=o\cdot7812: \text{$1:0\cdot9771$} \quad \alpha\beta\gamma=91^{\circ}49 \text{ ; } 82^{\circ}1 \quad \text{; } 102^{\circ}38 \text{] (Miller.)}} (a:b:c=o\cdot6410: \text{$1:0\cdot3125$} \quad \alpha\beta\gamma=81^{\circ}57 \text{ ; } 91^{\circ}51 \text{ ; } 102^{\circ}38 \text{] (Miller.)}} \left\{a:b:c=\text{$1\cdot1554:1:0\cdot8641$} \quad \alpha\beta\gamma=96^{\circ}57 \text{ ; } 98^{\circ}52 \text{ ; } 103^{\circ}2 \text{] (Schrauf.)}\right\} \left[(a:b:c=o\cdot6393: \text{$1:0\cdot5126$} \quad \alpha\beta\gamma=95^{\circ}32 \text{ ; } 96^{\circ}16 \text{ ; } 104^{\circ}2 \text{]] (Rath.)} \left\{(a:b:c=o\cdot4927: \text{$1:0\cdot4511$} \quad \alpha\beta\gamma=82^{\circ}54 \text{ ; } 88^{\circ}9 \quad \text{; } 131^{\circ}33 \text{]} \text{ (Dana. Groth.)}} \left((a:b:c=\text{$1\cdot020:1:0\cdot143$} \quad \alpha\beta\gamma=90^{\circ} \quad \text{; } 90^{\circ} \quad \text{; } 90^{\circ} \quad \text{)) (Neumann.)}
```

Elemente der Linear-Projection.

a = 0.7996	$a_0 = 0.7812$	α= 91°49	$x_0^1 = 0.2164$	d'=-0·2185
b= 1	b _o = 0.9770	$\beta = 102^{\circ}38$	y' ₀ == 0.0317	δ'= 81°40
c = 1.0235	c _o == 1	γ = 82°01	k = 0.9758	

Elemente der Polar-Projection.

$p_0 = 1.2919$	λ == 89°55	x _o == 0·2186	d=0.2185
$q_o = 1.0085$	$\mu = 77^{\circ}30$	y ₀ =-0·0015	$\delta = 89^{\circ}37$
r _o = 1	v = 97°46	h = 0.9759	

Transformation.

(Siehe umstehend S. 272a.)

No.	Hessen- berg, Schrauf, Gdt.	Dana. Rath.	Miller.	Neu- mann.	Mohs- Zippe. Haus- mann.	Miller.	Naumann.	[Hausm.]	[Mohs.] [Zippe.]	[Lévy.] [Descl.]	Gdt.
I	С	P	p	P	P	001	o P	E ¹	rP+∞	m	0
2	m	m	m	M	M	010	∞ P̃ ∞	\mathbf{E}	1P+∞	$\mathbf{c}^{\scriptscriptstyle I}$	0 ∾
3	M	v	v	v	T	100	$\infty \bar{P} \infty$	Α	P—∞	$\mathbf{g}^{\scriptscriptstyle 1}$	∞ 0
4	a	у	у	y	t1	110	∞ P ¹¹	P''	—1P	γ (i ₂)	∞.
5	f	f	t			120	∞ P 2			β	∞ 2
6	g	g			_	130	∞ P′ 3				∞з
7	μ					210	∞'P 2				2 🐯
8	b	ь			_	ιĭο	∞ 'P				∾ ನ
9	z	z	z	_	z	021	2 ,Ŭ'∞	BB'3	1(Ĕ+∞)³	c2	0 2

(Fortsetzung S. 273.)

272 Axinit.

Literatur.

```
Traité Min.
Hauv
                                   1822
                                               559
Mohs
                  Grundr.
                                            2
                                   1824
                                               393
                                               63 (Rath Pogg. Ann. 1866. 128. 255.)
Neumann
                  Pogg. Ann.
                                   1825
Hartmann
                   Handwb.
                                   1828
                                               51
L \acute{e} v y
                                            2
                   Descr.
                                   1838
                                               106
                                            2
Mohs-Zippe
                   Min.
                                   1839
                                               377
Hausmann
                   Handb.
                                            \mathbf{2}
                                   1847
                                               (2) 925
Miller
                   Min.
                                   1852
                                               348
Des Cloizeaux
                                            1
                   Manuel
                                   1862
                                               515
Hessenberg
                   Senck. Abh.
                                   1863
                                            4
                                               207 (Min. Not. 5. 27).
Rath
                   Pogg. Ann.
                                   1866
                                          128
                                               20 u. 227
Schrauf
                   Wien. Sitzb.
                                   1870
                                           62
                                               (2) 712
                   Wien. Sitzb.
                                    1872
                                           65 (1) 241
                                               Taf. XXV
                   Atlas
                                   1872
                  Senck. Abh.
                                            8 436 (Min. Not. N. F. 8. 30)
Hessenberg
                                   1872
Websky
                   Min. Mitth.
                                   1872
                                            \mathbf{2}
                                               1
Dana
                  System
                                   1873
                                               297
Schmidt
                  Zeitschr. Kryst.
                                   1882
                                            6 98
                                            9 81 (Ref. E. S. Dana).
Frazier
                  Zeitschr. Kryst.
                                   1884
```

Bemerkungen.

Das von G. v. Rath für η aufgestellte Symbol $(\frac{1}{15}a^!:\frac{1}{12}b:\frac{1}{8}c)=\frac{13}{43}\frac{11}{46}$ unserer Aufstellung wird von dem Autor selbst als unsicher bezeichnet (Pogg. Ann. 1866. 128. 245). Es wurde deshalb in den Index nicht aufgenommen.

Die von Lévy angeführte und in den Figuren 8. 11. 13. 16. 18. 19 Taf. 35 sowie Figuren 20. 21. 22. 24. dargestellte Form i^2 kann nach ihrer Lage dies Symbol nicht haben. Es ist vielmehr identisch mit Des Cloizeaux γ Schraufs a und hätte das Symbol zu führen: c' $f\frac{1}{2}$ g' Im Text steht richtig i_2 ausser Seite 109 Zeile 1. So ist auch in den Figuren 23 und 24 Tafel 36 zu lesen: i_3 statt i^3 .

Die von Frazier neuerdings vorgeschlagene Aufstellung des Axinit empfiehlt sich nicht, denn:

- 1. führt sie zu Symbolen die einer Vereinfachung fähig sind,
- wird der Zweck der Darlegung einer Aehnlichkeit mit dem Datolith nicht erreicht, denn Aehnlichkeit der Axeneinheiten bei starker Differenz der Axen-Winkel ist wohl zum Nachweis einer Homöomorphie unzureichend. Auch aus der chemischen Zusammensetzung, sowie sie uns bekannt ist, lässt sich auf eine Homöomorphie beider nicht schliessen.

Auf letzteren Punkt hat auch Dana in seinem Referat (Zeitschr. Kryst. 1884. 9. 85) hingewiesen.

Die folgende, auf Seite 274 u. 275 als "Beilage" bezeichnete Tabelle giebt eine Zusammenstellung der Buchstabenzeichen, oder bei Abwesenheit solcher die Symbole der verschiedenen Autoren zum Theil mit direkter Umwandlung in unsere Schreibweise. Diese Tabelle erschien vortheilhaft, um bei der Identification oder Controle der Symbole die zum Theil etwas complicirte Umwandlung zu ersparen, oder wenn neu durchgeführt, zu unterstützen. Sowie sie dem Autor gute Dienste geleistet hat, wird sie wohl auch Anderen willkommen sein.

Correcturen s. Seite 276.

Additional information of this book (Index der Krystallformen der Mineralien; 978-3-662-27109-4) is provided:

http://Extras.Springer.com

Axinit.

273

2.

No.	Hessen- berg. Schrauf. Gdt.	Dana, Rath,	Miller.	Neu- mann.	Mohs- Zippe. Haus- mann.	Miller.	Naumann.	[Hausm.]		[Lévy.] [Descl.]	Gdt.
10	L					054	$\frac{5}{4} \breve{\mathbf{P}} \infty$			C ⁵	$0 \frac{5}{4}$
II	r	r	r	r	r	011	, P'∞	В		p	O I
12	π			*****		012	$\frac{1}{2} \breve{P} \infty$				$0 \frac{I}{2}$
13	φ			_		013	$\frac{1}{3} \vec{P} \infty$				$O_{\frac{1}{3}}$
14	e	e	e	\mathbf{r}^{ι}	f	οīι	¹Ř₁∞	$\mathbf{B}^{\scriptscriptstyle I}$	Pr+∞	$c^{\frac{I}{2}}$	ΟĪ
15	u	u	u	u	u	101	${}^{ }\bar{P}{}^{ }\infty$	\mathbf{P}^{1}	rP	t	1 О
16	χ	h ⁹ 2				9.0.11	$\frac{9}{11}$ \vec{P} 1 ∞			$h^{\frac{9}{2}}$	9 o
17	α	α				304	$\frac{3}{4}$ $ \bar{P} \infty$	_			$\frac{3}{4}$ O
18	H	h²	_			203	$\frac{2}{3}$ $ \tilde{P} \infty$			h²	3/4 O 2/3 O
19	β	β				305	3/P ∞		_		3 O
20	i	i	1	1	1	102	$\frac{1}{2} {}^{\dagger}\bar{P}^{\dagger} \infty$	$\mathbf{E}^{I}\mathbf{A}_{2}^{\mathtt{I}}$	rP+1	h¹	$\frac{I}{2}$ O
2 I	h	h		-		103	$\tfrac{I}{3}{}^{\dag}\vec{P}^{\dag}\infty$		_	_	$\frac{I}{3}$ O
22	w	w	w	w	t	ĪOI	$_{_{ }}\vec{P}_{_{ }}\infty$	P ^{ιιι}	-rP	²g	Το
23	X	\mathbf{x}	x	x	x	111	$\mathbf{P}^{_{1}}$	BA^{I}_{2}	rPr+1	i ^I	1
24	s	s	s	s	s	112	$\frac{I}{2}$ P ^I	$\mathrm{BD}^{\dagger}_{3}$	r(Ĕ) 3	f¹	1/2
25	i	i	i	σ	_	113	1/3 P			o _I	<u>I</u> 3
26	σ	_		_	_	ĪĪ2	$\frac{1}{2}$ P_1			-	<u>T</u>
27	Y	С	С	С	у	ĪĪI	P,	B'A'I	$-\bar{P}r+1$	z	Ī
28	d	d				Ī I 2	$\frac{1}{2}$, P			_	$\frac{\mathbb{T}}{2}$ $\frac{\mathbb{I}}{2}$
29	n	, n	n	n	n	ĪII	$_{I}\mathbf{P}$	$\overset{+}{\mathrm{B}}\mathrm{A}^{!}\overset{\mathtt{I}}{\mathtt{2}}$	lĔr+1	e^{I}	ĪΙ
30	δ	δ				Ī2I	2 P 2				Ī 2
31	χ	χ	_	_	_	<u>2</u> 12	, P 2			_	\bar{I} $\frac{I}{2}$
32	О	0	0	О		ĪZI	2 P ₁ 2			x (i ₃)	Ī Z
33	ψ					<u> 73</u> 1	3 P ₁ 3				ī <u>3</u>
34	y		_	_		211	2 P 2	_			2 I
35	q	q	_	m	v	2 T I	2 P ₁ 2	$\mathbf{\bar{D}'}$	—Ēr	δ	2 Ī
36	ζ	ζ	_			251	5 P 5				2 5
37	8	8		-		321	$3 \stackrel{\bar{\mathbf{P}}}{\sim} \frac{3}{2}$			_	3 2
38	ξ	_			_	ī 36	$\frac{1}{2} \stackrel{\vee}{ P } 3$		_		1 2 2 3 3
39	ε					123	² / ₃ , P 2				
40	t	t				213	$\frac{2}{3}$, \vec{P} 2			_	<u> </u>
4 I	P		-			2 <u>1</u> 3	$\frac{2}{3}$ \vec{P}_1 2		_		<u>2</u>
42	τ					ī38	3/8 , ĬP 3				I 3/8

Axinit. (Beilage.)

(Die in Parenthesen befindlichen Formen finden sich bei den betreffenden Autoren nicht.)

Gdt.	8 8 0	8 0 8 2 2 8	8 H2 21 I	He Ha H	1 O I	0 I I 0 0 I	1 2 0 3 3 0 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0
Frazier.	y 0 4 b 0 5 d d	v o & f o o o o o o o o o o o o o o o o o	8 d d d d d d d d d d d d d d d d d d d	i 64 4 4 x	0 44 c 24 x 82	e ≰ 1	1 & h & 2 & & h & & 4 &
Mohs. Zippe. Hausmann.	P t B S E S E E E E E E E	F M	n 0 <u>z</u>	s 13	y 20 n	r o s	2
Neumann.	$ \begin{array}{c c} & y & 8 z \\ & - & (10 \cdot z) \\ \hline P & o \infty \end{array} $	$ \begin{array}{ccc} v & \frac{9}{2}\overline{\infty} \\ M & I & O \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & $	$\begin{array}{cccc} & & & (2\frac{2}{3}) \\ & - & & (10.12) \\ & & & 10.5 \end{array}$	o 8.23 s 8.16 x 89	C S S	V 550 W 510 V I 7	1 \(\infty \frac{15}{9} \) - \(\infty \frac{23}{18} \) - \(\infty \frac{23}{18} \)
Dana.	y 0 2 b 0 2 C C C C C C C C C C C C C C C C C C	v 00% m 0 f	g 0 <u>3</u> d 24 n 13	i 3 T X X I I	- (z 4) c T 3 u &	r 1 T w w 3 e T 1	$ \begin{array}{ccc} 1 & \infty & 0 \\ h & 3\overline{\infty} \\ h^2 & 3\infty \end{array} $
Hessen- berg.	8 8 0 P 8 8 8 8 8	ж 3	8 PP 2	© 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1	140 S S T	한 만 전	मूद्र मूद्र मूद्र
Schrauf.	0 8 8 P P 8 8	8 P ¹ 8 P ² 8 P ³	- Б - В - В - В - В	\[\bar{Y} \bar{Y} \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	2 Pr	٩٠ ٩ ٩	4 P
Miller.	y 10 - (To) p 000	v &0 m 0 t ½0	- (½ 0) - (ĭ 2) n I I	i 13 s 12 x 1	- (1 Z) c 1 T	r 01 w & & &	$ \begin{array}{ccc} 1 & \infty_2 \\ - & (\infty_3) \\ - & (\infty_{\frac{3}{2}}) \end{array} $
Lévy. Des Cloizeaux.	$ \gamma(i_2) \xrightarrow{\frac{1}{2}} \frac{3}{2} $ $ - \xrightarrow{\frac{1}{2}} $ $ \dots \qquad \infty \xrightarrow{\infty} $	C S C S C S C S S S	- (255) - (223) e' 0 T	0 10 ft 2 1	- (3/2) z(i ₃) T 2 t &	р о с д д д д д д д д д д д д д д д д д д	h' ∞o (3∞) h² 3∞
Rath.	y b 100 P 200 P 200	v 13 m 13 f 11	g 1 2 3 d 2 3 3 n 2 6	i 8 x 0 0 4 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(1 (1 0) n n n n n n	e W I	1 53 h 73 h ² 86
Schrauf.	$\begin{cases} a \\ b \\ c \\ 0 \end{cases}$	F B R S S S S	g 2 g d o I o I o 2	.1 S X O O O O O	б То Y 20 u 1	r 1	1 2 h 3 H 32

Gdt.	0 0 0	HI0 0 N/4 HI0 NIO 0	H 25 33 32 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	He wire stand He also He
9	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 Ho Ho H	H 140 160 16 H	10400 1H 101 0 01 1H00 01
Frazier.	8 8 8 B	10 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8 4 9 1 1 6 8 8 7 1 1 8 8 7 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10 104 104 10 0 8 10 4 00 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 1
Fra	(cr 2 4	6 4 m + 10	ф ф t к	a-3- 40 9- 3. w ,
ii.				
Mohs. Zippe. Hausmann.		8		
, Z				
Neumann.	8 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +	(I ½) (I ½) (II ½)	(19·10) (19·17) — — — — — — — — — — — — — — — — — — —	
Neun		111111		
ď	$\begin{cases} 5 & \\ 2 & \\ (2 & \\ 3 & \\ \end{cases} $	(2 2) (44 2) (5 44) (5 44) (6 44) (7 46) (8 10) (8 10) (9 10) (9 10) (1 10)	2 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	(37) (41) (41) (41) (33) (04) (22) (13)
Dana.			7 1 c c	
<u></u>	ଜାନ ଜା4 ମହ	Ha 4 N + 4 Ma 4 €		~ ~ H∞ 8
Hessen-	호 호 호	ਨ 4 ਨ ਜਾ ਜਾ ਜਾ ਜਾ	요 요 요 요 급 네ㅎ 네ㅎ 편 다 治다 뭐라 다 다 다 의 명 명 대한	Ha
auf.			19 19 19 19 19 19 19	9 8
Schrauf,	1 1 1	c E G E	8	4 8 E
i.	$\left\{\begin{array}{c} \infty \\ \infty \\ \infty \\ \infty \\ 3 \end{array}\right\}$ $\left(\begin{array}{c} \infty \\ \infty \\ \infty \\ 0 \end{array}\right)$	(0 2) (0 4) (0 4)	(2 2) (2 3) (2 3) (2 3) (3 1) (2 1) (2 1) (2 1)	(23) (33) (63) (20) (20) (21)
Miller.				
Lévy. Des Cloizeaux.	$\begin{cases} (5) \\ (2) \\ (3) \end{cases}$	14 H H H H H H H H H H H H H H H H H H H	(1 3) (1 3) (1 3) (1 3) (1 4 5) (1 4 5) (1 4 5) (1 4 5) (1 4 5)	(2 4) (3 1) (3 1) (3 1) (1 I) (1 I) (2 2) (4 3) (6 2)
Lé D Cloiz	Mag			
		33 55 75 75 75 75 75	い 0/4 Hg wid wi4 相向	190 000 000 000 000 000 000 000 000 000
Rath.	13 9 11 9 2 31 27	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	H N4 H0 Nº H4 H4	(1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (
	В 8 д Р ₂ 8		3 d d d d d d d d d d d d d d d d d d d	مد
auf.	w n n 4 o∏	H0 0 N4 H0 H4 H	F	He 2 17 He 8 He 12 II
Schrauf.	(cc. s ×	# 2 H w + 10	ж t t t с с с с с с с с с с с с с с с с	c v 9- ± w >
				18*

276 Axinit.

Correcturen.

Hartmann	Handwb.	1828	9	Seite	52	Zeile	7 VO	lies	$+\frac{\frac{3}{4}\ddot{P}r+2}{2}$	sta	tt $\frac{\frac{3}{4} \text{Pr} + 2}{2}$
$L \epsilon v y$	Descr.	1838	2	"	109	,,	ı vo		١	1	
"	n	,,	A	tlas Ta	f. 35	u, 36	Fig. 8	. 11,	13. 16. 18.	lies	s i ₂ statt i ²
				. 20, 21					J		_
"	"	"	At	las Ta	f. 36	Fig.	23 u.	24		lie	s i ₃ statt i ³
Mohs- $Zippe$	Min.	1839	2	Seite	378	Zeile	2 VO	lies	$\binom{\mathbf{x}}{\mathbf{n}}$,,	$\binom{\mathbf{x}}{\mathbf{u}}$
Hausmann	Handb.	1847		(2) "	927	"	5 vo	"	$\overline{B}'A_{\frac{1}{2}}(y)$	"	$BA\frac{1}{2}(y)$
Schrauf	Wien. Sitzb.	1870	62	(2) "	717	"	2 Vu	"	731	,,	731
"	27	**	"	"	"	"	**	,,	598	"	598
"	"	"	"	"	"	"	20 Vu	**	861	"	861
"	**	"	,,	"	,,	"	17 Vu	"	31.27.2	"	16· <u>₹</u> 4·1
,,	"	"	"	,,	"	"	15 Vu	"	461	"	461
Hessenberg	Senck. Abh.	1872	8	,,	441	"	4 vu	"	731	"	721
,,	**	"	,,	,,	"	"	"	"	$\frac{3}{7} \breve{P}_1 3$	"	$\frac{2}{7} \breve{\mathbf{P}}_{1} 2$
**	"	"	"	"	"	"	"	"	$7 a' : \frac{7}{3} b' : c$	"	$7 a' : \frac{7}{2} b' : c$
Dana	System	1873	"	"	298	"	ı vo	"	$z = \frac{1}{2}$	"	$z = ^{1}2$
"	23	"	"	"	"	"	3 vo	"	$i=3-\bar{3}$	"	$i=-3-\bar{3}$
"	,,	"	"	n	"	"	7 vo	"	$t = 7 - \frac{77}{3}$	- 77	$t = 7 - \frac{17}{2}$
"	"	"	"	,,	"	"	8 vo	**	$h^2 = i - \bar{3}$	"	$h^2 = 2 - \frac{8}{3}$
Websky	Berl. Monatsb.	1881	"	"	159	"	11 Vu	" C	XXVIII S.3	0,,	CXXII S. 371
**	Zeitschr. Kryst.	1882	6	"	8	"	9 vo	**	128.20	"	122 371
Frazier	Zeitschr. Kryst.	1885	9	"	83	"	9 vo	,,	α	,,	a
"	"	,,	"	"	"	,,	11 vu	"	ī·15·2	,,	321
"	"	"	"	**	,,	"	12 Vu	"	598	"	332

Azorit.

Tetragonal.

Axenverhältniss.

 $\begin{array}{l} a:c = 1:o\cdot 9075 \; (Schrauf \; 1871.) \\ ,, = 1:o\cdot 9331 \; (Schrauf \; Atlas.) \; (vgl. \; Bemerk.) \end{array}$

Elemente.

No.	Schrauf. Gdt.	Tesche- macher.	Miller.	Miller.	Naumann.	Gdt.
I	a	M	a	100	∞P∞	∞0
2	p	c	e	101	P∞	10
3	u			301	3 P∞	30

278 Azorit.

Literatur.

 Teschemacher
 Amer. Journ.
 1847 (2) 3 32

 Miller
 Min.
 1852 — 672

 Schrauf
 Wien. Sitzb.
 1871 63 (1) 187

 ,
 Atlas
 1872 — Taf. XXVI.

Bemerkungen.

Schrauf giebt in der Originalarbeit (Wien, Sitzb. 1871. 63. (1) 187) das Axenverhältniss: a:c = 1:0.9075 hergeleitet aus dem Winkel pp¹ = 56°45. In seinem Atlas hat er, trotzdem er auf dieselbe Arbeit verweist, dafür gesetzt a:c = 1:0.9331. Sollte dies auf einem Irrthum beruhen oder neuere Untersuchungen zu Grunde liegen, die ich nicht auffinden konnte?

Baryt.

1.

Rhombisch.

Axenverhältniss.

```
a:b:c = 0.8152:1:1.3136 (Helmhacker. Groth. Gdt.) (vgl. Anm.)

a:b:c = 0.8146:1:1.3127 (Miller. Dana.)

" = 0.8143:1:1.3111 (Kokscharow.)

" = 0.816:1:1.323 (Hauy.)

" = 0.814:1:1.315 (Lévy.)

[a:b:c = 0.7618:1:0.6205] (Schrauf. Vrba.)

{a:b:c = 0.6206:1:0.7618} (Becke.)

{ " = 0.6209:1:0.7453} (Mohs-Zippe?) (vgl. Anm.)

{ " = 0.6253:1:0.7660} (Mohs 1824. Hausmann.)
```

Elemente.

a = 0.8152	lg a == 991126	$\lg a_0 = 979280$	$\lg p_o = 020720$	$a_o = 0.6206$	p _o = 1.6114
c = 1.3136	lg c=011846	$\lg b_o = 988154$	$\lg q_o = 011846$	$b_0 = 0.7613$	$q_o = 1.3136$

Transformation.

Mohs-Zippe. Hausmann. Becke. Busz.	Schrauf. Vrba.	Hauy. Lévy. Miller. Dana. Kokscharow. Dauber. Groth. Gdt.			
pq	$\frac{1}{p} \frac{q}{p}$	$\frac{p}{q} \frac{r}{q}$			
$\frac{\mathbf{r}}{\mathbf{p}} \frac{\mathbf{q}}{\mathbf{p}}$	рq	$\frac{1}{d} \frac{b}{d}$			
$\frac{p}{q} \frac{1}{q}$	$\frac{\mathbf{q}}{\mathbf{p}} \frac{\mathbf{p}}{\mathbf{p}}$	pq			

No.	Gdt.	Hauy.		Quen-	Helm- hack.	веске.	Miller. Schmidt. Schrauf. Grünling.		Jere- mejew	Miller.	Naumann.	[Hausmann.]	[Mohs.] [Zippe.]	Hauy.	Lévy.	Gdt.
I	С	P	P	P	P	P	c	С	a	001	oР	В	ĕr+∞	P	P	o
2	b	k	k	k	k	k	a (b)	a	b	010	∞Ĕ∞	A	P —∞	${}^{1}G^{1}$	\mathbf{g}^{t}	0 00
3	a	s	s	s	s	c	b (a)	b	c	100	$\infty \bar{P} \infty$	\mathbf{B}^{i}	Pr+∞	'H'	\mathbf{h}^{i}	∞ 0
4	τ						τ			410	∞P̄ 4					4 ∞
5	β	λ	-				β		đ	310	∞P̄ 3			² H ²	h²	3 ∞

(Fortsetzung S. 281.)

Literatur.

```
Hauy
                    Traité Min.
                                                       2
                                             1822
                                                          5
Mohs
                    Grundr.
                                             1824
                                                       2
                                                          139
Hartmann
                   Handwb.
                                             1828
                                                          259
                   Handb. Krystallonomie
Kupffer
                                             1831
                                                          358-377
                   Descr.
L \epsilon v y
                                             1838
                                                       1
                                                          189
Mohs-Zippe
                   Min.
                                                       2
                                             1839
                                                          122
Hausmann
                   Handb.
                                             1847
                                                          (2) 1123
Miller
                   Min.
                                             1852
                                                          529
Quenstedt
                   Min.
                                             1855
                                                          369
                                                     102
Pfaff
                   Pogg. Ann.
                                             1857
                                                          464
Grailich u. Lang
                   Wien. Sitzb.
                                             1859
                                                      27
                                                          30
                   Pogg. Ann.
Dauber
                                             1859
                                                     108
                                                          439
Schrauf
                   Wien. Sitzb.
                                                     39
                                             1860
                                                          286 u. 883
                   Note Min. Torino
Str\"uver
                                             1871
                                                          15-18
                   Jahrb. Min.
                                             1871
                                                          735
                   Wien. Denkschr.
Helmhacker
                                             1872
                                                      32
                                                          1
                                                          1
71 }
                   Min. Mitth.
                                                       2
                                             1872
Schrauf
                   Atlas
                                             1872/73 —
                                                          Taf. XXX u. XXXI
Dana
                   System
                                             1873
                                                          616
Kokscharow
                   Mat. Min. Russl.
                                             1875
                                                          25
Groth
                   Strassb. Samml.
                                             1878
                                                          142
Schmidt
                   Zeitschr. Kryst.
                                                       3
                                             1879
                                                          428
Vrba
                                             1881
                                                       \mathbf{5}
                                                          433
Schmidt
                                             1882
                                                       6
                                                          554
Miers
                                             1882
                                                          599
                                             1883
                                                       7
                                                          651 (Correctur)
Becke
                   Min. Petr. Mitth.
                                             1882
                                                       5
                                                          82
Gr\"{u}nling
                   Zeitschr. Kryst.
                                             1884
                                                          243
Busz
                                                      10
                                             1885
                                                          32.
```

Bemerkungen S. Seite 282, 284—286.

2.

										۵.						
No. G	idt.	Hauy.	Hausm. Mohs. Hartm. Zippe.	Pfaff. Quen- stedt.	Helm- hack.	Becke.	Miller. Schmidt. Schrauf. Grünling.	Kok- scha- row.	Jere- mejew	Miller.	Naumann.	[Hausmann.]	[Mohs.] [Zippe.]	Hauy.	Lévy.	Gdt.
	λ		p	n	p		λ	λ	e	210	∞P 2	$B^{t}A_{\overline{2}}^{\underline{I}}$	Ēr∔ı		h³	2 ∞
•	П			_						530	$\infty \bar{P} \frac{5}{3}$					$\frac{5}{3}$ ∞
8	η	t	t		t		η_{-}	t	f	320	$\infty \bar{P} \frac{3}{2}$	B'A ² / ₃	<u>3</u> ₱r+1	5H5	h ⁵	$\frac{3}{2}$ ∞
-	h						h			540	$\infty \bar{P} \frac{5}{4}$					$\frac{5}{4}$ ∞
	m	M	M	M	M	M	m	m	g	110	∞P ŏ 3	\mathbf{D}'	Ēг	M	m	∞ 3
II	N						N	η	h	230	$\infty \tilde{P} \frac{3}{2}$					$\infty \frac{3}{2}$
I 2	n	η	n	t	n		n	n	i	120	∞P̃ 2	$AB^{1}2$	Pr—ı	3G3	g^3	∞ 2
	χ L	n		_	χ λ		χ	χ	j k	130	∞Ř 3 ∞Ř 4	_		2G2	g²	∞ 3
							_	p	К.	140						∞ 4
•	α A						α			018	^I / ₈ P̃ ∞ I/ ₃ P̃ ∞		_		_	O $\frac{I}{8}$ O $\frac{I}{3}$
16 17	φ	_	e		_		φ	x	n	O13	$\frac{1}{2}\breve{P}\infty$	$BA_{\frac{1}{2}}$	⊢ Pr+1		e ²	$O_{\frac{1}{2}}$
	B						т			056	<u>5</u> β∞					O 5/6
						-								9 R		
-	ε	ε		-	-		ε	_		089	§ P̃ ∞ ₹		 ×	E E E		O 8/9
20	0	0	0	0	0	o	0	0	m	011	P̃∞	D			e ¹	O I
2 I	i	i	_		ε		i	ε	1	O2 I	2 P̃∞		ĕr—ı	$\overset{\frac{1}{2}}{\mathbf{E}}$	$e^{\frac{1}{2}}$	O 2
22	x						x			041	4 P∞				_	04,
23	g									O·1O·1	юЎ∞					0.10
24	W		_	_		-	W			108	$\frac{1}{8}\bar{P}\infty$	_				ı o
25	w						w			106	$\frac{1}{6}\tilde{P}\infty$	BB'6	$(P+\infty)^6$	5		$\frac{1}{6}$ O
26	σ	r	r				σ	٥	γ	105	½ P̄∞	BB ¹ 5		Å	a ⁵	<u>I</u> O
27	1	1	1	m	1		1	1	β	104	$\tfrac{I}{4}\widetilde{P}\infty$	$BB^{t}4$	$(P+\infty)^4$	Å	a ⁴	$\frac{I}{4}$ O
28	g		g		g		g	g	α	103	$\frac{I}{3}\bar{P}\infty$	$BB^{1}3$	$(P+\infty)^3$			$\frac{1}{3}$ O
29	χ	γ					x	E	z	205	$\frac{2}{5}\bar{P}\infty$			$\overset{\frac{5}{2}}{\mathbf{A}}$		$\frac{2}{5}$ O
30	d	d	d	d	d	d	d	d	у	102	$\frac{1}{2}\bar{P}\infty$	BB'2 (Pr	+∞) <u>3(</u> P+∞) ² Å	a ²	$\frac{I}{2}$ O
	o				r				x	203	$\frac{2}{3}\bar{P}\infty$		<u> </u>			$\frac{2}{3}$ O
32	ħ	_	_	_	\mathbf{u}^{ι}		_		:	23.0.24	$\frac{23}{24}\bar{P}\infty$		_			$\frac{23}{24}$ O
33	u	u	u	u	u		u	u	w	101	P̄∞	Е	P +∞	Ą	aI	10
0 1	D	_			_		D			302	$\frac{3}{2}\bar{P}\infty$					$\frac{3}{2}$ O
35	U						U	_ j	v	201	2 P ∞					20
36	e	_					e	_	-	I · I · 2O	$\frac{I}{20}P$	_		-		<u>I</u> 20
٠,	Η			-	-	_	H	_		119	<u>₹</u> P		 /Ď\ 8			<u>I</u> 9 1
-	k _		a				k ———			118	1 P	BD'8	(<u>Ĕ</u>)8			<u>I</u> 8
• .	P			_			(F)	Σ	u	116	1 P	DDI-	— (Ď) 5		_	1 6 1
•	v	0	\mathbf{v}		α		v		_	115	1 P	BD'5	(Ĕ) ⁵	$\frac{\overline{\mathbf{a}}}{\mathbf{B}}$		<u>I</u> 5
41	q	9	q		q	r	q	q	t	114	1/4 P	BD'4	(<u>Ě</u>)4		b ²	<u>I</u>
	f	f	f	α	f		f	f	s	113	$\frac{I}{3}$ P	$BD^{1}3$	(Ĕ)³	$\mathbf{B}^{rac{3}{2}}$	$b^{\frac{3}{2}}$	$\frac{I}{3}$
42	-										$\frac{1}{2}P$		$(\breve{P}r)^3 = (\breve{P})^2$			<u>I</u>

(Fortsetzung S. 283.)

Bemerkungen.

Hauy giebt ${}^2G^2 = \infty$ 3 und zeichnet diese Form (n) ein in Fig. 68. 71. 73. Doch weist der Zonenverband dieser Figuren auf ${}^3G^3 = \infty$ 2. Uebrigens ist ∞ 2 von Lévy wieder gefunden Taf. XVI Fig. 20 (g^2) und auch später beobachtet.

Lévy's $i=b^1$ $b^{\frac{3}{4}}$ $h^{\frac{4}{3}}$ (Fig. 14 u. 22 Taf. 16 und Fig. 27 Taf. 17) $=\frac{14}{9}\frac{2}{9}$ wurde trotz der dreifachen Anführung in Anbetracht des complicirten Symbols und der geringeren Schärfe von Lévy's Messungen bei fehlender Winkel-Angabe und fehlendem Zonenverband nicht als sicher angesehen. Es steht nahe Helmhackers $X=\frac{3}{2}\frac{3}{10}$.

Lévy giebt das Symbol $e_{\underline{3}}$, das, in unsere Zeichen übersetzt, lautet $\frac{1}{4}$. Dies entspricht dem Zonenverband $e_{\underline{1}}$ $e_{\underline{3}}$ m seiner Fig. 22 Taf. 16. Dagegen nicht dem scheinbaren Verband Fig. 8 Taf. 15. $b^{\frac{1}{2}}$ $e_{\underline{3}}$ $e_{\underline{3}}$ $b^{\frac{1}{2}}$, danach könnte es $\frac{1}{4}$ 1 sein. Beide Formen sind bekannt und wurde $e_{\underline{3}}$ auch neben $\frac{1}{4}$ 1 in Klammern gestellt.

Mit Hausmann's $DB^{!}_{4}$ ist jedesmal Mohs-Zippe $(\check{P}-1)^4$ gemeint, worauf das (m) hindeutet. Dafür stimmt jedoch Hausmanns Symbol nicht. Es ist gleich unserem $\frac{1}{4}$ I statt $\frac{1}{4}$ $\frac{1}{2}$ (μ Hauy. Miller). Uebrigens wurde $\frac{1}{4}$ I später von Helmhacker beobachtet. Dass bei Hausmann keine selbständige Beobachtung vorliegt, beweist der Umstand, dass $DB^{!}_{4}$ unter den Combinationen fehlt,

Bei Mohs (Grundr. 1824 2 140) ist ein Widerspruch zwischen dem in Zahlen und dem in Winkeln gegebenen Axen-Verhältniss. Doch löst sich dieser nach Richtigstellung eines Druckfehlers und ist zu lesen:

Bei Zippe (Mohs-Zippe Min. 1839 2. 122.) sind bei Angabe der Grundwerthe die Winkel unrichtig. Betrachtet man das in Zahlen gegebene Axen-Verhältniss als richtig, so müssen, um damit im Einklang zu sein, die Winkel lauten:

$$P = 128^{\circ}34^{\circ}$$
 $91^{\circ}21^{\circ}$ $110^{\circ}40^{\circ}$
statt $P = 91^{\circ}25^{\circ}$ $128^{\circ}34^{\circ}$ $112^{\circ}7^{\circ}$

Dann ist auch die mangelnde Uebereinstimmung mit den übrigen Autoren, auf die Hausmann (Handb. 1847 2. (2) 1124) hinweist, besser ausgeglichen, obwohl die Differenz noch zu gross ist, um Zippe's Angabe als richtig zu betrachten.

Unter den von Zippe angegebenen Winkeln finden sich viel unrichtige Angaben. Es wurden die Richtigstellungen im Einzelnen nicht vorgenommen. Sie müssten, um in Zippe's Intentionen zu bleiben, aus dessen Axen-Verhältniss hergeleitet werden, was nicht viel Werth hätte, da diese Angabe selbst unsicher ist. Richtiger erscheint es entweder mit Hausmann auf Mohs' Axen-Verhältniss und Winkel-Angaben zurückzugehen oder die Miller'schen Angaben zu benutzen (Miller Min. 1852 529). Beide Autoren geben alle die von Zippe angeführten Formen bis auf (Pr) 6 (h).

Die Flächensymbole bei Zippe sind im Allgemeinen richtig, nur ist zu lesen:

Seite 122 Zeile 13 vu
$$(P + \infty)^5$$
 (r) statt $(P + \infty)^5$ (r)
, , , , 14 , $(P + \infty)^5$ (v) , $(P + \infty)^5$

Die Angaben Helmhacker's (Min. Mitth. 1872 271) können leicht zu einem Irrthum führen. Er giebt das Axen-Verhältniss 1:1·2273:1·6109 als das Verhältniss der kleinsten zur mittleren zur grössten Axe und dazu die Reihe der Symbole, sagt jedoch nichts über die Aufstellung. Nun bezieht sich in dem Symbol hkl h auf die grösste, k auf die mittlere, l auf die kleinste Axe, was ohne besondere Angabe Niemand vermuthen kann. In der Original-Arbeit (Wien. Denkschr. 1872) ist dies allerdings hervorgehoben.

(Fortsetzung S. 284.)

3.

No.	Gdt.	Hauy.	Hausm. Mohs. Hartm. Zippe.	Pfaff. Quen- stedt.	Helm- hack.	Becke.	Miller. Schmidt. Schrauf. Grünling.	Kok- scha- row.	Jere- mejew	miller.	Naumann.	[Haysmann.]	[Mohs.] [Zippe.]	Hauy.	Lévy.	Gdt.
44	R				P,		R	Λ	p	223	2/3 P	_				<u>2</u> 3
45	z	z	z	z	z	z	z	z	o	111	P	P	P	$\overset{rac{1}{2}}{\mathbf{B}}$	$\mathbf{b}^{\frac{\mathbf{I}}{2}}$	I
46	p						p			44 I	4 P			_		4
47	δ			δ	δ		δ			414	P̄ 4					I 1/4
48	ω			_	ν^{1}	_	∇	-		313	P̄ 3				_	$I = \frac{I}{3}$
49	y				y		У			212	P 2					I ½
50	Σ			_	β	_	Σ			121	2 Ĭ 2				e_3	I 2
51	Ф Т				Θ_{1}		Ф Т			131	3 P 3 4 P 4	_		_	_	1 3
52	Ξ				$\frac{\theta^2}{\theta^2}$		_			141	- 11					I 4
53 54	υ		_		92	_	Ē			151 166	5 P 5 P 6					1 5 I 1
55	Q	_			m'					155	Ϋ́5		-			6 1 1 1
56	P	_	[M Hau	sm.7	m		ρ		μ	144	 Ў 4	$[DB'^{I}_{4}]$			(e ₃)	1 I
57	j				ψ		J	_		133	Р́з					$\frac{I}{3}$ I
58	y	y	y	y	У	y	y	y	τ	122	Р́2	DB' <u>I</u> (Pr-	1) <u>3</u> (P-1)2	<u>E</u> 3B3B1	$h^{\dagger}h^{\frac{1}{3}}g^{\frac{1}{2}}$	I I
59	s	x	_		Įs.	_	s	μ.	σ	132	3/2 P 3	AE3.DB11	$(\frac{2}{3}\breve{P}-1)^2$	E2	e ₂	I 3 2 2
60	ξ	_			ζ		ξ	_		142	2 P 4	_	_			$\frac{I}{2}$ 2
61	t				_					136	$\frac{1}{2} \breve{P} 3$				$h^1h^{\frac{1}{2}}g^{\frac{1}{3}}$	$\frac{1}{6}\frac{1}{2}$
62	μ	μ	m	β			μ		_	124	Ϊ́ P˙ 2		(Ĕ—1)4	3 4 EB 3 B1	$b^1 b^{\frac{1}{3}} g^{\frac{1}{4}}$	<u>I</u> <u>I</u> 2
63	Δ	_		-			Δ			524	5 P 5					I I 2 5 I 2 3 I 2 2
64	γ_		h		_		γ			312	$\frac{3}{2}\bar{P}$ 3		(Pr)5		a ₂	3 <u>I</u> 2
65	t						t	_		11.3.6	$\frac{11}{6}\bar{P}\frac{11}{3}$					II I 6 2 I 7 3 6 I 5 3 3
66	g G	_	_	_		_	G 8	_		276	76 P 72 53 P 5		_			3 6 1 5
67							<u> </u>			153						
68 60	Λ	_	_		 π¹	_	X	_		362	3 P 2 3 P 5		_	_		$\frac{3}{2}$ 3 3 3
69 70	f	_	_	_		_	Λ —	_	_	364	½ F 5 3 P 2		_			$\frac{3}{2} \frac{3}{10}$ $\frac{3}{4} \frac{3}{2}$
71	Γ'			γ			Γ		_	1.8.12	2 P 8	_				I 2
72	π			<u>'</u> _			π	_		169	2 ₹ 6	-	_			12 3 1 2 9 3
73	F	_				_	F			146	$\frac{2}{3}$ \breve{P} 4	-	-			I 2 I2 3 I 2 9 3 I 2 6 3
74	ζ						ζ	_		154	5 P 5		_	$E^{\frac{3}{2}}$	e ₃	I 5 4 4
75	8						ϑ			176	ξ Ĕ 7	-	_		2	I 7
76	b				π		_	_	2	28·7·24	$\frac{7}{6}$ \bar{P} 4		-			$\frac{1}{6} \frac{7}{6}$ $\frac{7}{6} \frac{7}{24}$

Bemerkungen. (Fortsetzung von S. 282.)

Für Helmhacker's Angaben ist aus diesem Widerspruch das Aufschreiben eines Transformations-Symbols nicht thunlich. Das Axen-Verhältniss wurde angeschrieben direkt aus Helmhackers Zahlen, die Symbole (Helmh.) dagegen sind rückwärts zu lesen, damit Uebereinstimmung mit der Angabe des Axen-Verhältnisses herrsche.

```
z. B. 123 (Helmhacker) zu lesen 321 = 32 (Index)
```

Helmhacker giebt an, für das Axen-Verhältniss (Wien. Denkschr. 1872 32 48).

```
Kupffer: 0.81479:1:1.31273 == 1:1.22731:1.61013
```

Kokscharow (Mat. Min. Russl. 1875 7 58) giebt an, in mangelhafter Uebereinstimmung hiermit:

```
Kupffer: 1:1.22758:1.61145
```

Aus Kupffers Winkelangaben (Handb. d. Krystallonomie 1831. 376.)

$$M : M = 101^{\circ}40$$

 $d : d = 77^{\circ}43$
 $o : o = 105^{\circ}24$

berechnet sich:

```
a:b:c=0.8146:1:1.3127=1:1.2276:1.6113
Helmhacker giebt (ibid.) an: Mohs a:b:c=1:1.2256:1.6001
```

Kokscharow " " Mohs a: b: c = 1:1·2283:1·6102

Aus den von Mohs (Grundr. 1824 2 140) für P gegebenen Wurzel- und Winkelwerthen berechnet sich:

```
a:b:c = 1:1.2286:1.6038
```

Kokscharow's Angaben finden sich wieder abgedruckt bei Busz (Zeitschr. Kryst. 1885 10 39).

Busz führt von dem Fundort Mittelagger drei neue Formen an (Zeitschr. Kryst. 1885 10 33).

```
\begin{array}{lll} \Pi &=& 5\,\frac{3\,0}{1\,\mathrm{f}} = & 5\,\bar{P}\,\frac{\mathrm{I}_{\mathrm{f}}}{1\,\mathrm{f}}(55\cdot30\cdot11) \\ \Pi_{_{\mathrm{I}}} &=& 7\,\frac{3\,5}{8} = & 7\,\bar{P}\,\frac{8}{8}\left(56\cdot35\cdot8\right) \\ \Pi_{_{\mathrm{II}}} &=& 10\cdot7 &=& 10\,\bar{P}\,\frac{10}{1\,\mathrm{f}}\left(10\cdot7\cdot1\right) \end{array}
```

Doch ist die Ausbildung der Flächen und die Ableitung der Symbole derart, dass die genannten Symbole als durchaus unsicher anzusehen sind. Sie wurden in den Index nicht aufgenommen.

Bei gleicher Aufstellung erscheinen die angegebenen Axen-Verhältnisse folgendermassen:

```
Hauy. . . . . . . . = 0.816 : 1 : 1.323
Lévy. . . . . . . = 0.814 : 1 : 1.315
Beudant . . . . . = 0.8032:1:1.3033
Kupffer . . . . . = 0.8146 : 1 : 1.3127
Mohs. . . . . . . = 0.8140:1:1.3054
Dauber. . . . . . = 9.8139 : 1 : 1.3119
Dufrénoy. . . . . . = 0.8141:1:1:3127
Miller . . . . . . . . . = 0.8147:1:1.3122
Grailich u. Lang. . . = 0.8145: 1: 1.3120
Quenstedt . . . . = 0.8146 : 1 : 1.3126
Dana. . . . . . . . . = 0.8146:1:1.3121
Helmhacker (Svarow) . = 0.8152:1:1.3136
           (Hyskow) . = 0.8148 : 1 : 1.3126
Kokscharow . . . = 0.8143:1:1.3111
Jeremejew . . . . = 0.8146:1:1.3130
                                     (Fortsetzung S. 285.)
```

Bemerkungen. (Fortsetzung von S. 284.)

Barytocölestin kann nach den bisher vorliegenden Untersuchungen noch nicht als ein selbstständiges Mineral angesehen werden. Die einzige specielle Arbeit über die Krystallformen des Barytocölestin von Neminar (Min. Mitth. 1876. 6. 59) enthält so viele Fehler und erscheint so unzuverlässig, dass aus ihr selbst unter Anwendung einer kritischen Discussion der Angaben sichere Schlüsse nicht gezogen werden können. Axenverhältnisse und Winkel sind unrichtig gerechnet, das Projectionsbild verzeichnet, für die Aufstellung fehlt die Angabe der Spaltungsrichtungen sowie die Analyse, die gerade für dies Mineral durchaus nöthig wäre, und die Bestimmung des specifischen Gewichts. Die von Neminar angenommene Aufstellung ist die von Auerbach beim Cölestin. Die beobachteten Formen sind nach der Baryt-Aufstellung des Index:

a = 0 $m = \infty$ 0 = 01 $d_2 = \frac{1}{6}0$ $d_1 = \frac{1}{4}0$ $d = \frac{1}{2}0$ $\phi = \frac{1}{2}$ z = 1 $y = \frac{1}{2}1$ Hierzu tritt von Groth (Strassb. Samml. 1878. 148) gegeben: 10 (101) und von Breithaupt (Min. Stud. 1866. 20) $12 = P\frac{T}{2}$ und $13 = P\frac{T}{3}$.

Correcturen s. Seite 286.

Correcturen.

Hauy	Traité Min.	1822	2	Seite	5	Col.	3	vu	lies	33	stat	t 34
,,	n	**	Atlas	s Taf.	33	Fig.	1	Seit	lich	lies EE	"	AA
"	"	,,	**	"	,,	"	I	vorn	lies	Н	**	G
Mohs	Grundr.	1824	2	Seite	140	Zeile	4	vo	,,	1.7045	"	V 0.7045
"	**	,,		,,	,,	,,	5	,,	,,	(Ĕ) ⁸	,,	(P) ⁸
Hartmann	Handwb.	1828		,,	259	**	14	vu	"	$P + \infty$ (u)	**	$P + \infty$ (n)
L é vy	Descr.	1838	Atlas	s Taf.	17	Fig.	35	links	· "	$\mathbf{e_2}\mathbf{e_2}$,,	$e^2 e^2$
Mohs-Zippe	Min.	1839	2	Seite	122	Zeile	14	vu	"	(Ĕ) ⁵	. 99	(P) ⁵
"	"	"		,,	,,	,,	13	,,	,,	(P̈+∞) ⁵	,,	(P+∞) ⁵
Hausmann	Handb.	1847	2 (2	2) " 1	126	**	19	vo	,,	$8DB'\frac{I}{2}$	"	$8 \mathrm{BD}'^{ \frac{1}{2}}$
Helmhacker	Wien. Denkschr.	1872	32	,,	46	"	2	,,	"	1822	"	1861
**	"	**	"	,,	"	Col.	6	,,	,,	Р́г—1 (n)	,,	Йr—1 (n)
**	'n	"	**	"	**	17	,,	,,	11	(P̈+∞)4	,,	$(P+\infty)^4$
. ,	"	"	,,	,,	**	,,	,,	,,	"	$(P-1)^2(y)$	"	(P-1)2 (y)
**	"	,,	"	,,	,,	"	7	,,	,,	$B^{1}A_{\frac{2}{3}}(t)$	"	$BA^{\frac{2}{3}}(A)$
'n	"	**	"	,,	,,	**	"	"	"	$DB'^{\frac{1}{2}}(y)$	"	$BD^{\dagger}\frac{1}{2}(y)$
**	"	,,	,,	,,	**	"	"	,,	**	$DB^{1}\frac{1}{4}(m)$,,	$BD^{\frac{1}{4}}(m)$
**	"	"	,,	"	,,	,,	9	,,	,,	2a:c:∞b(d)) "	2a:c:b (d)
Miers	Zeitschr. Kryst.	1882	6	**	600	vgl. (Cor	rectu	ren	Zeitschr. Kr	yst.	1883 7. 651
$Gr\"{u}nling$	"	1884	8	,,	243	Zeile	11	vu	lies	$rac{1}{2}ar{\mathrm{P}}\infty$	stati	: <u>I</u> P∞
Busz	"	1885	10	,,	35	,,	18	"	**	7 P 8/5	"	7 🗗 🖁

Barytocalcit.

Monoklin.

Axenverhältniss.

$$\begin{array}{lll} a:b:c = \text{1.0939}: \text{1:0.7413} & \beta = \text{119°0 (Gdt.)} \\ [a:b:c = \text{1.1202}: \text{1:0.8476} & \beta = \text{102°26] (Miller.)} \\ \{a:b:c = \text{0.7717}: \text{1:0.6255} & \beta = \text{106°08} \} \text{ (Des Cloizeaux 1874. Dana.)} \\ (a:b:c = \text{0.7717}: \text{1:1.251} & \beta = \text{106°08) (Des Cloizeaux 1845.)} \end{array}$$

Elemente.

a	=	1.0939	$\lg a = \infty 3898$	$\lg a_0 = 016899$	$\lg p_o = 983101$	$a_o = 1.4757$	$p_o = o.6777$
С	=	0.7413	lg c = 986999	$lg b_o = 013001$	$\lg q_o = 981181$	$b_o = 1.3490$	$q_o = 0.6483$
μ 180	= β	} 61°00	$ \left. \begin{array}{l} \lg h = \\ \lg \sin \mu \end{array} \right\} 994182 $	$ \left. \begin{array}{l} \log e = \\ \log \cos \mu \end{array} \right\} 968557 $	$\lg \frac{p_o}{q_o} = 001920$	h = 0.8746	e = 0·4848

Transformation.

Mohs-Zippe. Hausmann. Schrauf.	Miller.	Des Cloizeaux 1874. Dana.	Des Cloizeaux 1845.	Gdt.
pq	— pq	$\frac{1-p}{1+p} \frac{2q}{1+p}$	$\begin{array}{c c} \underline{\mathbf{1-p}} & \underline{\mathbf{q}} \\ \underline{\mathbf{2+2p}} & \underline{\mathbf{1+p}} \end{array}$	(p+1) q
—pq	pq	$\frac{1+\mathbf{p}}{1-\mathbf{p}} \frac{2\mathbf{q}}{1-\mathbf{p}}$	$\begin{array}{c c} \underline{\mathbf{1+p}} & \underline{\mathbf{q}} \\ \underline{\mathbf{2-2p}} & \underline{\mathbf{1-p}} \end{array}$	(1 — p) q
$\begin{array}{c c} \hline {\scriptstyle 1-p} & {\scriptstyle q} \\ \hline {\scriptstyle 1+p} & {\scriptstyle 1+p} \end{array}$	$\begin{array}{c c} p-1 & q \\ \hline p+1 & p+1 \end{array}$	рq	$\frac{p}{2} \frac{q}{2}$	$\frac{2}{p+1} \frac{q}{p+1}$
$\frac{1-2p}{1+2p} \frac{2q}{1+2p}$	$\frac{2p-1}{2p+1}\frac{2q}{2p+1}$	2p · 2q	рq	$\frac{2}{2p+1} \frac{2q}{2p+1}$
(p — 1) q	(1 — p) q	2—p 2q p	$\frac{2-p}{2p} \frac{q}{p}$	рq

No.	Miller. Greg u. Lettsom. Schrauf. Gdt.	Brooke. Haidinger. Mohs-Zippe. Hausmann.	Miller.	Naum.	[Haus- mann.]	[Mohs.] [Zippe.]	[Lévy]	[Descl.] 1845	[Descl.] 1879	Gdt.
I	h	h	001	oP	$\bar{\mathbf{D}}^{_1}$	—ĕr	h ^I	h ¹	h ^I	o
2	m	ь	110	∞P	\mathbf{E}	$P+\infty$	e_{r}^{I}	i	x	∞
3	r	c	130	∞P3	BB'3		$e^{\frac{I}{3}}$	[i']	p	∞3
4	s	M	011	₽∞	\mathbf{P}^{I}	—Р	m	m	m	01
5	v	d	021	2P∞	$B\bar{D}^{\prime}$ 2		$g^{\frac{1}{3}}$	g^3	g^3	02
6	c	a	101	— ₽∞	A	P—∞	$[a^{\frac{5}{2}}]$	O^2	o_{I}	+10
7	P	P	201	—2P∞	$\dot{\mathbf{D}}_{i}$	Йr	$\left[a^{\frac{7}{2}}\right]$	p	p	+20

Literatur.

Brooke	Ann. Phil.	1824 8	114
"	Schweigg.	1825 44	247
Haidinger	Pogg. Ann.	1825 5	160
Hartmann	Handwb.	1828 —	257
$L \it e v y$	Descr.	1838 2	276
Mohs - $Zippe$	Min.	1839 2	119
$Des\ Cloizeaux$	Ann. chim. phys.	1845 (3) 18	425
Hausmann	Handb.	1847 2	(2) 1254
Miller	Min.	1852 —	574
Grey u. Lettsom	Manuel	1858 —	49
Schrauf	Atlas	1871 —	Taf. XXXIII
Dana	System	1873 —	701
$Des\ Cloizeaux$	Manuel	1874 2	80.

Bemerkungen.

Schrauf's Axenverhältniss beruht auf den Angaben von Miller (Min. 1852 574) und es dürfte die Zahl 1-1228 statt 1-1202 auf einem Rechenfehler beruhen.

Lévy. Die Identification von Levy's Symbolen erscheint nach der Figur gesichert, doch sind die Symbole $a^{\frac{5}{2}}$ $a^{\frac{7}{2}}$ sowie das Axenverhältniss $a:b:c=o\cdot8476:1:2\cdot0974$ $\beta=119^\circ$ nicht mit den Angaben der anderen Autoren in Uebereinstimmung zu bringen. Da genau die gleiche Combination vielfach beobachtet und von Des Cloizeaux genau beschrieben ist, fällt dies nicht in Betracht und können wir uns mit Identification der Figur begnügen.

Des Cloizeaux giebt 1845 das Symbol $i^i = b^{\frac{1}{2}} d^{\frac{1}{3}} g^I$, das in der Aufstellung von 1874 lautet $y = b^{\frac{1}{4}} d^{\frac{1}{6}} g^I$. Nach den Bemerkungen (Ann. chim. phys. 1845. (3) 13. 427) ist dies Symbol unsicher und dürfte wohl mit Des Cloizeaux's ρ zu identificiren sein.

Das Symbol o¹ in der Arbeit von 1845 ist nach dem gegebenen Winkel unrichtig. Es muss heissen o², welches auch dem 1874 gegebenen o¹ entspricht.

Correcturen.

Bastnäsit.

Hexagonal.

Axenverhältniss.

a:c=?

No.	Gdt.	Bravais.	Miller.	Naumann.	G_1	G_2
I	С	0001	001	οP	0	0
2	a	юїо	211	∞P 2	œο	∞
3	m	1120	IOI	∞P	∞	∞0

Goldschmidt, Indax.

290 Bastnäsit.

<u>Literatur.</u>

Allen u. Comstock Zeitschr. Kryst. 1881 5 508.

Beegerit.

Regulär.

No.	Gdt.	Miller.	Naumann.	G_1	G_2	G_3
I	c	001	∞0∞	0	000	∞0
2	p	111	O	1	1	1

292 Beegerit.

Literatur.

König Zeitschr. Kryst. 1881 5 322.

Beraunit.

Monoklin?

No.	Gdt.	Miller.	Naumann.	Gdt.
I	a	001	οP	0
2	b	010	$\infty \mathbb{P} \infty$	0∞
3	d	110	∞P	∞
4	p	111	Р	I

294 Beraunit.

Literatur.

Boricky Wien. Sitzb. 1867 56 (1) 10.

Bertrandit.

Rhombisch.

Axenverhältniss.

a:b:c = 0.9572:1:1.7034 (Gdt.) [a:b:c = 0.5619:1:0.5871] (Bertrand.)

Elemente.

a = 0.9572	lg a = 998100	$\lg a_o = 974969$	$\lg p_0 = 025031$	$a_0 = 0.5619$	$p_o\!=\!1\!\cdot\!7795$
c = 1.7034	lg c = 023131	$\lg b_o = 976869$	$\lg q_o = 023131$	$b_o = 0.5871$	$q_o = 1.7034$

Transformation.

Descloiz. Bertrand.	Gdt.
рq	$\frac{\mathbf{p}}{\mathbf{q}} \frac{\mathbf{r}}{\mathbf{q}}$
$\frac{\mathbf{p}}{\mathbf{q}} \frac{\mathbf{I}}{\mathbf{q}}$	pq

No.	Gdt.	Miller.	Naumann.	[Bertrand.] [Des Cloizeaux.]	Gdt.
I	c	001	оP	g¹	0
2	b	010	∞Ĕ∞	p	0 00
3	a	100	∞P̃∞	h	∞0
4	d	013	I P∞	$\mathrm{e}^{\frac{\mathrm{I}}{3}}$	$O^{\frac{1}{3}}$
5	e	OII	P̃∞	e^{I}	σı
6	· f	103	$\frac{1}{3}\bar{\mathbf{P}}.\infty$	g ²	$\frac{I}{3}$ O
7	g	101	P̄∞	m	10
8	h	301	3 P∞	h ²	30

296 Bertrandit,

Literatur.

```
      Bertrand
      Bull. soc. min.
      1880
      3
      96 (Nouv. Min. d. environs de Nantes)

      Des Cloizeaux
      " " 1882
      5
      176

      Bertrand
      " " 1883
      6
      248.
```

Correcturen.

Bertrand Bull. soc. min. 1883 6 Seite 250 Zeile 10 vo lies h2 (130) statt h2 (120).

Beryll.

1.

Hexagonal.

Axenverhältniss.

Elemente.

c = 0.8643	lg c = 993666	$\lg a_0 = 030190$	lg p _o = 976057	a _o = 2.0040	$p_0 = 0.5762$
		$\lg a_o = 006334$		$a_{o}^{1} = 1.1570$	

Transformation.

Hauy. Lévy.	Breithaupt.	Miller.	Dana. Websky. Des Cloizeaux. Kokscharow. Schrauf. Groth. G ₁	G_2
pq	$\frac{p}{2}$ $\frac{q}{2}$	$\frac{2(p+2q)}{3} \frac{2(p-q)}{3}$	2 p · 2 q	2(p+2q) 2(p-q)
2p · 2q	pq	$\frac{4(p+2q)}{3} \frac{4(p-q)}{3}$	4P·49	4(p+2q) 4(p-q)
$\frac{\mathbf{p}+2\mathbf{q}}{2} \ \frac{\mathbf{p}-\mathbf{q}}{2}$	$\frac{p+2q}{4} \frac{p-q}{4}$	pq	(p+2q) (p-q)	3P 39
$\frac{p}{2}$ $\frac{q}{2}$	<u>p</u> <u>q</u> 4	$\begin{array}{c c} p+2q & p-q \\ \hline 3 & 3 \end{array}$	pq	(p+2q) (p-q)
$\frac{p+2q}{6} \frac{p-q}{6}$	$\begin{array}{c c} p+2q & p-q \\ \hline & 12 & 12 \end{array}$	$\frac{p}{3}$ $\frac{q}{3}$	$\frac{p+2q}{3} \frac{p-q}{3}$	pq

No.	Gdt.	Miller.	Schrauf.	Kok- scharow. Rath.	Hauy. Mohs. Hartm. Zippe.	Hausm. Naumann.	Bravais.	Miller.	Naumann.	Haus- mann.	Mohs. Zippe.	[Hauy]	[Lévy.]	[Descl.]	6,	6'1	62
1	c	o	С	P(c)			0001	III	oP ·	A	R—∞	P	p	p	o		0
2	a	a	a	M	M	M	1010	2 Ī Ī	∞P	E	$P+\infty$	M	m	m	∞ 0		∞ l
3	b	b	b	n	n	n	I I 2O	101	∞P 2	В	R+∞	'G'	g^{I}	h¹	∞	_	ωo
4	i	h	i	i			2130	514	$\infty P \frac{3}{2}$		_	_		h²	200	_	4∞
5	p		ρ	ρ			I·O·Ī·I4	554	$\frac{1}{14}P$	_				b14	$\frac{I}{14}O$		<u>I</u>
6	τ		τ				2025	311	2/5 P			_	_	$\mathbf{b}^{\frac{5}{2}}$	$\frac{2}{5}$ O		<u>2</u> 5

(Fortsetzung S. 299.)

298 Beryll.

Literatur.

```
Traité Min.
                                      1822
                                             2
                                                504
Hauy
                                      1824
                                             2
Mohs
                   Grundr.
                                                362
                                      1828
Hartmann
                   Handwb.
                                                491
Breithaupt
                   Schweigg. Journ.
                                      1830
                                            60
                                                421
                                      1838
                                             2
L \, \epsilon v \, y
                   Descr.
                                                77
                   Min.
                                             2
Mohs-Zippe
                                      1839
                                                355
Hausmann
                   Handb.
                                      1847
                                                (1) 603
Miller
                   Min.
                                      1852
                                                336
                                             1
Kokscharow
                  Mat. Min. Russl.
                                      1853
                                                147
                                     1854-57 2
                                                356
                                      1862
                                             4
                                                125
                                             6
                                      1870
                                                94
                                      1881
                                                223
Des Cloizeaux
                   Manuel
                                      1862
                                             1
                                                364
Rath-d'Achiardi D. Geol. Ges.
                                      1870
                                            22
                                                661
                   Wien. Sitzb.
                                      1872
                                            65
                                                (1) 245
Schrauf
                   Atlas
                                      1873
                                                Taf. XXXIII
    ,,
                   System
Dana
                                      1873
                                                245
                                             6
                                                117 (Eidsvold)
                   Min. Mitth.
                                      1876
Websky
Vrba
                   Zeitschr. Kryst.
                                      1881
                                                430 (Santa Fé di Bogota).
```

Bemerkungen Correcturen s. Seite 300. 2.

No.	Gdt.	Miller.	Schrauf.	Kok- scharow. Rath.	Hauy. Mohs. Hartm. Zippe.	Hausm. Naumann	Bravais.	Miller.	Naumann.	Haus- mann.	Mohs. Zippe.	[Hauy.]	[Lévy.]	[Descl.]	6,	G'1	\mathfrak{G}_2
7	π		π			-	1012	110	$\frac{1}{2}$ P				_	b ²	$\frac{1}{2}$ O	_	<u>I</u>
8	\mathbf{p}	p	p	t	t	P	101	100	P	P	P	$\stackrel{2}{\mathrm{B}}$	b^2	$\mathbf{p_{i}}$	10	_	I
9	r	n	r	r		r	3032	811	3 P	EA^2_3	$\frac{3}{4}P+1$			$b^{\frac{2}{3}}$	$\frac{3}{2}$ O		3
10	u	u	u	u	u	u	202 I	ΙΙΊ	2 P	$EA_{\frac{1}{2}}$	P+1	B	p ₁	$\mathbf{b}^{\frac{\mathbf{I}}{2}}$	20		2
11	ð		ð			_	3031	722	3 P						30		3
12	t		t				4041	311	4 P						40		4
13	Ω		Ω				5051	322	5 P					b ¹ / ₅	5 O	_	5
14	\mathbf{x}	x	x	Ъ	x		15·0·Ī <u>5</u> ·2	32.13.13	$\frac{15}{2}P$	$EA_{\overline{15}}$	$\frac{15}{16}P + 3$	3 —		$b^{\frac{2}{15}}$	$\frac{15}{2}$ O		15
15	Т		Т			_	12.0.12.1	25.11.11	12P	_		_	_	_	12.0	_	12.12
16	e		e	e		;	39.0.35.2	80.37.37	3 <u>9</u> P		_			$b^{\frac{2}{39}}$	³⁹ 0		39 2
17	σ		ā				1123	210	² / ₃ P ₂						$\frac{\mathbf{I}}{3}$		10
18	Ò		0	0			1122	521	P 2				_	a ²	<u>I</u> 2		3/2 O
19	\mathbf{D}	_	D		~	_	2243	311	43 P 2	-		_		$\mathbf{a}^{\frac{3}{2}}$	<u>2</u> 3		20
20	δ						5.5.10.7	22.7.8	¹⁰ P 2					$a^{\frac{7}{5}}$	<u>5</u>		$\frac{15}{7}$ O
21	đ		d				3364	13.4.5	3 P 2					$a^{\frac{4}{3}}$	<u>3</u> 4		⁹ / ₄ o
22	s	r	s	s	s	s	1121	412	2 P 2	BA ₂	R	Å	a ²	a ^I	I	_	30
23	f		f		-		3361	10.1.8	6 P 2			_			3		90
24	Φ		Φ				6.6.12.1	19-1-17	12P 2		_			$a^{\frac{1}{6}}$	6		18∙0
25	Δ		Δ				2133	821	P 3/2						2 I 3 3	1]	4 I 3 3
26	g	_	g				5165	16-1-2	6 P 6						1]	1 1 5	7 4 5
27	χ		χ				9.7.16.9	34.7.14	16P16					x	1 7/9	1 7/9	23 <u>2</u> 9 9
28	٧	\mathbf{v}	\mathbf{v}	x	v	a	2131	20Ī	$3 P \frac{3}{2}$	BD_5	$(P)^{\frac{5}{3}}$	_		v	2 I	I 2	4 I
29	n		n				3141	814	4 P 4/3						3 І	1 3	5 2
30	m					1	11.2.13.2	26·7·13	¹³ P ¹³ / ₁			_			II I	111	15 9 2 2
31	w	w	w	v			7181	16.5.8	8 P 8/7	_				w	7 I	1 7	96
32	β		β	w			I I · I · Ī Ž · I	834	12P _{II}						1.1	1.11	13.10
33	у		у .	<u>y</u>			13.1.14.1								3.1	1.13	15.12
34	h		h	h		I	19·1·20·1			 1 pa dn 23	— 3 (D 9) 5				9·1	1·19	21.18
35	γ z	g	γ				7184	19.2.5		AE2.BD 2 3	- (r-z) ⁻			γ	7 I 4 4 4 2 3 3	$2\frac{1}{4}$ $2\frac{2}{3}$	9 3 4 2 8 3
36			z	z			4263	13.1.2						z	3 3		
37	k Σ		k	k		-	4261	313	$6 P \frac{3}{2}$				-	k	4 2	2 4	8 2
38	2		Σ			- - 1	16.8.24.1	13.3.11	24P 3/2		_]	6.8	8-16	32.8

300 Beryll.

Bemerkungen.

In Miller's Min. 1852. 336 ist zu lesen:

Dies ergiebt sich aus dem Projectionsbild und den Symbolen der zugehörigen Formen v_i und w_i .

Bei Hausmann (Handb. 1847. 2. (1) 604 u. 605) finden sich zwei Fehler. Es ist zu lesen:

Seite 604 Zeile 8 vu
, 605 , 2 vo
, 604 , 7 vu
, 605 , 2 vo

$$EA_{\frac{2}{3}}$$
 statt $EA_{\frac{3}{2}}$
, 604 , 7 vu
, 605 , 2 vo
 $EA_{\frac{15}{2}}$, $EA_{\frac{15}{2}}$

Dies geht hervor aus dem Vergleich mit anderen Autoren, aus den angeführten Winkeln und aus dem Umstand, dass bei Hausmann für EAn n stets / I ist. Wächst n über I hinaus, so schreibt Hausmann AEn.

Nach der Reihe der Zahlen wäre zu erwarten gewesen 10-1 statt 11-1 für Kokscharow's w, in Naumann'schen Zeichen: 11P $\frac{11}{10}$ statt 12P $\frac{12}{11}$. Allerdings sprechen die Winkelangaben für 11-1. (Kokscharow Mat. Min. Russl. 1853. 1. 155.) Sollte eine erneute Controle des Herrn v. Kokscharow wohl noch zugänglichen Materials etwa doch für 10-1 sprechen? Es wäre dies vom theoretischen Standpunkt interessant.

Correcturen.

```
Hausmann
              Handb.
                                 1847 2 (1) Seite 604 Zeile 8 vu ]
                                                                       lies EA_{\frac{3}{3}} statt EA_{\frac{3}{2}}
                                                   604
                                                              7 vu )
                                                                             EA_{\frac{2}{15}}
                                                                                            E A 15
                                                   605
                                                              2 VO
Miller
               Min.
                                                   336
                                                              9 vu
                                                                              04 Ī
                                                                                             041
                                                   336
                                                                              032
                                                                                             032
Vrba
              Zeitschr. Kryst.
                                 1881 5
                                                   432
                                                                             (3032)
                                                                                            (3032)
```

Beudantit.

Hexagonal. Rhomboedrisch-hemiedrisch.

Axenverhältniss.

$$a:c = 1:1\cdot1842 \ (G_2)$$

$$[a:c=1:1\cdot1842]$$
 (Dauber. Schrauf. G_1 .)

Elemente.

С	= 1.1842	$\lg c = 007342$	$\lg a_o = 016514$ $\lg a'_o = 992658$	$\lg p_o = 989733$	$a_{o} = 1.4626$ $a'_{o} = 0.8445$	$p_0 = 0.7895$	
---	----------	------------------	---	--------------------	---------------------------------------	----------------	--

Transformation.

Dauber. Schrauf. G ₁	G_2
pq	(p+2q) (p-q)
$\frac{p+2q}{3}\frac{p-q}{3}$	pq

No.	Gdt.	Schrauf.	Bravais.	Miller.	Naumann.	G ₁	G_2
I	С	С	0001	111	o R	0	0
2	\mathbf{q}	_	10.0.10.1	733	+ 10 R	+ 10.0	+ 10·10
3	v	V	5051	11.4.4	+ 5 R	+50	+5
4	R	R	1011	100	+ R	+ 10	+1
5	r	r	Ĭ011	22Ĭ	— R	 10	— I
6	s	S	2 O2 I	ΙΙΪ	2 R	— 2 0	— 2
7	t	t	₹052	778	$-\frac{5}{2}R$	— <u>5</u> 0	<u>5</u>
8	u	u	4 041	557	— 4 R	 40	4
9	v	v	<u>5</u> 051	223	5 R	5o	 5

302 Beudantit.

Literatur.

```
Dauber
             Pogg. Ann.
                         1857
                              100
                                    579
Sandberger Pogg. Ann.
                         1857
                               100
                                    589
Dana
             System
                         1873
                                    61 і
Schrauf
             Atlas
                                    Taf. XXXIV
                         1873
Rath
             Jahrb. Min.
                         1877
                                    829 (Dernbach).
```

Bemerkungen.

Die berechneten Elemente entsprechen der Aufstellung G_2 . In den Zahlen ist kein Vorzug für eine der beiden Symbolreihen, doch spricht für G_2 die rhomboedrische Ausbildung, die es als wahrscheinlich erscheinen lässt, dass bei weiterer Kenntniss der Formen G_2 die einfachere Reihe sein wird.

Correcturen.

Schrauf Atlas 1873 Text zu Taf. XXXIV Zeile 16 vo lies Dernbach bei Montabaur statt Montabaur bei Dernbach.

Bieberit.

Monoklin.

Axenverhältniss.

 $a:b:c=\iota\cdot 1814:\iota:\iota\cdot 5323$ $\beta=\iota 04°40$ (Marignac. Schrauf.)

Elemente.

a == 1·1814	$\lg a = 007240$	$\lg a_0 = 988705$	$\lg p_0 = 011294$	$a_o = 0.7710$	$p_0 = 1.2970$
c = 1.5323	lg c = 018534	lg b _o = 981465	lg q _o = 017095	$b_o = 0.6526$	$q_o = 1.4824$
$\mu = 180-3$ 75° 20	$ \left.\begin{array}{l} \lg h = \\ \lg \sin \mu \end{array}\right\} 998561 $	$ \left. \begin{array}{l} \lg e = \\ \lg \cos \mu \end{array} \right\} 940346 $	$\lg \frac{p_o}{q_o} = 994199$	h == 0·9674	e = 0·2532

No.	Miller. Schrauf. Gdt.	Marignac.	Rammels- berg.	Miller.	Naumann.	Gdt.
ı	С	P	С	001	οP	0
2	ь	E	b	010	$\infty P \infty$	0 00
3	m (M)	M	p	110	∞P	∞
4	e	e ¹ / ₃	<u>q</u>	013	½ P∞	0 <u>I</u>
5	О	e_	\mathbf{q}	011	₽∞	0.1
6	f	$\mathbf{a}^{\frac{\mathbf{I}}{3}}$	<u>r</u>	103	$\frac{1}{3}P\infty$	$+\frac{1}{3}$ o
7	v	a	r	101	— P∞	+10
8	t	α	r¹	ĪOI	$+P\infty$	— I O
9	p	m	О	III	— P	+ 1
10	n	n	s	121	2 P 2	+ 1 2
11	ν	γ	s ⁱ	T 31	+ 2 P 2	— I 2

304 Bieberit.

Literatur.

BrookeAnn. Philos.18... 221201)MillerMin.1852 — 549MarignacRech. s. l. formes cryst. d. quelques compos. chim. Genf 1855.SchraufAtlas1873 — Taf. XXXIV.RammelsbergHandb. kryst. phys. Chem. 1881 1 419GrothTab. Uebers.1882 — 54 (Kobaltvitriol).

Bemerkungen S. Seite 305 u. 306.

¹⁾ Citirt nach Schrauf. Die Arbeit war mir nicht zugänglich,

Bieberit, 305

Bemerkungen.

Für den Bieberit finden wir dreierlei Elemente angegeben:

```
berechnet aus den Winkeln von Miller: a:b:c = 1.1832:1:1.5986 \beta = 104^{\circ}54 nach Rammelsberg und Groth Tab. " = 1.1835:1:1.4973 \beta = 104^{\circ}55 " Marignac, Schrauf Atlas. " = 1.1814:1:1.5323 \beta = 104^{\circ}40
```

Diesen Angaben liegen nur zwei Beobachtungsreihen zu Grunde, die ältere von Brooke (Ann. Phil. 22. 120), die neuere von Marignac (Mem. Geneve 1855).

Aus den Beobachtungen von Brooke haben Miller und Rammelsberg ihre Elemente berechnet, jedoch von den nicht abgeglichenen Winkeln verschiedene der Rechnung zu Grunde gelegt. Marignac giebt eigene Grund-Winkel, aus denen Schrauf die Elemente berechnet hat.

Folgende Zusammenstellung wird am besten Klarheit geben. Sie wird auch deshalb willkommen sein, weil sie Marignac's berechnete Winkel wiedergiebt, die ausser in der nicht sehr verbreiteten Originalarbeit sich nirgends finden.

(Gdt.	Brooke.	M	liller.	Ramn	relsberg.		Marignac.	
Buchst.	Symbol.	∠ beob.	Buchst.	∠ berech.	Buchst.	∠ berech.	Symbol.	∠ berech.	∠ beob.
b m	000:00			_	b : p	41°10	E : M	41°11	41°11
m m	∞:∞	97°40	m m	*97°40	$\mathbf{p} : \mathbf{p}$	*97°40	M : M	97°38	*97°38
ср	0:1				c:0	55°01	P : m	55°38	55°40
c m	0:00	80°15	ст	*80°15	c : p	*80°15	P : M	80°24	*80°24
c f	$o: \frac{3}{1}o$			-	$c:\frac{r}{3}$	20° I I	$P:a\frac{I}{3}$	20°39	20°36
c v	0:10	44°05	c v	*44°06	c:r	42°41	P : a	43°22	43°20
(μ)	0:00		_		(o)	75°05	$P: h^{\iota}$	75°20	
сt	0:-10	61°07	ct	63°25	c: r1	*61°07	P : α	61°51	61°49
се	$o:o^{\frac{1}{3}}$		еc	27°15	$c: \frac{q}{3}$	25°45	$P:e^{\frac{I}{3}}$	26°08	_
со	0:01	56°0	co	57°05	c : q	55°21	P : e	56°0	*56°0
0 0	01:01		00	114°10	q:q	110°42	e:e	112°0	111°58
сn	0:12	-	_		c:s	67°07	P : n	67°35	67°30
СУ	0:-12		_		c : s'	77°53	P : v	78°13	78°0
b n	O∞:12		_		b:s	31°56	E:n	31°39	31°40
bр	0∞:1	-	bр	50°32	b : o	51°15	$\mathbf{E}:\mathbf{m}$	50°57	50°50
bν	00:10	-	-		b:r		E : a	90 —	90°0
рр	1:1				0:0	77°30	$\mathbf{m}:\mathbf{m}$	78°06	78°0
n n	12:12		_		s:s	116°08	n:n	116°42	
tν	-10:-12		_		$\mathbf{r}^{i}:\mathbf{s}^{i}$	64°15	α:ν	64°22	64°20
νv	-12:-12		_	-	s': s'	128°30	ν:ν	128°43	128°38
o v	01:10		o v		q:r		e:a	66°01	66°02
v m	10∶∞		v m	_	$\mathbf{r} : \mathbf{p}$	56°14	$\mathbf{a}: \mathbf{M}$	56°02	56°04
Vν	10:-12		_		r : s'		a : v	83°29	83°34
mо	∞ : 10		mо	-	$\mathbf{p} : \mathbf{q}$		$\mathbf{M} : \mathbf{e}$	57°57	57°54
mν	∞:-12		_		$\mathbf{p}:\mathbf{s}^{\scriptscriptstyle{\dagger}}$	-	M :ν	27°27	27°29
m f	$\infty : \frac{1}{3}O$		_		$p:\frac{r}{3}$	-	$M:a^{\frac{I}{3}}$	67°37	67°45
t m	-10:∞		t m		$\mathbf{r}^{\scriptscriptstyle 1}:\mathbf{p}$	61°38	$\alpha: M$	61°07	61°09
tn	-10:12		_	-	r¹:s		α:n	82°05	
to	-10:01		to	-	$\mathbf{r}^{\scriptscriptstyle 1}:\mathbf{q}$		α:e	105°18	105°10
mо	∞:01		mо		$\mathbf{p} : \mathbf{q}$		$\mathbf{M} : \mathbf{e}$	44°11	44°10
o f	$OI: \frac{1}{3}O$		_		$q:\frac{r}{3}$		e:a ^I / ₃	58°27	58°26

Die Winkel * sind von Miller, Rammelsberg, Marignac zur Berechnung der Elemente benutzt worden. Alle Winkel in der Tabelle sind Polarwinkel.

(Fortsetzung S. 306.)

306 Bieberit.

Bemerkungen. (Fortsetzung von S. 305.)

Aus der Tabelle ist ersichtlich, dass die verschiedenen Autoren folgende Winkel den Elementen zu Grunde gelegt haben:

Miller	m m	97°40	c m	80°15	c v	44°06	nach Brooke's Beob.
Rammelsberg	рр	97°40	ср	80°15	c r	61°07	"
Marignac	MM	07028	PM	80°24	Pe	56°0	nach eigener Messung

Marignac MM 97°38 PM 80°24 Pe 56°0 nach eigener Messung. Es ist ferner ersichtlich, dass Marignac's Elemente, die auch Schrauf acceptirt hat, und die daraus berechneten Winkel am besten mit der Beobachtung übereinstimmen, weit besser als die Elemente Rammelsberg's, die sich in Groth's Tab. Uebers. wiederfinden. Warum Rammelsberg es vorgezogen hat, statt die ihm bekannten Rechnungen Marignac's anzunehmen auf Brooke's Messungen zurückzugehen und für seine Elemente einen solchen Winkel (cr') aufzunehmen, der von Marignac's Beobachtung stark differirt, ist nicht zu erkennen.

Am wenigsten stimmen mit den späteren Beobachtungen Miller's berechnete Winkel. Der Winkel cv als Fundamental-Winkel ist unglücklich gewählt.

e 012 bei Miller ist ein Druckfehler, statt e 013 wie aus dem Winkel ec 27°15 hervorgeht.

Correcturen.

 Miller
 Min.
 1852
 Seite 549
 Zeile 18 vo lies
 e013
 statt e012

 Schrauf
 Atlas
 1873
 vor Taf. XXXIV
 " 11 vu " —2P2
 " 2P2

Binnit. (v. Rath.)

Regulär. Tetraedrisch-hemiedrisch. (?)

No.	Gdt.	Schrauf.	Miller.	Naumann.	Des Cloizeaux.	G_1	G_2	G ₃
I	С	a	001	∞0∞	p	0	0 00	∞0
2	đ	d	101	ωO	p_1	10	O I	∞
3	μ		1.1.10	10010	a ¹⁰	10	1.10	10.1
4	s		117	707	a ⁷	<u>I</u> 7	17	7 1
5	r	φ	116	6 O 6	\mathbf{a}^6	<u>I</u>	ı 6	6 і
6	k		114	4 O 4	a ⁴	<u>I</u>	I 4	4 I
7	q	n	112	2 O 2	a ²	<u>I</u> 2	I 2	2 I
8	P	О	111	O	$\mathbf{a}^{\mathtt{I}}$	1	I	1
9	φ	[z]	414	4 O	a ¹	1 1	<u>I</u> 1	4
10	w		323	3/2 O	$a^{\frac{2}{3}}$	I 2/3	$\frac{2}{3}$ I	3/2
11	x	π	213	3 O 3/2	s	$\frac{2}{3}\frac{I}{3}$	$\frac{1}{2}\frac{3}{2}$	3 2

308 Binnit.

Literatur.

```
Miller
                 Min.
                                  1852
                                           - 197
                                           97 115
Heusser_{\:\raisebox{1pt}{\text{\circle*{1.5}}}}
                 Pogg. Ann.
                                  1856
                 Atlas

    Taf. XXXIV.

Schrauf
                                  1873
Hessenberg
                 Min. Not.
                                  1875 No. 12 (N. F. 9) 6
                                         2 192 (Binnenthal)
Lewis
                 Zeitschr. Kryst. 1878
                 Phil. Mag.
                                  1878 (5) 5 143.
```

Bemerkungen.

Ueber die erste angegebene Correctur vgl. Hessenberg l. c. S. 8 Fussnote.

Ob der Binnit holoedrisch oder tetraedrisch-hemiedrisch sei, ist noch nicht vollkommen sichergestellt.

Correcturen.

$$Schrauf \quad Atlas \quad 1873 \quad \text{Text zu Taf. XXXIV Z. 5-1 vu lies} \quad z \\ 332 \\ a:a:\frac{3}{2}a \\ \frac{3}{2}O \\ a^{\frac{3}{2}} \\ \end{bmatrix} \quad \text{statt} \quad \begin{cases} z \\ 322 \\ \frac{3}{2}a:a:\frac{3}{2}:a \\ \frac{3}{2}O:\frac{3}{2} \\ a^{\frac{3}{2}} \\ a^{\frac{3}{2}} \\ a^{\frac{3}{2}} \\ \end{bmatrix}$$

Blei.

(Künstliche Krystalle.)

Regulär.

No.	Gdt.	Miller.	Miller.	Naumann.	G ₁	G ₂	G_3
I 2	c p	_ o	001	∞0∞ 0	O I	0∞ 1	∞0 I

310 Blei.

Literatur.

Miller Min. 1852 — 127 Weiss, A. Wien. Sitzb. 1860 39 860.

Bleiglanz.

Regulär.

No.	Gdt.	Schrauf.	Hauy.	Miller.	Nau- mann.	Haus- mann.	Mohs.	Hauy.	Lévy. Descl.	G_1	G_2	G_3
I	с	a	P	001	ω 0ω	W	Н	P	p	0	000	∞0
2	α			1.0.10	∞010				\mathbf{p}_{10}	$O_{\frac{1}{1}}$	10.0	10∞
3	a	i		103	∞O 3				b ³	$\frac{1}{3}$ O	30	3∞
4	d	d	o	101	ωO	R	D	$\overset{\mathtt{I}}{\mathbf{B}}$	$\mathbf{b}^{\mathtt{I}}$	Ι Ο	10	∞
5	β	c		1.1.36	36036				a ³⁶	36	36∙1	36∙1
6	γ			1.1.15	15015				a ¹⁵	I 15	15.1	15.1
7	y	b		1.1.12	12012	Tr-AE 12	_	_	a ¹²	I I2	12.1	12.1
8	μ			1.1.10	10010			_	a^{10}	IO	10.1	10.1
9	ð		_	119	909		_		a 9	<u>I</u>	9 1	9 I
10	x	τ		2.2.15	15O15		_	_	$a^{\frac{15}{2}}$	<u>2</u> I 5	1 <u>5</u> 1	15 2 I
ΙI	r	z	r	116	606	Tr-AE 6		${f \mathring{A}}$	a^6	<u>1</u>	6 і	6 г
12	1		_	115	5 O 5		_		a ⁵	<u>I</u>	5 1	5 I
13	k	ĺτ		114	4 O 4	_		_	a ⁴	<u>I</u>	4 I	4 I
14	m	m	z	113	3 O 3	Tr-AE 3	C 2	Å	a^3	$\frac{\mathbf{I}}{3}$	3 1	3 І
15	q	n	n	112	2 O 2	Tr-AE2	С1	Å	a ²	$\frac{I}{2}$	2 I	2 I
16	n	β		223	$\frac{3}{2}$ O $\frac{3}{2}$		_		$a^{\frac{3}{2}}$	<u>2</u> 3	$\frac{3}{2}$ I	$\frac{3}{2}$ I
17	t	α		334	4 O 4	Tr-AE 4			$a^{\frac{4}{3}}$	<u>3</u>	4/3 I	4/3 I
18	p	O	c	111	О	O	O	${f A}$	a ^I	I	I	1
19	φ	s		414	4 O	P0-EA 1/4			a 4	I 1/4	I 1/4	4
20	v	q		313	3 O				$a^{\frac{1}{3}}$	$I^{\frac{1}{3}}$	$I\frac{I}{3}$	3
21	u	P	1	212	2 O	P0-EA \(\frac{1}{2} \)	Ві	$\overset{1}{A}B^{1}B^{2}$	$a^{\frac{1}{2}}$	I ½	I 1/2	2
22	ψ	r		747	7 O	P0-EA 4		-	$a^{\frac{4}{7}}$	1 4 7	1 4 7	7 4
23	χ	u		545	<u>5</u> O	P0⋅EA 4			$a^{\frac{4}{5}}$	1 4/5	1 4/5	<u>5</u> 4
24	ω	Δ		218	8 O 4					$\frac{1}{4} \frac{1}{8}$	4 ½	8 2
25	x	λ		213	3 O 3/2	_		_	s	2 <u>I</u> 3 3	3 <u>I</u> 2	3 2

312 Bleiglanz.

Literatur.

Hauy	Traité Min.	1822 3	345
Mohs	Grundr.	1824 2	570
Hartmann	Handwb.	1828 —	79
Naumann	Pogg. Ann.	1829 16	487
Levy	Descr.	1838 2	391
Mohs-Zippe	Min.	1839 2	541
Hausmann	Handb.	1847 2	(1) 94
Miller	Min.	1852 —	155
Klein	Jahrb. Min.	1870 —	311
Schrauf	Atlas	1873 —	Taf. XXXIV u. XXXV
Frenzel	Jahrb. Min.	1874 —	425
Sadebeck	D. Geol. Ges.	1874 26	617
Zepharovich	Zeitschr. Kryst.	1877 1	155
Groth	Strassb. Samml.	1878 —	46
Arzruni-Frenzel	Min. Pet. Mitth.	1880 3	509
"	Zeitschr. Kryst.	1882 7	94.)

Correcturen.

Hauy Traité Min. 1822 3 Seite 346 Zeile 2 vu lies A statt A.

Bloedit.

1.

Monoklin.

Axenverhältniss.

Elemente.

a	=	0.6705	lg a = 982640	$lg a_o = 969626$	$lg p_0 = 030374$	a₀ = 0·4969	$p_o = 2.0125$
С	===	1.3494	lg c = 013014	$\lg b_o = 986986$	$\lg q_0 = 012262$	$b_0 = 0.7411$	$q_o = 1.3262$
180	= -β	} 79°22	$ \left \begin{array}{c} \lg h = \\ \lg \sin \mu \end{array} \right\} 999248 $	$ \begin{cases} \lg e = \\ \lg \cos \mu \end{cases} 926605 $	$\lg \frac{p_o}{q_o} = 018112$	h = 0.9828	e = 0·1845

Transformation.

Hintze. Groth. Rath. Schimper. Schrauf. Brezina.	Gdt.
рq	$\frac{1}{p}$ $\frac{q}{p}$
$\frac{\mathbf{r}}{\mathbf{p}} = \frac{\mathbf{q}}{\mathbf{p}}$	pq

No.	Groth. Hintze. Gdt.	Schrauf. Rath.	Miller.	Naumann.	Gdt.
I	a	a	001	oР	O
2	Ъ	ь	010	$\infty P \infty$	0 00
3	c	c	100	$\infty P \infty$	∞0
4	d	d	110	ωP	oo .
5	e	e	120	∞ P2	∞2
6	λ	k	013	$\frac{1}{3}$ P ∞	$O^{\frac{1}{3}}$
7	n	n	012	½P∞	O I
8	1	1	023	<u>2</u> 3₽∞	0 2 3
9	m	m	011	$P\infty$	0 1
10	У	i	Q2 I	2P∞	02
11	þ.		031	3 ₽ ∞	03
12	q	q	īo2	$+\frac{1}{2}P\infty$	$-\frac{1}{2}$ O

(Fortsetzung S. 315.)

3 14 Bloedit.

Literatur.

Tschermak	Wien. Sitzb.	1869	60	718 (Simonyit v. Hallstadt.
				Messungen v. Brezina).
Rath	Pogg. Ann	1871	144	586)
Groth u. Hintze	D. Geol. Ges.	1871	23	670)
'n	Jahrb. Min.	1872	5	528
Schrauf	Atlas	1873		Taf. XXXV.
Schimper	Zeitschr. Kryst.	1877	1	71

2.

No.	Groth. Hintze. Gdt.	Schrauf. Rath.	Miller.	Naumann.	Gdt.
13	p	p	111	— Р	+ 1
14	t	t	T13	$+\frac{1}{3}P$	$\frac{1}{3}$
15	s	s	Ĩ 1 2	$+\frac{1}{2}P$	$-\frac{1}{2}$
16	u	u	TII	+ P	— I
17	f	-	441	+ 4 P	4
18	z	z	131	- 3 P 3	+ 13
19	0	0	121	— 2 P 2	+ 12
20	v	v	212	+ P2	$-1\frac{1}{2}$
21	x	x	T21	+ 2 P 2	12
22	у	у	ī 22	+ P 2	$-\frac{1}{2}I$
23	w	w	211	+ 2 P 2	— 2 I

Bombiccit.

Triklin.

Axenverhältniss.

 $a:b:c = 2\cdot012:1:0\cdot959 \quad \alpha\,\beta\gamma = 89^{\circ}09^{!};\,88^{\circ}12^{!};\,94^{\circ}37^{!} \text{ (Schrauf.)}$

Elemente der Linear-Projection.

a = 2.012	a _o = 2.0980	α = 89°09	x¹5 = 0·0327	d' = 0·0359
b = 1	b _o = 1.0428	β = 88°12	$y'_0 = 0.0148$	$\delta^{\scriptscriptstyle 1}=65^{\circ}36$
c = 0.959	$c_{\circ} = 1$	$\gamma = 98^{\circ}37$	k ⇒ 0.9994	

Elemente der Polar-Projection.

$p_0 = 0.4781$	λ = 91°0	x _o =-0·0314	d = -0.0359
$q_0 = 0.9617$	$\mu=91^{\circ}52$	$y_0 = -0.0175$	$\delta = 60^{\circ}54$
$r_o = r$	v = 85°21	h = 0.9994	

No.	Schrauf. Gdt.	Miller.	Naumann.	Gdt.
I	s	001	οР	0
2	t	010	$\infty \bar{P} \infty$	0 ∾
3	1	001	∞⋫∞	∞ 0
4	m	110	∞ P¹	ov.
5	i	31o	∞'Ď 3	3 ѿ
6	p	OIi	$_{i}ar{\mathbf{P}}^{i}\infty$	ОІ
7	q	023	2/ ₃ , P'∞	0 3
8	r	013	$\frac{1}{3}$, $\tilde{\mathbf{P}}^{1}$ ∞	0 I
9	x	111	$\mathbf{P}^{_{1}}$	1
10	у	535	Ď¹ 3	I 3/5
11	z	515	Ď¹ 5	1 3 1 1
12	O	515	'P 5	1 🚡

318 Bombiccit.

Literatur.

Schrauf Atlas 1873 Taf. XXXV.

Bemerkungen.

Es wurde die von Schrauf gewählte Aufstellung beibehalten, obwohl eine Aufstellung den Vorzug verdienen dürfte mit dem Axen-Verhältniss

$$a:b:c = 0.959: 2.012: 1 \qquad \alpha\beta\gamma = 94^{\circ}37 \ ; \ 90^{\circ}51 \ ; \ 91^{\circ}48^{!}$$

Bezeichnen wir die Aufstellung Schrauf's mit A, diese mit B, so würde zur Transformation das Symbol gelten:

$$p q (A) \stackrel{:}{\rightleftharpoons} \frac{\overline{r}}{q} \frac{p}{q} (B).$$

Boracit.

Regulär.

No.	Gdt.	Miller. Schrauf	Hauy. Mohs. Zippe. Hartm. Hausm.	Miller.	Naumann.	Hausmann.	Mohs- Zippe.	Hauy.	Lévy.	${\mathfrak G}_1$	${\mathfrak G}_2$	G ₃
I	c	a	P	001	∞○∞	W	Н	P	p	o	000	% O
2	a	i		103	∞O 3					$\frac{I}{3}$ O	03	3∞
3	d	d	n	101	ωO	RD	D	B	p_1	10	O I	∞
4	p	0	s	111	+ 0	0	0	Ā	a ¹	+ 1	+ r	+ 1
5	x	n	r	Ī12	— 2 O 2	PTı	Сі	$\hat{\mathbf{a}}$	a^2	$-\frac{1}{2}$	— I 2	- 2 I
6	π	$\mathbf{o}_{_{\mathrm{l}}}$	$\mathbf{s}^{\scriptscriptstyle !}$	ΪΙΙ	– 0	0	О	ĕ		<u> </u>	<u> </u>	- ı
7	Σ	Σ		525	$+\frac{5}{2}O$		_			$+1\frac{2}{5}$	+ ½ I	$+\frac{5}{2}$
8	z	v	H(x)	315	$+50\frac{5}{3}$	TIT2	T 2		$b^{1}b^{\frac{1}{3}}b^{\frac{1}{5}}$	$+\frac{3}{5}\frac{1}{5}$	$+\frac{1}{3}\frac{5}{3}$	+53

320 Boracit.

Literatur.

Hauy	Traité Min.	1822	2	56
Hausmann	Leonh. Taschenb.	1822	16	927
Mohs	Grundr.	1824	2	400
Haidinger	Edinb. Journ.	1825	3	110
,,	Pogg. Ann.	1826	8	511
Hartmann	Handwb.	1828		86
$L \epsilon v y$	Descr.	1838	1	233
Mohs- $Zippe$	Min.	1839	2	385
Hausmann	Handb.	1847	2	(2) 1422
Miller	Min.	1852		602
Schrauf	Atlas	1873		Taf. XXXVI
Des Cloizeaux	Manuel	1874	2	3
Klein	Jahrb. Min.	1880	2	209.

Bemerkungen.

Die von Hauy gegebene und von Mohs (Grundriss) wiederholte Form $x=T_3=\frac{1}{2}\frac{1}{4}$ ist durch die späteren Autoren durch $\frac{3}{5}\frac{1}{5}=T_2$ ersetzt und es hat das Symbol $\frac{1}{2}\frac{1}{4}$ in Wegfall zu kommen.

Borax.

Monoklin.

Axenverhältniss.

Elemente.

a		1.0995	lg a = 004120	$\lg a_o = 998966$	$\lg p_o = 001034$	$a_{\circ} = 0.9765$	p _o = 1.0241
С	==	1.126	$\lg c = 005154$	$lg b_o = 994846$	$\lg q_o = oo3309$	$b_{\text{o}} = o.8881$	q₀ = 1·0792
μ 180	= o-β	73°25	$ \begin{cases} \lg h = \\ \lg \sin \mu \end{cases} $ 998155	$\begin{cases} \lg e = \\ \lg \sin \mu \end{cases} 945547$	$\lg \frac{p_o}{q_o} = 997725$	h = 0.9584	e = 0·2854

Transformation.

Lévy.	Mohs 1824. Hartmann.	Mohs- Zippe.	Hausmann.	Dana. Schrauf. Groth.	Miller.	Hauy. Descloiz. Gdt.
pq	—4p (8q — 1)	— 4p · 4q	4 q · 4 p	4p · 4q	2p · 2q	2p 2q
$-\frac{p}{4}\frac{q+1}{8}$	pq	$p \frac{q+1}{2}$	$-\frac{q+1}{2}p$	$-p\frac{q+1}{2}$	$\frac{p}{2} \frac{q+1}{4}$	$-\frac{p}{2}\frac{q+1}{4}$
$-\frac{p}{4}\frac{q}{4}$	p (2q — 1)	рq	— q p	— p q	p q 2	$-\frac{p}{2}\frac{q}{2}$
q p 4 4	-q·-(2p+1)	— q p	pq	q p	$-\frac{q}{2}\frac{p}{2}$	$\frac{q}{2} \frac{p}{2}$
<u>p</u> <u>q</u> 4	— p (2q — 1)	— p q	qр	рq	$-\frac{p}{2}\frac{q}{2}$	$\frac{p}{2} \frac{q}{2}$
$-\frac{p}{2}\frac{q}{2}$	2p (4q — 1)	2p 2q	— 2q 2p	— 2p · 2q	рq	— p q
$\frac{\mathbf{p}}{2} \frac{\mathbf{q}}{\mathbf{z}}$	2p (4q 1)	— 2p · 2q	2q · 2p	2p · 2q	— p q	pq

No.	Miller. Schrauf. Gdt.	Hauy. Hausm. Mohs. Zippe. Naum. Zirk.	Miller.	Nau- mann.	Haus- mann.	[Mohs 1824.]	[Mohs- Zippe 1839.]	Hauy.	[Lévy.]	Descl.	Gdt.
I	С	P	001	οP	Α	— Ўr	P—∞	P	p	р	0
2	Ъ	T	010	$\infty P \infty$	\mathbf{B}_{1}	Ĕr+∞	Pr+∞	T		gI	0 00
_3	a	M	100	$\infty P \infty$	В	Pr+∞	Ĕr+∞	M	h I	h I	∞ o
4	m	r	110	∞P	E	$(Pr+\infty)^3$	P+∞	1G1	m	m	ω .
5	s	s	O2 I	2 P∞		_				$e^{\frac{1}{2}}$	0 2
6	0	О	Ĩ I 2	$\frac{1}{2}$ P	\mathbf{P}^{\dagger}	P	P	Å	b^2	Ъī	$-\frac{1}{2}$
7	z	z	ĪII	P	$\bar{E}A_{\frac{1}{2}}$	(Ĕr) ⁵	P+1	Å	p _I	$b^{\frac{1}{2}}$	_ I

Goldschmidt, Index.

322 Borax.

Literatur.

Hauy	Traité Min.	1822	2	200
Mohs	Grundr.	1824	2	64
Hartmann	Handwb.	1828		85
$L \epsilon v y$	Descr.	1838	1	332
Mohs- $Zippe$	Min.	1839	2	54
Hausmann	Handb.	1847	2	(2) 1430
Miller	Min.	1852	_	604
Schrauf	Wien. Sitzb.	1860	39	905
,,	Atlas	1873		Taf. XXXVI
Dana	System	1873		597
$Des\ Cloizeaux$	Manuel	1874	2	7
Groth	Tab. Uebers.	1882		59

Bemerkungen.

J. D. Dana giebt die Winkel, die er aus Miller's Min. 1852. 604 entnommen hat, jedoch ist in dem daraus berechneten Axen-Verhältniss ein Rechenfehler. Es soll heissen:

```
a:b:c = 0.5121:1:0.9095 statt a:b:c = 0.4906:1:0.9095.
```

Dieser Fehler ist übergegangen in Groth's Tab. Uebers. und es ist dort zu lesen S. 59:

```
a : b : c = 1.0995 : 1 : 0.5630
```

statt a:b:c = 1.0997:1:0.5394.

Dieselbe Correctur ist anzubringen in Naumann-Zirkel Elemente d. Min. 1877 Seite 394.

Correcturen.

```
Hartmann
                      Handwb.
                                  1828 — Seite 85 Zeile 12 vu lies Fig. 103 statt Fig. 101.
                                                                                           2
                                                                          88°9
                                                                                         80°9
                                                           14 VO
Hausmann
                      Handb.
                                  1847 2 (2)
                                               1431
                                                           13 VO
                                                                        B'A_{\frac{1}{4}}(s)
                                                                                        B^{\dagger}A_{\frac{1}{4}}(s)
Dana, J. D.
                     System
                                  1873 -
                                                           ov o
                                                                        0.5121
                                                 597
                                                                                        0.4906
Naumann-Zirkel
                     Elem.
                                  1877 -
                                                 394
                                                           3 vo
                                                                        0.5630
                                                                                        0.5394.
Groth
                     Tab. Uebers. 1882 —
```

Botryogen.

Monoklin.

Axenverhältniss.

Elemente.

a = 0.6522	lg a = 981438	$lg \ a_o = oo 3964$	lg p _o = 996036	a _o = 1.0955	p _o = 0.9128
c = 0.5953	$\lg c = 977474$	$\lg b_o = 022526$	$\lg q_o = 972241$	$b_o = 1.6798$	$q_o = 0.5277$
$\mu = \begin{cases} 62^{\circ}26^{\circ} \end{cases}$	$\begin{cases} lg h = \\ lg sin \mu \end{cases} 994767$	$ \lg e = $	$\lg \frac{p_o}{q_o} = o23795$	h = 0.8865	e = 0·4628

Transformation.

Haidinger. Mohs-Zippe. Hausmann.	Miller.	Dana. Schrauf. Gdt.
рq	$-\frac{2}{3} p \frac{2}{3} q$	² / ₃ p ² / ₃ q
$-\frac{3}{2} p \frac{3}{2} q$	рq	— p q
$\frac{3}{2}$ p $\frac{3}{2}$ q	— p q	рq

No.	Miller. Gdt.	Haidinger. Mohs-Zippe. Hausmann.	Miller.	Naumann.	[Hausmann.]	[Haidinger.] [Mohs-Zippe]	Gdt.
I	С	P	001	oР	A	P —∞	0
2	ь	u	010	$\infty P \infty$	В	Ĭr+∞	000
3	m	g	110	∞P	E	$P + \infty$	~
4	f	f	120	∞P 2	B B12	$(\breve{P} + \infty)^2$	∞2
5	v	q	023	$\frac{2}{3} \mathcal{P} \infty$	[Ā B 2]	[Ĕr—1]	0 2
6	x	у	TOI	$+P\infty$	$\mathbf{B}^{I} \mathbf{A} \frac{2}{3}$	$-\frac{3}{4}\bar{P}r+1$	-1 o
7	n	n	TII	+P	[P']	[—P]	— т

Literatur.

Haidinger	Pogg. Ann.	1828	12	491
Mohs-Zippe	Min.	1839	2	48
Hausmann	Handb.	1847	2	(2) 1199
Miller	Min.	1852		551
Schrauf	Atlas	1871		Taf. XXXVI
Dana	System	1873		657

Bemerkungen Correcturen s. Seite 325 u. 326. Botryogen. 325

Bemerkungen.

Haidinger giebt (Pogg. Ann. 1828. 12. 491) folgende Winkel an:

$n_{i}: n = 125^{\circ}22$		$n : n = 125^{\circ}22$
$q : q = 141^{\circ} o$	die von Brooke und	$v: v' = 141^{\circ} O$
$P : g = 113^{\circ}37$	Miller aufgenommen	m: c == 113°37
g : g = 119°56	wurden (Min. 1852. 531)	m:m'= 119°56
$f : f = 81^{\circ}44$	als:	f : f == 81°44
$y : P = 125^{\circ}31$		$c: x = 54^{\circ}29$

Diese Winkel stimmen unter sich nicht überein und je nach den Winkeln, die man als Fundamentalwinkel auswählt, fällt das Axenverhältniss verschieden aus. Miller hat dazu die Winkel cx; mm' und cm' gewählt, aus diesen 101, 100 = 63°5 berechnet.

Damit sind die Elemente festgelegt und sie berechnen sich wie folgt:

$$a = 0.6522$$
 $p_0 = 0.9129$ $a_0 = 1.0955$ $\beta = 117^{\circ}34$ $c = 0.5953$ $q_0 = 0.5277$ $b_0 = 1.6797$ $\mu = 62^{\circ}26$

 $c=o.5953 \quad q_o=o.5277 \quad b_o=1.6797 \quad \mu=62^o26$ Nun hat aber Miller, nachdem er schon drei Winkel verwendet, als vierten den Winkel nn' eingeführt resp. bn = 110, 010 = 62°41, welcher Winkel sich mit den anderen nicht verträgt. Aus den nunmehr aufgestellten Winkeln würde sich berechnen:

$$a:b:c = 0.6346:1:0.5792$$
 $\beta = 117^{\circ}34$

J. D. Dana ist ähnlich verfahren, hat jedoch, nachdem $\mu = 62^{\circ}26$ auf dieselbe Weise hergeleitet, den Winkel vv' = 141°0 einbezogen, so zunächst O:1-i 152° 111 und daraus das Axenverhältniss:

$$a:b:c = 0.6521:1:0.5992$$
 $\beta = 117^{\circ}34$

abgeleitet, das Schrauf in seinem Atlas (Taf. XXXVI) aufgenommen hat.

Gewiss ist es nicht correct, nachdem die drei besten Winkel ausgewählt, einen vierten ohne abzugleichen, hereinzuziehen, da hierdurch Widersprüche der berechneten Winkel unter sich entstehen. Im vorliegenden Fall dürfte es um so weniger gerechtfertigt sein, als die zugefügten Winkel unsichere gewesen zu sein scheinen. Darauf deutet der Umstand, dass bei der aus dem Axen-Verhältniss hervorgehenden Transformation:

pq (Haidinger, Mohs-Zippe, Hausmann)
$$\div -\frac{2}{3}$$
p $\frac{2}{3}$ q (Miller) gerade bei n und v (q) eine Uebereinstimmung nicht stattfindet.

Es ist gewiss in diesem Fall am richtigsten, zum Ausgang der Rechnung nur die drei Winkel: cx, mm1, cm zu wählen und auf Grund der oben abgeleiteten Elemente weiter zu rechnen. Dann berechnet sich:

berechn.:	$xn = 27^{\circ}O2 \cdot 5$	beob.:	27° 19	Haidinger	$\left(\frac{\mathbf{n} \ \mathbf{n'}}{2}\right)$
"	$cv = 19^{\circ}23.5$	"	19°30	"	(P q)
,,	$*cx = 54^{\circ}29$	"	54°29	**	(Py)
,,	$*m m' = 60^{\circ}04$,,	60°04	,,	(g g)
,,	$*cm = 113^{\circ}37$,,	113°37	"	(Pg)
**	$ff = 98^{\circ}17$	"	98°16	,,	(f f)

Ausser diesen Winkeln giebt Miller nur noch deren Differenzen, sowie den aus seinen Grundwerthen berechneten Winkel:

$$nc = 58^{\circ}56,$$

der nach unseren Elementen sein würde = 58°50'.

Der von Dana berechnete Winkel:

Neuere Beobachtungen als die von Haidinger konnte ich nicht auffinden und dürften daher die oben gegebenen Elemente, da sie ziemlich gute Uebereinstimmung zwischen Beobachtung und Rechnung gewähren, beizubehalten sein.

Correcturen s. S. 326.

326 Botryogen.

Correcturen.

	(q) statt Pr-1 (q)
Mohs-Zippe Min. 1839 2 , 48 , 4 vu , $\frac{-\frac{3}{4}\bar{P}_1}{2}$	$\frac{r+1}{r}$, $\frac{-\frac{4}{3}Pr+1}{r}$
" " " " 49 " 2 VO " "	
" " " 48 " 3 vu " Fr-	-

1.

Rhombisch.

Axenverhältniss.

```
a:b:c = o.8969: 1: o.9380 \text{ (Gdt.)} [a:b:c = o.9380: 1: o.8969] \text{ (Miller. Hessenberg. Kokscharow.} Groth. Dana. \text{ Miers.}) [\quad " = o.9410: 1: o.8988] \text{ (Schrauf. Zirkel.)} [\quad " = o.938: 1: o.873] \text{ (Hausmann.)} [\quad " = o.938: 1: o.8912] \text{ (Lévy.)} \{a:b:c = o.446: 1: o.938\} \text{ (Mohs. Hartmann. Zippe.)} (a:b:c = o.938: 1: o.446) \text{ (Quenstedt.)}
```

Elemente.

a = 0.8969	$\lg a = 995274$	$\lg a_o = 998054$	lg p _o = 001946	$a_{\circ} = 0.9562$	p₀ = 1.0458
c = 0.9380	$\lg c = 997220$	$\lg b_o = oo2780$	$\lg q_0 = 997220$	b _o = 1.0661	$q_o = 0.9380$

Transformation.

Naum. Hausm. Miller. Dana. Hessenberg. Koksch. Groth. Miers. Zirkel. Schrauf. Lévy.	Mohs. Hartmann. Zippe.	Hartmann. Quenstedt.		Gdt.
рq	$\frac{1}{2\mathbf{p}}\frac{\mathbf{q}}{\mathbf{p}}$	2 p 2 q	$\frac{1}{q} \frac{3p}{2q}$	$\frac{1}{p} \frac{q}{p}$
$\frac{1}{2 p} \frac{q}{2 p}$	рq	$\frac{1}{p} \frac{q}{p}$	$\frac{2 p}{q} \frac{3}{2 q}$	2 p q
$\frac{p}{2} \frac{q}{2}$	$\frac{1}{p} \frac{q}{p}$	рq	$\frac{2}{q} \frac{3p}{2q}$	$\frac{2}{p} \frac{q}{p}$
$\begin{array}{c c} 2 & q & 1 \\ \hline 3 & p & p \end{array}$	$\frac{3 P}{4 q} \frac{3}{2 q}$	$\frac{4 \mathbf{q}}{3 \mathbf{p}} \frac{\mathbf{z}}{\mathbf{p}}$	рq	$\begin{array}{cc} 3 & p & 3 \\ 2 & p & 2 & q \end{array}$
$\frac{1}{p} \frac{q}{p}$	$\frac{\mathbf{p}}{\mathbf{z}} \mathbf{q}$	2 2 q p p	$\frac{p}{q} \frac{3}{2q}$	рq

No.	Gdt.	Schrouf	Mohs- Zippe. Hartm. Naum. Hausm.	Quenst.	Rose.	Rath.	Miers.	Miller.	Nau- mann.	[Haus- mann.]	[Mohs.] [Zippe.] [Hartm.]	[Lévy]	Gdt.
I	ь	b	k	M		a	b	001	oР	\mathbf{B}_{1}	P—∞	h^{I}	0
2	a	a	s	T		b	a	010	∞Ÿ∞	В	ĕr+∞	g^{I}	000
3	c	c	r	P		c	c	100	$\infty \bar{P} \infty$	Α		p	∞ 0

(Fortsetzung S. 329.)

Literatur.

```
Traité Min.
                                      1822
                                                 295
Hauy
                   Min.
                                      1823
                                                  336
Phillips
                                              2
                                      1824
                                                 560
Mohs
                   Grundr.
Hartmann
                  Handwb.
                                      1828
                                                 324
                                      1836(3) 10
                  Ann. Min.
                                                 371
Dufrénoy
L\acute{e}vy,~A.
                   Descr.
                                      1838
                                                 406
                                              2
Mohs-Zippe
                   Min.
                                      1839
                                                 531
                   Handb.
                                      1847
                                              2
                                                 (1) 170
Hausmann
                                             76
Rose, G.
                   Pogg. Ann.
                                      1849
                                                 291
Miller
                   Min.
                                      1852
                                                  201
Dana, J. D.
                   System
                                      1855
                                                  80
                                              3
                   Min.
                                      1856
Dufrenoy
                                                 239
Greg u. Lettsom
                   Man.
                                      1858
                                                  344
                                                 (1) 431
                   Wien. Sitzb.
                                      1862
                                             45
Zirkel
                                                 212 (Min. Not. 1863. 5. 34)
                   Senck. Abh.
                                      1863
                                              4
Hessenberg
                   Wien. Sitzb.
                                      1865
                                              51 (2) 108
Zepharovich
                                                 *Taf. XXXVI
Schrauf
                   Atlas
                                      1873
Dana, J. D.
                   System
                                      1873
                                                  96
Zepharovich
                   Lotos
                                      1876
                   Jahrb. Min.
                                      1876
                                                  555)
Quenstedt
                   Min.
                                      1877
                                                  889
                                              1 602
                   Zeitschr. Kryst.
Rath
                                      1877
                                                  61
Groth
                   Strassb. Samml.
                                      1878
Kokscharow
                   Mat. Min. Russl.
                                      1882
                                                  123
Miers
                   Min. Mag.
                                      1884
                                              6
                                                  59.
```

Bemerkungen S. S. 330. 332. 334—344.

2.

							4.						
No.	Gdt.	Miller. Zirkel. Hessenb. Schrauf.	Mohs. Zippe. Hartm. Naum. Hausm.	Quenst.	Rose.	Rath.	Miers.	Miller.		[Haus- mann.]	I I I I a I I I I I I I I I I I I I I I	[Lévy.]	Gdt.
4	k	k					k	310	∞P̃ 3				3 ∞
5	γ	γ					γ	320	$\infty \bar{P} \tfrac{3}{2}$	$AB\frac{3}{2}$			$\frac{3}{2}$ ∞
6	n	n	n	n	n	n	n	110	∞P	D ($(P + \infty) \stackrel{3}{=} (P + \infty)^2$	e ^I	∞
7	Σ	Σ				У	Σ	130	∞P̃ 3				∞ 3
8	η	η		_		_	η	013	$\frac{1}{3} \breve{P} \infty$		_		$O_{\frac{1}{3}}$
9	e	e	e	е	e	e	e	012	½ P̃∞		Pr—1	h ³	$0\frac{I}{2}$
10	1	1				1	1	023		$B^{\scriptscriptstyle \dagger}B\tfrac{3}{2}$	_	h ⁵	0 2
11	R		-				R	057	5/P ∞				0 5
12	П							0.8.11	⁸ P∞				O 8
13	ð	ð					8	034	<u>3</u> ₽∞				0 3
14	M						M	079	₹P∞			_	0 7
15	k	k					k	045	4 P∞				0 4 5
16	m	m	d	d	d	m	m	011	ĕ∾	\mathbf{E}	Йr	m	0 I
17	Ψ						Ψ	065	<u>ξ</u> Ϋ∞				0 ⁶ / ₅
18	w	w					w	043	4 P∞				O 4/3
19	α	α		_			α	032		$BB^{\frac{3}{2}}$	 ¥ .		$0\frac{3}{2}$
20	f	f	f	f	f		f	021		BB'.2	ĕr+1	-	0 2
21	i 	i					i	031	3 Й∞				0 3
22	Ξ						Ξ	0.10.3	I ₃ P̃ _∞				O 10
23	Φ	_				_	Ф	041	4 P∞				0 4
24	L						L	051	5 P∞				0 5
25	d	d					d	061	6 ₽∞				o 6
26	ζ	ζ	-				ζ	104	$\frac{1}{4}\bar{P}\infty$ $\frac{1}{3}\bar{P}\infty$				$\frac{I}{4}$ O $\frac{I}{3}$ O
27	δ	δ					δ	103					
28	Z	Z					Z	102		$\mathbf{B}^{I}\mathbf{A}\frac{\mathbf{I}}{2}$ \mathbf{D}^{I}	— Ēr—1	a ^I	$\frac{I}{2}$ O
29	0	0	О	p			0	101	\bar{P}_{∞} $\frac{3}{2}\bar{P}_{\infty}$	D.	27—1 3 Pr	a-	$\frac{3}{2}$ O
30	h	h			_ t		<u>h</u>	302				- 2	
31	х	x	P	q	\mathbf{p}		X	201	2 P ∞ 5 P ∞	A B' 2	Pr	a ²	$\frac{5}{2}$ O
32	F						F	502	½P∞ 3P∞			_	3 O
33	ε	.					3	301					
34	t :	t					t —	401	4 P̄∞ 5 P̄∞				4 O 5 O
35	j	"					$ abla_{\mathbf{v}}$	501 112	5 P ∞ ½ P				$\frac{1}{2}$
36		v											2 2 3
37	D		-				D	223	2/3 P P	— Р (— Ĕr—1) <u>3</u> (Ĕ—1)	$b^{\frac{1}{2}}$	3 1
38 39	y Y	у	у	у		у	y Y	553	5 5 P	<u> </u>			5 3
								221	2 P				2
40	π	π					π λ	221 441	2 F 4 P				4
41 42	Ν	λ					N	11.1.11	P11				I II
		-					s	212	<u> </u>		P-1		1 ½
43	s	s									(Fortsetzung	2 1	

(Fortsetzung S. 331.)

Bemerkungen.

Die Ausscheidung der mit Sicherheit festgestellten Formen von den unsicheren war beim Bournonit besonders schwer, obwohl viele zusammenfassende Formenverzeichnisse für dies Mineral bestehen, von Mohs, Dufrénoy, Zippe, Hausmann, Miller, Zirkel, Hessenberg, Schrauf, Dana, Kokscharow, Miers.

Die Unklarheit rührt zum Theil her vom Material, indem die nach allen drei Richtungen ähnlichen Axeneinheiten zu Verwechselungen¹) Anlass geben, besonders aber versteckte Zwillingsbildungen übersehen wurden, wobei bei der Undurchsichtigkeit des Minerals optische Prüfungen nicht herangezogen werden konnten. Ausserdem finden sich gerade in der Literatur dieses Minerals, besonders in den Arbeiten von Dufrénoy und Zirkel, eine grosse Reihe von Fehlern, wodurch die Vergleichung erschwert, die Sicherheit vermindert wird. Manche Fehler haben sich in andere Werke (Hessenberg, Dana u. a.) übertragen. Schrauf hat in seinem Atlas unter Zufügung neuer Daten eine werthvolle kritische Auslese gehalten und Miers hat unter Durcharbeitung von reichem Material die älteren Angaben vermehrt und zugleich einer Kritik unterzogen.

Miers. Autor ist im Allgemeinen, jedoch unter Heranziehen der Quellen, Miers gefolgt, nur wurde in sofern abgewichen, als diejenigen Formen, welche Miers durch Discussion der älteren Angaben als wahrscheinlich aufgenommen hat, als nicht vollkommen ausser Zweifel gestellt, hier in die Reihe der unsicheren Formen eingeordnet wurden. Es geschah dies unter der Annahme, dass es besser sei, eine möglicherweise richtige Form auszuscheiden, da diese ja doch durch Neubeobachtung Wieder hereinkommen müsse, als durch eine unrichtige das Bild zu verdunkeln. Dies betraf die Formen:

Von den übrigen durch Schrauf ausgemusterten Formen hat Miers h η γ α χ beobachtet (S. 64), jedoch ausser für χ die Art der Beobachtung (Fundort, Combination, Messungen) dazu nicht gegeben, welche Angaben sehr erwünscht wären.²) σ und r führt Miers S. 64 nicht als beobachtet an, dagegen fehlen sie auch S. 73 unter den Nichtbeobachteten. Bei diesem Widerspruch dürfte die Angabe S. 64 als die exaktere anzusehen sein. r ist von Miller angeführt, ohne jede nähere Angabe, jedoch von Niemand später gesehen worden. Es möge also trotz der Autorität Miller's auch für diese Form die Bestätigung abgewartet werden. (Vgl. speciell Schrauf Atlas, Text z. Taf. XXXVI, wo zugleich Zirkel's q = 13 (131) beseitigt wird.)

 τ (Zirkel) sowie τ (Miers) erwähnt Miers unter den von Schrauf weggelassenen Formen nicht. Ebenso ist mir weder aus Miers' Ausführungen, noch aus Phillips' ersichtlich, wieso ν und σ durch Phillips' Messungen gestützt werden. Sollte es für ν und σ heissen: Hausmann's Angaben?

Miers sagt (S. 61): "It will be found that the only observations of much independent value are those of Phillips, Mohs and Hausmann." Er hätte zufügen sollen Lévy, da wir diesem neue zuverlässige Beobachtungen und neue exakte Figuren verdanken. Auch bezieht sich diese Bemerkung nur auf die älteren Beobachtungen.

Phillips, Dufrénoy, Hausmann. Die Angaben von Phillips und Dufrénoy lassen sich deshalb nicht unmittelbar verwenden, weil genannte Autoren die Zwillingsbildungen nicht berücksichtigen; die von Hausmann wohl aus demselben Grunde, oder, wie Miers vermuthet (S. 64), wegen Verwechselung der Axenzonen mit der Haupt-Radialzone. Jedenfalls

(Fortsetzung S. 332.)

¹⁾ z.B. die Haupt-Radialzone (Diagonalzone) cm mit den Axenzonen ca, cb, wie Miers bemerkt (S. 64).

²⁾ Seite 68 Zeile 14 vu steht die Combination cuoynabefmwiaρΣ. Sollte das zweite a eine Wiederholung oder ein Druckfehler statt α sein? Wahrscheinlich letzteres.

3.

No.	Gdt.	Miller. Zirkel. Hessenb. Schrauf.	Mohs. Zippe. Hartm. Naum. Hausm.	Quenst.	Rose.	Rath.	Miers.	Miller.		[Haus- mann.]	i riarimann. i	[Lévy.]	Gdt.
44	v						V	545					1 4/5
45	Q						Q	232	$\begin{array}{c} \bar{P} \frac{5}{4} \\ \frac{3}{2} \breve{P} \frac{3}{2} \end{array}$				I 3/2
46	ρ	p		_		-	P	121	2 P 2				I 2
47	g	g					g	122	Р́2				I ₂ I
48	ŗ	_					$\tilde{\Gamma}$	588	Ĭ 8 5				1/2 I 5/8 I 2/3 I
49	μ	μ		_			μ	233	Ĭ 3 <u>3</u>				$\frac{2}{3}$ I
50	Θ	_		_			Θ	12-17-17	\breve{P}_{12}^{17}		_		12 17 I
51	Z						Z	344	Ĭ 4				$\frac{3}{4}$ I
52	K		-				K	455	P 5/4	_			4/5 I
53	χ	χ					χ	433	4 P 4	AE4/3	_		4/3 I
54	p	p .		_			P	322	$\frac{3}{2}$ \bar{P} $\frac{3}{2}$	AE_{2}^{3}			3/2 I 8/5 I
55	E			_			E	855	8 P 8				
56	Ś						S	955	을 P 을				9 5 I
57	P				_		P :	19-10-10					19 10 1
58	u	u	P	O		u	u	211	2 P 2	AE2	P	b ¹	2 I
59	φ	φ	_				φ	311	3 P 3				3 І
60	Ω						Ω	411	4 P 4				4 I
61	A						ს ¹)	14.2.7	2 P 7				2 2/7
62	В						(613	2 P 6				$2 \frac{1}{3}$
63	ξ	ξ	_		_	. —	ξ	412	2 P 4	- ($(\bar{P}r-1)^{3}(\bar{P}-1)^{2}$		2 ½
64	Δ						Δ	14.4.7	2 P 7/2				2 4 7
65	G		-				G	623	2 P 3				2 2/3
66	ω	ω			_		ώ	643	2 P 3/2				$2\frac{4}{3}$
67	J						J	321	$3\bar{P}\frac{3}{2}$				3 2
68	O	\odot , Θ			_		\odot	312	$\frac{3}{2}\vec{P}$ 3	($(\overline{P}r-2)^{\frac{5}{2}}(\overline{P}-1)^{\frac{3}{2}}$		$\frac{3}{2}$ $\frac{1}{2}$
69	T				_		T	123	$\frac{2}{3} \breve{P} 2$				<u>I</u> 2
70	U	_					U	413	4 P 4			_	4 <u>I</u>
71	W				_		W	134	3 p 3		_		<u>I</u> 3/4
72	H			_			Н	572	$\frac{7}{2}$ $\stackrel{\bullet}{P}$ $\frac{7}{5}$,		-	$\frac{5}{2} \frac{7}{2}$
73	X						X	347	4 P 4				$\frac{3}{7} \frac{4}{7}$

¹⁾ Dieser griechische Buchstabe wurde ersetzt durch A, da er besonders in der Schrift kaum zu unterscheiden ist von dem lateinischen v.

Bemerkungen. (Fortsetzung von S. 330.)

sind seine Elemente incorrect und somit auch seine Winkelangaben, die alle nicht direct Beobachtungen entsprechen, sondern im Anschluss an solche aus Elementen und Symbolen berechnet sind.

Danach erscheint es zwar gerechtfertigt, die Angaben dieser Autoren zum Vergleich heranzuziehen, nicht aber, auf sie allein gestützt, Formen als sichergestellt zu betrachten, die keiner der späteren Beobachter gefunden hat. Die Arbeiten von Dufrénoy und Zirkel bedürfen noch einer eingehenden Discussion.

Dufrénoy. Es ist auffallend, dass (1836) auf Taf. X auftreten die Fundorte:
Alais, Andreasberg, Pontgibaud, Cornwall, Serwoz, Kapnik,
n der Winkeltabelle dagegen:

in der Winkeltabelle dagegen:

Alais, Oberlahr, Pontgibaud, Cornwall, Serwoz, Kapnik,

dass also an Stelle von Andreasberg Oberlahr getreten ist; dies umsomehr, als in der Tabelle für Oberlahr die Flächen Pbfa auftreten, welche die Figur für Andreasberg zeigt. Im Text (1836) kommt Andreasberg nicht vor, Oberlahr mehrmals, doch ohne Hinweis auf die Figur. Es liegt die Vermuthung nahe, dass Andreasberg in der Figur ein Versehen sei. 1856 giebt Dufrénoy im Text (S. 240) Andreasberg, doch nur aus seiner eigenen Figur geschöpft, und S. 241 tritt der von Dufrénoy unbemerkte Widerspruch zu Tag, wo er schreibt: "Pour établir....j'ai réuni dans le tableau suivant les angles des cristaux... de Hartz..."

was nur Andreasberg meinen kann. In der Tabelle aber steht Oberlahr, das in Rheinpreussen liegt. Beide Fundorte sind bekannt, der Habitus der Figur spricht für Oberlahr. Dies scheint der wahre Fundort zu sein.

Zu Fig. 274 Taf. 97, 276, 281, 282, 283 Taf. 98 (1856) fehlt im Text die Angabe des Fundorts, und es ist mir nicht gelungen, denselben durch anderweite Angaben sicher zu stellen. S. 240 ist für Fig. 278 zugleich der Fundort Alais und Pontgibaud angegeben. Fig. 277 soll von Pontgibaud sein, hat aber mit der Fig. 5 (1836) für denselben Fundort keine Aehnlichkeit, dagegen soviel mit Fig. 278, dass die Vermuthung einer Verwechselung vorliegt. Dabei ist in Fig. 277 dieselbe Fläche mit e² bezeichnet, die in Fig. 278 e¹ heisst. Dass dies dieselbe sei, zeigt die genau gleiche Richtung der Kanten in beiden Figuren. Die Figuren 1836 sind zum Theil stark verzeichnet. Fig. 279 (1856) soll wohl = Fig. 3 (1836) sein, doch stimmen die eingeschriebenen Symbole nicht.

In der Figur für Kapnik (Fig. 8) giebt Dufrénoy M. In der Winkeltabelle tritt Tauf, während M fehlt.

Elementarwinkel giebt Dufrénoy 1836 nicht an. Die Elemente von 1856 entsprechen a:b:c=0.9380:1:0.6137, lassen sich aber mit den Symbolen der Winkeltabelle nicht in Einklang bringen. Die Elemente Lévy's dagegen, von denen Dufrénoy behauptet, sie seien "Donnés sans doute par erreur" sind ganz richtig. Sie lauten übersetzt in die derzeit übliche Schreibweise: a:b:c=0.9380:1:0.8912. Die Winkeltabelle 1856 S. 242 ist eine Kopie derjenigen von 1836. Sie unterscheidet sich von dieser nur durch eine andere Bezeichnung der Flächen. In diesen Flächenzeichen aber sind so viele Fehler, dass, wenn sich schon aus der Tabelle 1836 nicht viel Nutzbares gewinnen lässt, die spätere ganz unbrauchbar ist.

Unverständlich ist auch Dufrénoy's Bemerkung (1836 S. 380): "on doit rappeler néanmoins cette circonstance singulière, que les cristaux les plus nets de Bournonite du Cornouailles, d'Oberlahr et d'Alais, que j'ai mesurés, ne présentent pas une seule face commune, " da er doch in seiner Winkeltabelle für alle drei Fundorte die Fläche P, für Alais und Oberlahr aber P b a gemeinsam angiebt.

Sehen wir Dufrénoy's Mittheilung 1856 im Ganzen an, so finden wir auf drei Seiten so viele Fehler zusammengedrängt, als sich nicht leicht in der mineralogischen Literatur auf gleichem Raum zusammenfinden dürften. Eine Erklärung, wie dies möglich sei, können wir (Fortsetzung S. 334.)

Unsichere Formen.

No.	Miers.	Zirkel, Hessen- berg.	Miller.	Miller.	Naumann.	Gdt.				
1				14-1-0	∞ P 14	14 ∞		Miers 1)		
2				410	∞P̄ 4	4 ∞		Miers 1)		
3				оіб	<u>∓</u>	$O \frac{9}{1}$		Miers 1)		
4			_	085	<u>8</u> μ∞	O 8/5		Miers 1)		
5				053	<u>5</u> P∞	$O \frac{5}{3}$		Miers 1)		
6				0.13.6	<u>13</u> P∞	0 <u>13</u>		Miers 1)		
7				0.16.5	<u>16</u> P∞	o 16		Miers 1)		
8				072	$\frac{7}{2} \overset{\circ}{P} \infty$	$0^{\frac{7}{2}}$		Miers 1)		
9				091	9 P∞	0 9		Miers 1)		
10	-			709	7 P̄∞	$\frac{7}{9}$ o		Miers 1)		
11	σ	σ		405	4/5 P̃∞	4 o	= f	(Dufrénoy)	$=$ B'A $\frac{4}{5}$	(Hausmann) 2)
12	y	k		403	$\frac{4}{3}\bar{P}\infty$	$\frac{4}{3}$ O	==		$=AB^{1}\frac{4}{3}$	(Hausmann) 2)
13	ψ	ψ		702	$\frac{7}{2}\bar{P}\infty$	$\frac{7}{2}$ O	$= b_2$	(Dufrénoy)	$= AB^{1\frac{7}{2}}$ $= b_2$	(Hausmann) (Phillips) 2)
14	β	β		801	8 P ∞	8 o	$= c_1$	(Dufrénoy)	$=$ \overrightarrow{AB} 8	(Hausmann)
15	τ			13.0.1	ıзР́∞	13.0	=	_	$= c_1$ $= AB' 13$ $= b_1$	(Phillips) ²) (Hausmann) (Phillips) ²)
16				11.17.17		$\frac{II}{17}$ I		Miers 1)		
17		-		11-14-14	. Ĕ <mark>I4</mark>	$\frac{II}{I4}$ I		Miers 1)		
18				11.12.12	$ \stackrel{P}{\overset{12}{\overset{7}}{\overset{7}{\overset{7}}{\overset{7}{\overset{7}{\overset{7}}{\overset{7}{\overset{7}}{\overset{7}{\overset{7}}{\overset{7}{\overset{7}{\overset{7}{\overset{7}}{\overset{7}{\overset{7}}{\overset{7}{\overset{7}}{\overset{7}}{\overset{7}{\overset{7}}{\overset{7}{\overset{7}}{\overset{7}}{\overset{7}}{\overset{7}}{\overset{7}{\overset{7}}{\overset{7}{\overset{7}}{\overset{7}{\overset{7}}{\overset{7}}{\overset{7}}{\overset{7}{\overset{7}}{\overset{7}}{\overset{7}}}{\overset{7}}{\overset{7}}}{\overset{7}}{\overset{7}}{\overset{7}}}{\overset{7}{\overset{7}}{\overset{7}}{\overset{7}{\overset{7}}{\overset{1}}{\overset{1}}}{\overset{1}}}{\overset{1}}{\overset{1}}{\overset{1}}{\overset{1}}}}{\overset{1}}{\overset{1}}{\overset{1}}{\overset{1}}{\overset{1}}}{\overset{1}}{\overset{1}}{\overset{1}}{\overset{1}}}{\overset{1}}{\overset{1}}{\overset{1}}{\overset{1}}}{\overset{1}}{\overset{1}}}{\overset{1}}}{\overset{1}}}{\overset{1}}}}{\overset{1}}}}}}}}$	$\frac{II}{I2}$ I		Miers 1)		
19				21.20.20	$\frac{21}{20}\bar{P}_{20}^{21}$	2 <u>I</u> I		Miers 1)		
20				544	$\frac{5}{4}\bar{P}\frac{5}{4}$	5 I		Miers 1)		
21				38-20-19		2 20 19		Miers 1)		
22	_		_	231	$3 \stackrel{\vee}{\mathrm{P}} \frac{3}{2}$	2 3		Miers 1)		
23				863	$\frac{8}{3} \ddot{P} \frac{4}{3}$	$\frac{8}{3}$ 2		Miers 1)		
24				34-11-22	$\frac{17}{11}\bar{P}_{11}^{34}$	$\frac{I7}{II} \frac{I}{2}$		Miers 1)		
25	r	r	r	431	4 \bar{P} $\frac{4}{3}$	4 3		Miller (s. B	emerkungei	1)
26	-			9.10.1	10Ř <u>10</u>	9 ·10		Miers 1)		
27			.—	19.18.1	$19ar{ m P}_{18}^{19}$	19.18		Miers ¹)		

Ausserdem als ganz unsicher zu löschen:

28	q		 131	3 P 3	1 3	Zirkel. Von Schrauf verworfen
29		_	 430	$\infty \bar{P} \frac{4}{3}$	<u>4</u> ∞	(Atlas Text zu Taf. XXXVI.) Hausmann = $AB_{\frac{4}{3}}$. Nach Miers wohl
40		-	ro/1	5⁄7 P̄∞	5 0	identisch 21 (u) Hausmann = $B^{1}A_{7}^{5}$. Nach Miers wohl
30		٠.	 507	7100	7 0	identisch I (y).

¹⁾ Miers 1) bedeutet: Miers Min. Mag. 1884. 6. Seite 66 Tab. II. 2) Vgl. Miers Min. Mag. 1884. 6. Seite 62 und 65.

Bemerkungen. (Fortsetzung von S. 332.)

finden, wenn wir uns die wahrscheinliche Art des Zustandekommens dieses Berichts vorstellen. Diese dürfte folgende gewesen sein. Dufrénoy nahm in der Hauptsache sein Mémoire von 1836 auf, fügte dazu ausser einigen Figuren, deren Quelle ich nicht auffinden konnte, Zeichnungen von Lévy, die er mit den eingezeichneten Symbolen aufnahm. Nun folgte der Versuch, Lévy's Figuren mit der Winkeltabelle in Einklang zu bringen und Lévy'sche Zeichen in diese einzustellen. Dieser Versuch misslang und nun suchte Dufrénoy einen Ausweg darin, dass er Lévy's Elemente als falsch bezeichnete und an Stelle solcher Zeichen, für die er zutreffende nicht finden konnte, beliebige oder gar keines setzte. Durch Druckoder Schreibfehler ist das Vorliegende nicht zu erklären und es ist der Setzer gewiss vorsichtig gewesen, indem sich in den Winkeln nur ein einziger Druckfehler findet (88° 55' statt 85° 55'). Mohs' und Hausmann's Angaben hat Dufrénoy nicht benutzt,¹) obwohl er erstere sicher zu Hand hatte. Giebt er doch in der Einleitung zu dem Atlas (Bd. 5) eine längere Erklärung Mohs'scher Symbole. Aus der Uebereinstimmung mit diesen Angaben wäre die Richtigkeit der Lévy'schen Elemente hervorgegangen.

Aus der ganzen Betrachtung geht hervor, dass man bei späteren Untersuchungen über den Bournonit sich aus dem Mémoire von 1836, soweit es Formenbeschreibung betrifft, kaum einen Nutzen versprechen darf, höchstens kann man die Messungen als Bestätigung herzuziehen, zu an sich bereits sicher gestellten Beobachtungen, die Angaben 1856 jedoch sind am besten vollständig unbenutzt zu lassen.

Hausmann's AB8 und AB'13 geben, direkt umgewandelt in die Zeichen des Index, 8∞ und $13\cdot0$. Miers hat für erstere Form auf Grund der Voraussetzung, dass Zwillungsbildung vorliege und unter Vergleich mit Phillips' Messungen und Figur das Symbol 018 entsprechend unserem 80 genommen. Ausserdem hat Miers Hausmann's AB' $\frac{4}{3}$ und B'A $\frac{4}{5}$, die sonst nirgends bestätigt sind, aufgenommen. Immerhin ist die Differenz der Winkel beträchtlich und dadurch, dass Hausmann nur berechnete Winkel giebt, also gegen die Beobachtung uns unbekannte Veränderungen vorgenommen hat, eine noch grössere Differenz zwischen Beobachtung und Rechnung für die nun acceptirten Symbole möglich. Einen Ueberblick giebt folgende kleine Zusammenstellung:

			Winkel mit ∞o == c			
Miers.	Hausmann.	Index.	Hausmann.	Aus Miller's Elementen.		
τ	A B'13	13.0	4°06	4° 12		
β	A B 8	8∞	6° 13	6° 23		
P	Abo	80	0 13	6° 49		
ν	A B'4/3	4/3 O	34°55	35°39		
σ	B'A 4/5	4/5 O	49° 20	50°05		

Die Differenzen sind doch zu bedeutend, um Formen, die sonst nicht bekannt sind, unter Zuhilfenahme einer Vermuthung, dass nämlich für β die Zwillingsbildung übersehen sei, als sichergestellt ansehen zu können.

¹⁾ Es müsste denn Fig. 281 von Mohs 1824 Taf. II Fig. 24 genommen sein.

Bemerkungen. (Fortsetzung von S. 334.)

G. Rose stellt bei seinem Vergleich das Bournonit mit Aragonit und Cerussit n (Bournonit) neben $(\frac{4}{3}a:\infty b:c)$, während n dem Symbol $(a:\infty b:c)$ nach Rose's Aufstellung entspricht. Es ist zum Vergleich mit dem Bournonit der Winkel 96°31 (Mohs) für den Cerussit der Supplement-Winkel (99°42) heranzuziehen. Das unrichtige Symbol ist auf Zirkel übergegangen.

Die von **Zippe** (Mohs-Zippe Min. 1839. 2. 744) gegebene Correctur: S. 531. Z. 10 vu nach $(\bar{P}-1)^2$ setze y

ist unrichtig. Vielmehr ist in Uebereinstimmung mit Hausmann, Miller u. a. auf der gleichen Seite 531 y für $(P-1)^2$ verwendet worden und kann daher nicht zugleich für $(P-1)^2$ gesetzt werden.

Schrauf giebt zu Fig. 8 Taf. XXXVII die Erklärung: abcefmnoxuy — Lévy Descript. S. 406 Taf. LII Fig. 12. Diese Figur enthält allerdings eine sehr ähnliche Combination in Schrauf's Buchstaben geschrieben: abcelmnoxuy. Also 1 statt f. In Wirklichkeit jedoch findet sich Schrauf's Figur nicht bei Lévy, wohl aber bei Mohs-Zippe (Min. 1839. 2. Taf. V Fig. 35), sowie in Dana's System (1855 S. 80, 1873 S. 97).

Zirkel's "Versuch einer Monographie des Bournonit" bedarf einer eingehenden Revision, um verwendbar zu sein. Eine solche, soweit sie ohne neue Beobachtungen möglich ist und soweit die Arbeit Formbeschreibung giebt, möge hier folgen. An den betreffenden Stellen werden wir hinweisen auf das, was andere Autoren bereits richtig gestellt haben.

S. 440 sagt Zirkel: "Miller-Brooke führen die Winkel:

$$(110) (010) = 43^{\circ} 10^{\circ}$$

$$(101) (001) = 41^{\circ}54^{\circ}$$

an, woraus sich das Axenverhältniss ergiebt:

Dies ist ungenau. Es giebt vielmehr Miller (Min. S. 201) die Grundwinkel:

o11, 010 =
$$46^{\circ}17$$
; 101, 001 = $41^{\circ}53.5^{\circ}$; 110, 100 = $46^{\circ}50^{\circ}$

die ausgeglichen 1) auf das Axenverhältniss führen (nach obiger Schreibweise):

Der Unterschied ist unbedeutend, doch sind die angeführten Winkel einmal in der That nicht Miller's Grundwinkel, dann ist es nicht zu verstehen, warum Zirkel einerseits die 41°53·5 auf 41°54 abgerundet (resp. den abgerundeten Winkel aus dem Winkelverzeichniss entnommen), andererseits die Ausrechnung der Zahlenwerthe auf sechs Decimalen geführt hat, da schon durch die Abgleichung in der vierten Decimalen Differenzen auftreten.

Weiter etwähnt Zirkel nicht, dass Dana's Angaben nur Uebertragungen der Millerschen sind, so dass er sie nicht nur selbstständig neben diese gestellt, sondern sogar vorausgeschickt hat, mit unerklärten Differenzen gegen diese. Hätte Zirkel beide Angaben verglichen, so würde er gefunden haben, dass Dana's 1.0662 wahrscheinlich ein Druckfehler ist, statt 1.06612. Auf die richtige Feststellung der Elemente im Anschluss an Miller aber wäre gerade die grösste Sorgfalt zu legen gewesen, da die betrachteten Winkel resp. Axenverhältnisse den Rechnungen zu Grund gelegt wurden.

(Fortsetzung S. 336.)

¹⁾ Miller's Winkel sind unter sich ausgeglichen, jedoch auf ganze Minuten (der zweite auf $\frac{1}{2}$) abgerundet. Daher kommt es, dass, wenn man das eine oder andere Paar der Berechnung des Axenverhältnisses zu Grunde legt, Differenzen in der vierten Dezimale auftreten. Um sie zu beheben, ist ein neuer Ausgleich nöthig.

Bemerkungen. (Fortsetzung von S. 335.)

Mohs' Elemente hat Zirkel abgedruckt, jedoch ohne sie in eine solche Form zu bringen, dass der Vergleich mit den Angaben der anderen Autoren direkt möglich wäre und ohne anzugeben, in welcher Beziehung Mohs' Aufstellung zu der der anderen steht. Er scheint sich darüber nicht im Klaren gewesen zu sein, was daraus zu schliessen ist, dass er S. 441 die abweichende Bedeutung von Mohs' Axen nicht erwähnt; auch geht dies aus den Auslassungen und Fehlern der Nebeneinanderstellung (S. 443) hervor.

Dann heisst es: "Dufrénoy drückt das Verhältniss der Prismenseite zur Prismenhöhe durch die Zahlen 105:47 aus, oder reducirt 1:0·8952 und bemerkt, dass das Verhältniss 20:13, welches Lévy dafür anführt, zweifelsohne ein irrthümliches sei." In dieser Angabe fehlt zunächst der von Dufrénoy und Lévy angeführte Prismenwinkel 93° 40', ohne den beide Angaben unvollständig sind. Ausserdem hat Zirkel offenbar die Bedeutung dieses Zahlenverhältnisses vollständig verkannt. Es scheint, dass er sich darunter vorstellte, das Verhältniss zweier Axenlängen analog seinem 2a:c, denn nur so ist seinem "oder reducirt 1:0·8952," welches = $\frac{105}{2}$:47 ist, ein Sinn abzugewinnen, indem er darin ein Zusammentreffen sah mit 1:0·8968 (Dana), 1:0·8971 (Miller) und 1:0·8926 (Quenstedt). So war er auch nicht in der Lage zu entscheiden, ob Lévy's Angabe oder Dufrénoy's Behauptung richtig sei (Ueber die Frage s. 0.).

Hausmann's Grundwerthe, die von den anderen wesentlich differiren, giebt er nicht an.

Nun folgt ein selbst abgeleitetes Axenverhältniss, gegründet auf zwei als genau bezeichnete Winkelmessungen. Eine solche Ableitung der Elemente, d. h. Grundwerthe für die gesammte Winkelberechnung, aus zwei gemessenen Winkeln bei dem vorliegenden Reichthum an Material kann nicht gerechtfertigt erscheinen, und es betrachtet Zirkel selbst diese nicht als Grundwerthe, indem er S. 450 sagt: "Als Grundlage der Berechnung sind, um die Differenzen in den verschiedenen Winkelbestimmungen einigermassen auszugleichen, die Angaben Miller's gewählt, weil diese nahezu das Mittel der einzelnen abweichenden Messungen darstellen." Dann ist aber nicht einzusehen, warum Zirkel gerade die zwei Winkel an die bevorzugte Stelle neben die Elemente der anderen Autoren gestellt hat, ja durch die Bezeichnung "genau" die Meinung hervorruft, als sollten diese Werthe den Vorzug vor den anderen verdienen. So hat es wohl Schrauf aufgefasst, indem er das hieraus umgerechnete Verhältniss 1:0.9409:0.898825 (Atlas 1872 Text zu Taf. XXXVI) an den Kopf seines Formenverzeichnisses stellt. Auch Rath scheint hierdurch irregeführt worden zu sein. So ist es wenigstens zu erklären, dass er (Zeitschr. Kryst. 1877. 1. 603) der Meinung war, er habe mit den "von Zirkel bestimmten Fundamental-Winkeln" gerechnet, während er faktisch die Miller'schen, von Zirkel benutzten, verwendete; sonst würde er für ν(Σ): c nicht 69°37, sondern 69° 39 erhalten haben.

Die Buchstaben hkl beziehen sich bei Zirkel (S. 441) der Reihe nach auf die aufrechte, Längs- und Quer-Axe. Zugleich hat er die Aufstellung geändert, die grösste zur Vertical-Axe, die mittlere zur Längs-Axe und die kleinste zur Quer-Axe gemacht, hierin wie sonst in allem Aeusserlichen folgend der ausgezeichneten Arbeit Lang's "Versuch einer Monographie des Bleivitriols (Wien. Sitzb. 1859. 36. 249), wobei schliesslich die Symbole mit denen Miller's wieder zusammenfallen, die Figuren dagegen gedreht erscheinen. Diese Abnormität kann leicht zu Verwechselungen Anlass geben und es muss auf sie besonders hingewiesen werden. Am leichtesten entgeht man Irrthümern, indem man Zirkel's Symbole nach Miller'scher Art liest, d. h. nach der derzeit üblichen Auffassung, h und k vertauscht, die Figuren dagegen vor der Benutzung in Miller's Aufstellung umdreht. Lang's optische Gründe entfallen hier und es könnte der einzige Grund der Neuaufstellung für den Bournonit der sein, eine Analogie mit der Lang'schen Arbeit zu gewinnen. Doch giebt dies Zirkel nirgends ausdrücklich an.

(Fortsetzung S. 337.)

Bemerkungen. (Fortsetzung von S. 336.)

Es folgt nun der Satz: "Bei dieser Bezeichnungsweise der Axen stimmt die Axe a überein mit der Axe c bei Rose, Dana, Miller und Quenstedt, die Axe b mit a bei Quenstedt und b bei Rose, Dana und Miller, die Axe c endlich mit b bei Quenstedt und a bei Rose, Dana und Miller.

Dieser Satz kann doppelten Sinn haben:

entweder er sagt aus: die c Axe von Rose, Dana, Miller und Quenstedt spiele dieselbe Rolle im Krystall wie a bei Zirkel u. s. w. (Orientirung im Krystall),

oder er sagt aus: dass die c Axe von Rose, Dana, Miller, Quenstedt ebenso aufrecht stehe, wie die a Axe bei Zirkel, die a Axe bei Quenstedt ebenso von vorn nach hinten laufe, wie die b Axe bei Zirkel u. s. w. (Orientirung im Raum).

Unter jeder dieser Annahmen sind die Angaben Zirkel's unrichtig. Das wahre Verhältniss kann aus der folgenden kleinen Tabelle übersehen werden. Wir setzen darin an Stelle des Axenverhältnisses 0.8969 = I; I = II; 0.9380 = III. Die Richtung oben-unten $= \bot$, vornhinten = 1 (längs), links-rechts = q (quer). Dann ist:

Zirkel.	Rose.	Dana.	Miller.	Quenstedt.
a <u>l</u> II	c <u>l</u> II	a ⊥ I	с І	c <u> </u>
b 1 III	a 1 I	b 1 III	b l III	a l III
c q I	b q 3/2 III	c q II	a q II	b q II

z. B.: b1 III Dana heisst: die Axe b (Dana) liegt längs (vorn-hinten) und ihr Werth im Verhältniss ist = 0.9380. Die \perp 1 q geben die Orientirung im Raum, die I II III die im Krystall, so dass entspricht:

Im Raum: a Zirkel = c Rose Miller Quenstedt = a Dana,

b Zirkel = a Rose Quenstedt = b Dana Miller,

c Zirkel = b Rose Quenstedt = c Dana = a Miller.

Im Krystall: a Zirkel = c Rose Dana = a Miller = b Quenstedt,

b Zirkel = b Rose Dana = b Miller = a Quenstedt,

c Zirkel = a Rose Dana = c Miller = c Quenstedt.

Ueber die Aufstellungsweise von Mohs, (Hartmann), Hausmann, Lévy, (Dufrénoy) finden wir bei Zirkel nichts.

Ueber die nöthigen Correcturen der S. 442 u. 443 folgenden Uebersichtstabelle vgl. S. 341.

S. 444. "Ausserdem führt Hausmann noch zwei Flächen an, nämlich $AB^{1}13$ aus der Zone cb $(0\cdot 1\cdot 13)$ und $BA_{11}^{11} (11\cdot 0\cdot 12)$ aus der Zone ac. Diese Flächen, deren Index eine ziemlich ungewöhnliche Form hat, dürften zweifelsohne an den beim Bournonit so häufigen Zwillings-Verwachsungen zweier oder mehrerer Individuen beobachtet worden sein und sind als hypothetische Formen nicht weiter berücksichtigt worden."

Hierzu ist zu bemerken, dass das Hausmann'sche Zeichen BA^{II} unrichtig umgewandelt ist. Es entspricht (12·0·11), dass ferner das Wort Index für das Gesammtsymbol sich doch nicht wohl verwenden lässt und weiter, dass die Form der Symbole (0·1·13) sowie (11·0·12), d. h. (0·1·1) (h·0·h+1) zu den häufigsten gehört, die Zahlen 11·12·13 wegen ihrer Höhe nicht gerade die gewöhnlichsten sind, jedoch durchaus nichts Unwahrscheinliches an sich haben. Zirkel hat in ihnen ohne Grund eine innere Unwahrscheinlichkeit vermuthet, dazu eine Erklärung aus Zwillings-Verwachsungen herbeigezogen, die er nicht näher be-

¹⁾ vgl. Miers S. 64.

Bemerkungen. (Fortsetzung von S. 337.)

gründet und beide Formen verworfen, lediglich auf das Aussehen des Symbols hin, ohne Vergleich der Winkel und Elemente oder der Angabe anderer Autoren. Auch Autor betrachtet beide nicht als sichergestellt, jedoch aus anderen Gründen (s. o.). Unter der Form des Symbols versteht Zirkel offenbar nichts weiter als die Höhe der Zahlen.

"Die von Miller und Dana angeführten Flächen hatte ich mit alleiniger Ausnahme von t (014) sämmtlich zu beobachten Gelegenheit." (S. 444.) Dies ist aus der Abhandlung nicht zu ersehen. Vielmehr treten unter den von Zirkel beobachteten Formen htv nicht auf. h findet sich Fig. 24 und 27, t Fig. 27 bei den unsicher diskutirten Figuren Dufrénoy's von unbestimmtem Fundort. S. 458. v steht ebenfalls S. 458 und Fig. 27 mit dem Symbol (403); bei Miller, sowie S. 442, 446 ist v = (121). v (403) dürfte ein Schreibfehler sein statt v (403) einem aus Hausmann's AB4 falsch umgewandelten Symbol. v (121) kommt nicht vor. r findet sich im Text nicht erwähnt, in Fig. 34 ist r eingezeichnet, wurde jedoch auf Schrauf's Veranlassung zurückgezogen. Die nun folgende Diskussion Dufrénoy'scher Angaben kann als ziemlich werthlos bezeichnet werden, da Zirkel weder die von Dufrénoy ausdrücklich citirte Originalarbeit (1836) zu Rath gezogen, noch dessen Elemente, auch nicht (wie Miers) die versteckten Zwillingsbildungen ins Auge gefasst hat, sondern sich allein mit den Figuren und der unbrauchbaren Winkeltabelle (1856) befasst. Lévy's Angaben und Figuren, die theilweise Aufschluss hätten geben können, zieht er gar nicht heran. Zeile 11 vu findet sich die unrichtige Umwandlung von Hausmann's AB4 in (403) statt (304) und es merkt Zirkel nicht den Widerspruch, dass er hier den Winkel (403): $c = 33^{\circ} 13^{\circ}$, dagegen S. 451 (403): (001) = 50° 5° anführt. Die ganze Argumentation S. 444 Z. 3 vu bis S. 445 Z. 2 vo stützt sich auf den Winkel 32° 30' der von Zirkel durch eine unrichtige Subtraction 180 — 146° 30' = 32° 30' statt 33° 30' erhalten wurde und wird durch diese Richtigstellung gegenstandslos. S. 449 stellt Zirkel den hier richtig subtrahirten Winkel 33°30' demselben 32°31' (hc) gegenüber und zieht nun einen anderen Schluss daraus.

Ueber die Anzahl der vor Zirkel bekannten Formen s. Miers S. 61. Von den neuen Formen ist 311 (q) durch Schrauf gestrichen.

In der Tabelle S. 446 sind zunächst die Weiss'schen Zeichen nicht im Sinne Weiss' gebraucht, denn bei ihm bezieht sich stets a auf die Längs-, b auf die Quer-Axe, c auf die verticale Axe. Danach wären durchaus a und c zu vertauschen. Ferner sind die unrichtig umgewandelten Hausmann'schen Symbole zu verbessern und zu lesen:

```
Zeile 18 vu: \beta 108 8\bar{P}\infty 8a:\infty b:c^1) 8\bar{z}

, 17 , \gamma 203 \frac{3}{2}\bar{P}\infty 3a:\infty b:2c \frac{3}{2}\bar{z}

, 16 , \gamma 304 \frac{4}{3}\bar{P}\infty 4a:\infty b:3c \frac{4}{3}\bar{z}
```

Unter den Buchstabenbezeichnungen kommt k zweimal vor für 034 und 450, letzteres neu von Zirkel.

Ueber die übrigen in dieser Tabelle zu verbessernden Fehler vgl. S. 341.

Nun folgt das Projectionsbild Taf. VII ebenfalls mit mehreren Fehlern: Abgesehen davon, dass die unrichtigen Symbole 801 · 302 · 403 durch richtige an der zugehörigen Stelle zu ersetzen (resp. zu cassiren) sind, soll es heissen:

```
c 001 statt c 010

Im Quadranten vorn links Zone mc: 223 ,, 233
450 ,, 302 oben und unten in Zone ba,
230 ,, 450 in derselben Zone,
334 sitzt alle viermal an falscher Stelle,
ρ 211 ist ganz ausgelassen.

S. 447 Zeile 11 vo ist zu lesen: y (111) statt y (112).
```

¹⁾ Im Sinne der Tabelle.

Bournonit, 339

Bemerkungen. (Fortsetzung von S. 338.)

Auf derselben Seite sagt Zirkel: "Krystalle mit mehr als 10 Flächen gehören schon zu den Seltenheiten." Dies kann leicht missverstanden werden. In diesem und dem folgenden Satz sowie häufig hat das Wort Flächen die Bedeutung von Einzelformen. Die Zahl der Flächen ist weit grösser.

Es folgt S. 447—450 eine Betrachtung über Schwanken in den Winkelangaben, woraus geschlossen wird, dass in der Natur wirklich die Winkel differiren, eine auch damals bereits sehr wohl bekannte Thatsache, 1) wie Zirkel selbst hervorhebt. Es folgen neun Messungen von Zirkel, von denen die zweite mit einem Druckfehler behaftet ist.

Es ist zu lesen: $(001): (112) = 33^{\circ} 11^{\circ} \text{ statt } 39^{\circ} 11^{\circ}.$

Um das Schwanken der Winkel in der Natur zu zeigen, sind herbeigezogen die Winkel von Dufrénoy, deren Identification jedoch so unsicher ist, dass sie nicht für das Vorhandensein von Winkeldifferenzen als Beleg dienen können. Es werden ausserdem citirt Angaben von Breithaupt, Quenstedt, Rose, jeder selbstständig, und doch haben alle diese nur Mohs' resp. Mohs-Zippe's Angaben copirt. Ganz regellos ist einmal ein Winkel von diesem, einmal von jenem herbeigeholt, dazwischen wieder einmal einer von Hausmann. Da nun Dufrénoy entfällt, Miller, Mohs, Zippe und Hausmann aber gerechnete Winkel geben, so ist durch alle die einzelnen Nebeneinanderstellungen nicht das Geringste mehr ausgesagt, als wenn man die Axenverhältnisse von Miller, Mohs und Hausmann neben einander gestellt hätte. Nun bezeichnet Mohs sein Axenverhältniss nur als Näherung, das von Hausmann aber kann nicht als richtig angesehen werden. Damit fällt der ganze Inhalt von S. 449 ma (110) (100) bis S. 450 32°58. Phillips' Messungen sind nicht betrachtet.

Im Einzelnen sind folgende Richtigstellungen zu machen:

S. 449 ma bei Breithaupt 46°26' soll heissen (Mohs) 46°50'; 46°26' ist = ob und das Complement zu 43°34' (vgl. Zeite 17 vu).

Ueber hc vgl. Bemerkung zu S. 444.

ya 57°37' sollte heissen 37°7'.

S. 450:

"yc führen Rose und Quenstedt zu 52°31' an; ersterer macht darauf aufmerksam, dass dieser Winkel bei Mohs den irrthümlichen Werth von 57°31' besitzt, welcher mit den übrigen Winkelangaben von Mohs nicht übereinstimmt."

Statt dieses ganzen Satzes wäre zu setzen:

"yc bei Mohs 52°31′."

Denn in Mohs' Original-Angabe (Grundr. 1824. 2. 561) ist der Winkel ganz richtig 105°2'. Hartmann (Handwb. 1828. 325) hat den Druckfehler 115°2' und ebenso Zippe (Mohs-Zippe Min. 1839. 2. 531). Auf Mohs-Zippe bezieht sich Rose's Bemerkung.

Von der nun folgenden Winkeltabelle sagt Miers S. 68: "Sie enthält 43 Fehler, die zu gross sind, um vernachlässigt werden zu können."

Die hier nöthigen Verbesserungen sind im Einzelnen aus dem Correcturen-Verzeichniss S. 342 zu ersehen. Sie sind ohne Neuberechnung vorgenommen auf Grund von Miers' Winkeltabelle.

Es folgt der beschreibende Theil mit 26 neuen Figuren. Eine vollständige Revision dieser Angaben wäre nur von Werth an der Hand des Materials, doch habe ich mir Untersuchungen am Material für den Augenblick principiell versagt, um nicht von der Beendigung der Hauptaufgabe, der Durchführung des Index, abgeleitet zu werden. Es mögen hierüber nur einige Bemerkungen folgen:

¹⁾ vgl. Lang Anglesit Wien. Sitzb. 1859 S. 262 flgde.

Bemerkungen. (Fortsetzung von S. 339.)

Fig. 3. (S. 454) von Dufrénoy entnommen, stammt von Lévy her (Taf. LI Fig. 6).

Fig. 5, 6, 24, 27, von Dufrénoy entnommen, sind ohne Fundorte, tragen die ganze Unsicherheit Dufrénoy'scher Angaben, die durch die Art, wie Zirkel daran Veränderungen vorgenommen (vgl. S. 458 zu Fig. 27), nicht behoben wird.

Fig. 15. "Eine Fig. 15 ähnliche Form giebt Dana." Sie findet sich vor Dana schon bei Mohs-Zippe (Fig. 35) und ist dieselbe, die Schrauf bringt unter Hinweis auf Lévy Fig. 12 (s. o. S. 335).

Fig. 24, 27. Ueber htv siehe oben.

Bei Besprechung der Zwillinge sagt Zirkel S. 159: "Zwei verschiedene Zwillingsgesetze lassen sich unterscheiden: das eine bis jetzt unberücksichtigte bringt blos einfache Gestalten hervor." Der Sinn dieses Satzes ist mir nicht klar geworden. Haben wir da ein Contradictio in adjecto oder soll "einfach" im Gegensatz zum Folgenden bedeuten wenig manichfach und leicht zu deuten? Faktisch sind Zwillinge dieses ersten Gesetzes keine Zwillinge, sondern parallele Verwachsungen, worauf bereits Hessenberg S. 214 aufmerksam macht.

Ferner heisst es S. 463 von dem Zwilling Fig. 34: "Die Zusammensetzungsverhältnisse dieses Krystalls fügen sich nicht den gewöhnlichen Gesetzen, jedenfalls ist keine Verwachsung nach m oder n dabei im Spiel, da die drei Endflächen vollkommen senkrecht aufeinander stehen." Nun ist aber ein Zwilling, bei dem die drei Pinakoide aufeinander vollkommen senkrecht bleiben, für holoedrische Gestalten des rhombischen Systems nach unseren jetzigen Vorstellungen von dem Wesen des Zwillinge überhaupt nicht denkbar, weder nach m oder n noch nach irgend einer Fläche überhaupt.

Derselbe Krystall hat durch Zirkel auch im Weiteren eine unzulässige Interpretation erfahren, bei der die Pinakoide mehrmals ihre Bedeutung wechseln und z. B. "die seitliche verticale Endfläche nach oben als b, nach unten als c verwendet wird." (S. 462.) Schrauf hat die Richtigstellung vorgenommen und setzt seine Fig. 17 Taf. XXXVII an Stelle von Zirkel's Fig. 34 unter Hinweis auf eine Mittheilung (Wien. Sitzb. 1873. Min. Beob. V), doch konnte ich dort nichts dergleichen finden; vielmehr behandeln die Min. Beob. V die Brochantitgruppe. Schrauf hat q und r gestrichen, dagegen n Σ x z θ v zugefügt, sowie das Zwillingsgesetz klargelegt. Auf diesen Krystall bezieht sich auch Schrauf's Bemerkung zu Taf. XXXVI vor Fig. 1. Zirkel's Fig. 34 ist zu cassiren.

Auf den Fehler $3^{\circ}40^{\circ}$ statt $7^{\circ}20^{\circ}$ (S. 461 Z. 6 vu) hat Hessenberg S. 215 bereits aufmerksam gemacht.

Fassen wir die Betrachtungen über Zirkel's Arbeit zusammen, so geht daraus hervor, dass aus ihr nur Einzelnes zu verwenden ist, was auch bereits von Schrauf und Miers hervorgezogen worden ist. Im Ganzen bedarf trotz der schönen Arbeit von Miers der Bournonit einer noch eingehenderen Bearbeitung, in der die eigenartigen Verwachsungsverhältnisse im Kleinsten wie im Grossen zu Rath gezogen werden müssen.

Correcturen.

Hartmann	Handwb.	1828 —	Seite 325	Zeile 15 vo lies 105°21 statt 115°2
Mohs-Zipp		1839 2		Die Seite 744 gegebene Correctur: "Zeile 10 vu
		37 =		(-1) ² setze y" ist unrichtig und hat zu entfallen.
. ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	"	,, ,,		Zeile 11 vu lies 105°2' statt 115°2' 1)
"		" "	" "	" 9 vu " 56°9¹ " 54°48 ¹)
Rose, G.	Pogg. Ann.	1849 76	" 293	
"	,,	" "	" "	Col. Bournonit. n=96°31' zu löschen, dafür
		,,		n=83°29' eine Zeile tiefer einzusetzen.
22	"	" "	" "	Zeile 9 vo lies $(\infty a : \frac{4}{3}b : c)$ statt $\infty a : \frac{4}{3}c$
Zirkel	Wien. Sitzb.	1862 45	, 442	" 4 " " b:wa:wc " bwa:wc
**	,,	" . "	" "	", 6", " $a:\frac{4}{3}b:\infty c$ ", $a:\frac{3}{4}b:\infty c$
"	"	" "	<i>"</i> "	", 15 ", ", $i\frac{3}{2}$ ", $i\frac{3}{2}$
"	29	11 22	yy 99	" 16 " " a:b:∞c " a:b:∞e
n		<i>"</i> "	" "	$i\frac{3}{3}$, $i\frac{3}{4}$
,,	2)	,, ,,	, ,,	", 19 ", iž ", i2
"	"	n n	,, ,,	", 19 ", $\frac{4}{3}b : c : \infty a$ ", $b \frac{3}{4}c : \infty a$
"	"	" "	" "	" 20 " " a:c:∞b " ⁴ / ₃ a:c:∞b
,,	,,	" "	, 443	", 2 ", a: ∞ b: ∞ c(r) ", a: ∞ b: ∞ e(r)
"	"	<i>"</i> "	11 29	" 3 " " c: ∞a: ∞b(k) " b: ∞a:∞e(s)
,,	n	,, ,,	" "	", 4" ", $b: \infty a: \infty c(s)$ " ", $e: \infty a: \infty b(k)$
,,	"	n ,,	,, ,,	$8 \text{,} \frac{3}{4} \bar{P}r \text{,} \frac{2}{9}$
,,	"	""	<i>"</i>	" 14 " " Pr—1 " Pr—1
,,	**	" "	" "	", 17 ", " • " $\frac{3}{4}\bar{P}r$ 2)
'n	"	11 29	" "	", 20 ", 2a:b: $\infty c(n)$ ", 2a:b: $\infty e(n)$
"	"	" "	" "	", 26 ", " (\bar{P} — I) ²
"	"	" "	" "	" 27 " " P— _I " .
"	"	<i>"</i> "	<i>"</i>	", 31^2), ", $(\bar{P}-1)^2 = (\bar{P}r-1)^3$ zuzufügen
"	"	""	,, ,,	" 32^2) " " $(\bar{P}-1)^{\frac{3}{2}} = (\bar{P}r-2)^5$ zuzufügen
"	"	<i>"</i>	,, 446	" I vu " $\frac{3}{2}\bar{P}_2$ statt $\frac{2}{3}\bar{P}_2$
"	"	<i>"</i>	" "	$3 , 3 , \frac{4 \cdot 4}{3 \cdot 3} , 1 \cdot \frac{3}{4}$
"	**	" "	<i>"</i>	$^{\circ}$
"	"	" "	n "	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
"	"	" "	" "	
"	"	n <i>n</i>	" "	, I5 , , I 2 , 2
"	"	" "	" "	", 16 ", ", $\sqrt{304} \frac{4}{3} \bar{P}_{\infty} = 4a : \infty b : 3c = \frac{4}{3} \bar{z}$
				statt $\sqrt{403}$ $\frac{3}{4}$ \overline{P} ∞ $3a : \infty b : 4c$ $\frac{3}{4}$ \overline{z}
<i>37</i>	"	" "	" "	", 17 ", lies $\gamma 203 \frac{3}{2} \bar{P} \infty 3a : \infty b : 2c \frac{3}{2} \bar{z}$
				statt $\gamma 302 \frac{2}{3} \bar{P} \infty 2a : \infty b : 3c \frac{2}{3} \bar{z}$
"	,,	" "	" "	" 18 " lies β 108 8 P̄ω 8a: ωb: c 8 z
				statt $\beta 801 \frac{1}{8} \bar{P} \infty a : \infty b : 8c \frac{1}{8} \bar{z}$
"	"	" "	" "	", 24 ", lies a:b:∞c statt ab:∞c ", 31 ", ", ∞a:4b:5c ", ∞a4b:5c
"	"	" "	""	•
"	"	" "	" 447 " 448	
"	"	" "		-0
"	,,	,, ,,	" 4 49	" 14 vo " 46°50 " 46°26

Vgl. G. Rose Pogg. Ann. 1849. 76. 293.
 Vgl. Miers S. 64.

(Fortsetzung S. 342.)

342 Bournonit,

Correcturen. (Fortsetzung von S. 341.)

					· ,							
Zirkel	Wien. Sitzb.	1862	45	Seite	449	Zeile	3	vu	lies		statt	
"	n	"	"	"	450	"	9	,,	,,	80°14	"	79°14
"	"	"	"	,,	"	"	7	"	,,	66°55	"	63°38
**	"	**	,,	,,,	"	"	7	,,	,,	51° 7	"	50° 7
"	"	"	"	,,	,,	,,	6	,,	,,	57°27	"	43° 6
"	'n	,,	"	,,	,,	**	5	,,	"	18°41	"	18°31
"	"	"	,,	**	,,	"	"	,,	"	37°21	"	37°17
"	"	,,	"	,,	,,	"	2	,,	,,	54°8	,,	53°41
"	,,	,,	,,	"	45 I	"	10	vo	"	30°13	,,	29°45
"	n	"	,,	"	"	,,	11	,,	"	28°59	,,	28°53
,,	"	"	"	"	"	,,	13	,,	"	47°33	,,	47°41
"	,,	"	,,	,,	,,	"	14	,,	,,	65° 2	,,	63° 3
"	"	"	,,	,,	,,	"	"	"	"	63°48	"	63°42
"	"	"	11 ,	"	"	"	,,	"	,,	52°21	n	52°11
"	"	"	"	"	"	"	"	,,	n	31°50	n	31°55
n	"	"	"	"	"	n	15	19	,,	47° 2	n	46° 3
,,	n	n	"	,,	"	,,	"	,,	"	43°14	n	43°11
,,	"	"	"	"	"	"	"	"	"	46°12	"	47° 5
"	"	"	"	"	"	"	16	"	,,	63°15	"	63°11
,,	29	n	,,	n	,,	"	"	"	,,	61°19	n	60°19
,,	n	"	"	**	n	n	,,	"	"	28°51	11	28°54
"	"	"	n	"	"	"	"	"	"	30°33	n	30°39
"	"	"	"	"	"	11	19	"	"	79°54	"	79°43
,,	"	,,	"	,,	,,	"	,,	"	"	10° 6	"	10°17
,,	"	,,	,,	,,	,,	,,	,,	,,	,,	25°21	,,	25°18
"	"	"	,,	"	"	,,	20	,,	,,	53° 1	,,	51°49
"	"	"	"	"	,,	"	,,	"	"	24°45	,,	62°49
"	"	,,	,,	"	,,	**	,,	,,	,,	16°16	"	19° 1
"	"	"	"	,,	,,	"	22	vu	,,	78°18	"	78°42
,,	"	"	,,	"	"	"	20	,,	,,	50° 5	,,	49° 5
"	"	,,	"	"	"	"	19	"	,,	42°2 I	,,	41°13
"	"	,,	,,	"	"	**	18	"	"	25°20	,,	26°20
99	"	"	,,	,,	"	"	16	"	,,	39°55	,,	40°55
"	**	,,	"	"	"	"	,,	"	11	(212)	**	(312)
"	**	,,	33	"	"	"	13	"	"	60°53	"	56°32
"	"	"	"	**	**	,,	ю	"	,,	26°13	"	25°13
"	**	"	"	**	"	"	7	"	"	(121)	"	(021)
"	"	"	"	"	"	"	6	,,	"	(122)	"	(022)
,,	**	,,	"	**	"	"	4	"	,,	36°51	"	36°41
"	"	"	"	"	"	"	2	"	,,	68°33	"	76°47
"	"	"	"	"	452	"	5	**	"	54°27	"	54°23
**	"	"	"	"	"	"	7	"	"	23° 3	,,	83°33
"	"	,,	"	"	"	**	8	"	"	42° 7	"	41°59
"	"	"	,,	**	"	"	11	**	"	35°53	"	35°32
,,	**	"	"		459	"	I 2	,,	"	dieselbe	"	eine andere
"	"	"	"		461	"	6	"	"	7°20	"	3°50
**	"	**	,,	Taf. V	/II (I	Projec	ctio	nsb		lies c ooı sta		
"	"	"	"	**	"		"			Im Quadrante		
										mc lies 223		
										(Fort	setzu	ing S. 343.)

Correcturen. (Fortsetzung von S. 342.)

Zirkel	Wien. Sitzh.	1862	45	Taf.	VII	(Proj	ject	ions	sbild)	In Zone ba oben und unten
										lies 450 statt 302
**	"	"	**	**	**			"		In Zone ba lies 230 statt 450
**	**	"	"	"	**			"		Die Flächenpunkte 334 in allen
										Quadranten an richtige Stelle
										zu setzen
**	**	,,	"	"	**			"		Die Flächenpunkte p 211 ein-
										zusetzen.
"	"	"	"	,,	"			"		Die den unrichtigen Symbolen
,,										801, 302, 403 entsprechenden
										Punkte durch richtige 108, 203,
										304 an richtiger Stelle zu er-
										setzen resp. zu cassiren.
Hessenberg	Senck, Abh.	1863		Seite	214	Zeile	e 3	vo	lies	$\beta 108 \frac{1}{8} \check{P} \infty \infty a : 8b : c$
<i>J</i>		·			•				stat	tβ801 8 Ρ̈́ω ω2: b:8c
**	27	,,	"	,,	"	**	4	**		γ 203 ² / ₃ P̃∞ ∞a:3b:2c
,,							•		stat	tγ302 ½ Po oa:2b:3c
**	**	,,	"	,,	"	"	5	,,	lies	v 304 ³ / ₄ Poo ooa:4b:3c
									stat	t v 403
Dana	System	1873	"	,,	96	,,	7	vu	lies	1.06612 statt 1.0662
,,	,,	,,	"	"	"	,,	,,	,,	"	iŏ " i
,,	"	,,	"	**	"	22	6	"	,,	$\frac{7}{5}$ — $\tilde{\iota}$, $\frac{7}{5}$ —2
"	"	**	"	"	,	"	,,	"	3ĭ	$\left\{\begin{array}{ccc} \frac{4}{3} & \ddot{\iota}, & 8 - \ddot{\iota} \\ 2 & \ddot{\iota} \end{array}\right\}$ zu streichen
"	"	**	"	,,	,,	n	5	,,		$\left\{\begin{array}{c} \frac{3}{3}-i, & 8-i \\ 3-3 \end{array}\right\}$ zu streichen
27.	"	"	"	,,	"	"	"	"	lies	ı— ğ statt ı— c
Miers	Min. Maq.	1884	6	,,	60	"		vo	,,	472 , 431
"	,,	,	**	,,	62	Col.	5		"	(Pr-1)0 , (Pr-1)0
,,	"	"	"	'n	64	Zeile	17	vu	,,	, N
'n	**	"	"	,,	"	"	14	,,	1	
" N	**	,,	"	"	69	"	14 26	,	"	α " a
					-			-		

Braunit.

Tetragonal.

Axenverhältniss.

$$a:c = 1:1\cdot9704 \text{ (Gdt.)}$$
 [a:c = 1:1\cdot 9704 (Gdt.)] [a:c = 1:0\cdot 985] (Miller. Des Cloizeaux.)
 {a:c = 1:0\cdot 985} (Haidinger. Hartmann. Mohs-Zippe. Hartmann. Dana. Groth.)
 { ,, = 1:0\cdot 9856} (Rath.)

Elemente.

${c \choose p_{\circ}} = 1.9704$	lg c = 029456	$lg a_o = 970544$	a _o == 0.5075
----------------------------------	---------------	-------------------	--------------------------

Transformation.

Haidinger. Hartmann. Dana. Mohs-Zippe. Hausmann. Schrauf.	Miller. Des Cloizeaux.	Gdt.
pq	$\frac{p+q}{2} \frac{p-q}{2}$	$\frac{\mathbf{p}}{\mathbf{z}} \frac{\mathbf{q}}{\mathbf{z}}$
(p+q) (p-q)	pq	$\frac{p+q}{2} \frac{p-q}{2}$
2 p · 2 q	(p+q) (p-q)	pq

No.	Miller. Schrauf. Gdt.		Miller.	Naumann.	[Hausmann.]	[Haidinger.] [Mohs-Zippe]	Gdt.
I	С	0	001	o P	A	P—∞	О
2	e	P	112	$\frac{1}{2}$ P	P	P	$\frac{I}{2}$
3	s	s	111	P	$\mathrm{E}\mathrm{A}rac{\mathrm{I}}{2}$	P+2	1
4	x	z	211	2 P 2	$BB_2 \cdot EA_{\frac{1}{4}}$	$(P+1)^3$	2 I

Literatur.

Haidinger	Edinb. Trans.	1826 4 48.)
n	Pogg. Ann.	1826 7 234) (Brachytypes Manganerz)
Hartmann	Handwb.	1828 — 368
Mohs - $Zippe$	Min.	1839 2 463
Haidinger (Des Cloizeaux)	Ann. Min.	1842 4 (1) 418
Hausmann	Handb.	1847 2 (1) 222
Miller	Min.	1852 — 232
Schrauf	Atlas	1873 — Taf. XXXVIII
Rath	Zeitschr. Kryst.	1884 8 297.

Bemerkungen.

In Schrauf's Atlas findet sich im Widerspruch mit den übrigen Autoren: x=121. Die Form ist von Haidinger entlehnt, der sie mit z bezeichnet $(P+1)^3$. Sie findet sich danach bei Mohs-Zippe (1839), Hausmann (1847), Miller (1852). Letzterer Autor hat ihr den Buchstaben x gegeben. Danach ist auch bei Schrauf zu setzen x=24 und die Correctur anzubringen:

Taf. XXXVIII lies:

$$\left. \begin{array}{c} x \\ 241 \\ a:2a:4c \\ 4P2 \\ b^{\frac{1}{2}}b^{\frac{1}{6}}h^{\frac{1}{2}} \end{array} \right\} statt \left\{ \begin{array}{c} x \\ 121 \\ a:2a:2c \\ 2P2 \\ b^{\frac{1}{3}}b^{\frac{1}{3}}h^{\frac{1}{3}} \end{array} \right.$$

In dem von Schrauf gegebenen Axenverhältniss ist zu lesen:

a:a:c = 1:1:0.985 statt 1:1:0.9825

wie aus dem nebenstehenden von Haidinger entlehnten Winkel ce $= 54^{\circ}19.5$ hervorgeht.

Correcturen.

Breithauptit.

Hexagonal.

Axenverhältniss.

$$\begin{array}{l} a:c = \text{ } i: \text{ } 0.7435 \text{ } (G_1) \\ \\ [a:c = \text{ } i: \text{ } 0.8585] \text{ } (Dana. Schrauf.) \\ \\ \{a:c = \text{ } i: \text{ } i.9914\} \text{ } (Groth.) \\ \\ (a:c = \text{ } i: \text{ } i.4871) \text{ } (Miller.) \end{array}$$

Elemente.

c = 0.7435	$\lg c = 987128$	$\lg a_o = 036728$	$\lg p_0 = 969519$	$a_{\circ} = 2 \cdot 3296$	p _o == 0.4957
		$\lg a_o^{\circ} = 012872$		$a'_{\circ} = 1.3450$	

Transformation.

Dana. Schrauf.	Miller.	Groth.	Gı	G_2	
pq	$\frac{p+2q}{3} \frac{p-q}{3}$	$\frac{p+2q}{2} \frac{p-q}{2}$	2p · 2q	2 (p+2q) 2 (p-q)	
(p+2q) (p-q)	pq	³ / ₂ p ³ / ₂ q	2 (p+2q) 2 (p-q)	6p · 6q	
$\frac{2}{3}(p+2q)\frac{2}{3}(p-q)$	² / ₃ p ² / ₃ q	pq	$\frac{4}{3}(p+2q)\frac{4}{3}(p-q)$	4p · 4q	
$\frac{\mathbf{p}}{\mathbf{z}} \frac{\mathbf{q}}{\mathbf{z}}$	$\frac{\mathbf{p}+2\mathbf{q}}{6} \; \frac{\mathbf{p}-\mathbf{q}}{6}$	$\frac{p+2q}{4} \frac{p-q}{4}$	pq	(p+2q) (p-q)	
$\frac{p+2q}{6} \frac{p-q}{6}$	$\frac{p}{6}$ $\frac{q}{6}$	<u>p</u> <u>q</u> 4	$\frac{p+2q}{3}\frac{p-q}{3}$	pq	

No.	Schrauf. Gdt.	Miller.	Bravais.	Miller.	Naumann.	$G_{\mathtt{I}}$	G_2
I	С	0	0001	111	οP	0	0
2	a	a	1010	211	∞P	~ 0	00
3	i	i	1011	100	P	10	I
4	w	w	3031	722	3 P	30	3

348 Breithauptit.

Literatur.

Miller	Min.	1852	 142
Dana	System	1873	 61

1873 1873 1882 Atlas
Tab. Uebers. Schrauf Groth — Taf. XXXVIII

15.

Brewsterit.

Monoklin.

Axenverhältniss.

$$\begin{array}{lll} a:b:c = o\cdot 4046: \text{$\rm i:o\cdot 1407$} & \beta = 93^{\circ}04^{\circ} \text{ (Gdt.)} \\ [a:b:c = o\cdot 4046: \text{$\rm i:o\cdot 4222$} & \beta = 93^{\circ}04] \text{ (Schrauf.)} \\ [a:b:c = o\cdot 4046: \text{$\rm i:o\cdot 4203$} & \beta = 93^{\circ}04] \text{ (Dana. Groth.)} \\ [a:b:c = o\cdot 4048: \text{$\rm i:o\cdot 7007$} & \beta = 93^{\circ}04] \text{ (Des Cloizeaux.)} \end{array}$$

Elemente.

a	=	0.4046	lg a = 960703	$lg a_o = 045874$	$lg p_0 = 954126$	$a_o = 2.8757$	$p_{\circ} = 0.3477$
С	=	0.1407	$\lg c = 914829$	$\lg b_o = o85171$	$\lg q_o = 914767$	$b_0 = 7.1073$	$q_o = 0.1405$
μ 180	$=$ β	86°56	$ \left\{ \begin{array}{l} $	$ \begin{cases} \lg e = \\ \lg \cos \mu \end{cases} 872834 $	$\lg \frac{p_o}{q_o} = o_{39359}$	h = 0.9986	e = 0·0535

Transformation.

Schrauf. Dana. Groth.	Descloiz. Lévy.	Gdt.	
pq	3P 3q 5 5	3P 39	
$\frac{5}{3}$ p $\frac{5}{3}$ q	pq	5P 59	
$\frac{p}{3}$ $\frac{q}{3}$	$\frac{\mathbf{p}}{5} \frac{\mathbf{q}}{5}$	pq	

No.	. Gdt. Miller. Schrauf.		Miller.	Naumann.	[Lévy.] [Descl.]	Gdt.
I	С	С	001	οP	P	0
2	ь	ь	010	$\infty \mathbb{P} \infty$	g¹	0∞
3	a	a	100	$\infty P \infty$	h1	∞ 0
4	m	m	110	ωP	m	ω.
5	t	t	120	∞P 2	g^3	∞ 2
6	e	e	OI 2	$\frac{1}{2} P \infty$	[e]	$0\frac{I}{2}$
7	f		056	5/2 P∞	e ⁶	0 5

350 Brewsterit.

Literatur.

Haidinger	Pogg. Ann.	1825 5 161
Hartmann	Handwb.	1828 — 89
$L \ell v y$	Descr.	1838 2 246
Mohs-Zippe	Min.	1839 2 271
Hausmann	Handb.	1847 2 (1) 767
Miller	Min.	1852 — 442
Mallet	Amer. Journ.	1859 (2) 28 48
Des Cloizeaux	Manuel	1862 1 420
Dana	System	1873 — 445
Schrauf	Atlas	1873 — Taf. XXXVIII.

Brochantit.

1.

Triklin.

Axenverhältniss.

Elemente der Linear-Projection.

a = 0.4946	$a_o = 0.6104$	$\alpha = \epsilon$	90°57	x' _o ==-0.0064	d'=-0·0179
b= 1	$b_0 = 1.2341$	$\beta = \phi$	90°22	y' ₀ ==-0.0166	δ'= 21°13
c = 0.8103	c _o == 1	$\gamma = \gamma$	90°08	k = 0.9998	

Elemente der Polar-Projection.

p _o = 1.6381	λ == 89°02	x _o = 0.0066	d=0·0179
$q_o = 0.8103$	$\mu = 89^{\circ}37$	y _o = 0·0167	δ == 21°38
r _o = 1	v = 89°51	h = 0.9998	

Transformation.

Lévy.	Mohs-Zippe.	[Schrauf.] Groth. (Rhomb.)	Kokscharow. Dana. Miller. Rose. Hausm.	Schrauf,	Brezina.	Gdt.
рq	$\begin{array}{c c} \underline{\mathbf{r}} & \underline{\mathbf{q}} \\ \hline \mathbf{4P} & \underline{\mathbf{p}} \end{array}$	$\frac{\mathbf{q}}{\mathbf{p}} \frac{1}{2 \mathbf{p}}$	$\begin{array}{c c} 2 & q & 1 \\ \hline p & p \end{array}$	$\pm \frac{q}{p} \cdot \pm \frac{1}{2p}$	$\pm \frac{1}{4q} \pm \frac{p}{2q}$	$\frac{\pm p}{q} \frac{\pm 1}{2q}$
$\frac{1}{4P} \frac{q}{4P}$	pq	q · 2 p	2 q · 4 p	<u>+</u> q · <u>+</u> 2 p	$\frac{\pm p}{q}$ $\frac{\pm 1}{2q}$	$\frac{\pm 1}{q} \frac{\pm 2p}{q}$
$\frac{\mathbf{I}}{2\mathbf{q}}\frac{\mathbf{p}}{2\mathbf{q}}$	<u>q</u> p	pq	2 p · 2 q	$\pm \mathbf{p} \cdot \pm \mathbf{q}$	$\begin{array}{c c} \pm q & \pm 1 \\ \hline 2 p & 2 p \end{array}$	$\frac{\pm \tau}{p} \frac{\pm q}{p}$
$\frac{1}{q} \frac{p}{2q}$	$\frac{q}{4} \frac{p}{2}$	$\frac{p}{2} \frac{q}{2}$	pq	$\frac{\pm p}{2}$ $\frac{\pm q}{2}$	$\frac{\pm q}{2p}$ $\frac{\pm 1}{p}$	$\frac{\pm 2}{p} \frac{\pm q}{p}$
$\frac{1}{2q} \frac{p}{2q}$	$\frac{\mathbf{q}}{\mathbf{z}}$ p	рq	2 p · 2 q	pq	$\frac{-q}{2p} \frac{-1}{2p}$	$\frac{1}{p} \frac{q}{p}$
$\frac{q}{2p} \frac{1}{4p}$	p 1 2 q	$\begin{array}{cc} \underline{1} & \underline{\mathbf{p}} \\ 2 \mathbf{q} & \overline{\mathbf{q}} \end{array}$	$\frac{1}{q} \frac{2p}{q}$	$\frac{\mathbf{T}}{2\mathbf{q}} \frac{\mathbf{p}}{\mathbf{q}}$	pq	2q · 2p
$\frac{p}{2q} \frac{1}{2q}$	$\frac{q}{2p} \frac{1}{p}$	$\frac{1}{p} \frac{q}{p}$	$\frac{2}{p} \frac{2 q}{p}$	$\frac{1}{p} \frac{\overline{q}}{p}$	$\frac{\mathbf{q}}{\mathbf{z}} \frac{\mathbf{\bar{p}}}{\mathbf{z}}$	pq

(Fortsetzung S. 353.)

Literatur.

Rose	Reise n. Ural	1837	1	267
"	Pogg. Ann.	1837	42	468
$L ec{e} v y$	Descr.	1838	3	88
Mohs- $Zippe$	Min.	1839	2	184
Hausmann	Handb.	1847	2	(2) 1209
Miller	Min.	1852		553
Kokscharow	Mat. Min. Russl.	1858	3	260
Schrauf	Wien. Sitzb.	1860	39	892
"	Atlas	1873		Taf, XXXVIII
"	Wien. Sitzb.	1873	67	(1) 275 (Monogr.)
Dana	System	1873	_	664
Groth	Strassb. Samml.	1878		154
Brezina	Zeitschr. Kryst.	1879	3	375

Bemerkungen.

Es spricht in den Zahlen vieles dafür, den Werth q der Symbole zu verdoppeln, was zu dem Axen-Verhältniss führen würde:

a:b:c = 0.2473:1:0.4051 $\alpha\beta\gamma$ unverändert.

Noch mehr beobachtete Formen werden dies entscheiden.

Bei Schrauf (Wien. Sitzb. 1860, 39. 892) steht das Axen-Verhältniss:

$$\bar{a} : \bar{b} : c = 1 : 0.7789 : 0.2565$$

Aus Miller's und Rose's Winkel-Angabe: 101, 001 = 14° 4' resp. f:b = 104° 4' u. s. w. ergiebt sich andererseits das Axen-Verhältniss:

$$\bar{a} : \bar{b} : c = 1 : 0.7789 : 0.2505.$$

Da Schrauf aus diesen beiden Quellen geschöpft, liegt offenbar ein Druckfehler vor.

Lévy's m (Brochantit) Descr. 1838. 3. 98 ist \equiv Miller's v nicht, wie bei Schrauf (Wien. Sitzb. 1873. 67. (1) 278) steht \equiv x. x dagegen ist von Miller, wie Schrauf selbst hervorhebt, gesetzt worden für Lévy's Prisma beim Königin (l. c. S. 99). Um Zweifel zu heben, ist wohl am besten zu setzen:

Schrauf Wien. Sitzb. 1873. 67. (1) 278 Zeile 19 vo Col. I lies m (Brochantit) statt — , , , , , , , , , , , , , , , m (Königin) , m.

(Fortsetzung S. 354.)

2.

					,							
No.	Gdt.	Miller. Zepha- rovich.	Kok- scharow.	Schrauf. Brezina.	Rose. Haus- mann.	Mohs- Zippe.	Miller.	Nau- mann.	[Haus- mann.]	[Mohs.] [Zippe.]	[Lévy]	Gdt.
1	a	a		a	_		• 001	o P	\mathbf{B}'	_		o
2	Ъ	b (a)	T	b	b	P	010	∞ P̈∞	В	Pr+∞	p	0∞
3	ε	e	x	e ^l	f	0	210	∞ P 2	D	Pr2	a ^I	2∞
4	e	e	x	<u>,</u> e	f	0	2 T O	∞ $^{\dag}\bar{P}$ 2	D	Pr→2	a^{I}	2 ₺
5	i	i		i			ΙĨΟ	∞ 'P	-			∞ $\bar{\infty}$
6	d	r	1	r¹	<u>g</u>	d	021	2, P¹∞	B B1 2	P +∞	e ⁴	02
7	y	n		n'			043	4 ,₽′∞				$0\frac{4}{3}$
8	h	m	M	m¹	g		011	ı <mark>P</mark> ¹∞	E	-	-	O I
9	λ	λ		λ			016	<u>I</u> 'P⊓∞				ο₹
10	μ	μ		μ			037	$\frac{3}{7}$ $\overset{1}{P}_{1}$ ∞				o 3/7
11	m	m	M	m	g		ΟĪΙ	'Ĕ,∞	E			ΟĪ
12	n	n		n			043	4 ¹P,∞				O \(\frac{4}{3}\)
13	r	r	1	r	<u>g</u>	d	O2̄ I	2'Ř,∞		$P + \infty$	e ⁴	O 2
14	v	\mathbf{v}		v		M	101	$^{1}\bar{\mathbf{P}}^{1}\infty$	$\mathbf{B}^{I}\mathbf{A}\frac{\mathbf{I}}{2}$	Рr	m	10
15	x	x		x			102	$\frac{1}{2}$ \bar{P} ∞	_			$\frac{I}{2}$ O
16	ξ	х		ξ	_		ĨO2	$\tfrac{1}{2}{}_{\scriptscriptstyle 1}\bar{P}_{\scriptscriptstyle 1}\infty$	_			$\frac{\mathbf{I}}{2}$ o
17	P	\mathbf{p}		\mathbf{p}'		_	212	P' 2				$I^{\frac{1}{2}}$
18	f	f		f			616	'P 6				ιξ
19	g	g		g			313	'P 3				I $\frac{\overline{I}}{3}$
20	p	\mathbf{p}		\mathbf{p}			212	P 2	-	-	-	I T
21	П	p		π¹			<u>2</u> 12	ι P 2				Ī 1/2
22	γ	g		γ			313	ιP̄ 3				$\overline{1} \frac{\overline{1}}{3}$
23	φ	f		φ			616	₁ P 6			-	Ī <u>Ī</u>
24	π	p		π			2Ī2	$\mathbf{\tilde{P}}_{_{1}}2$				$\overline{I} \frac{\overline{I}}{2}$
25	ω	0		ω			211	2, P 2			_	2 I
26	0	o		0			2 Î I	$2^{l}\mathbf{\bar{P}}$ 2	-			2 Ī
27	σ	s		σ			631	6, P 2				63
28	s	s		S			6 3 1	6'P 2				63
29	k	k		k			4.1.12	$\frac{1}{3}$ \bar{P} 4		-		$\frac{1}{3}\frac{T}{12}$
30	x	k		x			4.1.12	$\frac{1}{3}$, \vec{P} 4				$\frac{1}{3}\frac{1}{12}$
31	t	t		t			2.3.5	콜1🏲 👱	_			2 5 3 5 2 5 2 5
32	τ	t		τ			2.3.5	$\frac{3}{5}$, $\stackrel{\smile}{P}$ $\frac{3}{2}$	-		_	2 3 5 5

Bemerkungen. (Fortsetzung von S. 352.)

Bei Mohs-Zippe (Min. 1839. 2. 185) und Hausmann (Handb. 1847. 2. (2) 1210) findet sich noch die Form $P-\infty$ resp. A in unserer Aufstellung $=\infty$ 0, welche die übrigen Autoren nicht kennen. Die Combination, in der diese Form auftritt, ist bei beiden dieselbe: $P-\infty$, $P+\infty$, $\bar{P}r+\infty$ resp. $2A\cdot 2B\cdot 2E$. Für $E(P+\infty)$ ist der Winkel gegeben $=104^\circ$ 10. Hierbei ist, wenn bei dieser Combination die Spaltbarkeit nicht constatirt ist, eine Verwechselung nicht ausgeschlossen, vielmehr ist es sehr leicht möglich, dass wir vor uns haben die Combination:

$$x (\frac{1}{2}o) \xi (\frac{7}{2}o) w (o\infty) q (o)$$

unserer Aufstellung, indem für x ξ , Lévy beobachtete ca 105°, Schrauf angiebt (S. 185): $38^{\circ}40.5 + 39^{\circ}6.3 = 77^{\circ}46.8$ (äusserer Winkel = 102°13')

Es wurde deshalb die Form ∞ o unserer Aufstellung \equiv A (Hausmann) $= P - \infty$ (Mohs-Zippe) noch nicht als sicher nachgewiesen angesehen.

Bei Lévy findet sich im Text (S. 98) e⁴, in der Figur dagegen (Taf. 65 Fig. 2) e^{$\frac{1}{4}$}. Letzteres hat Schrauf (Wien. Sitzb. 1873. 67. (1) 278) übernommen, doch geht aus Lévy's Elementen und der Transformation hervor, dass e⁴ richtig, e^{$\frac{1}{4}$} unrichtig ist. e^{$\frac{1}{4}$} wäre eine sehr steile Form.

Correcturen.

```
1838 Atlas Taf. 65 Fig. 2 lies
                                                               e^4 e^4
                                                                           statt
L evy
              Descr.
                          1839 — S. 184 Z. 3 vu "
                                                           132° 5 ; 97° O
                                                                            " 97° o; 132° 5
Mohs-Zippe Min.
              Wien. Sitzb. 1860 39
                                    "892 " 9 vu "
                                                                                   0.2565
Schrauf
                                                              0.2505
                          1873 67(1), 278, 19 vo Col. I. lies m (Brochantit)
                                              20 VO "
                                                                m (Königin)
                                                                                    e^{\frac{I}{4}}
                                              20 vu lies
                                                                e<sup>4</sup>
                                                                          statt
                                               2 VO "
                                                                2Ī2
                                                                                    212
                                    " 280 "
```

Bromsilber.

Regulär.

No.	Gdt.	Miller. Schrauf.	Miller.	Naumann.	G_1	G_2	G_3
I	С	a	001	∞O∞	0	000	∞0
2	đ	d	101	∞ O	10	01	00
3	p	О	111	О	1	I	1

356 Bromsilber.

Literatur.

Miller Min. 1852 615 Schrauf Atlas 1873 Taf, XXXVIII (Bromyrit).

Brookit.

1.

Monoklin? Rhombisch?

Axenverhältniss.

Monoklin.

Elemente.

а	. =	= 1.6828	lg a == 022603	$\lg a_0 = 025179$	$\lg p_0 = 974821$	a _o = 1.7856	$p_{\circ} = 0.5600$
c	=	= 0.9424	lg c = 997424	$lg b_0 = 002576$	$lg q_o = 997424$	b _o = 1.0611	$q_o = 0.9424$
μ.	= 80	$=$ β $=$ β $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$	$ \begin{cases} \lg h = \\ \lg \sin \mu \end{cases} o $	$ \begin{cases} \lg e = \\ \lg \cos \mu \end{cases} 716270 $	$\lg \frac{p_o}{q_o} = 977397$	h = 1	e = 0.0015

Transformation.

Miller. Dana. Kokscharow. Rath. Schrauf Bücking. Hessenberg.	1	Lévy. Hausmann. Descloiz.	Groth.	Breithaupt.	Gdt.
рq	q 2p	2p · 2q	9 p	<u>r q</u> 2p 2p	2p q
$\frac{\mathbf{q}}{\mathbf{z}}$ p	рq	q 2p	$\frac{p}{2} \frac{q}{2}$	$\frac{1}{q} \frac{p}{q}$	q p
$\frac{p}{2} \frac{q}{2}$	$\frac{q}{2}$ p	рq	$\frac{q}{4} \frac{p}{2}$	<u>i q</u> p <u>2p</u>	$p \frac{q}{2}$
q 2p	2p 2q	2q · 4p	рq	$\frac{1}{2q} \frac{p}{q}$	2q 2p
q 1 p	$\frac{1}{p} \frac{q}{p}$	$\frac{q}{p} \frac{2}{p}$	$\frac{1}{2p} \frac{q}{2p}$	рq	$\frac{1}{p} \frac{q}{p}$
$\frac{\mathbf{p}}{\mathbf{z}} \mathbf{q}$	q p	p · 2q	$\frac{\mathbf{q}}{\mathbf{z}} \frac{\mathbf{p}}{\mathbf{z}}$	$\frac{\mathbf{I}}{\mathbf{p}} \frac{\mathbf{q}}{\mathbf{p}}$	рq

(Fortsetzung S. 359.)

358 Brookit.

Literatur.

```
L evy
                   Thomson. Ann. Philos.
                                            1825
                                                         140
Haidinger
                  Pogg. Ann.
                                            1825
                                                     5
                                                        162
Hartmann
                  Handwb.
                                            1828
                                                        91
                                                     3
L\acute{e}vy
                  Descr.
                                            1838
                                                        349
                                                     2
Mohs-Zippe
                  Min.
                                            1839
                                                        608
                  Handb.
                                                     2
Hausmann
                                            1847
                                                        (1) 214
Breithaupt
                  Pogg. Ann.
                                                        302 (Arkansit)
                                            1849
Rammelsberg
                                            1849
                                                    77
                                                        586
                        ,,
                                                    79
Kokscharow
                                            1850
                                                         454
Dana, J. D.
                  Amer. Journ.
                                            1851 (2) 12
                                            1851 (2) 12
                                                        397 (Eumanit)
Miller
                  Min. _
                                            1852
                                                        226
Ladrey
                  Compt. rend.
                                            1852
                                                    34
                                                        56
Kokscharow
                  Mat. Min. Russl.
                                                     1
                                                        61
                                            1853
                                                     2
                                            1857
                                                        273
                                                     6
                                            1870
                                                        204
                                            1854 (2) 17
Dana, J. D.
                  Amer. Journ.
                                                        86
Grailich u. Lang Wien. Sitzb.
                                                    27
                                                        10
                                            1857
                                                     2
Hessenberg
                  Senck. Abh.
                                            1858
                                                        251
Rath
                  Pogg. Ann.
                                            1861
                                                   113
                                                        430
Dana, J. D.
                  System
                                            1873
                                                        164
Leuchtenberg
                  Jahrb. Min.
                                            1873
                                                        420
                                                        Taf. XXXIX u. XL
Schrauf
                  Atlas
                                            1873
                                                     2
Des Cloizeaux
                  Manuel
                                            1874
                                                        203
                  Wien. Sitzb.
                                                    74
Schrauf
                                            1876
                                                        (1) 535 )
                  Zeitschr. Kryst.
                                                     1
                                            1877
                                                        306
Rath
                                            1876
                                                   158
                  Pogg. Ann.
                                                        405
                  Berl. Monatsb.
                                            1875
                                                        534 J
Groth-Bücking
                  Strassb. Samml.
                                            1878
                                                        109
                  Tab. Uebers.
Groth
                                            1882
                                                        32
                  Zeitschr. Kryst.
                                            1884
                                                     8
Zepharovich
                                                        577
                                                     9
Schrauf
                                            1884
                                                        444
```

Bemerkungen Correcturen s. Seite 360, 362. 2.

						<i>2</i> 4.					
No.	Gdt.	Miller. Schrauf. Zephar. Bücking. Hessen- berg.	Rath. Kok- scha- row.	Breit- haupt.	Lévy. Haid. Mohs- Zippe. Hartm. Hausm.	Miller.	Naumann.	[Hausm.]	[Mohs.] [Zippe.]		
1	c	С	c		p	001	οP	A	$P - \infty$	p	О
2	ь	a	b		g¹	010	$\infty P \infty$	В	Pr+∞	g^{I}	0 &
3	а	bа	a	1	h I	100	$\infty P \infty$	\mathbf{B}^{i}	ĕr∔∞	h ¹	∞ 0
4	m	M	M	i	m	210	∞P 2	E (Pr	+∞) <u>≗(ř</u> +∘	o) 2 m	2 ∞
5	a	a		О		310	∞P 3			h ⁵	3 ∞
6	1	1	1			410	∞ P 4				4 ∞
7	e	e				920	∞P ⁹ / ₂				$\frac{9}{2}$ ∞
8	k	k				810	∞P8			$h^{\frac{5}{3}}$	8 œ
9	р	p				11.1.0	∞Ріі			h 13	11 ∞
10	N	N	f			14.1.0	∞P14				14 ∞
11	Т	T				089	§ P ∞ -			$e^{\frac{I}{2}}$	o 🖇
12	δ			s		011	₽∞				O I
13	đ	d	d		$e^{\frac{3}{8}}$	043	4 P∞	$BA\frac{3}{8}$	4 ₽r	e ^{3/8}	$0^{\frac{4}{3}}$
14	t	t	t	y	$e^{\frac{I}{4}}$	O2 I	2 P∞	$BA^{\frac{1}{4}}$	Ēr∔ı	$e^{\frac{1}{4}}$	0 2
15	y	уY	y		a ²	102	$\frac{1}{2} P \infty$	AB 2	ĕr—ı	a ² .	$-\frac{1}{2}$ o
16	x	хX	x		a ^I	101			Ўr	a ^I	
17	χ		w	_	a ·	112	1 P				$\frac{1}{2}$
18	λ e	χ e η	e e	P	e^3	111	P	BD^{\dagger}_{2}	P	γ	<u>+</u> 1
19	n	nv	n			22 I	2 P P 2/2			n	2 1 2
20 21	p V	Þ vφ	v	_	i	929 313	$\frac{1}{2}$	D'B 2	$(\frac{4}{3}\breve{P}-2)^3$	v -	$\frac{1}{2}$
		<u>-</u>							(3/		
22	P	P				14.5.14	P_{5}^{14}				+ I 5/14
23	Z	$z\zeta$	Z	n	$\mathbf{b}^{\frac{1}{2}}$	212	P 2	P (Ĕ	r-1) <u>3</u> (ĕ-1	()2 b2	+ 1 ½
24	q	q				434	P 4/3				I 3/4
25	x		q			232	$\frac{3}{2}$ P $\frac{3}{2}$	-			$1\frac{3}{2}$
26	λ		i			121	2 P 2		_		1 2
27	O	οω	o	-		211	2 P 2			$b^{\frac{1}{4}}$	<u>+</u> 2 I
28	s	sσ	s			311	3 P 3			α	+ 3 1
29	g	g				18.4.9	2 P 2/2	_			2 4/9
30	q	q	-			643	$_{2}$ P $\frac{3}{2}$				$2\frac{4}{3}$
	w	wW					7 P 7/4			w -	+ 2 7/2
31 32	w h	h H				472 251	5 P 5	_	-	₩ ₩ -	+ 2 5
33	i	i J	k			321	3 P 3/2			β	+ 3 2
							$\frac{3 \cdot 2}{\frac{7}{2} \mathbf{P} \frac{7}{4}}$				$+\frac{7}{2}$ 2
34	u	u 8	u			741					
35	r	rρ	r			421	4 P 2				± 4 2
36	π					326	½ P 3/2			ζ	1 I 2 3
37	ε				_	234	3 P 3		_	ε	$\frac{1}{2}$ $\frac{3}{4}$
									(Fortset:		

(Fortsetzung S. 361.)

360 Brookit.

Bemerkungen.

Die Formen: $u = \frac{7}{2} 2$ $g = \frac{23}{2} \infty$ $p = 11 \infty$ bezeichnet Kokscharow (Mat. Min. Russl. 1850. 1. 65.

Schrauf (Atlas 1873 und Wien. Sitzb. 1876. 74. (1) 535) führt sie ebenfalls an, giebt jedoch keine eigenen Beobachtungen dafür. Für u giebt Des Cloizeaux (Man. 1874. 2. 203) Messungen von Marignac, für p eigene Messungen. Es erscheint danach nur noch g als unsicher und wurde deshalb in den Index nicht aufgenommen.

Hessenberg giebt (Senck. Abh. 1858. 2. 251) das Symbol $\frac{1}{4}\bar{P}\infty$ (x) und bemerkt, dass die Buchstaben die von Miller gebrauchten seien. Nun dürfte in Symbol oder Buchstaben ein Druckfehler sein, da bei Miller (Min. 1852. 226) $x=\frac{1}{2}\bar{P}\infty$ ist. Winkel giebt Hessenberg nicht an. Der Fig. 10 nach hat es den Anschein, als liege die Form in der Zone ez, was für $\frac{1}{2}\bar{P}\infty$ spricht; doch ist dies wegen Schmalheit der Flächen nicht sicher zu entnehmen. Für $\frac{1}{4}\bar{P}\infty$ spricht, dass Bücking (Groth Strassb. Sammlg. 1878. 110) an einem Krystall desselben Fundortes $\frac{1}{4}\bar{P}\infty$ wahrgenommen hat. Danach wäre zu lesen $\frac{1}{4}\bar{P}\infty$ (y). Die Frage ist von keiner sonderlichen Bedeutung, da x und y auch sonst nachgewiesene Formen sind.

Durch die sorgfältigen Untersuchungen von Schrauf (Zeitschr. Kryst. 1884. 9. 444) ist es sehr wahrscheinlich geworden, dass der Brookit dem monoklinen System angehört. Dies wurde auch hier angenommen, jedoch von der bei den übrigen monoklinen Mineralien beobachteten Art des Anschreibens in sofern abgewichen, als die \pm Formen nicht getrennt aufgeführt wurden. Dies hat darin seinen Grund, dass bei vielen noch nicht feststeht, ob sie auf der + oder - Seite liegen. Wo Schrauf dies festgestellt hat, wurde es bei dem Zeichen Gdt. vermerkt.

In den Transformations-Symbolen sind die Vorzeichen + nicht eingeschrieben.

Bemerkenswerth ist die bei dieser Aufstellung hervortretende Aehnlichkeit in den Zahlen des Axenverhältnisses zwischen Rutil, Anatas und Brookit.

```
Rutil: a:a:c=1:1:0.6442; a:a:c=1.552:1.552:1 \beta=90^\circ Anatas: a:a:c=1:1:1.7771; c:a:a=1.777:1 : I \beta=90^\circ Brookit: a:b:c=1.683:1 : 0.942 \beta=90^\circ5.
```

3.

No.	Gdt.	Miller. Schrauf. Zephar. Bücking. Hessen- berg.	Rath. Kok- scha- row.	Breit- haupt.	Lévy. Haid. Mohs- Zippe. Hartm. Hausm.		Naumann.	[Hausm.]	[Mohs.] [Zippe.]		Gdt.
38	f	f F	m	_		351	5 P 3			μ	± 3 5
39	Ω	Ω		_		1.11.6	11P11				- 불 - 불
40	r	r				649	$\frac{2}{3} P \frac{3}{2}$				2 4 3 9
41	Σ	Σ		_		456	5 P 5				-2 5 3 6
42	\mathbf{E}	\mathbf{E}				3.11.5	$\frac{11}{5}$ $\frac{11}{3}$			λ	3 II 5 5
43	D	D				4.11.7	$\frac{11}{7}P\frac{11}{4}$		_		+ # 7
44	ð	θΘ	Θ	_	_	579	7/9 P 7/5			δ	+ 5 7
45	Δ	Δ				8-10-13	10P 5				- <u>8 I 0</u> 13 I 3

362 Brookit,

Correcturen.

Hessenberg	Senck. Abh.	1858 2	S. 251 Z. 3 vo lies Fig. 10 statt Fig.	19.
Rath	Pogg. Ann.	1861 113	", 431", 5 vu ", $t = (\frac{1}{2}b : c : \infty a)$ ", $t_{H} = (\frac{1}{2}b : c : \infty a)$):O∞a)
"	"		", 433 ", 4 vu ", $(a:\frac{1}{2}b:c)$ ", $(\frac{1}{2}a:t)$	o : c)
**	,,	" "	", 433 ", 4 vu ", $(\frac{2}{3}a:\frac{1}{2}b:c)$ ", $(\frac{1}{2}a:\frac{2}{3})$	b : c)
Schrauf	Atlas	1873 — 1	Yext zu Taf. XXXIX Z. 2 vu lies $\frac{7}{2}$ P2 , $\frac{7}{2}$ P $\frac{7}{2}$	
"	Wien. Sitzb.	1876 74 (1	S. 546 Z. 13 vo lies ω (111) , ω (11	1)
"	"	" "	"546 "10 vu " h ³ " h ⁵	
Naumann-Zirkel	Elem.	1877 —	"354 " 21 VO " 0.8416:1:0.9444 " 0.9444:1	:0.8416
Schrauf	Zeitschr. Kryst.	1884 9	, 470 ,, I vu ,, 355 ,, 33	35.

Brucit.

Hexagonal. Rhomboedrisch-hemiedrisch.

Axenverhältniss.

Elemente.

c =	= 1.5208	lg c = 018207	$\lg a_o = \infty 5649$ $\lg a'_o = 981793$	$lg p_o = 000598$	$a_o = 1.1389$ $a'_o = 0.6576$	p _o = 1.0139	
-----	----------	---------------	--	-------------------	-----------------------------------	-------------------------	--

Transformation.

Hessenberg. Dana. Groth. Schrauf. Jeremejew. G ₁ .	\mathbf{G}_2 .
рq	(p+2q) (p-q)
$\frac{p+2q}{3}\frac{p-q}{3}$	рq

No.	Gdt.	Schrauf.	Bravais.	Miller.	Naumann.	Lévy.¹)	G ₁	G_2
I	С	С	1000	III	o R	a ^I	0	0
2	a	a	I I 2O	101	∞ P 2	_	00	∞ o
3	p	P	20 2 I	511	+2 R	e ⁵	+20	+2
4	r	R	1010	100	+ R	P _T	+10	
5	z	z	TO13	441	$-\frac{1}{3}$ R	a [‡]	$-\frac{1}{3}$ o	$-\frac{I}{3}$
6	e		ĪOI 2	110	— <u>I</u> R		$-\frac{1}{2}$ o	$-\frac{1}{2}$
7	h	h	7075	443	<u>−-7</u> R	e 4 7	$-\frac{7}{5}$ o	$-\frac{7}{5}$
8	t	t	4041	755	-4 R	e ⁷	<u>-40</u>	<u> </u>

¹⁾ Nach Schrauf.

Literatur.

$L \epsilon vy$	Descript.	1838	1	236	
Miller	Min.	1852		26 9	
Dana, $J.D.$	Amer. Journ.	1854 (2	2) 17	83	
$Ros\theta$	D. Geol. Ges.	1860	12	178	
Hessenberg	Senck. Abh.	1861	4	40	(Min. Not. 4. 40.)
Kenngott	Uebers.	186265		120	
Dana, J. D.	System	1873		175	
Schrauf	Atlas	1873		Taf.	XL.
${\it Jeremejew}$	Zeitschr. Kryst.	1881	5	589.	

Bemerkungen.

Auffallend ist, dass in der Reihe der Formen +2; -4 auftreten, statt wie zu erwarten wäre -2; +4. Doch erlauben die von Hessenberg zusammengestellten Combinationen nicht, eine Verwechselung der Vorzeichen anzunehmen.

Wegen der immerhin noch vorhandenen Unsicherheit wurde die allgemeine Buchstabenbezeichnung des hexagonalen Systems rhomboedrischer Hemiedrie (S. 141) noch nicht eingeführt, sondern Schrauf's Buchstaben vorläufig beibehalten.

Correcturen.

```
Schrauf Atlas 1873 Text zu Taf. XL Zeile 16 vu lies: \infty a:a^{!}:a:4c statt \infty a:a:\infty:4c.
```

Brushit.

Monoklin.

Axenverhältniss.

$$\begin{array}{lll} a:b:c = o\cdot 2064: 1:o\cdot 3826 & \beta = 117°15' \text{ (Gdt.)} \\ & [a:b:c = o\cdot 3826: 1:o\cdot 2064 & \beta = 117°15'] \text{ (Dana.)} \\ & \{a:b:c = o\cdot 7651: 1:o\cdot 4128 & \beta = 117°15'\} \text{ (Schrauf.)} \end{array}$$

Elemente.

a ==	0.2064	lg a = 931471	$\lg a_0 = 973197$	$\lg p_o = 026803$	$a_{\circ} = 0.5395$	p _o = 1.8537
c =	0.3826	$\lg c = 958274$	$lg\ b_o = 041726$	$\lgq_o = 953165$	$b_o = 2.6137$	$q_0 = 0.3401$
μ =	62°45	$ \begin{cases} \lg \sin \mu \\ \lg h = \end{cases} 994891 $	$ \begin{cases} \lg e = \\ \lg \cos \mu \end{cases} $ 966075	$\lg \frac{\mathrm{p}_{\mathrm{o}}}{\mathrm{q}_{\mathrm{o}}} = \mathrm{o}73638$	h = 0.8890	e = 0·4579

Transformation.

Dana.	Schrauf.	Gdt.
pq	p	$\frac{1}{p} \frac{q}{p}$
p · 2 q	рq	<u>i 2q</u> p
$\frac{\mathbf{I}}{\mathbf{p}} \frac{\mathbf{q}}{\mathbf{p}}$	$\frac{1}{p} \frac{q}{2p}$	pq

No.	Schrauf. Gdt.	Miller.	Naumann.	Gdt.
1	b	010	∞P∞	000
2	c	100	$\infty P \infty$	% O
3	n	011	P∞	OI
4	p	TII	+P	— I

366 Brushit.

Literatur.

 Moore
 Amer. Journ.
 1865 (2)
 39
 43

 Dana, J. D.
 System
 1873
 —
 552

 Schrauf
 Atlas
 1873
 —
 Taf. XL.

Bunsenit.

Regulär.

No.	Gdt.	Schrauf.	Miller.	Naumann.	Des Cloizeaux.	G_1	G_2	G_3
I 2	c p	h O	111	∞0∞ 0	p a ^I	0	0∞ I	∞0 I

368 Bunsenit.

Literatur.

Bergemann	Erdm. Journ.	1858	75	243
Dana	System	1873		134
Schrauf	Atlas	1873		Taf. XL.

Buntkupfererz.

Regulär.

No.	Gdt.	Miller. Schrauf.		Miller.	Naumann.	Haus- mann,	Mohs- Zippe.	Lévy.	G ₁	G_2	G_3
1	С	a	a	100	∞೦∞	w	Н	р	0	000	∞ 0
2	\mathbf{d}	d	_	101	ωO	RD	D	_	10	O I	∞
3	q	n		112	202			(a")	$\frac{1}{2}$	I 2	2 1
4	р	0	P	111	0	0	0	a¹	I	I	I

Literatur.

Mohs	Grundr.	1824	2	548
Hartmann	Handb.	1828		332
$L \epsilon v y$	Descr.	1838	3	16
Mohs-Zippe	Min.	1839	2	519
Hausmann	Handb.	1847	2	(1) 137
Miller	Min.	1852	_	180
Schrauf	Atlas.	1873	_	Taf XXXVI.

Calcit.

1.

Hexagonal. Rhomboedrisch-hemiedrisch.

Axenverhältniss.

Elemente.

c = 0.8543	lgc = 993161	$\lg a_o = o_{30695}$	$\lg p_0 = 975552$	$a_0 = 2.0275$	$p_0 = 0.5695$
		$\lg a'_{\circ} = \infty 6839$		a' ₀ = 1·1705	

Transformation.

Wollaston. Hauy. \dots G_1	${ m G}_2$
pq	(p+2q) (p+q)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	pq

No.	Gdt.	Hauy. Mohs. Hausm. Naum.		Kok- scha- row.	Bravais.	Miller.	Naumann.	Hausm.	Mohs- Zippe.	Hauy.	Lévy. Descl.	G_1	\mathfrak{G}_2	G'2	$\begin{array}{c} \mathbf{E} = \\ \mathbf{p-1} & \mathbf{q-1} \\ \hline 3 & 3 \end{array}$
I	o	o	0	О	0001	III	οR	A	R—∞	A	a ^I	0	0	0	_
2	q	u	q	u	I I 2O	ΙΟĪ	∞P 2	В	P+∞	$\overset{\mathbf{D}}{\mathbf{D}}$	$\mathbf{d}^{ \mathbf{I}}$	∞	∞0	∞0	_
3	b	c	b	c	10Ĩ0	2 Ī Ī	∞R	E	$R+\infty$	ê	e^2	∞0	∞	∞	- 1
4	ζ	ζ	ζ		3140	725	∞R 2	BB'2	(P+∞) ²	3 3 B 1 D 4	ζ	3∞	$\frac{5}{2}\infty$	$\infty \frac{5}{2}$	_
5	ð				2130	514	∞R 3		$(P+\infty)^3$		k	2 ∞	4∞	∞ 4	- 1
6	π	π	π		1123	210	$\frac{2}{3}$ P 2	AB_{2}^{3}	P	$_{2}^{\mathrm{B}}$	b^2	<u>I</u>	10	O I	- 1
7	χ				7.7.14.12	11.4.3	7/6 P 2	— (I	Hsb. Desc	1.) —	s	7	7 / ₄ o	0 7	
8	λ				2243	31 <u>T</u>	43 P 2		2P		e_3	<u>2</u> 3	2 O	O 2	
9	α	Α	α		4483	513	8/3 P 2	$BA\frac{3}{8}$	P+2		α	$\frac{4}{3}$	4 O	04	- 1
10	ξ	ξ	ξ		2241	715	4 P 2	BA ^I	$\frac{3}{2}$ P+2	7 5 5 Bips	ξ	2	60	06	
11	β				7.7.14.3	$81\overline{6}$	14P 2		7P		Γ	$\frac{7}{3}$	70	07	- 1
12	γ				$8.8 \cdot 1\overline{6} \cdot 3$	917	16P 2	— (Rath, Hsl	o.) —	L	8 3	8 o	о 8	
13	δ	δ			3361	10.1.8	6 P 2	BA ₆	9P	5 5 B B B B	δ	3	90	09	
14	ε					13.1.11	8 P 2		(Rath)		G	4	I 2·O	O·I2	

(Fortsetzung S. 373.) 24* 372 Calcit.

Literatur.

```
Hauy
                  Traité Min.
                                             1822
                                                       1
                                                          302
We is s
                  Berl. Abh.
                                         1822-23
                                                          217 (264)
                                              1836
                                                          207
   "
                                              1840
                                                          137
Mohs
                  Grundr.
                                              1824
                                                      2
                                                          99
Wackernagel
                  Kastner Arch.
                                              1826
                                                      9
                                                          129
Hartmann
                  Handwb.
                                              1828
                                                          283
Naumann
                  Pogg. Ann.
                                              1828
                                                      14
                                                          235
L \acute{e} v y
                  Descr.
                                              1838
                                                       1
Mohs-Zippe
                  Min.
                                                      2
                                              1839
                                                          93
Hausmann
                 Handb.
                                                      2
                                              1847
                                                          (2) 1256
                  Wien. Denkschr.
Zippe
                                                      3
                                              1851
                                                          109
Miller
                  Min.
                                              1852
                                                          575
                  Wien. Denkschr.
                                                      6
Hochstetter
                                              1854
                                                          89
Sella
                  Torino Ac. Mem.
                                      [1855] 1858 (2) 17
                                                          289
                  Quadro.
                                              1856
Hessenberg
                 Senck. Abh.
                                             1861
                                                         262. 265. 267.
                                                                          Min. Not. Nr. 3;
                                                                                            8. 11. 13.
                                             1862
                                                      4
                                                         6. 12. 13.
                                                                                            6. 12. 13.
                                                                                        4;
                      "
                                             1863
                                                      4
                                                          189. 190.
                                                                                            9. 10.
                      "
                                                                                        5;
                                             1866
                                                      6
                                                          T
                                                                                        7;
                                                                                            1.
                                                      7
                                             1870
                                                         257. 265.
                                                                                            1.9.
                                                                                        9;
                                             1872
                                                         37
                                                                                       10; 37.
                                             1872
                                                          415. 423.
                                                                                       11;
                                                                                            9. 17.
                                                     10
                                             1875
                                                                                       12; 13. 17. 20.
Rath
                                                    132
                  Pogg. Ann.
                                              1867
                                                          387. 517. 534.
                                              1868
                                                    135
                                                          572.
                                             1871
                                                          Ergz. Bd. 5 438
                                             1874
                                                    152
                                                         17
                                             1875
                                                    155
                                                         48
                                             1876
                                                    158
                                                         414
                  Zeitschr. Kryst.
                                             1877
                                                      1
                  Bonn. Verh. nat. Ver.
                                             1877
                                                     36
                                                          5 Folge, Bd. 4 Sep. 65. Berichtigung
                  Zeitschr. Kryst.
                                              1882
                                                          540
Peters
                 Jahrb. Min.
                                             1861
                                                          432
Zepharovich
                 Wien. Sitzb.
                                             1866
                                                     54
                                                         (1) 273
Websky
                  Min. Mitth.
                                             1872
                                                         63
Dana
                  System.
                                             1873
                                                         670
Des Cloizeaux Manuel
                                             1874
                                                      2
                                                         97
Schnorr
                  Jahrb. Min.
                                                         631 Progr. Zwickau.
                                             1874
Kokscharow
                  Mat. Min. Russl.
                                             1875
                                                          59
Des Cloizeaux
                 Jahrb. Min.
                                             1877
                                                          161
Irby
                 On cryst. of calcite Diss. Bonn 1878
                                                      3
                 Zeitschr. Kryst.
                                             1879
                                                          612
Groth
                 Strassb. Samml.
                                             1878
                                                         119
Hare
                 Zeitschr. Kryst.
                                             1880
                                                      .4
                                                         299
Zepharovich
                 Zeitschr. Kryst.
                                             1881
                                                      5
                                                         269 Lotos 1878
Stroman
                 Ber. Oberhess. Ges.
                                             1882
                                                         284
```

2.

No.	Gdt.	Hauy. Hausm. Mohs. Naum.	Miller.	Kok- scha- row.	Bravais.	Miller.	Naumann.	Haus- mann.	Mohs- Zippe.	Hauy.	Lévy. Descl.	G_1	G_2	$\mathbf{G'}_{2}$	$\frac{\mathbb{E}}{\frac{p-1}{3}} = \frac{q-1}{3}$
15	z·				28.0.28.1	19.5.5	+28R		7 R+4		e 9	+28·o	+28.28	+28.28	+9
16	u٠		_		19.0.19.1	13.6.6	+19R		(Foullon)			+19.0	+19.19	+19.19	+6
17	ţt.	i Hsm	. —		16.0.16.1	${\bf 1}{\bf 1}\!\cdot\!{\bf \bar{5}}\!\cdot\!{\bf \bar{5}}$	+16R	$HA_{\overline{16}}^{\underline{1}}$	R+4	_	$e^{\frac{II}{5}}$	+16 ·0	+16.16	+16.16	+5
18	s.	i Hy.	_		13.0.13.1	944	+13R	_	13R		e ⁹	+13.0	+13.13	+13.13	+4
19	r·				10.0.10.1	$7\overline{3}\overline{3}$	+10R	— (I	Descl. Hsb.) —	$e^{\frac{7}{3}}$	+10.0	+10.10	+10.10	+3
20	${\bf q}\cdot$	τ	_		707 I	522	+7R		$\frac{7}{4}R + 2$		$e^{\frac{3}{2}}$	+ 70	+ 7	+ 7	+2
21	у.		_	_	60 <u>6</u> 1	13.2.5	+6R	_	(Sella)	_	e 5	+ 60	+ 6	+ 6	+5/3
22	0.	_			I I ·O·I Ī·2	833	$+\frac{11}{2}R$		(Lévy)		$e^{\frac{8}{3}}$	$+\frac{11}{2}$ o	$+\frac{11}{2}$	$+\frac{11}{2}$	$+\frac{3}{2}$
23	n٠				5051	4·4·1Ī	+5R		(Rath)		$e^{\frac{II}{4}}$	+ 50	+ 5	+ 5	+4
24	m·	m	m	m	4041	113	+4R	HA ^I / ₄	R+2	ě		+ 40	+ 4	+ 4	+1
25	ŀ	_			3031	227	+3R	$HA_{\frac{1}{3}}$	$\frac{3}{4}$ R+2			+ 30	+ 3	+ 3	$+\frac{2}{3}$
26	k·	_		s	5052	114	$+\frac{5}{2}R$		5 R+2		e ⁴	十 ½o	十 ½	+ 5/2	$+\frac{1}{2}$
27	$\mathbf{p}\cdot$	P	r	P	1011	100	+ R	P	R	P	•	+ 10	+ 1	+ 1	0
28	h٠	-	П		2023	711	$+\frac{2}{3}R$	$AH_{\frac{3}{2}}$	$-\frac{1}{3}R+1$		a ⁷	$+\frac{2}{3}0$	$+\frac{3}{2}$	$+\frac{2}{3}$	— <u>I</u>
29	g.				4047	511	+ # R		(Hsb.)		a ⁵		+ #	+ #	— Ī
30	f٠	_			1012	411	$+\frac{1}{2}R$		-R-1		a ⁴ a ³	+ ½0	$+\frac{1}{2}$	$+\frac{1}{2}$	— <u>I</u>
31	e∙ d∙		u		2025 1014	311 211	$+\frac{2}{5}R$ $+\frac{1}{4}R$	AH ₄	² / ₅ R R—2	_		$+\frac{2}{5}0$ $+\frac{1}{4}0$	$+\frac{2}{5}$ $+\frac{1}{4}$	$+\frac{2}{5}$ $+\frac{1}{4}$	$-\frac{1}{5}$ $-\frac{1}{4}$
32			u								$\frac{a}{a^{\frac{1}{2}}}$	_			
33	α.				TO15	22 I	$-\frac{1}{5}R$	_	² / ₅ R—1	_	a ²	$-\frac{1}{5}$ 0	— <u>I</u>	$-\frac{1}{5}$	<u>2</u>
34	β٠		_		7.0.7.20	992	$-\frac{7}{20}R$	— <i>(</i> T	Peters	`	$a^{\frac{I}{7}}$	$-\frac{7}{20}$ o	$-\frac{7}{20}$	$-\frac{7}{20}$	20
35	γ.				2025	771	$-\frac{2}{5}$ R		Daub. Rath	<u> </u>		— <u>2</u> 0	<u>-</u> 2/5	<u>-</u> 2/5	<u>7</u>
36	δ.	g	e	g	ĨOI2	110	$-\frac{1}{2}R$	G	R—1	B	P _I	<u> </u>	$-\frac{1}{2}$	$-\frac{1}{2}$	$-\frac{1}{2}$
37	٤٠	d	_		3035	88₹	$-\frac{3}{5}R$		<u>6</u> R—1	ě	$e^{\frac{I}{8}}$	$-\frac{3}{5}$ o	<u>3</u> 5	$-\frac{3}{5}$	$-\frac{8}{15}$
38	ζ.				2 023	55₹	$-\frac{2}{3}$ R	_	(Hessb.)	_	$e^{\frac{I}{5}}$	$-\frac{2}{3}$ o	$\frac{2}{3}$	$-\frac{2}{3}$	— <u>5</u>
39	η.	1	1		4 045	33₹	— <u>4</u> R	FA5/8	² / ₅ R+1	e e	$e^{\frac{1}{3}}$	— 4 0	4 5	— 4 5	<u>3</u>
40	∂.	_			7 078	55 2	$-\frac{7}{8}$ R		7 R—1		$e^{\frac{2}{5}}$	— 7 0	— 7	— 7	— <u>5</u>
41	χ.	ε	ε	ε	ĪOII	22Ī	R	$FA_{\frac{1}{2}}$	R	ė	$e^{\frac{1}{2}}$	— 10	— 1	<u> —</u> т	$-\frac{2}{3}$
42	λ.			_	8087	553	— <u>8</u> R		4 R+1	_	$e^{\frac{3}{5}}$	— <u>8</u> 0	<u>8</u>	- <u>8</u> 7	<u>5</u>
43	μ٠	i	i	_	6065	11.11.7		$FA_{\overline{12}}^{5}$	3/5 R+1		$e^{\frac{7}{11}}$	— § o	<u>6</u>		$-\frac{11}{15}$
44	y.	φ	φ	_	5 054	332	5/4 R	FA_5^2	$\frac{5}{8}R+1$	e e	$e^{\frac{2}{3}}$	— <u>5</u> 0	5 4	- ⁵ / ₄	<u>3</u>
45	ξ.			_	<u>4</u> 043	775	— <u>4</u> R		(Hessb.)	_	e ⁵ / ₃	— 4 0	<u>4</u>	- ⁴ / ₃	 7 ₉
46	π.				7075	443	$-\frac{7}{5}$ R		$\frac{7}{10}$ R+1		$e^{\frac{3}{4}}$	— 7 0	 7 5	$-\frac{7}{5}$	— <u>4</u>
47	ρ.	h	h		3032	554	$-\frac{3}{2}R$	$FA\frac{I}{3}$	$\frac{7}{10}$ R+1 $\frac{3}{4}$ R+1	ŧ e	$e^{\frac{4}{5}}$	$-\frac{3}{2}$ 0	- 3/2	$-\frac{3}{2}$	<u>5</u>
48	σ.				11.0.11.7		$-\frac{11}{7}R$	_	<u>II</u> R+1		$e^{\frac{5}{6}}$	— 11 0	— 	_ <u>i,i</u>	67 78 14
49	τ.				13.0.13.8	_	-		13 R—3		$e^{\frac{6}{7}}$	— <u>¹³o</u>	<u>13</u>	<u>I3</u>	_ 7
50	A٠				9095	14.14.13	$-\frac{9}{5}R$		(Sansoni)			— ⁹ ⁄ ₅ o	 	- ⁹ / ₅	- 14 15
							_						setzuno		

(Fortsetzung S. 375.)

374 Calcit.

Literatur. (Fortsetzung von S. 372.)

Leuze	Würt. Jahrh.	1882	38	91	ì
**	Zeitschr. Kryst.	1883		400	
$Sj\ddot{o}gren$	Zeitschr. Kryst.	1884	8	651	l
"	Stockh. Geol. För. Förh.	1883	6	550	Ì
$Benk\ddot{o}$	Zeitschr. Kryst.	1885	10	99	
Foullon	Verh. geol. R. Anst.	1885		149	
,,	Jahrb. geol. R. Anst.	1885	35	47	
Sansoni	Zeitschr. Kryst.	1885	10	545	
Rath	Niederrh. Ges.	1885	3. Jui	ni.	

Bemerkungen | s. Seite 376. 378. 380. 382. 384. 386. 388—390.

3.

								٥.							
No.	Ødt.	Hauy. Hausm. Mohs. Naum.	Miller.	Kok- scha- row.	Bravais.	Miller.	Naumann.	Haus- mann.	Mohs- Zippe.	Hauy.	Lévy. Descl.	G ₁	62	6'2	$ \begin{array}{c} E = \\ p-1 \\ 3 \end{array} $
51	φ.	f	f	f	2021	ΙΙΪ	— 2 R	$FA_{\frac{1}{4}}$	R+1	E' 'E	e¹	— 20	— 2	— 2	I
52	χ.				9 094	13.13.14	— ⁹ / ₄ R		9 R—1	_	$e^{\frac{I4}{13}}$	— ⁹ 40	— <u>9</u>	<u> </u>	$-\frac{13}{12}$
53	ψ.		g	_	5052	778	$-\frac{5}{2}$ R	$FA_{\frac{1}{5}}$	5 R+2	-	$e^{\frac{8}{7}}$	— <u>5</u> 0	<u> </u>	— <u>5</u>	$-\frac{7}{6}$
54	w٠	_			11.0.11.4	556	$-\frac{11}{4}R$		11 R-1		$e^{\frac{6}{5}}$	$-\frac{11}{4}$ o	_ <u>I</u> I	<u>II</u>	— <u>5</u>
55	Γ.	-	ψ		3031	445	-3R		(Naumann)		<u>5</u>	- 30	- 3	— 3	$-\frac{4}{3}$
56	$\Delta \cdot$	χ	χ		7072	334	$-\frac{7}{2}R$	FA_{7}^{I}	7 R+1	å e	$e^{\frac{4}{3}}$	$-\frac{7}{2}$ o	-	— <u>7</u>	$-\frac{3}{2}$
57	Θ.	· η ₁	$\frac{\gamma}{\eta}$	d	<u>4</u> 041	557	4 R	FAI	— R+2	ě	$e^{\frac{7}{5}}$	- 40	— 4	- 4	<u>5</u>
58	Λ.	_		_		11.11.16			(Rath)		$e^{\frac{I6}{II}}$	— ⁹ 20	— <u>9</u>	⁹ / ₂	— ñ
59	Ξ.	s	s	z	5051	223	- 5 R	$FA_{10}^{\underline{I}}$	5 R+3	$\overset{3}{e}$	$e^{\frac{3}{2}}$	50	5	5	2
60	П.		d		8081	335	— 8 R		R+3	e e	$e^{\frac{5}{3}}$	— 8o	8	— 8	-3
61	B.	3	<u> </u>	_		335 10·10·17			(Sansoni)			— 90	 9	— 9	<u>I0</u>
62	Σ.			γ	11.0.11.1	447	1R		11 R+1		$e^{\frac{7}{4}}$	-11·0	-11.11	-11.11	-4
63	Φ.	k		k	14.0.14.1		—14R	$FA_{\frac{1}{28}}$		- 8	e ⁵	—14·0	14-14	14.14	5
64	Ψ.				17.0.17.1		-17R		(Desci,)		e 6	•		17.17	-6
65	z:	7∙τ	τ	_	₹₹35	320		AH5 KG	I (4 P-2)	з В 3	$b^{\frac{3}{2}}$			+13	0 2
66	y:				3148	530	— ½ R5		(P3)	5	b ⁵	3 I	7 I 8	+13	0 3
67	у.		Ω		4.3.7.10	730	$+\frac{1}{10}R^7$		$(\frac{2}{5}P-2)$		$\mathbf{b}^{\frac{7}{3}}$		$+i\frac{I}{I0}$	$+1\frac{1}{10}$	$0\frac{3}{10}$
68	v:		+	_	7.4.11.15	11.4.0		_	ath. Hessb	3.	b 4.	$+\frac{7}{15}\frac{4}{15}$	$+1\frac{1}{5}$	$+1\frac{1}{5}$	0 I 5
69	t:	t		t	2134	310	+ ¼ R³		(P-2)				+ 1 1/4	+ 1 1/4	o <u>₹</u>
70	g:			_	5279	720	$+\frac{1}{3}R^{\frac{7}{3}}$		(Sella)	3	$\mathbf{b}^{\frac{7}{2}}$		$+1\frac{1}{3}$	$+ 1 \frac{1}{3}$	0 2
71	w:	ω	w	w	3279 31 4 5	410	$+\frac{2}{5}R^{2}$		$(\frac{2}{5}P)^2$	В			$+ 1 \frac{2}{5}$	$+1\frac{2}{5}$	0 I
72	f:				7.2.9.11	920	$+\frac{5}{11}R^{\frac{9}{7}}$		(Rath)	<u>4</u> В		 7 2	+ 1 <u>5</u>	+ 1 <u>5</u>	0 2
1	e:				4156	510	$+\frac{1}{2}R^{\frac{5}{3}}$		-(P-1)	9			$+ 1 \frac{1}{2}$	$+ 11 \frac{1}{2}$	o ₹
73	q:	q	q	_	51 <u>6</u> 7	610	$+\frac{4}{7}R^{\frac{3}{2}}$	GK ²	$(\frac{4}{7}P)^{\frac{3}{2}}$	В	b ⁶		$+1\frac{4}{7}$	$+1\frac{4}{7}$	o Ŧ
74	ч.	Ч	ч 							6					
75	α:		_	- 1	11.2.13.15	13·2·O	$+\frac{3}{5}R^{\frac{1}{9}}$		(Sansoni)			+ II 2 I5 I5		$+1\frac{3}{5}$	O ₁₅ →
76	c:		С		6178	710	$+\frac{5}{8}R^{\frac{7}{5}}$		$\left(\frac{5}{8} P\right)^{\frac{7}{5}}$	_	b ⁷		+ 1 ½	$+ 1\frac{5}{8}$	o <u>₹</u>
77	b:				7189	810	$+\frac{2}{3}R^{\frac{4}{3}}$		(Sella)				$+$ 1 $\frac{2}{3}$	$+$ 1 $\frac{2}{3}$	0 <u>}</u>
78	a:				8-1-9-10	910	$+\frac{7}{10}R_{5}^{\frac{9}{7}}$		$\left(\frac{7}{10}P\right)^{\frac{9}{7}}$				$+$ 1 $\frac{7}{10}$	$+1\frac{7}{10}$	$O_{\frac{1}{4}}^{10}$
79	β:				9.1.10.11	10.1.0	$+\frac{8}{11}R^{4}$		(Sanso n i)	_			+ 1 8 11		$o_{\underline{1}}^{\underline{1}}$
80	d:			_	13.1.14.15	14-1-0	$+\frac{4}{5}R^{6}$		(Rath)				+ 1 4		$O_{\overline{15}}^{\overline{1}}$
81	A:				I I · I · I <u>2</u> · I O		$+ R_{1}^{\frac{6}{5}}$		(Zephar.)			+11 10		$+ 1\frac{13}{10}$	$O_{\overline{10}}$
82	B:		_		17-2-15-15		$+ R_{\perp}^{I}$	ž	(Zephar.)			$\begin{array}{c} +\frac{17}{15} \frac{2}{15} \end{array}$		$+ 1 \frac{7}{5}$	$0\frac{2}{15}$
83	C:		_		7186	70Ī	$+ R^{\frac{4}{3}}$		(P) ^{4/3}	_	d^7	十音音	$+\frac{3}{2}$ I	$+ 1 \frac{3}{2}$	0 [
84	γ:				19.3.22.16	19·0·3	R 8	<u> </u>	(Sansoni)				$+\frac{25}{16}$ I		$0\frac{3}{16}$
												(For	setzuno	S. 377.)	1

(Fortsetzung S. 377.)

376 Calcit.

Bemerkungen.

Allgemeine Bemerkungen.

Bei der grossen Anzahl von Formen und der Ausdehnung der Literatur schien es wünschenswerth, um für jede Form schnell die Quelle finden zu können, eine diesbezügliche Angabe zu machen. Es wurde daher für die Formen, die sich bei Zippe nicht finden, der Autor, der sie eingeführt hat, namhaft gemacht. Diese Angaben wurden in der Rubrik Mohs-Zippe untergebracht, da sie diese in dem genannten Sinn ergänzen.

Ueber die Eintheilung der Formen in Gruppen und die entsprechende Wahl der Buchstaben vgl. Einleitung Seite 141. Die Buchstaben sind so gewählt, dass in jeder Gruppe möglichst gleichartige sich befinden und dass möglichst wenig Wiederholungen desselben Buchstabens stattfinden. Dadurch wird es in den meisten Fällen möglich sein, die Gruppen-Zeichen wegzulassen und sie durch eine allgemeine Bemerkung zu ersetzen.

Bei den Formen der Reihe $-\frac{1}{2}$ q wurden die Buchstaben ausser dem Gruppenzeichen noch durchstrichen. Dies geschah, da die angewandten Buchstaben schon verwendet sind, das Zeichen : etwas schwerfällig und e für Formen $-\frac{1}{2}$ q eine bequeme Andeutung der Halbirung ist. Es liegen endlich diese Formen in der Nähe des Projectionsmittelpunktes dicht beisammen und soll der Buchstabe wenig Platz einnehmen. Es wird daher meist statt e: e zu setzen sein. Jedoch sollte für diese wenigen Formen keine neue Gruppe gemacht werden. Um somit anzudeuten, dass die Formen zur Gruppe III gehören, andererseits e die bequemere Schreibweise sein dürfte, wurde in dem Index beides combinirt eingeschrieben. Also e: u. s. w.

Unsichere Formen.

Unsichere Formen haben keinen Werth. Trotzdem wurde eine Reihe derselben angeführt, die eine gewisse Wahrscheinlichkeit für sich haben, einestheils um anzudeuten, dass sie nicht übersehen wurden, dann aus dem Grunde, weil bei erneuter sicherer Beobachtung ein Zurückgreifen auf die alte unsichere Angabe doch erwünscht erscheint. Das Verzeichniss der unsicheren Formen ist jedoch nicht vollständig.

4.

									4.							
No.	Gdt.	Hauy. Hausm. Mohs. Naum.	Miller.	Kok- scha- row.	Bravais.	Miller.	Naun	iann.	Haus- mann.	Mohs- Zippe.	Hauy.	Lévy. Descl.	G ₁	G ₂	G'2	$\begin{array}{c c} E & = \\ \hline p-1 & q-1 \\ \hline 3 & 3 \end{array}$
85	D:	ν Hsm.	у	υ	6175	60₹	+	$R^{\frac{7}{5}}$	KG ⁵	$(P)^{\frac{7}{5}}$	$\overset{6}{\mathbf{D}}$	d ⁶	+ 6 I	+ 8 I	+ 1 8/5	0 I
86	E:	σHsm.	σ	σ	5164	50ī	+	$R^{\frac{3}{2}}$	KG ²	$(P)^{\frac{3}{2}}$	$\overset{\mathtt{5}}{\mathrm{D}}$	d^5		$+\frac{7}{4}$ 1	$+ 1\frac{7}{4}$	0 I
87	F:	n	n		4153	40 <u>ī</u>	+	$R^{\frac{5}{3}}$	KG_{5}^{3}	$(P)^{\frac{5}{3}}$	$\mathbf{\mathring{D}}$	d ⁴		+ 2 I	+ 1 2	$O^{\frac{1}{3}}$
88	δ:				19·5·24·14	19.0.5	+	R ¹²		(Sansoni)			+ 19 5	+ 29 + 14 I	$+1\frac{29}{14}$	0 <u>5</u>
89	G:		_		7295	702	+	$R^{\frac{9}{5}}$		$(P)^{\frac{9}{5}}$		$\mathbf{d}^{\frac{7}{2}}$		+ 11 I	$+1\frac{11}{5}$	0 2
90	H:	λ	λ	_	3142	30ī	+	\mathbb{R}^2	$KG_{\frac{1}{2}}^{\underline{1}}$	(P) ²	$\overset{\mathtt{3}}{\mathrm{D}}$	d^3	$+\frac{3}{2}\frac{1}{2}$	$+\frac{5}{2}$ 1	+ 1 ½	$O^{\frac{1}{2}}$
91	J:	4	24		5273	502̄	+	$R^{\frac{7}{3}}$	KG ³	$(P)^{\frac{7}{3}}$	1 D	$d^{\frac{5}{2}}$	+ 5 2 3	+31	+13	0 2 3
		•	v	r	2131	20Ī	+	R³	KG ¹ / ₃	(P) ³	$\overset{2}{\mathrm{D}}$		+21			01
93	L:				17.9.26.8	17.0.9	+	$R^{\frac{13}{4}}$		$(P)^{\frac{13}{4}}$	_	$d^{\frac{17}{9}}$	•	+ 35 + 8 I	$+ 1\frac{35}{8}$	O 8/8
94	ε:				9.5.14.4	905	+	$R^{\frac{7}{2}}$		(Sansoni)				+ 19 I	+ 119	0 5
95	M:	2	δ	h	7.4.11.3	70 4	+	$R^{\frac{1}{3}}$	KG_³		$\overset{1}{\mathbf{D}}$	$d^{\frac{7}{4}}$		+51	+ 1 5	0 4
	N:	_	γ		5382	503	+	R ⁴		(P)4		$d^{\frac{5}{3}}$	$+\frac{5}{2}\frac{3}{2}$	$+\frac{11}{2}$ 1	$+ 1 \frac{11}{2}$	$0\frac{3}{2}$
97	O:			n	8.5.13.3	80 <u>5</u>	+	$R^{\frac{13}{3}}$		$(P)^{\frac{I3}{3}}$		d ⁸ / ₅		+6 I	+ 16	0 5
98	P:	y	y	y	3251	30 <u>2</u>	+		KG I	(P) ⁵	$\overset{\frac{3}{2}}{\mathrm{D}}$	$d^{\frac{3}{2}}$	+32	+ 1 7	+ 17	02
99	Q:	_		-	19-13-32-6	-	+	$R^{\frac{16}{3}}$		(Hessenb.) —	$\mathbf{d}_{\underline{13}}$	1 19 13		$+ 1 \frac{15}{2}$	o 13
100					10.7.17.3	10.0.7		R 3		(P) ¹⁷ / ₃	$\overset{\frac{10}{7}}{\mathrm{D}}$	d 7		+8 I	+ 18	0 7 3
101	ζ: ~				7.5.12.2	70 <u>3</u> -	+	R6	_	(Sansoni)		d 11 8	$+\frac{7}{2}\frac{5}{2}$	$+\frac{17}{2}$ I	$+1\frac{17}{2}$	0 5
102	S:				11.8.15.3	11.0.8	+	R 3		(Rath)		d ⁸	+11 8 -	+9 I	+19	O 8/3
103	γ_{j} :			— 2	23-17-40-6	23.0.17	+	R ²⁰		(Sansoni)	4	<u> </u>	$+\frac{23}{6}\frac{17}{6}$	<u>+19</u> 1	$+1\frac{19}{2}$	0 ¹⁷
104		σMs.N.	ς		4371	403	+	R ⁷	KG ^I ₇	(P) ⁷	$\overset{\frac{4}{3}}{\mathrm{D}}$	d ³		+10·1	+1.10	03
105	ð:			_	9.7.16.2	907	+	R ⁸		(Sansoni)			+ 2 7 -	$+\frac{23}{2}$ I	$+1^{\frac{23}{2}}$	0 7
106	U:	μ	μ		5491	504	+	R9	$KG_{9}^{\underline{I}}$	(P)9	$\overset{1}{\mathbf{D}}$	d ⁵	+54	+13.1	+1.13	04
107	V:		Þ		6.5.11.1	603	+		KG_{11}			T 3	-	+16 ∙1	+1.16	05
108	W:		요	_	13.11.24.2	13.0.11	+	R12	KG ₁₂	(P)12			1311	$\frac{35}{2}$ I	$+1\frac{35}{2}$	0 11
109	\mathbf{X} :	_			7.6.13.1	7 06	+	R13		(P) 13			+76-		+1.19	06
110	t:		_			17:0:15	+	RIG		(Sansoni)			$\frac{1715}{22}$	1 47 I	$+1\frac{47}{2}$	$0^{\frac{15}{2}}$
III	Y:				9.8.17.1	908	+	R17		(Sjögren)			+98-		+1.25	08
112	a: b:	_		_	4265 3254	51 T 41 T		R ³ R ⁵	_	$(\frac{2}{5} P)^3$ $(P-2)^5$	 5		十章章 - 十章章 -	+ § € + 7 I	$-2\frac{2}{5}$ $-2\frac{1}{4}$	- 1 1 -
-			<u>-</u> ξ	_	3254 4·3·7·5	52 2			FA <u>∓</u> .6K	$\frac{(1-2)}{\frac{5}{2}} (\frac{2}{5} P - I)^7$		e ₅ -	- 4 2 - - 4 3 - 5 5 -	$-2\frac{1}{5}$	$-2\frac{1}{5}$	$-1\frac{2}{5}$
115	b :		 Ѣ	_	ē· ∓ ·10·7	733	— 2	R ⁵	FA4.GK	7/3 (4/P—1)5	· —	e ₇	<u> </u>	$-2^{\frac{2}{7}}$	— 2 2 -	$-1\frac{3}{7}$
116	e:				<u> 2</u> <u>7</u> 3 1	2 I Ī	$-\frac{1}{2}$	R ³	G-KG	$\frac{1}{3}$ (P-1)	3	e ₂ -	— I <u>I</u>	$-2\frac{1}{2}$	2 ½	— I ½
117	f: n	Naum.	Ω		T0·4·14·9	$95\overline{5}$	— 2	$R^{\frac{7}{3}}$	FA3-KG	$\frac{1}{3} (P-1)^3$ $\frac{2}{7} - (\frac{2}{3} P)^{\frac{7}{3}}$	<u> </u>	e ₉ -	- <u>10</u> 4/9 -	$-2\frac{2}{3}$	$-2\frac{2}{3}$	— 1 5
118	8:			_	6285	533				(Sansoni)			<u>6 2</u> -	- 2 ⁴ / ₅	- 2 ⁴ / ₅ -	- 1 3 5
													Fortset			

(Fortsetzung S. 379.)

Bemerkungen. (Fortsetzung von S. 376.)

Bemerkungen über die einzelnen Formen.

+ 18·18 v. Rath giebt (Pogg. Ann. 1867. 132. 387) die Formen + 18 R. Trotz der guten Uebereinstimmung von Messung und Rechnung scheint das Symbol zweifelhaft, da es sich der Formenreihe nicht anschliesst. Statt seiner wäre zu vermuthen + 19·19 oder + 35. Die Winkel, die allerdings am besten mit 18 stimmen, kommen 35 näher als 19, wie folgende Zusammenstellung zeigt:

	∠:+4	∠ der Zwill Kante.
berech. $+\frac{35}{2}$	10°54·4	6°37⋅8
"	10°59·9	6°26.8
"	110100	6°06∙6
v. Rath beob.	10°58 ·	6°23

Für + 19·19 oder + $\frac{3.5}{2}$ spricht noch der Umstand, dass auch + 19·1 sowie + $\frac{3.5}{2}$ 1 bekannt sind. Eine Controlmessung des wohl noch vorhandenen Krystalls wäre von Interesse.

+ 18 R findet sich wieder angeführt von Foullon, Jahrb. Geol. R. A. 1885. 35. 47 (speciell S. 96). Hier haben wir es ziemlich sicher mit + 19·19 zu thun. Von den durch Foullon gemessenen Winkeln ist der gegen + 1 (R) als der sicherste anzusehen. Nun ist:

berechnet:
$$+ 18 \cdot 18 : + 1 = 42^{\circ}10^{1}$$
 Beobachtet: $42^{\circ}17 + 19 \cdot 19 : + 1 = 42^{\circ}20^{1}$

Nach gepflogener Besprechung stimmt auch Foullon der Ansicht bei, dass wir + 1919 vor uns haben.

— 17. 17 Die Form — 17 R vermuthet zuerst Des Cloizeaux (Man. 1874. 2. 104) e 6 für — 16. 16 Hessenbergs — 16 R aus Gründen innerer Wahrscheinlichkeit. In der That ist — 17 R eine einfache Form, sie entspricht — 6 anderer Krystallsysteme, während — 16 R unwahrscheinlich ist.

Bei Zippe findet sich (Tab. S. 12) 16 R¹, doch ist dies nur ein Druckfehler statt 16 R, wie aus Tab. S. 1 und den Figuren 38. 47. 48 hervorgeht.

16 R bei Irby (S. 51) dagegen ist ein Druckfehler statt - 16 R.

Hare (Zeitschr. Kryst. 1880. 4. 299) glaubt wieder — 16 R gefunden zu haben. Doch geht aus seinen Winkeln hervor, dass — 17 vorliegt. Es zeigt dies die folgende Zusammenstellung:

Winkel zur Basis: berechnet für — 16 R: 86°22 5 " — 17 R: 86°35.2 v. Hare beobachtet: 86°32 3

Neuerdings giebt Foullon (Verh. Geol. R. A. 1885) abermals $-16\,\mathrm{R}$ an, doch liegt auch hier wieder $-17\,\mathrm{R}$ vor. Von seinen Messungen kann zur Bestimmung des Symbols wohl nur das von ihm gegebene Mittel der Winkel zu $-2\,\mathrm{R}$ benutzt werden. Nun ist:

berechnet: der Winkel zu -2 R für : -16 R = $23^{\circ}15\cdot2$ -17 R = $23^{\circ}27\cdot9$ beobachtet im Mittel : $:23^{\circ}24\cdot5$

Es ist also schon aus den Messungen — 17 R vorzuziehen.

(Fortsetzung S. 380.)

								ე∙							
No.	Gdt.	Hauy. Hausm. Mohs. Naum.	Miller.	Kok- scha- row.	Bravais.	Miller.	Naumann.	Haus- mann.	Mohs- Zippe.	Hauy.	Lévy. Descl.	6,	\mathfrak{G}_2	G' ₂	$\frac{E}{p-1} = \frac{q-1}{3}$
119	g:	у ffy			4153	322	$- R^{\frac{5}{3}}$		— (P)	5 3 3 3 2 2 2	e ₃	$-\frac{4}{3}\frac{I}{3}$	2 I	— 2 I	— I $\frac{2}{3}$
120	h:				10.2·12·7	$75\overline{5}$	$-\frac{8}{7} R^{\frac{3}{2}}$		(Dana)		$e_{\frac{7}{5}}^{\overline{2}}$	$-\frac{10}{7}\frac{2}{7}$		$-2\frac{8}{7}$	— I ⁵ / ₇
121	i:		_		6 1 74	433	$-\frac{5}{4} R^{\frac{7}{5}}$		(5 P+1)	7	e ₄	$-\frac{6}{4}\frac{1}{4}$	2 ⁵ / ₄	— 2 5	— I <u>3</u>
122	ř:		_		8195	544	$-\frac{7}{5}R_{17}^{9}$		$(\frac{7}{10}P+1)^{\frac{5}{2}}$	7	e ₅	- 8 I	$-2^{\frac{7}{5}}$	— 2 ⁷ / ₅	— ı 4
123					16.1.17.9	988	$-\frac{5}{3}R^{\frac{17}{15}}$		$\left(\frac{10}{3}P-1\right)^{\frac{1}{3}}$		e ₉	16 J	$-2\frac{5}{3}$	$-2\frac{5}{3}$	•
124					<u>5</u> 762	323	$-2 R^{\frac{3}{2}}$		$(P+1)^{\frac{1}{2}}$	3 2	e ₃	$-\frac{5}{2}\frac{1}{2}$	$-\frac{7}{2}$ 2	$-2^{\frac{7}{2}}$	
125	0:	40	d'	β '	[₹] 8·2·10·3	535	— 2 R ⁵ / ₃	RAI.VG3				<u>8</u> <u>2</u>	— 4 2	— 2 4	
126		•	x	x	3141	335 212	- 2 R ²				$e_{\frac{3}{5}}$ $e_{\underline{1}}$	3 3 3 I	- 5 2	- 2 5	
127			β		<u>4</u> 261	313	- 2 R ³				$e_{\underline{I}}$	-4 2	-8 ₂	=	
<u> </u>			-				— 2 R ⁴		(P+1)						
128	τ;				<u>5</u> 381	414			(P+1)	·	e _I	<u>-53</u>	-11.2	2.11	— I 4
129	\mathfrak{A} :		_		11.2.13.6	7 56	$-\frac{3}{2}R^{\frac{1}{9}}$					$-\frac{11}{6}\frac{1}{3}$	$-\frac{5}{2} \frac{3}{2}$	$+4\frac{3}{2}$	
130	B :	_			9.2.11.5	643	$-\frac{7}{5}R^{\frac{1}{7}}$		(Sella)		Т	$-\frac{9}{5}\frac{2}{5}$	$-\frac{13}{5}\frac{7}{5}$	+47	十五賽
131	Q:		_	_	16.4.20.9	11.7.9	$-\frac{4}{3} R^{\frac{5}{3}}$		(Sansoni)		-	$-\frac{16}{9}\frac{4}{9}$	$-\frac{8}{3} \frac{4}{3}$	+4 4	+ ı 👨
132	C:	_	\odot		7294	534			(<u>5</u> P+1)		Θ	$-\frac{7}{4}\frac{1}{2}$	$-\frac{11}{4}\frac{5}{4}$	+ 4 3	
133	D:				12.4.16.7	957	$-\frac{8}{7}$ R ²		(4 P+1) ²		ω	$-\frac{12}{7}\frac{4}{7}$	20 8 7 7	十4号	+ 1 7
134	E:	ρ	ρ		$\bar{5}\bar{2}73$	423	$- R^{\frac{7}{3}}$	FA <u>I</u> -KG <u>3</u>		¹	p	0 0	— з і	+4 1	
135		-	p		8.4.12.5	$73\overline{5}$	4 R ³	FAS-KG3	$(\frac{2}{5}P+1)$		5 π	$-\frac{8}{5} \frac{4}{5}$	$-\frac{16}{5}\frac{4}{5}$	十4季	
136		в Ms.	8		3251	312	$-\frac{1}{2}R^5$		(P-1)		8	$-\frac{3}{2}$ I	$-\frac{7}{2}\frac{1}{2}$	十4星	
137	Ş:				12.8.20.7	13.1.7	$+\frac{4}{7}R_{\frac{3}{2}}^{5}$	(Hessenb.	á .			十4	+ 4 \$	
138	\mathfrak{P} :				5161	412	$+4R^{\frac{3}{2}}$		$(P+2)^2$		х	+51		+47	•
139		v			6281	513	$+4R^2$			e e babi		+6 2	+10.4	+4.10	+ 1 3
140					8-4-12-1	715	+4R3	<u></u>	(P+2)		. y	+84		+4.16	
141	R:				₹0·₹·15·4	837	$-\frac{5}{4}$ R ³		(Sansoni)) 		⁵ / ₂ ⁵ / ₄	$-5^{\frac{5}{4}}$	$-5\frac{5}{4}$	
142	11:				24.8.32.7	21.3.11	$+\frac{16}{7}R^{2}$		(4 P+2)2	²	Ω	+24 8 7	1 40 I 6 7 7	8 ¹ / ₇	$-3\frac{3}{7}$
143	\mathfrak{B} :	z	z		16.8.24.5	15.1.9	$+\frac{8}{5}R^3$	FA <u>1</u> 6K2	$\frac{7}{5}(\frac{2}{5}P+2)^{\frac{1}{5}}$	3 å D9 D1	z	+ 16 8 5 5	$+\frac{32}{5}\frac{8}{5}$	8 8	— 3 I
144	W:				14.9.23.4	12·3·1 Ī	$-\frac{5}{4}R^{\frac{2}{5}}$		(Rath)		_	<u>I4 9</u>	- 8 5	$-8\frac{5}{4}$	— 3 I
145	\mathfrak{X} :				16.4.20.3	9.5.11	$-4 R^{\frac{5}{3}}$	- (Hessb. Rath)		N	$-\frac{16}{3}\frac{4}{3}$	8 4	8 4	— з 1
146	£ :			_	6171	3 2 4	$-5 R^{\frac{7}{5}}$		$(\frac{5}{8}P+3)^{\frac{1}{2}}$	7 5	λ	-6 і	<u> </u>	— 8 5	— 3 2
147	3:		-		<u>5</u> . <u>1</u> .10.1	436	$-8 R^{\frac{5}{4}}$		$(P+3)^{2}$		n	-9 I	-1 1·8	8⋅11	
148	₽ :				28·7·35·9	17-10-18	$-\frac{7}{3}R^{\frac{5}{3}}$		(Hessb.)			<u>28 7</u>	<u>I4 7</u>	十73	+ 2 ¹ 10
149	a:		······		9.5.14.8		T - Z		······						* 0
1	b:	γ	γ	_	5384	523	$-\frac{1}{2}R^4$	G-KG1/4	(P—1) ⁴ (Kok.)	≠ 3 <u>5</u> 3 <u>3</u> 3 3 2 <u>3</u>	³ γ	$-\frac{5}{4}\frac{3}{4}$	$-\frac{11}{4}\frac{1}{2}$	$-\frac{1}{2}\frac{11}{4}$	$-\frac{1}{2}\frac{5}{4}$
151	€:			q	4 3 72	413	$-\frac{1}{2}R^{7}$		(Kok.)	_	_	$-2\frac{3}{2}$	$-5\frac{1}{2}$	$-\frac{1}{2}5$	$-\frac{1}{2}2$
152	d;		_		<u>5</u> 492	514	— <u>I</u> R ⁹		(P-1) ⁹	-	β	$-\frac{5}{2}$ 2	<u>I3 I</u>	$-\frac{1}{2}\frac{13}{2}$	$-\frac{1}{2}\frac{5}{2}$

(Fortsetzung S. 381.)

Bemerkungen. (Fortsetzung von S. 378.)

Aus Allem dem geht hervor, dass in der That — 16 R zur Zeit unbekannt ist, — 17 R dagegen mehrmals beobachtet wurde.

In diesem Resultat liegt eine schöne Bestätigung der in den Zahlenreihen G_2 resp. E sich aussprechenden Gesetzmässigkeiten, die an anderer Stelle eingehender entwickelt werden sollen und auf Grund deren sich vorhersagen liess, dass wahrscheinlich nicht — 18·18 und + 16·16, sondern + 19·19 und - 17·17 vorliege.

Die Form $-6=-6\,\mathrm{R}$ wird von Hessenberg (Min. Not. 1875. 12. 13) angegeben, jedoch ohne Messungen. Die berechneten Winkel wurden mit dem Anleggoniometer ungefähr controlirt. Es ist danach durchaus nicht ausgeschlossen, dass statt der unwahrscheinlichen Form -6 die einfachere $-\frac{13}{2}$ vorliege. Jedenfalls ist das Symbol unsicher.

- $-\frac{1}{10}$ R führt Irby an, weist jedoch selbst darauf hin, dass Hessenberg diese Form nicht am Calcit, sondern am Dolomit fand. Somit ist $-\frac{1}{10}$ R für Calcit zu streichen.
- $-\frac{1}{4} = -\frac{1}{4}$ R betrachtet Irby als zweifelhaft. Es findet sich bei Zippe und Hausmann ohne Angabe der Combination, ist durch Miller (Min. 1852. 575) jedenfalls von Hausmann übernommen (k); ebenso ist es in Des Cloizeaux's Manuel übergegangen ($e^{\frac{2}{5}}$). Doch konnte ich nirgends eine sichere Beobachtungs-Angabe finden. Es dürfte danach in der That $-\frac{1}{4}$ noch nicht als sicher festgestellt zu betrachten sein.
- +8=HA\frac{1}{8}; +14.14=HA\frac{1}{14} finden sich bei den anderen Autoren nicht. Auch Hausmann giebt für sie nur berechnete Winkel, keine Combination noch Figur. Sie sind deshalb nicht als sicher zu betrachten. Zippe setzt HA\frac{1}{8}=-8=8R', was dem Symbol Hausmann's nicht entspricht. Sollten bei Hausmann die \frac{+}{2} Formen gleicher Neigung vertauscht sein?
- Zippe hat (Wien. Denkschr. 1852. 3. Sep. Seite 3 der Tab.) Hausmann's $AH^{\frac{3}{2}}$ übernommen, jedoch unrichtig umgewandelt. Es soll danach heissen $-\frac{1}{3}R+1=\frac{2}{3}R=\frac{2}{3}c:a:a:\infty$ a statt. $\frac{1}{3}R+1=\frac{2}{3}R'=\frac{2}{3}c:a':a':\infty$ a. Zippe's Angabe ist von Irby (lc. S. 32) übernommen und deshalb dort die Worte: "According to Zippe in a Comb. of Hausmann's (557) (277) (117)" zu löschen, hingegen S. 30 No. 2 zuzufügen. "According to Hausmann in comb. (557) (277) (117)." Hausmannn's Angabe findet sich Handb. 1847. 2. (2) 1262 und lautet Comb. $2A \cdot 6E \cdot 6AH^{\frac{3}{2}} \cdot 6FA^{\frac{1}{4}}$.
- $-16 \cdot 16 = -R \frac{13}{3}$ von Lévy angegeben von Des Cloizeaux (ϵ) und Irby nach dieser Quelle reproducirt, scheint nach Zippe's Bemerkung nicht recht sichergestellt.
- Zippe giebt (S. 18 Sep. Tab.) nach Lévy die Form d\(\frac{1}{3}\) d\(\frac{1}{6}\) d\(\frac{1}{4}\), was heissen soll d\(\frac{1}{3}\) d\(\frac{1}{6}\) b\(\frac{1}{4}\); auch sind f\(\text{ir}\) diese Form das Mohs'sche und Haidinger'sche Symbol abzu\(\text{andren}\) non (\(\frac{2}{6}\)P+1)\(\frac{5}{2}\) resp. \(\frac{4}{5}\)S\(\frac{5}{2}\).
- Bei Zippe (Sep. Tab. S. 19) ist das Lévy'sche Symbol d\(\frac{1}{5}\) d\(\frac{1}{10}\) b\(\frac{1}{5}\), sowie das entsprechende Weiss'sche nicht richtig umgewandelt. Es soll heissen: (\(\frac{4}{7}\) P+1)\(\frac{9}{4}\) resp. \(\frac{8}{7}\) S'\(\frac{9}{4}\) statt (\(\frac{5}{3}\) P+1)\(\frac{9}{4}\) resp. \(\frac{5}{4}\) S'\(\frac{9}{4}\).

б.

No.	Gdt.	Hauy. Hausm. Mohs. Naum.	Miller.	Kok- scha- row.	Bravais.	Miller.	Naumann.	Haus- mann.	Mohs- Zippe.	Hauy.	Lévy. Descl.	6,	\mathfrak{G}_2	G'2	$\begin{array}{c} \mathbf{E} = \\ \mathbf{p-1} \\ 3 \end{array}$
153		_		_	11.5.20.4 7.6.13.2	11·2·5 716	$-\frac{1}{2}R^{10} - \frac{1}{2}R^{13}$		(Hsb. Descl. (P—1)	,	⊙ ∆	$-\frac{11}{4}\frac{9}{4}$ $-\frac{7}{2}$ 3	29 I 4 2 19 I 2 2	$\begin{array}{r} -\frac{1}{2}\frac{29}{4} \\ -\frac{1}{2}\frac{19}{2} \end{array}$	$-\frac{1}{2}\frac{11}{2}$ $-\frac{1}{2}\frac{7}{2}$
155	Λ		_		7 2 95	16·10·1 <u>1</u>	— R ⁵		(Sella)	_	Λ	$-\frac{7}{5} \frac{2}{5}$	— <u>II</u> 1	— 1 <u>11</u>	$-\frac{2}{3}\frac{16}{15}$
156	Q				3142	745	— R ²		(Descl.)		Q	$-\frac{3}{2}\frac{1}{2}$	— <u>5</u> I	ı <u>5</u>	$-\frac{2}{3}\frac{7}{6}$
157 158	Ψ	ϑ Hy. ψ	θ	_	2131 7181	524 827	- R ³	FA 1 .6K2	$-(P)^3$ $-(P)^5$	54g54g1g 	2 Q ↓	— 2 I ·	— 4 I — 7 I	— 14 ·	
159 160		_	_	_	15·5·20·4 4261	13·2·7 11·1·7	$+\frac{5}{2}R^{2} + 2R^{3} + 2R^{3}$	_	$+(\frac{5}{8}P+2$ -(P+1)	3	D	+42	$\frac{ \frac{25}{4} ^{\frac{5}{2}}}{ \frac{1}{8} ^{\frac{1}{2}}}$	$+\frac{25}{4}\frac{5}{2}$ + 8 2	$+\frac{7}{3}\frac{1}{3}$
161	W		_	_	73.10.5		$-\frac{4}{5}R^{\frac{5}{2}}$		$(\frac{2}{5}P+1)$		χ	$-\frac{7}{5}\frac{3}{5}$	$-\frac{13}{5}\frac{4}{5}$	$-\frac{13}{5}\frac{4}{5}$	$-\frac{6}{5}\frac{3}{5}$
162	X				13.5.18.7	10.2.8	$-\frac{8}{7}R^{\frac{9}{4}}_{11}$		(4 P+1)	⁴	_	$-\frac{13}{7}\frac{5}{7}$	$-\frac{23}{7}\frac{8}{7}$	$-\frac{238}{77}$	$-\frac{10}{7}\frac{5}{7}$
163	Y			— 3 ²	£·12·44·13	23.11.21	$-\frac{20}{13}R^{\frac{2}{5}}$		(Rath)			$-\frac{3212}{1313}$	<u>56 20</u> I3 I3	$-\frac{5620}{1313}$	$\frac{2211}{1313}$
164	R			- 3	2.8.40.21	23.15.17	$-\frac{8}{7} R^{\frac{3}{3}}$		(Sansoni)			$-\frac{32}{21}\frac{8}{21}$	$-\frac{16}{7} \frac{8}{7}$	$-\frac{16}{7}\frac{8}{7}$	$-\frac{23}{21}\frac{5}{7}$
165 166	Γ	_	_		8·2·10·5 8·6·14·3	23.5.19	$-\frac{6}{5}R^{\frac{5}{3}}$ $-\frac{2}{3}R^{7}$		(Sansoni) (Sansoni)		_	$-\frac{8}{5}\frac{2}{5}$ $-\frac{8}{3}2$	$\begin{array}{cccc} & 12 & 6 \\ & 5 & 5 \\ & 20 & 2 \\ & 3 & 3 \end{array}$	$\begin{array}{r} -\frac{12}{5} \frac{6}{5} \\ -\frac{20}{3} \frac{2}{3} \end{array}$	$\begin{array}{r} -\frac{1711}{1515} \\ -2359 \end{array}$
167	Δ	_		<u> </u>	0.21.91.13	58.12.33	+ 4 3R 7		(Sansoni)			+7021	+ 112 49 13 13	$+\frac{11249}{1313}$	$+\frac{33}{13}\frac{12}{13}$
168	Ξ			 49	· 18·67· 2 0	35.17.32	$-\frac{31}{20}R^{\frac{67}{31}}$		(Rath. Descl.) —		-49 18 20 20	85 3I 20 20	$-\frac{8531}{2020}$	$-\frac{7}{5}\frac{17}{20}$

Bemerkungen. (Fortsetzung von S. 380.)

- Zippe macht (Sep. Tab. 19) die Angabe $(\frac{5}{8}P+2)\frac{2}{5}=\frac{5}{2}S^2$, was nicht übereinstimmt. $\frac{5}{2}S^2$ scheint durch die Angabe in Fig. 5 und Seite 32 bestätigt und wäre danach zu lesen: $(\frac{5}{8}P+2)^2$. Des Cloizeaux setzt statt dieser Form $\Sigma=(31\cdot\overline{5}\cdot17)$, was Irby nicht annehmen will. Die Form wurde nur einmal durch Zippe beobachtet.
- Bei $\frac{7}{4}$ S' $\frac{25}{25}$ Zippe (Sep. Tab. 19) ist ausser Unsicherheit der Form das Weiss'sche und das Mohs-und Haidinger'sche Symbol in Widerspruch. Weiss' Symbol würde entsprechen: $\frac{21}{2}$ S' $\frac{25}{21}$ resp. $-(\frac{21}{2}$ P) $\frac{25}{21}$. $\frac{7}{4}$ S' $\frac{25}{21}$ entsprechend müsste Weiss' Symbol lauten: $\frac{1}{12}$ c : $\frac{1}{2}$ a': $\frac{1}{25}$ a': $\frac{1}{23}$ a': $\frac{1}{23}$ a': $\frac{1}{23}$ a': $\frac{1}{23}$ a': $\frac{1}{23}$ a': $\frac{1}{23}$ a': $\frac{1}{25}$ a': $\frac{1}{23}$ a': $\frac{1}{25}$ a': $\frac{1}{25$
- Bei II S IO ist ebenfalls das Weiss'sche Symbol und die anderen in Widerspruch. Nach ihm müsste es heissen: (II P) IO resp. II SIO oder wenn Haidinger-Mohs' Symbol richtig I C: I a: ID a

- Bei $\frac{8}{5}$ S' $\frac{9}{4}$ Zippe (Tab. S. 21) sind die verschiedenen Symbole unter sich im Widerspruch. In dem Weiss'schen Symbol ist wohl zu lesen $\frac{1}{17}$ a' statt $\frac{1}{10}$ a', dann stimmt es in sich und mit Lévy. Demnach müsste das Haidinger'sche und Mohs'sche Symbol lauten: $\frac{3}{2}$ S' $\frac{20}{9}$ resp. $-(\frac{3}{2}P)\frac{20}{9}$. Eine eingehende Discussion scheint kaum nöthig, da aus den mancherlei Widersprüchen die Form doch nicht als sicher betrachtet werden kann.
- $-\frac{4}{5}\frac{1}{5}$ Bei Mohs-Zippe findet sich (Min. 1839. 2. 94). Die Angabe $(\frac{4}{5}P-2)^3$ (τ Naum.) Die Originalstelle bei Naumann konnte ich nicht auffinden, doch liegt hier wahrscheinlich ein Fehler vor und müsste es heissen $(\frac{2}{5}P-1)^3$. Obige Angabe ist übergegangen auf Hausmann, der schreibt (Handb. 1847. 2. (2) 1259.) AH5·KG $\frac{1}{3}$ (τ Naum.). Zippe dagegen (Wien. Denkschr. 1851. Tab. 20) führt an: $(\frac{2}{5}P-1)^3=\frac{1}{5}$ S³ (τ Naumann). Miller giebt ebenfalls (320) $\tau=-\frac{2}{5}\frac{1}{5}$ (G₁). Auch findet sich die Form bereits bei Hauy $\frac{1}{3}=7$. Danach ist zu corrigiren, wie unten angegeben.
- $-\frac{2}{3}\frac{1}{3} = -\frac{1}{3}R^{\frac{5}{3}} =$ erwähnt Irby nicht. Es findet sich bei Zippe (Tab. 20) = $(\frac{2}{3}P-1)^{\frac{5}{3}}$ = 24 Bournon und ist auf Des Cloizeaux übergegangen = $b^{\frac{5}{4}}$. Da Zippe die Form für unsicher ansieht und eine Bestätigung nicht gefunden werden konnte, so ist sie nicht als festgestellt anzusehen.
- 1º 1/5 = + 4 √ 1/5 = ½ R 1³ = 825 erwähnt Irby nicht. Es findet sich bei Zippe nach Lévy und wird wegen Krümmung der Flächen für unsicher gehalten. Des Cloizeaux führt die Form als k an. Da eine bestätigende Beobachtung nicht gefunden werden konnte, wurde die Form trotz ihrer inneren Wahrscheinlichkeit als unsicher betrachtet.
- $-2\frac{5}{7} = 54\overline{4} = -\frac{7}{5} \, R^{\frac{9}{7}} = e_{\frac{5}{4}}$ von Irby (S. 52) als unsicher angesehen, hat doch durch die Discussion Websky's (Min. Mitth. 1872. 2. 65) so hohe Wahrscheinlichkeit erlangt, dass diese Form besonders im Hinblick auf ihre innere Wahrscheinlichkeit unter die sicher gestellten aufgenommen wurde.
- $-2\frac{5}{3} = -\frac{5}{3}R\frac{17}{15}$ giebt Irby S. 52 als zweifelhaft nach Zippe und nochmals S. 57 nach Dana. Sie wurde 1882 von Rath bestätigt und ist wohl als festgestellt zu betrachten.

Calcit. Unsichere Formen.

1.

No.	Hauy. Miller Rath.		Miller.	Naumann.	Haus- mann,	Mohs- Zippe.	Ну.	Lévy. Descl.	G_1	G_2	$G_2^{_1}$	$E = \frac{p-r}{3} \frac{q-r}{3}$
I		5·5·To·9	832	10P2		5 P			<u>5</u> 9	$\frac{5}{3}$ O	$0\frac{5}{3}$	
2		18.0.18.1	37.17.17	+ 18R		(Rath)	_		+ 18·o	+ 18.18	+ 18:18	$+\frac{17}{3}$
3		9052	20.7.7	$+\frac{9}{2}R$		(Descl.)		$e^{\frac{20}{7}}$	+ ½ o	+ 2/2	+ 2/2	$+\frac{7}{6}$
4		14.0.14.3	31.11.11	$+\frac{14}{3}R$		(Descl.)	_	$e^{\frac{10}{3}}$	$+\frac{14}{3}$ o	$+\frac{14}{3}$	$+\frac{14}{3}$	+ 1
5		17.0.17.4	38-13-13	$+\frac{17}{4}R$		(Dana)			$+\frac{17}{4}$ o	$+\frac{17}{4}$	$+\frac{17}{4}$	$+\frac{13}{12}$
6	1 (Hy	r.) 7074	116	$+\frac{7}{4}R$		(Hy. Descl.) —	e^6	$+\frac{7}{4}$ o	$+\frac{7}{4}$	$+\frac{7}{4}$	$+\frac{1}{4}$
7	-	3.0.3.10	16.7.7	$+\frac{3}{10}R$		(Descl.)		$a^{\frac{16}{7}}$	$+\frac{3}{10}$ o	$+\frac{3}{10}$	+ 3	$-\frac{7}{30}$
8		<u>1</u> .0.1.10	11.11.8		_	(Hessenb.)			$-\frac{1}{10}$ o	$-\frac{I}{10}$	$-\frac{I}{10}$	$-\frac{11}{30}$
9	х (Mill	er) TO14	552	— ¹ / ₄ R	AF2	-R-2		$a^{\frac{2}{5}}$	$-\frac{1}{4}$ o	$-\frac{1}{4}$	$-\frac{1}{4}$	$-\frac{5}{12}$
10		9098	17·17·T0	— § R		(Hessenb.)		e 7	— 용 o	— §	— 용	$-\frac{17}{24}$
11		Ī0·0·10·7		-		(Websky)			$-\frac{10}{7}$ o	$-\frac{10}{7}$	<u>I 0</u>	$-\frac{17}{21}$
12	_	13.0.13.9				(Sansoni)			$-\frac{13}{9}$ o	$-\frac{13}{9}$	— <u>13</u>	$\frac{22}{27}$
13		7074	1 I · I I · <u>T</u> O	— 7/4 R		(Hessenb.)	-		$-\frac{7}{4}$ o	<u> </u>	$-\frac{7}{4}$	— <u>I I</u>
14	-	12.0.12.5	17-17-19	$-\frac{12}{5}R$	_	(Descl.)	-	$\mathrm{e}^{\frac{19}{17}}$	$-\frac{12}{5}$ o	$-\frac{12}{5}$	<u>I 2</u>	$-\frac{17}{15}$
15		<u>6</u> 061	7·7·1 ī	— 6 R	_	(Hessenb.)		_	— 6 о	— 6	— 6	$-\frac{7}{3}$
16		<u>1</u> 0.0.10.1	11.11.19	— 10R		(Sansoni)			— 10·0	— 10·10	— 10·10	$-\frac{11}{3}$
17		13.0.13.1	14.14.25			(Sansoni)		~	— 13·o	— 13·13	— 13·13	$-\frac{14}{3}$
18		7.2.9.16	970	$-\frac{5}{16}R^{\frac{9}{5}}$	-	(Hauy)	$\mathbf{B}_{\frac{9}{2}}$		$-\frac{7}{16} \frac{1}{8}$	$-\frac{11}{16}\frac{5}{16}$	+ 1 5 16	o 7
19		4ī 59	540	$-\frac{1}{3}R^{\frac{5}{3}}$		$(\frac{2}{3}P-1)^{\frac{5}{3}}$		b 5/4	— 4 <u>I</u>	$-\frac{2}{3}\frac{1}{3}$	+ 1 I	o 4
20) (Mill.) 11-3-14-8	11.0.3	$+ R^{\frac{7}{4}}$	KG‡	7	_	$d^{\frac{11}{3}}$	$+\frac{11}{8}\frac{3}{8}$	$+\frac{17}{8}$ 1	$+ 1 \frac{17}{8}$	$0 \frac{3}{8}$
21	_	8.7.15.1	807	+ R ¹⁵		(P) 15		$d^{\frac{8}{7}}$	$+8\cdot 7$	+ 22·1	+ 1.22	0 7
22		7.3.10.2	525	— 2 R ⁵ / ₂	_	$(P+1)^{\frac{5}{2}}$		e ₂	$-\frac{7}{2}\frac{3}{2}$	$-\frac{13}{2}$ 2	— 2 <u>I3</u>	— I <u>5</u>
23		19.13.32.3	16.3.16	$-2 R^{\frac{16}{3}}$		(Sjögren)	_	5	$-\frac{19}{3}\frac{13}{3}$	15·2	- 2·15	1 16 3
24	_	13.9.22.2	I I • 2 • I Ī	$-2R^{\frac{11}{3}}$	_	(Sjögren)			$-\frac{13}{2}\frac{9}{2}$	$-\frac{31}{2}$ 2	$-2\frac{31}{2}$	— I <u>II</u>
25		23.2.25.12				$(\frac{7}{4}P)^{\frac{25}{21}}$		X	$-\frac{23}{12}\frac{1}{6}$	- 9 7 4 4	+ 4 7	$+ i \frac{II}{I2}$
26		7.6.13.5	825	$-\frac{1}{5}R^{13}$		$(\frac{2}{5}P-1)^{13}$	_	χ	$-\frac{7}{5}\frac{6}{5}$	1 2 <u>1</u>	+ 4 =	$+ 1\frac{2}{5}$
27		28.7.35.9	17-10-18	$-\frac{7}{3}R^{\frac{5}{3}}$		$-(\frac{7}{3}P)^{\frac{5}{3}}$			$-\frac{28}{9}\frac{7}{9}$	$-\frac{14}{3}\frac{7}{3}$	$+7\frac{7}{3}$	+ 2 ^{I 0} / ₉
28		32.2.34.3	23.9.11	$+ 10R^{\frac{17}{15}}$	_	$(\frac{5}{8}P+4)^{\frac{17}{5}}$		Ξ	$+\frac{32}{3}\frac{2}{3}$	12·10	+ 10.12	$+3\frac{11}{3}$
29		14-4-18-1	11.3.7	+ 10 R ²		(Descl.)	-	П	+ 14.4		+ 10.22	+97
30		20.3.23.2	$15\cdot\overline{5}\cdot\overline{8}$	$+\frac{17}{2}R^{\frac{23}{17}}$		$(\frac{17}{2}P)^{\frac{23}{17}}$			$+ 10^{\frac{3}{2}}$	$+13\frac{17}{2}$	$+ 13\frac{17}{2}$	$+4\frac{5}{2}$
31		35.4.39.1	25·ĪO·14	$+31 R_{7}^{\frac{39}{31}}$	-	(Lev. Irb.)			+ 35. 4	+43.31	+ 31.43	+ 10.14
32	_	18.5.23.15	532	$-\frac{1}{2}R^{\frac{7}{3}}$		$(P-1)^{\frac{7}{3}}$	_	σ	$-\frac{6}{5}\frac{1}{3}$		$-\frac{1}{2} \frac{3}{2}$	<u>I</u> 5
33	_	6.5.11.2	613	- ½ R11	_	(Descl.)	_	φ	$-3\frac{5}{2}$		$-8\frac{1}{2}$	$-3\frac{1}{2}$

(Fortsetzung S. 385.)

Bemerkungen. (Fortsetzung von S. 382.)

Hausmann führt an die beiden Symbole: FA ½ KG ¼ und FA ¼ GK 2. Beide sind trotz ihres verschiedenen Aussehens identisch = -41 (G_2) = $-R^3 = \theta$ (Hy.) In den Combinationen führt Hausmann von beiden nur FÅ KGK2 auf. Es ist danach die Angabe über das erstere Symbol zu streichen.

 $q = (28 \cdot 13 \cdot \overline{26}) = -\frac{23}{5} \cdot \frac{8}{5}$ findet sich bei Des Cloizeaux. Doch konnte ich keine zugehörige Beobachtung finden. Diese Form wurde deshalb als zweifelhaft angesehen.

 μ (Descl.) ist zweifelhaft. Des Cloizeaux giebt dafür im Text S. 103 $\mu = d^{\frac{1}{21}} d^{\frac{1}{15}}$ $b^{\frac{1}{29}}$, bei der Figur Taf. XLV Fig. 268 $\mu=d^{\frac{1}{10}}d^{\frac{1}{14}}b^{\frac{1}{19}}$ (nicht wie Irby angiebt S. 56 $d^{\frac{1}{10}} d^{\frac{1}{14}} b^{\frac{1}{9}}$). S. 104 motivirt Des Cloizeaux, warum er das erstere Symbol vorzieht. Die Flächen sind etwas gekrümmt. Auch differiren Messung und Rechnung zu bedeutend, um daraus die Annahme des so complicirten Symbols zu gestatten:

Des Cloizeaux giebt an:
$$\mu e^{\frac{7}{3}}$$
 berechn. $164^{\varrho}21^{l}$ beob. $163^{\circ}30^{l}$ Diff. = 51^{l} μd^{2} , $144^{\circ}19^{l}$, 145° — Diff. = 41^{l} Es ist vielmehr höchst wahrscheinlich, dass die Form μ identisch ist mit $\lambda = -85$, eine Form

mit theoretisch einfachem und daher wahrscheinlichem Symbol. Hierfür berechnet sich:

$$\lambda e^{\frac{7}{3}} = -85 : + 10 \cdot 10 = 163^{\circ}35^{\circ}$$
 beob. Descl. $163^{\circ}30^{\circ}$ Diff. = 5° $\lambda d^{2} = -85 : +41 = 34^{\circ}19^{\circ}$, 35° Diff. = 41°

Also bessere Uebereinstimmung wie oben.

Hessenberg citirt (Min. Not. 1875. 12. 13) Des Cloizeaux's μ mit dem Zeichen $-\frac{27}{5}R\frac{25}{19}$ (?); dies stimmt mit keinem der Symbole Des Cloizeaux's für μ , vielmehr müsste es heissen: $-\frac{38}{7}R\frac{25}{19}$.

Die Correctur der Angaben Irby's von Schnorr's Symbolen wurde nach dem Referat (Jahrb. Min. 1874. 631) vorgenommen. Die Originalarbeit (Programm der Realschule zu Zwickau) war mir nicht zugänglich. Schnorr's Formen sind an sich nicht unwahrscheinlich. Statt $\frac{5}{9}R_{13}^{20}$ können wir setzen $\frac{5}{9}R_{15}^{23}$, dann ist:

Also Formen der ersten | Zone. Immerhin sind die Symbole unsicher.

 $+\frac{15}{5}R\frac{10}{10}$ von Zepharovich aufgestellt (Wien. Sitz¹. 1866. 54. (1) 273) wird von Groth (Strassb. Samml. 1878. 22) erwähnt, ist jedoch nach Zepharovich selbst nur ein genähertes Zeichen und somit unsicher. Ir by setzt dafür $+\frac{29}{8}R_{\frac{29}{29}}$, doch ist dies ebenfalls unsicher.

Zu den Angaben von J. D. Dana (System 1873. 670) ist Folgendes zu bemerken:

$$\frac{\frac{3}{10}; \frac{7}{4}; \frac{13}{4}; \frac{9}{2}; 9; -\frac{12}{5}; -\frac{1}{4}}{\frac{1}{3}^{23}; \frac{32}{35}, \frac{11}{4}; \frac{13}{5}; 2^{\frac{11}{4}}; -\frac{1}{3}, \frac{5}{3}}}\right}$$
 sind als unsicher zu betrachten vgl. Irby S. 51 flgde.

18 · 18 ist nach Rath angeführt und unsicher· Vgl. Bemerk. S. 378.

17. Ich konnte nicht finden, aus welcher Quelle diese Form genommen ist. Sie wurde deshalb vorläufig als unsicher angesehen.

 $\frac{1}{5}$ 13 soll heissen $-\frac{1}{5}$ 13 von Zippe (Denkschr. Tab. Sep. 24); dort ist jedoch ein Druckfehler und es soll heissen ^I/₅ S' 13 statt ^I/₅ S 13 (vgl. S. 20). Uebrigens ist die Form unsicher (s. S. 382).

(Fortsetzung S. 386.)

Unsichere Formen.

2.

	Hauy		1									E ==
No.	Miller		Miller.	Naumann.	Haus-	Mohs-	Hy.	Lévy	U1	G_2	G'2	p-1 q-1
	Rath.				mann.	Zippe.		Descl	l.			3 3
34		4 4 ·6·50·7	21.15.25	$-\frac{38}{7}R^{\frac{25}{19}}$	-	(Descl.)		μ	- 44 6 7	$-8 \frac{38}{7}$	$-8 \frac{38}{7}$	$-3^{\frac{15}{7}}$
35		24-16-40-1	19.3.21	— 8 R ⁵		(Hessenb.)			— 24 · 16	56 · 8	- 8 · 56	- 3 · 19
36		15-4-15-2	12.3.7	$+\frac{11}{2}R^{\frac{19}{11}}$		$\left(\frac{11}{2}P\right)^{\frac{19}{11}}$			$+\frac{15}{2}$ 2	$+\frac{23}{2}$ $\frac{11}{2}$	— 17 I I	$-6\frac{13}{6}$
37		I Ī·Ī·12•I	14.11.22	— 10 R ⁶ 5		(Sansoni)	_	_	— 11 · 1	— 13 · 10	— 13·10	$-\frac{14}{3}\frac{11}{3}$
38		16·1·17·1	19-16-32	- 15 R 15		(Sansoni)			— 16 · 1	<u> </u>	— 18·15	$-\frac{19}{3}\frac{16}{3}$
39	_			— 29 R ³¹		(Descl.)		В	30 · 1	<u> 32 · 29</u>	— 29 · 32	- 10.11
40	— 1	6 8 .7·175·1	114.54.61	$-161R^{\frac{25}{23}}$	— (;	322P—1) ²⁵			—168·7	—182·161	—161·182	— 54·61
41		15.7.22.4	41.4.25	+ 2 R 4		(Hessenb.)	_	Ψ	$+\frac{15}{4}$ $\frac{7}{4}$	$+\frac{29}{4}$ 2	+ 2 29	$+\frac{1}{3}\frac{25}{12}$
42		17.8.25.3	15·2·10	$+ 3 R^{\frac{25}{9}}$		$(\frac{3}{4}P+2)^{\frac{23}{9}}$	_	Φ	$+\frac{17}{3}$ $\frac{8}{3}$	+11.3	+ 3 · 11	$+\frac{2}{3}\frac{10}{3}$
43	_	8.5.13.3	7.2.6	$- R_{13}^{\frac{13}{3}}$		$- (P)^{\frac{13}{3}}$	_	ε	$-\frac{8}{3}$ $\frac{5}{3}$	— 6 і	— 1 6	$-\frac{2}{3}$ $\frac{7}{3}$
44		ī0·6·16·5	937	$-\frac{6}{5} R^{\frac{13}{3}}$		(Sansoni)			$2 \frac{6}{5}$	$-\frac{22}{5}$ $\frac{4}{5}$	$-\frac{22}{5}$ $\frac{4}{5}$	⁹ / ₅ ³ / ₅
45		8.7.15.4	26.5.19	$-\frac{1}{4}R^{15}$		(Sansoni)			- 2 ⁷ / ₄	$-\frac{11}{2}$ $\frac{1}{4}$	$-\frac{11}{2}$ $\frac{1}{4}$	$- \frac{13}{6} \frac{5}{12}$
46	_	8-2-10-1	13.7.17	$-6 R^{\frac{5}{3}}$	_ (Descl.)		η	— 8 ₂	— 12 · 6	— 6 · 12	$-\frac{7}{3}\frac{13}{3}$
47	- 47	ธี·14̄·490·9 ;	319-157-1	. •	·· ($\frac{77}{3}$ P+1) $\frac{35}{33}$			476	$-55^{\frac{154}{3}}$	$-55 \cdot \frac{154}{3}$	$-\frac{56}{3} \frac{157}{9}$
48		20.18.38.5	21.1.17	$+\frac{2}{5}R^{19}$		(Descl.)		f ·	+ 4 ¹⁸ / ₅	$+\frac{56}{5}$ $\frac{2}{5}$	$+\frac{56}{5}$ $\frac{2}{5}$	+ 51 1
49		12.6.18.7	37.1.17	+ § R ₃		(Rath.)	_			$+\frac{24}{7}$ $\frac{6}{7}$	$+\frac{24}{7}$ $\frac{6}{7}$	$+\frac{17}{21}\frac{1}{21}$
50	6	io·28·88·35	61-1-27	$+\frac{32}{35}R^{\frac{11}{4}}$	- (Hessenb.)					$+\frac{116}{35}\frac{32}{35}$	$+\frac{27}{35}\frac{1}{35}$
51	_			$+\frac{12}{15}R^{\frac{13}{10}}$	_	(Zephar.)	_		+ 551 171 100 100	$+\frac{893}{100}\frac{19}{5}$	+893 19 100 5	+793 I4 300 I5
52		12-11-23-3	38-2-31	$+\frac{1}{3} R^{23}$		(Sella.)					$+\frac{34}{3}$ $\frac{1}{3}$	十兆 31 2
53		12-4-16-3				(Descl.)		Σ			$+\frac{20}{3}$ $\frac{8}{3}$	+ 17 5
54	5	\$\overline{1}\over	28.27.37	$-\frac{5}{4} R^{\frac{13}{9}}$		(§P+1) ¹⁹			$-\frac{55}{36}\frac{5}{18}$		$-\frac{25}{12} \frac{5}{4}$	$-\frac{37}{36} \frac{3}{4}$
55		7 2 96	17·11· T 0	$-\frac{5}{6} R_{30}^{2}$		(Sansoni)	_		$-\frac{7}{6}$ $\frac{1}{3}$		— 11	$-\frac{17}{18} \frac{11}{6}$
56	 2	7.13.40.12	$65 \cdot 26 \cdot 5\overline{5}$	$-\frac{7}{6} R_{7}^{\frac{20}{7}}$		(Sansoni)	_				$-\begin{array}{ccc} -\frac{53}{12} & \frac{7}{6} \end{array}$	$-\frac{67}{36} \frac{13}{18}$
57	— 5	<u>5</u> ·22·77·36	45.23.32	$-\frac{11}{12}R^{\overline{3}}$		(Rath.)			- 55 II 36 I8	- II II 4 I2	- II II	- 5 23 4 36
58	(6 ₹ ·₹·68·36	31.30.37	$-\frac{3}{2} R_{17}^{\frac{34}{27}}$		(Descl.)	_	O	$-\frac{61}{36} \frac{7}{36}$	$-\frac{25}{12}\frac{3}{2}$	$-\frac{25}{12}\frac{3}{2}$	$-\frac{37}{36}\frac{5}{6}$
59	-	13.4.17.6	958	$-\frac{3}{2} R_{7}^{\frac{17}{9}}$		(Descl.)			$-\frac{13}{6} \frac{2}{3}$	$-\frac{7}{2} \frac{3}{2}$	$-\frac{7}{2} \frac{3}{2}$	$-\frac{3}{2}\frac{5}{6}$
60		<u>5</u> 272		$-\frac{3}{2} R^{\frac{7}{3}}$		$(\frac{3}{4}P+1)^{\frac{1}{3}}$	_	w	— <u>5</u> I	<u>9</u> 3/2	$-\frac{9}{2}\frac{3}{2}$	— 11 5
61	_	35.7.42.20	23.16.19	$-\frac{7}{5} R_{73}^{\frac{3}{2}}$		(Dana.)	_		4 20	20 3	$-\frac{49}{20} \frac{7}{5}$	$-\frac{23}{20}\frac{4}{5}$
62	- 6	2·11·73·36	40.29.33	$-\frac{17}{12}R_{89}^{73}$	_	(Rath.)	-		$-\frac{62}{36}\frac{11}{36}$	3 12	$-\frac{17}{12} \frac{7}{3}$	$-\frac{29}{36}\frac{10}{9}$
63 I				$\frac{19}{9}$ R ⁸⁹		(Rath.)			$-\frac{73}{27}\frac{16}{27}$	<u> 35 19</u>	<u>35 I9</u>	$-\frac{44}{27}\frac{28}{27}$
64	- 7	4·17·91·45	51.34.40	$-\frac{19}{15}R_{15}^{\frac{91}{57}}$		(Rath.)			$-\frac{74}{45}\frac{17}{45}$	<u> 12 19</u> 5	<u> 12 19</u> 5 15	$-\frac{17}{15}\frac{34}{45}$
65	_	17.4.15.8	956	$-\frac{7}{8} R^{\frac{15}{7}}$		(Lévy.)	_			<u> </u>	19 7 8 8	- 9 5 8 8
66		8.7.15.3		$-\frac{1}{3} R^{15}$	`	Hessenb.)			$-\frac{8}{3}\frac{7}{3}$	$-\frac{22}{3}\frac{I}{3}$	$-\frac{22}{3}\frac{I}{3}$	<u> 25 4</u> 9
67		6.3.9.5	17·8·10	$-\frac{3}{5} R^3$	- (Hessenb.)	_		<u>6</u> 3/5	<u> 12 3</u>	$-\frac{12}{5}\frac{3}{5}$	$-\frac{17}{15}\frac{8}{15}$

386 Calcit.

Bemerkungen. (Fortsetzung von S. 384.)

- $\frac{7}{5}$ soll heissen $-\frac{7}{5}$ nach Zippe's unsicherer Angabe (l. c. 24); dort ist jedoch ein Druckfehler und zwar soll es heissen: $\frac{7}{5}$ S' $\frac{9}{5}$ statt $\frac{7}{5}$ S $\frac{9}{5}$ (vgl. S. 21). Die Form ist später durch Websky bestätigt.
 - ⁵/₂ nach Zippe ist unsicher, vgl. S. 582.
 - $3^{\frac{25}{9}} = (\frac{3}{4}P + 2)^{\frac{25}{9}} = \Phi$ (Descl.) ist unsicher.
 - $-\frac{7}{3}^{\frac{5}{3}} = -(\frac{7}{3}P)^5$ Zippe ist unsicher.
 - $-\frac{7}{5}^{\frac{3}{2}} = -\frac{49}{20} \cdot \frac{7}{5}$ (G₂) wurde wegen Complicirtheit des Symbols als zweifelhaft angesehen, da Dana, der die Form von Bergen Hill abbildet, die beobachteten Winkel nicht giebt. Eine Controlmessung des wohl noch im Besitz Dana's befindlichen Krystalls dürfte zur Bestätigung oder Verwerfung nöthig nöthig sein. Irby erwähnt die Form nicht,
 - $-1^{\frac{13}{3}}$ nach Zippe unsicher.

Irby giebt folgende neue Formen von complicirtem Symbol, die nicht als sichergestellt angesehen werden können:

- +3 $\frac{1}{2} = +\frac{1}{2}R^{\frac{13}{3}}$ Agaëte (S. 60) zwei Grenzen des Lichtstreifens einer gekrümmten $+\frac{14}{5}\frac{2}{5} = +\frac{2}{5}R^{5}$ Fläche.
- $+\frac{17}{2}\frac{29}{8} = +\frac{29}{8}R_{29}^{55}$ Interpretirt aus Zepharovich $\frac{19}{5}R_{10}^{19}$ (S. 42).
- $+\frac{8}{3}\frac{1}{3} = +\frac{1}{3}R\frac{17}{3}$ Agaëte (S. 58, 59) Lichtbild stets in die Länge gezogen.
- $-\frac{19}{11}\frac{10}{11} = -\frac{10}{11}R\frac{8}{5}$ Lake Superior (S. 64) Fläche gestreift. Vielleicht Scheinfläche.
- $-\frac{32}{13}\frac{8}{13} = -\frac{8}{13}R^3$ Lake Superior (S. 63).
- $-\frac{18}{7}\frac{4}{7} = -\frac{4}{7}R\frac{10}{3}$ Gestreift. Beide nicht scharf getrennt, in einander übergehend.
- $-\frac{23}{9}\frac{5}{9}=-\frac{5}{9}\,R^{\frac{17}{5}}_{\frac{5}{5}}$ Lake Superior (S. 64, 65). Thre Trennung von einer anderen Fläche (β) nicht scharf.
- Lake Superior.

 Treppenförmig abgestuft. Irby ist nicht sicher, ob das Symbol nicht $(45 \cdot 19 \cdot 27)$ sei (S. 66).
- $-\frac{69}{56}\frac{5}{8} = -\frac{17}{28}R\frac{52}{17}$ Lake Superior (S. 67). Herausgenommen aus einer Reihe vicinaler Flächen.
- ll: $=+\frac{40}{7}\frac{16}{7}$ (G_2) $=-8\frac{16}{7}$ (G_2) rührt von Lévy her. Dieser giebt dafür (Descr. 1838. **1**. 29) einmal (d_3^{I} d_3^{I} d_3^{I} d_3^{I} d_3^{I} d_3^{I} d_3^{I}); bei den angezogenen Figuren (23 und 24 Taf. 2) dagegen steht (d_3^{I} d_3^{I} d_3^{I} d_3^{I} Von allen diesen kann nur das erste Symbol richtig sein, wie aus dem Zonenverband mit e_3^{I} hervorgeht. So haben es auch Zippe und nach ihm Des Cloizeaux (Ω) angenommen und ist entsprechend zu corrigiren.
- Irby's Fehler sind theilweise in Groth's Referat (Zeitschr. Kryst. 1879) eingegangen und machen dort die anzuführenden Correcturen nöthig.

Die Symbole $-1\frac{11}{5}$; $-1\frac{5}{2}$; -14; -17 erscheinen verdächtig, da sowohl p als q für das Vorzeichen + sprechen. Sollte in Bezug auf dieses eine Verwechselung vorliegen?

(Fortsetzung S. 388.)

Unsichere Formen.

3.

No.	Hauy. Miller. Rath.	ł.	Miller.	Naumann.	Haus- mann.		Ну.	Lévy. Descl.	G ₁	G ₂	G'2	$E = \frac{p-1}{3} \frac{q-1}{3}$
68		8.2.10.5	17.11.13	$-\frac{6}{5}R^{\frac{5}{3}}$	_	(Rath.)		_	— <u>8</u> <u>2</u> 5	<u>I 2 6</u> 5	<u>12 6</u> 5	$-\frac{17}{15}\frac{11}{15}$
69		13.5.18.5	28.13.26	$-\frac{8}{5} R^{\frac{3}{4}}$		(Descl.)		q	$-\frac{13}{5}$ I	$-\frac{23}{5} \frac{8}{5}$	$-\frac{23}{5} \frac{8}{5}$	$-\frac{28}{15}\frac{13}{15}$
70	- 2	7·TO·37·15	62.32.49	$-\frac{17}{15}R^{\frac{37}{17}}$		(Hessenb.)			$-\frac{9}{5} \frac{2}{3}$	$-\frac{47}{15}\frac{17}{15}$	$-\frac{47}{15}\frac{17}{15}$	$-\frac{62}{45}\frac{32}{45}$
71		8.5.13.6	914	$+\frac{1}{2}R^{\frac{13}{3}}$		(Irby.)	_		+ 4 5	$+ 3 \frac{1}{2}$	+ 3 ½	+ ² / ₃ I / ₆
72		6·4·īo·5	713	$+\frac{2}{5}$ R ⁵		(Irby.)			$+\frac{6}{5}\frac{4}{5}$	$+\frac{14}{5}\frac{2}{5}$	$+\frac{14}{5}\frac{2}{5}$	$+\frac{3}{5}\frac{1}{5}$
73	4	2.13.55.8	35·7·20	$+\frac{29}{8}R^{\frac{55}{29}}$		(Irby.)	_		$+\frac{21}{4}\frac{13}{8}$	$+\frac{17}{2}\frac{29}{8}$	$+\frac{17}{2}\frac{29}{8}$	$+\frac{5}{2}\frac{7}{8}$
74	I	3.3.16.11	10.7.6	$-\frac{10}{11}R^{\frac{8}{5}}$		(Irby.)		_	$-\frac{13}{11}\frac{3}{11}$	- 19 10 11 11	— <u>19 10</u>	$-\frac{10}{11}\frac{7}{11}$
75		10-7-17-9	12.2.5	$+\frac{1}{3}R^{\frac{17}{3}}$		(Irby.)			+ 10 7	$+\frac{8}{3}\frac{1}{3}$	$-3\frac{1}{3}$	+ 5/9
76	I	6.8.24.13	15.7.9	$-\frac{8}{13} R^3$		(Irby.)			$\tfrac{16}{13}\tfrac{8}{13}$	$- \frac{32}{13} \frac{8}{13}$	$-\frac{32}{13}\frac{8}{13}$	$-\frac{15}{13}\frac{7}{13}$
77	20	ō·1 40·21	25.11.15	$-\frac{4}{7}R^{\frac{10}{3}}$	_	(Irby.)			$-\frac{26}{21}\frac{2}{3}$	— <u>I8</u> 4	— I8 4	$-\frac{25}{21}\frac{11}{21}$
78		11.6.17.9	32.14.19	$-\frac{5}{9} R^{\frac{17}{5}}$		(Irby.)			$-\frac{11}{9}\frac{2}{3}$	$-\frac{23}{9}\frac{5}{9}$	$-\frac{23}{9}\frac{5}{9}$	$-\frac{32}{27}\frac{14}{27}$
79	5	ī·2 <u>5</u> ·80·41	50·21· <u>3</u> 0	$-\frac{22}{41}R^{\frac{40}{11}}$	_	(Irby.)			$-\frac{51}{41}\frac{29}{41}$	$-\frac{109}{41}\frac{22}{41}$	$-\frac{109}{41}\frac{22}{41}$	$-\frac{50}{41}\frac{21}{41}$
80	— 6 <u>9</u>	5·3 <u>5</u> ·104·56	65.30.3	$9 - \frac{17}{28} R^{\frac{52}{17}}$		(Irby.)		_	- 69 5 56 8	— <u>139 17</u> 56 N8	$-\frac{139}{56} \frac{17}{28}$	- 65 15 56 28

388 Calcit.

Bemerkungen. (Fortsetzung von S. 386.)

Von den durch Sansoni, Zeitschr. Kryst. 1885. 10. 545, neu angegebenen Formen wurden die folgenden als unsicher angesehen:

- 10 R. Sansoni sagt von dieser Form S. 564: "Das Rhomboeder hat krumme Flächen mit ungleichen Erhebungen u. s. w." Der eine beobachtete Reflex stimmt mit $\frac{19}{2}$ R überein, dessen Winkel zu R = $51^{\circ}29^{\circ}$ ist. Die Form 10 R ist nicht als gesichert anzusehen.
- 13 R. Die Beobachtung Sansoni's S. 564 ist für diese Form als neu nicht entscheidend, da die Flächen als etwas krumme bezeichnet werden. S. 577 ist die Form wohl ausgebildet genannt und die Winkel 130°2′ 130°13′ als beobachtet gegeben. 14 R würde den Winkel 130°28′ erfordern. 14 R. ist eine bekannte Form, die in die ganze Reihe passt, während 13 R nicht in wichtigen Verbänden liegt. Sollte nicht auch hier 14 R vorliegen? Es wurde 13 R als noch der Bestätigung bedürfend angesehen.
- ⁷/₆ R ²⁰/₇. "Das Skalenoeder hat rauhe Flächen (S. 572), aber in der Nähe der negativen Ränder besser ausgebildet." Die Form liegt ausser allem Verband, und es wurde bei der immerhin mangelhaften Ausbildung der Flächen das Symbol nicht als sicher angesehen.
- ¼ R 15. Sansoni bezeichnet (S. 557) die Flächen als gekrümmt und klein. S. 559 als kaum messbar; danach ist das complicirte Symbol nicht als gesichert anzusehen.
- 6 R 13. Die Flächen dieser Form (S. 564) sind schmal und etwas gekrümmt, auch differiren die beobachteten Winkel bedeutend. Danach ist die Form nicht als genügend sicher gestellt anzusehen.
- 10 R ⁶/₅. (S. 553.) Die Winkelwerthe schwanken bedeutend, und betrachtet Sansoni selbst das Zeichen nur als wahrscheinlich.
- 15 R $\frac{17}{15}$. (S. 561.) Flächen etwas abgerundet. Auch die Winkelwerthe nicht unbedeutend differirend. Danach ist das Zeichen dieser Form unsicher.
 - $-\frac{5}{6}$ R $\frac{9}{5}$. (S. 572.) Flächen gekrümmt und die Winkel nicht soweit übereinstimmend, dass das Symbol als gesichert gelten könnte.

(Correcturer	<u>z.</u>									
$L \epsilon v y$	Descr	. 18	38 1	S.	29	Z. 14	vu :	lies	$d^{\frac{1}{3}}d^{\frac{1}{11}}b^{\frac{1}{21}}$	statt	
"	n	,,	Atl	as î	Γaf. 2	Fig. 2	3, 24	, i :	$= d^{\frac{I}{3}} d^{\frac{I}{11}} b^{\frac{I}{21}}$. "	$d^{\frac{I}{3}}d^{\frac{I}{11}}b^{\frac{I}{7}}$
"	"	,			48			"	Fig. 54	"	Fig. 53
"	,,	,	, ,,	"	"	" 9	"	"	Fig. 55	"	Fig. 54
"	n	,	, ,,	"	66	" 10	vu	"	$e^{\frac{Q}{4}}$	"	e ^ĝ
"	,,	7.	, ,,	,,	46	, 11	vo	,	$e^{\frac{8}{3}}$,,	$e^{\frac{5}{3}}$
"	n	,	Atla	s Ta	f. 9 Fig	. 134 oben	l	"	a ⁷	"	a ^I 1)
"	n	25	"	"	n n	" unte	a lu. 1	r "	a 7	"	a^{3} 1)
,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,			76				zuzuf	_	
	Zippe Min.		39 2 (2				vo I	lies	$(\frac{2}{5} P - 1)^3$	statt	(3 /
Zippe	Wien.	Denkschr. 18		Sep.		er Tab. C		"	$(\frac{2}{5} P - 1)^3$	"	$(\frac{2}{5} P -)^3$ e^5
n		" "		"	21	"	4	"	$^{ m e_5}$ $^{ m f}$	"	e° 6R
n		"		"	2	"	2 6	"	$FA\frac{I}{28}$	"	$HA_{\frac{1}{14}}$
"		"		"	4 5	"	1	"	$\frac{17}{28}$ R—1	"	$\frac{17}{2}$ R
"		77 71		"	6	"	I	"	$-\frac{1}{3}R+1$	"	$\frac{1}{3}R+1$
'n		יי יי		,,	6	"	2	,,	² / ₃ R	"	² / ₃ R¹
"		,, ,,		"	6	"	4	,,	<u>2</u> c : a : a : ∞ a		² / ₃ c : a' : a' : ∞ a
"		" "	"	"	6	"	2	"	4/5 R1	"	<u>4</u> R
n		" "	"	n	11	"	I	"	$\frac{2}{3}$ R	"	$\frac{2}{3}$ R'
n		" "	"	"	11	"	I	"	5/4 R'	"	5 B'
"		"	"	"	13	n	2	n	¹ / ₄ S' ⁷¹ / ₃	"	1 S 7 1
'n		"	"	"	16	"	2	"	S ⁷	"	S ⁹
77		" "	"	"	18	"	I		$(\frac{2}{5}P+1)^{\frac{7}{2}}$	"	$(\frac{3}{4}P+1)^{\frac{3}{2}}$
"		" "	"	"	18	"	2	"	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	"	$\frac{3}{2}S'\frac{5}{2}$ $d^3 d^6 d^{\frac{1}{4}}$
"		" "	"	"	18	n	3	"	9	"	۵
"		"	"	"	19	"	I	"	(4P+1)4	"	$(\frac{5}{8}P+1)^{\frac{7}{4}}$
77		" "	"	"	19	"	2	"	8/5 S ¹ / ₄	"	5 S 9 2
"		" "	"	"	19	"	I	"	$(\frac{5}{8}P + 2)^2$	n	$(\frac{5}{8}P + 2)^{\frac{2}{5}}$
"		"	"	"	2 I	"	4	"	$\mathbf{e}_{\frac{5}{4}}$	"	$e^{\frac{5}{4}}$
27		" "	,,	,,	27	"	5	"	- გc	,,	∃ga
,,		" "	"	"	27	"	5	"	a: ½ a: a	"	$a': \frac{I}{2}a': a$
"		" "	"	"	27	n	5	"	3 C	"	4 C
"		" "	"	"	24	"	I	"	½ S'13	"	½ S 13
"		" "	"	"	24	"	I	"	7 S ¹ 9 7	,"	7 S 9 €
"		" "	"	"	I	"	6		HA ^I / ₈ zu lös 16 R	schen	16 Ř'
"		" "	"	"	12 20	"	1 61	lies		Statt	
Hausme	ann Handi	" " " b. 184	" 172(2	") S.		Z. 18			$FA_{2}^{5} \cdot GK_{3}^{1}$	"	$AH_5 \cdot GK^{\frac{1}{3}}$
"	n	"		"	,,	" 18	u . 1	17 VI			04° 38′; 144° 24;
~		_	_		_				132° 59′ zu		
Sella	Quadi	-		- "	65			lies	— 4 R ³	statt	4R ³
Dana,	J. D. Systen	n 187	3 —	'n	673	" I	"	"	$-\frac{1}{5}$ 13 $-\frac{7}{5}$	"	<u>I</u> 13 9 7 7
ņ	· "	"		"	674	, 16	"	"	$-\frac{7}{5}'$	n	5 /

¹⁾ Vgl. Irby, Dissert. S. 31.

(Fortsetzung S. 390.)

390 Calcit.

Correcturen. (Fortsetzung von S. 389.)

Irby	Cryst. of Calcite	1878 -	_ 5	5. 32	z.	3,4	vo	die	Worte "According to Zippe
		_		,, 30		6			s (111)" zu löschen. Worte "According to Hausmann
"	"	"		,, 30	"	U ,	"		a comb. (55ī) (2īī) (11ī)" zuzufügen.
"	,,	"		, 41	"	18 v	o I		$+\frac{4}{7}$ R ⁵ statt $-\frac{4}{7}$ R ⁵
"	,,	" -		, 41				,,	21.3.11 , 21.3.11
n	ņ	" -		,, 42			О	,,	$11\cdot\overline{3}\cdot\overline{5}$, $11\cdot3\cdot\overline{5}$
"	"	" -	-	, 49	"	2 V	u	"	$11.\overline{3}.\overline{5}$ " $11.3.\overline{5}$
n	"	" -		, 40				"	$-\frac{5}{9}R\frac{17}{5}$, $-\frac{5}{19}R\frac{17}{5}$
n	n	" -		" 4I			u)		$-\frac{31}{20}R\frac{67}{31}$, $-\frac{31}{21}R\frac{67}{31}$
n	n	"		, 4 9			, ,	"	
n	n	,, -		, 39		11,		"	412 , 412
n	"	" -		, 51		9 ,		"	- 16 R , $16 R- 25 R$, $25 R$
"	"	" -		"51 "53		8 v		"	154 D 35 154 D 35
,,	,,	"		" 53 " 54		7 ,		"	I D 23 I D 23
"	"	" -						"	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
"	n	" -		, 56		ı v		"	· · · · · · · · · · · · · · · · · · ·
"	"	,, -		, 51		2 ,		"	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
,,	,,	,,		"51 "46		1 ,, 2 ,		"	$\frac{5}{9} R \frac{20}{13}$, $\frac{5}{8} R \frac{20}{13}$
"	"	" -		, 48				"	66 29 16 " 61 29 16
"	"	" -		" 47		7,			
,,	,,	" -		" 49		5 V	2	"	54 30 40 , 52 30 40
,,	n	" -		, 63		17 ,	, ,	,	$-\frac{7}{8}R_{\bar{1}\bar{1}}^{27}$, $-\frac{7}{8}R_{\bar{1}\bar{1}}^{22}$
"	,,	" -		_n 53				"	$10 R \frac{17}{15}$ " $10 R \frac{17}{5}$
"	n	" -	- ,	, 53	"	2 V	u ,	"	$61 \cdot 1 \cdot 2\overline{7}$, $61 \cdot \overline{1} \cdot 2\overline{7}$
"	, , , , , , , , , , , , , , , , , , ,	" -		, 23					einmal (ITT) " 2TT
" (Ке	ferat) Zeitschr. Kryst.	1879	3 (Calcit	S.	614	Z.	23,2	24 vo "nach Zippe (bis)2 R"
						6.0	,		zu streichen. vo lies $-\frac{5}{9} R \frac{17}{5} (6 \cdot 11 \cdot 17 \cdot 9)$
,,	,,	"	"	n	"	010	'n	23	statt $-\frac{5}{19}R\frac{17}{5}(6.11.17.19)$
,,	,,	_				622	: "	27	
"	,,	"	"	"	"	,,	""	27	2T TD 677 2T == 677
"	,,	"	"	"	"	623			vo , — 16 R , 16 R
,,	"	,,	,,	,,	"	"	"	15	" " — 25 R " 25 R
"	n	"	"	"	"	"	"	18	, , $\frac{11}{7}R\frac{15}{11}$, $\frac{17}{7}R\frac{10}{11}$
"	"	n	"	"	"	"	"	18	", " $\frac{5}{9}$ R $\frac{20}{13}$ ", $\frac{5}{8}$ R $\frac{20}{13}$
"	"	,,	"	"	"	"	"	18	vu " $10 R \frac{17}{15}$ " $10 R \frac{17}{5}$
"	"	"	"	"	"	"	"	17	" " $\frac{11}{12}R\frac{19}{11}$ " $\frac{11}{2}R\frac{19}{11}$
"	"	"	"	"	n	"	"	15	
" .	n	"	"	"	"	"	"	8	" " $\frac{1}{3}R\frac{23}{5}$ " $\frac{1}{3}R\frac{23}{25}$
"	"	"	"	n	"	624	,,	17	vo , $d^{\frac{1}{10}} d^{\frac{1}{14}} b^{\frac{1}{19}}$, $d^{\frac{1}{10}} d^{\frac{1}{14}} b^{\frac{1}{9}}$
"	"	"	"	"	"	,,,	"		" zu vereinigen mit S. 623 Z. 25
"	"	"	"	"	"	621	,,	18) lies on 20 to statt of 20 to 1
n	"	"	"	"	"	"	"		vuj
,,	"	n	"	n	"	" 622	"		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Hare	"	" 1880	4 5	" S. 200	" 2				lies — 17 R (0·17·17·1)
	"		- `	9:	, _	. 10	٠.,	5'	statt — $16 R (0.16.16.1)$
Sansoni	"	1885 1	0,	, 560	, "	18	vu	lies	$\frac{49}{13}R^{\frac{13}{7}}$ statt $\frac{49}{18}R^{\frac{7}{7}}$.

¹⁾ Vgl. Zeitschr. Kryst. 1881. 5. 666.

Caledonit.

1.

Monoklin,

Axenverhältniss.

```
a:b:c = \text{$1\cdot0894:1:1\cdot5771$} \quad \beta = 90^{\circ}42 \text{ (Schrauf. Gdt.)} Rhombisch: [a:b:c = 0\cdot9163:1:1\cdot403] \text{ (Hausmann. Miller. Dana. Groth.)} \quad \left\{a:b:c = 0\cdot9126:1:0\cdot6530\right\} \text{ (Mohs. Haidinger. Hessenberg.)}
```

Elemente.

a	=	1.0894	$\lg a = 003719$	$lg \ a_o = 983933$	$\lg p_o = 0.16067$	a₀ = 0.6908	$p_o = 1.4477$
c	=	1.5771	lg c = 019786	$\lg b_0 = 980214$	$\lgq_o\!=\!o_19783$	$b_o = 0.6341$	$q_o = 1.5770$
μ 180	$=$ β	90°42	$\begin{cases} \lg h = \\ \lg \sin \mu \end{cases} 999997$	$\begin{cases} \lg e = \\ \lg \cos \mu \end{cases} 808696$	$\lg \frac{p_o}{q_o} = 996284$	h = 0.9999	e = 0·0122

Transformation.

Mohs. Haidinger. Hessenberg.	Hausmann. Miller. Dana. Groth.	Schrauf. Gdt.
pq	$\frac{1}{q} \frac{p}{q}$	$\pm \frac{p}{q} \frac{r}{q}$
$\frac{\mathbf{q}}{\mathbf{p}} \frac{\mathbf{r}}{\mathbf{p}}$	рq	± q p
$\frac{p}{q} \frac{1}{q}$	q p	рq

No.	Gdt.	Miller. Greg. Schrauf.	Brooke. Haus- mann.	Miller.	Naumann.	[Haus- mann.]	[Mohs.] [Zippe.]	Gdt.
I	С	С	P	001	оP	A	Ĕr+∞	0
2	b	Ъ		010	∞₽∞			0∞
3	a	a	h	100	$\infty P \infty$	В	Pr+∞	∞0
4	m	m	M	110	∞P	E	Pr	∞
5	d		a ^I	OII	₽∞			0 1
6	x	x	a ²	021	2 ₽∞	$\mathbf{B}^{I} \mathbf{A}_{2}^{\mathbf{I}}$	ĕr—ı	02
7	e	e	С	101	— P∞	D	P +∞	+10
8	f	f		102	$-\frac{1}{2}P\infty$			$+\frac{1}{2}o$
9	i	i		105	$-\frac{1}{5}$ P ∞			十 ¹ 50

(Fortsetzung S. 393.)

392 Caledonit.

Literatur.

Brooke	[Thomson Ann. Phil.]	1822	4	117])
"	Schweigg. Journ.	1826	36	301
Hartmann	Handwb.	1828		74
${\it Mohs-Zippe}$	Min.	1839	2	154
Hausmann	Handb.	1847	2	(2) 1217
Miller	Min.	1852		561
Greg u. Lettsom	Man.	1858		403
Hessenberg	Senck. Abh.	1870	7	304 (Min. Not. 1870. 9. 48)
Schrauf	Wien. Sitzb.	1871	64	(1) 179
,,	Atlas	1873	_	Taf. XL
Dana, J. D.	System	1873		625.

Bemerkungen | s. Seite 394.

2.

No.	Gdt.	Miller. Greg. Schrauf.	Brooke. Haus- mann.	Miller.	Naumann.	[Haus- mann.]	[Mohs.] [Zippe.]	Gdt.
10	k	k	_	106	— <u>1</u> P∞			+ 1 o
11	g	g		108	— ½ P∞			$+\frac{1}{8}$ o
12	h	h		1.0.16	$-\frac{1}{16}P\infty$	_		$+\frac{1}{16}$ o
13	Н	Н		1.0.24	27		_	+ <u>I</u> 0
14	χ	χ	_	Ĩ·O·2O	$+\frac{1}{20}P\infty$			$-\frac{1}{20}$ 0
15	ω	_	_	Ĩ·O·I 2	$+\frac{1}{12}P\infty$		_	$-\frac{1}{12}$ O
16	γ	γ	_	<u>1</u> ·0·10	$+\frac{1}{10}P\infty$		_	$-\frac{1}{10}$ o
17	ψ	ψ		īo3	$+\frac{1}{3}P\infty$			$-\frac{1}{3}$ o
18	φ	φ		TO2	$+\frac{1}{2}P\infty$			$-\frac{1}{2}$ o
19	η	η	c	ŢOI	+ P∞	D	P +∞	— I O
20	δ	δ	_	2 01	+ 2 P∞	_		-20
21	t	t	$e^3 c^3$	221	— 2 P			+ 2
22	r	r	e² c²	111	— P	P		+ 1
23	s	s	$e^{I} c^{I}$	223	$\frac{2}{3}P$	$AE_{\frac{3}{2}}$		$+\frac{2}{3}$
24	Σ	Σ		335	$+\frac{3}{5}P$			— <u>3</u>
25	σ	σ	e ^I c ^I	223	$+\frac{2}{3}P$	AE_{2}^{3}		<u> 2</u>
26	ρ	ρ	$e^2 c^2$	īıı	+ P	P		I
27	τ	τ	$e^3 c^3$	22 I	+ 2 P	_		2
28	1	_	_	212	+ P2			I <u>I</u>

394 Caledonit.

Bemerkungen.

Statt des von Mohs-Zippe (Min. 1839. 2. 154) gegebenen Symbols Pr ist zu setzen Pr-1, damit Uebereinstimmung werde zwischen Winkel und Symbol, sowie mit den anderen Autoren. Es gilt dann die Transformation:

$$p\,q\,\,(\text{Mohs-Zippe}) = \frac{\tau}{q}\,\,\frac{p}{q}\,\,(\text{Hausmann}).$$

Auch kann Uebereinstimmung erzielt werden durch die Correctur:

dann würde die Transformation gelten:

pq (Mohs-Zippe) =
$$\frac{2}{p} \frac{q}{p}$$
 (Hausmann).

Hausmann giebt nach Brooke die Buchstaben c¹ c² c³. Hessenberg nach demselben e¹ e² e³. Die Originalarbeit war mir nicht zugänglich und in dem Auszug (Schweigger Journ.) treten die genannten Buchstaben nicht auf. Die Frage, welche Buchstaben Brooke gegeben habe, ist nicht wichtig, da eine Verwechselung nicht möglich ist.

Correcturen.

Carnallit.

Rhombisch.

Axenverhältniss.

$$a:b:c=o\cdot 5968: \ i:o\cdot 3891$$
 (Des Cloizeaux, Groth, Gdt.)
$$[a:b:c=o\cdot 5936: \ i:o\cdot 6940] \ \mbox{(Hessenberg.)}$$

Elemente.

a == 0.5968	$\lg a = 977583$	$\lg a_o = 963310$	lg p _o = 036690	$a_o = 0.4296$	$p_o = 2.3276$
c = 1.3891	$\lg c = 014273$	$\lg b_o = 985727$	$\lgq_o = 014273$	$b_o = 0.7199$	$q_o = 1.3891$

Transformation.

Hessenberg.	Groth. Descloizeaux. Gdt.
рq	$\frac{p}{2} \frac{q}{2}$
2 p 2 q	pq

No.	Hessen- berg. Gdt.	Miller.	Naumann.	Descloiz.	Gdt.
I	С	001	oР	p	0
2	a	010	$\infty \breve{P} \infty$	g¹	000
3	m	110	∞P	m	∞
4	đ	023	2 ॅ P ∞	$e^{\frac{3}{2}}$	O 3
5	e	OII	P∞	$e^{rac{\mathbf{I}}{2}}$	O I
6	f	021	2 P̃∞	$e^{\frac{1}{2}}$	0 2
7	i	101	P̄∞		10
8	s	113	$\frac{1}{3}$ P	$b^{\frac{3}{2}}$	1/3
9	0	112	$\frac{1}{2}$ P	p ₁	1 3 1 2
10	k	111	P	$b^{\frac{1}{2}}$	1

396 Carnallit.

Literatur.

Hessenberg	Senck. Abh.	1866 6	12
Des Cloizeaux	Nouv. rech.	1867 —	46
Groth	Strassb. Samml.	1878 —	19
"	Tab. Uebers.	1882 —	41.

Carollit.

Regulär.

No.	Gdt.	Miller.	Naumann.	G_1	${f G_2}$	G_3
1	p	111	0	I	I	I

398 Carollit.

Literatur.

Faber Amer. Journ. 1852 (2) 13 418 Dana, J. D. System 1873 — 69

Cerit.

Rhombisch.

Axenverhältniss.

 $a:b:c = o\cdot 9988: {\tt i}:o\cdot 8127$ (Nordenskjöld, Des Cloizeaux, Schrauf.)

Elemente.

a = 0.9988	lg a = 999948	$\lg a_o = 008955$	$\lg p_0 = 991045$	$a_0 = 1.2290$	$p_o = 0.8137$
c = 0.8127	lg c = 990993	$\lg b_o = 009007$	lg q _o = 990993	b _o = 1.2305	$q_o = 0.8127$

No.	Nordsk. Schrauf. Gdt.	Miller.	Naumann.	Des Cloizeaux.	Gdt.
1	С	001	οP	P	o
2	a	010	∞Ĕ∞	g^{I}	0 ∞
3	Ъ	100	$\infty \bar{P} \infty$	h¹	∞ 0
4	p	110	∞P	m	∞
5	\mathbf{q}	130	∞Ў з	g²	∞ 3
6	n	011	Ĕ∞	e ^I	O I
7	m	101	Ī∞	a ^I	1 0
8	t	301	3 P̄∞	$a^{\frac{1}{3}}$	30
9	r	321	$3\vec{P}\frac{3}{2}$	r	3 2
10	s	134	3 P 3	_	1 3 4 4 5 2 3 3
11	О	523	$\frac{5}{3}\bar{P}\frac{5}{2}$		5 <u>2</u> 3 3

400 Cerit.

Literatur.

Nordenskjöld Stockh. Vet. Ak. Förh. 1873 30 13 Des Cloizeaux Manuel 1874 2 XXI Schrauf Atlas 1877 — Taf. XLI.

Cerussit.

1.

Rhombisch.

Axenverhältniss.

a:b:c = 0.8437: i:i.3827 (Gdt.) [a:b:c = 0.6102:i:0.7232] (Hausmann. Kokscharow. Miller. Dana. Des Cloizeaux. Groth. Liweh.) $\left\{a:b:c = 0.723i:i:0.610i\right\} \text{ (Mohs. Zippe.)}$ (a:b:c = 0.6102:i:0.3616] (Schrauf.) [(a:b:c = 0.6108:i:1.453)] (Lévy.)

Elemente.

			lg p _o == 021454		
c = 1·3827	lg c = 014073	lg b _o = 985927	$\lgq_o\!=\!o14073$	$b_o = 0.7232$	$q_o = 1.3827$

Transformation.

Lévy.	Hausmann. Miller. Dana. Descloizeaux. Kokscharow. Groth. Liweh.	Mohs-Zippe.	Schrauf.	Gdt.
pq	2 p · 2 q	$\frac{1}{2p} \frac{q}{p}$	4 p · 4 q	$\frac{p}{q}$ $\frac{r}{2q}$
$\frac{p}{2}$ $\frac{q}{2}$	$\mathbf{p}\mathbf{q}$ $\frac{\mathbf{r}}{\mathbf{p}}$ $\frac{\mathbf{q}}{\mathbf{p}}$		2 p · 2 q	$\frac{\mathbf{p}}{\mathbf{q}} = \frac{\mathbf{r}}{\mathbf{q}}$
1 q 2 p	$\frac{1}{p}$ $\frac{q}{p}$	pq	$\frac{2}{p} \frac{2q}{p}$	$\frac{1}{q}$ $\frac{p}{q}$
<u>p</u> <u>q</u> 4	$\frac{p}{2}$ $\frac{q}{2}$	$\frac{2}{p}$ $\frac{q}{p}$	рq	$\frac{p}{q}$ $\frac{2}{q}$
p 1 2 q	$\frac{p}{q}$ $\frac{r}{q}$	$\frac{\mathbf{q}}{\mathbf{p}} = \frac{\mathbf{I}}{\mathbf{p}}$	$\frac{2p}{q} \frac{2}{q}$	рq

No.	Miller. Kokscharow. Schmidt. Mügge. Lang. Seligmann. Liweh.	Hauy. Hausm. Mohs. Hartmann Rose.	Schrauf. Zephar.	Miller.	Naumann.	[Hausm.]	[Mohs-Zippe.]	[Hauy.]	[Lévy.]	[Descl.]	Gdt.
I	b	1	a	001	οP	В	ĭPr+∞	۱ J ۱	$\mathbf{g}^{\mathbf{I}}$	g^{I}	О
2	c	k h	c	010	∞Ĕ∞	A	Pr+∞	Ŗ	p	P	o∞
3	a	g	Ь	100	∞Ē∞	\mathbf{B}_{I}	$P - \infty$	'E'	h ^I	h ^I	∞0

(Fortsetzung S. 403.)

402 Cerussit.

Literatur.

```
Traité Min.
Hauy
                                     1822
                                            3
                                               365
Mohs
                Grundr.
                                     1824
                                            2
                                               149
Hartmann
               Handwb.
                                     1828
                                               67
L \epsilon v y
               Descr.
                                     1838
                                            2
                                               429
Mohs-Zippe
               Min.
                                     1839
                                            2
                                               137
Hausmann
               Handb.
                                     1847
                                            2
                                               (2) 1223
Rose, G.
               Pogg. Ann.
                                     1849
                                           76
                                               291
Miller
               Min.
                                     1852
                                               565
Schrauf
               Wien. Sitzb.
                                     1860 39
                                               912
               Mat. Min. Russl.
Kokscharow
                                     1870
                                               100 u. 118
                                     1875
                                            7
                                                156 (Lang)
Schrauf
               Min. Mitth.
                                            3
                                     1873
                                               203
Dana, J. D.
               System
                                     1873
                                               700
Lang
               Verh. Min. Ges. Petersb. 1874 (2) 9
                                               152 (Ref. Kokscharow Mat. Min. Russl. 1875.
Des Cloizeaux Manuel
                                     1874
                                                                                   7. 156)
                                               153
Schrauf
               Atlas
                                               Taf. XLI-XLIII
                                     1877
Groddeck
               Zeitschr. Kryst.
                                     1879
                                            3
                                               324
               Jahrb. Min.
Seligmann
                                     1880
                                                137
               Zeitschr. Kryst.
                                            6
                                     1882
                                               102
Zepharovich
                                     1881
                                            5
                                                269 (Bleiberg) Lotos 1878
Schmidt, A.
                                     1882
                                               545 (Telekes Zus. Stellung)
Miers
                                     1882
                                               598 (Lacroix)
Mügge
               Jahrb. Min.
                                     1882
                                            2
                                               39
                                            8
               Zeitschr. Kryst.
                                     1884
                                               544 J
Liweh
                                     1884
                                            9
                                               512.
```

Bemerkungen | siehe S. 404 u. 406.

2.

No.	Miller. Kokscharow. Schmidt. Mügge. Lang. Seligmann. Liweh.	Hauy. Hausm. Mohs. Hartmann Rose.	Schrauf. Zephar.	Miller.	Naumann.	[Hausm.]	[Mohs-Zippe.]	[Hauy.]	[Lévy.]	[Descl.]	Gdt.
4	1		L	210	∞ P 2			_		_	2 00
5	π		_	320	$\infty \tilde{P} \frac{3}{2}$	_		_	_	_	$\frac{3}{2}$ ∞
6	e	_	e	110	∞P	_		_		_	∞
7	у	у	у	120	∞P̃ 2	AB ¹ 2	Ēr∔1		a ⁴	a ²	∞ 2
8	d		d	130	∞Ў з	_		_	a^6	a^3	∞ 3
9	α	_		150	∞P 5		_		_	_	∞ 5
10			_	0.1.14	¼ P̃∞	_					0 <u>I</u>
11	g	_	_	0.1.10	$\frac{1}{10}\breve{P}\infty$		_		_		$o_{\frac{1}{I}}$
12	n	_		019	^I ⁄ ₉ P̃∞	_	_	_	_	_	$o^{\frac{1}{6}}$
13	ζ			018	^I ⁄ ₈ P̃∞			_		_	0 <u>I</u>
14	u		u	017	I P∞		_			$e^{\frac{I}{7}}$	0 I
15	t	_	t	016	½ P̃∞	_				$e^{\frac{1}{6}}$	$o^{\frac{6}{1}}$
16	n	_	n	015	<u>I</u> ⊬∑		_	_		$e^{\frac{I}{5}}$	0 I 5
17	z	z	z	014	¼ P̃∞	BA 1/4	(<u>ĕ</u> +∞)⁴	j	_	$e^{\frac{I}{4}}$	0 I
18	\mathbf{v}	x	\mathbf{v}	013	<u>I</u> P̃∞	BA I	$(\breve{P}+\infty)^3$	_	_	$\mathrm{e}^{rac{\mathrm{I}}{3}}$	$O^{\frac{1}{3}}$
19	i		i	012	Ţ Ď∞	BA I	(řr+∞) <u>3</u> (ř+∞)	2 J	e ^I	$e^{\frac{I}{2}}$	0 <u>I</u>
20	f		_	067	² P∞		-				o 6/7
21	ė			078	['] ⁄ ₈ P̃∞	_	_		_	_	$0^{\frac{7}{8}}$
22	k	P	k	011	ĕ∾	D	P+∞	P	e²	eI	O I
23	${f q}$		q	032	³ ⁄ ₂ P̃∞			_		$e^{\frac{3}{2}}$	$0^{\frac{3}{2}}$
24	X	s	x	021	2 P̃∞	AB2 ($(\bar{P}r + \infty) = (\bar{P} + \infty)$	² B	e ⁴	e²	0 2
25	γ		γ	031	3 P̃∞		_				о 3
26	c		<u>.</u>	061	6 P̃∞			_			06
27	Γ			108	$\frac{1}{8}\bar{P}\infty$	_		_		_	$\frac{1}{8}$ O
28	r	e	r	103	$\frac{1}{3}\bar{P}\infty$	BB ¹ 3	3	² J ²	g²	g²	1 O
29	χ			102	$\frac{1}{2}\bar{P}\infty$		_	_	_	_	$\frac{I}{2}$ O
30	∇	_	_	305	$\frac{3}{5}\bar{P}\infty$	_				g ⁴	3 O
31	m	M	m	101	P̄∞	Е	Ўr	M	m	m	1 0
32	f	_	f	503	$\frac{5}{3}\bar{P}\infty$	_	<u>3</u>			h4	5/3 O
33	φ		φ	113	1/3 P	_					3
34	s	v	s	112	1 P	BD'2	$(\breve{\mathbf{P}}\mathbf{r})^3 = (\breve{\mathbf{P}})^2$	_	$b^{I}b^{\frac{1}{3}}g^{\frac{1}{2}}$	e ₃	<u>I</u>
35	p	t	P	111	P	P	P	_	p_1	$\mathbf{b}^{\frac{\mathbf{I}}{2}}$	I
36	u			332	$\frac{3}{2}$ P						32
37	ð		_	331	3 P		_	_			3
38	ŋ		_ ;	14.1.14	P14				_		1 <u>1</u>
39	ε		ε	313	Ēз			_			$I \frac{I}{3}$
									(Fortsetzu	ınır S	405.)

(Fortsetzung S. 405.)

Bemerkungen.

Liweh hat bei seiner Angabe, dass vom Cerussit 49 Formen bekannt seien (Zeitschr. Kryst. 1884. 9. 522), die Arbeit von Mügge (Jahrb. Min. 1882. 2. 39, Zeitschr. Kryst. 1884. 8. 544) mit 9 neuen Formen übersehen.

Correcturen siehe S. 406.

3.

No.	Miller. Kokscharow. Schmidt. Mügge. Lang. Seligmann. Liweh.	Hauy. Hausm. Mohs. Hartm. Rose.	Schrauf. Zephar.	Miller.	Naumanu.	[Hausm.]	[Mohs-Zippe.]	[Hauy.]	[Lévy.]	[Descl.]	Gdt.
40	τ		τ	212	P 2					$b^{\frac{1}{4}}$	I I
41	О	О	О	121	2 Ĭ 2	AE 2	$(\bar{P}r)^3 = (\bar{P})^2$		b^2	$\mathbf{p_{i}}$	I 2
42	g		g	131	3 P 3				Ъ³	$\mathbf{b}_{2}^{\frac{3}{2}}$	1 3
43	h		h	141	4 P 4	_				b ²	I 4
44	β		β	133	ЙЗ				_		$\frac{I}{3}$ I
45	λ	_	1	377	$\breve{P}\frac{\ddot{7}}{3}$	_	_			\mathbf{x}	$\frac{3}{7}$ I
46	α	_	α	122	Й2	_			_		<u>I</u> I
47	8	_		322	$\frac{3}{2}\bar{P}\frac{3}{2}$		_		_	_	$\frac{3}{2}$ I
48	w	w	\mathbf{w}	211	2 P 2	B'D 2	Р—1			a_3	2 I
49	Δ		Δ	311	3 P 3	_		_		_	3 1
50	μ	_		342	2 P 3						$\frac{3}{2}$ 2
51	P		ρ	324	$\frac{3}{4}\bar{P}\frac{3}{2}$						$\frac{3}{4}$ $\frac{1}{2}$
52	ξ		_	349	4 P 4	_					<u>I</u> 4/9
53	Ų		-	143	4 ₹ 4				_		I 4 3 3
54	δ	-	δ	526	$\frac{5}{6}\bar{\mathrm{P}}\frac{5}{2}$		_		_		$\frac{5}{6}$ $\frac{1}{3}$
55	ω		_	145	<u>₹</u> Ў 4	_		_	_	_	<u>I</u> 4/5
56	x	-		315	$\frac{3}{5}\bar{P}3$		_				45 45 25 15 35 35
57	η	-		325	$\frac{3}{5} \ddot{P} \frac{3}{2}$		_				3 <u>2</u> 5 5
58	σ	_		137	³ / ₇ P ₃						I 3

406 Cerussit.

Correcturen.

DanaSystem1873—Seite 700Zeile 16 vo lies $i-\frac{\pi}{3}$ statt $1-\frac{\pi}{3}$ LiwehZeitschr. Kryst.18849,521,15,,e,0.

Chabasit.

1.

Hexagonal-rhomboedrisch-hemiedrisch.

Axenverhältniss.

$$a: c = i: i \cdot 086 \text{ (G}_2.)$$

a: c = 1:1.086 (Lévy. Des Cloizeaux. Groth.)

" = 1:1·1303 (Rath. Arzruni. Phakolith.)

" = 1:1.1286 (Rath. Phakolith.)

" = 1:1093 (Phillips. Mohs-Zippe. Hausmann.)

Elemente.

c == 1.086	$\lg c = \infty_{3583}$	$ lg a_o = 020273$	$\lg p_0 = 985974$	a _o == 1.5949	$p_o = 0.7240$
		$\lg a'_{\circ} = 996417$		$a_{\circ}^{1} = 0.9208$	

Transformation.

Mohs-Zippe, Hausmann, Rath, Des Cloizeaux, Groth, G ₁	${ m G_2}$
pq	(p+2q)(p-q)
$\frac{p+2q}{3} \frac{p-q}{3}$	pq

No.	Gdt.	Hauy. Hausm. Mohs. Hartm. Tamnau.	Miller.	Rath.	Dan a .	Schrauf.	Bravais.	Miller.	Naumann.	Haus- mann.	Mohs. Zippe.	Hauy.	Descl. Lévy.	\mathfrak{G}_1	θ_2
1	c		0	c		С	0001	111	οR	A	_		a¹	o	0
2	b	u	a	a		b	1120	ЮĪ	∞P 2	В	P+o	o —	$\mathbf{d}^{\mathtt{I}}$	∞	∞0
3	t	P	t	t	t	t	1123	210	$\frac{2}{3}$ P 2				b^2	$\frac{\mathbf{I}}{3}$	10
4	u				_		1122	52Ī	P 2	D			_	<u>I</u>	$\frac{3}{2}$ O
5	v						2243	311	4 P 2	$BA\frac{3}{4}$		_		2/3	20
6	w						4483	513	8/3 P 2	$BA\frac{3}{8}$			_	4 3	40

(Fortsetzung S. 409.)

408 Chabasit.

Literatur.

Hauy	Traité Min.	1822 3	163
Mohs	Grundr.	1824 2	265
Hartmann	Handwb.	1828 —	351
Tamnau	Inaug. Diss.	1836 —	(Stuttgart)
L ev y	Descr.	1838 2	250
Mohs-Zippe	Min.	1839 2	255
Hausmann	Handb.	1847 2	(1) 780
Miller	Min.	1852 —	448
$Des\ Cloizeaux$	Manuel	1862 1	407
Rath	Berl. Monatsh.	1875 —	523
"	Pogg. Ann.	1876 158	387
Schrauf	Atlas	1877	Taf. XLIII
Streng	Jahrb. Min.	1877	725
n	Ber. Oberhess. Ges.	1877 16	74
Groth	Strassb. Samml.	1878 —	237
Becke	Min. Petr. Mitth.	1880 3	391.

Bemerkungen | s. Seite 410.

2.

No.	Gdt.	Hauy. Hausm. Mohs. Hartm. Tamnau.	Miller.	Rath.	Dana.	Schrauf	. Bravais.	Miller.	Naumann.	Haus- mann.	Mohs. Zippe.	Hanv	Descl. Lévy.	6,	θ_2
7	x				_		2241	715	4 P 2	BA I		_		2	60
8	r	_	r	p		r	1011	100	R	P	R	P	р -	+ 10	+ 1
_ 9	t			_	_		3034	10.1.1	$+\frac{3}{4}R$					$+\frac{3}{4}$ o	$+\frac{3}{4}$
10	d			_			2023	711	$+\frac{2}{3}R$	_				+ ² / ₃ o	+ 2/3
11	e	n	e			e	TOI2	110	$-\frac{1}{2}R$	G	R—1	В	b1 -	$-\frac{1}{2}o$	— <u>I</u>
12	f			r			2023	55T	$-\frac{2}{3}$ R	_	_	_		$-\frac{2}{3}$ o	- 2/3
13	g				_		3032	554	$-\frac{3}{2}$ R			_		$-\frac{3}{2}$ 0	— <u>3</u>
14	S	r	s	n	_	s	2O2 I	ΙΙĪ	2 R	$FA\frac{I}{4}$	R+1	EIIE	e ^I -	- 20	— 2
15	h				_		9 094	14.13.13	$-\frac{9}{4}$ R					— ⁹ / ₄ o	9/4
16	0	0		_	0	_	2134	310	$+\frac{1}{4}R3$	GK 2	_		Ъ ³ -	$+\frac{1}{2}\frac{1}{4}$	+ 1 ¹ / ₄
17	β			_		_	11.1.12.13	I 2 · I · O	$+\frac{10}{13}R^{\frac{6}{5}}$	_	_		b12-	$\frac{11}{13}\frac{1}{13}$	$+ 1\frac{10}{13}$
18	i	i				ρ	12.1.13.14	13.1.0	$+\frac{11}{14}R\frac{13}{11}$	GK 7/6				$+\frac{6}{7}\frac{1}{14}$	$+$ $1\frac{11}{14}$

410 Chabasit.

Bemerkungen.

Bereits Hausmann hat den Phakolith, Gmelinit und Levyn als Varietäten mit dem Chabasit vereinigt (Handb. 1847. 2. (1) 780-785).

Correcturen.

 Miller
 Min.
 1852
 Seite 448 Zeile 8 vu lies $51^{\circ}26$ statt $50^{\circ}45$

 Schrauf, A.
 Atlas
 1877
 vor Taf. XLIII Z. 4 vo lies $\infty P 2$ statt $\infty R 2$

 "
 "
 "
 "
 "
 "
 $\frac{2}{3}P 2$ "
 $\frac{2}{3}R 2$

Chalcomenit.

Monoklin.

Axenverhältniss.

a:b:c=0.4920:1:0.7222 $\beta=90^{\circ}51$ (Gdt.) [a:b:c=0.7222:1:0.2460 $\beta=90^{\circ}51$ (Des Cloizeaux. Groth.)

Elemente.

a = 0.4920	lg a = 069197	$\lg a_o = o83331$	lg p _o == 016669	$a_0 = 0.6813$	p _o == 1·4679
c = 0.7222	lg c = 985866	$\lg b_o = o14134$	$\lg q_o = 985861$	$b_0 = 1.3846$	$q_o = 0.7221$
$\mu = \begin{cases} 89^{\circ} \circ 9 \end{cases}$	$ \left. \begin{array}{c} \lg h = \\ \lg \sin \mu \end{array} \right\} 999995 $	$ \left.\begin{array}{l} \lg e = \\ \lg \cos \mu \end{array}\right\} 817128 $	$\lg \frac{p_o}{q_o} = 030808$	h == 0.9999	e = 0·0148

Transformation.

Descloiz. Groth.	Gdt.
рq	$\frac{2}{\mathbf{p}} \frac{\mathbf{q}}{\mathbf{p}}$
$\frac{2}{\mathbf{p}} \frac{2 \mathbf{q}}{\mathbf{p}}$	рq

No.	Gdt.	Miller.	Naumann.	[Descl.]	Gdt.
1	С	001	οP	ħ1	0
2	a	100	$\infty P \infty$	p	∞ 0
3	m	011	₽∞	m	0 1
4	f	104	$-\frac{1}{4}P\infty$	0 I	+ ^I ₄ o
5	g	201	+ 2 P∞	$\mathbf{a}^{\mathtt{I}}$	— 2 O
6	δ	112	$-\frac{1}{2}P$	δ	十 ½
7	ε	131	— 3 P 3	ε	+ I 3
8	β	161	6 P 6	β	+ ı 6

412 Chalcomenit.

Literatur.

Des Cloizeaux u. Damos	ur Compt. rend.	1881	92	837 \
" "	Bull. soc. min.			
$Des\ Cloizeaux$	Jahrb. Min.	1882	2	204
"	Min. Mitth.			

Chalcomorphit.

Hexagonal-holoedrisch.

Axenverhältniss.

$$a:c = 1:3.2896 (G_1)$$

 $[\underset{(10)}{a:c}=\imath:\imath\text{-8993}]$ (Rath. Schrauf. $G_{1\text{-}})$

Elemente.

c =	= 3·2896	lg c = 051714	$\lg a_0 = 972142$ $\lg a'_0 = 948286$	$\lg p_0 = 034105$	$a_{\circ} = 0.5265$ $a'_{\circ} = 0.3040$	$p_0 = 2.1930$	
-----	----------	---------------	---	--------------------	---	----------------	--

Transformation.

Rath. Schrauf. G ₁	G_2	
рq	(p+2q) (p-q)	
$\frac{p+2q}{3}\frac{p-q}{3}$	pq	

No.	Schrauf. Gdt.	Bravais.	Miller.	Nauma n n.	G ₁	G_2
I	С	0001	111	o P	o	0
2	a	1010	2 Ī Ĭ	∞ P	∞0	∞
3	Þ	1011	100	P	1 O	1

Literatur.

Rath Pogg. Ann. 1874 Ergänz.-Bd. 6 376. Schrauf Atlas 1877 Text von Taf. XLIII

Chalcosiderit.

Triklin.

Axenverhältniss.

$$a:b:c = o\cdot 7646: i: i\cdot oi82 \quad \alpha\,\beta\gamma = io7^\circ 4i'; \, 92^\circ 59^i; \, 93^\circ 30^i \, \text{(Gdt.)}$$

$$[a:b:c = i\cdot oi82: i: o\cdot 7646 \quad \alpha\beta\gamma = 93^\circ 30^i; \, 92^\circ 59^i; \, io7^\circ 4i^i] \, \text{(Maskelyne.)}$$

Elemente der Linear-Projection.

a = 0.7646	$a_{\circ} = 0.7509$	α = 107°41	x' ₀ =-0·3038	d' = -0.312
b = 1	b _o = 0.9821	$\beta = 92^{\circ}59$	y' ₀ =-0.0707	δ' = 13°06
c = 1.0182	c _o = 1	$\gamma = 93^{\circ}30$	k = 0.9501	

Elemente der Polar-Projection.

$p_{\circ} = 1.2711$	λ = 72°03	x _o =0.0495	d = 0.312
$q_o = 1 \cdot 0187$	$\mu = 85^{\circ}44$	y₀=0·3081	δ= 9°08
$r_{\circ} = 1$	v = 85°22	h = 0.9501	

Transformation.

Maskelyne.	Gdt.
рq	$\frac{1}{p} \frac{q}{p}$
$\frac{1}{p} \frac{q}{p}$	pq

No.	Maskel. Gdt.	Miller.	Naumann.	Gdt.
I	a	001	o P	0
2	ь	010	ωďω	0 &
3	m	011	_ι Ř'∞	O I
4	n	ΟĪΙ	'Ĕ _ı ∞	οĭ
5	g	OŽ I	2 'Ř _ı '∞	O 2
6	π	$0\bar{5}2$	$\frac{5}{2}$ $\overset{1}{P}_{i}$ ∞	O $\frac{5}{2}$
7	μ	072	$\frac{7}{2}$ $\overset{1}{P}_{1}$ $\overset{\infty}{\sim}$	o 7/2
8	d	051	5 ¹P₁∞	0 5
9	u	101	'P' ∞	1 0
10	k	ĭoı	$_{_{ m I}}ar{ m P}_{ m I}\infty$	īo

Literatur.

Maskelyne Journ. Chem. Soc. 1875 July.

Childrenit.

Rhombisch.

Axenverhältniss.

```
a:b:c = 0.5254:1:0.7776 \text{ (Gdt.)} [a:b:c = 0.7776:1:0.5254] \text{ (E. S. Dana's Aufst. entsprechend.)} (a:b:c = 0.6757:1:0.6430) \text{ (Miller. J. D. Dana. Schrauf.)} (\quad \text{``} \qquad = 0.6748:1:0.6592) \text{ (Cooke für Hebron.)} (\quad \text{``} \qquad = 0.6676:1:0.6469) \text{ (Cooke für Tavistock.)} (\quad \text{``} \qquad = 0.671:1:0.639) \text{ (Haidinger. Mohs-Zippe. Hausmann.)} \left\{\quad \text{``} \qquad = 0.9523:1:1.422 \right\} \text{ (Lévy.)}
```

Elemente.

		$\lg a_0 = 982973$			
c = 0·7776	lg c == 989076	$\lg b_0 = 010924$	$\lg q_0 = 989076$	b _o = 1.2860	$q_o = 0.7776$

Transformation.

Haidinger. Zippe. Hartm. Hausmann. Miller. J. D. Dana. Cooke, Schrauf.	E. S. Dana. Groth.	Gdt.
pq	q 2 p p	$\frac{p}{q} \frac{2}{q}$
$\frac{2}{q} \frac{2p}{q}$	pq	$\frac{1}{p} \frac{q}{p}$
$\frac{2p}{q} \frac{2}{q}$	$\frac{1}{p} \frac{q}{p}$	pq

No.	Gdt.	Miller, Greg u, Lettsom. Schrauf.	E. S. Dana.	Haidinger. Zippe. Hartmann. Hausmann.	Miller.	Naumann.	[Haus- mann.]	[Haidinger.] [Hartmann.] [Zippe.]	[Lévy.]	Gdt.			
1	a	a	a	P	001	оP	В	Ĭr+∞	p	0			
2	P	P	b	f	010	∞⋫∞	A	P—∞		0∞			
3	n	n	J	a	011	Ď∞	$(BA\frac{I}{3})$	(3 Pr+2)	e¹	01			
4	t		p		111	P	_	_	_	1			
5	s	s	s	e	121	2 🏲 2	P	P	$\mathbf{p}_{\mathbf{I}}$	12			
6	r	r		b	131	3 Þ 3	(AE 3)	(§ P)	i	13			

Goldschmidt, Index.

418 Childrenit.

Literatur.

Brooke	Quart. Journ. sci.	1824 16	274
Haidinger	Pogg. Ann.	1825 5	163
Hartmann	Handwb.	1828 —	97
$L \epsilon v y$	Descr.	1838 3	409
Mohs-Zippe	Min.	1839 2	609
Hausmann	Handb.	1847 (2) 2	1085
Miller	Min.	1852 —	519
Dana, J. D.	System	1855 —	424
Greg u. Lettsom	Manuel	1858 —	81
Cooke	Amer. Journ.	1863(2)36	258
Dana, J. D.	System	1873 —	579
Schrauf	Atlas	1877 —	Taf. XLIII
Brush u. Dana, E. S.	$Amer.\ Journ.$	1878 (3) 16	35
"	Zeitschr. Kryst.	1878 2	531
Dana, E. S.	System	1882 App.	3 24
Groth	Tab. Uebers.	1882	69.

Bemerkungen S. Seite 419 u. 420.

Bemerkungen.

Bei Lévy (Descr. 1838. 3. 409) sind die Symbole des Textes mit denen der Figur nicht in Uebereinstimmung. Im Text steht Pmbbe, eine unvollständige und daher unverständliche Angabe. In der Fig. 2 Taf. 81 dagegen steht pb¹e¹i = b¹b³g². Die Identification wurde nach der Figur vorgenommen und dürfte wohl richtig sein, obwohl die Symbole der Figur zu dem Axenverhältniss nicht passen. Nach dem Axenverhältniss würde das Transformations-Symbol lauten: pq (Lévy) = $q \cdot 2p$ (Gdt.).

Die Angaben von Haidinger, die Zippe und Hausmann übernommen haben, beruhen auf den Angaben von Brooke, dessen Originalarbeit (Quart. Journ. Sci. 1874. 16. 274) mir nicht zugänglich war. Die Symbole stimmen nur theilweise mit den Angaben der späteren Autoren überein. Da Miller die Sammlung von Brooke benutzt hat (Min. 1852. 520), so dürfte in seinen Angaben eine Revision der Brooke'schen enthalten und diese, soweit sie mit den anderen nicht stimmen, zu vernachlässigen sein. Es wurden die Symbole von Haidinger-Zippe und Hausmann nach ihrer wahrscheinlichen Identification neben die anderen gestellt.

In J. D. Dana's System (1873. 570) stehen zwei Figuren scheinbar in gleicher Orientirung nebeneinander. Es ist aber die Orientirung verschieden, die Symbole richtig in beiden eingeschrieben. Bei dem ähnlichen Aussehen in beiden Aufstellungen sind leicht Irrungen möglich. Fig. 485 stammt von Cooke, 484 findet sich schon in Dana's System 1855 Fig. 424. Sollte sie von Brooke entlehnt sein? Die Form $\frac{3}{2} - \frac{3}{2}$, die Dana anführt ohne Quelle, Figur oder Winkelangabe, findet sich sonst nirgends angegeben. Sie wurde auf die nackte Angabe des Symbols hin nicht aufgenommen, da eine Verwechselung nicht ausgeschlossen ist.

Groth giebt (Tabell. Uebers. 1882. 69) das Axenverhältniss $a:b:c=o\cdot7399:1:0.4756$ gemäss der Aufstellung E. S. Dana's. Doch ist die Umrechnung fehlerhaft. Nach den Messungen Miller's erhalten wir in dieser Aufstellung $o\cdot7776:1:o\cdot5254$ nach denen von Cooke für Hebron $o\cdot7751:1:o\cdot5118$, für Tavistock $o\cdot7730:1:o\cdot5160$.

420 Childrenit.

Correcturen.

Dana, J. 1). System.	1855	Seite	2 424	Zeile 9 vu , 17 vo	Brooke	statt	Lévv
"	'n	1873	"	579	" 17 vo∫ nes	DIOOKE	Statt	Levy
Groth	Tab. Uebers.	1882	11	69	" 7 vu "	Pyramide s	11	Pyramide r
"	"	"	"	"	" 11 Vu "	0.7776 : 1 : 0.5254	11	0.7399:1:0.4756.

Chiolith.

Tetragonal.

Axenverhältniss.

```
a: c = 1:1.077 (Kokscharow 1851. Miller.)

" = 1:1.0418 (Kokscharow 1862. Schrauf. Groth.)

[Rhombisch a: b: c = 0.528:1:?] (Kenngott.)
```

No.	Miller. Schrauf. Gdt.	Miller.	Naumann.	Gdt.
? I	n	102	½ P∞	<u> </u>
2	О	111	P	1
?? 3	x	117	1/7 P	<u>I</u> 7

422 Chiolith.

Literatur.

Kokscharow	Pogg. Ann.	1851	83	587
"	Mat. Min. Russl.	1862	4	389 Ì
Kenngott	Uebers. Min. Forsch.	1850/51 (1853)		26
Miller	Min.	1852		606
Kenngott	Wien. Sitzb.	1853	11	980
Schrauf	Atlas	1877		Taf. XLIII.
Groth	Zeitschr. Kryst.	1883	7	475.

Bemerkungen.

Von Krystallen des Chiolith bestehen Messungen nur von Kokscharow (Pogg. 1851. 85. 587), citirt von Kenngott (Uebers. für 1850/51 (1853) 26), acceptirt von Miller (Min. 1852. 606) und ausserdem eine Messung von Kenngott (Wien. Sitzb. 1853. 11. 980). Groth in seinem zusammenfassenden Bericht (Zeitschr. Kryst. 1883. 7. 475) erwähnt letztere nicht. Kokscharow Mat. 1862. 4. 389 giebt ein etwas anderes Axen-Verhältniss als 1851.

Kenngott hat versucht, seine Messung mit denen von Kokscharow in Einklang zu bringen, doch dürfte die Identification, wie er sie vorgenommen, nicht anzunehmen sein, da die vier identificirten Winkel um 4° 201

```
11° 23¹
7° 1¹
6° 59¹ differiren.
```

Die Frage nach dem Krystall-System ist nicht entschieden, da Kokscharow die Formen für tetragonal betrachtet. Kenngott für rhombisch. Doch dürfte Kokscharow das bessere Material gehabt haben, daher ist ihm vorläufig zu folgen und die Krystalle als tetragonal anzunehmen.

Das Axen-Verhältniss ist nach

```
Kokscharow 1851: a:c = 1:1.077 = Miller. Kenngott Uebers.
" 1862: a:c = 1:1.0418 = Kokscharow 1862. Groth.
```

Kokscharow 1851 giebt als sicher nur die Pyramide 1. (111), Axenkanten 107°32, Seitenkanten 113°26' und eine Pyramide 2. Ordnung (n. Miller) = po (ho1) von unsicherem Symbol.

Kenngott hat einen Winkel von 124°22' (Flächenwinkel) gemessen und schreibt diesen einem Prisma zu.

Dieser Winkel ist gleich dem, welchen $\frac{1}{2}$ o: $\frac{1}{2}$ o erfordern würde. Es ist nämlich (wir rechnen stets mit inneren Winkeln)

Es liegt also die Vermuthung nahe, dass Kenngott die von Kokscharow beobachtete und von Miller (Min.) gezeichnete Form n gemessen habe und dieser das Zeichen $\frac{1}{2}$ o (102) zu geben sei. Das Symbol verträgt sich sehr wohl mit der Zeichnung.

Danach wäre bekannt für den Chiolith: 1 und 3 o. Letztere Form ist unsicher.

Kokscharow giebt ausserdem die Messung von 3 Flächen aus einer Zone xyz, die die äusseren Winkel 113°20, 135°45 [und 69°10] einschliessen, also die inneren Winkel 66°40', 44°15'. Ist 113°20 der Seitenkanten-Winkel zwischen zwei Flächen der Pyramide 1, wie oben angeführt, so wird x=1 (111), $y=\underline{I}$ (11 \overline{I}). Dadurch ist die Zone bestimmt und ergiebt sich das Symbol von z zu $\frac{1}{7}$ (117), denn es berechnet sich

```
\frac{1}{7}: o nach A.-V. a: c = 1:1.077 zu 12°34'

, , , = 1:1.0418 , 11°53'

beobachtet: , 12°25'.
```

Chloanthit.

Regulär.

No.	Gdt.	Miller.	Miller.	Naumann.	Hausmann.	Mohs- Zippe.	Lévy.	6,	θ_2	θ_3
I	С	a	001	∞O∞	W	Н	p	О	000	∾o
2	e		102	∞0 2				$\frac{1}{2}$ O	02	∞2
3	d	d	101	ωO	RD	D	\mathbf{p}_{1}	10	ΟI	∞
4	q		112	2 O 2	_	C _r	a ²	<u>I</u>	I 2	2 I
5	p	0	111	О	0	O	a¹	I	I	I

424 Chloanthit.

Literatur.

$L \epsilon v y$	Descr.	1838	3	244
Mohs-Zippe	Min.	1839	2	504
Hausmann	Handb.	1847	2	(1) 65 u. (2) 1560
Miller	Min.	1857		144
Groth	Strassb. Samml.	1878	_	45.

Bemerkungen.

Haidinger und nach ihm Miller bezeichnen das reguläre ${\rm Ni\,As_2}$ als Rammelsbergit. Das rhombische nennt Breithaupt, der es zuerst abschied, Weissnickelkies, Miller Chloanthit. Dana, Weisbach, Groth u. a. nennen das reguläre Mineral Chloanthit, das rhombische Rammelsbergit. Letztere Benennung dürfte die jetzt allgemein geltende sein und wurde derselben auch hier gefolgt.

Chlorit-Gruppe.

Cronstedtit.

Hexagonal. Rhomboedrisch-hemiedrisch.

Axenverhältniss.

$$[a:c = i:3.439]$$
 (G₂)

Elemente.

$c = 3.439 \mid l$	lg c = 053643	$\lg a_o = 970213$ $\lg a_o' = 946357$	$lg p_o = o36o34$	$a_{o} = 0.5037$ $a'_{o} = 0.2908$	p _o == 2·293	
--------------------	---------------	---	-------------------	---------------------------------------	-------------------------	--

Transformation.

Zepharovich, Schrauf, Vrba == G ₁ .	\mathbf{G}_2 .
рq	(p+2q) (p-q)
$\frac{p+2q}{3} \frac{p-q}{3}$	pq

No.	Gdt.	Miller.	Schrauf.	Vrba.	Bravais.	Miller.	Naumann.	G ₁ .	G ₂ .
I	0	0	с	С	0001	111	o R	0	0
2	b	b			1010	2 Ī Ī	∞ R	∞ 0	∞
3	$\mathbf{p}\cdot$	r	r		1011	100	R	1 0	1
4	a.		_	r	20Ž I	511	2 R	20	2
5	1.		R	-	30 <u>3</u> 1	722	3 R	30	3

Literatur.

Mohs-Zippe	Min.	1839	2	667 (Sideroschisolith.)
Miller	Min.	1852 -		423
Zepharovich	Wien. Sitzb.	1875	71	(1) 276
Schrauf	Atlas	1877 -		Taf. L
Groth	Tab. Uebers.	1882 -	_	97
Vrba	Sitzb. böhm. Ges.	1886 -	_	15 Jan.

Bemerkungen.

An Stelle von Zepharovich's $\frac{1}{4}$ R $\frac{9}{2} = \frac{25}{15}\frac{1}{4}$ (G₂) (11·7 18·16) setzt Schrauf s = $\frac{2}{3}$ R $\frac{3}{2}$ = $-\frac{7}{6}\frac{2}{3}$ (G₂) ($\frac{5}{1}$ 66). Bei der Unklarheit der krystallographischen Verhältnisse des Cronstedtit wurde dies complicirte Symbol nicht als sichergestellt angesehen.

Correcturen.

Chlorit-Gruppe.

Kämmererit.

Hexagonal.

Axenverhältniss.

$$\begin{array}{c} a:c = \text{$\tt i:3.047$ (G_1)} \\ \text{[a:c} = \text{$\tt i:3.047$] $(Kokscharow = G_1.)$} \\ \text{\{a:c} = \text{$\tt i:2.032$\} $(Schrauf.)$} \end{array}$$

Elemente.

	c = 3·047	$g c = o_48387$	$\lg a_o = 975469$ $\lg a'_o = 951613$	$\lg p_o = o_{30778}$	$a_o = 0.5684$ $a'_o = 0.3282$	$p_{o} = 2.0313$	
--	-----------	-----------------	---	-----------------------	--------------------------------	------------------	--

Transformation.

Schrauf.	Kokscharow. G_1	G_2
рq	² / ₃ p ² / ₃ q	$\frac{2}{3}(p+2q)\frac{2}{3}(p-q)$
3/2 p 3/2 q	рq	(p+2q) (p-q)
$\frac{p+2q}{2} \frac{p-q}{2}$	$\frac{p+2q}{3} \frac{p-q}{3}$	рq

No.	Gdt.	Kokscharow.	Schrauf.	Bravais.	Miller.	Naumann.	G_1	G_2
I	P	P	P	1000	111	oР	0	0
2	a		a	1010	2 Ī Ī	∞ P	∞ O	∞
3	v	u	8	3034	10.1.1	$\frac{3}{4}$ P	$\frac{3}{4}$ O	<u>3</u>
4	ξ	x	ξ	5054	14·Ī·Ī	5 P	5/4 O	<u>5</u>
5	ω	y	ω	4043	I 1 ⋅ 1 ⋅ 1	4 ₽	$\frac{4}{3}$ O	<u>4</u> 3
6	ζ	z	ζ	3032	811	3 P	$\frac{3}{2}$ O	<u>3</u>
7	ρ	(r)	ρ	3031	722	3 P	30	3
8	μ.	m	μ	40 4 1	311	4 P	4 O	4
9	σ	s	σ	50₹1	11.4.4	5 P	50	5

Literatur zu Kämmererit, Klinochlor, Pennin.

Kokscharow	Mat. Min. Russl.	1857	2	7)
"	"	1866	5	45Ĵ
$Des\ Cloizeaux$	Manuel	1862	1	442
Hessenberg	Senck. Abh.	1866	6	28 (Min. Not. No. 27. 28.)
Dana	System	1873		497
Schrauf	Min. Mitth.	1874	4	161
**	Atlas	1877		Taf. XLIV
Groth	Tab. Uebers.	1882		96.

Chlorit-Gruppe.

Klinochlor.

1.

Monoklin.

Axenverhältniss.

$$a:b:c = o\cdot5773:1:1\cdot7062 \quad \beta = 117^{\circ}9' \text{ (Gdt.)}$$
 [a:b:c = o·5774:1:0·8531 \quad \beta = 117^{\circ}9' \] (Kokscharow. Des Cloizeaux. Hessenberg.)
$$(a:b:c = o.5768:1:1\cdot1386 \quad \beta = 90^{\circ}20') \text{ (Schrauf.)}$$
 {a:b:c = o·5774:1:0·7817 \quad \beta = 103^{\circ}56' \} (Naumann.)
$$[(a:b:c = o.5774:1:3\cdot1272 \quad \beta = 103^{\circ}56')] \text{ (Groth.)}$$

Elemente.

a = 0.5773	lg a = 976144	$\lg a_o = 952941$	lg p _o = 047059	$a_o = 0.3384$	$p_o = 2.9552$
c = 1.7062	lg c = 023203	$lg b_o = 976797$	$\lg q_o = 018133$	b _o = 0.5861	$q_o = 1.5182$
$ \begin{array}{c} \mu = \\ 180 - \beta \end{array} \} 62^{\circ}51^{\circ} $	lg h = 1 lg sin µ 994930	$ \begin{cases} \lg e = \\ \lg \cos \mu \end{cases} 965927 $	$\lg \frac{p_o}{q_o} = 028926$	h = 0.8898	e = 0·4563

Transformation.

Kokscharow. Des Cloizeaux. Hessenberg. Dana.	Schrauf.	Naumann.	Groth.	Gdt.
рq	$\frac{^{2} p}{^{3+^{2} p}} \frac{^{2} q}{^{3+^{2} p}}$	$-\frac{p}{p+1}\frac{q}{p+1}$	$-\frac{4P}{p+1}\frac{4Q}{p+1}$	p q 2
$\frac{3 p}{2-2 p} \frac{3 q}{2-2 p}$	рq	$-\frac{3p}{p+2}\frac{3q}{p+2}$	$-\frac{12p}{p+2}\frac{12q}{p+2}$	$\frac{3P}{4-4P} \frac{3Q}{4-4P}$
$-\frac{p}{p+1}\frac{q}{p+1}$	$-\frac{2p}{p+3}\frac{2q}{p+3}$	рq	4 P · 4 q	$-\frac{p}{2p+2}\frac{q}{2p+2}$
$-\frac{p}{p+4}\frac{q}{p+4}$	$-\frac{p}{2p+6}\frac{q}{2p+6}$	$\frac{p}{4} \frac{q}{4}$	pq	$-\frac{p}{2p+8}\frac{q}{2p+8}$
2 p · 2 q	$\frac{4P}{3+4P} \frac{4Q}{3+4P}$	$-\frac{2p}{2p+1}\frac{2q}{2p+1}$	$-\frac{8p}{2p+1}\frac{8q}{2p+1}$	pq

(Fortsetzung S. 431.)

Bemerkungen zu Kämmererit, Klinochlor, Pennin.

Die einzelnen Mineralien der Chlorit-Gruppe sind nicht scharf von einander geschieden, weder der Pennin vom Kämmererit, noch dieser vom Klinochlor. Ersteres bewirkt, dass Dana (System 1873. 495) beide vereinigt und ihre Formen gemischt aufzählt und Groth (Tab. Uebers. 1822. 9) den Kämmererit eine Varietät des Pennin nennt. Auf den Zusammenhang des Pennin und Kämmererit mit Klinochlor hat besonders Schrauf (Atlas Text z. Taf. 44) hingewiesen.

Wahrscheinlich dürften alle drei wieder zu einer einheitlichen Reihe sich vereinigen lassen, wobei möglicherweise ein Ueberschreiten der Grenzen der Krystallsysteme stattfindet in ähnlicher Weise wie bei den Humiten, den Feldspäthen und wohl auch den Mineralien der Glimmer-Gruppe.

Bei der Zusammenstellung der Formen wurde Schrauf's Trennung in die drei Arten festgehalten und besonders an dessen Angaben Anschluss genommen, mit Ergänzung aus Kokscharow, Hessenberg, Dana. Die Elemente wurden anders gewählt als dies von Schrauf geschehen, um einfachere Symbole zu erhalten. Eine gründliche Klarlegung könnte nur durch eine zusammenfassende Arbeit an der Hand reichen und guten Materials unter Berücksichtigung des specifischen Gewichts, der optischen und chemischen Verhältnisse geschehen, dieselbe könnte von allgemeiner theoretischer Bedeutung sein.

Klinochlor. Schrauf's c ist offenbar identisch mit Kokscharow's und Hessenberg's c, Des Cloizeaux's ε , doch ist das Symbol unrichtig. Es muss heissen:

c
$$(\bar{4}\cdot 12\cdot 5) = -\frac{12}{5}$$
P3 statt c $(261) = -6$ P3.

Die älteren Angaben vor Kokscharow's Untersuchung, der zuerst den Klinochlor als monoklin unter den Chloriten ausschied, wurden nicht herangezogen.

2.

No.	Gdt.	Schrauf.	Kok- scharow. Hessen- berg.	Naumann.	Miller.	Naumann.	[Descloiz.]	Gdt.
I	P	P	P	P	001	οP	p	o
2	b	b	h	h	010	$\infty P \infty$	g¹	0 &
3	M	M	M	m	110	∞P	m	∞
4	v	v	v		130	∞P 3	g²	∞ 3
5	e	e			0.11.16	$\frac{11}{6}$ P ∞	$e^{\frac{8}{11}}$	$o_{\frac{16}{11}}$
6	η	η	_		056	5 P ∞	$e^{\frac{3}{5}}$	$O_{\frac{5}{6}}$
7	ð		_		0.11.12	<u>11</u> P∞	e ⁶ II	0 <u>I I</u>
8	λ				098	⁹ / ₈ P ∞	$e^{\frac{4}{9}}$	o 9/8
9	k	k	k		032	$\frac{3}{2} P_{\infty}$	$\mathrm{e}^{rac{\mathrm{I}}{3}}$	$0^{\frac{3}{2}}$
ю	t	t	t	t	021	2 ₽∞	$e^{\frac{I}{4}}$	0 2
ΙI	x	x	x		201	— 2 P∞	$o^{\frac{1}{4}}$	+20
12	у	y	у		ī03	$+\frac{1}{3}P\infty$	$a^{\frac{3}{2}}$	$-\frac{1}{3}$ 0
13	i	i	i		Ī02	$+\frac{1}{2}P\infty$	a ^I	$-\frac{1}{2}$ o
14	f	f	f	_	203	$+\frac{2}{3}$ P $_{\infty}$		$-\frac{2}{3}$ o
15	z	z	z		201	$+$ 2 $P\infty$	$a^{\frac{I}{4}}$	— 2 O
16	d	d	d	_	331	— 3 P	$d^{\frac{I}{12}}$	+ 3
17	u	u	u		111	— P	$d^{\frac{1}{4}}$	+ 1
18	n	n	n	n	Ī13	$+\frac{1}{3}P$	$b^{\frac{3}{4}}$	— <u>I</u>
19	m	m	m	_	338	$+\frac{3}{8}P$	b ² / ₃	<u>3</u>
20	O	О	o	О	Ī I 2	$+\frac{1}{2}P$	$\mathrm{b}^{\frac{\mathrm{I}}{2}}$	— <u>I</u>
21	w	w	w		131	— 3 P 3	w	+ 1 3
22	С	(c)	С		133	+ P3	ε	$-\frac{1}{3}$ I
23	s	s	s		134	$+\frac{3}{4}P_{3}$	s	$-\frac{1}{4}\frac{3}{4}$

Correcturen.

Chlorit-Gruppe.

Pennin.

Hexagonal.

Axenverhältniss.

$$\begin{array}{l} a:c = \text{1:3.027 (G_{1}.)} \\ \text{(1)} \\ \text{[$a:c = \text{1:2.018}$] (Schrauf.)} \\ \text{\{$a:c = \text{1:3.495}$\} (Dana. Groth.)} \\ \text{\{$m = \text{1:3.538}$\} (Des Cloizeaux.)} \end{array}$$

Elemente.

c = 3.027 lg.c	c = 048101	$\lg a_o = 975755$ $\lg a_o' = 951899$	$\lg p_0 = 030492$	$a_{\circ} = 0.5722$ $a'_{\circ} = 0.3304$	p _o = 2·0180
------------------	------------	---	--------------------	---	-------------------------

Transformation.

Schrauf.	Dana. Des Cloizeaux. Groth.	G_1	G ₂	
рq	$\frac{p+2q}{3} \frac{p-q}{3}$	$\frac{2(p+2q)}{3}\frac{2(p-q)}{3}$	2 p · 2 q	
(p+2q) (p-q)	рq	2 p · 2 q	2(p+2q)2(p-q)	
$\begin{array}{c c} p+2q & p-q \\ \hline 2 & 2 \end{array}$	$\frac{p}{2} \frac{q}{2}$	рq	(p+2q) (p-q)	
$\begin{array}{c c} p & q \\ \hline 2 & 2 \end{array} \qquad \begin{array}{c c} p+2q & p-c \\ \hline 6 & 6 \end{array}$		$\frac{p+2q}{3}\frac{p-q}{3}$	рq	

No.	Gdt.	Schrauf.	Bravais.	Miller.	Naumann.	[Des Cloizeaux.]	G_1	G_2
I	P	P	0001	111	o R	a ¹	o	o
2	g		1010	2 Ī Ī	∞ R		∞ o	∾
3	φ	φ	8.0.8.13	77 ™	$-\frac{8}{13}R$		$-\frac{8}{13}$ o	$-\frac{8}{13}$
4	у	у	4 045	33₹	— 4 R		— 4 o	4
5	f		7075	443	$-\frac{7}{5}$ R	-	$\frac{7}{5}$ o	$-\frac{7}{5}$
6	i	i	ŽO2 I	ΙΙŢ	— 2 R	P	— 2 O	— 2

Bemerkungen.

Pennin. Die Symbole -2R2, $-\frac{8}{13}R2$, $-\frac{4}{5}R2$ in Schrauf's Atlas bedeuten die hemiedrische Form von 2P2, $\frac{8}{13}P2$, $\frac{4}{5}P2$. Diese ungewöhnliche Bedeutung wird man in den Symbolen nicht vermuthen, sie vielmehr halten für $-2R^2$ u. s. w. Es wäre doch wohl besser zu schreiben -2P2, $-\frac{8}{13}P2$, $-\frac{4}{5}P2$ oder $-\frac{2P2}{2}$ u. s. w. Statt $a^{\frac{1}{2}}$ $a^{\frac{13}{8}}$ $a^{\frac{5}{4}}$ ist zu lesen: $a^{\frac{1}{3}}$ $a^{\frac{5}{4}}$.

Chlorocalcit.

Regulär.

No.	Gdt.	Schrauf.	Miller.	Naumann.	G_1	G_2	G_3
I	С	a	100	∞⊙∞	o	000	% 0
2	đ	đ	110	ωO	10	o i	∞
3	P	О	111	О	I	I	1

436 Chlorocalcit.

Literatur.

Scacchi Napoli Acad. Note Mineral. [1873] 1874 **6** Sep. S. 37 Schrauf Atlas 1877 Text zu Taf. XLIV.

Chlorsilber.

Regulär.

No.	Gdt.	Miller.	Miller.	Naumann.	Hausmann.	Mohs.	Lévy.	G ₁	G_2	G_3
I	С	a	001	∞O∞	W	Н	p	0	000	% O
2	đ	d	101	ωO	RD	D	b'	Ι Ο	o 1	∞.
3	q	n	112	2 O 2	Trı		_	$\frac{1}{2}$	I 2	2 I
4	p	О	111	О	О	O	a'	I	I	I
5	u_		212	2 O	POı	_		$I^{\frac{I}{2}}$	$\frac{1}{2}$ I	2

438 Chlorsilber.

Literatur.

Mohs	Grundr.	1824	2	172
Hartmann	Handwb.	1828		407
$L \acute{e} v y$	Descr.	1838	2	370
Mohs-Zippe	Min.	1839	2	1.58
Hausmann	Handb.	1847	2	(2) 1470
Miller	Min.	1852		613
Dana	System	1873	_	114

Bemerkungen.

Lévy giebt noch die Symbole $a^4(\frac{1}{4})$ und $a^{\frac{1}{4}}(1\frac{1}{4})$. In die Figur sind diese Symbole nicht eingeschrieben (Taf. 50 Fig. 2), und es liegt der Verdacht vor, ob diese sonst nicht angegebenen Symbole nicht heissen sollten $a^2(\frac{1}{2})$ und $a^{\frac{1}{2}}(1\frac{1}{2})$, die Hausmann kennt. Sie wurden in das Formenverzeichniss nicht aufgenommen.

Chromeisenerz.

Regulär.

No.	Gdt.	Miller.	Miller.	Naumann.	Hausmann.	Mohs- Zippe.	Lévy.	G ₁	G_2	G_3
1	d	_	101-	ωO			_	10	OI	00
2	m		113	3 O 3	_		_	$\frac{1}{3}$	13	31
3	P	o	111	О	O	О	a¹	I	I	I

Literatur.

$L \epsilon v y$	Descript.	1838	3	176
Mohs-Zippe	Min.	1839	2	432
Hausmann	Handb.	1847	2	(1) 417
Miller	Min.	1852		262
Kokscharow	Mat. Min. Russl.	1857	2	262
Lang	Wien. Sitzb.	1870	61	(2) 473]
n	$Pogg. \ Ann.$	1870	140	324. Ĵ

Chryoberyll.

Rhombisch.

Axenverhältniss.

```
a:b:c = o.8485: \text{$1:o.8621$ (Gdt.)} [a:b:c = o.470: \text{$1:o.580$}] \text{ (Mohs-Zippe. Hausmann. Miller.} \text{Kokscharow. Klein. Groth. Dana.)} \{a:b:c = o.580: \text{$1:o.470$}\} \text{ (Schrauf.)} \{ \text{$m$} = o.579: \text{$1:o.466$}\} \text{ (Des Cloizeaux.)}
```

Elemente.

a = 0.8485	lg a == 992865	lg a _o = 999309	$lg \ p_o = 000691$	$a_o = 0.9842$	p₀ == 1·0160
c = 0.8621	lg c = 993556	$lg b_o = 006444$	$\lg q_o = 993556$	b _o == 1·1600	$q_o = 0.8621$

Transformation.

Mohs-Zippe. Hausmann. Miller. Kokscharow. Dana. Klein. Groth.	Lévy, Schrauf, Des Cloizeaux,	Hauy.	Gdt.
рq	$\frac{\mathbf{I}}{\mathbf{p}} \frac{\mathbf{q}}{\mathbf{p}}$	<u>3</u> p ⋅ q	$\frac{2 p}{q} \frac{2}{q}$
$\frac{1}{p} \frac{q}{p}$	рq	$\frac{3}{2} \frac{q}{p}$	$\frac{2}{q} \frac{2p}{q}$
² / ₃ p⋅q	$\frac{3}{2} \frac{3}{2} \frac{q}{p}$	рq	$\frac{4 p}{3 q} \frac{2}{q}$
$\frac{p}{q} \frac{2}{q}$	$\frac{q}{p}$ $\frac{2}{p}$	$\frac{3 p}{2 q} \frac{2}{q}$	рq

No.	Miller. Koksch. Schrauf. Klein. Gdt.		Mohs. Hartm. Zippe. Hauy. Hausm.	Miller.	Naumann.	[Haus- mann.]	[Mohs.] [Hartmann.] [Zippe.]	[Hauy.]	[Lévy.] [Descl.]	Gdt.
I	а	b	Т	001	οP	В	ĕr+∞	T	g¹	o
2	b	a	P	010	$\infty \breve{P} \infty$		-	P		0∞
3	c		M	100	$\infty \bar{P} \infty$	\mathbf{B}_{1}	P r+∞	M	P	∞0

(Fortsetzung S. 443.)

Literatur.

```
Hauy
                  Traité Min.
                                        1822
                                                2
                                                    303
Mohs
                  Grundr.
                                        1824
                                                 2
                                                    348
Hartmann
                  Handwb.
                                        1828
                                                    108
L \epsilon v y
                  Descr.
                                        1838
                                                 1
                                                    414
Mohs-Zippe
                  Min.
                                        1839
                                                 2
                                                    342
Rose, G.
                  Pogg. Ann.
                                        1839
                                               48
                                                    570
                  Schrift. russ. min. Ges.
                                        1842
                                                 1
                                                   CXVIII
                                                2 379
                  Reise n. Ural
                                        1842
Des Cloizeaux
                  Ann. chim. phys.
                                        1845 (3) 13
                                                   329 (Cymophane)
Hausmann
                  Handb.
                                        1847
                                                   (1) 430
Miller
                  Min.
                                        1852
                                                    267
Hessenberg
                  Jahrb. Min.
                                        1862
                                                    871
Kokscharow
                                                4
                  Mat. Min. Russl.
                                        1862
                                                    54
                                        1866
                                                 6
                                                    113
                                        1870
                                                   225 ]
                  Münch. Sitzb.
Frischmann
                                        1867
                                                 1
                                                    429
                                                    54<sup>8</sup> )
Klein
                  Jahrb. Min.
                                        1869
                                        1871
                                                    479 J
Dana
                  System
                                        1873
                                                    155
Schrauf
                  Atlas
                                        1877
                                                    Taf. XLV
                  Zeitschr. Kryst.
Cathrein
                                        1882
                                                6 257
                  Jahrb. Min.
                                                 1 Ref. 182.
                                        1883
   "
```

Bemerkungen | siehe S. 444.

2.

No.	Miller. Koksch. Schrauf. Klein. Gdt.	Rose.	Mohs. Hartm. Zippe. Hauy. Hausm.	Miller.	Naumann.	[Haus- mann.]	[Mohs.] [Hartmann.] [Zippe.]	[Hauy.]	[Lévy.] [Descl.]	Gdt.
4	x		K	110	∞P	$\mathbf{D}_{\mathbf{l}}$	Ρ̈́r	_	$\mathbf{a}_{_{\mathbf{r}}}^{_{\mathbf{I}}}$	∞
5	y			120	∞Ÿ 2				$a^{\frac{I}{2}}$	∞2
6	z			230	$\infty \breve{P} \frac{3}{2}$				$a^{\frac{2}{3}}$	$\infty \frac{3}{2}$
7	ρ		_	023	² / ₃ P̃∞		_			0 2
8	k			011	Ĕ∞		_	_	_	O I
9	i (μ)		i	O2 I	2 P̃∞	D	Йr	$\overset{\mathtt{I}}{\mathbf{B}}$	m	02
10	d	_		103	$\frac{1}{3}\bar{P}\infty$	_			_	$\frac{I}{3}$ O
11	f			407	∳ P̄ ∞	BB^{17}_{2}	_	_	_	∳ O
12	r	_	s	203	² / ₃ P̄∞	$BB^{1}3$		² GG ²	$e^{\frac{I}{3}}$	$\frac{2}{3}$ O
13	s		z	101	Ē∞	BB'2 ($(P + \infty) \stackrel{3}{=} (P + \infty)$	$^{2} G^{\frac{3}{4}\frac{3}{4}}G$	$e^{\frac{I}{2}}$	10
14	u			403	₫ P̄∞		_		_	4/3 O
15	m		_	201	2 P̄∞	_	_		e^{I}	2 O
16	p	_		113	1/3 P	_				<u>I</u>
17	n	n	n	111	P	$\mathrm{BD^{l}2}$	<u> </u>	$A^{\frac{3}{4}\frac{3}{4}}AC'G^2$	e^3	I
18	О	o	О	221	2 P	P	P	$A^{\frac{3}{2}\frac{3}{2}}A$	$b^{\frac{1}{2}}$	2
19	w		f	121	2 Ĭ 2	_		$A^{\frac{3}{4}\frac{3}{4}}A$	_	I 2
20	v	_		421	4 P 2				$\mathfrak{b}^{\mathtt{I}}$	4 2

Bemerkungen.

Mohs (Grundr. 1824. 2. 348) und nach ihm Zippe (Mohs-Zippe Min. 1839. 2. 342) und Hartmann (Handwb. 1828. 109) geben für n (\check{P})³ = 13 (131), während alle anderen Autoren n = 12 (121) anführen. Da Mohs-Zippe und Hartmann weder Zeichnung noch Winkel geben, so ist eine sichere Entscheidung nicht möglich, doch liegt die Wahrscheinlichkeit vor, dass das Symbol (\check{P})³ einem Druckfehler statt (\check{P} r)³ = (\check{P})² seine Entstehung verdankt. Somit ist die Form 13 (131) noch nicht als bekannt anzusehen.

Bei J. D. Dana (System 1873. 155) sind die Winkel aus Miller (Min. 1852. 267) entnommen, damit ist nicht in Uebereinstimmung das angegebene Axen-Verhältniss. Es ist vielmehr zu lesen: 1·234 statt 1·2285.

Lévy's Aufstellung ist dieselbe, wie die von Decloizeaux und Schrauf. In den Angaben für Lévy's Grundform kann das Verhältniss Basiskante: Höhe = 5:12 nicht richtig sein. Vermuthlich soll es heissen 12:5, welchem das Axen-Verhältniss entspräche:

a : b : c = 0.580 : 1 : 0.482.

Der Zeichnung nach entspricht Schrauf's Fig. 4 Lévy's Fig. 9, nicht, wie es im Text heisst, Fig. 7. Ausserdem giebt Schrauf in der Figur $z=\frac{3}{2}o=\infty\frac{3}{2}$ (Index), Lévy dagegen $a^{\frac{1}{2}}=2o=\infty 2$ des Index, Schrauf s=o2=10 (Index), Lévy $e^{1}=o_{1}=2o$ (Index). $a^{\frac{2}{3}}$ ist von Des Cloizeaux angegeben.

Correcturen.

```
Kokscharow
             Mat. Min. Russl. 1866 5 Seite 113 Paginirung lies
                                                               113
                                                                     statt
                                                                           311
                             1870 6
                                      " 225 Zeile 2 vo "
                                                               113
                                                                           311
Dana, J. D.
             System
                             1873 — " 155 " 4 vu "
                                                              1.234
                                                                          1.2285
                             1877 Text z. Taf XLV Fig. 4 "
Schrauf
             Atlas
                                                             Fig. 9
                                                                          Fig. 7.
```

Claudetit.

Rhombisch.

Axenverhältniss.

$$a:b:c = o \cdot 3500: i:o \cdot 3757$$
 (Gdt.)

$$[a:b:c = 0.3757:1:0.3500]$$
 (Groth.)

Elemente.

a = 0.3500	lg a == 954407	$\lg a_o = 996923$	$lg p_o = \infty 3077$	$a_0 = 0.9316$	p _o == 1.0734
c = 0.3757	$\lg c = 957484$	$lg b_o = 042516$	$\lg q_o = 957484$	b _o == 2.6617	$q_o = 0.3757$

Transformation.

Groth.	Gdt.		
pq	$\frac{1}{p} \frac{q}{p}$		
$\frac{1}{p} \frac{q}{p}$	рq		

No.	Groth. Gdt.	Miller.	Naumann.	Gdt.
I	a	001	οP	0
2	b	100	$\infty \bar{P} \infty$	∞ 0
3	m	012	½ P̃∞	$0^{\frac{1}{2}}$
4	p	011	Ĕ∞	0 1
5	μ	052	<u>5</u> P̃∞	$0^{\frac{5}{2}}$
6	ν	051	5 P̃∞	o 5
7	δ	12.0.1	12P∞	12·O
8	o	111	P	I
9	γ	12.12.1	12P	12.12
10	n	171	7 Ĭ 7	1 7
11	β	12.24.1	24 P 2	12.24
12	α	12.48.1	48Ĕ 4	12.48

446 Claudetit.

Literatur.

Groth Pogg. Ann. 1869 137 414.

Cölestin.

1.

Rhombisch

Axenverhältniss.

```
a:b:c=0.7779:1:1.2825 (Dauber. Gdt.)

a:b:c=0.7808:1:1.2830 (Miller. Dana.)

"=0.7789:1:1.2800 (Groth.)

"=0.7812:1:1.2819 (Schmidt.)

"=0.7790:1:1.2753 (Arzruni. Rüdersdorf.)

"=0.7824:1:1.2841 (Arzruni. Mokkatam.)

"=0.7795:1:1.2812 (Babcock.)

"=0.770:1:1.251 (Hauy.)

"=0.7813:1:1.244 (Lévy.)

{a:b:c=0.611:1:0.6086] (Grailich u. Lang.)

[a:b:c=0.7800:1:0.6084] (Schrauf.)
```

Elemente.

a = 0.7779	lg a = 989092	$\lg a_0 = 978286$	$\lg p_0 = 021714$	$a_o = 0.6065$	p _o == 1.6487
c = 1.2825	lg c = 010806	lg b _o = 989194	$\lg q_o = o_1o_8o_6$	b _o = 0.7797	$q_o = 1.2825$

Transformation.

Mohs-Zippe. Hausmann.	Grailich, Lang. Schrauf,	Miller. Dana. Groth. Dauber. Schmidt. Hauy. Levy. Arzruni. Babcock. Gdt.
рq	$\frac{1}{p} \frac{q}{p}$	$\frac{p}{q} \frac{r}{q}$
$\frac{1}{p} \frac{q}{p}$	рq	$\frac{1}{q} \frac{p}{q}$
$\frac{p}{q}$ $\frac{1}{q}$	$\frac{b}{d} \frac{b}{1}$	рq

No.	Gdt.	Hauy. Soret. Mohs. Naum. Koksch. Hausm.	- 1	Hugard.	Babcock	Miller.	Schrauf Schmidt Auer- bach.	Websky	Miller.	Naumann.	[Hausm.]	[Mohs-Zippe.]	Hauy.	Lévy.	Gdt.
I	a	P	p	P	P	С	a	P	001	oР	В	ĭPr+∞	P	p	0
2	b	k	h	g^{I}		a	b		010	∞Ĕ∞	A	P —∞			0∞
3	c	s	f	h I		b	c	s	100	$\infty \bar{P} \infty$	\mathbf{B}_{1}	Pr+∞	$_{\rm I}H_{\rm I}$	h I	လဝ

(Fortsetzung S. 449.)

448 Cölestin.

Literatur.

```
Hauy
                    Traité Min.
                                   1822
                                           2
                                              30
Mohs
                    Grundr.
                                   1824
                                           \mathbf{2}
                                              145
Hartmann
                    Handwb.
                                   1828
                                              262
Suckow
                   Pogg. Ann.
                                   1833
                                         29
                                              504
L \acute{e} v y
                   Descr.
                                   1838
                                          1
                                              220
Mohs-Zippe
                    Min.
                                   1839
                                          2
                                              126
Hausmann
                    Handb.
                                          2
                                   1847
                                              (2) 1116
Hugard
                   Ann. Min.
                                   1850 (4) 18
                                             3-26
Miller
                    Min.
                                   1852
                                              527
Websky
                   D. Geol. Ges.
                                   1857
                                              303
Grailich u. Lang Wien. Sitzb.
                                   1857 27
                                              33
Dauber
                   Pogg. Ann.
                                   1859 108
                                              447
Schrauf
                    Wien. Sitzb.
                                  1860
                                         39
                                              915
Kokscharow
                   Mat. Min. Russl. 1866
                                          \mathbf{5}
                                              5
Auerbach
                   Wien. Sitzb.
                                   1869 59
                                              549 (Zstellg.)
Arzruni
                   D. Geol. Ges.
                                  1872 24
                                              477 (Rüdersdorf. Mokkatam.
                                                    Zstellg. d. Axen-Verh.)
Dana
                   System
                                   1873
                                              619
Schrauf
                   Atlas
                                   1877
                                              Taf. XLVII u. XLVIII
Hauer
                   Zeitschr. Kryst. 1880
                                         4
                                             634 (Banat)
Babcock
                                   1881
                                          \mathbf{5}
                                              395
                   Jahrb. Min.
                                   1879
                                              835 (Jühnde) J
Schmidt, Al.
                   Zeitschr. Kryst. 1882
                                          6
                                             99
Lasaulx
                                  1882
                                             203 (Ville sur Saulx)
Panebianco
               Att. Soc. Ven. Trent. 1884
                                             Sep. 2-9.
```

Bemerkungen Correcturen s. S. 450 u. 452.

2.

N_0 .	Gdt.	Hauy. Soret. Mohs. Naum. Koksch. Hausm.	Phillips	Hugard.	Babeock	Miller.	Schrauf Schmidt Auer- bach.	Websky	Miller.	Naumann	[Hausm.]	[Mohs-Zippe.]	Hauy.	Lévy.	Gdt.
4	p		_				p	m	210	∞P̄ 2		_			2 00
5	t					_	t		530	$\infty \bar{P} \frac{5}{3}$					$\frac{5}{3}\infty$
6	u			_	_	_	u		320	$\infty \bar{P} \tfrac{3}{2}$	_	_	_		$\frac{3}{2}\infty$
7	ω						ω		750	$\infty \bar{P} \frac{7}{5}$	_	_			$\frac{7}{5}\infty$
8	γ	_	-		_	_	γ	_	650	$\infty \bar{P} \frac{6}{5}$			_	_	<u>6</u> ∞
9	m	M [*]	M	M	M	m	m	M	110	ωP	\mathbf{D}_{l}	Pr	M	m	∞
10	n	t (?)		g³	_	n	n	t	120	∞ Ĭ 2			_		∞2
ΙI	ξ	_	c_1		_	ξ	ξ		0.1.12	$\frac{1}{12} \breve{P} \infty$					$0\frac{I}{I2}$
I 2	p			e ⁸			b		910	¹ / ₈ P̃∞	-			_	$o^{\frac{8}{1}}$
13	r	_		e ⁵		_	r	_	015	Į Ď∞			_	_	0 <u>I</u>
14	j	_		-	_	_			014	^I / ₄ P̃∞	_	—		_	$O^{\frac{1}{4}}$
15	i		_			i	i	_	013	^I ⁄ ₃ P̃∞	BA 1/3	³ / ₄ Pr+₂			$O^{\frac{3}{4}}$
16	h		_	e^2	_	h	ει		012	½ P̃∞	_			_	o I
17	ζ					ζ	ε		023	½ P̃∞			_	_	$0^{\frac{2}{3}}$
18	0	o	_	e^{I}	o	o	M (o)) o	011	ĕ∞	D	Ρ̈́r	$_{ m I}^{ m E}$	e^{I}	O I
19	ε			$e^{\frac{I}{2}}$	_		ε	εο	O2 I	2 P̃∞					0 2
20	δ	h		a ⁸			8		108	$\frac{1}{8}\ddot{P}\infty$		-			I o
21	λ				_	_	λ		2.0.11	$\frac{2}{11}\bar{P}\infty$	****				$\frac{2}{11}$ O
22	1	1	a ^I	a4	_	1	1	1	102	Į P̄∞	BB'4	(<u>P</u> +∞)4	Å	a ⁴	<u> </u>
23	y		_			_	γ		207	$\frac{2}{7}\bar{P}\infty$	_			_	2 7 O
24	g	g	-			g	g		103	$\frac{1}{3}\bar{P}\infty$	BB ¹ 3	$(\breve{P}+\infty)^3$		_	$\frac{1}{3}$ O
25	d	d		a ²	d	d	d	d	102	½ P̄∞	BB'2 (P	r+∞) <u>3</u> (P+∞)	2 Å	a ²	<u>I</u> 0
26	e		a^3	$a^{\frac{4}{3}}$		e	e		304	$\frac{3}{4}\bar{P}_{\infty}$		_			$\frac{3}{4}$ O
27	k			a ^I			k		101	P∞					10
28	α	_			_	_	α		115	1 P	_		_		<u>I</u>
29	q	q				q	q		114	1 P	BD'4	(<u>ĕ</u>)⁴	_	_	4
30	f 	f				f	f		113	1/3 P	BD ₃	(Ĕ)³			<u>I</u> 3
31	s		_	-	_		s	_	112	$\frac{1}{2}$ P	_		_		$\frac{1}{2}$
32	z	z		$\mathbf{b}^{\frac{\mathbf{I}}{2}}$	s	z	(o) z	z	111	P	P	P	$\overset{\frac{1}{2}}{\mathbf{B}}$	$b^{\frac{1}{2}}$	1
33	σ	_					z^2		22 I	2 P	_			_	2
34	β					_	β	_	121	2 P 2	_	_	_		I 2
35	θ			_	_	_	Θ		131	3 P 3			_	_	1 3
36	π	_					y ³	y ₃	1.16.16	Ď 16			_		16 I
37	φ					_	y²	y ₂	166	Ĭ 6			_	_	<u>₹</u> I
38	χ			in (?)		χ	χ (k)		144	Й 4	_		_	_	$\frac{I}{4}$ I
39	η					_	η	_	277	$ \overset{\mathbf{F}}{\mathbf{P}} \frac{7}{2} $				_	$\frac{2}{7}$ I
40	ψ	n		ic	_	ψ	ψ	ψ	133	Ĭ з	$DB'^{\underline{I}}_{\underline{3}}$	$(\frac{4}{3}\ddot{P}-2)^{3}$	E ² B3 G1	$b^{\frac{1}{2}}b^{\frac{1}{4}}g^{\frac{1}{3}}$	<u>I</u> I
-						-							rtsetzu		

(Fortsetzung S. 451.)

450 Cölestin.

Bemerkungen.

Arzruni giebt (D. Geol. Ges. 1872. 24. 490) folgende Zusammenstellung der Axen-Verhältnisse:

Von den von Hugard angegebenen neuen Formen (Ann. Min. 1850. (4) 18. 3) wurden nur die aufgenommen, die Auerbach acceptirt (Wien. Sitzb. 1869. 59. 549), der die Hugardschen Angaben geprüft hat. Einer erneuten Prüfung wurden sie vorläufig nicht unterzogen.

3∙

No.	Gdt.	Hauy. Soret. Mohs. Naum. Koksch. Hausm.	Philipps	Hugard.	Babcock	Miller.	Schrauf Schmidt Auer- bach.	Websky	Miller.	Naumann.	[Hausm.]	[Mohs-Zippe.]	Hauy.	Lévy.	Gdt.
41	y	y				y	y	у	122	P 2	$DB^{\prime}\frac{I}{2}$ (Řr-1) <u>3</u> (Ř−1)	2 —		$\frac{I}{2}$ I
42	w	_					w	w	5-12-10	$\frac{6}{5}$ $P\frac{12}{5}$	_			-	I 6 I 3 2 2
43	μ.			_		s	μ	h	132	³ / ₂ P 3		_		. —	I 3 2
44	τ	_	_			_	τ	τ	142	2 Ĭ 4					<u>I</u> 2
45	v					_	v	v	324	$\frac{3}{4} \bar{P} \frac{3}{2}$					$\frac{3}{4} \frac{1}{2}$
46	A		_	ih (?)		π	$\mu_{_{\mathfrak{l}}}$	μ_{i}	143	4 P 4		_	_		$\frac{1}{3} \frac{4}{3}$
47	В			_		_	Θ^2	_	153	5 P 5	_				<u>I</u> <u>5</u>
48	\mathbf{C}		_	_					382	4 Ĭ 6	_	_		_	3 4 1 3 5 5
49	x	_			_	_	x	_	135	<u>3</u> ₱ 3			_	_	<u>I</u> 3 5 5
50	D	_	_	_		_			215	<u>2</u> ₽ 2			_	_	2 <u>I</u> 5
51	\mathbf{E}		_	_			ϕ^{I}	φ_1	146	² / ₃ ₽ ₄	_			_	I 2 6 3
52	F				_			μ_2	187	8 P 8				_	<u>I</u> <u>8</u> 7
53	G	_					φ2	φ ₂	169	<u>2</u> ₹ 6		_	_	_	<u>I</u> 2/9 3
54	H						μ^3	μ_3	1.24.23	24 P24			_		I 24 23 23
55	J				_		ϕ^3	ϕ_3	1.16.24	$\frac{2}{3}$ \breve{P} 16	_				$\frac{1}{24} \frac{2}{3}$
56	K	_		_		_	μ°	μο	253	5 P 5				_	2 5 3 3

452 Cölestin.

Correcturen.

Hauy	Traité Min.	1822 2	Sei	te 33	Zeile	e 7	vu	lies	' H'	statt	'G'
Suckow	Pogg. Ann.	1833 29	,,	505	,,	9	vo	,,	Ē∞	,,	ĕ∾
Auerbach	Wien. Sitzb.	1869 59 (1)	"	557	,,	1	vu	"	e ^I	,,	c_{I}
Dana	System	1873 —	,,	619	"	14	vu	**	4 — ĕ	,,	4 —∵.

Colemanit.

Monoklin.

Axenverhältniss.

Elemente.

a	=	0.7747	lg a = 988913	$lg a_o = 015529$	$\lg p_o = 984471$	a _o = 1·4298	p _o == 0.6994
С	=	0.5418	$\lg c = 973384$	$lg b_o = 026616$	$\lg q_o = 970622$	$b_0 = 1.8457$	$q_{\circ} = 0.5084$
μ 180	$= \begin{cases} 0 & \beta \end{cases}$	69°47	$ \begin{array}{c} \lg h = \\ \lg \sin \mu \end{array} $ 997238	$ \begin{array}{c} \lg e = \\ \lg \cos \mu \end{array} $ $ 953854$	$\log \frac{p_o}{q_o} = o13849$	h = 0.9384	e = 0·3456

No.	Jackson. Gdt.	Hiörtdahl.	Rath.	Miller.	Naumann.	Gdt.
1	g	c	c	100	οP	О
2	m	Ъ	b	010	$\infty P \infty$	0 &
3	n	a	a	100	$\infty P \infty$	∞ 0
4	t	p	n	210	∞P 2	2 00
5	s	g	m	110	∞P	∞
6	z	f		120	∞ P 2	∞ 2
7	С	q	e	011	₽∞	O I
8	a	k	d	O2 I	2 P ∞	02
9	V			101	— P∞	+ 1 o
10	λ	s		201	— 2 P∞	+20
11	i	r		ĪOI	+ P∞	— 1 о
12	h	- ρ	h ·	2 01	+ 2 P∞	— 2 O
13	W		-	301	+3 P∞	— 3 o
14	Ψ			4 01	+ 4 P∞	 4 0
15	U			боі	+6₽∞	<u>— 6 o</u>
16	G			771	— 7 P	+ 7
17	σ	y	p	331	— 3 P	+3
18	b	0	0	111	P	+ 1
19	у	ω	u	ĪII	+ P	— І
20	v	m	i	22 I	+ 2 P	— 2
2 I	q			331	+ 3 P	<u> </u>
22	ω	u	\mathbf{q}	131	— 3 P 3	+ 1 3
23	r			232	$+\frac{3}{2}$ P $\frac{3}{2}$	— I 3
24	d	i	t	<u>T</u> 2I	+ 2 P 2	— I 2
25	x		_	131	+3P3	— 1 3
26	k	e		311	-3P3	+ 3 1
27	0	1		Ž11	+ 2 P 2	— 2 I
28	Θ			311	+3P3	— з і
29	В	-		411	+ 4 P 4	4 1
30	- ρ			412	+ 2 P 4	$-2\frac{1}{2}$
31	ε	n		2 31	$+3P\frac{3}{2}$	— 2 <u>3</u>
32	Q			241	+4P2	— 2 4
33	γ			321	$+3P\frac{3}{2}$	— 3 2
34	w		_	721	$+7P^{\frac{7}{2}}$	— 7 2

454 Colemanit.

Literatur.

```
      Bodewig u. Rath
      Ver. Rheinl. Westf.
      1884
      —
      333

      Jackson
      Bull. California Ac. Sc.
      1885
      No. 2. 3.

      Hiörtdahl
      Zeitschr. Kryst.
      1885
      10
      25.
```

Bemerkungen.

Bodewig und Rath geben eine zweite Aufstellung mit fast rechtwinkeligen Axen und dem Verhältniss:

$$a:b:c = 1.4750:1:0.5414$$
 $\beta = 90^{\circ}7^{\circ}$.

Es ist, wenn wir diese Aufstellung mit Rath-Bodewig II. bezeichnen:

p q (Hiörtdahl, Jackson, Rath-Bodewig I.) = (2p+1) q (Rath-Bodewig II.)

pq (Rath-Bodewig II.) = $\frac{p-1}{2}$ q (Hiörtdahl, Jackson, Rath-Bodewig I.).

Doch führt diese Aufstellung zu unnatürlich complicirten Symbolen.

Ausser den angeführten Formen giebt Jackson noch die folgenden, die jedoch als unsicher anzusehen sind:

 $P = \infty_{10}^{19}$ (10·19·0) (S. 10) Fläche sehr schmal. Reflex breit ohne feste Grenzen.

 $J=\infty\frac{7}{3}$ (370) (S. 9) Je einmal beobachtet; klein, schlechte Reflexe, starke $H=\infty$ 3 (130) Winkelabweichung.

 $\Delta=+\frac{19}{6}$ (19·19·6) (S. 11) Nur einmal beobachtet. Messung nach einer gestörten Fläche von ∞ (110). Wohl eine Vicinalfläche des be-

kannten +3 (331).

Die Formen + 10 (V), - 30 (W), + 7 (G), - 3 (q), - $2^{\frac{1}{2}}$ (ρ), - 32 (γ) und - 72 (w) finden sich in dem Appendix II. von Jackson's Arbeit (S. 31).

Columbit.

1.

Rhombisch.

Axenverhältniss.

 $\begin{array}{l} a:b:c = o\cdot8216: i: 2\cdot4546 \text{ (Gdt.)} \\ \\ [a:b:c = o\cdot4074: i: o\cdot3347] \text{ (Schrauf.)} \\ \\ (a:b:c = o\cdot8148: i: o\cdot6692) \text{ (Groth.)} \\ \\ \{a:b:c = o\cdot829: i: o\cdot877 \} \text{ (Rose. Hausmann. Miller.)} \\ \\ \text{Dana. Des Cloizeaux.)} \\ \\ [(a:b:c = o\cdot345: i: o\cdot398)] \text{ (Breithaupt.)} \end{array}$

Elemente.

a = 0.8216	lg a = 991466	$\lg a_0 = 952468$	$\lg p_0 = 047532$	$a_o = 0.3347$	$p_o = 2.9876$
c = 2·4546	lg c = 038998	$lg b_0 = 961002$	$\lg q_o = o_3 8998$	b _o == 0·4074	$q_o = 2.4546$

Transformation.

Rose. Hausmann. Miller. Dana. Des Cloizeaux.	Schrauf.	Groth.	Breithaupt.	Gdt.
рq	3 p · q	q 3 P	$\frac{1}{q} \frac{3p}{q}$	$\frac{\mathbf{I}}{3\mathbf{P}}\frac{\mathbf{q}}{3\mathbf{P}}$
$\frac{p}{3}$ q	рq	$q \frac{p}{2}$	$\frac{1}{p} \frac{q}{p}$	$\frac{1}{q} \frac{p}{q}$
$\frac{2 q}{3} p$	2 q · p	рq	$\frac{1}{p} \frac{2 q}{p}$	$\frac{\mathbf{I}}{2 \mathbf{q}} \frac{\mathbf{p}}{2 \mathbf{q}}$
9 I P	$\frac{\mathbf{q}}{\mathbf{p}} \frac{\mathbf{r}}{\mathbf{p}}$	$\frac{1}{p} \frac{q}{2p}$	рq	$\frac{p}{q} \frac{1}{q}$
$\frac{1}{3 p} \frac{q}{p}$	$\frac{1}{p} \frac{q}{p}$	$\frac{\mathbf{q}}{\mathbf{p}} \frac{\mathbf{I}}{2 \mathbf{p}}$	$\frac{p}{q} \frac{r}{q}$	рq

No.	Gdt.	Dana.	Miller.	Schrauf. Maske- lyne. Strüver.	Rose. Haus- mann.	Breit- haupt.	Miller.	Naumann.	[Haus-mann.]	[Descl.]	Gdt.
I	b	$\overline{\mathbf{M}}$	b	A (b)	a	f	001	oР	Bi	h¹	О
2	a	f M	a	B (a)	b	P	010	ωĔω	В	g¹	000
3	c	P	c	C (c)	С		100	∞Ē∞	A	p	∞0

(Fortsetzung S. 457.)

456 Columbit.

Literatur.

```
Dana, J. D.
               Amer. Journ.
                                           1837
                                                  32 149
Rose, G.
               Pogg. Ann.
                                           1845
                                                  64
                                                      171 u. 336
Hausmann
               Handb.
                                           1847
                                                   2 (2) 964
Miller
               Min.
                                           1852
                                                       47 I
Des Cloizeaux Ann. Min.
                                                       398 (Baierin)
                                           1855 (5) 8
               Berg- u. Hütt.-Ztg. (Hartmann) 1858
Breithaupt
                                                  17
                                                      61 (Grönlandit)
Schrauf
               Wien. Sitzb.
                                           1861
                                                  44
                                                      (2) 445 (Monogr.)
Maskelyne
               Phil. Mag.
                                           1863 (4) 25
                                                       4 I
Nordenskjöld Pogg. Ann.
                                           1864
                                                 122
                                                      610
Dana, J. D.
               System
                                           1873
                                                       515
                                                      Taf. XLIX
Schrauf
               Atlas
                                           1877
Rath
               Zeitschr. Kryst.
                                           1880
                                                   4 432
Scharizer
                                           1880
                                                      633
                                                   4
Groth
               Tab. Uebers.
                                           1882
                                                      63
Strüver
               Zeitschr. Kryst.
                                           1885
                                                  10 85.
```

Bemerkungen Correcturen s. Seite 458.

2.

No.	Gdt.	Dana.	Miller.	Schrauf. Maske- lyne. Strüver.	Rose. Haus- mann.	Breit- haupt.	Miller.	Naumann	[Haus-	[Descl.]	Gdt.
4	i	a		i		i	110	∞P		e ^I	∞.
5	e	ĕ	h	e	2 f		120	∞Ĭ 2	$BA\frac{I}{2}$	$\mathrm{e}^{\frac{\mathrm{I}}{2}}$	∞ 2
6	у	ē	g	y	2 g		016	<u>∓</u> Ř∞	$\mathbf{B}^{1}\mathbf{B}_{2}$	_	$o^{\frac{6}{1}}$
7	z			z			015	<u>I</u> P̃∞	(B¹B ⅔)	_	0 <u>I</u>
8	m	e	m	m	g	o	013	^I / ₃ P̃∞	E	m	$O^{\frac{1}{3}}$
9	g	ĕ	1	g	$\frac{I}{3}g$	n	011	Ĕ∞	BB13	g ²	O I
10	d			_		_	106.	^I ⁄ ₆ P̄∞			1/6 O
11	λ			_			308	$\frac{3}{8}\bar{P}\infty$	_		3 o
12	h		v	h	_	_	102	$\frac{1}{2}\bar{P}\infty$	$AB^{1}\frac{3}{2}$	$a^{\frac{3}{2}}$	$\frac{I}{2}O$
13	μ	_		_	_		508	5 P̄∞	_	_	<u>5</u> O
14	f			f			203	$\frac{2}{3}\bar{P}\infty$	_	a^2	$\frac{2}{3}$ O
15	k		d	k	$\frac{I}{3}$ d	M	101	P̄∞	$AB^{1}3$	a^3	10
16	1	_	у	1			201	2 P̄ ∞	A B1 6	a ⁶	20
17	x		_	x			116	$\frac{1}{6}$ P	_	-	<u> </u>
18	o		О	О	О	_	113	$\frac{1}{3}$ P	P	$\mathbf{b}^{\frac{\mathbf{I}}{2}}$	$\frac{\mathbf{I}}{3}$
19	β			β		-	112	1 P	_	β	<u>I</u>
20	u	ŏʻ	u	u	u	p	111	P	$DB_{1}\frac{1}{3}$	u	1
2 I	α	_		α	_		313	P 3	_		I 1/3
22	n	ŏ"	n	n	n		121		$EA_{\frac{1}{2}} \cdot DB_{\frac{1}{6}}$	n	I 2
23	φ			φ	-	_	141	4 🏲 4	_		14
24	r	-		r			199	Ĭ 9		r	<u>1</u> I
25	s			s		_	122	Ĭ 2	_	s	$\frac{1}{2}$ I
26	t	_		t			124	$\frac{1}{2} \breve{P} 2$		t	$\frac{1}{4}\frac{1}{2}$
27	σ	_		σ	-	_	316	$\frac{1}{2}\bar{P}$ 3	_	-	$\frac{1}{2}\frac{1}{6}$
28	π	_	_	π			123	² / ₃ ₹ 2	_	e³	<u>I</u> 2/3

458 Columbit.

Bemerkungen.

Strüver sagt (Zeitschr. Kryst. 1885. 10. 85): er habe Schrauf's Axen-Verhältniss und Orientirung (Monographie des Columbit nicht Atlas der Krystallformen) angenommen. In der That fallen beide Angaben zusammen, wie aus den Figuren und dem Projectionsbild hervorgeht, nur ist Symbol und Axenverhältniss im Atlas nach Miller'scher Art zu lesen (so dass sich a und h auf die Queraxe beziehen), in der Monographie nach der jetzt allgemein und so auch von Strüver acceptirten Art, dass sich a und h auf die (kurze) Längsaxe beziehen. Der Unterschied liegt nicht in der Aufstellung, sondern in der Synonymik der Buchstaben.

Breithaupt's $onumber P_{13}^2 = \frac{13}{24} \mathbf{1}$ dürfte wohl mit $s = \frac{1}{2} \mathbf{1}$ identisch sein.

Hausmann's B'B $\frac{9}{5}$ erwähnt Schrauf in seiner Monographie nicht. Es bedeutet in unserer Aufstellung $o.\frac{5}{27}$ (0.5.27) und dürfte wohl identisch sein mit $z=o.\frac{1}{5}$ (0.15).

Correcturen.

Rose, G. Pogg. Ann. 1845 64 S. 173 Z. 9 vo lies $\infty a : \frac{1}{2}b : c$ statt $\frac{1}{2}a : \infty b : c$ Schrauf Wien. Sitzb. 1861 44 , 454 , 10 vo , g^{I} (100) , b (100).

Connellit.

Hexagonal - holoedrisch.

Axenverhältniss.

$$a:c = i:2.0031 (G_1)$$

 $a:c=1:1\cdot1565$ (Maskelyne, Schrauf, Dana, G_1 .)

Elemente.

ĺ	c = 2·0031	lg c = 030170	lg a _o == 993686	$\lg p_o = 012561$	$a_o = 0.8647$	$p_0 = 1.3354$	1
			$\lg a_{\circ}^{1} = 969830$		a'0 = 0.4992		

Transformation.

Maskelyne. Schrauf. Dana. G ₁	G_2
рq	(p+2q) (p-q)
$\frac{\mathbf{p} + 2\mathbf{q}}{3} \frac{\mathbf{p} - \mathbf{q}}{3}$	pq

No.	Miller. Schrauf. Gdt.	Maskelyne.	Dana.	Bravais.	Miller.	Naumann.	G_1	G_2
I	a	b		1010	211	∞P	∞0	oo.
2	b	a		I 1 2O	101	∞P 2	∞	∞o
3	r	r }		1011	100	P	10	I
4	0	o w }	w	11.2.13.3	924	13P.13	11 2 3 3	5 3

460 Connellit.

Literatur.

Miller	Min.	1852 —	620
Maskelyne	Phil. Mag.	1863 (4) 25	39
Dana, J. D.	System	1873 —	627
Schrauf	Atlas	1877 —	Taf. L.

Copiapit.

Rhombisch.

Axenverhältniss.

a:b:c = o.81:1:? (Bertrand.)

No.	Gdt.	Miller.	Naumann.	Bertrand.	Gdt.
I	С	001	οP	p	0
2	ь	010	$\infty \breve{\mathrm{P}} \infty$	$g^{\mathtt{I}}$	0.00
3	a	100	$\infty \bar{P} \infty$	h¹	ωo
4	m	ıĭo	ωP	m	∞

462 Copiapit.

Literatur.

 Bertrand
 Bull. soc. min.
 1881
 4
 11

 Naumann-Zirkel
 Elem.
 1881
 —
 447.

Coquimbit.

Hexagonal.

Axenverhältniss.

$$\begin{array}{l} a:c = \text{$\rm I:2.7098$ (G_1)} \\ \text{$\rm a:c = i:1.5645$ $(Arzruni.~Groth. \dots G_1.)$} \\ \text{$\rm "=i:1.562$ $(Rose.)$} \\ \text{$\rm (a:c = i:2.705)$ $(Miller.~Schrauf.)$} \end{array}$$

Elemente.

c = 2·7098	$\lg c = 043294$	$\lg a_o = 980562$	$\lg p_0 = 025685$	$a_0 = 0.6392$	$p_0 = 1.8065$
		$\lg a'_{\circ} = 956706$		a' ₀ == 0.3690	

Transformation.

Miller. Schrauf.	Rose. Arzruni. Groth. Hausmann. G_1 .	${\sf G}_2$
pq	(p+2q) (p-q)	3p · 3q
$\frac{p+2q}{3} \frac{p-q}{3}$	pq	(p+2q) (p-q)
$\frac{p}{3}$ $\frac{q}{3}$	$\frac{p+2q}{3} \frac{p-q}{3}$	pq

No.	Gdt.	Rose.	Miller.	Bravais.	Miller.	Naumann.	Hausm.	G ₁	G_2
I	0	С	0	0001	111	оP	A	0	o
2	a	g	a	юто	211	∞P	E	ωo	∞ ·
3	b	-	b	1 I ŽO	IOI	∞P 2		∞	∞0
4	z			1013	522	1/3 P	_	1/3 O	<u>I</u>
5	у			1012	411	$\frac{1}{2}$ P	_	$\frac{I}{2}O$	1 3 1 2
6	x	r	x	1011	100	P	P	Ι Ο	1
7	d	_		1122	52 <u>T</u>	P 2		<u>I</u>	3 O
8	е			1121	412	2 P 2		I	30

Literatur.

Rose	Pogg. Ann.	1833	27	310
Hausmann	Handb.	1847	2	(2) 1201
Miller	Min.	1852	_	552
Schrauf	Wien. Sitzb.	1860	39	895
Dana, J. D.	System	1873	_	650
Arzruni	Zeitschr. Kryst.	1879	3	516.

Bemerkungen.

In Haidinger's Min. 1845. 489 ist die Figur den unrichtigen Winkelwerthen entsprechend viel zu flach, vgl. Rose. Betreffs der Correkturen vgl. Arzruni Zeitschr. Kryst. 1879. 3. 517.

Correcturen.

Rose	Pogg. Ann.	1833 27	Seite	211	Zeil	e 6	vo	lies	g	statt	\mathbf{c}
"	,,	1833 27	"	311	**	7	vo	**	\mathbf{c}	"	g
Haidinger	Min.	1845 —	,,	489	,,	14	vul		1 22°0'		58°0'
Hausmann	Handb.	1847 2 (2)	"	1201	"	11	vu∫	n	122 0	"	30 0
Miller	Min.	1852 —	"	552	"	3	vo	"	75° 15'	"	43° 50'
"	"	1852 —	,,	552	"	9	vo	**	61° 0'	"	29° 0'
Schrauf	Wien. Sitzb.	1860 39	,,	895	"	10	vo	"	0.3696	"	1.2026
,,	"	1860 39	,,	895	"	11	vo	"	75° 15'	"	43° 50'
Dana	System	1873 —	"	650	,,	I 2	vu	, "	119°	"	151°
'n	,,	1873 —	,,	650	"	12	vu	,,	151°	"	119°
Naumann-Zirkel	Elem.	1877	,,	440	"	5	vo	"	122°	"	58°
"	"	1877	"	440	"	5	vo	"	1.562	"	0.4804.

Cordierit.

1.

Rhombisch.

Axenverhältniss.

Elemente.

a = 0.9511	lg a = 997823	$\lg a_0 = 974694$	$\lg p_0 = 025306$	$a_o = 0.5584$	p _o = 1.7908
c = 1.7033	lg c = 023129	$\lg b_o = 976871$	$\lg q_o = 023129$	b _o == 0.5871	q _o = 1·7033

Transformation.

Mohs-Zippe. Hausm. Miller. Tamnau. Rath. Descl. Groth. Kokscharow.	Lévy.	Gdt.	
pq	<u>p</u> <u>q</u> 4	$\frac{1}{q} \frac{p}{q}$	
4 P · 4 Q	pq	$\frac{1}{4q} \frac{p}{q}$	
$\frac{\mathbf{q}}{\mathbf{p}} \frac{\mathbf{r}}{\mathbf{p}}$	q <u>1</u> 4P	pq	

No.	Gdt.	Miller.	Rath.	Haus- mann.	Miller.	Nau- mann.	[Descl.]	[Hausm.]	[Mohs.] [Hartm.] [Zippe.]	[Lévy.]	Gdt.
I	a	a	b	1	001	оP	g¹	В	ĕr+∞.	g¹	0
2	b	b	a	k	010	∞Ĕ∾	h ¹	$\mathbf{B}^{_{1}}$	Pr+∞	h¹	0 00
3	c	c	c	M	100	$\infty \bar{P} \infty$	P	A	P—∞	P	∞ 0
4	f			_	210	∞P 2	a ²	AB'2			2 ∞
5	e				110	∞P	a¹	\mathbf{D}_{l}	_		∞
6	d	d	d	d	013	$\frac{1}{3} \breve{P} \infty$	g²	BB ¹ 3	(P̈+∞)³	g^2	$O^{\frac{1}{3}}$

(Fortsetzung S. 467.)

466 Cordierit.

Literatur.

Mohs	Grundr.	1824	2	366
Hartmann	Handwb.	1828		426
Tamnau	Pogg. Ann.	1828	12	495
$L \epsilon v y$	Descript.	1838	2	149
Mohs - $Zippe$	Min.	1839	2	358
Hausmann	Handb.	1847	2	(I) 553
Miller	Min.	1852		325
Kokscharow	Mat. Min. Russl.	1858		
Hausmann	Ueber Krystall-Form	nen des	Cord	lierit. Göttingen 1859
$Des\ Cloizeaux$	Manuel	1862	-	354
Rath	Pogg. Ann.	1874	152	40) (Laacher See)
"	Jahrb. Min.	1874	_	865.

2.

No,	Gdt.	Miller.	Rath.	Haus- mann.	Miller.	Nau- mann.	[Descl.]	[Hausm.]	[Mohs.] [Hartm.] [Zippe.]	[Lévy.]	Gdt.
7	m	m	m	T	011	ĕ∞	m	Е	P+∞	m	01
. 18	q	_			104	¼ P̄∞	$e^{\frac{\mathbf{I}}{4}}$		-	e^{I}	$\frac{I}{4}$ O
? { 9	σ	_	_		207	$\frac{2}{7}\bar{P}\infty$		BA^2_{7}	_		$\frac{2}{7}$ O
10	p	_			102	½P̃∞	$e^{\frac{I}{2}}$	$BA_{\frac{1}{2}}$	Йr+1	e ²	<u>I</u> 0
11	n	n	n	n	101	P̄∞	e^{I}	\mathbf{D}	Р́г	? (e³)	10
12	1				201	2 P∞	_	AB2			20
? {13	h			_	122	Й ₂	$b^{\frac{I}{4}}$			p _I	$\frac{1}{2}$ I $\frac{4}{7}$ I
, J14	i				477	₽ 7	$b^{\frac{1}{2}}$	$EA\frac{4}{7}$	_		$\frac{4}{7}$ I
15	r	r	r	P	111	P	$b^{\frac{1}{2}}$	P	P	b^2	1
16	s	s	s	s	211	2 P 2	Ъī	AE2	Р—1	? (b³)	2 I
17	t				411	4 P 4	_	AE4	_		4 I
18	ω			_	131	3 P 3	ω				13
19	o	0	О	0	113	1/3 P	_	$BB^{1}3 \cdot EA^{I}_{3}$	(<u></u>)³		<u>I</u> 3
? 20	π			_	213	$\frac{2}{3}\bar{P}_{2}$		$BB^{1}3 \cdot EA_{\frac{2}{3}}$			$\frac{2}{3}\frac{1}{3}$
? 21	ρ	_		_	18-5-15	$\frac{6}{5}\bar{P}_{5}^{18}$	— ?	$(BB^{1}3 \cdot EA^{5}_{4})$	· —		$\frac{6}{5}\frac{1}{3}$
22	u	_	u	_	413	$\frac{4}{3}\vec{P}_4$			_		4 I 3 3

468 Cordierit.

Bemerkungen.

An Stelle der von Hausmann (Krystf. des Cordierit. Göttingen 1859 S. 9 u. 11, sowie Handb. 1847. 2. (1) 553) citirten Form $(BB^{\dagger}_{3} \cdot AE^{\frac{5}{4}})$, die nach unserer Aufstellung $\frac{4}{3}$ entsprechen würde, wurde $\frac{6}{5}$ gesetzt, da der hierfür nach unserem Axenverhältniss erforderliche Winkel dem von Hausmann angegebenen näher kommt.

Es entspricht für	$\frac{6}{5}\frac{1}{3}$: O $\frac{1}{3}$	61° 511
	$\frac{5}{4} \frac{1}{3} : 0 \frac{1}{3}$	62° 49'
Hausmann giebt Handb.	1847:	610 111
	1859:	61° 561

Allerdings sind diese Winkelwerthe Hausmann's, die berechnete sind, nur Näherungen, da die Messung mit dem Anlegegoniometer erfolgte und ungenau war. Das geht ausser der eigenen Angabe Hausmann's schon daraus hervor, dass er derselben Form einmal den $\leq 61^{\circ}56^{\circ}$, das andere Mal 61° 11' giebt. Da jedoch das Symbol dieser Form nicht aus dem Zonenverband gewonnen werden konnte, so dürfte es sich empfehlen, bei der Auswahl des Symbols den angegebenen Winkeln möglichst nahe zu bleiben. Immerhin bedarf dies Symbol ebenso wie $\frac{2}{3}$ $\frac{1}{3}$ einer Bestätigung, die in Göttingen, wo das Originalstück von Bodenmais, an dem Hausmann seine Messungen machte, sich vorfinden dürfte, vielleicht zu erhalten wäre. Die Vermuthung liegt nahe, dass Hausmann's Form BB' $_3 \cdot AE\frac{5}{4}$ identisch sei mit $u = \frac{4}{3}$ $\frac{1}{3}$ (Index) = u $\frac{3}{4}$ P $\frac{7}{3}$ (Rath), welche Form zwei wichtigen Zonen angehört. Allerdings würde diese einen Winkel von 64° 17° gegen o $\frac{1}{3}$ erfordern.

Lévy's Elemente weichen wesentlich ab von denen der anderen Autoren. Jedenfalls gilt in der Hauptsache die Transformation pq (Lévy) = $4p \cdot 4q$ (Mohs. Miller. Descl.), doch stimmen die Formen im Einzelnen nicht mit den Angaben der anderen Autoren: e' fällt wahrscheinlich zusammen mit Hausmann's BA $\frac{2}{7}$, b' mit EA $\frac{4}{7}$. e³ b³ geben bei direkter Umwandlung $\frac{3}{4}$ 0, $\frac{3}{2}$ 1, doch dürften sie mit 10, 20 zu identificiren sein. Im Formenverzeichniss wurden sie neben diese gestellt. Bei der Abweichung der Grundwerthe und bei Fehlen der Winkelangabe ist eine sichere Entscheidung nicht möglich.

Correcturen.

Mohs-Zippe Min. 1839 2 Seite 358 Zeile 11 vu lies: 134°57'; 96°53' statt 96°53; 134°57'.

Corynit.

Regulär.

No.	Gdt.	Miller.	Naumann.	G ₁	G_2	G_3
ı	P	111	0	I	I	I

470 Corynit.

Literatur.

Zepharovich Wien. Sitzb. 1865 51 (1) 117 Dana, J. D. System 1873 — 74.

Cotunnit.

Rhombisch.

$$a:b:c = 0.5937:1:1.1904$$
 (Groth. Gdt.)
 $[a:b:c = 0.5941:1:0.5951]$ (Schabus.)
 $\{a:b:c = 0.8426:1:0.5016\}$ (Miller. Dana.)
 $(a:b:c = 0.9995:1:1.6805)$ (Schrauf.)

Elemente.

a = 0.5937	$\lg a = 977357$	$\lg a_0 = 969788$	lg p _o =030212	$a_o = 0.4987$	p _o = 2.0050
c = 1·1904	lg c = 007569	$\lg b_0 = 992431$	lg q _o =007569	b _o = 0.8401	q _o = 1·1904

Transformation.

Schab.	Miller. Dana.	Schrauf.	Groth. Gdt.	
рq	$\frac{q}{p} \frac{2}{p}$	$\frac{p}{q} \frac{1}{q}$	$\frac{p}{2} \frac{q}{2}$	
$\frac{2}{q} \frac{2 p}{q}$	рq	$\frac{1}{p} \frac{q}{2p}$	$\frac{\mathbf{I}}{\mathbf{q}} \frac{\mathbf{p}}{\mathbf{q}}$	
$\frac{p}{q} \frac{r}{q}$	$\frac{1}{\mathbf{p}} \frac{2 \mathbf{q}}{\mathbf{p}}$	рq	p 1 2 q	
2 p·2 q	$\frac{\mathbf{q}}{\mathbf{p}} \frac{\mathbf{r}}{\mathbf{p}}$	$\frac{p}{q} \frac{1}{2q}$	рq	

No.	Gdt.	Miller.	Schrauf.	Schabus.	Miller.	Naumann.	[Schabus.]	Gdt.
I	a	a		0	001	οP	P —∞	0
2	b	b	c	P	010	∞ P̃ ∞	Ĭr+∞	0 ∞
3	c	c	_	-	100	∞ P̄ ∞		∞ o
4	r	r	ρ	v	012	½ p ∞	Ρ̈́r	0 <u>I</u>
5	m	m	μ		011	ĕ ∞	_	0 1
6	\mathbf{q}	_	q	u	O2 I	2 P ∞	Ĭr + 2	02
7	e	e	e		101	P̄ ∞		10
8	p		r	p	112	<u> </u>	P	<u>I</u>
9	s	s	s	q	111	P	P +1	I

472 Cotunnit.

Literatur.

Schabus	Wien. Sitzb.	1850	4	456
Miller	Min.	1852		616
Dana	System.	1873		117
Schrauf	Atlas	1877	_	Taf. L.

Cuban.

Regulär.

No.	Gdt.	Miller.	Naumann.	Descloiz.	G_1	G_2	G_3
I	С	001	∞ 0∞		0	000	% 0
? 2	D	307	∞ O $\frac{7}{3}$	$\mathbf{b}^{\frac{7}{3}}$	$\frac{3}{7}$ O	$0\frac{7}{3}$	$\frac{7}{3}\infty$
3	e	102	∞02		$\frac{1}{2}$ O	O 2	2∞

474 Cuban.

Literatur.

Miller Min. 1852 — 182 Des Cloizeaux Manuel 1862 **1** 6.

Cuspidin.

Monoklin.

Axenverhältniss.

```
\begin{array}{lll} a:b:c = 0.7150:1:1.9507 & \beta = 90°20 \; (Rath \; 1882. \; Gdt.) \\ a:b:c = 0.7247:1:1.9623 & \beta = 90°56 \; (Rath \; 1881.) \\ & , & = 0.7243:1:1.9342 & \beta = 90°38 \; (Rath \; 1882.) \\ [Rhombisch.] [a:b:c = 0.7173:1:1.9376 & \beta = 90°] \; (Scacchi.) \end{array}
```

Elemente.

а	=	0.7150	lg a = 985431	$\lg a_0 = 956412$	$\lg p_o = 043588$	$a_o = 0.3665$	$p_o = 2.7282$
С	=	1.9507	lg c = 029019	$lg\ b_o = 970981$	$\lg q_o = o_2 go_1 8$	$b_o = 0.5126$	q _o = 1.9506
μ 180	$=$ $0-\beta$	} 90°20	$ \begin{array}{c} \lg h = \\ \lg \sin \mu \end{array} $ $ 9999999 $	$ \lg e = 1 $ $ \lg \cos \mu \int 776475 $	$\lg \frac{p_o}{q_o} = 014570$	h == 1	e = 0.0058

No.	Rath. Gdt.	Miller.	Naumann.	Gdt.
I	С	001	οP	0
2	Ъ	010	$\infty P \infty$	0 00
3	1	110	∞P	∞
4	k	014	¼P∞	0 <u>I</u>
5	g	012	$\frac{1}{2} \mathbf{P} \infty$	$O^{\frac{1}{2}}$
6	d	OII	\mathbb{P}_{∞}	O I
7	е	101	— P∞	+10
8	h	103	$-\frac{1}{3}P\infty$	$+\frac{1}{3}$ o
9	f	Toi	+ P∞	— ı o
10	n	111	P	+ 1
11	p	113	$\frac{1}{3}$ P	$+\frac{1}{3}$
I 2	π	<u>1</u> 13	$+\frac{1}{3}P$	$-\frac{I}{3}$
13	ν	ĪII	+ P	— т
14	s	<u>T</u> 2I	+ 2 P 2	— I 2
15	q	233	$- P^{\frac{3}{2}}$	$+\frac{2}{3}$ 1
16	t	211	— 2 P 2	+21
17	m	432	$+2P\frac{4}{3}$	$-2\frac{3}{2}$
? 18	r	12-11-4	— 3 P _{II}	$+3\frac{I}{4}$

476 Cuspidin.

Literatur.

```
Napoli Rend. ac. 1876 — Oct.
Scacchi
           Zeitschr. Kryst.
                           1877 1 398
Rath
           Niederrh. Ges.
                           1881 —
                                    Nov.
                           1882 —
1883 —
                                    Jan.
                                    Juni
                           1883 1 Ref. 173
           Jahrb. Min.
           Zeitschr. Kryst.
                           1884 8 38 Correctur S. 667
                           1884 9 567.
                 ,,
```

Cyanit.

Triklin.

Axenverhältniss.

Elemente der Linear-Projection.

a = 0.8991	a _o = 1.2903	α = 90°23	x' ₀ ==-0·1879	d'=-o.1881
b = г	b _o = 1.4351	β = 100°18	y' ₀ ==-0.0067	δ'= 87°57·7
c = 0.6968	c _o == 1	γ = 106°01	k = 0.9821	

Elemente der Polar-Projection.

$p_0 = 0.8062$	λ == 86°36·2	x _o = 0·1785	d=0·1881
$q_o = 0.7132$	μ= 79°10·0	y _o = 0·0593	δ = 71°38·2
r _o = 1	$\nu = 73^{\circ}38.5$	h = 0.9821	

No.	Gdt.	Bauer.	Rath.	Miller.	Naumann.	Descloiz.	Gdt.
I	p	P	P	001	οР	p	0
2	t	T	t	010	$\infty \breve{P} \infty$	g^{I}	0 00
3	m	M	m	100	$\infty \bar{P} \infty$	h^{I}	∞ 0
4	n	d		310	∞ P 3	h²	3∞
5	e	k	e	210	$\propto ar{ m P}^{_1}$ 2	h³	2 00
6	i	1	i	110	∞P^{i}	t	∞
7	b	q		120	∞ Ĭ ¹ 2		∞ 2
8	k	O	k	ΙĪΟ	∞¹P	m	∞ ∞
9	s		s	I 2 O	∞'Ř 2	³g	∞ 2
10	q	n	q	011	¹Ĕ,∞	i¹	О І
11	v	r	v	OĬI	¹Ř₁∞	e^{I}	ΟĬ
12	f	_	f	O <u>2</u> I	2 'P̈₁∞	_	ΟŽ
13	h	_	h	203	$\frac{2}{3}$ \vec{P}_{i} ∞		<u>₹</u> 0
14	1		1	304	$\frac{3}{4}$ $_{\scriptscriptstyle 1}\bar{P}$ $_{\scriptscriptstyle 1}\infty$	$\mathbf{a}^{\frac{4}{3}}$	$\frac{3}{4}$ O
15	x		x	ĬOI	$_{_{ m I}}ar{ m P}_{_{ m I}}\infty$	$\mathbf{a}^{\mathbf{I}}$	<u>1</u> O
16	d		d	221	2 P1		2
17	О	_	О	ĬΙΙ	${}_{_{I}}\!\mathbf{P}$		ΤI
18	u		u	221	2 P		Ž 2
19	r		r	ĪĪI	P _i	_	ī
20	у		у	<u> 1</u> 21	2 ¦Ĭ	_	Ī 2
2 I	z		z	Ī22	μ <mark>Ϋ 2</mark>		$\frac{\mathbb{T}}{2}$ I
22	w	_	w	211	2 P 2		2 I
23	g		g	312	$\frac{3}{2}\bar{P}_{1}3$	***************************************	$\frac{3}{2}\frac{1}{2}$

478 Cyanit.

Literatur.

Des Cloizeaux	Manuel	1862	1	185
Schrauf	Atlas	1877	_	Taf. L.
Bauer	Zeitschr. Kryst.	1879	3	87 }
,,	D. Geol. Ges.	1878	30	2831
"	n	1879	31	244
"	"	1880	32	717
Rath	Bull. Soc. Min.	1878	1	62
"	Zeitschr. Kryst.	1879	3	1
,,	Zeitschr. Kryst.	1881	5	17.

Danalith.

Regulär. Tetraedrisch-hemiedrisch.

No.	Gdt.	Miller.	Naumann.	G ₁	G_2	G_3
I	d	101	∞ O	10	O 1	ov.
2	P	111	+o	+1	I	I
3	π	ΙΙΙ	- O	I	— I	I

480 Danalith.

Literatur.

 Cooke
 Amer. Journ.
 1866
 (2)
 42
 73

 Dana
 System
 1873
 —
 265

1.

Rhombisch.

Axenverhältniss.

a:b:c = o.8817:i:o.9183 (Gdt.)

 $\begin{array}{lll} [a:b:c = o\cdot5444:1:o\cdot4808] & (E. S. Dana. \ Hintze. \ Groth.) \\ [& & = o\cdot5445:1:o\cdot4801] & (Schuster \ 1884.) \end{array}$

Elemente.

a = 0.8817	lg a = 994532	$\lg a_0 = 998234$	$\lg p_o = oo1766$	$a_0 = 0.9602$	$p_0 = 1.0415$
c = 0.9183	lg c = 996298	$\lg b_o = oo_{3702}$	$\lg q_0 = 996298$	b _o == 1.0890	$q_0 = 0.9183$

Transformation.

Dana. Hintze. Groth. Schuster.	Gdt.
рq	$\frac{2}{q} \frac{2 p}{q}$
$\frac{2}{p} \frac{q}{p}$	рq

No.	Gdt.	Dana. Hintze. Schuster.	Miller.	Naumann.	Gdt.
I	ь	b	001	οP	0
2	a	a	010	∞ P̃ ∞	0 &
3	c	С	100	$\infty \bar{P} \infty$	∞ 0
4	z	z	310	∞ P̄ 3	3 ∞
5	ζ	ζ	320	∞ P̄ 3/2	$\frac{3}{2}$ ∞
6	d	d	110	∞ P	œ
7	x	х	130	∞Ўз	∞ 3
8	n	n	012	½ P ∞	$O^{\frac{1}{2}}$
9	τ	τ	035	³ / ₅ P ∞	0 3
10	A	_	058	§ Ϋ ∞ -2 Ϋ ∞	0 5
11	ξ	ξ (x)	023	² / ₃ P ∞	$0\frac{2}{3}$
12	В		0.7.10	7 P ∞	$0\frac{7}{10}$
13	С		057	5 Ϋ ∞	$0\frac{5}{7}$
14	D	_	079	 ⁷ ⁄ ₂ P ∞	o 7
15	E	υ	045	4 P ∞	o \$
16	F		056	5 P ∞	0 5
17	ρ	p	067	§ ₽ ∞	0 6
18	G		0.10.11	I o P ∞	o II

(Fortsetzung S. 483.)

Literatur.

```
Brush u. Dana, E. S. Amer. Journ.
                                            1880 (3) 20 111 )
                         Zeitschr. Kryst.
                                                     5 183
                                            1881
Schuster
                         Min. Petr. Mitth.
                                            1882
                                                      \mathbf{5}
                                                         397
                                                      7 296 u. 591
Hintze
                         Zeitschr. Kryst.
                                            1883
L\ddot{u}decke
                         Nat. V. f. Thüring. 1883
                                                     -- 567
                         Min. Petr. Mitth. 1884
                                                      6 301-514. Zus. Stell. S. 477 flg.
Schuster
Gr\ddot{u}nhut
                         Zeitschr. Kryst.
                                                      9 116.
                                            1885
```

Bemerkungen Correcturen s. Seite 484.

2.

No.	Gdt.	Dana. Hintze. Schuster.	Miller.	Naumann.	Gdt.
19	Н		0.14.15	<u>14</u> P∞	0 <u>I 4</u>
20	1	1	OII	Ĕ∞	0 1
21	K		0.20.19	<u>₹9</u> ₽∞	o 20
22	γ	У	0.10.9	I o₽~	O 10
23	m	m	043	<u>4</u> P∞	$o_{\frac{4}{3}}$
24	μ	μ	053	<u>5</u> P∞	$O_{\frac{5}{3}}$
25	J	J	021	2 P̃∞	0 2
26	k	k	031	дЎ∞	0 3
27	\mathbf{q}	q	108	$\frac{1}{8}\bar{P}\infty$	$\frac{8}{1}$ O
28	i	i	105	½ P̄∞	1 O
29	h	h	2.O.I I	$\frac{2}{11}\bar{P}\infty$	$\frac{2}{11}$ O
30	\mathbf{p}	p	104	$\frac{1}{4}\bar{P}\infty$	$\frac{I}{4}$ O
31	g	g	207	$\frac{2}{7}\bar{P}\infty$	$\frac{2}{7}$ O
32	f	f	103	$\frac{\mathrm{I}}{3}\bar{\mathrm{P}}_{\infty}$	$\frac{I}{3}$ O
33	\mathbf{w}	w	102	$\frac{1}{2}\bar{P}\infty$	$\frac{1}{2}$ O
34	t	t	101	P̄∞	1 0
35	δ	δ	112	$\frac{1}{2}$ P	$\frac{1}{2}$
36	r	r	111	P	I
37	o	О	221	2 P	2
38	λ	λ	212	P̄ 2	$I = \frac{I}{2}$
39	e	e	121	2 P 2	I 2
40	s	s	131	3 P 3	1 3
41	v	v	211	2 P 2	2 I
42	u	u	411	4 P 4	4 I
43	σ	σ	4.10.7	10 P 5	410 77
		(Hint	ze. Unsicher		
44		у	14.13.2	7 P 14	$7\frac{13}{2}$

Bemerkungen.

Lüdecke führt (Nat. Ver. f. Thür. 1833. 567) noch auf die Formen:

die sich bei anderen Autoren nicht finden. Doch ist zu vermuthen, dass hier ein Druckfehler vorliegt und wir die Formen:

die Dana bereits anführt, vor uns haben. Dies um so mehr, als Lüdecke (S. 568) sagt: Eine Varietät zeichnet sich durch das gewöhnliche und einseitige Auftreten einer Reihe von Brachydomen aus. In dem Formenverzeichniss aber findet sich kein einziges Brachydoma.

Die von Grünhut vorgeschlagene Neuaufstellung (Zeitschr. Kryst. 1885. 9. 116) empfiehlt sich nich, da sie zu complicirten Symbolen führt. Auch dürfte sie nirgends Eingang finden.

Hintze's Symbol (Zeitschr. Kryst. 1883. 7. 300) $\frac{2}{7}\,P\,_{13}^{14}$ ist ein Schreib- oder Druckfehler statt $\frac{2}{7}\,P\,_{13}^{4}$ (vgl. S. 298). Wenn man aber einmal das Symbol ändert, so dürfte die übliche Schreibweise $\frac{13}{14}\,P\,_{13}^{4}$ vorzuziehen sein. Das Symbol y ist durch eine Winkelmessung nebst Ergänzung zum vollen Winkel d λ und den Zonenverbend gegeben. Da Hintze diese Messung nur als approximativ bezeichnet, so wurde das Symbol vorläufig nicht als sichergestellt angesehen.

Schuster verwendet in dem ersten Theil seiner ausgezeichneten Arbeit den Buchstaben x für (130) = o_3^2 unserer Aufstellung. Da dieser Buchstaben bereits von Dana für eine andere Form verwendet worden, setzt er im zweiten Theil dafür ξ .

Der griechische Buchstaben υ unterscheidet sich nur schwer in der Schrift vom lateinischen v. Um Verwechselungen zu verhüten, wurde an Stelle von Schuster's υ der Buchstaben E gesetzt.

Correcturen.

Kobell Gesch. d. Min. 1864 — Seite 693 Zeile 12 vu lies 522 statt 521 Hintze Zeitschr. Kryst. 1883 7 , 300 , 17 vo , $\frac{2}{7}P\frac{4}{13} = \frac{13}{14}\bar{P}\frac{13}{4}$, $\frac{2}{7}P\frac{14}{13}$

Datolith.

1.

Monoklin.

Axenverhältniss.

(Rhombisch.)

```
[(a : b : c = 0.7916 : 1 : 0.500)] (Miller.)
[( " = 0.790 : 1 : 0.510)] (Lévy S. 179.)
```

Elemente.

a = 0.6329	lg a = 980134	$lg a_o = 999891$	lg p _o = 000109	$a_{\circ} = 0.9975$	p ₀ = 1.0025
c = 0.6345.	$\lg c = 980243$	$\lg b_o = 019757$	$\lg q_0 = 980243$	b _o = 1.5760	q _o == 0.6345
$\mu = \begin{cases} 90^{\circ}9' \end{cases}$	$ \begin{cases} \lg h = \\ \lg \sin \mu \end{cases} o $	$ \begin{cases} \lg e = \\ \lg \cos \mu \end{cases} 74^{1797} $	$\lg \frac{p_o}{q_o} = o_{19866}$	h = 1.000	e = 0.0026

Transformation.

Lévy. S. 182.	Mohs-Zippe. Hausmann. Dauber. Kokscharow. Des Cloizeaux.	Dana.	Schröder. Quenstedt.	Lévy. S. 179. Miller.	Rammelsberg. Groth. Liweh. Gdt.
pq	$\frac{1}{p} \frac{q}{p}$	4 P · 4 9	<u>I</u> q 2 p	$\frac{\mathbf{q}}{\mathbf{p}} \frac{\mathbf{r}}{\mathbf{p}}$	$\frac{1}{2p} \frac{q}{p}$
$\frac{1}{p} \frac{q}{p}$	pq	4 4 q p	p q 2	q p	$\frac{\mathbf{p}}{\mathbf{z}}$ q
<u>p</u> q/4	4 q p	pq	$\frac{2}{\mathbf{p}} \; \frac{\mathbf{q}}{2 \mathbf{p}}$	$\frac{q}{p}$ $\frac{4}{p}$	$\frac{2}{p} \frac{q}{p}$
$\frac{1}{2p} \frac{q}{p}$	2 p · 2 q	2 4 q p	pq	2 q · 2 p	p · 2 q
$\pm \frac{\mathbf{I}}{\mathbf{q}} \frac{\mathbf{p}}{\mathbf{q}}$	± q p	$\frac{+}{q} \frac{4}{q} \frac{4}{q}$	$+\frac{q}{2}\frac{p}{2}$	pq	± q p
<u> </u>	2 p q	2 2 q p p	$p = \frac{q}{2}$	q · 2p	pq

(Fortsetzung S. 487.)

486 Datolith.

Literatur.

Mohs	Grundr.	1824	253
$Phillips$ - $L\acute{e}vy$	Pogg. Ann.	1827 10	
Hartmann	Handwb.	1828 -	- 130
Weiss, C. S.	Berl. Ak. Abh.	1828	63 (Haytorit)
Quenstedt	Pogg. Ann.	1835 36	3 245
$L \acute{e} v y$	Descr.	1838	179 u. 182 (Humboldtit)
Mohs-Zippe	Min.	1839	
Hausmann	Handb,	1847	2 (2) 907
Haidinger	Wien. Sitzb.	1849 2	
,,	Pogg. Ann.	1849 78	75 }
Miller	Min.	1852 —	- 408
Hess	Pogg. Ann.	1854 95	380
$Schr\"{o}der$	"	1855 94	235
"	"	1856 98	3 34
Dauber	"	1858 103	116
$Des\ Cloizeaux$	Manuel	1862	l 167 u. 540
Rammelsberg	D. Geol. Ges.	1869 2	l 807
Dana, E. S.	Amer. Journ.	1872 (3) 4	l 16)
**	Min. Mitth.	1874	l IĴ
Dana, J. D.	System	1873 —	- 380
Groth	Strassb. Samml.	1878 —	- 186
Bombicci	Zeitschr. Kryst.	1878 2	505
Vrba	'n	1880 4	4 358 (Kuchelbad)
"	,,	1881	425 (Theiss i. Tyrol)
Lehmann, J.	"	1881	529 (Niederkirchen)
Kokscharow	Mat. Min. Russl.	1881	3 139
Liweh	Zeitschr. Kryst.	1883	7 569
Emerson	Amer. Journ.	1883 (3) 24	270
**	Zeitschr. Kryst.	1884	86. ∫

Bemerkungen | s. Seite 488, 490.

2.

No.	Gdt.	Haiding. Mohs. Zippe. Hartm. Hausm.	Schröder.	Dauber.	Miller.	Dana.	Liweh.	Quen- stedt.	Miller.	Naumann.	[Hausmann.]	[Mohs.] [Zippe.]	[Lévy.]	[Lévy.] 'Rhomb.)	[Descl.]	Gdt.
I		b	b	С	С	a	С	P	001	οP	A	P —∞	h¹	p	P	o
2	b	u	u	b	b	b	b	a	010	$\infty \mathbb{P} \infty$	B ₁	Pr+∞		h I	gI	000
3	С	s	s	a	a	С	a 	b	100	ωP∞	В	Pr+∞	Р	g¹	h ^I	∞0
4	Ω	_		_	_	Ω			410	∞P 4	anniana.					4∞
5	σ	_		σ	σ	σ		_	210	∞ P 2			_	_	$h^{\frac{5}{3}}$	2∞
6	t	t	t	t	t	t			320	∞P ³ / ₂	BB ¹ 3				h²	$\frac{3}{2}\infty$
7	g	g	g	g	g	g	g	g	110	ωP	BB'2 (Pr-	+∞) <u></u> (Ř+∞)	² e²	g^3	h^3	∞
8	h	_	_	_		h	_		340	$\infty P \frac{4}{3}$	BB^{13}_{2}			_	h ⁵	$\infty \frac{4}{3}$
9	k						k		230	$\infty P \frac{3}{2}$						$\infty \frac{3}{2}$
10	m	f	f	m	m	m	m	M	120	∞P 2	E	P+∞	$e^{\mathbf{I}}$	m	m	∞ 2
11	c	_			_			_	490	$\infty P^{\frac{9}{4}}$	$B^{l}B_{8}^{9}$	_		_		$\infty \frac{9}{4}$
12	S	_			_	s	_	_	140	∞ P 4	B'B2				g³	∞4
13	η			_	_	η			014	¼ P∞	_		_			$O^{\frac{I}{4}}$
14	Δ		_			Δ			012	$\frac{1}{2} \mathbf{P} \infty$	_		_	_		$0\frac{I}{2}$
15	e		-	_	_	e	e		023	$\frac{2}{3}$ P ∞	_		-	_	$e^{\frac{3}{2}}$	O 2/3
16	M	d	d	d	d	M	M	n	011	₽∞	Dı	Рr	m	$\mathbf{a}^{\mathbf{I}}$	e ^I	o 1
17	r	r		r	r	r	r	_	032	$\frac{3}{2}$ P ∞	$B^{l}A_{\overline{3}}^{2}$	$\frac{3}{4}\bar{P}r+1$		_	$e^{\frac{2}{3}}$	$0\frac{3}{2}$
18	o	О	О	o	О	o	О	y	021	2 ₽∞	$B^{\scriptscriptstyle }A_{\frac{1}{2}}^{\underline{1}}$	Ēr+₁	_	$a^{\frac{I}{2}}$	$e^{\frac{I}{2}}$	0 2
19	1		_		_	1		_	031	3 ₽∞	_	_	_		o ⁶ -	03
20	p	_	_	_		p	_	_	301	— 3 P∞	_	_	_		o [†] -	+30
2 I	u	_	γ	u	u	u		ξ	201	— 2 P∞	$\vec{\mathbf{B}}\mathbf{A}\frac{\mathbf{I}}{4}$	_	_			+20
22	v		_		v	v			302	$-\frac{3}{2}P\infty$			_			$+\frac{3}{2}$ o
23	x	a	a	x	x	x		x	101	— P∞	$\overrightarrow{\mathbf{B}}\mathbf{A}_{2}^{\mathbf{I}}$	Ĕr+τ	O^2		$o^{\frac{1}{2}}$	+ 1 o
24	f	_		_	f	f		_	203	$-\frac{2}{3}P\infty$	_	_		_	$0^{\frac{3}{4}}$	$+\frac{2}{3}$ o
25	φ				φ	φ			102	$-\frac{1}{2}P\infty$				_	o ^I -	$+\frac{1}{2}o$
26	s		y	_	s	s	_	_		$-\frac{1}{3}P\infty$			_	_		$+\frac{1}{3}$ o
27	ψ	_	_	ψ	_	ψ	_	_	104	$-\!$		_	_		o ² -	+ 1 o
28	z		z			z		_	T04	$+\frac{1}{4}P\infty$		_	_	_	a ² -	$-\frac{1}{4}$ o
29	Σ				_	Σ			<u>T</u> 03	$+\frac{1}{3}P\infty$						$-\frac{1}{3}$ o
30	П				_	П	_		TO2	$+\frac{1}{2}P\infty$						<u>1</u> 0
31	ξ	x	γ	_		ξ	ξ	x¹	ĪOI	+ P ∞	$\bar{\mathbf{B}}\mathbf{A}_{2}^{\mathbf{I}}$				$a^{\frac{I}{2}}$ -	— 1 о
32	a		<u>-</u>	_	_		_		2 01	$+2 P \infty$	_	_		_		— 2 O
33	b		_		_	_			<u></u> 401	+ 4 P∞						- 4 O
34	γ				_	γ	γ		221	— 2 P		_	_	_	γ -	+ 2
35	P	_				_	P	 1	0.10.9	— <u>10</u> P			_			+ 59
36	Λ		_	_		-	Λ		111	— Р	_					+ 1

(Fortsetzung S. 489.)

488 Datolith.

Bemerkungen.

Quenstedt giebt an (Pogg. Ann. 1835.-36. 257) als von Mohs herrührend die Formen:

$$\begin{array}{l} -(\vec{P}r-1)^5 = \left[\frac{1}{2}a':\frac{1}{3}b:\frac{1}{4}c\right] = -\frac{1}{2}\frac{3}{2} \text{ (Index)} \\ -(\vec{P}+1)^3 = \left[\frac{1}{3}a':b:c\right] = -32 \text{ (Index)} \end{array}$$

doch konnte ich dieselben weder bei Mohs noch bei einem anderen Autor auffinden. Auch Quenstedt hat sie nicht beobachtet.

Quenstedt's [$c: 2b: \frac{3}{4}a'$] = $-\frac{4}{3}I$ (Index) haben die anderen Autoren nicht, ebenso wenig $m' = \left[\frac{2}{3}a': b: \frac{1}{2}c\right] = -\frac{3}{4}I$ (Index) doch sind beide von Quenstedt mit Sicherheit erkannt und daher aufzunehmen.

Bei Quenstedt (Pogg. Ann. 1835. 36. Taf. 3 Fig. 4) sind die Buchstaben s und m' zu vertauschen. Es geht dies aus dem Symbol und den Projectionsbildern Fig. 1 und 2 hervor.

In der Buchstabenbezeichnung wurde im Allgemeinen die von Dana gegebene beibehalten. s kommt bei diesem zweimal vor. Es wurde das eine Mal durch S ersetzt. Ebenso dürfte es nicht statthaft sein, ϑ neben θ zu führen, die nur zwei Schreibweisen desselben Buchstabens sind. θ wurde durch ι ersetzt.

Die Formenzahl ist bereits so gross, dass in nicht langer Zeit die Buchstaben nicht mehr ausreichen werden. Um den dann nöthigen Behelf vorzubereiten, wurden die Formen durch zwei starke Linien in drei Gruppen getheilt, und mag es sich empfehlen, die Buchstaben der zweiten Gruppe (34—58) mit ·, die der dritten (59 bis Schluss) mit : zu versehen (s. Calcit), wobei dann eine Wiederholung derselben Buchstaben nicht mehr stört.

3.

No.	Gdt.	Haiding. Mohs. Zippe. Hartm. Hausm.	Schröder.	Dauber.	Miller.	Dana.	Liweh.	Quen- stedt.	Miller.	Naumann.	[Hausmann.]	[Mohs.] [Zippe.]	[Lévy.]	[Lévy.] (Rhomb.)	[Descl.]	Gdt.
37 38 39	w ϑ d			 	w ϑ —	w ϑ 	— ֆ d		223 112 225	$-\frac{2}{3}P$ $-\frac{1}{2}P$ $-\frac{2}{5}P$			_			+ \frac{2}{3} + \frac{1}{2} + \frac{2}{5}
40 41 42	q ι ε	— — e	 e	ρ — e	ρ — e	q θ	q —	 s	113 112 223	$-\frac{1}{3}P + \frac{1}{2}P + \frac{2}{3}P$		- -			q -	$ \begin{array}{c c} & \underline{1} \\ & \underline{3} \\ & \underline{1} \\ & \underline{2} \\ & \underline{3} \end{array} $
43 44	α Q	h 	α q	h z	h z	α Q	α	ρ	Ī11 221	+ P + 2 P		$-(\breve{P}r)^{\underline{3}}-(\breve{P})^{2}$ $-(\breve{P}r-1)^{\underline{3}}-(\breve{P}-1)$			ε -	– I – 2
45 46 47 48	T Z W				_	T — W	_		121 212 311 211	$ \begin{array}{r} -2 P 2 \\ + P 2 \\ -3 P 3 \\ -2 P 2 \end{array} $						$\begin{array}{c c} & 1 & 2 \\ \hline & 1 & \frac{1}{2} \\ \hline & 3 & 1 \\ \hline \end{array}$
49 50 51	L n δ	— Р	 p δ	— п ξ	n ζ	L n δ			322 122 144	$ \begin{array}{r} -2 + 2 \\ -3 + 2 \\ \hline -3 + 2 \\ \hline - + 2 \\ - + 2 \\ - + 4 \end{array} $	— Р			 b ¹	$d^{\frac{1}{2}}$ -	- 2 I - 3 I - 1 I - 1 I
52 53 54	v b e	n 		β		ν _		r' m'	122 344 433	+ P ₂ + P ⁴ / ₃ + ⁴ / ₃ P ⁴ / ₃	P' —	—Р —		b ^{1/2}	b ^{1/2}	$-\frac{1}{2}I$ $-\frac{3}{4}I$ $-\frac{4}{3}I$
55 56 57	λ μ χ	1 m	λ m	φ l k	 1 x	λ μ χ		1	$ \begin{array}{c} \overline{3}22 \\ \overline{2}11 \\ \overline{5}22 \end{array} $	$ \begin{array}{r} $	— BD' ₄ BD' ₅	— —(Ў) ⁴ — (Ў) ⁵	b ³ / ₂ b ²	_	λ - μ -	$-\frac{3}{2}$ I -2 I $-\frac{5}{2}$ I
58	ω		_			ω			311	$+3P_3$				_	<u> </u>	- 3 1
59 60	Φ f	_	_	_	— у	_	Φ z	_	261 241	-6P3	_		_			- 2 6 - 2 4
61 62 63	y X U		 μ	 i	у —	y X U		— µ	241 261 342	+4P2 +6P3 -2P4/3		_ _ _	_		u +	- 2 4 - 2 6 - $\frac{3}{2}$ 2
64 65 66	β R B	q 	β —	q —	q —	β R B		π —	142 184 1 42	- 2 P 4 - 2 P 8 + 2 P 4	B'D2 —	(Ēr) <u>3</u> (Ē) ² —	<u>-</u>	a ₃ — a ₃		$-\frac{1}{2}2$ $-\frac{1}{4}2$ $-\frac{1}{2}2$
67 68 69	i C Ψ	i 			_	i C Ψ	_	μ' —	342 542 214	$+2 P \frac{4}{3}$ $+\frac{5}{2} P \frac{5}{4}$ $-\frac{1}{2} P 2$	B'A <u>1</u> .DB' <u>2</u> - 	(<u> </u> <u> </u> <u> </u> <u> </u> <u> </u> <u> </u> <u> </u> <u> </u> <u> </u> <u> </u>	} 			- 3 2 - 5 2 - 1 1 4
70 71 72	H V A					H V			ī62 ī82 312	+3P6 +4P8 $-\frac{3}{2}P4$						$ \begin{array}{c c} -\frac{1}{2} & 3 \\ -\frac{1}{2} & 4 \\ -\frac{3}{2} & \frac{1}{2} \end{array} $
73	D					D		_	362	3 P 2		-		_		$-\frac{3}{2}3$

(Fortsetzung S. 491.)

490 Datolith.

Correcturen.

Quenstedt	Pogy. Ann.	1835	36	Taf. 3	Fig	. 4 di	e B	uch	staben	s un	ıd m'	zu ve	rtauschen
$L \epsilon v y$	Descr.	1838	1	Seite	180	Zeile	7	vu		lies	a_3	statt	a
Dana, E. S.	Min. Mitth.	1874	4	"	5	,,	5	vu	Col. 7	"	k	"	×
"	**	"	"	"	6	**	11	vu	Col. 9	"	16.9.1	"	36.9.1

4.

No.	Gdt.	Haiding. Mohs. Zippe. Hartm. Hausm.	Schröder.	Dauber.	Miller.	Dana.	Liweh.	Quen- stedt.	Miller.	Naumann.	[Hausmann.]	[Mohs.] [Zippe.]	[Lévy.]	[Lévy.] (Rhomb.)	[Descl.]	Gdt.
74	J				_	J			Ī·12·4	+3P12						$-\frac{1}{4}$ 3
75	O	_							9.12.4	$+3P\frac{4}{3}$						$-\frac{9}{4}$ 3
76	F		-	_		F	_	:	12.15.5	$+3P^{\frac{5}{4}}$						$-\frac{12}{5}3$
77	E	_	_	_	_	Е			431	$+4P\frac{4}{3}$	_		_			
78	N	_	_			N			123	² / ₃ ₽ 2	normal and a second				_	$+\frac{1}{3}\frac{2}{3}$
79	Γ			_	_	Γ			213	$-\frac{2}{3}P_{2}$		*********				$+\frac{2}{3}\frac{1}{3}$
80	ζ					ζ		_	ī·4·12	$+\frac{1}{3}P_{4}$				_	z	$-\frac{I}{12}\frac{I}{3}$
81	K		_		-	K	_		451	$+5P^{\frac{5}{4}}$						-4 5
82	π	p		_	p	π			ī64	$+\frac{3}{2}$ P 6	B'A2.D'B1	—(<u>P</u> —1) ³			π	$-\frac{1}{4} \frac{3}{2}$
83	G		_	_		G	_		891	+9P%		_	_			-89
84	χ			χ	_	χ	_	_	235	$-\frac{3}{5}P\frac{3}{2}$	_	-		_	ζ	$+\frac{2}{5}\frac{3}{5}$

Unsichere Formen.

I	_		_	 	Ξ	_		132	$-\frac{3}{2}$ P 3	_			 $-+\frac{1}{2}\frac{3}{2}$
2			_	 _	τ	_		943	+3P2	_	_	_	 $3\frac{4}{3}$
3		_		 	θ		_	74 I	$+7 P \frac{7}{4}$			_	 7 4

Descloizit.

1.

Monoklin.

Axenverhältniss.

Elemente.

a =	0.6480	lg a ==	981158	$\lg a_o = 990724$	$\log p_0 = 009276$	$a_o = 0.8077$	p _o = 1·2381
c =	0.8023	lg c =	990434	$lg b_o = 009566$	$\log q_o = 990432$	b _o = 1·2464	$q_o = 0.8023$
μ = 180β	} 89°26	lg h =) lg sin μ)	999998	$ \begin{cases} \lg e = \\ \lg \cos \mu \end{cases} 799520 $	$\log \frac{p_o}{q_o} = o_18844$	h == 1	e = 0·0099

Transformation.

Groth.	Descloiz.	Zippe. Schrauf.	Websky. Gdt.
рq	$p q$ $\frac{1}{p} \frac{2q}{\bar{p}}$ $p \cdot 2q$		<u>i</u> 2q p
$+\frac{1}{p}\frac{q}{2p}$	рq	$\frac{1}{p} \frac{q}{p}$	± p q
+ p q/2	$\frac{1}{p} \frac{q}{p}$	рq	$\pm \frac{1}{p} \frac{q}{p}$
$\frac{1}{p} \frac{q}{2p}$	рq	<u>i</u> q	pq

No.	Websky. Gdt.	Miller.	Naumann.	Des Cloizeaux.	Gdt.
I	С	001	οP		O
2	b	010	$\infty P \infty$		000
3	a	100	$\infty P \infty$		∞ o

(Fortsetzung S. 495.)

494 Descloizit.

Literatur.

$Des\ Cloizeaux$	Ann. Chim. Phys.	1854 (3) 41 78
Schrauf	Wien. Sitzb.	1860 39 913
Zippe	"	1861 44 (1) 197
Schrauf	$Pogg. \ Ann.$	1862 117 349
Websky	Berl. Monatsb.	1880 — 672
,,	Zeitschr. Kryst.	1881 5 542 Ĵ
Groth	Tab. Uebers.	1882 — 65.

2.

No.	Websky. Gdt.	Miller.	Neumann.	Des Cloizeaux.	Gdt.
4	n	510	∞P 5		5∞
5	m	110	∞P	m	∞
6	d	012	$\frac{1}{2} P \infty$		$O^{\frac{I}{2}}$
7	u	011	₽∞		O I
8	\mathbf{v}	O2 I	2 ₽∞		02
9	e	Ī O2	$+\frac{1}{2}P\infty$		$-\frac{1}{2}$ o
10	0	111	- P	$b^{\frac{1}{2}}$	+ 1
11	t	1.1.10	$-\frac{I}{10}P$		$+\frac{1}{10}$
12	g	ĬII	+ P	$\mathbf{b}^{rac{\mathbf{I}}{2}}$	— І
13	w	₹34	$+\frac{3}{4}P_3$		$-\frac{1}{4}\frac{3}{4}$
14	q	782	+ 4 P 8/7		$-\frac{7}{2}4$
15	i	<u></u> 641	$+6P\frac{3}{2}$		64
16	k	861	+8 P 4/3		-86

496 Descloizit.

Bemerkungen.

Es besteht eine noch nicht vollständig geklärte Streitfrage, ob die als Vanadit und Dechenit bezeichneten Mineralien mit dem Descloizit zu vereinigen seien. Schrauf thut dies, indem er annimmt, dass Damour wegen starker Verunreinigung des Materials gegen Bergemann und Nessler zu wenig Vanadinsäure, dagegen Wasser gefunden habe, und betrachtet den Descloizit als veränderten Dechenit. Nun haben neuere Analysen von Rammelsberg und Döhring den Wassergehalt (2,5) und den niederen Vanadinsäure-Gehalt 22 pCt. gegen 46—49 pCt. (Bergemann, Nessler) bestätigt. Es scheinen danach in der That die Mineralien vorzuliegen:

doch dürften alle gemessenen Krystalle dem Descloizit angehören, sicher sind Krystalle nur vom Descloizit zur Analyse gekommen, während Bergemann und Nessler vom Dechenit krystallinische Massen zur Analyse hatten. Sonach dürfte Groth's Einreihung des Dechenit (Tab. Uebers. 1882. 63 als richtig anzusehen sein, das dazu gestellte Krystallsystem und Axen-Verhältniss dagegen noch der Begründung entbehren, so lange nicht Messungen und Analysen am gleichen Material vollzogen sind.

Es hat diese chemische Frage hier nur deshalb ihren Ort gefunden, um die Auslassung des krystallographisch noch unbestimmten Dechenit aus diesem Index zu motiviren. Als Unterlage zur Beurtheilung dieser Frage mögen die folgenden Literatur-Angaben dienen:

Bergemann	Pogg. Ann.	1850	393
Damour u. Des Cloiżeaux	Ann. Chim. Phys.	1854 (3)	41 78
Zippe	Wien. Sitzb.	1861 4	4 (1) 197
Schrauf	Pogg. Ann.	1862	16 355
Tschermak	**	1862	17 349
Rammelsberg	Min. Chemie.	1875 -	– 289 u. 293
"	D. Geol. Ges.	1880	32 709
Döhring	"	1880	2 711 }
Rammelsberg-Döhring	Zeitschr. Kryst.	1881	5 592
Dana, E. S.	System Append. 3	1882 -	- 36
Groth	Tab. Uebers.	1882 -	– 63 u. 65,

Des Cloizeaux giebt noch als unsicher die Formen: $e^{\frac{3}{2}} = o_{\frac{3}{4}}^2$ und $e^{\frac{4}{3}} = o_{\frac{3}{4}}^3$.

Desmin.

Rhombisch (?)

Axenverhältniss.

a:b:c=o.928:i:o.756 (Mohs. Zippe. Hausmann. Miller. Des Cloizeaux. Gdt.)

$$[a:b:c=o.9295:1:1.379]$$
 (Lévy.)

[Monoklin ?]

(a : b : c = 0.7624 : 1 : 1.1939 $\,\beta =$ 129° 11') (Lasaulx, Groth.)

Elemente.

a = 0.928	lg a = 996755	$\lg a_o = oo8903$	$\lg p_0 = 991097$	a _o == 1.2275	$p_0 = 0.8146$
c = 0.756	$\lg c = 987852$	$\lg b_o = o_{12148}$	$\lg q_0 = 987852$	b _o = 1.323	q _o = 0.756

Transformation.

Lévy.	Lasaulx. Groth.	Mohs-Zippe. Hausmann. Miller. Des Cloizeaux. Gdt.
рq	$\frac{1}{2p-1} \frac{2q}{2p-1}$	2 p · 2 q
$\frac{p+1}{2p} \frac{q}{2p}$	рq	$\frac{p+r}{p}\frac{q}{p}$
$\frac{p}{2}$ $\frac{q}{2}$	$\frac{1}{p-1} \frac{q}{p-1}$	рq

N_0 .	Gdt.	Miller.	Hausm. Mohs. Hartm. Zippe.	Lasaulx.	Miller.	Naum.	Hausm.	Mohs Hartm. Zippe.	Descl.	Lévy.	Gdt.
1	С	С	P	p	001	оP	A	P —∞	p	p	o
2	a	a	T	T	010	$\infty \breve{P} \infty$	В	ĕr+∞	g¹	g¹	oω
3	b	Ъ	M	M	100	$\infty \bar{P} \infty$	$\mathbf{B}^{_{1}}$	$\bar{P}r+\infty$	h¹	h I	∞o
4	m	m	d	i	110	ωP	Е	P +∞	m	m	∞.
5	d		_		032	³ P ∞			$e^{\frac{2}{3}}$		$0\frac{3}{2}$
6	e	e		_	101	$\bar{\mathrm{P}}\infty$			$\mathbf{a}^{\mathtt{I}}$		1 0
7	r	r	r	r	111	P	P	P	$\mathbf{b}_{2}^{\underline{\mathbf{I}}}$	p _I	I
8	s		_		252	5 P 5					I 5/2
9	t	_			131	зЎз	-		_		13

Goldschmidt, Index.

498 Desmin.

Literatur.

Mohs	Grundr.	1824	2	272
Hartmann	Handwb.	1828		349
Breithaupt	Vollst. Charakteristik	1832		117
$L \epsilon v y$	Descript.	1838	2	237
Mohs - $Zippe$	Min.	1839	2	266
Hausmann	Handb.	1847	2	(1) 764
Miller	Min.	1852		439
$Des\ Cloizeaux$	Manuel	1862	1	416
Lasaulx	Zeitschr. Kryst.	1878	2	576
Heddle	Min. Mag.	1880	4	44
Mallet	Geol. Surv. India	1882	15	153
Groth	Tab. Uebers.	1882		115.

Bemerkungen.

Die Frage über das Krystallsystem des Desmin ist mit Sicherheit noch nicht entschieden. Lasaulx, der neuerdings im Anschluss an Breithaupt für dies Mineral das monokline System verlangt hat, sagt: Eine von mir vorgenommene Prüfung der Desmine verschiedener Fundorte ergab, dass in der That dieselben, jedenfalls gewisse Vorkommen, dem monoklinen System angehören. Es wurde vorläufig das rhombische System festgehalten und mögen hier Lasaulx's Angaben zur monoklinen Auslegung folgen:

Monoklin. $a:b:c = 0.7624:1:1.1939 \quad \beta = 119^{\circ}11^{\circ} \text{ (Lasaulx. Groth.)}$

No.	Miller.	Lasaulx.	Miller.	Naumann.	Gdt.
I	a	T	010	$\infty P \infty$	000
2	ь	M	100	$\infty P \infty$	∞ o
3	m	i	110	∞P	∞
4	r	r	OĨ1	P∞	ОІ
5	c	р.	ĪOI	+ P∞	— I O

Diamant.

Regulär.

No.	Gdt.	Hauy.	Miller.	Miller.	Naumann.		Mohs- Zippe.		Lévy. Descloiz.	G_1	G_2	G_3
I	С	r	a	001	∞O∞	W	Н	Ą	p	0	000	∞0
2	a			103	∞O 3			_		$\frac{I}{3}$ O	30	3∞
3	e		-	102	∞O 2			_	-	$\frac{1}{2}$ O	20	2 00
4	b	_	g	203	∞O ³ / ₂				$b^{\frac{3}{2}}$	$\frac{2}{3}$ O	3/2 O	$\frac{3}{2}\infty$
5	i	_	i	304	∞O 4		_	_	$b^{\frac{4}{3}}$	$\frac{3}{4}$ O	4 o	4 3∞
6	Α			10.0.11	$\sim O_{10}^{11}$	_	_			$o_{\frac{1}{1}0}$	$O_{\frac{1}{1}}$	$\frac{11}{10}\infty$
7	d	0	d	101	∞0	RD	D	1B1	p _I	10	10	NO.
8	1			115	5 O 5	_				<u>I</u> .	5 1	5 1
9	q		_	I I 2	2 O 2					1/2	2 I	2 I
10	p	P	0	111	0	О	0	P	a ^I	1	I	I
11	u	n	p	212	2 O			$^2\mathrm{B}^2$	$\mathbf{a}^{rac{\mathbf{I}}{2}}$	$I\frac{I}{2}$	$I\frac{I}{2}$	2
12	x		s	213	$3 O \frac{3}{2}$		_	_	s	$\frac{2}{3}\frac{1}{3}$	$\frac{3}{2}\frac{I}{2}$	3 2
13	Σ			415	5 O 5/4			_	_	4 <u>I</u> 5 5	5 <u>I</u>	5 4
14	Φ			516	6 O §					5 <u>I</u>	6 <u>I</u> 5 5	6 5

500 Diamant.

Literatur.

Hauy	Traité Min.	1822	4	419					
Mohs	Grundr.	1824	2	350					
Hartmann	Handwb.	1828		114					
$L \acute{e} v y$	Descript.	1838	3	434					
Mohs - $Zippe$	Min.	1839	2	344					
Hausmann	Handb.	1847	2	(1) 4					
Miller	Min.	1852		111					
Weiss, A.	Wien. Sitzb.	1860	39	862					
$Des\ Cloizeaux$	Manuel	1874	2	17					
Rose- $Sadebeck$	Uebers. Kryst. des 1	Diamanter	ı I	Berlin	1876 Se	p. aus	Berl.	Ak. Abh.	1876
,,	Zeitschr. Kryst.	1878	2	93					
Groth	Strassb. Samml.	1878		4					
Weiss, Ch. E.	Jahrb. Min.	1880	2	I.					

Diaphorit.

Rhombisch.

Axenverhältniss.

a:b:c = o.6698:i:i.3617 (Gdt.)

[a:b:c=o.4919:1:o.7344] (Zepharovich. Groth.)

Elemente.

a = 0.6698	lg a = 982595	$\lg a_0 = 969187$	$\lg p_0 = 030813$	a _o = 0.4919	$p_0 = 2.0330$
c = 1.3617	lg c = 013408	$lg b_0 = 986592$	$\lg q_0 = 013408$	$b_o = 0.7344$	$q_o = 1.3617$

Transformation.

Zepharovich. Groth.	Gdt.
рq	$\frac{\mathbf{p}}{\mathbf{q}} = \frac{\mathbf{r}}{\mathbf{q}}$
$\frac{p}{q}$ $\frac{r}{q}$	рq

No.	Zepharovich, Gdt.	Miller.	Naumann.	Gdt.
I	a	001	o P 2	0
2	b	100	$\infty \bar{P} \infty$	∞ 0
3	x	110	∞P	00
4	ψ	120	∞ Ĭ 2	∞ 2
5	w	012	½ P∞	$O^{\frac{I}{2}}$
6	\mathbf{q}	035	<u>3</u> P∞	0 3
7	v	023	² / ₃ P̃∞	O 2/3
8	r	011	ď∞	O I
9	u	O2 I	2 P∞	O 2
10	α	1.0.11	ŢŢĒ o	O II
ΙI	ρ	105	$\frac{I}{5}\tilde{P}\infty$	$\frac{I}{5}$ O
I 2	π	103	$\frac{1}{3} \vec{P} \infty$	$\frac{I}{3}$ O
13	k	5.0.12	$\frac{5}{12}\bar{P}\infty$	5 O
14	n	102	$\frac{1}{2}\bar{P}\infty$	$\frac{1}{2}$ O
15	m	101	$\bar{\mathbf{P}}\infty$	10
16	t	301	3 P̄∞	30
17	y	121	2 P 2	I 2
18	i	141	4 P 4	14
19	d	144	Ў 4	1/4 I
20	ζ	122	Ĭ 2	$\frac{1}{2}$ I
21	ω	341	4 P 4	3 4
22	0	143	4 P 4	I 4
23	e	543	5 P 5	5 4 3 3

502 Diaphorit.

Literatur.

 Zepharovich
 Wien. Sitzb.
 1871
 63
 (1)
 130

 Groth
 Tab. Uebers.
 1882
 —
 27.

Diaspor.

1.

Rhombisch.

Axenverhältniss.

```
\begin{array}{l} a:b:c = o.6443: i: i.0670 \text{ (Gdt.)} \\ [a:b:c = o.9372: i: o.6038] \text{ (Rath. Dana. Groth.)} \\ [... = o.9347: i: o.5926] \text{ (Miller.)} \\ \{a:b:c = o.4686: i: o.3019\} \text{ (Kokscharow.)} \\ \{... = o.4673: i: o.2963\} \text{ (Hausmann. Kenngott.)} \end{array}
```

Elemente.

a == 0.6443	lg a = 980909	$lg a_o = 978093$	$\lg p_0 = 021907$	$a_{\circ} = 0.6038$	p _o = 1.6560
c = 1.0670	lg c = 002816	lg b _o == 997184	$\lgq_o = \infty 2816$	$b_o = 0.9372$	q₀ == 1.0670

Transformation.

Miller. Dana. Rath. Groth.	Hausmann. Kenngott, Kokscharow. Marignac.	Gdt.
pq	p · 2 q	$\frac{1}{q}$ $\frac{p}{q}$
p	pq	$\frac{2}{q} \frac{2p}{q}$
$\frac{\mathbf{q}}{\mathbf{p}}$ $\frac{\mathbf{p}}{\mathbf{p}}$	$\frac{q}{p}$ $\frac{2}{p}$	pq

No.	Gdt.	Kok- scha- row.	Miller.	Haid. Hausm.	Ma- rignac.	Rath.	Miller.	Naumann.	[Haus- mann.]	Gdt.
I	b	T	a	M	L	b	001	οP	В	0
2	a	p		·		a	010	$\infty \breve{P} \infty$		000
3	c		c				100	$\infty \bar{P} \infty$	Α	∞0
4	n	1		_	_	n	015	I P̃∞		0 <u>I</u>
5	z	z	_	_		z	013	I P̃∞	_	$O^{\frac{I}{3}}$
6	1		1		S		012	½ P∞		$0\frac{I}{2}$

(Fortsetzung S. 505.)

504 Diaspor.

Literatur.

```
2 644
Mohs
                Grundr.
                                      1824
Hartmann
                Handwb.
                                      1828
                                                 117
Rose, G.
                Reise Ural
                                      1837
                                              1
                                                 249
Haidinger
                Pogg. Ann.
                                      1844
                                             61
                                                 309
               Arch. sc. Phys. et Nat.
                                      1847 (4) 6
Marignac
                                                 296
                                              2
Hausmann
               Handb.
                                      1847
                                                 (1) 351
Miller
               Min.
                                      1852
                                                 272
                                              9
Kenngott
                Wien. Sitzb.
                                      1852
                                                 595
                                              3
Kokscharow
                Mat. Min. Russl.
                                      1858
                                                 169
                                              5
                                      1866
                                                 44
Rath
                Pogg. Ann.
                                            122
                                                 400 (Campolungo)
                                      1864
Dana
                System
                                      1873
                                                 168
                Zeitschr. Kryst.
Rath
                                      1881
                                                 259 (Greiner).
```

Bemerkungen | s. Seite 506.

2.

No.	Gdt.	Kok- scha- row.	Miller.	Haid. Hausm.	Ma- rignac.	Rath.	Miller.	Naumann.	[Haus- mann.]	Gdt.
7	K	k	k	s	R	K	023	2 ⊬∞	BB'3	$0^{\frac{2}{3}}$
8	y	y				y	011	$\breve{\mathbf{P}}_{\boldsymbol{\infty}}$		0 1
9	M	M	d	\mathbf{p}	M	M	O2 I	2 P̃∞	E	O 2
10	m	m	_			m	809	<u>8</u> P̄∞		8 O
11	e	n	e		12	e	101	$ar{\mathbf{P}}_{\mathbf{\infty}}$		10
12	f					f	201	2 \bar{P} ∞	_	20
13	p	_	p			P	111	P	_	I
14	s	O	s	n	m	s	22 I	2 P	P	2
15	x	x				x	313	Ēз	_	$\frac{1}{8}$ I
16	t	_		_		t	121	2 Ĭ 2	_	I 2
17	r	r		_			4.10.1	10P <u>5</u>		4.10

506 Diaspor.

Bemerkungen.

Als Axenverhältniss nach Haidinger wurde dasjenige angeführt, das Hausmann aus einem Theil der Haidinger'schen Winkel berechnet hat. Bei Haidinger stimmen die Angaben der Winkel für o unter sich nicht überein und geben sie demgemäss auch Hausmann und Miller anders an. Dies kann die Ursache sein, dass das von Haidinger berechnete Axenverhältniss (Pogg. Ann. 1844. 61. 309):

$$a:b:c=1:\sqrt{1\cdot75}:\sqrt{0\cdot125}$$

sich mit den Angaben der anderen Autoren nicht in Uebereinstimmung bringen lässt. Danach erscheint auch die Form o $=\frac{2}{9}$, die gemäss den angegebenen Winkeln von Hausmann und Miller übernommen, später nicht beobachtet wurde, als zweifelhaft. Es dürften bei Haidinger Fehler in den Winkeln für o sein. So ist auffallend, dass 151°54 für nn und oo angegeben ist.

Marignac hat Haidinger's Winkelangaben zu o auf eine Form: $\frac{3}{14}$ $\frac{1}{4}$ unserer Aufstellung gedeutet (vgl. Kenngott Wien. Sitzb. 1852. 9. 614), die Rath anführt als $i = (a:\frac{1}{4}b:\frac{7}{6}c) = 4$ $P\frac{14}{3}$. Statt letzterem ist zu lesen: $\frac{14}{3}$ P $\breve{4}$. (Pogg. Ann. 1864. 122. 401) und J. D. Dana giebt, jedenfalls von Rath entnommen, $4-\frac{14}{3}$ statt $\frac{14}{3}-\breve{4}$. Alle diese Angaben dürften am besten zu streichen sein, zusammen mit der unsicheren Form o = i.

Kenngott's Auslegung der Rose'schen Angaben (Wien. Sitzb. 1852. 9. 613) ist unrichtig und beruht der Irrthum darauf, dass während Rose die Winkel 128° und 134° gegen das Prisma angegeben (Reise Ural 1837. 1. 250), Kenngott diese als Winkel gegen das Pinakoid $\infty O \lesssim$ ansieht. Danach entfällt das Symbol $\infty O \lesssim$ Kenngott. Da die Orientirung der Rose'schen Krystalle nicht ganz sicher steht, so wäre wohl eine wahrscheinliche, doch keine sichere Deutung zu erzielen und wurde sie deshalb unterlassen. Bei erneuter Untersuchung von Material desselben Fundorts dürfte sie sich mit Exaktheit ausführen lassen.

Bei Dana findet sich noch die Angabe $i-\frac{3}{2}=o\frac{3}{2}$ unserer Aufstellung. Für diese konnte ich nirgends eine Quelle oder Winkelangabe finden. Sie wurde daher als nicht gesichert vorläufig nicht aufgenommen.

Unsichere Formen.

No.		Miller.	Naumann.	Gdt.							
I		032	<u>3</u> ⊬∞	$0\frac{3}{2}$	= i - 3/2 (Dana.)						
1 2	o	229	<u>2</u> P	29	= BD'9 (Hausmann nach Haidinger.)						
1 3	i	6.7.28	<u>∓</u> Ў 7	$\frac{3}{14}$ $\frac{1}{4}$	= $(a: \frac{1}{4}b: \frac{7}{6}c)$ (Rath nach Marignac.)						

Correcturen.

```
Rath
                               1864 122 Seite 400 Zeile 8 vu lies
                                                                       (3a : b : c)
                                                                                               (2a : b : c)
                                                401
                                                           18 vo
                                                                                                  4 P 14
                                                                                                 \infty \, P \, \infty
                                                 400
                                                            3 vu
Dana, J. D.
                 System
                                                 168
                                                           19 Vu
                                                 168
                                                            19 Vu
```

Dickinsonit.

Monoklin.

Axenverhältniss.

a:b:c = 1.7322:1:1.200 $\beta = 118°30'$ (Dana, E.S. Brush. Gdt.)

Elemente.

a =	=	1.7322	lg a = 023860	$\lg a_o = 015942$	$\lg p_o = 984058$	a _o == 1.4435	p _o = 0.6927
c =	=	1.200	lg c = 007918	$lg b_0 = 992082$	$\lgq_o = 002308$	$b_o = 0.8333$	$q_o = 1 \cdot 0546$
μ ==	: -β}	61°30	$ \begin{array}{c} \lg h = \\ \lg \sin \mu \end{array} $ 994390	$ \begin{cases} \lg e = \\ \lg \cos \mu \end{cases} 967866 $	$\lg \frac{\mathrm{p}_{\mathrm{o}}}{\mathrm{q}_{\mathrm{o}}} = 981750$	h = 0.8788	e = 0·4772

No.	Brush. Dana. Gdt.	Miller.	Naumann.	Gdt.
I	c	001	οP	О
2	ь	010	$\infty \mathbb{P} \infty$	0 ∞
3	a	100	$\infty P \infty$. ∞0
4	x	301	—3 P∞	3 O — I
5	\mathbf{p}	ĪII	+ P	— I
6	s	221	+2 P	—2

508 Dickinsonit.

Literatur.

Brush u Dana, ES. Zeitschr. Kryst. 1878 2 342 (Penfield.) Dana, E S. System Append. 3 1882 — 37

Bemerkungen.

Der Habitus der Krystalle entspricht der rhomboedrischen Hemiedrie des hexagonalen Systems und damit stimmen überein trigonale Zeichnungen auf den Spaltungsflächen. Doch sprechen die optischen Verhältnisse gegen dies System.

Dioptas.

Hexagonal. Rhomboedrisch-tetartoedrisch.

Axenverhältniss.

Elemente.

c = 1.0561	$\lg c = 002370$	$\lg a_o = 021486$ $\lg a'_o = 997630$	$lg p_0 = 984761$	$a_{\circ} = 1.6401$ $a'_{\circ} = 0.9469$	p _o = 0.7041	
------------	------------------	---	-------------------	---	-------------------------	--

Transformation.

Breithaupt. Websky. Dana. Kokscharow. Hausmann. Groth.	Miller. Des Cloizeaux. G_1 .	G_2 .
рq	$-\frac{p}{2}\frac{q}{2}$	$\frac{p+2q}{2}\frac{p-q}{2}$
— 2 p · 2 q	рq	(p+2q) (p-q)
$-\frac{2}{3}(p+2q)\frac{2}{3}(p-q)$	$\begin{array}{c c} p+2q & p-q \\ \hline 3 & 3 \end{array}$	рq

No.	Gdt.	Miller.	Websky.	Koksch.	Bravais.	Miller.	Naumann.	[Mohs- Zippe.]	Hauy.	Descl.	θ_1	$oldsymbol{ heta_2}$	$\frac{\mathbf{E}}{\mathbf{p-1}} = \frac{\mathbf{q-1}}{3}$
I	ь	a	g	g	1010	101	∞ P2	P+∞	D	$\mathbf{d}_{\mathbf{I}}$	∞ 0	ov.	
2	ð	k			2130	514	∞R3		_	k	2 ∞	4∞	
3	ζ	g	-		31 <u>4</u> 0	72 <u>5</u>	∞ R2	_	_	γ	3∞	$\frac{5}{2}\infty$	
4	τ	l			7180	523	∞R4/3			λ	7∞	$\frac{3}{2}\infty$	
5	p·	r	2 r'	s	1011	100	+R	R+1	E''E	р -	 10	+ 1	0
_6	δ	e	R	R	Ĩ01 2	110	$-\frac{1}{2}R$	R		p ₁ -	$-\frac{I}{2}$ o	$-\frac{1}{2}$	$-\frac{1}{2}$
7	χ.	i		_	1011	22Ī	-R			$e^{\frac{I}{2}}$.	— 1 О	— т	$-\frac{2}{3}$
8	H:	x	х	х	3142	301	+R2	_		d³ -	$+\frac{3}{2}\frac{I}{2}$	+ ı 5/2	o I
9	C:	Z	z	z	7186	70ī	$+R_{\frac{4}{3}}$			d7 -	+ 7 1	$+1\frac{3}{2}$	0 [
10	λ:		u	u	17.1.18.6	17·0·Ī	+R ⁹ / ₈		_		+ 17 I 16 16	$+1\frac{19}{16}$	0 <u>1</u> 6
11	μ:	_	o		18-1-19-20	19.1.0	$+\frac{17}{20}R_{\frac{1}{2}}$				$\frac{9}{10} \frac{1}{20}$	$+1\frac{17}{20}$	$O_{\frac{1}{20}}$
12	e:		v		2132	2 I Ī	$-\frac{1}{2}R_3$			e ₂ -	— I <u>I</u>	$-2\frac{1}{2}$	— I <u>I</u>
13	g:	t			4153	322	$-R_{\frac{5}{3}}$	_			$-\frac{4}{3}\frac{I}{3}$	— 2 I	— 1 О

510 Dioptas.

Literatur.

Hauy	Traité Min.	1822	3	477
Mohs	Grundr.	1824	2	193
Hartmann	Handwb.	1828		494
Breithaupt	Schweigg. Journ.	1831	62	22 I
Mohs- $Zippe$	Min.	1839	2	173
Websky	Pogg. Ann.	1846	69	543
Hausmann	Handb.	1847	2	(1) 745
Miller	Min.	1852		403
Schrauf	Wien. Sitzb.	1860	39	89 I
$Des\ Cloizeaux$	Manuel	1862	1	121
Kokscharow	Mat. Min. Russl.	1870	6	285
**	,,	1875	7	218
Dana	System	1873	-	401
Groth	Strassb. Samml.	1878		203.

Bemerkungen.

Breithaupts Bestimmungen (Schweigger Journ. 1831. 62. 221) wurden von Websky revidirt (Pogg. 1846. 69. 543) und es erhielten dabei o und u andere Symbole. o deshalb, weil Breithaupt's Symbol mit seiner Figur (Fig. 1 Taf. 1) nicht übereinstimmt; wonach o eine stumpfere Form ist als r. u setzt Websky = R_8^9 statt $+R_6^7$ in besserer Uebereinstimmung mit dem Winkel. Erstere Form würde nicht 3°25, sondern 4°25 mit r einschliessen. Websky's Symbol v (S. 545) enthält einen Druckfehler v = $(\frac{3}{5}a:\frac{3}{10}a:\frac{3}{2}a:c)$ statt v = $(\frac{3}{8}a:\frac{3}{10}a:\frac{3}{2}a:c)$ der es unverständlich macht. Seite 548 findet sich das richtige Symbol, jedoch als b bezeichnet. Das dürfte der Grund sein, warum Kokscharow (Mat. Min. Russl. 1870. 6. 289) dies Symbol als unwahrscheinlich bezeichnet, während es nach Entfernung des Druckfehlers ein sehr einfaches ist.

Kokscharow hat die Form $g=\infty P2$ weggelassen, für uxzo die Vorzeichen + statt — gesetzt. Auch kann seine Bemerkung, eine Fläche von dem Symbol Websky's für o könne nicht in der Zone sux liegen, entfallen, da die Lage in der genannten Zone einem solchen Symbol in der That zukommt.

Miller hat (Min. 1852. 403) die Symbole für vu abermals geändert. Da jedoch neuere Messungen nicht gegeben sind, so dürfte die Abweichung nur auf Grund anderer Betrachtung der Breithaupt-Websky'schen Messungen geschehen sein, für die jedoch ein Grund nicht vorliegt.

Miller's Symbole finden sich reproducirt bei Schrauf (Wien. Sitzb. 1860. 39. 891), wo (071) ausgelassen ist, ebenso bei Des Cloizeaux (Manuel 1862. 1. 121), wobei d¹¹ v (Descl.) = uv (Miller) ist. Auch hier nur Wiederholung der Miller'schen Angaben, aber keine Bestätigung gegenüber Websky.

J. D. Dana hat (System 1873 402) Breithaupt's Figur copirt und seine Symbole eingeschrieben ohne den Widerspruch zwischen Figur und Symbol zu bemerken.

Correcturen.

Websky	Pogg. Ann.	1846	69	S.	545 Z	10 1	⁄u	lies v=	$=(\frac{3}{8}a:\frac{3}{10}a$: 3/2 a : c) s	tatt $v = (\frac{3}{5}a$	$1:\frac{3}{10}$	a: 3/2 a: c)
,,	,,	**	"	"	,, ,,	14	"	"	2 r		"	2	r
,,	,,	,,	17	,,	548 "	7 1	vo	"	v		"	ł)
,,	,,	,,	"	"	""	9	"	"	g		"	Ċ	i
Schrauf									0.9470		,,	097	·46
,,	,,	"	"	"	n n	17	,,	ist:	(07Ī)	zuzufü	gen.		
Kokscha	row Mat. Min. Re	ussl. 1870	6	,,	289 "	12,	11	, 10, 2	vu lies	in allen	Symbolen	_	statt +
,,	,,	,,	"	"	" "	2,	Ι,	vu die	Worte	"eine	fallen"		
Dana	System	1873		"	402 F	ig. 3	383	lies	$-\frac{17}{10}^{\frac{19}{17}}$	statt	$-\frac{12}{7}^{\frac{10}{9}}$		
,,	"								— 2 ⁹				

Dolerophanit.

Monoklin.

Axenverhältniss.

$$\begin{array}{lll} a:b:c = \text{ $1\cdot4752:1:1\cdot2096$} & \beta = \text{ $122^\circ54^\circ$} \text{ (Gdt.)} \\ & [a:b:c = \text{ $1\cdot4752:1:1\cdot4808$} & \beta = \text{ $113^\circ52^\circ$}] & \text{(Scacchi.)} \\ & \{a:b:c = \text{ $1\cdot4808:1:1\cdot4752$} & \beta = \text{ $113^\circ52^\circ$}\} & \text{(Dana, E. S.)} \end{array}$$

Elemente.

a	=	1.4752	lg a = 016885	$\lg a_o = 008620$	lg p _o = 991379	a _o = 1.2196	p _o = 0.8200
С	=	1.2096	$\lg c = 008264$	$lg b_o = 991735$	$\lgq_o=ooo672$	$b_o = 0.8267$	$q_o = 1.0156$
μ 180	$=$ $_{-\beta}$	57°06	$\begin{cases} lg h = \\ lg \sin \mu \end{cases} 992408$	$ \begin{cases} \lg e = \\ \lg \cos \mu \end{cases} . 973494 $	$\lg \frac{\mathrm{p}_{\mathrm{o}}}{\mathrm{q}_{\mathrm{o}}} = 990707$	h = 0.8396	e = 0·5432

Transformation.

Scacchi.	Dana.	Gdt.				
pq	$\frac{\mathbf{r}}{\mathbf{p}} = \frac{\mathbf{q}}{\mathbf{p}}$	$-\frac{4P}{3(p+1)}\frac{4Q}{3(p+1)}$				
$\frac{1}{p}$ $\frac{q}{p}$	pq	$-\frac{4}{3 p+1} \frac{4 q}{3 p+1}$				
$-\frac{3P}{3P+4}\frac{3Q}{3P+4}$	$-\frac{4+3p}{3p}\frac{q}{p}$	pq				

No.	Scacchi. Gdt.	Miller.	Naumann.	Gdt.
I	A	001	οP	0
2	C	010	$\infty P \infty$	0 00
3	g	100	$\infty P \infty$ -	∞ 0
4	t	110	∞P	∞ ·
5	h	803	— <u>8</u> P∞	$+\frac{8}{3}$ o
6	d	ĪOI	+ P∞	1 O
7	В	403	$+\frac{4}{3}$ P ∞	— 4 0
8	e	201	+ 2 P∞	— 2 O
9	f	401	+4 P∞	 4 0
10	τ	883	— <u>8</u> P	+ 8
11	r	Ī12	$+\frac{1}{2}P$	$-\frac{1}{2}$
12	s	ĪIJ	+ P	— 1
13	n	ī33	+ P3	— <u>1</u> 1
14	q	312	$+\frac{3}{2}P_{3}$	$\frac{3}{2}\frac{1}{2}$
15	p	314	$+\frac{3}{4}$ P 3	$-\frac{3}{4}\frac{1}{4}$
16	m	269	$+\frac{2}{3}$ P 3	$-\frac{2}{9}\frac{2}{3}$

Literatur.

Bemerkungen.

Die Aufstellung ist derart, dass in dem Axenverhältniss eine Analogie mit dem wahrscheinlich isomorphen Lanarkit gefunden werden kann. Doch ist der Vergleich unsicher wegen der noch bestehenden Unklarheit der Formenreihe des Dolerophanit, noch mehr aber des Lanarkit.

Vielleicht empfiehlt es sich, statt der gewählten Symbole $\frac{p}{2}$ zu nehmen.

Es bezieht sich allgemein bei Scacchi a und h auf die verticale, b und k auf die Längs-, c und l auf die Quer-Axe. Danach ist zu lesen:

Correcturen.

Dolomit.

1.

Hexagonal. Rhomboedrisch-hemiedrisch.

Axenverhältniss.

$$\begin{array}{ll} a:c = \text{1:0.8322 (Mohs-Zippe} = G_2) \\ \text{[a:c = 1:0.8322] (L\'{e}vy. Hausmann. Miller. Des Cloizeaux.} \\ \text{(10)} & \text{Dana. Hintze. Groth} = G_1.) \\ \text{[} \text{ } \text{$_{1}$} = \text{1:0.8319] (Kokscharow.)} \end{array}$$

Elemente.

	c = 0.8322	lgc = 992023	$\lg a_o = o_{31}833$	$\lg p_0 = 974414$	a _o == 2.0812	$p_0 = 0.5548$	
į			$\lg a_o = \infty 7977$		a' _o = 1·2017		

Transformation.

Lévy. Hausmann. Des Cloizeaux. Miller. Dana. Kokscharow. Hintze. Groth. G ₁ .	Mohs-Zippe. ${\sf G_2}.$
pq	(p+2q) (p-q)
$\frac{p+2q}{3} \frac{p-q}{3}$	pq

No.		Kok- scha- row. Miller.	Groth.	Hauy. Hausm. Mohs. Hartm. Zippe.	Bravais.	Miller.	Naumann.	Hausm.	Mohs- Zippe. Hartm.	Hauy.	Lévy. Descl.	6 1	${\bf G_2}$	G'2	$E = \frac{p-1}{3} \frac{q-1}{3}$
I	0	o	с	0	0001	111	οR	A	R—∞	A	a¹	o	О	О	-
2	a	a		u	I I 2O	ΙΟΪ	∞P 2	В	P+∞	$\mathbf{D}_{\mathbf{I}}$	$\mathbf{d}^{\mathbf{I}}$	∞.	0 00	0 ∞	-
3	8		h	_	4489	73Ī	8 P 2	_				49	O 4	o 4	
4	q.				707 I	522 -	+ 7 R					十70	+ 7	+ 7	+2
5	y.	_			60 <u>6</u> 1	13.5.5 -	+6 R					+60	+ 6	+ 6	十多
6	m٠	m		m	4041	311 -	+ 4 R	HA_{4}^{I}	R+2	å e	e ³	+40	+ 4	+ 4	+ 1
7	1.	r	r	P	3031	722 -	+ 3 R				$e^{\frac{7}{2}}$	+30	+ 3	+ 3	$+\frac{2}{3}$
8	p.	_			1011	100 -	+ R	P	R	P	r	+ 10	+ 1	+ 1	0
9	x٠	_			14.0.14.1	7 15-1-1	 		_		a ¹⁵	+140	$+\frac{14}{17}$	十 14	$-\frac{1}{17}$

(Fortsetzung S. 515.)

514 Dolomit.

Literatur.

Hauy	Traité Min.	1822	1	418 u. 427
Mohs	Grundr.	1824	2	109 u. 113
Hartmann	Handwb.	1828		277
$L \acute{e} v y$	Descr.	1838	1	115
Mohs - $Zippe$	Min.	1839	2	101
Hausmann	Handb.	1847	2	(2) 1332
Miller	Min.	1852		581—585
Sella	Studi s. Min. Sarda. Turin. Ac.	1856 (2	2) 17	13, 18, 19
Hessenberg	Senck. Abh.	1861	3	267 (Min. Not. No. 3. 13)
Dana	System	1873		682
$Des\ Cloizeaux$	Manuel	1874	2	127
Kokscharow	Mat. Min. Russl.	1875	7	5 u. 181
Groth	Strassb. Samml.	1878	_	127, 131
Hintze	Zeitschr. Kryst.	1883	7	438.

Bemerkungen s. Seite 516.

2.

No.	Gdt.	Kok- scha- row. Miller.	Groth.	Hauy. Hausm. Mohs. Hartm. Zippe.	Bravais.	Miller.	Naumann.	Haus- mann.	Lippe.	Hauy.	Lévy. Descl.	G_1	G_2	G'2	$E = \frac{p-1}{3} \frac{q-1}{3}$
10	y.				4045	13.1.1	+ 4 R					<u>- 4</u> o	+ 4/5	+ 4/5	$ \begin{array}{r} -\frac{I}{15} \\ -\frac{I}{12} \\ -\frac{I}{7} \end{array} $
11	$\mathbf{z}\cdot$			_	3034	10.1.1	$+\frac{3}{4}R$	_		_		<u> </u>	$+\frac{4}{5}$ $+\frac{3}{4}$	$+\frac{3}{4}$	<u>I</u>
12	g·	_			4047	511	+ 4 R				a ⁵ -	<u></u> - ∳o	+ 4/7	十 券	
13	e.		d		2025	311	+ 2 R		_		a ³ –	$-\frac{2}{5}$ O	+ 2/5	+ 2/5	<u>I</u>
14	$\mathbf{d}\cdot$		_		1014	211	$+\frac{1}{4}R$		_			- ^I o ·	+ I	$+\frac{1}{4}$	I
? 1 5	r·				1.0.1.10	11.11.8	$-\frac{1}{10}R$	_	-		$a^{\frac{8}{11}}$ –	o <u>I</u>	<u> </u>	$-\frac{1}{10}$	$-\frac{1}{3}\frac{1}{0}$
16	8.	e	_	g	Ī012	110	$-\frac{1}{2}R$	G	R-t	B		- ½ o	<u>I</u>	— <u>I</u>	$-\frac{1}{2}$
17	η.	x	e		4 045	33₹	— 4 R					- 4 o	<u>4</u>	<u> </u>	3 5
18	ρ.	_			3032	554	$\frac{3}{2}R$				$e^{\frac{4}{5}}$ -	$-\frac{3}{2}$ 0	³ / ₂	$\frac{3}{2}$	<u>5</u>
19	φ.	f	f	f	202 I	111	2 R	FA ₄	R+1	E11E	e ^I -	- 20	2	— 2	— т
20	Ξ			_	<u>5</u> 051	322	— 5 R				<u> </u>	-50 ·	- 5	— 5	— 2
21	Π .				8081	533	8 R	_		-	$e^{\frac{5}{3}}$ -	-8o ·	_ 8	— 8	<u> </u>
22	K:	v		r	2131	201	+ R ³	KG ^I ₃	(P) ³		,	- 2 I -	+ 41	+ 1 4	0 1
23	N:		_		5382	50 <u>3</u>	+ R4				$d^{\frac{5}{3}}$	$-\frac{5}{2}\frac{3}{2}$ -	$+\frac{11}{2}$ 1	$+i\frac{11}{2}$	$0\frac{3}{2}$
24	P:			у	3251	302	+ R ⁵			$\overset{rac{3}}{\mathbf{D}}$	- +	- 3 2 -	+ 7 I	+ 1 7	O 2
25	a:				4265	51Ī	$+\frac{2}{5}R^{3}$	_		_	e ₅ +	$-\frac{4}{5}\frac{2}{5}$ -	+ 825	— 2 2 5	— I <u>I</u>
26	ſ:	_			20-1-21-21	62·2· <u>₹</u>	$+\frac{19}{21}R^{\frac{2}{19}}$]			- +	-20 <u>I</u>	$\frac{123}{21} \frac{19}{21}$	$-2\frac{19}{21}$	— $1\frac{2}{63}$
27	3:	m	_		5161	4 Ī 2	$+4R^{\frac{3}{2}}$	_					+ 74		+ 1 2
28 29	M: d:	_ I	_	_	9·1·TO·2 5492	723 514	$+4 R^{\frac{5}{4}}$ $-\frac{1}{2} R^{9}$						$+\frac{11}{2}4$ $-\frac{13}{2}\frac{1}{2}$	$+4\frac{11}{2}$ $-\frac{1}{2}\frac{13}{2}$	

Bemerkungen.

Bei Hausmann (Handwb. 1847. 2. (2) 133) ist aufgeführt die Form E (u) $= \infty R$. Statt dessen muss es heissen B (u) $= \infty P 2$. Die Hausmann'sche Angabe ist von Mohs entlehnt (Grundr. 1824. 2. 471), der für $P+\infty$ den Buchstaben u gebraucht und die gleiche Combination wie Hausmann:

 $R \cdot R - \infty \cdot R + 1 \cdot P + \infty \cdot (P)^3$ (Mohs) = $6P \cdot 2A \cdot 6B$ (nicht E) $6FA_4^{\frac{7}{4}} \cdot 12KG_3^{\frac{7}{3}}$ (Hausm.) anführt. ∞P_2 findet sich wieder bei Miller (Min. 1852. 581) = a (101) und Dana (System 1873. 682) = i-2 und Des Cloizeaux (Man. 1874. 2. 128) = d^2 . ∞R fand sich nur noch bei Naumann-Zirkel (Elem, 1877. 401) und dürfte auch diese Angabe, die wie bei Hausmann ohne Zeichnung und Winkelangabe dasteht, auf einem Irrthum beruhen und statt ∞R zu setzen sein ∞P_2 ; danach wäre auch die Anmerkung am Fuss derselben Seite richtig zu stellen. Die Form ∞R dürfte beim Dolomit überhaupt noch nicht beobachtet sein.

Die Form $+\frac{10}{13}R$ (Hessenberg) wird von Hintze für identisch mit $+\frac{4}{3}R$ gehalten (Zeitschr. Kryst. 1883. 7. 440), da hiermit Hessenberg's Winkel gut übereinstimmt. Hessenberg's $-\frac{1}{10}R$, auch von anderen Beobachtern nicht gesehen, hat wenig innere Wahrscheinlichkeit.

Des Cloizeaux giebt noch die Formen zô von dem Symbol:

$$z = -22 \cdot 4 \, (G_2)$$

 $\delta = -90 \, (G_2)$

Beides sind einzelstehende Vicinalflächen von nicht ganz sicher gestellten Zeichen (Des Cloizeaux Manual 1874. 2. 130 Anm.)

 $-\frac{3}{5} = -\frac{3}{5}R$ findet sich bei Kokscharow (Mat. Min. Russl. 1875. 7. 20), jedoch ohne Messungen, Combination und Figur. Es ist wohl nicht als gesichert anzusehen.

-4 = -4 R giebt Groth an (Strassb. Samml. 1878. 128). Die Fläche ist nach der Zeichnung äusserst schmal und trotzdem der Winkel cg sehr gut mit der Rechnung stimmt, glaube ich doch, dass die Form der Bestätigung bedarf, da sie so schlecht in die Reihe der Dolomitformen passt. Zu erwarten wäre $-\frac{7}{2}$ oder -5.

Zur Buchstabenbezeichnung wurden für die gleichen Formen die gleichen Zeichen gegeben, wie beim Calcit, und so auch die Buchstaben mit Punkten :: gesetzt, obwohl man für den Dolomit allein ja ohne diese auskommt.

Die Formen des Breunerit (Mesitinspath, Pistomesit) und Ankerit (Braunspath) sind denen des Dolomit eingereiht. Wir können für den Breunerit das Axenverhältniss a: c (10) = 1:0.81 (G₁) annehmen, für den Ankerit a: c (10) = 1:0.83.

Correcturen.

Dufrenoysit. (Rath.)

Rhombisch.

Axenverhältniss.

 $a:b:c=o\cdot 938:i:i\cdot 53i$ (Berendes. Rath. Groth. Gdt.)

Elemente.

a = 0.938	$\lg a = 997220$	$\log a_0 = 978722$	$\lg p_0 = 021278$	$a_0 = 0.6127$	$p_0 = 1.6322$
c = 1.531	lg c = 018498	$lg b_0 = 981502$	$lg q_0 = 018498$	$b_0 = 0.6532$	$q_o = 1.5310$

No.	Gdt.	Berendes.	Rath.	Miller.	Naumann.	Gdt.
I	С	С	С	001	οP	0
2	ь	b	b	010	∞Ď∞	000
3	а	a	а	100	$\infty \bar{P} \infty$	∞0
4	m	m	m	110	∞P	∞
-5	1	1	$\frac{1}{2}$ f	012	<u>I</u> P∞	$0^{\frac{1}{2}}$
6	k	k	2 /3 f	023	²g p≀∞	0 2
7	i	i	f	011	Ď∞	0 1
8	h	h	₹ d	104	Ī₽̃∞	1 o
9	g	g	$\frac{1}{2}$ d	102	$\frac{1}{2}\bar{P}\infty$	$\frac{1}{2}$ O
10	f	f .	$\frac{2}{3}$ d	203	2/3 P∞	² / ₃ O
11	d	đ	d	101	Ē∞	10
12	e	e	2 d	201	2 P̄∞	20
13	q	0	o	111	P	1
14	Þ	p	2 O	221	2 P	2

Literatur.

 Des Cloizeaux
 Ann. Min.
 1855 (5) 8 389

 Heuser
 Pogg. Ann.
 1856 97 120 (Binnit)

 Berendes
 Inaug. Diss. Bonn.
 1864

 Rath
 Pogg. Ann.
 1864 122 373

Bemerkungen.

Die Angaben von Des Cloizeaux und Heusser lassen sich nicht in sichere Uebereinstimmung mit denen von Berendes und Rath bringen. Die Ursache liegt im Material und sagt Rath darüber (Pogg. Ann. 1864. 122. 379): "(es) ist nicht mit Bestimmtheit zu ersehen, ob auch nur ein Dufrenoysit-Krystall diesen Mineralogen bekannt war."

Im Anschluss an Rath würde der Name Dufrenoysit für das rhombische Binnit für das reguläre Material verwendet. Sartorius v. Waltershausen, Heusser u. A. gebrauchen den Namen umgekehrt.

Die Berendes'schen Buchstaben wurden beibehalten, nur q für o gesetzt. Letzterer Buchstabe ist für häufige Formen ausser der Basis principiell vermieden, da er nach seinem Aussehen leicht zu Verwechselungen mit dem Zahlensymbol o = (001) führen kann.

Ueber die Beziehung des Axen-Verhältnisses des Dufrenoysit zu dem von Emplektit, Skleroklas, Zinckenit, Wolfsbergit s. Emplektit.

Durangit.

Monoklin.

Axenverhältniss.

 $a:b:c=o\cdot 7715: \iota:o\cdot 8223 \ \beta=\iota\iota 5^{\circ}\iota 3$ (Des Cloizeaux. Groth. Gdt.)

Elemente.

a	=	0.7715	lg a = 988734	$\lg a_0 = 997231$	$\lg p_0 = 002769$	$a_0 = 0.9382$	$p_o = 1.0658$
С		0.8223	lg c = 991503	$lg b_o = 008497$	$\lg q_0 = 987154$	b _o = 1.2161	$q_0 = 0.7439$
μ 180	=] -β	64°47	$ \begin{array}{c} \lg h = \\ \lg \sin \mu \end{array} $ $ 995651 $	$ \begin{array}{c} \lg e = \\ \lg \cos \mu \end{array} $ 962945	$\lg \frac{\mathrm{p}_{\mathrm{o}}}{\mathrm{q}_{\mathrm{o}}} = \mathrm{o} 15615$	h = 0.9047	e = 0·4260

No.	Gdt.	Miller.	Naumann.	Des Cloizeaux.	Gdt.
I	ь	010	ωPω	g.I	000
2	a	100	$\infty P \infty$	h ^I	∞o
3	m	110	∞P	m	∞.
4	e	O2 I	2₽∞	$e^{\frac{I}{2}}$	O 2
5	p	111	— P	$\mathrm{d}^{rac{\mathrm{I}}{2}}$	+ r
6	k	Ī I 2	$+\frac{1}{2}P$	$\mathfrak{b}_{\mathtt{I}}$	$-\frac{1}{2}$
7	π	ĪII	+ P	$b^{\frac{\mathrm{I}}{2}}$	— ı

520 Durangit.

Literatur.

Des Cloizeaux Ann. Chim. Phys. 1875 (5) 4 401 Groth Strassb. Samml. 1878 — 181.

Dysanalyt.

Regulär.

No.	Gdt.	Miller.	Naumann.	G_1	G_2	G_3
I	С	001	∞○∞	0	000	∞0

522 Dysanalyt.

Literatur.

Knop Zeitschr. Kryst. 1877 1 284.

Edingtonit.

Tetragonal.

Axenverhältniss.

$$a:c = 1:0.953$$
 (Gdt.)

a:c = 1:0.9543 (Miller.)

 $[a:c=\tau:o-6727]$ (Haidinger. Hartmann. Mohs. Zippe.) $[\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \]$ (Haidinger. Hartmann. Mohs. Zippe. Hausmann. Dana. Groth.)

 $(a:c=1:1\cdot3450)$ (Des Cloizeaux.)

Elemente.

$\left \begin{array}{c} c \\ p_o \end{array} \right = 0.953$	lg c = 997909	$\lg a_0 = 002091$	a₀ = 1·0493
--	---------------	--------------------	-------------

Transformation.

Haidinger. Mohs. Zippe. Hartmann. Hausmann. Dana. Groth.	Des Cloizeaux.	Miller. Gdt.
pq	$\frac{\mathbf{p}}{2} \frac{\mathbf{q}}{\mathbf{z}}$	$\frac{\mathbf{p}+\mathbf{q}}{2}\frac{\mathbf{p}-\mathbf{q}}{2}$
2 p · 2 q	pq	(p+q) (p-q)
(p+q) (p-q)	$\frac{p+q}{2} \frac{p-q}{2}$	рq

No.	Miller. Greg. Gdt.	Haidinger. Hartmann. Mohs. Zippe.	Miller.	Naumann.	[Hausmann.]	[Mohs.] [Hartmann.] [Zippe.]	[Descl.]	Gdt.
I	a	m	100	ωPω	E	P+∞	m	% 0
2	s		103	I/3 P∞			Ъ³	$\frac{I}{3}O$
3	n	n	102	$\frac{1}{2}$ P ∞	AE2	P-2	b^2	$\frac{1}{2}$ O
4	е	P	101	P∞	P	P	P ₁	10

524 Edingtonit,

Literatur.

Haidinger	Pogg. Ann.	1825	5	193
Hartmann	Handwb.	1828		133
Mohs - $Zippe$	Min.	1839	2	275
Hausmann	Handb.	1847	2(1)	798
Miller	Min.	1852		458
Greg u. Lettsom	Manuel	1858		191
$Des\ Cloizeaux$	Manuel	1862	1	429
Dana J. D.	System	1873		417
Groth	Tab. Uebers.	1882		113

Bemerkungen.

Bei Haidinger (Pogg. Ann. 1825. 5. 193) und nach ihm bei Hartmann und Mohs-Zippe ist das Axenverhältniss a $=\sqrt{0.905}$ in Widerspruch mit den Winkeln der Grundform P. Ersteres giebt in unserer Schreibweise

$$a:c = 0.6727$$
 letzteres
$$a:c = 0.6747$$

Offenbar ist der letztere Werth aus dem zweiten gegebenen Winkel $\frac{P-2}{2}$ (n) = 129°8′ berechnet. Derselbe Gegensatz besteht zwischen der Angabe des Elements bei Miller und bei Des Cloizeaux. Miller legt zu Grund den Winkel: 101:001 = 43°39. 5, entsprechend:

$$a:c = 1:0.9543 = 1:0.6747 \sqrt{2}$$
.

Des Cloizeaux $b^2 : b^2 = 129^{\circ 8!}$, woraus

$$a:c=1:1.345=1:2.0.6725.$$

Neuere Messungen sind nicht angegeben und daher wohl das Mittel

als der wahrscheinlichste Werth anzunehmen.

Eggonit.

Triklin.

Axenverhältniss.

$$\begin{split} a:b:c &= o\cdot 5985: \text{$I:I:123$} &\quad \alpha\,\beta\gamma = 9\text{I°o'; 90°23'; 90°50'$ (Gdt.)} \\ &[a:b:c &= o\cdot 8907: \text{$I:o\cdot 5329$} &\quad \alpha\beta\gamma = 90^\circ23'; 90^\circ50'; 9\text{I°o']$ (Schrauf.)} \end{split}$$

Elemente der Linear-Projection.

a = 0.5985	$a_o = 0.5329 \cdot$	α == 91°0	x ¹ ₀ =-0.0070	$q_{_{1}} = -o.o188$
b = 1	$b_o = 0.8905$	$\beta = 90^{\circ}23$	y' ₀ == -0.0174	$\delta^{\scriptscriptstyle } \Longrightarrow 2 1^{\circ}42$
c = 1·123	$c_{\circ} = 1$	$\gamma = 90^{\circ}50$	k = 0.9998	

Elemente der Polar-Projection.

$p_{\circ} = 1.8763$	λ = 88°59·6	x _o =0.0067	d = 0·0188
$q_0 = 1.1231$	$\mu = 89^{\circ}36.2$	y ₀ =0.0175	δ= 20°46·7
r _o = 1	v = 89°09·6	h = 0.9998	

Transformation.

Schrauf.	Gdt.
рq	$\frac{2}{3} \frac{2}{q} \frac{p}{3} \frac{q}{q}$
$\frac{2}{3 p} \frac{q}{p}$	pq

No.	Schrauf. Gdt.	Miller Naumann		Gdt.
I	Ъ	001	οР	0
2	a	010	∞ P ∞	0 00
3	s	OII	,Ř'∞	оі
4	σ	OÏ I	¹Ĕ₁∞	ΟĪ
5	η	101	${}^{\scriptscriptstyle{ }}\bar{\mathrm{P}}{}^{\scriptscriptstyle{ }}\infty$	1 O
6	ε	ĪOI	$_{i}\bar{P}_{i}\infty$	ĪO

526 Eggonit.

Literatur.

Schrauf Zeitschr. Kryst. 1879 3 352.

Eis.

Hexagonal.

Axenverhältniss.

$$\begin{array}{c} a:c = \text{$\text{$1:2.800$}$} (G_1.)\\ \text{(1)} \\ \\ a:c = \text{$1:1.617$} (\text{Nordenskj\"{o}ld}_1.)\\ \text{$[a:c = \text{$1:1.400$}]} (\text{Nordenskj\"{o}ld}_2. \text{ Groth.)} \end{array}$$

Elemente.

c = 2.800	lg c = 044716	$lg a_o = 979140$ $lg a'_o = 955284$	$\lg p_o = 027107$	$a_{\circ} = 0.6186$ $a'_{\circ} = 0.3571$	p _o == 1.8667	
-----------	---------------	---	--------------------	---	--------------------------	--

Transformation.

Nordenskjöld ₁ . Groth.	Nordenskjöld $_2$. G_1 .	G ₂ .		
рq	$\frac{p+2q}{2} \frac{p-q}{2}$	$\frac{3}{2}$ p $\frac{3}{2}$ q		
$\frac{2(p+2q)}{3}\frac{2(p-q)}{3}$	рq	(p+2q) (p-q)		
$\frac{2}{3}$ p $\frac{2}{3}$ q	$\frac{p+2q}{3} \frac{p-q}{3}$	рq		

No.	Gdt.	Nordenskjöld.	Miller.	Bravais.	Miller.	Naumann.	Des Cloizeaux.	G ₁ .	G ₂ .
I	О		0	0001	111	оP	p	0	0
2	m	m	a	1010	2 I Ī	∞P 2	m	œο	00
_ 3	n			1120	101	∞P		00	∞0
4	r	r	_	1012	110	1/2 P		$\frac{I}{2}O$	<u>I</u>
5	s	s		1011	100	P		10	1
6	t	t		40 <u>4</u> I	3 <u>T</u> T	4 P		40	4

528 Eis.

Literatur.

Bernhardi	Schweigger Journ.	1821	32	1
Smithson	Thomson Ann. Philos.	1823 (2	2) 5	340
Galle	$Pogg.\ Ann.$	1840	49	241
Miller	Min.	1852		256
Leydold	Wien. Sitzb.	1851	7	477
Franke u. Geinitz	Ges. Isis. Dresden	1860		
$Nordenskj\"{o}ld$	$Pogg. \ Ann.$	1861	114	612
[Abich]	Pogg. Ann.	1872	146	475
Groth	$Tab.\ Uebers.$	1882		32.

Bemerkungen.

Nordenskjöld hat vom Eis Krystalle heobachtet, die dem tetragonalen oder rhombischen System angehören (Pogg. Ann. 1861. 114 615). Die ebenfalls beobachteten Schneegestalten von quadratischem Querschnitt lassen auf das tetragonale System schliessen.

Leydolt (Botzenhart's) Angabe des Elementes $R=117^{\circ}23';~a=\sqrt{1.2656}$ stimmt weder in sich, noch lässt sie sich mit den Angaben Nordenskjölds in Einklang bringen.

Eisen.

Regulär.

No.	Gdt.	Miller.	Miller.	Naumann.	G_1	G ₂	G_3
I	с	a	001	001 ∞0∞		000	∞0
2	p	o	111	О	I	1	I

Goldschmidt, Index. 34

530 Eisen.

<u>Literatur.</u>

Miller	Min.	1852		130
Weiss, A.	Wien. Sitzb.	1860	39	861
Sadebeck	Pogg. Ann.	1875	156	554.

Eisenglanz.

1.

Hexagonal. Rhomboedrisch-hemiedrisch.

Axenverhältniss.

Elemente.

	c = 1·359	$\lg c = 013322$	$\lg a_{\circ} = 010534$ $\lg a'_{\circ} = 986678$	$\lg p_0 = 995713$	$a_{\circ} = 1.2745$ $a'_{\circ} = 0.7358$	p _o = 0.9060	
--	-----------	------------------	---	--------------------	---	-------------------------	--

Transformation.

Hauy. Lévy. Hausmann. Miller. Kokscharow. Dana. Strüver. Bücking. Scacchi. Groth = G ₁ .	$egin{aligned} ext{Mohs-Zippe} \ &= ext{G}_2. \end{aligned}$
pq	(p+2q) (p-q)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	pq

No.	Gdt.	Miller. Hessb. Bück.	Kok-	Hauy. Hausm.	Mohs. Hartm. Zippe.	Scacchi.	Bravais.	Miller.	Naumann.	Haus- mann.	Mohs. Hartm. Zippe.	Hauy.	Lévy. Dufrén.	6,	θ_2	G '2	$E = \frac{p-1}{3} \frac{q-1}{3}$
I	0	о•с	o	o	0	0	0001	111	οP	A	R—∞	Ą	a ^I	0	0	О	_
2	a	a	a		z	z	1120	101	∞P 2	В	P+∞	$\mathbf{D}_{\mathbf{I}}$	\mathbf{q}_{1}	∞	∞o	∞0	
3	b	ь	1	r	r		1010	2 Ī Ī	∞R	E	$R+\infty$	e e	e^2	œο	∞	00	
4	η	h		_			4150	312	$\infty R \frac{5}{3}$	_			$d_1 q_{\overline{2}} p_{\overline{3}}$	4∞	200	∞2	
5	ð	δ					2130	5 1 4	∞R 3	_				2∞	4∞	∞4	
6	q	q					1126	321	1/3 P 2			_	$p_1 p_{\frac{1}{2}} p_{\frac{3}{2}}$	<u>I</u>	$\frac{I}{2}$ O	$0\frac{I}{2}$	_

Literatur.

```
Hauy
                 Traité Min.
                                    1822
                                            4
                                               5
Mohs
                 Grundr.
                                     1824
                                            2
                                               47 I
Hartmann
                 Handwb.
                                    1828
                                               143
                 Lehrb. Kryst.
Naumann
                                    1830
                                            1
                                               503
L \acute{e} v y
                 Descr.
                                            3
                                    1838
                                               110
Mohs-Zippe
                 Min.
                                    1839
                                            2
                                               44 I
Hausmann
                Handb.
                                            2
                                    1847
                                               (1) 232
Miller
                 Min.
                                     1852
                                               236
Kokscharow
                 Mat. Min. Russl.
                                    1853
                                            1
                                               3
Dana, J. D.
                 System
                                    1855 —
                                               113
Hessenberg
                 Senck. Abh.
                                     1863
                                           4
                                               223
                                    1864
                                            \mathbf{5}
                                               233
Rath
                 Pogg. Ann.
                                    1866 128
                                               420 (Eiterkopf)
Hessenberg
                Senck. Abh.
                                    1869
                                               33
                                    1870
                                            7
                                               308
Str\"uver
                 Torino Att. Ac.
                                    1872
                                           7
                                               377 (Sep. 1-53. Ematite di Traversella)
                 (Jahrb. Min.
                                               424) (Referat über diese Arbeit)
                                    1872 -
Dana, J. D.
                System
                                    1873 —
                                               140
Scacchi
                 Napoli Mem. Ac.
                                    1875
                                           6
                                               3
B\ddot{u}cking
                Zeitschr. Kryst.
                                    1877
                                            1
                                               562 (Ref. Jahrb. Min. 1877. 939)
                                           2
                                    1878
Lasaulx
                                    1879
                                           3
                                               294 (Biancavilla)
Hare
                                    1880
                                           4 297 (Reichenstein)
                      "
Rath
                                    1882
                                           6 192 (Ascension)
Schmidt, A.
                                           7 547 (Hargita Geb.).
                                    1883
```

Bemerkungen Correcturen s. Seite 534. 536—538. 2.

									4								
No.		Miller. Hessb. Bück.		Hauy. Hausm.	Mohs. Hartm. Zippe.	Scacehi.	Bravais.	Miller.	Naumann.	Haus- mann.	Mohs. Hartm. Zippe.	Hauy.	Lévy. Dufrén.	6,	\mathbf{G}_2	6'2	$\begin{bmatrix} E & \Longrightarrow \\ \frac{p-1}{3} & \frac{q-1}{3} \end{bmatrix}$
7	π	π					1123	210	² / ₃ P ₂		P		$\mathbf{b}^{\frac{\mathbf{I}}{2}}$	<u>I</u>	10	ОІ	
8	r		_	_			2245	11 · 5·Ī	4 P 2					<u>2</u>	<u>6</u> 0	o §	
9	λ	n	n	n	n	i	2243	311	4/3 P 2	BA_{4}^{3}	P+1	ЕззЕ	e_3	<u>2</u>	2 O	O 2	
ю	α					k	4483	513	8 P 2					4/3	40	0 4	_
11	t			_			3362	11.2.7	3 P 2	_				3/2	9 20	o 2/2	
12	u	x				$\mathbf{k}_{\mathtt{I}}$	5·5·ĪO·3	614	10P 2				_	<u>5</u>	5 O	05	-
											³ P+3 ₺	7 7 5 5 8 0 5 D 1	1 1 7 L	<u>I</u>	· -	- (
13	ξ	z		t	t	k ₂	2241	715	4 P 2	— :	₹P+3 K	'a ar nar.	a+a /b	5 2 7	6 o	06	
14	β		_	_	_	k ₃	7.7.14.3	816	14P 2				_	7 3 8 3	7 O 8 O	07 08	_
15	γ_					k ₄	8.8.16.3	917	16P 2								
16	δ		_			k ₅	3361	10.1.8	6 P 2					3	90	09	
17	m·	m	_	-	u	-	4041	311 -	- 4 R	_	R+2	_	e^3	+40	+4	+4	+ 1
18	k٠	1	_	_	_	_	5052	4ĪĪ -	$-\frac{5}{2}$ R			_	e ⁴	$+\frac{5}{2}$ o	$+\frac{5}{2}$	$+\frac{5}{2}$	$+\frac{1}{2}$
19	a·	Θ		_			202 I	511	- 2 R		_		_	+20	+ 2	+ 2	$+\frac{1}{3}$
20	b٠	11					50 <u>5</u> 4	14.1.1				_	_	$+\frac{5}{4}$ o	$+\frac{5}{4}$	$+\frac{5}{4}$	$+\frac{I}{I2}$
21	p·	r	R	P	P	Α	1011	100	- R	P	R	P	p	+ 1 O	+1	+1	О
22	х.	Φφ					5058	611	- § R	_		_	a ⁶	+ 5 o	+ 5	+ 5/8	— 1
23	g.		v	_			4047	511		_				+ 40	十寿	十号	$\frac{1}{7}$
24	f·	d	_			_	1012	411 +	$-\frac{I}{2}R$				a ⁴	$+\frac{1}{2}$ o	$+\frac{1}{2}$	$+\frac{1}{2}$	— [
25	e.					_	2025	311 +	- 2 R					$+\frac{2}{5}$ o	+ 2/5	+ 2/5	— <u>I</u>
26	d٠	u	s	s	s		1014	211 +		AH4	R-2	A	a^2	$+\frac{1}{4}o$	$+\frac{1}{4}$	$+\frac{1}{4}$	$-\frac{1}{4}$
27	c٠	λ	u		_		1.0.1.16	655 +	$-\frac{I}{16}R$	AH16	R-4	_	_	$+\frac{16}{1}$ o	$+\frac{1}{16}$	$+\frac{1}{16}$	$-\frac{5}{16}$
28	G.	α					Ī·O·1·23	887 —	- <u>I</u> R				_	$-\frac{1}{23}$ 0	$-\frac{I}{23}$	$-\frac{I}{23}$	$-\frac{8}{23}$
	į.			37	y		<u>1018</u>	332 —		AF4	R-3	AB3B1	$a^{\frac{2}{3}}$	— ½ o	— <u>I</u>	— I	— <u>3</u>
29		y		у	y				-		. 3	ī	$a^{\frac{I}{2}}$				2 /5
30	α.	μ					TO15	221 —					a-	$-\frac{1}{5}$ o	— <u>I</u>	$-\frac{1}{5}$	
31	$\mathbf{E}\cdot$	$\mathbf{c} \cdot \mathbf{o}$	_				ī014	552 —	- ¼ R		_		_	— ^I o	$-\frac{1}{4}$	$-\frac{1}{4}$	$-\frac{5}{12}$
32	$\mathbf{D} \cdot$	γ					2 027	331 —	- 2 R	_			$a^{\frac{1}{3}}$	$-\frac{2}{7}$ o	$\frac{2}{7}$	$\frac{2}{7}$	$\frac{3}{7}$
33	8.	e	t	b		đ	ĪOI2	110 —		G	R—1		$\mathbf{p_{I}}$	$-\frac{1}{2}$ o	$-\frac{1}{2}$	$-\frac{1}{2}$	$-\frac{1}{2}$
34	C.	ρ					<u></u> 5057	441	- 5 R	_				$-\frac{5}{7}$ 0	— 5	— 5	
35	η_i .	P				_	4 045	331 —			_			4 o	<u> ∳</u>	<u> </u>	$-\frac{3}{5}$
36	ν. 2.	m		1	_		ĪOII	221 —		$FA^{\frac{1}{2}}$		ė	$e^{\frac{I}{2}}$	— I O	— 1	— 1	$-\frac{2}{3}$
-		η												$-\frac{5}{4}$ o	— <u>5</u>		
37	у.	N		_	_		₹054	332 —		$-\frac{1}{5}$	_			$-\frac{3}{4}$ 0	$\frac{-}{4}$ $\frac{3}{2}$	$-\frac{5}{4}$ $-\frac{3}{2}$	³ / ₄ ⁵ / ₆
38	ь.	4ψ			1-		3032	554 —		$FA_{\frac{1}{4}}$	— R⊥ı	E11E	e ^I		$-\frac{7}{2}$		— 6 — 1
	φ.		_	u	k		2021				+						
40	Ξ.	P	_				5051	322 —							<u> </u>		<u>-2</u>
	z:		z		_	_	2 135	320 -	$-\frac{1}{5}R^3$		_			$-\frac{2}{5}\frac{1}{5}$			
42	t:	t				_	2134	310 +	- 1 R ³				b ³	$+\frac{1}{2}\frac{1}{4}$			o
43	K:	k				f	2131	201 -	- R ³		_			+ 2 1	+41	+41	+ 10
														Fortset	C		

(Fortsetzung S. 535.)

Bemerkungen.

- ½ R findet sich bei Dana (System 1855. 113), jedoch ohne Figur und Winkel-Angabe, dagegen fehlt in dem Formverzeichniss, das bereits Lévy (1838) und Miller (1852) bekannte ½ R. Es ist daher wohl ein Druckfehler anzunehmen. Die Form ist in die späteren Auflagen übergegangen und erscheint hier neben ½ R. Strüver hat sie aufgenommen mit Berufung auf Dana und nach ihm Bücking. Doch dürfte es nicht gerechtfertigt erscheinen auf diese unsichere Angabe Danas die Form als nachgewiesen anzusehen. Hessenberg führt sie in seinem Formenverzeichniss (Senck. Abh. 1864. 5. 238) nicht auf, dagegen gibt er eine Beobachtung für diese Form (Senck. Abh. 1869. 7. 4), betrachtet jedoch die ihm vorliegenden Flächen nicht als ächte. Endlich beschreibt Lasaulx die Form (Zeitschr. Kryst. 1879. 3. 294) jedoch mit der Charakterisirung "oscillatorisch mit ½ R wechselnd und einer Rundung der Kante zwischen ½ R und oR bildend". Auch dies ist also keine ächte Fläche. Das gleiche gilt von A. Schmidt's Angabe (Zeitschr. Kryst. 1883. 7. 55) und ist die Form nach alle dem noch nicht als nachgewiesen anzusehen.
- ½ R 3 Diese Form ist zuerst von Kokscharow beobachtet (Mat. Min. Russl. 1853. 1. 5), doch schreibt er in der ganzen Arbeit ½ R 3, während aus seinen Figuren und Messungen mit Sicherheit zu entnehmen dass es ½ R 3 heissen muss. So gibt auch Strüver das Symbol an mit Bezugnahme auf Kokscharow.

Der Anblick der Zahlenreihen (G_2), sowie des Projectionsbildes führt zu der Meinung, es müssten mit Vertauschung der Vorzeichen die Symbolzahlen halbirt werden, also für -2 unserer Aufstellung + 1 u. s. w. zu setzen sein. Doch sprechen die Zahlen der excentrischen Symbole $E=\frac{p-1}{3}$ für Beibehaltung der gewählten Aufstellung. Das Zurücktreten der Zone + 1 q gegenüber - 2 q und + 4 q entspricht, wie aus den E-Symbolen zu ersehen, einem Zurücktreten der Axenzonen gegenüber den ersten Parallelzonen, eine Erscheinung, die wir ganz analog in den anderen Krystallsystemen wiederfinden. Genau das hier vom Eisenglanz Gesagte gilt von dem Korund und Titaneisenerz. Diese Bemerkung möge hier Platz finden zur Motivirung der angenommenen Aufstellung.

- + \(\frac{4}{7}\) R\ ist von Naumann (Lehrb. Kryst. 1830. 1. 504) angegeben und es ist Strüver + \(\frac{7}{12}\) R\ (l. c. S. 34) zu dem Resultat gekommen, dass die Form einer Bestätigung bedürfe. Ich glaube, dass eine Bestätigung in Hessenberg's Beobachtung der Flächen zu finden ist, die er mit dem unwahrscheinlichen Symbol + \(\frac{7}{12}\) R belegt (Senck. Abh. 1869. 7. 58). Er hat dafür gemessen den Winkel gegen R = 165°, während + \(\frac{4}{7}\) R 164°20' (Aeusserer Winkel) erfordert. Es wurde demgemäss die an sich wahrscheinliche Form + \(\frac{4}{7}\) R aufgenommen, + \(\frac{7}{12}\) R dagegen weggelassen.
 - + ½ R wurde bisher nur von Hessenberg beobachtet (Senck. Abh. 1869. 7. 33). Er sagt darüber (S. 34). Seine Flächen sind glänzend, aber nichts weniger als gut ausgebildet, zeigen sich im Gegentheil parallel ihrer kürzeren Diagonale mehr oder weniger seicht gefurcht, mitunter auch mit Anlage zum Muscheligen". Trotz der guten Uebereinstimmung der Messungen unter sich wie mit der Rechnung dürfte daher noch eine Bestätigung abzuwarten sein. In der Reihe der Zahlen wäre + ½ statt + ½ zu erwarten.

Hessenberg giebt (Senck. Abh. 1869. 7. 34) die Form $\zeta = -\frac{5}{26}R$ die $-\frac{1}{5}R$ nahe liegt und sucht das complicirte Symbol dadurch wahrscheinlich zu machen, dass er angiebt die Form liege in der Zone $\frac{2}{3}$ P $2:\frac{1}{9}$ R. Dies trifft für das Symbol $-\frac{5}{26}$ R nicht zu, worauf Stüver hinweist (Ematite d. Travers. 1872. S. 35), vielmehr wäre das Symbol $-\frac{4}{21}$ R erforderlich.

3.

		Miller.	Naum.		Mohs.						Mohs.						E =
No.	Gdt.	Hessb. Bück.	Kok-	Hauy. Hausm.	Hartm. Zippe.	Scacchi	Bravais.	Miller.	Naumann.	Haus- mann.	Hartm. Zippe.	Hauy.	Lévy. Dufrén.	6,	62	G'2	$\frac{p-1}{3} \frac{q-1}{3}$
44	H:		_	_		_	29.4.33.31	31.2.2	$+\frac{25}{31}R^{\frac{33}{25}}$	_	_	_	-	$+\frac{29}{31}\frac{4}{31}$		$\frac{5}{1}$ — 2 $\frac{25}{31}$	
45	L:		_	-		m_4	8-2-10-9	911	$+\frac{2}{3}R^{\frac{5}{3}}$			_		十多 多	十者 者	$-2 \frac{\overline{2}}{3}$	— і <u>ў</u>
46	M:	_	_			m_3	7258	81 T	$+\frac{5}{8}R^{\frac{9}{5}}$				_	+ 7/8 I	+11 5	$-2\frac{5}{8}$	— I ½
47	N:	_	_	_		m ₂	6287	711		_	_	_	-	十号 号	+ 19 4	$-2^{\frac{7}{7}}$	— I ½
48	O:	_		g		mı	5276	611	$+\frac{1}{2}R^{\frac{7}{3}}$		_	_	e_6	$+\frac{5}{6}$ $\frac{1}{3}$	$+\frac{3}{2}$ $\frac{1}{2}$	_	٠,
49	a:	i	i	_	_	m	4265	5 I Ī	$+\frac{2}{5}R^3$				e ₅	十章 章	十巻 章	$-2\frac{2}{5}$	— 1 I
50	b:	g	_	h·g	g	_	3254	411		FA4.6K4	(P-2)5	E44E	$\mathbf{e_4}$	$+\frac{3}{4}\frac{1}{2}$		— 2 I	
51	c:		_	_	_	-	4375	522	$\frac{1}{5} \mathrm{R}^7$		_	_	_	$\frac{4}{5}$ $\frac{3}{5}$		$-2^{\frac{1}{5}}$	
52	ð:	_	_			_	6∙4∙10∙7	$73\overline{3}$	$-\frac{2}{7} R^5$			_	_	一	$-2^{\frac{2}{7}}$	$\frac{2}{7}$ — 2 $\frac{2}{7}$	— I $\frac{3}{7}$
53	e:	χ		_			2132	211	$-\frac{1}{2}R^{3}$	FA 1/4 · GK 2	(P-1)3					$-2^{\frac{1}{2}}$	
54	q:	_	_		_		42 61	313	— 2 R ³	_	·	_	$\mathbf{e}_{\mathbf{I}}$	— 4 2	— 8 2	— 2 8	— 1 3
55	® :	ξ	_			_	3252	312	— ½ R ⁵							+4 ½	
56	P:	w	_			_	5161	412	$+4 R^{\frac{3}{2}}$	_				+5 1	+7 4	+47	+ 1 2
57	3:	f	_	_	_		6281	513	$+4R^2$			_	_	+6 2	+10.4	+ 4.10	+ 1 3
58	Ŋ:	\mathbf{v}		_	-	_	15.7.22.2	13.2.5	$+4R^{\frac{11}{4}}$	_		_	_	$+\frac{15}{2}\frac{7}{2}$	$\frac{1}{2}$ 4	+429	+ 1 2
59	R:						10·1·11·3	54Ē	$-3R^{\frac{11}{9}}$			_	_	$-\frac{10}{3} \frac{1}{3}$	— 4 3	3 + 7 3	$+2\frac{4}{3}$
60	g:		_			_	2 <u>1</u> 38	431	$-\frac{1}{8}R^3$	_		-	_	$-\frac{1}{4}$ $\frac{1}{8}$	$-\frac{1}{2}$ $\frac{1}{8}$	$-\frac{1}{2}\frac{1}{8}$	$-\frac{1}{2}\frac{3}{8}$
61	Σ		_	_	_	_	6·4·To·5	713	$+\frac{2}{5}R^{5}$			_		十号 专	+14 5	$+\frac{14}{5}\frac{2}{5}$	$+\frac{3}{5}\frac{T}{5}$
62	Φ			_	_		14.7.21.20	16.9.5	$-\frac{7}{20}R^3$	_	_	_				$\frac{7}{6}$ $\rightarrow \frac{7}{5}$ $\frac{7}{20}$	
63	П	P			_	_	42 67	53 <u>₹</u>	$-\frac{2}{7} R^3$				$b^{1}d^{\frac{1}{3}}d^{\frac{1}{5}}$	$-\frac{4}{7} \frac{2}{7}$	$-\frac{8}{7} = \frac{2}{7}$	$\frac{8}{7} - \frac{8}{7} \frac{2}{7}$	$-\frac{5}{7}\frac{3}{7}$
64	Ω	_	_	-	_	_	8.6.14.13			_				$-\frac{8}{13}\frac{6}{13}$	$-\frac{20}{13}\frac{2}{1}$	$\frac{202}{3}$	$\frac{11}{3} \frac{5}{13}$

Bemerkungen. (Fortsetzung von S. 534.)

Es ist demnach ζ von $-\frac{1}{5}R$ ebensoweit entfernt, wie von dem durch den Zonenverband, welchen Hessenberg zur Motivirung des Symbols heranzieht, bedingten $-\frac{4}{21}R$. Da diese Motivirung entfällt, ist ζ wohl als eine Vicinalfläche von $-\frac{1}{5}R$ anzusehen und wurde deshalb aus dem Formenverzeichniss weggelassen.

Dies schliesst jedoch nicht aus, dass gerade diese Beobachtungen Hessenbergs vom genetischen Standpunkt ein hohes Interesse verdienen. Hessenberg sagt S. 36.

"Um sein Zonensystem reichgliedriger zu vervollständigen, erzeugte der werdende Eisenglanz-Krystall in dem Kreuzungspunkt zweier Reihen alsbald eine neue Fläche, sei es auch auf weniger einfacher parametrischer Grundlage und zwar gemeinschaftlich mit und ganz dicht neben einer anderen von im Gegentheil sehr einfachem Symbol. Es ist als soll zweien entgegengesetzten Ansprüchen zu gleicher Zeit Rechnung getragen werden, einerseits dem zonenbildenden Impuls des entstehenden Krystalls, dann aber auch zugleich seinem Bestreben, Gestalten von einfachen Axenverhältnissen zu erzeugen."

Diese Idee stimmt vollständig mit den Erfahrungen überein, die ich bei der Discussion der Formenreihen und Projectionsbilder gemacht habe und an anderer Stelle darlegen werde. Nur hat Hessenberg nicht die richtige Consequenz aus seiner Idee in Bezug auf die Zahlen des Symbols gezogen. Diese müsste etwa so lauten: Es liegen hier 2 Wirkungen vor

- 1. Das Bestreben der Rhomboederzone zur Erzeugung einer Fläche IR.
- 2. Das Bestreben der Zone $+\frac{1}{9}R:\frac{2}{3}P\bar{z}$ im Schnitt mit der Rhomboederzone eine Fläche $-\frac{4}{21}R$ anzulegen.

Das Resultat beider Wirkungen ist eine Fläche von mittlerer Lage, also $-\frac{1}{2}(\frac{1}{5}+\frac{4}{21})$ R $=-\frac{41}{210}$ R.

Dem entspricht ein Winkel gegen +R von 74°31'. In der That stellt sich der von Hessenberg beobachtete Winkel im Durchschnitt seiner 9 Messungen (S. 35 u. 38) zu 74°33'.

Dies ist eine Erklärung der Bildung vicinaler Flächen durch Ablenkung, auf die wir später zurückkommen werden. Sie beweist aber gerade, dass Hessenberg's Fläche ζ eine vicinale war und als solche von der Aufnahme in den Index auszuschliessen ist.

+ ½ R 2 Hessenberg's ist nicht genügend sichergestellt, (S. 39), "da bei der Beschaffenheit der Flächen keine einfachen, scharfen Spiegelbilder abzugewinnen sind und ausserdem Messung und Rechnung nicht unbedeutend differiren.

Bei Dufrénoy (Min 1845. 2. 567-573) finden sich folgende drei Formen angegeben, die andere Autoren nicht kennen. $e^6=+\frac{7}{4}$; $a^{\frac{3}{5}}=-\frac{2}{13}$; $b^{\mathrm{I}}\,\mathrm{d}^{\frac{1}{2}}\,\mathrm{d}^{\frac{1}{5}}=\frac{3}{2}\,\mathrm{o}\,(G_2)$. Von diesen ist die letztere Angabe jedenfalls auf einen Druckfehler zurückzuführen. Es soll heissen (S. 569) $b^{\mathrm{I}}\,\mathrm{d}^{\frac{1}{3}}\,\mathrm{d}^{\frac{1}{5}}$, wie auch in der Winkeltabelle angegeben. e^6 steht nur S. 569 ohne jede nähere Angabe. $a^{\frac{3}{5}}$ fehlt unter den S. 569 zusammengestellten Rhomboedern und schien bei der Complicirtheit des Symbols und der allgemeinen Unsicherheit Dufrénoy'scher Angaben der Bestätigung zu bedürfen. Ueber diese Unsicherheit vgl. Bournonit Bemerkungen, ferner: Dauber, Wien. Sitzb. 1860. 42. 34 (Rothbleierz), Rethwisch Inaug. Diss. 1885. 35. Aber auch beim Eisenglanz macht sich diese Unsicherheit bemerkbar, so ist Fig. 104 Taf. 69 von Lévy (Descript. 1838 Taf. 67 Fig. 25) entonommen; statt Lévy's richtigem Symbol ($\mathrm{d}^{\mathrm{I}}\,\mathrm{d}^{\frac{\mathrm{I}}{2}}\,\mathrm{d}^{\frac{\mathrm{I}}{3}}$) steht aber bei Dufrénoy's Figur ($\mathrm{d}^{\mathrm{I}}\,\mathrm{d}^{\frac{\mathrm{I}}{2}}\,\mathrm{d}^{\frac{\mathrm{I}}{3}}$) und im Text S. 571 ($\mathrm{d}^{\mathrm{I}}\,\mathrm{d}^{\frac{\mathrm{I}}{2}}\,\mathrm{d}^{\frac{\mathrm{I}}{3}}$). Aus diesen Gründen wurden die genannten 3 Formen nicht unter die sicher bestimmten aufgenommen.

Bücking giebt in zwei Abhandlungen (Zeitschr. Kryst. 1877. 1. 562 und 1878. 2. 416) 22 neue Formen als sicher bestimmt an, die folgendermassen charakterisirt sind:

(Fortsetzung S. 537.)

Bemerkungen. (Fortsetzung von S. 536.)

No.			rerkunge	- (1 0110			330.)	
1	No	stabe ch cing.		Symbol.		Zei	tschr.	Bücking's
1	140.	Buch nac Bück	Naumann.	G ₁	G_2	Bd.	Seite.	Charakterisirung der Flächen.
2 W -7 R -7 O -7 I 573 sehr klein. Gemessen der Winkel zur Basis 81°33. sehr klein. Gemessen der Winkel zur Basis 84°33. sehr klein. Sehr klein. Gemessen der Winkel zur Basis 84°33. sehr klein. Gemessen der Winkel zur Basis 84°33. sehr klein. Gemessen der Sehr klein. Gemessen der Winkel zur Basis 84°33. sehr klein. Gemessen der Sehr klein. Gemessen der Winkel zur Basis 81°33. sehr klein. Gemessen der Sehr klein. Gemessen der Winkel zur Basis 81°33. sehr klein. Gemessen der Winkel zur Basis 81°32. sehr klein. Sehr	1 1	,	- 9 R	— ⁹ / ₂ o	⁹ / ₂	I	570	sehr klein, uneben und wenig glänzend.
2 W - 7 R - 7 O - 7 I 573 84°33'. 3 Q			_			2	419	zur Basis 81°34—82°10.
3 Q 3 F 2 8 3 0 1 500 Flächen des Skalenoeders D verluatender	2	W	— 7 R	— 7 o	- 7	I	573	84°33'.
4 χ 5 P 76 0 1 573 6 Messungen von 14°4½ bis 16°3'. 5 H +½R R ½ +24 6 3 +25 8 1 569 nur ganz schmal, in horizontaler Richtung stark gekrümmt. 6 B +2½R ½ +3½ ½ 1 564 besitzt so gerund. Flächen, dass die stumpfe befür der stark gekrümmt. 7 τ +7½R ½ +7½ ½ +7½ ½ 1 566 8 J +½R X½ +7½ ½ +½½ ½ 1 570 8 J +½R X½ +½½ ½ 1 570 in verticaler und horizontaler Richtung stark gekrümmt. 9 F +¼R X½ +½½ ½ 1 569 in verticaler und horizontaler Richtung stark gekrümmt. 10 D +½ZR X¾ +½½ ½ 1 569 in verticaler und horizontaler Richtung stark gekrümmt. 11 K +½R X 3 +½½ ½ 1 569 in verticaler und horizontaler Richtung stark gekrümmt. 12 E +½R X 3<	3	Q	6 P 2	3 5	9 O	I	566	Flächen des Skalenoeders D verlaufend.
5 H + ² / ₃ R ² / ₈ + ² / ₃ S ² / ₃ 1 509 stark gekrümmt. 6 B + ² / ₉ R ² / ₈ + ² / ₈ S ² / ₉ + ² / ₈ S ² / ₉ 1 564 besitzt so gerund. Flächen, dass die stumpfe Polkante kaum deutlich hervortritt. stark gekrümmt, matt und klein. 7 τ + ² / ₁ 3 R ² / ₁ + ² / ₁ 3 ² / ₁ 3 + ² / ₂ 3 ² / ₁ 3 1 571 Flächen r = + R sichtbar. Vollkommen eben und glänzend. in verticaler und horizontaler Richtung stark gekrümmt. 8 J + ⁶ / ₁ 9 R ¹ / ₃ + ⁷ / ₁ 9 ⁴ / ₁ 1 + ¹ / ₁ 3 ³ / ₃ 1 570 stark gekrümmt. in verticaler und horizontaler Richtung stark gekrümmt. 9 F + ⁴ / ₁ 3 R ⁷ / ₂ + ² / ₁ 3 ² / ₁ 5 + ² / ₁ 2 ³ / ₂ 1 1 569 sowohl in verticaler als horizontaler Richtung welled ausserhalb der Beobachtung. 10 D + ² / ₂ 2 R ² / ₂ + ¹ / ₂ 2 ³ / ₂ 1 + ² / ₂ 2 ³ / ₂ 1 566 sowohl in verticaler und horizontaler Richtung welled ausserhalb der Beobachtung. 11 K + ⁸ / ₂ 5 R 3 + ¹ / ₂ 6 ³ / ₂ 5 + ² / ₂ 2 ³ / ₂ 2 1 566 in verticaler und horizontaler Richtung wellig gebogen. Stark gekrümmt. 12 E + ² / ₁ 7 R 3 - ² / ₂ 5 ³ / ₂ 5 - ³ / ₂ 5 ³	4	χ	I P 2	10	3 O	I	573	6 Messungen von 14°4½ bis 16°3'.
1	5	Н	$+\frac{18}{5}R\frac{5}{3}$	$+\frac{24}{5}\frac{6}{5}$	$+\frac{36}{5}\frac{18}{5}$	I	569	stark gekrümmt.
T	6	В	$+\frac{20}{7}$ R $\frac{8}{5}$	$+\frac{26}{7}\frac{6}{7}$	$+\frac{38}{7}\frac{20}{7}$			Polkante kaum deutlich hervortritt.
7 τ + 7½ R 7¾ + 7½ + 7⅓ + 7⅓ + 1 571 Flächen r = +R sichtbar. Vollkommen eben und glänzend. 8 J + 69 R II + 79 II + 15 II + 15 II = 13 II 570 in verticaler und horizontaler Richtung stark gekrümmt. 9 F + 13 R 7½ + 13 II + 23 II 1569 1 569 in verticaler und horizontaler Richtung stark gekrümmt. 10 D + 22 R 2¾ + 12 II + 23 II 23 II 566 sowohl in verticaler als horizontaler Richtung sehr stark gerundet, namentlich durch oscillatorische Combination mit einem negativen Skalenoeder, welches eine deutliche Streifung hervorruft. 11 K + 88 R 3 + 12 8 R 2	-					I	566	
stark gekrümmt. Solution So	7	τ	$+\frac{71}{73}R\frac{73}{71}$	$+\frac{72}{73}\frac{1}{73}$	$+\frac{74}{73}\frac{71}{73}$	1	571	Flächen r = +R sichtbar. Vollkommen
F	8	J	$+\frac{6}{19}R\frac{11}{3}$	$+\frac{7}{19}\frac{4}{19}$	$+\frac{15}{19}\frac{3}{19}$	I	570	stark gekrümmt.
tung sehr stark gerundet, namentlich durch oscillatorische Combination mit einem negativen Skalenoeder, welches eine deutliche Streifung hervorruft. 11 K $+\frac{8}{25}$ R 3 $+\frac{16}{25}\frac{8}{25}$ $+\frac{32}{25}\frac{8}{25}$ 1 570 in verticaler und horizonaler Richtung stark gekrümmt. 12 E $+\frac{1}{21}$ R $\frac{9}{2}$ $+\frac{1}{2}$ $\frac{7}{22}$ $+\frac{25}{22}$ $\frac{7}{11}$ 1 567 gebogen. Stark gekrümmt (S. 568). 13 G $-\frac{7}{19}$ R $\frac{2^3}{7}$ $-\frac{15}{19}\frac{8}{19}$ $-\frac{31}{19}\frac{7}{19}$ 1 565 besitzen eine beim Messen sich deutlich geltend machende Krümmung. 14 M $-\frac{7}{18}$ R 3 $-\frac{7}{9}\frac{7}{18}$ $-\frac{14}{9}\frac{7}{18}$ 1 569 winkel stimmen jedoch, da die Flächen sehr klein sind, mit den dem Zeichen entsprechenden nur theilweise überein. S. 419 z. Th. gerundet. 15 A $-\frac{10}{27}$ R 3 $-\frac{20}{27}\frac{10}{27}$ $-\frac{40}{27}\frac{10}{27}$ 1 564 stark glänzend aber uneben, durch kleine flache Erhöhungen und Vertiefungen, und besonders in der Richtung von links nach rechts stark gekrümmt. 16 \cdot \propto R $\frac{7}{2}$ $\frac{3}{3}$ \propto $\frac{19}{4}$ \propto 2 418 äusserst schmal und etwas gerundet. 17 II $+\frac{5}{4}$ R $+\frac{5}{4}$ o $+\frac{5}{4}$ 2 421 Basis 63°25; 56°41; 63°17. 18 θ $+2$ R $+2$ o $+2$ 2 421 Basis 73°12; 72°56; 72°20. 19 \cdot $-\frac{5}{3}$ R $-\frac{5}{3}$ o $-\frac{5}{3}$ 2 419 ganz schmal. Winkel zur Basis 40°30-41°38. 4 Messungen. 20 \cdot $-\frac{8}{11}$ R $-\frac{9}{11}$ o $-\frac{8}{11}$ 2 419 ganz schmal, nur approximative Messung. 21 Δ $-\frac{1}{5}$ R $\frac{7}{2}$ $-\frac{9}{20}$ $\frac{1}{4}$ $-\frac{12}{20}$ $\frac{1}{5}$ 2 420 allerdings ungenügend sind).	9	F	$+\frac{4}{13}R^{\frac{7}{2}}$	+ 3 5 5	$+\frac{29}{13}\frac{4}{13}$	I	569	und Messung 16',25'. Die berechneten Werthe y = 34°0; V = 17°18 fallen
stark gekrümmt. 12 E $+\frac{2}{11}R \frac{9}{2} + \frac{1}{2} \frac{7}{22} + \frac{25}{25} \frac{21}{211}$ I 567 matt und in horizontaler Richtung wellig gebogen. Stark gekrümmt (S. 568). 13 G $-\frac{7}{19}R \frac{27}{3} - \frac{15}{18} \frac{8}{19} - \frac{31}{19} \frac{7}{19}$ I 565 besitzen eine beim Messen sich deutlich geltend machende Krümmung. 14 M $-\frac{7}{18}R 3 - \frac{7}{9} \frac{7}{18} - \frac{14}{9} \frac{7}{18}$ I 569 glatt und glänzend. Die Messungen der Winkel stimmen jedoch, da die Flächen entsprechenden nur theilweise überein. S. 419 z. Th. gerundet. 15 A $-\frac{10}{27}R 3 - \frac{20}{27} \frac{10}{27} - \frac{40}{27} \frac{10}{27}$ I 564 stark glänzend aber uneben, durch kleine flache Erhöhungen und Vertiefungen, und besonders in der Richtung von links nach rechts stark gekrümmt. 16 $\cdot \infty R \frac{7}{2} = \frac{9}{2} \infty = \frac{19}{4} \infty = 2$ 418 äusserst schmal und etwas gerundet. 17 $\Pi + \frac{5}{4}R + \frac{5}{4} \circ + \frac{5}{4} = 2$ 421 schmal aber glatt und eben. Winkel zur Basis 63°25; 62°41; 63°17. 18 $\Theta + 2R + 2 \circ + 2 = 2$ 421 schmal aber glatt und eben. Winkel zur Basis 73°12; 72°56; 72°20. 19 $\cdot -\frac{5}{2}R - \frac{5}{2} \circ -\frac{5}{2} \circ -\frac{5}{2} = 2$ 419 ganz schmal, Ninkel zur Basis 40°30—41°38. 4 Messungen. 20 $\cdot -\frac{8}{11}R - \frac{8}{11} \circ -\frac{8}{11} \circ -\frac{19}{11} = 2$ 419 ganz schmal, nur approximative Messung. 21 $\Delta -\frac{1}{3}R \frac{7}{2} - \frac{9}{20} \frac{1}{4} - \frac{120}{20} \frac{1}{5} = 2$ 420 klein; bessere Messungen als für S (die allerdings ungenügend sind).	10	D	$+\frac{7}{22}R^{\frac{23}{7}}$	$+rac{15}{22}rac{4}{11}$	$+\frac{23}{22}\frac{7}{22}$	I	566	tung sehr stark gerundet, namentlich durch oscillatorische Combination mit einem negativen Skalenoeder, welches
12 E $+\frac{7}{11}R\frac{7}{2}$ $+\frac{7}{2}\frac{27}{22}$ $+\frac{7}{22}\frac{7}{11}$ 1 507 gebogen. Stark gekrümmt (S. 568). 13 G $-\frac{7}{19}R\frac{23}{7}$ $-\frac{15}{18}\frac{8}{19}\frac{19}{19}$ 1 565 besitzen eine beim Messen sich deutlich geltend machende Krümmung. 14 M $-\frac{7}{18}R3$ $-\frac{7}{9}\frac{7}{18}$ $-\frac{14}{9}\frac{7}{18}$ 1 569 glatt und glänzend. Die Messungen der Winkel stimmen jedoch, da die Flächen entsprechenden nur theilweise überein. S. 419 z. Th. gerundet. 15 A $-\frac{10}{27}R3$ $-\frac{20}{27}\frac{10}{27}$ $-\frac{40}{27}\frac{10}{27}$ 1 564 stark glänzend aber uneben, durch kleine flache Erhöhungen und Vertiefungen, und besonders in der Richtung von links nach rechts stark gekrümmt. 16 \cdot $\sim RR\frac{7}{2}$ $\frac{9}{5} \sim$ $\frac{19}{4} \sim$ 2 418 äusserst schmal und etwas gerundet. 17 II $+\frac{5}{4}R$ $+\frac{5}{4}$ 0 $+\frac{5}{4}$ 2 421 Schmal aber glatt und eben. Winkel zur Basis 63°25; 62°41; 63°17. 18 θ $+2$ R $+2$ 0 $+2$ 2 421 Schmal aber glatt und eben. Winkel zur Basis 73°12; 72°56; 72°20. 19 \cdot $-\frac{5}{9}R$ $-\frac{5}{9}$ 0 $-\frac{5}{9}$ 2 419 ganz schmal. Winkel zur Basis 40°30—41°38. 4 Messungen. 20 \cdot $-\frac{8}{11}R$ $-\frac{8}{11}$ 0 $-\frac{8}{11}$ 2 419 ganz schmal, nur approximative Messung. 21 Δ $-\frac{1}{5}R\frac{7}{2}$ $-\frac{9}{20}\frac{1}{4}$ $-\frac{19}{20}\frac{1}{5}$ 2 420 klein; bessere Messungen als für S (die allerdings ungenügend sind).	11	·K	$+\frac{8}{25}$ R 3	$+\frac{16}{25}\frac{8}{25}$	$+\frac{32}{25}\frac{8}{25}$	I	570	stark gekrümmt.
geltend machende Krümmung. glatt und glänzend. Die Messungen der Winkel stimmen jedoch, da die Flächen sehr klein sind, mit den dem Zeichen entsprechenden nur theilweise überein. S. 419 z. Th. gerundet. stark glänzend aber uneben, durch kleine flache Erhöhungen und Vertiefungen, und besonders in der Richtung von links nach rechts stark gekrümmt. 16 · $\infty R \frac{7}{2}$ $\frac{3}{5} \infty$ $\frac{10}{4} \infty$ 2 418 äusserst schmal und etwas gerundet. 17 II $+\frac{5}{4}R$ $+\frac{5}{4}$ o $+\frac{5}{4}$ 2 421 Schmal aber glatt und eben. Winkel zur Basis $63^{\circ}25$; $62^{\circ}41$; $63^{\circ}17$. 18 θ $+2R$ $+2$ o $+2$ 2 421 Schmal aber glatt und eben. Winkel zur Basis $73^{\circ}12$; $72^{\circ}56$; $72^{\circ}20$. 19 · $-\frac{5}{9}R$ $-\frac{5}{9}$ o $-\frac{5}{9}$ 2 419 ganz schmal. Winkel zur Basis $40^{\circ}30$ — 41° 38. 4 Messungen. 20 · $-\frac{8}{17}R$ $-\frac{8}{17}$ o $-\frac{8}{17}$ 2 420 ganz schmal, nur approximative Messung. 21 Δ $-\frac{1}{5}R \frac{7}{2}$ $-\frac{9}{20}\frac{1}{4}$ $-\frac{19}{20}\frac{1}{5}$ 2 420 klein; bessere Messungen als für S (die allerdings ungenügend sind).	12	Е	$+\frac{2}{11}R\frac{9}{2}$	$+\frac{1}{2}\frac{7}{22}$	$+\frac{25}{22}\frac{2}{11}$	I	567	gebogen. Stark gekrümmt (S. 568).
14 M $-\frac{7}{18}$ R 3 $-\frac{7}{9}$ $\frac{7}{18}$ $-\frac{14}{9}$ $\frac{7}{18}$ 1 $\frac{569}{2}$ Winkel stimmen jedoch, da die Flächen sehr klein sind, mit den dem Zeichen entsprechenden nur theilweise überein. S. 419 z. Th. gerundet. 15 A $-\frac{10}{27}$ R 3 $-\frac{20}{27}$ $\frac{10}{27}$ $-\frac{40}{27}$ $\frac{10}{27}$ 1 $\frac{564}{27}$ Stark glänzend aber uneben, durch kleine flache Erhöhungen und Vertiefungen, und besonders in der Richtung von links nach rechts stark gekrümmt. 16 \cdot \circ \circ R $\frac{7}{2}$ $\frac{9}{3}$ \circ $\frac{10}{4}$ \circ 2 418 äusserst schmal und etwas gerundet. 17 II $+\frac{5}{4}$ R $+\frac{5}{4}$ \circ $+\frac{5}{4}$ 2 421 schmal aber glatt und eben. Winkel zur Basis $63^{\circ}25$; $62^{\circ}41$; $63^{\circ}17$. 18 θ $+2$ R $+2$ \circ $+2$ 2 421 schmal aber glatt und eben. Winkel zur Basis $73^{\circ}12$; $72^{\circ}56$; $72^{\circ}20$. 19 \cdot $-\frac{5}{2}$ R $-\frac{5}{2}$ \circ $-\frac{5}{2}$ 2 419 ganz schmal. Winkel zur Basis $40^{\circ}30-41^{\circ}38$. 4 Messungen. 20 \cdot $-\frac{8}{11}$ R $-\frac{8}{11}$ \circ $-\frac{19}{12}$ 2 419 ganz schmal, nur approximative Messung. 21 Δ $-\frac{1}{5}$ R $\frac{7}{2}$ $-\frac{9}{20}$ $\frac{1}{4}$ $-\frac{19}{20}$ $\frac{1}{5}$ 2 420 klein; bessere Messungen als für S (die allerdings ungenügend sind).	13	G	$-\frac{7}{19}R\frac{23}{7}$	- 15 8 19 19	$-\frac{31}{19}\frac{7}{19}$	I	565	geltend machende Krümmung.
15 A $-\frac{10}{27}$ R 3 $-\frac{20}{27}\frac{10}{27}$ $-\frac{40}{27}\frac{10}{27}$ 1 $\frac{1}{564}$ stark glänzend aber uneben, durch kleine flache Erhöhungen und Vertiefungen, und besonders in der Richtung von links nach rechts stark gekrümmt. 16 \cdot \circ \circ R $\frac{7}{2}$ \circ	14	M	$-\frac{7}{18}$ R 3	$-\frac{7}{9}\frac{7}{18}$	$-\frac{14}{9}\frac{7}{18}$	ı	569	Winkel stimmen jedoch, da die Flächen
15 A $-\frac{10}{27}$ R 3 $-\frac{20}{27}\frac{10}{27}$ $-\frac{40}{27}\frac{10}{27}$ 1 564 flache Erhöhungen und Vertiefungen, und besonders in der Richtung von links nach rechts stark gekrümmt. 16 · ∞ R $\frac{7}{2}$ $\frac{9}{5}$ ∞ $\frac{19}{4}$ ∞ 2 418 äusserst schmal und etwas gerundet. 17 II + $\frac{5}{4}$ R + $\frac{5}{4}$ o + $\frac{5}{4}$ 2 421 Schmal aber glatt und eben. Winkel zur Basis 63°25; 62°41; 63°17. 18 Θ + 2 R + 2 o + 2 2 421 Schmal aber glatt und eben. Winkel zur Basis 73°12; 72°56; 72°20. 19 · $-\frac{5}{9}$ R $-\frac{5}{9}$ o $-\frac{5}{9}$ 2 419 ganz schmal. Winkel zur Basis 40°30 — 41°38. 4 Messungen. 20 · $-\frac{8}{17}$ R $-\frac{8}{17}$ O $-\frac{8}{17}$ 2 419 ganz schmal, nur approximative Messung. klein; bessere Messungen als für S (die allerdings ungenügend sind).						2	419	entsprechenden nur theilweise überein. S. 419 z. Th. gerundet.
17 Π	15	A		2, 2,	- 40 IO 27 27	I	564	flache Erhöhungen und Vertiefungen, und besonders in der Richtung von links
17	16	•	∞ R 7/2	9/5 ∞	19 ∞	2	418	äusserst schmal und etwas gerundet.
Basis $73^{\circ}12$; $72^{\circ}56$; $72^{\circ}20$. 19 · $-\frac{5}{9}R$ · $-\frac{5}{9}$ 0 · $-\frac{5}{9}$ 2 419 ganz schmal. Winkel zur Basis $40^{\circ}30$ · $-\frac{8}{11}R$ · $-\frac{8}{11}$ 0 · $-\frac{8}{11}$ 2 419 ganz schmal, nur approximative Messung. 21 Δ · $-\frac{1}{5}R\frac{7}{2}$ · $-\frac{9}{20}\frac{1}{4}$ · $-\frac{19}{20}\frac{1}{5}$ 2 420 klein; bessere Messungen als für S (die allerdings ungenügend sind).	17	П			十章	2	421	Basis 63°25; 62°41; 63°17.
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	18	θ	+ 2 R	+ 2 0	+ 2	2	421	Basis 73°12; 72°56; 72°20.
21 Δ $-\frac{1}{5}$ R $\frac{7}{2}$ $-\frac{9}{20}$ $\frac{1}{4}$ $-\frac{19}{20}$ $\frac{1}{5}$ 2 420 klein; bessere Messungen als für S (die allerdings ungenügend sind).	-					<u> </u>	_	41°38. 4 Messungen.
21 \(\Delta = \frac{1}{5} \Red \frac{1}{2} = \frac{1}{20} \frac{1}{5} = \frac{1}{20} \frac{1}{5} = \frac{2}{10} \frac{1}{5} = \frac{1}{2} \text{ allerdings ungenügend sind).} \\ \end{allerdings under under ungenügend sind).} \\ \end{allerdings ungenügend sind).} \\ allerdings under under und	20		$-\frac{8}{11}R$	$-\frac{8}{11}$ o	— <u>8</u>	2	419	<u> </u>
	21	Δ				2	420	allerdings ungenügend sind).
(Fortsetzung S. 528)	22	. Σ	— 7/2 R 8/7	$-\frac{15}{4}\frac{1}{4}$	$-\frac{17}{4}\frac{7}{2}$	2	419	zwischen Messung und Rechnung.)

538

Bemerkungen. (Fortsetzung von S. 537.)

Von diesen Formen sind die Symbole für Q H B J D K E G A (16) Σ wegen Rundung der Flächen als unsicher zurückzuweisen, ebenso F und M wegen ungenügender Uebereinstimmung zwischen Messung und Rechnung, (20) beruht nur auf approximativer Messung. Von den übrigen zeigt z eine Differenz von 1°58' zwischen den Beobachtungen, (19) von 1°8', Θ von 52', Θ von 44'. Wie weit die als besser wie die ungenügenden von S bezeichneten Messungen von Θ selbst als genügend scharf anzusehen sind, lässt sich aus dem Text nicht erkennen, doch liegt die Vermuthung nahe, dass Θ ein einfaches Zeichen zukomme, z. B. Θ 1½ (Θ 2). Θ 1 ist entschieden eine Vicinalfläche der Basis und wurde als solche in den Index nicht aufgenommen. Dem für W gemessenen Winkel von 84°33' würde besser das an sich wahrscheinlichere Symbol Θ 1 Θ 2 Respectively. Publik entschieden eine Vicinalfläche von 84°33' würde besser das an sich wahrscheinlichere Symbol Θ 1 Θ 2 Respectively. Publik entschieden eine Vicinalfläche von 84°33' würde besser das an sich wahrscheinlichere Symbol Θ 3 Respectively.

Für v differiren die Winkelmessungen zur Basis von 81°34' — 82°10', also um 36'. Es nähert sich diesem Winkel der für die bekannte Fläche — 5 R erforderliche von 82°44' so sehr, ja er differirt von der Maximalbeobachtung weniger als diese von der Minimalbeobachtung, dass zumal bei der Kleinheit und z. Th. schlechten Ausbildung der Flächen die Identität beider Formen nicht ausgeschlossen erscheint und das unwahrscheinliche — $\frac{9}{2}$ jedenfalls noch der Bestätigung bedarf.

Es könnten danach von Bücking's 22 neuen Formen allenfalls $\theta=\pm$ 2 R = \pm 2 (G₂) und $\pi=\pm\frac{5}{4}$ R = $\pm\frac{5}{4}$ (G₂) bei der Einfachheit der Symbole trotz der starken Winkeldifferenz als wirklich nachgewiesen angesehen werden, doch wäre auch für sie eine exaktere Bestätigung zu wünschen.

Correcturen.

Bücking giebt ein Correcturenverzeichniss. Zeitschr. Kryst. 1878. 2. 424 für seine erste Arbeit, 1877 (l. c.)

```
Breithaupt Voll. Char. d. Min. Syst. 1832 — S. 236 Z. 9 vu lies \frac{4}{3} P' statt \frac{3}{4} P' Kokscharov Mat. Min. Russl. 1853 1, 5, 7 vo , \frac{1}{2}(\frac{1}{5}a:b':\frac{1}{3}b':\frac{1}{2}b') = -\frac{1}{2}(\frac{2}{5}P^{\frac{3}{2}}) = -\frac{1}{5}R_3 statt \frac{1}{2}(\frac{1}{5}a:b:\frac{1}{2}b:\frac{1}{2}b) = \frac{1}{2}(\frac{2}{5}P^{\frac{3}{2}}) = \frac{1}{5}R_3
```

die entsprechende Correctur ist anzubringen: S. 5 Z. 12 vu, S. 8 Z. 15 vo, S. 12 Z. 7 u. 15 vu, S. 14 Z. 7 vu.

```
1856 2 Seite 571 Zeile 9 vo lies
Dufrénoy
                    Min.
                                                                                      d^{I} d^{\frac{I}{2}} b^{\frac{I}{3}}
                                          " (Atlas) Taf. 69 Fig. 104
                                        1865 5 Seite 39 Zeile 3 vu
                    Senck. Abh.
                                                                        ı vo "
                                                                                                                 \frac{I}{5} R
                                                             35
                                                                                     \frac{1}{9}R \frac{1}{16}R2
                                                                        ı ") "
                                                                                                              25 R 23
                                                                                        \frac{25}{31} R \frac{23}{25}
[Strüver] Ref. Jahrb. Min.
                                                                    " 13 "
                                                                                   ist zuzufügen:
                                                                                    — 3 R <sup>11</sup>/<sub>9</sub>
                                                                                                             - 3 R H
                                                                    ,, 14 ,,
                                                                                           ю
                                                            423
```

Eisenspath.

Hexagonal. Rhomboedrisch-hemiedrisch.

Axenverhältniss.

$$a:c = \text{1:0.8184 (Mohs-Zippe} = G_2.)$$

 $a:c=\iota:o.8\iota 84$ (Lévy. Hausmann. Miller, Schrauf. Des Cloizeaux. Klein = G_1 .)

Elemente.

	c = 0.8184	lg c = 991297	$\lg a_o = o_{32559}$ $\lg a_o' = o_{8703}$	$\lg p_o = 973688$	$a_{\circ} = 2.1163$ $a'_{\circ} = 1.2219$	$p_0 = 0.5456$	
--	------------	---------------	--	--------------------	---	----------------	--

Transformation.

Lévy. Hausmann. Miller. Des Cloizeaux. Dana. Schrauf $= G_1$.	Mohs-Zippe $= G_2$.
рq	(p+2q) (p-q)
$\frac{p+2q}{3} \frac{p-q}{3}$	рq

No.	Gdt.	Miller.	Mohs- Hartm. Hausm.	Bravais.	Miller.	Naumann.	Haus- mann.	Mohs. Hartm. Zippe.	Lévy. Descl.	U 1	\mathbf{G}_2	G_2'	$\begin{bmatrix} E = \\ \frac{p-1}{3} & \frac{q-1}{3} \end{bmatrix}$
I	o	О	О	0001	111	oR	A	R ∞	a ^I	0	О	o	_
2	a	a	u	I I 2O	IOI	∞P 2	В	$P + \infty$	$\mathbf{d}_{\mathbf{I}}$	∞	ωo	∞0	
3	b	b	С	ΙΟΤΟ	2 Ï Ī	∞R	E	$R + \infty$	e²	∞0	∞.	∞	
4	λ	m		2243	311	4/3 P2	B A 3/4		e ₃	<u>2</u> 3	20	02	
5	m·	m	m	4041	311	+ 4 R	HA ₄	R+2	e³	+40	+4	+4	+ I
6	$\mathbf{p}\cdot$	r	P	1011	100	+ R	P	R	p	$+$ $_{\rm I}$ $_{\rm O}$	- - 1	+ 1	0
7	δ.	e	g	Ī012	110	$-\frac{1}{2}R$	G	R — 1	$\mathbf{p_1}$	$-\frac{1}{2}o$	$-\frac{1}{2}$	$-\frac{I}{2}$	$\frac{I}{2}$
8	φ.	f	f	ŽO2 I	ΙΙΙ	— 2 R	FA ₄	R+1	e ^I	— 2 0	— 2	— 2	— I
9	Ω .			7073	10-10-11	$\frac{7}{3}$ R				$-\frac{7}{3}$ o	$-\frac{7}{3}$	$-\frac{7}{3}$	— <u>10</u>
10	Φ.	s	s	<u>5</u> 051	223	— 5 R	FA_{10}	$\frac{5}{8}$ R+3	$e^{\frac{3}{2}}$	— 5 o	 5	5	— 2
11	11.			8081	$33\overline{5}$	— 8 R		_	$e^{\frac{5}{3}}$	— 8 o	— 8	— 8	-3
12	K:	v		2131	20Ī	+ R ₃	$KG\frac{I}{3}$		d²	+ 2 1	+4 I	+1 4	0 1
13	q;			4261	313	2 R3		-	_	- 4 2	<u>-8 2</u>	2 8	—1 3

Literatur.

Mohs	Grundr.	1824	2	118
Hartmann	Handwb.	1828	_	401
$L \epsilon v y$	Descript.	1838	3	162
Mohs-Zippe	Min.	1839	2	109
Breithaupt	Pogg. Ann.	1843	58	278
Hausmann	Handb.	1847	2	(2) 1354
Miller	Min.	1852		586
Kenngott	Pogg. Ann.	1856	97	99
Schrauf	Wien. Sitzb.	1860	39	894
Quenstedt	Min.	1863		422
Dana	System	1873		688
$Des\ Cloizeaux$	Manuel	1874	2	142
Groth	Tab. Uebers.	188 2		45
Klein	Jahrb. Min.	1884	1	258.

Bemerkungen.

Schrauf's Angabe (Wien. Sitzb. 1860, 39, 894) der Form (323) beruht jedenfalls nur auf einem Druckfehler statt (322).

Dana hat (System 1873. 688) die Axen-Angabe a=o.81715, die nicht mit den von ihm angeführten Winkeln R:R und O:R übereinstimmt. Es sollte heissen: a=o.8184. Groth's Angabe (Tab. Uebers. 1882. 45) dürfte von Dana entnommen und der Uebereinstimmung wegen entsprechend zu ändern sein.

Breithaupt giebt (Pogg. Ann. 1843. 58. 278) die Form $P^i=2$ P 2 an, entsprechend unserm 30 (G_2); doch stimmen dafür die angegebenen Winkel $125^{\circ}-125\frac{1}{4}^{\circ}$ Polkanten, $133\frac{1}{2}^{\circ}$ Basiskanten nicht. Quenstedt (Min. 1863. 422) setzt für Breithaupts Form $\frac{8}{3}$ P 2 = 40 (G_2), welche Angabe Klein (Jahrb. Min. 1884. 1. 260) citirt und welcher Deutung sich auch Weisbach (nach brieflicher Mittheilung) anschließt. Immerhin differirt auch hierfür der berechnete Winkel der Basiskanten $130^{\circ}46^{\circ}$ zu sehr von dem beobachteten, als dass man die Form als gesichert ansehen könnte.

Correcturen.

```
Hartmann
                Handwb.
                                1828 — Seite 402
                                                       Zeile 16 vo lies: \frac{5}{8} R+3 statt \frac{5}{4} R+2
Schrauf
                Wien. Sitzb.
                                1860 39
                                                              12 "
                                                 894
                                                                           (322)
                                                                                         (\bar{3}23)
Dana J. D.
                System
                                1873 -
                                                 688
                                                               4 Vu
                                                                          0.8184
                                                                                        0.81715
Groth
                Tab. Uebers.
                                1882 —
                                                                          0.8184
                                                  45
```

Eisenvitriol.

Monoklin.

Axenverhältniss.

```
a:b:c = 1 \cdot 1828: 1:1 \cdot 5427  \beta = 104^{\circ} 16' (Zepharovich (Künstl.). Groth. Gdt.)

a:b:c = 1 \cdot 1803: 1:1 \cdot 5420  \beta = 104^{\circ} 24 (Zepharovich.)

" = 1 \cdot 1800: 1:1 \cdot 5457  \beta = 104^{\circ} 20 (Miller. Dana.)

" = 1 \cdot 1804: 1:1 \cdot 5412  \beta = 104^{\circ} 27 (Schrauf.)

" = 1 \cdot 1793: 1:1 \cdot 5441  \beta = 104^{\circ} 22 (Senff.)

" = 1 \cdot 1704: 1:1 \cdot 5312  \beta = 103^{\circ} 27 (!) (Rammelsberg.)

" = 1 \cdot 1753: 1:1 \cdot 539  \beta = 104^{\circ} 19 (Mohs, Zippe. Hausmann.)
```

Elemente.

a = 1·1828	lg a = 007291	$\lg a_0 = 988463$	$\lg p_o = o11537$	$a_o = 0.7667$	p _o = 1·3043
c = 1.5427	lg c = 018828	$\lg b_o = 981172$	$\lg q_o = o_{17468}$	$b_o = 0.6482$	q _o = 1·4951
$\mu = 180-\beta$ 75°44	$ \left \begin{array}{c} \lg h = \\ \lg \sin \mu \end{array} \right\} 998640 $	$ \left. \begin{array}{l} \lg e = \\ \lg \cos \mu \end{array} \right\} 939170 $	$\lg \frac{p_o}{q_o} = 994069$	h = 0.9692	e = 0·2464

No.	Gdt.	Miller.	Rammels- berg. Zephar.	Mohs. Rose. Hartm. Hausm.	Miller.	Naumann.	Hausmann	Mohs. Zippe.	Gdt.
I	С	С	С	b	001	οP	A	P—∞	0
2	ь	ь	b	u	010	$\infty P \infty$	\mathbf{B}_1	Pr+∞	0∞
3	a	a	-	h	100	$\infty P \infty$	В	ĭPr+∞	∞0
4	m	m	p	f	110	∞P	E	P+∞	00
5	e	e	$\frac{\mathbf{q}}{3}$	_	013	$\frac{1}{3} P \infty$			0 I
6	О	o	\mathbf{q}	o	011	\mathbb{P}_{∞}	\mathbf{D}_{l}	Р́г	0.1
7	u	_			301	— 3 P∞		_	+30
8	\mathbf{v}	v	r	v	101	— P∞	$\overset{\scriptscriptstyle +}{\mathbf{D}}$	+ Ĕr	+ 10
9	w	w	$\frac{\mathbf{r}}{3}$	g	103	$-\frac{1}{3}P\infty$	$\overset{\scriptscriptstyle{+}}{\mathrm{A}}\mathrm{B}_{3}$	$\frac{4}{3}$ Pr —2	$+\frac{3}{4}$ o
10	s				Ī05	$+\frac{I}{5}P\infty$			— <u>I</u> o
11	t	t	r	t	ĪOI	+ P∞	$ar{\mathbf{D}}$	— Ўr	— 1 O
12	r	r	o	P	111	— P	P	P	+ 1
13	α		<u>0</u>		112	— <u>I</u> P			$+\frac{1}{2}$
14	β		$0\frac{1}{2}$		121	— 2 P 2			+ 1 2
15	γ		$O^{1}\frac{I}{2}$		Ï 2 I	+ 2 P 2	$\mathbf{B}'\mathbf{\bar{D}_2}$	$-(\breve{P}_2) = -(\breve{P})^2$	— I 2
16	ò		1/2 O		211	— 2 P 2			+2 I

Literatur.

Hauy	Traité Min.	1822	4	140
Mohs	Grundr.	1824	2	51
(Mohs-Rose)	Pogg. Ann.	1826	7	239
Hartmann	Handwb.	1828		548
Mohs-Zippe	Min.	1839	2	42
Hausmann	Handb.	1847	2 (2)	1195
Miller	Min.	1852		550
Rammelsberg	Pogg. Ann.	1854	91	325
Schrauf	Wien. Sitzb.	1860	39	894
Dana	System.	1873		646
Zepharovich	Wien. Sitzb.	1879	79 (1)	183
"	Zeitschr. Kryst.	1880	4	105.

Bemerkungen.

Hauy sieht die Formen des Eisenvitriols als rhomboedrisch-hexagonal an.

Rammelsberg's Messungen und das daraus abgeleitete Axenverhältniss weichen so stark von den Angaben der andern Autoren ab, worauf bereits Zepharovich hinweist (Wien. Sitzb. 1879. 79. (1) 187), dass eine Erklärung dafür aus dem Material kaum zu erwarten ist. Da die Angaben der andern Autoren gut übereinstimmen, so dürfte eine Revision von Rammelsberg's Messungen angezeigt sein.

Rammelsberg giebt (Pogg. Ann. 1854. 91. 326) das Symbol $r_4^\circ = a: \frac{9}{4}c: \infty b$ entsprechend unserm $+\frac{9}{4}o$ (904), während nach der Figur etwa $+\frac{4}{9}o$ zu erwarten wäre. Der nach Brooke angegebene Winkel $c: r_4^\circ = 159^\circ$ o beweist jedoch, dass die vorliegende Form das bereits bekannte g (Mohs) = w (Miller) = $+\frac{1}{3}o$ ist, wofür z. B. Miller angiebt cw = 20°54. Somit ist Rammelsberg's Symbol zu löschen. (Vgl. Zepharovich Wien, Sitzb. 1879. 79. (1) 191. Fussnote 3).

Das Axenverhältniss nach Senff ist von Zepharovich entnommen, der sich auf Naumann's Mineralogie bezieht. Senff's Originalangaben konnte ich nicht auffinden.

Schrauf giebt (Wien. Sitzb. 1860. 39. 894) ausser dem von Rammelsberg angegebenen (904) noch (104). Aus welcher Quelle dies geschöpft, konnte ich nicht finden. Vielleicht ebenfalls aus Brookes mir nicht zugänglichen Angaben? Ohne Prüfung der Quelle konnte (104) nicht aufgenommen werden.

Correcturen.

Rammelsberg Pogg. Ann. 1854 91 Seite 326 Zeile 6 vu lies 0 = a:b:c statt 0 = a:b:½ c

Eleonorit.

Monoklin.

Axenverhältniss.

a:b:c=2.755:i:4.0157 $\beta=131^{\circ}27^{\circ}$ (Streng.)

Elemente.

a = 2.755	lg a = 044012	$\lg a_0 = 983636$	$\lg p_0 = 016364$	a _o == 0.6861	$p_0 = 1.4576$
c = 4·0157	lg c = 060376	$\lg b_0 = 939624$	$\lg q_o = 047855$	$b_o = 0.2490$	$q_o = 3.0099$
$\mu = \begin{cases} \mu = \\ 180 - \beta \end{cases} 48^{\circ}33$	$ \begin{array}{c} \lg h = \\ \lg \sin \mu \end{array} $ 987479	$ \begin{cases} \lg e = \\ \lg \cos \mu \end{cases} 982084 $	$\lg \frac{p_o}{q_o} = 968509$	h = 0.7495	e = 0.6620

No.	Gdt.	Miller.	Naumann.	Gdt.
I	c	001	o P	O
2	a	100	$\infty P \infty$	∞0
3	f	111	— P	+ 1
4	g	TII	+P	— I

544 Eleonorit.

Literatur.

Streng Jahrb. Min. 1881 1 102.

Bemerkungen.

Aus den Beobachtungen Streng's an im Ganzen vier Formen lässt sich eine definitive Aufstellung für den Eleonorit nicht gewinnen und muss diejenige Streng's nur als eine provisorische angesehen werden. Sie wurde beibehalten, bis weitere Untersuchungen ein besseres Anhalten geben werden. Für den Augenblick dürfte eine Aufstellung (B) am meisten Wahrscheinlichkeit für sich haben, die sich aus der Streng's ableitet nach dem Transformations-Symbol:

pq (Streng) =
$$-\frac{p+r}{2p}\frac{q}{p}$$
 (B)

Dafür lautet das Axenverhältniss:

$$a:b:c = 1.5052:1:2.755$$
 $\beta = 91°50'$

und die bekannten vier Formen nehmen die Zeichen an:

$$c = \infty o (100); a = -\frac{1}{2}o (\overline{1}02); f = -1 (\overline{1}11); g = 01 (011).$$

Für den Wavellit nehmen wir das Axenverhältniss an:

Setzen wir darin c an die erste Stelle, so haben wir:

Wavellit:
$$c:a:b=1.981:1:2.667$$
 $\beta=90^{\circ}$ Eleonorit (B): $a:b:c=1.505:1:2.755$ $\beta=91^{\circ}50^{\circ}$.

Eine vielleicht zu beachtende Annäherung, indem auch die chemischen Formeln beider Mineralien einander nahe kommen:

Wavellit =
$$(Al^2)_3 P_4 o_{19} + 12 H_2 o$$

Eleonorit = $(Fe^2)_3 P_4 o_{19} + 8 H_2 o$

Volle Klarheit in diesen Fragen können erst weitere Untersuchungen geben.

Embolit.

Regulär.

No.	Gdt.	Miller.	Miller.	Naumann.	G_1	G_2	G_3
1	С	a	001	∞0∞	o	000	% 0
2	đ		101	ωO	1 0	ΟI	∞.
3	p	О	111	O	I	I	1

546 Embolit.

Literatur.

Breithaupt	Pogg. Ann.	1849	77	134
Miller	Min.	1852	_	614
$Dufr\'enoy$	$Compt. \ Rend.$	1853	37	968
Groth	Strassb. Samml.	1878		19.

Emplektit.

Rhombisch.

Axenverhältniss.

a:b:c = 0.7738:i:0.960i (Gdt.)

 $[a:b:c = o \cdot 96o\textsubscript{i} : i:o \cdot 7738]$ (Weisbach, Dana.)

 $\{a:b:c=0.7977:i:0.6518\}$ (Dauber.)

(a:b:c=0.5385:i:0.6204) (Groth.)

Elemente.

a = 0.7738	lg a = 988863	$\lg a_0 = 990631$	$\lg p_0 = 009369$	$a_o = 0.8060$	p _o = 1.2408
c=0.9601	lg c = 998232	$\lg b_o = \infty 1768$	$\lg q_o = 998232$	b _o = 1.0416	q _o =0.9601

Transformation.

Dauber.	Weisbach.	Groth.	Gdt.
pq	p ⋅ 5/6 q	5 q 2 7 P P	$\frac{1}{p} \frac{5q}{6p}$
p · 6/5 q	рq	$\frac{5 q}{6 p} \frac{2}{p}$	$\frac{1}{p} \frac{q}{p}$
$\frac{2}{q} \frac{14p}{5q}$	$\frac{2}{q} \frac{12p}{5q}$	рq	q 6p 5
$\frac{1}{p} \frac{6q}{5p}$	$\frac{1}{p} \frac{q}{p}$	5/6 q · 2 p	pq

No.	Gdt.	Dauber. Weisbach.	Miller.	Naumann.	Gdt.
I	С	a	001	οP	0
2	b	b	010	∞P∞	000
3	u	u	023	2 g ⊬∞	$0\frac{2}{3}$
4	g	g	056	<u>5</u> ₽∞	O 5/6
5	z	z	OII	P∞	O I
6	у	у	O2 I	2 P̃∞	02
7	х	x	071	7 P̃∞	07
8	d	ď	101	P̄∞	10
9	k	k	301	3 P∞	30

Literatur.

Schneider	Pogg. Ann.	1853	90	166
Dauber	**	1854	92	24 I
Weisbach	"	1866	128	435
D an a	System	1873		86
Groth	Tab. Uebers.	1882		25.

Bemerkungen.

Die Mineralien Emplektit, Skleroklas, Wolfsbergit, Zinckenit bilden eine isomorphe Gruppe. Es herrscht jedoch in der Beurtheilung der Formen aller dieser Mineralien eine gewisse Unsicherheit, trotzdem sehr zuverlässige Beobachter sich mit ihnen beschäftigt haben. Das hat in Folgendem seinen Grund. Der Habitus aller ist ein ähnlicher; nur beim Zinckenit weicht er ab. Es sind bei den vollständiger bekannten, Emplektit nnd Skleroklas, zwei Axenzonen entwickelt, in deren einer die Beobachtungen klar sind, während in der anderen Unsicherheit herrscht, deshalb, weil in ihr die schmalen Flächen stark gerieft und zum Theil mehr oder minder gerundet sind 1) und es endlich nicht ausgeschlossen erscheint, dass nach einer der Flächen dieser Zone, wie dies beim Zinckenit bereits durch G. Rose (Pogg. Ann. 1826. 7. 93) angenommen wurde, auch bei den anderen Viellingsbildungen vorliegen. Hierzu kommt, dass bei den Nachrichten über den Skleroklas Verwechselungen

(Fortsetzung S. 549.)

¹) Vgl. Rath Pogg. Ann. 1862. **22**. 385 (Skleroklas). — Dauber Pogg. Ann. 1854. **92.** 241. Weisbach Pogg. Ann. 1866. **128**. 437 (Emplektit).

Emplektit. 549

Bemerkungen. (Fortsetzung von S. 548.)

mit anderen Mineralien vorgekommen sind, weshalb Rath die Angaben der früheren Beobachter Sartorius von Waltershausen, Heusser, Marignac, Des Cloizeaux nur mit Auswahl annimmt. Da Rath's Ausmusterung besonders von Seiten Des Cloizeaux's ohne Widerspruch geblieben ist, so habe ich nur des ersteren Angaben herangezogen.

Groth hat versucht, die Gruppe einheitlich aufzustellen und giebt eine Zusammenstellung von Winkeln, die er für unter sich entsprechend hält (Tab. Uebers. 1882. 25 u. 26), doch ist weder die gemeinsame Aufstellung glücklich gewählt, da durch sie complicirte Symbole zu Tage kämen, noch auch die Nebeneinanderstellung der Formen des Zinckenit und Wolfsbergit neben die der beiden anderen naturgemäss. Zur Begründung des Gesagten diene das Folgende:

In Groth's Aufstellung würde der Emplektit folgende Formenreihe zeigen:

 $\frac{5}{9}$ o (u); $\frac{5}{7}$ o (g); $\frac{5}{6}$ o (z); $\frac{5}{3}$ o (y); 5 o (x); 0 2 (d); 0 6 (k)

statt: $0\frac{2}{3}$ "; $0\frac{5}{6}$ "; 01 "; 02 "; 07 "; 10 "; 30 " unserer Aufstellung.

Andererseits hat Groth für den Zinckenit den Winkel 14°42' $(\vec{P}\infty)$ mit 16°1' beim Skleroklas verglichen, statt sein Complement 75°18' mit 75°5' des Emplektit (k); 59°21' (∞P) stellt er neben die nicht beobachteten Winkel [56°40'] und [56°36'], während dessen Hälfte 29°40' höchst wahrscheinlich dem 29°42' des Skleroklas entspricht. Beim Wolfsbergit gehört 50°30' $(\infty\vec{P}2)$ neben 51°4' (Skleroklas) und 51°8' (Emplektit) statt neben 48°57'; 67°36' (∞P) neben das von Rath beobachtete oP: $(\Delta\vec{P})$ = 001: 041 = 67°58' statt neben ein nicht beobachtetes [66°28'].

Obwohl bei Allen, besonders aber beim Zinckenit noch viel Unsicherheit besteht, dürfte doch die folgende Nebeneinanderstellung naturgemäss sein.

Aufstellung des Index.		Buchstabenbezeich		enbezeichnung nach:		D 1.1.0 C1111		W - 10-1	7: -1 - 1	
Buchstab.	Symbol.	Rose.	Miller.	Dauber.	Weisbach	Rath.	Emplektit.	Skleroklas.	Wolfsbergit.	Zinckenit.
đ	10 (101)	g/2 (W)	n (W)	d (E)	d (E)	2f (S)	51°08' (Weisb.)	51°10' (Rath) 51°14' (Heusser)	50 30 (Rose)	
h	20 (201)	g (W)	m(W)	_		4f (S)		67°58' (Rath) 68°04' (Heusser)	67°36' (Rose)	_
k	30 (301)	P (Z)	u (Z)	k (E)	k (E)		74°48' (Dauber) 75°05' (Weisb.)			75°18' (Rose)
	_	M (Z)	m (Z)			$\frac{I}{2}d(S)$		29°52' (Rath)		29°40' (Rose)
u	$0\frac{2}{3}$ (023)	_			u (E)	5d (S)	32°37' (Weisb.)	32°30' (Rath)		
g	o ₅ (o ₅ 6)	_		g (E)	g (E)	5/d (S)	39°39' (Dauber)	39°22' (Rath)		
z	01 (011)							43°35' (Marign.)		
у	02 (021)				y (E)	5gd (S)	62°30' (Weisb.)	62° (Rath)		
x	07 (071)	_			x (E)	5 d (S)	81°15' (Weish.)	80°071 (Rath)		_

Winkel gegen die Spaltungsfläche c = 0 (001).

NB. In der Abkürzung bedeutet: (E) = Emplektit, (S) = Skleroklas, (W) = Wolfsbergit, (Z) = Zinckenit.

Groth hat seine Aufstellung von Rath entnommen, wie dieser sie dem Skleroklas gegeben hat; jedoch hat Rath bei der Wahl seiner Elemente ein Verfahren eingeschlagen, das nicht correkt sein dürfte. Es lagen ihm viele Beobachtungen aus den zwei domatischen Zonen vor, aus denen sich ein Axenverhältniss für möglichst einfache Symbole hätte ableiten lassen. Statt dessen hat Rath, jedenfalls bestimmt durch die Anschauung, dass die Pyramide das Primäre sein müsse, eine solche (o), die er nur an einem Krystall gesehen hatte, seiner Bestimmung der Grundwerthe untergelegt. Auf diese, wie es scheint, nicht sehr sichere Pyramidenfläche gründet sich somit Rath's Aufstellung des Skleroklas, die Groth ohne Rücksicht auf die Symbole auf die ganze Gruppe übertragen hat. Auch Rath's Zahlenreihe

(Fortsetzung S. 550.)

550 Emplektit,

Bemerkungen. (Fortsetzung von S. 549.)

ist nicht in Folge der von ihm angeführten Ursachen der Unsicherheit (Pogg. Ann. 1864. 22. 385) unnatürlich, sondern wegen der ungünstigen Aufstellung.

Wir wollen zum Vergleich der Elemente dieser Gruppe die Werthe p_{o} und q_{o} neben einander stellen:

Name.	P _o	q.
Emplektit	1.241	0.960
Skleroklas	1.241	0.956
Wolfsbergit	1.213	?
Zinckenit	1.271	1.140

Die starke Abweichung der beiden letzteren von den ersteren kann in ihrer Natur liegen, möglicherweise, wenn unsere sehr unvollständige Kenntniss von ihnen sich erweitert, behoben werden.

In Bezug auf die Viellingsbildung des Zinckenit, deren Analogon möglicherweise die starke Riefung auch bei den anderen Mineralien der Gruppe hervorgebracht haben könnte, ist zu erinnern an die Rädelerzbildung beim Bournonit. Es hat ausserdem der Zinckenit mit dem Bournonit noch weitere Aehnlichkeit, und dieser wieder mit dem Dufrenoysit in Zusammensetzung und Elementen. Es ist:

Enargit.

Rhombisch.

Axenverhältniss.

a:b:c = o.8248:i:o.8711 (Gdt.)

 $\label{eq:constraints} \left[a:b:c = o.8711:1:o.8248\right] \mbox{ (Dauber. Zepharovich.)}$

Elemente.

a = 0.8248	$lg \ a = 991635$	$\lg a_o = 997628$	$\lg p_o = 002372$	$a_o = 0.9468$	$p_o = 1.0561$	
c = 0.8711	lg c = 994007	$lg\ b_o = \infty 5993$	$\lg q_0 = 994007$	$b_o = 1.148o$	$q_o = 0.8711$	

Transformation.

Dauber. Dana. Zepharovich.	Gdt.
рq	$\frac{1}{p} \frac{q}{p}$
$\frac{\mathbf{I}}{\mathbf{p}} \frac{\mathbf{q}}{\mathbf{p}}$	pq

No.	Gdt.	Dauber.	Rath.	Miller.	Miller.	Naumann.	Gdt.
I	a	a		b	001	οP	О
2	b	ь		a	010	$\infty \breve{\mathrm{P}} \infty$	ow
3	c			c	100	$\infty \bar{P} \infty$	∞o
4	s	s	_	_	110	∞P	00
5	Ð				150	∞Ÿ 5	∞5
6	r		r	_	013	⅓ P̃∞	$O^{\frac{3}{4}}$
7	d	-	_	_	012	<u>I</u> P̃∞	0 <u>I</u>
8	e		_		034	3/4 P ∞	0 3
9	g	g	m	m _	011	ď∞	оі
10	h		n	_	O2 I	2 P̃∞	0 2
11	1		1		031	3 Р̃∞	03
12	m	m			102	$\frac{1}{2}\bar{P}_{\infty}$	$\frac{I}{2}O$
13	k	k			101	P̄∞	10
14	n	n			201	2 P̄∞	20
15	λ				301	3 P̄∞	30
16	0	0		****	111	P	I
17	p	p			2 I I	2 P 2	2 I
18	q				511	5 P 5	5 1
19	L				231	3 P ³ ⁄ ₂	2 3

552 Enargit.

Literatur.

```
Breithaupt
                Pogg. Ann.
                                1850 80
                                           383
Miller
                Min.
                                1852
                                           636
                                      92
Dauber
                Pogg. Ann.
                                1854
                                           237
Dana
                System
                                1873
                                           107
                                       3
                                           600 Matzenköpfel b. Brixlegg
                Zeitschr. Kryst.
                                1879
Zepharovich
Rath
                                1880
                                       4
                                           426
                Jahrb. Min.
                                           Ref. 159)
Zettler
                                188o
                                        1
                Zeitschr. Kryst.
                                1882
                                        6
                                           637
Groth
                Tab. Uebers.
                                1882
                                            30
```

Bemerkungen.

Dana giebt, mit Bezugnahme auf Dauber, unter Uebernahme von dessen Winkeln das Axenverhältniss a:b:c = 0.94510:1:1.1480, was in der üblichen Bedeutung der Axen entspricht: a:b:c = 0.8711:1:0.8233, während Dauber selbst angiebt: a:b:c = 0.8711:1:0.8248. Da Dana seine Werthe von Dauber entnommen, so liegt wohl ein Rechensehler vor und ist zu corrigiren, wie unten angegeben. Dana's Werth hat Groth in seine tabellarische Uebersicht übernommen, und ist demgemäss auch dort der Dauber'sche Werth herzustellen.

Correcturen.

```
Dana
           System
                                         Seite 107
                                                      Zeile 9 vu lies
                                                                         140 29
                                                                                    statt
                                                                                             140 20
                                                                          0.9468
                                                                                            0.94510
                                                           15
Groth
           ".
Tab. Uebers.
                                                                                            0.8233
                                                                          0.8248
                             1882
                                                 30
                                                              \mathbf{vo}
Zettler
          Zeitschr. Kryst.
                             1882
                                     6
                                               637
                                                            3 vu
                                                                        oP (001)
                                                                                           oP (101)
```

Eosit.

Tetragonal.

Axenverhältniss.

 $a:c=\iota:\iota\cdot3758$ (Schrauf.)

Elemente.

$\begin{pmatrix} c \\ p_o \end{pmatrix} = 1.3758 \lg c$	= 013856 lg a _o =	$= 986144$ $a_{\circ} = 0.7268$
--	--------------------------------	---------------------------------

No.	Schrauf.	Miller.	Naumann.	Gdt.
1	c	001	οP	o
2	p	111	P	1

554 Eosit.

Literatur.

Eosphorit.

Rhombisch.

Axenverhältniss.

a:b:c = o.5150:1:o.7768 (Gdt.)

[a:b:c=o.7768:i:o.5150] (E. S. Dana. Groth.)

Elemente.

a = 0.5150	lg a = 971181	$\lg a_0 = 982150$	lg p _o =017850	$a_o = 0.6615$	p _o == 1.508
c = 0.7768	lg c = 989031	lg b _o =010969	lg q _o = 989031	b _o = 1.2873	$q_o = 0.7768$

Transformation.

E. S. Dana. Groth,	Gdt.
рq	1 q p
$\frac{1}{p} \frac{q}{p}$	рq

No.	Gdt.	E. S. Dana.	Miller.	Naumann.	Gdt.
I	a	a	001	o P	0
2	p	b	001	$\infty \breve{P} \infty$	o∞
3	n	J	011	ď∞	0 1
4	g	g	021	2 P̃∞	0 2
5	t	p	111	P	I
6	\mathbf{q}	q	232	$\frac{3}{2} \stackrel{\vee}{\mathrm{P}} \frac{3}{2}$	I 3/2
7	s	s	121	2 Ĭ 2	I 2

556 Eosphorit.

Literatur.

Brush u. Dana, E. S.	Amer. Journ.	1878 (3) 16	35)
"	Zeitschr. Kryst.		
Dana, E. S.	System	1882 App, 3	24
Groth	Tab. Uebers.	1882 —	69

Bemerkungen.

Die Buchstaben wurden von dem isomorphen Childrenit nach Miller's Bezeichnung herübergenommen.

Epidot.

1.

Monoklin.

Axenverhältniss.

 $a:b:c=1\cdot 5807:1:1\cdot 8057$ $\beta=115^{\circ}24$ (Kokscharow. Klein. Bücking. Groth. Gdt.)

Elemente.

a	=	1.5807	lg a = 019885	$\lg a_0 = 994220$	$\lg p_o = 005780$	$a_o = 0.8754$	$p_o = 1.1423$
С	=	1.8057	$\lg c = 025665$	$lg b_o = 974335$	$\lg q_o = 021250$	$b_o = 0.5538$	$q_o = 1.6312$
μ	=) 80—β/	64°36'	$ \begin{array}{c} \lg h = \\ \lg \sin \mu \end{array} 995585 $	$ \begin{cases} \lg e = \\ \lg \cos \mu \end{cases} 963239 $	$\lg \frac{p_o}{q_o} = 984530$	h = 0.9033	e = 0·4289

Transformation.

Hauy. Lévy.	Miller.	Naumann. Hessenberg. Zepharovich.	Schrauf.	Weiss.	Marignac. Kokscharow. Des Cloizeaux. Klein. Websky. Bücking. Becker. Gdt.
рq	— p q	— (2 p+1) q	$\frac{1}{2p+1} \frac{2q}{2p+1}$	$\begin{array}{c c} \hline 5-3p & 8q \\ \hline 1+p & 1+p \end{array}$	$\frac{1}{p} \frac{q}{p}$
— p q	рq	(2 p—1) q	$\frac{1}{2p-1} \frac{2q}{2p-1}$	$\frac{5+3p}{1-p} \frac{8q}{1-p}$	$-\frac{1}{p}\frac{q}{p}$
$-\frac{p+1}{2}q$	$\frac{p+1}{2}$ q	рq	$\frac{1}{p} \frac{2q}{p}$	$\frac{13+3p}{1-p} \frac{16q}{1-p}$	$-\frac{2}{p+1}\frac{2 q}{p+1}$
$-\frac{p+1}{2p}\frac{q}{2p}$	$\frac{p+1}{2p} \frac{q}{2p}$	$\frac{1}{p} \frac{q}{2p}$	рq	$\frac{13 p+3}{p-1} \frac{8 q}{p-1}$	$-\frac{2p}{p+1}\frac{q}{p+1}$
5-p q 3+p 3+p	$\begin{array}{c c} p-5 & q \\ \hline p+3 & p+3 \end{array}$	$\frac{p-13}{3+p} \frac{q}{3+p}$	$\frac{p+3}{p-13} \frac{2 q}{p-13}$	рq	$\frac{3+p}{5-p} \frac{q}{5-p}$
$\frac{1}{p} \frac{q}{p}$	$-\frac{1}{p}\frac{q}{p}$	$-\frac{2+p}{p}\frac{q}{p}$	$-\frac{p}{p+2} \frac{2 q}{p+2}$	$\frac{5p-3}{p+1} \frac{8q}{p+1}$	рq

(Fortsetzung S. 559.)

558 Epidot.

Literatur.

```
Weiss, C. S.
                       Berl. Ak. Abh.
                                           1818/19
                                                          242
Hauy
                        Traité Min.
                                              1822
                                                      2
                                                          568
Mohs
                        Grundr.
                                               1824
                                                      2
                                                          322
Haidinger
                       Edinb. Journ.
                                              1824
                                                     10
                                                          305
Hartmann
                       Handwb.
                                               1828
                                                          47
Naumann
                       Kryst.
                                                      2
                                              1830
                                                         91
L\acute{e}vy
                       Descr.
                                                      2
                                               1838
                                                         115
Mohs-Zippe
                       Min.
                                              1839
                                                      2
                                                         319
Hausmann
                       Handb.
                                                      2
                                              1847
                                                         (1) 561
                       Arch. sc. phys. nat.
Marignac
                                              1847
                                                      4
                                                         148
Miller
                       Min.
                                              1852
                                                         307
Hessenberg
                       Senck. Abh.
                                                      2
                                              1856
                                                         178
                                              1858
                                                      2
                                                         250
                       Mat. Min. Russl.
Kokscharow
                                              1858
                                                      3
                                                         268
Zepharovich
                       Wien. Sitzb.
                                                         48o
                                              1859
                                                    34
                                              1862 45
                                                         (1) 381 (Zermatt)
Des\ Cloizeaux
                       Manuel
                                              1862
                                                         243 u. 254 (Piemontit)
Rath
                       Pogg. Ann.
                                              1862 115
                                                         472
Zepharovich
                       Pray. Sitzb.
                                              1865 (2)
                                                         63 (Zöptau)
Becker
                       Inaug. Diss.
                                              1868
                                                         26 (Striegau)
Schrauf
                       Wien. Sitzb.
                                              1871 64 (1) 159
Brezina
                      Min. Mitth.
                                              1871
                                                      1 49 (Sulzbach)
Klein
                       Jahrb. Min.
                                              1872 — 113 (Sulzbach)
Rath
                       Pogg. Ann.
                                              1874 Ergzb. 6 368
                       D. Geol. Ges.
                                              1875
                                                         377
B\ddot{u}cking
                                                      2
                       Zeitschr. Kryst.
                                              1878
                                                         407
                                                      3
                                              1879
                                                         661 (Correctur)
L\ddot{u}\,d\,e\,c\,k\,e
                       Halle Sitzb.
                                              1879
Laspeyres
                      Zeitschr. Kryst.
                                              188o
                                                      4
                                                         436 (Piemontit)
Rath
                                              1881
                                                      5
                                                         254
Kokscharow (Sohn)
                       Mat. Min. Russl.
                                                      8
                                              1881
                                                         43
Des Cloizeaux
                       Bull. soc. min.
                                                      6
                                              1883
                                                         23.
```

2.

No.	Gdt.	Kokscharow. Klein. Bücking.	Hauy. Rose. Mohs. Weiss. Hartmann Hausm.	Miller. Hessenb.	Schrauf.	Marignac.	Miller.	Naumann.	[Hausm.]	[Mohs-Zippe.]	[Hauy.]	[Lévy.]	Descl.	Gdt.
I	с	M	M	m	с	P	001	оP	В	Řr+∞	M	h ^I	p	0
2	b	P	P	b	ь	L	010	$\infty P \infty$	\mathbf{A}	Ēr+∞	P	g^{I}	g¹	0 00
3	t	T	Т	t	t	T	100	∞P∞	E	— Ўr	T	P	h I	∞0
4	у			_	у		310	∞P 3	_		_		_	3∞
5	u	u	u	u	u	N	210	∞P 2	$EA\frac{I}{2}$	-(Ĕr-1) <u>3</u> (Ĕ-1)	2 B	e^2	h³	2 00
6	τ	t			τ	_	320	$\infty P^{\frac{3}{2}}$	_				h ⁵	$\frac{3}{2}\infty$
7	z	z	z	z		M	110	∞P	P	— P	B	e ^I	m	00
8	G	η		_	G		120	∞P 2		_	_	_	or 3	∞ 2
9	Ξ				Ξ		150	∞P 5					$g^{\frac{3}{2}}$	∞ 5
10	p	P					016	-I ₆ P∞						0 <u>1</u>
11	h	Σ		-		_	015	Į P∞						0 I
12	Q				Q		029	$\frac{2}{9} \mathbf{P}_{\infty}$				_		o 2/9
13	7	γ	_	_	γ		013	½ P∞		_			e ³	0 I
1.4	k	k	h	k	k	$l^{\frac{I}{2}}$	012	$\frac{1}{2} P \infty$	$BA\frac{I}{4}$	$(\breve{P}+\infty)^4$	$\overset{\frac{1}{2}}{C}$	h³	e^2	$0^{\frac{1}{2}}$
15	o	О	О	О	О	1	011	\mathbb{P}_{∞}	$BA\frac{I}{2}$	$(\breve{P}r+\infty)^{\underline{3}}(\breve{P}+\infty)$)2 Č	m	$e^{\mathbf{I}}$	O I
16	g	g	_		g		301 -	- 3.P∞		_			$o^{\frac{1}{3}}$	+30
17	Θ	h			Θ	t²		- 2 P∞		_		O^2	$o^{\frac{I}{2}}$	+20
18	e	e		_	e	t	101 -	P∞	$\mathbf{D}^{_{I}}$	$-\frac{3}{4} \breve{P}r + 2$	$\overset{\frac{1}{2}}{\mathrm{E}}$		o_1	+ 10
19	1	8	k				304 -	³ / ₄ P∞	BB'4		⁴ / ₃ H			$+\frac{3}{4}$ o
20	w							$-\frac{3}{5}P\infty$				_		$+\frac{3}{5}$ o
21	m	m		-	m			$-\frac{1}{2}P\infty$					O^2	$+\frac{1}{2}o$
22	A				_		103 -	$-\frac{1}{3}P\infty$					_	$+\frac{1}{3}o$
23	Ω	Ω			Ω	$t^{\frac{1}{5}}$	105 -	$-\frac{1}{5}P\infty$		_			o^5	$+\frac{1}{5}$ o
24	C					_	To5 -	$+\frac{1}{5}P\infty$				$a^{\frac{1}{5}}$	_	$-\frac{1}{5}$ o
25	s	ω	i	_	s		T04 -	$+\frac{1}{4}P\infty$	BB'6		G ⁴			— <u>I</u> o
26	R	σ			R			$+\frac{1}{3}P\infty$				$a^{\frac{I}{3}}$	a^3	$-\frac{1}{3}$ o
27	i	i	s (i)	i	i	$ au^{rac{1}{2}}$		<u> </u>	B B'3	$\frac{3}{4}$ $Pr+2$	G^2		a^2	$-\frac{1}{2}$ o
28	σ	S	s (Mohs)) S	σ		2 03 -	<u>+ 2/3 P∞</u>	BB ¹ 2	ĕr+ı			$a^{\frac{3}{2}}$	$-\frac{2}{3}$ o
29	N	N	_	-	N	-	304 -	$+\frac{3}{4}$ P ∞	_				$a^{\frac{4}{3}}$	$-\frac{3}{4}$ o
30	r	r	r	r	r	τ	ĪOI -	+ P∞	E ¹	— + řr	1G1	a ^I	a ^I	— I O
31	L	L			L	$ au^{rac{7}{6}}$	706 -	$+\frac{7}{6}$ P ∞	_	_			$a_{3}^{\frac{6}{7}}$	— ⁷ / ₆ o
32	β	β			β	3	4 03 -	<u>+ 4</u> P∞	_	_	_		$a^{\frac{3}{4}}$	$-\frac{4}{3}$ o
33	K	k			K	τ ³	302 -	+ ³ / ₂ P∞			_		a ^{2/3}	$-\frac{3}{2}$ 0
34	а	1	1	1	a	τ2	201 -	+ 2 P∞	B ⁱ	P—∞	2 G	a ²	$\mathbf{a}^{\frac{\mathbf{I}}{2}}$	20
											/T2 -	rtsetzu	C	()

(Fortsetzung S. 561.)

560 Epidot,

Bemerkungen.

Bei Zepharovich (Wien, Sitzb. 1859. 34. 480 und 1862. 45. (1) 381) sind die Naumann'schen und Miller'schen Zeichen insofern im Widerspruch gegen die übliche Beziehung als + mPn nicht = hkl sondern = hkl gesetzt ist. Wohl legt Miller oft und so auch beim Epidot die + Symbole auf die Seite des stumpfen Winkels der Normalen ∞ 1: 100. Zum Zweck der Transformation jedoch von Naumann'schen in Miller'sche Zeichen und zur Bildung des Transformations-Symbols müssen wir eine Beziehung festhalten. Wir gehen deshalb bei der Transformation der Zeichen von Zepharovich aus von denen nach Naumann'scher Schreibweise und sind dann in Uebereinstimmung mit Naumann und Hessenberg, die die gleiche Aufstellung haben wie Zepharovich. Unser Transformations-Symbol gilt deshalb nicht für die Miller'schen Zeichen, die Zepharovich schreibt; nähmen wir diese, so wäre zu transformiren:

$$p\,q\;(Z\,ep\,haro\,v\,i\,c\,h) = \frac{2}{p-1}\,\frac{2\,q}{p-1}\;(K\,o\,k\,s\,c\,h\,a\,r\,o\,w\;\dots\,G\,d\,t.)$$

Auch bei Schrauf (Wien. Sitzb. 1871. 64. (1) 164) ist der gleiche Widerspruch zwischen + und —, jedoch in etwas anderer Weise entstanden. Schrauf geht von Millerschen Symbolen aus und fügt dazu Naumann'sche Symbole in dem Sinn, dass die + Formen nach vorn liegen. Im Uebrigen bezieht er sich bei seiner Vergleichstabelle zur Transformation (S. 167) auf Zepharovich's Miller'sche Zeichen. Um in diesem ganzen compliciten Verhältniss Verwirrung in den Vorzeichen zu vermeiden, ist es am besten, bei Zepharovich nur die Naumann'schen, bei Schrauf nur die Miller'schen Zeichen zu verwenden und beide in dem üblichen Sinn zu verstehen. In Schrauf's Transformations-Tabelle ist dann zu setzen u statt u.

 $-\frac{8}{5}$ 0 entsprechend Hessenberg's $-\frac{1}{4}$ P $_{\infty}$ und Schrauf's D (401) ist als unsicher zu betrachten (vgl. Bücking Zeitschr. Kryst. 1878. 2. 396); ebenso ist $-\frac{11}{17}$ 0 = $a\frac{7}{11}$ (Des Cloizeaux) = F (11.0.3) (Schrauf) als unsicher weggelassen worden (vgl. ebenda).

Marignac's ϵ^{10} würde unserem $-\frac{10}{3}\frac{10}{7}$ entsprechen. Dafür setzt Des Cloizeaux (Man. 1862, 247) $\eta = b^{\frac{1}{2}}b^{\frac{1}{5}}h^{1}$, entsprechend unserem $-\frac{7}{2}\frac{3}{2}$; Zepharovich (Wien. Sitzb. 1859, 34, 484) setzt $\frac{2}{5}$ P entsprechend unserem $-\frac{10}{3}\frac{4}{3}$. Aus Marignac's Winkeln $\epsilon^{10}:\epsilon^{10}=67^{\circ}$ 20; $\epsilon^{10}:T=36^{\circ}$ 21 (Durchschnitt) berechnet sich $p=-3\cdot41$; $q=1\cdot43$, ein Werth, der von $-\frac{10}{3}\frac{4}{3}$ ziemlich ebenso entfernt ist, wie von $-\frac{7}{2}\frac{3}{2}$. Bei der so bestehenden Unsicherheit wurde keines der angeführten Symbole als festgestellt angesehen.

Becker führt (Inaug. Diss. 1868. 28) die neuen Formen an:

$$\pi = -\frac{9}{16}0; \quad \sigma = -\frac{20}{21}0; \quad \tau = +22 \cdot 0; \quad v = +70$$

$$\varphi = -1 \cdot 17; \quad \chi = -1\frac{60}{61}; \quad \omega = -\frac{41}{30}\frac{1}{3}$$

Diese sind wohl alle vielleicht mit Ausnahme von v als Vicinalflächen anzusehen, während v aus der Beschreibung (S. 30) nicht als genügend sichergestellt angesehen werden kann. Sie wurden deshalb alle aus dem Formenverzeichniss weggelassen (vgl. Klein Jahrb. Min. 1872. 114).

Die Grundform Mohs' und Hausmann's ist dieselbe, die Naumann angenommen hat. Es ist jedoch bei den beiden ersteren Autoren die Symmetrie-Ebene horizontal gelegt. Um in Naumann's Aufstellung zu gelangen, ist zu setzen:

$$\pm$$
 pq (Mohs-Zippe) = \pm qp (Naumann)
 \pm pq (Hausmann) = \pm $\frac{q}{p}$ $\frac{1}{p}$ (Naumann).
(Fortsetzung S. 562.)

3.

								J.						
No.	Gdt.	Kokscharow. Klein. Bücking.	Hauy. Rose. Mohs. Weiss. Hartmann Hausm.	Miller. Hessenb.	Schrauf.	Marignac.	Miller.	Naumann.	[Hausm.]	[Mohs-Zippe.]	[Hauy.]	[Lévy.]	Descl.	Gdt.
35	f	f		f	f	τ3	301	+ 3 P∞				a³	$a^{\frac{I}{3}}$	— 30
36	D		-	_	-	_		+ 4 P∞						— 4 o
37	d	d	đ	đ	d	m	111 -	— Р	$\overline{\mathrm{B}}\mathrm{D}^{\scriptscriptstyle{1}}3$	— (Ĕ) ³		$d^{\frac{I}{2}}$	$d^{\frac{I}{2}}$	+ 1
38	v	v	-	_	v		112	— <u>I</u> P		Name and A	Name of Street		d I	$+\frac{1}{2}$
39	ε	ε		_	ε	$m^{\frac{1}{3}}$		$-\frac{I}{3}P$					$d^{\frac{3}{2}}$	$+\frac{1}{3}$
40	γ	μ					116	⁶ P						$+\frac{1}{4}$
4 I	t	λ	_				1.1.15						_	$+\frac{1}{15}$
42	π	О			π			$+\frac{1}{4}P$	-		www.	******	3	$-\frac{1}{4}$
43	P	P			p		Ī13 -	$+\frac{1}{3}P$					$b^{\frac{3}{2}}$	$-\frac{I}{3}$
44	x	x	x	x	x		Ī12	$+\frac{1}{2}P$	BD'3	+ (Ĕ) ³	_	a_3	$\mathbf{b_{I}}$	$-\frac{1}{2}$
45	n	n	n	n	n	μ.	ĪII -	+ P	$\mathbf{P}^{\scriptscriptstyleI}$	+P	$\mathbf{E}^{_{1}}$	$b^{\frac{1}{2}}$	$\mathbf{b}^{\frac{\mathbf{I}}{2}}$	— 1
46	q	\mathbf{q}	q	\mathbf{q}	q	μ^2	22I -	+ 2 P		Pr	E2B2C1	h I d 3 g 2	$b^{\frac{1}{4}}$	_ 2
47	ð				8		121	— 2 P 2					θ	+ 1 2
48	ξ			_	_		313	+ P ₃			_	_	_	- 1 I
49	Н	α	e		Н	ν	<u>2</u> 12 -		$\mathbf{E}^{\scriptscriptstyle{\dagger}}\mathbf{A}^{\underline{\mathtt{I}}}_{\underline{\mathtt{Z}}}$		$\overset{\frac{1}{2}}{\mathrm{E}}$	_	v	— I <u>I</u>
50	s				s		323 -	+ P 3/2	$E'A_{\frac{1}{2}}$				s	— I ² / ₃
51	Z	Z			z		232 ·	$+\frac{3}{2}P\frac{3}{2}$					z	$-1\frac{3}{2}$
52	Φ	Φ				_	353	+ 5 P 5		_		_		— I ⁵ / ₃
53	φ	φ			φ	φ²	Ī21 -	+ 2 P 2				-	φ	— I 2
54	Λ	Δ			_			+ 3 P 3				_	_	— 1 3
55	δ	δ			δ		T41 -	+ 4 P 4				_		<u> </u>
56	E		_		E	_		+5P5					ε	— 1 5
57	Δ				Δ	δ		+6P6		_	_		δ	— I 6
58	a						_	+7P7						— I 7
59	b	χ			-			- 6 P 6	_	-		_		+6 I
60	w Σ	w 			Σ			- 2 P 2 - P 2				-	w 	+2 I $+\frac{I}{2} I$
61														
62	Ρ				P	r	I44 - Ī22 -			-			b	$+\frac{1}{4}I$
63 64	β	a b			ψ Β	φ		$+$ $P_{\frac{3}{2}}$		energy.			ψ β	$-\frac{1}{2} I$ $-\frac{2}{3} I$
							233	1 2			I		<u>۲</u>	3 1
65	M	у	y	у	M			+ 2 P 2	$B^{1}A_{2}^{1}$	Ēr—1	$\mathbf{E}^{\frac{1}{2}}$	p_1	π	— 2 І
66	χ	C D			χ	-		+ 3 P 3			_		χ	— 3 I
67	b	R						+ 4 P 4						<u>- 4 I</u>
68	α			_	α	_		$-3P\frac{3}{2}$		_	-		α	+ 2 3
69 50	e	v						+ 2 P 4		_	_	_	k	$-2\frac{1}{2}$ $-2\frac{2}{3}$
70	J	v			J		023 -	+ 2 P 6				rtsetzu		

(Fortsetzung S. 563.)

562 Epidot,

Bemerkungen. (Fortsetzung von S. 560.)

Es empfiehlt sich zuerst diese Umwandlung vorzunehmen und von dem Naumann'schen Zeichen erst auf ein anderes überzugehen, deshalb, weil erst bei der normalen Lage der Symmetrie-Ebene die Zeichen \pm die übliche Bedeutung erhalten und durch unrichtige Anwendung des Vorzeichens Fehler entstehen. Deshalb wurden die Transformationen für Mohs und Hausmann in die Tabelle der Transformationen nicht aufgenommen.

Schrauf hat in seiner Zusammenstellung (Wien. Sitzb. 1871. 64. (1) 163—167) in den Symbolen nach Miller theilweise die Vorzeichen des ersten Index geändert, wahrscheinlich absichtlich, um die Fläche ooi nach vorn abfallen zu lassen. Da jedoch die Tabelle den Zweck der Identification hat, so dürfte ein solches Verfahren nicht angezeigt sein, umsoweniger, wenn es nicht besonders hervorgehoben wird, sondern es wären wohl die Symbole so zu copiren, wie sie sich bei dem citirten Autor finden. In diesem Sinn wurde die Correctur vorgenommen, die um so mehr berechtigt erscheinen dürfte, als bei manchen Symbolen Miller's Vorzeichen stehen geblieben sind.

Nach Brezina's Mittheilung sind in dessen Arbeit (Min. Mitth. 1871. 1. 49-52) in Uebereinstimmung mit Rosenbusch's Vermuthung (Mikr. Physiogr. d. petrogr. wicht. Min. Stuttgart 1873 S. 337) die unten gegebenen Correcturen anzubringen.

Bücking hat in seiner ausgedehnten Arbeit (Zeitschr. Kryst. 1878. 2. 321-415) in die Literatur 149 neue Formen eingeführt, von denen später eine $-\frac{5}{11}$ 0 zurückgezogen wurde (Zeitschr. Kryst. 1879. 3. 661). Von diesen neuen Formen liegen nicht weniger als 107 in einer Zone \pm po, aus welcher bereits 21 Formen bekannt waren, wozu noch vier nicht genügend sicher gestellte Formen treten, die Becker angiebt (Inaug. Diss. 1868. 28), nämlich $+22\cdot0$, +70, $-\frac{20}{21}0$, $-\frac{9}{15}0$, so dass die Zahl der Formen in dieser Zone 132 betragen würde. Diese Formenreihe deckt die Zone in ihrer ganzen Erstreckung ziemlich gleichmässig zu und macht sie, die wichtigste beim Epidot, zu Schlüssen unbrauchbar, da man in einer solchen dicht und gleichmässig mit Flächen überzogenen Zone Alles und Nichts finden kann. Es wäre erforderlich, durch kritische Diskussion der Beobachtungen die freien und echten typischen Formen zu gewinnen und von den influenzirten, den Vicinal- und Scheinflächen abzusondern (vgl. Einleitung S. 146 bis 149). Auch dürfte auf möglicherweise vorhandene versteckte Zwillingsbildung ein besonderes Augenmerk zu richten sein.

Bücking hat die Reflexe der Reihe nach vermerkt, und in diese ziemlich continuirliche Reihe von Zeit zu Zeit, meist ohne nähere Begründung der Auswahl, Symbole eingesetzt; denn der Hinweis auf bestehenden, aber nicht im speciellen Fall beobachteten Zonenverband kann nur ausnahmsweise bei wichtigen Verbänden als genügender Grund der Wahl angesehen werden. Ebensowenig ist ein Grund wie der S. 358 angeführte stichhaltig, dass die Zahl 13 gegenüber 12 den Vorzug verdiene, da sie beim Epidot besonders häufig sei; abgesehen davon, dass ein solcher Schluss im Allgemeinen nicht zutrifft, ist die Zahl 13 als Index von keinem Beobachter vor Bücking constatirt worden.

Bücking hat eine Anzahl Flächen nur als oscillatorische Streifungen auf grösseren Flächen constatirt. Das Studium solcher Bildungen hat gewiss hohes Interesse, aber die Lage des Reflexes unmittelbar zur Bestimmung einer typischen Fläche zu benutzen, dürfte doch nicht gerechtfertigt sein.

Alle neuen Symbole Bücking's aus der Hauptradialzone (Pyramiden der Hauptreihe) gehören schmalen und zugleich gerundeten Flächen an. Manche Formen sind nur durch approximative Messung bestimmt, andere lassen, da sie gestreift und uneben sind, die Möglichkeit zu, dass sie Scheinflächen seien.

Eine grosse Anzahl der angegebenen Formen sind entschieden vicinale.

Eine kritische Sichtung, die wohl nur einen kleinen Theil der Formen als typisch (Fortsetzung S. 564.)

4.

No.	Gdt.	Kokscharow. Klein. Bücking.	Hauy. Rose. Mohs. Weiss. Hartmann Hausm.	Miller. Hessenb.	Schrauf.	Marignac.	Miller.	Naumann.	[Hausm.]	[Mohs-Zippe.]	[Hauy.]	[Lévy.]	Descl.	Gdt.
71	χ				χ		521	5 P ½					x	+52
72	ζ	ζ			ζ	_	<u>5</u> 21	$+5P^{\frac{5}{2}}$	_	<u> </u>				- 5 2
73	Γ	Ξ		_	Γ	$\gamma^{\frac{1}{2}}$	<u>5</u> 12	+ ½ P 5				_	γ	$\frac{5}{2}\frac{1}{2}$
74	ω				ω		Ī23	+ 2 P 2					ω	$-\frac{1}{3}\frac{2}{3}$
75	λ		_	_	λ	$n^{\frac{2}{3}}$	213	$-\frac{2}{3}$ P2	_				λ	十章1
76	Ψ		_	_	Ψ		413	+ 4 P 4	_	_				$-\frac{4}{3}\frac{1}{3}$
77	μ				μ		423	+ 4 P 2			_	_		$-\frac{4}{3}\frac{2}{3}$

Bemerkungen. (Fortsetzung von S. 562.)

bestehen lassen dürfte, konnte auf Grund der vorliegenden Angaben über Flächenbeschaffenheit und Einzelbeobachtungen nicht geführt werden und muss es einer erneuten Kritik an der Hand des Materials vorbehalten bleiben, die nöthige Klärung zu bringen. Bis dahin schien es nicht gerechtfertigt, die von Bücking aufgestellten Formen unter die sichergestellten typischen aufzunehmen, mit Ausnahme der vier folgenden, deren Nachweis mit Sicherheit aus Bücking's Angaben hervorzugehen schien, nämlich: $\Phi = -1\frac{5}{3}; -17;$ R = -41 und $+\frac{1}{3}$ 0.

Um jedoch bei späteren Arbeiten das Angegebene leicht vergleichen und in die Discussion ziehen zu können, wurden im Folgenden Bücking's neue Formen nebst der Seite der Anführung, der Zahl der Beobachtungen und der Angabe über Flächenbeschaffenheit zusammengestellt.

Bücking's neue Formen. Zeitschr. Kryst. 1878. 2. 321 (407).

 $\Delta =$ Differenz zwischen Messung und Rechnung. d = Differenz der Messungen unter sich.

No.	Buchstabe.	Symbol.	Zahl d. Beob.	Seite.	Beschaffenheit der Flächen.	No.	Buchstabe.	Symbol.	Zahl d. Beob.	Seite.	Beschaffenheit der Flächen.
I	U	$\frac{2I}{20}\infty$	I	332	verhältnissmässig breit u. eben.	19		$+\frac{I}{2I}$	1	336	schmal entwickelt; ziemlich
2	-	$0\frac{I}{20}$	3	332							genaue Messung.
3		0 I	3	333		20	_	$+\frac{I}{22}$	2		sehr schmal u. wenig gerundet.
4	Ψ	$O_{\frac{8}{1}}$	1	333	sehr schmal, aber ziemlich	21		$+\frac{\mathrm{I}}{25}$	1		schmal, auch wenig gekrümmt.
					eben. $\Delta = 18^{\circ}$.	22	Θ	— I 🖁	1		schmale gestreifte Fl. [$\Delta = 12$ '.]
5	-	0 ½	I	333	verhältnissm. breite u. ebene Fläche v. mattem Aussehen.	23	Φ	— I §	I	338	schmal, aber vollkommen eben und spiegelnd.
6		0 ½	3		sehr schmal, ziemlich eben und glänzend.	24	Λ	— I ^{I3} / ₂	2	339	schmal, aber ziemlich eben und spiegelnd.
7		$0\frac{3}{17}$	2	333	schmale aber glänzend. Fläche.	25	_	— 17	2	339	schmal u. nicht sehr glänzend;
8		$0\frac{2}{11}$	1	333	schmale aber stark glänz. Fl.						sehr scharf ausgebildet rechts
9		$0\frac{4}{2I}$	1	334	an 1 Kryst. breit u. eben, an d.						und links von P.
					andern ganz schmal. 17°6—	26	W	— 18	1	400	ziemlich gross, 1 Fl. entwickelt.
					$17^{\circ}24$; $0\frac{1}{5}$ erfordert $18^{\circ}4^{\circ}$ zur	27	Γ	— I·24	1	400	untergeordnet, 1 Fl. entwickelt.
					Basis.]	28	ξ	— 1· 2 6	1	340	ganz schmal, aber genau mess-
10	_	0 4 19	I	334	verhältnissm. grosse Fläche; beobachtet 19°0 zur Basis.						bar; nur auf einer Seite von P vorhanden. [Messung stimmt
11		0 3	1	334	sehr schmale, etwas gerundete						besser mit 1.27.]
					Fläche, welche keinen schar-	29	R	-4 I	2	369	aus 2 Zonen bestimmt, einmal
					fen Reflex lieferte.	. [·			ziemlich gross entwickelt.
12		$0^{\frac{3}{7}}$	1	334	die mittlere von 3 helleren Par-	30	В	$\frac{5}{2}$ I	1	341	klein und uneben; Messung
					tien eines zusammenhängen-						approx.; durch Zone [30:14]
					den Reflexes.						bestätigt,
13		$0\frac{7}{12}$	I	335	sehr schmal.	31	-	$-\frac{7}{4}$ I	1	341	klein und glänzend; aus 2 Zo-
14	_	$+\frac{3}{10}$	1	336	, ,						nen abgeleitet.
15	-	+ 3	1		schmal, ziemlich eben.	32	С	⁹ / ₇ I	1	341	schmal aber zieml. lang; Win-
16	_	+ \frac{8}{4}	1		ganz schmal; etwas gerundet.						kel wegen Krümmung der Fl.
17	-	+ 10	2	336	beide Male ganz schmal, etwas						nur annähernd zu bestimmen.
					gerundet.				τ	394	gestreift, sehr klein und stark
18	_	$+\frac{1}{20}$	I	336	ganz schmal und gerundet.						gerundet.

(Fortsetzung S. 565.)

Bemerkungen. (Fortsetzung von S. 564.)

33									,			
Sungen möglich; approximative Messung. 34 G - \frac{3}{2} 1	No.	Buchstabe.	Symbol.	نۍ ا	Seite.	Beschaffenheit der Flächen.	No.	Buchstabe.	Symbol.	Zahl d. Beob.		
Sungen möglich; approximative Messung. Sungen möglich; approximative Messung. Settive Messung. Setti	33	_	- 10 I	1	340	klein, keine sehr genauen Mes-	59	_	— 50	2	355	schmal. [d == 14 ¹ .]
34 G - \frac{3}{4}						sungen möglich; approxima-	60		⁹ / ₂ o	5	355	gewöhnl, schmal oder als Strei-
Schmal, nur auf der rechten Seite vorhanden.	ļ					tive Messung.						fung auf einer der grösseren
35 A - \frac{7}{7} I 340 Schmal, nur auf der rechten Seite vorhanden. 366 \frac{4}{7} I 383 gestreift an einem Zwilling. 38 E - \frac{10}{3} \frac{4}{3} I 383 gestreift an einem Zwilling. 38 E - \frac{10}{3} \frac{4}{3} I 383 sehr klein. 39 S - \frac{2}{4} \frac{2}{3} I 383 sehr klein. 39 S - \frac{2}{4} \frac{2}{3} I 383 sehr klein. 39 S - \frac{2}{4} \frac{2}{3} I 383 sehr klein. 394 Streifung auf dem Orthopinakoid. 358 Streifung auf dem Orthopinakoid nachgewiesen. 357 358 Streifung auf dem Orthopinakoid beobachtet. 366 - \frac{1}{2}0 O 3 357	34	G	$-\frac{3}{4}$ 1	1	383	Gestreift an einem Zwilling.	i					benachbarten Flächen, ein-
Seite vorhanden.	1	A	$-\frac{5}{7}$ I	1	340	schmal, nur auf der rechten						mal breiter.
37 Q $-\frac{4}{5}$ I 1 383 gestreift an einem Zwilling. 61 $-\frac{23}{2}$ O 4 355 schmal. schmal. 39 S $-\frac{2}{4}$ I 383 seh klein. sehr klein. sehr klein. 376 schmal. 377 schmal.						Seite vorhanden.				1	394	als oscillatorische Streifung
38 E	36	-	— 4 1	1	386	in oscillatorischerCombination.						[ohne Winkelangabe].
39 S	37	Q	- 4 1	1	383	gestreift an einem Zwilling.	61			4	355	
40 D -\frac{12}{5} \frac{6}{5} 1 342 klein, matty, Messung. approximativ; Zone [qf] u. [Muy]. als Streifung auf dem Orthopinakoid. als Streifung auf dem Orthopinakoid nachgewiesen. als Streifung auf dem Orthopinakoid beobachtet. an einem Kryst, ziemlich breit, an 2 andern schmal. schmal. als Streifung auf dem Orthopinakoid und einmal ziemlich breit entwickelt. als Streifung auf dem Orthopinakoid und einmal ziemlich breit entwickelt. abstreifung auf dem Orthopinakoid beobachtet. als Streifung auf dem Orthopinakoid und einmal ziemlich breit entwickelt. als Streifung auf dem Orthopinakoid und einmal ziemlich breit entwickelt. abstreifung auf dem Orthopinakoid beobachtet. abstreifung auf dem Orthopinakoid beobachtet. abstreifung auf dem Orthopinakoid beobachtet. schmal. aber auch matt. schmal. aber auch matt. schmal. s	38	E	$-\frac{10}{3}\frac{4}{3}$	1	383	matt, annähernde Messung.	62		$-\frac{7}{2}$ o	2	355	einmal breit, einmal schmal.
Mativ; Zone [qf] u. [Muy]. als Streifung auf dem Orthopinakoid. als Streifung auf dem Orthopinakoid nachgewiesen. 43 22·0 2 357 als Streifung auf dem Orthopinakoid beobachtet. an einem Kryst, ziemlich breit, an 2 andern schmal. 2 mal schmal als Streifung auf dem Orthopinakoid und einmal ziemlich breit entwickelt. 47 15·0 1 357 als Streifung auf dem Orthopinakoid beobachtet. 48 14·0 2 357 ziemlich breit, meist glänzend, aber auch matt. 50 12·0 4 357 schmal. 357 schmal. 358 schmal. 374 klein, Messung. approximativ. 53 9 0 5 356 gewöhnlich schmal oder als 54 8 8 0 4 356 gewöhnlich schmal oder als 50 28 0 2 357 ziemlich breit, meist glänzend, auf dem Orthopinakoid. 54 8 8 0 4 356 gewöhnlich schmal oder als 50 28 0 2 357 ziemlich breit, meist glänzend, auf dem Orthopinakoid. 54 8 8 0 4 356 gewöhnlich schmal oder als 57 28 0 3 353	39	S		il .	383	sehr klein.				-	376	_
41 — 33·0 2 358 als Streifung auf dem Orthopinakoid. 42 — 26·0 3 358 als Streifung auf dem Orthopinakoid nachgewiesen. 43 — 22·0 2 357 als Streifung auf dem Orthopinakoid nachgewiesen. 44 — 20·0 3 357 an einem Kryst, ziemlich breit, an 2 andern schmal. 45 — 18·0 3 357 schmal. 46 — 16·0 3 357 zmal schmal als Streifung auf dem Orthopinakoid und einmal ziemlich breit entwickelt. 47 — 15·0 1 357 ziemlich breit, meist glänzend, aber auch matt. 50 — 12·0 4 357 schmal. 50 — 12·0 4 357 schmal. 50 — 12·0 5 356 schmal. 51 — 11·0 5 356 schmal. 52 — 10·0 3 356 schmal. 53 — 9 0 5 356 gewöhnlich nur als Streifung auf dem Orthopinakoid. 54 — 8 0 4 356 gewöhnlich schmal oder als 76 $-\frac{29}{90}$ 2 353 ziemlich breit. [d = 10·]]	40	D	$-\frac{12}{5}\frac{6}{5}$	1	342		63	_	$-\frac{17}{5}$ o	7	355	bald schmal, bald etwas brei-
142												ter, in letzterem Fall oft ein
42	41		33·o	2	3,58	als Streifung auf dem Ortho-						
1												
43	42	-	-26·o	3	358		65	_	$-\frac{23}{8}$ o	14	354	
pinakoid beobachtet. an einem Kryst, ziemlich breit, an 2 andern schmal. 45 — 18·0 3 357 schmal. 46 — 16·0 3 357 zmal schmal als Streifung auf dem Orthopinakoid und ein- mal ziemlich breit entwickelt. 47 — 15·0 1 357 als Streifung auf dem Ortho- pinakoid beobachtet. 48 — 14·0 2 357 schmal. 49 — 13·0 7 357 ziemlich breit, meist glänzend, aber auch matt. 50 — 12·0 4 357 schmal, zuweilen breit. 51 — 11·0 4 357 schmal. 52 — 10·0 3 356 schmal. 374 klein, Messung. approximativ. 53 — 9 0 5 356 gewöhnlich nur als Streifung auf dem Orthopinakoid. 54 — 8 0 4 356 gewöhnlich schmal oder als 56 — 17/6 0 6 354 zum Theil zieml. breit, Wi zur Basis 97°26—97°37. 56 — -17/6 0 6 354 zum Theil zieml. breit, Wi zur Basis 97°26—97°37. 57 — -25/9 0 1 354 ziemlich breit. 68 — -17/9 0 1 354 ziemlich breit. 69 — -8/8 0 1 354 ziemlich breit und matt. 70 — 13/8 0 3 353 schmal. 71 — -5/2 0 1 353 353 Beschaffenheit. 72 — 22/9 0 3 353 353 Schmal. 73 — 18/9 0 3 353 353 schmal. 74 — -7/3 0 4 353 ganz schmal und glänzend, einmalbreit u. matt. [d = 10].]												
an einem Kryst, ziemlich breit, an 2 andern schmal. 45 — $-18\cdot0$ 3 357 an einem Kryst, ziemlich breit, an 2 andern schmal. 46 — $-16\cdot0$ 3 357 zemlich breit entwickelt. 47 — $-15\cdot0$ 1 357 also Streifung auf dem Orthopinakoid beobachtet. 48 — $-14\cdot0$ 2 357 ziemlich breit, meist glänzend, aber auch matt. 50 — $-12\cdot0$ 4 357 schmal. 50 — $-12\cdot0$ 4 357 schmal. 50 — $-12\cdot0$ 4 357 schmal. 51 — $-11\cdot0$ 4 357 schmal. 52 — $-10\cdot0$ 3 356 schmal. 53 — -90 5 356 gewöhnlich nur als Streifung auf dem Orthopinakoid. 54 — -8 0 4 356 gewöhnlich schmal oder als 56 — $-\frac{29}{6}$ 0 6 354 zum Theil zieml. breit, Wi zur Basis $97^{\circ}26 - 97^{\circ}37$. 56 — $-\frac{19}{7}$ 0 1 354 etwas breiter, als sonst selteneren Hemidom. zu pflegen. 57 — $-\frac{13}{5}$ 0 1 353 derelich breit und matt. 58 — $-\frac{13}{5}$ 0 1 353 derelich breit und matt. 59 — $-\frac{12}{9}$ 0 3 355 schmal. 50 — $-\frac{12}{9}$ 0 3 355 schmal. 51 — $-\frac{11}{9}$ 0 4 357 schmal. 52 — $-\frac{12}{9}$ 0 3 355 schmal. 53 — $-\frac{9}{9}$ 0 3 355 schmal. 54 — $-\frac{9}{9}$ 0 3 355 schmal. [d = 19° .]	43	-	- 22·O	2	357							1
an 2 andern schmal. schmal. 2 mal schmal als Streifung auf dem Orthopinakoid und einmal ziemlich breit entwickelt. 47 — 15·0 1 357 als Streifung auf dem Orthopinakoid beobachtet. 48 — 14·0 2 357 aber auch matt. 50 — 12·0 4 357 aber auch matt. 50 — 11·0 4 357 aber auch matt. 51 — 11·0 4 357 aber auch matt. 52 — 10·0 3 356 aber auch matt. 53 — 90 5 356 gewöhnlich nur als Streifung auf dem Orthopinakoid. 54 — 80 4 356 gewöhnlich schmal oder als an 2 andern schmal. 66 — $-\frac{17}{6}$ 0 6 354 zum Theil zieml. breit, Wi zur Basis $97^{\circ}26 - 97^{\circ}37$. ziemlich breit, etwas breiter, als sonst selteneren Hemidom. zu pflegen. 70 — $-\frac{13}{5}$ 0 1 353 ziemlich breit und matt. 71 — $-\frac{5}{2}$ 0 1 353 ziemlich breit, aber matt. 72 — $-\frac{29}{9}$ 0 3 353 schmal. 73 — $-\frac{19}{8}$ 0 3 353 schmal. 74 — $-\frac{7}{3}$ 0 4 353 ganz schmal und glänzend, einmalbreit u. matt. [d = 10'.]												
45	44	-	20.0	3	357							
46 — — 16·0 3 357 2 mal schmal als Streifung auf dem Orthopinakoid und einmal ziemlich breit entwickelt. 47 — — 15·0 1 357 357 als Streifung auf dem Orthopinakoid beobachtet. 48 — — 14·0 2 357 357 ziemlich breit, meist glänzend, aber auch matt. 50 — — 12·0 4 357 5chmal. 50 — — 11·0 4 357 5chmal. 51 — — 11·0 4 357 5chmal. 52 — — 10·0 3 356 schmal. 53 — — 90 5 356 gewöhnlich nur als Streifung auf dem Orthopinakoid. 54 — — 8 0 4 356 gewöhnlich schmal oder als 56 — — 29 0 2 353 ziemlich breit. 67 — — 29 0 2 355 ziemlich breit. 68 — — 29 0 1 354 ziemlich breit. 68 — — 29 0 1 354 ziemlich breit. 68 — — 29 0 1 354 ziemlich breit. 69 — — 8 0 0 1 354 ziemlich breit und matt. 70 — — 13·0 1 353 ziemlich breit und matt. 71 — — 5½ 0 1 353 ziemlich breit, aber matt. 72 — — 29 0 3 353 ziemlich breit, aber matt. 73 — — 19·0 3 355 ziemlich breit, aber matt. 74 — — 29 0 3 353 ziemlich breit und matt. 75 — — 29 0 3 353 ziemlich breit, aber matt. 76 — — 29 0 2 353 ziemlich breit.							66		17-	6		
dem Orthopinakoid und einmal ziemlich breit entwickelt. 4715·0 I 357 4814·0 2 357 4913·0 7 357 5012·0 4 357 5111·0 4 357 5210·0 3 356 539 0 5 356 548 0 4 356 gewöhnlich schmal oder als dem Orthopinakoid und einmal ziemlich breit entwickelt. 68 - $-\frac{19}{7}$ 0 I 354 68 - $-\frac{19}{7}$ 0 I 354 etwas breiter, als sonst selteneren Hemidom. zu pflegen. 2 iemlich breit und matt. 70 - $-\frac{13}{5}$ 0 I 353 8 jernal, zuweilen breit. 71 - $-\frac{5}{2}$ 0 I 353 72 - $-\frac{29}{9}$ 0 3 353 8 jernal. 73 - $-\frac{19}{3}$ 0 3 353 8 jernal. 74 - $-\frac{7}{3}$ 0 4 353 8 jernal und glänzend, einmal breit u. matt. [d = 10'.] 75 - $-\frac{9}{4}$ 0 3 353 8 jernal und glänzend, einmal breit u. matt. [d = 10'.]		_	1	- 1			00			U	354	
mal ziemlich breit entwickelt. als Streifung auf dem Orthopinakoid beobachtet. schmal. $68 - \frac{19}{7}0$ I 354 etwas breiter, als sonst selteneren Hemidom. zu pflegen. $257 - 130$ $257 - 250$ $257 - 290$ 257	40	_	10.0	3	357		67		250		254	
47 — 150 I 357 als Streifung auf dem Orthopinakoid beobachtet. 48 — 140 2 357 7 357 ziemlich breit, meist glänzend, aber auch matt. 50 — 120 4 357 schmal. 51 — 110 4 357 schmal. 52 — 100 3 356 schmal. 374 klein, Messung. approximativ. 53 — 90 5 356 gewöhnlich nur als Streifung auf dem Orthopinakoid. 54 — 80 4 356 gewöhnlich schmal oder als 76 — $\frac{20}{9}$ 0 2 353 selteneren Hemidom. zu pflegen. 354 selteneren Hemidom. zu pflegen. 355 ziemlich breit und matt. 356 gemeihen Fläc Beschaffenheit. 371 — $\frac{5}{2}$ 0 I 353 beschmal. 372 — $\frac{29}{9}$ 0 3 353 schmal. 373 — $\frac{19}{3}$ 0 3 353 schmal. 374 specification of the pinakoid. 375 — $\frac{29}{3}$ 0 3 353 gemeihen breit und matt. 376 — $\frac{29}{3}$ 0 3 353 schmal. 377 gemeihen breit und matt. 378 perminden of the pinakoid. 379 pflegen. 380 pflege						-	1 1				1	
pinakoid beobachtet. schmal. pinakoid beobachtet. schmal. pflegen. pflegen. phlegen. phlegen. pflegen. pflegen. pflegen. pflegen. pflegen. pfleg			7.5.0		255		00		7 0		334	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	47		13.0	1	337							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	48	_	- I4:0	2	257	-	60	_	§ o	1	354	
aber auch matt. schmal, zuweilen breit. $71 - \frac{5}{2} \circ 1$ 353 353 ziemlich breit, aber matt. $72 - \frac{22}{9} \circ 3$ 353 schmal. $73 - \frac{19}{9} \circ 3$ 353 schmal. $74 - \frac{7}{3} \circ 4$ 357 schmal. $75 - \frac{9}{3} \circ 1$ 358 schmal und glänzend, einmalbreit u. matt. $[d = 19]$ $[d = 19]$. $[d = 19]$ $[d = 19]$.	1		1 1	1 !					- 1			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	72		-3 -	1	337		'					
S1	50	_	12.0	4	357		71	_	— <u>5</u> o	1	353	ziemlich breit, aber matt.
52	1.	_		1			72			3		
53	1		1 1				73			3		
53 90 5 356 gewöhnlich nur als Streifung auf dem Orthopinakoid. 75 90 3 353 schmal. [d = 19'.] 54 80 4 356 gewöhnlich schmal oder als 76 20 2 353 ziemlich breit. [d = 10'.]							74		$-\frac{7}{3}$ o	4	353	ganz schmal und glänzend, nur
auf dem Orthopinakoid. $\begin{vmatrix} 75 \\ -4 \end{vmatrix} - \begin{vmatrix} 96 \\ 20 \end{vmatrix} = \begin{vmatrix} 356 \\ 356 \end{vmatrix}$ gewöhnlich schmal oder als $\begin{vmatrix} 75 \\ 76 \end{vmatrix} - \begin{vmatrix} 96 \\ 20 \end{vmatrix} = \begin{vmatrix} 96 \\ 20 \end{vmatrix} = \begin{vmatrix} 3353 \\ 20 \end{vmatrix}$ schmal. $\begin{bmatrix} 16 \\ 20 \end{bmatrix} = \begin{bmatrix} 16 \\ 20 \end{bmatrix}$	53	_	- 90	5								einmalbreit u. matt. [d = 20'.]
						auf dem Orthopinakoid.	75	-				
Streifung einmal auch ziem- 77 130 I 353 schmal.	54		- 8 o	4	356	gewöhnlich schmal oder als	76			2		
					1	Streifung einmal auch ziem-	77	-	$-\frac{13}{6}$ o	1		
lich breit. [d = 19'.] $78 - \frac{15}{7}$ 0 1 353 ziemlich breit. [$\Delta = 12'$.]						lich breit. $[d = 19]$.	78	-		I		
$\begin{vmatrix} 55 \end{vmatrix} - \begin{vmatrix} -70 \end{vmatrix} \begin{vmatrix} 4 \end{vmatrix} \begin{vmatrix} 356 \end{vmatrix}$ einmal etwas breiter, aber von $\begin{vmatrix} 79 \end{vmatrix} - \begin{vmatrix} -\frac{25}{12}0 \end{vmatrix} \begin{vmatrix} 2 \end{vmatrix} \begin{vmatrix} 352 \end{vmatrix}$ neben — 20 einmal sch	55	-	- 70	4	356	einmal etwas breiter, aber von	79		$-\frac{25}{12}$ 0	2	352	
matter Beschaffenheit. einmal breit.						matter Beschaffenheit.			т 2			
$\begin{vmatrix} 56 \end{vmatrix} - \begin{vmatrix} -\frac{27}{4} \circ \end{vmatrix} 3 \begin{vmatrix} 356 \end{vmatrix}$ schmal; dürfte mit diesem Zei- $\begin{vmatrix} 80 \end{vmatrix} - \begin{vmatrix} -\frac{13}{7} \circ \end{vmatrix} 2 \begin{vmatrix} 352 \end{vmatrix}$ trotz matten Aussehens	56		-27 o	3	356		80		1 30	2	352	
												Kleinheit der Flächen Mes-
5725 0 3 356 an 2 Kryst. ziemlich schmal, sungen ziemlich genau.	57		$-\frac{25}{4}$ o	3	356				т т			
an dem dritten breit u. matt. 81 — — 11 352 über Flächen - Beschaffen	_						81	-	-4-o	I	352	
58 — — 60 2 356 einmal breit, einmal schmal. keine Angabe.	58		— 60	2	i i		0 -		ا ـ ه	_	25-	_
374 approx. gemessen. 82 $ \frac{9}{5}$ O I 352 schmal.		1	1	1 1	374	approx. gemessen.	02		— <u>₹</u> 0	I	352	semilal.

(Fortsetzung S. 566.)

Bemerkungen. (Fortsetzung von S. 565.)

	e.		eop			No.	ъре.		eop	1	
No.	ısta	Symbol.	E	Seite.	Beschaffenheit der Flächen	No.	hsta	Symbol.		Seite.	Beschaffenheit der Flächen,
	Buchstabe		Zahi				Buc	-	Zahl		
									L		
83		$-\frac{7}{4}$ o	I	352	über Flächen - Beschaffenheit	104		—	1	1	schmal.
					keine Angabe.					374	nur annähernde Messung; Flä-
				362	ohne nähere Angabe.						chen klein.
84	-	$-\frac{17}{10}$ o	3	352	einmal matt, die andern Male	105		$-\frac{9}{11}0$	2	348	ganz schmal.
					glänzend.	106	_	$-\frac{11}{14}$ 0	3	347	zum Theil schmale Fläche, zum
85		5 o	3	352	über Flächen - Beschaffenheit						Theil Streifung.
		3			keine Angabe.	107		2 90	6	347	bald schmal, bald zieml. breit,
86		— § o	ı	351	schmal. [$\Delta = 10^{\circ}$.]			2.			bald als Streifung. [d = 20'.]
1 1					schmal; dürfte mit ziemlicher	108		$-\frac{8}{11}$ 0	4	347	zum Theil breit.
"	-	,, 5		332	Sicherheit als (11.0.7) zu	109		$-\frac{5}{7}$ 0	5		schmale Fläche. [d = $29\frac{1}{2}$.]
					deuten sein.						schmal. $[d=24']$; 4 Messungen,
			١.	206	ohne nähere Angabe.	110		200	4	340	welche d. berechneten Werth
00		160	Į.		schmal.						44°32 verhältnissmässig sehr
88	_	$-\frac{10}{16}$ o									
89	_	$-\frac{10}{7}$ o			ziemlich breit. [$\Delta = 11'$.]			7 -	_	3.6	nahe kommen.
90		$-\frac{7}{5}$ o	3	350	keine Angabe über Flächen-	111	_	- IIO	7	340	tritt in Gestalt ziemlich breiter
					Beschaffenheit.	į					oder auch schmaler Streifen
			I	394	als oscillator. Streifung [ohne						auf d. grösseren benachbart.
					Winkelangabe].	i					Hemidomenflächen auf.
91					nicht sehr schmal; etwas matt.				1	394	als oscillator. Streifung [ohne
92		— ⁶ / ₅ o	5	350	theils schmal und nur als Strei-			_			Winkelangabe].
					fung, theils ziemlich breit						schmal.
					ausgebildet. $[d = 24']$	113		$-\frac{13}{21}$ O	4	345	schmal, wohl auch etwas matt.
				378		114	-	$-\frac{3}{5}$ O	3	345	
93		— ⁸ / ₇ o	3	350	schmal; der eine der 3 Reflexe						Streifung auf den grösseren
					sehr verwaschen.						Hemidomenflächen vollkom-
				363	schmal, fein gestreift und matt.						men eben; ziemlich gute Re-
94		— ² / ₈ o	1	349	schmal.						flexe.
95	_	$-\frac{11}{10}$ o	1		schmal.	115		I I o	4	345	schmal, nur einmal ziemlich
96	_				schmal.						breit; theils glänzend, theils
			I		als oscillator. Streifung [ohne						matt.
					Winkelangabe].	116		- 4 o	1	345	ziemlich breit.
97		2 60	1	349	schmal.				ii .	405	l
98					schmal und als Streifung auf	117	_	5 0	5	345	3mal schmal, 2mal etwas breit.
		17.			dem benachbart. Hemidoma			$-\frac{6}{11}$ o		345	l , , ,
					— 10.			• • •		0.0	dern schmal,
99		$-\frac{13}{140}$	ı	349	schmal.				1	394	als oscillator. Streifung [ohne
100					an 3 Kryst. schmal, aber recht					021	Winkelangabe].
		10-	1	34	glänzend u. lieferte deutliche	119		$-\frac{8}{15}$ O	7	344	
					Reflexe; am 4. Kryst. etwas			13	'		auch — ½ o zeigten.
					breiter, aber Winkel mehr	120	_	$-\frac{11}{21}0$	т	344	an 3 Kryst., welche gleichzeitig
					abweichend.			21	1	317	auch $-\frac{1}{2}$ o zeigen. $[d=18\frac{1}{2}]$.
101		- § O	2	248	schmale Fläche.						Daneben noch mehrere Flä-
102	_				schmale Streifung auf den be-	l			Ì		chen zwischen $-\frac{II}{2I}$ o und
100		150		343	nachbarten grösseren Hemi-						$-\frac{1}{2}0.$
					domen. [d == 17 ¹ .]	121		$-\frac{7}{15}$ 0	,	3/1	ganz schmal, nur einmal neben
103		$-\frac{11}{13}0$	2	248	ganz schmal. $[d = 23\frac{1}{2}]$.	***		150	ľ	344	$-\frac{1}{2}0.$
.03		130	l 3	340	5 Ld 232 J.			<u> </u>	Ĭ	1	2

(Fortsetzung S. 567.)

Bemerkungen. (Fortsetzung von S. 566.)

No.	Buchstabe.	Symbol.	Zahl d. Beob.	Seite.	Beschaffenheit der Flächen.	No.	Buchstabe.	Symbol.	Zahl d. Beob.	Seite.	Beschaffenheit der Flächen.
122	-	$-\frac{5}{11}$ o	1	344	nach Bd. 3 S. 661 zu streichen.	135		$+\frac{1}{3}$ o	I	396	ohne Angabe d. FlBeschaffen-
123	-	$-\frac{3}{7}$ o	?	374	ohne Angabe über Flächen-						heit; in Zone (010-113).
					Beschaffenheit.	136	_	$+\frac{11}{15}$ 0	1	359	schmal, vollkommen eben und
124					schmal.						spiegelnd.
125	-	$-\frac{3}{16}$ o	I	343	sehr schmal.						schmal.
			I	393	ohne Angabe der Flächen-	138	-	+ ⁸ / ₇ o	1	359	schmal.
		_			Beschaffenheit. [$\Delta = 18^{\circ}$.]	139	-	+ ₩0	1	359	breit, stark gestreift.
126		— ½ o	I		schmal; Winkel annähernd be-	140	_	$+\frac{7}{3}$ o	I	359	schmal.
	İ	_			stimmt, schwach. Krümmung.	141	_	+¥°0	I	359	schmal, ziemlich glänzend.
127	-	— ½ o	I	393	ohne Angabe der Flächen-	142		$+\frac{7}{2}$ o	1	386	schmal und etwas matt.
		_			Beschaffenheit.				-	390	ohne Angabe der Flächen-
128	-	- § 0			schmal; Messung zieml. genau.						Beschaffenheit.
		.	-	377	sehr klein.	143		+60	I		schmal, etwas matt; Messung
129	-	-160	2	343	ı mal schmal, etwas gerundet;						approximativ.
					am 2. Kryst. als Streifung						ganz schmal.
					auf der Basis.	145	-	+12.0			schmal und etwas matt.
130	-	- 180	?	374	ohne Angabe der Flächen-					390	ohne Angabe der Flächen-
					Beschaffenheit.						Beschaffenheit.
					verhältnissmässig breit.	146	-	+13.0	I	358	schmal. [Messung würde besser
					sehr schmal.						mit + 12·0 stimmen.]
133	-	十 🕏 이	I	393		147		+17·0	I	358	als Streifung auf dem Ortho-
					Beschaffenheit.					_	pinakoid.
134		† 1 0	3	359	schmal. [d = 30'.]	148	-	+18.0	I	363	etwas breiter als $+90$.

568 Epidot.

Correcturen.

Hartmann	Handwb.	1828	_	Seite	48	Zeile	9	vo	lies	Pr—ı	statt	Pr—1
	,,						14			$\pm \frac{(\breve{P})^3}{2}$	"	$\pm \frac{(P)^3}{2}$
"	"	"	"	"	"	"		"	"			
**	"	"	"	"	"	"	6	,1	"	$\frac{1}{13}a : \frac{1}{8}b : c$	"	$\frac{1}{13}a': \frac{1}{8}b:c$
Zepharovich	Wien. Sitzb.	1862	45 (Ί) "	388	Col.	3	"	,,	$-\frac{(\breve{P}-1)^2}{2}$,,	$-\frac{(\breve{P}-2)^2}{2}$
"	,,	"	"	,,	162	,,	6	vu	,,	Ž2 I	,,	321
							6	,,		$\mathbf{b^{\frac{1}{4}} \cdot \bar{z}}$ 21		$\mathbf{b}^{\mathbf{\overline{2}}} \cdot \mathbf{\overline{3}21}$
Schrauf	"	" 1871	." 64 (1)	" 163	"	15	"	"	102	"	ī02
»	,,	,.		-, "	"	"	13	"	"	m 100	"	m¹ īoo
"	"	,,	"	"	,,	" "	13	"	"	M	,,	m
"	"	"	"	"	,,	"	7			fügen: v=-		b:c (Weiss)
"	"	"	"	"	"	"	6	"				b: c (Weiss)
"	"	"	"	"	164	"			lies	ຶ່ນ (B)	statt	
,,	"		"	"	"	"		vu		$5^5, 105, -\frac{1}{5}Pc$		0^3 , 103 , $\frac{1}{3}$ P ∞
"	"	"	"	"	,,	"	11	,,	"	4 P 4	"	5 P 4
"	"	"	,,	"	"	"	10	"	"	<u>1</u> 41	"	141
"				"	"	"	4	"	,,	4 P 2	,,	2 P 2
,,	"	"	"	"	"	"	2	"	"	ĪII	"	111
"	"	"	,,	"	165			ıb.vo		101	"	ĩO1
	"				-	,, 3	,,		"	302	"	302
"	"	"	,,	,,	"	" 5 " 5	"	"	"	201	"	2O1
"	,,	,,	"	"		, 8	"	"		103	,,	ī03
"	n	"	,,	",	"	" o	,,	"	"	T		t (Weiss)
"	**	"	"	,,	,,	" 14	**	"	"	ĪOI	"	101
"	"	**	"	"	"		"	"	"	211	"	211
59	"	"	"	"	"	" 19 Zeile	"	" vu	"	$\frac{1}{5}a : \frac{1}{4}b : c$	"	$\frac{4}{5}a : \frac{1}{4}b : c$
"	"	**	"	"	**		23		"			∞ c (Weiss)
"	"	"	"	"	" "	z. " 3		, h vo	lies	TII	statt	111
"	"	"	"	"						<u>1</u> ·10·1		1.10.1
"	"	"	"	"	166	,, 11	,,,	"	"		"	310
"	"	"	"	"	"	" 13	"	"	"	310 x·521·—5 P \(\frac{5}{2} \)	"	2.541.5₽ 5
"	,,	,,	"	"	"	" 17 " 18	"	"	"			
,,	"	"	"	"	"	" 18 Zeile	رو ـــ	" Vu	"	732 Tii	"	732 111
"	**	**	"	"	166				"		"	wτν
"	"	**	"	"		"	2	" VO	"	ω, τ, υ λ (σ₹.σ.σ.)	"	
"	"	"	"	"	177	,,			17	λ (2 Ī·5·24)	,,	5·21·24 <u>1</u> P <u>1</u> 9
" D	Min. Mitth.	,, -0	"1	"	"	" 1	4 5, 20	"	"	— ў Р ў Т	"	4 F 9 r
Brezina		1871		"	50		,		"		"	T
"	"	"	17	"	,, 		7, 19	"	"	r i y P q' y' i'	**	1 y P q' y' l'
n Dünbina	Zoitanka F	" 	" 2	"	51	" "	22	"	"	(17·O·1)		(17·0·1)
$B\ddot{u}cking$	Zeitschr. Krys	11. 1078		"	358		5, 17		**		"	(17·0·1) (13·0·14)
"	n	"	"	"	377			vo	"	(13·0·14) a	"	α (13.0.14)
"	"	"	"	**	410		11	" "	"	a Becker	"	
"	"	,,	**	"	414		-	vu	"	Bücking	"	"
	, (Sala) C	,, M.,	" E.	.:1	» 2=0	,,		"	" 7ail		"	99
A okscharou	v (Sohn) Gen.	wiess, a	u rej	na. I	079	- 50	ene	00	Len	e 4 vu lies	υ st	tatt v.

Epistilbit.

Monoklin.

Axenverhältniss.

Elemente.

a	=	0.5061	lg a = 970424	$\lg a_0 = 994359$	$lg \; p_o = \infty 5641$	$a_{\circ} = 0.8782$	$p_o=1\cdot 1387$
С	=	0.5763	$\lg c = 976065$	$lg b_o = 023935$	$\lgq_\circ=967897$	$b_o = 1.7352$	$q_{\circ} = 0.4775$
μ 180	$=$ β	55°57	$ \begin{cases} $	$ \begin{array}{c} \lg e = \\ \lg \cos \mu \end{array} 974812 $	$\lg \frac{\mathrm{p}_{\mathrm{o}}}{\mathrm{q}_{\mathrm{o}}} = \mathrm{o}_{37744}$	h = 0.8286	e = 0·5599

Transformation.

Rose. Mohs-Zippe. Lévy. Hausmann. Miller. Descl. (1862). Dana. Websky.	Tenne, Lüdecke, Trechmann I,
p q	<u>p-1</u> q 2
(2p+1) 2q	рq

No.	Gdt.	Rose. Mohs. Zippe. Hausmann. Trechmann. Websky. Tenne.	Miller.	Quenst,	Miller.	Naum,	[Hausm.]	[Mohs] [Zippe] (1862)	[Lévy.] [Descl.]	Desc!	Gdt.
I	t	t	t	t	001	οР	\mathbf{D}_{l}	Ρ̈́r	a^{I}	p	0
2	r	r			010	$\infty \mathbb{P} \infty$	В	ĕr+∞	g^{I}	g^{I}	0∞
3	m	M	m	\mathbf{z}	110	∞P	E	$P + \infty$	m	m	∞
4	u	u	u	n	011	₽∞	B D'2	(Ĕ) ² *)	e ₃	e ^I	0 1
5	e				ĪOI	+ P∞				a^{I}	- I O
6	s	s	s	\mathbf{v}	Ī I 2	$+\frac{1}{2}P$	D	Р́г	e¹	$\mathbf{p_{I}}$	$-\frac{1}{2}$
7	Р				ĪII	+ P	/ 500		_	$\mathbf{b}^{\frac{\mathbf{I}}{2}}$	— І

^{*)} nicht (P-1)2 s. Bemerkungen.

570 Epistilbit.

Literatur.

Rose	Pogg. Ann.	1826	6	183
Hartmann	Handwb.	1828	_	340
$L \epsilon\!\!\!/ v y$	Descr.	1838	2	248
Mohs - Zippe	Min.	1839	2	270
Hausmann	Handb.	1847	2	(1) 766
Miller	Min.	1852		441
$Des\ Cloizeaux$	Manuel	1862	1	422
Websky	D. Geol. Ges.	1869	21	100
Hessenberg	Senck. Abh.	1870	7	278 (Min. Not. 9. 22) Reissit
Dana	System	1873		443
Quenstedt	Min.	1877		407
Groth	Strassb. Samml.	1878		239
Des Cloizeaux	Bull. soc. min.	1879	2	161
,,	Zeitschr. Kryst.	1880	4	412
Tenne	Jahrb. Min.	1880	1	285)
,,	Zeitschr. Kryst.	1882	6	100
$L\ddot{u}decke$	Jahrb. Min.	1881	1	162 Reissit
**	Zeitschr. Kryst.	1882	6	315
Groth	Tab. Uebers.	1882		114
Hintze	Zeitschr. Kryst.	1884	8	605.

Bemerkungen.

Bei Mohs-Zippe (Min. 1839. 2. 270) sind die Elemente aus den gegebenen Winkeln und Parameterverhältnissen nicht im Einklang. Die letzteren Angaben sind richtig, wenn man die beiden Wurzelwerthe vertauscht; die Winkel dagegen bedürfen der Correctur, welche Hausmann (Handb. 1847. 2. (1) 767) angebracht hat. Danach muss es heissen:

$$P = 153^{\circ}18 ; 111^{\circ}56 ; 74^{\circ}31$$

$$a:b:c = 1: \sqrt{11\cdot886} : \sqrt{2\cdot022}$$

Bei Mohs-Zippe findet sich die Angabe: $(\bar{P}-1)^2$ (u) = $149^\circ 27^!$; $142^\circ 41^!$; $49^\circ 0^!$, die nicht richtig ist, obwohl Symbol und Winkel übereinstimmen. Die Form ist wie die übrigen von G. Rose entlehnt (Pogg. Ann. 1826. 6. 183), wo es heisst:

wie es Hausmann angiebt.

Die von Groth (Tab. Uebers. 1882. 114) vorgeschlagene Aufstellung ist die alte Aufstellung von Rose (1826). Ob zu dieser zurückzukehren sei, lässt sich aus den bis jetzt vorliegenden Daten nicht feststellen. Es möge jedoch darauf hingewiesen werden, dass der Winkel $\beta=124-125^\circ$ auch beim Harmotom und Philippsit sich findet.

Correcturen.

```
Mohs-Zippe Min.
                                         2 Seite 270 Zeile 10 vu lies (P)^2 = 129^{\circ}14; 117^{\circ}23; 84^{\circ}42
                                                                      statt (\bar{P}-1)^2 = 149^{\circ}27; 142^{\circ}41; 49^{\circ}0
                                                           " 13 " lies P = 153^{\circ}18; 111^{\circ}56; 74^{\circ}31
                                                                      statt P = 153°36; 111°59; 74°20
                                                             12 ", lies 1: \sqrt{11.886}: \sqrt{2.022}
                                                                      statt 1: \sqrt{2.022}: \sqrt{11.886}
Kobell
                   Gesch. d. Min. 1864 -
                                                   489
                                                               6 "lies
                                                                                1826
                                                                                            statt
                                                                                                       1827
Dana
                   System
                                  1873 —
                                                   443
                                                                                0.703
                                                                                                       1.422.
```

Epsomit.

Rhombisch.

Axenverhältniss.

 $a:b:c=o\cdot 9901:1:o\cdot 5709$ (Miller. Dana. Schrauf. Groth. Gdt.) $a:b:c=o\cdot 9918:1:o\cdot 5713$ (Mohs-Zippe. Hausmann.)

Elemente.

a = 0.9901	lg a == 999568	$\lg a_0 = 023912$	$\lg p_o = 976088$	a _o == 1.7343	$p_o = 0.5766$
c = 0.5709	$\lg c = 975656$	$lg b_0 = 024344$	$\lg q_o = 975656$	b _o == 1.7516	q _o = 0.5709

No.	Miller Gdt.	Mohs. Zippe. Hausm.	Hartm.	Hauy.	Miller.	Naumann.	Haus- mann.	Mohs. Hartmann. Zippe.	Hauy.	Gdt.
I	a	0	0	0	010	ωĔω	В	Řr+∞	¹ G ¹	000
2	b	p	p	О	100	$\infty \bar{P} \infty$	\mathbf{B}_{1}	Ēr+∞	$_{1}G_{1}$	∞0
3	m	M	M	M	110	∞P	\mathbf{E}	$P + \infty$	M	∞
4	f	f	h	s	120	∞ P̈ 2	BB ¹ 2	$(\breve{P}r+\infty)^3$ $(\breve{P}+\infty)^2$	зСз	∞2
5	\mathbf{v}	n	n		011	ĕ∾	В	Йr		O I
6	r	r	r	r	021	2 P̃∞	BA^{I}_{2}	ĕr∔ı	Ž Å	O 2
7	n	m	m	_	101	\bar{P}_{∞}	\mathbf{D}_{i}	Рr		10
8	x	\mathbf{q}	\mathbf{q}	r	201	$2 \bar{P} \infty$	$B^{l}A_{\frac{1}{2}}^{1}$	Ēr+1	$\overset{2}{\mathbf{A}}$	20
9	z	1	1	1	111	P	P	P	$\mathbf{B}^{\mathbf{I}}$	1
10	t	t	t	-	121	2 Ĭ 2	BD ¹ 2	$(\breve{P}r)^3 = (\breve{P})^2$		I 2
11	s	s	s		211	2 P 2	$B^{1}D_{2}$	$(\bar{P}r)^3 = (\bar{P})^2$		2 I

Literatur.

Hauy	Traité Min.	1822	2	51
Mohs	Grundr.	1824	2	59
Hartmann	Handwb.	1828		61
Mohs - $Zippe$	Min.	1839	2	51
Hausmann	Handb.	1847	2	(2) 1185
Miller	Min.	1852	_	546
Schrauf	Wien. Sitzb.	1860	39	903
Rouville	Compt. rend.	1878	87	703
Groth	$Tab.\ Uebers.$	1882	_	54.

Bemerkungen.

Rouville giebt (Compt. rend. 1878. 87. 703) für natürliche Krystalle die Formen h^I g^I a² c², die er beim ersten Anblick zu erkennen glaubte, jedoch ohne Angabe der Elemente. a² wurde neu sein; ein Symbol c² kommt im rhombischen System nicht vor. Es konnten danach Rouville's Zeichen nicht aufgenommen werden.

Hauy betrachtete den Epsomit als tetragonal.

Correcturen.

Hartmann	Handwh.	1828 —	Seite 62	Zeile 1	vo lies	Pr+∞	statt	Pr∞
Mohs - $Zippe$	Min.	1839 2	" 51	" 15	" "	55	,,	54.

Erythrosiderit.

Rhombisch.

Axenverhältniss.

$$a:b:c = o.7014:1:o.6754$$
 (Gdt.)
 $[a:b:c = o.6754:1:o.7014]$ (Scacchi.)

Elemente.

a = 0.7014	$\lg a = 984597$	$\lg a_0 = 001641$	$\lg p_o = 998359$	a₀ == 1.0385	$p_o = 0.9629$
c = 0.6754	lg c = 982956	$lg b_0 = 017044$	$\lg q_0 = 982956$	b _o == 1.4806	$q_o = 0.6754$

Scacchi.	Gdt.
pq	<u>i</u> q
$\frac{1}{p} \frac{q}{p}$	рq

No.	Gdt.	Scacchi.	Miller.	Naumann.	Gdt.
I	Ъ	В	001	o P	0
2	n	n	011	Ĕ∞	0 1
3	e	e	101	$\bar{\mathrm{P}}\infty$	10
4	d	d	201	2 ₽∞	20

Literatur.

Scacchi Napoli Att. Ac. 1874 (1873) 6 Sep. Seite 42.

Ettringit.

Hexagonal-holoedrisch.

Axenverhältniss.

$$\begin{array}{l} a:c = \text{$\rm i:o.817} \; (G_1) \\ \text{$\rm (i)$} \\ [a:c = \text{$\rm i:o.4717]} \; (G_2) \\ \text{$\rm (i)$} \\ \{a:c = \text{$\rm i:o.9434}\} \; \text{(Lehmann.)} \end{array}$$

Elemente.

$c = 0.817$ $\lg c = 991222$	$\begin{vmatrix} \lg a_o = 032634 \\ \lg a'_o = 008778 \end{vmatrix} \lg p_o = 973613$	$a_{o} = 2.1200$ $a'_{o} = 1.2240$	p _o = 0.5447
------------------------------	--	------------------------------------	-------------------------

Lehmann.	G_1	G_2	
рq	2 p · 2 q	2 (p+2q) 2 (p-q)	
$\frac{\dot{p}}{z}$ $\frac{q}{z}$	p q	(p+2q) (p-q)	
$\frac{p+2q}{6} \frac{p-q}{6}$	$\frac{p+2q}{3} \frac{p-q}{3}$	рq	

No.	Gdt.	Miller.	Bravais.	Naumann.	G_1	G_2
I	0	111	0001	оP	o	0
2	a	2 Ī Ī	1010	∞ P	∞ 0	∞.
3	P	100	10 <u>1</u> 1	P	1 0	I
4	q	111	2021	2 P	2 0	2

576 Ettringit.

Literatur.

 Lehmann, J.
 Jahrb. Min.
 1874 — 273 \ Niederrhein. Gesellsch. 1874 31
 1 \ Jana

 Dana
 System Append. 2.
 1875 — 19.

Euchroit.

Rhombisch.

Axenverhältniss.

$$a:b:c=0.586:i:0.963$$
 (Gdt.)

 $\label{eq:constraint} \begin{array}{l} \text{[a:b:c=0.6088:i:i:038]} & \text{(Haidinger. Mohs. Hartmann. Zippe.} \\ & \text{Des Cloizeaux. Hausmann. Miller.)} \end{array}$

 ${a:b:c=0.963:i:0.586}$ (Schrauf. Dana.)

Elemente.

a = 0.586	lg a = 976790	$lg a_0 = 978427$	$\lg p_0 = 021573$	$a_o = 0.6085$	$p_0 = 1.6434$
c = 0.963	lg c = 998363	$lg b_o = 001637$	$\lg q_0 = 998363$	b _o = 1.0384	$q_o = 0.9630$

Haidinger, Mohs. Hartm. Zippe, Haus- mann. Miller. Descloizeaux.	Schrauf. Dana.	Gdt,
рq	$\frac{\mathbf{q}}{\mathbf{p}} \frac{\mathbf{I}}{\mathbf{p}}$	$\frac{\mathbf{p}}{\mathbf{q}} \frac{\mathbf{I}}{\mathbf{q}}$
$\frac{1}{q} \frac{p}{q}$	рq	$\frac{1}{p} \frac{q}{p}$
$\frac{p}{q} \frac{r}{q}$	$\frac{\mathbf{p}}{1} \frac{\mathbf{p}}{\mathbf{d}}$	рq

No.	Miller, Gdt.	Haid. Mohs. Zippe. Hartm. Hausm.	Miller.	Naumann.	[Haus- mann.]		[Descl.]	Gdt.
I	a	k	001	οP	В	Pr+∞ P -∞	g¹	0
2	c	P	010	$\infty P \infty$	A	P —∞		000
3	n	n	011	Ĕ∞	D	Ўr	e ^I	0 1
4	1	1	102	½ P̄∞		$(\breve{P}r+\infty)^{3}(\breve{P}+\infty)^{2}$	g³	<u>I</u> 0
5	s	s	203	$\frac{2}{3}\bar{P}\infty$	$BB^{1\frac{3}{2}}$	$(\breve{P}r+\infty)=(\breve{P}+\infty)^{\frac{3}{2}}$	g ⁵	$\frac{2}{3}$ O
6	m	M	101	P̄∞	E	P+∞	m	10

578 Euchroit.

Literatur.

Haidinger	Edinb. Journ.	1825	2	1331
"	Schweigger Journ.	1825	45	231}
"	$Pogg. \ Ann.$	1825	5	165
Hartmann	Handwb.	1828		494
Mohs-Zippe	Min.	1839	2	174
$Des\ Cloizeaux$	Ann. chim. phys.	1845 (3) 13	423
Hausmann	Handb.	1847	2	(2) 1029
Miller	Min.	1852		510
Schrauf	Wien. Sitzb.	1860	39	89 0
Dana	System	1873	_	566
Groth	Strassb. Samml.	1878		170.

Eudialyt.

Hexagonal. Rhomboedrisch-hemiedrisch.

Axenverhältniss.

$$\begin{array}{c} a:c = \text{1:2.1116 } (G_2.) \\ \text{(1)} \\ \\ a:c = \text{1:2.121} \quad \text{(Mohs. Zippe.)} \\ \\ \text{(i)} \\ = \text{1:1.2113} \quad \text{(Nordenskj\"{o}ld.)} \\ \text{[a:c} = \text{1:2.116} \quad \text{[Miller. Kokscharow. Des Cloizeaux. Lang} = G_1.)} \\ \text{(i)} \\ \text{(i)$$

Elemente.

$c = 2.1116$ $\lg c = 032461$	$ \lg a_0 = 991395 \lg a_0' = 967539 $	$\lg p_o = 014852$	$a_{o} = 0.8203$ $a'_{o} = 0.4736$	p _o = 1.4078
-------------------------------	---	--------------------	---------------------------------------	-------------------------

Dana.	Lévy. Hausmann. Miller. Kokscharow. Des Cloizeaux. Lang $= G_1$.	Mohs-Zippe. Nordenskjöld \Longrightarrow G_2 .
pq	$\frac{p}{4} \frac{q}{4}$	$\frac{p+2q}{4} \frac{p-q}{4}$
4 P · 4 Q	p q	(p+2q) (p-q)
$\frac{4}{3}$ (p+zq) $\frac{4}{3}$ (p-q)	$\frac{p+2q}{3} \frac{p-q}{3}$	рq

No.	Gdt.	Miller. (1852) Kok. Lang.	Mohs. Hartm. Hausm.	Miller. (1840)	Nordsk.	Miller.	Bravais.	Naum.	Haus- mann.	riarum.	Lévy. Descl.	G ₁	G_2	$E = \frac{\mathbf{p} - \mathbf{i}}{3} \frac{\mathbf{q} - \mathbf{i}}{3}$
I	О	0	0	o	О	111	0001	o R	A	R—∞	a ^I	0	0	
2	a	a	u	u	b	ΙΟĪ	I I 2O	∞P 2	В	P+∞	$\mathbf{d}^{\mathbf{I}}$	∞	∞ 0	
3	b	b	c	c	a	2 Ī Ī	1010	∞R	E	R+∞	e ²	œο	00	_
4	π	n		_	p	210	1123	2/3 P 2				I 3	10	_
5	λ		-		r	311	2243	4 P 2				<u>2</u> 3	20	
6	p.	r	p	p	_	100	1011	+ R	P	R	р -	+ 1 O	+ 1	0
7	x.	у			_	611	5058	+ § R		_		+ § o	+ \$	$-\frac{1}{8}$
8	f∙					411	1012	$+\frac{1}{2}R$	A H 2			$+\frac{1}{2}$ o	$+\frac{1}{2}$	$-\frac{1}{6}$
9	d٠	z	z	z		2 I I	1014	$+\frac{1}{4}R$	AH4		a ² -	+ 4 o	+ 4	— 1
10	α.	h				221	TO15	— <u>I</u> R	_			$-\frac{1}{5}$ o	$-\frac{1}{5}$	$-\frac{2}{5}$
11	$\delta \cdot$	e	$\mathbf{b_{I}}$	x		110	Ī012	$-\frac{1}{2}R$	G	R—1	р ₁ -	$-\frac{1}{2}$ o	$-\frac{I}{2}$	$-\frac{1}{2}$
12	φ.	s	e¹	s		ΙΙĪ	ŽO2 I	2 R	FA ₄		e ^I -	- 20	_ 2	— 1
13	H:			_		301	3142	+ R ²				+ 3 I	$+\frac{5}{2}$ I	+ ½ o
14	K:	t		t		20Ī	2132	+ R ³			d² -	+ 2 I	+41	+10

580 Eudialyt.

Literatur.

Mohs	Grundr.	1824	2	646
Hartmann	Handwb.	1828		168
L lpha v y	Descr.	1838	1	412
Mohs-Zippe	Min.	1839	2	326
Miller	Pogg. Ann.	1840	50	522
Hausmann	Handb.	1847	2	(1) 891
Miller	Min.	1852	_	357
Des Cloizeaux	Manuel	1862	1	160
Lang	Phil. Mag.	1863 (4)25	436
$Nordenskj\"{o}ld$	Vet. Ac. Forh.	1870		559
Dana	System	1873		245
Kokscharow	Mat. Min. Russl.	1878	8	29
"	Zeitschr. Kryst.	1879	3	439. Ĵ

Correcturen.

Kobell Gesch. d. Min. 1864 Seite 553 Zeile 10 vo lies 1847 statt 1848.

Eudnophit.

Rhombisch.

Axenverhältniss.

a:b:c = o.6394: i:o.5773 (Gdt.) [a:b:c = o.5773: i:o.6394] (Des Cloizeaux.)

Elemente.

a = 0.6394	$\lg a = 980577$	$\lg a_o = 004437$	$\lg p_0 = 995563$	a _o == 1·1076	$p_o = 0.9029$
c = 0.5773	lg c = 976140	$\lg b_o = o23860$	$\lg q_0 = 976140$	b _o == 1.7322	$q_o = 0.5773$

Des Cloizeaux.	Gdt.
pq	$\frac{1}{p} \frac{q}{p}$
$\frac{1}{p} \frac{q}{p}$	pq

No.	Miller. Gdt.	Weibye.	Miller.	Naumann.	[Descl.]	Gdt.
I	ь	_	001	οP		0
2	a	s	010	$\infty \breve{P} \infty$	g	Ow
3	c		100	$\infty \bar{P} \infty$	_	ωo
4	m	d	011	Ď∞	m	0 1
5	О	o	101	Ē∞	$\mathbf{a}^{\mathtt{I}}$	10
1						

582 Eudnophit.

Literatur.

Weibye	Pogg. Ann.	1850 79	303
Dana	Amer. Journ.	1852 (2) 10	245
Miller	Min.	1852 —	447
$Des\ Cloizeaux$	Manuel	1862 1	395.

Euklas.

1.

Monoklin.

Axenverhältniss.

```
a:b:c = 0.3332:1:0.3237 \quad \beta = 100^{\circ}16 \text{ (Gdt.)} [a:b:c = 0.3237:1:0.3332 \quad \beta = 100^{\circ}16] \text{ (Schabus. Des Cloizeaux.}  Kokscharow. Becke.) \left\{a:b:c = 0.6474:1:0.6664 \quad \beta = 100^{\circ}16\right\} \text{ (Dana.)} (a:b:c = 0.6757:1:0.3316 \quad \beta = 108^{\circ}53) \text{ (Mohs. Zippe. Hausmann.}  \text{Miller.)} [(a:b:c = 0.5043:1:0.4212 \quad \beta = 101^{\circ}42]) \text{ (Rammelsberg I.)} \left\{(a:b:c = 0.6303:1:0.6318 \quad \beta = 101^{\circ}42\right\} \text{ (Rammelsberg II. Groth.)} \left\{[a:b:c = 0.7786:1:0.6632 \quad \beta = 124^{\circ}50]\right\} \text{ (Lévy.)}
```

Elemente.

a =	= 0·3332	lg a = 952270	$\lg a_0 = 001256$	$\lg p_o = 998744$	a _o = 1.0293	$p_0 = 0.9715$
c =	= o·3237	lg c = 951014	$lg b_o = 048986$	$\lg q_0 = 950313$	$b_o = 3.0894$	$q_0 = 0.3185$
μ = 180 -	-β 79°44	lg h = lg sin μ 999299	$ \begin{array}{c} \lg e = \\ \lg \cos \mu \end{array} $ $ 925098 $	$ \frac{p_{\circ}}{q_{\circ}} = o_{48431} $	h = 0.9840	e = 0·1782

Transformation.

(Siehe S. 587.)

No.	Gdt.	Schab. Rambg. Koksch. Becke.		Hauy. Hartm. Mohs. Zippe. Hausm.	Phill.	Miller.	Nau- mann.	[Hausm.]	[Mohs.] [Zippe.]	[Schabus.]	[Hauy.]	[Lévy.]	[Descl.]	Gdt.
1	M	M	q	M	T	001	оP	Bı	Pr+∞	Pr+∞	_	h ^I	h¹	0
2	T	T	b	T	P	010	$\infty P \infty$	В	Ĕr+∞	Ĕr+∞	\mathbf{T}	$\mathbf{g}^{\mathtt{I}}$	g^{I}	0 00
_ 3	t	t				100	∞P∞			P—∞			p	∞ o
4	n	n	n	n	\mathbf{b}_{z}	110	ωP	\mathbf{P}^{t}	—Р	Ўr	$\overset{\$}{ ext{ABC}}$	$\mathfrak{b}_{\mathtt{I}}$	e ^I	∞
5	O	_			_	6.11.0	∞P_{6}^{11}						$e^{\frac{6}{11}}$	∞ 11 6
6	О	О	О	O	$\mathbf{b}_{\mathtt{I}}$	120	∞P 2	$\mathbf{B}\mathbf{\bar{D}}^{\scriptscriptstyle{\dagger}}2$	—(Ĕ)2	Ĕr∔ı	$\overset{\frac{4}{5}}{\mathbf{A}}$	i"	$\mathrm{e}^{rac{\mathrm{I}}{2}}$	∞ 2
7	q	q	_		_	130	∞P 3		_	_	_	_	$e_{\overline{3}}^{\overline{1}}$	∞ 3
8	R	R				140	∞ P 4	_					$e^{\frac{I}{4}}$	∞ 4
9	H	H		_		160	∞ P 6		-				$e^{\frac{I}{6}}$	∞ 6
10	в	д				0.1.20	$\frac{1}{20}$ P ∞				_		h ²¹	$O_{\frac{1}{20}}$
11	η	η	_		_	0.1.16	$\frac{1}{16}$ P ∞			$(\bar{P} + \infty)^{16}$			$h_{15}^{\frac{17}{15}}$	$0\frac{1}{16}$
12	ζ	ζ		-		019	½ P∞	_		(P̄+∞)9	_	_	h ⁵	0]

(Fortsetzung S. 585.)

584 Euklas.

Literatur.

```
Hauy
                  Mem. Mus. hist. nat.
                                           1819
                                                       278
                   Traité Min.
                                                   2
                                           1822
                                                       528 J
Mohs
                                                       358
                  Grundr.
                                                   2
                                           1824
L \acute{e} v y
                   Edinb. phil. journ.
                                           1826
                                                  14
                                                       129
                   Pogg. Ann.
                                           1827
                                                   9
                                                       283
Hartmann
                   Handwb.
                                           1828
                                                       489
Phillips
                   Min.
                                           1837
                                                       98
L \epsilon v y
                                                   2
                   Descr.
                                           1838
                                                       88
                                                   2
Mohs-Zippe
                   Min.
                                           1839
                                                       351
Weiss, C. S.
                   Berl. Abh.
                                           1841
                                                       249
Hausmann
                   Handb.
                                                   2
                                                       (1) 601
                                           1847
Miller
                   Min.
                                           1852
                                                       335
Schabus
                   Wien. Sitzb.
                                          1852
                                                       507
                   Pogg. Ann.
                                                  88
                                          1853
                                                      608
                   Wien. Denkschr.
                                          1854
                                                      57
Kokscharow
                   Mat. Min. Russl.
                                          1858
                                                   3
                                                      97
                                          1862
                                                   4
                                                       51
                   Manuel
Des Cloizeaux
                                           1862
                                                   1
                                                       480
Rammelsberg
                   D. Geol. Ges.
                                                  21
                                          1869
                                                      807
Dana
                   System
                                          1873
                                                       379
Kulibin
                   Zeitschr. Kryst.
                                          1879
                                                   3
                                                      435 \
                                                             (Ural)
                   Verh. russ. Min. Ges.
                                          1879(2) 14
                                                      147 J
Guyot
                   Zeitschr. Kryst.
                                          188 I
                                                      250 (Boa Vista Brasil.)
Becke
                   Min. Petr. Mitth.
                                          1882
                                                      147
                                                                 Alpen
                   Jahrb. Min.
                                                   2
                                          1882
                                                      Ref. 209
Groth
                   Tabell. Uebers.
                                          1882
                                                      85
Des Cloizeaux
                  Bull. soc. min.
                                          1882
                                                   5
                                                      317.
```

Bemerkungen Correcturen s. S. 587 u. 588.

2.

No.	Gdt.	Schab. Rambg. Koksch. Becke.	Miller.	Hauy. Hartm. Mohs. Zippe. Hausm.	Phill.	Miller.	Nau- mann.	[Hausm.	[Mohs.] [Zippe.]	[Schabus.]	[Hauy.]	[Lévy.]	[Desc	l.] Gdt.
13		ε				014	Į P∞			(P̄+∞)4			$h^{\frac{5}{3}}$	0 I
14	δ	δ				023	² / ₃ P∞			$(\bar{P} \perp \infty)^{\frac{3}{2}}$			h ⁵	$0^{\frac{2}{3}}$
15	h	h		h	c_{II}	056	5 P ∞	B'B12	$(\bar{P}+\infty)^{\frac{12}{5}}$	$(\bar{P}+\infty)^{\frac{6}{5}}$	$G^{\frac{5}{2}\frac{5}{2}}G$		h ^{II}	0 5
16	N	N	k	h³	c ₉	011		B'B ₂	$(\vec{P}+\infty)^2$	P L an		h³	m	0 I
17	Q				c ₇	0.10.9	<u>10</u> ₽∞		` _ ´	$(\breve{P} + \infty)^{10}$			-	o 18
18	γ	γ		_	_	076	7 / ₆ ₽∞			$(P+\infty)^{6}$		_	_	o 7/6
19	1	1	1	1	c ₅	043	4/3 P∞	$B'B_{\frac{3}{2}}$	$(\bar{P}+\infty)^{\frac{3}{2}}$	$(\breve{P}+\infty)^{\frac{4}{3}}$	$G^{\frac{3}{2}\frac{3}{2}}G$	h5	g ⁷	o 4/3
20	β	β	q		c ₄	032	3/2 P∞	B'B4	$(\bar{P}+\infty)^{\frac{4}{3}}$	$(\breve{P}+\infty)^{\frac{3}{2}}$		_	g ⁵	$0^{\frac{3}{2}}$
21	ά	. α	_		c ₃	095	-	[B'B []		$(\breve{P}+\infty)^{\frac{9}{5}}$			g_{2}^{7}	o 2
22	s	s	s	s	$c_{\rm I}$	021	2 P &	E	P+∞	$(\breve{P}+\infty)^2$		m	g³	0 2
23	L	L	-			031	3 P∞		<u>.</u>	$(\breve{P}+\infty)^3$	_		g²	о 3
24	P	P	m	P	M	ĪOI	+ P∞	$\dot{\mathbf{D}}_{t}$	Р́г	— <u>Р</u> г	_		a^{I}	— 1 о
25	g	g	С	t		2 01	+ 2 P∞	Α	P ∞	— <u>Р</u> г—1			a ²	2 O
26	z	z		_			+4 P∞			— Pr—2	_		a ⁴	4 O
27	σ					551	— 5 P						<u> </u>	+ 5
28	r	r	r	r	b_3	111	— Р	$\overline{B}{}^{\scriptscriptstyle 1}\!D_3$	—(P) ³	+P	^I 8AG ⁵ C ²	$\mathbf{d}_{\mathbf{I}}$	$\mathbf{d}_{\frac{\mathbf{I}}{2}}^{\mathbf{I}}$	+ 1
29	đ	đ	d	d	d	ĪII		P	+P	— P	C 3 8	a_2	$b^{\frac{I}{2}}$	— 1
30	i	i	i	i	$\mathbf{b}_{\mathbf{I}}$	141	— 4 P 4	B'D3.BD'4	—(ĕr)7	+(Ĕ)4	^I 2AG ⁵ C ²	i ^I	λ	+ 1 4
31	u	u	u	u	b ₂	121	— 2 P 2	B'D3·BD'2	-(Pr-1)5	+(Ĕ)²	I AG5C2	i	u	+ 1 2
32	v	v				323	— P ³ ⁄ ₂			$+(\breve{P})^{\frac{2}{3}}$	_	_	δ	$+1^{\frac{2}{3}}$
33	θ	θ	_		_	Î 2 I	+ 2 P 2	_	_			_	y	— І 2
34	f	f	f	f	d	T31	+ 3 P 3	$\overrightarrow{BD}^{1}_{3}$	(Ĕ) ³	—(ĕ)³	Ç	$\mathbf{b_{3}}$	φ_	- I 3
35	U		_	_		233	₽ ³ / ₂				_		$d^{\frac{1}{3}}$	$+\frac{2}{3}$ 1
36	a	a	v	a		211	+ 2 P 2	AB ₂	ĕr—ı	P1			рī	— 2 I
37	b	b			_	2 41	+4P2			—(<u>P</u> —1)4		_	β	-24
38	c	c					$+5P^{\frac{5}{2}}$			-(P-1)5	3		χ	— 2 5
39	k	k				4 ·13·2	$+\frac{13}{2}P_{4}^{13}$			—(Ĕ—1) ¹	ž	_	k	$-2\frac{13}{2}$
40	x	x			_		+8P4			(ĕ-1)8			x	<u> </u>
41	A	-		-			— 4 P 2			3			q	+42
42	e	е				ī 32	$+\frac{3}{2}P_3$			$-(\breve{P}+1)^{\frac{3}{2}}$		a ₄	3	$-\frac{1}{2}\frac{3}{2}$
43	w	w					$+7P\frac{7}{3}$			—(<u>²</u> ¥—1)7	_	$i^{\mathrm{i}\mathrm{i}\mathrm{i}\mathrm{i}}$	\mathbf{w}	-37
44	Ξ			_			$+\frac{1}{4}P_3$						α	$-\frac{1}{12}\frac{1}{4}$
45	у	у				I·10·6	+ 5 P10			$-(\frac{3}{4}\breve{P}r+3)^{\frac{2}{1}}$	8			$-\frac{1}{6}\frac{5}{3}$
46	Ψ	_	_		_		+9P ⁹ / ₇			_			z	-79
47	p	p	-				$+\frac{13}{2}P_{5}^{13}$			<u>_</u> _ 2		_	π	$-\frac{5}{2}\frac{13}{2}$
48	m	m				395	+ ² / ₅ P 3			$-\left(\frac{5}{3}\breve{P}\right)^{\frac{9}{2}}$		i'''	μ	³ / ₅ ⁹ / ₅

Bemerkungen.

Bei Phillips finden sich noch die Formen: c_2 c_6 c_8 c_{10} c_{12} c_{13} welche Schabus und Hausmann deuten als:

Phillips.	Schabu	s.	Haus	mann.
i miiips.	Symbol.	Index.	Symb.	Index.
c ₂	$(\breve{P}+\infty)^{\frac{25}{13}}$	O 25 13	B'B ²⁴ / ₂₃	0 23 12
c ₆	$(\breve{P}+\infty)^{\frac{5}{4}}$	O 5/4	_	
C ₈	$(\breve{P}+\infty)^{\frac{16}{15}}$	0 <u>16</u>		

Phillips.	Schabus	S.
- mmpei	Symbol.	Index.
c ₁₀	$(\bar{P}+\infty)^{\frac{12}{11}}$	0 <u>1 1</u>
c ₁₂	$(\bar{P} + \infty)^{\frac{4}{3}}$	O 3/4
c ₁₃	$(\bar{P}+\infty)^{\frac{5}{3}}$	O 3/5

Diese Formen sind keinem der andern Autoren bekannt, auch von Schabus in sein Formenverzeichniss nicht aufgenommen worden. Es dürfte danach gerechtfertigt erscheinen, für sie eine Bestätigung abzuwarten. c_1 (Phillips) symbolisirt Hausmann mit $BB^{1}\frac{1}{14}$, entsprechend o $\frac{28}{14}$ (Index), während Schabus es zu o 2 stellt; c_3 mit $BB^{1}\frac{1}{10}$, entsprechend o $\frac{20}{11}$ (Index), wofür Schabus o $\frac{9}{5}$ setzt.

Schabus p führt (Seite 73) falsches Vorzeichen, wie aus Fig. 20 Taf. 2 hervorgeht. Es soll heissen $-(\frac{4}{5}\,P-1)^7$ statt $+\frac{4}{5}\,(P-1)^7$. In den beigesetzten Haidinger'schen und Naumann'schen Symbolen ist das Vorzeichen richtig. Des Cloizeaux hat für diese Form $\pi = b^{\frac{1}{11}} \, d^{\frac{1}{15}} \, g^{\frac{1}{5}}$ gesetzt, entsprechend $-\frac{5}{2} \, \frac{13}{2}$ des Index, während Schabus $p = -\frac{5}{2} \, 7$ sein würde. Des Cloizeaux's Symbol stimmt mit dem in seiner Projektionstafel gezeichneten Zonenverband von π mit λ m y χ e Auch stimmt der für $\pi:\pi$ berechnete Winkel = 80°22 mit Schabus Messung 80°50' besser überein, als der für $-\frac{5}{2}\,7:-\frac{5}{2}\,7$ erforderliche. Es wurde daher im Index Schabus p durch Des Cloizeaux's π ersetzt.

Die von Rammelsberg zum Zweck der Analogie mit Datolith vorgeschlagene Aufstellung (D. Geol. Ges. 1869. 21. 807) im Index als Aufstellung Rammelsberg II bezeichnet, ist von Groth in seiner tabellarischen Uebersicht angenommen worden. Sie lässt sich jedoch unmöglich festhalten, da für sie die Symbole unnatürlich complicirt ausfallen. Auch Rammelsberg hat diese Aufstellung nicht durchgeführt, sondern nur angedeutet. Seine Symbole beziehen sich auf das Axenverhältniss $a:b:c=o\cdot5043:1:o\cdot4212$ $\beta=101^{\circ}42^{\circ}=Rammelsberg$ I des Index.

Für die Aufstellung in Hartmann's Handwb. gilt die Transformation:

$$p \neq (Hartmann) = \frac{4}{5p-1} \frac{10 \neq q}{5p-1} \text{ oder } \frac{20}{24p-5} \frac{48 p}{24p-5} \text{ (Gdt.)}$$

beide nur genähert, jedoch zur Identification verwendbar.

Correcturen s. S. 588.

Transformation. (Siehe S. 583.)

Schab. Becke. Descl. Kokscharow.	Mohs-Zippe. Hausm. Miller.	Dana.	Rammels- berg I.	Rammelsberg II. Groth.	Hauy.	Lévy.	Gdt.
Ъď	р (т -	p 4/2		$\frac{5(p-1)}{6(p+1)} \frac{2q}{3(p+1)}$	$-\frac{5}{4}(p+1)\frac{5}{8}q$	$(p-\frac{1}{2})\frac{q}{2}$	1 <u>q</u> p p
$-\frac{p+1}{2}q$	Ъď	$-\frac{p+r}{2}\frac{q}{2}$	$\frac{p+3}{p-1} \frac{2q}{p-1}$	$\frac{5(p+3)}{6(p-1)} \frac{4q}{3(p-1)}$	8 (p-1) 8 q	$-\left(\frac{p}{2}+1\right)\frac{q}{2}$	$\frac{2}{p+1} \frac{2q}{p+1}$
p - 2 q	- (z b+1) z d	ъd	$\frac{p-1}{p+1} \frac{2q}{p+1}$	$\frac{5(p-1)}{6(p+1)} \frac{4q}{3(p+1)}$	$-\frac{5}{4}(p+1)\frac{5}{4}q$	p (<u>t</u> —q)	1 2 d d b D
$\frac{1+p}{1-p} \frac{2q}{1-p}$	$\frac{p+3}{p-1} \frac{2q}{p-1}$	$\frac{\mathrm{d-I}}{\mathrm{b}} \frac{\mathrm{d-I}}{\mathrm{d+I}}$	Ъd	0 € 0 € 0 € 0 € 0 € 0 € 0 € 0 € 0 € 0 €	$\frac{5}{2 (p-1)} \frac{5 q}{4 (p-1)}$	$-\frac{3p+1}{2(p-1)}\frac{q}{p-1}$	$\frac{p-1}{p+1} \frac{2q}{p+1}$
5-6p 15q 5-6p 5-6p		5-6p 15q 5-6p 10-12p	5 p · 2 q	ស្ន	$\frac{25}{2(6p-5)} \frac{75q}{8(6p-5)}$	5+18p 15q 10-12p 10-12p	$-\frac{6p-5}{6p+5}\frac{15q}{6p+5}$
$-(\frac{4}{5}p+1)\frac{8}{5}q$	b \(\frac{8}{8}\) (1\(\frac{4}{8}\)\)	$-\frac{(\frac{4}{5}p+1)^{\frac{4}{5}}q}{(\frac{5}{2p}+1)^{\frac{2}{p}}}$	$\left(\frac{5}{2p}+1\right)\frac{2q}{p}$	$\frac{5}{6}\left(\frac{5}{2p}+1\right)\frac{4q}{3p}$	ъd	$(\frac{4}{5}p+\frac{3}{2})\frac{4}{5}q$	5 8q 4p+5 4p+5
ps (½+d)	— (z b+z) z q	ь (r d)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{5(2p-1)}{6(2p+3)} \frac{8q}{3(2p+3)}$	$-\frac{5}{4}(p+\frac{3}{2})\frac{5}{4}q$	Ď d	2 4 q 2 p+1 2 p+1
<u>ф</u> д	$-\frac{p+2}{p}\frac{q}{p}$	$\frac{1}{p} \frac{q}{2p}$	$\frac{d+1}{d} \frac{d+1}{d-1}$	$\frac{5(1-p)}{6(1+p)} \frac{2q}{3(1+p)}$	$-\frac{5(p+1)}{4p} \frac{5q}{8p}$	$\frac{2-p}{2p} \frac{q}{2p}$	pd

Correcturen.

$L \epsilon v y$	Pogg. Ann.	1827	9	s.	285	Z.	7	vu	lies	$(d^{\frac{1}{3}}b^{\frac{1}{5}}g^{\frac{1}{2}})$	statt	$(d^{\frac{1}{3}}b^{\frac{1}{5}}g)$
n	Descript	1838	2	"	89	"7,	I 2	vo	"	$(d^{\frac{1}{3}}b^{\frac{1}{5}}g^{\frac{1}{2}})$	n	$(d^{\frac{1}{5}}b^{\frac{1}{5}}g^{\frac{1}{2}})$
${\it Mohs-Zippe}$	Min.	1839	2	"	351	"	8	vu	"	$-\frac{(\bar{P}r-1)^5}{2}$	"	$-\frac{(P-1)^3}{2}$
"	"	"	"	"	"	"	,,	vu		(<u>\text{\text{\text{Pr}}}\) 7</u>	_	$-\frac{(\frac{3}{4}\breve{P}r+2)^{7}}{2}$
**	"	"	,,	"	352	"т,	3,9	vu)	"	2	"	2
Hausmann	Handb.	1847 2	(1)	"	602	"	4	vo	"	P (d Hauy)	"	P' (d Hauy)
Schabus	Wien. Sitzb.	1852	8	"	509	,,	12	vo	"	— (<u> </u>	"	— (P—1)8
n	n	,,	,,	"	,,	"	10	vo	"	$-\frac{\bar{P}r-1}{2}$,	$-\frac{Pr-1}{2}$
"	**	**	,,	,,	"	"	11	vo)		45 V	,	
**	Pogg. Ann.	1853	88	"	610	12	2	vu	* **	— (<u>4</u> Ĕ—1)	, ,,	(\frac{2}{2} P1)'
**	"	,,	,	,,	611	,,	11	vo	,,	$(\infty P\infty)(T)$		$\infty P \infty (T)$
"	Wien. Denkschr.		6	77	73	**	6	vu	"	— (4 P—1)7	,	$+(\frac{4}{5}P-1)^7$
"	"	'n	,,	"	60	"	13	vu	" -	$-\frac{(\frac{3}{4}\ddot{P}+3)^{\frac{25}{18}}}{2}$	- "	$\frac{(\frac{3}{4}\ddot{P}+2)^{\frac{29}{18}}}{2}$
Dana	System	1873		,,	379	**	20	vu	,,	15 - 10	n	$\frac{15}{9} - \frac{10}{7}$
Des Cloizeaux¹)									"	332	"	116.

 $^{^{1})}$ Auf diesen Fehler hat bereits Groth (Zeitschr. Kryst. 1884. 9. 594) aufmerksam gemacht.

Eulytin.

Regulär. Tetraedrisch-hemiedrisch.

No.	Gdt.	Miller.	Miller.	Naumann.	Hausmann.	Mohs- Zippe.	Desci.	6 1	6 2	6 3
I	С	a	001	∞0∞	W	Н	р	0	000	∞0
2	d	d	101	∞O			_	10	O I	∞
3	p	О	1,11	+ 0	O	О		+ 1	+ 1 .	+ 1
4	q	n	112	+202	+Tr 1	+ C ₁		$+\frac{I}{2}$	+12	+21
5	1		115	+505				十 5	+15	+51
6	q		Ĩ 12	— 2 O 2	— Tr 1	— C ₁		— <u>I</u>	— I 2 -	— 2 I

590 Eulytin.

Literatur.

Breithaupt	Pogg. Ann.	1827	9	275
Hartmann	Handwb.	1828		559
Mohs-Zippe	Min.	1839	2	566
Hausmann	Handb.	1847	2	(1) 872
Miller	Min.	1852		350
Des Cloizeaux	Manuel	1862	1	527
Rath	Pogg. Ann.	1869	136	416
Groth	Strassb. Samml.	1878		204
Bertrand	Bull. soc. min.	1881	4	61,

Euxenit.

Rhombisch.

Axenverhältniss.

$$a:b:c = o \cdot 303: i:o \cdot 364$$
 (Gdt.)
 $[a:b:c = o \cdot 364: i:o \cdot 303]$ (Groth. Brögger.)

Elemente.

a = 0.303	lg a = 948144	$\lg a_0 = 992034$	$\lg p_0 = 007966$	$a_0 = 0.8324$	p _o =1·2013
c = 0·364	lg c = 956110	$\lg b_0 = 043890$	$\lg q_o = 956110$	b _o == 2.7472	$q_o = 0.364$

Groth. Brögger.	Gdt.
рq	$\frac{1}{p} \frac{q}{p}$
$\frac{1}{p} \frac{q}{p}$	pq

No.	Gdt.	Groth.	Miller.	Naumann.	Gdt.
I	С		001	o P	0
2	b	b	010	∞Ĕ∞	0 00
3	m	m	OII	ď∞	01
4	d	d	102	½ P̄∞	^I 2 0
5	P	p	111	P	I

592 Euxenit.

Literatur.

```
      Kenngott
      Uebers.
      1844-49 (1852)
      —
      197 \ 1855 (1856)
      —
      88 \ 1

      Dahl
      Erdm. Journ.
      1855 64 444
      444

      Groth
      Strassb. Samml.
      1878 —
      255

      Brögger
      Zeitschr. Kryst.
      1879 3 483
      Vergleich m. Aeschynit u. Polykras.
```

Correcturen und Nachträge.

Bemerkung. Die Correcturen und Nachträge wurden einseitig gedruckt, damit man im Stande sei, letztere nach Wunsch auszuschneiden und, besonders bei durchschossenen Exemplaren, an entsprechender Stelle einzukleben.

Seite 7 Zeile 7 vo lies c_0 statt h_0 . , 13 , 4 vu flgde.:

Es empfiehlt sich doch wohl, statt des Namens Primärformen im Gegensatz zu binär und ternär, das analog abgeleitete Singulärformen zu setzen, da der Begriff der Primärformen hier und der Primärform, als Ausgang der Formenentfaltung, sich doch nicht vollständig decken und so Unklarheiten entstehen könnten.

Danach ist zu corrigiren:

- " 13 Zeile 3 vu lies singulär statt primär.
- ", ", ", 2 ", ", Singulärformen ", Primärformen.
- , 15 Fussnote ist zuzufügen:

Man vergleiche auch C. S. Weiss Berl. Ak.-Abh. 1818—1819. 227.

30 Fussnote zuzufügen:

Hier nur einiges zur Motivirung eines im Index verwendeten Ausdrucks. Wir haben für das hexagonale System, was bisher nicht geschehen ist, unterschieden zwischen zwei verschiedenen Arten rhomboedrischer Hemiedrie, je nachdem die ternären Pyramiden der Hauptreihe \pm p halbslächig austreten, oder die binären (domatischen) Formen \pm po. Wir wollen die erste Art, deren typischer Repräsentant der Calcit ist, nach dem derzeitigen Gebrauch rhomboedrische Hemiedrie nennen, die zweite, zu der, abgesehen von der tetartoedrischen Theilung, der Quarz, sowie wahrscheinlich der Zinnober gehört, domatische Hemiedrie.

Die aufgestellte Behauptung fällt damit zusammen, dass dem Spaltungsrhomboeder des Calcit das Zeichen + 1, der scheinbaren Hauptpyramide des Quarz (Diploeder) das Symbol \pm 10 zukomme, resp. dass für den Calcit die Symbolreihe G_2 , für Quarz G_1 den Vorzug verdiene. Dass dies der Fall sei, ergiebt sich direct aus dem Anblick der Zahlenreihen. Die eingehendere Discussion soll an anderer Stelle geführt werden.

Im regulären System entspricht der rhomboedrischen Hemiedrie die tetraedrische, der domatischen.die pentagonale.

Im tetragonalen System ist die analoge Unterscheidung zu machen zwischen der sphenoidischen Hemiedrie, bei welcher die ternären Pyramiden der Hauptreihe p (h h l) halbflächig auftreten und der Hemiedrie mit halbflächigen binären (domatischen) Pyramiden po (h o l), die wir wieder die domatische nennen wollen. Der Kupferkies z. B. ist wohl als domatisch-hemiedrisch anzusehen.

Seite 36 zuzufügen:

Tetragonales System. Symbole G₁ und G₂.

Im tetragonalen System haben wir, ebenso wie im hexagonalen, zwei a priori gleichwerthige Arten der Aufstellung, die bei gleicher Verticalaxe um 45^0 gegeneinander gedreht sind. Wir wollen sie ebenfalls mit G_1 und G_2 bezeichnen. Nach Analogie mit dem hexagonalen System können wir gleich die Transformations-Symbole und die Formeln zur Umrechnung der Elemente geben (vgl. S. 100).

Es ist:

$$p_o = c_{10} \sqrt{2}$$
; $a_o = \frac{1}{c_{10} \sqrt{2}}$

Während im Index für das hexagonale System stets beide Reihen $(G_1 \text{ und } G_2)$ angeschrieben wurden, ist im tetragonalen System meist nur die eine Reihe gegeben. In einigen wichtigen Fällen beide.

Seite 42 Monoklines System nach "Naumann" einzuschieben "Schabus".
", Rhombisches ", ", "Senfft" ", "Nordenskjöld".
", Zeile 11 vu das Wort "meist" zu löschen.

Seite 43 Zeile 9 vo zuzufügen: (vgl. S. 65 flgde.).

49 nach Zeile 7 ist folgende Einschiebung zu machen:

Eine Verkürzung der Weiss'schen Symbole findet sich bei Wackernagel (Quarz. Kastner, Archiv. 1825. 5. 80) für das hexagonale System. Für die abgekürzten Zeichen gilt die Umwandlung:

$$\frac{\frac{1}{s} c}{\frac{1}{t} a : \frac{1}{n} a} (Wackernagel) = \frac{n}{s} \frac{t-n}{s} (G_1)$$

Das volle Weiss'sche Zeichen dafür wäre:

$$\frac{1}{t-n} a : \frac{1}{t} a : \frac{1}{n} a : \frac{1}{s} c$$

50 Monoklines System lies:

$$a_{n} = -\frac{n+1}{2} \frac{n-1}{2} \text{ statt } a^{n} = -\frac{n+1}{2} \frac{n-1}{2}$$

$$o_{n} = +\frac{n+1}{2} \frac{n-1}{2} , \quad o^{n} = +\frac{n+1}{2} \frac{n-1}{2}$$

Seite 50 zuzufügen:

"

,,

Bei Lévy finden sich für das reguläre System tetraedrischer Hemiedrie noch die folgenden Symbole, gestützt auf das Tetraeder als Grundform mit beigefügter Bedeutung:

$$p = + 1 \begin{vmatrix} a^{\frac{2}{3}} = -\frac{1}{2} \\ a^{\frac{1}{3}} = -1 \\ a^{\frac{2}{3}} = 10 \end{vmatrix} b^{\frac{1}{3}} = 0 b^{\frac{1}{3}} = + \frac{1}{2} \begin{vmatrix} i = b^{\frac{1}{5}} b^{\frac{1}{5}} = i\frac{2}{3} \\ b^{\frac{1}{5}} = i\frac{2}{3} \end{vmatrix}$$

Seite 54 Zeile 5 vo lies: $\frac{2}{3}$ I statt $\frac{1}{3}$ I

59 ,, 5 vu ,, 1²/₃ ,, 1¹/₃

Seite 68 Als Notiz zuzufügen: Man vergleiche auch Lévy S. 71.

71 Zeile 14 vu lies: lg cos μ statt lg μ

Seite **96** Zeile 18 vo "
$$pq(A)$$
 statt $pq_0(A)$ " **97** " 5 vu " $(p+n)q$ " $(p+q)q$

Seite 105 Zeile 1 vo " 1828 statt 128

" 109 zuzufügen:

4. Aufgabe. Gegeben: Für eine Fläche das Symbol pq und das Element p₀. Gesucht: Der Winkel zur Basis $\delta = pq \cdot o$.

Auflösung: Es ist:

$$tg \, \delta = p_o \, \sqrt{p^2 + q^2}$$

Beispiel: Anatas.
$$s = \frac{5}{19} \frac{1}{19}$$
; $p_o = 1.7771$; $tg \ sc = \frac{5}{19} \frac{1}{19}$: $D = p_o \sqrt{\left(\frac{5}{19}\right)^2 + \left(\frac{1}{19}\right)^2}$
= $\frac{p_o}{19} \sqrt{26} = \frac{1.7771}{19} \sqrt{26}$; $sc = 25^\circ 36^\circ$

Seite 122 Zeile 11 vo das Wort "Schema" nach rechts zu rücken über "Buchst." Seite 122 " 11 " " " " " "Controle" " " " " " " Columne 6

Seite 139 Columne 4 nach ½ 3 Py einzufügen: ½ 5 Fa.

"," ", ", $\frac{7}{10}$ $\frac{5}{12}$ Fa zu streichen.

" 140 nach Zeile 10 vu einzufügen:

Wo im regulären System im Fall der Hemiedrie zwischen + und — Formen gleichen Zahlensymbols unterschieden wird, wurde für beide der gleiche Buchstabe gesetzt, für die — Formen jedoch mit einem Punkt versehen.

z. B.:
$$q = \frac{1}{2}$$
 resp. $= +\frac{1}{2}$; $q \cdot = -\frac{1}{2}$

.. 141 Columne 8 lies: $V: + 10^{\frac{7}{2}}$ statt $V: + 10^{\frac{7}{2}}$

", ", ", " 11 ",
$$\lambda$$
: + 1 $\frac{19}{16}$ ", λ :

,, ,, ,, ,, μ : + 1 $\frac{17}{20}$,, μ :

, , , , 20 , $\mathfrak{T} = 8 \frac{5}{2}$, $\mathfrak{T} = -8 \frac{5}{2}$

Seite 141 zuzufügen:

In ähnlicher Weise, wie für das reguläre System, erscheint es auch für das hexagonale System rhomboedrischer Hemiedrie nicht empfehlenswerth, für complicirte Symbole, bei welchen eine Wiederholung unwahrscheinlich ist, Buchstaben zu fixiren. Eine richtige Auswahl kann aber erst geschehen auf Grund einer statistischen Zusammenstellung, analog der für das reguläre System (S. 138—140) gegebenen, nachdem die Fragen der Aufstellung der Krystalle in weiterer Ausdehnung entschieden sind und das Material vervollständigt und besser geklärt sein wird. Ist ein solcher Moment eingetreten, so bedarf die Buchstabenbezeichnung einer Neubearbeitung.

Vorläufig empfiehlt es sich, Buchstaben mit neuen Gruppenzeichen zuzufügen und zwar zunächst B|=B: (sprich: B, 4 Punkt), B|=B: (sprich B, 5 Punkt), B|: u. s. w. (vgl. S. 134). Später wird man für die sich wiederholenden Formen die Buchstaben fixiren, gewisse Reihen für spätere Fixirung offen halten, andere zu verschiedenartiger Benutzung freigeben für Symbole, die sich nicht wiederholen.

Durch die Discussion wird man ein Anhalten gewinnen, welche Formen eine all gemeine Wahrscheinlichkeit für sich haben, deren Wiederholung daher zu erwarten ist und welche nur ganz lokalen Bedingungen ihre Entstehung verdanken und demgemäss wohl vereinzelt bleiben werden. Ist nun ein neuer Buchstabe auszusuchen, so ist zunächst zu entscheiden, ob das neue Symbol eine innere Wahrscheinlichkeit für ein Auftreten auch bei anderen Mineralien hat; in diesem Fall ist ein Buchstabe auszusuchen, der zur Fixirung ausersehen ist. Ist das Symbol derart, dass es voraussichtlich vereinzelt bleibt, so ist unter den Buchstaben zu wählen, die zu wechselnder Verwendung freigegeben sind.

Bei der Auswahl der Buchstaben, abgesehen vom Gruppenzeichen, ist auch voraussichtliche Wiederholung in dem Mineral selbst möglichst zu vermeiden.

Seite 149 nach der letzten Zeile zuzufügen:

Man vergleiche: Frankenheim Pogg. Ann. 1855 96 347 Hessenberg Senck. Abh. 1856 2 186

Seite 151 nach Zeile 16 vo einzufügen:

Bull. soc. franc. = Bulletin de la société française de minéralogie 1886 Bd. 9 (Die Société minéralogique de France hat 1886 ihren Namen in den obigen abgeändert.)

Seite 159 u. 160 Abichit an gehöriger Stelle zuzufügen:

Des Cloizeaux Ann. Chim. Phys. 1845 (3) 13 419 (Aphanésite) a:b:c=1.914:1:3.850 $\beta=100^{\circ}42!$ (Des Cloizeaux)

Des Cloizeaux	h I	p	m	o _I	$a^{\frac{7}{10}}$
entspr. Gdt.	О	∞0	O I	+ 10	$-\frac{2}{3}$ o

Des Cloizeaux's Aufstellung ist mit der Miller's gleich.

Seite 181 u. 182 Amalgam. An entsprechender Stelle zuzufügen:

Naumann	a	s		m	b	r	_	e
entspr. Gdt.	С	a	e	d	q	p	u	х

Naumann Lehrb. Kryst. 1830 1 246

Seite 189 Amphibol. Col. Schrauf... lies e (1) statt e.

[Es setzt nämlich Schrauf 1 für (130). Danach könnte die Correctur e statt 1 (S. 192) für Koch entfallen.]

Seite 227 Antimonglanz. Zeile 4 vo lies: 15.27.5 statt 15.25.5.

Seite 231—233 Apatit.

- " 231 Nr. 5 Col. Naumann lies f statt —
- " **233** ,, 25 ,, ,, ,, b ,, –
- " 232 nach Zeile 4 vo einzufügen:

Naumann Lehrb. Kryst. 1830 1 504

" " zuzufügen:

Bemerkungen. In Naumann-Zirkel's Elem. d. Min. 1877 485 ist das Axenverhältniss gegeben: a:c=1:0.7346, während die Winkelangaben sich auf das Verhältniss: a:c=1:0.7323 beziehen. (Vgl. Hintze, Zeitschr. Kryst. 1883 7 591 Fussnote.)

Seite 298 Beryll. Nach Zeile 12 vo zuzufügen:

300 zuzufügen:

Kokscharow giebt (1872) die Formen:

$$\begin{array}{l} \frac{17}{16} \text{ I } (17 \cdot 16 \cdot 3\overline{3} \cdot 16) = \frac{33}{16} \text{ P } \frac{33}{17} \\ \frac{14}{13} \text{ I } (14 \cdot 13 \cdot 2\overline{7} \cdot 13) = \frac{27}{13} \text{ P } \frac{27}{14} \\ \frac{19}{10} \text{ I } (10 \cdot 9 \cdot 1\overline{9} \cdot 9) = \frac{19}{19} \text{ P } \frac{19}{10} \end{array}$$

Die Ungleichmässigkeit in den Neigungen dieser Flächen gegen das benachbarte s = 1 erlaubt nicht, eines dieser Symbole als sicher anzusehen. Wahrscheinlich sind diese Flächen als vicinale von 1 zu betrachten.